
HAL Id: cel-00573970
https://cel.hal.science/cel-00573970v15

Submitted on 25 Mar 2020 (v15), last revised 2 Jun 2022 (v16)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient C++ finite element computing with Rheolef
Pierre Saramito

To cite this version:
Pierre Saramito. Efficient C++ finite element computing with Rheolef. Master. Grenoble, France,
France. 2020, pp.259. �cel-00573970v15�

https://cel.hal.science/cel-00573970v15
https://hal.archives-ouvertes.fr

Efficient C++ finite element

computing with Rheolef

Pierre Saramito

version 7.1 update 22 March 2020

Re = 10 000

Bi = 0.5 We = 0.7

Copyright (c) 2003-2018 Pierre Saramito

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled ”GNU Free Documentation License”.

Introduction

Rheolef is a programming environment for finite element method computing. The reader is as-
sumed to be familiar with (i) the c++ programming language and (ii) the finite element method.

As a Lego game, the Rheolef bricks allow the user to solve most problems, from simple to complex
multi-physics ones, in few lines of code. The concision and readability of codes written with
Rheolef is certainly a major keypoint of this environment. Here is an example of a Rheolef code
for solving the Poisson problem with homogeneous boundary conditions:

Xh.block ("boundary");

space Xh (omega, argv[2]);

geo omega (argv[1]);

environment rheolef (argc, argv);

int main (int argc, char** argv) {

field uh (Xh);

uh ["boundary"] = 0;

problem p (a);

p.solve (lh, uh);

dout ≪ uh;

}

field lh = integrate (v);

trial u (Xh); test v (Xh);

Example: find u such that −∆u = 1 in Ω and u = 0 on ∂Ω

form a = integrate (dot(grad(u),grad(v)));

Let Ω ⊂ R
N , N = 1, 2, 3

Xh = {v ∈ H1(Ω); v|K ∈ Pk, ∀K ∈ Th}

Vh = Xh ∩H1
0 (Ω)

a(u, v) =

∫
Ω

∇u.∇v dx

(P) : find uh ∈ Vh such that

a(uh, vh) = l(vh), ∀vh ∈ Vh

l(v) =

∫
Ω

v dx

The right column shows the one-to-one line correspondence between the code and the

variational formulation. Let us quote Stroustrup [2002], the conceptor of the c++ language:

”The time taken to write a program is at best roughly proportional to the number of

lines written, and so is the number of errors in that code. If follows that a good way
of writing correct programs is to write short programs. In other words, we need good
libraries to allow us to write correct code that performs well. This in turn means that
we need libraries to get our programs finished in a reasonable time. In many fields,
such c++ libraries exist.”

Rheolef is an attempt to provide such a library in the field of finite element methods for partial
differential equations. Rheolef provides both a c++ library and a set of unix commands for shell
programming, providing data structures and algorithms [Wirth, 1985].

• Data structures fit the variational formulation concept: field, bilinear form and functional
space, are c++ types for variables. They can be combined in algebraic expressions, as you
write it on the paper.

• Algorithms refer to the most up-to-date ones: direct an iterative sparse matrix solvers for
linear systems. They supports efficient distributed memory and parallel computations. Non-
linear c++ generic algorithms such as fixed point, damped Newton and continuation methods
are also provided.

General high order piecewise polynomial finite element approximations are implemented, together
with some mixed combinations for Stokes and incompressible elasticity. The characteristic method
can be used for diffusion-convection problems while hyperbolic systems can be discretized by the
discontinuous Galerkin method.

4 Rheolef version 7.1 update 22 March 2020

Contacts

email Pierre.Saramito@imag.fr

home page http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef

Please send all patches, comments and bug reports by mail to

rheolef@grenet.fr

mailto:Pierre.Saramito@imag.fr
http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef
mailto:rheolef@grenet.fr

Contents

Notations 8

1 Getting started 11

1.1 The model problem . 11

1.1.1 Problem statement . 12

1.1.2 Approximation . 12

1.1.3 Comments . 13

1.1.4 How to compile the code . 14

1.1.5 How to run the program . 15

1.1.6 Advanced and stereo visualization . 15

1.1.7 High-order finite element methods . 17

1.1.8 Tridimensional computations . 17

1.1.9 Quadrangles, prisms and hexahedra . 18

1.1.10 Direct versus iterative solvers . 18

1.1.11 Distributed and parallel runs . 20

1.1.12 Non-homogeneous Dirichlet conditions . 22

1.2 Non-homogeneous Neumann boundary conditions for the Helmholtz operator . . . 30

1.3 The Robin boundary conditions . 32

1.4 Neumann boundary conditions for the Laplace operator 33

1.5 Non-constant coefficients and multi-regions . 35

2 Fluids and solids computations 41

2.1 The linear elasticity and the Stokes problems . 41

2.1.1 The linear elasticity problem . 41

2.1.2 Computing the stress tensor . 45

2.1.3 Mesh adaptation . 48

2.1.4 The Stokes problem . 51

2.1.5 Computing the vorticity . 55

2.1.6 Computing the stream function . 56

2.2 Nearly incompressible elasticity and the stabilized Stokes problems 58

2.2.1 The incompressible elasticity problem . 58

2.2.2 The P1b− P1 element for the Stokes problem 60

2.2.3 Axisymmetric geometries . 67

2.2.4 The axisymmetric stream function and stress tensor 67

2.3 [New] Slip boundary conditions . 70

5

6 Rheolef version 7.1 update 22 March 2020

2.4 Time-dependent problems . 74

2.4.1 The heat equation . 74

2.4.2 The convection-diffusion problem . 77

2.5 The Navier-Stokes equations . 82

3 Advanced and highly nonlinear problems 91

3.1 Equation defined on a surface . 91

3.1.1 Approximation on an explicit surface mesh 92

The Helmholtz-Beltrami problem . 92

The Laplace-Beltrami problem . 96

3.1.2 Building a surface mesh from a level set function 99

3.1.3 The banded level set method . 102

3.1.4 Improving the banded level set method with a direct solver 104

3.2 The highly nonlinear p-laplacian problem . 109

3.2.1 Problem statement . 109

3.2.2 The fixed-point algorithm . 109

3.2.3 The Newton algorithm . 117

3.2.4 The damped Newton algorithm . 123

3.2.5 Error analysis . 126

3.3 Continuation and bifurcation methods . 128

3.3.1 Problem statement and the Newton method 129

3.3.2 Error analysis and multiplicity of solutions 132

3.3.3 The Euler-Newton continuation algorithm 135

3.3.4 Beyond the limit point : the Keller algorithm 138

4 Discontinuous Galerkin methods 145

4.1 Linear first-order problems . 145

4.1.1 The stationary transport equation . 145

4.1.2 [New] The time-dependent transport equation 148

4.1.3 [New] Example: the Zalesak slotted disk . 150

4.1.4 [New] Example: the Leveque vortex-in-box 152

4.2 Nonlinear first-order problems . 155

4.2.1 Abstract setting . 155

4.2.2 Slope limiters . 156

4.2.3 Example: the Burgers equation . 159

4.3 Scalar second-order problems . 165

4.3.1 The Poisson problem with Dirichlet boundary conditions 165

4.3.2 The Helmholtz problem with Neumann boundary conditions 168

4.3.3 Nonlinear scalar hyperbolic problems with diffusion 170

4.3.4 Example: the Burgers equation with diffusion 170

4.4 Fluids and solids computations revisited . 176

4.4.1 The linear elasticity problem . 176

4.4.2 The Stokes problem . 178

4.5 The stationnary Navier-Stokes equations . 180

4.5.1 Problem statemment . 180

Contents 7

4.5.2 The discrete problem . 181

4.5.3 A conservative variant . 184

4.5.4 Newton solver . 187

4.5.5 Application to the driven cavity benchmark 190

4.5.6 Upwinding . 191

5 Complex fluids 197

5.1 Yield slip at the wall . 197

5.1.1 Problem statement . 197

5.1.2 The augmented Lagrangian algorithm . 198

5.1.3 Newton algorithm . 204

5.1.4 Error analysis . 208

5.2 Viscoplastic fluids . 211

5.2.1 Problem statement . 211

5.2.2 The augmented Lagrangian algorithm . 211

5.2.3 Mesh adaptation . 216

5.2.4 Error analysis . 218

5.2.5 Error analysis for the yield surface . 219

5.3 Viscoelastic fluids . 224

5.3.1 A tensor transport equation . 224

5.3.2 The Oldroyd model . 227

5.3.3 The θ-scheme algorithm . 228

5.3.4 Flow in an abrupt ontraction . 233

A Technical appendices 241

A.1 How to write a variational formulation ? . 241

A.1.1 The Green formula . 241

A.1.2 The vectorial Green formula . 241

A.1.3 The Green formula on a surface . 242

A.2 How to prepare a mesh ? . 242

A.2.1 Bidimensional mesh with bamg . 243

A.2.2 Unidimensional mesh with gmsh . 244

A.2.3 Bidimensional mesh with gmsh . 244

A.2.4 Tridimensional mesh with gmsh . 245

B GNU Free Documentation License 247

List of example files 259

List of commands 262

Index 264

8 Rheolef version 7.1 update 22 March 2020

Notations

Rheolef mathematics description

d d ∈ {1, 2, 3} dimension of the physical space

interpolate(Vh,expr) πVh
(expr) interpolation in the space Vh

integrate(omega,expr)

∫

Ω

expr dx integration in Ω ⊂ R
d

integrate(omega,
on local sides(expr))

∑

K∈Th

∫

∂K

expr ds integration on the local element sides

dot(u,v) u.v =

d−1∑

i=0

uivi vector scalar product

ddot(sigma,tau) σ : τ =

d−1∑

i,j=0

σi,jτi,j tensor scalar product

tr(sigma) tr(σ) =

d−1∑

i=0

σi,i trace of a tensor

trans(sigma) σT tensor transposition

sqr(phi)

norm2(phi)
φ2 square of a scalar

norm2(u) |u|2 =

d−1∑

i=0

u2i square of the vector norm

norm2(sigma) |σ|2 =
d−1∑

i,j=0

σ2
i,j square of the tensor norm

abs(phi)

norm(phi)
|φ| absolute value of a scalar

norm(u) |u| =
(
d−1∑

i=0

u2i

)1/2

vector norm

norm(sigma) |σ| =

d−1∑

i,j=0

σ2
i,j

1/2

tensor norm

grad(phi) ∇φ =

(
∂φ

∂xi

)

06i<d

gradient of a scalar field

grad(u) ∇u =

(
∂ui
∂xj

)

06i,j<d

gradient of a vector field

div(u) div(u) = tr(∇u) =

d−1∑

i=0

∂ui
∂xi

divergence of a vector field

D(u) D(u) =
(
∇u+∇uT

)
/2

symmetric part of
the gradient of a vector field

curl(u) curl(u) = ∇∧ u curl of a vector field, when d = 3

Contents 9

Rheolef mathematics description

curl(phi) curl(φ) =

(
∂φ

∂x1
,− ∂φ

∂x0

)
curl of a scalar field, when d = 2

curl(u) curl(u) =
∂u1
∂x0

− ∂u0
∂x1

curl of a vector field, when d = 2

grad s(phi)
∇sφ = P∇φ

where P = I − n⊗ n
tangential gradient of a scalar

grad s(u) ∇su = ∇uP tangential gradient of a vector

Ds(u) Ds(u) = PD(u)P symmetrized tangential gradient

div s(u) divs(u) = tr(Ds(u)) tangential divergence

unit outward normal on Γ = ∂Ω
normal() n or on an oriented surface Ω

or on an internal oriented side S

jump(phi) [[φ]] = φ|K0
− φ|K1

jump accros inter-element side
S = ∂K0 ∩K1

average(phi) {{φ}} = (φ|K0
+ φ|K1

)/2 average across S

inner(phi) φ|K0
inner trace on S

outer(phi) φ|K1
outer trace on S

h local() hK = meas(K)1/d length scale on an element K

penalty() ̟s = max

(
meas(∂K0)

meas(K0)
,
meas(∂K1)

meas(K1)

)
penalty coefficient on S

grad h(phi) (∇hφ)|K = ∇(φ|K), ∀K ∈ Th broken gradient

div h(u) (divhu)|K = div(u|K), ∀K ∈ Th broken divergence of a vector field

Dh(u) (Dh(u))|K = D(u|K), ∀K ∈ Th broken symmetric part of
the gradient of a vector field

sin(phi) sin(φ) standard mathematical functions
cos(phi) cos(φ) extended to scalar fields
tan(phi) tan(φ)
acos(phi) cos−1(φ)
asin(phi) sin−1(φ)
atan(phi) tan−1(φ)
cosh(phi) cosh(φ)
sinh(phi) sinh(φ)

10 Rheolef version 7.1 update 22 March 2020

Rheolef mathematics description

tanh(phi) tanh(φ)
exp(phi) exp(φ)
log(phi) log(φ)

log10(phi) log 10(φ)
floor(phi) ⌊φ⌋ largest integral not greater than φ
ceil(phi) ⌈φ⌉ smallest integral not less than φ

min(phi,psi) min(φ, ψ)
max(phi,psi) max(φ, ψ)
pow(phi,psi) φψ

atan2(phi,psi) tan−1(ψ/φ)
fmod(phi,psi) φ− ⌊φ/ψ + 1/2⌋ψ floating point remainder

compose(f,phi) f ◦ φ = f(φ) applies an unary function f

compose(f,phi1,...,phin) f(φ1, . . . , φn) applies a n-ary function f , n > 1

compose(phi,X) φ ◦X, X(x) = x+ d(x) composition with a characteristic

Chapter 1

Getting started

The first chapter of this book starts with the Dirichlet problem with homogeneous boundary
condition: this example is declined with details in dimension 1, 2 and 3, as a starting point to
Rheolef.

Next chapters present various boundary conditions: for completeness, we treat non-homogeneous
Dirichlet, Neumann, and Robin boundary conditions for the model problem. The last two examples
presents some special difficulties that appears in most problems: the first one introduce to problems
with non-constant coefficients and the second one, a ill-posed problem where the solution is defined
up to a constant.

This first chapter can be viewed as a pedagogic preparation for more advanced applications, such
as Stokes and elasticity, that are treated in the second chapter of this book. Problem with non-
constant coefficients are common as suproblems generated by various algorithms for non-linear
problem.

1.1 The model problem

For obtaining and installing Rheolef, see the installation instructions on the Rheolef home page:

http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef

Before to run examples, please check your Rheolef installation with:

rheolef-config --check

The present book is available in the documentation directory of the Rheolef distribution. This
documentation directory is given by the following unix command:

rheolef-config --docdir

All examples presented along the present book are also available in the example/ directory of the
Rheolef distribution. This directory is given by the following unix command:

rheolef-config --exampledir

This command returns you a path, something like /usr/share/doc/rheolef-doc/examples and
you should make a copy of these files:

cp -a /usr/share/doc/rheolef-doc/examples .

cd examples

11

http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef

12 Rheolef version 7.1 update 22 March 2020

1.1.1 Problem statement

Let us consider the classical Poisson problem with homogeneous Dirichlet boundary conditions in
a domain bounded Ω ⊂ R

d, d = 1, 2, 3:

(P): find u, defined in Ω, such that:

−∆u = 1 in Ω (1.1)

u = 0 on ∂Ω (1.2)

where ∆ denotes the Laplace operator. The variational formulation of this problem expresses (see
appendix A.1.1 for details):

(VF): find u ∈ H1
0 (Ω) such that:

a(u, v) = l(v), ∀v ∈ H1
0 (Ω) (1.3)

where the bilinear form a(., .) and the linear form l(.) are defined by

a(u, v) =

∫

Ω

∇u.∇v dx, ∀u, v ∈ H1
0 (Ω)

l(v) =

∫

Ω

v dx, ∀v ∈ L2(Ω)

The bilinear form a(., .) defines a scalar product in H1
0 (Ω) and is related to the energy form. This

form is associated to the −∆ operator.

1.1.2 Approximation

Let us introduce a mesh Th of Ω and the finite dimensional space Xh of continuous piecewise
polynomial functions.

Xh = {v ∈ H1(Ω); v/K ∈ Pk, ∀K ∈ Th}
where k = 1 or 2. Let Vh = Xh ∩H1

0 (Ω) be the functions of Xh that vanishes on the boundary of
Ω. The approximate problem expresses:

(V F)h: find uh ∈ Vh such that:

a(uh, vh) = l(vh), ∀vh ∈ Vh

By developing uh on a basis of Vh, this problem reduces to a linear system. The following C++
code implement this problem in the Rheolef environment.

Example file 1.1: dirichlet.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char**argv) {
5 environment rheolef (argc , argv);
6 geo omega (argv [1]);
7 space Xh (omega , argv [2]);
8 Xh.block (" boundary ");
9 trial u (Xh); test v (Xh);

10 form a = integrate (dot(grad(u),grad(v)));
11 field lh = integrate (v);
12 field uh (Xh);
13 uh [" boundary "] = 0;
14 problem p (a);
15 p.solve (lh, uh);
16 dout << uh;
17 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/dirichlet.cc

Chapter 1. Getting started 13

1.1.3 Comments

This code applies for both one, two or three dimensional meshes and for both piecewise linear or
quadratic finite element approximations. Four major classes are involved, namely: geo, space,
form and field.

Let us now comment the code, line by line.

#include "rheolef.h"

The first line includes the Rheolef header file ‘rheolef.h’.

using namespace rheolef;
using namespace std;

By default, in order to avoid possible name conflicts when using another library, all class and
function names are prefixed by rheolef::, as in rheolef::space. This feature is called the name
space. Here, since there is no possible conflict, and in order to simplify the syntax, we drop all the
rheolef:: prefixes, and do the same with the standard c++ library classes and variables, that are
also prefixed by std::.

int main(int argc , char**argv) {

The entry function of the program is always called main and accepts arguments from the unix
command line: argc is the counter of command line arguments and argv is the table of values.
The character string argv[0] is the program name and argv[i], for i = 1 to argc-1, are the
additional command line arguments.

environment rheolef (argc , argv);

These two command line parameters are immediately furnished to the distributed environment
initializer of the boost::mpi library, that is a c++ library based on the usual message passing
interface (mpi) library. Note that this initialization is required, even when you run with only one
processor.

geo omega (argv [1]);

This command get the first unix command-line argument argv[1] as a mesh file name and store
the corresponding mesh in the variable omega.

space Xh (omega , argv [2]);

Build the finite element space Xh contains all the piecewise polynomial continuous functions. The
polynomial type is the second command-line arguments argv[2], and could be either P1, P2 or
any Pk, where k > 1.

Xh.block (" boundary ");

The homogeneous Dirichlet conditions are declared on the boundary.

trial u (Xh); test v (Xh);
form a = integrate (dot(grad(u),grad(v)));

The bilinear form a(., .) is the energy form: it is defined for all functions u and v in Xh.

field lh = integrate (v);

The linear form lh(.) is associated to the constant right-hand side f = 1 of the problem. It is
defined for all v in Xh.

field uh (Xh);

The field uh contains the the degrees of freedom.

uh [" boundary "] = 0;

Some degrees of freedom are prescribed as zero on the boundary.

14 Rheolef version 7.1 update 22 March 2020

problem p (a);
p.solve (lh, uh);

Finally, the problem related to the bilinear form a and the right-hand-side lh is solved and uh

contains the solution. The field is printed to standard output:

dout << uh;

The dout stream is a specific variable defined in the Rheolef library: it is a distributed and
parallel extension of the usual cout stream in C++

Let us study with more details the linear system. Let (ϕi)06i<dim(Xh) be the basis of Xh associated
to the Lagrange nodes, e.g. the vertices of the mesh for the P1 approximation and the vertices
and the middle of the edges for the P2 approximation. The approximate solution uh expresses as
a linear combination of the continuous piecewise polynomial functions (ϕi):

uh =
∑

i

uiϕi

Thus, the field uh is completely represented by its coefficients (ui). The coefficients (ui) of this
combination are grouped into to sets: some have zero values, from the boundary condition and
are related to blocked coefficients, and some others are unknown. Blocked coefficients are stored
into the uh.b array while unknown one are stored into uh.u. Thus, the restriction of the bilinear
form a(., .) to Xh ×Xh can be conveniently represented by a block-matrix structure:

a(uh, vh) =
(
vh.u vh.b

)(a.uu a.ub
a.bu a.bb

)(
uh.u
uh.b

)

This representation also applies for the linear form l(.):

l(vh) =
(
vh.u vh.b

)(lh.u
lh.b

)

Thus, the problem (V F)h writes now:

(
vh.u vh.b

)(a.uu a.ub
a.bu a.bb

)(
uh.u
uh.b

)
=
(
vh.u vh.b

)(lh.u
lh.b

)

for any vh.u and where vh.b = 0. After expansion, the problem reduces to find uh.u such that:

a.uu ∗ uh.u = l.u− a.ub ∗ uh.b
The resolution of this linear system for the a.uu matrix is then performed via the solver class:
this call is performed by the problem class. For more details, see the Rheolef reference manual
related to the problem and solver classes, available on the web site and via the unix command:

man problem

man solver

1.1.4 How to compile the code

First, create a file ‘Makefile’ as follow:

include $(shell rheolef-config --libdir)/rheolef/rheolef.mk

CXXFLAGS = $(INCLUDES_RHEOLEF)

LDLIBS = $(LIBS_RHEOLEF)

default: dirichlet

Then, enter:

make dirichlet

Now, your program, linked with Rheolef, is ready to run on a mesh.

Chapter 1. Getting started 15

1.1.5 How to run the program

Figure 1.1: Solution of the model problem for d = 2 with the P1 element: visualization (left) with
paraview as filled isocontours ; (right) with gnuplot as unfilled isocontours.

Enter the commands:

mkgeo_grid -t 10 > square.geo

geo square.geo

The first command generates a simple 10x10 bidimensional mesh of Ω =]0, 1[2 and stores it in the
file square.geo. The second command shows the mesh. It uses paraview visualization program
by default.

The next commands perform the computation and visualization:

./dirichlet square.geo P1 > square.field

field square.field

The result is hown on Fig. 1.1. By default, the visualization appears in a paraview window. If
you are in trouble with this software, you can switch to the simpler gnuplot visualization mode:

field square.field -gnuplot

1.1.6 Advanced and stereo visualization

We could explore some graphic rendering modes (see Fig. 1.2):

field square.field -bw

field square.field -gray

field square.field -elevation

field square.field -elevation -gray

field square.field -elevation -nofill -stereo

The last command shows the solution in elevation and in stereoscopic anaglyph mode (see Fig. 1.4,
left). The anaglyph mode requires red-cyan glasses: red for the left eye and cyan for the right

one, as shown on Fig. 1.3. In the book, stereo figures are indicated by the logo in the
right margin. See http://en.wikipedia.org/wiki/Anaglyph_image for more and http://www.

alpes-stereo.com/lunettes.html for how to find anaglyph red-cyan glasses. For simplicity, it
would perhaps prefer to switch to the gnuplot render:

http://en.wikipedia.org/wiki/Anaglyph_image
http://www.alpes-stereo.com/lunettes.html
http://www.alpes-stereo.com/lunettes.html

16 Rheolef version 7.1 update 22 March 2020

Figure 1.2: Alternative representations of the solution of the model problem (d = 2 and the P1

element): (left) in black-and-white; (right) in elevation and stereoscopic anaglyph mode.

Figure 1.3: Red-cyan anaglyph glasses for the stereoscopic visualization.

field square.field -gnuplot

field square.field -gnuplot -bw

field square.field -gnuplot -gray

Please, consult the Rheolef reference manual page for more on the unix commands field, geo
and mkgeo grid. The manual is available both on the web site:

firefox https://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef

and as individual unix man pages:

man mkgeo_grid

man geo

man field

See also

man rheolef

Chapter 1. Getting started 17

The complete list of Rheolef man page is obtained by:

man -k rheolef

1.1.7 High-order finite element methods

Turning to the P2 or P3 approximations simply writes:

./dirichlet square.geo P2 > square-P2.field

field square-P2.field

You can replace the P2 command-line argument by any Pk, where k > 1. Now, let us consider a
mono-dimensional problem Ω =]0, 1[:

mkgeo_grid -e 10 > line.geo

geo line.geo

./dirichlet line.geo P1 | field -

The first command generates a subdivision containing ten edge elements. The last two lines show
the mesh and the solution via gnuplot visualization, respectively.

Conversely, the P2 case writes:

./dirichlet line.geo P2 | field -

1.1.8 Tridimensional computations

Let us consider a three-dimensional problem Ω =]0, 1[3. First, let us generate a mesh:

mkgeo_grid -T 10 > cube.geo

geo cube.geo

geo cube.geo -fill

geo cube.geo -cut

geo cube.geo -shrink

geo cube.geo -shrink -cut

The 3D visualization bases on the paraview render. These commands present some cuts (-cut)
inside the internal mesh structure: a simple click on the central arrow draws the cut plane normal
vector or its origin, while the red square allows a translation. The following command draws the
mesh with all internal edges (-full), together with the stereoscopic anaglyph (-stereo):

geo cube.geo -stereo -full

Then, we perform the computation and the visualization:

./dirichlet cube.geo P1 > cube.field

field cube.field

The visualization presents an isosurface. Also here, you can interact with the cutting plane. On
the Properties of the paraview window, select Contour, change the value of the isosurface and
click on the green Apply button. Finally exit from the visualization and explore the stereoscopic
anaglyph mode (see Fig. 1.4, right):

field cube.field -stereo

It is also possible to add a second isosurface (Contour) or a cutting plane (Slice) to this scene
by using the corresponding Properties menu. Finally, the following command, with the -volume
option, allows a 3D color light volume graphical rendering:

18 Rheolef version 7.1 update 22 March 2020

Figure 1.4: Solution of the model problem for d = 3 and the P1 element : (left) mesh; (right)
isovalue, cut planes and stereo anaglyph renderings.

field cube.field -volume

After this exploration of the 3D visualization capacities of our environment, let us go back to the
Dirichlet problem and perform the P2 approximation:

./dirichlet cube.geo P2 | field -

1.1.9 Quadrangles, prisms and hexahedra

Quadrangles and hexahedra are also supported in meshes:

mkgeo_grid -q 10 > square.geo

geo square.geo

mkgeo_grid -H 10 > cube.geo

geo cube.geo

Note also that the one-dimensional exact solution expresses explicitly:

u(x) =
x(1− x)

2

In the two-and three dimensional cases, an explicit expression of the solution, based on Fourier
expansion, is also known (see e.g. Saramito and Roquet, 2001, annex B, page 5411).

1.1.10 Direct versus iterative solvers

In order to measure the performances of the solver, the dirichlet.cc (page 12) has been modified
as:

double t0 = dis_wall_time ();
solver_option sopt;
sopt.iterative = false; // or true
sopt.tol = 1-5; // when iterative
problem p (a, sopt);

Chapter 1. Getting started 19

10
−3

10
0

10
3

10
3

10
4

10
5

10
6

10
7

T (n)
d = 2

1

1.5

n

direct/factorize
direct/solve

iterative/solve
10

−3

10
0

10
3

10
3

10
4

10
5

10
6

T (n)
d = 3

2

1.33

n

direct/factorize
direct/solve

iterative/solve

Figure 1.5: Compared performance between direct and iterative solvers: (left) d = 2; (right) d = 3.

double t_factorize = dis_wall_time () - t0;
p.solve (lh, uh);
double t_solve = dis_wall_time () - t0 - t_factorize;
derr << "time " << t_factorize << " " << t_solve << endl;

The dis wall time function returns the wall-clock time in seconds, while the solver option sopt

enables to choose between a direct or an iterative solver method: by default Rheolef selects a
direct method when d 6 2 and an iterative one when d = 3. For a 3D mesh, the compilation and
run writes:

make dirichlet

mkgeo_grid -T 60 > cube-60.geo

./dirichlet cube-60.geo P1 > cube-60.field

Fig. 1.5 plots the performances of the direct and iterative solvers used in Rheolef. The com-
puting time T (n) is represented versus size n of the linear system, says Ax = b. Note that for a
square-k.geo or cube-k.geo mesh, the size of the linear system is n = (k − 1)d. For the direct
method, two times are represented: first, the time spend to factorize A = LDLT , where L is lower
triangular and D is diagonal, and second, the time used to solve LDLT = x (in three steps: solving
Lz = b, then Dy = z and finally LTx = y). For the iterative method, the conjugate gradient
algorithm is considered, without building any preconditioner, so there is nothing to initialize, and
only one time is represented. The tolerance on the residual term is set to 10−5.

In the bidimensional case, the iterative solver presents asymptotically, for large n, a computing
time similar to the factorization time of the direct solver, roughly O(n3/2) while the time to solve
by the direct method is dramatically lower, roughly O(n). As the factorization can be done one
time for all, the direct method is advantageous most of the time.

In the three dimensional case, the situation is different. The factorization time is very time
consuming roughly O(n2), while the time to solve for both direct and iterative methods behave
as O(n4/3). Thus, the iterative method is clearly advantageous for three-dimensionnal problems.
Future works will improve the iterative approach by building preconditioners.

The asymptotic behaviors of direct methods strongly depends upon the ordering strategy used
for the factorization. For the direct solver, Rheolef was configured with the mumps [Amestoy
et al., 2001, 2006] library and mumps was configured with the parallel scotch [Pellegrini, 2010]
ordering library. For a regular grid and in the bidimensional case, there exists a specific ordering
called nested disection [Hoffman et al., 1973, George, 1973] that minimize the fillin of the sparse
matrix during the factorization. For three-dimensional case this ordering is called nested multi-
section [Ashcraft and Liu, 1998]. Asymptotic computing time for these regular grid are then

20 Rheolef version 7.1 update 22 March 2020

explicity known versus the grid size n:

d direct/factorize direct/solve iterative

1 n n n2

2 n3/2 n log n n3/2

3 n2 n4/3 n4/3

The last column gives the asymptotic computing time for the conjugate gradient on a general
mesh [Saramito, 2013a]. Remark that these theoretical results are consistent with numerical
experiments presented on Fig. 1.5. In conclusion, the best strategy is to choose a direct method
when d 6 2 and an iterative one when d = 3: this is the default behavior with Rheolef.

1.1.11 Distributed and parallel runs

For large meshes, a computation in a distributed and parallel environment is profitable:

mpirun -np 8 ./dirichlet cube-60.geo P1 > cube-60.field

mpirun -np 16 ./dirichlet cube-60.geo P1 > cube-60.field

The computing time T (n, p) depends now upon the linear system size n and the number of
processes p. For a fixed size n, the speedup S(p) when using p processors is defined by the
ratio of the time required by a sequential computation with the time used by a parallel one:
S(p) = T (n, 1)/T (n, p). The speedup is presented on Fig 1.6 for the two phases of the com-
putation: the assembly phase and the solve one, and for d = 2 (direct solver) and 3 (iterative
solver). The ideal speedup S(p) = p and the null speedup S(p) = 1 are represented by dotted
lines. Observe on Fig 1.6 that for too small meshes, using too much processes is not profitable,
as more time is spend by communications rather by computations, especially for the solve phase.
Conversely, when the mesh size increases, using more processes leads to a remarkable speedup for
both d = 2 and 3. The largest mesh used here contains about three millions of elements. The
speedup behavior is roughly linear up to a critical number of processor denotes as pc. Then, there
is a transition to a plateau (the Amdahl’s law), where communications dominate. Note that pc
increases with the mesh size: larger problems lead to a higher speedup. Also pc increases also with
the efficiency of communications.

Present computation times are measured on a BullX DLC supercomputer (Bull Newsca) composed
of nodes having two intel sandy-bridge processors and connected to a FDR infiniband non-blocking
low latency network. The assembly phase corresponds to dirichlet.cc (page 12) line 7 to 13
and the solve phase to lines 14 and 15.

Chapter 1. Getting started 21

01

8

16

24

32

0 8 16 24 32

S(p)

assembly d = 2

p

square-40
square-80
square-160
square-320
square-640
square-1280

01

8

16

24

32

0 8 16 24 32

S(p)

assembly d = 3

p

cube-10

cube-20

cube-40

cube-60

01

8

16

24

32

0 8 16 24 32

S(p)

direct solve d = 2

p

square-40
square-80
square-160
square-320
square-640
square-1280

01

8

16

24

32

0 8 16 24 32

S(p)

direct solve d = 3

p

cube-10

cube-20

cube-40

cube-60

01

8

16

24

32

0 8 16 24 32

S(p)

iterative solve d = 2

p

square-40
square-80
square-160
square-320
square-640
square-1280

01

8

16

24

32

0 8 16 24 32

S(p)

iterative solve d = 3

p

cube-10

cube-20

cube-40

cube-60

Figure 1.6: Distributed and massively parallel resolution of the model problem with P1 element:
speedup S(p) versus the number of processors p during : (left-right) for d = 2 and 3, respec-
tively ; (top) the assembly phase ; (center-bottom) the solve phase, direct and iterative solvers,
respectively.

22 Rheolef version 7.1 update 22 March 2020

1.1.12 Non-homogeneous Dirichlet conditions

Formulation

We turn now to the case of a non-homogeneous Dirichlet boundary conditions. Let f ∈ H−1(Ω)

and g ∈ H
1
2 (∂Ω). The problem writes:

(P2) find u, defined in Ω such that:

−∆u = f in Ω

u = g on ∂Ω

The variational formulation of this problem expresses:

(V F2) find u ∈ V such that:

a(u, v) = l(v), ∀v ∈ V0

where

a(u, v) =

∫

Ω

∇u.∇v dx

l(v) =

∫

Ω

f v dx

V = {v ∈ H1(Ω); v|∂Ω = g}
V0 = H1

0 (Ω)

Approximation

As usual, we introduce a mesh Th of Ω and the finite dimensional space Xh:

Xh = {v ∈ H1(Ω); v/K ∈ Pk, ∀K ∈ Th}

Then, we introduce:

Vh = {v ∈ Xh; v|∂Ω = πh(g)}
V0,h = {v ∈ Xh; v|∂Ω = 0}

where πh denotes the Lagrange interpolation operator. The approximate problem writes:

(V F2)h: find uh ∈ Vh such that:

a(uh, vh) = l(vh), ∀vh ∈ V0,h

The following C++ code implement this problem in the Rheolef environment.

Chapter 1. Getting started 23

Example file 1.2: dirichlet-nh.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cosinusprod_laplace.h"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo omega (argv [1]);
8 size_t d = omega.dimension ();
9 space Xh (omega , argv [2]);

10 Xh.block (" boundary ");
11 trial u (Xh); test v (Xh);
12 form a = integrate (dot(grad(u),grad(v)));
13 field lh = integrate (f(d)*v);
14 field uh (Xh);
15 space Wh (omega[" boundary"], argv [2]);
16 uh [" boundary "] = interpolate(Wh, g(d));
17 problem p (a);
18 p.solve (lh, uh);
19 dout << uh;
20 }

Let us choose Ω ⊂ R
d, d = 1, 2, 3 with

f(x) = d π2
d−1∏

i=0

cos(πxi) and g(x) =

d−1∏

i=0

cos(πxi) (1.4)

Remarks the notation x = (x0, . . . , xd−1) for the Cartesian coordinates in R
d: since all arrays

start at index zero in C++ codes, and in order to avoid any mistakes between the code and the
mathematical formulation, we also adopt this convention here. This choice of f and g is convenient,
since the exact solution is known:

u(x) =

d−1∏

i=0

cos(πxi)

The following C++ code implement this problem by using the concept of function object, also
called class-function (see e.g. Musser and Saini, 1996a). A convenient feature is the ability for
function objects to store auxiliary parameters, such as the space dimension d for f here, or some
constants, as π for f and g.

Example file 1.3: cosinusprod laplace.h

1 struct f {
2 Float operator () (const point& x) const {
3 return d*pi*pi*cos(pi*x[0])* cos(pi*x[1])* cos(pi*x[2]); }
4 f(size_t d1) : d(d1), pi(acos(Float (-1))) {}
5 size_t d; const Float pi;
6 };
7 struct g {
8 Float operator () (const point& x) const {
9 return cos(pi*x[0])* cos(pi*x[1])* cos(pi*x[2]); }

10 g(size_t d1) : pi(acos(Float (-1))) {}
11 const Float pi;
12 };

Comments

The class point describes the coordinates of a point (x0, . . . , xd−1) ∈ R
d as a d-uplet of Float. The

Float type is usually a double. This type depends upon the Rheolef configuration (see Saramito,
2012a, installation instructions), and could also represent some high precision floating point class.
The dirichlet-nh.cc code looks like the previous one dirichlet.cc related to homogeneous
boundary conditions. Let us comments the changes. The dimension d comes from the geometry
Ω:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/dirichlet-nh.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/cosinusprod_laplace.h

24 Rheolef version 7.1 update 22 March 2020

size_t d = omega.dimension ();

The linear form l(.) is associated to the right-hand side f and writes:

field lh = integrate (f(d)*v);

Note that the function f that depends upon the dimension d parameter, is implemented by a
functor, i.e. a C++ class that possesses the operator() member function. The space Wh of
piecewise Pk functions defined on the boundary ∂Ω is defined by:

space Wh (omega[" boundary"], argv [2]);

where Pk is defined via the second command line argument argv[2]. This space is suitable for
the Lagrange interpolation of g on the boundary:

uh [" boundary "] = interpolate(Wh, g(d));

The values of the degrees of freedom related to the boundary are stored into the field uh.b, where
non-homogeneous Dirichlet conditions applies. The rest of the code is similar to the homogeneous
Dirichlet case.

How to run the program

First, compile the program:

make dirichlet-nh

Running the program is obtained from the homogeneous Dirichlet case, by replacing dirichlet

by dirichlet-nh:

mkgeo_grid -e 10 > line.geo

./dirichlet-nh line.geo P1 > line.field

field line.field

for the bidimensional case:

mkgeo_grid -t 10 > square.geo

./dirichlet-nh square.geo P1 > square.field

field square.field

and for the tridimensional case:

mkgeo_grid -T 10 > box.geo

./dirichlet-nh box.geo P1 > box.field

field box.field -volume

The optional -volume allows a 3D color light volume graphical rendering. Here, the P1 approxi-
mation can be replaced by P2, P3, etc, by modifying the command-line argument.

Error analysis

Since the solution u is regular, the following error estimates holds:

‖u− uh‖0,2,Ω = O(hk+1)

‖u− uh‖0,∞,Ω = O(hk+1)

‖u− uh‖1,2,Ω = O(hk)

providing the approximate solution uh uses Pk continuous finite element method, k > 1. Here,
‖.‖0,2,Ω, ‖.‖0,∞,Ω and ‖.‖1,2,Ω denotes as usual the L2(Ω), L∞(Ω) and H1(Ω) norms.

Chapter 1. Getting started 25

By denoting πh the Lagrange interpolation operator, the triangular inequality leads to:

‖u− uh‖0,2,Ω 6 ‖(I − πh)(u)‖0,2,Ω + ‖uh − πhu‖0,2,Ω

From the fundamental properties of the Laplace interpolation πh, and since u is smooth enough,
we have ‖(I−πh)(u)‖0,2,Ω = O(hk+1). Thus, we have just to check the ‖uh−πhu‖0,2,Ω term. The
following code implement the computation of the error.

Example file 1.4: cosinusprod error.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cosinusprod.h"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 Float error_linf_expected = (argc > 1) ? atof(argv [1]) : 1e+38;
8 field uh; din >> uh;
9 space Xh = uh.get_space ();

10 size_t d = Xh.get_geo (). dimension ();
11 field pi_h_u = interpolate(Xh , u_exact(d));
12 field eh = uh - pi_h_u;
13 trial u (Xh); test v (Xh);
14 form m = integrate (u*v);
15 form a = integrate (dot(grad(u),grad(v)));
16 dout << "error_l2 " << sqrt(m(eh,eh)) << endl
17 << "error_linf " << eh.max_abs () << endl
18 << "error_h1 " << sqrt(a(eh,eh)) << endl;
19 return (eh.max_abs () <= error_linf_expected) ? 0 : 1;
20 }

Example file 1.5: cosinusprod.h

1 struct u_exact {
2 Float operator () (const point& x) const {
3 return cos(pi*x[0])* cos(pi*x[1])* cos(pi*x[2]); }
4 u_exact(size_t d1) : d(d1), pi(acos(Float (-1.0))) {}
5 size_t d; Float pi;
6 };

The m(., .) is here the classical scalar product on L2(Ω), and is related to the mass form.

Running the program

make dirichlet-nh cosinusprod_error

After compilation, run the code by using the command:

mkgeo_grid -t 10 > square.geo

./dirichlet-nh square.geo P1 | ./cosinusprod_error

The three L2, L∞ and H1 errors are printed for a h = 1/10 uniform mesh. Note that an unstruc-
tured quasi-uniform mesh can be simply generated by using the mkgeo ugrid command:

mkgeo_ugrid -t 10 > square.geo

geo square.geo

Let nel denotes the number of elements in the mesh. Since the mesh is quasi-uniform, we have

h ≈ n
1
d

el where d is the physical space dimension. Here d = 2 for our bidimensional mesh. Figure 1.7

plots in logarithmic scale the error versus n
1
2

el for both Pk approximations, k = 1, 2, 3 and the
various norms. Observe that the error behaves as predicted by the theory.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/cosinusprod_error.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/cosinusprod.h

26 Rheolef version 7.1 update 22 March 2020

10−10

10−8

10−6

10−4

10−2

10−2 10−1

‖uh − πh(u)‖0,2,Ω

2 = k + 1

3

4

h

k = 1
k = 2
k = 3

10−10

10−8

10−6

10−4

10−2

10−2 10−1

‖uh − πh(u)‖0,∞,Ω

2 = k + 1

3

4

h

k = 1
k = 2
k = 3

10−8

10−6

10−4

10−2

100

10−2 10−1

|uh − πh(u)|1,2,Ω

1 = k

2

3

h

k = 1
k = 2
k = 3

Figure 1.7: Strait geometry: error analysis in L2, L∞ and H1 norms.

Curved domains

The error analysis applies also for curved boundaries and high order approximations.

Chapter 1. Getting started 27

Example file 1.6: cosinusrad laplace.h

1 struct f {
2 Float operator () (const point& x) const {
3 Float r = sqrt(sqr(x[0])+ sqr(x[1])+ sqr(x[2]));
4 Float sin_over_ar = (r == 0) ? 1 : sin(a*r)/(a*r);
5 return sqr(a)*((d-1)* sin_over_ar + cos(a*r)); }
6 f(size_t d1) : d(d1), a(acos(Float (-1.0))) {}
7 size_t d; Float a;
8 };
9 struct g {

10 Float operator () (const point& x) const {
11 return cos(a*sqrt(sqr(x[0])+ sqr(x[1])+ sqr(x[2]))); }
12 g(size_t =0) : a(acos(Float (-1.0))) {}
13 Float a;
14 };

Example file 1.7: cosinusrad.h

1 struct u_exact {
2 Float operator () (const point& x) const {
3 Float r = sqrt(sqr(x[0])+ sqr(x[1])+ sqr(x[2]));
4 return cos(a*r); }
5 u_exact(size_t =0) : a(acos(Float (-1.0))) {}
6 Float a;
7 };

First, generate the test source file and compile it:

sed -e ’s/sinusprod/sinusrad/’ < dirichlet-nh.cc > dirichlet_nh_ball.cc

sed -e ’s/sinusprod/sinusrad/’ < cosinusprod_error.cc > cosinusrad_error.cc

make dirichlet_nh_ball cosinusrad_error

Then, generates the mesh of a circle and run the test case:

mkgeo_ball -order 1 -t 10 > circle-P1.geo

geo circle-P1 -gnuplot

./dirichlet_nh_ball circle-P1.geo P1 | ./cosinusrad_error

For a high order k = 3 isoparametric approximation:

mkgeo_ball -order 3 -t 10 > circle-P3.geo

geo circle-P3 -gnuplot

./dirichlet_nh_ball circle-P3.geo P3 | ./cosinusrad_error

Observe Fig. 1.8: for meshes based on triangles: the error behave as expected when k = 1, 2, 3, 4.

These features are available for arbitrarily Pk high order approximations and three-dimensional
geometries. In practice, the current implementation is efficient up to k = 5: for higher polynomial
degrees, a more specific implementation is in development.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/cosinusrad_laplace.h
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/cosinusrad.h

28 Rheolef version 7.1 update 22 March 2020

10−10

10−8

10−6

10−4

10−2

100

10−2 10−1

‖uh − πh(u)‖0,2,Ω

2 = k + 1

3

4

h

k = 1
k = 2
k = 3
k = 4

10−10

10−8

10−6

10−4

10−2

100

10−2 10−1

‖uh − πh(u)‖0,∞,Ω

2 = k + 1

3

4

h

k = 1
k = 2
k = 3
k = 4

10−8

10−6

10−4

10−2

100

10−2 10−1

|uh − πh(u)|1,2,Ω

1 = k

2

3

h

k = 1
k = 2
k = 3
k = 4

Figure 1.8: Curved domains (triangles): error analysis in L2, L∞ and H1 norms.

Chapter 1. Getting started 29

10−10

10−8

10−6

10−4

10−2

10−2 10−1

‖uh − πh(u)‖0,2,Ω

2 = k + 1

3

4

h

k = 1
k = 2
k = 3
k = 4

10−10

10−8

10−6

10−4

10−2

100

10−2 10−1

‖uh − πh(u)‖0,∞,Ω

2 = k + 1

3

4

h

k = 1
k = 2
k = 3
k = 4

10−8

10−6

10−4

10−2

10−2 10−1

|uh − πh(u)|1,2,Ω

1 = k

2

3

h

k = 1
k = 2
k = 3
k = 4

Figure 1.9: Curved domains (quadrangles): error analysis in L2, L∞ and H1 norms.

30 Rheolef version 7.1 update 22 March 2020

1.2 Non-homogeneous Neumann boundary conditions for

the Helmholtz operator

Formulation

Let us show how to insert Neumann boundary conditions. Let f ∈ H−1(Ω) and g ∈ H− 1
2 (∂Ω).

The problem writes:

(P3): find u, defined in Ω such that:

u−∆u = f in Ω

∂u

∂n
= g on ∂Ω

The variational formulation of this problem expresses:

(V F3): find u ∈ H1(Ω) such that:

a(u, v) = l(v), ∀v ∈ H1(Ω)

where

a(u, v) =

∫

Ω

(u v +∇u.∇v) dx

l(v) =

∫

Ω

f v dx+

∫

∂Ω

g v ds

Approximation

As usual, we introduce a mesh Th of Ω and the finite dimensional space Xh:

Xh = {v ∈ H1(Ω); v/K ∈ Pk, ∀K ∈ Th}

The approximate problem writes:

(V F3)h: find uh ∈ Xh such that:

a(uh, vh) = l(vh), ∀vh ∈ Xh

Example file 1.8: neumann-nh.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sinusprod_helmholtz.h"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo omega (argv [1]);
8 size_t d = omega.dimension ();
9 space Xh (omega , argv [2]);

10 trial u (Xh); test v (Xh);
11 form a = integrate (u*v + dot(grad(u),grad(v)));
12 field lh = integrate (f(d)*v) + integrate (" boundary", g(d)*v);
13 field uh (Xh);
14 problem p (a);
15 p.solve (lh, uh);
16 dout << uh;
17 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/neumann-nh.cc

Chapter 1. Getting started 31

Let us choose Ω ⊂ R
d, d = 1, 2, 3 and

f(x) = (1 + dπ2)

d−1∏

i=0

sin(πxi)

g(x) =

−π when d = 1

−π
(
d−1∑

i=0

sin(πxi)

)
when d = 2

−π
(
d−1∑

i=0

sin(πxi) sin(x(i+1)mod d

)
when d = 3

This example is convenient, since the exact solution is known:

u(x) =

d−1∏

i=0

sin(πxi) (1.5)

Example file 1.9: sinusprod helmholtz.h

1 struct f {
2 Float operator () (const point& x) const {
3 switch (d) {
4 case 1: return (1+d*pi*pi)*sin(pi*x[0]);
5 case 2: return (1+d*pi*pi)*sin(pi*x[0])* sin(pi*x[1]);
6 default: return (1+d*pi*pi)*sin(pi*x[0])* sin(pi*x[1])* sin(pi*x[2]);
7 }}
8 f(size_t d1) : d(d1), pi(acos(Float (-1.0))) {}
9 size_t d; const Float pi;

10 };
11 struct g {
12 Float operator () (const point& x) const {
13 switch (d) {
14 case 1: return -pi;
15 case 2: return -pi*(sin(pi*x[0]) + sin(pi*x[1]));
16 default: return -pi*(sin(pi*x[0])* sin(pi*x[1])
17 + sin(pi*x[1])* sin(pi*x[2])
18 + sin(pi*x[2])* sin(pi*x[0]));
19 }}
20 g(size_t d1) : d(d1), pi(acos(Float (-1.0))) {}
21 size_t d; const Float pi;
22 };

Comments

The neumann-nh.cc code looks like the previous one dirichlet-nh.cc. Let us comments only
the changes.

form a = integrate (u*v + dot(grad(u),grad(v)));

The bilinear form a(., .) is defined. Notes the flexibility of the integrate function that takes as
argument an expression involving the trial and test functions. The right-hand side is computed
as:

field lh = integrate (f(d)*v) + integrate (" boundary", g(d)*v);

The second integration is performed on ∂Ω. The additional first argument of the integrate

function is here the name of the integration domain.

How to run the program

First, compile the program:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/sinusprod_helmholtz.h

32 Rheolef version 7.1 update 22 March 2020

make neumann-nh

Running the program is obtained from the homogeneous Dirichlet case, by replacing dirichlet

by neumann-nh.

1.3 The Robin boundary conditions

Formulation

Let f ∈ H−1(Ω) and Let g ∈ H
1
2 (∂Ω). The problem writes:

(P4) find u, defined in Ω such that:

−∆u = f in Ω

∂u

∂n
+ u = g on ∂Ω

The variational formulation of this problem expresses:

(V F4): find u ∈ H1(Ω) such that:

a(u, v) = l(v), ∀v ∈ H1(Ω)

where

a(u, v) =

∫

Ω

∇u.∇v dx+

∫

∂Ω

uv ds

l(v) =

∫

Ω

fv dx+

∫

∂Ω

gv ds

Approximation

As usual, let

Xh = {v ∈ H1(Ω); v/K ∈ Pk, ∀K ∈ Th}

The approximate problem writes:

(V F4)h: find uh ∈ Xh such that:

a(uh, vh) = l(vh), ∀vh ∈ Xh

Example file 1.10: robin.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cosinusprod_laplace.h"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo omega (argv [1]);
8 size_t d = omega.dimension ();
9 space Xh (omega , argv [2]);

10 trial u (Xh); test v (Xh);
11 form a = integrate (dot(grad(u),grad(v))) + integrate (" boundary", u*v);
12 field lh = integrate (f(d)*v) + integrate (" boundary", g(d)*v);
13 field uh (Xh);
14 problem p (a);
15 p.solve (lh, uh);
16 dout << uh;
17 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/robin.cc

Chapter 1. Getting started 33

Comments

The code robin.cc looks like the previous one neumann-nh.cc. Let us comments the changes.

form a = integrate (dot(grad(u),grad(v))) + integrate (" boundary", u*v);

This statement reflects directly the definition of the bilinear form a(., .), as the sum of two integrals,
the first one over Ω and the second one over its boundary.

How to run the program

First, compile the program:

make robin

Running the program is obtained from the homogeneous Dirichlet case, by replacing dirichlet

by robin.

1.4 Neumann boundary conditions for the Laplace operator

In this chapter we study how to solve a ill-posed problem with a solution defined up to a constant.

Formulation

Let Ω be a bounded open and simply connected subset of Rd, d = 1, 2 or 3. Let f ∈ L2(Ω) and

g ∈ H
1
2 (∂Ω) satisfying the following compatibility condition:

∫

Ω

f dx+

∫

∂Ω

g ds = 0

The problem writes:
(P5)h: find u, defined in Ω such that:

−∆u = f in Ω

∂u

∂n
= g on ∂Ω

Since this problem only involves the derivatives of u, it is defined up to a constant: it is then
clear that its solution is never unique [Girault and Raviart, 1986, p. 11]. A discrete version of this
problem could be solved iteratively by the conjugate gradient or the MINRES algorithm [Paige
and Saunders, 1975]. In order to solve it by a direct method, we get round this difficulty by
seeking u in the following space

V = {v ∈ H1(Ω); b(v, 1) = 0}
where

b(v, µ) = µ

∫

Ω

v dx, ∀v ∈ L2(Ω), ∀µ ∈ R

The variational formulation of this problem writes:

(V F5): find u ∈ V such that:
a(u, v) = ℓ(v), ∀v ∈ V

where

a(u, v) =

∫

Ω

∇u.∇v dx

ℓ(v) =

∫

Ω

fv dx

+

∫

∂Ω

gv ds

34 Rheolef version 7.1 update 22 March 2020

Since the direct discretization of the space V is not an obvious task, the constraint b(u, 1) = 0
is enforced by a Lagrange multiplier λ ∈ R. Let us introduce the Lagrangian, defined for all
v ∈ H1(Ω) and µ ∈ R by:

L(v, µ) =
1

2
a(v, v) + b(v, µ)− ℓ(v)

The saddle point (u, λ) ∈ H1(Ω)×R of this Lagrangian is characterized as the unique solution of:

a(u, v) + b(v, λ) = ℓ(v), ∀v ∈ H1(Ω)

b(u, µ) = 0, ∀µ ∈ R

It is clear that if (u, λ) is solution of this problem, then u ∈ V and u is a solution of (V F5).
Conversely, let u ∈ V the solution of (V F5). Choosing v = v0 where v0(x) = 1, ∀x ∈ Ω leads to
λmeas(Ω) = ℓ(v0). From the definition of ℓ(.) and the compatibility condition between the data
f and g, we get λ = 0. Note that the saddle point problem extends to the case when f and g does
not satisfies the compatibility condition, and in that case λ = ℓ(v0)/meas(Ω).

Approximation

As usual, we introduce a mesh Th of Ω and the finite dimensional space Xh:

Xh = {v ∈ H1(Ω); v/K ∈ Pk, ∀K ∈ Th}
The approximate problem writes:
(V F5)h: find (uh, λh) ∈ Xh × R such that:

a(uh, v) + b(v, λh) = ℓ(v), ∀v ∈ Xh

b(uh, µ) = 0, ∀µ ∈ R

Example file 1.11: neumann-laplace.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 size_t d;
5 Float f (const point& x) { return 1; }
6 Float g (const point& x) { return -0.5/d; }
7 int main(int argc , char**argv) {
8 environment rheolef (argc , argv);
9 geo omega (argv [1]);

10 d = omega.dimension ();
11 space Xh (omega , argv [2]);
12 trial u (Xh); test v (Xh);
13 form a = integrate (dot(grad(u),grad(v)));
14 field b = integrate(v);
15 field lh = integrate (f*v) + integrate (" boundary", g*v);
16 form A = {{ a, b},
17 { trans(b), 0}};
18 field Bh = { lh , 0};
19 field Uh (Bh.get_space(), 0);
20 A.set_symmetry(true);
21 problem p (A);
22 p.solve (Bh, Uh);
23 dout << Uh[0];
24 }

Comments

Let Ω ⊂ R
d, d = 1, 2, 3. We choose f(x) = 1 and g(x) = −1/(2d). This example is convenient,

since the exact solution is known:

u(x) = − 1

12
+

1

2d

d∑

i=1

xi(1− xi)

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/neumann-laplace.cc

Chapter 1. Getting started 35

The code looks like the previous ones. Let us comment the changes. The discrete bilinear form
b is computed as b ∈ Xh that interprets as a linear application from Xh to R: b(vh) = m(vh, 1).
Thus b is computed as

field b = integrate(v);

Let

A =

(
a trans(b)
b 0

)
, U =

(
uh

lambda

)
, B =

(
lh

0

)

The problem admits the following matrix form:

A U = B

The matrix that represents the bilinear fo and its right-hand side are assembled as:

form A = {{ a, b},
{ trans(b), 0}};

field Bh = { lh , 0};

Both the pairs U = (uh, λ) and B = (b, 0) belong to the vectorial space Xh × R. and B = (b, 0)
belong to the Then, the variable Uh could be declared as:

field Uh (Bh.get_space(), 0);

Note that the matrix A is symmetric and non-singular, but indefinite : it admits eigenvalues that
are either strictly positive or strictly negative. While the Choleski factorization is not possible, its
variant the LDLT one is performed, thanks to the ldlt function:

A.set_symmetry(true);
problem p (A);
p.solve (Bh, Uh);

Then, the uh field is extracted as the first component of the the Uh one:

dout << Uh[0];

How to run the program

As usual, enter:

make neumann-laplace

mkgeo_grid -t 10 > square.geo

./neumann-laplace square P1 | field -

1.5 Non-constant coefficients and multi-regions

This chapter is related to the so-called transmission problem. We introduce some new concepts:
problems with non-constant coefficients, regions in the mesh, weighted forms and discontinuous
approximations.

Formulation

Let us consider a diffusion problem with a non-constant diffusion coefficient η in a domain bounded
Ω ⊂ R

d, d = 1, 2, 3:

36 Rheolef version 7.1 update 22 March 2020

(P): find u defined in Ω such that:

−div(η∇u) = f in Ω (1.6)

u = 0 on Γleft ∪ Γright (1.7)

∂u

∂n
= 0 on Γtop ∪ Γbottom when d > 2 (1.8)

∂u

∂n
= 0 on Γfront ∪ Γback when d = 3 (1.9)

where f is a given source term. We consider here the important special case when η is piecewise

west
east

bottom
right
top
left

Figure 1.10: Transmission problem: the domain Ω partition: (Ωwest and Ωeast).

constant:

η(x) =

{
ε when x ∈ Ωwest

1 when x ∈ Ωeast

where (Ωwest,Ωeast) is a partition of Ω in two parts (see Fig. 1.10). This is the so-called trans-

mission problem: the solution and the flux are continuous on the interface Γ0 = ∂Ωeast ∩ ∂Ωwest

between the two domains where the problem reduce to a constant diffusion one:

uΩwest
= uΩeast

on Γ0

ε
∂u/Ωwest

∂n
=

∂uΩeast

∂n
on Γ0

It expresses the transmission of the quantity u and its flux across the interface Γ0 between two
regions that have different diffusion properties: Note that the more classical problem, with constant
diffusion η on Ω is obtained by simply choosing when ε = 1.

