
HAL Id: cel-00544132
https://cel.hal.science/cel-00544132v1

Submitted on 7 Dec 2010 (v1), last revised 6 Jan 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peer-to-Peer Applications : From BitTorrent to Privacy
Arnaud Legout

To cite this version:
Arnaud Legout. Peer-to-Peer Applications : From BitTorrent to Privacy. 3rd cycle. 2010. �cel-
00544132v1�

https://cel.hal.science/cel-00544132v1
https://hal.archives-ouvertes.fr

Peer-to-Peer Applications

Arnaud Legout

INRIA, Sophia Antipolis, France
Projet Planète

Email: arnaud.legout@inria.fr

This work is licensed under the Creative Commons
BY-NC-SA License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/

version 1
December 2010

Arnaud Legout © 2010

2

Outline

Overview
 What is a P2P application?

 Popularity of P2P applications?

Content Replication

BitTorrent

Security

Localization

Arnaud Legout © 2010

3

Definition: Overlay

Overlay Network
 Network at the application layer (layer 7)

Arnaud Legout © 2010

4

Definition: Overlay

Formed by communicating among themselves
 Dedicated machines
 End-users

Types of overlay
 General purpose overlay (application-layer

multicast)
 Application specific overlay (CDN)

Overlay construction
 Network topology
 Network metrics (delay, bandwidth, etc.)

Arnaud Legout © 2010

5

Definition: Overlay

Why do we need overlays?
 Create a service that is not (or that cannot

be) provided by the network (layer 3)
• Create an application layer service

 Example of services
• Application layer multicast

• Content Delivery Network (CDN)

• DNS (IP only provides IP addresses and don‘t
know how to route on names)

Arnaud Legout © 2010

6

Definition: Peer

Peer
 A computer, an end-

user, an application,
etc.

• Depends on the context
• Always an end system,

but an end system is not
always a peer

• An end system can be a
dedicated video server
that is part of a CDN,
or a BitTorrent client
that is part of a P2P
network

Arnaud Legout © 2010

7

Definition: Peer

Leecher
 A peer that is client and server

 In the context of content delivery
• Has a partial copy of the content

Seed
 A peer that is only server

 In the context of content delivery
• Has a full copy of the content

Arnaud Legout © 2010

8

Definition: P2P

Peer-to-peer applications
 No general definition

 Application specific
• If not, overlay is a more appropriate definition

 At least two peers

 Every peer is a client and a server
• For a same application

• Possibility of hierarchy

 Peers form an overlay network

Arnaud Legout © 2010

9

Definition: P2P

Overlay Network vs. P2P applications
 A P2P application forms an overlay network

 An overlay network is not always a P2P
application

 Trend to define a P2P application as overlay
network formed by end-users

 Depends on the definition of P2P

Overlay P2P

Arnaud Legout © 2010

10

Example: Web

The case of the Web
 Service: HTML pages access

 Pages served only by dedicated machines
(HTTP servers)
• End-users cannot serve HTML pages

 No share of HTML pages among servers:
servers are not communicating among
themselves, but with clients

 This is not an overlay network!

Arnaud Legout © 2010

11

Example: Email Servers

The case of Email servers
 Service: Email delivery

 POP/SMTP/IMAP servers are dedicated
machine

 Email servers communicate to deliver
emails

 This is an overlay network!

 But, not a P2P application

 Probably the oldest example of overlay

Arnaud Legout © 2010

12

The New P2P Paradigm

Web, Email, etc. is an old technology
Is overlay network an old techno?
Yes, when applied to servers
But, its applications to end-users is new
 New applications
 New problems
 New techniques, algorithms, protocols
 This is P2P!

Arnaud Legout © 2010

13

The New P2P Paradigm

Why P2P applications became popular
recently
 High speed Internet connections

 Power shift from servers to end-users
• End-to-end argument [7] (1984) undoubtedly

visionary
– Still alive (01/2006):

http://lwn.net/Articles/169961/

P2P applications are a true revolution
 Aside TCP/IP and the Web

Arnaud Legout © 2010

14

New P2P applications

P2P applications capitalize on any
resource from anybody
 P2P applications can share CPU, bandwidth

and storage
• seti@home (not P2P, but distributed)

• BitTorrent, Emule, Gnutella

• Skype, Google talk

• Publius

Arnaud Legout © 2010

15

Focus of this Course

P2P file sharing applications

Main focus on file replication
 This is the true revolution

But also
 Distributed security

 Peer anonymity

Arnaud Legout © 2010

16

P2P file sharing taxonomy

Current taxonomy for P2P file sharing
[11]
 Unstructured P2P: BitTorrent, Gnutella,

KaZaA, etc.
 Structured: DHT (e.g., Chord, CAN, Pastry,

Kademlia, etc.)

What is wrong?
 Assume that P2P applications must be

classified according to their content
localization architecture

Arnaud Legout © 2010

17

P2P file sharing taxonomy

Proposed taxonomy for P2P file sharing
 Content localization

• Unstructured
• Structured

 Content replication
• Parallel download
• File splitting
• Piece selection

– rarest first, random, sequential, etc.

• Peer selection
– choke algorithm, tit-for-tat, priority queue, etc.

Arnaud Legout © 2010

18

P2P file sharing taxonomy

Is it better?
 No more a focus on content localization

 Decouple file localization and file replication

See the discussion thread on the P2Prg
http://www1.ietf.org/mail-archive/web/p2prg/current/msg00816.html

 No agreement

 This is a complex problem (many applications of P2P
from sensor networks to BitTorrent)

 Taxonomy depends on where is your expertise

 The one I proposed is still weak

http://www1.ietf.org/mail-archive/web/p2prg/current/msg00816.html
http://www1.ietf.org/mail-archive/web/p2prg/current/msg00816.html
http://www1.ietf.org/mail-archive/web/p2prg/current/msg00816.html

Arnaud Legout © 2010

19

Outline

Overview
 What is a P2P application?

 Popularity of P2P applications?

Content Replication

BitTorrent

Security

Localization

Arnaud Legout © 2010

20

Measurement of P2P traffic

Hard to perform P2P traffic
measurements

Known techniques [3,4]
 Port detection

• Can be easily circumvented

 Layer 7 inspection
• Do not work with encrypted payload
• Database of signatures hard to maintain

 Heuristic
• Hard to identify, similar to other applications

Arnaud Legout © 2010

21

Cache Logic Measurement
Study

Performed by Cache Logic [1]
Business
 Traffic management
 Specialized in P2P traffic

Customers
 Internet Service Provider (ISP) and

Telecommunications sectors.

Technique
 Deep packet inspection

Arnaud Legout © 2010

22

Critical analysis

Customers
 No enterprise traffic
 But, it is a huge portion of the traffic

Deep packet inspection
 Port level and layer 7 inspection
 But, how accurate the database of

signature is?

Other studies give also P2P as the
dominant traffic of the Internet

Arnaud Legout © 2010

23

Major results

End of 2004
 BitTorrent is dominating the Internet

traffic
• 30% of the internet traffic!

 Shift of demand from music to movies

 Major sources of torrent file discontinued
due to legal actions (e.g., Suprnova.org)

Arnaud Legout © 2010

24

Major results

2005
 Shift from BitTorrent to eDonkey

• eDonkey is fully decentralized

• Many clients and localization

 But, this is not the end of the story
• BitTorrent heavily used for legal contents

• Decentralized versions of BitTorrent

• New large BitTorrent services (ThePirateBay,
mininova, isohunt, etc.)

Arnaud Legout © 2010

25

Dominant Traffic with Time

Arnaud Legout © 2010

26

P2P applications per Country

Arnaud Legout © 2010

27

P2P applications per Country

Arnaud Legout © 2010

28

Type of Contents

Arnaud Legout © 2010

29

More Recent Results

Unofficial numbers from FT (September
2006)
 80% to 90% of P2P traffic

• Only 10% to 20% of P2P traffic due to BitTorrent
• The rest is due to Emule

 Traffic captured at a BAS
• Aggregate several DSLAMs (thousands of peers)
• Claimed layer 7 inspection, but no access to the

data and methodology

78% of P2P traffic in Japan in 2008 [41]

Arnaud Legout © 2010

30

More Recent Results

Sandvine (Fall 2010)
 BitTorrent is dominating P2P

• Except in Latin America where it is Ares
• But Ares implements BitTorrent, thus it is not

clear how much Ares traffic is BitTorrent

 P2P is dominating upstream traffic
 Real-time entertainment (audio and video

streaming) is dominating the downstream
traffic
• But, P2P share has significantly increased since

2009 (doubled in some regions)

Lessons Learned From the
Past

Specific events might significantly
impact popularity of P2P protocols
 Disconnection of popular services

• Suprnova, mininova, ThePirateBay

 Specific laws
• 3-strikes, lawsuits

This has always been a transient impact

Arnaud Legout © 2010

31

Arnaud Legout © 2010

32

Why to Study P2P (Old Version)
P2P represents most of the

Internet traffic

Don’t you think there is a

need for such a service

And, in this case which

techno will you use to reach

millions of users without

huge distribution costs

Yes, but it is for illegal

contents. P2P

applications are evil

Yes, but people should

pay for the service and

we need to keep

control on it

P2P

Why to Study P2P (New Version)

BiTorrent is super fast to distribute
contents
 Start to be used by several big companies

Twitter is using Murder to update
Twitter servers (July 2010)
 75x faster
 http://engineering.twitter.com/2010/07/murder-fast-

datacenter-code-deploys.html

Arnaud Legout © 2010

33

http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html

With Murder

Murder

Arnaud Legout © 2010

34

Without Murder

Credit: Larry Gadea

Murder Performance

Arnaud Legout © 2010

35

Credit: Larry Gadea

P2P in the Research
Community

P2P is no more a hot topic
 What is hot in the community is not a well

balanced choice, but close to a fashion
decision

 It is very hard to publish classical P2P in
major conferences

However
 Privacy issues in P2P is still a hot topic

Arnaud Legout © 2010

36

Arnaud Legout © 2010

37

Outline

Overview

Content Replication
 P2P performance

 Parallel Download

 Piece and Peer selection

BitTorrent

Security

Localization

Arnaud Legout © 2010

38

Definitions

Service capacity
 Number of peers that can serve a content

 It is 1 for client-server, constant with time

Flash crowd of n
 Simultaneous request of n peers (e.g., soccer

match, availability of a patch, etc.)

Piece (a.k.a. chunk, block)
 A content is split in pieces

 Each piece can be independently downloaded

Arnaud Legout © 2010

39

Why P2P is so efficient?

The service capacity grows
exponentially with time

With a flash crowd of n peers, the mean
download time is in log(n)
 It is in n for a client server model

The mean download time decreases in
1/(# of pieces) when the # of pieces
increases
 Do not take into account the overhead

Arnaud Legout © 2010

40

Intuition

P2P Client-server

P2P vs. Client-Server

Time to serve a
content: 10 minutes

P2P
 Capacity of service

C(t)=O(et), where t is
time

Client-server
 Capacity of service

C(t)=1, where t is
time

Time to serve a
content: 10 minutes

41
Arnaud Legout © 2010

P2P vs. Client-Server

P2P
 Download completion

time D(n)=O(log(n)),
when n is the number
of peers

Client-server
 Download completion

time D(n)=n, where n
is the number of
client

Time to serve a
content: 10 minutes

10 million
minutes

200
minutes

42
Arnaud Legout © 2010

Arnaud Legout © 2010

43

Content Transfer Model

Simple deterministic model [5] (to read)
 Each peer serves only one peer at a time
 The unit of transfer is the content
 n-1 peers want the content
 We assume n=2k
 T is the time to complete an upload

• T=s/b, s content size, b upload capacity

 Peer selection strategy
• Easy with global knowledge: Binary tree

Arnaud Legout © 2010

44

Proof: Capacity

Capacity of service C
 t=0, C=20 peers

 t=T C=21 peers

 t=2T C=22 peers

 …

 t=iT C=2i peers

 C=2t/T peers

 time

t=0

t=T

t=2T

Seed

Arnaud Legout © 2010

45

Proof: Finish Time

Finish time
 Seed has the content at

t=0

 20 peers finish at t=T

 21 peers finish at t=2T

 …

 2k-1 peers finish at t=kT

 We covered the n peers
• 1+ 20+ 21+ 22+…+ 2k-1 = 2k

 = n

time

t=0

t=T

t=2T

Seed

Arnaud Legout © 2010

46

Proof: Finish Time

Finish time
 All peers have finished

at t=kT=T.log2n

time

t=0

t=T

t=2T

Seed

Arnaud Legout © 2010

47

Proof: Finish Time

Mean download time

 








 






























n

n1
nlogTd

n

1
1kT11).2(k

n

T
d

n

T
1)(i2

n

T
1)T(i2

n

1
d

.kT)2....3T2.2T2.T2(1.(0)
n

1
d

2

k

1

1k

0i

i
1k

0i

i

1k210

kS See
refresher

Arnaud Legout © 2010

48

Refresher

1)1(

.12.
12

12

2.2...222.2

2....2.32.22.11)(i2

1

1

1210
11

1210
1k

0i

i
1


























 

knS

nknkS

kSS

kS

k

k
k

k

kk
kk

k
k

Arnaud Legout © 2010

49

Model Discussion

 Each peer has the same upload capacity

No network bottleneck

 Idealized peer selection strategy
 Each peer always knows to which peer P to send the content

at a given time
• This peer P does not have the content yet

• This peer P is not chosen by any other peer

 Conflict resolution solved with global knowledge

 No peer dynamics, i.e., arrival and departure

No piece selection strategy

No advanced hypothesis: reciprocation, parallel
download, etc.

Arnaud Legout © 2010

50

Piece Transfer Model

Piece based deterministic model [5] (2004)
 Each peer serves only one peer per time slot

 The unit of transfer is a piece

 n-1 peers want the content

 We assume n=2k

 There are m pieces of the same size

 We assume m>k

 S=s/(bm)=T/m is a time slot, s content size, b
upload capacity

Arnaud Legout © 2010

51

Piece Transfer Model

Peer selection strategy (used in the
model)
 We define Ai

 as the set of peers that have
piece i. We do not count in this set the
seed

 Two strategies
 First strategy, when at least one peer has

no piece
• Peers send pieces to peers that has not

yet obtained any piece.

Arnaud Legout © 2010

52

Piece Transfer Model

Peer selection strategy
 Second strategy, when all peers have at

least one piece
• The set of peers Ai with n/2 copies of i

replicate i on the n/2-1 other peers. The n/2-1
other peers and the seed replicate pieces not
present on the peers of Ai.

• For instance, at k+1, A1 replicate 1 on all the Ai,
i=2,…,k and the Ai, i=2,…,k plus the seed
replicate a piece on A1

• At each round one peer of Ai is idle

Arnaud Legout © 2010

53

First Peer Selection Strategy

At t=0
 Seed has all pieces

At t=S
 |A1|=20

At t=2S
 |A1|=21, |A2|=20

At t=3S
 |A1|=22, |A2|=21 ,

|A3|=20

time

t=0

t=S

t=2S

1

1

1 1

1

1 1

2

2 2 3

Seed

Arnaud Legout © 2010

54

First Peer Selection Strategy

At t=jS
 |Ai|=2j-i, i≤j

This strategy ends
when j=k
 All n-1=2k-1 leechers

have a piece

time

t=0

t=S

t=2S

1

1

1 1

1

1 1

2

2 2 3

1

22...2

...

