Polarization Optics

Nicolas Fressengeas

To cite this version:

Nicolas Fressengeas. Polarization Optics. Master. Université de Lorraine, France. 2018. cel00521501v4

HAL Id: cel-00521501

https://cel.hal.science/cel-00521501v4
Submitted on 6 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Polarization Optics

N. Fressengeas

Laboratoire Matériaux Optiques, Photonique et Systèmes Unité de Recherche commune à l'Université de Lorraine et à Supélec

Download this document from http://arche.univ-lorraine.fr/

Further reading

[Hua94, GB94]

圊 A. Gerrard and J.M. Burch.
Introduction to matrix methods in optics.
Dover, 1994.
囯 S. Huard.
Polarisation de la lumière.
Masson, 1994.

Course Outline

(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices Examples
- Matrix, basis \& eigen polarizations
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices
(1) The physics of polarization optics
- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices Examples
- Matrix, basis \& eigen polarizations
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

三

The vector nature of light Optical wave can be polarized, sound waves cannot

The scalar monochromatic plane wave
 The electric field reads:

- Electric field is orthogonal to wave and Poynting vectors

The vector nature of light Optical wave can be polarized, sound waves cannot

The scalar monochromatic plane wave

The electric field reads:

$$
A \cos (\omega t-k z-\varphi)
$$

A vector monochromatic plane wave

- Electric field is orthogonal to wave and Poynting vectors
- Lies in the wave vector normal plane
- Needs 2 components

The vector nature of light Optical wave can be polarized, sound waves cannot

The scalar monochromatic plane wave

The electric field reads:

$$
A \cos (\omega t-k z-\varphi)
$$

A vector monochromatic plane wave

- Electric field is orthogonal to wave and Poynting vectors
- Lies in the wave vector normal plane

The vector nature of light Optical wave can be polarized, sound waves cannot

The scalar monochromatic plane wave

The electric field reads:

$$
A \cos (\omega t-k z-\varphi)
$$

A vector monochromatic plane wave

- Electric field is orthogonal to wave and Poynting vectors
- Lies in the wave vector normal plane
- Needs 2 components
- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

Polarization states

Linear and circular polarization states

In phase components $\quad \varphi_{y}=\varphi_{x}$

Linear and circular polarization states

In phase components $\quad \varphi_{y}=\varphi_{x}$

Polarization states

Linear and circular polarization states

In phase components $\quad \varphi_{y}=\varphi_{x}$

N. Fressengeas

Polarization Optics, version 2.0, frame 5

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

Linear and circular polarization states

In phase components
 $\varphi_{y}=\varphi_{x}$

$\pi / 2$ shift $\quad \varphi_{y}=\varphi_{x} \pm \pi / 2$

$$
\pi \text { shift } \quad \varphi_{y}=\varphi_{x}+\pi
$$

N. Fressengeas

Left or Right

Polarization Optics, version 2.0, frame 5

Polarization states

Linear and circular polarization states

In phase components $\quad \varphi_{y}=\varphi_{x}$

N. Fressengeas
$\pi / 2$ shift $\quad \varphi_{y}=\varphi_{x} \pm \pi / 2$

Left or Right

Polarization Optics, version 2.0, frame 5

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

Linear and circular polarization states

In phase components $\quad \varphi_{y}=\varphi_{x}$

π shift $\quad \varphi_{y}=\varphi_{x}+\pi$

N. Fressengeas
$\pi / 2$ shift
$\varphi_{y}=\varphi_{x} \pm \pi / 2$

Left or Right

Polarization Optics, version 2.0, frame 5

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm 0
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 8
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 4
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 2
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm 3 \pi / 4
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$
N. Fressengeas

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 4
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

4 real numbers

- A_{x}, φ_{x}
- A_{y}, φ_{y}
N. Fressengeas

Polarization Optics, version 2.0, frame 6

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 4
$$

N. Fressengeas

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

4 real numbers

- A_{x}, φ_{x}
- A_{y}, φ_{y}

2 complex numbers

- $A_{x} \exp \left(-i \varphi_{x}\right)$
- $A_{y} \exp \left(-i \varphi_{y}\right)$

Polarization Optics, version 2.0, frame 6

The elliptic polarization state

The polarization state of ANY monochromatic wave

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 4
$$

N. Fressengeas

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

4 real numbers

- A_{x}, φ_{x}
- A_{y}, φ_{y}

2 complex numbers

- $A_{x} \exp \left(i \varphi_{x}\right)$
- $A_{y} \exp \left(i \varphi_{y}\right)$
(1) The physics of polarization optics
- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices Examples
- Matrix, basis \& eigen polarizations
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

三

Polarization states are vectors

Monochromatic polarizations belong to a 2D vector space based on the Complex Ring

ANY elliptic polarization state \Longleftrightarrow Two complex numbers
A set of two ordered complex numbers is one 2D complex vector

Polarization states are vectors

Monochromatic polarizations belong to a 2D vector space based on the Complex Ring

ANY elliptic polarization state
 Two complex numbers

A set of two ordered complex numbers is one 2D complex vector

Canonical Basis

$$
\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

\square

```
Reversed circular
```


Polarization states are vectors

Monochromatic polarizations belong to a 2D vector space based on the Complex Ring

ANY elliptic polarization state $\quad \Longleftrightarrow$ Two complex numbers
A set of two ordered complex numbers is one 2 D complex vector

Canonical Basis

$$
\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

Polarization Basis
Two independent polarizations

Link with optics ?

- These two vectors represent two polarization states
- We must decide which ones !

Polarization states are vectors

Monochromatic polarizations belong to a 2D vector space based on the Complex Ring

ANY elliptic polarization state
\Longleftrightarrow
Two complex numbers
A set of two ordered complex numbers is one 2D complex vector

Canonical Basis

$$
\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

Link with optics ?

- These two vectors represent two polarization states
- We must decide which ones !

Polarization Basis

Two independent polarizations :

- Crossed Linear
- Reversed circular
- ...
- YOUR choice

Examples: Linear Polarizations

Canonical Basis Choice

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$: horizontal linear polarization
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$: vertical linear polarization

Examples: Linear Polarizations

Canonical Basis Choice

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$: horizontal linear polarization
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$: vertical linear polarization

$$
\begin{array}{lll}
\hline \text { Tilt } & \theta=\pi / 4 \\
& \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] &
\end{array}
$$

Examples: Linear Polarizations

Canonical Basis Choice

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$: horizontal linear polarization
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$: vertical linear polarization

Tilt
 $$
\theta=3 \pi / 4
$$

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Examples: Linear Polarizations

Canonical Basis Choice

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$: horizontal linear polarization
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$: vertical linear polarization

Tilt

$$
\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]
$$

Examples: Linear Polarizations

Canonical Basis Choice

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$: horizontal linear polarization
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$: vertical linear polarization

Tilt

$$
\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]
$$

Linear polarization Jones vector
in a linear polarization basis
Linear Polarization : two in phase components

Examples: Circular Polarizations

In the same canonical basis choice : linear polarizations

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 2
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$
N. Fressengeas

Polarization Optics, version 2.0, frame 9

Examples: Circular Polarizations

In the same canonical basis choice : linear polarizations

$$
\varphi_{y}-\varphi_{x}= \pm \pi / 2
$$

Electric field

- $E_{x}=A_{x} \cos \left(\omega t-k z-\varphi_{x}\right)$
- $E_{y}=A_{y} \cos \left(\omega t-k z-\varphi_{y}\right)$

Jones vector

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
\pm i
\end{array}\right]
$$

N. Fressengeas

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states
- Remark : two colinear rolarization states are identical