The variational formulation of this problem expresses:

(V F): find u ∈ V such that:
a(u, v) = l(v), ∀v ∈ V

where the bilinear forms a(., .) and the linear one l(.) are defined by

a(u, v) =

∫

Ω

η∇u.∇v dx, ∀u, v ∈ H1(Ω)

l(v) =

∫

Ω

f v dx, ∀v ∈ L2(Ω)

V = {v ∈ H1(Ω); v = 0 on Γleft ∪ Γright}

Chapter 1. Getting started 37

The bilinear form a(., .) defines a scalar product in V and is related to the energy form. This form
is associated to the −div η∇ operator.

The approximation of this problem could performed by a standard Lagrange Pk continuous ap-
proximation.

Example file 1.12: transmission.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char**argv) {
5 environment rheolef (argc , argv);
6 const Float epsilon = 0.01;
7 geo omega (argv [1]);
8 space Xh (omega , argv [2]);
9 Xh.block ("left ");

10 Xh.block ("right ");
11 string eta_approx = "P" + itos(Xh.degree ()-1) + "d";
12 space Qh (omega , eta_approx);
13 field eta_h (Qh);
14 eta_h ["east"] = 1;
15 eta_h ["west"] = epsilon;
16 trial u (Xh); test v (Xh);
17 form a = integrate (eta_h*dot(grad(u),grad(v)));
18 field lh = integrate (v);
19 field uh (Xh);
20 uh["left"] = 0; uh["right "] = 0;
21 problem p (a);
22 p.solve (lh, uh);
23 dout << catchmark (" epsilon ") << epsilon << endl
24 << catchmark ("u") << uh;
25 }

Comments

This file is quite similar to those studied in the first chapters of this book. Let us comment only
the changes. The Dirichlet boundary condition applies no more on the whole boundary ∂Ω but
on two parts Γleft and Γright. On the other boundary parts, an homogeneous Neumann boundary
condition is used: since these conditions does not produce any additional terms in the variational
formulation, there are also nothing to write in the C++ code for these boundaries. We choose
f = 1: this leads to a convenient test-problem, since the exact solution is known when Ω =]0, 1[d:

u(x) =

x0
2ε

(
1 + 3ε

2(1 + ε)
− x0

)
when x0 < 1/2

1− x0
2

(
x0 +

1− ε

2(1 + ε)

)
otherwise

The field η belongs to a discontinuous finite element Pk−1 space denoted by Qh:

string eta_approx = "P" + itos(Xh.degree ()-1) + "d";
space Qh (omega , eta_approx);
field eta (Qh);

For instance, when argv[2] contains "P2", i.e. k = 2, then the string eta approx takes value
"P1d". Then η is initialized by:

eta["east"] = 1;
eta[" weast"] = epsilon;

The energy form a is then constructed with η as additional parameter that acts as a integration
weight:

form a = integrate (eta_h*dot(grad(u),grad(v)));

Such forms with a additional weight function are called weighted forms in Rheolef.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/transmission.cc

38 Rheolef version 7.1 update 22 March 2020

How to run the program ?

Build the program as usual: make transmission. Then, creates a one-dimensional geometry with
two regions:

mkgeo_grid -e 100 -region > line.geo

geo line.geo

The trivial mesh generator mkgeo grid, defines two regions east and west when used with the
-region option. This correspond to the situation:

Ω = [0, 1]d, Ωwest = Ω ∩ {x0 < 1/2} and Ωeast = Ω ∩ {x0 > 1/2}.

In order to avoid mistakes with the C++ style indexes, we denote by (x0, . . . , xd−1) the Cartesian
coordinate system in R

d.

Finally, run the program and look at the solution:

make transmission

./transmission line.geo P1 > line.field

field line.field

Since the exact solution is a piecewise second order polynomial and the change in the diffusion
coefficient value fits the element boundaries, we obtain the exact solution for all the degrees of
freedom of any Pk approximation, k > 1, as shown on Fig. 1.11 when k = 1. Moreover, when
k > 2 then uh = u since Xh contains the exact solution u. The two dimensional case corresponds

0

1

2

3

0 0.25 0.5 0.75 1

exact

h = 1/6
h = 1/10
h = 1/14

Figure 1.11: Transmission problem: uh = πh(u) (ε = 10−2, d = 1, P1 approximation).

to the commands:

mkgeo_grid -t 10 -region > square.geo

geo square.geo

./transmission square.geo P1 > square.field

field square.field -elevation

while the tridimensional to

Chapter 1. Getting started 39

mkgeo_grid -T 10 -region > cube.geo

./transmission cube.geo P1 > cube.field

field cube.field

As for all the others examples, you can replace P1 by higher-order approximations, change elements
shapes, such as q, H or P, and run distributed computations computations with mpirun.

40 Rheolef version 7.1 update 22 March 2020

Chapter 2

Fluids and solids computations

2.1 The linear elasticity and the Stokes problems

2.1.1 The linear elasticity problem

Formulation

The total Cauchy stress tensor expresses:

σ(u) = λ div(u).I + 2µD(u) (2.1)

where λ and µ are the Lamé coefficients. Here, D(u) denotes the symmetric part of the gradi-
ent operator and div is the divergence operator. Let us consider the elasticity problem for the
embankment, in Ω =]0, 1[d, d = 2, 3. The problem writes:

(P): find u = (u0, . . . , ud−1), defined in Ω, such that:

− div σ(u) = f in Ω,
∂u

∂n
= 0 on Γtop ∪ Γright

u = 0 on Γleft ∪ Γbottom,
u = 0 on Γfront ∪ Γback, when d = 3

(2.2)

where f = (0,−1) when d = 2 and f = (0, 0,−1) when d = 3. The Lamé coefficients are assumed
to satisfy µ > 0 and λ + µ > 0. Since the problem is linear, we can suppose that µ = 1 without
any loss of generality. recall that, in order to avoid mistakes with the C++ style indexes, we denote
by (x0, . . . , xd−1) the Cartesian coordinate system in R

d.

For d = 2 we define the boundaries:

Γleft = {0}×]0, 1[, Γright = {1}×]0, 1[
Γbottom =]0, 1[×{0}, Γtop =]0, 1[×{1}

and for d = 3:

Γback = {0}×]0, 1[2, Γfront = {1}×]0, 1[2

Γleft =]0, 1[×{0}×]0, 1[, Γright =]0, 1[×{1}×]0, 1[
Γbottom =]0, 1[2×{0}, Γtop =]0, 1[2×{1}

These boundaries are represented on Fig. 2.1.

The variational formulation of this problem expresses:

(V F): find u ∈ V such that:
a(u,v) = l(v), ∀v ∈ V, (2.3)

41

42 Rheolef version 7.1 update 22 March 2020

x2

x1

left right

bottom

top

front

x1

x0bottom

rightleft

top

x0

back

Figure 2.1: The boundary domains for the square and the cube.

where

a(u,v) =

∫

Ω

(λdivu divv + 2D(u) : D(v)) dx,

l(v) =

∫

Ω

f .v dx,

V = {v ∈ (H1(Ω))2; v = 0 on Γleft ∪ Γbottom}, when d = 2

V = {v ∈ (H1(Ω))3; v = 0 on Γleft ∪ Γbottom ∪ Γright ∪ Γback}, when d = 3

Approximation

We introduce a mesh Th of Ω and for k > 1, the following finite dimensional spaces:

Xh = {vh ∈ (H1(Ω))d; vh/K ∈ (Pk)
d, ∀K ∈ Th},

Vh = Xh ∩V

The approximate problem writes:

(V F)h: find uh ∈ Vh such that:

a(uh,vh) = l(vh), ∀vh ∈ Vh

Chapter 2. Fluids and solids computations 43

Example file 2.1: embankment.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "embankment.icc"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo omega (argv [1]);
8 space Xh = embankment_space (omega , argv [2]);
9 Float lambda = (argc > 3) ? atof(argv [3]) : 1;

10 size_t d = omega.dimension ();
11 point f (0,0,0);
12 f[d-1] = -1;
13 trial u (Xh); test v (Xh);
14 form a = integrate (lambda*div(u)*div(v) + 2*ddot(D(u),D(v)));
15 field lh = integrate (dot(f,v));
16 field uh (Xh , 0);
17 problem p (a);
18 p.solve (lh, uh);
19 dout << catchmark (" inv_lambda ") << 1/ lambda << endl
20 << catchmark ("u") << uh;
21 }

Example file 2.2: embankment.icc

1 space embankment_space (const geo& omega , string approx) {
2 space Xh (omega , approx , "vector ");
3 Xh.block("left ");
4 if (omega.dimension () >= 2)
5 Xh.block (" bottom ");
6 if (omega.dimension () == 3) {
7 Xh.block ("right ");
8 Xh.block ("back ");
9 }

10 return Xh;
11 }

Comments

The space is defined in a separate file ‘embankment.icc’, since it will be reused in others examples
along this chapter:

space Vh (omega , "P2", "vector ");

Note here the multi-component specification "vector" as a supplementary argument to the space
constructor. The boundary condition contain a special cases for bi- and tridimensional cases. The
right-hand-side fh represents the dimensionless gravity forces, oriented on the vertical axis: the
last component of fh is set to −1 as:

fh [d-1] = -1;

The code for the bilinear form a(., .) and the linear one l(.) are closed to their mathematical
definitions:

form a = integrate (lambda*div(u)*div(v) + 2*ddot(D(u),D(v)));
field lh = integrate (dot(f,v));

Finally, the 1/λ parameter and the multi-field result are printed, using mark labels, thanks to the
catchmark stream manipulator. Labels are convenient for post-processing purpose, as we will see
in the next paragraph.

How to run the program

Compile the program as usual (see page 14):

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/embankment.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/embankment.icc

44 Rheolef version 7.1 update 22 March 2020

Figure 2.2: The linear elasticity for λ = 1 and d = 2 and d = 3: both wireframe and filled surfaces
; stereoscopic anaglyph mode for 3D solutions.

make embankment

and enter the commands:

mkgeo_grid -t 10 > square.geo

geo square.geo

The triangular mesh has four boundary domains, named left, right, top and bottom. Then,
enter:

./embankment square.geo P1 > square-P1.field

The previous command solves the problem for the corresponding mesh and writes the multi-
component solution in the ‘.field’ file format. Run the deformation vector field visualization:

Chapter 2. Fluids and solids computations 45

field square-P1.field

field square-P1.field -nofill

It bases on the default paraview render for 2D and 3D geometries. The view is shown on Fig. 2.2.
If you are in trouble with paraview, you can switch to the simpler gnuplot render:

field square-P1.field -nofill -gnuplot

The unix manual for the field command is available as:

man field

A specific field component can be also selected for a scalar visualization:

field -comp 0 square-P1.field

field -comp 1 square-P1.field

Next, perform a P2 approximation of the solution:

./embankment square.geo P2 > square-P2.field

field square-P2.field -nofill

Finally, let us consider the three dimensional case

mkgeo_grid -T 10 > cube.geo

./embankment cube.geo P1 > cube-P1.field

field cube-P1.field -stereo

field cube-P1.field -stereo -fill

The two last commands show the solution in 3D stereoscopic anaglyph mode. The graphic is
represented on Fig. 2.2. The P2 approximation writes:

./embankment cube.geo P2 > cube-P2.field

field cube-P2.field

2.1.2 Computing the stress tensor

Formulation and approximation

The following code computes the total Cauchy stress tensor, reading the Lamé coefficient λ and
the deformation field uh from a ‘.field’ file. Let us introduce:

Th = {τh ∈ (L2(Ω))d×d; τh = τTh and τh;ij/K ∈ Pk−1, ∀K ∈ Th, 1 6 i, j 6 d}

This computation expresses:

find σh such that:
m(σh, τ) = b(τ,uh), ∀τ ∈ Th

where

m(σ, τ) =

∫

Ω

σ : τ dx,

b(τ,u) =

∫

Ω

(2D(u) : τ dx+ λdiv(u) tr(τ)) dx,

where tr(τ) =
∑d
i=1 τii is the trace of the tensor τ .

46 Rheolef version 7.1 update 22 March 2020

Example file 2.3: stress.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char** argv) {
5 environment rheolef (argc ,argv);
6 Float inv_lambda;
7 field uh;
8 din >> catchmark (" inv_lambda ") >> inv_lambda
9 >> catchmark ("u") >> uh;

10 const geo& omega = uh.get_geo ();
11 const space& Xh = uh.get_space ();
12 string grad_approx = "P" + itos(Xh.degree ()-1) + "d";
13 space Th (omega , grad_approx , "tensor ");
14 size_t d = omega.dimension ();
15 tensor I = tensor ::eye (d);
16 field sigma_h = (inv_lambda == 0) ?
17 interpolate (Th, 2*D(uh)) :
18 interpolate (Th, 2*D(uh) + (1/ inv_lambda)*div(uh)*I);
19 dout << catchmark ("s") << sigma_h;
20 }

Comments

In order to our code stress.cc to apply also for the forthcoming incompressible case λ = +∞,
the Lamé coefficient is introduced as 1/λ. Its value is zero in the incompressible case. By this
way, the previous code applies for any deformation field, and is not restricted to our embankment
problem. The stress tensor is obtained by a direct interpolation of the uh first derivatives. As
uh is continuous and piecewise polynomial Pk, its derivatives are also piecewise polynomials with
degree k − 1, but discontinuous at inter-element boundaries : this approximation is denoted as
Pk−1,d. Thus, the stress tensor belongs to the space Th with the Pk−1,d element.

How to run the program

Figure 2.3: The stress tensor visualization (linear elasticity λ = 1).

First, compile the program:

make stress

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/stress.cc

Chapter 2. Fluids and solids computations 47

The visualization for the stress tensor as ellipses writes:

./stress < square-P1.field > square-stress-P1.field

./stress < square-P2.field > square-stress-P2.field

field square-stress-P1.field -proj

field square-stress-P2.field -proj

This visualization based on paraview requires the TensorGlyph feature, available since
paraview-5.0. Recall that the stress, as a derivative of the deformation, is P0 (resp. P1d)
and discontinuous when the deformation is P1 (resp. P2) and continuous. The approximate stress
tensor field is projected as a continuous piecewise linear space, using the -proj option. Conversely,
the 3D visualization bases on ellipsoids:

./stress < cube-P1.field > cube-stress-P1.field

field cube-stress-P1.field -proj -stereo

Figure 2.4: The σ01 stress component (linear elasticity λ = 1): d = 2 (top) and d = 3 (bottom) ;
P0 (left) and P1 discontinuous approximation (right).

You can observe a discontinuous constant or piecewise linear representation of the approximate
stress component σ01 (see Fig. 2.4):

48 Rheolef version 7.1 update 22 March 2020

field square-stress-P1.field -comp 01

field square-stress-P2.field -comp 01 -elevation

field square-stress-P2.field -comp 01 -elevation -stereo

Note that the -stereo implies the paraview render: this feature available with paraview. The
approximate stress field can be also projected on a continuous piecewise space:

field square-stress-P2.field -comp 01 -elevation -proj

The tridimensional case writes simply (see Fig. 2.4):

./stress < cube-P1.field > cube-stress-P1.field

./stress < cube-P2.field > cube-stress-P2.field

field cube-stress-P1.field -comp 01 -stereo

field cube-stress-P2.field -comp 01 -stereo

and also the P1-projected versions write:

field cube-stress-P1.field -comp 01 -stereo -proj

field cube-stress-P2.field -comp 01 -stereo -proj

These operations can be repeated for each σij components and for both P1 and P2 approximation
of the deformation field.

2.1.3 Mesh adaptation

The main principle of the auto-adaptive mesh writes [Hecht, 2006, Borouchaki et al., 1995, Castro-
Diaz et al., 1997, Vallet, 1990, Roquet et al., 2000]:

din >> omega;

uh = solve(omega);

for (unsigned int i = 0; i < n; i++) {

ch = criterion(uh);

omega = adapt(ch);

uh = solve(omega);

}

The initial mesh is used to compute a first solution. The adaptive loop compute an adaptive
criterion, denoted by ch, that depends upon the problem under consideration and the polynomial
approximation used. Then, a new mesh is generated, based on this criterion. A second solution
on an adapted mesh can be constructed. The adaptation loop converges generally in roughly 5 to
20 iterations.

Let us apply this principle to the elasticity problem.

Chapter 2. Fluids and solids computations 49

Example file 2.4: embankment adapt.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "elasticity_solve.icc"
5 #include "elasticity_criterion.icc"
6 #include "embankment.icc"
7 int main(int argc , char**argv) {
8 environment rheolef (argc , argv);
9 const Float lambda = 1;

10 geo omega (argv [1]);
11 adapt_option options;
12 string approx = (argc > 2) ? argv [2] : "P1";
13 options.err = (argc > 3) ? atof(argv [3]) : 5e-3;
14 size_t n_adapt = (argc > 4) ? atoi(argv [4]) : 5;
15 options.hmin = 0.004;
16 for (size_t i = 0; true; i++) {
17 space Xh = embankment_space (omega , approx);
18 field uh = elasticity_solve (Xh , lambda);
19 odiststream of (omega.name(), "field ");
20 of << catchmark (" lambda ") << lambda << endl
21 << catchmark ("u") << uh;
22 if (i == n_adapt) break;
23 field ch = elasticity_criterion (lambda ,uh);
24 omega = adapt(ch , options);
25 odiststream og (omega.name(), "geo");
26 og << omega;
27 }
28 }

Example file 2.5: elasticity solve.icc

1 field elasticity_solve (const space& Xh , Float lambda) {
2 size_t d = Xh.get_geo (). dimension ();
3 point f (0,0,0);
4 f[d-1] = -1;
5 trial u (Xh); test v (Xh);
6 field lh = integrate (dot(f,v));
7 form a = integrate (lambda*div(u)*div(v) + 2*ddot(D(u),D(v)));
8 field uh (Xh , 0);
9 problem p (a);

10 p.solve (lh, uh);
11 return uh;
12 }

Example file 2.6: elasticity criterion.icc

1 field elasticity_criterion (Float lambda , const field& uh) {
2 string grad_approx = "P" + itos(uh.get_space (). degree ()-1) + "d";
3 space Xh (uh.get_geo(), grad_approx);
4 if (grad_approx == "P0d") return interpolate (Xh, norm(uh));
5 space T0h (uh.get_geo(), grad_approx);
6 size_t d = uh.get_geo (). dimension ();
7 tensor I = tensor ::eye (d);
8 return interpolate (T0h , sqrt (2* norm2(D(uh)) + lambda*sqr(div(uh))));
9 }

Comments

The criterion is here:

ch =

{
|uh| when using P1

(σ(uh) : D(uh))
1/2 when using P2

The elasticity criterion function compute it as

return interpolate (Xh, norm(uh));

when using P1, and as

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/embankment_adapt.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/elasticity_solve.icc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/elasticity_criterion.icc

50 Rheolef version 7.1 update 22 March 2020

return interpolate (T0h , sqrt (2* norm2(D(uh)) + lambda*sqr(div(uh))));

when using P2. The sqr function returns the square of a scalar. Conversely, the norm2 function
returns the square of the norm. In the min program, the result of the elasticity criterion

function is send to the adapt function:

field ch = elasticity_criterion (lambda , uh);
omega = adapt (ch , options);

The adapt option declaration is used by Rheolef to send options to the mesh generator. The
err parameter controls the error via the edge length of the mesh: the smaller it is, the smaller the
edges of the mesh are. In our example, is set by default to one. Conversely, the hmin parameter
controls minimal edge length.

How to run the program

P1: 6771 elements, 3663 vertices P2: 1636 elements, 920 vertices

Figure 2.5: Adapted meshes: the deformation visualization for P1 and P2 approximations.

The compilation command writes:

make embankment_adapt

The mesh loop adaptation is initiated from a bamg mesh (see also appendix A.2.1).

bamg -g square.bamgcad -o square.bamg

bamg2geo square.bamg square.dmn > square.geo

./embankment_adapt square P1 2e-2

The last command line argument is the target error. The code performs a loop of five
mesh adaptations: the corresponding meshes are stored in files, from square-001.geo.gz

to square-005.geo.gz, and the associated solutions in files, from square-001.field.gz to
square-005.field.gz. The additional ‘.gz’ suffix expresses that the files are compressed us-
ing gzip.

geo square-005.geo

field square-005.field -nofill

Chapter 2. Fluids and solids computations 51

Note that the ‘.gz’ suffix is automatically assumed by the geo and the field commands.

For a piecewise quadratic approximation:

./embankment_adapt square P2 5e-3

Then, the visualization writes:

geo square-005.geo

field square-005.field -nofill

A one-dimensional mesh adaptive procedure is also possible:

gmsh -1 line.mshcad -format msh2 -o line.msh

msh2geo line.msh > line.geo

geo line.geo

./embankment_adapt line P2

geo line-005.geo

field line-005.field -comp 0 -elevation

The three-dimensional extension of this mesh adaptive procedure is in development.

2.1.4 The Stokes problem

Formulation

Let us consider the Stokes problem for the driven cavity in Ω =]0, 1[d, d = 2, 3. The problem
writes:

(S) find u = (u0, . . . , ud−1) and p defined in Ω such that:

− div(2D(u)) + ∇p = 0 in Ω,
− divu = 0 in Ω,

u = (1, 0) on Γtop,
u = 0 on Γleft ∪ Γright ∪ Γbottom,
∂u0
∂n

=
∂u1
∂n

= u2 = 0 on Γback ∪ Γfront when d = 3,

where D(u) = (∇u+∇uT)/2. The boundaries are represented on Fig. 2.1, page 42.

The variational formulation of this problem expresses:

(V FS) find u ∈ V(1) and p ∈ L2
0(Ω) such that:

a(u,v) + b(v, p) = 0, ∀v ∈ V(0),
b(u, q) = 0, ∀q ∈ L2

0(Ω),

where

a(u,v) =

∫

Ω

2D(u) : D(v) dx,

b(v, q) = −
∫

Ω

div(v) q dx.

V(α) = {v ∈ (H1(Ω))2; v = 0 on Γleft ∪ Γright ∪ Γbottom and v = (α, 0) on Γtop}, when d = 2,

V(α) = {v ∈ (H1(Ω))3; v = 0 on Γleft ∪ Γright ∪ Γbottom,

v = (α, 0, 0) on Γtop and v2 = 0 on Γback ∪ Γfront}, when d = 3,

L2
0(Ω) = {q ∈ L2(Ω);

∫

Ω

q dx = 0}.

52 Rheolef version 7.1 update 22 March 2020

Approximation

The Hood and Taylor [1973] finite element approximation of the Stokes problem is considered. We
introduce a mesh Th of Ω and the following finite dimensional spaces:

Xh = {v ∈ (H1(Ω))d; v/K ∈ (P2)
d, ∀K ∈ Th},

Vh(α) = Xh ∩V(α),

Qh = {q ∈ L2(Ω)) ∩ C0(Ω̄); q/K ∈ P1, ∀K ∈ Th},

The approximate problem writes:

(V FS)h find uh ∈ Vh(1) and p ∈ Qh such that:

a(uh,v) + b(v, ph) = 0, ∀v ∈ Vh(0),
b(uh, q) = 0, ∀q ∈ Qh.

(2.4)

Example file 2.7: cavity.h

1 struct cavity {
2 static space velocity_space (const geo& omega , string approx) {
3 space Xh (omega , approx , "vector ");
4 Xh.block ("top "); Xh.block (" bottom ");
5 if (omega.dimension () == 3) {
6 Xh.block("back "); Xh.block ("front ");
7 Xh[1]. block("left "); Xh[1]. block ("right ");
8 } else {
9 Xh.block("left "); Xh.block ("right ");

10 }
11 return Xh;
12 }
13 static field velocity_field (const space& Xh, Float alpha =1) {
14 field uh (Xh , 0.);
15 uh[0][" top"] = alpha;
16 return uh;
17 }
18 static space streamf_space (geo omega , string approx) {
19 string valued = (omega.dimension () == 3) ? "vector" : "scalar ";
20 space Ph (omega , approx , valued);
21 Ph.block ("top "); Ph.block (" bottom ");
22 if (omega.dimension () == 3) {
23 Ph.block("back "); Ph.block ("front ");
24 } else {
25 Ph.block("left "); Ph.block ("right ");
26 }
27 return Ph;
28 }
29 static field streamf_field (space Ph) {
30 return field(Ph, 0);
31 }
32 };

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/cavity.h

Chapter 2. Fluids and solids computations 53

Example file 2.8: stokes cavity.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cavity.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh = cavity :: velocity_space (omega , "P2");
9 space Qh (omega , "P1");

10 trial u (Xh); test v (Xh), q (Qh);
11 form a = integrate (2* ddot(D(u),D(v)));
12 form b = integrate (-div(u)*q);
13 field uh = cavity :: velocity_field (Xh , 1);
14 field ph (Qh , 0);
15 problem_mixed stokes (a, b);
16 stokes.solve (field(Xh ,0), field(Qh ,0), uh, ph);
17 dout << catchmark ("u") << uh
18 << catchmark ("p") << ph;
19 }

Comments

The spaces and boundary conditions and grouped in specific functions, defined in file ‘cavity.h’.
This file is suitable for a future re-usage. Next, forms are defined as usual, in file
‘stokes cavity.cc’.

The problem admits the following matrix form:

(
a trans(b)
b 0

)(
uh

ph

)
=

(
0
0

)

An initial value for the pressure field is provided:

field ph (Qh , 0);

The solve call to the Stokes problem writes:

problem_mixed stokes (a, b);
stokes.solve (field(Xh ,0), field(Qh ,0), uh, ph);

The two first arguments of the solve member function represents the zero right-hand-side of
the problem. For two-dimensional geometries (d = 2), this system is solved by a direct method
(see Saramito, 2016b, p. 41). Conversely, for tridimensional geometries (d = 3), it is solved by
the preconditioned conjugate gradient algorithm (see Saramito, 2016b, p. 56). In that case, the
preconditioner is by default the mass matrix mp for the pressure space: as showed by Klawonn
[1998], the number of iterations need by the conjugate gradient algorithm to reach a given precision
is then independent of the mesh size. For more details, see the Rheolef reference manual related
to mixed solvers, available on the web site and via the unix command:

man problem_mixed

How to run the program

We assume that the previous code is contained in the file ‘stokes cavity.cc’. Then, compile the
program as usual (see page 14):

make stokes_cavity

and enter the commands:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/stokes_cavity.cc

54 Rheolef version 7.1 update 22 March 2020

Figure 2.6: The velocity visualization for d = 2 and d = 3 with stereo anaglyph.

mkgeo_grid -t 10 > square.geo

./stokes_cavity square > square.field

The previous command solves the problem for the corresponding mesh and writes the solution in
a ‘.field’ file. Run the velocity vector visualization :

field square.field -velocity

Run also some scalar visualizations:

field square.field -comp 0

field square.field -comp 1

field square.field -mark p

Note the -mark option to the field command: the file reader jumps to the label and then starts
to read the selected field. Next, perform another computation on a finer mesh:

mkgeo_grid -t 20 > square-20.geo

./stokes_cavity square-20.geo > square-20.field

and observe the convergence.

Finally, let us consider the three dimensional case:

mkgeo_grid -T 5 > cube.geo

./stokes_cavity cube.geo > cube.field

and the corresponding visualization:

field cube.field -velocity -scale 3

field cube.field -comp 0

field cube.field -comp 1

field cube.field -comp 2

field cube.field -mark p

Chapter 2. Fluids and solids computations 55

2.1.5 Computing the vorticity

Formulation and approximation

When d = 2, we define [Girault and Raviart, 1986, page 30] for any distributions φ and v:

curlφ =

(
∂φ

∂x1
, − ∂φ

∂x0

)
,

curlv =
∂v1
∂x0

− ∂v0
∂x1

,

and when d = 3:

curl v =

(
∂v2
∂x1

− ∂v1
∂x2

,
∂v0
∂x2

− ∂v2
∂x0

,
∂v1
∂x0

− ∂v0
∂x1

)

Let u be the solution of the Stokes problem (S). The vorticity is defined by:

ω = curlu when d = 2,
ω = curl u when d = 3.

Since the approximation of the velocity is piecewise quadratic, we are looking for a discontinuous
piecewise linear vorticity field that belongs to:

Yh = {ξ ∈ L2(Ω); ξ/K ∈ P1, ∀K ∈ Th}, when d = 2
Yh = {ξ ∈ (L2(Ω))3; ξi/K ∈ P1, ∀K ∈ Th}, when d = 3

The approximate variational formulation writes:

ωh ∈ Yh,
∫
Ω
ωh ξ dx =

∫
Ω
curluh ξ dx, ∀ξ ∈ Yh when d = 2,

ω ∈ Yh,
∫
Ω
ωh.ξ dx =

∫
Ω
curl uh.ξ dx, ∀ξ ∈ Yh when d = 3.

Example file 2.9: vorticity.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char** argv) {
5 environment rheolef (argc , argv);
6 field uh;
7 din >> uh;
8 const space& Xh = uh.get_space ();
9 string grad_approx = "P" + itos(Xh.degree ()-1) + "d";

10 string valued = (uh.get_geo (). dimension () == 3) ? "vector" : "scalar ";
11 space Lh (uh.get_geo(), grad_approx , valued);
12 field curl_uh = interpolate (Lh , curl(uh));
13 dout << catchmark ("w") << curl_uh;
14 }

Comments

As for the stress tensor (see stress.cc, page 46), the vorticity is obtained by a direct interpolation
of the uh first derivatives and its approximation is discontinuous at inter-element boundaries.

How to run the program

For d = 2, just enter:

make vorticity

./vorticity < square.field | field -elevation -stereo -

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/vorticity.cc

56 Rheolef version 7.1 update 22 March 2020

Figure 2.7: The vorticity: elevation view for d = 2 and vector representation for d = 3 (with
anaglyph).

and you observe a discontinuous piecewise linear representation of the approximate vorticity. Also,
the vorticity presents two sharp peaks at the upper corners of the driven cavity: the vorticity is
unbounded and the peaks will increase with mesh refinements. This singularity of the solution is
due to the boundary condition for the first component of the velocity u0 that jumps from zero to
one at the corners. The approximate vorticity field can also be projected on a continuous piecewise
linear space, using the -proj option (See Fig. 2.7 left):

./vorticity < square.field | field -elevation -stereo -nofill -

./vorticity < square.field | field -elevation -stereo -proj -

For d = 3, the whole vorticity vector can also be visualized (See Fig. 2.7 right):

./vorticity < cube.field | field -proj -velocity -stereo -

In the previous command, the -proj option has been used: since the 3D render has no support for
discontinuous piecewise linear fields, the P1-discontinuous field is transformed into a P1-continuous
one, thanks to a L2 projection. P1 The following command shows the second component of the
vorticity vector, roughly similar to the bidimensional case.

./vorticity < cube.field | field -comp 1 -

./vorticity < cube.field | field -comp 1 -proj -

2.1.6 Computing the stream function

Formulation and approximation

When d = 3, the stream function is a vector-valued field ψ that satisfies [Girault and Raviart,
1986, page 90]: curlψ = u and divψ = 0. From the identity:

curl curlψ = −∆ψ +∇(divψ)

we obtain the following characterization of ψ :

−∆ψ = curl u in Ω,
ψ = 0 on Γback ∪ Γfront ∪ Γtop ∪ Γbottom,

∂ψ

∂n
= 0 on Γleft ∪ Γright.

Chapter 2. Fluids and solids computations 57

When d = 2, the stream function ψ is a scalar-valued field the solution of the following prob-
lem [Girault and Raviart, 1986, page 88]:

−∆ψ = curlu in Ω,
ψ = 0 on ∂Ω.

Example file 2.10: streamf cavity.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cavity.h"
5 int main (int argc , char** argv) {
6 environment rheolef (argc , argv);
7 field uh;
8 din >> uh;
9 string approx = "P" + itos(uh.get_space (). degree ());

10 space Ph = cavity :: streamf_space (uh.get_geo(), approx);
11 space Xh = uh.get_space ();
12 size_t d = uh.get_geo (). dimension ();
13 trial u (Xh), psi (Ph); test phi (Ph);
14 form a = (d == 3) ? integrate (ddot(grad(psi),grad(phi)))
15 : integrate (dot(grad(psi),grad(phi)));
16 form b = (d==3) ? integrate (dot(curl(u),phi))
17 : integrate (curl(u)*phi);
18 field psi_h = cavity :: streamf_field (Ph);
19 field lh = b*uh;
20 problem p (a);
21 p.solve (lh, psi_h);
22 dout << catchmark ("psi") << psi_h;
23 }

How to run the program

Figure 2.8: The stream function visualization: isolines for d = 2, and combined vectors and
isonorm surface for d = 3.

For d = 2, just enter (see Fig. 2.8 left):

make streamf_cavity

./streamf_cavity < square.field | field -bw -

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/streamf_cavity.cc

58 Rheolef version 7.1 update 22 March 2020

For d = 3, the whole stream function vector can be visualized:

./streamf_cavity < cube.field | field -velocity -scale 10 -

The second component of the stream function is showed by:

./streamf_cavity < cube.field | field -comp 1 -

The combined representation of Fig. 2.8.right has been obtained in two steps. First, enter:

./streamf_cavity < cube.field | field -comp 1 -noclean -noexecute -

mv output.vtk psi1.vtk

./streamf_cavity < cube.field | field -velocity -

The -noclean -noexecute options cause the creation of the ‘.vtk’ file for the second compo-
nent, without running the paraview visualization. Next, in the paraview window associated to
the whole stream function, select the File->Open menu and load ‘psi1.vtk’ and click on the
green button Apply. Finally, select the Filters/Common/Contours menu: the isosurface appears.
Observe that the 3D stream function is mainly represented by its second component.

2.2 Nearly incompressible elasticity and the stabilized
Stokes problems

2.2.1 The incompressible elasticity problem

Formulation

Let us go back to the linear elasticity problem.

When λ becomes large, this problem is related to the incompressible elasticity and cannot be
solved as it was previously done. To overcome this difficulty, the pressure is introduced :

p = −λdivu
and the problem becomes:

(E) find u and p defined in Ω such that:

− div(2D(u)) + ∇p = f in Ω,

− divu − 1

λ
p = 0 in Ω,

+B.C.

The variational formulation of this problem expresses:

(V FE) find u ∈ V (1) and p ∈ L2(Ω) such that:

a(u,v) + b(v, p) = m(f ,v), ∀v ∈ V (0),
b(u, q) − c(p, q) = 0, ∀q ∈ L2

0(Ω),

where

m(u,v) =

∫

Ω

u.v dx,

a(u,v) =

∫

Ω

D(u) : D(v) dx,

b(v, q) = −
∫

Ω

div(v) q dx.

c(p, q) =
1

λ

∫

Ω

p q dx.

V = {v ∈ (H1(Ω))2; v = 0 on Γleft ∪ Γbottom}

Chapter 2. Fluids and solids computations 59

When λ becomes large, we obtain the incompressible elasticity problem, that coincides with the
Stokes problem.

Approximation

As for the Stokes problem, the Hood and Taylor [1973] finite element approximation is considered.
We introduce a mesh Th of Ω and the following finite dimensional spaces:

Xh = {v ∈ (H1(Ω)); v/K ∈ (P2)
2, ∀K ∈ Th},

Vh(α) = Xh ∩ V,
Qh = {q ∈ L2(Ω)) ∩ C0(Ω̄); q/K ∈ P1, ∀K ∈ Th},

The approximate problem writes:

(V FE)h find uh ∈ Vh(1) and p ∈ Qh such that:

a(uh,v) + b(v, ph) = 0, ∀v ∈ Vh(0),
b(uh, q) − c(p, q) = 0, ∀q ∈ Qh.

Example file 2.11: incompressible-elasticity.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "embankment.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 Float inv_lambda = (argc > 2 ? atof(argv [2]) : 0);
9 size_t d = omega.dimension ();

10 space Xh = embankment_space(omega , "P2");
11 space Qh (omega , "P1");
12 point f (0,0,0);
13 f [d-1] = -1;
14 trial u (Xh), p (Qh); test v (Xh), q (Qh);
15 field lh = integrate (dot(f,v));
16 form a = integrate (2* ddot(D(u),D(v)));
17 form b = integrate (-div(u)*q);
18 form c = integrate (inv_lambda*p*q);
19 field uh (Xh , 0), ph (Qh , 0);
20 problem_mixed elasticity (a, b, c);
21 elasticity.solve (lh, field(Qh ,0), uh , ph);
22 dout << catchmark (" inv_lambda ") << inv_lambda << endl
23 << catchmark ("u") << uh
24 << catchmark ("p") << ph;
25 }

Comments

The problem admits the following matrix form:
(

a trans(b)
b −c

)(
uh

ph

)
=

(
lh

0

)

The problem is similar to the Stokes one (see page 53). This system is solved by:

problem_mixed elasticity (a, b, c);
elasticity.solve (lh, field(Qh ,0), uh , ph);

For two-dimensional problems, a direct solver is used by default. In the three-dimensional case,
an iterative algorithm is the default: the preconditioned conjugate gradient. The preconditioner is
here the mass matrix mp for the pressure. As showed by Klawonn [1998], the number of iterations
need by the conjugate gradient algorithm to reach a given precision is then independent of the
mesh size and is uniformly bounded when λ becomes small, i.e. in the incompressible case.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/incompressible-elasticity.cc

60 Rheolef version 7.1 update 22 March 2020

How to run the program

Figure 2.9: The incompressible linear elasticity (λ = +∞) for N = 2 and N = 3.

We assume that the previous code is contained in the file ‘incompressible-elasticity.cc’.
Compile the program as usual (see page 14):

make incompressible-elasticity

and enter the commands:

mkgeo_grid -t 10 > square.geo

./incompressible-elasticity square.geo 0 > square.field

field square.field -nofill

mkgeo_grid -T 10 > cube.geo

./incompressible-elasticity cube.geo 0 > cube.field

field cube.field -fill -scale 2

The visualization is performed as usual: see section 2.1.1, page 43. Compare the results on Fig. 2.9,
obtained for λ = +∞ with those of Fig. 2.2, page 44, obtained for λ = 1.

Finally, the stress computation and the mesh adaptation loop is left as an exercise to the reader.

2.2.2 The P1b− P1 element for the Stokes problem

Formulation and approximation

Let us go back to the Stokes problem. In section 2.1.4, page 51, the Taylor-Hood finite element was
considered. Here, we turn to the mini-element proposed by Arnold, Brezzi, and Fortin [1984], also
well-known as the P1-bubble element. This element is generally less precise than the Taylor-Hood
one, but becomes popular, mostly because it is easy to implement in two and three dimensions
and furnishes a P1 approximation of the velocity field. Moreover, this problem develops some links
with stabilization technique and will presents some new Rheolef features.

Chapter 2. Fluids and solids computations 61

We consider a mesh Th of Ω ⊂ R
d, d = 2, 3 composed only of simplicial elements: triangles when

d = 2 and tetrahedra when d = 3. The following finite dimensional spaces are introduced:

X
(1)
h = {v ∈ (H1(Ω))d; v/K ∈ (P1)

d, ∀K ∈ Th},
Bh = {β ∈ (C0(Ω̄))d; β/K ∈ B(K)d, ∀K ∈ Th}
Xh = X

(1)
h ⊕Bh

Vh(α) = Xh ∩V(α),

Qh = {q ∈ L2(Ω)) ∩ C0(Ω̄); q/K ∈ P1, ∀K ∈ Th},

where B(K) = vect(λ1 × . . . × λd+1) and λi are the barycentric coordinates of the simplex K.
The B(K) space is related to the bubble local space. The approximate problem is similar to (2.4),
page 52, up to the choice of finite dimensional spaces.

Remark that the velocity field splits in two terms: uh = u
(1)
h +u

(b)
h , where u

(1)
h ∈ X

(1)
h is continuous

and piecewise linear, and u
(b)
h ∈ Bh is the bubble term.

We consider the abrupt contraction geometry:

Ω =]−Lu, 0[×]0, c[∪ [0, Ld[×]0, 1[

where c > 1 stands for the contraction ratio, and Lu, Ld > 0, are the upstream and downstream
tube lengths. The boundary conditions on u = (u0, u1) for this test case are:

u0 = upoiseuille and u1 = 0 on Γupstream

u = 0 on Γwall

∂u0
∂x1

= 0 and u1 = 0 on Γaxis

∂u

∂n
= 0 on Γdownstream

where

Γupstream = {−Lu}×]0, c[

Γdownstream = {Ld}×]0, 1[

Γaxis =]−Lu, Ld[×{0}
Γwall =]−Lu, 0[×{c} ∪ {0}×]1, c[∪]0, Ld[×{1}

The matrix structure is similar to those of the Taylor-Hood element (see section 2.1.4, page 51).

Since Xh = X
(1)
h ⊕ Bh, any element uh ∈ Xh can be written as a sum uh = u1,h + ub,h where

u1,h ∈ X
(1)
h and ub,h ∈ Bh. Remark that

a(u1,h, vb,h) = 0, ∀u1,h ∈ X
(1)
h , ∀vb,h ∈ Bh.

Thus, the form a(., .) defined over Xh × Xh writes simply as the sum of the forms a1(., .) and

ab(., .), defined over X
(1)
h × X

(1)
h and Bh × Bh respectively. Finally, the form b(., .) defined over

Xh ×Qh writes as the sum of the forms b1(., .) and bb(., .), defined over X
(1)
h ×Qh and Bh ×Qh

respectively. Then, the linear system admits the following block structure :

A1 0 BT1
0 Ab BTb
B1 Bb 0

U1

Ub
P

 =

L1

Lb
Lp

An alternative and popular implementation of this element eliminates the unknowns related to
the bubble components (see e.g. Abdalass, 1987, page 24). Remark that, on any element K ∈ Th,

62 Rheolef version 7.1 update 22 March 2020

any bubble function vK that belongs to B(K) vanishes on the boundary of K and have a compact
support in K. Thus, the Ab matrix is block-diagonal. Moreover, Ab is invertible and Ub writes :

Ub = A−1
b (BTb p− Lb)

As Ab is block-diagonal, its inverse can be efficiently inverted at the element level during the
assembly process. Then, Ub can be easily eliminated from the system that reduces to:

(
A1 BT1
B1 −C

)(
U1

P

)
=

(
L1

L̃p

)

where L̃p = Lp−A−1
b Lp and C = BbA

−1
b BTb . Remarks that the matrix structure is similar to those

of the nearly incompressible elasticity (see 2.2.1, page 2.2.1). This reduced matrix formulation of
the P1b− P1 element is similar to the direct P1 − P1 stabilized element, proposed by Brezzi and
Pitkäranta [1984].

Example file 2.12: stokes contraction bubble.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "contraction.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space X1h = contraction :: velocity_space (omega , "P1");
9 space Bh (omega , "bubble", "vector ");

10 space Qh (omega , "P1");
11 trial u1 (X1h), ub (Bh), p (Qh);
12 test v1 (X1h), vb (Bh), q (Qh);
13 form b1 = integrate (-div(u1)*q);
14 form bb = integrate (-div(ub)*q);
15 form a1 = integrate (2* ddot(D(u1),D(v1)));
16 integrate_option iopt;
17 iopt.invert = true;
18 form inv_ab = integrate (2* ddot(D(ub),D(vb)), iopt);
19 form c = bb*inv_ab*trans(bb);
20 field u1h = contraction :: velocity_field (X1h);
21 field ph (Qh , 0);
22 problem_mixed stokes (a1 , b1 , c);
23 stokes.solve (field(X1h ,0), field(Qh ,0), u1h , ph);
24 dout << catchmark (" inv_lambda ") << 0 << endl
25 << catchmark ("u") << u1h
26 << catchmark ("p") << ph;
27 }

Comments

First, A−1
b is computed as:

integrate_option iopt;
iopt.invert = true;
form inv_ab = integrate (2* ddot(D(ub),D(vb)), iopt);

Note the usage of the optional parameter iopt to the integrate function. As the form is bloc-
diagonal, its inverse is computed element-by-element during the assembly process. Next, the
C = BbA

−1
b BTb form is simply computed as:

form c = bb*inv_ab*trans(bb);

The file ‘contraction.h’ contains code for the velocity and stream function boundary conditions.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/stokes_contraction_bubble.cc

Chapter 2. Fluids and solids computations 63

Example file 2.13: contraction.h

1 struct contraction {
2 struct base {
3 base (geo omega) : c(0), umax(0), cartesian(true) {
4 c = omega.xmax ()[1];
5 string sys_coord = omega.coordinate_system_name ();
6 cartesian = (sys_coord == "cartesian ");
7 umax = cartesian ? 3/(2*c) : 4/sqr(c);
8 }
9 Float c, umax;

10 bool cartesian;
11 };
12 struct u_upstream: base {
13 u_upstream (geo omega) : base(omega) {}
14 Float operator () (const point& x) const {
15 return base::umax*(1-sqr(x[1]/ base::c)); }
16 };
17 static space velocity_space (geo omega , string approx) {
18 space Xh (omega , approx , "vector ");
19 Xh.block ("wall ");
20 Xh.block (" upstream ");
21 Xh[1]. block ("axis ");
22 Xh[1]. block (" downstream ");
23 return Xh;
24 }
25 static field velocity_field (space Xh) {
26 geo omega = Xh.get_geo ();
27 string approx = "P" + itos(Xh.degree ());
28 space Wh (omega[" upstream"], approx);
29 field uh (Xh , 0.);
30 uh[0][" upstream "] = interpolate (Wh, u_upstream(omega));
31 return uh;
32 }
33 static space streamf_space (geo omega , string approx) {
34 space Ph (omega , approx);
35 Ph.block (" upstream ");
36 Ph.block ("wall ");
37 Ph.block ("axis ");
38 return Ph;
39 }
40 struct psi_upstream: base {
41 psi_upstream (geo omega) : base(omega) {}
42 Float operator () (const point& x) const {
43 Float y = (x[1]/ base::c);
44 if (base:: cartesian) {
45 return (base::umax*base::c)*(y*(1-sqr(y)/3) - 2./3);
46 } else {
47 return 0.5*(base::umax*sqr(base::c))*(sqr(y)*(1-sqr(y)/2) - 0.5);
48 }
49 }
50 };
51 static field streamf_field (space Ph) {
52 geo omega = Ph.get_geo ();
53 space Wh (omega[" upstream"], Ph.get_approx ());
54 field psi_h (Ph , 0);
55 psi_upstream psi_up (omega);
56 psi_h[" upstream "] = interpolate (Wh , psi_up);
57 psi_h["wall"] = 0;
58 psi_h["axis"] = -1;
59 return psi_h;
60 }
61 };

Without loss of generality, we assume that the half width of the downstream channel is assumed
to be equal to one. The Poiseuille velocity upstream boundary condition u_upsteam is then scaled
such that the downstream average velocity is equal to one. By this way, the flow rate in the half
upstream and downstream channel are also equal to one. The stream function is defined up to a
constant: we assume that it is equal to −1 on the axis of symmetry: by this way, it is equal to

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/contraction.h

64 Rheolef version 7.1 update 22 March 2020

zero on the wall.

The file ‘contraction.h’ also contains a treatment of the axisymmetric variant of the geometry:
this case will be presented in the next paragraph. Note also the automatic computation of the
geometric coordinate system and contraction ratio c from the input mesh, as:

c = omega.xmax ()[1];
string sys_coord = omega.coordinate_system_name ();

These parameters are transmitted via a base class to the class-function that computes the Poiseuille
upstream flow boundary condition.

How to run the program

ψmax = 1.109× 10−3

ψmax = 1.118× 10−3

Figure 2.10: Solution of the Stokes problem in the abrupt contraction: (top) the mesh; (center) the
P1 stream function associated to the P1b−P1 element; (bottom) the P2 stream function associated
to the P2 − P1 Taylor-Hood element.

The boundary conditions in this example are related to an abrupt contraction geometry with a
free surface. The corresponding mesh ‘contraction.geo’ can be easily build from the geometry
description file ‘contraction.mshcad’, which is provided in the example directory of the Rheolef

Chapter 2. Fluids and solids computations 65

distribution. The building mesh procedure is presented with details in appendix A.2, page A.2.

gmsh -2 contraction.mshcad -format msh2 -o contraction.msh

msh2geo contraction.msh > contraction.geo

geo contraction.geo

The mesh is represented on Fig. 2.10.top. Then, the computation and the visualization writes:

make stokes_contraction_bubble

./stokes_contraction_bubble contraction.geo > contraction-P1.field

field contraction-P1.field -velocity

The visualization of the velocity field brings few informations about the properties of the flow.
The stream function is more relevant for stationary flow visualization.

66 Rheolef version 7.1 update 22 March 2020

Example file 2.14: streamf contraction.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "contraction.h"
5 int main (int argc , char** argv) {
6 environment rheolef (argc , argv);
7 field uh;
8 din >> uh;
9 const geo& omega = uh.get_geo ();

10 size_t d = omega.dimension ();
11 Float c = omega.xmax ()[1];
12 string approx = "P" + itos(uh.get_space (). degree ());
13 space Ph = contraction :: streamf_space (omega , approx);
14 field psi_h = contraction :: streamf_field (Ph);
15 integrate_option iopt;
16 iopt.ignore_sys_coord = true;
17 const space& Xh = uh.get_space ();
18 trial psi (Ph), u (Xh);
19 test xi (Ph), v (Xh);
20 form a = (d == 3) ? integrate (ddot(grad(psi), grad(xi)))
21 : integrate (dot(grad(psi), grad(xi)), iopt);
22 field lh = integrate (dot(uh ,bcurl(xi)));
23 problem p (a);
24 p.solve (lh, psi_h);
25 dout << catchmark ("psi") << psi_h;
26 }

Note the usage of the optional parameter iopt to the integrate function.

iopt.ignore_sys_coord = true;

In the axisymmetric coordinate system, there is a specific definition of the stream function, together
with the use of a variant of the curl operator, denoted as bcurl in Rheolef.

field lh = integrate (dot(uh ,bcurl(xi)));

The axisymmetric case will be presented in the next section. By this way, our code is able to deal
with both Cartesian and axisymmetric geometries.

The stream function ψ (see also section 2.1.6) is computed and visualized as:

make streamf_contraction

./streamf_contraction < contraction-P1.field > contraction-P1-psi.field

field contraction-P1-psi.field

field contraction-P1-psi.field -n-iso 15 -n-iso-negative 10 -bw

The P1 stream function is represented on Fig. 2.10.center. The stream function is zero along
the wall and the line separating the main flow and the vortex located in the outer corner of the
contraction. Thus, the isoline associated to the zero value separates the main flow from the vortex.
In order to observe this vortex, an extra -n-iso-negative 10 option is added: ten isolines are
drawn for negatives values of ψ, associated to the main flow, and n iso-10 for the positives values,
associated to the vortex.

A similar computation based on the Taylor-Hood P2 − P1 element is implemented in
stokes contraction.cc. The code is similar, up to the boundary conditions, to
stokes cavity.cc (see page 52): thus it is not listed here but is available in the Rheolef example
directory.

make stokes_contraction

./stokes_contraction contraction.geo > contraction-P2.field

field contraction-P2.field -velocity

./streamf_contraction < contraction-P2.field > contraction-P2-psi.field

field contraction-P2-psi.field -n-iso-negative 10 -bw

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/streamf_contraction.cc

Chapter 2. Fluids and solids computations 67

The associated P2 stream function is represented on Fig. 2.10.bottom. Observe that the two
solutions are similar and that the vortex activity, defined as ψmax, is accurately computed with
the two methods (see also Saramito, 1990, Fig. 5.11.a, page 143).

field contraction-P1-psi.field -max

field contraction-P2-psi.field -max

Recall that the stream function is negative in the main flow and positive in the vortex located
in the outer corner of the contraction. Nevertheless, the Taylor-Hood based solution is more
accurate : this is perceptible on the graphic, in the region where the upstream vortex reaches the
boundary.

2.2.3 Axisymmetric geometries

Axisymmetric geometries are fully supported in Rheolef: the coordinate system is associated to
the geometry description, stored together with the mesh in the ‘.geo’ and this information is
propagated in spaces, forms and fields without any change in the code. Thus, a code that works in
plane a 2D plane geometry is able to support a 3D axisymmetric one without changes. A simple
axisymmetric geometry writes:

mkgeo_grid -t 10 -zr > square-zr.geo

more square-zr.geo

Remark the additional line in the header:

coordinate_system zr

The axis of symmetry is denoted as z while the polar coordinates are (r, θ). By symmetry, the
problem is supposed to be independent upon θ and the computational domain is described by
(x0, x1) = (z, r). Conversely, in some cases, it could be convenient to swap the order of the
coordinates and use (r, z): this feature is obtained by the -rz option:

mkgeo_grid -t 10 -rz > square-rz.geo

more square-rz.geo

Axisymmetric problems uses L2 functional space equipped with the following weighted scalar
product

(f, g) =

∫

Ω

f(z, r) g(z, r) r drdz

and all usual bilinear forms support this weight. Thus, the coordinate system can be chosen

at run time and we can expect an efficient source code reduction.

2.2.4 The axisymmetric stream function and stress tensor

In the axisymmetric case, the velocity field u = (uz, ur) can be expressed in terms of the Stokes
stream function ψ by (see Batchelor Batchelor, 1967, p.453 and Wikipedia, 2012):

u = (uz, ur) =

(
1

r

∂ψ

∂r
, −1

r

∂ψ

∂z

)
(2.5)

Recall that in the axisymmetric case:

curlψ =

(
1

r

∂(rψ)

∂r
, −∂ψ

∂z

)

68 Rheolef version 7.1 update 22 March 2020

Thus, from this definition, in axisymmetric geometries u 6= curlψ and the definition of ψ differs
from the 2D plane or 3D cases (see section 2.1.6, page 56).

Let us turn to a variational formulation in order to compute ψ from u. For any ξ ∈ H1(Ω), let
us multiply (2.5) by v = (∂rξ, −∂zξ) and then integrate over Ω with the r dr dz weight. For any
known u velocity field, the problem writes:

(P): find ψ ∈ Ψ(ψΓ) such that

a(ψ, ξ) = l(ξ), ∀ξ ∈ Ψ(0)

where we have introduced the following bilinear forms:

a(ψ, ξ) =

∫

Ω

(
∂ψ

∂r

∂ξ

∂r
+
∂ψ

∂z

∂ξ

∂z

)
dr dz

l(ξ) =

∫

Ω

(
∂ξ

∂r
uz −

∂ξ

∂z
ur

)
r dr dz

These forms are defined in ‘streamf contraction.cc’ as:

integrate_option iopt;
iopt.ignore_sys_coord = true;
form a = integrate (dot(grad(psi), grad(xi)), iopt);

and

field lh = integrate (dot(uh ,bcurl(xi)));

The iopt.ignore sys coord alows us to drops the r integration weight, i.e. replace r dr dz by
dr dz when computing the a(., .) form. Conversely, l involves the bcurl operator defined as:

bcurl ξ =

(
∂ξ

∂r
, −∂ξ

∂z

)

It is is closely related but differs from the standard curl operator:

curl ξ =

(
1

r

∂(rξ)

∂r
, −∂ξ

∂z

)

The bcurl operator is a specific notation introduced in Rheolef: it coincides with the usual curl
operator except for axisymmetric geometries. In tht case, it refers to the Batchelor trick, suitable
for the computation of the stream function.

As an example, let us reconsider the contraction geometry (see section 2.2.2, page 60), extended
in the axisymmetric case. In that case, the functional space is defined by:

Ψ(ψΓ) = {ϕ ∈ H1(Ω); ϕ = ψΓ on Γupstream ∪ Γwall ∪ Γaxis}

with

ψΓ =

ψpoiseuile on Γupstream

0 on Γwall

−1 on Γaxis

This space corresponds to the imposition of Dirichlet boundary conditions on Γupstream, Γwall and
Γaxis and a Neumann boundary condition on Γdownstream.

The following unix commands generate the axisymmetric geometry:

gmsh -2 contraction.mshcad -format msh2 -o contraction.msh

msh2geo -zr contraction.msh > contraction-zr.geo

more contraction-zr.geo

geo contraction-zr.geo

Chapter 2. Fluids and solids computations 69

ψmax = 1.84× 10−3

Figure 2.11: Solution of the axisymmetric Stokes problem in the abrupt contraction: (top) the P2

stream function associated to the P2 − P1 element; (bottom) comparison with the 2D Cartesian
solution (in red).

The previous code stokes contraction.cc and streamf contraction.cc are both reused as:

./stokes_contraction contraction-zr.geo > contraction-zr-P2.field

./streamf_contraction < contraction-zr-P2.field > contraction-zr-P2-psi.field

field contraction-zr-P2-psi.field -n-iso-negative 10 -bw

The solution is represented on Fig. 2.11: it slightly differs from the 2D Cartesian solution, as
computed in the previous section (see Fig. 2.10). The vortex size is smaller but its intensity
ψmax = 1.84× 10−3 is higher. Despite the stream functions looks like similar, the plane solutions
are really different, as we can observe from a cut of the first component of the velocity along the
axis (see Fig. 2.12):

field contraction-P2.field -comp 0 -cut -normal 0 1 -origin 0 1e-15 -gnuplot

field contraction-zr-P2.field -comp 0 -cut -normal 0 1 -origin 0 1e-15 -gnuplot

The 1e-15 argument replace the zero value, as the mesh intersection cannot yet be done exactly
on the boundary. Note that the stokes contraction bubble.cc can be also reused in a similar
way:

./stokes_contraction_bubble contraction-zr.geo > contraction-zr-P1.field

./streamf_contraction < contraction-zr-P1.field > contraction-zr-P1-psi.field

field contraction-zr-P1-psi.field -n-iso-negative 10 -bw

There is another major difference with axisymmetric problems: the rate of deformation tensor
writes:

τ = 2D(u) =

τzz τrz 0
τrz τrr 0
0 0 τθθ

70 Rheolef version 7.1 update 22 March 2020

0

1

2

3

4

−8 −4 0 2

u0(z, 0)

z

axisymetric
cartesian

−2

−1

0

−8 −4 0 2

τθθ(z, 0)

z

Figure 2.12: Solution of the plane and axisymmetric Stokes problem in the abrupt contraction:
cut along the axis of symmetry: (left): u0; (right) τθθ.

