Polarization Optics

Nicolas Fressengeas

To cite this version:

Nicolas Fressengeas. Polarization Optics. DEA. Université Paul Verlaine Metz, 2010. cel-00521501v2

HAL Id: cel-00521501
https://cel.hal.science/cel-00521501v2
Submitted on 13 Oct 2010 (v2), last revised 6 Feb 2014 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UE SPM-PHY-S07-101 Polarization Optics

N. Fressengeas

Laboratoire Matériaux Optiques, Photonique et Systèmes
Unité de Recherche commune à l'Université Paul Verlaine Metz et à Supélec
Document à télécharger sur http://moodle.univ-metz.fr/

Further reading

S. Huard.

Polarisation de la lumière.
Masson, 1994.
围 G. P. Können.
Polarized light in Nature.
Cambridge University Press, 1985.

Course Outline

(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices
- Polarizers
- Linear and Circular Anisotropy
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

The physics of polarization optics Polarized light propagation Partially polarized light
(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices
- Polarizers
- Linear and Circular Anisotropy
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

The vector nature of light

Optical wave can be polarized, sound waves cannot

The scalar monochromatic plane wave
 The electric field reads:

- Electric field is orthogonal to wave and Poynting vectors

The vector nature of light

Optical wave can be polarized, sound waves cannot

The scalar monochromatic plane wave

The electric field reads:

$$
A \cos (\omega t-k z-\varphi)
$$

A vector monochromatic plane wave

- Electric field is orthogonal to wave and Poynting vectors
- Lies in the wave vector normal plane
- Needs 2 components

The vector nature of light

Optical wave can be polarized, sound waves cannot

The scalar monochromatic plane wave

The electric field reads:

$$
A \cos (\omega t-k z-\varphi)
$$

A vector monochromatic plane wave

- Electric field is orthogonal to wave and Poynting vectors
- Lies in the wave vector normal plane

The vector nature of light

Optical wave can be polarized, sound waves cannot

The scalar monochromatic plane wave

The electric field reads:

$$
A \cos (\omega t-k z-\varphi)
$$

A vector monochromatic plane wave

- Electric field is orthogonal to wave and Poynting vectors
- Lies in the wave vector normal plane
- Needs 2 components
- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The physics of polarization optics
Polarized light propagation Partially polarized light

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

Linear and circular polarization states

In phase components $\quad \varphi_{y}=\varphi_{x}$

N. Fressengeas

The physics of polarization optics
Polarized light propagation Partially polarized light

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

Linear and circular polarization states

In phase components $\quad \varphi_{y}=\varphi_{x}$

The physics of polarization optics

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

Linear and circular polarization states

π shift $\quad \varphi_{y}=\varphi_{x}+\pi$

11
universite arme
N. Fressengeas

UE SPM-PHY-S07-109, version 1.1, frame 5

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

Linear and circular polarization states

$\pi / 2$ shift

$$
\varphi_{y}=\varphi_{x} \pm \pi / 2
$$

Left or Right
UE SPM-PHY-S07-109, version 1.1, frame 5

The physics of polarization optics
Polarized light propagation Partially polarized light

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

Linear and circular polarization states

$\pi / 2$ shift
$\varphi_{y}=\varphi_{x} \pm \pi / 2$

Left or Right

UE SPM-PHY-S07-109, version 1.1, frame 5

The physics of polarization optics
Polarized light propagation Partially polarized light

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

Linear and circular polarization states

In phase components $\quad \varphi_{y}=\varphi_{x}$

π shift $\quad \varphi_{y}=\varphi_{x}+\pi$

$\pi / 2$ shift

$\varphi_{y}=\varphi_{x} \pm \pi / 2$

Left or Right
UE SPM-PHY-S07-109, version 1.1, frame 5

The elliptic polarization state

The polarization state of ANY monochromatic wave

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 8
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 4
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 2
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm 3 \pi / 4
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 4
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

4 real numbers

- A_{x}, φ_{x}
- A_{y}, φ_{y}

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 4
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

4 real numbers

- A_{x}, φ_{x}
- A_{y}, φ_{y}

2 complex numbers

- $A_{x} \exp \left(i \varphi_{x}\right)$
- $A_{y} \exp \left(i \varphi_{y}\right)$

UE SPM-PHY-S07-109, version 1.1, frame 6
(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices
- Polarizers
- Linear and Circular Anisotropy
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

Polarization states are vectors

Monochromatic polarizations belong to a 2D vector space based on the Complex Ring
ANY elliptic polarization state \Longleftrightarrow Two complex numbers
A set of two ordered complex numbers is one 2D complex vector

Polarization states are vectors

Monochromatic polarizations belong to a 2D vector space based on the Complex Ring
ANY elliptic polarization state $\quad \Longleftrightarrow$ Two complex numbers
A set of two ordered complex numbers is one 2D complex vector

Canonical Basis

$$
\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

\square These two vectors represent time nolarization statac

Polarization states are vectors

Monochromatic polarizations belong to a 2D vector space based on the Complex Ring
ANY elliptic polarization state $\quad \Longleftrightarrow$ Two complex numbers
A set of two ordered complex numbers is one 2D complex vector

Canonical Basis

$$
\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

Link with optics ?

- These two vectors represent two polarization states
- We must decide which ones !

Polarization states are vectors

Monochromatic polarizations belong to a 2D vector space based on the Complex Ring

ANY elliptic polarization state \Longleftrightarrow Two complex numbers

A set of two ordered complex numbers is one 2D complex vector

Canonical Basis

$$
\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

Link with optics ?

- These two vectors represent two polarization states
- We must decide which ones !

Polarization Basis

Two independent polarizations :

- Crossed Linear
- Reversed circular
- ...
- YOUR choice

Examples: Linear Polarizations

Canonical Basis Choice

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$: horizontal linear polarization
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$: vertical linear polarization

Examples: Linear Polarizations

Canonical Basis Choice

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$: horizontal linear polarization
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$: vertical linear polarization

$$
\begin{array}{ll}
\text { Tilt } & \theta=\pi / 4 \\
& \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{array}
$$

Examples: Linear Polarizations

Canonical Basis Choice

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$: horizontal linear polarization
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$: vertical linear polarization

Tilt
 $$
\theta=3 \pi / 4
$$

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Examples: Linear Polarizations

Canonical Basis Choice

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$: horizontal linear polarization
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$: vertical linear polarization

Tilt

$$
\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]
$$

Examples: Linear Polarizations

Canonical Basis Choice

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$: horizontal linear polarization
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$: vertical linear polarization

Tilt

$$
\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]
$$

Linear polarization Jones vector

- Linear Polarization : two in phase components
- Two real numbers

In a linear polarization basis

Examples: Circular Polarizations

In the same canonical basis choice : linear polarizations

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 2
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$
N. Fressengeas

UE SPM-PHY-S07-109, version 1.1, frame 9

Examples: Circular Polarizations

In the same canonical basis choice : linear polarizations

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 2
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

Jones vector

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
\pm i
\end{array}\right]
$$

N. Fressengeas

UE SPM-PHY-S07-109, version 1.1, frame 9

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states
\square

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states

Find the transformation matrix between between the two following

 bases- Horizontal and Vertical Linear Polarizations
- Right and Left Circular Polarizations

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states
- Remark : two colinear polarization states are identical

Find the transformation matrix between between the two following

 bases- Horizontal and Vertical Linear Polarizations

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states
- Remark : two colinear polarization states are identical

Homework

Find the transformation matrix between between the two following bases :

- Horizontal and Vertical Linear Polarizations
- Right and Left Circular Polarizations

Relationship between Jones and Poynting vectors

 Jones vectors also provide information about intensity
Choose an orthonormal basis

- Hermitian product is null : $\overline{J_{1}} \cdot J_{2}=0$
- Each vector norm is unity : $\overline{J_{1}} \cdot J_{1}=\overline{J_{2}} \cdot J_{2}=1$

Simple calculations show that

- If each Jones component is one complex electric field
component
- The Hermitian norm is proportional to beam intensity

Relationship between Jones and Poynting vectors

 Jones vectors also provide information about intensity
Choose an orthonormal basis

- Hermitian product is null : $\overline{J_{1}} \cdot J_{2}=0$
- Each vector norm is unity : $\overline{J_{1}} \cdot J_{1}=\overline{J_{2}} \cdot J_{2}=1$

Hermitian Norm is Intensity
Simple calculations show that:

- If each Jones component is one complex electric field component
- The Hermitian norm is proportional to beam intensity

The physics of polarization optics

Polarization as a unique complex number

If the intensity information disappears, polarization is summed up in one complex number

Rule out the intensity
Norm the Jones vector to unity

- Multiplying Jones vector by a complex number does not
change the polarization state
- Norm the first component to 1 : $\left[\begin{array}{l}1 \\ \xi\end{array}\right]$
- The sole ξ describes the polarization state

Polarization as a unique complex number

If the intensity information disappears, polarization is summed up in one complex number

Rule out the intensity

Norm the Jones vector to unity
Put 1 as first component

- Multiplying Jones vector by a complex number does not change the polarization state
- The sole ξ describes the polarization state

Polarization as a unique complex number

If the intensity information disappears, polarization is summed up in one complex number

Rule out the intensity

Norm the Jones vector to unity
Put 1 as first component

- Multiplying Jones vector by a complex number does not change the polarization state
- Norm the first component to $1:\left[\begin{array}{l}1 \\ \xi\end{array}\right]$
- The sole ξ describes the polarization state

Either you norm the vector, or its first component.