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states

Find the transformation matrix between between the two following

- Horizontal and Vertical Linear Polarizations

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states
- Remark : two colinear polarization states are identical

About changing basis

A polarization state Jones vector is basis dependent

Some elementary algebra

- The polarization vector space dimension is 2
- Therefore : two non colinear vectors form a basis
- Any polarization state can be expressed as the sum of two non colinear other states
- Remark : two colinear polarization states are identical

Homework

Find the transformation matrix between between the two following bases :

- Horizontal and Vertical Linear Polarizations
- Right and Left Circular Polarizations

Relationship between Jones and Poynting vectors

 Jones vectors also provide information about intensity
Choose an orthonormal basis

- Hermitian product is null : $\overline{J_{1}} \cdot J_{2}=0$
- Each vector norm is unity : $\overline{J_{1}} \cdot J_{1}=\overline{J_{2}} \cdot J_{2}=1$

Relationship between Jones and Poynting vectors

 Jones vectors also provide information about intensity
Choose an orthonormal basis

- Hermitian product is null : $\overline{J_{1}} \cdot J_{2}=0$
- Each vector norm is unity : $\overline{J_{1}} \cdot J_{1}=\overline{J_{2}} \cdot J_{2}=1$

Hermitian Norm is Intensity
Simple calculations show that :

- If each Jones component is one complex electric field component
- The Hermitian norm is proportional to beam intensity
(1) The physics of polarization optics
- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices Examples
- Matrix, basis \& eigen polarizations
- Jones Matrices Composition

3 Partially polarized light

- Formalisms used
- Propagation through optical devices

The Stokes parameters

A set of 4 dependent real parameters that can be measured
$P_{0} \quad$ Overall Intensity
$P_{0}=1$

The Stokes parameters

A set of 4 dependent real parameters that can be measured
$P_{0}=1$

$$
P_{1}=I_{x}-I_{y}
$$

틀

The Stokes parameters

A set of 4 dependent real parameters that can be measured

P_{0}	Overall Intensity
	$P_{0}=I$
P_{2}	in a $\pi / 4$ Tilted Basis
	$P_{2}=I_{\pi / 4}-I_{-\pi / 4}$

The Stokes parameters

A set of 4 dependent real parameters that can be measured

Relationship between Jones and Stockes

Sample Jones Vector

$$
J=\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

$P_{0} \quad$ Overall Intensity
$P_{0}=I=A_{x}^{2}+A_{y}^{2}$

Relationship between Jones and Stockes

Sample Jones Vector

$$
J=\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

$$
\begin{aligned}
& P_{0} \quad \text { Overall Intensity } \\
& P_{0}=I=A_{x}^{2}+A_{y}^{2}
\end{aligned}
$$

Relationship between Jones and Stockes

Sample Jones Vector

$$
J=\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

$P_{0} \quad$ Overall Intensity

$$
\begin{aligned}
& \hline P_{1} \quad \text { Intensity Difference } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& P_{2} \quad \text { in a } \pi / 4 \text { Tilted Basis } \\
& J_{\pi / 4}=\left[\begin{array}{cc}
\cos \left(-\frac{\pi}{4}\right) & -\sin \left(-\frac{\pi}{4}\right) \\
\sin \left(-\frac{\pi}{4}\right) & \cos \left(-\frac{\pi}{4}\right)
\end{array}\right] J
\end{aligned}
$$

Relationship between Jones and Stockes

Sample Jones Vector

$$
J=\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

P_{0}	Overall Intensity
	$P_{0}=I=A_{x}^{2}+A_{y}^{2}$
P_{2}	in a $\pi / 4$ Tilted Basis
	$J_{\pi / 4}=\frac{\sqrt{2}}{2}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right] J$

$P_{1} \quad$ Intensity Difference

$$
P_{1}=I_{x}-I_{y}=A_{x}^{2}-A_{y}^{2}
$$

Polarization states

Relationship between Jones and Stockes

Sample Jones Vector

$$
J=\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

$P_{0} \quad$ Overall Intensity

$$
P_{0}=I=A_{x}^{2}+A_{y}^{2}
$$

$P_{1} \quad$ Intensity Difference

$$
P_{1}=I_{x}-I_{y}=A_{x}^{2}-A_{y}^{2}
$$

Relationship between Jones and Stockes

Sample Jones Vector

$$
J=\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

$P_{0} \quad$ Overall Intensity

$P_{0}=I=A_{x}^{2}+A_{y}^{2}$
P_{2} in a $\pi / 4$ Tilted Basis
$J_{\pi / 4}=$
$\sqrt{2}\left[\begin{array}{c}A_{x} e^{+i \varphi / 2}+A_{y} e^{-i \varphi / 2} \\ -A_{x} e^{+i \varphi / 2}+A_{y} e^{-i \varphi / 2}\end{array}\right]$
$P_{2}=\overline{J_{\pi / 4}^{x}} \cdot J_{\pi / 4}^{x}-\overline{J_{\pi / 4}^{y}} \cdot J_{\pi / 4}^{y}=$
$2 A_{x} A_{y} \cos (\varphi)$

Relationship between Jones and Stockes

Sample Jones Vector

$$
J=\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

$P_{0} \quad$ Overall Intensity
P_{2}
in a $\pi / 4$ Tilted Basis
$J_{\pi / 4}=$
$\sqrt{2}\left[\begin{array}{c}A_{x} e^{+i \varphi / 2}+A_{y} e^{-i \varphi / 2} \\ -A_{x} e^{+i \varphi / 2}+A_{y} e^{-i \varphi / 2}\end{array}\right]$
$P_{2}=\overline{J_{\pi / 2}^{x}} \cdot J_{\pi / 4}^{x}-\overline{J_{\pi / 4}^{y}} \cdot J_{\pi / 4}^{y}=$
$2 A_{x} A_{y} \cos (\varphi)$

$$
\begin{aligned}
& \text { P1 Intensity Difference } \\
& \\
& P_{1}=I_{x}-I_{y}=A_{x}^{2}-A_{y}^{2}
\end{aligned}
$$

$$
\begin{gathered}
P_{3} \quad \text { in a Circular Basis } \\
J_{\text {Cir }}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
A_{x} e^{+i \varphi / 2}-i A_{y} e^{-i \varphi / 2} \\
A_{x} e^{+i \varphi / 2}+i A_{y} e^{-i \varphi / 2}
\end{array}\right] \\
P_{3}=\overline{J_{\mathrm{Cir}}^{x}} \cdot J_{\mathrm{Cir}}^{x}-\overline{J_{\text {Cir }}^{y}} \cdot J_{\mathrm{Cir}}^{y}= \\
2 A_{x} A_{y} \sin (\varphi)
\end{gathered}
$$

Relationship between Jones and Stockes

Sample Jones Vector

$$
J=\left[\begin{array}{l}
A_{x} \exp (+i \varphi / 2) \\
A_{y} \exp (-i \varphi / 2)
\end{array}\right]
$$

4 dependent parameters

$$
P_{0}^{2}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}
$$

$P_{0} \quad$ Overall Intensity

$$
P_{0}=I=A_{x}^{2}+A_{y}^{2}
$$

$P_{2} \quad$ in a $\pi / 4$ Tilted Basis

$$
\begin{gathered}
J_{\pi / 4}= \\
\sqrt{2}\left[\begin{array}{c}
A_{x} e^{+i \varphi / 2}+A_{y} e^{-i \varphi / 2} \\
-A_{x} e^{+i \varphi / 2}+A_{y} e^{-i \varphi / 2}
\end{array}\right] \\
P_{2}=\overline{J_{\pi / 4}^{x}} \cdot J_{\pi / 4}^{x}-\overline{J_{\pi / 4}^{y}} \cdot J_{\pi / 4}^{y}= \\
2 A_{x} A_{y} \cos (\varphi)
\end{gathered}
$$

