UE SPM-PHY-S07-101 Polarization Optics

N. Fressengeas

Laboratoire Matériaux Optiques, Photonique et Systèmes Unité de Recherche commune à l'Université Paul Verlaine Metz et à Supélec

Document à télécharger sur http://moodle.univ-metz.fr/

Further reading [Hua94, K85]

S. Huard.

Polarisation de la lumière.

Masson, 1994.

G. P. Können.

Polarized light in Nature.

Cambridge University Press, 1985.

Course Outline

- 1 The physics of polarization optics
 - Polarization states
 - Jones Calculus
 - Stokes parameters and the Poincare Sphere
- Polarized light propagation
 - Jones Matrices
 - Polarizers
 - Linear and Circular Anisotropy
 - Jones Matrices Composition
- Partially polarized light
 - Formalisms used
 - Propagation through optical devices

The vector nature of light

Optical wave can be polarized, sound waves cannot

The scalar monochromatic plane wave

The electric field reads:

$$A\cos(\omega t - kz - \varphi)$$

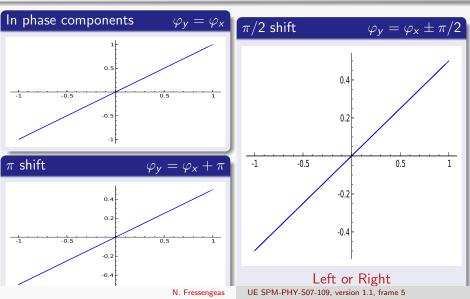
A vector monochromatic plane wave

- Electric field is orthogonal to wave and Poynting vectors
- Lies in the wave vector normal plane
- Needs 2 components

•
$$E_x = A_x \cos(\omega t - kz - \varphi_x)$$

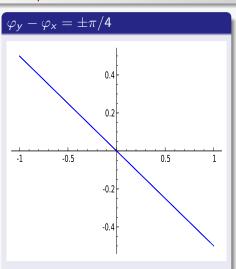
•
$$E_y = A_y \cos(\omega t - kz - \varphi_y)$$

Linear and circular polarization states



The elliptic polarization state

The polarization state of ANY monochromatic wave



Electric field

- $E_X = A_X \cos(\omega t kz \varphi_X)$
- $E_v = A_v \cos(\omega t kz \varphi_v)$

4 real numbers

- A_x, φ_x
- \bullet A_v, φ_v

2 complex numbers

- $A_X \exp(i\varphi_X)$
- $A_v \exp(i\varphi_v)$

Polarization states are vectors

Monochromatic polarizations belong to a 2D vector space based on the Complex Ring

ANY elliptic polarization state

Two complex numbers

A set of two ordered complex numbers is one 2D complex vector

Canonical Basis

$$\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right)$$

Link with optics?

- These two vectors represent two polarization states
- We must decide which ones!

Polarization Basis

Two independent polarizations:

- Crossed Linear
- Reversed circular
- **.** . . .
- YOUR choice

Examples: Linear Polarizations

Canonical Basis Choice

- $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$: horizontal linear polarization
- $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$: vertical linear polarization

Tilt

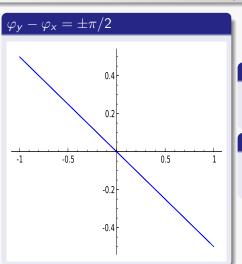
Linear polarization Jones vector

- Linear Polarization : two in phase components
- Two real numbers

In a linear polarization basis

Examples: Circular Polarizations

In the same canonical basis choice: linear polarizations



Electric field

- $E_x = A_x \cos(\omega t kz \varphi_x)$
- $E_v = A_v \cos(\omega t kz \varphi_v)$

Jones vector

$$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\\pm i\end{bmatrix}$$

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore: two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states
- Remark: two colinear polarization states are identical

Homework

Find the transformation matrix between between the two following bases :

- Horizontal and Vertical Linear Polarizations
- Right and Left Circular Polarizations

Relationship between Jones and Poynting vectors

Jones vectors also provide information about intensity

Choose an orthonormal basis

 (J_1,J_2)

- Hermitian product is null : $\overline{J_1} \cdot J_2 = 0$
- Each vector norm is unity : $\overline{J_1} \cdot J_1 = \overline{J_2} \cdot J_2 = 1$

Hermitian Norm is Intensity

Simple calculations show that :

- If each Jones component is one complex electric field component
- The Hermitian norm is proportional to beam intensity

Polarization as a unique complex number

If the intensity information disappears, polarization is summed up in one complex number

Rule out the intensity

Norm the Jones vector to unity

Put 1 as first component

- Multiplying Jones vector by a complex number does not change the polarization state
- ullet Norm the first component to $1:\begin{bmatrix}1\\\xi\end{bmatrix}$
- The sole ξ describes the polarization state

Choose between the two

Either you norm the vector, or its first component. Not both!