011

11

k

1i















n

AAAA

k

kki

Seed

Arnaud Legout © 2010

55

Second Peer Selection Strategy

We take as example m=4 and k=3

In [5] they assume that the seed stops
sending pieces when a copy of the
content was served
 Easier to model

 Lower bound of the performance, because
it uses less resources

Arnaud Legout © 2010

56

Second Peer Selection Strategy

We confirm that for
k=3 all peers have a
piece

 t=3S
 There are 23/2 piece 1
 There are 23/22 piece 2
 There are 23/23 piece 3

 t=4S
 All have piece 1
 There are 23/2 piece 2
 There are 23/22 piece 3
 There are 23/23 piece 4

time

t=3S 1 1 1 1 2 2 3

t=4S

t=5S

t=7S

t=6S

2
1

3
1

1
2

1
3

4
1

2
1

1
2

2
1

2
3
1

3
1
2

2
1
3

2
4
1

3
2
1

4
1
2

3
2
1

4
2
3
1

3
1
2

2
1
3

3
2
4
1

4
3
2
1

3
4
1
2

ALL

Arnaud Legout © 2010

57

Second Peer Selection Strategy

 t=5S
 All have piece 1 and 2

 There are 23/2 piece 3

 There are 23/22 piece 4

 t=6S
 All have piece 1, 2, and 3

 There are 23/2 piece 4

 t=7S
 All have piece 1, 2, 3, and

4

time

t=3S 1 1 1 1 2 2 3

t=4S

t=5S

t=7S

t=6S

2
1

3
1

1
2

1
3

4
1

2
1

1
2

2
1

2
3
1

3
1
2

2
1
3

2
4
1

3
2
1

4
1
2

3
2
1

4
2
3
1

3
1
2

2
1
3

3
2
4
1

4
3
2
1

3
4
1
2

ALL

Arnaud Legout © 2010

58

Results

At t=kS each peer has a single piece
 |Ai|=2k-i, i≤k

At slot k+i for i ≤ m
 Each peer has pieces 1,…,i
 |Ai+1|=n/2 peers have piece i+1 and replicate

it on the n/2-1 other peers
• The seed already has piece i+1

 Each other peer replicates a piece on the
peers in Ai+1
• At the m slot, the seed stops serving pieces
• For all j>i+1, |Aj| 2*|Aj|

Arnaud Legout © 2010

59

Results

Finished time
 At each slot the number of copy of each

piece is doubled

 When there are n=2k peers, a piece needs
k+1 slots to be on all peers
• We consider that the first slot for piece x is

when x is sent by the seed to the first peer

 For m pieces, k+m slots a required to
distribute all pieces on all peers

Arnaud Legout © 2010

60

Results

Finished time
 All peers have finished at t=(k+m)S

 t=(k+m)S=T(k+m)/m=(T/m).log2n + T

 Decreases in 1/m compared to the content
based model

 Does not account for pieces overhead

Arnaud Legout © 2010

61

Results
Mean download time
 With the proposed strategy, at kS each peer

has only one piece
 As the number of pieces double at each slot,

one needs k+m-1 slots for half of the peers
to have all the pieces
• At k, 1 piece; at k+1, 2 pieces; at k+m-1, m pieces
• But at m, the seed stops serving pieces, thus at

k+m-1 only half of the peers have m pieces, the
rest have m-1 pieces

 The other half receives the last pieces at
k+m

Arnaud Legout © 2010

62

Results

Mean download time

 























2m

1
-1Tnlog

m

T
d

2

1
mnlog

m

T
d

m)(k 1)m(k
2

S
d

2

2

Arnaud Legout © 2010

63

Model Discussion

 Each peer has the same upload capacity
 No network bottleneck
 Idealized peer selection strategy

 Each peer always knows to which peer P to send the content at a
given time

 Conflict resolution solved with global knowledge
 No peer dynamics, i.e., arrival and departure

 Idealized piece selection strategy
 Global knowledge
 A peer is never blocked because it does not have the right piece to

upload

 No advanced hypothesis: reciprocation, parallel download, etc.
 Read [5,6] for a more sophisticated models

Arnaud Legout © 2010

64

Model Discussion

The results obtained with this model
hold for more complex models
 Stochastic

Lesson
 A simple model can give fundamental

results
 Understand the assumptions and limitations
 No need for complexity if it is at the price

of stronger or additional assumptions

Arnaud Legout © 2010

65

Discussion of the Results

P2P is very efficient when
 There is always a peer to send data to
 There is always a piece to send to this peer

Peer and piece selection are at the core
of an efficient P2P protocol
 P2P efficiency can be from the idealized

model to even worse than client-server

How to select peers and pieces
discussed in the following

Arnaud Legout © 2010

66

Outline

Overview

Content Replication
 P2P performance

 Dynamic Parallel Download

 Piece and Peer selection

BitTorrent

Security

Localization

Arnaud Legout © 2010

67

Dynamic Parallel Download

Introduced by Rodriguez et al. [8] (2000) in
the context of web cache

Parallel download
 The principle to download from several server in

parallel
Dynamic parallel download

 A parallel download with the following strategy
 Strategy

• Request first one piece from every server with the
content

• Each time a server has completed its upload of a piece,
request a piece from this server that has not yet been
requested from any other server

Arnaud Legout © 2010

68

Dynamic Parallel Download: 4
pieces example

C S1 S2

1
2

1

2
3

4

3

4

Arnaud Legout © 2010

69

Performance Issues

All servers must be busy sending pieces

Two performance issues
 Interblock idle time

• Pipelining

 Termination idle time
• End game mode (Terminology introduced in

BitTorrent)

Arnaud Legout © 2010

70

Interblock Idle Time

Time to receive a
new request after
sending the last byte
of a piece

Idle time = 1 RTT

Problem
 Server underutilized

Solution
 Pipelining

C S1

1

1

3

4

3

4

Idle

Idle

Arnaud Legout © 2010

71

Pipelining

Keep enough
requests pending so
that the server is
never idle

1st solution
 Send request before

the end of the
current piece

 RTT estimate
 Piece transmission

time > RTT

C S1

1

1
2 Idle

1

1

2

NO

YES

RTT

Arnaud Legout © 2010

72

Pipelining

2nd solution
 Always have n

pending requests

 Still need RTT
estimate

• No need for accuracy

• Overestimate does
not harm

C S1 Request 1, 2,3

1

2

4

3

5

Arnaud Legout © 2010

73

Termination Idle Time

For dynamic parallel download from M servers

P is the number of pieces not yet received

When P<M, M-P servers are idle

Solution: end game mode
 When P<M request pending blocks to all the idle

servers

 Several servers upload the same piece at the same
time

• The fastest win

 Bandwidth waste: request + partial download

Arnaud Legout © 2010

74

Termination Idle Time

Without end game mode
 Last pieces download speed unknown

With end game mode
 Last pieces download speed equal to at

least the one of the fastest server

Arnaud Legout © 2010

75

Experimental Evaluation

Java client that implements dynamic parallel
download
 Does no implement pipelining
 Implement a basic version of end game mode

Connect to real mirror of public web servers
in the Internet

Study performed in 1999/2000
For each figure is given the optimum

transmission time
 Ideal download time that would have been achieved

in case there is neither interblock nor termination
idle time (computed a posteriori)

Arnaud Legout © 2010

76

No Shared Bottleneck

The client connects to 4 mirror spread
in the Internet: Japan, Portugal,
Slovakia, Australia
 High probability of disjoint paths, which

implies no shared bottleneck

Arnaud Legout © 2010

77

Results: No Shared Bottleneck

 Content size
 763KB

# of pieces
 80

 Parallel
 4

No shared
bottleneck

 Parallel close
to optimum

Credit: Rodriguez et al. [8]

Arnaud Legout © 2010

78

Shared Bottleneck

What happens when the bottleneck is the
access link?

The client is connected through a modem link
(56kbit/s)
 Connected to two slow servers (24kbit/s) and one

fast server (56kbit/s)

The fastest server is enough to saturate the
access link
 Dynamic parallel download will create TCP

competition on a saturated link. What is the impact
of that?

Arnaud Legout © 2010

79

Results: Shared Bottleneck

 Content size
 256KB

 # of pieces
 20

 Parallel
 3

 Modem access line
 Shared Bottleneck

 Close to the fastest
server
 Difference due to

the interblock idle
time

Credit: Rodriguez et al. [8]

Arnaud Legout © 2010

80

Single Server vs. Multiple Servers
Parallel Download

Is it as efficient to perform parallel
download from a single server as from
multiple servers?

The case of two mirrors: 1 fast and one
slow
 The client connects to a single mirror
 The client connects to two mirrors in parallel
 The client opens two TCP connections to the

same mirror

Arnaud Legout © 2010

81

Results: Single Server Parallel

 Content size
 256KB

# of pieces
 20

 Parallel
 2

No shared
Bottleneck

 Close to the
fastest server,
but no need for
server selection

Credit: Rodriguez et al. [8]

Arnaud Legout © 2010

82

Properties

Automatically adapt to the best servers
and bottlenecks
 No need for server selection

No complex resource discovery
 History based parallel access performs

significantly worse

Tradeoff
 Piece request message overhead
 Increase the number of TCP connections

Arnaud Legout © 2010

83

Dynamic Parallel Download for
P2P

Dynamic parallel download
 In the context of client-server

 For a small number of parallel downloads

P2P
 Every peer is a client and a server

• Parallel download and parallel upload

 Large peer set

Very different context
 How to apply dynamic parallel download to P2P?

Arnaud Legout © 2010

84

Dynamic Parallel Download for
P2P

A straightforward application to P2P
 Every peer performs global dynamic parallel

download to every other peer

Problems
 Not possible to maintain a large number of

TCP connections per peer
 Why a peer should send data to another

peer?
• Not viable: free rider problem

Arnaud Legout © 2010

85

Dynamic Parallel Download for
P2P

Free rider problem
 A free rider is a peer that downloads

without contributing anything

 To scale, each peer in a P2P system must
act as a client and a server

 With global dynamic parallel download no
incentive to do so

 We do not leave in an ideal word: selfish
assumption

Arnaud Legout © 2010

86

Dynamic Parallel Download for
P2P

Assume an ideal word
 Each peer cooperate
 Can we use dynamic parallel download?

Studies on dynamic parallel upload
 In P2P the content flow is from the initial

seed toward leechers
 Easier to model dynamic parallel upload

than dynamic parallel download
 Equivalent properties

Arnaud Legout © 2010

87

Dynamic Parallel Download for
P2P

Dynamic parallel upload vs. download
 Download

• The client want to download as fast as possible

 Upload
• The source want to upload as fast as possible

 Same problem
• Find the fastest peer among a set without any

knowledge

Arnaud Legout © 2010

88

Dynamic Parallel Download for
P2P

Outdegree
 Number of parallel uploads from a peer

Tradeoff
 Increasing the outdegree increases the

number of peers served at the same time,
but decreases the service rate to each
peer [5][9]

Arnaud Legout © 2010

89

Dynamic Parallel Download for
P2P

Results
 Biersack et al. [9] showed that and

outdegree of 3 is optimal. An outdegree of
2 or 4 gives almost the same result
• Static scenario

• Forest of tree

• Assume uniform capacity of the peers
– Upload=download

– Same capacity for all peers

Arnaud Legout © 2010

90

Dynamic Parallel Download for
P2P

Results
 Yang et al. [5] showed that increasing the

outdegree adversely impact the service capacity in
case of static peers (no leave at the end of the
download)

 But, in case of dynamic peers (peers leave the
system with a given probability after completing
the download) parallel upload can improve the
service capacity. Outdegree should be less than 10,
marginal gain above 4

 Branching process model (stochastic)

Arnaud Legout © 2010

91

Conclusion

 Even in an ideal world the outdegree should be small
 Around 4

 This number might be increased in case of high upload
capacity, but no study to understand the real impact
 Probably makes sense in case of heterogeneous peers

• The fast peer increases its number of parallel uploads to
saturate its upload capacity

 Probably dangerous in case of homogeneous peers
• All peers increase their number of parallel uploads to saturate

their upload capacity. But, in this case the global efficiency
decreases as shown in [5,9]

 Used by BitTorrent mainline if max upload > 42 kB/s
• uploads = int(math.sqrt(rate * .6))

Arnaud Legout © 2010

92

Conclusion

We are not in an ideal world
 In case of free riders

• The system is not viable

• The analytical results do not hold

• Dynamic Parallel upload cannot be used

How to prevent free riders?

Arnaud Legout © 2010

93

Outline

Overview

Content Replication
 P2P performance

 Parallel Download

 Piece and Peer selection

BitTorrent

Security

Localization

Arnaud Legout © 2010

94

Why a Peer and Piece Selection?

Lets go back to the simple model
Assumptions

 Always find a peer with an interesting piece to
upload from (Global knowledge)

• Never idle or seeking for a peer

 A peer never refuses to upload a piece
• No free riders

If any of these assumptions is relaxed
 No model for the system
 No idea of its performance (at least worse)
 No parallel download (selfish environment)

Arnaud Legout © 2010

95

Why a Peer and Piece Selection?

Additional assumptions
 All peers have the same upload capacity

• Always the best match

 No network bottleneck
• Still the best match

This is not reality

If best match relaxed
 Performance decreases

But, a good match is still possible in real life

Arnaud Legout © 2010

96

Which Peer and Piece Selection?

No specification except for BitTorrent
 Always focus on content localization

No similar problem in another field

No general study of the problem
 Always based on BitTorrent

Arnaud Legout © 2010

97

Which Peer and Piece Selection?

Gnutella
 Designed for efficient content localization
 No file splitting in the specification 0.6 [16]
 Partial file transfer introduced in [17]

• Allows peers with partial content to answer queries

 Same heuristic for piece and peer selection
• Select the first peer that answers the content request
• Possibility of parallel download

 Poor overall performance
• No specific study of the file transfer efficiency
• Mostly used for small contents (mp3)

Arnaud Legout © 2010

98

Which Peer and Piece Selection?

Edonkey2000/Emule/Overnet
 Designed for efficient content localization
 Only differ by their localization protocol
 File splitting [13]

• Rarest pieces first + other criteria with lesser priority

 Peer selection
• (Time spent in the priority queue) * (credit modifier

based of upload and download rate)
• Slow reactivity
• Possibility of parallel download

 Average overall performance
• No specific study of the file transfer efficiency

Arnaud Legout © 2010

99

Which Peer and Piece Selection?

BitTorrent (described in details later in the
course)
 Designed for efficient file transfer
 File splitting [13]

• Rarest pieces first

 Peer selection
• Choke algorithm based on short term peer upload speed

estimation
• Fast adaptation
• Use of parallel download

 Good overall performance
• Several specific studies

Arnaud Legout © 2010

100

Which Peer and Piece Selection?

Common mistakes made about BitTorrent (BT)
 With BT contents are hard to find

• Right, BT is a file transfer protocol not a localization
protocol

• Does it make sense to say that with HTTP contents are
hard to find?

 With BT a torrent die when there is no more seed
• Right, BT is a file transfer protocol, not an infrastructure

that manage persistency
• Does it make sense to say that HTTP does not guarantee

that your web server is always up?

BT is a P2P file transfer protocol, nothing
more

Arnaud Legout © 2010

101

Which Peer and Piece Selection?

In the following, general discussion, but
based on the experience gathered with
BitTorrent
 BitTorrent is the state of the art

 Might be improved, but need a deep
understanding

Arnaud Legout © 2010

102

Which Peer and Piece Selection?

Peer selection task
 Always find a peer to upload from
 Prevent free riders
 Converge to the best upload-download

match

Piece selection task
 Piece diversity is called entropy
 With ideal entropy, each peer always has an

interesting piece for any other peer

Arnaud Legout © 2010

103

Which Peer and Piece Selection?

Peer selection must not have a piece
constraint
 Ideal entropy is the target

 Peer selection should be based on capacity
only, not on piece availability

Arnaud Legout © 2010

104

Selection Order

Performs piece then peer selection
 Puts a constraint on the peer to select
 The selected peer is unlikely to be a good

match
 Depending on the piece selection, may

create hot spots
• Rare piece selection, with an initial seed with all

the pieces

 Focus on the piece then on the capacity of
service

Arnaud Legout © 2010

105

Selection Order

Performs peer then piece selection
 Select first the best match peer

 Then apply the piece selection on that peer

 Focus on the capacity of service first

Peer and piece selections are interlinked
 To find the best match you may need pieces to

download to test if it is the best match

 No sense to select a peer with no interesting
pieces

Arnaud Legout © 2010

106

Selection Order

Peer selection first is a better strategy
 Important to maximize the capacity of

service

 No study on this order

No general reflection on the role of
peer and piece selection
 Results are given as reasonable rules

 Experience on existing P2P protocols

Arnaud Legout © 2010

107

Piece Selection

Random piece selection
 Each peer selects at random a piece to

download

Global rarest first
 Each peer maintains globally the number of

copies of each piece

 Select the globally rarest piece to
download

 Require global knowledge

Arnaud Legout © 2010

108

Piece Selection

Local rarest first (LRF)
 Approximation of global rarest first
 Each peer maintains the number of copies

in its peer set of each piece
 Select the locally rarest piece to download

When peer selection is performed first,
rarest first piece selection is applied on
the pieces available on the selected
peer

Arnaud Legout © 2010

109

:1

:2

:1

:1

:2
Local rarest first algorithm

 Choose the pieces that are
locally rarest

:2

Piece Selection: LRF

P1 P2 P3

coolContent.xvid

Arnaud Legout © 2010

110

Piece Selection Properties

Random piece selection performs poorly [33]
 Last pieces problem
 Poor entropy, i.e., high constraint on peer selection

Global rarest first [33]
 Good entropy

Local rarest first [18, 33, 34]
 Good entropy with a large peer set
 Care should be taken to the graph construction

(random graph)
 Inspire yourself from BitTorrent

Arnaud Legout © 2010

111

Piece Encoding

Do not use raw pieces but encoded pieces
 To solve the piece scheduling (selection) problem
 Initial seed erasure code [15]

• k is the number of original pieces
• n is the number of encoded pieces
• Any k among the k+n pieces are enough to reconstruct the

content
• Still need piece selection

 Network coding: avalanche [14]
• Each node computes erasure code
• Each piece sent is a linear combination of all the already

received pieces. Coefficients are chosen at random
• No more need for piece selection

Network Coding (NC)

Theorem[30]: Assume that the source
rates are such that without network coding,
the network can support each receiver in
isolation (i.e., each receiver can decode all
sources when it is the only receiver in the
network). With an appropriate choice of linear
coding coefficients, the network can support
all receivers simultaneously

Arnaud Legout © 2010

112

Network Coding (NC)

Arnaud Legout © 2010

113
Credit: Fragouli et al. [30]

 Each link has a capacity of 1

When Ri, i={1,2} is alone, it
can receive at 2

When both S1 and S2
broadcast to R1 and R2
 Without network coding

• Both receivers receive at 1.5,
e.g., R1 receives at 1 from S1
and at 0.5 from S2, while R2
receives at 1 from S2 and 0.5
from S1

 With network coding
• Both receivers receive at 2

Arnaud Legout © 2010

114

Network Coding (NC)

For a good general introduction to NC read
[30]

Simple example for a file F = [x1 x2], where xi
is a piece
 Define code Ei(ai,1, ai,2) = ai,1*x1+ ai,2*x2, where ai,1,

ai,2 are numbers

 There is an infinite number of Ei‘s

 Any two linearly independent Ei(ai,1, ai,2) can
recover [x1 x2]

 Similar as solving a system of linear equations

Arnaud Legout © 2010

115

Network Coding (NC)

In practice, coefficients are chosen in a
finite field, such as GF(216)
 On a finite field the size of the encoded

packets is constant

 The size of the field gives the overhead
• On a GF(216) there are 2 bytes per coefficient

• For 1000 pieces, there are 2 bytes * 1000 =
2000 bytes of overhead per packet

• For a packet size of 256 kB there is a 1%
overhead

Arnaud Legout © 2010

116

Network Coding

No more need for piece selection as any
encoded piece is useful for anybody
 Low probability of linearly dependent

coefficient

 Always close to optimal entropy

Is it the universal solution?