Thus, there is an additional non-zero component τθθ that is automatically integrated into the
computations in Rheolef. The incompressibility relation leads to tr(τ) = τzz + τrr + τθθ = 0.
Here σtot = −p.I+ τ is the total Cauchy stress tensor (by a dimensionless procedure, the viscosity
can be taken as one). By reusing the stress.cc code (see page 46) we are able to compute the
tensor components:

make stress

./stress < contraction-zr-P1.field > contraction-zr-P1-tau.field

The visualization along the axis of symmetry for the τθθ component is obtained by (see Fig. 2.12):

field contraction-zr-P1-tau.field -comp 22 -proj -cut -normal 0 1 -origin 0 1e-15 -gnuplot

Recall that the τzz and τrr components are obtained by the -comp 00 and -comp 11 options,
respectively. The non-zero values along the axis of symmetry expresses the elongational effects in
the entry region of the abrupt contraction.

2.3 [New] Slip boundary conditions

Formulation

We consider an approximation of the Stokes problem with slip boundary conditions. As a test
case, we consider the flow around a circular obstacle, as represented on Fig. 2.13. We assume a
permanent flow and: due to the symmetries versus upstream/downstream and with respect to the
horizontal axis, the computational domain reduces to the quarter of the geometry.

This problem writes [Verfürth, 1987]:

Chapter 2. Fluids and solids computations 71

x1

x00 1

Γobstacle

Γwall

Γaxis L

c

1 Γdownstream

ΩΓvaxis

Γwall ∪ Γaxis ∪ Γobstacle : u.n = 0 and σnt = 0

Γvaxis : ut = 0 and σnn = 0

Γdownstream : u = (1, 0)

Figure 2.13: Slip boundary conditions for the flow around an obstacle.

(P): find u and p, defined in Ω, such that

σ = −pI + 2D(u) in Ω

−divσ = 0 in Ω

−divu = 0 in Ω

u.n = 0 and σnt = 0 on Γwall ∪ Γaxis ∪ Γobstacle

ut = 0 and σnn = 0 on Γvaxis

u = e0 on Γdownstream

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

(2.6f)

with the notation vt = v − (v.n)n, τnn = (τn).n and τnt = τn− τnnn for any vector v and ten-
sor τ . Observe that Γwall, Γaxis and Γvaxis are parallel to the coordinate axis: the corresponding
slip boundary condition writes also

ud−1 = 0 and σi,d−1 = 0 on Γwall ∪ Γaxis, 1 6 i 6 d− 2

ui = 0 and σ0,0 = 0 on Γvaxis, 1 6 i 6 d− 1

It remains one slip boundary condition on the curved boundary domain Γobstacle: imposing such
a boundary condition is the main difficulty of this problem. There are mainly three approaches
for the imposition of this boundary condition: (i) the regularization ; (ii) the Lagrange multiplier
weak imposition ; (iii) the strong imposition. The main drawback of the Lagrange multiplier weak
imposition approach is the discretization of the Lagrange multiplier λ, that should satisfy the inf-
sup condition [Verfürth, 1987, 1991, Liakos, 2001, Caglar and Liakos, 2009]. An alternative is to
introduce stabilization terms (Verfürth, 1991, p. 621, eqn (4.1)), but the resulting problem is no
more symmetric. The strong imposition [Verfürth, 1985] requires some modifications of the finite
element basis along the slip boundary: this promising feature is in development in the Rheolef

library. The rest of this section focuses on the regularization approach.

The main idea of the regularization approach is to replace the slip boundary condition (2.6d) on
the curved boundary domain Γobstacle by Robin one:

σnt + ε−1u.n = 0 on Γobstacle

where ε > 0 is the regularization parameter. It leads to the following variational formulation:

72 Rheolef version 7.1 update 22 March 2020

(FV)ε: find u ∈ V (1) and p ∈ L2(Ω) such that
{
a(u,v) + b(v, p) = 0, ∀v ∈ V (0)

b(u, q) = 0, ∀q ∈ L2(Ω)

with

a(u,v) =

∫

Ω

2D(u) :2D(v) dx+ ε−1

∫

∂Ω

(u.n)(v.n) ds

b(v, q) = −
∫

Ω

q div v dx

V (α) =
{
v ∈

(
H1(Ω)

)d
/ v = αe0 on Γdownstream

and ui = 0 on Γvaxis, 1 6 i 6 d− 1

and ud−1 = 0 on Γwall ∪ Γaxis}

Approximation

The curved boundary ∂Ω is replaced polynomial approximation ∂Th. Then, a natural procedure
would be to replace the the normal n on ∂Ω by the normal nh on ∂Th in the previous expression
of the bilinear form a. This approach do not converge in general and this counter-intuitive feature
is called the Babuška paradox, see e.g. Verfürth [1985, p. 473]. We have to deal with either the
exact normal n or a more accurate approximation ñh of n. In the present case, as the exact
normal n is known, we use it.

Otherwise, the space V (α) is completely standard, for any α ∈ R and can be approximated by clas-
sical Lagrange finite elements. Thus, the Hood and Taylor [1973] finite element approximation of
the Stokes problem is considered. The present implementation ‘stokes obstacle slip regul.cc’
supports both the 2D Cartesian and the 3D axisymmetric cases, so the 3D Cartesian case is not im-
plemented here. Note that the 2D Cartesian case corresponds to a 3D cylindrical obstacle while the
3D axisymmetric case corresponds to a spherical obstacle. The ‘streamf obstacle slip move.cc’
computes the stream function the modified velocity field ũh = e0 − uh relative to the moving ob-
stacle.

Example file 2.15: stokes obstacle slip regul.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 point n_exact (const point& x) { return -x; }
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 Float eps = (argc > 2) ? atof(argv [2]) : 1e-7;
9 space Xh (omega , "P2", "vector ");

10 Xh.block (" downstream ");
11 Xh[1]. block ("wall ");
12 Xh[1]. block ("axis ");
13 Xh[1]. block ("vaxis ");
14 space Qh (omega , "P1");
15 trial u (Xh), p (Qh);
16 test v (Xh), q (Qh);
17 form a = integrate (2* ddot(D(u),D(v)))
18 + (1/eps)* integrate (" obstacle",dot(u,n_exact)*dot(v,n_exact));
19 form b = integrate (-div(u)*q);
20 field uh (Xh ,0);
21 uh [0][" downstream "] = 1;
22 field ph (Qh , 0);
23 problem_mixed stokes (a, b);
24 stokes.solve (field(Xh ,0), field(Qh ,0), uh, ph);
25 dout << catchmark ("u") << uh
26 << catchmark ("p") << ph;
27 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/stokes_obstacle_slip_regul.cc

Chapter 2. Fluids and solids computations 73

Example file 2.16: streamf obstacle slip move.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main (int argc , char** argv) {
5 environment rheolef (argc , argv);
6 field uh;
7 din >> uh;
8 point e0 (1,0);
9 uh = interpolate (uh.get_space (), e0 - uh);

10 string approx = "P" + itos(uh.get_space (). degree ());
11 const geo& omega = uh.get_geo ();
12 space Ph (omega , approx);
13 Ph.block ("wall ");
14 Ph.block ("axis ");
15 Ph.block (" downstream ");
16 field psi_h (Ph ,0.);
17 trial psi (Ph);
18 test xi (Ph);
19 integrate_option iopt;
20 iopt.ignore_sys_coord = true;
21 form a = integrate (dot(grad(psi), grad(xi)), iopt);
22 field lh = integrate (dot(uh ,bcurl(xi)));
23 problem p (a);
24 p.solve (lh, psi_h);
25 dout << catchmark ("psi") << psi_h;
26 }

How to run the program

Figure 2.14: Slip boundary conditions for the flow around a cylinder (left) and sphere (right):
isovalues of the stream function.

The run is detailed in the axisymmetric case. The mkgeo obstacle script generates the mesh of
the geometry:

mkgeo_obstacle -zr -name obstacle-zr

geo obstacle-zr.geo

Then the compilation and run writes:

make stokes_obstacle_slip_regul ./streamf_obstacle_slip_move

./stokes_obstacle_slip_regul obstacle-zr > obstacle-zr.field

field -velocity obstacle-zr.field

./streamf_obstacle_slip_move < obstacle-zr.field | field -bw -n-iso 25 -

Observe on Fig. 2.14 that the trajectories, as represented by the stream function, differ in the
Cartesian an axisymmetric cases.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/streamf_obstacle_slip_move.cc

74 Rheolef version 7.1 update 22 March 2020

1

2

−2 −1 0

x1

1− u0(x1)

cylinder
sphere

0

1

0 1 2 3 4

1−u0(x1)

x0

cylinder
sphere

Figure 2.15: Slip boundary conditions for the flow around an obstacle: horizontal relative velocity
along the two axis: (left) along Ox1 on the top of the obstacle ; (right) along Ox0 on the front.

Let us turn to the cut of the relative velocity along the horizontal and vertical axis, named
respectively axis and vaxis by the mesh:

field obstacle-zr.field -domain vaxis -comp 0 -gnuplot -elevation

field obstacle-zr.field -domain axis -comp 0 -gnuplot -elevation

Observe on Fig. 2.15.left that the relative velocity is negative on the top of the obstacle. Indeed,
when the obstacle moves right, the fluid moves from the front of the obstacle, rotates around the
obstacle and goes to the back. Thus, the fluid moves in the negatives direction when it is on the
top of the obstacle. Also, observe that the fluid is more accelerated when it flows around a cylinder
than around a sphere. Fig. 2.15.right shows that the perturbation caused by the fluid decreases
faster for a sphere than for a cylinder.

2.4 Time-dependent problems

2.4.1 The heat equation

Formulation

Let T > 0, Ω ⊂ R
d, d = 1, 2, 3 and f defined in Ω. The heat problem writes:

(P): find u, defined in Ω×]0, T [, such that

∂u

∂t
−∆u = f in Ω×]0, T [,

u(0) = 0 in Ω,

u(t) = 0 on ∂Ω×]0, T [.

where f is a known function. In the present example, we consider f = 1.

Approximation

Let ∆t > 0 and tn = n∆t, n > 0. The problem is approximated with respect to time by the
following first-order implicit Euler scheme:

un+1 − un

∆t
−∆un+1 = f(tn+1) in Ω

Chapter 2. Fluids and solids computations 75

where un ≈ u(n∆t) and u(0) = 0. The variational formulation of the time-discretized problem
writes:

(V F)n: Let un being known, find un+1 ∈ H1
0 (Ω) such that

a (un+1, v) = l(n)(v), ∀v ∈ H1
0 (Ω).

where

a(u, v) =

∫

Ω

(uv +∆t∇u.∇v) v dx

l(n)(v) =

∫

Ω

(un +∆t f(tn+1)) v dx

This is a Poisson-like problem. The discretization with respect to space of this problem is similar
to those presented in section 1.1.1, page 12.

Example file 2.17: heat.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main (int argc , char **argv) {
5 environment rheolef (argc , argv);
6 geo omega (argv [1]);
7 size_t n_max = (argc > 2) ? atoi(argv [2]) : 100;
8 Float delta_t = 0.5/ n_max;
9 space Xh (omega , "P1");

10 Xh.block (" boundary ");
11 trial u (Xh); test v (Xh);
12 form a = integrate (u*v + delta_t*dot(grad(u),grad(v)));
13 problem p (a);
14 field uh (Xh , 0);
15 branch event ("t","u");
16 dout << event (0, uh);
17 for (size_t n = 1; n <= n_max; n++) {
18 field rhs = uh + delta_t;
19 field lh = integrate (rhs*v);
20 p.solve (lh , uh);
21 dout << event (n*delta_t , uh);
22 }
23 }

Comments

Note the use of the branch class:

branch event ("t","u");

this is a wrapper class that is used here to print the branch of solution (tn, u
n)n>0, on the standard

output in the ‘.branch’ file format. An instruction as:

dout << event (t,uh);

is equivalent to the formatted output

dout << catchmark ("t") << t << endl
<< catchmark ("u") << uh;

How to run the program

We assume that the previous code is contained in the file ‘heat.cc’. Then, compile the program
as usual (see page 14):

make heat

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/heat.cc

76 Rheolef version 7.1 update 22 March 2020

Figure 2.16: Animation of the solution of the heat problem.

For a one dimensional problem, enter the commands:

mkgeo_grid -e 100 > line.geo

./heat line.geo > line.branch

The previous commands solve the problem for the corresponding mesh and write the solution in
the field-family file format ‘.branch’. For a bidimensional one:

mkgeo_grid -t 10 > square.geo

./heat square.geo > square.branch

For a tridimensional one:

mkgeo_grid -T 10 > box.geo

./heat box.geo > box.branch

How to run the animation

branch line.branch

A gnuplot window appears. Enter q to exit the window. For a bidimensional case, simply enter:

branch square.branch

A window appears, that looks like a video player. Then, click on the video play button, at the

top of the window.

To generate an animation file, go to the File->save animation menu and enter as file name
square and as file type avi. The animation file square.avi can now be started from any video
player, such as vlc:

Chapter 2. Fluids and solids computations 77

vlc square.avi

For the tridimensional case, the animation feature is similar:

branch box.branch

branch box.branch -volume

2.4.2 The convection-diffusion problem

Formulation

Let T > 0 and ν > 0. The convection-diffusion problem writes:

(P): find φ, defined in Ω×]0, T [, such that

∂φ

∂t
+ u.∇φ− ν∆φ+ σφ = 0 in Ω×]0, T [

φ(0) = φ0 in Ω

φ(t) = φΓ(t) on ∂Ω×]0, T [

where u, σ > 0, φ0 and φΓ being known. Note the additional u.∇ operator.

Time approximation

This problem is approximated by the following first-order implicit Euler scheme:

φn+1 − φn ◦Xn

∆t
− ν∆φn+1 + σφn+1 = 0 in Ω

where ∆t > 0, φn ≈ φ(n∆t) and φ(0) = φ0.

Let tn = n∆t, n > 0. The term Xn(x) is the position at tn of the particle that is in x at tn+1

and is transported by un. Thus, Xn(x) = X(tn, x) where X(t, x) is the solution of the differential
equation

{
dX

dt
= u(X(t, x), t) p.p. t ∈]tn, tn+1[,

X(tn+1, x) = x.

Then Xn(x) is approximated by the first-order Euler approximation

Xn(x) ≈ x−∆tnn(x).

This algorithm has been introduced by O. Pironneau (see e.g. Pironneau, 1988), and is known
as the method of characteristic in the finite difference context and as the Lagrange-Galerkin in
the finite element one. The efficient evaluation of φh ◦Xn(x) in an unstructured mesh involves a
hierarchical d-tree (quadtree, octree) data structure for the localization of the element K of the
mesh that contains x. When d = 3 requires also sophisticated geometric predicates to test whether
x ∈ K without rounding errors, and avoid to conclude that no elements contains a point x close
to ∂K up to rounding errors. This problems is addressed in Rheolef based on the cgal library.

The following code implements the classical rotating Gaussian hill test case (see e.g. Rui and
Tabata, 2001).

78 Rheolef version 7.1 update 22 March 2020

Example file 2.18: convect.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "rotating -hill.h"
5 int main (int argc , char **argv) {
6 environment rheolef (argc ,argv);
7 geo omega (argv [1]);
8 string approx = (argc > 2) ? argv [2] : "P1";
9 Float nu = (argc > 3) ? atof(argv [3]) : 1e-2;

10 size_t n_max = (argc > 4) ? atoi(argv [4]) : 50;
11 size_t d = omega.dimension ();
12 Float delta_t = 2*acos (-1.)/ n_max;
13 space Vh (omega , approx , "vector ");
14 field uh = interpolate (Vh , u(d));
15 space Xh (omega , approx);
16 Xh.block (" boundary ");
17 field phi_h = interpolate (Xh , phi(d,nu ,0));
18 characteristic X (-delta_t*uh);
19 integrate_option iopt;
20 iopt.set_family (integrate_option :: gauss_lobatto);
21 iopt.set_order (Xh.degree ());
22 trial phi (Xh); test psi (Xh);
23 branch event ("t","phi ");
24 dout << catchmark ("nu") << nu << endl
25 << event (0, phi_h);
26 for (size_t n = 1; n <= n_max; n++) {
27 Float t = n*delta_t;
28 Float c1 = 1 + delta_t*phi:: sigma(d,nu ,t);
29 Float c2 = delta_t*nu;
30 form a = integrate (c1*phi*psi + c2*dot(grad(phi),grad(psi)), iopt);
31 field lh = integrate (compose(phi_h , X)*psi , iopt);
32 problem p (a);
33 p.solve (lh , phi_h);
34 dout << event (t, phi_h);
35 }
36 }

Comments

The characteristic variable X implements the localizer Xn(x):

characteristic X (-delta_t*uh);

Combined with the compose function, it perform the composition φh ◦Xn. The right-hand side
is then computed by using the integrate function:

field lh = integrate (compose(phi_h , X)*psi , iopt);

Note the additional iopt argument to the integrate function. By default, when this argument is
omitted, a Gauss quadrature formulae is assumed, and the number of point is computed such that
it integrate exactly 2k + 1 polynomials, where k is the degree of polynomials in Xh. The Gauss-
Lobatto quadrature formule is recommended for Lagrange-Galerkin methods. Recall that this
choice of quadrature formulae guaranties inconditionnal stability at any polynomial order. Here,
we specifies a Gauss-Lobatto quadrature formulae that should be exact for k order polynomials.
The bilinear form is computed via the same quadrature formulae:

form a = integrate (c1*phi*psi + c2*dot(grad(phi),grad(psi)), iopt);

A test case is described by Pironneau and Tabata [2010]: we take Ω =]− 2, 2[d and T = 2π. This
problem provides an example for a convection-diffusion equation and a known analytical solution:

φ(t, x) = exp
(
−λt− r(t)|x− x0(t)|2

)

where λ = 4ν/t0 > 0 with t0 > 0 and ν > 0, x0(t) is the moving center of the hill and r(t) =
1/(t0 + 4νt). The source term is time-dependent: σ(t) = λ− 2dνr(t) and has been adjusted such

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/convect.cc

Chapter 2. Fluids and solids computations 79

that the right-hand side is zero. The moving center of the hill x0(t) is associated to the velocity
field u(t, x) as:

d u(t, x) x0(t)

1 1/(2π) t/(2π)− 1/2
2 (y,−x) (− cos(t)/2, sin(t)/2)
3 (y,−x, 0) (− cos(t)/2, sin(t)/2, 0)

Example file 2.19: rotating-hill.h

1 struct u {
2 point operator () (const point & x) const {
3 return (d == 1) ? point(u0) : point(x[1], -x[0]); }
4 u (size_t d1) : d(d1), u0 (0.5/ acos(Float (-1))) {}
5 protected: size_t d; Float u0;
6 };
7 struct phi {
8 Float operator () (const point& x) const {
9 return exp(-4*nu*(t/t0) - dist2(x,x0t ())/(t0+4*nu*t)); }

10 phi (size_t d1 , Float nu1 , Float t1=0) : d(d1), nu(nu1), t(t1),
11 u0 (0.5/ acos(Float (-1))), x0(-0.5,0) {}
12 static Float sigma(size_t d, Float nu1 , Float t=0) {
13 return 4*nu1/t0 - 2*d*nu1/(t0 + 4*nu1*t); }
14 point x0t() const {
15 if (d == 1) return point(x0[0] + u0*t);
16 return point(x0[0]* cos(t) + x0[1]* sin(t),
17 -x0[0]* sin(t) + x0[1]* cos(t)); }
18 point d_x0t_dt () const {
19 if (d == 1) return point(u0);
20 return point(-x0[0]* sin(t) + x0[1]* cos(t),
21 -x0[0]* cos(t) - x0[1]* sin(t)); }
22 protected: size_t d; Float nu , t, u0; point x0;
23 static constexpr Float t0 = 0.2;
24 };

Note the use of a class-function phi for the implementation of φ(t) as a function of x. Such
programming style has been introduced in the standard template library [Musser and Saini, 1996b],
which is a part of the standard C++ library. By this way, for a given t, φ(t) can be interpolated as
an usual function on a mesh.

How to run the program

We assume that the previous code is contained in the file ‘convect.cc’. Then, compile the program
as usual (see page 14):

make convect

and enter the commands: Running the one-dimensional test case:

mkgeo_grid -e 500 -a -2 -b 2 > line2.geo

./convect line2.geo P1 > line2.branch

branch line2.branch -gnuplot

Note the hill that moves from x = −1/2 to x = 1/2. Since the exact solution is known, it is
possible to analyze the error:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/rotating-hill.h

80 Rheolef version 7.1 update 22 March 2020

Figure 2.17: Animation of the solution of the rotating hill problem.

Example file 2.20: convect error.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "rotating -hill.h"
5 int main (int argc , char **argv) {
6 environment rheolef (argc ,argv);
7 Float tol = (argc > 1) ? atof(argv [1]) : 1e-10;
8 Float nu;
9 din >> catchmark ("nu") >> nu;

10 branch get ("t","phi ");
11 branch put ("t","phi_h","pi_h_phi ");
12 derr << "# t\terror_l2\terror_linf" << endl;
13 field phi_h;
14 Float err_l2_l2 = 0;
15 Float err_linf_linf = 0;
16 for (Float t = 0, t_prec = 0; din >> get (t, phi_h); t_prec = t) {
17 const space& Xh = phi_h.get_space ();
18 size_t d = Xh.get_geo (). dimension ();
19 field pi_h_phi = interpolate (Xh , phi(d,nu ,t));
20 trial phi (Xh); test psi (Xh);
21 form m = integrate (phi*psi);
22 field eh = phi_h - pi_h_phi;
23 Float err_l2 = sqrt(m(eh ,eh));
24 Float err_linf = eh.max_abs ();
25 err_l2_l2 += sqr(err_l2)*(t - t_prec);
26 err_linf_linf = max(err_linf_linf , err_linf);
27 dout << put (t, phi_h , pi_h_phi);
28 derr << t << "\t" << err_l2 << "\t" << err_linf << endl;
29 }
30 derr << "# error_l2_l2 = " << sqrt(err_l2_l2) << endl;
31 derr << "# error_linf_linf = " << err_linf_linf << endl;
32 return (err_linf_linf <= tol) ? 0 : 1;
33 }

The numerical error φh − πh(φ) is computed as:

field pi_h_phi = interpolate (Xh , phi(d,nu ,t));
field eh = phih - pi_h_phi;

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/convect_error.cc

Chapter 2. Fluids and solids computations 81

and its L2 norm is printed on the standard error. Observe the use of the branch class as both
input and output field stream.

make convect_error

./convect_error < line2.branch > line2-cmp.branch

branch line2-cmp.branch -gnuplot

The instantaneous L2(Ω) norm is printed at each time step and the total error in L2(]0, T [;L2(Ω))
is finally printed at the end of the stream. A P2 approximation can be used as well:

‖φh − πh(φ)‖L2(L2) ‖φh − πh(φ)‖L∞(L∞)

0.001

0.01

0.1

1

0.001 0.01 0.1 1

∆t = 2π/50
∆t = 2π/100
∆t = 2π/200

2
2

h

P1

P2

0.001

0.01

0.1

1

0.001 0.01 0.1 1

∆t = 2π/50
∆t = 2π/100
∆t = 2π/200

h

P1

P2

Figure 2.18: Diffusion-convection when d = 1 and ν = 10−2: convergence versus h and ∆t for P1

and P2 elements: (left) in L2(L2) norm; (right) in L∞(L∞) norm.

./convect line2.geo P2 > line2.branch

branch line2.branch -gnuplot

./convect_error < line2.branch > line2-cmp.branch

On Fig. 2.18.left we observe the L2(L2) convergence versus h for the P1 and P2 elements when
d = 1: the errors reaches a plateau that decreases versus ∆t. On Fig. 2.18.right the L∞(L∞)
norm of the error presents a similar behavior. Since the plateau are equispaced, the convergence
versus ∆t is of first order.

These computation was performed for a convection-diffusion problem with ν = 10−2. The pure
transport problem (ν = 0, without diffusion) computation is obtained by:

./convect line2.geo P1 0 > line2.branch

branch line2.branch -gnuplot

Let us turn to the two-dimensional test case:

mkgeo_grid -t 80 -a -2 -b 2 -c -2 -d 2 > square2.geo

./convect square2.geo P1 > square2.branch

branch square2.branch

The visualization and animation are similar to those of the head problem previously presented
in paragraph 2.4.1. Go to the WrapByScalar entry in pipeline brower and adjust eventually the
scale factor, e.g. to 3. Then, play the animation and observe the rotating hill. The result is
shown on Fig. 2.17. The error analysis writes:

./convect_error < square2.branch > square2-cmp.branch

branch square2-cmp.brancha-nofill -bw

82 Rheolef version 7.1 update 22 March 2020

From the paraview menu, you can visualize simultaneously both the approximate solution and
the Lagrange interpolate of the exact one. For that purpose, go first to the WrapByScalar entry
in pipeline brower and adjust the scale factor, e.g. to 3. Next, go to the File->Open menu
and select square2-cmp-..vtk. In the Filter->Recent menu, select WrapByScalar. In the
Properties panel, go to the Scalars entry and select pi h phi and adjust the scale factor

to 3. Next, in the same panel, in the Representation entry, choose wireframe. Finally, in the
Coloring entry, choose solid color, and click on Edit for selecting e.g. the red color. You

are ready to click on the video play button, at the top of the window. Observe the difference

between the solution and its approximation. For serious problem, the characteristic method has
been superseded by the discontinuous Galerkin one, that will be presented in chapter 4, page 145.
You are strongly encouraged to definitively turn to discontinuous Galerkin method for convection
dominant and pure transport problems.

Finally, the three-dimensional case:

mkgeo_grid -T 15 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube2.geo

./convect cube2.geo P1 > cube2.branch

The visualization is similar to the two-dimensional case:

branch cube2.branch

branch cube2.branch -volume

2.5 The Navier-Stokes equations

Formulation

This longer example combines most functionalities presented in the previous examples.

Let us consider the Navier-Stokes problem for the driven cavity in Ω =]0, 1[d, d = 2, 3. Let Re > 0
be the Reynolds number, and T > 0 a final time. The problem writes:

(NS): find u = (u0, . . . , ud−1) and p defined in Ω×]0, T [such that:

Re

(
∂u

∂t
+ u.∇u

)
− div(2D(u)) + ∇p = 0 in Ω×]0, T [,

− divu = 0 in Ω×]0, T [,
u(t=0) = 0 in Ω× {0, T},

u = (1, 0) on Γtop×]0, T [,
u = 0 on (Γleft ∪ Γright ∪ Γbottom)×]0, T [,
∂u0
∂n

=
∂u1
∂n

= u2 = 0 on (Γback ∪ Γfront)×]0, T [when d = 3,

where D(u) = (∇u + ∇uT)/2. This nonlinear problem is the natural extension of the linear
Stokes problem, as presented in paragraph 2.5, page 82. The boundaries are represented on
Fig. 2.1, page 42.

Time approximation

Let ∆t > 0. Let us consider the following backward second order scheme, for all φ ∈ C2([0, T]) :

dφ

dt
(t) =

3φ(t)− 4φ(t−∆t) + φ(t− 2∆t)

2∆t
+O(∆t2)

Chapter 2. Fluids and solids computations 83

The problem is approximated by the following second-order implicit scheme (BDF2):

Re
3un+1 − 4un ◦Xn + un−1 ◦Xn−1

2∆t
− div(2D(un+1)) + ∇pn+1 = 0 in Ω,

− divun+1 = 0 in Ω,
un+1 = (1, 0) on Γtop,
un+1 = 0 on Γleft ∪ Γright ∪ Γbottom,

∂un+1
0

∂n
=
∂un+1

1

∂n
= un+1

2 = 0 on Γback ∪ Γfront when d = 3,

where, following [Boukir et al., 1997, Fourestey and Piperno, 2004]:

Xn(x) = x−∆tu∗(x)

Xn−1(x) = x− 2∆tu∗(x)

u∗ = 2un − un−1

It is a second order extension of the method previously introduced in paragraph 2.4.2 page 77. The
scheme defines a second order recurrence for the sequence (un)n>−1, that starts with u−1 = u0 = 0.

Variational formulation

The variational formulation of this problem expresses:

(NS)∆t: find un+1 ∈ V(1) and pn+1 ∈ L2
0(Ω) such that:

a(un+1,v) + b(v, pn+1) = m(fn,v), ∀v ∈ V(0),

b(un+1, q) = 0, ∀q ∈ L2
0(Ω),

where

fn =
Re

2∆t

(
4un ◦Xn − un−1 ◦Xn

)

and

a(u,v) =
3Re

2∆t

∫

Ω

u.v dx+

∫

Ω

2D(u) : D(v) dx

and b(., .) and V(α) was already introduced in paragraph 2.1.4, page 51, while studying the Stokes
problem.

Space approximation

The Hood and Taylor [1973] finite element approximation of this generalized Stokes problem was
also considered in paragraph 2.1.4, page 51. We introduce a mesh Th of Ω and the finite dimensional
spaces Xh, Vh(α) and Qh. The approximate problem writes:

(NS)∆t,h: find un+1
h ∈ Vh(1) and p

n+1 ∈ Qh such that:

a(un+1
h ,v) + b(v, pn+1

h) = m(fnh ,v), ∀v ∈ Vh(0),
b(un+1

h , q) = 0, ∀q ∈ Qh.
(2.7)

where

fnh =
Re

2∆t

(
4unh ◦Xn − un−1

h ◦Xn
)

The problem reduces to a sequence resolution of a generalized Stokes problems.

84 Rheolef version 7.1 update 22 March 2020

Example file 2.21: navier stokes solve.icc

1 using namespace std;
2 int navier_stokes_solve (
3 Float Re , Float delta_t , field l0h , field& uh , field& ph ,
4 size_t& max_iter , Float& tol , odiststream *p_derr =0) {
5 const space& Xh = uh.get_space ();
6 const space& Qh = ph.get_space ();
7 string label = "navier -stokes -" + Xh.get_geo (). name ();
8 integrate_option iopt;
9 iopt.set_family(integrate_option :: gauss_lobatto);

10 iopt.set_order(Xh.degree ());
11 trial u (Xh), p (Qh);
12 test v (Xh), q (Qh);
13 form m = integrate (dot(u,v), iopt);
14 form a = integrate (2* ddot(D(u),D(v)) + 1.5*(Re/delta_t)*dot(u,v), iopt);
15 form b = integrate (-div(u)*q, iopt);
16 problem_mixed stokes (a, b);
17 if (p_derr != 0) *p_derr << "[" << label << "] #n |du/dt|" << endl;
18 field uh1 = uh;
19 for (size_t n = 0; true; n++) {
20 field uh2 = uh1;
21 uh1 = uh;
22 field uh_star = 2.0* uh1 - uh2;
23 characteristic X1 (-delta_t*uh_star);
24 characteristic X2 (-2.0* delta_t*uh_star);
25 field l1h = integrate (dot(compose(uh1 ,X1),v), iopt);
26 field l2h = integrate (dot(compose(uh2 ,X2),v), iopt);
27 field lh = l0h + (Re/delta_t)*(2* l1h - 0.5* l2h);
28 stokes.solve (lh, field(Qh ,0), uh, ph);
29 field duh_dt = (3*uh - 4*uh1 + uh2)/(2* delta_t);
30 Float residual = sqrt(m(duh_dt ,duh_dt));
31 if (p_derr != 0) *p_derr << "[" << label << "] "<< n << " " << residual << endl;
32 if (residual < tol) {
33 tol = residual;
34 max_iter = n;
35 return 0;
36 }
37 if (n == max_iter -1) {
38 tol = residual;
39 return 1;
40 }
41 }
42 }

Comments

The navier stokes solve function is similar to the ‘stokes cavity.cc’. It solves here a gener-
alized Stokes problem and manages a right-hand side fh:

characteristic X1 (-delta_t*uh_star);
characteristic X2 (-2.0* delta_t*uh_star);
field l1h = integrate (compose(uh1 ,X1)*v, iopt);
field l2h = integrate (compose(uh2 ,X2)*v, iopt);
field lh = l0h + (Re/delta_t)*(2* l1h - 0.5* l2h);

This last computation is similar to those done in the ‘convect.cc’ example. The generalized Stokes
problem is solved by the solver abtb class. The stopping criterion is related to the stationary
solution or the maximal iteration number.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/navier_stokes_solve.icc

Chapter 2. Fluids and solids computations 85

Example file 2.22: navier stokes cavity.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "navier_stokes_solve.icc"
5 #include "navier_stokes_criterion.icc"
6 #include "cavity.h"
7 int main (int argc , char**argv) {
8 environment rheolef (argc , argv);
9 if (argc < 2) {

10 cerr << "usage: " << argv [0] << " <geo > <Re> <err > <n_adapt >" << endl;
11 exit (1);
12 }
13 geo omega (argv [1]);
14 adapt_option options;
15 Float Re = (argc > 2) ? atof(argv [2]) : 100;
16 options.err = (argc > 3) ? atof(argv [3]) : 1e-2;
17 size_t n_adapt = (argc > 4) ? atoi(argv [4]) : 5;
18 Float delta_t = 0.05;
19 options.hmin = 0.004;
20 options.hmax = 0.1;
21 space Xh = cavity :: velocity_space (omega , "P2");
22 space Qh (omega , "P1");
23 field uh = cavity :: velocity_field (Xh , 1.0);
24 field ph (Qh , 0);
25 field fh (Xh , 0);
26 for (size_t i = 0; true; i++) {
27 size_t max_iter = 1000;
28 Float tol = 1e-5;
29 navier_stokes_solve (Re , delta_t , fh , uh , ph , max_iter , tol , &derr);
30 odiststream o (omega.name(), "field ");
31 o << catchmark ("Re") << Re << endl
32 << catchmark (" delta_t ") << delta_t << endl
33 << catchmark ("u") << uh
34 << catchmark ("p") << ph;
35 o.close ();
36 if (i >= n_adapt) break;
37 field ch = navier_stokes_criterion (Re ,uh);
38 omega = adapt (ch , options);
39 o.open (omega.name(), "geo");
40 o << omega;
41 o.close ();
42 Xh = cavity :: velocity_space (omega , "P2");
43 Qh = space (omega , "P1");
44 uh = cavity :: velocity_field (Xh, 1.0);
45 ph = field (Qh, 0);
46 fh = field (Xh, 0);
47 }
48 }

Example file 2.23: navier stokes criterion.icc

1 field navier_stokes_criterion (Float Re , const field& uh) {
2 space T0h (uh.get_geo(), "P1d");
3 return interpolate (T0h , sqrt(Re*norm2(uh) + 4*norm2(D(uh))));
4 }

Comments

The code performs a computation by using adaptive mesh refinement, in order to capture recir-
culation zones. The adapt option declaration is used by rheolef to send options to the mesh
generator. The code reuse the file ‘cavity.h’ introduced page 52. This file contains two functions
that defines boundary conditions associated to the cavity driven problem.

The criteria function computes the adaptive mesh refinement criteria:

ch = (Re|uh|2 + 2|D(uh)|2)1/2

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/navier_stokes_cavity.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/navier_stokes_criterion.icc

86 Rheolef version 7.1 update 22 March 2020

The criteria function is similar to those presented in the ‘embankment adapt.cc’ example.

How to run the program

Re = 100: 4804 elements, 2552 vertices ψmax = 9.5× 10−6, ψmin = −0.103

Re = 400: 5233 elements, 2768 vertices ψmax = 6.4× 10−4, ψmin = −0.111

Figure 2.19: Meshes and stream functions associated to the solution of the Navier-Stokes equations
for Re = 100 (top) and Re = 400 (bottom).

The mesh loop adaptation is initiated from a bamg mesh (see also appendix A.2.1).

bamg -g square.bamgcad -o square.bamg

bamg2geo square.bamg square.dmn > square.geo

Then, compile and run the Navier-Stokes solver for the driven cavity for Re = 100:

Chapter 2. Fluids and solids computations 87

Re = 1000: 5873 elements, 3106 vertices ψmax = 1.64× 10−3, ψmin = −0.117

Figure 2.20: Meshes and stream functions associated to the solution of the Navier-Stokes equations
for Re = 1000.

make navier_stokes_cavity

time mpirun -np 8 ./navier_stokes_cavity square.geo 100

The program performs a computation with Re = 100. By default the time step is ∆t = 0.05
and the computation loops for five mesh adaptations. At each time step, the program prints
an approximation of the time derivative, and stops when a stationary solution is reached. The
mpirun -np 8 prefix allows a parallel and distributed run while the time one returns the real

and the user times used by the computation. The speedup could be estimated here by the ratio
user/real: it is ideally close to the number of processors. These prefixes are optional and you
can omit the mpirun one if you are running with a sequential installation of Rheolef. Then, we
visualize the ‘square-005.geo’ adapted mesh and its associated solution:

geo square-005.geo

field square-005.field.gz -velocity

The representation of the stream function writes:

make streamf_cavity

zcat square-005.field.gz | ./streamf_cavity | field -bw -n-iso-negative 10 -

The programs ‘streamf cavity.cc’, already introduced page 57, is here reused. The last options
of the field program draws isocontours of the stream function using lines, as shown on Fig. 2.19.
The zero isovalue separates the main flow from recirculations, located in corners at the bottom of
the cavity.

For Re = 400 and 1000 the computation writes:

./navier_stokes_cavity square.geo 400

./navier_stokes_cavity square.geo 1000

The visualization of the cut of the horizontal velocity along the vertical median line writes:

field square-005.field.gz -comp 0 -cut -normal -1 0 -origin 0.5 0 -gnuplot

field square-005.field.gz -comp 1 -cut -normal 0 1 -origin 0 0.5 -gnuplot

88 Rheolef version 7.1 update 22 March 2020

0

0.5

1

−0.5 0 0.5 1

x1

u0(0.5, x1)

Re = 100

data: Re = 100

Re = 400

data: Re = 40 0

Re = 1000

data: Re = 1000

−0.5

0

0.5

0 0.5 1

u1(x0, 0.5)

x0

Re = 100
Re = 100, data
Re = 400
Re = 400, data
Re = 1000
Re = 1000, data

Figure 2.21: Navier-Stokes: velocity profiles along lines passing thought the center of the cavity,
compared with data from Ghia et al. [1982]: (a) u0 along the vertical line; (b) u1 along the
horizontal line line.

Fig. 2.21 compare the cuts with data from Ghia et al. [1982], table 1 and 2 (see also Gupta and
Kalita, 2005). Observe that the solution is in good agreement with these previous computations.

Re xc yc −ψmin ψmax

100 present 0.613 0.738 0.103 9.5× 10−6

Labeur and Wells [2007] 0.608 0.737 0.104 -
Donea and Huerta [2003] 0.62 0.74 0.103 -

400 present 0.554 0.607 0.111 5.6× 10−4

Labeur and Wells [2007] 0.557 0.611 0.115 -
Donea and Huerta [2003] 0.568 0.606 0.110 -

1000 present 0.532 0.569 0.117 1.6× 10−3

Labeur and Wells [2007] 0.524 0.560 0.121 -
Donea and Huerta [2003] 0.540 0.573 0.110 -

Figure 2.22: Cavity flow: primary vortex position and stream function value.

Finally, table 2.22 compares the primary vortex position and its associated stream function value.
Note also the good agreement with previous simulations. The stream function extreme values are
obtained by:

zcat square-005.field.gz | ./streamf_cavity | field -min -

zcat square-005.field.gz | ./streamf_cavity | field -max -

The maximal value has not yet been communicated to our knowledge and is provided in table 2.22
for cross validation purpose. The small program that computes the primary vortex position is
showed below.

make vortex_position

zcat square-005.field.gz | ./streamf_cavity | ./vortex_position

Chapter 2. Fluids and solids computations 89

Example file 2.24: vortex position.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 int main (int argc , char** argv) {
4 environment rheolef (argc , argv);
5 check_macro (communicator (). size() == 1, "please , use sequentially ");
6 field psi_h;
7 din >> psi_h;
8 size_t idof_min = 0;
9 Float psi_min = std:: numeric_limits <Float >::max();

10 for (size_t idof = 0, ndof = psi_h.ndof (); idof < ndof; idof ++) {
11 if (psi_h.dof(idof) >= psi_min) continue;
12 psi_min = psi_h.dof(idof);
13 idof_min = idof;
14 }
15 const disarray <point >& xdof = psi_h.get_space (). get_xdofs ();
16 point xmin = xdof [idof_min];
17 dout << "xc\t\tyc\t\tpsi" << std::endl
18 << xmin [0] << "\t" << xmin [1] << "\t" << psi_min << std::endl;
19 }

For higher Reynolds number, Shen [1991] showed in 1991 that the flow converges to a station-
ary state for Reynolds numbers up to 10 000; for Reynolds numbers larger than a critical value
10 000 < Re1 < 10 500 and less than another critical value 15 000 < Re2 < 16 000, these authors
founded that the flow becomes periodic in time which indicates a Hopf bifurcation; the flow loses
time periodicity for Re ≥ Re2. Ould Salihi [1998] founded a loss of stationnarity between 10 000
and 20 000. Auteri, Parolini, and Quartapelle [2002] estimated the critical value for the apparition
of the first instability to Re1 ≈ 8018. Erturk, Corke, and Gökçol [2005] computed steady driven
cavity solutions up to Re 6 21 000. This result was infirmed by Gelhard, Lube, Olshanskii, and
Starcke [2005]: these authors estimated Re1 close to 8000, in agreement with Auteri, Parolini,
and Quartapelle [2002]. The 3D driven cavity has been investigated in Minev and Ethier [1998]
by the method of characteristic (see also Melchior, Legat, Van Dooren, and Wathen, 2012 for 3D
driven cavity computations). In conclusion, the exploration of the driven cavity at large Reynolds
number is a fundamental challenge in computational fluid dynamics.

Note that, instead of using a time-dependent scheme, that requires many time steps, it is possible
to directly compute the stationary solution of the Navier-Stokes problem, thanks to a nonlinear
solver. This alternative approach is presented in section 4.5, page 180, based on the discontinuous
Galerkin method. The discontinuous Galerkin method is much more robust and accurate than the
method of characteristics and is recomanded for serious problems.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/vortex_position.cc

90 Rheolef version 7.1 update 22 March 2020

Chapter 3

Advanced and highly nonlinear
problems

3.1 Equation defined on a surface

This chapter deals with equations defined on a closed hypersurface. We present three different
numerical methods: the direct resolution of the problem on an explicit surface mesh generated
independently of Rheolef, the direct resolution on a surface mesh generated by Rheolef from a
volume mesh, and finally a level set type method based on a volume mesh in an h-narrow band
containing the surface. This last method allows one to define hybrid operators between surface
and volume-based finite element fields. These methods are demonstrated on two model problems
and two different surfaces.

Let us consider a closed surface Γ ∈ R
d, d = 2 or 3 and Γ is a connected C2 surface of dimension

d− 1 with ∂Γ = 0. We first consider the following problem:
(P1) find u, defined on Γ such that:

u−∆su = f on Γ (3.1)

where f ∈ L2(Γ). For all function u defined on Γ, ∆s denotes the Laplace-Beltrami operator:

∆su = divs(∇su)

where ∇s and divs are the tangential derivative and the surface divergence along Γ, defined
respectively, for all scalar field ϕ and vector field v by:

∇sϕ = (I − n⊗ n)∇ϕ
divs v = (I − n⊗ n) : ∇v

Here, n denotes a unit normal on Γ.

We also consider the following variant of this problem:
(P2) find u, defined on Γ such that:

−∆su = f on Γ (3.2)

This second problem is similar to the first one: the Helmholtz operator I −∆s has been replaced
by the Laplace-Beltrami one −∆s. In that case, the solution is defined up to a constant: if u is
a solution, then u + c is also a solution for any constant c ∈ R. Thus, we refers to (P1) as the
Helmholtz-Beltrami problem and to (P2) as the Laplace-Beltrami one.

91

92 Rheolef version 7.1 update 22 March 2020

3.1.1 Approximation on an explicit surface mesh

The Helmholtz-Beltrami problem

Tanks to the surface Green formula (see appendix A.1.3), the variational formulation of problem
(P1) writes:
(V F1): find u ∈ H1(Γ) such that:

a(u, v) = l(v), ∀v ∈ H1(Γ)

where for all u, v ∈ H1(Γ),

a(u, v) =

∫

Γ

(u v +∇su.∇sv) ds

l(v) =

∫

Γ

f v ds

Let k > 1 and consider a k-th order curved surface finite element mesh Γh of Γ. We define the
space Wh:

Wh =
{
vh ∈ H1(Γh); v|S ∈ Pk, ∀S ∈ Γh

}

The approximate problem writes:
(V F1)h: find uh ∈Wh such that:

a(uh, vh) = l(vh), ∀vh ∈Wh

Example file 3.1: helmholtz s.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sphere.icc"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo gamma (argv [1]);
8 size_t d = gamma.dimension ();
9 space Wh (gamma , argv [2]);

10 trial u (Wh); test v (Wh);
11 form a = integrate (u*v + dot(grad_s(u),grad_s(v)));
12 field lh = integrate (f(d)*v);
13 field uh (Wh);
14 problem p (a);
15 p.solve (lh, uh);
16 dout << uh;
17 }

Comments

The problem involves the Helmholtz operator and thus, the code is similar to ‘neumann-nh.cc’
presented page 30. Let us comments the only differences:

form a = integrate (u*v + dot(grad_s(u),grad_s(v)));

The form refers to the grad s operator instead of the grad one, since only the coordinates related
to the surface are involved.

field lh = integrate (f(d)*v);

The right-hand-side does not involve any boundary term, since the surface Γ is closed: the bound-
ary domain ∂Γ = ∅. As test problem, the surface Γ is the unit circle when d = 2 and the unit

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/helmholtz_s.cc

Chapter 3. Advanced and highly nonlinear problems 93

sphere when d = 3. The data f has been chosen as in Deckelnick et al. [2009, p. 17]. This choice
is convenient since the exact solution is known. Recall that the spherical coordinates (ρ, θ, φ) are
defined from the Cartesian ones (x0, x1, x2) by:

ρ =
√
x20 + x21 + x22, φ = arccos (x2/ρ) , θ =

arccos
(
x0/
√
x20 + x21

)
when x1 > 0

2π − arccos
(
x0/
√
x20 + x21

)
otherwise

Example file 3.2: sphere.icc

1 struct p {
2 Float operator () (const point& x) const {
3 if (d == 2) return 26*(pow(x[0] ,5) - 10* pow(x[0] ,3)* sqr(x[1])
4 + 5*x[0]* pow(x[1] ,4));
5 else return 3*sqr(x[0])*x[1] - pow(x[1] ,3);
6 }
7 p (size_t d1) : d(d1) {}
8 protected: size_t d;
9 };

10 struct f {
11 Float operator () (const point& x) const {
12 if (d == 2) return _p(x)/pow(norm(x),5);
13 else return alpha*_p(x);
14 }
15 f (size_t d1) : d(d1), _p(d1), alpha (0) {
16 Float pi = acos(Float (-1));
17 alpha = -(13./8.)* sqrt (35./pi);
18 }
19 protected: size_t d; p _p; Float alpha;
20 };
21 struct u_exact {
22 Float operator () (const point& x) const {
23 if (d == 2) return _f(x)/(25+ sqr(norm(x)));
24 else return sqr(norm(x))/(12+ sqr(norm(x)))*_f(x);
25 }
26 u_exact (size_t d1) : d(d1), _f(d1) {}
27 protected: size_t d; f _f;
28 };
29 Float phi (const point& x) { return norm(x) - 1; }

How to run the program

The program compile as usual:

make helmholtz_s

A mesh of a circle is generated by:

mkgeo_ball -s -e 100 > circle.geo

geo circle -gnuplot

The mkgeo ball is a convenient script that generates a mesh with the gmsh mesh generator. Then,
the problem resolution writes:

./helmholtz_s circle P1 > circle.field

field circle.field

field circle.field -elevation

The tridimensional case is similar:

mkgeo_ball -s -t 10 > sphere.geo

geo sphere.geo -stereo

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/sphere.icc

94 Rheolef version 7.1 update 22 March 2020

./helmholtz_s sphere.geo P1 > sphere.field

field sphere.field

field sphere.field -stereo

The solution is represented on Fig .3.1.left.

Figure 3.1: Helmholtz-Beltrami problem: high-order curved surface mesh and its corresponding
isoparametric solution: (top) order = 1; (bottom) order = 3.

Higher-order isoparametric finite elements can be considered for the curved geometry:

mkgeo_ball -s -e 30 -order 3 > circle-P3.geo

geo circle-P3.geo -subdivide 10

Observe the curved edges (see Fig .3.1). The -subdivide option allows a graphical representation
of the curved edges by subdividing each edge in ten linear parts, since graphical softwares are not
yet able to represent curved elements. The computation with the P3 isoparametric approximation
writes:

./helmholtz_s circle-P3 P3 > circle-P3.field

field circle-P3.field -elevation -gnuplot

Note that both the curved geometry and the finite element are second order. The tridimensional
counterpart writes simply:

Chapter 3. Advanced and highly nonlinear problems 95

mkgeo_ball -s -t 10 -order 3 > sphere-P3.geo

geo sphere-P3.geo -gnuplot

./helmholtz_s sphere-P3 P3 > sphere-P3.field

field sphere-P3.field

field sphere-P3.field -stereo

The solution is represented on Fig .3.1).right-bottom. The graphical representation is not yet able
to represent the high-order approximation: each elements is subdivided and a piecewise linear
representation is used in each sub-elements.

10−8

10−6

10−4

10−2

10−2 10−1

‖uh − πh(u)‖0,2,Ω

2 = k + 1

3

4

h

k = 1
k = 2
k = 3

10−8

10−6

10−4

10−2

10−2 10−1

‖uh − πh(u)‖0,∞,Ω

2 = k + 1

3

4

h

k = 1
k = 2
k = 3

10−8

10−6

10−4

10−2

100

10−2 10−1

|uh − πh(u)|1,2,Ω

1 = k

2

3

h

k = 1
k = 2
k = 3

Figure 3.2: Curved non-polynomial surface: error analysis in L2, L∞ and H1 norms.

Since the exact solution is known, the error can be computed: this is done by the program
helmholtz s error.cc. This file is not presented here, as it is similar to some others examples,
but can be founded in the Rheolef example directory. Figure 3.2 plots the error in various norms
versus element size for different isoparametric approximations.

96 Rheolef version 7.1 update 22 March 2020

The Laplace-Beltrami problem

This problem has been introduced in (3.2), page 91. While the treatment of the Helmholtz-
Beltrami problem was similar to the Helmholtz problem with Neumann boundary conditions, here,
the treatment of the Laplace-Beltrami problem is similar to the Laplace problem with Neumann
boundary conditions: see section 1.4, page 33. Note that for both problems, the solution is defined
up to a constant. Thus, the linear problem has a singular matrix. The ‘laplace s.cc’ code is
similar to the ‘neumann-laplace.cc’ one, as presented in section 1.4. The only change lies one
the definition of the right-hand side.

Example file 3.3: laplace s.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "torus.icc"
5 int main (int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo gamma (argv [1]);
8 size_t d = gamma.dimension ();
9 space Wh (gamma , argv [2]);

10 trial u (Wh); test v (Wh);
11 form a = integrate (dot(grad_s(u),grad_s(v)));
12 field b = integrate(v);
13 field lh = integrate (f(d)*v);
14 form A = {{ a, b },
15 { trans(b), 0 }};
16 field Bh = { lh , 0 };
17 field Uh (Bh.get_space(), 0);
18 A.set_symmetry(true);
19 problem pa (A);
20 pa.solve (Bh, Uh);
21 dout << Uh[0];
22 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/laplace_s.cc

Chapter 3. Advanced and highly nonlinear problems 97

Example file 3.4: torus.icc

1 static const Float R = 1;
2 static const Float r = 0.6;
3 Float phi (const point& x) {
4 return sqr(sqrt(sqr(x[0])+ sqr(x[1]))- sqr(R)) + sqr(x[2])-sqr(r);
5 }
6 void get_torus_coordinates (const point& x,
7 Float& rho , Float& theta , Float& phi) {
8 static const Float pi = acos(Float (-1));
9 rho = sqrt(sqr(x[2]) + sqr(sqrt(sqr(x[0]) + sqr(x[1])) - sqr(R)));

10 phi = atan2(x[1], x[0]);
11 theta = atan2(x[2], sqrt(sqr(x[0]) + sqr(x[1])) - R);
12 }
13 struct u_exact {
14 Float operator () (const point& x) const {
15 Float rho , theta , phi;
16 get_torus_coordinates (x, rho , theta , phi);
17 return sin (3* phi)*cos (3* theta+phi);
18 }
19 u_exact (size_t d=3) {}
20 };
21 struct f {
22 Float operator () (const point& x) const {
23 Float rho , theta , phi;
24 get_torus_coordinates (x, rho , theta , phi);
25 Float fx = (9*sin(3*phi)*cos(3* theta+phi))/sqr(r)
26 - (-10*sin (3* phi)*cos (3* theta+phi) - 6*cos (3* phi)*sin (3* theta+phi))
27 /sqr(R + r*cos(theta))
28 - (3* sin(theta)*sin (3* phi)*sin (3* theta+phi))
29 /(r*(R + r*cos(theta)));
30 return fx;
31 }
32 f (size_t d=3) {}
33 };

As test problem, the surface Γ is the a torus when d = 3. The data f has been chosen as
in Olshanskii et al. [2009, p. 3355]. This choice is convenient since the exact solution is known.
Let R and r denotes the large and small torus radii, respectively. The torus coordinates (ρ, θ, φ)
are defined linked to the Cartesian ones by:

x0
x1
x2

 = R

cos(φ)
sin(φ)

0

+ ρ

cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)

Here ρ is the distance from the point to the circle in the x0x1 plane around 0 with radius R,
θ is the angle from the positive (x0, x1, 0) to x0 and φ is the angle from the positive x0 axis to
(x0, x1, 0).

How to run the program ?

The surface mesh of the torus is generated by:

gmsh -2 torus.mshcad -format msh2 -o torus.msh

msh2geo torus.msh > torus.geo

geo torus.geo -stereo

The ‘torus.mshcad’ is not presented here: it can be founded in the Rheolef example directory.
Then, the computation and visualization writes:

make laplace_s

./laplace_s torus.geo P1 > torus.field

field torus.field

field torus.field -stereo

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/torus.icc

98 Rheolef version 7.1 update 22 March 2020

Figure 3.3: Laplace-Beltrami problem on a torus: high-order curved surface mesh and its corre-
sponding isoparametric solution: (top) order = 1; (bottom) order = 2.

For a higher-order approximation:

gmsh -2 -order 2 torus.mshcad -format msh2 -o torus-P2.msh

msh2geo torus-P2.msh > torus-P2.geo

geo torus-P2.geo -gnuplot

./laplace_s torus-P2.geo P2 > torus-P2.field

field torus-P2.field -stereo

The solution is represented on Fig. 3.3. By editing ‘torus.mshcad’ and changing the density of
discretization, we can improve the approximate solution and converge to the exact solution. Due
to a bug [Saramito, 2012b] in the current gmsh version 2.5.1 the convergence is not optimal O(hk)
for higher values of k.

Chapter 3. Advanced and highly nonlinear problems 99

3.1.2 Building a surface mesh from a level set function

The previous method is limited to not-too-complex surface Γ, that can be described by a regular
finite element surface mesh Γh. When the surface change, as in a time-dependent process, complex
change of topology often occurs and the mesh Γh can degenerate or be too complex to be efficiently
meshed. In that case, the surface is described implicitly as the zero isosurface, or zero level set, of
a function:

Γ = {x ∈ Λ; φ(x) = 0}
where Λ ⊂ R

d is a bounding box of the surface Γ.

The following code automatically generates the mesh Γh of the surface described by the zero
isosurface of a discrete φh ∈ Xh level set function:

Γh = {x ∈ Λ; φh(x) = 0}
where Xh is a piecewise affine functional space over a mesh Th of Λ:

Xh = {ϕ ∈ L2(Λ) ∩ C0(Λ); ϕ/K ∈ P1, ∀K ∈ Th}
The polynomial approximation is actually limited here to first order: building higher order curved
finite element surface meshes from a level set function is planed for the future versions of Rheolef.

Finally, a computation, as performed in the previous paragraph can be done using Γh. We also
point out the limitations of this approach.

Example file 3.5: level set sphere.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sphere.icc"
5 int main (int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 geo lambda (argv [1]);
8 level_set_option opts;
9 opts.split_to_triangle

10 = (argc > 2 && argv [2] == std:: string("-tq")) ? false : true;
11 space Xh (lambda , "P1");
12 field phi_h = interpolate(Xh , phi);
13 geo gamma = level_set (phi_h , opts);
14 dout << gamma;
15 }

Comments

All the difficult work of building the intersection mesh Γh, defined as the zero level set of the φh
function, is performed by the level set function:

geo gamma = level_set (phi_h , opts);

When d = 3, intersected tetrahedra leads to either triangular or quadrangular faces. By default,
quadrangular faces are split into two triangles. An optional -tq program flag allows one to conserve
quadrangles in the surface mesh: it set the split to triangle optional field to false.

How to run the program ?

After the compilation, generates the mesh of a bounding box Λ = [−2, 2]d of the surface and run
the program:

make level_set_sphere

mkgeo_grid -t 20 -a -2 -b 2 -c -2 -d 2 > square2.geo

./level_set_sphere square2.geo > circle.geo

geo circle.geo -gnuplot

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/level_set_sphere.cc

100 Rheolef version 7.1 update 22 March 2020

The computation of the previous paragraph can be reused:

./helmholtz_s circle.geo P1 | field -paraview -

Note that, while the bounding box mesh was uniform, the intersected mesh could present arbi-
trarily small edge length (see also Fig. 3.4):

geo -min-element-measure circle.geo

geo -max-element-measure circle.geo

Let us turn to the d = 3 case:

mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube2.geo

./level_set_sphere cube2.geo | geo -upgrade - > sphere.geo

geo sphere.geo -stereo

./helmholtz_s sphere.geo P1 | field -

While the bounding box mesh was uniform, the triangular elements obtained by intersecting the
3D bounding box mesh with the level set function can present arbitrarily irregular sizes and shapes
(see also Fig. 3.4):

geo -min-element-measure -max-element-measure sphere.geo

Nevertheless, and surprisingly, Olshanskii et al. [2012] recently showed that the finite element
method converges on these irregular intersected families of meshes.