Polarization as a unique complex number

If the intensity information disappears, polarization is summed up in one complex number

Rule out the intensity

Norm the Jones vector to unity
Put 1 as first component

- Multiplying Jones vector by a complex number does not change the polarization state
- Norm the first component to $1:\left[\begin{array}{l}1 \\ \xi\end{array}\right]$
- The sole ξ describes the polarization state

Either you norm the vector, or its first component.

Polarization as a unique complex number

If the intensity information disappears, polarization is summed up in one complex number

Rule out the intensity
Norm the Jones vector to unity
Put 1 as first component

- Multiplying Jones vector by a complex number does not change the polarization state
- Norm the first component to 1 : $\left[\begin{array}{l}1 \\ \xi\end{array}\right]$
- The sole ξ describes the polarization state

Choose between the two
Either you norm the vector, or its first component. Not both !

The physics of polarization optics
(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices
- Polarizers
- Linear and Circular Anisotropy
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

The physics of polarization optics
Polarized light propagation Partially polarized light

The Stokes parameters

A set of 4 dependent real parameters that can be measured

Sample Jones Vector

$$
\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

P_{0}

Overall Intensity

$$
P_{0}=A_{x}^{2}+A_{y}^{2}=I
$$

The physics of polarization optics
Polarized light propagation Partially polarized light

The Stokes parameters

A set of 4 dependent real parameters that can be measured

Sample Jones Vector

$$
\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

$P_{0} \quad$ Overall Intensity

$$
P_{0}=A_{x}^{2}+A_{y}^{2}=I
$$

P_{1}

 Intensity Différence$$
P_{1}=A_{x}^{2}-A_{y}^{2}=I_{x}-I_{y}
$$

The Stokes parameters

A set of 4 dependent real parameters that can be measured

Sample Jones Vector

$$
\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

$P_{0} \quad$ Overall Intensity
$P_{0}=A_{x}^{2}+A_{y}^{2}=I$
$\pi / 4$ Tilted Basis
$P_{2} \quad \frac{1}{\sqrt{2}}\left[\begin{array}{l}A_{x} e^{-i \varphi / 2}+A_{y} e^{+i \varphi / 2} \\ A_{x} e^{-i \varphi / 2}-A_{y} e^{+i \varphi / 2}\end{array}\right]$
$P_{2}=I_{\pi / 4}-I_{-\pi / 4}=2 A_{x} A_{y} \cos (\varphi)$

The Stokes parameters

A set of 4 dependent real parameters that can be measured

Sample Jones Vector

$$
\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

Overall Intensity

$$
P_{0}=A_{x}^{2}+A_{y}^{2}=I
$$

$\pi / 4$ Tilted Basis
$J_{\pi / 4}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}A_{x} e^{-i \varphi / 2}+A_{y} e^{+i \varphi / 2} \\ A_{x} e^{-i \varphi / 2}-A_{y} e^{+i \varphi / 2}\end{array}\right]$
$P_{2}=I_{\pi / 4}-I_{-\pi / 4}=2 A_{x} A_{y} \cos (\varphi)$

Intensity Différence

$$
P_{1}=A_{x}^{2}-A_{y}^{2}=I_{x}-I_{y}
$$

P_{3}
Circular Basis

$$
\begin{gathered}
J_{\mathrm{cir}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
A_{x} e^{-i \varphi / 2}-i A_{y} e^{+i \varphi / 2} \\
A_{x} e^{-i \varphi / 2}+i A_{y} e^{+i \varphi / 2}
\end{array}\right] \\
P_{3}=I_{\mathrm{L}}-I_{\mathrm{R}}=2 A_{x} A_{y} \sin (\varphi)
\end{gathered}
$$

The Stokes parameters

A set of 4 dependent real parameters that can be measured

Sample Jones Vector

$$
\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

Overall Intensity

$$
P_{0}=A_{x}^{2}+A_{y}^{2}=I
$$

$\pi / 4$ Tilted Basis
$J_{\pi / 4}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}A_{x} e^{-i \varphi / 2}+A_{y} e^{+i \varphi / 2} \\ A_{x} e^{-i \varphi / 2}-A_{y} e^{+i \varphi / 2}\end{array}\right]$
$P_{2}=I_{\pi / 4}-I_{-\pi / 4}=2 A_{x} A_{y} \cos (\varphi)$

$P_{1} \quad$ Intensity Différence

$$
P_{1}=A_{x}^{2}-A_{y}^{2}=I_{x}-I_{y}
$$

$$
\begin{gathered}
J_{\mathrm{cir}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
A_{x} e^{-i \varphi / 2}-i A_{y} e^{+i \varphi / 2} \\
A_{x} e^{-i \varphi / 2}+i A_{y} e^{+i \varphi / 2}
\end{array}\right] \\
P_{3}=I_{\mathrm{L}}-I_{\mathrm{R}}=2 A_{x} A_{y} \sin (\varphi)
\end{gathered}
$$

4 dependent parameters

$$
P_{0}^{2}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}
$$

The Stokes parameters

A set of 4 dependent real parameters that can be measured

Sample Jones Vector

$$
\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

P_{0}

Overall Intensity

$$
P_{0}=A_{x}^{2}+A_{y}^{2}=I
$$

$$
P_{1}=A_{x}^{2}-A_{y}^{2}=I_{x}-I_{y}
$$

$$
\begin{array}{l|c}
P_{2} & \pi / 4 \text { Tilted Basis } \\
J_{\pi / 4}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
A_{x} e^{-i \varphi / 2}+A_{y} e^{+i \varphi / 2} \\
A_{x} e^{-i \varphi / 2}-A_{y} e^{+i \varphi / 2}
\end{array}\right] & \text { Circular Basis } \\
P_{2}=I_{\pi / 4}-I_{-\pi / 4}=2 A_{x} A_{y} \cos (\varphi) & I_{3}=\left[\begin{array}{c}
A_{x} e^{-i \varphi / 2}-i A_{y} e^{+i \varphi / 2} \\
A_{x} e^{-i \varphi / 2}+i A_{y} e^{+i \varphi / 2}
\end{array}\right] \\
P_{3}=I_{\mathrm{L}}-I_{\mathrm{R}}=2 A_{x} A_{y} \sin (\varphi)
\end{array}
$$

Homework

Find the reverse relationship : φ, A_{x}, A_{y} from the Stokes parameters

The Poincare Sphere

Polarization states can be described geometrically on a sphere

Recall the Stokes parameters

$$
P_{0}^{2}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}
$$

Normalized Stokes parameters

The Poincare Sphere

Polarization states can be described geometrically on a sphere

Recall the Stokes parameters

$$
P_{0}^{2}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}
$$

Normalized Stokes parameters

$$
S_{i}=P_{i} / P_{0}
$$

The Poincare Sphere

Polarization states can be described geometrically on a sphere

Recall the Stokes parameters

$$
P_{0}^{2}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}
$$

Normalized Stokes parameters

$$
S_{i}=P_{i} / P_{0}
$$

Unit Radius Sphere

$$
\sum_{i=1}^{3} S_{i}=1
$$

The physics of polarization optics

Polarization states

Jones Calculus
Stokes parameters and the Poincare Sphere

The Poincare Sphere

Polarization states can be described geometrically on a sphere

Recall the Stokes parameters

$$
P_{0}^{2}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}
$$

Normalized Stokes parameters

$$
S_{i}=P_{i} / P_{0}
$$

Unit Radius Sphere

$$
\sum_{i=1}^{3} S_{i}=1
$$

(S_{1}, S_{2}, S_{3}) on a unit radius sphere

Figures from [Hua94]