Arnaud Legout © 2010

117

Network Coding: Drawbacks

Heavy computations (each node needs to solve
linear systems at each packet received)
 Authors shown it can run on Pentium 4 desktops

with 20% CPU usage [31]
 Thus, cannot run on PDAs, cell phones, sensors, or

desktops that cannot afford this load
Security issues (a single corrupted block

propagate fast among peers)
 Authors proposed a solution based on secure

random checksum [32]
 But, as for any security issue, needs time to

convince and demonstrate

Arnaud Legout © 2010

118

Network Coding : Drawbacks

Overall complexity
 Authors argue that it was surprisingly easy

to implement because there is no piece
selection issues

 But, the algorithmic of local rarest first is
much simpler than the one of network
coding
• Network coding is harder to assess

Arnaud Legout © 2010

119

NC vs. LRF

NC performs well in any situation (at least
theoretically)
 But, no large deployment to validate

 Computation, security, and complexity

LRF requires a large peer set
 80 is enough and practical for millions of peers

 Validated on large deployment

 Close to optimality in practice (details in the
following)

Arnaud Legout © 2010

120

NC vs. LRF

My recommendation (I may be wrong, this is an active
and complex research issue)
 Always use LRF when a large peer set is feasible

 In some cases a large peer set is not feasible, thus
NC can be an appropriate solution in such cases
 Windows update requires SSL, but a PC machine cannot

maintain 80 SSL connections at a time (complex crypto)
 Ad hoc networks may have limited connectivity when in a

sparse environment

 LRF is experimentally validated for no more than a
few 100 000 of peers, not clear how NC will perform

Arnaud Legout © 2010

121

Peer Selection

No serious alternative to the BitTorrent
Choke algorithm

Choke algorithm [18]
 Different algorithm in leecher and seed state
 Peer selection performed in the peer set
 Choke/unchoke

• A chokes B if A decides to do not upload to B
• A unchokes B if A decides to upload to B

 Interested/not interested
• A is interested in B if B has at least one piece that A

does not have
• A is not interested in B if B has a subset of the pieces A

already has

Arnaud Legout © 2010

122

Peer Interest

Peer X is interested
in peer Y if peer Y
has at least 1 piece
that peer X does not
have

Arnaud Legout © 2010

123

Choke Algorithm: LS

Leecher state (high level description)
 Every 10 seconds the peers are ordered

according to their download rate to the
local peer

 The 3 fastest and interested peers are
unchoked

 Every 30 seconds, one additional interested
peer is unchoked at random
• Called the optimistic unchoke

Arnaud Legout © 2010

124

Choke Algorithm: LS

Leecher state (high level description)
 No more than 4 interested peers are

unchoked at the same time

Arnaud Legout © 2010

125

Choke Algorithm: LS

10s

Time (10 seconds slots)

Pe
e
r

ID

: OU
: RU

1
2
3
4

5
6

7
8

9
10

Arnaud Legout © 2010

126

Real Torrent, LS

 1 seed, 26
leechers
 At torrent

startup

350 MB

Few peers
with a lot of
RU

Uniform OU

Arnaud Legout © 2010

127

Choke Algorithm: SS

Seed state, version FU (high level
description)
 FU: Favor Upload

 Oldest version, but still largely used today

 Same as in leecher state, but peers are
ordered according to their upload rate
from the local peer

 In seed state, there is no download

Arnaud Legout © 2010

128

Choke Algorithm: SS

Seed state, version RR (high level description)
 RR: Round Robin

 Appeared after the version FU, but not largely
used today

 Every 10 seconds the interested peers are ordered
according to the time they were last unchoked

 For two consecutive periods of 10 seconds, the 3
first peers are unchoked and an additional 4th
interested peer is unchoked at random

 For the third period of 10 seconds, the 4 first
peers are unchoked

Arnaud Legout © 2010

129

11

Choke Algorithm: SS

10s

Time (10 seconds slots)

Pe
e
r

ID
 (

ol
d
e
st

 f
ir

st
)

: SRU
: SKU

1
2
3
4

5
6

7
8

9
10

12

60 seconds

Arnaud Legout © 2010

130

Real Torrent, SS

 1 seed, 26
leechers
 At torrent

startup

350 MB

Random SRU

Arnaud Legout © 2010

131

Choke Algorithm Properties

Leecher state
 Robust to free riders

• Only contributing peers get a good service from a leecher

 Leechers unchoked based on download evaluation
• Selects the fastest interested peers

 Optimistic unchoke
• Capacity discovery mechanism

 Global properties (see later)
• Clusters peers according to their upload speed

• Ensures efficient sharing incentive

• Achieves high upload utilization

Arnaud Legout © 2010

132

Choke Algorithm Properties

Seed state
 Algorithm FU still implemented in every

client except
• mainline 4.x.y, Ctorrent

 Algorithm FU
• Not robust to free riders

– The fastest peers get the service even if they do not
contribute anything

• Bad piece diversity
– A single free rider can get most of the pieces

Arnaud Legout © 2010

133

Choke Algorithm Properties

Seed state
 Algorithm RR robust to free riders

• Every peer gets the same service time

 Increases the piece diversity

Why FU more popular than RR
 RR is not well known (deployed

experimentally on mainline 4.x.y)

 FU is more efficient in the present context
• Few contributing peers with a large capacity

Arnaud Legout © 2010

134

Peer and Piece Selection

Local rarest first piece selection [34]
 Close to ideal entropy

 Simple and efficient

 No alternative today except network coding

Choke algorithm (seed algorithm RR) [34,35]
 Achieves high upload utilization

 Clusters peers with similar upload capacity

 Ensures effective sharing incentive
• Robust to free riders

 P2P fair

Arnaud Legout © 2010

135

Peer and Piece Selection

Detailed description during BitTorrent
presentation
 Many important implementation details

Extensive evaluation during BitTorrent
presentation
 Rarest first entropy

 Choke algorithm fairness and efficiency

Arnaud Legout © 2010

136

Outline

Overview

Content Replication

BitTorrent
 Protocol Overview

 Algorithm details

 Evaluation

 Advanced subjects

Security

Localization

Arnaud Legout © 2010

137

BitTorrent Overview
Web server

Tracker

Get a .torrent file that
contains the address of

the tracker Get a random peer set

P1 P2 P3

coolContent.xvid

Initial Seed

Arnaud Legout © 2010

138

BitTorrent Specificities

Specification [48] (obsolete [18][19])
Unlike any other P2P protocol, there is

one session per content
 A session is called a torrent
 Torrents are content based

Torrents are independent
 You get no benefit from previous or

current torrents
 No enforcement to stay as a seed

Arnaud Legout © 2010

139

Pieces and Blocks

Content is split into pieces, which are
split into blocks

Piece 1 Piece 2 Piece m Piece m-1

Content

Block 1 Block 2 Block k Block k-1

Arnaud Legout © 2010

140

Pieces and Blocks

Pieces
 The smaller unit of retransmission

 Typically 256/512/1024/2048 kByte

 Size adapted to have a reasonably small .torrent
file

• One SHA-1 hash per piece in the .torrent file

Blocks
 16kB (hard coded)

 Used for pipelining
• Always 5 requests pending

Arnaud Legout © 2010

141

.torrent file

.torrent file encoded using bencoding
[48][18]
 Info key

• Length on the content in bytes

• md5 hash of the content (optional)
– Not used by the protocol

– pieces SHA-1 hash are enough

• File Name

• Piece length (256kB, 512kB, 1024kB, etc.)

• Concatenation of all pieces SHA-1 hash

Arnaud Legout © 2010

142

.torrent file

.torrent file encoded using bencoding
[48][18]
 Info key slightly different for multi file

content

 Announce URL of the tracker (HTTP)
• Possibility of announce list for backup trackers

– See http://www.bittorrent.org/beps/bep_0012.html

 Some optional fields
• Creation date, comment, created by

Arnaud Legout © 2010

143

Peer ID

Arnaud Legout © 2010

144

Peer ID=client ID + random string
 Client ID: name of the client + its version

 Random string: different each time the
client is restarted (take as seed the
system clock + the IP address of the peer)

Examples [49]:
 M4-0-2--41dabfd4760b

 AZ2306-LwkWkRU95L9s

 AZ2402-YbqhPheosA4a

 BC0062->*\xb1\xfdMm\xb9\x96\x96\xf0\xb8\xd9

 UT1500-\xb5\x81\xf1+\xa3\xd3\xc7\xf3\x7f|\x1a\xb0

Arnaud Legout © 2010

145

Peer Bootstrap

A peer download a .torrent file from a web
server

The peer client retrieves the tracker‘s URL
and connect to it (HTTP GET)

The peer sends
 Info_hash (SHA-1 of the info key)
 Peer ID
 Port the client listen on
 Number of peers wanted (default 50)
 Various statistics

• Uploaded, downloaded, left, event (started, stopped,
completed)

Arnaud Legout © 2010

146

Peer Bootstrap

The tracker returns
 Failure raison

 Interval between statistics

 A random list of peers already in the
torrent
• Peer ID, peer IP, peer port

• Typically 50 peers

 Statistics
• Complete/incomplete (seed/leechers)

Arnaud Legout © 2010

147

Peer Bootstrap

Tracker not involved in file distribution
 Low overhead

Web server acts as a certification
authority
 If a .torrent file is certified by the web

server, there is no way to corrupt the
torrent
• Each piece SHA-1 hash is in the .torrent file

 No strict certification

Arnaud Legout © 2010

148

Peer Bootstrap

Peer connects to each peer returned by the
tracker
 At most 40 outgoing connections

 Remaining peers kept as a pool of peers to connect
to

Peer set (neighbor set) size 80
 Maximum 40 outgoing connections

 Maximum 80 connections in total

 Results in a well connected graph (random graph)
• Recent peers get a chance to be connected to old peers

Arnaud Legout © 2010

149

Graph Construction

The tracker allows to construct a
random graph
 Robust to churn
 Low diameter D

• In log(d-1)N where d is the outdegree and N is
the number of peers

• For d=80 and N=10 000, D=2.1
• For d=80 and N=100 000, D=2.63
• For d=80 and N=1 000 000, D=3.16

 Low diameter is important for LRF

Tracker connectivity matrix

1000 peers

40 maximum number
of outgoing
connections

Not a random graph

Still well connected

Refer to [44]
 Impact of the

maximum number of
outgoing connections

Arnaud Legout © 2010

150

Bottleneck index

Ratio of the number of connections
between the first 80 peers and the rest
of the peers, to the maximum possible
number of such connections (80 ¤ 80 =
6400 connections).

Indication of the presence of a
bottleneck between the initial seed peer
set and the rest of the torrent

Arnaud Legout © 2010

151

Tracker connectivity matrix
[44]

Arnaud Legout © 2010

152

Arnaud Legout © 2010

153

Tracker Overhead

Reconnect to the tracker
 If the peer set size falls below 20

• Ask for new peers
• Small enough to avoid frequent tracker requests

 Every 30 minutes
• For statistics: amount of bytes

uploaded/downloaded, number of bytes left

 When the peer leaves the torrent
• For statistics
• To update the list of peers

Arnaud Legout © 2010

154

Tracker Peer Maintenance

NAT check is performed in the mainline
client
 Not described in the protocol

Not in the protocol
 Peer health check

• A peer that crashes will not report its
disconnection

 Intelligent random peer selection
• No predefined ratio of leechers and seeds
• Seeds can be returned to a seed

Tracker Scrape Mode

Used to get statistics on torrents
 complete: # of seeds

 incomplete: # of leechers

 downloaded: # of peers who completed a
download

 name: (optional) name of the torrent in the
.torrent file (not used in most popular
tracker)

Arnaud Legout © 2010

155

Tracker Scrape Mode

If the scrape request contains an
infohash
 Returns statistics for this torrent

If no infohash is given
 Returns statistics for all torrents hosted

by the tracker

 Might be a huge amount of data
• Some trackers return a compressed list (using,

e.g., gzip)

Arnaud Legout © 2010

156

State of the Art Tracker

Opentracker
 http://erdgeist.org/arts/software/opentracker/

 http://opentracker.blog.h3q.com/

Used by ThePirateBay

Used by the opentracker infrastructure

Arnaud Legout © 2010

157

http://erdgeist.org/arts/software/opentracker/
http://opentracker.blog.h3q.com/

Alternative Peer Bootstrap
Strategies

Most recent clients (uTorrent, mainline,
Vuze) might use a different bootstrap
 Magnet link (BEP 9)

 DHT (BEP 5)

 PEX

 No limit on the number of incoming
connections

Not well studied
 Might impact the connectivity matrix, thus

the efficiency

Arnaud Legout © 2010

158

How to Setup a Torrent?

Create a .torrent using
 The content for this torrent. Used to

compute the SHA-1 of each piece and
infohash

 The URL of the tracker (you can create your
own tracker or use a public tracker)

 Example of command line
• btmaketorrent.py http://my.tracker.fr:16661/announce myContent.tgz

 Arnaud Legout © 2010

159

How to Setup a Torrent?

Upload the .torrent file to a torrent
discovery site (Mininova, ThePirateBay,
etc.)

Seed the content
 Simply start a client using the .torrent file

and the content to be seeded

 Example of command line
• btdownloadheadless.py --minport 16662 --maxport 16662 --save_as

myContent.tgz myContent.tgz.torrent

Arnaud Legout © 2010

160

Tracker Side Effects

No explicit declaration to the tracker
 The first peer to join the tracker implicitly

declares the torrent (using the infohash) to
the tracker

Public trackers can be used for any
torrent

Arnaud Legout © 2010

161

Tracker Side Effects

Possible to download a torrent without
the .torrent file
 You can get the infohash using scrape mode

 Need to guess the piece size
• Not so many possibilities

 Impossible to check piece integrity
• But unlikely to have many corrupted pieces

• Can tries several times pieces from different
peers

Arnaud Legout © 2010

162

Arnaud Legout © 2010

163

Peer-to-Peer Protocol State

Each peer maintains for each remote peer it
is connected to the following state
 am_choking: the local peer is choking this remote

peer

 am_interested: the local peer is interested in at
least one piece on this remote peer

 peer_choking: this remote peer is choking the
local peer

 peer_interested: this remote peer is interested in
at least one piece of this local peer

Arnaud Legout © 2010

164

Peer-to-Peer Protocol State

The local peer can receive data from a
remote peer if
 The local peer is interested in the remote

peer

 The remote peer unchoked the local peer

Arnaud Legout © 2010

165

Peer-to-Peer Protocol [48]

Unlike client-server architectures, this
is not the client who decides when to
receive data
 A peer can always refuse to serve another

peer

The decision to unchoke a peer is taken
by the choke algorithm

The choice of the piece to request is
taken using the rarest first algorithm

Arnaud Legout © 2010

166

Peer-to-Peer Protocol Messages

All the connections among the peers are
over TCP
 TCP/IP header overhead: 40 bytes

To initiate connections and maintain the
state, there are 11 messages in the P2P
protocol

Arnaud Legout © 2010

167

Peer-to-Peer Protocol Messages

HANDSHAKE
 Two way handshake
 To initiate a connection between two peers
 Once initiated, the connection is symmetric
 Contains (68 bytes)

• Pstrlen=19 (protocol string identifier length)
• Pstr=―BitTorrent protocol‖
• Reserved (8 bytes)
• Info_hash
• Peer ID

Arnaud Legout © 2010

168

Peer-to-Peer Protocol Messages

Once a connection is initiated, all the
messages on this connection are of the
form
 <length prefix><message ID><payload>

• <length prefix>: 4 bytes (max length: 232)

• <message ID>: decimal char

• <payload>: message dependant

Arnaud Legout © 2010

169

Peer-to-Peer Protocol Messages

KEEP ALIVE (4 bytes)
 <len=0000>
 Sent every 2 minutes unless another

message is sent
 Because there is no way to find that a TCP

connection is dead unless sending a message

CHOKE (5 bytes)
 <len=0001><ID=0>
 Sent from A to B when A choke B

Arnaud Legout © 2010

170

Peer-to-Peer Protocol Messages

UNCHOKE (5 bytes)
 <len=0001><ID=1>

 Sent from A to B when A unchoke B

INTERESTED (5 bytes)
 <len=0001><ID=2>

 Sent from A to B when A is interested in B

NOT_INTERESTED (5 bytes)
 <len=0001><ID=3>

 Sent from A to B when A is not interested in B

Arnaud Legout © 2010

171

Peer-to-Peer Protocol Messages

HAVE (9 bytes)
 <len=0005><ID=4><piece index>

 Sent from a peer to all the peers in its
peer set when it just received the piece
with ID <piece index>, and that the SHA-1
of this piece is checked

 Send HAVE to peers that already have the
piece
• Send HAVE to the seeds

Arnaud Legout © 2010

172

Peer-to-Peer Protocol Messages

HAVE
 HAVE sent to each peer in the peer set is not

required for the correct protocol operation
• Suppress HAVE for all peers that already have the piece?