The Poincare Sphere

Polarization states can be described geometrically on a sphere

Recall the Stokes parameters

$$
P_{0}^{2}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}
$$

Normalized Stokes parameters

The Poincare Sphere

Polarization states can be described geometrically on a sphere

Recall the Stokes parameters

$$
P_{0}^{2}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}
$$

Normalized Stokes parameters

$$
S_{i}=P_{i} / P_{0}
$$

The Poincare Sphere

Polarization states can be described geometrically on a sphere

Recall the Stokes parameters

$$
P_{0}^{2}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}
$$

Normalized Stokes parameters

$$
S_{i}=P_{i} / P_{0}
$$

Unit Radius Sphere

$$
\sum_{i=1}^{3} S_{i}^{2}=1
$$

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

The Poincare Sphere

Polarization states can be described geometrically on a sphere

Recall the Stokes parameters

$$
P_{0}^{2}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}
$$

Normalized Stokes parameters

$$
S_{i}=P_{i} / P_{0}
$$

Unit Radius Sphere

$$
\sum_{i=1}^{3} S_{i}^{2}=1
$$

(S_{1}, S_{2}, S_{3}) on a unit radius sphere

Figures from [Hua94]

Polarization states
Jones Calculus
Stokes parameters and the Poincare Sphere

The Poincare Sphere

Polarization states can be described geometrically on a sphere

Normalized Stokes parameters

$$
S_{i}=P_{i} / P_{0}
$$

Unit Radius Sphere

$$
\sum_{i=1}^{3} S_{i}^{2}=1
$$

General Polarisation

$\left(S_{1}, S_{2}, S_{3}\right)$ on a unit radius sphere

N. Fressengeas

Figures from [Hua94]

Polarization Optics, version 2.0, frame 14
(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices Examples
- Matrix, basis \& eigen polarizations
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

三

A polarizer lets one component through

Polarizer aligned with x : its action on two orthogonal polarizations

- Lets through the linear polarization along $x:\left[\begin{array}{l}1 \\ 0\end{array}\right] \longrightarrow\left[\begin{array}{l}1 \\ 0\end{array}\right]$ - Blocks the linear polarization along $y:\left[\begin{array}{l}0 \\ 1\end{array}\right] \longrightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right]$

A polarizer lets one component through

Polarizer aligned with x : its action on two orthogonal polarizations

- Lets through the linear polarization along $x:\left[\begin{array}{l}1 \\ 0\end{array}\right] \longrightarrow\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- Blocks the linear polarization along $y:\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right]$

A polarizer lets one component through

Polarizer aligned with x : its action on two orthogonal polarizations

- Lets through the linear polarization along $x:\left[\begin{array}{l}1 \\ 0\end{array}\right] \longrightarrow\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- Blocks the linear polarization along $y:\left[\begin{array}{l}0 \\ 1\end{array}\right] \longrightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right]$
x polarizer Jones matrix
in this basis

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

A quarter wave plate adds a $\pi / 2$ phase shift

Birefringent material: n_{1} along x and n_{2} along $y \quad$ thickness e

- Linear polarization along x : phase shift is $k e=k_{0} n_{1} e$
- Linear polarization along y : phase shift is $k e=k_{0} n_{2} e$

A quarter wave plate adds a $\pi / 2$ phase shift

Birefringent material: n_{1} along x and n_{2} along $y \quad$ thickness e
 - Linear polarization along x : phase shift is $k e=k_{0} n_{1} e$
 - Linear polarization along y : phase shift is $k e=k_{0} n_{2} e$
 Jones matrix $\left[\begin{array}{cc}e^{i k_{0} n_{1} e} & 0 \\ 0 & e^{i k_{0} n_{2} e}\end{array}\right]$
 in this basis
 $$
\left[\begin{array}{cc} e^{i k_{0} n_{1} e} & 0 \\ 0 & e^{i k_{0} n_{2} e} \end{array}\right]
$$

A quarter wave plate adds a $\pi / 2$ phase shift

$$
\begin{aligned}
& \text { Birefringent material: } n_{1} \text { along } x \text { and } n_{2} \text { along } y \quad \text { thickness } e \\
& \text { - Linear polarization along } x \text { : phase shift is } k e=k_{0} n_{1} e \\
& \text { - Linear polarization along } y \text { : phase shift is } k e=k_{0} n_{2} e \\
& \hline \text { Jones matrix } \\
& \hline\left[\begin{array}{cc}
e^{i k_{0} n_{1} e} & 0 \\
0 & e^{i k_{0} n_{2} e}
\end{array}\right]=e^{i k_{0} n_{1} e}\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i k_{0}\left(n_{2}-n_{1}\right) e}
\end{array}\right]
\end{aligned}
$$

A quarter wave plate adds a $\pi / 2$ phase shift

Birefringent material: n_{1} along x and n_{2} along y

- Linear polarization along x : phase shift is $k e=k_{0} n_{1} e$
- Linear polarization along y : phase shift is $k e=k_{0} n_{2} e$
Jones matrix
$\left[\begin{array}{cc}e^{i k_{0} n_{1} e} & 0 \\ 0 & e^{i k_{0} n_{2} e}\end{array}\right]=e^{i k_{0} n_{1} e}\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i k_{0}\left(n_{2}-n_{1}\right) e}\end{array}\right]=e^{i k_{0} n_{1} e}\left[\begin{array}{cc}1 & 0 \\ 0 & e^{ \pm i \frac{\pi}{2}}\end{array}\right]$

A quarter wave plate adds a $\pi / 2$ phase shift

Birefringent material: n_{1} along x and n_{2} along y

- Linear polarization along x : phase shift is $k e=k_{0} n_{1} e$
- Linear polarization along y : phase shift is $k e=k_{0} n_{2} e$

Jones matrix	in this basis
$\left[\begin{array}{cc}e^{i k_{0} n_{1} e} & 0 \\ 0 & e^{i k_{0} n_{2} e}\end{array}\right]=e^{i k_{0} n_{1} e}\left[\begin{array}{cc}1 & 0 \\ 0 & e^{ \pm i \frac{\pi}{2}}\end{array}\right]=e^{i k_{0} n_{1} e}\left[\begin{array}{cc}1 & 0 \\ 0 & \pm i\end{array}\right]$	

A quarter wave plate adds a $\pi / 2$ phase shift

> Birefringent material: n_{1} along x and n_{2} along y
> - Linear polarization along x : phase shift is $k e=k_{0} n_{1} e$
> - Linear polarization along y : phase shift is $k e=k_{0} n_{2} e$

A quarter wave plate adds a $\pi / 2$ phase shift

Birefringent material: n_{1} along x and n_{2} along y

- Linear polarization along x : phase shift is $k e=k_{0} n_{1} e$
- Linear polarization along y : phase shift is $k e=k_{0} n_{2} e$
Jones matrix in this basis

$$
\left[\begin{array}{cc}
e^{i k_{0} n_{1} e} & 0 \\
0 & e^{i k_{0} n_{2} e}
\end{array}\right] \approx\left[\begin{array}{cc}
1 & 0 \\
0 & \pm i
\end{array}\right]
$$

Homework

Think about Half Wave Plates
(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices Examples
- Matrix, basis \& eigen polarizations
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

