UE SPM-PHY-S07-101 Polarization Optics

N. Fressengeas

Laboratoire Matériaux Optiques, Photonique et Systèmes Unité de Recherche commune à l'Université Paul Verlaine Metz et à Supélec

Document à télécharger sur http://moodle.univ-metz.fr/

Further reading [Hua94, K85]

Polarisation de la lumière. Masson, 1994.

G. P. Können. *Polarized light in Nature.* Cambridge University Press, 1985.

Course Outline

- 1 The physics of polarization optics
 - Polarization states
 - Jones Calculus
 - Stokes parameters and the Poincare Sphere
- 2 Polarized light propagation
 - Jones Matrices
 - Polarizers
 - Linear and Circular Anisotropy
 - Jones Matrices Composition
- 3 Partially polarized light
 - Formalisms used
 - Propagation through optical devices

Polarization states Jones Calculus Stokes parameters and the Poincare Sphere

The vector nature of light Optical wave can be polarized, sound waves cannot

The scalar monochromatic plane wave

The electric field reads:

 $A\cos(\omega t - kz - \varphi)$

A vector monochromatic plane wave

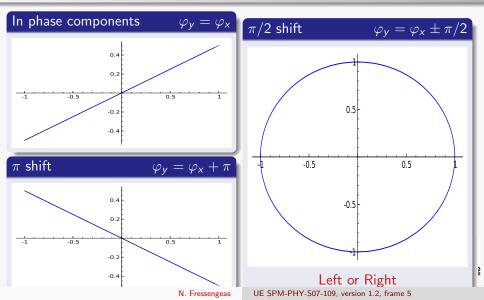
- Electric field is orthogonal to wave and Poynting vectors
- Lies in the wave vector normal plane
- Needs 2 components

•
$$E_x = A_x \cos(\omega t - kz - \varphi_x)$$

•
$$E_y = A_y \cos(\omega t - kz - \varphi_y)$$

Polarization states Jones Calculus Stokes parameters and the Poincare Sphere

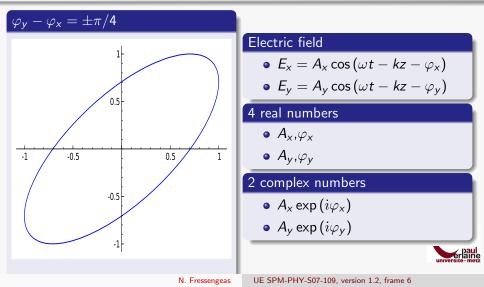
Linear and circular polarization states



Polarization states Jones Calculus Stokes parameters and the Poincare Sphere

The elliptic polarization state

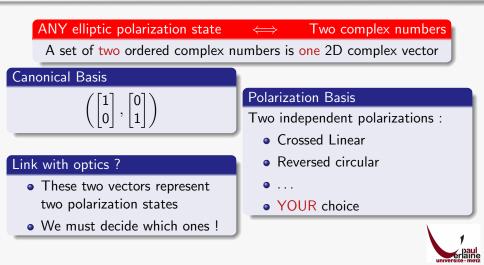
The polarization state of ANY monochromatic wave



Polarization states Jones Calculus Stokes parameters and the Poincare Sphere

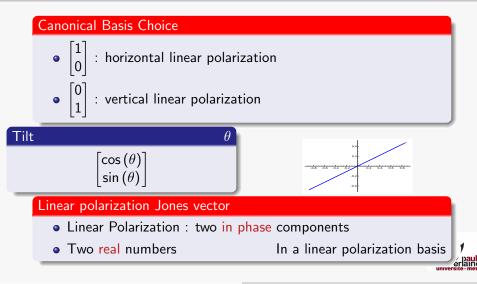
Polarization states are vectors

Monochromatic polarizations belong to a 2D vector space based on the Complex Ring



Polarization states Jones Calculus Stokes parameters and the Poincare Sphere

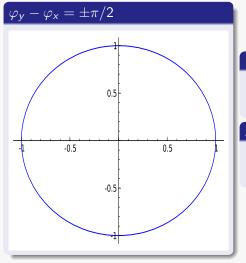
Examples : Linear Polarizations



Polarization states Jones Calculus Stokes parameters and the Poincare Sphere

Examples : Circular Polarizations

In the same canonical basis choice : linear polarizations



Electric field

•
$$E_x = A_x \cos(\omega t - kz - \varphi_x)$$

•
$$E_y = A_y \cos(\omega t - kz - \varphi_y)$$

Jones vector

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ \pm i \end{bmatrix}$$

N. Fressengeas

UE SPM-PHY-S07-109, version 1.2, frame 9

About changing basis A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states
- Remark : two colinear polarization states are identical