This approach can be extended to the Laplace-Beltrami problem on a torus:

sed -e ’s/sphere/torus/’ < level_set_sphere.cc > level_set_torus.cc

make level_set_torus

./level_set_torus cube2.geo | geo -upgrade - > torus.geo

geo torus.geo -stereo

./laplace_s torus.geo P1 | field -

Note that the intersected mesh is also irregular:

geo -min-element-measure -max-element-measure torus.geo

Chapter 3. Advanced and highly nonlinear problems 101

Figure 3.4: Building an explicit surface mesh from level set: (top) circle; (center) sphere; (bottom)
torus.

102 Rheolef version 7.1 update 22 March 2020

3.1.3 The banded level set method

The banded level set method presents the advantages of the two previous methods without their
drawback: it applies to very general geometries, as described by a level set funtion, and stronger
convergence properties, as usual finite element methods. The previous intersection mesh can be
circumvented by enlarging the surface Γh to a band βh containing all the intersected elements of
Th (see Olshanskii et al., 2009, Abouorm, 2010, Dicko, 2011):

βh = {K ∈ Th;K ∩ Γh 6= ∅}
Then, we introduce Bh the piecewise affine functional space over βh:

Bh = {v ∈ L2(βh) ∩ C0(βh); v/K ∈ P1, ∀K ∈ Th}
The problem is extended from Γh to βh as:
(V F)h: find uh ∈ Bh such that:

a(uh, vh) = l(vh), ∀vh ∈ Bh

where, for all u, v ∈ Bh,

a(u, v) =

∫

Γh

(u v +∇su.∇sv) ds

l(v) =

∫

Γh

f v ds

for all uh, vh ∈ Bh. Note that while uh and vh are defined over βh, the summations in the
variational formulations are restricted only to Γh ⊂ βh.

Example file 3.6: helmholtz band iterative.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 #include "sphere.icc"
5 int main (int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo lambda (argv [1]);
8 size_t d = lambda.dimension ();
9 space Xh (lambda , "P1");

10 field phi_h = interpolate(Xh , phi);
11 band gamma_h (phi_h);
12 space Bh (gamma_h.band(), "P1");
13 trial u (Bh); test v (Bh);
14 form a = integrate (gamma_h , u*v + dot(grad_s(u),grad_s(v)));
15 field lh = integrate (gamma_h , f(d)*v);
16 field uh (Bh ,0);
17 solver_option sopt;
18 sopt.max_iter = 10000;
19 sopt.tol = 1e-10;
20 minres (a.uu(), uh.set_u(), lh.u(), eye(), sopt);
21 dout << catchmark ("phi") << phi_h
22 << catchmark ("u") << uh;
23 }

Comments

The band is build directly from the level set function as:

band gamma_h (phi_h);

The band structure is a small class that groups the surface mesh Γh, available as
gamma h.level set(), and the βh mesh, available as gamma h.band(). It also manages some
correspondence between both meshes. Then, the space of piecewise affine functions over the band
is introduced:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/helmholtz_band_iterative.cc

Chapter 3. Advanced and highly nonlinear problems 103

space Bh (gamma_h.band(), "P1");

Next, the bilinear form is computed by using the integrate function, with the band gamma h as
a domain-like argument:

form a = integrate (gamma_h , u*v + dot(grad_s(u),grad_s(v)));

The right-hand side also admits the gamma h argument:

field lh = integrate (gamma_h , f(d)*v);

Recall that summations for both forms and right-hand side will be performed on Γh, represented
by gamma h.level set(), while the approximate functional space is Bh. Due to this summation
on Γh instead of βh, the matrix of the system is singular [Olshanskii et al., 2009, Olshanskii and
Reusken, 2010, Abouorm, 2010] and the MINRES algorithm has been chosen to solve the linear
system:

minres (a.uu(), uh.set_u(), lh.u(), eye(), sopt);

The eye() argument represents here the identity preconditioner, i.e. no preconditioner at all. It
has few influence of the convergence properties of the matrix and could be replaced by another
simple one: the diagonal of the matrix diag(a.uu()) without sensible gain of performance:

minres (a.uu(), uh.set_u(), lh.u(), diag(a.uu()), sopt);

See the reference manual for more about minres, e.g. on the Rheolef web site or as unix manual

man minres

How to run the program

The compilation and run writes:

make helmholtz_band_iterative

mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube-20.geo

./helmholtz_band_iterative cube-20.geo > sphere-band.field

The run generates also two meshes (see Fig. 3.5): the intersection mesh and the band around it.
The solution is here defined on this band: this extension has no interpretation in terms of the
initial problem and can be restricted to the intersection mesh for visualization purpose:

make proj_band

./proj_band < sphere-band.field | field -

The ‘proj band.cc’ is presented below. The run generates also the Γh mesh (see Fig. 3.5), required
for the visualization. The two-dimensional case is obtained simply by replacing the 3D bounding
box by a 2D one:

mkgeo_grid -t 20 -a -2 -b 2 -c -2 -d 2 > square-20.geo

./helmholtz_band_iterative square-20.geo > circle-band.field

./proj_band < circle-band.field | field -paraview -

./proj_band < circle-band.field | field -elevation -bw -stereo -

104 Rheolef version 7.1 update 22 March 2020

Example file 3.7: proj band.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 int main (int argc , char**argv) {
5 environment rheolef (argc , argv);
6 field phi_h;
7 din >> catchmark ("phi") >> phi_h;
8 const space& Xh = phi_h.get_space ();
9 band gamma_h (phi_h);

10 space Bh (gamma_h.band(), "P1");
11 field uh(Bh);
12 din >> catchmark ("u") >> uh;
13 space Wh (gamma_h.level_set(), "P1");
14 gamma_h.level_set (). save ();
15 dout << interpolate (Wh, uh);
16 }

3.1.4 Improving the banded level set method with a direct solver

The iterative algorithm previously used for solving the linear system is not optimal: for 3D
problems on a surface, the bidimensionnal connectivity of the sparse matrix suggests that a direct
sparse factorization would be much more efficient.

Recall that φh = 0 on Γh. Thus, if uh ∈ Bh is solution of the problem, then uh+αφh|βh
∈ Bh is also

solution for any α ∈ R, where φh|βh
∈ Bh denotes the restriction of the level set function φh ∈ Xh

on the band βh. Thus there is multiplicity of solutions and the matrix of the problem is singular.
The direct resolution is still possible on a modified linear system with additional constraints in
order to recover the unicity of the solution. We impose the constraint that the solution uh should
be othogonal to φh|βh

∈ Bh. In some special cases, the band is composed of several connected
components (see Fig. 3.6): this appends when a vertex of the bounding box mesh belongs to Γh.
In that case, the constraint should be expressed on each connected component. Fig. 3.6 shows also
the case when a full side of an element is included in Γh: such an element of the band is called
isolated.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/proj_band.cc

Chapter 3. Advanced and highly nonlinear problems 105

Example file 3.8: helmholtz band.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 #include "sphere.icc"
5 int main (int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo lambda (argv [1]);
8 size_t d = lambda.dimension ();
9 space Xh (lambda , "P1");

10 field phi_h = interpolate(Xh , phi);
11 band gamma_h (phi_h);
12 field phi_h_band = phi_h [gamma_h.band ()];
13 space Bh (gamma_h.band(), "P1");
14 Bh.block (" isolated ");
15 Bh.unblock ("zero ");
16 trial u (Bh); test v (Bh);
17 form a = integrate (gamma_h , u*v + dot(grad_s(u),grad_s(v)));
18 field lh = integrate (gamma_h , f(d)*v);
19 vector <field > b (gamma_h.n_connected_component ());
20 vector <Float > z (gamma_h.n_connected_component (), 0);
21 for (size_t i = 0; i < b.size (); i++) {
22 const domain& cci = gamma_h.band() ["cc"+itos(i)];
23 field phi_h_cci (Bh , 0);
24 phi_h_cci [cci] = phi_h_band [cci];
25 b[i] = phi_h_cci;
26 }
27 form A = {{ a, trans(b) },
28 { b, 0 }};
29 field Fh = { lh , z };
30 A.set_symmetry(true);
31 problem pa (A);
32 field Uh (Fh.get_space(), 0);
33 pa.solve (Fh, Uh);
34 dout << catchmark ("phi") << phi_h
35 << catchmark ("u") << Uh[0];
36 }

Comments

The management of the special sides and vertices that are fully included in Γh is perfomed by:

Bh.block (" isolated ");
Bh.unblock ("zero ");

The addition of linear constraints is similar to the ‘neumann-laplace.cc’ code, as presented in
section 1.4:

form A = {{ a, trans(b)},
{ b, 0 }};

Here b is a vector<field>, i.e. a vector of linear constraints, one per connected component of
the band βh.

How to run the program

The commands are similar to the previous iterative implementation, just replacing
helmholtz band iterative by helmholtz band.

This approach could be also adapted to the Laplace-Beltrami problem on the torus.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/helmholtz_band.cc

106 Rheolef version 7.1 update 22 March 2020

Example file 3.9: laplace band.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 #include "torus.icc"
5 int main (int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo lambda (argv [1]);
8 size_t d = lambda.dimension ();
9 space Xh (lambda , "P1");

10 field phi_h = interpolate(Xh , phi);
11 band gamma_h (phi_h);
12 field phi_h_band = phi_h [gamma_h.band ()];
13 space Bh (gamma_h.band(), "P1");
14 Bh.block (" isolated ");
15 Bh.unblock ("zero ");
16 trial u (Bh); test v (Bh);
17 form a = integrate (gamma_h , dot(grad_s(u),grad_s(v)));
18 field c = integrate (gamma_h , v);
19 field lh = integrate (gamma_h , f(d)*v);
20 vector <field > b (gamma_h.n_connected_component ());
21 vector <Float > z (gamma_h.n_connected_component (), 0);
22 for (size_t i = 0; i < b.size (); i++) {
23 const domain& cci = gamma_h.band() ["cc"+itos(i)];
24 field phi_h_cci (Bh , 0);
25 phi_h_cci [cci] = phi_h_band [cci];
26 b[i] = phi_h_cci;
27 }
28 form A = {{ a, trans(b), c },
29 { b, 0, 0 },
30 { trans(c), 0, 0 }};
31 field Fh = { lh , z, 0 };
32 field Uh (Fh.get_space(), 0);
33 A.set_symmetry(true);
34 problem pa (A);
35 pa.solve (Fh, Uh);
36 dout << catchmark ("phi") << phi_h
37 << catchmark ("u") << Uh[0];
38 }

Comments

The code is similar to the previous one helmholtz band.cc. Since the solution is defined up to a
constant, an additional linear constraint has to be inserted:

∫

Γh

uh dx = 0

This writes:

field c = integrate (gamma_h , v);
form A = {{ a, trans(b), c },

{ b, 0, 0 },
{ trans(c), 0, 0 }};

How to run the program

make laplace_band

mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube-20.geo

./laplace_band cube-20.geo > torus-band.field

./proj_band < torus-band.field | field -stereo -

The solution is represented on Fig. 3.5.bottom.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/laplace_band.cc

Chapter 3. Advanced and highly nonlinear problems 107

Figure 3.5: The banded level set method: (top) circle; (center) sphere; (bottom) torus.

108 Rheolef version 7.1 update 22 March 2020

cc0
cc1
cc2
cc3
cc4
cc5
cc6
cc7
cc8
cc9

isolated
zero

Figure 3.6: The banded level set method: the band is composed of several connected components.

Chapter 3. Advanced and highly nonlinear problems 109

3.2 The highly nonlinear p-laplacian problem

3.2.1 Problem statement

Let us consider the classical p-Laplacian problem with homogeneous Dirichlet boundary conditions
in a domain bounded Ω ⊂ R

d, d = 1, 2, 3:

(P): find u, defined in Ω such that:

−div
(
η
(
|∇u|2

)
∇u
)

= f in Ω

u = 0 on ∂Ω

where η : z ∈ R
+ 7−→ z

p−2
2 ∈ R

+. Several variants of the η can be considered: see Saramito
[2016b] for practical and useful examples: this problem represents a pipe flow of a non-Newtonian
power-law fluid. Here p ∈]1,+∞[and f are known. For the computational examples, we choose
f = 1. When p = 2, this problem reduces to the linear Poisson problem with homogeneous
Dirichlet boundary conditions. Otherwise, for any p > 1, the nonlinear problem is equivalent to
the following minimization problem:

(MP): find u ∈W 1,p
0 (Ω) such that:

u = argmin
v∈W 1,p

0 (Ω)

1

2

∫

Ω

H
(
|∇v|2

)
dx−

∫

Ω

f v dx,

where H denotes the primitive of η:

H(z) =

∫ z

0

η(z) dz =
2zp

p

Here W 1,p
0 (Ω) denotes the usual Sobolev spaces of functions in W 1,p(Ω) We also assume that

f ∈ W−1,p(Ω), where W−1,p
0 (Ω) denotes the dual space of W 1,p

0 (Ω) that vanishes on the bound-
ary [Brezis, 1983, p. 118]. The variational formulation of this problem expresses:

(VF): find u ∈W 1,p
0 (Ω) such that:

a(u;u, v) = l(v), ∀v ∈W 1,p
0 (Ω)

where a(., .) and l(.) are defined for any u0, u, v ∈W 1,p(Ω) by

a(u0;u, v) =

∫

Ω

η
(
|∇u0|2

)
∇u.∇v dx, ∀u, v ∈W 1,p

0 (Ω) (3.3)

l(v) =

∫

Ω

f v dx, ∀u, v ∈ L2(Ω) (3.4)

The quantity a(u;u, u)1/p = ‖∇u‖0,p,Ω induces a norm in W 1,p
0 , equivalent to the standard norm.

The form a(.; ., .) is bilinear with respect to the two last variable and is related to the energy form.

3.2.2 The fixed-point algorithm

Principe of the algorithm

This nonlinear problem is then reduced to a sequence of linear subproblems by using the fixed-point
algorithm. The sequence

(
u(n)

)
n>0

is defined by recurrence as:

• n = 0: let u(0) ∈W 1,p
0 (Ω) be known.

• n > 0: suppose that u(n) ∈W 1,p
0 (Ω) is known and find u∗ ∈W 1,p

0 (Ω) such that:

a
(
u(n);u∗, v

)
= l(v), ∀v ∈W 1,p

0 (Ω)

110 Rheolef version 7.1 update 22 March 2020

and then set

u(n+1) = ωu∗ + (1− ω) ∗ u(n)

Here ω > 0 is the relaxation parameter: when ω = 1 we obtain the usual un-relaxed fixed point
algorithm. For stiff nonlinear problems, we will consider the under-relaxed case 0 < ω < 1. Let
u(n+1) = G

(
u(n)

)
denotes the operator that solve the previous linear subproblem for a given u(n).

Since the solution u satisfies u = G(u), it is a fixed-point of G.

Let us introduce a mesh Th of Ω and the finite dimensional space Xh of continuous piecewise poly-
nomial functions and Vh, the subspace of Xh containing elements that vanishes on the boundary
of Ω:

Xh = {vh ∈ C0
0

(
Ω
)
; vh/K ∈ Pk, ∀K ∈ Th}

Vh = {vh ∈ Xh; vh = 0 on ∂Ω}

where k = 1 or 2. The approximate problem expresses: suppose that u
(n)
h ∈ Vh is known and find

u∗h ∈ Vh such that:

a
(
u
(n)
h ;u∗h, vh

)
= l(vh), ∀vh ∈ Vh

By developing u∗h on a basis of Vh, this problem reduces to a linear system.

Chapter 3. Advanced and highly nonlinear problems 111

Example file 3.10: p laplacian fixed point.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "eta.h"
5 #include "dirichlet.icc"
6 int main(int argc , char**argv) {
7 environment rheolef (argc ,argv);
8 geo omega (argv [1]);
9 Float eps = std:: numeric_limits <Float >:: epsilon ();

10 string approx = (argc > 2) ? argv [2] : "P1";
11 Float p = (argc > 3) ? atof(argv [3]) : 1.5;
12 Float w = (argc > 4) ? (is_float(argv [4]) ? atof(argv [4]) :2/p) :1;
13 Float tol = (argc > 5) ? atof(argv [5]) : 1e5*eps;
14 size_t max_it = (argc > 6) ? atoi(argv [6]) : 500;
15 derr << "# P-Laplacian problem by fixed -point :" << endl
16 << "# geo = " << omega.name() << endl
17 << "# approx = " << approx << endl
18 << "# p = " << p << endl
19 << "# w = " << w << endl
20 << "# tol = " << tol << endl;
21 space Xh (omega , approx);
22 Xh.block (" boundary ");
23 trial u (Xh); test v (Xh);
24 form m = integrate (u*v);
25 problem pm (m);
26 field uh (Xh), uh_star (Xh , 0.);
27 uh[" boundary "] = uh_star [" boundary "] = 0;
28 field lh = integrate (v);
29 dirichlet (lh , uh);
30 derr << "# n r v" << endl;
31 Float r = 1, r0 = 1;
32 size_t n = 0;
33 do {
34 form a = integrate(compose(eta(p),norm2(grad(uh)))* dot(grad(u),grad(v)));
35 field mrh = a*uh - lh;
36 field rh (Xh , 0);
37 pm.solve (mrh , rh);
38 r = rh.max_abs ();
39 if (n == 0) { r0 = r; }
40 Float v = (n == 0) ? 0 : log10(r0/r)/n;
41 derr << n << " " << r << " " << v << endl;
42 if (r <= tol || n++ >= max_it) break;
43 problem p (a);
44 p.solve (lh , uh_star);
45 uh = w*uh_star + (1-w)*uh;
46 } while (true);
47 dout << catchmark ("p") << p << endl
48 << catchmark ("u") << uh;
49 return (r <= tol) ? 0 : 1;
50 }

Comments

The implementation with Rheolef involves a weighted forms: the tensor-valued weight

η

(∣∣∣∇u(n)h

∣∣∣
2
)

is inserted in the variational expression passed to the integrate function. The

construction of the weighted form a(.; ., .) writes:

form a = integrate(compose(eta(p),norm2(grad(uh)))* dot(grad(u),grad(v)));

Remarks the usage of the compose, norm2 and grad library functions. The weight η

(∣∣∣∇u(n)h

∣∣∣
2
)

is

represented by the compose(eta(p),norm2(grad(uh))) sub-expression. This weight is evaluated
on the fly at the quadrature nodes during the assembly process implemented by the integrate

function. Also, notice the distinction between uh, that represents the value of the solution at step

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/p_laplacian_fixed_point.cc

112 Rheolef version 7.1 update 22 March 2020

n, and the trial u and test v functions, that represents any elements of the function space Xh.
These functions appear in the dot(grad(u),grad(v)) sub-expression.

Example file 3.11: eta.h

1 struct eta {
2 Float operator () (const Float& z) const {
3 check_macro(z != 0 || p > 2, "eta: division by zero (HINT: check mesh)");
4 return pow(z, (p -2)/2);
5 }
6 Float derivative (const Float& z) const {
7 check_macro(z != 0 || p > 4, "eta ’: division by zero (HINT: check mesh)");
8 return 0.5*(p-2)* pow(z, (p -4)/2);
9 }

10 eta (const Float& q) : p(q) {}
11 Float p;
12 };

The η function is implemented separately, in file named eta.h in order to easily change its
definition. The derivative member function is not yet used here: it is implemented for a
forthcoming application (the Newton method). Note the guards that check for division by zero
and send a message related to the mesh: this will be commentated in the next paragraph.
Finally, the fixed-point algorithm is initiated with u(0) as the solution of the linear problem
associated to p = 2, i.e. the standard Poisson problem with Dirichlet boundary conditions.

Example file 3.12: dirichlet.icc

1 void dirichlet (const field& lh, field& uh) {
2 const space& Xh = lh.get_space ();
3 trial u (Xh); test v (Xh);
4 form a = integrate (dot(grad(u),grad(v)));
5 problem p (a);
6 p.solve (lh, uh);
7 }

Running the program

Compile the program, as usual:

make p_laplacian_fixed_point

and enter the commands:

mkgeo_ugrid -t 50 > square.geo

geo square.geo

The triangular mesh has a boundary domain named boundary.

./p_laplacian_fixed_point square.geo P1 1.5 > square.field

Run the field visualization:

field square.field -elevation -stereo

field square.field -cut -origin 0.5 0.5 -normal 1 1 -gnuplot

The first command shows an elevation view of the solution (see Fig. 3.7) while the second one
shows a cut along the first bisector x0 = x1. Observe that the solution becomes flat at the center
when p decreases. The p = 2 case, corresponding to the linear case, is showed for the purpose of
comparison.

There is a technical issue concerning the mesh: the computation could failed on some mesh that
presents at least one triangle with two edges on the boundary:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/eta.h
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/dirichlet.icc

Chapter 3. Advanced and highly nonlinear problems 113

Figure 3.7: The p-Laplacian for d = 2: elevation view for p = 1.25 (left), p = 2 (center) and
p = 2.5 (right).

mkgeo_grid -t 50 > square-bedge.geo

geo square-bedge.geo

./p_laplacian_fixed_point square-bedge.geo P1 1.5 > square-bedge.field

The computation stops and claims a division by zero: the three nodes of such a triangle, the
three nodes are on the boundary, where uh = 0 is prescribed: thus ∇uh = 0 uniformly inside
this element. Note that this failure occurs only for linear approximations: the computation works
well on such meshes for Pk approximations with k > 2. While the mkgeo grid generates uniform
meshes that have such triangles, the mkgeo ugrid calls the gmsh generator that automatically splits
the triangles with two boundary edges. When using bamg, you should consider the -splitpbedge
option.

Convergence properties of the fixed-point algorithm

The fixed-point algorithm prints also rn, the norm of the residual term, at each iteration n, and the
convergence rate vn = log10(rn/r0)/n. The residual term of the non-linear variational formulation
is defined by:

r
(n)
h ∈ Vh and m

(
r
(n)
h , vh

)
= a

(
u
(n)
h ; u

(n)
h , vh

)
− l(vh), ∀vh ∈ Vh

where m(., .) denotes the L2 scalar product. Clearly, u
(n)
h is a solution if and only if r

(n)
h = 0.

For clarity, let us drop temporarily the n index of the current iteration. The field rh ∈ Vh can be
extended as a field rh ∈ Xh with vanishing components on the boundary. The previous relation
writes, after expansion of the bilinear forms and fields on the unknown and blocked parts (see
page 14 for the notations):

m.uu*rh.u = a.uu*uh.u + a.ub*ub.b - lh.u

rh.b = 0

This relation expresses that the residual term rh is obtained by solving a linear system involving
the mass matrix.

It remains to choose a good norm for estimating this residual term. For the corresponding con-
tinuous formulation, we have:

r = −div
(
η
(
|∇u|2

)
∇u
)
− f ∈W−1,p(Ω)

Thus, for the continuous formulation, the residual term may be measured with the W−1,p(Ω)

114 Rheolef version 7.1 update 22 March 2020

norm. It is defined, for all ϕ ∈W−1,p(Ω), by duality:

‖ϕ‖−1,p,Ω = sup
ϕ∈W

1,p
0 (Ω)

v 6=0

〈ϕ, v〉
‖v‖1,p,Ω

= sup
v∈W

1,p
0 (Ω)

‖v‖1,p,Ω=1

〈ϕ, v〉

where 〈., .〉 denotes the duality bracked between W 1,p
0 (Ω) and W−1,p(Ω).

By analogy, let us introduce the discrete W−1,p(Ω) norm, denoted as ‖.‖−1,h, defined by duality
for all ϕh ∈ Vh by:

‖ϕh‖−1,h = sup
vh∈Vh

‖vh‖1,p,Ω=1

〈ϕh, vh〉

The dual of space of the finite element space Vh is identified to Vh and the duality bracket is the
Euclidean scalar product of Rdim(Vh). Then, ‖ϕh‖−1,h is the largest absolute value of components
of ϕh considered as a vector of Rdim(Vh). With the notations of the Rheolef library, it simply
writes:

Float r = rh.u().max_abs()

10
−15

10
−10

10
−5

1

0 25 50

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

p = 3/2

n

h = 1/10
h = 1/20
h = 1/30
h = 1/40
h = 1/50

10
−15

10
−10

10
−5

1

0 25 50

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

p = 3/2

n

k = 1

k = 2

k = 3

k = 4

k = 5

10
−15

10
−10

10
−5

1

0 250 500

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

n

p = 2.95

p = 2.90

p = 2.50

10
−15

10
−10

10
−5

1

0 100 200

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

n

p = 1.15

p = 1.25

p = 1.50

Figure 3.8: The fixed-point algorithm on the p-Laplacian for d = 2: when p = 3/2, independence
of the convergence properties of the residue (top-left) with mesh refinement; (top-right) with
polynomial order Pk; when h = 1/50 and k = 1, convergence (bottom-left) for p > 2 and (bottom-
right) for p < 2.

Chapter 3. Advanced and highly nonlinear problems 115

Fig 3.8.top-left shows that the residual term decreases exponentially versus n, since the slope of
the plot in semi-log scale tends to be strait. Moreover, observe that the slope is independent of
the mesh size h. Also, by virtue of the previous careful definition of the residual term and its
corresponding norm, all the slopes falls into a master curve.

These invariance properties applies also to the polynomial approximation Pk : Fig 3.8.top-right
shows that all the curves tends to collapse when k increases. Thus, the convergence properties
of the algorithm are now investigated on a fixed mesh h = 1/50 and for a fixed polynomial
approximation k = 1.

Fig 3.8.bottom-left and 3.8.bottom-right show the convergence versus the power-law index p:
observe that the convergence becomes easier when p approaches p = 2, where the problem is linear.
In that case, the convergence occurs in one iteration. Nevertheless, it appears two limitations.
From one hand, when p → 3 the convergence starts to slow down and p > 3 cannot be solved
by this algorithm (it will be solved later in this chapter). From other hand, when p → 1, the
convergence slows down too and numerical rounding effets limits the convergence: the machine
precision canot be reached. Let us introduce the convergence rate vn = log10(rn/r0)/n it tends to

0

1

2

1 2 3

v̄

p

computation

0

1

2

10−3 10−2 10−1 100

v̄

|p− 2|

computation: p < 2
computation: p > 2

fit: − log10 |p− 2|

Figure 3.9: The fixed-point algorithm on the p-Laplacian for d = 2: (left) convergence rate versus
p; (right) convergence rate versus p in semi-log scale.

a constant, denoted as v̄ and: rn ≈ r0 × 10−v̄ n. Observe on Fig 3.9.left that v̄ tends to +∞ when
p = 2, since the system becomes linear and the algorithm converge in one iteration. Observe also
that v̄ tends to zero for p = 1 and p = 3 since the algorithm diverges. Fig 3.9.right shows the
same plot in semi-log scale and shows that v̄ behaves as: v̄ ≈ − log10 |p− 2|. This study shows
that the residual term of the fixed point algorithm behaves as:

rn ≈ r0 |p− 2|n

Improvement by relaxation

The relaxation parameter can improve the fixed-point algorithm: for instance, for p = 3 and
ω = 0.5 we get a convergent sequence:

./p_laplacian_fixed_point square.geo P1 3 0.5 > square.field

Observe on Fig. 3.10 the effect on the relaxation parameter ω upon the convergence rate v̄: for
p < 2 it can improve it and for p > 2, it can converge when p > 3. For each p, there is clearly an
optimal relaxation parameter, denoted by ωopt. A simple fit shows that (see Fig. 3.10.bottom-left):

ωopt = 2/p

116 Rheolef version 7.1 update 22 March 2020

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2

v̄

ω

p = 1.2

p = 1.3

p = 1.4

p = 1.5

0

0.1

0.2

0.3

0.4

0 0.25 0.5 0.75 1

v̄

ω

p = 3

p = 4

p = 5

p = 6

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8

ωopt

p

computation: ωopt

fit: ωopt(p) = 2/p

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

v̄opt

p

v̄ when ω = ωopt

v̄ when ω = 1

Figure 3.10: The fixed-point algorithm on the p-Laplacian for d = 2: effect of the relaxation
parameter ω (top-left) when p < 2; (top-right) when p > 2; (bottom-left) optimal ωopt; (bottom-
right) optimal v̄opt.

Let us denote v̄opt the corresponding rate of convergence. Fig. 3.10.top-right shows that the
convergence is dramatically improved when p > 2 while the gain is less pronounced when p <
2. Coveniently replacing the extra parameter ω on the command line by - leads to compute
automatically ω = ωopt: the fixed-point algorithm is always convergent with an optimal convergent
rate, e.g.:

./p_laplacian_fixed_point square.geo P1 4.0 - > square.field

There is no way to improve more the fixed point algorithm: the next paragraph shows a different
algorithm that dramatically accelerates the computation of the solution.

Chapter 3. Advanced and highly nonlinear problems 117

3.2.3 The Newton algorithm

Principe of the algorithm

An efficient alternative to the fixed-point algorithm is to solve the nonlinear problem (P) by using
the Newton algorithm. Let us consider the following operator:

F : W 1,p
0 (Ω) −→ W−1,p(Ω)
u 7−→ F (u) = −div

(
η
(
|∇u|2

)
∇u
)
− f

The F operator computes simply the residual term and the problem expresses now as: find u ∈
W 1,p

0 (Ω) such that F (u) = 0.

The Newton algorithm reduces the nonlinear problem into a sequence of linear subproblems: the
sequence

(
u(n)

)
n>0

is classically defined by recurrence as:

• n = 0: let u(0) ∈W 1,p
0 (Ω) be known.

• n > 0: suppose that u(n) is known, find δu(n), defined in Ω, such that:

F ′
(
u(n)

)
δu(n) = −F

(
u(n)

)

and then compute explicitly:

u(n+1) := u(n) + δu(n)

The notation F ′(u) stands for the Fréchet derivative of F , as an operator from W−1,p(Ω) into
W 1,p

0 (Ω). For any r ∈W−1,p(Ω), the linear tangent problem writes:
find δu ∈W 1,p

0 (Ω) such that:

F ′(u) δu = −r
After the computation of the Fréchet derivative, we obtain the strong form of this problem:
(LT): find δu, defined in Ω, such that

−div
(
η
(
|∇u|2

)
∇(δu) + 2η′

(
|∇u|2

)
{∇u.∇(δu)}∇u

)
= −r in Ω

δu = 0 on ∂Ω

where

η′(z) =
1

2
(p− 2)z

p−4
2 , ∀z > 0

This is a Poisson-like problem with homogeneous Dirichlet boundary conditions and a non-constant
tensorial coefficient. The variational form of the linear tangent problem writes:
(V LT): find δu ∈W 1,p

0 (Ω) such that

a1(u; δu, δv) = l1(v), ∀δv ∈W 1,p
0 (Ω)

where the a1(.; ., .) is defined for any u, δu, δv ∈W 1,p
0 (Ω) by:

a1(u; δu, δv) =

∫

Ω

(
η
(
|∇u|2

)
∇(δu).∇(δv) + 2η′

(
|∇u|2

)
{∇u.∇(δu)} {∇u.∇(δv)}

)
dx

l1(v) = −
∫

Ω

r v dx

For any ξ ∈ R
d let us denote by ν(ξ) the following d× d matrix:

ν(ξ) = η
(
|ξ|2
)
I + 2η′

(
|ξ|2
)
ξ ⊗ ξ

118 Rheolef version 7.1 update 22 March 2020

where I stands for the d-order identity matrix. Then the a1 expresses in a more compact form:

a1(u; δu, δv) =

∫

Ω

(ν(∇u)∇(δu)) .∇(δv) dx

Clearly a1 is linear and symmetric with respect to the two last variables.

Example file 3.13: p laplacian newton.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "p_laplacian.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 Float eps = std:: numeric_limits <Float >:: epsilon ();
9 string approx = (argc > 2) ? argv [2] : "P1";

10 Float p = (argc > 3) ? atof(argv [3]) : 1.5;
11 Float tol = (argc > 4) ? atof(argv [4]) : 1e5*eps;
12 size_t max_iter = (argc > 5) ? atoi(argv [5]) : 500;
13 derr << "# P-Laplacian problem by Newton :" << endl
14 << "# geo = " << omega.name() << endl
15 << "# approx = " << approx << endl
16 << "# p = " << p << endl
17 << "# tol = " << tol << endl
18 << "# max_iter = " << max_iter << endl;
19 p_laplacian F (p, omega , approx);
20 field uh = F.initial ();
21 int status = newton (F, uh , tol , max_iter , &derr);
22 dout << setprecision(numeric_limits <Float >:: digits10)
23 << catchmark ("p") << p << endl
24 << catchmark ("u") << uh;
25 return status;
26 }

Example file 3.14: p laplacian.h

1 class p_laplacian {
2 public:
3 typedef field value_type;
4 typedef Float float_type;
5 p_laplacian (Float p, const geo& omega , string approx);
6 field initial () const;
7 field residue (const field& uh) const;
8 void update_derivative (const field& uh) const;
9 field derivative_solve (const field& mrh) const;

10 field derivative_trans_mult (const field& mrh) const;
11 Float space_norm (const field& uh) const;
12 Float dual_space_norm (const field& mrh) const;
13 Float p;
14 space Xh;
15 field lh;
16 form m;
17 problem pm;
18 mutable form a1;
19 mutable problem pa1;
20 };
21 #include "p_laplacian1.icc"
22 #include "p_laplacian2.icc"

Comments

The Newton algorithm is implemented in a generic way, for any F function, by the newton function
of the Rheolef library. The reference manual for the newton generic function is available online:

man newton

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/p_laplacian_newton.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/p_laplacian.h

Chapter 3. Advanced and highly nonlinear problems 119

The function F and its derivative F ′ are provided by a template class argument. Here,
the p laplacian class describes our F function, i.e. our problem to solve: its inter-
face is defined in the file ‘p laplacian.h’ and its implementation in ‘p laplacian1.icc’
and ‘p laplacian2.icc’. The introduction of the class p laplacian will allow an easy explo-
ration of some variants of the Newton algorithm for this problem, as we will see in the next section.

Example file 3.15: p laplacian1.icc

1 #include "eta.h"
2 #include "nu.h"
3 #include "dirichlet.icc"
4 p_laplacian :: p_laplacian (Float p1, const geo& omega , string approx)
5 : p(p1), Xh(), lh(), m(), pm(), a1(), pa1() {
6 Xh = space (omega , approx);
7 Xh.block (" boundary ");
8 trial u (Xh); test v (Xh);
9 lh = integrate (v);

10 m = integrate (u*v);
11 pm = problem (m);
12 }
13 field p_laplacian :: initial () const {
14 field uh (Xh , 0);
15 dirichlet (lh , uh);
16 return uh;
17 }
18 field p_laplacian :: residue (const field& uh) const {
19 trial u (Xh); test v (Xh);
20 form a = integrate (compose(eta(p), norm2(grad(uh)))* dot(grad(u),grad(v)));
21 field mrh = a*uh - lh;
22 mrh.set_b() = 0;
23 return mrh;
24 }
25 void p_laplacian :: update_derivative (const field& uh) const {
26 size_t d = Xh.get_geo (). dimension ();
27 trial u (Xh); test v (Xh);
28 a1 = integrate (dot(compose(nu<eta >(eta(p),d), grad(uh))* grad(u),grad(v)));
29 pa1 = problem (a1);
30 }
31 field p_laplacian :: derivative_solve (const field& rh) const {
32 field delta_uh (Xh ,0);
33 pa1.solve (rh , delta_uh);
34 return delta_uh;
35 }

The residual term F (uh) is computed by the member function residual while the resolution of
F ′(uh)δuh = Mrh is performed by the function derivative solve. The derivative F ′(uh) is
computed separately by the function update derivative:

a1 = integrate(dot(compose(nu<eta >(eta(p),d),grad(uh))* grad(u),grad(v)));

Note that the a1(u; ., .) bilinear form is a tensorial weighted form, where ν = ν(∇u) is the weight
tensor. The tensorial weight ν is inserted as (ν∇u).∇v in the variational expression for the
integrate function. As the tensor ν is symmetric, the bilinear form a1(., .) is also symmetric.

The linear system involving the derivative F ′(uh) is solved by the p laplacian member function
derivative solve. Finally, applying the generic Newton method requires a stopping criteria
on the residual term: this is the aim of the member function dual space norm. The three last
member functions are not used by the Newton algorithm, but by its extension, the damped Newton
method, that will be presented later.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/p_laplacian1.icc

120 Rheolef version 7.1 update 22 March 2020

Example file 3.16: p laplacian2.icc

1 field p_laplacian :: derivative_trans_mult (const field& mrh) const {
2 field rh (Xh , 0);
3 pm.solve (mrh , rh);
4 field mgh = a1*rh;
5 mgh.set_b() = 0;
6 return mgh;
7 }
8 Float p_laplacian :: space_norm (const field& uh) const {
9 return sqrt (m(uh,uh));

10 }
11 Float p_laplacian :: dual_space_norm (const field& mrh) const {
12 field rh (Xh , 0);
13 pm.solve (mrh , rh);
14 return sqrt (dual(mrh , rh));
15 }

The ν function is implemented for a generic η function, as a class-function that accept as template
agument another class-function.

Example file 3.17: nu.h

1 template <class Function >
2 struct nu {
3 tensor operator () (const point& grad_u) const {
4 Float x2 = norm2 (grad_u);
5 Float a = f(x2);
6 Float b = 2*f.derivative(x2);
7 tensor value;
8 for (size_t i = 0; i < d; i++) {
9 value(i,i) = a + b*grad_u[i]* grad_u[i];

10 for (size_t j = 0; j < i; j++)
11 value(j,i) = value(i,j) = b*grad_u[i]* grad_u[j];
12 }
13 return value;
14 }
15 nu (const Function& f1, size_t d1) : f(f1), d(d1) {}
16 Function f;
17 size_t d;
18 };

Running the program

Enter:

make p_laplacian_newton

mkgeo_ugrid -t 50 > square.geo

./p_laplacian_newton square.geo P1 3 > square.field

field square.field -elevation -stereo

The program prints at each iteration n, the residual term rn in discrete L2(Ω) norm. Convergence
occurs in less than ten iterations: it dramatically improves the previous algorithm (see Fig. 3.11).
Observe that the slope is no more constant in semi-log scale: the convergence rate accelerates and
the slope tends to be vertical, the so-called super-linear convergence. This is the major advantage of
the Newton method. Figs. 3.12.top-left and. 3.12.top-bottom shows that the algorithm converge
when p > 3 and that the convergence properties are independent of the mesh size h and the
polynomial order k. There are still two limitations of the method. From one hand, the Newton
algorithm is no more independent of h and k when p 6 3/2 and to tends to diverges in that
case when h tends to zero (see Fig. 3.12.bottom-left). From other hand, when p becomes large
(see Fig. 3.12.bottom-right), an overshoot in the convergence tends to increase and destroy the
convergence, due to rounding problems. In order to circumvent these limitations, another strategy
is considered in the next section: the damped Newton algorithm.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/p_laplacian2.icc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/nu.h

Chapter 3. Advanced and highly nonlinear problems 121

10
−15

10
−10

10
−5

1

0 5 10 15 20 25

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

p = 3

n

fixed point ω = 2/3
Newton

Figure 3.11: The Newton algorithm on the p-laplacian for d = 2: comparison with the fixed-point
algorithm.

122 Rheolef version 7.1 update 22 March 2020

10
−15

10
−10

10
−5

1

0 5 10 15 20 25

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

p = 3

n

h = 1/10
h = 1/20
h = 1/30
h = 1/40
h = 1/50

10
−15

10
−10

10
−5

1

0 5 10 15 20 25

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

p = 3

n

k = 1

k = 2

k = 3

k = 4

k = 5

10
−15

10
−10

10
−5

1

0 50 100

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

p = 3/2

n

h = 1/10
h = 1/20
h = 1/30
h = 1/40
h = 1/50

10
−15

10
−10

10
−5

10
0

0 25

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

n

p = 2.5

p = 3.0

p = 3.5

Figure 3.12: The Newton algorithm on the p-Laplacian for d = 2: (top-left) comparison with the
fixed-point algorithm; when p = 3, independence of the convergence properties of the residue (top-
left) with mesh refinement; (top-right) with polynomial order Pk; (bottom-left) mesh-dependence
convergence when p < 2; (bottom-right) overshoot when p > 2.

Chapter 3. Advanced and highly nonlinear problems 123

3.2.4 The damped Newton algorithm

Principe of the algorithm

The Newton algorithm diverges when the initial u(0) is too far from a solution, e.g. when p is
not at the vicinity of 2. Our aim is to modify the Newton algorithm and to obtain a globally
convergent algorithm, i.e to converge to a solution for any initial u(0). By this way, the algorithm
should converge for any value of p ∈]1,+∞[. The basic idea is to decrease the step length while
maintaining the direction of the original Newton algorithm:

u(n+1) := u(n) + λn δu
(n)

where λ(n) ∈]0, 1] and δu(n) is the direction from the Newton algorithm, given by:

F ′
(
u(n)

)
δu(n) = −F

(
u(n)

)

Let V a Banach space and let T : V → R defined for any v ∈ V by:

T (v) =
1

2
‖C−1F (v)‖2V ,

where C is some non-singular operator, easy to invert, used as a non-linear preconditioner. The
simplest case, without preconditioner, is C = I. The T function furnishes a measure of the residual
term in L2 norm. The convergence is global when for any initial u(0), we have for any n > 0:

T
(
u(n+1)

)
6 T

(
u(n)

)
+ α

〈
T ′
(
u(n)

)
, u(n+1) − u(n)

〉
V ′,V

(3.5)

where 〈., .〉V ′,V is the duality product between V and its dual V ′, and α ∈]0, 1[is a small parameter.
Note that

T ′(u) = {C−1F ′(u)}∗C−1F (u)

where the superscript ∗ denotes the adjoint operator, i.e. the transpose matrix the in finite
dimensional case. In practice we consider α = 10−4 and we also use a minimal step length
λmin = 1/10 in order to avoid too small steps. Let us consider a fixed step n > 0: for convenience
the n superscript is dropped in u(n) and δu(n). Let g : R → R defined for any λ ∈ R by:

g(λ) = T (u+ λδu)

Then :

g′(λ) = 〈T ′(u+ λδu), δu〉V ′,V

= 〈C−1F (u+ λδu), F ′(u+ λδu)C−1δu〉V,V ′

where the superscript ∗ denotes the adjoint operator, i.e. the transpose matrix the in finite
dimensional case. The practical algorithm for obtaining λ was introduced first in [J. E. Dennis
and Schnablel, 1983] and is also presented in [Press et al., 1997, p. 385]. The step length λ that
satisfy (3.5) is computed by using a finite sequence λk, k = 0, 1 . . . with a second order recurrence:

• k = 0 : initialization λ0 = 1. If (3.5) is satisfied with u + λ0 d then let λ := λ0 and the
sequence stop here.

• k = 1 : first order recursion. The quantities g(0) = f(u) et g′(0) = 〈f ′(u), d〉 are already
computed at initialization. Also, we already have computed g(1) = f(u+ d) when verifying
whether (3.5) was satisfied. Thus, we consider the following approximation of g(λ) by a
second order polynomial:

g̃1(λ) = {g(1)− g(0)− g′(0)}λ2 + g′(0)λ+ g(0)

124 Rheolef version 7.1 update 22 March 2020

After a short computation, we find that the minimum of this polynomial is:

λ̃1 =
−g′(0)

2{g(1)− g(0)− g′(0)}

Since the initialization at k = 0 does not satisfy (3.5), it is possible to show that, when α is
small enough, we have λ̃1 6 1/2 and λ̃1 ≈ 1/2. Let λ1 := max(λmin, λ̃1). If (3.5) is satisfied
with u+ λ1 d then let λ := λ1 and the sequence stop here.

• k > 2 : second order recurrence. The quantities g(0) = f(u) et g′(0) =〉f ′(u), d〈 are
available, together with λk−1, g(λk−1), λk−2 and g(λk−2). Then, g(λ) is approximated by
the following third order polynomial:

g̃k(λ) = aλ3 + bλ2 + g′(0)λ+ g(0)

where a et b are expressed by:

(
a
b

)
=

1

λk−1 − λk−2

1

λ2k−1

− 1

λ2k−2

−λk−2

λ2k−1

λk−1

λ2k−2

(
g(λk−1)− g′(0)λk−1 − g(0)
g(λk−2)− g′(0)λk−2 − g(0)

)

The minimum of g̃k(λ) is

λ̃k =
−b+

√
b2 − 3ag′(0)

3a

Let λk = min(1/2λk,max(λ̃k/10, λ̃k+1) in order for λk to be at the same order of magnitude
as λk−1. If (3.5) is satisfied with u+ λk d then let λ := λk and the sequence stop here.

The sequence (λk)k>0 is strictly decreasing: when the stopping criteria is not satisfied until λk
reaches the machine precision εmach then the algorithm stops with an error.

Example file 3.18: p laplacian damped newton.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "p_laplacian.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 geo omega (argv [1]);
8 Float eps = numeric_limits <Float >:: epsilon ();
9 string approx = (argc > 2) ? argv [2] : "P1";

10 Float p = (argc > 3) ? atof(argv [3]) : 1.5;
11 Float tol = (argc > 4) ? atof(argv [4]) : eps;
12 size_t max_iter = (argc > 5) ? atoi(argv [5]) : 500;
13 derr << "# P-Laplacian problem by damped Newton :" << endl
14 << "# geo = " << omega.name() << endl
15 << "# approx = " << approx << endl
16 << "# p = " << p << endl;
17 p_laplacian F (p, omega , approx);
18 field uh = F.initial ();
19 int status = damped_newton (F, uh , tol , max_iter , &derr);
20 dout << catchmark ("p") << p << endl
21 << catchmark ("u") << uh;
22 return status;
23 }

Comments

The damped newton function implements the damped Newton algorithm for a generic T (u) func-
tion, i.e. a generic nonlinear preconditioner. This algorithms use a backtrack strategy implemented

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/p_laplacian_damped_newton.cc

Chapter 3. Advanced and highly nonlinear problems 125

in the file ‘newton-backtrack.h’ of the Rheolef library. The simplest choice of the identity pre-
conditioner C = I i.e. T (u) = ‖F (u)‖2V ′/2 is showed in file damped-newton.h. The gradient at
λ = 0 is

T ′(u) = F ′(u)∗F (u)

and the slope at λ = 0 is:

g′(0) = 〈T ′(u), δu〉V ′,V

= 〈F (u), F ′(u)δu〉V ′,V ′

= −‖F (u)‖2V ′

The ‘p laplacian damped newton.cc’ is the application program to the p-Laplacian problem
together with the ‖.‖L2(Ω) discrete norm for the function T .

Running the program

Figure 3.13: The p-Laplacian for d = 2: elevation view for p = 1.15 (left) and p = 7 (right).

As usual, enter:

make p_laplacian_damped_newton

mkgeo_ugrid -t 50 > square.geo

./p_laplacian_damped_newton square.geo P1 1.15 | field -stereo -elevation -

./p_laplacian_damped_newton square.geo P1 7 | field -stereo -elevation -

See Fig. 3.13 for the elevation view of the solution. The algorithm is now quite robust: the
convergence occurs for quite large range of p > 1 values and extends the range previously presented
on Fig. 3.7. The only limitation is now due to machine roundoff on some architectures.

Figs. 3.14.top shows that the convergence properties seems to slightly depend on the mesh re-
finement. Nevertheless, there are quite good and support both mesh refinement and high order
polynomial degree. When p is far from p = 2, i.e. either close to one or large, Figs. 3.14.bottom
shows that the convergence becomes slower and that the first linear regime, corresponding to the
line search, becomes longer. This first regime finishes by a brutal super-linear regime, where the
residual terms fall in few iterations to the machine precision.

126 Rheolef version 7.1 update 22 March 2020

10
−15

10
−10

10
−5

1

0 5 10 15 20 25

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

p = 3/2, k = 1

n

h = 1/10
h = 1/20
h = 1/30
h = 1/40
h = 1/50

10
−15

10
−10

10
−5

1

0 5 10 15 20 25

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

p = 3/2, k = 1

n

k = 1

k = 2

k = 3

k = 4

k = 5

10
−15

10
−10

10
−5

10
0

0 25 50

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

h = 1/50, k = 1

n

p = 1.5
p = 1.4
p = 1.3
p = 1.2

10
−15

10
−10

10
−5

10
0

0 5 10 15 20 25

∥

∥

∥
r
(n)
h

∥

∥

∥

−1,h

h = 1/50, k = 1

n

p = 3

p = 4

p = 5

p = 6

p = 7

Figure 3.14: The damped Newton algorithm on the p-Laplacian for d = 2: when p = 1.5 and
h = 1/50, convergence properties of the residue (top-left) with mesh refinement; (top-right) with
polynomial order Pk; (bottom-left) convergence when p < 2; (bottom-right) when p > 2.

3.2.5 Error analysis

While there is no simple explicit expression for the exact solution in the square Ω =]0, 1[2, there
is one when considering Ω as the unit circle:

u(x) =
(p− 1) 2−

1
p−1

p

(
1−

(
x20 + x21

) p
p−1)

)

Chapter 3. Advanced and highly nonlinear problems 127

10
−8

10
−6

10
−4

10
−2

10
−2

10
−1 1

‖u− uh‖0,p,Ω

2 = k + 1

3

4

h

k = 1

k = 2

k = 3
10

−8

10
−6

10
−4

10
−2

10
−2

10
−1 1

‖u− uh‖0,∞,Ω

2 = k + 1

3

4

h

k = 1

k = 2

k = 3

10
−6

10
−4

10
−2

1

10
−2

10
−1 1

|∇(u− uh)|0,p,Ω

1 = k

2

3

h

k = 1

k = 2

k = 3

Figure 3.15: The p-Laplacian for d = 2: error analysis.

Example file 3.19: p laplacian circle.h

1 struct u_exact {
2 Float operator () (const point& x) const {
3 return (1 - pow(norm2(x), p/(2*p -2)))/((p/(p-1))* pow (2. ,1/(p -1)));
4 }
5 u_exact (Float q) : p(q) {}
6 protected: Float p;
7 };
8 struct grad_u {
9 point operator () (const point& x) const {

10 return - (pow(norm2(x), p/(2*p-2) - 1)/ pow (2. ,1/(p -1)))*x;
11 }
12 grad_u (Float q) : p(q) {}
13 protected: Float p;
14 };

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/p_laplacian_circle.h

128 Rheolef version 7.1 update 22 March 2020

Example file 3.20: p laplacian error.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "p_laplacian_circle.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 Float tol = (argc > 1) ? atof(argv [1]) : 1e-15;
8 Float p;
9 field uh;

10 din >> catchmark ("p") >> p
11 >> catchmark ("u") >> uh;
12 const geo& omega = uh.get_geo ();
13 const space& Xh = uh.get_space ();
14 field pi_h_u = interpolate (Xh , u_exact(p));
15 field eh = pi_h_u - uh;
16 integrate_option iopt;
17 iopt.set_family(integrate_option ::gauss);
18 iopt.set_order (2*Xh.degree ());
19 Float err_lp = pow(integrate (omega ,
20 pow(fabs(uh - u_exact(p)), p), iopt), 1./p);
21 Float err_w1p = pow(integrate (omega ,
22 pow(norm(grad(uh) - grad_u(p)), p), iopt), 1./p);
23 Float err_linf = eh.max_abs ();
24 dout << "err_linf = " << err_linf << endl
25 << "err_lp = " << err_lp << endl
26 << "err_w1p = " << err_w1p << endl;
27 return (err_linf < tol) ? 0 : 1;
28 }

Note, in the file ‘p laplacian error.cc’, the usage of the integrate function, together with a
quadrature formula specification, for computing the errors in Lp norm and W 1,p semi-norm. Note
also the flexibility of expressions, mixing together fields as uh and functors, as u exact. The
whole expression is evaluated by the integrate function at quadrature points inside each element
of the mesh.

By this way, the error analysis investigation becomes easy:

make p_laplacian_error

mkgeo_ball -t 10 -order 2 > circle-10-P2.geo

./p_laplacian_damped_newton circle-10-P2.geo P2 1.5 | ./p_laplacian_error

We can vary both the mesh size and the polynomial order and the error plots are showed on
Fig. 3.15 for both the L2, L∞ norms and theW 1,p semi-norm. Observe the optimal error behavior:
the slopes in the log-log scale are the same as those obtained by a direct Lagrange interpolation
of the exact solution.

3.3 Continuation and bifurcation methods

This chapter is an introduction to continuation and bifurcation methods with Rheolef. We
consider a model nonlinear problem that depends upon a parameter. This problem is inspired
from application to combustion. Solutions exists for a limited range of this parameter and there
is a limit point: beyond this limit point there is no more solution. Our first aim is to compute
the branch of solutions until this limit point, thanks to the continuation algorithm. Moreover,
the limit point is a turning point for the branch of solutions: there exists a second branch of
solutions, continuing the first one. Our second aim is to compute the second branch of solutions
after this limit point with the Keller continuation algorithm. For simplicity in this presentation,
the discretization is in one dimension: the extension to high order space dimension is immediate.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/p_laplacian_error.cc

Chapter 3. Advanced and highly nonlinear problems 129

3.3.1 Problem statement and the Newton method

Let us consider the following model problem (see Paumier, 1997, p. 59 or Crouzeix and Rappaz,
1990, p. 2), defined for all λ ∈ R:

(P): find u, defined in Ω such that

−∆u+ λ exp(u) = 0 in Ω

u = 0 on ∂Ω

In order to apply a Newton method to the whole problem, let us introduce:

F (λ, u) = −∆u+ λ exp(u)

Then, the Gâteau derivative at any (λ, u) ∈ R×H1
0 (Ω) is given by:

∂F

∂u
(λ, u).(v) = −∆v + λ exp(u)v, ∀v ∈ H1

0 (Ω)

Example file 3.21: combustion.h

1 struct combustion {
2 typedef Float float_type;
3 typedef field value_type;
4 combustion(const geo& omega=geo(), string approx ="");
5 void reset(const geo& omega , string approx);
6 field initial (std:: string restart ="");
7 idiststream& get (idiststream& is, field& uh);
8 odiststream& put (odiststream& os, const field& uh) const;
9 string parameter_name () const { return "lambda "; }

10 float_type parameter () const { return lambda; }
11 void set_parameter(float_type lambda1) { lambda = lambda1; }
12 bool stop (const field& xh) const { return xh.max_abs () > 10; }
13 field residue (const field& uh) const;
14 form derivative (const field& uh) const;
15 field derivative_versus_parameter (const field& uh) const;
16 problem :: determinant_type update_derivative (const field& uh) const;
17 field derivative_solve (const field& mrh) const;
18 field derivative_trans_mult (const field& mrh) const;
19 field massify (const field& uh) const { return m*uh; }
20 field unmassify (const field& uh) const;
21 float_type space_dot (const field& xh , const field& yh) const;
22 float_type dual_space_dot (const field& mrh , const field& msh) const;
23 protected:
24 float_type lambda;
25 space Xh;
26 form m;
27 problem pm;
28 mutable form a1;
29 mutable problem pa1;
30 mutable branch event;
31 };
32 #include "combustion1.icc"
33 #include "combustion2.icc"

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/combustion.h

130 Rheolef version 7.1 update 22 March 2020

Example file 3.22: combustion1.icc

1 combustion :: combustion (const geo& omega , string approx)
2 : lambda (0), Xh(), m(), pm(), a1(), pa1(), event(" lambda","u") {
3 if (approx != "") reset (omega , approx);
4 }
5 void combustion ::reset (const geo& omega , string approx) {
6 Xh = space (omega , approx);
7 Xh.block (" boundary ");
8 m = form (Xh, Xh , "mass ");
9 pm = problem (m);

10 }
11 field combustion :: initial (std:: string restart) {
12 if (restart == "") return field (Xh, 0);
13 idiststream in (restart);
14 field xh0;
15 get (in , xh0);
16 derr << "# restart from lambda =" << lambda << endl;
17 return xh0;
18 }
19 odiststream& combustion ::put (odiststream& os, const field& uh) const {
20 return os << event(lambda ,uh);
21 }
22 idiststream& combustion ::get (idiststream& is, field& uh) {
23 is >> event(lambda ,uh);
24 if (!is) return is;
25 if (Xh.name() == "") reset (uh.get_geo(), uh.get_approx ());
26 if (uh.b(). dis_size () == 0) {
27 // re-allocate the field with right blocked/unblocked sizes
28 field tmp = field(Xh , 0);
29 std::copy (uh.begin_dof(), uh.end_dof(), tmp.begin_dof ());
30 uh = tmp;
31 }
32 return is;
33 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/combustion1.icc

Chapter 3. Advanced and highly nonlinear problems 131

Example file 3.23: combustion2.icc

1 field combustion :: residue (const field& uh) const {
2 test v(Xh);
3 field mrh = integrate(dot(grad(uh),grad(v)) - lambda*exp(uh)*v);
4 mrh.set_b() = 0;
5 return mrh;
6 }
7 form combustion :: derivative (const field& uh) const {
8 trial du(Xh); test v(Xh);
9 return integrate(dot(grad(du),grad(v)) - lambda*exp(uh)*du*v);

10 }
11 problem :: determinant_type
12 combustion :: update_derivative (const field& uh) const {
13 a1 = derivative (uh);
14 solver_option sopt;
15 sopt.compute_determinant = true;
16 pa1 = problem (a1 , sopt);
17 return pa1.det ();
18 }
19 field combustion :: derivative_versus_parameter (const field& uh) const {
20 test v(Xh);
21 return - integrate(exp(uh)*v);
22 }
23 field combustion :: derivative_solve (const field& rh) const {
24 field delta_uh (Xh ,0);
25 pa1.solve (rh , delta_uh);
26 return delta_uh;
27 }
28 field combustion :: derivative_trans_mult (const field& mrh) const {
29 field rh = unmassify(mrh);
30 field mgh = a1*rh;
31 mgh[" boundary "] = 0;
32 return mgh;
33 }
34 field combustion :: unmassify (const field& mrh) const {
35 field rh (Xh , 0);
36 pm.solve (mrh , rh);
37 return rh;
38 }
39 Float combustion :: space_dot (const field& xh , const field& yh) const {
40 return m(xh,yh); }
41 Float combustion :: dual_space_dot (const field& mrh , const field& msh) const{
42 return dual(unmassify(mrh), msh); }

Example file 3.24: combustion newton.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "combustion.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 geo omega (argv [1]);
8 Float eps = numeric_limits <Float >:: epsilon ();
9 string approx = (argc > 2) ? argv [2] : "P1";

10 Float lambda = (argc > 3) ? atof(argv [3]) : 0.1;
11 Float tol = (argc > 4) ? atof(argv [4]) : eps;
12 size_t max_iter = (argc > 5) ? atoi(argv [5]) : 100;
13 combustion F (omega , approx);
14 F.set_parameter (lambda);
15 field uh = F.initial ();
16 Float residue = tol;
17 size_t n_iter = max_iter;
18 damped_newton (F, uh , residue , n_iter , &derr);
19 F.put (dout , uh);
20 return (residue <= sqrt(tol)) ? 0 : 1;
21 }

Let us choose α = 1/2 and λ = 8(α/ cosh(α))2 ≈ 1.57289546593186. Compilation and run are:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/combustion2.icc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/combustion_newton.cc

132 Rheolef version 7.1 update 22 March 2020

make combustion_newton

mkgeo_grid -e 10 > line-10.geo

./combustion_newton line-10 P1 1.57289546593186 > line-10.field

field line-10.field

3.3.2 Error analysis and multiplicity of solutions

In one dimension, when Ω =]0, 1[, the problem can be solved explicitly [Paumier, 1997, p. 59]:

• when λ 6 0 the solution is parameterized by α ∈]0, π/2[and:

λ = − 8α2

cos2(α)

u(x) = 2 log

(
cos(α)

cos(α(1− 2x))

)
, x ∈]0, 1[

• when 0 6 λ 6 λc there is two solutions. The smallest one is parameterized by α ∈]0, αc]
and: and the largest by α ∈]αc,+∞[with:

λ =
8α2

cosh2(α)

u(x) = 2 log

(
cosh(α)

cosh(α(1− 2x))

)
, x ∈]0, 1[

• when λ > λc there is no more solution.