UE SPM-PHY-S07-109, version 1.1, frame 14

The physics of polarization optics

Polarization states

Jones Calculus
Stokes parameters and the Poincare Sphere

The Poincare Sphere

Polarization states can be described geometrically on a sphere

Normalized Stokes parameters

$$
S_{i}=P_{i} / P_{0}
$$

Unit Radius Sphere

$$
\sum_{i=1}^{3} S_{i}=1
$$

General Polarisation

$\left(S_{1}, S_{2}, S_{3}\right)$ on a unit radius sphere

[^0]Figures from [Hua94]

UE SPM-PHY-S07-109, version 1.1, frame 14
(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices
- Polarizers
- Linear and Circular Anisotropy
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

Eigen Polarization states

Polarization states that do not change after propagation in an anisotropic medium

Eigen Polarization states
 - Do not change
 - Except for Intensity

Eigen Polarization states

Polarization states that do not change after propagation in an anisotropic medium

Eigen Polarization states

- Do not change
- Except for Intensity

Linear Anisotropy Eigen Polarizations

- Quarter and half wave plates and Birefringent materials
- Eigen Polarizations are linear along the eigen axes

Eigen Polarization states

Polarization states that do not change after propagation in an anisotropic medium

Eigen Polarization states

- Do not change
- Except for Intensity

Linear Anisotropy Eigen Polarizations

- Quarter and half wave plates and Birefringent materials
- Eigen Polarizations are linear along the eigen axes

Eigen Polarization states

Polarization states that do not change after propagation in an anisotropic medium

Eigen Polarization states

- Do not change
- Except for Intensity

Linear Anisotropy Eigen Polarizations

- Quarter and half wave plates and Birefringent materials
- Eigen Polarizations are linear along the eigen axes

Circular Anisotropy

- Also called optical activity

Eigen Polarization states

Polarization states that do not change after propagation in an anisotropic medium

Eigen Polarization states

- Do not change
- Except for Intensity

Linear Anisotropy Eigen Polarizations

- Quarter and half wave plates and Birefringent materials
- Eigen Polarizations are linear along the eigen axes

Circular Anisotropy

- Also called optical activity
- e.g in Faraday rotators and in gyratory non linear crystals

Eigen Polarization states

Polarization states that do not change after propagation in an anisotropic medium

Eigen Polarization states

- Do not change
- Except for Intensity

Linear Anisotropy Eigen Polarizations

- Quarter and half wave plates and Birefringent materials
- Eigen Polarizations are linear along the eigen axes

Circular Anisotropy

- Also called optical activity
- e.g in Faraday rotators and in gyratory non linear crystals
- Linear polarization is rotated by an angle proportional to propagation distance

Eigen Polarization states

Polarization states that do not change after propagation in an anisotropic medium

Eigen Polarization states

- Do not change
- Except for Intensity

Linear Anisotropy Eigen Polarizations

- Quarter and half wave plates and Birefringent materials
- Eigen Polarizations are linear along the eigen axes

Circular Anisotropy

- Also called optical activity
- e.g in Faraday rotators and in gyratory non linear crystals
- Linear polarization is rotated by an angle proportional to propagation distance
- Eigen polarizations are the circular polarizations

Eigen Polarization states

Polarization states that do not change after propagation in an anisotropic medium

Eigen Polarization states

- Do not change
- Except for Intensity

Hermitian operator
2 eigen polarization states are orthonormal

Linear Anisotropy Eigen Polarizations

- Quarter and half wave plates and Birefringent materials
- Eigen Polarizations are linear along the eigen axes

Circular Anisotropy

- Also called optical activity
- e.g in Faraday rotators and in gyratory non linear crystals
- Linear polarization is rotated by an angle proportional to propagation distance
- Eigen polarizations are the circular polarizations

Jones Matrices

2D Linear Algebra to compute polarization propagation through devices

Jones matrices in the eigen basis

- Let λ_{1} and λ_{2} be the two eigenvalues of a given device
- e.g. for linear anisotropy : $\lambda_{i}=e^{n_{i} k_{0} \Delta z}$

Jones Matrices

2D Linear Algebra to compute polarization propagation through devices

Jones matrices in the eigen basis

- Let λ_{1} and λ_{2} be the two eigenvalues of a given device
- e.g. for linear anisotropy : $\lambda_{i}=e^{n_{i} k_{0} \Delta z}$
- Jones Matrix is $\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$

Jones Matrices

2D Linear Algebra to compute polarization propagation through devices

Jones matrices in the eigen basis

- Let λ_{1} and λ_{2} be the two eigenvalues of a given device
- e.g. for linear anisotropy : $\lambda_{i}=e^{n_{i} k_{0} \Delta z}$
- Jones Matrix is $\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$

Homework

Find half and quarter wave plates Jones Matrices

Jones Matrices

2D Linear Algebra to compute polarization propagation through devices

Jones matrices in the eigen basis

- Let λ_{1} and λ_{2} be the two eigenvalues of a given device
- e.g. for linear anisotropy : $\lambda_{i}=e^{n_{i} k_{0} \Delta z}$
- Jones Matrix is $\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$

In another basis

- Let $\overrightarrow{J_{1}}=\left[\begin{array}{l}u \\ v\end{array}\right]$ and $\overrightarrow{J_{2}}=\left[\begin{array}{c}-\bar{v} \\ \bar{u}\end{array}\right]$ be the orthonormal eigen vectors
- $\left\{\begin{array}{l}\mathbf{M} \overrightarrow{\jmath_{1}}=\lambda_{1} \overrightarrow{\jmath_{1}} \\ \mathbf{M} \overrightarrow{\jmath_{2}}=\lambda_{2} \overrightarrow{J_{2}}\end{array} \Rightarrow \mathbf{M}=\left[\begin{array}{ll}\lambda_{1} u \bar{u}+\lambda_{2} v \bar{v} & \left(\lambda_{1}-\lambda_{2}\right) u \bar{v} \\ \left(\lambda_{1}-\lambda_{2}\right) v \bar{u} & \lambda_{2} v \bar{u}+\lambda_{1} v \bar{v}\end{array}\right]\right.$

Jones Matrices

2D Linear Algebra to compute polarization propagation through devices

Jones matrices in the eigen basis

- Let λ_{1} and λ_{2} be the two eigenvalues of a given device
- e.g. for linear anisotropy : $\lambda_{i}=e^{n_{i} k_{0} \Delta z}$
- Jones Matrix is $\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$

In another basis

- Let $\overrightarrow{J_{1}}=\left[\begin{array}{l}u \\ v\end{array}\right]$ and $\overrightarrow{J_{2}}=\left[\begin{array}{c}-\bar{v} \\ \bar{u}\end{array}\right]$ be the orthonormal eigen vectors
- $\left\{\begin{array}{l}\mathbf{M} \overrightarrow{\jmath_{1}}=\lambda_{1} \overrightarrow{\jmath_{1}} \\ \mathbf{M} \overrightarrow{\jmath_{2}}=\lambda_{2} \overrightarrow{J_{2}}\end{array} \Rightarrow \mathbf{M}=\left[\begin{array}{ll}\lambda_{1} u \bar{u}+\lambda_{2} v \bar{v} & \left(\lambda_{1}-\lambda_{2}\right) u \bar{v} \\ \left(\lambda_{1}-\lambda_{2}\right) v \bar{u} & \lambda_{2} v \bar{u}+\lambda_{1} v \bar{v}\end{array}\right]\right.$

The particular case of non absorbing devices

 Jones matrix is a unitary operator when $\lambda_{1}=\lambda_{2}=1$
Nor absorbing neither amplifying devices

- $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$
- $\mathbf{M} \cdot \overline{\mathbf{M}^{\boldsymbol{t}}}=\overline{\mathbf{M}^{\mathrm{t}}} \cdot \mathbf{M}=\mathbf{I}$
- \mathbf{M} is a unitary operator
- Norm is conserved: Intensity is unchanged after propagation
- Orthogonality is conserved : two initially orthogonal states mill remain so after propagation

The particular case of non absorbing devices

 Jones matrix is a unitary operator when $\lambda_{1}=\lambda_{2}=1$Nor absorbing neither amplifying devices