 However, this information is useful for torrent
monitoring

• Exactly knows who has what

 Mainline 5.0.5 comment in source code
• # should we send a have message if peer already has the

piece?

• # yes! it is low bandwidth and useful for that peer.

Arnaud Legout © 2010

173

Peer-to-Peer Protocol Messages

BITFIELD (Ceil[(# of pieces)/8] + 5
bytes)
 <len=0001+X><ID=5><bitfield>

 First message sent after the handshake
• No more sent in the following

• Sent by both peers once the connection is
initialized

 Bit i in the bitfield is set to 1 if the peer
has piece i, 0 otherwise

Arnaud Legout © 2010

174

Peer-to-Peer Protocol Messages

REQUEST (17 bytes)
 <len=0013><ID=6><index><begin><length>

 Sent from peer A to peer B to request to
peer B the block
• Of the piece with index <index>

• Starting with an offset <begin> within the piece

• Of length <length>

Arnaud Legout © 2010

175

Peer-to-Peer Protocol Messages

REQUEST
 The message allows to specify the block

length, but it is hard coded in the client

 Changing the block size may be useful to
improve pipelining under certain conditions
• No study on the block size impact

 Block size larger than 217 is forbidden

Arnaud Legout © 2010

176

Peer-to-Peer Protocol Messages

PIECE (214 + 13 bytes for a standard
block size)
 <len=0009+X><ID=7><index><begin><block>

 Only one message used to send blocks

 Sent from peer A to peer B to send a block
of data to peer B
• Of the piece with index <index>

• Starting with an offset <begin> within the piece

• Payload is <block>

Arnaud Legout © 2010

177

Peer-to-Peer Protocol Messages

CANCEL (17 bytes)
 <len=0013><ID=8><index><begin><length>

 Used in end game mode only

 Sent from peer A to peer B to cancel a
request already sent to peer B for the
block
• Of the piece with index <index>

• Starting with an offset <begin> within the piece

• Of a length <length>

BitTorrent BEP

BEP: BitTorrent Enhancement Proposal
 http://bittorrent.org/

List of current accepted and draft BEP
 http://bittorrent.org/beps/bep_0000.html

BEP 6: Fast Extension
 http://bittorrent.org/beps/bep_0006.html

 Based on experience on the protocol

 No standard yet

 Arnaud Legout © 2010

178

http://bittorrent.org/
http://bittorrent.org/beps/bep_0000.html
http://bittorrent.org/beps/bep_0006.html

Arnaud Legout © 2010

179

Outline

Overview

Content Replication

BitTorrent
 Protocol Overview

 Algorithm details

 Evaluation

 Advanced subjects

Security

Localization

Arnaud Legout © 2010

180

BitTorrent Version

 All results in this section from mainline client 4.0.2
 Mainline is the reference BitTorrent implementation

• Written in python
• Developed by Bram Cohen, still maintained by his company

 Mainline 4.0.2 was released in may 2005
 Major modifications since 2005

• Tracker less extension
• GUI improvement
• Localization
• UPnP
• Etc.

 No major modification to the core algorithms (peer and
piece selection)

Arnaud Legout © 2010

181

BitTorrent Version

Are the results given in this course still
relevant?
 4.0.2 is the BitTorrent implementation as specified

in the BitTorrent official specification (BEP 3) +
the RR choke algorithm in seed state

 Current (2010) uTorrent/mainline algorithms are
the same as 4.0.2 with FU seed state algorithm

Arnaud Legout © 2010

182

Piece Selection

4 policies
 Strict priority

 Random first piece

 Local rarest first

 Endgame mode

Arnaud Legout © 2010

183

Strict Priority

Once a block of a piece has been
requested, request all the other blocks
of the same piece before a block of any
other piece

Rationale
 Pieces are the unit of replication

• It is important to download a piece as fast as
possible, only complete pieces can be
retransmitted

Arnaud Legout © 2010

184

Strict Priority

Strict priority improves piece download
speed

Never blocking
 If a peer is choked during a piece download

and this piece is not available on any other
peer, a new piece will be requested.

 As soon as the partially downloaded piece is
available, request the remaining blocks with
highest priority

Arnaud Legout © 2010

185

Random First Piece

For the first 4 downloaded pieces, the
pieces are selected at random

Rationale
 Rare pieces may be slower to download

• In particular if present on a single peer

 A peer without a piece cannot reciprocate
• Must wait for an optimistic unchoke

• The first piece is most of the time received
from several other peers that performs OU

Random First Piece

When a peer starts, it receives its first piece
with an OU
 With a typical upload speed of 20kB/s, each

unchoked peer receives at 5kB/s (4 in parallel)

 For a piece of 256kB, needs 51 seconds at 5kB/s
to receive a piece

 But, an OU lasts for 30s only
• An OU never becomes a RU when the peer has no piece to

reciprocate

 Faster to complete the last blocks of the piece
from another peer that makes an OU if the piece
is not the rarest one

Arnaud Legout © 2010

186

Arnaud Legout © 2010

187

Random First Piece

Random first piece makes more likely to
complete the first piece faster

Not optimal, but a good tradeoff
between simplicity and efficiency (the
random piece may be a rarest one)

Only impacts the startup phase of a
peer

Then switches to local rarest first

Arnaud Legout © 2010

188

Local Rarest First

Download first the pieces that are rarest in
the peer set of the peer

Rationale
 Cannot maintain the state for all peers

• Require a connection to all peers or a centralized
component

 Peer selection should not be constrained by piece
availability

• Entropy

 The initial seed should send as fast a possible a
first copy of the content

Arnaud Legout © 2010

189

Local Rarest First

Improve the entropy of the pieces
 Peer selection is not biased
 Better survivability of the torrent

• Even without a seed the torrent is not dead

Increase the speed at which the initial
seed delivers a first copy of the
content
 The seed can leave early without killing the

torrent

Arnaud Legout © 2010

190

Endgame Mode

When all blocks are either received or
have pending requests, request all not
yet received blocks to all peers. Cancel
request for blocks received.

Rationale
 Prevent the termination idle time

Arnaud Legout © 2010

191

Endgame Mode

Improve the termination idle time

Not a major impact at the scale of a
download

Do not solve the last pieces problem
 An overloaded peer remains overloaded

Arnaud Legout © 2010

192

Piece Selection Code

 For each remote peer (Downloader.py)
def _want(self, index):
self.have[index] is true if the remote peer has the piece

with ID index
do_I_have_requests returns true if there are still

blocks missing for the piece with ID index, or if the
piece was not downloaded at all yet.

 return self.have[index] and
self.downloader.storage.do_I_have_requests(index)

self.have.numfalse == 0 true if the remote peer is a seed
self.downloader.picker.next(self._want, self.have.numfalse

== 0)

Arnaud Legout © 2010

193

Piece Selection Code

 PiecePicker.py
def next(self, havefunc, seed = False):
 #bests: pieces to be selected with strict priority
 bests = None
 bestnum = 2 ** 30
 # s is a list of the partially downloaded pieces.
 # not clear why they make a distinction between
 # seeds and leechers.
 if seed:
 s = self.seedstarted #pieces partially downloaded from seeds
 else:
 s = self.started #pieces partially downloaded from leechers

Arnaud Legout © 2010

194

 Strict priority
for i in s:
 #havefunc(i) (means want_(i)): selects the rarest pieces

among the ones already requested
 if havefunc(i):
 if self.numinterests[i] < bestnum:
 bests = [i]
 bestnum = self.numinterests[i]
 elif self.numinterests[i] == bestnum:
 bests.append(i)
if bests:
 #returns one element of bests at random
 return choice(bests)

Piece Selection Code
Number of peers

with piece i

Arnaud Legout © 2010

195

Piece Selection Code

Random first
if self.numgot <

self.config['rarest_first_cutoff']:
 #scrambled: random list of pieces
 for i in self.scrambled:
 if havefunc(i):
 return i
 return None

Number of pieces
already received

Arnaud Legout © 2010

196

Piece Selection Code

 Rarest first
#xrange(1,n) returns elements from 1 to n
#without list creation, unlike range()
for i in xrange(1, min(bestnum, len(self.interests))):
 #start with the rarest pieces
 for j in self.interests[i]:
 if havefunc(j):
 return j
return None

interests is a list that contains
at the indice i the list of the
pieces that are copied i
times in the peer set.

Arnaud Legout © 2010

197

Peer Selection

Choke algorithm
 Leecher state

 Seed state

Arnaud Legout © 2010

198

Choke Algorithm Leecher State

Algorithm Called (round)
 Every 10 seconds

In addition algorithm called
 Each time an unchoked and interested peer

leaves the peer set

 Each time an unchoked peer becomes
interested or not interested

Shorten the reactivity

Arnaud Legout © 2010

199

Choke Algorithm Leecher State

Every 3 rounds (30 seconds)
 An interested and choked peer is selected

at random
• Planned optimistic unchoke

 It will be unchoked later in the algorithm

Arnaud Legout © 2010

200

Choke Algorithm Leecher State

Each time the algorithm is called
 Order the peers interested and not

snubbed according to their download rate
(to the local peer)
• Snubbed

– Did not send a block in the last 30 seconds
– Favor peers that have contributed recently

 Unchoke the 3 fastest peers
 If the planned optimistic unchoke is not

part of the 3 fastest, it is unchoked, DONE

Arnaud Legout © 2010

201

Choke Algorithm Leecher State

Each time the algorithm is called
 If the planned optimistic unchoke is one of

the 3 fastest
• Choose another peer at random

– New planned optimistic unchoke

• If this new planned optimistic unchoke is
interested, unchoke it, DONE

• If this new planned optimistic unchoke is not
interested, unchoke it and chose another
planned optimistic unchoke at random, loop again

Arnaud Legout © 2010

202

Choke Algorithm Leecher State

At most 4 peers can be interested and
unchoked

But, more than 4 peers can be unchoked
 In case an unchoked peer becomes

interested, the choke algorithm is called
immediately

 Improve the reactivity in case there are
few interested peers

Arnaud Legout © 2010

203

Choke Algorithm Seed State

Algorithm RR
Algorithm Called (round)
 Every 10 seconds

In addition algorithm called
 Each time an unchoked and interested peer

leaves the peer set
 Each time an unchoked peer becomes

interested or not interested
Shorten the reactivity

Arnaud Legout © 2010

204

Choke Algorithm Seed State

 Peers unchoked and interested less than 20 seconds
ago or that have pending requests for blocks are
ordered according to the time they were last
unchoked, most recently unchoked peers first
 Peers should be active or recent

 Upload rate discriminate among peers with the same
unchoke time

U1 U2 U3 U1 U2 U1 U2 U3

Last unchoked time: T1<T2<T3

Upload rates: U1>U2>U3

T1 T2 T3

Arnaud Legout © 2010

205

Choke Algorithm Seed State

 All the other peers unchoked and interested are
ordered according to their upload rate, with the
lowest priority

U1 U2 U3 U1 U2 U1 U2 U3 U1 U2 U3 U4

Last unchoked time: T1<T2<T3

Upload rates: U1>U2>U3>U4

T1 T2 T3 Only upload rate

Arnaud Legout © 2010

206

Choke Algorithm Seed State

 For two rounds out of three the three first peers are
kept unchoked, and an additional peer choked and
interested is unchoked at random

 For the third round, the four first peers are kept
unchoked

U1 U2 U3 U1 U2 U1 U2 U3 U1 U2 U3 U4

Last unchoked time: T1<T2<T3

Upload rates: U1>U2>U3>U4

T1 T2 T3 Only upload rate

Arnaud Legout © 2010

207

Maximum Number of Interested
Peers to Unchoke

Default behavior
 A maximum of 4 interested peers to

unchoke in parallel

Depending on the implementations
 Increase this number according to the

upload capacity
• Rational is that the higher your upload capacity

the higher the number of parallel uploads

 Increase this number with a configuration
parameter

Arnaud Legout © 2010

208

Maximum Number of Interested
Peers to Unchoke

No clear evaluation of the benefit to increase
the number of parallel uploads when the
upload capacity is high
 May be beneficial is your upload capacity is larger

than 4 times the mean download capacity of the
peers

• For a mean maximum download speed of 1 Mbit/s your
upload speed must be higher than 4 Mbit/s

• No study on the mean maximum download speed

 Studies on the number of parallel uploads do not
take into account this asymmetry

Arnaud Legout © 2010

209

Peer Selection Code

We study only the leecher state

For the seed state, directly refer to
choker.py, _rechoke_seed()

Arnaud Legout © 2010

210

Peer Selection Code

 Choker.py
 class Choker(object):
 def __init__(self, config, schedule, done = lambda:False):
 schedule(self._round_robin, 10)

 Build connections[]
#maintain the list in a random order
def connection_made(self, connection):
 p = randrange(len(self.connections) + 1)
 self.connections.insert(p, connection)

Arnaud Legout © 2010

211

Peer Selection Code

 Call to _rechoke()
def connection_lost(self, connection):
 self.connections.remove(connection)
 if connection.upload.interested and not

 connection.upload.choked:
 self._rechoke()

def interested(self, connection):
 if not connection.upload.choked:
 self._rechoke()

def not_interested(self, connection):
 if not connection.upload.choked:
 self._rechoke()

Arnaud Legout © 2010

212

Peer Selection Code
 Round and planned optimistic unchoke
def _round_robin(self):
 self.schedule(self._round_robin, 10)
 self.count += 1
 if self.done(): #test if it is a seed
 self._rechoke_seed(True)
 return
 if self.count % 3 == 0: #planned optimistic unchoke
 for i in xrange(len(self.connections)):
 u = self.connections[i].upload
 if u.choked and u.interested:
 #i first in connections[], no optimistic unchoke flag

 self.connections = self.connections[i:] +
 self.connections[:i]

 break
 self._rechoke()

Arnaud Legout © 2010

213

Peer Selection Code

 _rechoke()
def _rechoke(self):
 if self.done(): #test if it is in seed state
 self._rechoke_seed()
 return

 preferred = [] #sorted uploaders, fastest first
 for i in xrange(len(self.connections)):
 c = self.connections[i]
 if c.upload.interested and not

 c.download.is_snubbed():
 preferred.append((-c.download.get_rate(), i))
 preferred.sort()

Arnaud Legout © 2010

214

Peer Selection Code

#SLICING: A[a,b] is inclusive in a, but exclusive in b
#A=(1,2,3,4), A[2:]=(3,4) A[:2]=(1,2)

#prefcount: nb of RU to perform (3 if len(preferred)>2)
prefcount = min(len(preferred), 3)
mask = [0] * len(self.connections)

for _, i in preferred[:prefcount]:
 mask[i] = 1

Arnaud Legout © 2010

215

Peer Selection Code

count = max(1, 2 - prefcount) #nb of OU to perform (2 if prefcount=0)
for i in xrange(len(self.connections)):
 c = self.connections[i]
 u = c.upload
 #RU
 if mask[i]:
 u.unchoke(self.count)
 #OU
 elif count > 0:
 if u.interested:
 count -= 1
 u.unchoke(self.count) #self.count ≠ count
 else:
 u.choke()

Arnaud Legout © 2010

216

Outline

Overview
Content Replication
BitTorrent

 Overview
 Algorithm details
 Evaluation

• Torrent Scale
• Algorithms

 Advanced subjects
Security
Localization

Arnaud Legout © 2010

217

BitTorrent Use Case

BitTorrent is for efficient file
replication

It is not for
 Content localization

• May be hard to find a content

 Content availability
• Torrents can die fast, no incentive to keep a

torrent up

 Both issues are important, but orthogonal

Arnaud Legout © 2010

218

BitTorrent Evaluation Studies

Tracker log analysis [20,21,22]
 Old ones (2003-2004), historical interest

Large scale crawl [42, 43]

Client side instrumentation [18,34,35]

Choke and rarest first algorithm
evaluation
 Simulations [33]

 Experimentation [18,34,35]

Arnaud Legout © 2010

219

Outline

Overview
Content Replication
BitTorrent

 Overview
 Algorithm details
 Evaluation

• Torrent Scale
– Tracker log analysis
– Large scale crawl

• Algorithms

Advanced subjects
Security
Localization

Focus of This Section

Give old but well known and referenced
results on BitTorrent
 Between 2003 and 2004

 Historically interesting

 Shows the famous suprnova infrastructure

Up-to-date results given in next section
 Large BitTorrent crawls

Arnaud Legout © 2010

220

Arnaud Legout © 2010

221

Architecture Availability [20]

What is the availability of architecture
web site/tracker?