The critical parameter value λc = 8α2
c/ cosh

2(αc) where αc is the unique positive solution to
tanh(α) = 1/α. The following code compute αc and λc by using a Newton method.

Example file 3.25: lambda c.h

1 struct alpha_c_fun {
2 typedef Float value_type;
3 typedef Float float_type;
4 alpha_c_fun () : _f1(0) {}
5 Float residue (const Float& a) const { return tanh(a) - 1/a; }
6 void update_derivative (const Float& a) const {
7 _f1 = 1/sqr(cosh(a)) + 1/sqr(a); }
8 Float derivative_solve (const Float& r) const { return r/_f1; }
9 Float dual_space_norm (const Float& r) const { return abs(r); }

10 mutable Float _f1;
11 };
12 Float alpha_c () {
13 Float tol = numeric_limits <Float >:: epsilon ();
14 size_t max_iter = 100;
15 alpha_c_fun f;
16 Float ac = 1;
17 newton (alpha_c_fun (), ac, tol , max_iter);
18 return ac;
19 }
20 Float lambda_c () {
21 Float ac = alpha_c ();
22 return 8*sqr(ac/cosh(ac));
23 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/lambda_c.h

Chapter 3. Advanced and highly nonlinear problems 133

Example file 3.26: lambda c.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "lambda_c.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 dout << setprecision(numeric_limits <Float >:: digits10)
8 << "alpha_c = " << alpha_c () << endl
9 << "lambda_c = " << lambda_c () << endl;

10 }

Compilation and run write:

make lambda_c

./lambda_c

and then αc ≈ 1.19967864025773 and λc ≈ 3.51383071912516. The exact solution and its gradient
at the limit point are computed by the following functions:

Example file 3.27: combustion exact.icc

1 #include "lambda2alpha.h"
2 struct u_exact {
3 Float operator () (const point& x) const {
4 return 2*log(cosh(a)/cosh(a*(1 -2*x[0]))); }
5 u_exact (Float lambda , bool is_upper)
6 : a(lambda2alpha(lambda ,is_upper)) {}
7 u_exact (Float a1) : a(a1) {}
8 Float a;
9 };

10 struct grad_u {
11 point operator () (const point& x) const {
12 return point (4*a*tanh(a*(1 -2*x[0]))); }
13 grad_u (Float lambda , bool is_upper)
14 : a(lambda2alpha(lambda ,is_upper)) {}
15 grad_u (Float a1) : a(a1) {}
16 Float a;
17 };

The lambda2alpha function converts λ into α. When 0 < λ < λc, there is two solutions to
the equation 8 (α/ cosh(α))

2
= λ and thus we specify with the Boolean is upper which one is

expected. Then α is computed by a dichotomy algorithm.

Example file 3.28: lambda2alpha.h

1 #include "lambda_c.h"
2 Float lambda2alpha (Float lambda , bool up = false) {
3 static const Float ac = alpha_c ();
4 Float tol = 1e2*numeric_limits <Float >:: epsilon ();
5 size_t max_iter = 1000;
6 Float a_min = up ? ac : 0;
7 Float a_max = up ? 100 : ac;
8 for (size_t k = 0; abs(a_max - a_min) > tol; ++k) {
9 Float a1 = (a_max + a_min)/2;

10 Float lambda1 = 8*sqr(a1/cosh(a1));
11 if ((up && lambda > lambda1) || (!up && lambda < lambda1))
12 { a_max = a1; }
13 else { a_min = a1; }
14 check_macro (k < max_iter , "lambda2alpha: max_iter =" << k
15 << " reached and err=" << a_max - a_min);
16 }
17 return(a_max + a_min)/2;
18 };

Finally, the errors in various norms are available:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/lambda_c.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/combustion_exact.icc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/lambda2alpha.h

134 Rheolef version 7.1 update 22 March 2020

Example file 3.29: combustion error.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "combustion_exact.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 bool is_upper = (argc > 1) && (argv [1][0] == ’1’);
8 bool is_crit = (argc > 1) && (argv [1][0] == ’c’);
9 Float tol = (argc > 2) ? atof(argv [2]) : 1e-15;

10 Float lambda_h;
11 field uh;
12 din >> catchmark (" lambda ") >> lambda_h
13 >> catchmark ("u") >> uh;
14 Float lambda = (is_crit ? lambda_c () : lambda_h);
15 const geo& omega = uh.get_geo ();
16 const space& Xh = uh.get_space ();
17 field pi_h_u = interpolate (Xh , u_exact(lambda ,is_upper));
18 field eh = pi_h_u - uh;
19 integrate_option iopt;
20 iopt.set_family(integrate_option ::gauss);
21 iopt.set_order (2*Xh.degree ()+1);
22 Float err_l2
23 = sqrt(integrate(omega , norm2(uh - u_exact(lambda ,is_upper)), iopt));
24 Float err_h1
25 = sqrt(integrate(omega , norm2(grad(uh)-grad_u(lambda ,is_upper)), iopt));
26 Float err_linf = eh.max_abs ();
27 dout << "err_linf = " << err_linf << endl
28 << "err_l2 = " << err_l2 << endl
29 << "err_h1 = " << err_h1 << endl;
30 return (err_h1 < tol) ? 0 : 1;
31 }

The computation of the error writes:

make combustion_error

./combustion_error < line-10.field

The solution is represented on Fig. 3.16. Then we consider the vicinity of λc ≈ 3.51383071912516.

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

u(x)

x

exact

h = 1/10
0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

u(x)

x

exact, λ = λc

h = 1/10, λ = 3.55
h = 1/100, λ = 3.51

Figure 3.16: Combustion problem: (left) α = 1/2. (right) near αc.

./combustion_newton line-10 P1 3.55 > line-10.field

field line-10.field

mkgeo_grid -e 100 > line-100.geo

./combustion_newton line-100 P1 3.51 > line-100.field

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/combustion_error.cc

Chapter 3. Advanced and highly nonlinear problems 135

The Newton method fails when the parameter λ is greater to some critical value λc,h that depends
upon the mesh size. Moreover, while the approximate solution is close to the exact one for
moderate λ = 1.57289546593186, the convergence seems to be slower at the vicinity of λc.

In the next section, we compute accurately λc,h for each mesh and observe the convergence of λc,h
to λc and the convergence of the associated approximate solution to the exact one.

3.3.3 The Euler-Newton continuation algorithm

The Euler-Newton continuation algorithm writes [Paumier, 1997, p. 176]:

algorithm 1 (continuation)

• n = 0: Let (λ0, u0) be given. Compute

u̇0 = −
(
∂F

∂u
(λ0, u0)

)−1
∂F

∂λ
(λ0, u0)

• n > 0: Let (λn, un) and u̇n being known.

1) First choose a step ∆λn and set λn+1 = λn +∆λn.

2) Then, perform a prediction by computing

w0 = un −∆λn

(
∂F

∂u
(λn, un)

)−1
∂F

∂λ
(λn, un)

3) Then, perform a correction step: for all k > 0, with wk being known, compute

wk+1 = wk −
(
∂F

∂u
(λn+1, wk)

)−1

F (λn+1, wk)

At convergence of the correction loop, set un+1 = w∞.

4) Finally, compute

u̇n+1 = −
(
∂F

∂u
(λn+1, un+1)

)−1
∂F

∂λ
(λn+1, un+1)

The step ∆λn can be chosen from a guest ∆λ∗ = ∆λn−1 by adjusting the contraction ratio κ(∆λ∗)
of the Newton method. Computing the two first iterates w0,∗ and w1,∗ with the guest step ∆λ∗
and λ∗ = λn +∆λ∗ we have:

κ(∆λ∗) =

∥∥∥∥∥

(
∂F

∂u
(λ∗, w1,∗)

)−1

F (λ∗, w1,∗)

∥∥∥∥∥
∥∥∥∥∥

(
∂F

∂u
(λ∗, w0,∗)

)−1

F (λ∗, w0,∗)

∥∥∥∥∥

As the Newton method is expected to converge quadratically for small enough step, we get a
practical expression for ∆λn [Paumier, 1997, p. 185]:

κ0
∆λn

≈ κ(∆λ∗)

∆λ2∗

where κ0 ∈]0, 1[is the chosen reference for the contraction ratio, for instance κ0 = 1/2.

136 Rheolef version 7.1 update 22 March 2020

Example file 3.30: combustion continuation.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "combustion.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 cin >> noverbose;
8 geo omega (argv [1]);
9 string approx = (argc > 2) ? argv [2] : "P1";

10 Float eps = numeric_limits <Float >:: epsilon ();
11 continuation_option opts;
12 opts.ini_delta_parameter = 0.1;
13 opts.max_delta_parameter = 1;
14 opts.min_delta_parameter = 1e-7;
15 opts.tol = eps;
16 derr << setprecision(numeric_limits <Float >:: digits10)
17 << "# continuation in lambda :" << endl
18 << "# geo = " << omega.name() << endl
19 << "# approx = " << approx << endl
20 << "# dlambda_ini = " << opts.ini_delta_parameter << endl
21 << "# dlambda_min = " << opts.min_delta_parameter << endl
22 << "# dlambda_max = " << opts.max_delta_parameter << endl
23 << "# tol = " << opts.tol << endl;
24 combustion F (omega , approx);
25 field uh = F.initial ();
26 F.put (dout , uh);
27 continuation (F, uh, &dout , &derr , opts);
28 }

Then, the program is compiled and run as:

make combustion_continuation

mkgeo_grid -e 10 > line-10.geo

./combustion_continuation line-10 > line-10.branch

branch line-10.branch -toc

The last command lists all the computations preformed by the continuation algorithm. The last

0

1

0 1 2 3 λc
4

‖uh‖0,∞,Ω

λ

h = 1/160
h = 1/10

Figure 3.17: Combustion problem: ‖uh‖0,∞,Ω vs λ when h = 1/10 and 1/160.

recorded computation is associated to the limit point denoted and denoted as λc,h, says at index 21:
Let us visualize the solution uh at the limit point and compute its maximum ‖uh‖0,∞,Ω = uh(1/2):

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/combustion_continuation.cc

Chapter 3. Advanced and highly nonlinear problems 137

branch line-10.branch -extract 21 -branch | field -

branch line-10.branch -extract 21 -branch | field -max -

Fig. 3.17 plots ‖uh‖0,∞,Ω versus λ for various meshes.

Fig. 3.18 plots its convergence to λc and also the convergence of the corresponding appoximate
solution uh to the exact one u, associated to λc. Observe that |λc,h − λc| converges to zero

10
−10

10
−5

1

10
−3

10
−2

10
−1 1

|λc,h − λc|

2

4

6 = 2k

h

k = 1

k = 2

k = 3

10
−8

10
−4

1

10
−3

10
−2

10
−1 1

‖∇(uh − u)‖0,2,Ω
1

2

3 = k

h

k = 1

k = 2

k = 3

Figure 3.18: Combustion problem: (left) convergence of |λc,h − λc| vs h ; (right) convergence of
|uh − u| vs h at the limit point.

as O(h2k) while |uh − u| = O(hk). When k = 3, the convergence of λc,h slows down around
10−9: this is due to the stopping criterion of the Newton method that detects automatically the
propagation of rounding effects in the resolution of linear systems. Observe on Fig. 3.19 the plot

10
−5

10
−4

10
−3

10
−2

10
−1

1

10
−8

10
−6

10
−4

10
−2 1

det
(

∂F
∂u
(λ, uh(λ))

)

det
(

∂F
∂u
(0, uh(0))

)

1/2

λc,h − λ

h = 1/10
h = 1/20
h = 1/40
h = 1/80

h = 1/160

Figure 3.19: Combustion problem: det

(
∂F

∂u
(λ, uh)

)
versus λc,h − λ for various h and k = 1.

of the determinant of the Jacobean
∂F

∂u
(λ, uh(λ)) versus λc,h − λ: it tends to zero at the vicinity

of λ = λc and thus, the Newton method reaches increasing difficulties to solve the problem. Note

that the determinant has been normalized by its value when λ = 0, i.e. det

(
∂F

∂u
(0, uh(0))

)
: all

the curves tend to superpose on a unique master curve and the asymptotic behavior is independent

138 Rheolef version 7.1 update 22 March 2020

of h. More precisely, Fig. 3.19 suggests a 1/2 slope in logarithmic scale and thus

det

(
∂F

∂u
(λ, uh(λ))

)

det

(
∂F

∂u
(0, uh(0))

) ≈ C (λc,h − λ)1/2

where C ≈ 0.52 when k = 1. This behavior explains that the Newton method is unable to reach
the limit point λc.

3.3.4 Beyond the limit point : the Keller algorithm

Note that the continuation method stops to the limit point (see Fig. 3.17) while the the branch
continues: the limit point is a turning point for the branch of solutions. Especially, for each
λ ∈]0, λc[there are two solutions and only one has been computed. Keller proposed a method to
follow the branch beyond a turning point and this method is presented here. The main idea is to
parameterize the branch (λ, u(λ)) by a curvilinear abscissa s as (λ(s), u(s)). In order to have the
count of unknown and equations we add a normalization equation:

N (s, λ(s), u(s)) = 0

F (λ(s), u(s)) = 0

where N is a given normalization function. For the normalization function, Keller proposed to
choose, when (s, λ, u) is at the vicinity of (sn, λ(sn), u(sn)) the one following orthogonal norms:

• The orthogonal norm:

Nn(s, χ=(λ, u)) = (χ′(sn), χ− χ(sn))− (s− sn)

= λ′(sn) (λ− λ(sn)) + (u′(sn), u− u(sn))V − (s− sn) (3.6a)

• The spherical norm:

Ñn(s, χ=(λ, u)) = ‖χ− χn‖2 − |s− sn|2
= |λ− λn|2 + ‖u− un‖2V − |s− sn|2 (3.6b)

The orthogonal norm induces a pseudo curvilinear arc-length s, measured on the tangent at s = sn.
The spherical norm measures is simply a distance between (s, χ) and (sn, χn) (see also Paumier,
1997, pp. 179-180 and the corresponding Fig. 5.2). We add the subscript n to N in order to
emphasize that N depends upon both (λ(sn), u(sn)) and (λ′(sn), u

′(sn)) For any s ∈ R and
χ = (λ, u) ∈ R× V we introduce:

Fn(s, χ) =
(

Nn(s, χ)
F (χ)

)
and F̃n(s, χ) =

(
Ñn(s, χ)

F (χ)

)

Then, the Keller problem with the orthogonal norm reduces to find, for any s ∈ R, χ(s) ∈ R× V
such that

Fn(s, χ(s)) = 0 (3.7a)

Conversely, the Keller problem with the spherical norm reduces to find, for any s ∈ R, χ(s) ∈ R×V
such that

F̃n(s, χ(s)) = 0 (3.7b)

Chapter 3. Advanced and highly nonlinear problems 139

Both problems falls into the framework of the previous paragraph, when F is replaced by either
Fn or F̃n. Then, for any s and χ = (λ, u), the partial derivatives are:

∂Fn
∂s

(s, χ) =

(
−1
0

)

∂Fn
∂χ

(s, χ) =

∂Nn

∂χ
(s, χ)

F ′(s, χ)

 =

λ′(sn) u′(sn)

∂F

∂λ
(λ, u)

∂F

∂u
(λ, u)

and

∂F̃n
∂s

(s, χ) =

(
−2(s− sn)

0

)

∂F̃n
∂χ

(s, χ) =

2(χ− χn)
T

F ′(χ)

 =

2(λ− λn) 2(u− un)
T

∂F

∂λ
(λ, u)

∂F

∂u
(λ, u)

Let us focus on the orthogonal norm case, as the spherical one is similar. The continuation algo-
rithm of the previous paragraph is able to follows the branch of solution beyond the limit point and
explore the second part of the branch. Let us compute λ′(sn) and u

′(sn). By differentiating (3.7)
with respect to s, we get:

∂Fn
∂s

(s, χ(s)) +
∂Fn
∂χ

(s, χ(s)).(χ′(s)) = 0

that writes equivalently

∂Nn

∂s
(s, χ(s)) +

∂Nn

∂χ
(s, χ(s)).(χ′(s)) = 0

F ′(s, χ(s)).(χ′(s)) = 0

Using the expression 3.6 for Nn we obtain:

−1 + λ′(sn)λ
′(s) + (u′(sn), u

′(s)) = 0 (3.8)

∂F

∂λ
(λ(s), u(s))λ′(s) +

∂F

∂u
(λ(s), u(s)).(u′(s)) = 0 (3.9)

Here (., .) denotes the scalar product of the V space for u. Let us choose s = sn, for any n > 0:
we obtain

|λ′(sn)|2 + ‖u′(sn)‖2 = 1

∂F

∂λ
(λn, un)λ

′(sn) +
∂F

∂u
(λn, un).(u

′(sn)) = 0

where we use the notations λn = λ(sn) and un = u(sn), and where ‖.‖ denotes the norm of the V
space. Thus

χ′(sn) =

(
λ′(sn)
u′(sn)

)

=
1

1 +

∥∥∥∥∥

(
∂F

∂u
(λn, un)

)−1
∂F

∂λ
(λn, un)

∥∥∥∥∥

2

1/2

1

−
(
∂F

∂u
(λn, un)

)−1
∂F

∂λ
(λn, un)

140 Rheolef version 7.1 update 22 March 2020

The previous relation requires
∂F

∂u
(λn, un) to be nonsingular, e.g. the computation is not possible

at a singular point (λn, un).

For a singular point, suppose that n > 1 and that both (λn, un), (λn−1, un−1) and (λ̇n−1, u̇n−1)
are known. By differentiating (3.7) at step n− 1 we get the equivalent of (3.8)-(3.9) at step n− 1
that is then evaluated for s = sn. We get:

λ′(sn−1)λ
′(sn) + (u′(sn−1), u

′(sn)) = 1

∂F

∂λ
(λn, un)λ

′(sn) +
∂F

∂u
(λn, un).(u

′(sn)) = 0

that writes equivalently
(

λ′(sn−1) u′(sn−1)
∂F

∂λ
(λn, un)

∂F

∂u
(λn, un)

)(
λ′(sn)
u′(sn)

)
=

(
1
0

)
(3.10)

The matrix involved in the left hand side is exactly the Jacobean of Fn−1 evaluated at point
χn = (λn, un). This Jacobean is expected to be nonsingular at a simple limit point.

Thus, at the first step, we suppose that the initial point (λ0, u0) is non-singular and we
compute (λ̇0, u̇0). Then, at the begining of the n-th step, n > 1, of the Keller continu-
ation algorithm, we suppose that both (λn−1, un−1) and (λ̇n−1, u̇n−1) are known. We con-
sider the problem Fn−1(s, χ(s)) = 0. Here, Fn−1(s, χ) is completely defined at the vicinity of
(sn−1, λn−1, un−1). The step control procedure furnishes as usual a parameter step ∆sn−1 and
we set sn = sn−1 + ∆sn−1. The Newton method is performed and we get (λn, un). Finaly, we
compute λ̇n and u̇n from (3.10).

Recall that the function Fn−1 depends upon n and should be refreshed at the begining of each
iteration by using the values (λ̇n−1, u̇n−1).

The Keller continuation algorithm writes:

algorithm 2 (Keller continuation)

• n = 0: Let (s0, χ0 = (λ0, u0)) be given. The recurrence requires also χ̇0 and its orientation
ε0 ∈ {−1,+1}: they could either be given or computed. When computing (χ̇0, ε0), the
present algorithm supposes that (λ0, u0) is a regular point: on a singular point, e.g. a
bifurcation one, there a several possible directions, and one should be chosen. Then, choose
ε = ±1 and compute χ̇0 in three steps:

du

dλ
(λ0) = −

(
∂F

∂u
(λ0, u0)

)−1
∂F

∂λ
(λ0, u0)

c =

(
1 +

∥∥∥∥
du

dλ
(λ0)

∥∥∥∥
)−1/2

χ̇0
def
= (λ̇0, u̇0)

T = c

(
1,

du

dλ
(λ0)

)T

• n > 0: Let (sn, χn=(λn, un)), χ̇n = (λ̇n, u̇n) and εn being known.

1) First choose a step ∆sn and set sn+1 = sn + ∆sn, as in the classical continuation
algorithm

2) Then, perform a prediction, as usual:

y0 = χn + εn∆snχ̇n

3) Also as usual, do a correction loop: for all k > 0, yk being known, compute

yk+1 = yk −
(
∂Fn
∂χ

(sn+1, yk)

)−1

Fn(sn+1, yk)

Chapter 3. Advanced and highly nonlinear problems 141

At convergence of the correction loop, set χn+1 = y∞. This Newton correction loop
can be replaced by a damped Newton one.

4) Check : if n > 1, compute the following angle cosinus:

c1 = (χn+1 − χn, χn − χn−1)

= (λn+1 − λn)(λn − λn−1) + (un+1 − un, un − un−1)V

c2 = (χ̇n, χn+1 − χn)

= (λ̇n, λn+1 − λn) + (u̇n, un+1 − un)V

When either c1 6 0 or c2 6 0, then decreases ∆sn and go back at step 1. Otherwise
the computation of χn+1 is validated.

5) Finally, compute χ̇n+1 = (λ̇n+1, u̇n+1) as:

χ̇n+1 = −
(
∂Fn
∂χ

(sn+1, χn+1)

)−1
∂Fn
∂s

(sn+1, χn+1)

If εn (χ̇n+1, χ̇n) > 0 then set εn+1 = εn else εn+1 = −εn.

The Keller algorithm with the spherical norm is simply obtained by replacing Fn by F̃n Both
algorithm variants still require to save χ̇n and εn at each step for restarting nicely with the same
sequence of computation. The only drawback is that, at a restart of the algorithm, we skip the
first Check step, and its possible to go back at the first iterate if ∆s0 is too large. A possible
remedy is, when restarting, to furnish two previous iterates, namely χ−1 and χ0, together with
χ̇0: χ−1 is used only for the Check of a possible change of direction.

Howell [2009] suggested that the Keller algorithm with spherical norm is more robust that its
variant with orthogonal one. Howell [2009] reported that

[...] the spherical constraint N2 is much more efficient than the orthogonal constraint
N1, as N2 required only one step of length 0.01 to exceed the target value, while N1

required 25, with 8 additional convergence failures.

[...] spherical constraint was seen to be more efficient than an orthogonal constraint in
a region of high curvature of the solution manifold, while both constraints performed
similarly in regions of low or moderate curvature.

142 Rheolef version 7.1 update 22 March 2020

Example file 3.31: combustion keller.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "combustion.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 din >> noverbose;
8 geo omega (argv [1]);
9 string approx = (argc > 2) ? argv [2] : "P1";

10 string metric = (argc > 3) ? argv [3] : "orthogonal ";
11 Float eps = numeric_limits <Float >:: epsilon ();
12 continuation_option opts;
13 opts.ini_delta_parameter = 0.1;
14 opts.max_delta_parameter = 0.5;
15 opts.min_delta_parameter = 1e-10;
16 opts.tol = eps;
17 derr << setprecision(numeric_limits <Float >:: digits10)
18 << "# continuation in s:" << endl
19 << "# geo = " << omega.name() << endl
20 << "# approx = " << approx << endl
21 << "# metric = " << metric << endl
22 << "# ds_init = " << opts.ini_delta_parameter << endl
23 << "# ds_min = " << opts.min_delta_parameter << endl
24 << "# ds_max = " << opts.max_delta_parameter << endl
25 << "# tol = " << opts.tol << endl;
26 dout << catchmark (" metric ") << metric << endl;
27 keller <combustion > F (combustion(omega ,approx), metric);
28 keller <combustion >:: value_type xh = F.initial ();
29 F.put (dout , xh);
30 continuation (F, xh, &dout , &derr , opts);
31 }

0

1

2

3

4

0 1 2 3 4

‖uh‖0,∞,Ω

λ

h = 1/10
h = 1/80

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

u(x)

x

exact

h = 1/20

Figure 3.20: Combustion problem: (left) ‖uh‖0,∞,Ω vs λ when h = 1/10 and 1/80. The full branch
of solutions when λ > 0, with the limit point and the upper part of the branch. (right) solution
of the upper branch when λ = 10−2.

How to run the program

Enter the following unix commands:

make combustion_keller combustion_keller_post combustion_error

mkgeo_grid -e 20 > line-20.geo

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/combustion_keller.cc

Chapter 3. Advanced and highly nonlinear problems 143

./combustion_keller line-20 > line-20.branch

./combustion_keller_post < line-20.branch

The last command scans the file line-20.branch containing the branch of solutions (λ(s), u(s))
and compute some useful informations for graphical representations. Observe on Fig. 3.20.left
the full branch of solutions when λ > 0, with the limit point and the upper part of the branch.
Compare it with Fig. 3.17, where the continuation algorithm was limited to the lower part part of
the branch. Next, in order to vizualise the last computed solution, enter:

branch line-20.branch -toc

branch line-20.branch -extract 41 -branch | ./combustion_error 1

Please, replace 41 by the last computed index on the branch. Fig. 3.20.right represents this solution
and compares it ith the exact one. Observe the excellent agreement.

Example file 3.32: combustion keller post.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "combustion.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 string metric;
8 din >> catchmark (" metric ") >> metric;
9 keller <combustion > F (combustion (), metric);

10 keller <combustion >:: value_type xh , dot_xh;
11 dout << noverbose
12 << setprecision(numeric_limits <Float >:: digits10)
13 << "# metric " << metric << endl
14 << "# s lambda umax det(mantissa ,base ,exp) |u| |grad(u)| |residue |"
15 << endl;
16 for (size_t n = 0; F.get(din ,xh); ++n) {
17 problem :: determinant_type det;
18 if (n > 0 || metric != "spherical ") det = F.update_derivative(xh);
19 const space& Xh = xh.second.get_space ();
20 trial u (Xh); test v (Xh);
21 form a = integrate(dot(grad(u),grad(v))),
22 m = integrate(u*v);
23 const combustion& F0 = F.get_problem ();
24 field mrh = F0.residue(xh.second);
25 dout << F.parameter () << " " << xh.first
26 << " " << xh.second.max_abs ()
27 << " " << det.mantissa
28 << " " << det.base
29 << " " << det.exponant
30 << " " << sqrt(m(xh.second ,xh.second))
31 << " " << sqrt(a(xh.second ,xh.second))
32 << " " << sqrt(F0.dual_space_dot (mrh ,mrh))
33 << endl;
34 dot_xh = F.direction (xh);
35 F.refresh (F.parameter(), xh , dot_xh);
36 }
37 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/combustion_keller_post.cc

144 Rheolef version 7.1 update 22 March 2020

Chapter 4

Discontinuous Galerkin methods

4.1 Linear first-order problems

The aim of this chapter is to introduce to discontinuous Galerkin methods within the Rheolef

environment. For some recent presentations of discontinuous Galerkin methods, see di Pietro
and Ern [2012] for theoretical aspects and Hesthaven and Warburton [2008] for algorithmic and
implementation.

4.1.1 The stationary transport equation

The steady scalar transport problem writes:

(P): find φ, defined in Ω, such that

u.∇φ+ σφ = f in Ω

φ = φΓ on ∂Ω−

where u, σ > 0, f and φΓ being known. Note that this is the steady version of the unsteady
diffusion-convection problem previously introduced in section 2.4.2, page 77 and when the diffusion
coefficient ν vanishes. Here, the ∂Ω− notation is the upstream boundary part, defined by

∂Ω− = {x ∈ ∂Ω; u(x).n(x) < 0}
Let us suppose that u ∈W 1,∞(Ω)d and introduce the space:

X = {ϕ ∈ L2(Ω); (u.∇)ϕ ∈ L2(Ω)d}
and, for all φ, ϕ ∈ X

a(φ, ϕ) =

∫

Ω

(u.∇φϕ+ σ φϕ) dx +

∫

∂Ω

max (0,−u.n)φ ϕ ds

l(ϕ) =

∫

Ω

f ϕ dx +

∫

∂Ω

max (0,−u.n)φΓ ϕ ds

Then, the variational formulation writes:

(FV): find φ ∈ X such that

a(φ, ϕ) = l(ϕ), ∀ϕ ∈ X

Note that the term max(0,−u.n) = (|u.n| − u.n)/2 is positive and vanishes everywhere except on
∂Ω−. Thus, the boundary condition φ = φΓ is weakly imposed on ∂Ω− via the integrals on the
boundary. The discontinuous finite element space is defined by:

Xh = {ϕh ∈ L2(Ω);ϕh|K ∈ Pk, ∀K ∈ Th}

145

146 Rheolef version 7.1 update 22 March 2020

where k > 0 is the polynomial degree. Note that Xh 6⊂ X and that the ∇φh term has no more
sense for discontinuous functions φh ∈ Xh. Following di Pietro and Ern [2012, p. 14], we introduce
the broken gradient ∇h as a convenient notation:

(∇hφh)|K = ∇(φh|K), ∀K ∈ Th

Thus
∫

Ω

u.∇hφh ϕh dx =
∑

K∈Th

∫

K

u.∇φh ϕh dx, ∀φh, ϕh ∈ Xh

This leads to a discrete version ah of the bilinear form a, defined for all φh, ϕh ∈ Xh by (see
e.g. di Pietro and Ern, 2012, p. 57, eqn. (2.34)):

ah(φh, ϕh) =

∫

Ω

(u.∇hφh ϕh + σφh ϕh) dx+

∫

∂Ω

max (0,−u.n)φh ϕh ds

+
∑

S∈S
(i)
h

∫

S

(
− u.n [[φh]] {{ϕh}}+

α

2
|u.n| [[φh]] [[ϕh]]

)
ds

The last term involves a sum over S
(i)
h , the set of internal sides of the mesh Th. Each internal side

K+

S

K
−

n = n
−

= −n+ on S

n
−

n+

φ−

h

φ+

h

Figure 4.1: Discontinuous Galerkin method: an internal side, its two neighbor elements and their
opposite normals.

S ∈ S
(i)
h has two possible orientations: one is choosen definitively. In practice, this orientation

is defined in the ‘.geo’ file containing the mesh, where all sides are listed, together with their
orientation. Let n the normal to the oriented side S: as S is an internal side, there exists two
elements K− and K+ such that S = ∂K− ∩ ∂K+ and n is the outward unit normal of K− on
∂K− ∩ S and the inward unit normal of K+ on ∂K+ ∩ S, as shown on Fig. 4.1. For all φh ∈ Xh,
recall that φh is in general discontinuous across the internal side S. We define on S the inner
value φ−h = φh|K−

of φh as the restriction φh|K−
of φh in K− along ∂K− ∩ S. Conversely, we

define the outer value φ+h = φh|K+
. We also denote on S the jump [[φh]] = φ−h − φ+h and the

average {{φh}} = (φ−h + φ+h)/2. The last term in the definition of ah is pondered by a coefficient
α > 0. Choosing α = 0 correspond to the so-called centered flux approximation, while α = 1 is
the upwinding flux approximation. The case α = 1 and k = 0 (piecewise constant approximation)
leads to the popular upwinding finite volume scheme. Finally, the discrete variational formulation
writes:

(FV)h: find φh ∈ Xh such that

ah(φh, ϕh) = l(ϕh), ∀ϕh ∈ Xh

The following code implement this problem in the Rheolef environment.

Chapter 4. Discontinuous Galerkin methods 147

Example file 4.1: transport dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char**argv) {
5 environment rheolef (argc , argv);
6 geo omega (argv [1]);
7 space Xh (omega , argv [2]);
8 Float alpha = (argc > 3) ? atof(argv [3]) : 1;
9 Float sigma = (argc > 4) ? atof(argv [4]) : 3;

10 point u (1,0,0);
11 trial phi (Xh); test psi (Xh);
12 form ah = integrate (dot(u,grad_h(phi))* psi + sigma*phi*psi)
13 + integrate (" boundary", max(0, -dot(u,normal ()))* phi*psi)
14 + integrate (" internal_sides",
15 - dot(u,normal ())* jump(phi)* average(psi)
16 + 0.5* alpha*abs(dot(u,normal ()))* jump(phi)*jump(psi));
17 field lh = integrate (" boundary", max(0, -dot(u,normal ()))* psi);
18 field phi_h(Xh);
19 problem p (ah);
20 p.solve (lh, phi_h);
21 dout << catchmark ("sigma ") << sigma << endl
22 << catchmark ("phi") << phi_h;
23 }

Comments

The data are f = 0, φγ = 1 and u = (1, 0, 0), and then the exact solution is known: φ(x) =
exp(−σx0). The numerical tests are running with σ = 3 by default. The one-dimensional case
writes:

make transport_dg

mkgeo_grid -e 10 > line.geo

./transport_dg line P0 | field -

./transport_dg line P1d | field -

./transport_dg line P2d | field -

Observe the jumps across elements: these jumps decreases with mesh refinement or when polyno-
mial approximation increases. The two-dimensional case writes:

mkgeo_grid -t 10 > square.geo

./transport_dg square P0 | field -

./transport_dg square P1d | field -elevation -

./transport_dg square P2d | field -elevation -

The elevation view shows details on inter-element jumps. Finaly, the three-dimensional case writes:

mkgeo_grid -T 5 > cube.geo

./transport_dg cube P0 | field -

./transport_dg cube P1d | field -

./transport_dg cube P2d | field -

Fig. 4.2 plots the solution when d = 1 and k = 0: observe that the boundary condition φ = 1 at
x0 = 0 is only weakly satisfied. It means that the approximation φh(0) tends to 1 when h tends
to zero. Fig. 4.3 plots the error φ − φh in L2 and L∞ norms: these errors behave as O

(
hk+1

)

for all k > 0, which is optimal. A theoretical O
(
hk+1/2

)
error bound was shown by Johnson and

Pitkäranta [1986]. The present numerical results confirm that these theoretical error bounds can
be improved for some families of meshes, as pointed out by Richter [1988], that showed a O

(
hk+1

)

optimal bound for the transport problem. This result was recently extended by Cockburn et al.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/transport_dg.cc

148 Rheolef version 7.1 update 22 March 2020

0

0.5

1

0 0.5 1

h = 1/20

x

φ(x)
φh(x)

0

0.5

1

0 0.5 1

h = 1/40

x

φ(x)
φh(x)

Figure 4.2: The discontinuous Galerkin method for the transport problem when k = 0 and d = 1.

10
−15

10
−10

10
−5

1

10
−2

10
−1

‖φ− φh‖L2

1 = k + 1

5 = k + 1

h

k = 0

k = 1

k = 2

k = 3

k = 4

10
−15

10
−10

10
−5

1

10
−2

10
−1

‖φ− φh‖L∞

1 = k + 1

5 = k + 1

h

k = 0

k = 1

k = 2

k = 3

k = 4

Figure 4.3: The discontinuous Galerkin method for the transport problem: convergence when
d = 2.

[2010], while Peterson [1991] showed that the estimate O
(
hk+1/2

)
is sharp for general families of

quasi-uniform meshes.

4.1.2 [New] The time-dependent transport equation

Problem statement

The time-dependent transport equation is involved in many problems of mathematical physics.
One of these problem concerns a moving domain, transported by a velocity field. Let us denote,
at any time t > 0 by ω(t) ⊂ R

d, d = 2, 3, a bounded moving domain and by Γ(t) = ∂ω(t) its
boundary, called the interface. Let Ω ⊂ R

d be the bounded computational domain. We assume
that it contains at any time t > 0 the moving domain ω(t). A function φ : [0,∞[×Ω → R is a level
set for the moving domain if and only if Γ(t) = {x ∈ Ω / φ(t,x) = 0} for any t > 0. For a given
velocity field u, associated to the motion, the level set function is defined as the solution of the
following time dependent transport problem:

Chapter 4. Discontinuous Galerkin methods 149

(P): find φ, defined in]0,∞[×Ω such that

∂φ

∂t
+ u.∇φ = 0 in]0,∞[×Ω

φ(t=0) = φ0 in Ω

(4.1a)

(4.1b)

where φ0 is given and represents the initial shape ω(0). Here, we assume a divergence free velocity
field, such that the volume of the moving domain is conserved. This is a linear hyperbolic problem.
The level set method for describing moving interfaces was introduced by Osher and Sethian [1988]
(see also Sethian, 1999).

Figure 4.4: Zalesak slotted disk: elevation view of the interpolated level set function (upside-down),
together with its zero level set, in black thick line.

Note that several choices are possible for the function φ: the only requirement being that a fixed
isocontour of φ coincides with the front at each time t. A common choice is the signed distance
from the front: e.g. ω(t) is the part where φ(t, .) is negative and φ(t,x) = −dist(Γ(t),x) for
all x ∈ ω(t). Fig. 4.4, page 149, represents in elevation such a signed distance level set function:
the interface Γ, the thick black line, corresponds to the Zalesak slotted disk, that will be our
benchmark in the next section.

Approximation

The evolution transport equation (4.1a) is then discretized with respect to time. Di Pietro et al.
[2006] and Marchandise et al. [2006] used an explicit and strong stability preserving Runge-Kutta
method [Gottlieb et al., 2001]. Here, we propose to use a high order implicit scheme based on the
following backward differentiation formula (BDF):

∂φ

∂t
(t) =

1

∆t

p∑

i=0

αp,i φ(t−i∆t) +O (∆tp)

where ∆t > 0 is the time step, p > 1 is the order of the scheme and (αp,i)06i6p are the p + 1
coefficients of the formula. When p = 1, the scheme coincides with the usual implicit Euler
method. For 1 6 p 6 2, the scheme is unconditionally stable, for 3 6 p 6 6, the scheme is almost
unconditionally stable while when p > 6, the scheme is unstable and cannot be used (see e.g. Süli
and Mayers, 2003, p. 349).

The coefficients when p 6 6 are given in table 4.1 and the file ‘bdf.icc’ implements this ta-
ble. This file it is not listed here but is available in the Rheolef example directory. When
the time step n < p, the scheme is started by using the BDF(n) formula instead and we intro-
duce pn = min(p, n) for convenience. The discretization with respect to space follows the method
developed in the previous section 4.1.1. Let us introduce the following linear and bilinear form,

150 Rheolef version 7.1 update 22 March 2020

p\i 0 1 2 3 4 5 6

1 1 −1
2 3/2 −2 1/2
3 11/6 −3 3/2 −1/3
4 25/12 −4 3 −4/3 1/4
5 137/60 −5 5 −10/3 5/4 −1/5
6 147/60 −6 15/2 −20/3 15/4 −6/5 1/6

Table 4.1: BDF(p) schemes: the αp,i coefficients, 1 6 p 6 6, 1 6 i 6 p.

defined for all ϕ, ξ ∈ Xh by

an(ϕ, ξ) =

∫

Ω

(αpn,0
∆t

ϕ ξ + u(tn).∇hϕ ξ
)
dx+

∫

∂Ω

max(0,−u(tn).n)ϕ ξ ds

+
∑

S∈S
(i)
h

∫

S

[[ϕ]]

(|u(tn).n|
2

[[ξ]]− u(tn).n {{ξ}}
)

ds

ln(ξ) = −
pn∑

i=1

αpn,i
∆t

∫

Ω

φ
(n−i)
h ξdx

(4.2a)

(4.2b)

When n = 0 we set φ
(0)
h = πh(φ0) and when n > 1, the time approximation φ

(n)
h is defined by a

pn-order recurrence as the solution of the following linear problem:

(P)h: find φ
(n)
h ∈ Xh such that

an

(
φ
(n)
h , ξh

)
= ln(ξh), , ∀ξh ∈ Xh

Finally, at each time step, the problem reduces to a linear system.

4.1.3 [New] Example: the Zalesak slotted disk

The Zalesak [1979, p. 350] slotted disk in rotation is a widely used benchmark for compar-
ing the performances of interface capturing methods. The radius of the disk is 0.15 and its
center is (0.5, 0.75) The width of the slot is 0.05 and its length is 0.25. This slotted disk
is rotated around the barycenter (0.5, 0.5) of the computational domain Ω = [0, 1]2 at velocity
u(x0, x1) = (−(x1 − 1/2)/2, (x0 − 1/2)/2), such that the angular velocity curlu = 1 is constant.
Note that the slotted disk returns to its initial position after a period tf = 4π. The presentation
of this section is mainly inspired from Ta et al. [2016], that used Rheolef. The following code
implement the previous BDF scheme for this benchmark.

Chapter 4. Discontinuous Galerkin methods 151

Example file 4.2: zalesak dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "zalesak.h"
5 #include "bdf.icc"
6 int main(int argc , char**argv) {
7 environment rheolef (argc , argv);
8 geo omega (argv [1]);
9 space Xh (omega , argv [2]);

10 size_t n_max = (argc > 3) ? atoi(argv [3]) : 1000;
11 size_t strip = (argc > 4) ? string(argv [4]) == "true" : false;
12 size_t p = (argc > 5) ? atoi(argv [5]) : min(Xh.degree ()+1,bdf::pmax);
13 Float tf = u:: period(), delta_t = tf/n_max;
14 trial phi (Xh); test xi (Xh);
15 form m = integrate (phi*xi),
16 a0 = integrate (dot(u(),grad_h(phi))*xi)
17 + integrate (" boundary", max(0, -dot(u(),normal ()))* phi*xi)
18 + integrate (" internal_sides",
19 - dot(u(),normal ())* jump(phi)* average(xi)
20 + 0.5* abs(dot(u(),normal ()))* jump(phi)*jump(xi));
21 problem pb;
22 branch event ("t","phi ");
23 vector <field > phi_h (p+1);
24 phi_h [0] = phi_h [1] = interpolate (Xh , phi0 ());
25 dout << event (0, phi_h [0]);
26 for (size_t n = 1; n <= n_max; n++) {
27 Float t = n*delta_t;
28 if (n % 10 == 0) derr << "[" << n << "]";
29 size_t pn = min(n,p);
30 field rhs(Xh , 0);
31 for (size_t i = 1; i <= pn; i++)
32 rhs += (bdf:: alpha[pn][i]/ delta_t)* phi_h[i];
33 field lh = integrate(rhs*xi)
34 + integrate (" boundary", max(0,-dot(u(),normal ()))* phi_exact(t)*xi);
35 if (pn <= p) {
36 form an = a0 + (bdf::alpha[pn][0]/ delta_t)*m;
37 pb = problem (an);
38 }
39 pb.solve (lh, phi_h [0]);
40 check_macro (phi_h [0]. max_abs () < 100, "BDF failed -- HINT: decrease delta_t ");
41 if (!strip || n == n_max) dout << event (t, phi_h [0]);
42 for (size_t i = min(p,pn+1); i >= 1; i--)
43 phi_h[i] = phi_h[i-1];
44 }
45 derr << endl;
46 }

Comments

Numerical computations are performed on the time interval [0, tf] with a time step ∆t = tf/nmax
where nmax is the number of time steps. Since d = 2, a direct method is preferable (see sec-
tion 1.1.10 and Fig. 1.5). Observe that u is here independent upon t. Then an, as given by (4.2a),
is independent upon n when n > p, and an can be factored one time for all n > p. The file
‘zalesak.h’ included here implements the phi0 and phi exact class-functions representing the
exact solution φ(t) of level set function for the slotted disk, together with the u class-function for
the velocity field. This file it is not listed here but is available in the Rheolef example directory.
Recall that the BDF(p) scheme is unconditionally stable when p ∈ {1, 2} and almost uncondition-
ally stable when p ∈ {3, . . . , 6} (see e.g. Süli and Mayers, 2003, p. 349). Then, when an instability
is detected, an issue for decreasing the time step is generated and the computation is stopped.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/zalesak_dg.cc

152 Rheolef version 7.1 update 22 March 2020

Figure 4.5: Zalesak slotted disk: superposition of the initial disk (black) and after a period
(red). Polynomial degree k = 2, time step ∆t = 4π/6000, implicit BDF(3) scheme with a fixed
mesh h = 1/100. On the right: zoom.

How to run the program

Let us first generate a mesh for the Ω =]0, 1[2 geometry with h = 1/100 and then run the code
with a k = 2 discontinuous Galerkin method and a BDF (3) scheme:

mkgeo_ugrid -t 50 > square.geo

make zalesak_dg

time mpirun -np 8 ./zalesak_dg square P2d > square-P2d.branch

The computation could take about ten minutes: there are 1000 time steps by default ; a prompt
shows the advancement. The time and mpirun -np 8 prefixes are optional and you should omit
them if you are running a sequential installation of Rheolef. Then, the visualization writes:

branch square-P2d.branch -iso 0 -bw

The slotted disk appears at his initial position. Then, click on the video play button, at the

top of the window: the disk starts to rotate. Fig. 4.5 compares the initial disk position with the
final one after one period when h = 1/100 and 6000 time steps. Observe the dramatic efficiency
of the combination of the discontinuous Galerkin method and the high-order time scheme. The
corresponding solution could be directly observed as a video from the following link (3 Mo):

http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef/zalesak-100-P2d-6000.mp4

Moreover, when using higher order polynomials and schemes, e.g. for k > 3, the changes are no
more perceptible and the disk after one period fits the initial shape. The error between the two
shapes could also be evaluated, and the convergence versus mesh and polynomial degree could be
checked: see Ta et al. [2016] for more details.

4.1.4 [New] Example: the Leveque vortex-in-box

The LeVeque [1996, p. 653] vortex-in-box is also another widely used benchmark. This example
tests the ability of the scheme to accurately resolve thin filaments on the scale of the mesh which
can occur in swirling and stretching flows. An initial shape is deformed by a non-constant velocity

http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef/zalesak-100-P2d-6000.mp4

Chapter 4. Discontinuous Galerkin methods 153

field given by:

u(t,x) =

cos(πt/tf)

(
sin2(πx0) sin(2πx1)

− sin(2πx0) sin
2(πx1)

)
when d = 2

cos(πt/tf)

2 sin2(πx0) sin(2πx1) sin(2πx2)
− sin(2πx0) sin

2(πx1) sin(2πx2)
− sin2(πx0) sin(2πx1) sin(2πx2)

 when d = 3

At the half-period t = tf/2, the initial data is quite deformed and the flow slows down and reverses
direction in such a way that the initial data should be recovered at time tf . This gives a very
useful test problem since we then know the true solution at time tf even though the flow field has
a quite complicated structure. Here we use tf = 8 when d = 2 and tf = 3 when d = 3. The initial
shape is a circle of radius 0.15 placed at (0.5, 0.75) when d = 2 and a sphere of radius 0.15 placed
at (0.35, 0.35, 0.35) when d = 3. The tridimensional flow field was first proposed by LeVeque
[1996, p. 662] and the corresponding initial shape described by Enright et al. [2002, p. 112]. The
computational domain is Ω =]0, 1[d and note that the flow field u vanishes on ∂Ω.

Example file 4.3: leveque dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "leveque.h"
5 #include "bdf.icc"
6 int main(int argc , char**argv) {
7 environment rheolef (argc , argv);
8 geo omega (argv [1]);
9 space Xh (omega , argv [2]);

10 size_t n_max = (argc > 3) ? atoi(argv [3]) : 1000;
11 size_t strip = (argc > 4) ? string(argv [4]) == "true" : false;
12 size_t p = (argc > 5) ? atoi(argv [5]) : min(Xh.degree ()+1,bdf::pmax);
13 size_t d = omega.dimension ();
14 Float tf = u:: period(), delta_t = tf/n_max;
15 trial phi (Xh); test xi (Xh);
16 branch event ("t","phi ");
17 vector <field > phi_h (p+1);
18 phi_h [0] = phi_h [1] = interpolate (Xh , phi0(d));
19 dout << event (0, phi_h [0]);
20 for (size_t n = 1; n <= n_max; n++) {
21 Float t = n*delta_t;
22 if (n % 10 == 0) derr << "[" << n << "]";
23 size_t pn = min(n,p);
24 form an = integrate ((bdf::alpha[pn][0]/ delta_t*phi + dot(u(d,t),grad_h(phi)))*xi)
25 + integrate (" internal_sides",
26 - dot(u(d,t),normal ())* jump(phi)* average(xi)
27 + 0.5* abs(dot(u(d,t),normal ()))* jump(phi)*jump(xi));
28 field rhs(Xh , 0);
29 for (size_t i = 1; i <= pn; i++)
30 rhs += (bdf:: alpha[pn][i]/ delta_t)* phi_h[i];
31 field lh = integrate(rhs*xi);
32 problem pb (an);
33 pb.solve (lh, phi_h [0]);
34 check_macro (phi_h [0]. max_abs () < 100, "BDF failed -- HINT: decrease delta_t ");
35 if (!strip || n == n_max) dout << event (t, phi_h [0]);
36 for (size_t i = min(p,pn+1); i >= 1; i--)
37 phi_h[i] = phi_h[i-1];
38 }
39 derr << endl;
40 }

Comments

Numerical computations are performed on the time interval [0, T] with a time step ∆t = T/nmax
where nmax is the number of time steps. Observe that u is here time-dependent. Then an, as

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/leveque_dg.cc

154 Rheolef version 7.1 update 22 March 2020

given by (4.2a), is also dependent upon n, and an can no more be factored one time for all, as it
was done for the Zalesak case. The file ‘leveque.h’ included here implements both the u and phi0

class-functions for the flow field and the initial data φ0 associated to the initial circular shape,
respectively. This file it is not listed here but is available in the Rheolef example directory. Recall
that u vanishes on ∂Ω. Then, all boundary terms for an and ℓn, involved in (4.2a)-(4.2b), are here
omitted.

Figure 4.6: Leveque vortex-in-box: approximation with h = 1/100, k = 2, p = 3 and ∆t =
4π/6000. (left) solution at half period : the deformation is maximal ; (right) after a full period :
comparison with the initial shape, in red.

How to run the program

Compilation and run writes:

mkgeo_ugrid -t 100 > square.geo

make leveque_dg

mirun -np 8 ./leveque_dg square P2d 6000 > square-P2d.branch

The computation could take about two hours: a prompt shows the advancement for the 6000 time
steps. The mpirun -np 8 prefix is optional and you should omit it if you are running a sequential
installation of Rheolef. Then, the visualization writes:

branch square-P2d.branch -iso 0 -bw

As for the Zalesak case, the solution is represented by an animation with paraview. The video
could be directly observed from the link (7 Mo):

http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef/leveque-100-P2d-6000.mp4

Fig. 4.6.left represents the solution when h = 1/100 and 6000 time steps at the half-period t = tf/2,
when the deformation is maximal. Conversely, Fig. 4.6.right represents it when t = tf , when the
shape recovers its initial position. Observe the good correspondence between the final and the
initial shapes, which is represented in red.

http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef/leveque-100-P2d-6000.mp4

Chapter 4. Discontinuous Galerkin methods 155

4.2 Nonlinear first-order problems

4.2.1 Abstract setting

The aim of this paragraph is to study the discontinuous Galerkin discretization of scalar nonlinear
hyperbolic equations. This section presents the general framework and discretization tools while
the next section illustrates the method for the Burgers equation.

Problem statement

A time-dependent nonlinear hyperbolic problem writes in general form [di Pietro and Ern, 2012,
p. 99]:

(P): find u, defined in]0, T [×Ω, such that

∂u

∂t
+ div f(u) = 0 in]0, T [×Ω (4.3a)

u(t=0) = u0 in Ω (4.3b)

f(u).n = Φ(n; u, g) on]0, T [×∂Ω (4.3c)

where T > 0, Ω ⊂ R
d, d = 1, 2, 3 and the initial condition u0 being known. As usual, n denotes the

outward unit normal on the boundary ∂Ω. The function f : R −→ R
d is also known and supposed

to be continuously differentiable. The initial data u0, defined in Ω, and the boundary one, g,
defined on ∂Ω are given. The function Φ, called the Godunov flux associated to f , is defined, for
all ν ∈ R

d and a, b ∈ R, by

Φ(ν; a, b) =

min
v∈[a,b]

f(v).ν when a 6 b

max
v∈[b,a]

f(v).ν otherwise
(4.3d)

Note that, with this general formalism, the linear transport problem considered in the previous
section 4.1.1 corresponds to (see e.g. di Pietro and Ern, 2012, p. 104:

f(u) = au (4.4a)

Φ(n; u, v) = a.n
u+ v

2
+

|a.n|
2

(u− v) (4.4b)

Space discretization

In this section, we consider first the semi-discretization with respect to space while the prob-
lem remains continuous with respect to time. The semi-discrete problem writes in variational
form [di Pietro and Ern, 2012, p. 100]:

(P)h: find uh ∈ C1([0, T], Xh) such that

∫

Ω

∂uh
∂t

vh dx−
∫

Ω

f(uh).∇hvh dx+
∑

S∈S
(i)
h

∫

S

Φ(n; u−h , u
+
h)[[vh]] ds+

∫

∂Ω

Φ(n; uh, g)vh ds = 0, ∀vh ∈ Xh

uh(t=0) = πh(u0)

where πh denotes the Lagrange interpolation operator on Xh and others notations has been intro-
duced in the previous section.

For convenience, we introduce the discrete operator Gh, defined for all uh, vh ∈ Xh by

∫

Ω

Gh(uh)vh dx = −
∫

Ω

f(uh).∇hvh dx+
∑

S∈S
(i)
h

∫

S

Φ(n; u−h , u
+
h)[[vh]] ds+

∫

∂Ω

Φ(n; uh, g)vh ds(4.5)

156 Rheolef version 7.1 update 22 March 2020

For a given uh ∈ Xh, we also define the linear form gh as

g(vh) =

∫

Ω

Gh(uh)vh dx

As the matrix M , representing the L2 scalar product in Xh, is block-diagonal, it can be easily
inverted at the element level, and for a given uh ∈ Xh, we have G(uh) = M−1gh. Then, the
problem writes equivalently as a set of coupled nonlinear ordinary differential equations.

(P)h: find uh ∈ C1([0, T], Xh) such that

∂uh
∂t

+Gh(uh) = 0

Time discretization

Let ∆t > 0 be the time step. The previous nonlinear ordinary differential equations are discretized
by using a specific explicit Runge-Kutta with intermediates states [Shu and Osher, 1988, Gottlieb
and Shu, 1998, Gottlieb et al., 2001]. This specific variant of the usual Runge-Kutta scheme, called
strong stability preserving, is suitable for avoiding possible spurious oscillations of the approximate
solution when the exact solution has a poor regularity. Let unh denotes the approximation of uh
at time tn = n∆t, n > 0. Then un+1

h is defined by recurrence:

un,0h = unh

un,ih =

i−1∑

j=0

αi,ju
n,j
h −∆t βi,jGh

(
un,jh

)
, 1 6 i 6 p

un+1
h = un,ph

where the coefficients satisfy αi,j > 0 and βi,j > 0 for all 1 6 i 6 p and 0 6 j 6 i − 1, and∑i−1
j=0 αi,j = 1 for all 1 6 i 6 p. Note that when p = 1 this scheme coincides with the usual

explicit Euler scheme. For a general p > 1 order scheme, there are p− 1 intermediate states un,ih ,
i = 1 . . . p − 1. Computation of the coefficients αi,j and βi,j can be founded in [Shu and Osher,
1988, Gottlieb and Shu, 1998, Gottlieb et al., 2001] and are grouped in file ‘runge kutta ssp.icc’
of the examples directory for convenience.

4.2.2 Slope limiters

Slope limiters are required when the solution develops discontinuities: this is a very classical
feature of most solutions of nonlinear hyperbolic equations. A preliminary version of the slope
limiter proposed by Cockburn [1998, p. 208] is implemented in Rheolef: this preliminary version
only supports the d = 1 dimension and k = 1 polynomial degree. Recall that the k = 0 case do
not need any limiter. More general implementation will support the d = 2, 3 and k > 2 cases in
the future. The details of the limiter implementation is presented in this section: the impatient
reader, who is interested by applications, can jump to the next section, devoted to the Burgers
equation.