- $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$
- $\mathbf{M} \cdot \overline{\mathbf{M}^{\boldsymbol{t}}}=\overline{\mathbf{M}^{\mathrm{t}}} \cdot \mathbf{M}=\mathbf{I}$
- \mathbf{M} is a unitary operator

Unitary operator properties

- Norm is conserved : Intensity is unchanged after propagation
\square

The particular case of non absorbing devices

 Jones matrix is a unitary operator when $\lambda_{1}=\lambda_{2}=1$Nor absorbing neither amplifying devices

- $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$
- $\mathbf{M} \cdot \overline{\mathbf{M}^{\mathbf{t}}}=\overline{\mathbf{M}^{\mathrm{t}}} \cdot \mathbf{M}=\mathbf{I}$
- \mathbf{M} is a unitary operator

Unitary operator properties

- Norm is conserved : Intensity is unchanged after propagation
- Orthogonality is conserved : two initially orthogonal states will remain so after propagation
(1) The physics of polarization optics
- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices
- Polarizers
- Linear and Circular Anisotropy
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

Jones Matrix of a polarizer

In its eigen basis

- A polarized is designed for :
- Full transmission of one linear polarization
- Zero transmission of its orthogonal counterpart

Jones Matrix of a polarizer

In its eigen basis

- A polarized is designed for :
- Full transmission of one linear polarization
- Zero transmission of its orthogonal counterpart
- Eigen basis Jones matrix : $\mathbf{P}_{\mathbf{x}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ or $\mathbf{P}_{\mathbf{y}}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

Jones Matrix of a polarizer

In its eigen basis

- A polarized is designed for :
- Full transmission of one linear polarization
- Zero transmission of its orthogonal counterpart
- Eigen basis Jones matrix : $\mathbf{P}_{\mathbf{x}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ or $\mathbf{P}_{\mathbf{y}}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

When transmitted polarization is θ tilted
Change base through θ rotation Transformation Matrix

$$
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Jones Matrix of a polarizer

In its eigen basis

- A polarized is designed for :
- Full transmission of one linear polarization
- Zero transmission of its orthogonal counterpart
- Eigen basis Jones matrix : $\mathbf{P}_{\mathbf{x}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ or $\mathbf{P}_{\mathbf{y}}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

When transmitted polarization is θ tilted
Change base through θ rotation Transformation Matrix

$$
\begin{aligned}
& \mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \\
& \mathbf{P}(\theta)=\mathbf{R}(\theta)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \mathbf{R}(-\theta)
\end{aligned}
$$

Jones Matrix of a polarizer

In its eigen basis

- A polarized is designed for :
- Full transmission of one linear polarization
- Zero transmission of its orthogonal counterpart
- Eigen basis Jones matrix : $\mathbf{P}_{\mathbf{x}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ or $\mathbf{P}_{\mathbf{y}}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

When transmitted polarization is θ tilted
Change base through θ rotation Transformation Matrix

$$
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

$$
\mathbf{P}(\theta)=\mathbf{R}(\theta)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \mathbf{R}(-\theta)=\left[\begin{array}{cc}
\cos ^{2}(\theta) & \sin (\theta) \cos (\theta) \\
\sin (\theta) \cos (\theta) & \sin ^{2}(\theta)
\end{array}\right]
$$

Jones Matrix of a polarizer

When transmitted polarization is θ tilted

Change base through θ rotation Transformation Matrix

$$
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

$$
\mathbf{P}(\theta)=\mathbf{R}(\theta)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \mathbf{R}(-\theta)=\left[\begin{array}{cc}
\cos ^{2}(\theta) & \sin (\theta) \cos (\theta) \\
\sin (\theta) \cos (\theta) & \sin ^{2}(\theta)
\end{array}\right]
$$

Homework

Find again the θ tilted polarizer Jones Matrix by using physics arguments only

Intensity transmitted through a polarizer

From natural or non polarized light

Half the intensity is transmitted

Intensity transmitted through a polarizer

From natural or non polarized light

Half the intensity is transmitted

From linearly polarized light

- Transmitted Jones vector in polarizer eigen basis:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]=\left[\begin{array}{c}
\cos (\theta) \\
0
\end{array}\right]
$$

- Transmitted Intensity : $\cos ^{2}(\theta)$

Show that whatever the polarizer orientation, the transmitted intensity is half the incident intensity.

Intensity transmitted through a polarizer

From natural or non polarized light

Half the intensity is transmitted

From linearly polarized light

- Transmitted Jones vector in polarizer eigen basis:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]=\left[\begin{array}{c}
\cos (\theta) \\
0
\end{array}\right]
$$

- Transmitted Intensity : $\cos ^{2}(\theta)$

From circularly polarized light
Show that whatever the polarizer orientation, the transmitted intensity is half the incident intensity.
(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices
- Polarizers
- Linear and Circular Anisotropy
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

Linear anisotropy eigen polarization vectors

- Two orthogonal polarization directions
- Two different refraction indexes n_{1} and n_{2}
- Two linear eigen modes along the eigen directions

- Find the Jones Matrices of Quarter and Half wave plates

Linear anisotropy eigen polarization vectors

- Two orthogonal polarization directions
- Two different refraction indexes n_{1} and n_{2}
- Two linear eigen modes along the eigen directions

Jones Matrix in the eigen basis Express phase delay only

$$
\left[\begin{array}{cc}
e^{i n_{1} k \Delta z} & 0 \\
0 & e^{i n_{2} k \Delta z}
\end{array}\right]=e^{i \psi}\left[\begin{array}{cc}
e^{i \phi / 2} & 0 \\
0 & e^{-i \phi / 2}
\end{array}\right]
$$

- Find the Jones Matrices of Quarter and Half wave plates

- Find their action on tilted linear polarization (special case fo

Linear anisotropy eigen polarization vectors

- Two orthogonal polarization directions
- Two different refraction indexes n_{1} and n_{2}
- Two linear eigen modes along the eigen directions

Jones Matrix in the eigen basis
Express phase delay only
$\left[\begin{array}{cc}e^{i n_{1} k \Delta z} & 0 \\ 0 & e^{i n_{2} k \Delta z}\end{array}\right]=e^{i \psi}\left[\begin{array}{cc}e^{i \phi / 2} & 0 \\ 0 & e^{-i \phi / 2}\end{array}\right] \approx\left[\begin{array}{cc}e^{i \phi / 2} & 0 \\ 0 & e^{-i \phi / 2}\end{array}\right]$
Quarter and Half wave plates
Homework

- Find the Jones Matrices of Quarter and Half wave plates
- Find their action on tilted linear polarization (special case for $\pi / 4$ tilt)
- Find their action on circular polarization

What is circular anisotropy ?

- Two orthogonal circular eigen polarization states
- Two different refraction indexes n_{L} and n_{R}

transformation matrix

What is circular anisotropy ?

- Two orthogonal circular eigen polarization states
- Two different refraction indexes n_{L} and n_{R}

Jones Matrix in the circular eigen basis Express phase delay only

$$
\left[\begin{array}{cc}
e^{i n_{L} k \Delta z} & 0 \\
0 & e^{i n_{R} k \Delta z}
\end{array}\right]=e^{i \psi}\left[\begin{array}{cc}
e^{i \phi / 2} & 0 \\
0 & e^{-i \phi / 2}
\end{array}\right]
$$

transformation matrix

What is circular anisotropy ?