Study conducted on Suprnova
 Around 46000 available files (October

2004)

 Discontinued December 2005

Arnaud Legout © 2010

222

Architecture Availability [20]

Suprnova architecture
 Web site is mirrored for load balancing

• 1 200 000 visitors per day (Oct 2004)

 Different servers host the .torrent files
 Different servers are trackers

• Frequent DoS attacks, GB daily bandwidth

Manual moderation
 Very efficient fake detection
 Moderated/unmoderated submitters

Arnaud Legout © 2010

223

Architecture Availability [20]

Dec03-Jan04

Daily cycle

Number of
user depends
on availability

Credit: Pouwelse et al. [20]

Arnaud Legout © 2010

224

Architecture Availability [20]

 1941 trackers
 50% have

average
uptime lower
than 1.5 day

 234 mirrors
 50% have

average
uptime lower
than 2.1 days

 95 .torrent
servers

 Poor
availability

Credit: Pouwelse et al. [20]

Arnaud Legout © 2010

225

Architecture Availability [20]

Centralized component failures impact
availability

Need for decentralized components

But, centralized component made the
strength of Suprnova
 Moderation

 Single interface

Arnaud Legout © 2010

226

Peer Arrival Time

How peers arrive during the torrent
lifetime?

Arnaud Legout © 2010

227

Flash Crowd [20]

  Lord of the
ring III

 1.87GB
Only 1 seed

for 5 days
 Peerping

scripts give
lower number
due to
firewall
issues

 See also [21]

Credit: Pouwelse et al. [20]

Arnaud Legout © 2010

228

Peer Requests With Time [22]

 Trace
collected
from a single
tracker (550
torrents)
during 48
days end of
2003

 Exponential
decrease
with time

Credit: Guo et al. [22]

Arnaud Legout © 2010

229

Peer Arrival Time

Number of peers increases
exponentially during the flash crowd

Number of peers decreases
exponentially after the flash crowd, but
at a slower rate

Arnaud Legout © 2010

230

Peer Availability [20]

How long does a peer stay in seed
state?

Ubisoft PC game ―Beyond Good and Evil‖
 Available using BT in December 10, 2003

 Torrent died on March 11, 2004

 90 155 different peers identified, but only
53 883 can be tracked (firewall problem)

Arnaud Legout © 2010

231

Peer Availability in Seed State [20]

17% have
uptime > 1
hour

3.1% have
uptime > 10
hours

0.34% have
uptime > 100
hours

Credit: Pouwelse et al. [20]

Arnaud Legout © 2010

232

Torrent Lifetime

How long is a torrent alive?
 Can we extrapolate this result to any

torrent?
• All studies on copyrighted contents: high

incentive to do not stay as a seed

• But, even for legal content availability may be
poor as if many contents are downloaded, not all
can be seeded by the peer at the same time

 Torrent availability must be provided by a
dedicated infrastructure

Arnaud Legout © 2010

233

Torrent Lifetime [22]

Most
torrents
between 30
and 300
hours

Mean: 8.89
days

 Trace
collected
from a single
tracker (550
torrents)
during 48
days end of
2003

Credit: Guo et al. [22]

234

Torrent Lifetime [20]

Number of
seeds after
10 days is
not an
accurate
predictor of
the file
lifetime

Credit: Pouwelse et al. [20]

Arnaud Legout © 2010

Torrent Lifetime [20]

Possible reasons
 The initial seed mainly determines the life

time of the torrent
• Therefore, the number of seeds after 10 days

does not bring any information

• Check whether there is still the initial seed?

 One seed mainly determines the life time
of the torrent
• Check how long each seed is a seed

Arnaud Legout © 2010

235

Torrent Lifetime [20]

Possible reasons
 The initial seed might just have sent the

last piece at day 10
• Many seeds are due to leechers completing that

will leave soon

• Need 10 days to seed a content of 1 GB at
9.7kbit/s

Arnaud Legout © 2010

236

Arnaud Legout © 2010

237

Outline

Overview
Content Replication
BitTorrent

 Overview
 Algorithm details
 Evaluation

• Torrent Scale
– Tracker log analysis
– Large scale crawl

• Algorithms

Advanced subjects
Security
Localization

Focus of This Section

Give up-to-date results on BitTorrent
large scale measurements
 [42] from July 2008 to May 2009

 [43] December 2008

Introduce large scale crawl techniques
 Do not need access to tracker logs

• Most trackers do not keep any logs

 Not linked to a specific tracker or site

Arnaud Legout © 2010

238

Large Scale BitTorrent Crawl

Three main components to crawl
 Torrent discovery sites (Mininova,

ThePirateBay, Isohunt,Torrent Reactor,
BTmonster, Torrent Portal, etc.)
• .torrent files, meta information (comments,

uploader, etc.)

 Trackers (ThePirateBay, Mininova, etc.)
• Scrape information, list of (IP,port) per infohash

 Peers
• Contribution (free rider?), upload/download speed

 Arnaud Legout © 2010

239

BitTorrent Ecosystem [42]

Arnaud Legout © 2010

240 Focus of [42] Credit: Zhang et al. [42]

Torrent discovery sites [42]

All sites are web portals

Most sites also provide .torrent files

Some sites also provide a tracker
infrastructure

Much different from the suprnova
infrastructure
 Today sites have a dedicated heavy

infrastructure

Arnaud Legout © 2010

241

Most Popular Torrent
Discovery Sites [42]

Arnaud Legout © 2010

242 Credit: Zhang et al. [42]

Torrent Discovery Sites Crawl
[42]

Torrent discovery sites (Mininova,
ThePirateBay, Torrent Reactor,
BTmonster, Torrent Portal)
 Crawl once the entire site (huge amount of

data)

 Then just get new torrents: all sites have a
new torrent web page from which one can
extract what is new

Arnaud Legout © 2010

243

Torrent Discovery Sites Crawl
[42]

In [42] they crawled 4.6 million unique
infohash on nine months (july 2008-may
2009)
 8.8 million .torrent, but some overlap

(different .torrent file for the same
infohash)

 Only 1.2 million torrents are active
• At least one peer

 Arnaud Legout © 2010

244

New .torrent File per Day [42]

Arnaud Legout © 2010

245

There is currently a
few thousands of
new .torrent files
indexed per day

.torrent are either
crawled (from other
sites) or inserted by
an uploader

Credit: Zhang et al. [42]

Redundancy of Torrent
Discovery Sites [42]

Arnaud Legout © 2010

246

Pairwise
intersection of
active torrents
(at least one peer)
and highly active
torrents (at least
100 peers) shown
in paratheses

Large overlap Credit: Zhang et al. [42]

Uploaders Activity [42]

Arnaud Legout © 2010

247

Uploader: user that inserted the .torrent file in the
torrent discovery site. Identified by its login

Credit: Zhang et al. [42] Credit: Zhang et al. [42]

Trackers Crawl

Reminder: a infohash is known by a
tracker when the tracker URL is in the
.torrent file for this torrent and at
least one peer contacted the tracker
for this torrent
 The tracker don‘t know any information on

the torrent, only its infohash and the peers
(IP, port) currently on that torrent

Arnaud Legout © 2010

248

Trackers Crawl: Scrape

Arnaud Legout © 2010

249

Trackers provide scrape information
 Specific request to the tracker

 (infohash, # seeds, #leechers) for all
infohash hosted by this tracker

 Very large amount of data (several GBytes)

Trackers Crawl: Scrape

Arnaud Legout © 2010

250

Usage of this crawl
 Aggregate statistics per torrent

 Discover infohash not referenced in
torrent discovery sites

 # seed + # leechers used as a stop
criterion for (IP,port) crawls

Trackers Crawl: (IP,port)

Trackers provide all (IP,port) per
torrent
 Trackers return by default at random 50

(IP,port), but they return up to 200
(IP,port) when asked for (set number of
peers wanted to 200 in the request sent to
the tracker)

 For large torrents need to request several
times the tracker

Arnaud Legout © 2010

251

Trackers Crawl: (IP,port)

How to stop a tracker crawl for a
torrent?
 You can capture churn instead of a

snapshot of peers

Stop criteria
 Number of discovered peers equals the

number of peers found with a scrape
request

 No new peer is discovered in two
consecutive requests

 Arnaud Legout © 2010

252

Trackers Crawl: (IP,port)

Usage of this crawl
 Get an accurate picture of peers identified

by (IP,port) for each torrent hosted by the
tracker

 (IP,port) gives
• Geographical information

• AS information

• Follow up with time

Arnaud Legout © 2010

253

Trackers Statistics [42]

38,996 different trackers found in the
in the 8.8 million crawled .torrent files
 Only 728 are active (with at least one

active torrent)

 Most BitTorrent clients (uTorrent, Vuze)
allows to create trackers. Thus, most
trackers are ephemeral

Arnaud Legout © 2010

254

Most Popular Trackers [42]

Arnaud Legout © 2010

255 Credit: Zhang et al. [42]

Most Popular Trackers [42]

 26% (190) of the
trackers track more
than 1000 peers

28% tracks more
than 100 torrents

Arnaud Legout © 2010

256

Credit: Zhang et al. [42]

Tracker Location [42]

 Active tracker: at
least on active
torrent

Highly active
tracker: at least
1000 peers

Sweden has the
largest number of
highly active
trackers
(ThePirateBay)

Arnaud Legout © 2010

257

Credit: Zhang et al. [42]

Number of Trackers per
.torrent [42]

 A large number of
tracker URLs
improves torrent
reliability in case of
tracker failure
 BT Clients test URLs

sequentially until one
works

71% of torrents are
tracked by at least 2
active trackers

Arnaud Legout © 2010

258

Credit: Zhang et al. [42]

Tracker Crawl (IP,port) [42]

Methodology
 Performed on 22 April 2009

 Single snapshot captured on 12 hours

Collected 5 millions unique (IP,port)
 Corresponding to 1 million torrents

Arnaud Legout © 2010

259

How to Uniquely Identify a
Peer in Crawls?

Modern trackers do not return a Peer
ID, but only (IP,port)
Compact mode

 Reduce bandwidth overhead on trackers

NAT and dynamic IP addresses prevent using
an (IP,port) as a unique identifier of a peer

Most popular BT client multiplex all torrents
on a single port chosen at random at client
installation
 Adding the port to IP improves uniqueness

 Arnaud Legout © 2010

260

How to Uniquely Identify a
Peer in Crawls?

For a single snapshot
 (IP,port) is a reasonable unique identifier

 Two peers cannot share the same (IP,port)
at the same time even with NAT and
dynamic IP addresses

 In reality snapshots are not instantaneous
• May take a few hours to capture

Arnaud Legout © 2010

261

How to Uniquely Identify a
Peer in Crawls?

For multiple snapshots
 Two different (IP,port) can be the same

peer at different moment in time

 One (IP,port) can represent two different
peers at different moment in time

 Hard to conclude in that case
• Need clever heuristics

– Content correlation with time

– Statistical analysis of port distribution per IP

 Arnaud Legout © 2010

262

Number of Peers per Torrent
[42]

1% of torrents have
more than 100 peers

82% of the torrents
have less than 10
peers

Arnaud Legout © 2010

263

Heroes TV show
150,000 peers

Credit: Zhang et al. [42] Credit: Zhang et al. [42]

Number of Parallel Torrents
per Peer

 Parallel torrents for
the 12 hours snapshot

Only 4% of peers join
more than 10 torrents
at the same time

Arnaud Legout © 2010

264

Credit: Zhang et al. [42]

Distribution of Peer per
Country

 Diurnal pattern
might bias this
result
 No information of

the start time of the
12 hours period

Arnaud Legout © 2010

265

Credit: Zhang et al. [42]

BitTorrent Clients Popularity

 BT clients popularity for
content sharing

 5 torrents selected at
random with different size
and content type

 BT clients popularity to
create .torrent files

Arnaud Legout © 2010

266

Credit: Zhang et al. [42] Credit: Zhang et al. [42]

Correlation Torrent Age and
Number of Peers

 Torrents are
grouped by periods
of 1 week
 Torrents appearing

the same week are
grouped together

Number of peers
depends on the age
up to 40 weeks

Torrents still alive
after 250 weeks

Arnaud Legout © 2010

267

Credit: Zhang et al. [42]

Torrents Age Distribution

 Legend
 Top 100 torrents

• largest torrents

 Highly active
• More than 100 peers

 Small active
• Lower than 10 peers

Median age
 Top 100: 20 days

 Highly active: 100 days

 Active: 300 days

Arnaud Legout © 2010

268

Credit: Zhang et al. [42]

Conclusion on Crawls

It is very easy to crawl all public
torrents in the Internet
 Privacy issues

Current torrent discovery sites and
trackers do not take any step to solve
those crawling issues
 They want to be crawled for replication and

indexing

Arnaud Legout © 2010

269

Arnaud Legout © 2010

270

Outline

Overview
Content Replication
BitTorrent

 Overview
 Algorithm details
 Evaluation

• Torrent Scale
• Algorithms

Advanced subjects
Security
Localization

Study 1 [18,34]

Arnaud Legout © 2010

272

Why Studying BitTorrent Peer
and Piece Selection?

Implemented in all BitTorrent clients
 Very popular protocol

 Large fraction of the internet traffic

 Focus on efficient data dissemination

Very simple algorithms
 Fast to compute

 Minimal state

 Easy to implement

Arnaud Legout © 2010

273

Why Studying BitTorrent Peer
and Piece Selection?

But, doubts on the efficiency

Rarest first
 Poor pieces diversity (in specific scenarios)

resulting in low efficiency

Proposed solutions
 Source coding: Bullet‘ (Kostic et al.)

 Network coding: Avalanche (Gkantsidis et al.)

Arnaud Legout © 2010

274

Why Studying BitTorrent Peer
and Piece Selection?

Choke algorithm
 Unfair
 Favors free riders

Proposed solutions
 Based on strict byte reciprocation

Do we see the claimed deficiencies in real

torrents?
Study [34], some results come from [18]

Arnaud Legout © 2010

275

Methodology: Experiments

Instrumented a BitTorrent client (mainline
4.0.2)
 In 2009, second most downloaded BT client at

SourceForge (51 millions downloads)
• Azureus was the first one (135 millions downloads),

second most downloaded soft of all time at SourceForge
(emule was the first one with 281 millions downloads)

 Log
• All messages
• Seed state event
• End game mode
• Algorithms internals
• Bandwidth estimators

 Use default parameters (20kB/s upload)

Arnaud Legout © 2010

276

Methodology: Experiments

Connected this client to real torrents
 Single client to be unobtrusive

• No assumption on the other real peers

 Connected to 80 peers selected at random

8 hours experiments per torrent

Arnaud Legout © 2010

277

Methodology: Torrents

Real torrents (26)
 Both free and copyrighted contents

• TV series, movies, live concerts, softwares

 Large variety in the number of seeds and
leechers
• 0 seed, 66 leechers

• 1 seed, 1411 leechers (low seed to leecher ratio)

• 160 seeds, 5 leechers

• 12612 seeds, 7052 leechers

Arnaud Legout © 2010

278

Methodology: Torrents

Arnaud Legout © 2010

279

Methodology: Limitations

Single client instrumentation
 Partial view

 Is it representative?

Unobtrusive, behavior of a new peer

Only real torrents
 No reproducibility

 No statistics

Work on a representative set

Arnaud Legout © 2010

280

Peer Interest

Peer X is interested
in peer Y if peer Y
has at least 1 piece
that peer X does not
have

Arnaud Legout © 2010

281

Peer Availability

Peer availability of Y (according to peer X)

Peer availability=1

 X is always interested in peer Y
Peer availability=0

 X is never interested in peer Y
Peer availability=0.5

 X interested in peer Y half of the time peer Y has
spent in the peer set of peer X

X peer of set peer the in spent Y peer Time

Y peer in interested is X peer Time

Arnaud Legout © 2010

282

Peer Availability

What is the peer availability achieved
by rarest first?

 Peer availability is a characterization
of piece entropy

Arnaud Legout © 2010

283

Ideal Piece Selection

For each peer X the peer availability
of all peers Y (according to X) must
be 1
 How far is rarest first to an ideal piece

selection strategy?

Arnaud Legout © 2010

284

Peer Availability

Local peer always in leecher state
 Case of seeds not relevant for the peer

availability

Local peer point of view
 Cannot conclude on the entire torrent

 But, yet an important result

Arnaud Legout © 2010

285

High peer availability

Low peer availability

Peer Availability

Increasing number of seeds

In
cr

e
as

in
g

pe
e
r

av
ai

la
b
il
it

y

3 to 12612 seeds 0 to 1 seed

20th

50th

80th

Arnaud Legout © 2010

286

Peer Availability

Rare pieces
 Pieces only on the initial seed

Available pieces
 Pieces with at least 2 copies in the torrent

Poor peer availability for some torrents, but
not all, with at most 1 seed
 Torrents in transient state

• Initial seed has not yet sent one copy of each piece (see
next slide)

Peer availability close to one for the others

Arnaud Legout © 2010

287

Deeper Look at Torrent 8

The initial seed has not yet sent one
copy of each piece (transient state)

1 seed, 861 leechers, 863 pieces

36kB/s

Arnaud Legout © 2010

288

Deeper Look at Torrent 8

There is 0 copy for the least replicated
piece for most of the experiment
 There are missing pieces

Continuous increase of the mean number
of copies

Missing pieces served at the constant
rate of 36kB/s
 Likely it is the upload speed of the initial

seed, but no guarantee

Arnaud Legout © 2010

289

Transient State

Torrents with poor peer availability are in
transient state
 The initial seed has not yet sent one copy of each

piece

 Some pieces are rare (only present on the initial
seed)

Rare pieces served at the upload speed of the
seed (constant rate)

Other pieces (available pieces) served with a
capacity of service increasing exponentially

Arnaud Legout © 2010

290

Peer Availability in Transient
State

Reason of the poor peer availability
 Higher probability to have peers with the

same subset of pieces as available pieces
are replicated faster than rare pieces are
injected in the torrent by the seed

 Leecher with all the available pieces are not
interested in any peer, except the initial
seed

Arnaud Legout © 2010

291

Peer Availability in Transient
State

This is a provisioning problem, not a piece
selection problem
 Cannot significantly improve on rarest first as the

bottleneck is the upload speed of the initial seed

Rarest first is an efficient piece selection
strategy on real torrents
 Network coding theoretically optimal in all cases,

but more complex

 Rarest first as efficient as network coding on real
torrents (availability close to 1), but much simpler

• Large peer set (80)

Arnaud Legout © 2010

292

Deeper Look at Torrent 7

The initial seed has already sent one copy of
each piece (steady state)

1 seed, 713 leechers

Arnaud Legout © 2010

293

Deeper Look at Torrent 7

Mean number of copies well bounded by min
and max

Closely follow the evolution of the peer set
size

Min curve closely follow mean but does not
get closer
 Is it a problem of rarest first?