Fig. 4.7 shows the d+1 neighbor elements Ki, i = 0 . . . d around an element d. Let Si = ∂K∩∂Ki,
i = 0 . . . d be the i-th side of K. We denote by xK , xKi

ad xSi
the barycenters of these elements

and sides, i = 0 . . . d. When d = 2, the barycenter xSi
of the edge belongs to the interior of a

triangle (xK ,xKi
,xKJi,1

) for exactly one of the two possible Ji,1 6= i and 0 6 Ji,1 6 d. When d = 3,

the barycenter xSi
of the face belongs to the interior of a tetrahedron (xK ,xKi

,xKJi,1
,xKJi,2

)

for exactly one pair (Ji,1, Ji,2), up to a permutation, of the three possible pairs Ji,1, Ji,2 6= i and
0 6 Ji,1, Ji,2 6 d. Let us denote Ji,0 = i. Then, the vector −−−−→xKxSi

decompose on the basis

Chapter 4. Discontinuous Galerkin methods 157

K

K2

xK0

xS0

K1

K0

xK

xK1

xK2

J(0, 1) = 1

Figure 4.7: Limiter: the neighbors elements and the middle edge points.

(−−−−−−→xKxKJi,k
)06k6d−1 as

−−−−→xKxSi
=

d−1∑

k=0

αi,k
−−−−−−→xKxKJi,k

(4.6)

where αi,k > 0, k = 0 . . . d − 1. Let us consider now the patch ωK composed of K and its d
neighbors:

ωK = K ∪K0 ∪ . . . ∪Kd

For any affine function ξ ∈ P1(ωK) over this patch, let us denote

δK,i(ξ) =

d−1∑

k=0

αi,k

(
ξ(xKJi,k

)− ξ(xK)
)
, i = 0 . . . d− 1

= ξ(xSi
)− ξ(xK) from (4.6)

In other terms, δK,i(ξ) represents the departure of the value of ξ at xSi
from its average ξ(xK on

the element K.

Let now (ϕi)06i6d−1 denote the Lagrangian basis inK associated to the set of nodes (xSi
)06i6d−1:

ϕi(xSj
) = δi,j , 0 6 i, j 6 d− 1

d−1∑

i=0

ϕi(x) = 1, ∀x ∈ K

The affine function ξ ∈ P1(ωK) expresses on this basis as

ξ(x) = ξ(xK) +

d−1∑

i=0

δK,i(ξ)ϕi(x), ∀x ∈ K

Let now uh ∈ P1d(Th). On any element K ∈ Th, let us introduce its average value:

ūK =
1

meas(K)

∫

K

uh(x) dx

and its departure from its average value:

ũK(x) = uh|K(x)− ūK , ∀x ∈ K

158 Rheolef version 7.1 update 22 March 2020

Note that uh 6∈ P1(ωK). Let us extends δK,i to uh as

δK,i(uh) =

d−1∑

k=0

αi,k

(
ūKJi,k

− ūK

)
, i = 0 . . . d− 1

Since uh 6∈ P1(ωK), we have ũK(xKJi,k
) 6= δK,i(uh) in general. The idea is then to capture

oscillations by controlling the departure of the values ũK(xKJi,k
) from the values δK,i(uh). Thus,

associate to uh ∈ P1d(Th) the quantities

∆K,i(uh) = minmodTVB

(
ũK(xKJi,k

), θδK,i(uh)
)

for all i = 0 . . . d− 1 and where θ > 1 is a parameter of the limiter and

minmodTVB(a, b) =

{
a when |a| 6Mh2

minmod(a, b) otherwise

where M > 0 is a tunable parameter which can be evaluated from the curvature of the initial
datum at its extrema by setting

M = sup
x∈Ω,∇u0(x)=0

|∇ ⊗∇u0| (4.7)

Introduced by Shu [1987], the basic idea is to deactivate the limiter when space derivatives are of
order h2. This improves the limiter behavior near smooth local extrema. The minmod function
is defined by

minmod(a, b) =

{
sgn(a)min(|a|, |b|) when sgn(a) = sgn(b)
0 otherwise

Then, for all i = 0 . . . d− 1 we define

rK(uh) =

d−1∑

j=0

max(0,−∆K,j(uh))

d−1∑

j=0

max(0,∆K,j(uh))

> 0

∆̂K,i(uh) = min(1, rK(uh)) max(0,∆K,i(uh))

−min(1, 1/rK(uh)) max(0,−∆K,i(uh)), i = 0 . . . d− 1 when rK(uh) 6= 0

Finally, the limited function Λh(uh) is defined element by element for all element K ∈ Th for all
x ∈ K by

Λh(uh)|K(x) =

ūK +

d−1∑

i=1

∆K,i(uh) ϕi(x) when rK(uh) = 0

ūK +

d−1∑

i=1

∆̂K,i(uh) ϕi(x) otherwise

Note that there are two types of computations involved in the limiter: one part is independent of
uh and depends only upon the mesh: Ji,k and αi,k on each element. It can be computed one time
for all. The other part depends upon the values of uh.

Note that the limiter preserves the average value of uh on each element K and also the functions
that are globally affine on the patch ωK . Also we have, inside each element K and for all side
index i = 0 . . . d− 1:

∣∣Λh(uh)|K(xSi
)− ūK

∣∣ 6 max
(
|∆K,i(uh)|, |∆̂K,i(uh)|

)
6 |∆K,i(uh)| 6

∣∣uh|K(xSi
)− ūK

∣∣

Chapter 4. Discontinuous Galerkin methods 159

It means that, inside each element, the gradient of the P1 limited function is no larger than that
of the original one.

The limiter on an element close to the boundary should takes into account the inflow condition,
see Cockburn et al. [1990].

4.2.3 Example: the Burgers equation

As an illustration, let us consider now the test with the one-dimensional (d = 1) Burgers equation
for a propagating slant step (see e.g. Carey and Jianng, 1988, p. 87) in Ω =]0, 1[. We have
f(u) = u2/2, for all u ∈ R. In that case, the Godunov flux (4.3d), introduced page 155, can be
computed explicitly for any ν = (ν0) ∈ R

d and a, b ∈ R:

Φ(ν; a, b) =

{
ν0 min

(
a2, b2

)
/2 when ν0 > 0 and a 6 b or ν0 6 0 and a > b

ν0 max
(
a2, b2

)
/2 otherwise

Example file 4.4: burgers.icc

1 point f (const Float& u) { return point (sqr(u)/2); }

Example file 4.5: burgers flux godunov.icc

1 Float phi (const point& nu , Float a, Float b) {
2 if ((nu[0] >= 0 && a <= b) || (nu[0] <= 0 && a >= b))
3 return nu[0]* min(sqr(a),sqr(b))/2;
4 else
5 return nu[0]* max(sqr(a),sqr(b))/2;
6 }

Computing an exact solution

An exact solution is useful for testing numerical methods. The computation of such an exact
solution for the one dimensional Burgers equation is described by Harten et al. [1987]. The
authors consider first the problem with a periodic boundary condition:

(P): find u :]0, T [×]− 1, 1[7−→ R such that

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 in]0, T [×]− 1, 1[

u(t=0, x) = α+ β sin(πx+ γ), a.e. x ∈]− 1, 1[

u(t, x=−1) = u(t, x=1) a.e. t ∈]0, T [

where α, β and γ are real parameters. Let us denote w the solution of the problem when β = 1
and α = γ = 0; i.e. with the initial condition w(t=0, x) = sin(πx), a.e. x ∈]− 1, 1[. For any
x ∈ [0, 1[and t > 0, the solution w̄ = w(t, x) satisfies the characteristic relation

w̄ = sin(π(x− w̄t))

This nonlinear relation can be solved by a Newton algorithm. Then, for x ∈]−1, 0[, the solution
is completed by symmetry: w(t, x) = −w(t,−x). Finally, the general solution for any α, β and
γ = 0 writes u(t, x) = α+ w(βt, x− αt+ γ). File ‘harten.h’ implements this approach.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/burgers.icc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/burgers_flux_godunov.icc

160 Rheolef version 7.1 update 22 March 2020

Example file 4.6: harten.h

1 #include "harten0.h"
2 struct harten {
3 Float operator () (const point& x) const {
4 Float x0 = x[0]-a*t+c;
5 Float shift = -2*floor((x0 +1)/2);
6 Float xs = x0 + shift;
7 check_macro (xs >= -1 && xs <= 1, "invalid xs="<<xs);
8 return a + b*h0 (point(xs));
9 }

10 harten (Float t1=0, Float a1=1, Float b1=0.5, Float c1=0):
11 h0(b1*t1), t(t1), a(a1), b(b1), c(c1) {}
12 Float M() const { Float pi = acos (-1.0); return sqr(pi)*b; }
13 Float min() const { return a-b; }
14 Float max() const { return a+b; }
15 protected:
16 harten0 h0;
17 Float t, a, b, c;
18 };
19 using u_init = harten;
20 using g = harten;

Example file 4.7: harten show.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "harten.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh (omega , argv [2]);
9 size_t nmax = (argc > 3) ? atoi(argv [3]) : 1000;

10 Float tf = (argc > 4) ? atof(argv [4]) : 2.5;
11 Float a = (argc > 5) ? atof(argv [5]) : 1;
12 Float b = (argc > 6) ? atof(argv [6]) : 0.5;
13 Float c = (argc > 7) ? atof(argv [7]) : 0;
14 branch even("t","u");
15 for (size_t n = 0; n <= nmax; ++n) {
16 Float t = n*tf/nmax;
17 field pi_h_u = interpolate (Xh , harten(t,a,b,c));
18 dout << even(t,pi_h_u);
19 }
20 }

The included file ‘harten0.h’ is not shown here but is available in the example directory.

Comments

Note that the constantM , used by the limiter in (4.7), can be explicitly computed for this solution:
M = βπ2.

The animation of this exact solution is performed by the following commands:

make harten_show

mkgeo_grid -e 2000 -a -1 -b 1 > line2.geo

./harten_show line2 P1 1000 2.5 > line2-exact.branch

branch line2-exact -gnuplot

Fig. 4.8 shows the solution u for α = 1, β = 1/2 and γ = 0. It is regular until t = 2/π (Fig. 4.8.c)
and then develops a chock for t > 2/π (Fig. 4.8.d). After its apparition, this chock interacts with
the expansion wave in] − 1, 1[: this brings about a fast decay of the solution (Figs. 4.8.e and f).
Fig. 4.8 plots also a numerical solution: its computation is the aim of the next section.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/harten.h
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/harten_show.cc

Chapter 4. Discontinuous Galerkin methods 161

Numerical resolution

When replacing the periodic boundary condition with a inflow one, associated with the boundary
data g, we choose g to be the value of the exact solution of the problem with periodic boundary
conditions: g(t, x) = α+ w(βt, x− αt) for x ∈ {−1, 1}.

Example file 4.8: burgers dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "harten.h"
5 #include "burgers.icc"
6 #include "burgers_flux_godunov.icc"
7 #include "runge_kutta_ssp.icc"
8 int main(int argc , char**argv) {
9 environment rheolef (argc , argv);

10 geo omega (argv [1]);
11 space Xh (omega , argv [2]);
12 Float cfl = 1;
13 limiter_option lopt;
14 size_t nmax = (argc > 3) ? atoi(argv [3]) : numeric_limits <size_t >:: max ();
15 Float tf = (argc > 4) ? atof(argv [4]) : 2.5;
16 size_t p = (argc > 5) ? atoi(argv [5]) : ssp::pmax;
17 lopt.M = (argc > 6) ? atoi(argv [6]) : u_init ().M();
18 if (nmax == numeric_limits <size_t >:: max ()) {
19 nmax = (size_t)floor (1+tf/(cfl*omega.hmin ()));
20 }
21 Float delta_t = tf/nmax;
22 integrate_option iopt;
23 iopt.invert = true;
24 trial u (Xh); test v (Xh);
25 form inv_m = integrate (u*v, iopt);
26 vector <field > uh(p+1, field(Xh ,0));
27 uh[0] = interpolate (Xh, u_init ());
28 branch even("t","u");
29 dout << catchmark (" delta_t ") << delta_t << endl
30 << even(0,uh[0]);
31 for (size_t n = 1; n <= nmax; ++n) {
32 for (size_t i = 1; i <= p; ++i) {
33 uh[i] = 0;
34 for (size_t j = 0; j < i; ++j) {
35 field lh =
36 - integrate (dot(compose(f,uh[j]),grad_h(v)))
37 + integrate (" internal_sides",
38 compose (phi , normal(), inner(uh[j]), outer(uh[j]))* jump(v))
39 + integrate (" boundary",
40 compose (phi , normal(), uh[j], g(n*delta_t))*v);
41 uh[i] += ssp::alpha[p][i][j]*uh[j] - delta_t*ssp::beta[p][i][j]*(inv_m*lh);
42 }
43 uh[i] = limiter(uh[i], g(n*delta_t)(point (-1)), lopt);
44 }
45 uh[0] = uh[p];
46 dout << even(n*delta_t ,uh[0]);
47 }
48 }

Comments

The Runge-Kutta time discretization combined with the discontinuous Galerkin space discretiza-
tion is implemented for this test case.

The P0 approximation is performed by the following commands:

make burgers_dg

mkgeo_grid -e 200 -a -1 -b 1 > line2-200.geo

./burgers_dg line2-200.geo P0 1000 2.5 > line2-200-P0.branch

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/burgers_dg.cc

162 Rheolef version 7.1 update 22 March 2020

branch line2-200-P0.branch -gnuplot

The two last commands compute the P0 approximation of the solution, as shown on Fig. 4.8.
Observe the robust behavior of the solution at the vicinity of the chock. By replacing P0 by P1d

in the previous commands, we obtain the P1-discontinuous approximation.

./burgers_dg line2-200.geo P1d 1000 2.5 > line2-200-P1d.branch

branch line2-200-P1d.branch -gnuplot

Fig. 4.9 plots the error vs h for k = 0 and k = 1. Fig. 4.9.a plots in a time interval [0, T] with
T = 1/π, before the chock that occurs at t = 2/π. In that interval, the solution is regular and the
error approximation behaves as O(hk+1). The time interval has been chosen sufficiently small for
the error to depend only upon h. Fig. 4.9.b plots in a larger time interval [0, T] with T = 5/2, that
includes the chock. Observe that the error behaves as O(h) for both k = 0 and 1. This is optimal
when k = 0 but not when k = 1. This is due to the loss of regularity of the exact solution that
presents a discontinuity; A similar observation can be found in Zhong and Shu [2013], table 4.1.

Chapter 4. Discontinuous Galerkin methods 163

0.5

1

1.5

−1 0 1

u(t, x) (a) t = 0

x

0.5

1

1.5

−1 0 1

(b) t = 1/2

x

exact
P0

0.5

1

1.5

−1 0 1

(c) t = 2/π

x

exact
P0

0.5

1

1.5

−1 0 1

u(t, x) (d) t = 0, 75

x

exact
P0

0.5

1

1.5

−1 0 1

u(t, x) (e) t = 1

x

exact
P0

0.5

1

1.5

−1 0 1

u(t, x) (f) t = 1.75

x

exact
P0

Figure 4.8: Harten’s exact solution of the Burgers equation (α = 1, β = 1/2, γ = 0). Comparison
with the P0 approximation (h = 1/100, RK-SSP(3)).

164 Rheolef version 7.1 update 22 March 2020

10
−5

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

‖u− uh‖L∞(0,T ;L1)

(a) T = 2/π

0.96

1.9

h

k = 0

k = 1

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

‖u− uh‖L∞(0,T ;L1)

(b) T = 5/2

0.85

1

h

k = 0

k = 1

Figure 4.9: Burgers equation: error between the P0 approximation and the exact solution of the
Harten’s problem (α = 1, β = 1/2, γ = 0): (a) before chock, with T = 1/π; (b) after chock, with
T = 5/2.

Chapter 4. Discontinuous Galerkin methods 165

4.3 Scalar second-order problems

4.3.1 The Poisson problem with Dirichlet boundary conditions

The Poisson problem with non-homogeneous Dirichlet boundary conditions has been already in-
troduced in volume 1, section 1.1.12, page 22:

(P): find u, defined in Ω, such that

−∆u = f in Ω

u = g on ∂Ω

where f and g are given.

The discontinuous finite element space is defined by:

Xh = {vh ∈ L2(Ω); vh|K ∈ Pk, ∀K ∈ Th}

where k > 1 is the polynomial degree. As elements of Xh do not belongs to H1(Ω), due to
discontinuities at inter-elements, we introduce the broken Sobolev space:

H1(Th) = {v ∈ L2(Ω); v|K ∈ H1(K), ∀K ∈ Th}

such that Xh ⊂ H1(Th). We introduce the folowing bilinear form ah(., .) and linear for lh(.),
defined for all u, v ∈ H1(Th) by (see e.g. di Pietro and Ern, 2012, p. 125 and 127, eqn. (4.12)):

ah(u, v) =

∫

Ω

∇hu.∇hv dx+
∑

S∈Sh

∫

S

(ηs [[u]] [[v]]− {{∇hu.n}} [[v]]− [[u]] {{∇hv.n}}) ds (4.8)

lh(v) =

∫

Ω

f u dx+

∫

∂Ω

(ηs g v − g∇hv.n) ds (4.9)

The last term involves a sum over Sh, the set of all sides of the mesh Th, i.e. the internal sides
and the boundary sides. By convenience, the definition of the jump and average are extended
to all boundary sides as [[u]] = {{u}} = u. Note that, as for the previous transport problem, the
Dirichlet boundary condition u = g is weakly imposed on ∂Ω via the integrals on the boundary.
Finally, ηs > 0 is a stabilization parameter on a side S. The stabilization term associated to ηs is
present in order to achieve coercivity: it penalize interface and boundary jumps. A common choice
is ηs = β h−1

s where β > 0 is a constant and hs is a local length scale associated to the current
side S. One drawnback to this choice is that it requires the end user to specify the numerical
constant β. From one hand, if the value of this parameter is not sufficiently large, the form ah(., .)
is not coercive and the approximate solution develops instabilities an do not converge [Epshteyn
and Rivière, 2007]. From other hand, if the value of this parameter is too large, its affect the
overall efficiency of the iterative solver of the linear system: the spectral condition number of the
matrix associated to ah(., .) grows linearly with this paramater [Castillo, 2002]. An explicit choice
of penalty parameter is proposed [Shahbazi, 2005]: ηs = β ̟s where β = (k + 1)(k + d)/d and

̟s =

meas(∂K)

meas(K)
when S = K ∩ ∂Ω is a boundary side

max

(
meas(∂K0)

meas(K0)
,
meas(∂K1)

meas(K1)

)
when S = K0 ∩K1 is an internal side

Note that ̟s scales as h−1
s . Now, the computation of the penalty parameter is fully automatic

and the convergence of the method is always guaranted to converge. Moreover, this choice has
been founded to be sharp and it preserves the optimal efficiency of the iterative solvers. Finally,
the discrete variational formulation writes:

(FV)h: find uh ∈ Xh such that

ah(uh, vh) = lh(vh), ∀vh ∈ Xh

166 Rheolef version 7.1 update 22 March 2020

The following code implement this problem in the Rheolef environment.

Example file 4.9: dirichlet dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cosinusprod_laplace.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh (omega , argv [2]);
9 size_t d = omega.dimension ();

10 size_t k = Xh.degree ();
11 Float beta = (k+1)*(k+d)/ Float(d);
12 trial u (Xh); test v (Xh);
13 form a = integrate (dot(grad_h(u),grad_h(v)))
14 + integrate (" sides", beta*penalty ()* jump(u)*jump(v)
15 - jump(u)* average(dot(grad_h(v),normal ()))
16 - jump(v)* average(dot(grad_h(u),normal ())));
17 field lh = integrate (f(d)*v)
18 + integrate (" boundary", beta*penalty ()*g(d)*v
19 - g(d)*dot(grad_h(v),normal ()));
20 a.uu(). set_definite_positive(true);
21 field uh(Xh);
22 problem p (a);
23 p.solve (lh, uh);
24 dout << uh;
25 }

Comments

The penalty() pseudo-function implements the computation of ̟s in Rheolef. The right-hand
side f and g are given by (1.4), volume 1, page 23. In that case, the exact solution is known.
Running the one-dimensional case writes:

make dirichlet_dg

mkgeo_grid -e 10 > line.geo

./dirichlet_dg line P1d | field -

./dirichlet_dg line P2d | field -

−1

0

1

0 0.5 1

h = 1/10

x

u(x)
uh(x)

−1

0

1

0 0.5 1

h = 1/20

x

u(x)
uh(x)

Figure 4.10: The discontinuous Galerkin method for the Poisson problem when k = 1 and d = 1.

Fig. 4.10 plots the one-dimensional solution when k = 1 for two meshes. Observe that the jumps at
inter-element nodes decreases very fast with mesh refinement and are no more perceptible on the

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/dirichlet_dg.cc

Chapter 4. Discontinuous Galerkin methods 167

plots. Recall that the Dirichlet boundary conditions at x = 0 and x = 1 is only weakly imposed:
the corresponding jump at the boundary is also not perceptible.

The two-dimensional case writes:

mkgeo_grid -t 10 > square.geo

./dirichlet_dg square P1d | field -elevation -

./dirichlet_dg square P2d | field -elevation -

and the three-dimensional one

mkgeo_grid -T 10 > cube.geo

./dirichlet_dg cube P1d | field -

./dirichlet_dg cube P2d | field -

Error analysis

10
−15

10
−10

10
−5

1

10
−2

10
−1

‖u− uh‖0,Ω

2 = k + 1

5 = k + 1

h

k = 1

k = 2

k = 3

k = 4

10
−15

10
−10

10
−5

1

10
−2

10
−1

‖u− uh‖∞,Ω

2 = k + 1

5 = k + 1

h

k = 1

k = 2

k = 3

k = 4

10
−10

10
−5

1

10
−2

10
−1

‖u− uh‖1,h
1 = k

4 = k

h

k = 1

k = 2

k = 3

k = 4

Figure 4.11: The discontinuous Galerkin method for the Poisson problem: convergence when
d = 2.

The space H1(Th) is equiped with the norm ‖.‖1,h, defined for all v ∈ H1(Th by di Pietro and Ern

168 Rheolef version 7.1 update 22 March 2020

[2012, p. 128]:

‖v‖21,h = ‖∇hv‖20,Ω +
∑

S∈Sh

∫

S

h−1
s [[v]]2 ds

The code cosinusprod error dg.cc compute the error in these norms. This code it is not listed
here but is available in the Rheolef example directory. The computation of the error writes:

make cosinusprod_error_dg

./dirichlet_dg square P1d | cosinusprod_error_dg

Fig. 4.11 plots the error u − uh in L2, L∞ and the ‖.‖1,h norms. The L2 and L∞ error norms
behave as O

(
hk+1

)
for all k > 0, while the ‖.‖1,h one behaves as O

(
hk
)
, which is optimal.

4.3.2 The Helmholtz problem with Neumann boundary conditions

The Poisson problem with non-homogeneous Neumann boundary conditions has been already
introduced in volume 1, section 1.2, page 30:

(P): find u, defined in Ω, such that

u−∆u = f in Ω

∂u

∂n
= g on ∂Ω

where f and g are given. We introduce the folowing bilinear form ah(., .) and linear for lh(.),
defined for all u, v ∈ H1(Th) by (see e.g. di Pietro and Ern, 2012, p. 127, eqn. (4.16)):

ah(u, v) =

∫

Ω

(u v +∇hu.∇hv) dx (4.10)

+
∑

S∈S
(i)
h

∫

S

(β̟s [[u]] [[v]]− {{∇hu.n}} [[v]]− [[u]] {{∇hv.n}}) ds (4.11)

lh(v) =

∫

Ω

f u dx+

∫

∂Ω

g v ds (4.12)

Let us comment the changes between these forms and those used for the Poisson problem with
Dirichlet boundary conditions. The Poisson operator −∆ has been replaced by the Helmholtz one
I −∆ in order to have an unique solution. Remark also that the sum is performed in (4.8) for all

internal sides in S
(i)
h , while, in (4.8), for Dirichlet boundary conditions, it was for all sides in Sh,

i.e. for both boundary and internal sides. Also, the right-hand-side linear form lh(.). do no more
involves any sum over sides.

Finally, the discrete variational formulation writes:

(FV)h: find uh ∈ Xh such that

ah(uh, vh) = lh(vh), ∀vh ∈ Xh

The following code implement this problem in the Rheolef environment.

Chapter 4. Discontinuous Galerkin methods 169

Example file 4.10: neumann dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sinusprod_helmholtz.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh (omega , argv [2]);
9 size_t d = omega.dimension ();

10 size_t k = Xh.degree ();
11 Float beta = (k+1)*(k+d)/ Float(d);
12 trial u (Xh); test v (Xh);
13 form a = integrate (u*v + dot(grad_h(u),grad_h(v)))
14 + integrate (" internal_sides",
15 beta*penalty ()* jump(u)*jump(v)
16 - jump(u)* average(dot(grad_h(v),normal ()))
17 - jump(v)* average(dot(grad_h(u),normal ())));
18 field lh = integrate (f(d)*v) + integrate (" boundary", g(d)*v);
19 field uh(Xh);
20 problem p (a);
21 p.solve (lh, uh);
22 dout << uh;
23 }

Comments

The right-hand side f and g are given by (1.5), volume 1, page 23. In that case, the exact solution
is known. Running the program is obtained from the non-homogeneous Dirichlet case, by replacing
dirichlet dg by neumann dg.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/neumann_dg.cc

170 Rheolef version 7.1 update 22 March 2020

4.3.3 Nonlinear scalar hyperbolic problems with diffusion

A time-dependent nonlinear second order problem with nonlinear first order dominated terms
problem writes:

(P): find u, defined in]0, T [×Ω, such that

∂u

∂t
+ div f(u)− ε∆u = 0 in]0, T [×Ω (4.13a)

u(t=0) = u0 in Ω (4.13b)

u = g on]0, T [×∂Ω (4.13c)

where ε > 0, T > 0, Ω ⊂ R
d, d = 1, 2, 3 and the initial condition u0 being known. The function

f : R −→ R
d is also known and supposed to be continuously differentiable. The initial data u0,

defined in Ω, and the boundary one, g, defined on ∂Ω are given.

Comparing (4.13a)-(4.13c) with the non-diffusive case (4.3a)-(4.3c) page 155, the second order
term has been added in (4.13a) and the upstream boundary condition has been replaced by a
Dirichlet one (4.13c).

4.3.4 Example: the Burgers equation with diffusion

Problem statement and its exact solution

0

1

2

−1 0 1

u(t, x)

x

t = 0
t = 1

Figure 4.12: An exact solution for the Burgers equation with diffusion (ε = 10−1, x0 = −1/2).

Our model problem in this chapter is the one-dimensional Burgers equation. It was introduced
in section 4.2.3, page 159 with the choice f(u) = u2/2, for all u ∈ R. Equation (4.13a) admits an
exact solution

u(t, x) = 1− tanh

(
x− x0 − t

2ε

)
(4.14)

Chapter 4. Discontinuous Galerkin methods 171

Example file 4.11: burgers diffusion exact.h

1 struct u_exact {
2 Float operator () (const point& x) const {
3 return 1 - tanh((x[0]-x0-t)/(2* epsilon)); }
4 u_exact (Float e1 , Float t1=0) : epsilon(e1), t(t1), x0(-0.5) {}
5 Float M() const { return 0; }
6 Float epsilon , t, x0;
7 };
8 using u_init = u_exact;
9 using g = u_exact;

The solution is represents on Fig. 4.12. Here x0 represent the position of the front at t = 0 and
ε is a characteristic width of the front. The initial and boundary condition are chosen such that
u(t, x) is the solution of (4.13a)-(4.13c).

10−5

10−4

10−3

10−2

10−1

10−6 10−5 10−4 10−3 10−2 10−1

‖u− uh‖L∞(0,T ;L2)

(a) k = 1, h = 2/50

1

∆t

k = 1

k = 2
10−5

10−4

10−3

10−2

10−1

10−5 10−4 10−3 10−2 10−1

‖u− uh‖L∞(0,T ;L2)

(b) k = 1, h = 2/400

1

2

3

∆t

p = 1

p = 2

p = 3

Figure 4.13: Convergence of the first order semi-implicit scheme for the Burgers equation with
diffusion (ǫ = 0.1, T = 1). (a) first order semi-implicit scheme ; (b) Runge-Kutta semi-implicit
scheme with p = 3.

Fig. 4.13.a plots the error versus ∆t for the semi-implicit scheme when k = 1 and 2, and for
h = 2/50. The time step for which the error becomes independent upon ∆t and depends only
upon h is of about ∆t = 10−3 when k = 1 and of about 10−5 when k = 2. This approach is clearly
inefficient for high order polynomial k and a hiher order time scheme is required.

Fig. 4.13.b plots the error versus ∆t for the Runge-Kutta semi-implicit scheme with p = 3, k = 1
and h = 2/200. The scheme is clearly only first-order, which is still unexpected. More work is
required...

Space discretization

The discontinuous finite element space is defined by:

Xh = {vh ∈ L2(Ω); vh|K ∈ Pk, ∀K ∈ Th}

where k > 1 is the polynomial degree. As elements of Xh do not belongs to H1(Ω), due to
discontinuities at inter-elements, we introduce the broken Sobolev space:

H1(Th) = {v ∈ L2(Ω); v|K ∈ H1(K), ∀K ∈ Th}

such that Xh ⊂ H1(Th). As for the Dirichlet problem, introduce the folowing bilinear form
ah(., .) and linear for lh(.), defined for all u, v ∈ H1(Th) by (see e.g. di Pietro and Ern, 2012,

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/burgers_diffusion_exact.h

172 Rheolef version 7.1 update 22 March 2020

p. 125 and 127, eqn. (4.12)):

ah(u, v) =

∫

Ω

∇hu.∇hv dx+
∑

S∈Sh

∫

S

(ηs [[u]] [[v]]− {{∇hu.n}} [[v]]− [[u]] {{∇hv.n}}) ds(4.15)

ℓh(v) =

∫

∂Ω

(ηs g v − g∇hv.n) ds (4.16)

The semi-discrete problem writes in variational form [di Pietro and Ern, 2012, p. 100]:

(P)h: find uh ∈ C1([0, T], Xh) such that

∫

Ω

∂uh
∂t

vh dx

∫

Ω

Gh(uh) vh dx+ ε ah(uh, vh) = ε ℓh(vh), ∀vh ∈ Xh

uh(t=0) = πh(u0)

where Gh has been introduced in (4.5), page 155.

Time discretization

Explicit Runge-Kutta scheme is possible for this problem but it leads to an excessive Courant-
Friedrichs-Levy condition for the time step ∆t, that is required to be lower than an upper bound
that varies in O(h2). The idea here is to continue to explicit the first order nonlinear terms and
implicit the linear second order terms. Semi-implicit second order Runge-Kutta scheme was first
introduced by Ascher, Ruuth, and Spiteri [1997] and then extended to third and fourth order by
Calvo, de Frutos, and Novo [2001]. Wang, Shu, and Zhang [2015a,b] applied it in the context of
the discontinuous Galerkin method. The finite dimensional problem can be rewritten as

(P)h: find uh ∈ C1([0, T], Xh) such that

∂uh
∂t

+Gh(t, uh) +Ah(t, uh) = 0, ∀t ∈]0, T [
uh(t=0) = πh(u0)

where Gh has been introduced in (4.5), page 155 and Ah denotes the diffusive term. The semi-
implicit Runge-Kutta scheme with p > 0 intermediate steps writes at time step tn:

un,0h = unh (4.17a)

un,ih = unh −∆t

i∑

j=1

αi,jAh

(
tn,j , u

n,j
h

)
−∆t

i−1∑

j=0

α̃i,jGh

(
tn,j , u

n,j
h

)
, i = 1, . . . , p(4.17b)

un+1
h = unh −∆t

p∑

i=1

βiAh

(
tn,i, u

n,i
h

)
−∆t

p∑

i=0

β̃iGh

(
tn,i, u

n,i
h

)
(4.17c)

where
(
un,ih

)
16i6p

are the p > 1 intermediate states, tn,i = tn + γi∆t, γi =
∑i
j=1 αi,j =

∑i−1
j=0 α̃i,j ,

and (αi,j)06i,j6p, (α̃i,j)06i,j6p, (βi)06i6p and (β̃i)06i6p are the coefficients of the scheme [Ascher
et al., 1997, Calvo et al., 2001, Wang et al., 2015a]. At each time step, have to solve p linear
systems. From (4.17b) we get for all i = 1, . . . , p:

(I +∆t αi,iAh (tn,i))u
n,i
h = unh −∆t

i−1∑

j=1

αi,jAh

(
tn,j , u

n,j
h

)
−∆t

i−1∑

j=0

α̃i,jGh

(
tn,j , u

n,j
h

)

Note that when the matrix coefficients of Ah(t, .) are indepencdent of t, the matrix involved on
the right-hand-side of the previous equation can be factored one time for all.

Chapter 4. Discontinuous Galerkin methods 173

Example file 4.12: burgers diffusion dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "burgers.icc"
5 #include "burgers_flux_godunov.icc"
6 #include "runge_kutta_semiimplicit.icc"
7 #include "burgers_diffusion_exact.h"
8 #undef NEUMANN
9 #include "burgers_diffusion_operators.icc"

10 int main(int argc , char**argv) {
11 environment rheolef (argc , argv);
12 geo omega (argv [1]);
13 space Xh (omega , argv [2]);
14 size_t k = Xh.degree ();
15 Float epsilon = (argc > 3) ? atof(argv [3]) : 0.1;
16 size_t nmax = (argc > 4) ? atoi(argv [4]) : 500;
17 Float tf = (argc > 5) ? atof(argv [5]) : 1;
18 size_t p = (argc > 6) ? atoi(argv [6]) : min(k+1,rk::pmax);
19 Float delta_t = tf/nmax;
20 size_t d = omega.dimension ();
21 Float beta = (k+1)*(k+d)/ Float(d);
22 trial u (Xh); test v (Xh);
23 form m = integrate (u*v);
24 integrate_option iopt;
25 iopt.invert = true;
26 form inv_m = integrate (u*v, iopt);
27 form a = epsilon *(
28 integrate (dot(grad_h(u),grad_h(v)))
29 #ifdef NEUMANN
30 + integrate (" internal_sides",
31 #else // NEUMANN
32 + integrate (" sides",
33 #endif // NEUMANN
34 beta*penalty ()* jump(u)*jump(v)
35 - jump(u)* average(dot(grad_h(v),normal ()))
36 - jump(v)* average(dot(grad_h(u),normal ()))));
37 vector <problem > pb (p+1);
38 for (size_t i = 1; i <= p; ++i) {
39 form ci = m + delta_t*rk::alpha[p][i][i]*a;
40 pb[i] = problem(ci);
41 }
42 vector <field > uh(p+1, field(Xh ,0));
43 uh[0] = interpolate (Xh, u_init(epsilon));
44 branch even("t","u");
45 dout << catchmark (" epsilon ") << epsilon << endl
46 << even(0,uh[0]);
47 for (size_t n = 0; n < nmax; ++n) {
48 Float tn = n*delta_t;
49 Float t = tn + delta_t;
50 field uh_next = uh[0] - delta_t*rk:: tilde_beta[p][0]*(inv_m*gh(epsilon , tn , uh[0], v));
51 for (size_t i = 1; i <= p; ++i) {
52 Float ti = tn + rk:: gamma[p][i]* delta_t;
53 field rhs = m*uh[0] - delta_t*rk:: tilde_alpha[p][i][0]*gh(epsilon , tn , uh[0], v);
54 for (size_t j = 1; j <= i-1; ++j) {
55 Float tj = tn + rk:: gamma[p][j]* delta_t;
56 rhs -= delta_t *(rk:: alpha[p][i][j]*(a*uh[j] - lh(epsilon ,tj ,v))
57 + rk:: tilde_alpha[p][i][j]*gh(epsilon , tj , uh[j], v));
58 }
59 rhs += delta_t*rk:: alpha[p][i][i]*lh (epsilon , ti , v);
60 pb[i]. solve (rhs , uh[i]);
61 uh_next -= delta_t *(inv_m*(rk::beta[p][i]*(a*uh[i] - lh(epsilon ,ti,v))
62 + rk:: tilde_beta[p][i]*gh(epsilon , ti , uh[i], v)));
63 }
64 uh_next = limiter(uh_next);
65 dout << even(tn+delta_t ,uh_next);
66 uh[0] = uh_next;
67 }
68 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/burgers_diffusion_dg.cc

174 Rheolef version 7.1 update 22 March 2020

Example file 4.13: burgers diffusion operators.icc

1 field lh (Float epsilon , Float t, const test& v) {
2 #ifdef NEUMANN
3 return field (v.get_vf_space (), 0);
4 #else // NEUMANN
5 size_t d = v.get_vf_space (). get_geo (). dimension ();
6 size_t k = v.get_vf_space (). degree ();
7 Float beta = (k+1)*(k+d)/ Float(d);
8 return epsilon*integrate (" boundary",
9 beta*penalty ()*g(epsilon ,t)*v

10 - g(epsilon ,t)*dot(grad_h(v),normal ()));
11 #endif // NEUMANN
12 }
13 field gh (Float epsilon , Float t, const field& uh , const test& v) {
14 return - integrate (dot(compose(f,uh),grad_h(v)))
15 + integrate (" internal_sides",
16 compose (phi , normal(), inner(uh), outer(uh))* jump(v))
17 + integrate (" boundary",
18 compose (phi , normal(), uh , g(epsilon ,t))*v);
19 }

The included file ‘runge kutta semiimplicit.icc’ is not shown here but is available in the
example directory.

Running the program

0

1

2

−1 0 1

u(t, x)

x

t = 0
t = 1

0

1

2

−1 0 1

u(t, x)

x

t = 0
t = 1

Figure 4.14: Burgers equation with a small diffusion (ε = 10−3). Third order in time semi-implicit
scheme with P1d element. (left) without limiter ; (right) with limiter.

Running the program writes with h = 2/400 and ε = 10−2 writes:

make burgers_diffusion_dg

mkgeo_grid -e 400 -a -1 -b 1 > line.geo

./burgers_diffusion_dg line P1d 0.01 1000 1 3 > line.branch

branch -gnuplot line.branch -umin -0.1 -umax 2.1

Decreasing ε = 10−3 leads to a sharper solution:

./burgers_diffusion_dg line P1d 0.001 1000 1 3 > line.branch

branch -gnuplot line.branch -umin -0.1 -umax 2.1

As mentioned in [Wang et al., 2015a], the time step should be chosen smaller when ε decreases.
The result is shown on Fig. 4.14.left. Observe the oscillations near the smoothed shock when there

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/burgers_diffusion_operators.icc

Chapter 4. Discontinuous Galerkin methods 175

is no limiter while the value goes outside [0, 2]. Conversely, with a limiter (see Fig. 4.14.right) the
approximate solution is decreasing and there is no more oscillations: the values remains in the
range [0 : 2].

176 Rheolef version 7.1 update 22 March 2020

4.4 Fluids and solids computations revisited

4.4.1 The linear elasticity problem

The elasticity problem (2.2) has been introduced in volume 1, section 2.1.1, page 41.

(P): find u such that

−div (λdiv(u).I + 2D(u)) = f in Ω

u = g on ∂Ω

where λ > −1 is a constant and f ,g given. This problem is a natural extension to vector-valued
field of the Poisson problem with Dirichlet boundary conditions.

The variational formulation writes:

(FV)h: find u ∈ V(g) such that

a(u,v) = lh(v), ∀v ∈ V(0)

where

V(g) = {v ∈ H1(Ω)d; v = g on ∂Ω}

a(u,v) =

∫

Ω

(λ div(u) div(v) + 2D(u) :D(v)) dx

l(v) =

∫

Ω

f .v dx

The discrete variational formulation writes:

(FV)h: find uh ∈ Xh such that

ah(uh, vh) = lh(vh), ∀vh ∈ Xh

where

Xh = {vh ∈ L2(Ω)d;vh|K ∈ P dk , ∀K ∈ Th}

ah(u,v) =

∫

Ω

(λ divh(u) divh(v) + 2Dh(u) :Dh(v)) dx

+
∑

S∈Sh

∫

S

(β̟s[[u]].[[v]]− [[u]].{{λdivh(v)n+ 2Dh(v)n}} − [[v]].{{λdivh(u)n+ 2Dh(u)n}}) ds

lh(v) =

∫

Ω

f .v dx+

∫

∂Ω

g. (β̟sv − λdivh(v)n− 2Dh(v)n) ds

where k > 1 is the polynomial degree in Xh.

Chapter 4. Discontinuous Galerkin methods 177

Example file 4.14: elasticity taylor dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "taylor.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh (omega , argv[2], "vector ");
9 Float lambda = (argc > 3) ? atof(argv [3]) : 1;

10 size_t d = omega.dimension ();
11 size_t k = Xh.degree ();
12 Float beta = (k+1)*(k+d)/ Float(d);
13 trial u (Xh); test v (Xh);
14 form a = integrate (lambda*div_h(u)*div_h(v) + 2*ddot(Dh(u),Dh(v)))
15 + integrate (omega.sides(),
16 beta*penalty ()* dot(jump(u),jump(v))
17 - lambda*dot(jump(u),average(div_h(v)* normal ()))
18 - lambda*dot(jump(v),average(div_h(u)* normal ()))
19 - 2*dot(jump(u),average(Dh(v)* normal ()))
20 - 2*dot(jump(v),average(Dh(u)* normal ())));
21 field lh = integrate (dot(f(),v))
22 + integrate (omega.boundary(),
23 beta*penalty ()* dot(g(),jump(v))
24 - lambda*dot(g(),average(div_h(v)* normal ()))
25 - 2*dot(g(),average(Dh(v)* normal ())));
26 field uh(Xh);
27 problem p (a);
28 p.solve (lh, uh);
29 dout << uh;
30 }

Comments

The data are given when d = 2 by:

g(x) =

(
− cos(πx0) sin(πx1)
sin(πx0) cos(πx1)

)
and f = 2π2g (4.18)

This choice is convenient since the exact solution is known u = g. This benchmark solution
was proposed by Taylor [1923] in the context of the Stokes problem. Note that the solution is
independent of λ since div(u) = 0.

Example file 4.15: taylor.h

1 struct g {
2 point operator () (const point& x) const {
3 return point(-cos(pi*x[0])* sin(pi*x[1]),
4 sin(pi*x[0])* cos(pi*x[1])); }
5 g() : pi(acos(Float (-1.0))) {}
6 const Float pi;
7 };
8 struct f {
9 point operator () (const point& x) const { return 2*sqr(pi)*_g(x); }

10 f() : pi(acos(Float (-1.0))) , _g() {}
11 const Float pi; g _g;
12 };

As the exact solution is known, the error can be computed. The code
elasticity taylor error dg.cc and its header file taylor exact.h compute the error in
L2, L∞ and energy norms. These files are not listed here but are available in the Rheolef

example directory. The computation writes:

make elasticity_taylor_dg elasticity_taylor_error_dg

mkgeo_grid -t 10 > square.geo

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/elasticity_taylor_dg.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/taylor.h

178 Rheolef version 7.1 update 22 March 2020

./elasticity_taylor_dg square P1d | ./elasticity_taylor_error_dg

./elasticity_taylor_dg square P2d | ./elasticity_taylor_error_dg

4.4.2 The Stokes problem

Let us consider the Stokes problem for the driven cavity in Ω =]0, 1[d, d = 2, 3. The problem has
been introduced in volume 1, section 2.1.4, page 51.

(P): find u and p, defined in Ω, such that

− div(2D(u)) + ∇p = f in Ω,
− divu = 0 in Ω,

u = g on ∂Ω

where f and g are given. This problem is the extension to divergence free vector fields of the
elasticity problem. The variational formulation writes:

(V F)h find u ∈ V(g) and p ∈ L2(Ω) such that:

a(u,v) + b(v, p) = l(v), ∀v ∈ V(0),
b(u, q) = 0, ∀q ∈ L2(Ω)

(4.19)

where

V(g) = {v ∈ H1(Ω)d; v = g on ∂Ω}

a(u,v) =

∫

Ω

2D(u) :D(v) dx

b(u, q) = −
∫

Ω

div(u) q dx

l(v) =

∫

Ω

f .v dx

The discrete variational formulation writes:

(V F)h find uh ∈ Xh and ph ∈ Qh such that:

ah(uh,vh) + bh(vh, ph) = lh(vh), ∀vh ∈ Xh,
bh(uh, qh) − ch(ph, qh) = kh(q), ∀qh ∈ Qh.

(4.20)

The discontinuous finite element spaces are defined by:

Xh = {vh ∈ L2(Ω)d;vh|K ∈ P dk , ∀K ∈ Th}
Qh = {qh ∈ L2(Ω)d; qh|K ∈ P dk , ∀K ∈ Th}

where k > 1 is the polynomial degree. Note that velocity and pressure are approximated by the
same polynomial order. This method was introduced by Cockburn et al. [2002] and some recent
theoretical results can be founded in di Pietro and Ern [2010]. The forms are defined for all

Chapter 4. Discontinuous Galerkin methods 179

u, v ∈ H1(Th)d and q ∈ L2(Ω) by (see e.g. di Pietro and Ern, 2012, p. 249):

ah(u,v) =

∫

Ω

2Dh(u) :Dh(v) dx

+
∑

S∈Sh

∫

S

(β̟s[[u]].[[v]]− [[u]].{{2Dh(v)n}} − [[v]].{{2Dh(u)n}}) ds

bh(u, q) =

∫

Ω

u.∇hq dx−
∑

S∈S
(i)
h

∫

S

{{u}}.n [[q]] ds

ch(p, q) =
∑

S∈S
(i)
h

∫

S

hs [[p]] [[q]] ds

lh(v) =

∫

Ω

f .v ds+

∫

∂Ω

g. (β̟s v − 2Dh(v)n) ds

kh(q) =

∫

∂Ω

g.n q ds

The stabilization form ch controls the pressure jump across internal sides. This stabilization term
is necessary when using equal order polynomial approximation for velocity and pressure. The
definition of the forms is grouped in a subroutine: it will be reused later for the Navier-Stokes
problem.

Example file 4.16: stokes dirichlet dg.icc

1 void stokes_dirichlet_dg (const space& Xh, const space& Qh,
2 form& a, form& b, form& c, form& mp, field& lh, field& kh,
3 integrate_option iopt = integrate_option ())
4 {
5 size_t k = Xh.degree ();
6 size_t d = Xh.get_geo (). dimension ();
7 Float beta = (k+1)*(k+d)/ Float(d);
8 trial u (Xh), p (Qh);
9 test v (Xh), q (Qh);

10 a = integrate (2* ddot(Dh(u),Dh(v)), iopt)
11 + integrate (" sides", beta*penalty ()*dot(jump(u),jump(v))
12 - 2*dot(jump(u),average(Dh(v)* normal ()))
13 - 2*dot(jump(v),average(Dh(u)* normal ())), iopt);
14 lh = integrate (dot(f(),v), iopt)
15 + integrate (" boundary", beta*penalty ()*dot(g(),v)
16 - 2*dot(g(),Dh(v)* normal ()), iopt);
17 b = integrate (dot(u,grad_h(q)), iopt)
18 + integrate (" internal_sides", - dot(average(u),normal ())* jump(q), iopt);
19 kh = integrate (" boundary", dot(g(),normal ())*q, iopt);
20 c = integrate (" internal_sides", h_local ()* jump(p)*jump(q), iopt);
21 mp = integrate (p*q, iopt);
22 }

A simple test program writes:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/stokes_dirichlet_dg.icc

180 Rheolef version 7.1 update 22 March 2020

Example file 4.17: stokes taylor dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "taylor.h"
5 #include "stokes_dirichlet_dg.icc"
6 int main(int argc , char**argv) {
7 environment rheolef (argc , argv);
8 geo omega (argv [1]);
9 space Xh (omega , argv[2], "vector ");

10 space Qh (omega , argv [2]);
11 form a, b, c, mp;
12 field lh , kh;
13 stokes_dirichlet_dg (Xh , Qh , a, b, c, mp , lh , kh);
14 field uh (Xh , 0), ph (Qh , 0);
15 problem_mixed stokes (a, b, c);
16 stokes.set_metric (mp);
17 stokes.solve (lh, kh, uh, ph);
18 dout << catchmark ("u") << uh
19 << catchmark ("p") << ph;
20 }

Comments

The data are given when d = 2 by (4.18). This choice is convenient since the exact solution is
known u = g and p = 0. The code stokes taylor error dg.cc compute the error in L2, L∞ and
energy norms. This code it is not listed here but is available in the Rheolef example directory.
The computation writes:

make stokes_taylor_dg stokes_taylor_error_dg

mkgeo_grid -t 10 > square.geo

./stokes_taylor_dg square P1d | ./stokes_taylor_error_dg

./stokes_taylor_dg square P2d | ./stokes_taylor_error_dg

4.5 The stationnary Navier-Stokes equations

4.5.1 Problem statemment

The Navier-Stokes problem has been already introduced in volume 1, section 4.5 page 180. Here
we consider the stationary version of this problem. Let Re > 0 be the Reynolds number. The
problem writes:

(P): find u and p, defined in Ω, such that

Re (u.∇)u − div(2D(u)) + ∇p = f in Ω,
− divu = 0 in Ω,

u = g on ∂Ω

Note that, when Re > 0, the problem is nonlinear, due to the inertia term u.∇u. When Re = 0
the problem reduces to the linear Stokes problem, presented in the previous section/

The variational formulation of this nonlinear problem writes:

(FV): find u ∈ V(g) and p ∈ L2(Ω) such that

Re t(u; u, v) + a(u,v) + b(v, p) = l(v), ∀v ∈ V(0),
b(u, q) = 0, ∀q ∈ L2(Ω)

where the space V(g) and forms a, b and l are given as in the previous section 4.4.2 for the Stokes

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/stokes_taylor_dg.cc

Chapter 4. Discontinuous Galerkin methods 181

problem and the trilinear form t(.; ., .) is given by:

t(w; u, v) =

∫

Ω

((w.∇)u).v dx

4.5.2 The discrete problem

Let

t(w; u, u) =

∫

Ω

(w.∇u).u dx

Observe that, for all u, w ∈ H1(Ω)d we have

∫

Ω

(w.∇u).u dx =

d−1∑

i,j=0

∫

Ω

ui wj ∂j(ui) dx

=

d−1∑

i,j=0

−
∫

Ω

ui ∂j(ui wj) dx+

∫

∂Ω

u2i wj nj dx

=

d−1∑

i,j=0

−
∫

Ω

ui ∂j(ui)wj dx−
∫

Ω

u2i ∂j(wj) dx+

∫

∂Ω

u2i wj nj dx

= −
∫

Ω

(w.∇u).u dx−
∫

Ω

div(w) |u|2 dx+

∫

∂Ω

w.n |u|2 ds (4.21)

Thus

t(w; u, u) =

∫

Ω

(w.∇u).u dx = −1

2

∫

Ω

div(w) |u|2 dx+
1

2

∫

∂Ω

w.n |u|2 ds

When div(w) = 0, the trilinear form t(.; ., .) reduces to a boundary term: it is formally skew-
symmetric. The skew-symmetry of t is an important property: let (v, q) = (u, p) as test functions
in (FV). We obtain:

a(u,u) = l(u)

In other words, we obtain the same energy balance as for the Stokes flow and inertia do not
contribute to the energy balance. This is an important property and we aim at obtaining the
same one at the discrete level. As the discrete solution uh is not exactly divergence free, following
Temam, we introduce the following modified trilinear form:

t∗(w; u, v) =

∫

Ω

(
(w.∇u) .v +

1

2
div(w)u.v

)
dx− 1

2

∫

∂Ω

(w.n)u.v ds, ∀u,v,w ∈ H1(Ω)d

This form integrates the non-vanishing terms and we have:

t∗(w; u, u) = 0, ∀u,w ∈ H1(Ω)d

When the discrete solution is not exactly divergence free, it is better to use t∗ than t.

The discontinuous finite element spaces Xh and Qh and forms ah, bh, ch, lh and kh are defined as
in the previous section. Let us introduce t∗h, the following discrete trilinear form, defined for all
uh,vh,wh ∈ Xh:

t∗h(wh; uh, vh) =

∫

Ω

(
(wh.∇huh) .vh +

1

2
divh(wh)uh.vh

)
dx− 1

2

∫

∂Ω

(wh.n)uh.vh ds

182 Rheolef version 7.1 update 22 March 2020

Note that t∗h is similar to t∗: the gradient and divergence has been replaced by their broken
counterpart in the first term. As Xh 6⊂ H1(Ω)d, the skew-symmetry property is not expected to
be true at the discrete level. Then

t∗h(wh; uh, uh) =
∑

K∈Th

∫

K

(
(wh.∇uh) .uh +

1

2
div(wh) |uh|2

)
dx− 1

2

∫

∂Ω

(wh.n) |uh|2 ds

As the restriction of uh and wh to each K ∈ Th belongs to H1(K)d, we have, using a similar
integration by part:

∫

K

(wh.∇uh).uh dx = −1

2

∫

K

div(wh) |uh|2 dx+
1

2

∫

∂K

(wh.n) |uh|2 ds

Thus

t∗h(wh; uh, uh) =
1

2

∑

K∈Th

∫

∂K

(wh.n) |uh|2 ds−
1

2

∫

∂Ω

(wh.n) |uh|2 ds

The terms on boundary sides vanish while those on internal sides can be grouped:

t∗h(wh; uh, uh) =
1

2

∑

S∈S
(i)
h

∫

S

[[|uh|2wh]].n ds

The jump term [[(uh.vh)wh]].n is not easily manageable and could be developed. A short compu-
tation shows that, for all scalar fields φ, ϕ we have on any internal side the following identity:

[[φϕ]] = [[φ]]{{ϕ}}+ {{φ}}[[ϕ]] (4.22)

{{φϕ}} = {{φ}}{{ϕ}}+ 1

4
[[φ]][[ϕ]] (4.23)

Then

t∗h(wh; uh, uh) =
1

2

∑

S∈S
(i)
h

∫

S

(
{{wh}}.n [[|uh|2]] + [[wh]].n {{|uh|2}}

)
ds

=
∑

S∈S
(i)
h

∫

S

(
{{wh}}.n ([[uh]].{{uh}}) +

1

2
[[wh]].n {{|uh|2}}

)
ds

Thus, as expected, the skew-symmetry property is no more satisfied at the discrete level, due to
the jumps of the fields at the inter-element boundaries. Following the previous idea, we introduce
the following modified discrete trilinear form:

th(wh; uh, vh) = t∗h(wh; uh, vh)−
∑

S∈S
(i)
h

∫

S

(
{{wh}}.n ([[uh]].{{vh}}) +

1

2
[[wh]].n {{uh.vh}}

)
ds

=

∫

Ω

(
(wh.∇huh) .vh +

1

2
divh(wh)uh.vh

)
dx− 1

2

∫

∂Ω

(wh.n)uh.vh ds

−
∑

S∈S
(i)
h

∫

S

(
{{wh}}.n ([[uh]].{{vh}}) +

1

2
[[wh]].n {{uh.vh}}

)
ds (4.24)

This expression has been proposed by di Pietro and Ern [2010, p. 22], eqn (72) (see also di Pietro
and Ern, 2012, p. 272, eqn (6.57)). The boundary term introduced in th may be compensated in
the right-hand side:

l∗h(v) := lh(v)−
Re

2

∫

∂Ω

(g.n)g.vh ds

Chapter 4. Discontinuous Galerkin methods 183

Note that the boundary term introduced in th is compensated in the right-hand side l∗h.

Example file 4.18: inertia.h

1 template <class W, class U, class V>
2 form inertia (W w, U u, V v,
3 integrate_option iopt = integrate_option ())
4 {
5 return
6 integrate (dot(grad_h(u)*w,v) + 0.5* div_h(w)*dot(u,v), iopt)
7 + integrate (" boundary", - 0.5* dot(w,normal ())* dot(u,v), iopt)
8 + integrate (" internal_sides",
9 - dot(average(w),normal ())* dot(jump(u),average(v))

10 - 0.5* dot(jump(w),normal ())
11 *(dot(average(u),average(v)) + 0.25* dot(jump(u),jump(v))), iopt);
12 }
13 field inertia_fix_rhs (test v,
14 integrate_option iopt = integrate_option ())
15 {
16 return integrate (" boundary", - 0.5* dot(g(),normal ())* dot(g(),v), iopt);
17 }

The discrete problem is

(FV)h: find uh ∈ Xh and p ∈ Qh such that

Re th(uh; uh, vh) + ah(uh,vh) + bh(vh, ph) = l∗h(vh), ∀vh ∈ Xh,
bh(uh, qh) − ch(ph, qh) = kh(q), ∀qh ∈ Qh

(4.25)

The simplest approach for solving the discrete problem is to consider a fixed-point algorithm. The

sequence
(
u
(k)
h

)
k>0

is defined by recurrence as:

• k = 0: let u
(0)
h ∈ Xh being known.

• k > 0: let u
(k−1)
h ∈ Xh given. Find u

(k)
h ∈ Xh and p

(k)
h ∈ Qh such that

Re th

(
u
(k−1)
h ; u

(k)
h , vh

)
+ ah

(
u
(k)
h ,vh

)
+ bh

(
vh, p

(k)
h

)
= l∗h(vh), ∀vh ∈ Xh,

bh

(
u
(k)
h , qh

)
− ch

(
p
(k)
h , qh

)
= kh(q), ∀qh ∈ Qh.