Homework

Find the transformation matrix between between the two following bases :

- Horizontal and Vertical Linear Polarizations
- Right and Left Circular Polarizations

Polarization states Jones Calculus Stokes parameters and the Poincare Sphere

Relationship between Jones and Poynting vectors Jones vectors also provide information about intensity

Choose an orthonormal basis

- Hermitian product is null : $\overline{J_1} \cdot J_2 = 0$
- Each vector norm is unity : $\overline{J_1} \cdot J_1 = \overline{J_2} \cdot J_2 = 1$

Hermitian Norm is Intensity

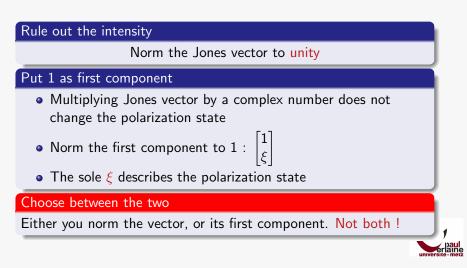
Simple calculations show that :

- If each Jones component is one complex electric field component
- The Hermitian norm is proportional to beam intensity

 (J_1, J_2)

Polarization as a unique complex number

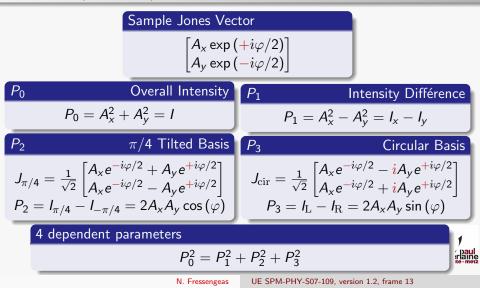
If the intensity information disappears, polarization is summed up in one complex number



Polarization states Jones Calculus Stokes parameters and the Poincare Sphere

The Stokes parameters

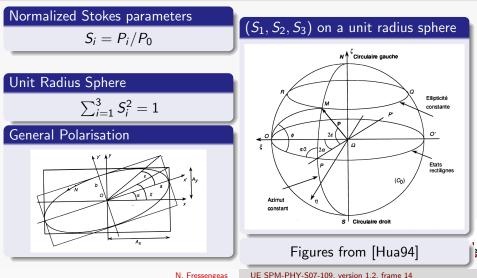
A set of 4 dependent real parameters that can be measured



Polarization states Jones Calculus Stokes parameters and the Poincare Sphere

The Poincare Sphere

Polarization states can be described geometrically on a sphere



N. Fressengeas

Jones Matrices Polarizers Linear and Circular Anisotropy Jones Matrices Composition

Eigen Polarization states

Polarization states that do not change after propagation in an anisotropic medium

Eigen Polarization states

- Do not change
- Except for Intensity

Hermitian operator

2 eigen polarization states are orthonormal

Linear Anisotropy Eigen Polarizations

- Quarter and half wave plates and Birefringent materials
- Eigen Polarizations are linear along the eigen axes

Circular Anisotropy

- Also called optical activity
- e.g in Faraday rotators and in gyratory non linear crystals
- Linear polarization is rotated by an angle proportional to propagation distance
- Eigen polarizations are the circular polarizations

Jones Matrices

2D Linear Algebra to compute polarization propagation through devices

Jones matrices in the eigen basis

• Let λ_1 and λ_2 be the two eigenvalues of a given device

• e.g. for linear anisotropy :
$$\lambda_i = e^{n_i k_0 \Delta z}$$

• Jones Matrix is
$$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

In another basis

use Transformation Matrix

universit

• Let
$$\overrightarrow{J_1} = \begin{bmatrix} u \\ v \end{bmatrix}$$
 and $\overrightarrow{J_2} = \begin{bmatrix} -\overline{v} \\ \overline{u} \end{bmatrix}$ be the orthonormal eigen
vectors
• $\begin{cases} \mathbf{M} \overrightarrow{J_1} = \lambda_1 \overrightarrow{J_1} \\ \mathbf{M} \overrightarrow{J_2} = \lambda_2 \overrightarrow{J_2} \end{cases} \Rightarrow \mathbf{M} = \begin{bmatrix} \lambda_1 u \overline{u} + \lambda_2 v \overline{v} & (\lambda_1 - \lambda_2) u \overline{v} \\ (\lambda_1 - \lambda_2) v \overline{u} & \lambda_2 v \overline{u} + \lambda_1 v \overline{v} \end{bmatrix}$