Eigen Polarizations

Eigen polarization are polarizations that do not change upon propagation

Eigen Vectors $\lambda \in \mathbb{C}$
 $M \cdot v=\lambda v \Leftrightarrow \begin{aligned} & v \text { is an eigen vector } \\ & \lambda \text { is its eigen value }\end{aligned}$

๑) $Q \curvearrowright$

Eigen Polarizations

Eigen polarization are polarizations that do not change upon propagation

Eigen Vectors	$\lambda \in \mathbb{C}$
$M \cdot v=\lambda v \Leftrightarrow$$v$ is an eigen vector λ is its eigen value	$\bullet J$ and λJ describe the same
polarization	

Polarization unchanged

- J and λJ describe the same polarization
- Intensity changes

Eigen Polarizations

Eigen polarization are polarizations that do not change upon propagation

Eigen Vectors	$\lambda \in \mathbb{C}$
$M \cdot v=\lambda v \Leftrightarrow$$v$ is an eigen vector λ is its eigen value	

Handy basis

A matrix is diagonal in its eigen basis

- Polarizer eigen basis is along its axes
- Bi-refringent plate eigen basis is along its axes

Find the eigen polarizations for an optically active material that rotates any linear polarisation by an angle ϕ

Eigen Polarizations

Eigen polarization are polarizations that do not change upon propagation

Eigen Vectors	$\lambda \in \mathbb{C}$
$M \cdot v=\lambda v \Leftrightarrow$$v$ is an eigen vector λ is its eigen value	

Polarization unchanged

- J and λJ describe the same polarization
- Intensity changes

Handy basis

A matrix is diagonal in its eigen basis

- Polarizer eigen basis is along its axes
- Bi-refringent plate eigen basis is along its axes
๑) \propto

Eigen Polarizations

Eigen polarization are polarizations that do not change upon propagation

$$
\begin{aligned}
& \text { Eigen Vectors } \quad \lambda \in \mathbb{C} \\
& M \cdot v=\lambda v \Leftrightarrow \begin{array}{l}
v \text { is an eigen vector } \\
\lambda \text { is its eigen value }
\end{array}
\end{aligned}
$$

Polarization unchanged

- J and λJ describe the same polarization
- Intensity changes

Handy basis

A matrix is diagonal in its eigen basis

- Polarizer eigen basis is along its axes
- Bi-refringent plate eigen basis is along its axes

Homework

Find the eigen polarizations for an optically active material that rotates any linear polarisation by an angle ϕ

A polarizer in a rotated basis

In its eigen basis

Eigen basis Jones matrix : $\mathbf{P}_{\mathbf{x}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

A polarizer in a rotated basis

In its eigen basis

Eigen basis Jones matrix : $\mathbf{P}_{\mathbf{x}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
\square
Change base through $-\theta$ rotation Transformation Matrix

A polarizer in a rotated basis

In its eigen basis

Eigen basis Jones matrix : $\mathbf{P}_{\mathbf{x}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
When transmitted polarization is θ tilted
Change base through - θ rotation Transformation Matrix

$$
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

A polarizer in a rotated basis

In its eigen basis

Eigen basis Jones matrix : $\mathbf{P}_{\mathbf{x}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
When transmitted polarization is θ tilted
Change base through - θ rotation Transformation Matrix

$$
\begin{gathered}
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \\
\mathbf{P}(\theta)=\mathbf{R}(-\theta)^{-1}\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right] \mathbf{R}(-\theta)
\end{gathered}
$$

A polarizer in a rotated basis

In its eigen basis

Eigen basis Jones matrix : $\mathbf{P}_{\mathbf{x}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
When transmitted polarization is θ tilted
Change base through - θ rotation Transformation Matrix

$$
\begin{aligned}
& \mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \\
& \mathbf{P}(\theta)=\mathbf{R}(\theta)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \mathbf{R}(-\theta)
\end{aligned}
$$

A polarizer in a rotated basis

In its eigen basis

Eigen basis Jones matrix : $\mathbf{P}_{\mathbf{x}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
When transmitted polarization is θ tilted
Change base through - θ rotation Transformation Matrix

$$
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

$$
\mathbf{P}(\theta)=\mathbf{R}(\theta)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \mathbf{R}(-\theta)=\left[\begin{array}{cc}
\cos ^{2}(\theta) & \sin (\theta) \cos (\theta) \\
\sin (\theta) \cos (\theta) & \sin ^{2}(\theta)
\end{array}\right]
$$

A polarizer in a rotated basis

When transmitted polarization is θ tilted

Change base through - θ rotation Transformation Matrix

$$
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

$$
\mathbf{P}(\theta)=\mathbf{R}(\theta)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \mathbf{R}(-\theta)=\left[\begin{array}{cc}
\cos ^{2}(\theta) & \sin (\theta) \cos (\theta) \\
\sin (\theta) \cos (\theta) & \sin ^{2}(\theta)
\end{array}\right]
$$

Homework

- Find the same result with physics arguments only
- Find the power transmitted through such a polarizer from a x polarized plane wave

Changing basis in the general case

Using the Transformation Matrix

- If basis B_{1} is deduded from basis B_{0} by transformation P : $B_{1}=P B_{0}$
- Jones Matrix is transformed using $J_{1}=P^{-1} J_{0} P$

Changing basis in the general case

Using the Transformation Matrix

- If basis B_{1} is deduded from basis B_{0} by transformation P :

$$
B_{1}=P B_{0}
$$

- Jones Matrix is transformed using $J_{1}=P^{-1} J_{0} P$

From linear to circular

- Optically Active media in a linear basis :

$$
J=\left[\begin{array}{cc}
\cos (\phi) & \sin (\phi) \\
-\sin (\phi) & \cos (\phi)
\end{array}\right]
$$

- Transformation Matrix to a circular basis $P=\left[\begin{array}{cc}1 & 1 \\ 1 & -i\end{array}\right]$
- $P^{-1} M P=\left[\begin{array}{cc}e^{i \phi} & 0 \\ 0 & e^{-i \phi}\end{array}\right]$

Anisotropy can be linear and circular

Linear Anisotropy

- Orthogonal eigen linear polarizations
- Different index n_{1} \& n_{2}

Eigen Jones Matrix

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right]
$$

Orthogonal linear polarisations basis

Anisotropy can be linear and circular

Linear Anisotropy

- Orthogonal eigen linear polarizations
- Different index $n_{1} \& n_{2}$

Eigen Jones Matrix

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right]
$$

Orthogonal linear polarisations basis

Circular Anisotropy

- Orthogonal eigen Circular polarizations
- Different index n_{1} \& n_{2}

Eigen Jones Matrix

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right]
$$

Orthogonal Circular basis

Anisotropy can be linear and circular

Linear Anisotropy

- Orthogonal eigen linear polarizations
- Different index n_{1} \& n_{2}

Eigen Jones Matrix

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right]
$$

Orthogonal linear polarisations basis

Circular Anisotropy

- Orthogonal eigen Circular polarizations
- Different index n_{1} \& n_{2}

Eigen Jones Matrix
$\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \theta}\end{array}\right]$

Orthogonal Circular basis
Back to linear basis

$$
\begin{array}{ll}
{\left[\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & \sin \left(\frac{\theta}{2}\right) \\
-\sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}\right]} \\
\text { Optically Active media }
\end{array}
$$

(1) The physics of polarization optics

- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices Examples
- Matrix, basis \& eigen polarizations
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

Jones Matrices Composition

The Jones matrices of cascaded optical elements can be composed through Matrix multiplication