Consistent decrease in the number of rarest
pieces
 Each time a peer leave of join the peer set the

rarest pieces set change

Arnaud Legout © 2010

294

Steady State

Torrents with a high peer availability
are in steady state
 The initial seed has already served one

copy of each piece
• It is no more a bottleneck for the torrent

• There is no rare piece

Arnaud Legout © 2010

295

Peer Availability in Steady State

Rarest first algorithm
 Ensures a good replication of the pieces

 Prevents a return in transient state
• Always replicate rare pieces

Rarest first algorithm is enough to
guarantee a high entropy for torrents in
steady state

Arnaud Legout © 2010

296

Peer Availability: Conclusion

Rarest first is enough to guarantee a
high peer availability on the real
torrents considered
 The poor peer availability for torrents in

transient state cannot be much improved
using network coding because the
bottleneck is the initial seed

Arnaud Legout © 2010

297

Peer Availability: Conclusion

But, this is only a local view and a restricted
number of torrents
 Do not extrapolate those results to any case

• Peer set of 80

• Peers in the Internet: everybody can join everybody
(except in case of NAT/firewall)

• Medium to large contents

• No guarantee that the peer availability is uniform in the
torrent (even if it is likely)

 This is a first step, but it already provides
important results

Arnaud Legout © 2010

298

Last Pieces Problem

Do we observe a last pieces problem?

Arnaud Legout © 2010

299

Last Pieces Problem

Few pieces on some overloaded peers
 Detected at the end of the download

because fast peers are chosen first

 End game mode does not help

Is there a last pieces problem?

Pieces are unit of replication, but blocks
are unit of transmission

Is there a last blocks problem?

Arnaud Legout © 2010

300

Last Pieces Problem: Torrent 10

1 seed, 1207 leechers,
1393 pieces

No last pieces problem
for torrents in steady
state

But, first pieces
problem

Arnaud Legout © 2010

301

Last Blocks Problem: Torrent 10

1 seed, 1207 leechers,
1393 pieces

No last blocks problem
for torrents in steady
state

But, first blocks
problem

Arnaud Legout © 2010

302

Last Pieces or Blocks Problem:
Conclusion

No last pieces or blocks problem
 Appears rarely on torrents in transient

state
• Last pieces on the initial seed only

First blocks problem
 Slow startup phase

 Area of improvement in particular for small
contents

Arnaud Legout © 2010

303

Block Splitting

What is the impact of block splitting on
piece replication?

Arnaud Legout © 2010

304

Piece Intra Arrival Time [18]

Arnaud Legout © 2010

305

Piece Intra Arrival Time [18]

Some pieces have a large piece intra
arrival time
 Pieces downloaded from multiple peers
 Strict priority mitigates the problem

Only complete pieces can be
retransmitted

What is the impact of the piece intra
arrival time on the piece download
speed?

Arnaud Legout © 2010

306

Impact of Block Splitting [18]

Arnaud Legout © 2010

307

Impact of Block Splitting:
Conclusion [18]

Block splitting does not have an impact
of piece download throughput
 Strict priority mitigates successfully the

impact of multi peer piece download

Arnaud Legout © 2010

308

Choke Algorithm

Which fairness is achieved by the choke
algorithm?

Arnaud Legout © 2010

309

Choke algorithm fairness challenged in
several studies
 Does not guarantee strict byte reciprocation

 Based on a short term throughput estimation

Tit-for-tat Fairness
 Peer A can download data from peer B if:

Tit-for-Tat Fairness

(bytes downloaded from B - bytes uploaded to B) < threshold

Arnaud Legout © 2010

310

Tit-for-Tat Fairness

Tit-for-tat fairness problems
 Does not take into account extra capacity

• Seeds cannot evaluate the reciprocation of
leechers

• Leechers may have asymmetric capacity

 May lead to deadlock, as it is complex to
find appropriate thresholds

Need for another notion of fairness

Arnaud Legout © 2010

311

Peer-to-Peer Fairness

Two criteria (inspired from BitTorrent)
 Any leecher i with upload speed Ui should get a lower

download speed than any other leecher j with an
upload speed Uj>Ui

• A leecher must not receive a higher service than any other
leecher that contributes more than himself

• Do not steal capacity if it is used by someone else

• No strict reciprocation

 A seed must give the same service time to each
leecher

• Distribute evenly spare capacity

Arnaud Legout © 2010

312

Peer-to-Peer Fairness

Excess capacity is used
No need to maintain thresholds or

enforce strict reciprocation
Foster reciprocation and penalize free

riders
 Free riders cannot receive a higher capacity

of service than contributing peers
 In case of seeds, the larger the number of

contributing leechers, the lower the amount
of data received by free riders

Arnaud Legout © 2010

313

1-5 6-10 11-15 21-25 26-30 16-20

Fairness of the Choke Algorithm LS

Arnaud Legout © 2010

314

Choke Algorithm: Leecher State

We created 6 sets of 5 remote peers each
 The blue (most left) corresponds to the five peers

that receive the most

 The black (most right) corresponds to the 26 to 30
peers that receive the most

Set created based on upload speed (top
subplot next slide)

Same set kept for the bottom subplot of the
next slide

Arnaud Legout © 2010

315

Fairness of the Choke Algorithm LS

1-5 6-10 11-15 16-20 21-25 26-30

 Good
reciprocation
for torrents in
steady state

 Choke algorithm
biased by poor
peer availability
for torrents in
transient state

Arnaud Legout © 2010

316

Choke Algorithm: Leecher State

Peers that received the most are also
peers that gave the most

For torrents in steady state, the five
best uploaders receive most of the
bytes (stable active peer set)

Torrent 19
 The local peer does not have any leecher in

its peer set

Arnaud Legout © 2010

317

Choke Algorithm: Leecher State

1 seed, 713 leechers,
torrent 7

No correlation
between interested
time and unchoke
duration
 Peers unchoked

based on their
download rate

Arnaud Legout © 2010

318

Leecher State: Torrent 7

Most peers OU, few peers RU a lot of
time

No correlation between RU and the
remote peers interested time

Correlation between OU and remote
peers interested time
 Because OU is random

Choke algorithm in leecher state
converge to an equilibrium

Arnaud Legout © 2010

319

Leecher State: Conclusion

Choke algorithm
 P2P Fair

 Fosters reciprocation

 Select a small subset of peers to upload to

 Leads to an equilibrium

Which kind of equilibrium, efficiency?
 We will answer soon

Arnaud Legout © 2010

320

Choke Algorithm: Seed State

We created 6 sets of 5 remote peers
each
 The blue corresponds to the five peers

that receive the most

 The black corresponds to the 26 to 30
peers that receive the most

Arnaud Legout © 2010

321

Choke Algorithm: Seed State

Arnaud Legout © 2010

322

Choke Algorithm: Seed State

1 seed, 713 leechers,
torrent 7

Correlation between
interested time and
unchoke duration
 Peers more likely to

be unchoked when
they are interested
longer in the seed

Arnaud Legout © 2010

323

Seed State: Torrent 7

Strong correlation between unchokes
(SKU+SRU) and the remote peers
interested time

Choke algorithm in seed state shares
evenly the download capacity of the
seed among leechers

Arnaud Legout © 2010

324

Seed State: Conclusions

Same service time to all the leechers
 Depends on the time spent in the peer set

Benefits
 Entropy improved

• Everybody receives the same amount of pieces

 Free riders cannot receive more than
contributing leechers

 Better resilience of the torrent in the
startup phase

Arnaud Legout © 2010

325

Protocol Overhead

What is the overhead of the BitTorrent
protocol?

Arnaud Legout © 2010

326

Protocol Overhead: Messages
[18]

Arnaud Legout © 2010

327

Protocol Overhead: Bytes [18]

Count the
TCP/IP
header (40
bytes)

Arnaud Legout © 2010

328

Protocol Overhead [18]

We count as overhead the 40 bytes of the
TCP/IP header for each message exchanged plus
the BitTorrent message overhead

We count as payload the bytes received or sent
in a PIECE message without the PIECE message
overhead

Upload overhead
 Ratio of all the sent messages overhead over the total

amount of bytes sent (overhead + payload)
Download overhead

 Ratio of all the received messages overhead over the
total amount of bytes received (overhead + payload)

Arnaud Legout © 2010

329

Protocol Overhead: Conclusions
[18]

2% of overhead for most of the
experiments

Messages that account for most of the
overhead
 HAVE, REQUEST, BITFIELD

Arnaud Legout © 2010

330

Protocol Overhead: Conclusions
[18]

Download overhead
 Peers that stay long in a torrent in seed

state
• Do not receive any payload data anymore

• Continue to receive messages (HAVE,
REQUEST, BITFIELD)

 Increases moderately

 Unavoidable if a peer acts as a seed, which
does not receive anything by definition

Arnaud Legout © 2010

331

Protocol Overhead: Conclusions
[18]

Upload overhead
 Peers that stay few time in a torrent in

seed state or that have a small upload
speed
• Bytes uploaded in seed state reduce the upload

overhead

• But, most of the upload overhead is created in
leecher state: all the HAVE and REQUEST
messages sent in leecher state

Arnaud Legout © 2010

332

BT Algorithms Conclusions

Rarest first guarantees a high peer
availability
 No need for more complex solution in the

monitored torrents
 Transient state is a seed provisioning issue
 No last pieces problem

Choke algorithm is fair and fosters
reciprocation
 Robust to free riders

Rarest first and choke algorithms are enough
on real torrents
 Simple and efficient on real torrents

Arnaud Legout © 2010

333

BT Algorithms Conclusions

Keep in mind the limitations of this
study
 Single client instrumentation

 Limited torrent set

Keep in mind the context
 Torrents in the Internet: good connectivity

 Medium to large contents

Arnaud Legout © 2010

334

Properties of the Choke
Algorithm

We have seen that the choke algorithm in
leecher state leads to an equilibrium
 Questions are what is the efficiency of this

equilibrium and what is the reason of this
equilibrium?

We have just taken the point of view of a
single peer
 Do our results still hold if we take a global point of

view?

We now focus on the choke algorithm

Study 2 [35]

Arnaud Legout © 2010

336

Methodology: Experiments

Instrumentation of around 40 peers on
PlanetLab
 1 single initial seed always connected for

the duration of the experiment
 40 leechers join at the same time (flash

crowd) and leave as soon as they have the
content

 All peers (seed + leechers) use the
instrumented client of study 1

 Content: 113MB, 453 pieces (256kB each)

Arnaud Legout © 2010

337

Methodology: Experiments

Run three types of experiments
 Umax is the maximum upload speed
 Two-class

• 20 leechers with Umax= 20kB/s
• 20 leechers with Umax= 200kB/s

 Three-class
• 13 slow leechers with Umax= 20kB/s

• 14 medium leechers with Umax= 50kB/s

• 13 fast leechers with Umax= 200kB/s

 Uniform
• Uniform max upload distribution with a 5kB/s step

starting from 20kB/s

338

Methodology: Experiments

Seed upload limit
 Three types of experiments

• 200 kB/s, 100 kB/s, and 20 kB/s

No download limitation for leechers

Arnaud Legout © 2010

339

Experiments Rational

Does the choking algorithm
 Converge to an equilibrium?

• Speed and stability

 Provide effective sharing incentives?
• How much do I gain if I contribute

 Reach optimal efficiency?
• How far is it from a 100% upload utilization

What is the impact of the initial seed upload
capacity on those properties ?

Arnaud Legout © 2010

Arnaud Legout © 2010

340

Experiments Rational

Clustering
 Peers with same upload speed should interact
 It may seem clear
 But

• A unchokes B, because B has been uploading fast to A
• B continues uploading fast to A only if A starts uploading

fast to B
• Relationship initiated via an OU unchoke, but OU are

performed at random (no guarantee that A and B will ever
meet)

 To create and preserve clustering
• OU should initiate interactions between peers with similar

upload speeds.
• Such interactions should persist, despite potential

disruptions (OU by others, network bandwidth fluctuations)

341

Metrics

Clustering index (cluster creation)
 Convergence?

Completion time (sharing incentives)
 How does a peer‘s upload speed affects its

download speed?

Upload utilization (efficiency)
 What is the peers‘ upload utilization?

Arnaud Legout © 2010

Arnaud Legout © 2010

342

Fast Seed

What are the choke algorithm
properties with a fast seed?
 Clustering

 Sharing incentive

 Upload utilization

343

Peer Clustering: Fast Seed

seed

 Three-class scenario,
averaged over all 13 runs

 Seed max upload speed:
200kB/s

We see clusters per class
 Two artifacts

 Slow class squares are
darker since peers take
longer to complete

 Peer 27 slower than other
peers in its class (problem
with a PlanetLab node):
Reciprocates mainly with
the slow leechers

20

19

slow medium fast

Peer 27

Arnaud Legout © 2010

Arnaud Legout © 2010

344

Clustering Index

Clustering index of a peer P for class C

IC(P)=1 if P unchoked only peers in class C

IC(P)=0 if P unchoked only peers not in class C

IC(P)=0.3 if P unchoked peers uniformly at
random (with 3 classes)

 i to P of unchokes regular of duration

i to P of unchokes regular of duration

)(

peers alli

C in peersi








PIC

Arnaud Legout © 2010

345

Peer Clustering: Fast Seed

 Three-class scenario,
averaged over all 13
runs

 Seed max upload speed:
200kB/s

 Each peer has a high
clustering index to
peers in its class
 Peers of a specific class

prefer to unchoke peers
in the same class

7 7

90th

10th

Clusters of peers in the same class

Arnaud Legout © 2010

346

Sharing Incentive: Fast Seed

 Three-class scenario, for
all 13 runs

 Seed max upload speed:
200kB/s

 Fast peers complete close
to earliest possible
completion time

 The more you contribute
the faster you complete

Earliest possible completion
time Effective sharing incentive

Arnaud Legout © 2010

347

Upload Utilization: Fast Seed

  Three-class scenario, for
all 13 runs

 Seed max upload speed:
200kB/s

 Each dot is the average
upload utilization over all
peers for a single run

 Upload utilization close to 1
 Room for improvement at the

beginning

High upload utilization

Arnaud Legout © 2010

348

Slow Seed

What are the choke algorithm
properties with a slow seed?
 Clustering

 Sharing incentive

 Upload utilization

Arnaud Legout © 2010

349

 Three-class scenario, averaged over all 8 runs

 Seed max upload speed: 100kB/s

seed

Peer Clustering: Slow Seed

No discernible clusters

Fast peers break all clusters

Arnaud Legout © 2010

350

Peer Clustering: Slow Seed

 Fast peers have poor
peer availability to
other peers
 Fast peers reciprocate

with slower peers (when
fast peers are not
interested in any other
fast peer), thus they
break clusters for
slower peers

Arnaud Legout © 2010

351

Sharing Incentive: Slow Seed

 Three-class scenario,
for all 8 runs

 Seed max upload speed:
100kB/s

Most peers complete
close to the earliest
completion time
 Choking algorithm does

not provide effective
sharing incentive when
the seed is
underprovisioned

 Earliest completion time
longer than with a fast
seed Earliest possible completion

time
No effective sharing incentives

Arnaud Legout © 2010

352

Upload Utilization: Slow Seed

  Three-class scenario,
for all 8 runs

 Seed max upload speed:
100kB/s

 Each dot is the average
upload utilization over
all peers for a single run

 Still fairly high upload
utilization

With an initial seed at
20kB/s the upload
utilization falls to 0.2

Upload utilization depends on seed upload
speed

353

Summary

Seed provisioning is critical to the choking
algorithm‘s effectiveness

Well-provisioned initial seed
 Cluster formation, effective sharing incentive,

good upload utilization

Underprovisioned initial seed
 No clustering, ineffective sharing incentives,

upload utilization can still be high

What is the practical impact of these

results?

Arnaud Legout © 2010

Seed provisioning

It has been known that the initial seed upload
speed is critical to the service capacity of
torrents in their starting phase

We have shown that it is also critical to the
robustness of the torrent to free riders

354

The seed should be at least as fast as the
fastest leechers to support a robust

torrent during the startup phase

Arnaud Legout © 2010

Arnaud Legout © 2010

355

Seed provisioning

The seed should be as fast as the
fastest peers
 Rule of thumb

 How to know the fastest peers?