- Two orthogonal circular eigen polarization states
- Two different refraction indexes n_{L} and n_{R}

Jones Matrix in the circular eigen basis Express phase delay only

$$
\left[\begin{array}{cc}
e^{i n_{L} k \Delta z} & 0 \\
0 & e^{i n_{R} k \Delta z}
\end{array}\right]=e^{i \psi}\left[\begin{array}{cc}
e^{i \phi / 2} & 0 \\
0 & e^{-i \phi / 2}
\end{array}\right] \approx\left[\begin{array}{cc}
e^{i \phi / 2} & 0 \\
0 & e^{-i \phi / 2}
\end{array}\right]
$$

Jones Matrix in a linear polarization basis Transformation matrix

- use $\mathbf{P}_{\text {Cir } \rightarrow \text { Lin }}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right]$ transformation matrix
- $\mathbf{P}_{\mathrm{Cir} \rightarrow \operatorname{Lin}} M\left(\mathbf{P}_{\mathrm{Cir} \rightarrow \operatorname{Lin}}\right)^{-1}=e^{i \boldsymbol{\psi}}\left[\begin{array}{cc}\cos (\phi / 2) & \sin (\phi / 2) \\ -\sin (\phi / 2) & \cos (\phi / 2)\end{array}\right]$

Jones Matrix in the circular eigen basis Express phase delay only

$$
\left[\begin{array}{cc}
e^{i n_{L} k \Delta z} & 0 \\
0 & e^{i n_{R} k \Delta z}
\end{array}\right]=e^{i \psi}\left[\begin{array}{cc}
e^{i \phi / 2} & 0 \\
0 & e^{-i \phi / 2}
\end{array}\right] \approx\left[\begin{array}{cc}
e^{i \phi / 2} & 0 \\
0 & e^{-i \phi / 2}
\end{array}\right]
$$

Jones Matrix in a linear polarization basis Transformation matrix

- use $\mathbf{P}_{\text {Cir } \rightarrow \text { Lin }}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right]$ transformation matrix
- $\mathbf{P}_{\mathrm{Cir} \rightarrow \operatorname{Lin}} M\left(\mathbf{P}_{\mathrm{Cir} \rightarrow \operatorname{Lin}}\right)^{-1}=e^{i \psi}\left[\begin{array}{cc}\cos (\phi / 2) & \sin (\phi / 2) \\ -\sin (\phi / 2) & \cos (\phi / 2)\end{array}\right]$

Homework

Show that an incoming linear polarisation is simply rotated by an angle proportional to the propagation distance
(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices
- Polarizers
- Linear and Circular Anisotropy
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

Jones Matrices Composition

The Jones matrices of cascaded optical elements can be composed through Matrix multiplication

Matrix composition

- If a $\overrightarrow{J_{0}}$ incident light passes through $\mathbf{M}_{\mathbf{1}}$ and $\mathbf{M}_{\mathbf{2}}$ in that order
- First transmission: $\mathbf{M}_{\mathbf{1}} \overrightarrow{\mathrm{J}_{0}}$
- Second transmission: $\mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{1}} \overrightarrow{J_{0}}$
- Composed Jones Matrix : $\mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{1}}$ Reversed order

- Matrix product does not commute in general
 - Think of the case of a linear anisotropy followed by optical

Jones Matrices Composition

The Jones matrices of cascaded optical elements can be composed through Matrix multiplication

Matrix composition

- If a \vec{J}_{0} incident light passes through $\mathbf{M}_{\mathbf{1}}$ and $\mathbf{M}_{\mathbf{2}}$ in that order
- First transmission: $\mathbf{M}_{1} \overrightarrow{J_{0}}$
- Second transmission: $\mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{1}} \overrightarrow{\jmath_{0}}$
- Composed Jones Matrix : $\mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{1}}$ Reversed order

Beware of non commutativity

- Matrix product does not commute in general
- Think of the case of a linear anisotropy followed by optical activity
- in that order
- in the reverse order
(1) The physics of polarization optics
- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices
- Polarizers
- Linear and Circular Anisotropy
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

Stokes parameters for partially polarized light

Generalize the coherent definition using the statistical average intensity

Stokes Vector

$$
\vec{S}=\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
\left\langle I_{x}+I_{y}\right\rangle \\
\left\langle I_{x}-I_{y}\right\rangle \\
\left\langle I_{\pi / 4}-I_{-\pi / 4}\right\rangle \\
\left\langle I_{L}-I_{R}\right\rangle
\end{array}\right]
$$

Stokes parameters for partially polarized light

Generalize the coherent definition using the statistical average intensity

Stokes Vector

$$
\vec{S}=\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
\left\langle I_{x}+I_{y}\right\rangle \\
\left\langle I_{x}-I_{y}\right\rangle \\
\left\langle I_{\pi / 4}-I_{-\pi / 4}\right\rangle \\
\left\langle I_{L}-I_{R}\right\rangle
\end{array}\right]
$$

$$
p=\frac{\sqrt{P_{1}^{2}+P_{2}^{2}+P_{3}^{2}}}{P_{0}}
$$

Stokes parameters for partially polarized light

Generalize the coherent definition using the statistical average intensity

Stokes Vector

Polarization degree $0 \leq p \leq 1$

$$
\vec{S}=\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
\left\langle I_{x}+I_{y}\right\rangle \\
\left\langle I_{x}-I_{y}\right\rangle \\
\left\langle I_{\pi / 4}-I_{-\pi / 4}\right\rangle \\
\left\langle I_{L}-I_{R}\right\rangle
\end{array}\right]
$$

$$
p=\frac{\sqrt{P_{1}^{2}+P_{2}^{2}+P_{3}^{2}}}{P_{0}}
$$

Stokes decomposition
Polarized and depolarized sum

$$
\vec{S}=\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
p P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]+\left[\begin{array}{c}
(1-p) P_{0} \\
0 \\
0 \\
0
\end{array}\right]=\overrightarrow{S_{P}}+\overrightarrow{S_{N P}}
$$

The Jones Coherence Matrix

Jones Coherence Matrix

$$
\text { - If } \vec{J}=\left[\begin{array}{l}
A_{x}(t) e^{i \varphi_{x}(t)} \\
A_{y}(t) e^{i \varphi_{y}(t)}
\end{array}\right]
$$

- Meaningless when not monochromatic

The Jones Coherence Matrix

Jones Coherence Matrix

- If $\vec{J}=\left[\begin{array}{l}A_{x}(t) e^{i \varphi_{x}(t)} \\ A_{y}(t) e^{i \varphi_{y}(t)}\end{array}\right]$
- $\Gamma_{i j}=\left\langle\vec{J}_{i}(t) \vec{J}_{j}(t)\right\rangle$

The Jones Coherence Matrix

Jones Coherence Matrix

- If $\vec{J}=\left[\begin{array}{l}A_{x}(t) e^{i \varphi_{x}(t)} \\ A_{y}(t) e^{i \varphi_{y}(t)}\end{array}\right]$
- $\Gamma_{i j}=\left\langle\vec{J}_{i}(t) \overline{\vec{J}}_{j}(t)\right\rangle$
- $\Gamma=\left\langle\overrightarrow{J(t)} \overrightarrow{J(t)}^{t}\right\rangle$

The Jones Coherence Matrix

Jones Coherence Matrix

- If $\vec{J}=\left[\begin{array}{l}A_{x}(t) e^{i \varphi_{x}(t)} \\ A_{y}(t) e^{i \varphi_{y}(t)}\end{array}\right]$
- $\Gamma_{i j}=\left\langle\vec{J}_{i}(t) \overrightarrow{\vec{J}}_{j}(t)\right\rangle$
- $\Gamma=\left\langle\overrightarrow{J(t)} \overrightarrow{J(t)} \overrightarrow{\mathrm{J}}^{\mathrm{J}}\right\rangle$

Coherence Matrix: explicit formulation

$$
\Gamma=\left[\begin{array}{ll}
\Gamma_{x x} & \Gamma_{x y} \\
\Gamma_{y x} & \Gamma_{y y}
\end{array}\right]
$$

The Jones Coherence Matrix

Jones Coherence Matrix

Jones Vectors are out

- They describe phase differences
- Meaningless when not monochromatic

$$
\text { - If } \vec{J}=\left[\begin{array}{l}
A_{x}(t) e^{i \varphi_{x}(t)} \\
A_{y}(t) e^{i \varphi_{y}(t)}
\end{array}\right]
$$

$$
-\Gamma_{i j}=\left\langle\vec{J}_{i}(t) \vec{J}_{j}(t)\right\rangle
$$

$$
\cdot \Gamma=\left\langle\overrightarrow{J(t)} \overrightarrow{\overrightarrow{J(t)}^{t}}\right\rangle
$$

Coherence Matrix: explicit formulation

$$
\Gamma=\left[\begin{array}{cc}
\left.\left.\langle | A_{x}(t)\right|^{2}\right\rangle & \left\langle A_{x}(t) \overline{A_{y}(t)} e^{i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle \\
\left\langle\overline{A_{x}(t)} A_{y}(t) e^{-i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle & \left.\left.\langle | A_{y}(t)\right|^{2}\right\rangle
\end{array}\right]
$$

Jones Coherence Matrix: properties

The Coherence Matrix

$$
\Gamma=\left[\begin{array}{cc}
\left.\left.\langle | A_{x}(t)\right|^{2}\right\rangle & \left\langle A_{x}(t) \overline{A_{y}(t)} e^{i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle \\
\left\langle\overline{A_{x}(t)} A_{y}(t) e^{-i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle & \left.\left.\langle | A_{y}(t)\right|^{2}\right\rangle
\end{array}\right]
$$