Matrix composition

- If a $\overrightarrow{J_{0}}$ incident light passes through $\mathbf{M}_{\mathbf{1}}$ and $\mathbf{M}_{\mathbf{2}}$ in that order
- First transmission: $\mathbf{M}_{\mathbf{1}} \overrightarrow{J_{0}}$
- Second transmission: $\mathbf{M}_{2} \mathbf{M}_{\mathbf{1}} \overrightarrow{J_{0}}$
- Composed Jones Matrix: $\mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{1}}$

Jones Matrices Composition

The Jones matrices of cascaded optical elements can be composed through Matrix multiplication

Matrix composition

- If a $\overrightarrow{J_{0}}$ incident light passes through $\mathbf{M}_{\mathbf{1}}$ and $\mathbf{M}_{\mathbf{2}}$ in that order
- First transmission: $\mathbf{M}_{\mathbf{1}} \overrightarrow{\mathrm{J}_{0}}$
- Second transmission: $\mathbf{M}_{2} \mathbf{M}_{\mathbf{1}} \overrightarrow{J_{0}}$
- Composed Jones Matrix : $\mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{1}}$

Reversed order

Beware of non commutativity

- Matrix product does not commute in general
- Think of the case of a linear anisotropy followed by optical activity
- in that order
- in the reverse order
(1) The physics of polarization optics
- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices Examples
- Matrix, basis \& eigen polarizations
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

三

Stokes parameters for partially polarized light

 Generalize the coherent definition using the statistical average intensity
Stokes Vector

$$
\vec{S}=\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
\left\langle I_{x}+I_{y}\right\rangle \\
\left\langle I_{x}-I_{y}\right\rangle \\
\left\langle I_{\pi / 4}-I_{-\pi / 4}\right\rangle \\
\left\langle I_{L}-I_{R}\right\rangle
\end{array}\right]
$$

Stokes parameters for partially polarized light

 Generalize the coherent definition using the statistical average intensity
Stokes Vector

$$
\vec{S}=\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
\left\langle I_{x}+I_{y}\right\rangle \\
\left\langle I_{x}-I_{y}\right\rangle \\
\left\langle I_{\pi / 4}-I_{-\pi / 4}\right\rangle \\
\left\langle I_{L}-I_{R}\right\rangle
\end{array}\right]
$$

Polarization degree $0 \leq p \leq 1$

$$
p=\frac{\sqrt{P_{1}^{2}+P_{2}^{2}+P_{3}^{2}}}{P_{0}}
$$

Polarized and depolarized sum

Stokes parameters for partially polarized light

 Generalize the coherent definition using the statistical average intensity
Stokes Vector

Polarization degree $0 \leq p \leq 1$

$$
\vec{S}=\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
\left\langle I_{x}+I_{y}\right\rangle \\
\left\langle I_{x}-I_{y}\right\rangle \\
\left\langle I_{\pi / 4}-I_{-\pi / 4}\right\rangle \\
\left\langle I_{L}-I_{R}\right\rangle
\end{array}\right]
$$

$$
p=\frac{\sqrt{P_{1}^{2}+P_{2}^{2}+P_{3}^{2}}}{P_{0}}
$$

Stokes decomposition

$$
\vec{S}=\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
p P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]+\left[\begin{array}{c}
(1-p) P_{0} \\
0 \\
0 \\
0
\end{array}\right]=\overrightarrow{S_{P}}+\overrightarrow{S_{N P}}
$$

The Jones Coherence Matrix

Jones Coherence Matrix

$$
\text { - If } \vec{J}=\left[\begin{array}{l}
A_{x}(t) e^{i \varphi_{x}(t)} \\
A_{y}(t) e^{i \varphi_{y}(t)}
\end{array}\right]
$$

- Meaningless when not monochromatic

Formalisms used

The Jones Coherence Matrix

Jones Coherence Matrix

- If $\vec{J}=\left[\begin{array}{l}A_{x}(t) e^{i \varphi_{x}(t)} \\ A_{y}(t) e^{i \varphi_{y}(t)}\end{array}\right]$
- $\Gamma_{i j}=\left\langle\vec{J}_{i}(t) \vec{J}_{j}(t)\right\rangle$

The Jones Coherence Matrix

Jones Coherence Matrix

- If $\vec{J}=\left[\begin{array}{l}A_{x}(t) e^{i \varphi_{x}(t)} \\ A_{y}(t) e^{i \varphi_{y}(t)}\end{array}\right]$
- $\Gamma_{i j}=\left\langle\vec{J}_{i}(t) \vec{J}_{j}(t)\right\rangle$
- $\Gamma=\left\langle\overrightarrow{J(t)} \overline{\vec{J}(t)}^{t}\right\rangle$

The Jones Coherence Matrix

Jones Vectors are out

- They describe phase differences
- Meaningless when not monochromatic

Jones Coherence Matrix

- If $\vec{J}=\left[\begin{array}{l}A_{x}(t) e^{i \varphi_{x}(t)} \\ A_{y}(t) e^{i \varphi_{y}(t)}\end{array}\right]$
- $\Gamma_{i j}=\left\langle\vec{J}_{i}(t) \vec{J}_{j}(t)\right\rangle$
- $\Gamma=\left\langle\overrightarrow{J(t)} \overline{\overline{J(t)}^{t}}\right\rangle$

Coherence Matrix: explicit formulation

$$
\Gamma=\left[\begin{array}{ll}
\Gamma_{x x} & \Gamma_{x y} \\
\Gamma_{y x} & \Gamma_{y y}
\end{array}\right]
$$

The Jones Coherence Matrix

Jones Coherence Matrix

Jones Vectors are out

- They describe phase differences
- Meaningless when not monochromatic

$$
\text { - If } \vec{J}=\left[\begin{array}{l}
A_{x}(t) e^{i \varphi_{x}(t)} \\
A_{y}(t) e^{i \varphi_{y}(t)}
\end{array}\right]
$$

- $\Gamma_{i j}=\left\langle\vec{J}_{i}(t) \vec{J}_{j}(t)\right\rangle$
- $\Gamma=\left\langle\overrightarrow{J(t)}{\overrightarrow{J J} \vec{J}^{t}}\right\rangle$

Coherence Matrix: explicit formulation

$$
\Gamma=\left[\begin{array}{cc}
\left.\left.\langle | A_{x}(t)\right|^{2}\right\rangle & \left\langle A_{x}(t) \overline{A_{y}(t)} e^{i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle \\
\left\langle\overline{A_{x}(t)} A_{y}(t) e^{-i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle & \left.\left.\langle | A_{y}(t)\right|^{2}\right\rangle
\end{array}\right]
$$

Jones Coherence Matrix: properties

The Coherence Matrix

$$
\Gamma=\left[\begin{array}{cc}
\left.\left.\langle | A_{x}(t)\right|^{2}\right\rangle & \left\langle A_{x}(t) \overline{A_{y}(t)} e^{i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle \\
\left\langle\overline{A_{x}(t)} A_{y}(t) e^{-i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle & \left.\left.\langle | A_{y}(t)\right|^{2}\right\rangle
\end{array}\right]
$$

Trace is Intensity

$$
\operatorname{Tr}(\Gamma)=1
$$

Jones Coherence Matrix: properties

The Coherence Matrix

$$
\Gamma=\left[\begin{array}{cc}
\left.\left.\langle | A_{x}(t)\right|^{2}\right\rangle & \left\langle A_{x}(t) \overline{A_{y}(t)} e^{i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle \\
\left\langle\overline{A_{x}(t)} A_{y}(t) e^{-i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle & \left.\left.\langle | A_{y}(t)\right|^{2}\right\rangle
\end{array}\right]
$$