At each step k > 0, this algorithm involves a linear subproblem of Stokes-type.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/inertia.h

184 Rheolef version 7.1 update 22 March 2020

Example file 4.19: navier stokes taylor dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "taylor.h"
5 #include "stokes_dirichlet_dg.icc"
6 #include "inertia.h"
7 int main(int argc , char**argv) {
8 environment rheolef (argc , argv);
9 geo omega (argv [1]);

10 space Xh (omega , argv[2], "vector ");
11 space Qh (omega , argv [2]);
12 Float Re = (argc > 3) ? atof(argv [3]) : 1;
13 size_t max_iter = (argc > 4) ? atoi(argv [4]) : 1;
14 form a, b, c, mp;
15 field lh , kh;
16 stokes_dirichlet_dg (Xh , Qh , a, b, c, mp , lh , kh);
17 field uh (Xh , 0), ph (Qh , 0);
18 problem_mixed stokes (a, b, c);
19 stokes.set_metric (mp);
20 stokes.solve (lh, kh, uh, ph);
21 trial u (Xh); test v (Xh);
22 form a1 = a + Re*inertia (uh, u, v);
23 lh += Re*inertia_fix_rhs (v);
24 derr << "#k r as" << endl;
25 for (size_t k = 0; k < max_iter; ++k) {
26 stokes = problem_mixed (a1, b, c);
27 stokes.set_metric (mp);
28 stokes.solve (lh, kh, uh, ph);
29 form th = inertia (uh, u, v);
30 a1 = a + Re*th;
31 field rh = a1*uh + b.trans_mult(ph) - lh;
32 derr << k << " " << rh.max_abs () << " " << th(uh,uh) << endl;
33 }
34 dout << catchmark ("Re") << Re << endl
35 << catchmark ("u") << uh
36 << catchmark ("p") << ph;
37 }

Comments

The data are given when d = 2 by (4.18). This choice is convenient since the exact solution is known
u = g and p = −(Re/4)(cos(2πx0) + cos(2πx1)). The code navier stokes taylor error dg.cc

compute the error in L2, L∞ and energy norms. This code it is not listed here but is available in
the Rheolef example directory. The computation writes:

make navier_stokes_taylor_dg navier_stokes_taylor_error_dg

./navier_stokes_taylor_dg square P1d 10 10 | ./navier_stokes_taylor_error_dg

./navier_stokes_taylor_dg square P2d 10 10 | ./navier_stokes_taylor_error_dg

4.5.3 A conservative variant

Remark the identity

div(u⊗ u) = (u.∇)u+ div(u)u

The momentum conservation can be rewritten in conservative form and the problem writes:

(P̃): find u and p, defined in Ω, such that

div(Reu⊗ u− 2D(u)) + ∇p = f in Ω,
− divu = 0 in Ω,

u = g on ∂Ω

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/navier_stokes_taylor_dg.cc

Chapter 4. Discontinuous Galerkin methods 185

Note the Green formulae (see volume 1, appendix A.1.2, page 241):

∫

Ω

div(u⊗ u).v dx = −
∫

Ω

(u⊗ u) :∇v dx+

∫

∂Ω

(u.n) (u.v) ds

The variational formulation is:

(F̃ V): find u ∈ V(g) and p ∈ L2(Ω) such that

Re t̃(u; u, v) + a(u,v) + b(v, p) = l̃(v), ∀v ∈ V(0),
b(u, q) = 0, ∀q ∈ L2(Ω)

where the forms t̃ and l̃h are given by:

t̃(w; u, v) = −
∫

Ω

(w ⊗ u) :∇v dx

l̃(v) = l(v)−Re

∫

∂Ω

(g.n) (g.v) ds

Note that the right-hand side l̃ contains an additional term that compensates those coming from
the integration by parts. Then, with v = u:

t̃(w; u, u) = −
∫

Ω

(w ⊗ u) :∇u dx

=

∫

Ω

div(w ⊗ u).u dx−
∫

∂Ω

(w ⊗ u) : (u⊗ n) dx

=

∫

Ω

(((u.∇)w).u+ div(u) (u.w)) dx−
∫

∂Ω

(u.n) (u.w) dx

From an integration by part similar to (4.21):

∫

Ω

(u.∇w).u dx = −
∫

Ω

(u.∇u).w dx−
∫

Ω

div(u) (u.w) dx+

∫

∂Ω

(u.n) (u.w) ds

The term (u.∇w).u do not reapper after the integration by parts: instead, it appears (u.∇u).w.
Thus, the structure of the t̃ trilinear form do not permit a general skew-symmetry property as it
was the case for t. It requires the three arguments to be the same:

t̃(u; u, u) =

∫

Ω

(
((u.∇)u).u+ div(u) |u|2

)
dx−

∫

∂Ω

(u.n) |u|2 dx

Using (4.21) with w = u leads to:

∫

Ω

((u.∇)u).u dx = −1

2

∫

Ω

div(u) |u|2 dx+
1

2

∫

∂Ω

(u.n) |u|2 ds (4.26)

Then

t̃(u; u, u) =
1

2

∫

Ω

div(u) |u|2 dx− 1

2

∫

∂Ω

(u.n) |u|2 ds

When working with velocities that are not divergence-free, a possible modification of the trilinear
form t̃ is to consider

t̃∗(w; u, v) = t̃(w; u, v)− 1

2

∫

Ω

div(v) (u.w) dx+
1

2

∫

∂Ω

(v.n) (u.w) ds

= −
∫

Ω

(
(w ⊗ u) :D(v) +

1

2
div(v) (u.w)

)
dx+

1

2

∫

∂Ω

(v.n) (u.w) ds

186 Rheolef version 7.1 update 22 March 2020

Then we have

t̃∗(u; u, u) = 0, ∀u ∈ H1(Ω)d

The new variational formulation is:

(F̃ V)∗: find u ∈ V(g) and p̃ ∈ L2(Ω) such that

Re t̃∗(u; u, v) + a(u,v) + b(v, p̃) = l̃(v), ∀v ∈ V(0),
b(u, q) = 0, ∀q ∈ L2(Ω)

One can easily check that when (u, p̃) is a solution of (F̃ V)∗, then (u, p) is a solution of (F̃ V)
with p = p̃+Re|u|/2. The apparition of the kinetic energy term Re|u|/2 in the modified pressure
field p̃ is due to the introduction of the div(v) (u.w) term in the trilinear form t̃∗.

At the discrete level, let us define for all uh,vh,wh ∈ Xh:

t̃∗h(wh; uh, vh) = −
∫

Ω

(
(wh ⊗ uh) :∇hvh +

1

2
divh(vh) (uh.wh)

)
dx

+
1

2

∫

∂Ω

(vh.n) (uh.wh) ds

Note that t̃∗h is similar to t̃∗: the gradient and divergence has been replaced by their broken
counterpart in the first term. As Xh 6⊂ H1(Ω)d, the skew-symmetry property is not expected to
be true at the discrete level. Then

t̃∗h(uh; uh, uh) = −
∫

Ω

(
(uh ⊗ uh) :∇huh +

1

2
divh(uh) |uh|2

)
dx+

1

2

∫

∂Ω

(uh.n) |uh|2 ds

Next, using (4.26) in each K, and then developing thanks to (4.22)-(4.23), we get

t̃∗h(uh; uh, uh) =
1

2

∫

∂Ω

(uh.n) |uh|2 ds−
1

2

∑

K∈Th

∫

∂K

(uh.n) |uh|2 ds

= −1

2

∑

S∈S
(i)
h

∫

S

[[(uh.n) |uh|2]] ds

= −1

2

∑

S∈S
(i)
h

∫

S

(
({{uh}}.n) [[|uh|2]] + ([[uh]].n) {{|uh|2}}

)
ds

= −
∑

S∈S
(i)
h

∫

S

(
({{uh}}.n) ({{uh}}.[[uh]]) +

1

2
([[uh]].n) {{|uh|2}}

)
ds

The idea is to integrate this term in the definition of a discrete t̃h. One of the possibilities is

t̃h(wh; uh, vh) = t̃∗h(wh; uh, vh) +
∑

S∈S
(i)
h

∫

S

(
({{uh}}.n) ({{wh}}.[[vh]]) +

1

2
{{uh.wh}} ([[vh]].n)

)
ds

= −
∫

Ω

(
(wh ⊗ uh) :∇hvh +

1

2
divh(vh) (uh.wh)

)
dx

+
1

2

∫

∂Ω

(vh.n) (uh.wh) ds

+
∑

S∈S
(i)
h

∫

S

(
({{uh}}.n) ({{wh}}.[[vh]]) +

1

2
{{uh.wh}} ([[vh]].n)

)
ds (4.27)

This expression was proposed by di Pietro and Ern [2010, p. 21], eqn (73) (see also di Pietro and
Ern, 2012, p. 282) following and original idea introduced in Cockburn et al. [2005].

Chapter 4. Discontinuous Galerkin methods 187

Example file 4.20: inertia cks.icc

1 form inertia (field w, trial u, test v,
2 integrate_option iopt = integrate_option ())
3 {
4 return
5 integrate (- dot(trans(grad_h(v))*w,u) - 0.5* div_h(v)*dot(u,w), iopt)
6 + integrate (" internal_sides",
7 dot(average(u),normal ())* dot(jump(v),average(w))
8 + 0.5* dot(jump(v),normal ())
9 *(dot(average(u),average(w)) + 0.25* dot(jump(u),jump(w))), iopt)

10 + integrate (" boundary", 0.5* dot(v,normal ())* dot(u,w), iopt);
11 }
12 field inertia_fix_rhs (test v,
13 integrate_option iopt = integrate_option ())
14 {
15 return integrate (" boundary", -dot(g(),normal ())* dot(g(),v), iopt);
16 }

The discrete problem is

(F̃ V)h: find uh ∈ Xh and p̃ ∈ Qh such that

Re t̃h(uh; uh, vh) + ah(uh,vh) + bh(vh, p̃h) = l̃∗h(vh), ∀vh ∈ Xh,
bh(uh, qh) − ch(ph, qh) = kh(q), ∀qh ∈ Qh

A simple test program is obtained by replacing in navier stokes taylor dg.cc the include
inertia.h by inertia cks.icc. The compilation and run are similar.

4.5.4 Newton solver

The discrete problems (FV)h can be put in a compact form:

F (uh, ph) = 0

where F is defined in variational form:

〈F (uh, ph), (vh, qh)〉 =
(
Re th(uh; uh, vh) + ah(uh,vh) + bh(vh, ph) − l∗h(vh)

bh(uh, qh) − ch(ph, qh) − kh(q)

)

for all (vh, qh) ∈ Xh × Qh. Note that, after some minor modifications in the definition of F ,

this method could also applies for the locally conservative formulation (F̃ V)h. The previous
formulation is simply the variational expression of F (uh, ph) = 0. The Newton method defines

the sequence
(
u
(k)
h

)
k>0

by recurrence as:

• k = 0: let u
(0)
h ∈ Xh being known.

• k > 0: let u
(k−1)
h ∈ Xh given. Find δuh ∈ Xh and δph ∈ Qh such that

F ′
(
u
(k−1)
h , p

(k−1)
h

)
.(δuh, δph) = −F

(
u
(k−1)
h , p

(k−1)
h

)

and then defines
u
(k)
h = u

(k−1)
h + δuh and p

(k)
h = p

(k−1)
h + δph

At each step k > 0, this algorithm involves a linear subproblem involving the Jacobean F ′ that is
defined by its variational form:

〈F ′
(
u
(k−1)
h , p

(k−1)
h

)
.(δuh, δph), (vh, qh)〉

=

(
Re (th(δuh; uh, vh) + th(uh; δuh, vh)) + ah(δuh,vh) + bh(vh, δph)

bh(δuh, qh) − ch(δph, qh)

)

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/inertia_cks.icc

188 Rheolef version 7.1 update 22 March 2020

Example file 4.21: navier stokes taylor newton dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "taylor.h"
5 #include "stokes_dirichlet_dg.icc"
6 #include "inertia.h"
7 #include "navier_stokes_dg.h"
8 int main(int argc , char**argv) {
9 environment rheolef (argc , argv);

10 Float eps = numeric_limits <Float >:: epsilon ();
11 geo omega (argv [1]);
12 string approx = (argc > 2) ? argv [2] : "P1d";
13 Float Re = (argc > 3) ? atof(argv [3]) : 100;
14 Float tol = (argc > 4) ? atof(argv [4]) : eps;
15 size_t max_iter = (argc > 5) ? atoi(argv [5]) : 100;
16 string restart = (argc > 6) ? argv [6] : "";
17 navier_stokes_dg F (Re , omega , approx);
18 navier_stokes_dg :: value_type xh = F.initial (restart);
19 int status = damped_newton (F, xh , tol , max_iter , &derr);
20 dout << catchmark ("Re") << Re << endl
21 << catchmark ("u") << xh[0]
22 << catchmark ("p") << xh[1];
23 return status;
24 }

Comments

The implementation of the Newton method follows the generic approach introduced in volume 1,
section 3.2.3, page 117. For that purpose we define a class navier stokes dg.

Example file 4.22: navier stokes dg.h

1 struct navier_stokes_dg {
2 typedef Float float_type;
3 typedef Eigen::Matrix <field ,2,1> value_type;
4 navier_stokes_dg (Float Re , const geo& omega , string approx);
5 value_type initial (string restart) const;
6 value_type residue (const value_type& uh) const;
7 void update_derivative (const value_type& uh) const;
8 value_type derivative_solve (const value_type& mrh) const;
9 value_type derivative_trans_mult (const value_type& mrh) const;

10 Float space_norm (const value_type& uh) const;
11 Float dual_space_norm (const value_type& mrh) const;
12 Float Re;
13 space Xh , Qh;
14 integrate_option iopt;
15 form a0, b, c, mu, mp;
16 field lh0 , lh , kh;
17 problem pmu , pmp;
18 mutable form a1;
19 mutable problem_mixed stokes1;
20 };
21 #include "navier_stokes_dg1.icc"
22 #include "navier_stokes_dg2.icc"

The member functions of the class are defined in two separate files.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/navier_stokes_taylor_newton_dg.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/navier_stokes_dg.h

Chapter 4. Discontinuous Galerkin methods 189

Example file 4.23: navier stokes dg1.icc

1 navier_stokes_dg :: navier_stokes_dg (
2 Float Re1 , const geo& omega , string approx)
3 : Re(Re1), Xh(), Qh(), iopt(), a0(), b(), c(), mu(), mp(), lh0(), lh(), kh(),
4 pmu(), pmp(), a1(), stokes1 ()
5 {
6 Xh = space (omega , approx , "vector ");
7 Qh = space (omega , approx);
8 iopt.set_family(integrate_option ::gauss);
9 iopt.set_order (2*Xh.degree ()+1);

10 stokes_dirichlet_dg (Xh , Qh , a0 , b, c, mp , lh0 , kh , iopt);
11 trial u (Xh); test v (Xh);
12 lh = lh0 + Re*inertia_fix_rhs (v, iopt);
13 mu = integrate (dot(u,v), iopt);
14 pmu = problem (mu);
15 pmp = problem (mp);
16 }
17 navier_stokes_dg :: value_type
18 navier_stokes_dg :: initial (string restart) const {
19 value_type xh = { field(Xh, 0), field(Qh , 0) };
20 Float Re0 = 0;
21 if (restart == "") {
22 problem_mixed stokes0 (a0 , b, c);
23 stokes0.set_metric (mp);
24 stokes0.solve (lh0 , kh , xh[0], xh [1]);
25 } else {
26 idiststream in (restart);
27 in >> catchmark ("Re") >> Re0
28 >> catchmark ("u") >> xh[0]
29 >> catchmark ("p") >> xh[1];
30 check_macro (xh[1]. get_space () == Qh, "unexpected "
31 << xh[0]. get_space (). name() << " approximation in file \""
32 << restart << "\" (" << Xh.name() << " expected)");
33 }
34 derr << "# continuation: from Re=" << Re0 << " to " << Re << endl;
35 return xh;
36 }
37 navier_stokes_dg :: value_type
38 navier_stokes_dg :: residue (const value_type& xh) const {
39 trial u (Xh); test v (Xh);
40 form a = a0 + Re*inertia(xh[0], u, v, iopt);
41 value_type mrh = { a*xh[0] + b.trans_mult(xh[1]) - lh ,
42 b*xh[0] - c*xh[1] - kh};
43 return mrh;
44 }
45 void navier_stokes_dg :: update_derivative (const value_type& xh) const {
46 trial u (Xh); test v (Xh);
47 a1 = a0 + Re*(inertia(xh[0], u, v, iopt) + inertia(u, xh[0], v, iopt));
48 stokes1 = problem_mixed (a1 , b, c);
49 stokes1.set_metric (mp);
50 }
51 navier_stokes_dg :: value_type
52 navier_stokes_dg :: derivative_solve (const value_type& mrh) const {
53 value_type delta_xh = { field(Xh, 0), field(Qh , 0) };
54 stokes1.solve (mrh[0], mrh[1], delta_xh [0], delta_xh [1]);
55 return delta_xh;
56 }
57 navier_stokes_dg :: value_type
58 navier_stokes_dg :: derivative_trans_mult (const value_type& mrh) const {
59 value_type rh = { field (Xh), field (Qh) };
60 pmu.solve (mrh[0], rh [0]);
61 pmp.solve (mrh[1], rh [1]);
62 value_type mgh = { a1.trans_mult(rh[0]) + b.trans_mult(rh[1]),
63 b*rh[0] - c*rh[1] };
64 return mgh;
65 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/navier_stokes_dg1.icc

190 Rheolef version 7.1 update 22 March 2020

Example file 4.24: navier stokes dg2.icc

1 Float navier_stokes_dg :: space_norm (const value_type& xh) const {
2 return sqrt (mu(xh[0],xh[0]) + mp(xh[1],xh [1]));
3 }
4 Float navier_stokes_dg :: dual_space_norm (const value_type& mrh) const {
5 value_type rh = { field(Xh ,0), field (Qh ,0) };
6 pmu.solve (mrh[0], rh [0]);
7 pmp.solve (mrh[1], rh [1]);
8 return sqrt (dual(rh[0],mrh [0]) + dual(rh[1],mrh [1]));
9 }

make navier_stokes_taylor_newton_dg navier_stokes_taylor_error_dg

./navier_stokes_taylor_newton_dg square P2d 1000 | ./navier_stokes_taylor_error_dg

4.5.5 Application to the driven cavity benchmark

Example file 4.25: cavity dg.h

1 struct g {
2 point operator () (const point& x) const {
3 return point ((abs(1-x[1]) < 1e-7) ? 1 : 0, 0, 0); }
4 };
5 struct f {
6 point operator () (const point& x) const { return point (0,0,0); }
7 };

The program navier stokes cavity newton dg.cc is obtained by replacing in
navier stokes taylor newton dg.cc the include taylor.h by cavity dg.h that defines
the boundary conditions. The compilation and run are similar.

make navier_stokes_cavity_newton_dg streamf_cavity

./navier_stokes_cavity_newton_dg square P1d 500 > square.field

field square.field -proj -field | ./streamf_cavity | \

field -bw -n-iso-negative 10 -

10
−10

10
−5

10
0

0 5 10 15 20 25

∥

∥

∥
r
(n)
h

∥

∥

∥

L∞

h = 1/40, k = 1

n

Re = 100

500

1000

Figure 4.15: The discontinuous Galerkin method for the Navier-Stokes problem on the driven
cavity benchmark when k = 1 and d = 2: convergence of the damped Newton algorithm.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/navier_stokes_dg2.icc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/cavity_dg.h

Chapter 4. Discontinuous Galerkin methods 191

4.5.6 Upwinding

The skew symmetry property is generalized to the requirement that th be non-dissipative (see
di Pietro and Ern, 2012, p. 282, eqn (6.68)):

th(wh; uh, uh) > 0, ∀wh, uh ∈ Xh

A way to satisfy this property is to add an upwinding term in th:

t̆h(wh; uh, vh) := th(wh; uh, vh) + sh(wh; uh, vh)

with

sh(wh; uh, vh) =
1

2

∑

S∈S
(i)
h

∫

S

|{{wh}}.n| ([[uh]].[[vh]]) ds

We aim at using a Newton method. We replace th by its extension t̆h containing the upwind
terms in the definition of F , and then we compute its Jacobean F ′. As the absolute value is
not differentiable, the functions sh, t̆h and then F are also not differentiable with respect to wh.
Nevertheless, the absolute value is convex and we can use some concepts of the subdifferential
calculus. Let us introduce the multi-valued sign function:

sgn(x) =

{1} when x > 0
[−1, 1] when x = 0
{−1} when x < 0

Then, the subdifferential of the absolute value function is sgn(x) and for all δwh,wh, uh,vh ∈ Xh,
we define a generalization of the partial derivative as

∂sh
∂wh

(wh; uh, vh).(δwh) =
1

2

∑

S∈S
(i)
h

∫

S

sgn({{wh}}.n) ({{δwh}}.n) ([[uh]].[[vh]]) ds

Example file 4.26: inertia upw.icc

1 #include "sgn.icc"
2 form inertia_upw (field w, trial u, test v,
3 integrate_option iopt = integrate_option ())
4 {
5 return integrate (" internal_sides",
6 0.5* abs(dot(average(w),normal ()))* dot(jump(u),jump(v)));
7 }
8 form d_inertia_upw (field w, trial dw, field u, test v,
9 integrate_option iopt = integrate_option ())

10 {
11 return integrate (" internal_sides",
12 0.5* compose (sgn , dot(average(w),normal ()))
13 *dot(average(dw),normal ())* dot(jump(u),jump(v)));
14 }

A multi-valued Jacobean F ′ is then defined:

〈F ′
(
u
(k−1)
h , p

(k−1)
h

)
.(δuh, δph), (vh, qh)〉

= Re

th(δuh; uh, vh) + th(uh; δuh, vh) +
∂sh
∂wh

(uh; uh, vh).(δuh) + sh(uh; δuh, vh)

0

+

ah(δuh,vh) + bh(vh, δph)

bh(δuh, qh) − ch(δph, qh)

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/inertia_upw.icc

192 Rheolef version 7.1 update 22 March 2020

We are able to extend the Newton method to the F function that allows a multi-valued subdiffer-
ential F ′. During iterations, we can choose any of the available directions in the subdifferential.
One the possibilities is then to replace the multi-valued sign function by a single-value one:

s̃gn(x) =

{
1 when x > 0

−1 when x < 0

Example file 4.27: sgn.icc

1 Float sgn (Float x) { return (x >= 0) ? 1 : -1; }

Example file 4.28: navier stokes upw dg.h

1 #include "navier_stokes_dg.h"
2 struct navier_stokes_upw_dg: navier_stokes_dg {
3 typedef Float float_type;
4 typedef navier_stokes_dg :: value_type value_type;
5 navier_stokes_upw_dg (Float Re, const geo& omega , string approx);
6 value_type residue (const value_type& uh) const;
7 void update_derivative (const value_type& uh) const;
8 };
9 #include "navier_stokes_upw_dg.icc"

Example file 4.29: navier stokes upw dg.icc

1 #include "inertia_upw.icc"
2 navier_stokes_upw_dg :: navier_stokes_upw_dg (
3 Float Re1 , const geo& omega , string approx)
4 : navier_stokes_dg (Re1 , omega , approx) {}
5

6 navier_stokes_upw_dg :: value_type
7 navier_stokes_upw_dg :: residue (const value_type& xh) const {
8 trial u (Xh); test v (Xh);
9 form a = a0 + Re*(inertia (xh[0], u, v, iopt)

10 + inertia_upw (xh[0], u, v, iopt));
11 value_type mrh (2);
12 mrh [0] = a*xh[0] + b.trans_mult(xh[1]) - lh;
13 mrh [1] = b*xh[0] - c*xh[1] - kh;
14 return mrh;
15 }
16 void navier_stokes_upw_dg :: update_derivative (const value_type& xh) const {
17 trial du (Xh); test v (Xh);
18 a1 = a0 + Re*(inertia (xh[0], du, v, iopt)
19 + inertia_upw (xh[0], du , v, iopt)
20 + inertia (du , xh[0], v, iopt)
21 + d_inertia_upw (xh[0], du , xh[0], v, iopt));
22 stokes1 = problem_mixed (a1 , b, c);
23 stokes1.set_metric (mp);
24 }

The program navier stokes cavity newton upw dg.cc is obtained by replacing in
navier stokes taylor newton dg.cc the string navier stokes dg by navier stokes upw dg

(two occurrences: in the includes and then in the definition of F). Also replace the include
taylor.h by cavity dg.h that defines the boundary conditions. The compilation and run are
similar.

make navier_stokes_cavity_newton_upw_dg streamf_cavity

mkgeo_grid -t 80 > square.geo

./navier_stokes_cavity_newton_upw_dg square P1d 500 1e-15 100 > square-500.field

field square-500.field -proj -field | ./streamf_cavity | \

field -bw -n-iso 30 -n-iso-negative 20 -

Computations for higher Reynolds numbers are performed by continuation. Starting from a pre-
vious computation at Re = 500, we compute it at Re = 1000 as:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/sgn.icc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/navier_stokes_upw_dg.h
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/navier_stokes_upw_dg.icc

Chapter 4. Discontinuous Galerkin methods 193

./navier_stokes_cavity_newton_upw_dg square P1d 1000 1e-15 100 square-500.field \

> square-1000.field

field square-1000.field -proj -field | ./streamf_cavity | \

field -bw -n-iso 30 -n-iso-negative 20 -

Then, for Re = 1500:

./navier_stokes_cavity_newton_upw_dg square P1d 1500 1e-15 100 square-1000.field \

> square-1500.field

field square-1500.field -proj -field | ./streamf_cavity | \

field -bw -n-iso 30 -n-iso-negative 20 -

By this way, computations of solutions can be performed until Re = 25 000 without problems. Note
that, from Re ≈ 10 000, these solution are no more stable with respect to time [Saramito, 2018,
chap. 6], but are valid solution of the stationary Navier-Stokes problem and can be interpreted as
timed averaged solutions. See also at the end of section 2.5 page 82 for a discussion about the loss
of stationary of the solution.

194 Rheolef version 7.1 update 22 March 2020

Re = 0 Re = 400

Re = 1000 Re = 2000

Figure 4.16: The discontinuous Galerkin method for the Navier-Stokes problem on the driven
cavity benchmark when k = 1 (80× 80 grid): stream function isovalues for various Re.

Chapter 4. Discontinuous Galerkin methods 195

Re = 3200 Re = 5000

Re = 7500 Re = 10000

Figure 4.17: The discontinuous Galerkin method for the Navier-Stokes problem on the driven
cavity benchmark when k = 1 (80× 80 grid): stream function isovalues for various Re (cont.).

196 Rheolef version 7.1 update 22 March 2020

Re = 15000 Re = 20000

Re = 25000

Figure 4.18: The discontinuous Galerkin method for the Navier-Stokes problem on the driven
cavity benchmark when k = 1 (80× 80 grid): stream function isovalues for various Re (cont.).

Chapter 5

Complex fluids

This part presents in details the practical computational aspects of numerical modeling with
complex fluids. Most of the examples involve only few lines of code: the concision and readability
of codes written with Rheolef is certainly a major key-point of this environment. The theoretical
background for complex fluids an associated numerical methods can be found in Saramito [2016b].
We start with yield slip boundary condition as a preliminary problem. Slip at the wall occurs in
many applications with complex fluids. This problem is solved both by augmented Lagrangian and
Newton methods. Then, viscoplastic fluids are introduced and an augmented Lagrangian method
is presented. A prelinary for viscoelastic fluids problems is the linear tensor transport equation:
it is solved by a discontinuous Galerkin method. Finally, viscoelastic fluids problems are solved
by an operator splitting algorithm, the θ-scheme.

5.1 Yield slip at the wall

5.1.1 Problem statement

The problem of a Newtonian fluid with yield slip at the wall and flowing in a pipe Roquet and
Saramito [2004] writes:
(P): find u, defined in Ω, such that

−∆u = f in Ω (5.1a)∣∣∣∣
∂u

∂n

∣∣∣∣ 6 S when u = 0

∂u

∂n
= −Cf |u|−1+nu− S

u

|u| otherwise

on ∂Ω (5.1b)

Here, S > 0 and Cf > 0 are respectively the yield slip and the friction coefficient while n > 0 is
a power-law index. The computational domain Ω represents the cross-section of the pipe and u
is the velocity component along the axis of the pipe. The right-hand side f is a given constant,
and without loss of generality, we can suppose f = 1 : the parameters are S,Cf and n. When
S = 0 and n = 1, the problem reduces to a Poisson problem with homogeneous Robin boundary
condition that depend upon Cf .

197

198 Rheolef version 7.1 update 22 March 2020

5.1.2 The augmented Lagrangian algorithm

Principe of the algorithm

The problem writes as a minimization one:

min
u∈H1(Ω)

J(u)

where

J(u) =
Cf

1 + n

∫

∂Ω

|u|1+n ds+ S

∫

∂Ω

|u| ds+ 1

2

∫

Ω

|∇u|2 dx−
∫

Ω

f u dx

This problem is solved by using an augmented Lagrangian algorithm. The auxiliary variable
γ = u|∂Ω is introduced together with the Lagrangian multiplier λ associated to the constraints
u|∂Ω − γ = 0. For all r > 0, let:

L((u, γ);λ) =
Cf

1 + n

∫

∂Ω

|γ|1+n ds+ S

∫

∂Ω

|γ| ds+ 1

2

∫

Ω

|∇u|2 dx−
∫

Ω

f u dx

+

∫

∂Ω

λ (u− γ) ds+
r

2

∫

∂Ω

|u− γ|2 ds

An Uzawa-like minimization algorithm writes:

• k = 0: let λ(0) and γ(0) arbitrarily chosen.

• k > 0: let λ(k) and γ(k) being known.

u(k+1) := argmin
v∈H1(Ω)

L((v, γ(k));λ(k))

γ(k+1) := argmin
δ∈L∞(∂Ω)

L((u(k+1), δ);λ(k))

λ(k+1) := λ(k) + ρ
(
u(k+1) − γ(k+1)

)
on ∂Ω

The descent step ρ is chosen as ρ = r for sufficiently large r. The Lagrangian L is quadratic in
u and thus the computation of u(k+1) reduces to a linear problem. The non-linearity is treated
when computing γ(k+1). This operation is performed point-by-point on ∂Ω by minimizing:

γ := argmin
δ∈R

Cf |δ|1+n
1 + n

+
r|δ|2
2

+ S|δ| − ξ δ

where ξ = λ(k)+ r u(k+1) is given. This problem is convex and its solution is unique. The solution
has the form:

γ = Pn,r(ξ)
def
=

{
0 when |ξ| 6 S

φn,r(|ξ| − S) sgn(ξ) otherwise
(5.2)

where φn,r(x) = f−1
n,r(x) and fn,r is defined for all y > 0 by:

fn,r(y) = Cfy
n + r y (5.3)

Example file 5.1: projection.h

1 #include "phi.h"
2 // p(x) = phi(|x|-a)*sgn(x)
3 struct projection {
4 Float operator () (const Float& x) const {
5 if (fabs(x) <= a) return 0;
6 return (x > 0) ? _phi(x-a) : -_phi(-x-a);
7 }
8 projection (Float a1, Float n=1, Float c=1, Float r=0)
9 : a(a1), _phi(n,c,r) {}

10 Float a;
11 phi _phi;
12 };

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/projection.h

Chapter 5. Complex fluids 199

Observe that f ′n,r(y) = nCfy
−1+n + r > 0 when r > 0: the function is strictly increasing and is

thus invertible. When n = 1 then fn,r is linear and φ1,r(x) = x/(Cf + r). When n = 1/2 this
problem reduces to a second order polynomial equation and the solution is also explicit:

φ 1
2 ,r

(x) =
1

4

{
1 +

4r x

C2
f

}1/2

− 1

2

When r = 0, for any n > 0 the solution is φn,0(x) = (x/Cf)
1
n . In general, when n > 0 and r > 0,

the solution is no more explicit. We consider the Newton method:

• i = 0: Let y0 being given.

• i > 0: Suppose yi being known and compute yi+1 = yi − (fn,r(yi)− x)/f ′n,r(yi).

Example file 5.2: phi.h

1 struct phi {
2 phi (Float n1=2, Float c1=1, Float r1=0) : n(n1), c(c1), r(r1) {}
3 Float operator () (const Float& x) const {
4 if (x <= 0) return 0;
5 if (n == 1) return x/(c+r);
6 if (r == 0) return pow(x/c,1/n);
7 Float y = x/(c+r);
8 const Float tol = numeric_limits <Float >:: epsilon ();
9 for (size_t i = 0; true; ++i) {

10 Float ry = f(y)-x;
11 Float dy = -ry/df_dy(y);
12 if (fabs(ry) <= tol && fabs(dy) <= tol) break;
13 if (i >= max_iter) break;
14 if (y+dy > 0) {
15 y += dy;
16 } else {
17 y /= 2;
18 check_macro (1+y != y, "phi: machine precision problem ");
19 }
20 }
21 return y;
22 }
23 Float derivative (const Float& x) const {
24 Float phi_x = operator ()(x);
25 return 1/(r + n*c*pow(phi_x ,-1+n));
26 }
27 protected:
28 Float f(Float y) const { return c*pow(y,n) + r*y; }
29 Float df_dy(Float y) const { return n*c*pow(y,-1+n) + r; }
30 Float n,c,r;
31 static const size_t max_iter = 100;
32 };

In the present implementation, in order to avoid too large steps, the Newton step is damped when
yi+1 becomes negative.

The Uzawa algorithm writes:

• k = 0: let λ(0) and γ(0) arbitrarily chosen.

• k > 0: let λ(k) and γ(k) being known, find u(k+1), defined in Ω, such that

−∆u(k+1) = f in Ω

∂u(k+1)

∂n
+ r u(k+1) = r γ(k) − λ(k) on ∂Ω

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/phi.h

200 Rheolef version 7.1 update 22 March 2020

and then compute explicitely γ(k+1) and λ(k+1):

γ(k+1) := Pn,r

(
λ(k) + r u(k+1)

)
on ∂Ω

λ(k+1) := λ(k) + r
(
u(k+1) − γ(k+1)

)
on ∂Ω

This algorithm reduces the nonlinear problem to a sequence of linear and completely standard
Poisson problems with a Robin boundary condition and some explicit computations. At conver-

gence, λ = −∂u
∂n

and γ = u on ∂Ω.

Note that the solution satisfies the following variational formulation:
∫

Ω

∇u .∇v dx+

∫

∂Ω

v λ ds =

∫

Ω

f v dx, ∀v ∈ H1(Ω)

∫

∂Ω

u γ ds−
∫

∂Ω

Pn,0(λ) γ ds = 0, ∀γ ∈ L∞(∂Ω)

This formulation is the base of the computation of the residual test used for the stopping criteria.

Example file 5.3: yield slip augmented lagrangian.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 #include "yield_slip_augmented_lagrangian.icc"
5 #include "poisson_robin.icc"
6 int main(int argc , char**argv) {
7 environment rheolef (argc ,argv);
8 dlog << noverbose;
9 geo omega (argv [1]);

10 string approx = (argc > 2) ? argv [2] : "P1";
11 Float S = (argc > 3) ? atof(argv [3]) : 0.6;
12 Float n = (argc > 4) ? atof(argv [4]) : 1;
13 Float Cf = (argc > 5) ? atof(argv [5]) : 1;
14 Float r = (argc > 6) ? atof(argv [6]) : 1;
15 Float tol = 1e3*numeric_limits <Float >:: epsilon ();
16 size_t max_iter = 100000;
17 space Xh (omega , approx);
18 test v (Xh);
19 field lh = integrate(v);
20 field uh = poisson_robin (Cf , omega[" boundary"], lh);
21 space Wh (omega[" boundary"], Xh.get_approx ());
22 field lambda_h = Cf*uh[" boundary "];
23 int status = yield_slip_augmented_lagrangian(S, n, Cf , omega[" boundary"],
24 lh , lambda_h , uh , tol , max_iter , r);
25 dout << setprecision(numeric_limits <Float >:: digits10)
26 << catchmark ("S") << S << endl
27 << catchmark ("n") << n << endl
28 << catchmark ("Cf") << Cf << endl
29 << catchmark ("r") << r << endl
30 << catchmark ("u") << uh
31 << catchmark (" lambda ") << lambda_h;
32 return status;
33 }

Example file 5.4: poisson robin.icc

1 field poisson_robin (Float Cf , const geo& boundary , const field& lh) {
2 const space& Xh = lh.get_space ();
3 trial u (Xh); test v (Xh);
4 form a = integrate(dot(grad(u),grad(v))) + Cf*integrate(boundary , u*v);
5 field uh (Xh);
6 problem p (a);
7 p.solve (lh, uh);
8 return uh;
9 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/yield_slip_augmented_lagrangian.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/poisson_robin.icc

Chapter 5. Complex fluids 201

Example file 5.5: yield slip augmented lagrangian.icc

1 #include "projection.h"
2 int yield_slip_augmented_lagrangian (Float S, Float n, Float Cf ,
3 geo boundary , field lh , field& lambda_h , field& uh ,
4 Float tol , size_t max_iter , Float r)
5 {
6 const space& Xh = uh.get_space ();
7 const space& Wh = lambda_h.get_space ();
8 trial u(Xh), lambda(Wh);
9 test v(Xh), mu(Wh);

10 form m = integrate (u*v),
11 a0 = integrate (dot(grad(u),grad(v))),
12 a = a0 + integrate (boundary , r*u*v),
13 mb = integrate (lambda*mu),
14 b = integrate (boundary , u*mu);
15 problem pa (a);
16 derr << "# k residue" << endl;
17 Float residue0 = 0;
18 for (size_t k = 0; true; ++k) {
19 field gamma_h = interpolate(Wh ,
20 compose(projection(S,n,Cf ,r), lambda_h + r*uh[" boundary "]));
21 field delta_lambda_h = r*(uh[" boundary "] - gamma_h);
22 lambda_h += delta_lambda_h;
23 Float residue = delta_lambda_h.max_abs ();
24 derr << k << " " << residue << endl;
25 if (residue <= tol || k >= max_iter) return (residue <= tol) ? 0 : 1;
26 field rhs = lh + b.trans_mult(r*gamma_h - lambda_h);
27 pa.solve (rhs , uh);
28 }
29 }

Observe also that the stopping criterion for breaking the loop bases on the max of the relative
error for the λh variable. For this algorithm, this stopping criterion guaranties that all residual
terms of the initial problem are also converging to zero, as it will be checked here. Moreover, this
stopping criterion is very fast to compute while the full set of residual terms of the initial problem
would take more computational time inside the loop.

Running the program

Figure 5.1: The yield slip problem for S = 0.6 and n = 1.

Assume that the previous code is contained in the file ‘yield-slip-augmented-lagrangian.cc’.
Compile the program as usual, using a Makefile suitable for rheolef (see Saramito [2018,
chap. 1]):

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/yield_slip_augmented_lagrangian.icc

202 Rheolef version 7.1 update 22 March 2020

make yield_slip_augmented_lagrangian

mkgeo_grid -a -1 -b 1 -c -1 -d 1 -t 50 > square.geo

./yield_slip_augmented_lagrangian square.geo P1 0.6 1 > square.field

Also you can replace P1 by P2. The solution can be represented in elevation view (see Fig. 5.1):

field square.field -elevation -stereo

As analysed by Roquet and Saramito [2004], when S 6 0.382, the fluid slips at the wall, when
0.382 < S < 0.674, the fluid partially sticks and when S > 0.674 the fluid completely sticks.
Remark that the velocity is not zero along the boundary: there is a stick-slip transition point.
The velocity along along the 0x0 axis and the top boundary are available as (see Fig. 5.2):

0

0.1

0.2

0.3

0.4

0 1

u(x0, 0)

x0

n = 1.5

n = 1.0

n = 0.5

0

0.01

0.02

0.03

0.04

0 0.5 1

u(x0, 1)

x0

n = 1.5

n = 1.0

n = 0.5

0

0.6

1

0 0.5 1

λ(x0, 1) = −

∂u

∂x1

(x0, 1)

x0

n = 1.5

n = 1.0

n = 0.5

Figure 5.2: The yield slip problem for S = 0.6: cut of the velocity (left) along the 0x0 axis ;
(center) along the boundary ; (right) cut of the normal stress λ along the boundary.

field square.field -normal 0 1 -origin 0 0 -cut -gnuplot

field square.field -domain top -elevation -gnuplot

The corresponding Lagrange multiplier λ on the boundary can also be viewed as:

field square.field -mark lambda -elevation

The file ‘yield slip residue.cc’ implement the computation of the full set of residual terms of
the initial problem. This file it is not listed here but is available in the Rheolef example directory.
The computation of residual terms is obtained by:

make yield_slip_residue

./yield_slip_residue < square.field

Observe that the residual terms of the initial problem are of about 10−10, as required by the
stopping criterion. Fig. 5.3 plots the max of the relative error for the λh variable: this quantity
is used as stopping criterion. Observe that it behaves asymptotically as 1/k for larges meshes,
with a final acceleration to machine precision. Note that these convergence properties could be
dramatically improved by using a Newton method, as shown in the next section.

Chapter 5. Complex fluids 203

10
−10

10
−5

1

1 10
2

10
4

residue

−1

iteration k

h = 1/10
1/20
1/30
1/40
1/50

Figure 5.3: The convergence of the augmented Lagrangian algorithm for the yield slip problem
with S = 0.6 and n = 1 and P1 polynomial approximation.

204 Rheolef version 7.1 update 22 March 2020

5.1.3 Newton algorithm

Reformulation of the problem

The idea of this algorithm first proposed by Alart [1997] in the context of contact and friction
problems. At convergence, the augmented Lagrangian method solve the following problem:

(P)r: find u, defined in Ω, and λ, defined on ∂Ω, such that

−∆u = f in Ω

∂u

∂n
+ λ = 0 on ∂Ω

u− Pn,r(λ+ r u) = 0 on ∂Ω

The solution is independent upon r ∈ R and this problem is equivalent to the original one. In order
to diagonalize the non-linearity in Pn,r(.), let us introduce β = λ+ r u. The problem becomes:
(P)r: find u, defined in Ω, and β, defined on ∂Ω, such that

−∆u = f in Ω

∂u

∂n
− r u+ β = 0 on ∂Ω

u− Pn,r(β) = 0 on ∂Ω

Variational formulation

Consider the following forms:

m(u, v) =

∫

Ω

u v dx, , ∀u v ∈ L2(Ω)

a(u, v) =

∫

Ω

∇u .∇v dx− r

∫

∂Ω

u v ds, ∀u, v ∈ H1(Ω)

b(v, γ) =

∫

Ω

v γ ds, ∀γ ∈ L2(∂Ω), ∀v ∈ H1(Ω)

c(β, γ) =

∫

Ω

Pn,r(β) γ ds, ∀β ∈ L∞(∂Ω), ∀γ ∈ L2(∂Ω)

Remark that, since Ω ⊂ R
2, from the Sobolev embedding theorem, if u ∈ H1(Ω) then u|∂Ω ∈

L∞(∂Ω). Then, all integrals have sense. The variational formulation writes:
(FV): find u ∈ H1(Ω) and β ∈ L∞(∂Ω) such that

a(u, v) + b(v, β) = m(f, v), ∀v ∈ H1(Ω)

b(u, γ)− c(β, γ) = 0, ∀γ ∈ L2(∂Ω)

Let M , A and B the operators associated to forms m, a, b and c. The problem writes also as:

(
A B∗

B −C

)(
u
β

)
=

(
Mf
0

)

where B∗ denotes the formal adjoint of B. The bilinear form a is symmetric positive definite
when r ∈]0, Cf [. Then A is non-singular and let A−1 denotes its inverse. The unknown u can be
eliminated: u = A−1(Mf −BTβ) and the problem reduces to:

find β ∈ L∞(∂Ω) such that F (β) = 0

where
F (β) = C(β) +BA−1B∗β −BA−1Mf

Chapter 5. Complex fluids 205

This problem is a good candidate for a Newton method:

F ′(β)δβ = C ′(β)δβ +BA−1B∗δβ

where C ′(β) is associated to the bilinear form:

c1(β; γ, δ) =

∫

Ω

P ′
n,r(β) γ δ ds, ∀β ∈ L∞(∂Ω), ∀γ, δ ∈ L2(∂Ω)

where, for all ξ ∈ R:

P ′
n,r(ξ) =

{
0 when |ξ| 6 S

φ′n,r(|ξ| − S) otherwise
(5.4)

Recall that, for all ζ > 0, φn,r(ζ) = f−1
n,r(ζ) where fn,r(y) = Cfy

n + r y, for all y > 0. Then

φ′n,r(ζ) =
1

f ′n,r(f
−1
n,r(ζ))

=
1

f ′n,r(φn,r(ζ))
=

1

r + nCf {φn,r(ζ)}−1+n (5.5)

When n = 1 we simply have: φ′1,r(ζ) =
1

Cf + r
. When r = 0, for any n > 0 we have

φ′n,0(ζ) =
ζ−1+1/n

nC
1/n
f

.

Example file 5.6: d projection dx.h

1 #include "projection.h"
2 struct d_projection_dx {
3 Float operator () (const Float& x) const {
4 if (fabs(x) <= a) return 0;
5 if (n == 1) return 1/(c + r);
6 if (r == 0) return pow(fabs(x)-a,-1+1/n)/(n*pow(c,1/n));
7 return 1/(r + n*c*pow(_phi(fabs(x)-a),-1+n));
8 }
9 d_projection_dx (Float a1, Float n1=1, Float c1=1, Float r1=0)

10 : a(a1), n(n1), c(c1), r(r1), _phi(n1 ,c1 ,r1) {}
11 Float a,n,c,r;
12 phi _phi;
13 };

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/d_projection_dx.h

206 Rheolef version 7.1 update 22 March 2020

Example file 5.7: yield slip damped newton.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 #include "yield_slip.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 geo omega (argv [1]);
8 string approx = (argc > 2) ? argv [2] : "P1";
9 Float S = (argc > 3) ? atof(argv [3]) : 0.6;

10 Float n = (argc > 4) ? atof(argv [4]) : 1;
11 Float Cf = (argc > 5) ? atof(argv [5]) : 1;
12 Float r = (argc > 6) ? atof(argv [6]) : 1;
13 domain boundary = omega [" boundary "];
14 yield_slip F (S, n, Cf, r, omega , boundary , approx);
15 field beta_h = F.initial ();
16 Float tol = 10* numeric_limits <Float >:: epsilon ();
17 size_t max_iter = 10000;
18 int status = damped_newton (F, beta_h , tol , max_iter , &derr);
19 field uh , lambda_h;
20 F.post (beta_h , uh , lambda_h);
21 dout << setprecision(numeric_limits <Float >:: digits10)
22 << catchmark ("S") << S << endl
23 << catchmark ("n") << n << endl
24 << catchmark ("Cf") << Cf << endl
25 << catchmark ("r") << r << endl
26 << catchmark ("u") << uh
27 << catchmark (" lambda ") << lambda_h;
28 return status;
29 }

Example file 5.8: yield slip.h

1 class yield_slip {
2 public:
3 typedef field value_type;
4 typedef Float float_type;
5 yield_slip (Float S, Float n, Float Cf , Float r,
6 const geo& omega , const geo& boundary , string approx = "P1");
7 field residue (const field& beta_h) const;
8 void update_derivative (const field& beta_h) const;
9 field derivative_solve (const field& mrh) const;

10 field derivative_trans_mult (const field& mrh) const;
11 Float space_norm (const field&) const;
12 Float dual_space_norm (const field&) const;
13 field initial () const;
14 void post (const field& beta_h , field& uh, field& lambda_h) const;
15 protected:
16 Float S, n, Cf , r;
17 geo boundary;
18 space Xh , Wh , Yh;
19 field lh , mkh;
20 form m, mb, a, b;
21 mutable form c1;
22 problem pmb , pa;
23 mutable problem pA;
24 };
25 #include "yield_slip1.icc"
26 #include "yield_slip2.icc"

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/yield_slip_damped_newton.cc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/yield_slip.h

Chapter 5. Complex fluids 207

Example file 5.9: yield slip1.icc

1 #include "d_projection_dx.h"
2 yield_slip :: yield_slip (Float S1 , Float n1 , Float Cf1 , Float r1 ,
3 const geo& omega , const geo& boundary1 , string approx)
4 : S(S1), n(n1), Cf(Cf1), r(r1), boundary(boundary1), Xh(), Wh(), Yh(),
5 lh(), mkh(), m(), mb(), a(), b(), c1(), pmb(), pa(), pA()
6 {
7 Xh = space (omega , approx);
8 Wh = space (boundary , approx);
9 Yh = Xh*Wh;

10 trial u (Xh), lambda(Wh);
11 test v (Xh), mu(Wh);
12 m = integrate(u*v);
13 mb = integrate(lambda*mu);
14 a = integrate(dot(grad(u),grad(v))) - r*integrate(boundary , u*v);
15 b = integrate(boundary , u*mu);
16 lh = integrate(v);
17 pmb = problem (mb);
18 pa = problem (a);
19 field vh(Xh);
20 pa.solve (lh, vh);
21 mkh = b*vh;
22 }
23 field yield_slip :: residue (const field& beta_h) const {
24 field vh (Xh);
25 field rhs = b.trans_mult (beta_h);
26 pa.solve (rhs , vh);
27 test mu (Wh);
28 field c0h = integrate(mu*compose(projection(S,n,Cf ,r), beta_h));
29 field mrh = b*vh + c0h - mkh;
30 return mrh;
31 }
32 void yield_slip :: update_derivative (const field& beta_h) const {
33 trial lambda (Wh); test mu (Wh);
34 c1 = integrate (lambda*mu*compose(d_projection_dx(S,n,Cf,r), beta_h));
35 form A = { { a, trans(b) },
36 { b, -c1 } };
37 A.set_symmetry (c1.is_symmetric ());
38 pA = problem(A);
39 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/yield_slip1.icc

208 Rheolef version 7.1 update 22 March 2020

Example file 5.10: yield slip2.icc

1 #include "poisson_robin.icc"
2 field yield_slip :: derivative_solve (const field& mrh) const {
3 field mryh(Yh , 0.);
4 mryh [1] = -mrh;
5 field delta_yh(Yh);
6 pA.solve(mryh , delta_yh);
7 return delta_yh [1];
8 }
9 field yield_slip :: derivative_trans_mult (const field& mrh) const {

10 field rh (Wh);
11 pmb.solve (mrh , rh);
12 field rhs = b.trans_mult(rh);
13 field delta_vh (Xh , 0.);
14 pa.solve (rhs , delta_vh);
15 field mgh = b*delta_vh + c1*rh;
16 field gh (Wh);
17 pmb.solve (mgh , gh);
18 return gh;
19 }
20 Float yield_slip :: space_norm (const field& rh) const {
21 return sqrt (mb(rh,rh));
22 }
23 Float yield_slip :: dual_space_norm (const field& mrh) const {
24 field rh (Wh ,0);
25 pmb.solve (mrh , rh);
26 return sqrt (dual (mrh ,rh));
27 }
28 field yield_slip :: initial () const {
29 field uh = poisson_robin (Cf , boundary , lh);
30 return (Cf+r)*uh[" boundary "];
31 }
32 void yield_slip ::post (const field& beta_h , field& uh, field& lambda_h) const {
33 field rhs = lh - b.trans_mult(beta_h);
34 uh = field (Xh, 0.);
35 pa.solve (rhs , uh);
36 lambda_h = beta_h - r*uh[" boundary "];
37 }

Running the program

make ./yield_slip_damped_newton

./yield_slip_damped_newton square.geo P1 0.6 1 > square.field

field square.field -elevation -stereo

field square.field -mark lambda -elevation

Observe on Fig. 5.4.a and 5.4.b that the convergence is super-linear and mesh-independent when
n = 1/2 and n = 0.9. For mesh-independent convergence of the Newton method, see e.g. the
p-Laplacian example in Saramito [2018]. When n = 0.9, observe that the convergence depends
slightly upon the mesh for rough meshes while it becomes asymptotically mesh independent for
fine meshes. When n > 1, the convergence starts to depend also upon the mesh (Fig. 5.4.bottom-
left and 5.4.bottom-right). Recall that when n > 1, the problem becomes non-differentiable and
the convergence of the Newton method is no more assured. Nevertheless, in that case, the con-
vergence is clearly faster (about 100 times faster) than the corresponding one with the augmented
Lagrangian algorithm on the same problem (see Fig. 5.3, page 203) and moreover there is no
saturation of the residual terms on large meshes.

5.1.4 Error analysis

Assume that the previous code is contained in the file ‘yield-slip-augmented-lagrangian.cc’.
When Ω is the unit circle, the exact solution is known. In polar coordinates (r, θ), as the solution

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/yield_slip2.icc

Chapter 5. Complex fluids 209

10−15

10−10

10−5

100

0 2 4 6 8 10

‖rh‖L2(∂Ω)

n

10× 10
20× 20
30× 30
40× 40
50× 50

10−15

10−10

10−5

100

0 2 4 6 8 10

‖rh‖L2(∂Ω)

n

10× 10
20× 20
30× 30
40× 40
50× 50

10−15

10−10

10−5

100

0 2 4 6 8 10

‖rh‖L2(∂Ω)

n

10× 10
20× 20
30× 30
40× 40
50× 50

10−15

10−10

10−5

100

0 2 4 6 8 10 12 14 16 18 20

‖rh‖L2(∂Ω)

n

10× 10
20× 20
30× 30
40× 40
50× 50

Figure 5.4: The convergence of the damped Newton algorithm for the yield slip problem (S = 0.6):
(top-left) n = 0.5; (top-right) n = 0.9; (bottom-left) n = 1; (bottom-right) n = 1.5.

u depends only of r, equation (5.1a) becomes:

−1

r
∂r(r∂ru) = 1

and then, from the symmetry, u(r) = c − r2/4, where c is a constant to determine from the
boundary condition. On the boundary r = 1 we have ∂nu = ∂ru = −1/2. When S > 1/2 the fluid
sticks at the wall and when S > 1/2 we have from (5.1b):

−Cfun − S =
1

2

From the previous expression u(r), taken for r = 1 we obtain the constant c and then:

u(r) =
1− r2

4
+

(
max(0, 1/2− S)

Cf

)1/n

, 0 6 r 6 1

The error computation is implemented in the files ‘yield slip error.cc’ and
‘yield slip circle.h’: it is not listed here but is available in the Rheolef example di-
rectory.

The error can be computed (see Fig. 5.5):

210 Rheolef version 7.1 update 22 March 2020

10
−8

10
−6

10
−4

10
−2

10
−2

10
−1 1

‖u− uh‖0,2,Ω

2 = k + 1

3

4

h

k = 1

k = 2

k = 3
10

−8

10
−6

10
−4

10
−2

10
−2

10
−1 1

‖u− uh‖0,∞,Ω

2 = k + 1

3

4

h

k = 1

k = 2

k = 3

10
−6

10
−4

10
−2

1

10
−2

10
−1 1

|∇(u− uh)|0,2,Ω

1 = k

2

3

h

k = 1

k = 2

k = 3

10
−8

10
−6

10
−4

10
−2

10
−2

10
−1 1

‖λ− λh‖0,2,∂Ω

2 = k + 1

3

4

h

k = 1

k = 2

k = 3

Figure 5.5: The yield slip problem: error analysis.

make yield_slip_error

mkgeo_ball -t 20 -order 2 > circle-20-P2.geo

./yield_slip_damped_newton circle-20-P2.geo P2 0.6 1 | ./yield_slip_error

It appears that the discrete formulation develops optimal convergence properties versus mesh
refinement for k > 1 in H1, L2 and L∞ norms.

Chapter 5. Complex fluids 211

5.2 Viscoplastic fluids

5.2.1 Problem statement

Viscoplastic fluids develops an yield stress behavior (see e.g. Saramito, 2016b, Saramito and
Wachs, 2017). Mosolov and Miasnikov [1965, 1966, 1967] first investigated the flow of a viscoplastic
in a pipe with an arbitrarily cross section. Its numerical investigation by augmented Lagrangian
methods was first performed by Saramito and Roquet [2001], Roquet and Saramito [2008]. The
Mosolov problem [Saramito and Roquet, 2001] writes:
(P): find σ and u, defined in Ω, such that

divσ = −f in Ω (5.6a)

u = 0 on ∂Ω (5.6b)

|σ| 6 Bi when ∇u = 0

σ = |∇u|−1+n
∇u+Bi

∇u

|∇u| otherwise

 in Ω (5.6c)

where Bi > 0 is the Bingham number and n > 0 is a power-law index. The computational domain
Ω represents the cross-section of the pipe. In the bidimensional case d = 2 and when f is constant,
this problem describes the stationary flow of an Herschel-Bulkley fluid in a general pipe section Ω.
Let Ox2 be the axis of the pipe and Ox0x1 the plane of the section Ω. The vector-valued field σ
represents the shear stress components (σ0,1, σ0,2) while u is the axial component of velocity along
Ox3. When Bi = 0, the problem reduces to the nonlinear p-Laplacian problem. When n = 1 the
fluid is a Bingham fluid. When n = 1 and Bi = 0, the problem reduces to the linear Poisson one
with σ = ∇u.

5.2.2 The augmented Lagrangian algorithm

This problem writes as a minimization of an energy:

u = argmin
v∈W 1,p

0 (Ω)

J(v) (5.7a)

where

J(v) =
1

1 + n

∫

Ω

|∇v|1+n dx+Bi

∫

Ω

|∇v| dx−
∫

Ω

f v dx (5.7b)

This problem is solved by using an augmented Lagrangian algorithm. The auxiliary variable
γ = ∇u is introduced together with the Lagrangian multiplier σ associated to the constraint
∇u− γ = 0. For all r > 0, let:

L((v,γ);σ) =
1

1 + n

∫

Ω

|γ|1+n dx+Bi
∫

Ω

|γ| dx−
∫

Ω

f v dx+

∫

Ω

σ.(∇u−γ) dx+ r

2

∫

Ω

|∇u−γ|2 dx

An Uzawa-like minimization algorithm writes:

• k = 0: let λ(0) and γ(0) arbitrarily chosen.

• k > 0: let λ(k) and γ(k) being known.

u(k+1) := argmin
v∈W 1,p(Ω)

L((v,γ(k));σ(k))

γ(k+1) := argmin
δ∈L2(Ω)d

L((u(k+1), δ);σ(k))

σ(k+1) := σ(k) + ρ
(
∇u(k+1) − γ(k+1)

)
in Ω

212 Rheolef version 7.1 update 22 March 2020

The descent step ρ is chosen as ρ = r for sufficiently large r. The Lagrangian L is quadratic in
u and thus the computation of u(k+1) reduces to a linear problem. The non-linearity is treated
when computing γ(k+1). This operation is performed point-by-point in Ω by minimizing:

γ := argmin
δ∈Rd

|δ|1+n
1 + n

+
r|δ|2
2

+Bi|δ| − ξ.δ

where ξ = σ(k) + r∇u(k+1) is given. This problem is convex and its solution is unique. The
solution has the form:

γ = Pn,r(ξ)
def
=

0 when |ξ| 6 S

φn,r(|ξ| − S)
ξ

|ξ| otherwise
(5.8)

where φn,r(x) = f−1
n,r(x) has been introduced in (5.2) page 198 in the context of the yield slip

problem together with the scalar projector.