Trace is Intensity

$$
\operatorname{Tr}(\Gamma)=1
$$

Jones Coherence Matrix: properties

The Coherence Matrix

$$
\Gamma=\left[\begin{array}{cc}
\left.\left.\langle | A_{x}(t)\right|^{2}\right\rangle & \left\langle A_{x}(t) \overline{A_{y}(t)} e^{i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle \\
\left\langle\overline{A_{x}(t)} A_{y}(t) e^{-i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle & \left.\left.\langle | A_{y}(t)\right|^{2}\right\rangle
\end{array}\right]
$$

Trace is Intensity

$$
\operatorname{Tr}(\Gamma)=1
$$

Base change Transformation \mathbf{P}
\mathbf{P}^{-1} Г \mathbf{P}

Jones Coherence Matrix: properties

The Coherence Matrix

$$
\Gamma=\left[\begin{array}{cc}
\left.\left.\langle | A_{x}(t)\right|^{2}\right\rangle & \left\langle A_{x}(t) \overline{A_{y}(t)} e^{i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle \\
\left\langle\overline{A_{x}(t)} A_{y}(t) e^{-i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle & \left.\left.\langle | A_{y}(t)\right|^{2}\right\rangle
\end{array}\right]
$$

Trace is Intensity

Base change Transformation \mathbf{P}

$$
\operatorname{Tr}(\Gamma)=1 \quad \mathbf{P}^{-1} \Gamma \mathbf{P}
$$

Relationship with Stokes parameters
from definition

$$
\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & i & -i
\end{array}\right]\left[\begin{array}{l}
\Gamma_{x x} \\
\Gamma_{y y} \\
\Gamma_{x y} \\
\Gamma_{y x}
\end{array}\right]
$$

Jones Coherence Matrix: properties

Trace is Intensity

$$
\operatorname{Tr}(\Gamma)=1
$$

Transformation P

\mathbf{P}^{-1} Г \mathbf{P}

Relationship with Stokes parameters
from definition

$$
\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & i & -i
\end{array}\right]\left[\begin{array}{c}
\Gamma_{x x} \\
\Gamma_{y y} \\
\Gamma_{x y} \\
\Gamma_{y x}
\end{array}\right]
$$

Inverse relationship

$$
\left[\begin{array}{c}
\Gamma_{x x} \\
\Gamma_{y y} \\
\Gamma_{x y} \\
\Gamma_{y x}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -i \\
0 & 0 & -1 & i
\end{array}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]
$$

Coherence Matrix: further properties

Polarization degree

$$
p=\sqrt{\frac{P_{1}^{2}+P_{2}^{2}+P_{3}^{2}}{P_{0}^{2}}}=\sqrt{1-\frac{4\left(\Gamma_{x x} \Gamma_{y y}-\Gamma_{x y} \Gamma_{y x}\right)}{\left(\Gamma_{x x}+\Gamma_{y y}\right)^{2}}}=\sqrt{1-\frac{4 \operatorname{Det}(\Gamma)}{\operatorname{Tr}(\Gamma)^{2}}}
$$

[^1]
Coherence Matrix: further properties

Polarization degree

$$
p=\sqrt{\frac{P_{1}^{2}+P_{2}^{2}+P_{3}^{2}}{P_{0}^{2}}}=\sqrt{1-\frac{4\left(\Gamma_{x x} \Gamma_{y y}-\Gamma_{x y} \Gamma_{y x}\right)}{\left(\Gamma_{x x}+\Gamma_{y y}\right)^{2}}}=\sqrt{1-\frac{4 \operatorname{Det}(\Gamma)}{\operatorname{Tr}(\Gamma)^{2}}}
$$

Γ Decomposition in polarized and depolarized components

- $\Gamma=\Gamma_{P}+\Gamma_{N P}$
- Find Γ_{P} and $\Gamma_{N P}$ using the relationship with the Stokes parameters
(1) The physics of polarization optics
- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices
- Polarizers
- Linear and Circular Anisotropy
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if \mathbf{M} is unitary

- M unitary means : linear and/or circular anisotropy only

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if \mathbf{M} is unitary

- M unitary means: linear and/or circular anisotropy only
- $\Gamma^{\prime}=\left\langle\overrightarrow{J^{\prime}(t)} \overrightarrow{\bar{J}^{\prime}(t)}{ }^{\mathrm{t}}\right\rangle$

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if \mathbf{M} is unitary

- M unitary means: linear and/or circular anisotropy only
- $\Gamma^{\prime}=\left\langle\overrightarrow{J^{\prime}(t)} \overline{\bar{J}^{\prime}(t)}{ }^{\mathrm{t}}\right\rangle$
- $\Gamma^{\prime}=\mathbf{M}\left\langle\overrightarrow{J(t)} \overline{\overline{J(t)}}{ }^{\mathrm{J}}\right\rangle \mathbf{M}^{-1}$

Basis change

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if \mathbf{M} is unitary

- M unitary means: linear and/or circular anisotropy only
- $\Gamma^{\prime}=\left\langle\overrightarrow{J^{\prime}(t)} \overline{\bar{J}^{\prime}(t)}{ }^{\mathrm{t}}\right\rangle$
- $\Gamma^{\prime}=\mathbf{M}\langle\overrightarrow{J(t)} \overline{\overline{J(t)}}\rangle \mathbf{M}^{-1}$

Basis change
Polarization degree

- Unaltered for unitary operators $\quad \mathrm{Tr}$ and Det are unaltered

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if \mathbf{M} is unitary

- M unitary means: linear and/or circular anisotropy only
- $\Gamma^{\prime}=\left\langle\overrightarrow{J^{\prime}(t)} \overline{\bar{J}^{\prime}(t)}{ }^{\mathrm{t}}\right\rangle$
- $\Gamma^{\prime}=\mathbf{M}\langle\overrightarrow{J(t)} \overline{\overline{J(t)}}\rangle \mathbf{M}^{-1}$

Basis change
Polarization degree

- Unaltered for unitary operators \quad Tr and Det are unaltered
- Not the case if a polarizer is present: p becomes 1

Mueller Calculus

Propagating the Jones coherence matrix is difficult if the operator is not unitary

Jones Calculus raises some difficulties

- Coherence matrix OK for partially polarized light
- Propagation through unitary optical devices
(linear or circular anisotropy only)
\square
- Hard Times if Polarizers are present
- Describing intensity, they can be readily measurered

Mueller Calculus

Propagating the Jones coherence matrix is difficult if the operator is not unitary

Jones Calculus raises some difficulties

- Coherence matrix OK for partially polarized light
- Propagation through unitary optical devices
(linear or circular anisotropy only)
- Hard Times if Polarizers are present

Mueller Calculus

Propagating the Jones coherence matrix is difficult if the operator is not unitary

Jones Calculus raises some difficulties

- Coherence matrix OK for partially polarized light
- Propagation through unitary optical devices
(linear or circular anisotropy only)
- Hard Times if Polarizers are present

The Stokes parameters may be an alternative

- Describing intensity, they can be readily measurered

Mueller Calculus
 Propagating the Jones coherence matrix is difficult if the operator is not unitary

Jones Calculus raises some difficulties

- Coherence matrix OK for partially polarized light
- Propagation through unitary optical devices
(linear or circular anisotropy only)
- Hard Times if Polarizers are present

The Stokes parameters may be an alternative

- Describing intensity, they can be readily measurered
- We will show they can be propagated using 4×4 real matrices
- They are the Mueller matrices

The projection on a polarization state

Matrix of the polariazer with axis parallel to \vec{V}

Projection on \vec{V} in Jones Basis

- Orthogonal Linear Polarizations Basis: \vec{X} and \vec{Y}
- Normed Projection Base Vector :
- $\vec{V}=A_{x} e^{-i \frac{\varphi}{2}} \vec{X}+A_{y} e^{i \frac{\varphi}{2}} \vec{Y}$
- $\overline{\vec{V}}^{\mathrm{t}} \vec{V}=1$
${ }^{3}$ Easy to check in the projection eigen basis