Trace is Intensity

$$
\operatorname{Tr}(\Gamma)=1
$$

Base change
Transformation \mathbf{P}

$$
\mathbf{P}^{-1} \Gamma \mathbf{P}
$$

Jones Coherence Matrix: properties

The Coherence Matrix

$$
\Gamma=\left[\begin{array}{cc}
\left.\left.\langle | A_{x}(t)\right|^{2}\right\rangle & \left\langle A_{x}(t) \overline{A_{y}(t)} e^{i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle \\
\left\langle\overline{A_{x}(t)} A_{y}(t) e^{-i\left(\varphi_{x}-\varphi_{y}\right)}\right\rangle & \left.\left.\langle | A_{y}(t)\right|^{2}\right\rangle
\end{array}\right]
$$

Trace is Intensity
Base change Transformation \mathbf{P}

$$
\operatorname{Tr}(\Gamma)=1
$$

$$
\mathbf{P}^{-1} \Gamma \mathbf{P}
$$

Relationship with Stokes parameters
from definition

$$
\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -i & i
\end{array}\right]\left[\begin{array}{l}
\Gamma_{x x} \\
\Gamma_{y y} \\
\Gamma_{x y} \\
\Gamma_{y x}
\end{array}\right]
$$

Jones Coherence Matrix: properties

Trace is Intensity

$$
\operatorname{Tr}(\Gamma)=1
$$

Base change

Transformation \mathbf{P}

\mathbf{P}^{-1} 「 \mathbf{P}

Relationship with Stokes parameters
from definition

$$
\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -i & i
\end{array}\right]\left[\begin{array}{l}
\Gamma_{x x} \\
\Gamma_{y y} \\
\Gamma_{x y} \\
\Gamma_{y x}
\end{array}\right]
$$

Inverse relationship

$$
\left[\begin{array}{l}
\Gamma_{x x} \\
\Gamma_{y y} \\
\Gamma_{x y} \\
\Gamma_{y x}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & i \\
0 & 0 & 1 & -i
\end{array}\right]\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]
$$

Coherence Matrix: further properties

Polarization degree

$$
p=\sqrt{\frac{P_{1}^{2}+P_{2}^{2}+P_{3}^{2}}{P_{0}^{2}}}=\sqrt{1-\frac{4\left(\Gamma_{x x} \Gamma_{y y}-\Gamma_{x y} \Gamma_{y x}\right)}{\left(\Gamma_{x x}+\Gamma_{y y}\right)^{2}}}=\sqrt{1-\frac{4 \operatorname{Det}(\Gamma)}{\operatorname{Tr}(\Gamma)^{2}}}
$$

parameters

Coherence Matrix: further properties

Polarization degree

$$
p=\sqrt{\frac{P_{1}^{2}+P_{2}^{2}+P_{3}^{2}}{P_{0}^{2}}}=\sqrt{1-\frac{4\left(\Gamma_{x x} \Gamma_{y y}-\Gamma_{x y} \Gamma_{y x}\right)}{\left(\Gamma_{x x}+\Gamma_{y y}\right)^{2}}}=\sqrt{1-\frac{4 \operatorname{Det}(\Gamma)}{\operatorname{Tr}(\Gamma)^{2}}}
$$

Γ Decomposition in polarized and depolarized components

- $\Gamma=\Gamma_{P}+\Gamma_{N P}$
- Find Γ_{P} and $\Gamma_{N P}$ using the relationship with the Stokes parameters
(1) The physics of polarization optics
- Polarization states
- Jones Calculus
- Stokes parameters and the Poincare Sphere
(2) Polarized light propagation
- Jones Matrices Examples
- Matrix, basis \& eigen polarizations
- Jones Matrices Composition
(3) Partially polarized light
- Formalisms used
- Propagation through optical devices

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if \mathbf{M} is unitary

- M unitary means : linear and/or circular anisotropy only

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if \mathbf{M} is unitary

- M unitary means : linear and/or circular anisotropy only
- $\Gamma^{\prime}=\left\langle\overrightarrow{J^{\prime}(t)} \overrightarrow{\bar{J}^{\prime}(t)^{t}}\right\rangle$

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if \mathbf{M} is unitary

- M unitary means : linear and/or circular anisotropy only
- $\Gamma^{\prime}=\left\langle\overrightarrow{J^{\prime}(t)} \overrightarrow{\bar{J}^{\prime}(t)^{t}}\right\rangle$
- $\Gamma^{\prime}=\mathbf{M}\left\langle\overrightarrow{J(t)} \overrightarrow{\left.\bar{J}^{\prime} t\right)^{t}}\right\rangle \mathbf{M}^{-1}$

Basis change

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if \mathbf{M} is unitary

- M unitary means : linear and/or circular anisotropy only
- $\Gamma^{\prime}=\left\langle\overrightarrow{J^{\prime}(t)} \overrightarrow{\bar{J}^{\prime}(t)^{t}}\right\rangle$
- $\Gamma^{\prime}=\mathbf{M}\left\langle\overrightarrow{J(t)} \overline{\overline{J(t)}^{t}}\right\rangle \mathbf{M}^{-1}$

Basis change
Polarization degree

- Unaltered for unitary operators

Tr and Det are unaltered

Propagation of the Coherence Matrix

Jones Calculus

- If incoming polarization is $\overrightarrow{J(t)}$
- Output one is $\overrightarrow{J^{\prime}(t)}=\mathbf{M} \overrightarrow{J(t)}$

Coherence Matrix if \mathbf{M} is unitary

- M unitary means : linear and/or circular anisotropy only
- $\Gamma^{\prime}=\left\langle\overrightarrow{J^{\prime}(t)} \overrightarrow{\bar{J}^{\prime}(t)^{t}}\right\rangle$
- $\Gamma^{\prime}=\mathbf{M}\left\langle\overrightarrow{J(t)} \overline{\overline{J(t)}^{t}}\right\rangle \mathbf{M}^{-1}$

Basis change
Polarization degree

- Unaltered for unitary operators \quad Tr and Det are unaltered
- Not the case if a polarizer is present: p becomes 1

Mueller Calculus

Propagating the Jones coherence matrix is difficult if the operator is not unitary

Jones Calculus raises some difficulties

- Coherence matrix OK for partially polarized light
- Propagation through unitary optical devices
(linear or circular anisotropy only)
\square
- Hard Times if Polarizers are present

三

Mueller Calculus

Propagating the Jones coherence matrix is difficult if the operator is not unitary

Jones Calculus raises some difficulties

- Coherence matrix OK for partially polarized light
- Propagation through unitary optical devices
(linear or circular anisotropy only)
- Hard Times if Polarizers are present

三

Mueller Calculus

Propagating the Jones coherence matrix is difficult if the operator is not unitary

Jones Calculus raises some difficulties

- Coherence matrix OK for partially polarized light
- Propagation through unitary optical devices
(linear or circular anisotropy only)
- Hard Times if Polarizers are present

The Stokes parameters may be an alternative

- Describing intensity, they can be readily measurered

Mueller Calculus

Propagating the Jones coherence matrix is difficult if the operator is not unitary

Jones Calculus raises some difficulties

- Coherence matrix OK for partially polarized light
- Propagation through unitary optical devices
(linear or circular anisotropy only)
- Hard Times if Polarizers are present

The Stokes parameters may be an alternative

- Describing intensity, they can be readily measurered
- We will show they can be propagated using 4×4 real matrices
- They are the Mueller matrices