The Stokes parameters

A set of 4 dependent real parameters that can be measured

Sample Jones Vector

$$\begin{bmatrix} A_x \exp(+i\varphi/2) \\ A_y \exp(-i\varphi/2) \end{bmatrix}$$

Overall Intensity

$$P_0 = A_x^2 + A_y^2 = I$$

$\pi/4$ Tilted Basis

$$J_{\pi/4} = \frac{1}{\sqrt{2}} \begin{bmatrix} A_x e^{-i\varphi/2} + A_y e^{+i\varphi/2} \\ A_x e^{-i\varphi/2} - A_y e^{+i\varphi/2} \end{bmatrix}$$

$$P_2 = I_{\pi/4} - I_{-\pi/4} = 2A_x A_y \cos(\varphi)$$

Intensity Différence

Circular Basis

$$P_1 = A_x^2 - A_y^2 = I_x - I_y$$

$$J_{\rm cir} = \frac{1}{\sqrt{2}} \begin{bmatrix} A_{\rm x} e^{-i\varphi/2} - i A_{\rm y} e^{+i\varphi/2} \\ A_{\rm x} e^{-i\varphi/2} + i A_{\rm y} e^{+i\varphi/2} \end{bmatrix}$$

$$P_3 = I_{\rm L} - I_{\rm R} = 2A_x A_y \sin(\varphi)$$

4 dependent parameters

$$P_0^2 = P_1^2 + P_2^2 + P_3^2$$

The Poincare Sphere

Polarization states can be described geometrically on a sphere

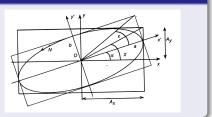
Normalized Stokes parameters

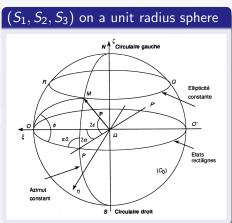
$$S_i = P_i/P_0$$

Unit Radius Sphere

$$\sum_{i=1}^{3} S_i = 1$$

General Polarisation





Figures from [Hua94]

Eigen Polarization states

Polarization states that do not change after propagation in an anisotropic medium

Eigen Polarization states

- Do not change
- Except for Intensity

Hermitian operator

2 eigen polarization states are orthonormal

Linear Anisotropy Eigen Polarizations

- Quarter and half wave plates and Birefringent materials
- Eigen Polarizations are linear along the eigen axes

Circular Anisotropy

- Also called optical activity
- e.g in Faraday rotators and in gyratory non linear crystals
- Linear polarization is rotated by an angle proportional to propagation distance
- Eigen polarizations are the circular polarizations

Jones Matrices

2D Linear Algebra to compute polarization propagation through devices

Jones matrices in the eigen basis

- Let λ_1 and λ_2 be the two eigenvalues of a given device
- e.g. for linear anisotropy : $\lambda_i = e^{n_i k_0 \Delta z}$
- Jones Matrix is $\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$

In another basis

use Transformation Matrix

- Let $\overrightarrow{J_1} = \begin{bmatrix} u \\ v \end{bmatrix}$ and $\overrightarrow{J_2} = \begin{bmatrix} -\overline{v} \\ \overline{u} \end{bmatrix}$ be the orthonormal eigen vectors
- $\bullet \ \begin{cases} \mathbf{M} \overrightarrow{J_1} = \lambda_1 \overrightarrow{J_1} \\ \mathbf{M} \overrightarrow{J_2} = \lambda_2 \overrightarrow{J_2} \end{cases} \Rightarrow \mathbf{M} = \begin{bmatrix} \lambda_1 u \overline{u} + \lambda_2 v \overline{v} & (\lambda_1 \lambda_2) u \overline{v} \\ (\lambda_1 \lambda_2) v \overline{u} & \lambda_2 v \overline{u} + \lambda_1 v \overline{v} \end{bmatrix}$