Jones Matrices Polarizers Linear and Circular Anisotropy Jones Matrices Composition

The particular case of non absorbing devices Jones matrix is a unitary operator when $|\lambda_1| = |\lambda_2 = 1|$

Nor absorbing neither amplifying devices

- $|\lambda_1| = |\lambda_2| = 1$
- $\mathbf{M} \cdot \overline{\mathbf{M}^{t}} = \overline{\mathbf{M}^{t}} \cdot \mathbf{M} = I$
- M is a unitary operator

Unitary operator properties

- Norm is conserved : Intensity is unchanged after propagation
- Orthogonality is conserved : two initially orthogonal states will remain so after propagation

Jones Matrices Polarizers Linear and Circular Anisotropy Jones Matrices Composition

Jones Matrix of a polarizer

In its eigen basis

- A polarized is designed for :
 - Full transmission of one linear polarization
 - Zero transmission of its orthogonal counterpart

• Eigen basis Jones matrix :
$$\mathbf{P}_{\mathbf{x}} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 or $\mathbf{P}_{\mathbf{y}} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

When transmitted polarization is θ tilted

Change base through $-\theta$ rotation Transformation Matrix

$$\mathbf{\mathsf{R}}\left(heta
ight) = egin{bmatrix} \cos\left(heta
ight) & -\sin\left(heta
ight) \ \sin\left(heta
ight) & \cos\left(heta
ight) \end{bmatrix}$$

$$\mathbf{P}(\theta) = \mathbf{R}(\theta) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{R}(-\theta) = \begin{bmatrix} \cos^2(\theta) & \sin(\theta)\cos(\theta) \\ \sin(\theta)\cos(\theta) & \sin^2(\theta) \end{bmatrix}$$

Jones Matrices Polarizers Linear and Circular Anisotropy Jones Matrices Composition

Intensity transmitted through a polarizer

From natural or non polarized light

Half the intensity is transmitted

From linearly polarized light

• Transmitted Jones vector in polarizer eigen basis:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} = \begin{bmatrix} \cos(\theta) \\ 0 \end{bmatrix}$$

• Transmitted Intensity : $\cos^2(\theta)$

MALUS law

From circularly polarized light

Show that whatever the polarizer orientation, the transmitted intensity is half the incident intensity.

Linear anisotropy eigen polarization vectors Two orthogonal polarization directions • Two different refraction indexes n_1 and n_2 Two linear eigen modes along the eigen directions Jones Matrix in the eigen basis Express phase delay only $\begin{bmatrix} e^{in_1k\Delta z} & 0\\ 0 & e^{in_2k\Delta z} \end{bmatrix} = e^{i\psi} \begin{bmatrix} e^{i\phi/2} & 0\\ 0 & e^{-i\phi/2} \end{bmatrix} \approx \begin{bmatrix} e^{i\phi/2} & 0\\ 0 & e^{-i\phi/2} \end{bmatrix}$ Quarter and Half wave plates Homework Find the Jones Matrices of Quarter and Half wave plates Find their action on tilted linear polarization (special case for $\pi/4$ tilt) Find their action on circular polarization

What is circular anisotropy ?

- Two orthogonal circular eigen polarization states
- Two different refraction indexes n_L and n_R

Jones Matrix in the circular eigen basis Express phase delay only

$$\begin{bmatrix} e^{in_L k\Delta z} & 0 \\ 0 & e^{in_R k\Delta z} \end{bmatrix} = e^{i\psi} \begin{bmatrix} e^{i\phi/2} & 0 \\ 0 & e^{-i\phi/2} \end{bmatrix} \approx \begin{bmatrix} e^{i\phi/2} & 0 \\ 0 & e^{-i\phi/2} \end{bmatrix}$$

Jones Matrix in a linear polarization basis Transformation matrix

• use
$$\mathbf{P}_{\text{Lin}\rightarrow\text{Cir}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$$
 transformation matrix