 Depends on how many fast peers there are

[40] provides a model that confirms
that RU leads to the formation of
clusters

Arnaud Legout © 2010

356

Outline

Overview
Content Replication
BitTorrent

 Overview
 Algorithm details
 Evaluation

• Torrent Scale
• Algorithms

Advanced subjects
Security
Localization

Defeating BitTorrent

357

Arnaud Legout © 2010

358

Defeating BitTorrent: Myth or
Reality

Several studies [36-39] claim that BitTorrent
can be defeated, i.e., free riding is possible

No strong result up to now
 Those studies either consider the FU choke

algorithm in seed state
• The RR choke algorithm render those attacks impossible

 Or they use tricks to improve the upload speed of
free riders

• A contributing peer will always receive a higher service
rate than a free rider, thus the sharing incentive still
exist

Arnaud Legout © 2010

359

Defeating BitTorrent: Myth or
Reality

To really defeat BT, one would need to
find a way for a free rider to receive a
higher service rate than a contributing
peer
 Nobody has found such an attack up to now

BitTorrent Locality [43]

360

11 TCP flows:

What is BitTorrent Locality?

Arnaud Legout © 2010

361

Transit AS

 Stub AS

 Stub AS

 Stub AS

 Stub AS

 Stub AS

Inter-AS link

6

5

3

3

3

1

1

2

1

1

random local

Why do we care?

Why Do We Care?

Content provider save money by using
P2P content distribution
 No need for dedicated infrastructure

ISPs suffer from P2P content
distribution
 Do not take into account ISPs topology and

in particular peering links

 Peering links are expensive and loaded ones

 ISPs block P2P traffic

Arnaud Legout © 2010

362

Why Do We Care?

Content providers need ISPs adoption
of P2P
 Do not create a higher load than classical

client-server or CDN distribution
• Do not overload peering links

 No specific support can be assumed from
the ISPs
• Do not ask for specific servers

• Do not ask for collaboration (disclosing
structure of their network)

Arnaud Legout © 2010

363

1

1

2

1

1

Transit AS

 Stub AS

 Stub AS

 Stub AS

 Stub AS

 Stub AS

1

1

1

1

What Are the Issues?

Arnaud Legout © 2010
364

partition

How far can we push BiTorrent locality?

Transit AS

 Stub AS

 Stub AS

 Stub AS

 Stub AS

 Stub AS

What Are the Issues?

Arnaud Legout © 2010
365

20,000 ASes

Very rare torrents larger than
20,000 peers

What is the reduction of traffic at the
Internet scale?

How far can we push
BitTorrent locality?

366

Methodology

Experiments on a cluster (grid5000)
 1000 peers, 10 ASes, 100MB content

3 scenarios
 Slow seed: all peers upload at 20kB/s

 Fast seed: all peers upload at 20kB/s, the
seed at 100kB/s

 Heterogeneous: 1/3 upload at 20kB/s, 1/3
at 50kB/s, 1/3 at 100kB/s, the seed at
100kB/s

 367
Arnaud Legout © 2010

Locality Policy

For each AS, we limit the number of
TCP connections between peers within
the AS and peers outside the AS
 Locality of X means there are X TCP

connection between peers inside the AS
and peers outside

368
Arnaud Legout © 2010

Overhead on Inter-AS Links

369
of inter-AS TCP connections

O
ve

rh
e
ad

Arnaud Legout © 2010

Peers Slowdown

370
of inter-AS TCP connections

S
lo

w
d
ow

n

Arnaud Legout © 2010

Summary

High overhead reduction is possible
without performance losses

Validated with
 Various torrent sizes (from 100 to 10,000

peers)

 Various AS sizes (from 10 to 5000 peers
per AS)

 Inter-AS bottlenecks

 Churn

371
Arnaud Legout © 2010

What is the traffic reduction
at the Internet scale?

372

Methodology

On mininova we collected on 12 hours
 210k active torrents

 6M unique peers

 Peers spread among 9.6k ASes

 Largest torrents crawled within a few seconds

110k torrents and 6.6k ASes cannot benefit
from locality

373
Arnaud Legout © 2010

Methodology

Run real controlled experiments using
real AS distribution for representative
torrents
 For each torrent, locality savings mainly

depend on the number of peers per AS

We used the average experimental
savings to compute savings on all
torrents

374
Arnaud Legout © 2010

AS Distribution of a Typical
Torrent

375
ASes (log scale)

#
 p

e
e
rs

 (
lo

g
sc

al
e
)

9,844 peers

1,043 ASes

386 peers in biggest AS

458 ASes with 1 peer

Arnaud Legout © 2010

Benefits at the Internet Scale

376

C
um

ul
at

e
d
 i
nt

e
r-

A
S

 t
ra

ff
ic

 (
T

B
)

Torrent ID (sorted by decreasing inter-AS traffic, log scale)

11.6PB

41% savings

56% savings

Arnaud Legout © 2010

Conclusion

How far can we push BitTorrent
locality?
 Up to few inter-AS TCP connections

without performance penalty

What is the traffic reduction at the
Internet scale?
 Up to 41% of all inter-AS traffic: 4.6PB

377
Arnaud Legout © 2010

BitTorrent locality can achieve dramatic
inter-AS savings at the Internet scale without

performance penalty

Important Studies

[45] (T. Karagiannis et al.) Seminal work
that introduces the notion of P2P
locality and shows that it makes sense
(you can reduce traffic)

[46] (H. Xie et al.) Proposition of an
infrastructure called P4P to enable P2P
locality

Arnaud Legout © 2010

378

Important Studies

[47] (D. R. Choffnes et al.)
Implementation of a Vuze plugin called
Ono to implement locality with client
support only

[43] (Le Blond et al.) Experimental
evaluation of the impact of locality of
inter-AS traffic reduction and
BitTorrent users download completion
time

Arnaud Legout © 2010

379

Arnaud Legout © 2010

380

Outline

Overview

Content Replication

BitTorrent

Security
 Foundations

 Privacy attacks

Localization

Arnaud Legout © 2010

381

Foundations

You MUST read [23] [24]
 Small papers (2 and 4 pages only)

 Best examples on how to use mathematics
the simplest and best way

Highly recommended read [51]
 Easy to read

 Book to understand the difference between
theory and practice

Current work
 Tor, Freenet, Publius, OceanStore

Shared Secret

382

How to Share a Secret [23]

Problem
 11 scientists are working on a super secret

project
• They don‘t trust each other

• The project is in a digital safe

 To open the digital safe, at least 6 out of
the 11 scientists must be present

Apply to any problem with a group of
suspicious individuals with conflicting
interests that must cooperate

Arnaud Legout © 2010

383

(k,n) Threshold Scheme

Formal definition of the previous
example: (k,n) threshold scheme

Let D be some secret data
 Lets divide D into n pieces D1,…, Dn such

that
• Knowledge on any k or more Di pieces makes D

easily computable

• Knowledge of any k-1 or fewer Di pieces leaves
D completely undetermined

Very useful when D is a decryption key
Arnaud Legout © 2010

384

Trivial Solution

Let‘s take a simple problem
 11 scientists are working on a secret project

 The project is encrypted

 To decrypt the project at least 6 scientists
have to be present

Trivial solution
 Encrypt the content N times

 Each encryption key is split into 6 fragments

Arnaud Legout © 2010

385

Trivial Solution

How many times the content must be
encrypted?
 Any set of 6 scientists is associated to a

decryption key
• Each scientist of a given set will have a

fragment of a sixth of the key

 The number of keys is the combination of 6
scientists out of 11

• 11
6
=
11!

6! 11−6 !
= 462

Arnaud Legout © 2010

386

Trivial Solution

How many fragment each scientist must
carry
 Any set of 6 scientists must be able to

reconstruct a key, that is, to decrypt the
content

 Each scientist needs a different fragment to
reconstruct each key with 5 other scientists
chosen among 10 (that is 11 minus himself)

• 10
5
=
10!

5! 10−5 !
= 252

Arnaud Legout © 2010

387

Trivial Solution

Trivial solution is impractical
 For only 11 scientists and 6 out of 11 able to

decrypt the content
• 462 keys, i.e., 462 encryptions of the content

• 252 key fragments per scientist

Arnaud Legout © 2010

388

Shamir‘s (k,n) Threshold
Scheme

Basic idea
 A polynomial of degree k-1 is uniquely

defined by k points
• 2 points for a line, 3 points for a parabola, 4

points for a cubic curve, etc.

 With k-1 points only there is an infinity of
k polynomial that can cross those points
• So you need at least k points to find the

polynomial equation g(x) using Lagrange
interpolation

• The secret is g(0)
Arnaud Legout © 2010

389

Implementation on Galois Field

All the arithmetic is modular arithmetic
on Galois field (finite field)
 Mandatory to provide perfect secrecy, that

is k-1 pieces do not give any information on
the secret under a (k,n) threshold scheme

 The set of integers modulo a prime number
p forms a field in which interpolation is
possible

Arnaud Legout © 2010

390

Implementation (k,n)
Threshold Scheme

Create the n fragments
 Let D be your secret (D is an integer

without loss of generality)

 Choose a prime p > max(D,n)

 g(x) is a random polynomial of degree k-1 so
that g(x)= 𝑎𝑖𝑥

𝑖𝑘−1
𝑖=0

• a0=D, and ai, i∈{1,…,k-1} are chosen with a uniform
distribution on [0,p[

Arnaud Legout © 2010

391

𝑔 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑘−1𝑥

𝑘−1

Secret D Random

Implementation (k,n)
Threshold Scheme

Create the n fragments
 Compute

• D1=g(1) mod p, D2=g(2) mod p, …, Dn=g(n) mod p

 Distribute the tuples (i,Di)

Arnaud Legout © 2010

392

Implementation (k,n)
Threshold Scheme

Retrieve D based on k fragments (xi,Di)
 Use Lagrange polynomial interpolation to

reconstruct the polynomial
• g(0) = D is the secret

Arnaud Legout © 2010

393

𝑔 0 = 𝐷𝑖
−𝑥𝑗

𝑥𝑖 − 𝑥𝑗

𝑘

𝑗=0,𝑗≠𝑖

𝑘

𝑖=0

Example for (k=3,n=5)

The secret is D=148

Let‘s take
 p=997 (prime), a1=59 (random), a2=340(random)

 g(x)=148 + 59x + 340x2

We compute 5 fragments
 D1 = g(1) mod 997= 547

 D2 = g(2) mod 997 = 1626 mod 997 = 629

 D3 = g(3) mod 997 = 3385 mod 997 = 394

 D4 = g(4) mod 997 = 5824 mod 997 = 839

 D5 = g(5) mod 997 = 8943 mod 997 = 967

Arnaud Legout © 2010

394

Example for (k=3,n=5)

We give to each user a fragment among
 (1,547), (2,629), (3,394), (4,839), (5,967)

Assume users with fragments 1,3,4 want
to reconstruct the secret
 They compute g(0)

𝑔 0 = 547
−3

1 − 3

−4

1 − 4
+ 394

−1

3 − 1

−4

3 − 4
+ 839

1

4 − 1

3

4 − 3

𝑔 0 = 547 ∗ 2 − 394 ∗ 2 + 839 = 1145
𝑔 0 𝑚𝑜𝑑 997 = 148

Arnaud Legout © 2010

395

Properties of Shamir‘s Scheme

The size of each fragment does not exceed the
size of the secret (if p is the same size order
as the secret)

New fragments can be generated at any time
without affecting existing ones

All fragments can be changed without changing
the secret by generating a new polynomial

Arnaud Legout © 2010

396

Properties of Shamir‘s Scheme

Possibility of hierarchical schemes by
giving a different number of fragments
depending on roles (e.g., president 3
fragments, executives 1 fragment)

No unproven assumptions (unlike
cryptographic or hash protocols)

Arnaud Legout © 2010

397

Untraceable Message

398

Chaum-net [24]

Chaum-net = mix-net
 Basis for onion routing

Problem
 Alice wants to send a message M to Bob

• Assume an unsecure communication network

• Nobody knows who is the sender (even Bob)

• Nobody knows who is the receiver (except Alice)

• Nobody, except Bob, is able to get M

Arnaud Legout © 2010

399

Notations

Assume a public key cryptosystem (e.g.,
RSA)
 M is a message

 K is a public key, K-1 is the corresponding
private key

 K(K-1(M)) = K-1(K(M)) = M

Arnaud Legout © 2010

400

Sealed Message

A message M is sealed with public key K
if only the holder of K-1 can retrieve M

K(M) is not sealed because anyone can
verify the guess K(N) = K(M)

• Keep in mind that M might be easy to guess due
to its semantic

• The attacker might know M and just want to
find who is sending it

Arnaud Legout © 2010

401

Sealed Message

Solution
 Create a large random string R (e.g., 256 bits

large)

 Append R to the message M: R,M

 The sealed message is K(R,M)
• As R is a large random string, not practical to

guess R,M

 Once Bob get K(R,M)
• Compute K-1 (K(R,M)) = R,M

• Remove R (easy if R is fixed length)

Arnaud Legout © 2010

402

Mix

A mix is a machine
 Might be a dedicated machine, a router, an

end-user in an overlay

Mix purpose
 Hide correspondences between incoming

and outgoing messages
• Not possible to map a source and an outgoing

message (apart for the mix)

• No possible to map a receiver and an incoming
message (apart for the mix)

Arnaud Legout © 2010

403

Trust in Mix

But, the mix can make the
correspondence between incoming and
outgoing messages
 If the mix compromised

• Possible to know the sender and receiver for
each message

• But, impossible to find what is the message

Arnaud Legout © 2010

404

Trust in Mix

Use a cascade of mixes
 A single mix in the cascade is enough to

hide correspondences between incoming and
outgoing messages

 Work with a partially trusted set of mixes
• As long as one mix in the cascade can be trusted

• Or, as long as all untrusted mixes in the cascade
do not cooperate

Arnaud Legout © 2010

405

Cascade of Mixes

No guarantee that it works
 Increasing the number of mixes in the

cascade
• Increases the confidence

• But, increases the end-to-end delay

Tor uses at least 3 mixes selected at random
(see [50] for details)

 Called a Circuit
• Periodically select new random mixes to form a

new circuit

Arnaud Legout © 2010

406

Goal of Chaum-net

Arnaud Legout © 2010

407

Send sealed messages from
Alice to Bob through a

cascade of mixes

How It Works?

Assume an overlay of end-users
 Each end-user has a couple of private and

public keys
• We note the public key KA for end-user A

 The public keys and the address of owners
are publicly available
• (KA,IPA) for each end-user A

• In a central repository, using a distributed
storage, etc.

Arnaud Legout © 2010

408

How It Works?

Alice wants to send the message M to
Bob
 Any other end-user may act as a mix

 Alice selects at random a few end-users
• Get their public key and address

• Typically select 3 mixes

Arnaud Legout © 2010

409

How to Send the Message?

The path is A -> B -> C -> Bob
 Create layered (onion) sealed messages

from Bob to A

Arnaud Legout © 2010

410

Alice Bob A B C

How to Send the Message?

Arnaud Legout © 2010

411

Alice Bob A B C

 KBob(R0,M)

Bob

How to Send the Message?

Arnaud Legout © 2010

412

 KC(Bob,R1,KBob(R0,M))

Bob
C

Next hop address

Alice Bob A B C

How to Send the Message?

Arnaud Legout © 2010

413

 KB(C,R2,KC(Bob,R1,KBob(R0,M)))

Bob
C

B

Next hop address

Alice Bob A B C

How to Send the Message?

Arnaud Legout © 2010

414

KA(B,R3,KB(C,R2,KC(Bob,R1,KBob(R0,M))))

Bob
C

B
A

Next hop address

Alice Bob A B C

KA(B,R3,KB(C,R2,KC(Bob,R1,KBob(R0,M)))) B,R3,KB(C,R2,KC(Bob,R1,KBob(R0,M)))

How to Relay the Message?

Arnaud Legout © 2010

415

Alice Bob A B C

Next Hop

 KB(C,R2,KC(Bob,R1,KBob(R0,M))) C,R2,KC(Bob,R1,KBob(R0,M))

How to Relay the Message?

Arnaud Legout © 2010

416

Alice Bob A B C

Next Hop

 KC(Bob,R1,KBob(R0,M)) Bob,R1,KBob(R0,M)

How to Relay the Message?

Arnaud Legout © 2010

417

Alice Bob A B C

Next Hop

 KBob(R0,M) M

How to Relay the Message?

Arnaud Legout © 2010

418

Alice Bob A B C

From Theory To Practice

Attacks still possible
 Timing

• Correlate when packets are received and sent at
each mix

• Can be solved using batches

 Active end-users
• Possible to know who is sending and who is

receiving

• Can be solved with padding, but highly costly

 Read [24] and [50]

Arnaud Legout © 2010

419

Arnaud Legout © 2010

420

Outline

Overview

Content Replication

BitTorrent

Security
 Foundations

 Privacy attacks

Localization

Privacy: Who (Really) Cares?