The particular case of non absorbing devices

Jones matrix is a unitary operator when $\lambda_1=\lambda_2=1$

Nor absorbing neither amplifying devices

- $|\lambda_1| = |\lambda_2| = 1$
- $\bullet \ \mathsf{M} \cdot \overline{\mathsf{M}^{\mathrm{t}}} = \overline{\mathsf{M}^{\mathrm{t}}} \cdot \mathsf{M} = I$
- M is a unitary operator

Unitary operator properties

- Norm is conserved : Intensity is unchanged after propagation
- Orthogonality is conserved: two initially orthogonal states will remain so after propagation

Jones Matrix of a polarizer

In its eigen basis

- A polarized is designed for :
 - Full transmission of one linear polarization
 - Zero transmission of its orthogonal counterpart
- Eigen basis Jones matrix : $\mathbf{P_x} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ or $\mathbf{P_y} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

When transmitted polarization is θ tilted

Change base through θ rotation Transformation Matrix

$$\mathbf{R}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\mathbf{P}(\theta) = \mathbf{R}(\theta) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{R}(-\theta) = \begin{bmatrix} \cos^{2}(\theta) & \sin(\theta)\cos(\theta) \\ \sin(\theta)\cos(\theta) & \sin^{2}(\theta) \end{bmatrix}$$

Intensity transmitted through a polarizer

From natural or non polarized light

Half the intensity is transmitted

From linearly polarized light

Transmitted Jones vector in polarizer eigen basis:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} = \begin{bmatrix} \cos(\theta) \\ 0 \end{bmatrix}$$

• Transmitted Intensity : $\cos^2(\theta)$

MALUS law

From circularly polarized light

Show that whatever the polarizer orientation, the transmitted intensity is half the incident intensity.

Linear anisotropy eigen polarization vectors

- Two orthogonal polarization directions
- Two different refraction indexes n_1 and n_2
- Two linear eigen modes along the eigen directions

Jones Matrix in the eigen basis

Express phase delay only

$$\begin{bmatrix} e^{in_1k\Delta z} & 0 \\ 0 & e^{in_2k\Delta z} \end{bmatrix} = e^{i\psi} \begin{bmatrix} e^{i\phi/2} & 0 \\ 0 & e^{-i\phi/2} \end{bmatrix} \approx \begin{bmatrix} e^{i\phi/2} & 0 \\ 0 & e^{-i\phi/2} \end{bmatrix}$$

Quarter and Half wave plates

Homework

- Find the Jones Matrices of Quarter and Half wave plates
- Find their action on tilted linear polarization (special case for $\pi/4$ tilt)
- Find their action on circular polarization

What is circular anisotropy?

- Two orthogonal circular eigen polarization states
- Two different refraction indexes n_L and n_R

Jones Matrix in the circular eigen basis Express phase delay only

$$\begin{bmatrix} e^{in_Lk\Delta z} & 0 \\ 0 & e^{in_Rk\Delta z} \end{bmatrix} = e^{i\psi} \begin{bmatrix} e^{i\phi/2} & 0 \\ 0 & e^{-i\phi/2} \end{bmatrix} \approx \begin{bmatrix} e^{i\phi/2} & 0 \\ 0 & e^{-i\phi/2} \end{bmatrix}$$

Jones Matrix in a linear polarization basis Transformation matrix

- use $\mathbf{P}_{\mathrm{Cir} \to \mathrm{Lin}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$ transformation matrix
- $\mathbf{P}_{\text{Cir} \to \text{Lin}} M(\mathbf{P}_{\text{Cir} \to \text{Lin}})^{-1} = e^{i\Psi} \begin{bmatrix} \cos(\phi/2) & \sin(\phi/2) \\ -\sin(\phi/2) & \cos(\phi/2) \end{bmatrix}$

Jones Matrices Composition

The Jones matrices of cascaded optical elements can be composed through Matrix multiplication