•
$$(\mathbf{P}_{\text{Lin}\to\text{Cir}})M(\mathbf{P}_{\text{Lin}\to\text{Cir}})^{-1} = e^{i\Psi} \begin{bmatrix} \cos(\phi/2) & \sin(\phi/2) \\ -\sin(\phi/2) & \cos(\phi/2) \end{bmatrix}$$

Jones Matrices Polarizers Linear and Circular Anisotropy Jones Matrices Composition

Reversed order

Jones Matrices Composition

The Jones matrices of cascaded optical elements can be composed through Matrix multiplication

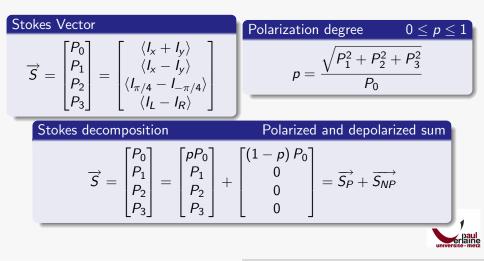
Matrix composition

- If a $\overrightarrow{J_0}$ incident light passes through M_1 and M_2 in that order
- First transmission: $M_1 \overrightarrow{J_0}$
- Second transmission: $M_2M_1\overline{J_0}$
- Composed Jones Matrix : M₂M₁

Beware of non commutativity

- Matrix product does not commute in general
- Think of the case of a linear anisotropy followed by optical activity
 - in that order
 - in the reverse order

Stokes parameters for partially polarized light Generalize the coherent definition using the statistical average intensity



Formalisms used Propagation through optical devices

The Jones Coherence Matrix

Jones Vectors are out

- They describe phase differences
- Meaningless when not monochromatic

Jones Coherence Matrix

• If
$$\overrightarrow{J} = \begin{bmatrix} A_x(t) e^{i\varphi_x(t)} \\ A_y(t) e^{i\varphi_y(t)} \end{bmatrix}$$

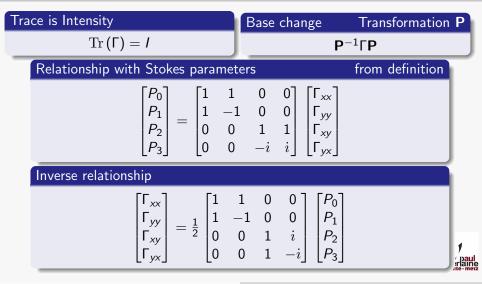
• $\Gamma_{ij} = \langle \overrightarrow{J}_i(t) \overline{\overrightarrow{J}_j(t)} \rangle$
• $\Gamma = \langle \overrightarrow{J(t)} \overline{\overrightarrow{J(t)}}^{\mathsf{t}} \rangle$

Coherence Matrix: explicit formulation

$$\Gamma = \begin{bmatrix} \langle |A_{x}(t)|^{2} \rangle & \langle A_{x}(t) \overline{A_{y}(t)} e^{i(\varphi_{x} - \varphi_{y})} \rangle \\ \langle \overline{A_{x}(t)} A_{y}(t) e^{-i(\varphi_{x} - \varphi_{y})} \rangle & \langle |A_{y}(t)|^{2} \rangle \end{bmatrix}$$

Formalisms used Propagation through optical devices

Jones Coherence Matrix: properties



N. Fressengeas UE SPM-PHY-S07-109, version 1.2, frame 25

Formalisms used Propagation through optical devices

Coherence Matrix: further properties

Polarization degree

$$\rho = \sqrt{\frac{P_1^2 + P_2^2 + P_3^2}{P_0^2}} = \sqrt{1 - \frac{4(\Gamma_{xx}\Gamma_{yy} - \Gamma_{xy}\Gamma_{yx})}{(\Gamma_{xx} + \Gamma_{yy})^2}} = \sqrt{1 - \frac{4\mathrm{Det}(\Gamma)}{\mathrm{Tr}(\Gamma)^2}}$$

Γ Decomposition in polarized and depolarized components

•
$$\Gamma = \Gamma_P + \Gamma_{NP}$$

• Find Γ_P and Γ_{NP} using the relationship with the Stokes parameters

Formalisms used Propagation through optical devices

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J'(t)} = \mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if **M** is unitary

• M unitary means : linear and/or circular anisotropy only

•
$$\Gamma' = \langle \overrightarrow{J'(t)} \overrightarrow{\overline{J'(t)}}^{\mathrm{t}} \rangle$$