The projection on a polarization state

Matrix of the polariazer with axis parallel to \vec{V}

Projection on \vec{V} in Jones Basis

- Orthogonal Linear Polarizations Basis: \vec{X} and \vec{Y}
- Normed Projection Base Vector :
- $\vec{V}=A_{x} e^{-i \frac{\varphi}{2}} \vec{X}+A_{y} e^{i \frac{\varphi}{2}} \vec{Y}$
- $\overline{\vec{V}}^{\mathrm{t}} \vec{V}=1$
- $\mathrm{P}_{\mathrm{V}}=\vec{V} \overline{\vec{V}}^{\mathrm{t}}{ }^{a}$
${ }^{\text {a }}$ Easy to check in the projection eigen basis : $\left(\vec{V}, \overline{\vec{V}}^{\mathrm{t}}\right)$

The Pauli Matrices

A base for the 4D 2×2 matrix vector space

$$
\sigma_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \sigma_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \sigma_{3}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{1}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

Pv decomposition

$$
\mathbf{P}_{\mathbf{v}}=\frac{1}{2}\left(p_{0} \sigma_{0}+p_{1} \sigma_{1}+p_{2} \sigma_{2}+p_{3} \sigma_{3}\right)
$$

Pv composition and Trace property

Trace is the eigen values sum

Projection property

Pv composition and Trace property

Trace is the eigen values sum

Projection property

$$
\overline{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathbf{j}} \vec{V}=\left(\overline{\vec{V}^{\mathrm{t}}} \vec{V}\right) \overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\overline{\vec{V}}^{\mathrm{t}}\left(\vec{V} \overline{\vec{V}}^{\mathrm{t}}\right) \sigma_{j} \vec{V}
$$

Projection Trace in its eigen

Pv composition and Trace property

Trace is the eigen values sum

Projection property

$$
\overline{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathbf{j}} \vec{V}=\left(\overline{\vec{V}^{\mathrm{t}}} \vec{V}\right) \overline{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathbf{j}} \vec{V}=\overline{\vec{V}}^{\mathrm{t}} \cdot \mathrm{P}_{\mathbf{v}} \sigma_{\mathrm{j}} \vec{V}
$$

Pv composition and Trace property

Trace is the eigen values sum

Projection property

$$
\overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\left(\overline{\vec{V}^{\mathrm{t}}} \vec{V}\right) \overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\overline{\vec{V}}^{\mathrm{t}} \cdot \mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}} \vec{V}
$$

Projection Trace in its eigen basis

- Pv eigenvalues : 0 \& 1

$$
\operatorname{Tr}\left(P_{V}\right)=1
$$

Pv composition and Trace property

Trace is the eigen values sum

Projection property

$$
\overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\left(\overline{\vec{V}^{\mathrm{t}}} \vec{V}\right) \overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\overline{\vec{V}}^{\mathrm{t}} \cdot \mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}} \vec{V}
$$

Projection Trace in its eigen basis

- $\mathbf{P V}_{\mathbf{v}}$ eigenvalues : 0 \& 1
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvalues : 0 \& α
$\alpha \leq 1$
$\operatorname{Tr}\left(P_{V}\right)=1$
$\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\alpha$

Pv composition and Trace property

Trace is the eigen values sum

Projection property

$$
\overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\left(\overline{\vec{V}^{\mathrm{t}}} \vec{V}\right) \overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\overline{\vec{V}}^{\mathrm{t}} \cdot \mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}} \vec{V}
$$

Projection Trace in its eigen basis

- $\mathbf{P v}_{\mathbf{v}}$ eigenvalues: 0 \& 1
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvalues : 0 \& $\alpha \quad \alpha \leq 1$
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvectors are the same as $\mathbf{P}_{\mathbf{V}}$:
- \vec{V} associated to eigenvalue α
$\operatorname{Tr}\left(P_{V}\right)=1$
$\operatorname{Tr}\left(P_{\vee} \sigma_{j}\right)=\alpha$

Project the projection

Pv composition and Trace property

Trace is the eigen values sum

Projection property

$$
\overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\left(\overline{\vec{V}^{\mathrm{t}}} \vec{V}\right) \overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\overline{\vec{V}}^{\mathrm{t}} \cdot \mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}} \vec{V}
$$

Projection Trace in its eigen basis

- $\mathbf{P v}_{\mathbf{v}}$ eigenvalues: 0 \& 1
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvalues: 0 \& α $\alpha \leq 1$
$\operatorname{Tr}\left(P_{V}\right)=1$
$\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\alpha$
- $\mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}}$ eigenvectors are the same as $\mathbf{P}_{\mathbf{V}}$:
- \vec{V} associated to eigenvalue α
- Project the projection

Pv composition and Trace property

Trace is the eigen values sum

Projection property

$$
\overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\left(\overline{\vec{V}^{\mathrm{t}}} \vec{V}\right) \overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\overline{\vec{V}}^{\mathrm{t}} \cdot \mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}} \vec{V}
$$

Projection Trace in its eigen basis

- $\mathbf{P v}_{\mathbf{v}}$ eigenvalues: 0 \& 1
- $\mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}}$ eigenvalues: 0 \& α
- $\mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}}$ eigenvectors are the same as $\mathbf{P}_{\mathbf{v}}$:
- \vec{V} associated to eigenvalue α
- Project the projection

$$
\overline{\vec{V}^{\mathrm{t}}} \cdot \mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}} \vec{V}=\alpha=\operatorname{Tr}\left(\mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}}\right)
$$

$$
\alpha \leq 1
$$

$$
\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\alpha
$$

Pv composition and Trace property

Trace is the eigen values sum

Projection property

$$
\overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\left(\overline{\vec{V}^{\mathrm{t}}} \vec{V}\right) \overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\overline{\vec{V}}^{\mathrm{t}} \cdot \mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}} \vec{V}
$$

Projection Trace in its eigen basis

- $\mathbf{P}_{\mathbf{V}}$ eigenvalues : 0 \& 1
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvalues: 0 \& α $\alpha \leq 1$
$\operatorname{Tr}\left(P_{V}\right)=1$
$\operatorname{Tr}\left(P_{\vee} \sigma_{j}\right)=\alpha$
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvectors are the same as $\mathbf{P}_{\mathbf{v}}$:
- \vec{V} associated to eigenvalue α
- Project the projection

$\mathbf{P}_{\mathbf{V}}$ Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\overline{\vec{V}}^{t} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j}
$$

$$
\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}
$$

$\mathbf{P}_{\mathbf{V}}$ Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{aligned}
& \overline{\vec{V}^{t}} \cdot \sigma_{\mathrm{j}} \overrightarrow{\mathrm{~V}}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \\
& \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j} \\
& \operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}=\frac{1}{2} \sum_{i} 2 \delta_{i j} p_{i}
\end{aligned}
$$

$\mathbf{P}_{\mathbf{V}}$ Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{aligned}
& {\overline{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j}}_{\overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}=\frac{1}{2} \sum_{i} 2 \delta_{i j} p_{i}=p_{j}}
\end{aligned}
$$

$\mathbf{P}_{\mathbf{V}}$ Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{aligned}
& \overline{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j} \\
& \overline{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}=\frac{1}{2} \sum_{i} 2 \delta_{i j} p_{i}=p_{j}
\end{aligned}
$$

Project the base vectors on \vec{V}

- Using $\vec{V}=A_{x} e^{-i \frac{\varphi}{2}} \vec{X}+A_{y} e^{i \frac{\varphi}{2}} \vec{Y}$
- $\mathrm{P}_{\mathbf{v}} \vec{X}=A_{x}^{2} \vec{X}+A_{x} A_{y} e^{i \varphi} \vec{Y}$
- $\mathbf{P}_{\mathbf{v}} \vec{Y}=A_{y}^{2} \vec{Y}+A_{x} A_{y} e^{-i \varphi} \vec{X}$

- Using the P_{V} decomposition on the Pauli Basis

$\mathbf{P}_{\mathbf{V}}$ Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{aligned}
& \overline{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j} \\
& \vec{V}^{\mathrm{t}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}=\frac{1}{2} \sum_{i} 2 \delta_{i j} p_{i}=p_{j}
\end{aligned}
$$