Matrix composition

- ullet If a $\overrightarrow{J_0}$ incident light passes through M_1 and M_2 in that order
- First transmission: $\mathbf{M_1} \overrightarrow{J_0}$
- Second transmission: $M_2M_1\overrightarrow{J_0}$
- Composed Jones Matrix : M₂M₁
 Reversed order

Beware of non commutativity

- Matrix product does not commute in general
- Think of the case of a linear anisotropy followed by optical activity
 - in that order
 - in the reverse order

Stokes parameters for partially polarized light

Generalize the coherent definition using the statistical average intensity

Stokes Vector

$$\overrightarrow{S} = \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix} = \begin{bmatrix} \langle I_x + I_y \rangle \\ \langle I_x - I_y \rangle \\ \langle I_{\pi/4} - I_{-\pi/4} \rangle \\ \langle I_L - I_R \rangle \end{bmatrix}$$

Polarization degree

$$0 \le p \le 1$$

$$p = \frac{\sqrt{P_1^2 + P_2^2 + P_3^2}}{P_0}$$

Stokes decomposition

Polarized and depolarized sum

$$\overrightarrow{S} = \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix} = \begin{bmatrix} pP_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix} + \begin{bmatrix} (1-p)P_0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \overrightarrow{S_P} + \overrightarrow{S_{NP}}$$

The Jones Coherence Matrix

Jones Vectors are out

- They describe phase differences
- Meaningless when not monochromatic

Jones Coherence Matrix

• If
$$\overrightarrow{J} = \begin{bmatrix} A_x(t) e^{i\varphi_x(t)} \\ A_y(t) e^{i\varphi_y(t)} \end{bmatrix}$$

•
$$\Gamma_{ij} = \langle \overrightarrow{J}_i(t) \overrightarrow{\overrightarrow{J}_j(t)} \rangle$$

•
$$\Gamma = \langle \overrightarrow{J(t)} \overrightarrow{J(t)}^{t} \rangle$$

Coherence Matrix: explicit formulation

$$\Gamma = \begin{bmatrix} \frac{\langle \left| A_{x}\left(t\right)\right|^{2} \rangle}{\langle \overline{A_{x}\left(t\right)} A_{y}\left(t\right) e^{-i\left(\varphi_{x}-\varphi_{y}\right)} \rangle} & \frac{\langle A_{x}\left(t\right) \overline{A_{y}\left(t\right)} e^{i\left(\varphi_{x}-\varphi_{y}\right)} \rangle}{\langle \left| A_{y}\left(t\right)\right|^{2} \rangle} \end{bmatrix}$$

Jones Coherence Matrix: properties

Trace is Intensity

$$\operatorname{Tr}(\Gamma) = I$$

Base change Transformation **P**

$$\mathbf{P}^{-1}\Gamma\mathbf{P}$$

Relationship with Stokes parameters

es parameters from definition

$$\begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & i & -i \end{bmatrix} \begin{bmatrix} \Gamma_{xx} \\ \Gamma_{yy} \\ \Gamma_{xy} \\ \Gamma_{yx} \end{bmatrix}$$

Inverse relationship

$$\begin{bmatrix} \Gamma_{xx} \\ \Gamma_{yy} \\ \Gamma_{xy} \\ \Gamma_{yx} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -i \\ 0 & 0 & -1 & i \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

Coherence Matrix: further properties

Polarization degree

$$p = \sqrt{\frac{P_1^2 + P_2^2 + P_3^2}{P_0^2}} = \sqrt{1 - \frac{4(\Gamma_{xx}\Gamma_{yy} - \Gamma_{xy}\Gamma_{yx})}{(\Gamma_{xx} + \Gamma_{yy})^2}} = \sqrt{1 - \frac{4\text{Det}(\Gamma)}{\text{Tr}(\Gamma)^2}}$$

Γ Decomposition in polarized and depolarized components

- $\Gamma = \Gamma_P + \Gamma_{NP}$
- Find Γ_P and Γ_{NP} using the relationship with the Stokes parameters

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J'(t)} = \mathbf{M}\overrightarrow{J(t)}$

Coherence Matrix if **M** is unitary

- M unitary means : linear and/or circular anisotropy only
- $\Gamma' = \langle \overrightarrow{J'(t)} \overrightarrow{J'(t)}^{t} \rangle$
- $\bullet \ \Gamma' = \mathbf{M} \langle \overrightarrow{J(t)} \overrightarrow{\overline{J(t)}}^{\overrightarrow{t}} \rangle \mathbf{M}^{-1}$