•
$$\Gamma' = \mathbf{M} \langle \overrightarrow{J(t)} \overrightarrow{J(t)}^{\mathrm{t}} \rangle \mathbf{M}^{-1}$$

Basis change

Polarization degree

- Unaltered for unitary operators Tr and Det are unaltered
- Not the case if a polarizer is present : p becomes 1

Mueller Calculus

Propagating the Jones coherence matrix is difficult if the operator is not unitary

Jones Calculus raises some difficulties

- Coherence matrix OK for partially polarized light
- Propagation through unitary optical devices

(linear or circular anisotropy only)

• Hard Times if Polarizers are present

The Stokes parameters may be an alternative

- Describing intensity, they can be readily measurered
- \bullet We will show they can be propagated using 4 \times 4 real matrices
- They are the Mueller matrices

Formalisms used Propagation through optical devices

The projection on a polarization state Matrix of the polarizer with axis parallel to \vec{V}

- Orthogonal Linear Polarizations Basis: \overrightarrow{X} and \overrightarrow{Y}
- Normed Projection Base Vector :

•
$$\overrightarrow{V} = A_x e^{-i\frac{\varphi}{2}} \overrightarrow{X} + A_y e^{i\frac{\varphi}{2}} \overrightarrow{Y}$$

• $\overrightarrow{V}^{\text{t}} \overrightarrow{V} = 1$
 $\mathbf{P}_{\mathbf{V}} = \overrightarrow{V} \overrightarrow{V}^{\text{t}}_a$

^aEasy to check in the projection eigen basis

Formalisms used Propagation through optical devices

The Pauli Matrices

A base for the 4D 2 \times 2 matrix vector space

$$\sigma_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \sigma_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sigma_3 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

 $\mathbf{P}_{\mathbf{V}}$ decomposition

$$\mathbf{P}_{\mathbf{V}} = \frac{1}{2} \left(p_0 \sigma_0 + p_1 \sigma_1 + p_2 \sigma_2 + p_3 \sigma_3 \right)$$

Formalisms used Propagation through optical devices

 $\operatorname{Tr}(P_V) = 1$ $\operatorname{Tr}(P_V\sigma_i) = \alpha$

Pv composition and Trace property Trace is the eigen values sum

Projection property

$$\overline{\overrightarrow{V}^{t}} \cdot \sigma_{j} \overrightarrow{V} = \left(\overline{\overrightarrow{V}^{t}} \overrightarrow{V}\right) \overline{\overrightarrow{V}^{t}} \cdot \sigma_{j} \overrightarrow{V} = \overline{\overrightarrow{V}^{t}} \left(\overrightarrow{V} \overline{\overrightarrow{V}^{t}}\right) \sigma_{j} \overrightarrow{V} = \overline{\overrightarrow{V}^{t}} \cdot \mathbf{P}_{\mathbf{V}} \sigma_{j} \overrightarrow{V}$$

Projection Trace in its eigen basis

- Pv eigenvalues : 0 & 1
- $\mathbf{P_V}\sigma_{\mathbf{j}}$ eigenvalues : 0 & α $\alpha \leq 1$
- $\mathbf{P}_{\mathbf{V}}\sigma_{\mathbf{j}}$ eigenvectors are the same as $\mathbf{P}_{\mathbf{V}}$:
 - \overrightarrow{V} associated to eigenvalue α
- Project the projection

$$\overline{\overrightarrow{V}^{t}} \cdot \mathbf{P_{V}} \sigma_{\mathbf{j}} \overrightarrow{V} = \alpha = \operatorname{Tr} \left(\mathbf{P_{V}} \sigma_{\mathbf{j}} \right) = \overline{\overrightarrow{V}^{t}} \cdot \sigma_{\mathbf{j}} \overrightarrow{V}$$

P_V Pauli components and physical meaning Express p_i as a function of \vec{V} and the Pauli matrices, then find their signification

$$\overrightarrow{V}^{t} \cdot \sigma_{j} \overrightarrow{V} = \operatorname{Tr} (P_{V} \sigma_{j}) \qquad \operatorname{Tr} (\sigma_{i} \sigma_{j}) = 2\delta_{ij}$$

$$\overrightarrow{V}^{t} \cdot \sigma_{j} \overrightarrow{V} = \operatorname{Tr} (P_{V} \sigma_{j}) = \frac{1}{2} \sum_{i} \operatorname{Tr} (\sigma_{i} \sigma_{j}) p_{i} = \frac{1}{2} \sum_{i} 2\delta_{ij} p_{i} = p_{j}$$
Project the base vectors on \overrightarrow{V}