Privacy has an ambivalent status
 Law/states fails to protect privacy of

users in the internet
• It is on a per-country basis, but the internet is

worldwide

 Users spread personal information all over
the internet
• Anonymizing IP addresses is ineffective

• Extremely complex to preserve privacy

421
Arnaud Legout © 2010

Why Should I Care?

―I do nothing illegal‖
 Where?

 No problem to publish all your browsing
history of the past 2 years?

―I do not leave any personal information‖
 Are you using Google?

―I don‘t have any immoral activities‖
 Morality is vastly different from countries to

countries
• Facebook breast-feeding vs. racism

422
Arnaud Legout © 2010

Privacy: Why Is It So Complex?

Privacy is no more a protocol or system
issue only

Protocols and systems interact in many
complex ways
 Might be closed systems (facebook, google,

skype, etc.)

 Might have many implementation flavors
(BitTorrent, HTML, etc.)

423
Arnaud Legout © 2010

Spying the World From Your
Laptop [52]

424

Why BitTorrent?

BitTorrent widely popular
 Several 10M of users at any moment in time

 Several 100M of users cumulated over
months

BitTorrent most efficient P2P protocol
 The only one candidate for legal P2P delivery

425

What is the privacy implication of
BitTorrent usage?

Arnaud Legout © 2010

Alice in wonderland

BitTorrent Overview
Web server

Tracker

Get a .torrent file that
contains the address of

the tracker

random peer set

Alice in wonderland

426
Arnaud Legout © 2010

BitTorrent Overview

Who inserts contents?

Who is downloading what?

427
Arnaud Legout © 2010

Why Is It Hard?

No way to get this information directly
 Very good engineering of the

implementations

 Many blacklisting policies

Need to correlate many different
sources of information
 Deep understanding of protocols and

implementations
• Experiments and measurements

 428
Arnaud Legout © 2010

Why Is It Hard?

Design goal
 Data collection without dedicated

infrastructure and without being blacklisted

High volume of data
 148M IP addresses * 1.2M contents

• 2000M downloads

• 3TB of storage on a NAS

 3.6exabytes exchanged

429

Challenge in collecting and analyzing
the data

Arnaud Legout © 2010

Who inserts contents?

430
Arnaud Legout © 2010

State of the Art

BitTorrent
 Introduction in 2000

 Half of the Internet traffic in 2004

Nobody ever looked at content providers
 Believed to be impossible

• Initial private phase for torrents

• Content providers lies on their status

431
Arnaud Legout © 2010

Join torrents within its first minute
 After announcement on TPB web site

 If we are alone with another peer
It is the initial seed

Fails for most interesting torrents

Method: First Minute

432
Arnaud Legout © 2010

Method: Correlation

433
Arnaud Legout © 2010

First Minute

55%

Correlation

15%

Unknown

30%

Success of the Method

434

Most
interesting
torrents

70%

Arnaud Legout © 2010

Who is downloading what?

435
Arnaud Legout © 2010

Method

Retrieved continuously IP addresses of
most BitTorrent peers
 For 103 days, every two hours

• 700 000 torrents per snapshot

• 5M to 10M IP addresses

148M IP addresses in 1.2M torrents
downloading 2000M of contents

Analysis of such a large amount of data
is complex

436
Arnaud Legout © 2010

How To Identify Heavy
Downloaders?

Lets take top 10,000 IP addresses
 Subscribed to at least 1636 contents

437

Do we find the heavy downloaders?

Arnaud Legout © 2010

Who Are These Peers?

438
Number of ports

N
um

b
e
r

of
 C

on
te

nt
s Spying

infrastructures

Middleboxes

Arnaud Legout © 2010

Arnaud Legout © 2010

439

Outline

Overview

Content Replication

BitTorrent

Security

Localization

Arnaud Legout © 2010

440

Localization

To read
 Chord[25]

 Impact of DHT routing geometry [29]

Interesting read (because well known)
 Kademlia[27]: used in BitTorrent and Emule

 Pastry[26]

 CAN[28]

Thank you for attending this
course

Arnaud Legout © 2010

442

Sources of this Presentation
Note: References in bold are highly recommended reads.

 [1] Cache Logic http://www.cachelogic.com/research/
 [2] Keith W. Ross and Dan Rubenstein ―P2P Systems‖. Infocom 2004 tutorial.

http://cis.poly.edu/~ross/tutorials/P2PtutorialInfocom.pdf
 [3] S. Sen and Jia Wang ―Analysing peer-to-peer traffic across large networks‖. ACM SIGCOMM‘02
 [4] T. Karagiannis, A. Broido, M. Faloutsos, Kc Claffy ―Transport Layer Identification of P2P Traffic‖. ACM

IMC‘04
 [5] X. Yang and G. de Veciana “Service Capacity of Peer to Peer Networks”. IEEE Infocom’04
 [6] D. Qiu and R. Srikant “Modeling and Performance Analysis of BitTorrent-Like Peer-to-Peer

Networks”. ACM SIGCOMM’04
 [7] J. H. Saltzer, D. P. Reed, and D. D. Clark “End-to-end arguments in system design”. ACM

Transactions on Computer Systems 2, 4 (November 1984) pages 277-288
 [8] P. Rodriguez, E. W. Biersack “Dynamic Parallel Access to Replicated Content in the Internet”.

IEEE/ACM Transactions on Networking, August 2002 (Also in IEEE/Infocom 2000)
 [9] E. W. Biersack, P. Rodriguez, P. Felber ―Performance Analysis of Peer-to-Peer Networks for File

Distribution‖. Research Report RR-04-108. April 2004.
 [10] P. A. Felber and E. W. Biersack. Self-scaling Networks for Content Distributions. In Ozalp Babaoglu

et~al., editors, Self-Star Properties in Complex Information Systems, volume 3460 of Lecture Notes in
Computer Science. Springer-Verlag, 2005.

 [11] E. K. Lua et al. ―A Survey and Comparison of Peer-to-Peer Overlay Network Schemes‖, IEEE
Communications survey and tutorial, March 2004.

 [12] Jian Liang, Rakesh Kumar, Keith Ross,‖The KaZaA Overlay: A Measurement Study‖, Computer Networks
(Special Issue on Overlays), to appear.

 [13] Y. Kulbak, D. Bickson ―The eMule Protocol Specification‖ January 2005
 [14] C. Gkantsidis, P. Rodriguez ―Network Coding for Large Scale Content Distribution‖

http://www.cachelogic.com/research/
http://cis.poly.edu/~ross/tutorials/P2PtutorialInfocom.pdf

Arnaud Legout © 2010

443

Sources of this Presentation
Note: References in bold are highly recommended reads.

 [15] Dejan Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat ―Bullet: High Bandwidth Data Dissemination

Using an Overlay Mesh‖ SOSP‘03, October 2003.
 [16] T. Klingberg, R. Manfredi , ―Gnutella Protocol Development v0.6‖, June 2002
 [17] T. Klingberg, ―Partial File Sharing Protocol‖, August 2002
 [18] A. Legout, G. Urvoy-Keller, and P. Michiardi. ‗‘Understanding BitTorrent: An Experimental Perspective‘‘.

Technical Report (inria-00000156, version 3 - 9 November 2005), INRIA, Sophia Antipolis, November
2005.

 [18] BitTorrent Protocol Specification v1.0. http://wiki.theory.org/BitTorrentSpecification
 [19] Bram Cohen, “Incentives Build Robustness in BitTorrent”, May 2003
 [20] J.A Pouwelse et al., ―The BitTorrent P2P File-Sharing System: Measurements and Analysis‖, IPTPS

2005
 [21] M. Izal et al., ―Dissecting BitTorrent: Five Months in a Torrent‘s Lifetime‖, PAM 2004
 [22] L. Guo et al., ‖Measurements, Analysis, and Modeling of BitTorrent-like Systems‖ IMC 2005
 [23] Shamir “How to Share a Secret” Communications of the ACM, 1979
 [24] D. L. Chaum “Untraceable Electronic Mail, Return Addresses and Digital Pseudonyms”

Communications of the ACM, 1981
 [25]Stoica et al. “Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications” ACM

SIGCOMM’01
 [26]Rowstron and Druschel ―Pastry: Scalable, decentralized object location and routing for large-scale

peer-to-peer systems‖
 [27] Maymounkov and Mazières ―Kademlia: A peer-to-peer Information System Based on the XOR Metric‖
 [28] Ratnasamy et al. ―A Scalable Content-Addressable Network‖, SIGCOMM‘01
 [29] Gummadi et al. “The Impact of DHT Routing Geometry on Resilience Proximity”

http://wiki.theory.org/BitTorrentSpecification

Arnaud Legout © 2010

444

Sources of this Presentation
Note: References in bold are highly recommended reads.

 [30] C. Fragouli, J.-Y. Le Boudec and J. Widmer ―Network Coding: An Instant Primer‖. ACM Sigcomm
Computer Communication Review, Vol. 36, Nr. 1, pp. 63-68, 2006.

 [31] C. Gkantsidis, J. Miller, P. Rodriguez "Comprehensive view of a Live Network Coding P2P system―. ACM
SIGCOMM/USENIX IMC'06, Brasil. Oct 2006.

 [32] C. Gkantsidis, P. Rodriguez "Cooperative Security for Network Coding File Distribution―.
IEEE/INFOCOM'06, Barcelona, April 2006.

 [33] A. R. Bharambe, C. Herley, and V. N. Padmanabhan "Analyzing and Improving a BitTorrent Network‘s
Performance Mechanisms". In Proc. of Infocom‘06, Barcelona, Spain, April 2006.

 [34] A. Legout, G. Urvoy-Keller, and P. Michiardi “Rarest First and Choke Algorithms Are Enough”.
In Proc. of ACM SIGCOMM/USENIX IMC'2006, Rio de Janeiro, Brazil, October 2006.

 [35] A. Legout, N. Liogkas, E. Kohler, and L. Zhang “Clustering and Sharing Incentives in BitTorrent
Systems”. Technical Report (inria-00112066, version 1 - 21 November 2006), INRIA, Sophia
Antipolis, November 2006.

 [36] S. Jun and M. Ahamad."Incentives in BitTorrent Induce Free Riding". In Proc. of the Workshop on
Economics of Peer-to-Peer Systems (P2PEcon‘05), Philadelphia, PA, August 2005.

 [37] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. "Exploiting Bittorrent For Fun (But Not Profit)". In Proc.
of IPTPS‘06, Santa Barbara, CA, February 2006.

 [38] T. Locher, P. Moor, S. Schmid, and R.Wattenhofer. "Free Riding in BitTorrent is Cheap." In Proc. of
HotNets-V, Irvine, CA, November 2006.

 [39] J. Shneidman, D. Parkes, and L. Massoulie. "Faithfulness in Internet Algorithms". In Proc. of
theWorkshop on Practice and Theory of Incentives and Game Theory in Networked Systems (PINS‘04),
Portland, OR, September 2004.

 [40] B Fan, DM chiu and JCS Lui, "The Delicate Tradeoff of BitTorrent-like File Sharing Protocol Design",
IEEE ICNP 2006

Arnaud Legout © 2010

445

Sources of this Presentation
Note: References in bold are highly recommended reads.

 [41] Kenjiro Cho, Kensuke Fukuda, Hiroshi Esaki,Akira Kato ―Observing Slow Crustal Movement in
Residential User Traffic‖. CoNext‘2008, December 2008.

 [42] C. Zhang, P. Dunghel, D. Wu, K.W. Ross, ―Unraveling the BitTorrent Ecosystem‖. To appear in IEEE
Transactions on Parallel and Distributed Systems.

 [43] Stevens Le Blond, Arnaud Legout, Walid Dabbous. ―Pushing BitTorrent Locality to the Limit‖. Computer
Networks, October 2010, ISSN 1389-1286, DOI: 10.1016/j.comnet.2010.09.014.

 [44] Anwar Al Hamra, Nikitas Liogkas, Arnaud Legout, Chadi Barakat. ―Swarming Overlay Construction
Strategies‖. In Proc. of ICCCN'2009, August 2--6, 2009, San Francisco, CA, USA.

 [45] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. ―Should internet service providers fear peer-assisted
content distribution?‖ In Proc. of IMC'05, Berkeley, CA, USA, October 2005.

 [46] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz. ―P4p: Provider portal for applications.‖
In Proc. of ACM SIGCOMM, Seattle, WA, USA, August 2008.

 [47] D. R. Choffnes and F. E. Bustamante. ―Taming the torrent: A practical approach to reducing cross-isp
traffic in p2p systems.‖ In Proc. of ACM SIGCOMM, Seattle, WA, USA, August 2008.

 [48] The BitTorrent Protocol Specification, BEP 3, http://www.bittorrent.org/beps/bep_0003.html

 [49] Peer ID Conventions , BEP 20, http://www.bittorrent.org/beps/bep_0020.html

 [50] R. Dingledine, N. Mathewson, P. Syverson. ―Tor: The Second-Generation Onion Router.‖ In proc. of
Usenix Security‘2004, San Diego, CA, USA, August 2004.

 [51] Niels Ferguson, Bruce Schneier, Tadayoshi Kohno. ―Cryptography Engineering.‖ 2010, Wiley.

 [52] Stevens Le Blond, Arnaud Legout, Fabrice Lefessant, Walid Dabbous, Mohamed Ali Kaafar. ―Spying the
World from your Laptop - Identifying and Profiling Content Providers and Big Downloaders in BitTorrent.‖
In Proc. of LEET'10, April 27, 2010, San Jose, CA, USA.

http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0020.html

Internet Timeline

From 1962 to 1991

446

Disclaimer: I found this timeline long ago, but I
don‘t remember where. If you did it and want to
be credited for it, send me an email.

447

Internet Timeline

1962 Kleinrock thesis describes underlying
principles of packet-switching technology

1966 ARPANET project
 Larry Roberts of MIT‘s Lincoln Lab is hired to

manage the ARPANET project.
 ARPA computer network, a packet-switched

network with minicomputers acting as gateways for
each node using a standard interface.

1967 Packet switching
 Donald Davies, of the National Physical Laboratory

in Middlesex, England, coins the term packet
switching to describe the lab‘s experimental data
transmission.

448

Internet Timeline

 1968 Interface message processors
 Bolt Beranek and Newman, Inc. (BBN) wins a DARPA contract

to develop the packet switches called interface message
processors (IMPs).

 1969 DARPA deploys the IMPs
 First transmission between UCLA and Stanford: ―lo‖

 1970 Initial ARPANET host-to-host protocol
 Network Working Group (NWG), formed at UCLA by Steve

Crocker, deploys the initial ARPANET host-to-host protocol,
called the Network Control Protocol (NCP). The primary
function of the NCP is to establish connections, break
connections, switch connections, and control flow over the
ARPANET, which grows at the rate of one new node per
month.

449

Internet Timeline

 1972 First e-mail program
 Ray Tomlinson at BBN writes the first e-mail program to send

messages across the ARPANET. In sending the first message to
himself to test it out, he uses the @ sign—the first time it appears
in an e-mail address.

 1972 First public demonstration of the new network
technology
 Robert Kahn at BBN, who is responsible for the ARPANET‘s system

design, organizes the first public demonstration of the new network
technology at the International Conference on Computer
Communications in Washington, D.C., linking 40 machines and a
Terminal Interface Processor to the ARPANET.

 1973 Paper describes basic design of the Internet and TCP
 Robert Kahn and Vinton Cerf, "A Protocol for Packet Network

Interconnection" in IEEE Transactions on Communications.
 1974 F.F. Kuo ―ALOHA System‖, January 1974

450

Internet Timeline

 1976 TCP/IP incorporated in Berkeley Unix
 1977 Demonstration of independent networks to communicate

 Cerf and Kahn organize a demonstration of the ability of three
independent networks to communicate with each other using TCP
protocol.

 1981 TCP/IP standard adopted
 Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.
 Postel, J., "Transmission Control Protocol", STD 7, RFC 793,

September 1981.
 1982 ARPANET hosts convert to new TCP/IP protocols

 All hosts connected to ARPANET are required to convert to the
new TCP/IP protocols by January 1, 1983. The interconnected
TCP/IP networks are generally known as the Internet.

451

Internet Timeline

 1983 UNIX scientific workstation introduced
 Sun Microsystems introduces its UNIX scientific

workstation. TCP/IP, now known as the Internet protocol
suite, is included, initiating broad diffusion of the Internet
into the scientific and engineering research communities

 1983 The Internet
 ARPANET, and all networks attached to it, officially adopts

the TCP/IP networking protocol. From now on, all networks
that use TCP/IP are collectively known as the Internet. The
number of Internet sites and users grow exponentially

 1984 Advent of Domain Name Service. Developed
by Paul Mockapetris and Craig Partridge

 1984 J. H. Saltzer, D. P. Reed, and D. D. Clark ―End-
to-end arguments in system design‖ ACM
Transactions on Computer Systems, November 1984

452

Internet Timeline

 1984 John Nagle ―Congestion Control in IP/TCP
Internetworks‖ October 1984

October 1986 First Congestion Collapse
 From 32 Kbps to 40 bps

 1988 Van Jacobson ―Congestion Avoidance and
Control‖ SIGCOMM‘88, August 1988

 1991 World Wide Web software developed
 CERN releases the World Wide Web software developed

earlier by Tim Berners-Lee. Specifications for HTML
(hypertext markup language), URL (uniform resource
locator), and HTTP (hypertext transfer protocol) launch a
new era for content distribution.