Basis change

Polarization degree

- Not the case if a polarizer is present : p becomes 1

Mueller Calculus

Propagating the Jones coherence matrix is difficult if the operator is not unitary

Jones Calculus raises some difficulties

- Coherence matrix OK for partially polarized light
- Propagation through unitary optical devices
 (linear or circular anisotropy only)
- Hard Times if Polarizers are present

The Stokes parameters may be an alternative

- Describing intensity, they can be readily measurered
- ullet We will show they can be propagated using 4 imes 4 real matrices
- They are the Mueller matrices

The projection on a polarization state

Matrix of the polariazer with axis parallel to \overrightarrow{V}

Projection on \overrightarrow{V} in Jones Basis

v

- Orthogonal Linear Polarizations Basis: \overrightarrow{X} and \overrightarrow{Y}
- Normed Projection Base Vector :

$$\bullet \ \overrightarrow{V} = A_x e^{-i\frac{\varphi}{2}} \overrightarrow{X} + A_y e^{i\frac{\varphi}{2}} \overrightarrow{Y}$$

$$\bullet \ \overrightarrow{V}^{\mathrm{t}}\overrightarrow{V} = 1$$

$$\bullet \ \mathbf{P_V} = \overrightarrow{V} \overline{\overrightarrow{V}^{\mathrm{t}}}{}^a$$

^aEasy to check in the projection eigen basis : $\left(\overrightarrow{V}, \overrightarrow{\overrightarrow{V}^{\mathrm{t}}}\right)$

The Pauli Matrices

A base for the 4D 2×2 matrix vector space

$$\sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \sigma_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sigma_1 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

P_V decomposition

$$P_V = \frac{1}{2} (p_0 \sigma_0 + p_1 \sigma_1 + p_2 \sigma_2 + p_3 \sigma_3)$$

P_V composition and Trace property

Trace is the eigen values sum

Projection property

$$\overline{\overrightarrow{V}^{t}} \cdot \sigma_{\mathbf{j}} \overrightarrow{V} = \left(\overline{\overrightarrow{V}^{t}} \overrightarrow{V}\right) \overline{\overrightarrow{V}^{t}} \cdot \sigma_{\mathbf{j}} \overrightarrow{V} = \overline{\overrightarrow{V}^{t}} \left(\overline{\overrightarrow{V}} \overline{\overrightarrow{V}^{t}}\right) \sigma_{j} \overrightarrow{V} = \overline{\overrightarrow{V}^{t}} \cdot \mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}} \overrightarrow{V}$$

Projection Trace in its eigen basis

• Pv eigenvalues : 0 & 1

 $\operatorname{Tr}\left(P_{V}\right)=1$

- $P_V \sigma_i$ eigenvalues : 0 & α
- $\alpha \leq 1$ $\operatorname{Tr}(P_V \sigma_j) = \alpha$
- $P_V \sigma_j$ eigenvectors are the same as P_V :
 - ullet \overrightarrow{V} associated to eigenvalue lpha
- Project the projection

$$\overline{\overrightarrow{V}^{t}} \cdot \mathbf{P_{V}} \sigma_{\mathbf{j}} \overrightarrow{V} = \alpha = \operatorname{Tr} \left(\mathbf{P_{V}} \sigma_{\mathbf{j}} \right) = \overline{\overrightarrow{V}^{t}} \cdot \sigma_{\mathbf{j}} \overline{V}$$

Pv Pauli components and physical meaning

Express p_i as a function of \overrightarrow{V} and the Pauli matrices, then find their signification

$$\overrightarrow{\overrightarrow{V}}^{t} \cdot \sigma_{\mathbf{j}} \overrightarrow{V} = \operatorname{Tr}(P_{V} \sigma_{j}) \qquad \operatorname{Tr}(\sigma_{i} \sigma_{j}) = 2\delta_{ij}$$

$$\overrightarrow{\overrightarrow{V}}^{t} \cdot \sigma_{\mathbf{j}} \overrightarrow{V} = \operatorname{Tr}(P_{V} \sigma_{j}) = \frac{1}{2} \sum_{i} \operatorname{Tr}(\sigma_{i} \sigma_{j}) p_{i} = \frac{1}{2} \sum_{i} 2\delta_{ij} p_{i} = p_{j}$$