• Using $\overrightarrow{V} = A_{x} e^{-i\frac{\varphi}{2}} \overrightarrow{X} + A_{y} e^{i\frac{\varphi}{2}} \overrightarrow{Y}$

• $P_{V} \overrightarrow{X} = A_{x}^{2} \overrightarrow{X} + A_{x} A_{y} e^{i\varphi} \overrightarrow{Y}$

• $P_{V} \overrightarrow{Y} = A_{y}^{2} \overrightarrow{Y} + A_{x} A_{y} e^{-i\varphi} \overrightarrow{X}$

• Using the P_{V} decomposition on the Pauli Basis

• $P_{V} \overrightarrow{X} = \frac{1}{2} (p_{0} + p_{1}) \overrightarrow{X} + \frac{1}{2} (p_{2} + ip_{3}) \overrightarrow{Y}$

• P_{V} \overrightarrow{Y} = \frac{1}{2} (p_{0} - p_{1}) \overrightarrow{Y} + \frac{1}{2} (p_{2} - ip_{3}) \overrightarrow{X}

• Identify

aine

Formalisms used Propagation through optical devices

$\mathbf{P}_{\mathbf{V}}$ Pauli composition and Stokes parameters

Stokes parameters as $\mathbf{P}_{\mathbf{V}}$ decomposition on the Pauli base

•
$$p_0 = P_0 = A_x^2 - A_y^2 = I_x - I_y$$

•
$$p_1 = P_1 = A_x^2 - A_y^2 = I_x - I_y$$

•
$$p_2 = P_2 = 2A_x A_y \cos(\varphi) = I_{\pi/4} - I_{-\pi/4}$$

•
$$p_3 = P_3 = 2A_xA_y\sin(\varphi) = I_{\rm L} - I_{\rm R}$$

Formalisms used Propagation through optical devices

Propagating through devices: Mueller matrices $\vec{V'} = M_J \vec{V}$

Projection on $\overrightarrow{V'}$

$$\mathbf{P}_{\mathbf{V}'} = \overrightarrow{V'} \overrightarrow{V'}^{\mathrm{t}} = \mathbf{M}_{\mathbf{J}} \overrightarrow{V} \overrightarrow{V}^{\mathrm{t}} \overline{\mathbf{M}_{\mathbf{J}}}^{\mathrm{t}} = \mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\mathbf{M}_{\mathbf{J}}}^{\mathrm{t}}$$

Trace relationship

$$\begin{aligned} \mathcal{P}'_{i} &= \operatorname{Tr}\left(\mathbf{P}_{\mathbf{V}'}\sigma_{i}\right) = \operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}}\mathbf{P}_{\mathbf{V}}\overline{\mathbf{M}_{\mathbf{J}}}^{\mathrm{t}}\sigma_{i}\right) = \\ & \frac{1}{2}\sum_{j=0}^{3}\operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}}\sigma_{j}\overline{\mathbf{M}_{\mathbf{J}}}^{\mathrm{t}}\sigma_{i}\right)\mathcal{P}_{j} \end{aligned}$$

Mueller matrix

$$\left(M_{M}\right)_{ij} = \frac{1}{2} \mathrm{Tr} \left(\mathbf{M}_{\mathbf{J}} \sigma_{\mathbf{j}} \overline{\mathbf{M}_{\mathbf{J}}}^{\mathrm{t}} \sigma_{\mathbf{i}}\right)$$

N. Fressengeas UE SPM-PHY-S07-109, version 1.2, frame 34

 $\overrightarrow{S'} = \mathbf{M}_{\mathbf{M}} \overrightarrow{S}$

Mueller matrices and partially polarized light Time average of the previous study

Mueller matrices are time independent

$$\langle \overrightarrow{S'} \rangle = \mathbf{M}_{\mathbf{M}} \langle \overrightarrow{S} \rangle$$

Mueller calculus can be extended to...

- Partially coherent light
- Cascaded optical devices

Final homework

Find the Mueller matrix of each :

- Polarizers along eigen axis or θ tilted
- half and quarter wave plates
- linearly and circularly birefringent crystal