The projection on a polarization state

Matrix of the polarizer with axis parallel to \vec{V}

Projection on \vec{V} in Jones Basis

- Orthogonal Linear Polarizations Basis: \vec{X} and \vec{Y}
- Normed Projection Base Vector :
- $\vec{V}=A_{x} e^{-i \frac{\varphi}{2}} \vec{X}+A_{y} e^{i \frac{\varphi}{2}} \vec{Y}$
- $\overline{\vec{V}}^{\mathrm{t}} \vec{V}=1$

The projection on a polarization state

Matrix of the polarizer with axis parallel to \vec{V}

Projection on \vec{V} in Jones Basis

- Orthogonal Linear Polarizations Basis: \vec{X} and \vec{Y}
- Normed Projection Base Vector :
- $\vec{V}=A_{x} e^{-i \frac{\varphi}{2}} \vec{X}+A_{y} e^{i \frac{\varphi}{2}} \vec{Y}$
- $\overrightarrow{\vec{V}}^{\mathrm{t}} \vec{V}=1$
- $\mathbf{P}_{\mathbf{V}}=\vec{V} \overline{\vec{V}}^{\mathrm{t}}{ }^{a}$
${ }^{a}$ Easy to check in the projection eigen basis

The Pauli Matrices

A base for the 4D 2×2 matrix vector space

$$
\sigma_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \sigma_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \sigma_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{3}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

Pv decomposition

$$
\mathbf{P}_{\mathbf{v}}=\frac{1}{2}\left(p_{0} \sigma_{0}+p_{1} \sigma_{1}+p_{2} \sigma_{2}+p_{3} \sigma_{3}\right)
$$

Pv composition and Trace property

Trace is the eigen values sum

Projection property

Pv composition and Trace property

Trace is the eigen values sum

Projection property

Pv composition and Trace property

Trace is the eigen values sum

Projection property

Pv composition and Trace property

Trace is the eigen values sum

Projection property

Projection Trace in its eigen basis

- $\mathbf{P}_{\mathbf{V}}$ eigenvalues : 0 \& 1
$\operatorname{Tr}\left(P_{V}\right)=1$

Pv composition and Trace property

Trace is the eigen values sum

Projection property

Projection Trace in its eigen basis

- $\mathbf{P}_{\mathbf{V}}$ eigenvalues : 0 \& 1
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvalues : 0 \& α
$\alpha \leq 1$
$\operatorname{Tr}\left(P_{V}\right)=1$
$\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\alpha$

$\mathbf{P}_{\mathbf{V}}$ composition and Trace property

Trace is the eigen values sum

Projection property

Projection Trace in its eigen basis

- $\mathbf{P}_{\mathbf{V}}$ eigenvalues : 0 \& 1
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvalues : 0 \& $\alpha \quad \alpha \leq 1$
- $\mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}}$ eigenvectors are the same as $\mathbf{P}_{\mathbf{V}}$:
- \vec{V} associated to eigenvalue α

Pv composition and Trace property

Trace is the eigen values sum

Projection property

Projection Trace in its eigen basis

- $\mathbf{P}_{\mathbf{V}}$ eigenvalues : 0 \& 1
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvalues : 0 \& α $\alpha \leq 1$
- $\mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}}$ eigenvectors are the same as $\mathbf{P}_{\mathbf{V}}$:
- \vec{V} associated to eigenvalue α
- Project the projection

Pv composition and Trace property

Trace is the eigen values sum

Projection property

Projection Trace in its eigen basis

- $\mathbf{P}_{\mathbf{V}}$ eigenvalues : 0 \& 1
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvalues : 0 \& $\alpha \quad \alpha \leq 1$
- $\mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}}$ eigenvectors are the same as $\mathbf{P}_{\mathbf{V}}$:
- \vec{V} associated to eigenvalue α
- Project the projection

Pv composition and Trace property

Trace is the eigen values sum

Projection property

Projection Trace in its eigen basis

- $\mathbf{P}_{\mathbf{V}}$ eigenvalues : 0 \& 1
- $\mathbf{P}_{\mathbf{V}} \sigma_{\mathbf{j}}$ eigenvalues : 0 \& α $\alpha \leq 1$
- $\mathbf{P}_{\mathbf{v}} \sigma_{\mathbf{j}}$ eigenvectors are the same as $\mathbf{P}_{\mathbf{V}}$:
- \vec{V} associated to eigenvalue α
- Project the projection

$\mathbf{P}_{\mathbf{V}}$ Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{array}{cc}
\overline{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) & \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j} \\
\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i} &
\end{array}
$$

Pv Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{gathered}
\overline{\overline{\mathrm{V}}^{\mathrm{t}}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j} \\
\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}=\frac{1}{2} \sum_{i} 2 \delta_{i j} p_{i}
\end{gathered}
$$

$\mathbf{P}_{\mathbf{V}}$ Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{aligned}
& \vec{V}^{t} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j} \\
& \overline{\vec{V}^{t}} \cdot \sigma_{\mathbf{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}=\frac{1}{2} \sum_{i} 2 \delta_{i j} p_{i}=p_{j}
\end{aligned}
$$

$\mathbf{P}_{\mathbf{V}}$ Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{aligned}
& {\overrightarrow{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j}}_{\overrightarrow{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}=\frac{1}{2} \sum_{i} 2 \delta_{i j} p_{i}=p_{j}} .
\end{aligned}
$$

Project the base vectors on \vec{V}

- Using $\vec{V}=A_{x} e^{-i \frac{\varphi}{2}} \vec{X}+A_{y} e^{i \frac{\varphi}{2}} \vec{Y}$
- $\operatorname{Prv}_{\mathrm{v}} \vec{X}=A_{x}^{2} \vec{X}+A_{x} A_{y} e^{i \varphi} \vec{Y}$
- $\mathbf{P}_{v} \vec{Y}=A_{y}^{2} \vec{Y}+A_{x} A_{y} e^{-i \varphi} \vec{X}$

- Using the P_{V} decomposition on the Pauli Basis

Pv Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{aligned}
& {\overrightarrow{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j}}_{\overrightarrow{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}=\frac{1}{2} \sum_{i} 2 \delta_{i j} p_{i}=p_{j}}
\end{aligned}
$$

Project the base vectors on \vec{V}

- Using $\vec{V}=A_{x} e^{-i \frac{\varphi}{2}} \vec{X}+A_{y} e^{i \frac{\varphi}{2}} \vec{Y}$
- $\operatorname{Prv}_{\mathrm{v}} \vec{X}=A_{x}^{2} \vec{X}+A_{x} A_{y} e^{i \varphi} \vec{Y}$
- $\mathrm{P}_{v} \vec{Y}=A_{y}^{2} \vec{Y}+A_{x} A_{y} e^{-i \varphi} \vec{X}$
- Using the $\mathbf{P}_{\mathbf{V}}$ decomposition on the Pauli Basis
- $\boldsymbol{P}_{\mathbf{v}} \vec{X}=\frac{1}{2}\left(p_{0}+p_{1}\right) \vec{X}+\frac{1}{2}\left(p_{2}+i p_{3}\right) \vec{Y}$
- $\mathbf{P}_{\mathbf{v}} \vec{Y}=\frac{1}{2}\left(p_{0}-p_{1}\right) \vec{Y}+\frac{1}{2}\left(p_{2}-i p_{3}\right) \vec{X}$

$\mathbf{P}_{\mathbf{V}}$ Pauli components and physical meaning

Express p_{i} as a function of \vec{V} and the Pauli matrices, then find their signification

$$
\begin{aligned}
& {\overrightarrow{\vec{V}^{\mathrm{t}}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right) \quad \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j}}_{\overrightarrow{\vec{V}}^{\mathrm{t}} \cdot \sigma_{\mathrm{j}} \vec{V}=\operatorname{Tr}\left(P_{V} \sigma_{j}\right)=\frac{1}{2} \sum_{i} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right) p_{i}=\frac{1}{2} \sum_{i} 2 \delta_{i j} p_{i}=p_{j}}
\end{aligned}
$$