Project the base vectors on \vec{V}

- Using $\vec{V}=A_{x} e^{-i \frac{\varphi}{2}} \vec{X}+A_{y} e^{i \frac{\varphi}{2}} \vec{Y}$
- $\mathrm{P}_{\mathbf{v}} \vec{X}=A_{x}^{2} \vec{X}+A_{x} A_{y} e^{i \varphi} \vec{Y}$
- $\mathbf{P}_{v} \vec{Y}=A_{y}^{2} \vec{Y}+A_{x} A_{y} e^{-i \varphi} \vec{X}$
- Using the $\mathbf{P}_{\mathbf{V}}$ decomposition on the Pauli Basis
- $\mathbf{P}_{\mathbf{v}} \vec{X}=\frac{1}{2}\left(p_{0}+p_{1}\right) \vec{X}+\frac{1}{2}\left(p_{2}+i p_{3}\right) \vec{Y}$
- $\mathbf{P}_{\mathbf{v}} \vec{Y}=\frac{1}{2}\left(p_{0}-p_{1}\right) \vec{Y}+\frac{1}{2}\left(p_{2}-i p_{3}\right) \vec{X}$

$\mathbf{P}_{\mathbf{V}}$ Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{aligned}
& \overline{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j} \\
& \overline{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}=\frac{1}{2} \sum_{i} 2 \delta_{i j} p_{i}=p_{j}
\end{aligned}
$$

Project the base vectors on \vec{V}

- Using $\vec{V}=A_{x} e^{-i \frac{\varphi}{2}} \vec{X}+A_{y} e^{i \frac{\varphi}{2}} \vec{Y}$
- $\mathrm{P}_{\mathbf{v}} \vec{X}=A_{x}^{2} \vec{X}+A_{x} A_{y} e^{i \varphi} \vec{Y}$
- $\mathbf{P}_{v} \vec{Y}=A_{y}^{2} \vec{Y}+A_{x} A_{y} e^{-i \varphi} \vec{X}$
- Using the $\mathbf{P}_{\mathbf{V}}$ decomposition on the Pauli Basis
- $\mathbf{P}_{\mathbf{V}} \vec{X}=\frac{1}{2}\left(p_{0}+p_{1}\right) \vec{X}+\frac{1}{2}\left(p_{2}+i p_{3}\right) \vec{Y}$
- $\mathbf{P}_{\mathbf{V}} \vec{Y}=\frac{1}{2}\left(p_{0}-p_{1}\right) \vec{Y}+\frac{1}{2}\left(p_{2}-i p_{3}\right) \vec{X}$
- Identify

Pv Pauli composition and Stokes parameters

Stokes parameters as $\mathrm{P}_{\mathbf{V}}$ decomposition on the Pauli base

- $p_{0}=P_{0}=A_{x}^{2}-A_{y}^{2}=I_{x}-I_{y}$
- $p_{1}=P_{1}=A_{x}^{2}-A_{y}^{2}=I_{x}-I_{y}$
- $p_{2}=P_{2}=2 A_{x} A_{y} \cos (\varphi)=I_{\pi / 4}-I_{-\pi / 4}$
- $p_{3}=P_{3}=2 A_{x} A_{y} \sin (\varphi)=I_{\mathrm{L}}-I_{\mathrm{R}}$

Propagating through devices: Mueller matrices $\overrightarrow{V^{\prime}}=M_{\jmath} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overrightarrow{{\overline{V^{\prime}}}^{\mathrm{t}}}
$$

Propagating through devices: Mueller matrices $\overrightarrow{V^{\prime}}=M_{\jmath} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{v}^{\prime}}=\overrightarrow{V^{\prime}} \overline{{\overrightarrow{V^{\prime}}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \vec{V} \overline{\vec{V}^{t}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Propagating through devices: Mueller matrices $\overrightarrow{V^{\prime}}=M_{\mathrm{J}} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overline{{\overline{V^{\prime}}}^{t}}=\mathbf{M}_{\mathbf{J}} \overrightarrow{V^{\prime}} \overline{\vec{V}^{t}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Propagating through devices: Mueller matrices $\overrightarrow{V^{\prime}}=M_{\jmath} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{\vec{V}^{\prime}} \overline{\overline{V^{\prime}}}=\mathbf{M}_{\mathbf{J}} \vec{V} \overline{\vec{V}^{\mathrm{t}}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{v}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Trace relationship

$$
P_{i}^{\prime}=\operatorname{Tr}\left(\mathbf{P}_{\mathbf{v}^{\prime}} \sigma_{i}\right)
$$

Propagating through devices: Mueller matrices $\overrightarrow{V^{\prime}}=M_{\jmath} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overline{{\overline{V^{\prime}}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \overrightarrow{\vec{V}} \overline{\vec{V}^{t}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Trace relationship

$$
P_{i}^{\prime}=\operatorname{Tr}\left(\mathbf{P}_{\mathbf{v}^{\prime}} \sigma_{i}\right)=\operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{v}} \overline{\left.\left.\mathbf{M}_{\mathbf{J}}{ }^{\mathrm{t}} \sigma_{\mathbf{i}}\right), ~\right)}\right.
$$

Propagating through devices: Mueller matrices $\overrightarrow{V^{\prime}}=M_{\jmath} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{\vec{V}^{\prime}} \overrightarrow{{\overrightarrow{V^{\prime}}}^{t}}=\mathbf{M}_{\mathbf{J}} \vec{V} \overline{\bar{V}^{t}} \overline{\mathbf{M}_{\mathbf{J}}{ }^{t}}=\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Trace relationship

$$
\begin{gathered}
P_{i}^{\prime}=\operatorname{Tr}\left(\mathbf{P}_{\mathbf{v}} \sigma_{i}\right)=\operatorname{Tr}\left(\mathbf{M}_{\mathbf{\jmath}} \mathbf{P}_{\mathbf{v}} \overline{\mathbf{M}_{\mathbf{J}}{ }^{\mathbf{t}}} \sigma_{\mathbf{i}}\right)= \\
\frac{1}{2} \sum_{j=0}^{3} \operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \sigma_{\mathbf{j}} \overline{\left.\mathbf{M}_{\mathbf{\prime}}{ }^{\mathbf{t}} \sigma_{\mathbf{i}}\right) P_{j}}\right.
\end{gathered}
$$

Propagating through devices: Mueller matrices $\overrightarrow{V^{\prime}}=M_{\mathrm{J}} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overrightarrow{{\overrightarrow{V^{\prime}}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \vec{V} \overline{\vec{V}^{\mathrm{t}}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Trace relationship

$$
\begin{gathered}
P_{i}^{\prime}=\operatorname{Tr}\left(\mathbf{P}_{\mathbf{V}^{\prime}} \sigma_{i}\right)=\operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{v}} \overline{\left.\mathbf{M}_{\mathbf{J}}{ }^{\mathrm{t}} \sigma_{\mathbf{i}}\right)=}\right. \\
\frac{1}{2} \sum_{j=0}^{3} \operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \sigma_{\mathbf{j}} \overline{\left.\mathbf{M}_{\mathbf{J}}{ }^{\mathrm{t}} \sigma_{\mathbf{i}}\right) P_{j}}\right.
\end{gathered}
$$

Mueller matrix

$$
\overrightarrow{S^{\prime}}=\mathbf{M}_{\mathbf{M}} \vec{S}
$$

$$
\left(M_{M}\right)_{i j}=\frac{1}{2} \operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \sigma_{\mathbf{j}} \overline{\left.\mathbf{M}_{\mathbf{J}}{ }^{\mathrm{t}} \sigma_{\mathbf{i}}\right), ~}\right.
$$

Mueller matrices and partially polarized light

Time average of the previous study
Mueller matrices are time independent

$$
\left\langle\overrightarrow{S^{\prime}}\right\rangle=\mathbf{M}_{\mathbf{M}}\langle\vec{S}\rangle
$$

- Partially coherent light
\square
 - half and quarter wave plates

- linearly and circularly hirefringent crystal

Mueller matrices and partially polarized light
 Time average of the previous study

Mueller matrices are time independent

$$
\left\langle\overrightarrow{S^{\prime}}\right\rangle=\mathbf{M}_{\mathbf{M}}\langle\vec{S}\rangle
$$

Mueller calculus can be extended to...

- Partially coherent light
- Cascaded optical devices

Mueller matrices and partially polarized light

Time average of the previous study

Mueller matrices are time independent

$$
\left\langle\overrightarrow{S^{\prime}}\right\rangle=\mathbf{M}_{\mathbf{M}}\langle\vec{S}\rangle
$$

Mueller calculus can be extended to...

- Partially coherent light
- Cascaded optical devices

Final homework

Find the Mueller matrix of each :

- Polarizers along eigen axis or θ tilted
- half and quarter wave plates
- linearly and circularly birefringent crystal

[^0]: N. Fressengeas

[^1]: parameters