Project the base vectors on \overrightarrow{V}

- Using $\overrightarrow{V} = A_x e^{-i\frac{\varphi}{2}} \overrightarrow{X} + A_y e^{i\frac{\varphi}{2}} \overrightarrow{Y}$
 - $\mathbf{P}_{\mathbf{V}}\overrightarrow{X} = A_x^2\overrightarrow{X} + A_xA_ye^{i\varphi}\overrightarrow{Y}$
 - $\mathbf{P}_{\mathbf{V}}\overrightarrow{Y} = A_{\mathbf{v}}^{2}\overrightarrow{Y} + A_{\mathbf{x}}A_{\mathbf{y}}e^{-i\varphi}\overrightarrow{X}$
- ullet Using the P_V decomposition on the Pauli Basis
 - $\mathbf{P_V} \overrightarrow{X} = \frac{1}{2} (p_0 + p_1) \overrightarrow{X} + \frac{1}{2} (p_2 + ip_3) \overrightarrow{Y}$
 - $\mathbf{P_V}\overrightarrow{Y} = \frac{1}{2}(p_0 p_1)\overrightarrow{Y} + \frac{1}{2}(p_2 ip_3)\overrightarrow{X}$
- Identify

Pv Pauli composition and Stokes parameters

Stokes parameters as P_V decomposition on the Pauli base

•
$$p_0 = P_0 = A_x^2 - A_y^2 = I_x - I_y$$

•
$$p_1 = P_1 = A_x^2 - A_y^2 = I_x - I_y$$

•
$$p_2 = P_2 = 2A_x A_y \cos(\varphi) = I_{\pi/4} - I_{-\pi/4}$$

•
$$p_3 = P_3 = 2A_x A_y \sin(\varphi) = I_L - I_R$$

Propagating through devices: Mueller matrices $\overrightarrow{V} = \mathbf{M}_1 \overrightarrow{V}$

Projection on \overrightarrow{V}'

$$\mathsf{P}_{\mathsf{V}'} = \overrightarrow{\mathsf{V}'} \overline{\overrightarrow{\mathsf{V}'}}^{\mathrm{t}} = \mathsf{M}_{\mathsf{J}} \overrightarrow{\overline{\mathsf{V}}} \overline{\overrightarrow{\mathsf{V}}}^{\mathrm{t}} \overline{\mathsf{M}_{\mathsf{J}}^{\mathrm{t}}} = \mathsf{M}_{\mathsf{J}} \mathsf{P}_{\mathsf{V}} \overline{\mathsf{M}_{\mathsf{J}}^{\mathrm{t}}}$$

Trace relationship

$$P'_{i} = \operatorname{Tr}\left(\mathbf{P}_{\mathbf{V}'}\sigma_{i}\right) = \operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}}\mathbf{P}_{\mathbf{V}}\overline{\mathbf{M}_{\mathbf{J}}^{\mathsf{t}}}\sigma_{i}\right) = \frac{1}{2}\sum_{j=0}^{3}\operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}}\sigma_{j}\overline{\mathbf{M}_{\mathbf{J}}^{\mathsf{t}}}\sigma_{i}\right)P_{j}$$

Mueller matrix

$$\overrightarrow{S}' = \mathbf{M}_{\mathbf{M}} \overrightarrow{S}$$

$$(\mathit{M}_\mathit{M})_{ij} = \frac{1}{2} \mathrm{Tr} \left(\mathbf{M}_{\mathsf{J}} \sigma_{\mathsf{j}} \overline{\mathbf{M}_{\mathsf{J}}^{\mathrm{t}}} \sigma_{\mathsf{i}} \right)$$

Mueller matrices and partially polarized light

Time average of the previous study

Mueller matrices are time independent

$$\langle \overrightarrow{S'} \rangle = M_M \langle \overrightarrow{S} \rangle$$

Mueller calculus can be extended to...

- Partially coherent light
- Cascaded optical devices

Final homework

Find the Mueller matrix of each:

- ullet Polarizers along eigen axis or heta tilted
- half and quarter wave plates
- linearly and circularly birefringent crystal