Project the base vectors on \vec{V}

- Using $\vec{V}=A_{x} e^{-i \frac{\varphi}{2}} \vec{X}+A_{y} e^{i \frac{\varphi}{2}} \vec{Y}$
- $\operatorname{Prv}_{\mathrm{v}} \vec{X}=A_{x}^{2} \vec{X}+A_{x} A_{y} e^{i \varphi} \vec{Y}$
- $\mathrm{P}_{v} \vec{Y}=A_{y}^{2} \vec{Y}+A_{x} A_{y} e^{-i \varphi} \vec{X}$
- Using the $\mathbf{P}_{\mathbf{V}}$ decomposition on the Pauli Basis
- $\boldsymbol{P}_{\mathbf{v}} \vec{X}=\frac{1}{2}\left(p_{0}+p_{1}\right) \vec{X}+\frac{1}{2}\left(p_{2}+i p_{3}\right) \vec{Y}$
- $\mathbf{P}_{\mathbf{v}} \vec{Y}=\frac{1}{2}\left(p_{0}-p_{1}\right) \vec{Y}+\frac{1}{2}\left(p_{2}-i p_{3}\right) \vec{X}$
- Identify

Pv Pauli composition and Stokes parameters

Stokes parameters as Pv_{V} decomposition on the Pauli base

- $p_{0}=P_{0}=A_{x}^{2}-A_{y}^{2}=I_{x}-I_{y}$
- $p_{1}=P_{1}=A_{x}^{2}-A_{y}^{2}=I_{x}-I_{y}$
- $p_{2}=P_{2}=2 A_{x} A_{y} \cos (\varphi)=I_{\pi / 4}-I_{-\pi / 4}$
- $p_{3}=P_{3}=2 A_{x} A_{y} \sin (\varphi)=I_{\mathrm{L}}-I_{\mathrm{R}}$

Propagating through devices: Mueller matrices $\overrightarrow{v^{\prime}}=M_{\lrcorner} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overrightarrow{\bar{V}^{\prime}}
$$

Propagating through devices: Mueller matrices $\overrightarrow{v^{\prime}}=M_{\lrcorner} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overline{\vec{V}^{\prime}}=\mathbf{M}_{\mathbf{\jmath}} \vec{V} \overrightarrow{\vec{V}^{t}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Propagating through devices: Mueller matrices $\overrightarrow{v^{\prime}}=M_{\lrcorner} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overrightarrow{{\overrightarrow{V^{\prime}}}^{t}}=\mathbf{M}_{\mathbf{J}} \vec{V} \overline{\vec{V}^{t}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Propagating through devices: Mueller matrices $\overrightarrow{V^{\prime}}=M_{\lrcorner} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overrightarrow{\vec{V}^{\prime}}=\mathbf{M}_{\mathbf{J}} \overrightarrow{V_{V}} \overline{\vec{V}^{\mathrm{t}}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Trace relationship

$$
P_{i}^{\prime}=\operatorname{Tr}\left(\mathbf{P}_{\mathbf{v}^{\prime}} \sigma_{i}\right)
$$

Propagating through devices: Mueller matrices $\overrightarrow{v^{\prime}}=M_{J} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overline{\bar{V}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \vec{V} \overline{\vec{V}^{\mathrm{t}}} \overline{\mathbf{M}_{\mathbf{J}}{ }^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Trace relationship

$$
P_{i}^{\prime}=\operatorname{Tr}\left(\mathbf{P}_{\mathbf{v}^{\prime}} \sigma_{i}\right)=\operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\left.\mathbf{M}_{\mathbf{J}}{ }^{\mathrm{t}} \sigma_{\mathbf{i}}\right)}\right.
$$

Propagating through devices: Mueller matrices $\overrightarrow{v^{\prime}}=M_{J} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overline{{\overline{V^{\prime}}}^{t}}=\mathbf{M}_{\mathbf{J}} \overrightarrow{\vec{V}^{\prime}} \overline{\vec{V}^{t}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Trace relationship

$$
\begin{gathered}
P_{i}^{\prime}=\operatorname{Tr}\left(\mathbf{P}_{\mathbf{V}^{\prime}} \sigma_{i}\right)=\operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\left.\mathbf{M}_{\mathbf{J}}{ }^{\mathrm{t}} \sigma_{\mathbf{i}}\right)=}\right. \\
\frac{1}{2} \sum_{j=0}^{3} \operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \sigma_{\mathbf{j}} \overline{\left.\mathbf{M}_{\mathbf{J}}{ }^{\mathrm{t}} \sigma_{\mathbf{i}}\right) P_{j}}\right.
\end{gathered}
$$

Propagating through devices: Mueller matrices $\overrightarrow{v^{\prime}}=M_{\jmath} \vec{V}$

Projection on $\overrightarrow{V^{\prime}}$

$$
\mathbf{P}_{\mathbf{V}^{\prime}}=\overrightarrow{V^{\prime}} \overline{{\overline{V^{\prime}}}^{t}}=\mathbf{M}_{\mathbf{J}} \overrightarrow{\vec{V}^{\prime}} \overline{\vec{V}^{t}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}=\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}}
$$

Trace relationship

$$
\begin{gathered}
P_{i}^{\prime}=\operatorname{Tr}\left(\mathbf{P}_{\mathbf{V}^{\prime}} \sigma_{i}\right)=\operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \mathbf{P}_{\mathbf{V}} \overline{\left.\mathbf{M}_{\mathbf{J}}{ }^{\mathrm{t}} \sigma_{\mathbf{i}}\right)=}\right. \\
\frac{1}{2} \sum_{j=0}^{3} \operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \sigma_{\mathbf{j}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}} \sigma_{\mathbf{i}}\right) P_{j}
\end{gathered}
$$

Mueller matrix

$$
\overrightarrow{S^{\prime}}=\mathbf{M}_{\mathbf{M}} \vec{S}
$$

$$
\left(M_{M}\right)_{i j}=\frac{1}{2} \operatorname{Tr}\left(\mathbf{M}_{\mathbf{J}} \sigma_{\mathbf{j}} \overline{\mathbf{M}_{\mathbf{J}}^{\mathrm{t}}} \sigma_{\mathbf{i}}\right)
$$

Mueller matrices and partially polarized light Time average of the previous study

Mueller matrices are time independent

$$
\left\langle\overrightarrow{S^{\prime}}\right\rangle=\mathbf{M}_{\mathbf{M}}\langle\vec{S}\rangle
$$

\square
\square - Polarizers along eigen axis or 1 tilted - half and quarter wave plates

Mueller matrices and partially polarized light Time average of the previous study

Mueller matrices are time independent

$$
\left\langle\overrightarrow{S^{\prime}}\right\rangle=\mathbf{M}_{\mathbf{M}}\langle\vec{S}\rangle
$$

Mueller calculus can be extended to...

- Partially coherent light
- Cascaded optical devices

Find the Mueller matrix of each

Mueller matrices and partially polarized light Time average of the previous study

Mueller matrices are time independent

$$
\left\langle\overrightarrow{S^{\prime}}\right\rangle=\mathbf{M}_{\mathbf{M}}\langle\vec{S}\rangle
$$

Mueller calculus can be extended to...

- Partially coherent light
- Cascaded optical devices

Final homework

Find the Mueller matrix of each :

- Polarizers along eigen axis or θ tilted
- half and quarter wave plates
- linearly and circularly birefringent crystal