Example file 5.11: vector projection.h

1 #include "phi.h"
2 struct vector_projection {
3 Float operator () (const Float& x) const {
4 if (x <= a) return 0;
5 return _phi(x-a)/x;
6 }
7 vector_projection (Float a1, Float n=1, Float c=1, Float r=0)
8 : a(a1), _phi(n,c,r) {}
9 Float a;

10 phi _phi;
11 };

Finally, the Uzawa-like minimization algorithm [Saramito and Roquet, 2001] writes:

• k = 0: let σ(0) and γ(0) arbitrarily chosen.

• k > 0: let σ(k) and γ(k) being known, find u(k+1) such that

−r∆u(k+1) = f + div
(
σ(k) − rγ(k)

)
in Ω

u(k+1) = 0 on ∂Ω

and then compute explicitly γ(k+1) and σ(k+1):

γ(k+1) := Pn,r

(
σ(k) + r∇u(k+1)

)
(5.9)

σ(k+1) := σ(k) + r
(
∇u(k+1) − γ(k+1)

)

Here r > 0 is a numerical parameter. This algorithm reduces the nonlinear problem to a se-
quence of linear and completely standard Poisson problems and some explicit computations. For
convenience, this algorithm is implemented as the solve function member of a class:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/vector_projection.h

Chapter 5. Complex fluids 213

Example file 5.12: mosolov augmented lagrangian1.icc

1 #include "vector_projection.h"
2 int mosolov_augmented_lagrangian :: solve (field& sigma_h , field& uh) const {
3 test v(Xh);
4 derr << "# k residue" << endl;
5 for (size_t k = 0; true; ++k) {
6 field grad_uh = inv_mt *(b*uh);
7 auto c = compose(vector_projection(Bi,n,1,r), norm(sigma_h+r*grad_uh));
8 field gamma_h = interpolate(Th , c*(sigma_h + r*grad_uh));
9 field delta_sigma_h = r*(grad_uh - gamma_h);

10 sigma_h += delta_sigma_h;
11 Float residue = delta_sigma_h.max_abs ();
12 derr << k << " " << residue << endl;
13 if (residue <= tol || k >= max_iter) {
14 derr << endl << endl;
15 return (pow(residue ,3) <= tol) ? 0 : 1;
16 }
17 field rhs = (1/r)*(lh - integrate(dot(sigma_h - r*gamma_h , grad(v))));
18 pa.solve (rhs , uh);
19 }
20 }

For convenience, the order of the update of the three variables u, γ and σ has been rotated: by
this way, the algorithm starts with initial values for u and σ. instead of γ and σ. Observe that
the projection step (5.9) is implemented by using the interpolate operator: this projection step
interprets as point-wise at Lagrange nodes instead as a numerical resolution of the element-wise
minimization problem. Note that, for the lowest order k = 1, these two approaches are strictly
equivalent, while, when k > 2, the numerical solution obtained by this algorithm is no more
solution of the discrete version of the saddle-point problem for the Lagrangian L. Nevertheless,
the numerical solution is founded to converge to the exact solution of the initial problem (5.6a)-
(5.6c): this will be checked here in a forthcoming section, dedicated to the error analysis. Observe
also that the stopping criterion for breaking the loop bases on the max of the relative error for
the σh variable. For this algorithm, this stopping criterion guaranties that all residual terms of
the initial problem are also converging to zero, as it will be checked here. Moreover, this stopping
criterion is very fast to compute while the full set of residual terms of the initial problem would
take more computational time inside the loop.

The class declaration contains all model parameters, loop controls, form and space variables,
together with some pre- and post-treatments:

Example file 5.13: mosolov augmented lagrangian.h

1 struct mosolov_augmented_lagrangian: adapt_option {
2 mosolov_augmented_lagrangian ();
3 void reset (geo omega , string approx);
4 void initial (field& sigma_h , field& uh) const;
5 int solve (field& sigma_h , field& uh) const;
6 void put (odiststream& out , field& sigma_h , field& uh) const;
7 // data:
8 Float Bi , n, r, tol;
9 size_t max_iter;

10 mutable space Xh , Th;
11 mutable field lh;
12 mutable form a, b, inv_mt;
13 mutable problem pa;
14 };
15 #include "mosolov_augmented_lagrangian1.icc"
16 #include "mosolov_augmented_lagrangian2.icc"

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/mosolov_augmented_lagrangian1.icc
file://localhost/home/saramito/dsys/share/doc/rheolef/examples/mosolov_augmented_lagrangian.h

214 Rheolef version 7.1 update 22 March 2020

Example file 5.14: mosolov augmented lagrangian2.icc

1 mosolov_augmented_lagrangian :: mosolov_augmented_lagrangian ()
2 : Bi(0), n(1), r(1), tol(1e-10), max_iter (1000000) ,
3 Xh(), Th(), lh(), a(), b(), inv_mt(), pa()
4 {}
5 void mosolov_augmented_lagrangian ::reset (geo omega , string approx) {
6 Xh = space (omega , approx);
7 Xh.block (" boundary ");
8 string grad_approx = "P" + itos(Xh.degree ()-1) + "d";
9 Th = space (omega , grad_approx , "vector ");

10 trial u (Xh), sigma(Th);
11 test v (Xh), tau (Th);
12 lh = integrate (2*v);
13 a = integrate (dot(grad(u),grad(v)));
14 b = integrate (dot(grad(u),tau));
15 integrate_option iopt;
16 iopt.invert = true;
17 inv_mt = integrate(dot(sigma ,tau), iopt);
18 pa = problem (a);
19 }
20 void
21 mosolov_augmented_lagrangian :: initial (field& sigma_h , field& uh) const {
22 uh = field(Xh);
23 uh [" boundary "] = 0;
24 pa.solve (lh, uh);
25 test tau (Th);
26 field mt_grad_uh = integrate(dot(grad(uh),tau));
27 sigma_h = inv_mt*mt_grad_uh;
28 }
29 void mosolov_augmented_lagrangian ::put (odiststream& out ,
30 field& sigma_h , field& uh) const
31 {
32 out << catchmark ("Bi") << Bi << endl
33 << catchmark ("n") << n << endl
34 << catchmark ("r") << r << endl
35 << catchmark ("sigma ") << sigma_h
36 << catchmark ("u") << uh;
37 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/mosolov_augmented_lagrangian2.icc

Chapter 5. Complex fluids 215

Example file 5.15: mosolov augmented lagrangian.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 #include "mosolov_augmented_lagrangian.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 mosolov_augmented_lagrangian pb;
8 geo omega (argv [1]);
9 string approx = (argc > 2) ? argv [2] : "P1";

10 pb.Bi = (argc > 3) ? atof(argv [3]) : 0.2;
11 pb.n = (argc > 4) ? atof(argv [4]) : 1;
12 size_t n_adapt = (argc > 5) ? atoi(argv [5]) : 0;
13 pb.max_iter = (argc > 6) ? atoi(argv [6]) : 10000;
14 pb.err = (argc > 7) ? atof(argv [7]) : 1e-4;
15 pb.r = 100;
16 pb.tol = 1e-10;
17 pb.hmin = 1e-4;
18 pb.hmax = 1e-1;
19 pb.ratio = 3;
20 pb.additional = "-AbsError ";
21 field sigma_h , uh;
22 for (size_t i = 0; true; i++) {
23 pb.reset (omega , approx);
24 pb.initial (sigma_h , uh);
25 int status = pb.solve (sigma_h , uh);
26 odiststream out (omega.name(), "field ");
27 pb.put (out , sigma_h , uh);
28 if (i == n_adapt) break;
29 space T0h (sigma_h.get_geo(), "P"+itos(sigma_h.get_space (). degree ())+"d");
30 field ch = interpolate (T0h , sqrt(abs(dot(sigma_h , grad(uh)))));
31 omega = adapt (ch , pb);
32 omega.save ();
33 }
34 }

The main program read parameters from the command line and performs an optional mesh adap-
tation loop. This implementation supports any n > 0, any continuous piecewise polynomial Pk,
k > 1 and also isoparametric approximations for curved boundaries.

Running the program

Compile the program as usual:

make mosolov_augmented_lagrangian

mkgeo_grid -a -1 -b 1 -c -1 -d 1 -t 10 > square.geo

./mosolov_augmented_lagrangian square.geo P1 0.4 1

field -mark u square.field -elevation

Observe on Fig. 5.6.left the central region where the velocity is constant. A cut of the velocity
field along the first bisector is obtained by:

field -mark u square.field -cut -origin 0 0 -normal 1 1 -gnuplot

Observe on Fig. 5.6.right the small regions with zero velocity, near the outer corner of the square
pipe section. This region is really small but exists This question will be revisited in the next
section dedicated to auto-adaptive mesh refinement.

The file ‘mosolov residue.cc’ implement the computation of the full set of residual terms of the
initial problem. This file it is not listed here but is available in the Rheolef example directory.
The computation of residual terms is obtained by:

make mosolov_residue

zcat square.field.gz | ./mosolov_residue

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/mosolov_augmented_lagrangian.cc

216 Rheolef version 7.1 update 22 March 2020

0

0.1

0.2

0.3

0 1.3
√

2

u(x, y)

0

0.01

1.3
√

2

√

x2 + y2

h = 1/10
h = 1/20
h = 1/30
h = 1/40
h = 1/50

Figure 5.6: The augmented Lagrangian algorithm on the Mosolov problem with Bi = 0.4 and
n = 1: (left) the velocity field in elevation view (h = 1/30); (right) velocity cut along the first
bisector for various h.

Observe that the residual terms of problem (5.6a)-(5.6c) are of about 10−10, as required by the
stopping criterion. Fig. 5.7 plots the max of the relative error for the σh variable: this quantity
is used as stopping criterion. Observe that it behaves asymptotically as 1/k for large iteration
number k. Note that these convergence properties could be dramatically improved by using a
Newton method, as shown by Saramito [2016a].

Finally, computation can be performed for any n > 0, any polynomial order k > 1 and in a
distributed environment for enhancing performances on larger meshes:

mkgeo_grid -a -1 -b 1 -c -1 -d 1 -t 40 > square-40.geo

mpirun -np 8 ./mosolov_augmented_lagrangian square-40.geo P2 0.4 0.5

field -mark u square-40.field -elevation

The computation could take about ten minutes. The mpirun -np 8 prefix is optional and you
should omit it if you are running a sequential installation of Rheolef.

5.2.3 Mesh adaptation

An important improvement can be obtained by using mesh adaptation, as shown in [Saramito
and Roquet, 2001, Roquet and Saramito, 2003, 2008]: with a well chosen criterion, rigid regions,
where the velocity is constant, can be accurately determined with reasonable mesh sizes. This is
especially true for obtaining an accurate determination of the shape of the small regions with zero
velocity in the outer corner of the pipe section. In order to reduce the computational time, we
can reduce the pipe section flow to only a sector, thanks to symmetries (see Fig. 5.8):

mkgeo_sector

geo sector.geo

Then, the computation is run by indicating an adaptation loop with ten successive meshes:

make mosolov_augmented_lagrangian

mpirun -np 8 ./mosolov_augmented_lagrangian sector P2 0.5 1 10

Chapter 5. Complex fluids 217

10
−10

10
−5

1

1 10
3

10
6

residue

−1

k

h = 1/10
h = 1/20
h = 1/30
h = 1/40

Figure 5.7: The augmented Lagrangian algorithm on the Mosolov problem with Bi = 0.4 and
n = 1: residue versus iteration k for various h.

This computation could take about one hour. The mpirun -np 8 prefix is optional and you should
omit it if you are running a sequential installation of Rheolef.

Fig. 5.9 shows the evolution of the mesh size and the minimal edge length during the adaptation
loop: observe the convergence of the meshes to an optimal one.

Example file 5.16: mosolov yield surface.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char**argv) {
5 environment rheolef (argc ,argv);
6 Float tol = (argc > 1) ? atof(argv [1]) : 1e-15;
7 Float Bi;
8 field sigma_h;
9 din >> catchmark ("Bi") >> Bi

10 >> catchmark ("sigma ") >> sigma_h;
11 space Th = sigma_h.get_space ();
12 space Th1 (Th.get_geo(), "P" + itos (4*(Th.degree ()+1)) + "d");
13 dout << interpolate (Th1 , norm(sigma_h)-Bi);
14 }

The yield surface is the zero isosurface of the level set function φ(x = |σh(x| −Bi. Its visualization
is easy to obtain by the following commands:

make mosolov_yield_surface

zcat sector-010.field.gz | ./mosolov_yield_surface | \

field - -proj P1 -n-iso 10 -n-iso-negative 5

The unyielded zones, associated to negative values, appear in cold colors. Conversely, the yielded
ones are represented by warm colors. A combined representation of the solution can be obtained
by the following command:

bash mkview_mosolov sector-010.field.gz

The shell script mkview mosolov invokes mosolov yield surface and then directly builds the

view shown on Fig. 5.8 in the paraview graphic render. Please, click to deselect the show box
option for completing the view. A cut of the velocity field along the first bisector is obtained by:

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/mosolov_yield_surface.cc

218 Rheolef version 7.1 update 22 March 2020

field -mark u sector-010.field.gz -mark u -domain bisector -elevation -gnuplot

Observe on Fig. 5.8.bottom the good capture of the small regions with zero velocity, near the
outer corner of the square pipe section. When compared with Fig. 5.6.right, the benefict of mesh
adaptation appears clearly.

5.2.4 Error analysis

Theoretical error bounds for this problem can be found in [Roquet et al., 2000]. In order to study
the error between the numerical solution and the exact solution of the Mosolov problem, let us
investigate a case for which the exact solution can be explicitly expressed. We consider the special
case of a flow of a viscoplastic fluid in a circular pipe. The pressure is expressed by p(z) = −fz.
The velocity has only one nonzero component along the 0z axis, denoted as u(r) for simplicity.
Conversely, the symmetric tensor σ has only one non-zero rz component, denoted as σ(r). Thanks
to the expression of the tensor-divergence operator in axisymmetric coordinates [Bird et al., 1987,
p. 588], the problem reduces to :

(P) : find σ(r) and u(r), defined in]−R,R[such that

σ(r) = K|u′(r)|−1+n u′(r) + σ0
u′(r)

|u′(r)| , when u′(r) 6= 0

|σ(r)| 6 σ0 otherwise

−1

r
(rσ)′ − f = 0 in]−R,R[

u(−R) = u(R) = 0

Let Σ = fR/2 be a representative stress and U a representative velocity such that K(U/R)n = Σ.
Then, we consider the following change of unknown:

r = Rr̃, u = Uũ, σ = Σσ̃

The system reduces to a problem with only two parameters n and the Bingham number Bi =
2σ0/(fR), that measures the ratio between the yield stress and the load. Since there is no more
ambiguity, we omit the tildes :

(P) : find σ and u, defined in]− 1, 1[such that

σ(r) = |u′(r)|−1+n u′(r) +Bi
u′(r)

|u′(r)| , when u′(r) 6= 0

|σ(r)| 6 Bi otherwise

− 1
r (rσ)

′ − 2 = 0 in]− 1, 1[
u(−1) = u(1) = 0

Remark that the solution is even : u(−r) = u(r). We get σ(r) = −r and the yield stress criterion
leads to u(x) = 0 when |r| 6 Bi: the load is weaker than the yield stress and the flow is null.
When Bi > 1 the solution is u = 0. Otherwise, when |r| > Bi, we get |u′(r)|n +Bi = |r| and
finally, with the boundary conditions and the continuity at r = ±Bi :

u(r) =
(1−Bi)1+

1
n −max(0, |r| −Bi)1+

1
n

1 + 1
n

When n = 1, the second derivative of the solution is discontinuous at r = Bi and its third
derivative is not square integrable. For any n > 0, an inspection of the integrability of the square
of the solution derivatives shows that u ∈ H1+1/n(]− 1, 1[, r dr) at the best.

Chapter 5. Complex fluids 219

Example file 5.17: mosolov exact circle.h

1 struct u {
2 Float operator () (const point& x) const {
3 return (pow(1-Bi ,1+1/n) - pow(max(Float (0),norm(x)-Bi),1+1/n))/(1+1/n);
4 }
5 u (Float Bi1 , Float n1) : Bi(Bi1), n(n1) {}
6 protected: Float Bi , n;
7 };
8 struct grad_u {
9 point operator () (const point& x) const {

10 Float r = norm(x);
11 return (r <= Bi) ? point (0,0) : -pow(r-Bi, 1/n)*(x/r);
12 }
13 grad_u (Float Bi1 , Float n1) : Bi(Bi1), n(n1) {}
14 protected: Float Bi , n;
15 };
16 struct sigma {
17 point operator () (const point& x) const { return -x; }
18 sigma (Float=0, Float =0) {}
19 };

When computing on a circular pipe section, the exact solution is known and it is also possible to
compute the error: this is implemented in the file ‘mosolov error.cc’. This file it is not listed
here but is available in the Rheolef example directory. The error analysis is obtained by:

make mosolov_error

mkgeo_ball -order 2 -t 10 > circle-P2-10.geo

./mosolov_augmented_lagrangian circle-P2-10.geo P2 0.2 0.5

zcat circle-P2-10.field | ./mosolov_error

Note that we use an high order isoparametric approximation of the flow domain for tacking into
account the the curved boundaries. Observe on Fig. 5.10 that both the error in H1 norm for the
velocity u behaves as O(hs) with s = min(k, 2). This is optimal, as, from interpolation theory
[Brenner and Scott, 2002, p. 109], we have:

‖u− πh(u)‖1,2,Ω 6 Chs|u|s+1,2,Ω

with s = min(k, 1/n) when u ∈ H1+1/n(Ω). Then, the convergence rate of the error in H1 norm
versus the mesh size is bounded by 1/n for any polynomial order k. The rate for the error in L∞

norm for for the velocity u is min(k + 1, 1/n), for any k > 1 and n > 0. For the stress σ, the
error in L2 norm behaves as O(h) for any polynomial order and, in L∞ norm, the rate is weaker,
of about 3/4. Finally, for n = 1/2 there is no advantage of using polynomial order more than
k = 2 with quasi-uniform meshes. Conversely, for n = 1, we obtains that there is no advantage
of using polynomial order more than k = 1 with quasi-uniform meshes. This limitation can be
circumvented by combining mesh adaptation with high order polynomials [Roquet et al., 2000,
Saramito and Roquet, 2001].

5.2.5 Error analysis for the yield surface

The limit contour separating the rigid zones are expressed as a level set of the stress norm:

Γh = {x ∈ Ω ; |σh(x)| = Bi}

This contour is called the yield surface and its exact value is known from the exact solution
σ(x) = x in the circle:

Γ = {x ∈ Ω ; |x| = Bi}
Recall the stress σh converges in L∞ norm, thus, there is some hope that its point-wise values
converge. As these point-wise values appears in the definition of the yield surface, this suggests

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/mosolov_exact_circle.h

220 Rheolef version 7.1 update 22 March 2020

that Γh could converge to Γ with mesh refinement: our aim is to check this conjecture. Let us
introduce the area between Γh and Γ as a L1 measure of the distance between them:

dist(Γ,Γh) =

∫

Ω

δ (|σh| −Bi, |σ| −Bi) dx

where

δ(φ, ψ) =

{
0 when φψ > 0
1 otherwise

Example file 5.18: mosolov error yield surface.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "mosolov_exact_circle.h"
5 Float delta (Float f, Float g) { return (f*g >= 0) ? 0 : 1; }
6 int main(int argc , char**argv) {
7 environment rheolef (argc ,argv);
8 Float tol = (argc > 1) ? atof(argv [1]) : 1e-15;
9 Float Bi;

10 field sigma_h;
11 din >> catchmark ("Bi") >> Bi
12 >> catchmark ("sigma ") >> sigma_h;
13 space Th = sigma_h.get_space ();
14 geo omega = Th.get_geo ();
15 integrate_option iopt;
16 iopt.set_family(integrate_option ::gauss);
17 iopt.set_order (4*(Th.degree ()+1));
18 Float err_ys_l1 = integrate (omega ,
19 compose(delta , norm(sigma_h)-Bi , norm(sigma ())-Bi), iopt);
20 dout << "err_ys_l1 = " << err_ys_l1 << endl;
21 return err_ys_l1 < tol ? 0 : 1;
22 }

The computation of the error for the yield surface prediction writes:

make mosolov_error_yield_surface

zcat circle-P2-10.field.gz | ./mosolov_error_yield_surface

Fig. 5.11.right shows the result: the yield surface error converges as O(h) for any k > 0.

Recall that the yield surface is the zero isosurface of the level set function φ(x = |σh(x| −Bi. Its
visualization, shown on Fig. 5.11.left, is provided by the following commands:

make mosolov_yield_surface

zcat circle-P2-10.field.gz | ./mosolov_yield_surface | \

field - -proj P1 -n-iso 10 -n-iso-negative 5

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/mosolov_error_yield_surface.cc

Chapter 5. Complex fluids 221

0

0.1

umax

0.2

0 1 1.3
√
2

u(x, y)

0

0.006

1.3
√
2

√
x2 + y2

Figure 5.8: Auto-adaptive meshes for the Mosolov problem with Bi = 0.5 and n = 1 and the P2

element for the velocity: (top) Yielded regions in gray and nine isovalues of the velocity inside
]0, umax[with umax = 0.169865455242435. The auto-adaptive mesh is mirrored. (top-right) Zoom
in the outer corner of the square section. (bottom) Velocity cut along the first bisector.

222 Rheolef version 7.1 update 22 March 2020

0

1000

2000

3000

4000

5000

0 5 10

mesh size

adaptation iteration

10
−5

10
−4

10
−3

10
−2

10
−1

0 5 10

hmin

adaptation iteration

Figure 5.9: Auto-adaptive meshes for the Mosolov problem: evolution of the mesh size (left) and
the minimal edge length during the adaptation loop.

10−6

10−4

10−2

1

10−2 10−1

‖u− uh‖1,2,Ω

1 = min(k, 1/n)

2

2

h

k = 1

k = 2

k = 3

10−6

10−4

10−2

1

10−2 10−1

‖u− uh‖0,∞,Ω

2 = min(k + 1, 1/n)

2

h

k = 1

k = 2

k = 3

10−3

10−2

10−1

10−2 10−1

‖σ − σh‖0,2,Ω

1

1

h

k = 1

k = 2

k = 3
5× 10−2

10−1

5× 10−1

10−2 10−1

‖σ − σh‖0,∞,Ω

3/4

h

k = 1

k = 2

k = 3

Figure 5.10: The augmented Lagrangian algorithm on the Mosolov problem with Bi = 0.2 and
n = 1/2: error versus mesh paremeter h for various polynomial order k.

Chapter 5. Complex fluids 223

0.001

0.01

0.1

0.01 0.1

dist(Γ,Γh)

1

h

k = 1

k = 2

k = 2

h = 1/10
h = 1/20
h = 1/40

exact

Figure 5.11: The augmented Lagrangian algorithm on the Mosolov problem with Bi = 0.2 and
n = 1/2: (left) convergence of the yield surface versus mesh parameter h for various polynomial
order k ; (right) visualization of the yield surface (P1 approximation).

224 Rheolef version 7.1 update 22 March 2020

5.3 Viscoelastic fluids

5.3.1 A tensor transport equation

The aim of this chapter is to introduce to the numerical resolution of equations involving tensor
derivatives by using discontinuous approximations. See Saramito [2013b, chap. 4] for an introduc-
tion to tensor derivatives and Saramito [2015] for discontinuous Galerkin methods.

The tensor derivative of a symmetric tensor σ is defined by:

Daσ

Dt
=
∂σ

∂t
+ (u.∇)σ + σga(u) + g

T
a (u)σ, (5.10)

where u is a given velocity field,

ga(u) =
(
(1− a) ∇u− (1 + a) ∇uT

)
/2 (5.11)

is a generalized velocity grandient and a ∈ [−1, 1] is the parameter of the tensorderivative. Prob-
lems involving tensor derivatives appear in viscoelasticity (polymer solution and polymer melt,
see e.g. Saramito, 2016b), in fluid-particle suspension modeling (see e.g. Ozenda et al., 2018), in
turbulence modeling (Rij−ǫ models) or in liquid crystals modeling. Let Ω ⊂ R

d be a bounded
open domain.

The time-dependent tensor transport problem writes:

(P): find σ, defined in]0, T [×Ω, such that

Daσ

Dt
+ νσ = χ in]0, T [×Ω

σ = σΓ on]0, T [×∂Ω−

σ(0) = σ0 in Ω

where σ is the tensor valued unknown and ν > 0 is a constant that represents the inverse of the
Weissenberg number. Also T > 0 is a given final time, the data χ, σΓ and σ0 are known and
∂Ω− denotes the upstream boundary (see Rheolef documentation Saramito, 2015, section 4.1.1,
page 145).

The steady version of the tensor transport problem writes:

(S): find σ, defined in Ω, such that

(
u.∇)σ + σga(u+ gTa (u)σ

)
+ νσ = f in Ω

σ = σΓ on ∂Ω−

A sufficient condition this problem to be well posed is [Saramito, 1994, 2013b]:

u ∈W 1,∞(Ω)d and 2ν − ‖divu‖0,∞,Ω − 2a‖D(u)‖0,∞,Ω > 0

Note that this condition is always satisfied when divu = 0 and a = 0. We introduce the space:

X = {τ ∈ L2(Ω)d×ds ; (u.∇)τ ∈ L2(Ω)d×ds }

and, for all σ, τ ∈ X

a(σ, τ) =

∫

Ω

(
(u.∇)σ + σga(u) + g

T
a (u)σ + ν σ

)
:τ dx +

∫

∂Ω

max (0,−u.n)σ :τ ds

l(τ) =

∫

Ω

χ :τ dx +

∫

∂Ω

max (0,−u.n)σΓ :τ ds

Then, the variational formulation of the steady problem writes:

Chapter 5. Complex fluids 225

(FV): find σ ∈ X such that

a(σ, τ) = l(τ), ∀τ ∈ X

Note that the term max(0,−u.n) = (|u.n| − u.n)/2 is positive and vanishes everywhere except
on ∂Ω−. Thus, the boundary condition φ = φΓ is weakly imposed on ∂Ω− via the integrals on
the boundary. We aim at adapting the discontinuous Galerkin method to this problem. The
discontinuous finite element space is defined by:

Xh = {τh ∈ L2(Ω)d×ds ; τh|K ∈ Pk, ∀K ∈ Th}

where k > 0 is the polynomial degree. Note that Xh 6⊂ X and that the ∇τh term has no more
sense for discontinuous functions τh ∈ Xh. We introduce the broken gradient ∇h as a convenient
notation:

(∇hτh)|K = ∇(τh|K), ∀K ∈ Th

Thus

∫

Ω

((u.∇h)σh) :τh dx =
∑

K∈Th

∫

K

((u.∇)σh) :τh dx, ∀σh, τh ∈ Xh

This leads to a discrete version ah of the bilinear form a, defined for all σh, τh ∈ Xh by:

ah(σh, τh) = th(u; σh, τh) + ν

∫

Ω

σh :τh dx

th(u; σh, τh) =

∫

Ω

(
(u.∇h)σh + σga(u) + g

T
a (u)σ

)
:τh dx+

∫

∂Ω

max (0,−u.n)σh :τh ds

+
∑

S∈S
(i)
h

∫

S

(
− u.n [[σh]] :{{τh}}+

α

2
|u.n| [[σh]] : [[τh]]

)
ds (5.12)

(FV)h: find σh ∈ Xh such that

ah(σh, τh) = l(τh), ∀τh ∈ Xh

The following code implement this problem in the Rheolef environment.

226 Rheolef version 7.1 update 22 March 2020

Example file 5.19: transport tensor dg.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "transport_tensor_exact.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh (omega , argv[2], "tensor ");
9 Float alpha = (argc > 3) ? atof(argv [3]) : 1;

10 Float nu = (argc > 4) ? atof(argv [4]) : 3;
11 Float t0 = (argc > 5) ? atof(argv [5]) : acos (-1.)/8;
12 Float a = 0;
13 trial sigma (Xh); test tau (Xh);
14 tensor ma = 0.5*((1 -a)* grad_u - (1+a)*trans(grad_u));
15 auto beta_a = sigma*ma + trans(ma)*sigma;
16 form ah = integrate (ddot(grad_h(sigma)*u + beta_a + nu*sigma ,tau))
17 + integrate (" boundary",
18 max(0, -dot(u,normal ()))* ddot(sigma ,tau))
19 + integrate (" internal_sides",
20 - dot(u,normal ())* ddot(jump(sigma),average(tau))
21 + 0.5* alpha*abs(dot(u,normal ()))
22 *ddot(jump(sigma),jump(tau)));
23 field lh = integrate (ddot(chi(nu ,t0),tau))
24 + integrate (" boundary",
25 max(0, -dot(u,normal ()))* ddot(sigma_g(nu ,t0),tau));
26 field sigma_h(Xh);
27 #ifndef TO_CLEAN
28 odiststream aout ("a.mtx", io::nogz); aout << ah.uu(); aout.close ();
29 #endif // TO_CLEAN
30 problem p (ah);
31 p.solve (lh, sigma_h);
32 dout << catchmark ("nu") << nu << endl
33 << catchmark ("t0") << t0 << endl
34 << catchmark ("sigma ") << sigma_h;
35 }

Running the program

Let d = 2 and Ω =] − 1/2, 1/2[2. We consider the rotating field u = (−x2, x1). A particular
solution of the time-dependent problem with zero right-hand side is given by:

σ(x, t) =
1

2
exp

{
− t

λ
− (x1 − x1,c(t))

2 + (x2 − x2,c(t))
2

r20

}
×
(

1 + cos(2t) sin(2t)
sin(2t) 1− cos(2t)

)

where x1,c(t) = x̄1,c cos(t) − x̄2,c sin(t) and x2,c(t) = x̄1,c sin(t) + x̄2,c cos(t) with r0 > 0 and
(x̄1,c, x̄2,c) ∈ R

2. The initial condition is chosen as σ0(x) = σ(0, x). This exact solution
is implemented in the file ‘transport tensor exact.icc’. This file it is not listed here but is
available in the Rheolef example directory. For the steady problem, the right-hand side could be

chosen as χ = −∂σ
∂t

and then t = t0 is fixed. The numerical tests correspond to ν=3, r0=1/10,

(x̄1,c, x̄2,c) = (1/4, 0) and a fixed time t0 = π/8.

make transport_tensor_dg

mkgeo_grid -t 80 -a -0.5 -b 0.5 -c -0.5 -d 0.5 > square2.geo

./transport_tensor_dg square2 P1d > square2.field

field square2.field -comp 00 -elevation

field square2.field -comp 01 -elevation

The computation could also be performed with any Pkd, with k > 0.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/transport_tensor_dg.cc

Chapter 5. Complex fluids 227

10
−8

10
−6

10
−4

10
−2

1

10
−3

10
−2

10
−1

‖σh − σ‖0,2,Ω

1 = k + 1

2

3
4

h

k = 0

k = 1

k = 2

k = 3

Figure 5.12: Tranport tensor problem: convergence versus mesh size.

Error analysis

The file ‘transport tensor error dg.cc’ implement the computation of the error between the
approximate solution σh and the exact one σ. This file it is not listed here but is available in the
Rheolef example directory. The computation of the error is obtained by:

make transport_tensor_error_dg

./transport_tensor_error_dg < square2.field

The error is plotted on Fig. 5.12 for various mesh size h and polynomial order k: observe the
optimality of the convergence properties. For k = 4 and on the finest mesh, the error saturates
at about 10−8, due to finite machine precision effects. In the next chapter, transport tensor
approximation are applied to viscoelastic fluid flow computations.

5.3.2 The Oldroyd model

We consider the following viscoelastic fluid flow problem (see e.g. Saramito, 2016b, chap. 4):

(P): find τ , u and p defined in]0, T [×Ω such that

We
Daτ

Dt
+ τ − 2αD(u) = 0 in]0, T [×Ω (5.13a)

Re

(
∂u

∂t
+ u.∇u

)
− div (τ + 2(1− α)D(u)− p.I) = 0 in]0, T [×Ω (5.13b)

−divu = 0 in]0, T [×Ω (5.13c)

τ = τΓ on]0, T [×∂Ω− (5.13d)

u = uΓ on]0, T [×∂Ω (5.13e)

τ(0) = τ0 and u(0) = u0 in Ω (5.13f)

where τ0, u0, τΓ and uΓ are given. The first equation corresponds to a generalized Oldroyd model
[Oldroyd, 1950]: when a = −1 we obtain the Oldroyd-A model, when a = 1, the Oldroyd-B model,
and when a ∈]− 1, 1[a generalization of these two models. The dimensionless number We > 0 is

228 Rheolef version 7.1 update 22 March 2020

the Weissenberg number: this is the main parameter for this problem. The dimensionless Reynolds
number Re > 0 is often chosen small: as such fluids are usually slow, the u.∇u inertia term is
also neglected here for simplicity. The parameter α ∈ [0, 1] represent a retardation. When α = 1
we obtain the Maxwell model, that is a reduced version of the Oldroyd one. The total Cauchy
stress tensor is expressed by:

σtot = −p I + 2(1− α)D(u) + τ (5.14)

5.3.3 The θ-scheme algorithm

The θ-scheme is considered for the time discretization [Saramito, 1994] (see also Saramito, 2016b,
chap. 4): this leads to a semi-implicit splitting algorithm that defines a sequence (τ (n),u(n), pn)n>0

as

• n = 0: set (τ (0),u(0)) = (τ0,u0) and p
0 arbitrarily chosen.

• n > 0: let (τ (n),u(n)) being known, then (τ (n+1),u(n+1), p(n+1) is defined in three sub-steps.

* sub-step 1: compute explicitly:

γ = u(n).∇τ (n) + τ (n)Ma

(
u(n)

)
+MT

a

(
u(n)

)
τ (n)

f̃ = λu(n) + div
(
c1τ

(n) + c2γ
)

where

c1 =
We

We+ θ∆t
and c2 = − Weθ∆t

We+ θ∆t

Then determine (u(n+θ), p(n+θ)) such that

λu(n+θ) − div
(
2ηD

(
u(n+θ)

))
+∇p(n+θ) = f̃ in Ω (5.15a)

−divu(n+θ) = 0 in Ω (5.15b)

u = uΓ((n+ θ)∆t) on ∂Ω (5.15c)

and finaly, compute explictely

τ (n+θ) = c1τ
(n) + c2γ + 2c3D

(
u(n+θ)

)
(5.15d)

where

λ =
Re

θ∆t
, η =

(1− α)We+ θ∆t

We+ θ∆t
and c3 =

αθ∆t

We+ θ∆t

* sub-step 2: (τ (n+θ),u(n+θ)) being known, compute explictely

u(n+1−θ) =
1− θ

θ
u(n+θ) − 1− 2θ

θ
u(n)

ξ = c4τn+θ + 2c5D
(
u(n+θ)

)

and then find τ (n+1−θ) such that

u(n+1−θ).∇τ (n+1−θ) + τ (n+1−θ)Ma

(
u(n+1−θ)

)
+MT

a

(
u(n+1−θ)

)
τ (n+1−θ)

+ ντ (n+1−θ) = ξ in Ω (5.16a)

τ (n+1−θ) = τΓ((n+ 1− θ)∆t) on ∂Ω− (5.16b)

where

ν =
1

(1− 2θ)∆t
, c4 =

1

(1− 2θ)∆t
− 1

We
and c5 =

α

We

Chapter 5. Complex fluids 229

* sub-step 3 is obtained by replacing n and n+ θ by n+ 1− θ and n+ 1, respectively.

Thus, sub-step 1 and 2 reduces to two similar generalized Stokes problems while sub-step 3 involves
a stress transport problem. Here ∆t > 0 and θ ∈]0, 1/2[are numerical parameters. A good choice is
θ = 1−1/

√
2 [Saramito, 1997]. This algorithm was first proposed by Saramito [1990] and extended

[Saramito, 1995] to Phan-Thien and Tanner viscoelastic models. See also [Singh and Leal, 1993]
for another similar approach in the context of FENE viscoelastic models. Scurtu [2005] presented
some benchmarks of this algorithm while Chrispell et al. [2009] presented a numerical analysis of
its convergence properties. The main advantage of this time-depend algorithm is its flexibility:
while most time-dependent splitting algorithms for viscoelastic are limited to α 6 1/2 (see e.g.
Pan et al., 2009), here the full range α ∈]0, 1] is available.
Let us introduce the finite element spaces:

Th = {τh ∈ (L2(Ω))d×ds ; τh|K ∈ (P1)
d×d
s , ∀K ∈ Th}

Xh = {vh ∈ (H1(Ω))d ; τh|K ∈ (P2)
d, ∀K ∈ Th}

Qh = {qh ∈ L2(Ω) ; qh|K ∈ P1, ∀K ∈ Th}
Note the discontinuous approximation of pressure: it presents a major advantage, as div(Xh) ⊂
Qh, it leads to an exact divergence-free approximation of the velocity: for any field vh ∈ Xh

satisfying
∫
Ω
qh div(vh) dx = 0 for all qh ∈ Qh, we have divvh = 0 point-wise, everywhere in

Ω. The pair (Xh, Qh) is known as the Scott and Vogelius [1985] lowest-order finite element
approximation. This is a major advantage when dealing with a transport equation. The only
drawback is that the pair (Xh, Qh) does not satisfy the inf-sup condition for an arbitrary mesh.
There exists a solution to this however: Arnold and Qin [1992] proposed a macro element technique
applied to the mesh that allows satisfying the inf-sup condition: for any triangular finite element
mesh, it is sufficient to split each triangle in three elements from its barycenter (see also Saramito,
2014). Note that the macro element technique extends to quadrilateral meshes [Arnold and Qin,
1992] and to the three-dimensional case [Zhang, 2005]. By this way, the approximate velocity field
satisfies exactly the incompressibility constraint: this is an essential property for the operator
splitting algorithm to behave correctly, combining stress transport equation with a divergence-free
velocity approximation.

The tensor transport term is discretized as in the previous chapter, by using the th trilinear form
introduced in (5.12) page 225. The bilinear forms b, c, d are defined by:

b(σh,vh) =

∫

Ω

σh :D(vh) dx

c(uh,vh) =

∫

Ω

D(uh) :D(vh) dx

d(uh, qh) =

∫

Ω

div(uh) qh dx

Let T , B, C, D and M be the discrete operators (i.e. the matrix) associated to the forms th, b, c,
d and the L2 scalar product in Th. Assume that a stationnary state is reached for the discretized
algorithm. Then, (5.15a)-(5.15d) writes

WeTτh +Mτh − 2αBTuh = 0

B
(
c1τh +M−1Tτh

)
+ 2ηCuh +DT ph = 0

Duh = 0

Note that (5.16a)-(5.16b) reduces also to the first equation of the previous system. Expanding
the coefficients, combining the two previous equations, and using C = BM−1BT , we obtain the
system characterizing the stationary solution of the discrete version of the algorithm:

WeTτh +Mτh − 2αBTuh = 0

Bτh + 2(1− α)Cuh +DT ph = 0

Duh = 0

230 Rheolef version 7.1 update 22 March 2020

Note that this is exactly the discretized version of the stationary equation1. In order to check
that the solution reaches a stationary state, the residual terms of this stationary equations are
computed at each iteration, together with the relative error between two iterates.

Example file 5.20: oldroyd theta scheme.h

1 template <class Problem >
2 struct oldroyd_theta_scheme {
3 oldroyd_theta_scheme ();
4 void initial (const geo& omega , field& tau_h , field& uh, field& ph,
5 string restart);
6 bool solve (field& tau_h , field& uh, field& ph);
7 protected:
8 void step (const field& tau_h0 , const field& uh0 , const field& ph0 ,
9 field& tau_h , field& uh , field& ph) const;

10 void sub_step1 (const field& tau_h0 , const field& uh0 , const field& ph0 ,
11 field& tau_h , field& uh , field& ph) const;
12 void sub_step2 (const field& uh0 , const field& tau_h1 , const field& uh1 ,
13 field& tau_h , field& uh) const;
14 Float residue (field& tau_h , field& uh , field& ph) const;
15 void reset (const geo& omega);
16 void update_transport_stress (const field& uh) const;
17 public:
18 Float We , alpha , a, Re , delta_t , tol;
19 size_t max_iter;
20 protected:
21 space Th , Xh , Qh;
22 form b, c, d, mt, inv_mt , mu, mp;
23 mutable form th;
24 mutable field thb;
25 Float theta , lambda , eta , nu , c1 , c2 , c3 , c4 , c5;
26 problem_mixed stokes;
27 };
28 #include "oldroyd_theta_scheme1.h"
29 #include "oldroyd_theta_scheme2.h"
30 #include "oldroyd_theta_scheme3.h"

1The original θ-scheme presented by Saramito [1994] has an additional relaxation parameter ω. The present
version correspond to ω = 1. When ω 6= 1, the stationary solution still depends slightly upon ∆t, as the stationary
system do not simplifies completely.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/oldroyd_theta_scheme.h

Chapter 5. Complex fluids 231

Example file 5.21: oldroyd theta scheme1.h

1 template <class P>
2 oldroyd_theta_scheme <P>:: oldroyd_theta_scheme ()
3 : We(0), alpha (8./9) , a(1), Re(1), delta_t (0.025) , tol(1e-6), max_iter (500),
4 Th(), Xh(), Qh(), b(), c(), d(), mt(), inv_mt(), mu(), mp(), th(), thb(),
5 theta(), lambda(), eta(), nu(), c1(), c2(), c3(), c4(), c5(), stokes () {}
6 template <class P>
7 void oldroyd_theta_scheme <P>:: reset(const geo& omega) {
8 Th = space (omega , "P1d", "tensor ");
9 Xh = P:: velocity_space (omega , "P2");

10 Qh = space (omega , "P1d ");
11 theta = 1-1/sqrt (2.);
12 lambda = Re/(theta*delta_t);
13 eta = ((1 - alpha)*We + theta*delta_t)/(We + theta*delta_t);
14 nu = 1/((1 -2* theta)* delta_t);
15 c1 = We/(We + theta*delta_t);
16 c2 = - We*theta*delta_t /(We + theta*delta_t);
17 c3 = alpha*theta*delta_t /(We + theta*delta_t);
18 c4 = 1/((1 -2* theta)* delta_t) - 1/We;
19 c5 = alpha/We;
20 trial u (Xh), tau(Th), p (Qh);
21 test v (Xh), xi (Th), q (Qh);
22 mt = integrate (ddot(tau ,xi));
23 mu = integrate (dot(u,v));
24 mp = integrate (p*q);
25 integrate_option iopt;
26 iopt.invert = true;
27 inv_mt = integrate (ddot(tau ,xi), iopt);
28 b = integrate (-ddot(tau ,D(v)));
29 c = integrate (lambda*dot(u,v) + 2*eta*ddot(D(u),D(v)));
30 d = integrate (-div(u)*q);
31 stokes = problem_mixed (c, d);
32 stokes.set_metric (mp);
33 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/oldroyd_theta_scheme1.h

232 Rheolef version 7.1 update 22 March 2020

Example file 5.22: oldroyd theta scheme2.h

1 template <class P>
2 bool oldroyd_theta_scheme <P>:: solve(field& tau_h , field& uh, field& ph) {
3 reset (uh.get_geo ());
4 field tau_h0 = tau_h , uh0 = uh , ph0 = ph;
5 derr << "# n t rel_err residue lambda_min" << endl;
6 Float r = residue (tau_h , uh , ph);
7 Float rel_err = 0;
8 derr << "0 0 0 " << r << endl;
9 for (size_t n = 1; n <= max_iter; ++n) {

10 step (tau_h0 , uh0 , ph0 , tau_h , uh, ph);
11 Float rel_err_prec = rel_err , r_prec = r;
12 r = residue (tau_h , uh , ph);
13 rel_err = field(tau_h -tau_h0). max_abs () + field(uh-uh0). max_abs ();
14 derr << n << " " << n*delta_t << " " << rel_err << " " << r << endl;
15 if (rel_err < tol) return true;
16 if (rel_err_prec != 0 && ((rel_err > 10* rel_err_prec && r > 10* r_prec) ||
17 (rel_err > 1e5 && r > 1e5))) return false;
18 tau_h0 = tau_h; uh0 = uh; ph0 = ph;
19 }
20 return (rel_err < sqrt(tol));
21 }
22 template <class P>
23 void oldroyd_theta_scheme <P>:: initial (
24 const geo& omega , field& tau_h , field& uh , field& ph , string restart) {
25 reset (omega);
26 ph = field(Qh ,0);
27 if (restart == "") {
28 uh = P:: velocity_field (Xh);
29 trial u (Xh); test v (Xh), xi(Th);
30 form c0 = integrate (2* ddot(D(u),D(v)));
31 problem_mixed s0 (c0 , d);
32 s0.set_metric(mp);
33 s0.solve (field(Xh ,0), field(Qh ,0), uh, ph);
34 field Duh = inv_mt*integrate(ddot(D(uh),xi));
35 tau_h = 2* alpha*Duh;
36 } else {
37 tau_h = field(Th);
38 uh = field(Xh);
39 idiststream in (restart , "field ");
40 in >> catchmark ("tau") >> tau_h
41 >> catchmark ("u") >> uh
42 >> catchmark ("p") >> ph;
43 }
44 }
45 template <class P>
46 void oldroyd_theta_scheme <P>:: step (
47 const field& tau_h0 , const field& uh0 , const field& ph0 ,
48 field& tau_h , field& uh , field& ph) const {
49 field tau_h1 = tau_h0 , uh1 = uh0 , ph1 = ph0;
50 sub_step1 (tau_h0 , uh0 , ph0 , tau_h1 , uh1 , ph1);
51 field tau_h2 = tau_h1 , uh2 = uh1;
52 sub_step2 (uh0 , tau_h1 , uh1 , tau_h2 , uh2);
53 sub_step1 (tau_h2 , uh2 , ph1 , tau_h , uh , ph);
54 }
55 template <class P>
56 Float
57 oldroyd_theta_scheme <P>:: residue(field& tau_h , field& uh , field& ph) const{
58 update_transport_stress (uh);
59 test xi (Th);
60 field Duh = inv_mt*integrate(ddot(D(uh),xi));
61 field gh = 2*Duh;
62 field rt = We*(th*tau_h -thb) + integrate (ddot(tau_h - alpha*gh , xi));
63 field ru = b*(tau_h + (1-alpha)*gh) - d.trans_mult(ph);
64 ru.set_b() = 0;
65 field rp = d*uh;
66 return rt.u(). max_abs () + ru.u(). max_abs () + rp.u(). max_abs ();
67 }

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/oldroyd_theta_scheme2.h

Chapter 5. Complex fluids 233

Example file 5.23: oldroyd theta scheme3.h

1 template <class P>
2 void oldroyd_theta_scheme <P>:: sub_step1 (
3 const field& tau_h0 , const field& uh0 , const field& ph0 ,
4 field& tau_h , field& uh , field& ph) const
5 {
6 update_transport_stress (uh0);
7 field gamma_h = inv_mt *(th*tau_h0 - thb);
8 test v (Xh), xi (Th);
9 field lh = lambda*integrate (dot(uh0 ,v))

10 + b*(c1*tau_h0 + c2*gamma_h);
11 ph = ph0;
12 uh.set_u() = uh0.u();
13 stokes.solve (lh, field(Qh ,0), uh, ph);
14 field Duh = inv_mt*integrate(ddot(D(uh),xi));
15 tau_h = c1*tau_h0 + c2*gamma_h + 2*c3*Duh;
16 }
17 template <class P>
18 void oldroyd_theta_scheme <P>:: sub_step2 (
19 const field& uh0 ,
20 const field& tau_h1 , const field& uh1 ,
21 field& tau_h , field& uh) const
22 {
23 uh = (1-theta)/theta*uh1 - (1-2* theta)/theta*uh0;
24 test xi (Th);
25 if (We == 0) {
26 field Duh = inv_mt*integrate(ddot(D(uh),xi));
27 tau_h = 2* alpha*Duh;
28 return;
29 }
30 update_transport_stress (uh);
31 form th_nu = th + nu*mt;
32 typename P:: tau_upstream tau_up (Th.get_geo(), We, alpha);
33 field lh = integrate (ddot(c4*tau_h1 + 2*c5*D(uh1),xi))
34 + integrate (" boundary",
35 max(0, -dot(uh ,normal ()))* ddot(tau_up ,xi));
36 problem transport (th_nu);
37 transport.solve (lh , tau_h);
38 }
39 template <class P>
40 void
41 oldroyd_theta_scheme <P>:: update_transport_stress (const field& uh) const {
42 typename P:: tau_upstream tau_up (Th.get_geo(), We, alpha);
43 trial tau (Th); test xi (Th);
44 auto ma = 0.5*((1 -a)*grad(uh) - (1+a)*trans(grad(uh)));
45 auto beta_a = tau*ma + trans(ma)*tau;
46 th = integrate (ddot(grad_h(tau)*uh + beta_a ,xi))
47 + integrate (" boundary", max(0, -dot(uh ,normal ()))* ddot(tau ,xi))
48 + integrate (" internal_sides",
49 - dot(uh ,normal ())* ddot(jump(tau),average(xi))
50 + 0.5* abs(dot(uh ,normal ()))* ddot(jump(tau),jump(xi)));
51 thb = integrate (" boundary", max(0, -dot(uh ,normal ()))* ddot(tau_up ,xi));
52 }

5.3.4 Flow in an abrupt ontraction

Fig. 5.13 represents the contraction flow geometry. Let us denote by Γu, Γd, Γw and Γs the
upstream, downstream, wall and symmetry axis boundary domains, respectively. This geometry
has already been studied in section 2.2.2, in the context of a Newtonian fluid. Here, the fluid is
more complex and additional boundary conditions on the upstream domain are required for the
extra-stress tensor τ .

For the geometry, we assume that the lengths Lu and Ld are sufficiently large for the Poiseuille
flows to be fully developped at upstream and downstream. Assuming also a = 1, i.e. the Oldroyd-
B model, the boundary conditions at upstream are explicitely known as the solution of the fully

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/oldroyd_theta_scheme3.h

234 Rheolef version 7.1 update 22 March 2020

x0−Lu

x1

1

(0, 0) Ld

Γu

Γd

Γw

Γs

c

Figure 5.13: The Oldroyd problem in the abrupt contraction: shematic view of the flow domain.

Poiseuille flow for a plane pipe with half width c:

u0(x1) = ū

(
1−

(x1
c

)2)

γ̇(x1) = u′0(x1) = −2ū x1
c2

τ00(x1) = 2αWe γ̇2(x1)

τ01(x1) = τ10(x1) = α γ̇(x1)

τ11(x1) = 0

where ū denotes the maximal velocity of the Poiseuille flow. Without loss of generality, thanks
to a dimensional analysis, it can be adjused with the contraction ratio c for obtaining a flow rate
equal to one:

ū =

{
3/(2c) for a planar geometry
4/c2 for an axisymmetric one

Example file 5.24: oldroyd contraction.h

1 #include "contraction.h"
2 struct oldroyd_contraction: contraction {
3 struct tau_upstream: base {
4 tau_upstream (geo omega , Float We1 , Float alpha1)
5 : base(omega), We(We1), alpha(alpha1) {}
6 tensor operator () (const point& x) const {
7 tensor tau;
8 Float dot_gamma = - 2*base::umax*x[1]/ sqr(base::c);
9 tau(0,0) = 2* alpha*We*sqr(dot_gamma);

10 tau(0,1) = tau(1,0) = alpha*dot_gamma;
11 tau(1,1) = 0;
12 return tau;
13 }
14 Float We , alpha;
15 };
16 };

The class contraction, already used for Newtonian fluids, is here reused and extended with the
boundary condition function tau upstream, as a derived class oldroyd contraction. We are now
able to write the main program for solving a viscoelastic fluid flow problem in a contraction.

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/oldroyd_contraction.h

Chapter 5. Complex fluids 235

Example file 5.25: oldroyd contraction.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "oldroyd_theta_scheme.h"
5 #include "oldroyd_contraction.h"
6 int main(int argc , char**argv) {
7 environment rheolef (argc , argv);
8 cin >> noverbose;
9 oldroyd_theta_scheme <oldroyd_contraction > pb;

10 geo omega (argv [1]);
11 Float We_incr = (argc > 2) ? atof(argv [2]) : 0.1;
12 Float We_max = (argc > 3) ? atof(argv [3]) : 0.1;
13 Float delta_t0 = (argc > 4) ? atof(argv [4]) : 0.005;
14 string restart = (argc > 5) ? argv [5] : "";
15 pb.tol = 1e-3;
16 pb.max_iter = 50000;
17 pb.alpha = 8./9;
18 pb.a = 1;
19 pb.delta_t = delta_t0;
20 Float delta_t_min = 1e-5;
21 Float We_incr_min = 1e-5;
22 dout << catchmark ("alpha ") << pb.alpha << endl
23 << catchmark ("a") << pb.a << endl;
24 branch even ("We", "tau", "u", "p");
25 field tau_h , uh , ph;
26 pb.initial (omega , tau_h , uh, ph, restart);
27 dout << even (pb.We, tau_h , uh, ph);
28 bool ok = true;
29 do {
30 if (ok) pb.We += We_incr;
31 derr << "# We = " << pb.We << " delta_t = " << pb.delta_t << endl;
32 field tau_h0 = tau_h , uh0 = uh , ph0 = ph;
33 ok = pb.solve (tau_h , uh, ph);
34 if (ok) {
35 dout << even (pb.We, tau_h , uh, ph);
36 } else {
37 pb.delta_t /= 2;
38 tau_h = tau_h0; uh = uh0; ph = ph0;
39 if (pb.delta_t < delta_t_min) {
40 derr << "# solve failed: decreases We_incr and retry ..." << endl;
41 pb.delta_t = delta_t0;
42 We_incr /= 2;
43 pb.We -= We_incr;
44 if (We_incr < We_incr_min) break;
45 } else {
46 derr << "# solve failed: decreases delta_t and retry ..." << endl;
47 }
48 }
49 derr << endl << endl;
50 } while (true);
51 }

The splitting element technique for the Scott-Vogelius element is implemented as an option by
the command mkgeo contraction. This file it is not listed here but is available in the Rheolef

example directory. The mesh generation for an axisymmetric contraction writes:

mkgeo_contraction 3 -c 4 -zr -Lu 20 -Ld 20 -split

geo contraction.geo

This command generates a mesh for the axisymmetric 4:1 abrupt contraction with upstream and
downstream length Lu = Ld = 20. Such high lengths are required for the Poiseuille flow to be
fully developped at upstream and downstream for large values of We. The 3 first argument of
mkgeo contraction is a number that characterizes the mesh density: when increasing, the average
edge length decreases. Then, the program is started:

make oldroyd_contraction

file://localhost/home/saramito/dsys/share/doc/rheolef/examples/oldroyd_contraction.cc

236 Rheolef version 7.1 update 22 March 2020

./oldroyd_contraction contraction.geo 0.1 10 0.01 > contraction.branch

The program computes stationnary solutions by increasing We with the time-dependent algo-
rithm. It performs a continuation algorithm, using solution at a lowest We as initial condition.
The reccurence starts from an the Newtonian solution associated to We = 0. The others model
parameters for this classical benchmark are fixed here as α = 8/9 and a = 1 (Oldroyd-B model).
The computation can take a while as there are two loops: one outer, on We, and the other in-
ner on time, and there are two generalized Stokes subproblem and one tensorial transport one to
solve at each time iteration. The inner time loop stops when the relative error is small enough.
Thus, a parallel run, when available, could be a major advantage: this can be obtained by adding
e.g. mpirun -np 8 at the begining of the command line. Recall that the time scheme is condition-
naly stable: the time step should be small enough for the algorithm to converge to a stationnary
solution. When the solver fails, it restarts with a smaller time step. Note that the present solver
can be dramatically improved: by using a Newton method, as shown by Saramito [2014], it is
possible to directly reach the stationnary solution, but such more sophisticated implementation is
out of the scope of the present documentation.

The visualization of the stream function writes:

branch contraction.branch -toc

branch contraction.branch -extract 3 -branch > contraction-We-0.3.field

make streamf_contraction

field -mark u contraction-We-0.3.field -field | ./streamf_contraction > psi.field

field psi.field -n-iso 15 -n-iso-negative 10

field psi.field -n-iso 15 -n-iso-negative 10 -bw

The file ‘streamf contraction.cc’ has already been studied in section 2.2.2, in the context of a
Newtonian fluid. The result is shown on Fig. 5.14. The vortex growths with We: this is the major
effet observed on this problem. Observe the two color maps representation: positive values of the
stream functions are associated to the vortex and negatives values to the main flow region. The
last command is a black-and-white variant view.

The vortex activity is obtained by:

field psi.field -max

Recall that the minimal value of the stream function is −1, thanks to the dimensionless procedure
used here.

Cuts along the axis of symmetry are obtained by:

field contraction-We-0.3.field -domain axis -mark u -comp 0 -elevation -gnuplot

field contraction-We-0.3.field -domain axis -mark tau -comp 00 -elevation -gnuplot

field contraction-We-0.3.field -domain axis -mark tau -comp 11 -elevation -gnuplot

field contraction-We-0.3.field -domain axis -mark tau -comp 22 -elevation -gnuplot

These cuts are plotted on Fig. 5.16. Observe the overshoot of the velocity along the axis when
We > 0 while this effect is not perceptible whenWe = 0. Also, the normal extra stress τzz growth
dramatically in the entry region.

Chapter 5. Complex fluids 237

We = 0.1

We = 0.3

We = 0.7

Figure 5.14: The Oldroyd problem in the axisymmetric contraction: stream function for We =
0.1, 0.3 and 0.7, from top to bottom.

238 Rheolef version 7.1 update 22 March 2020

0

0.01

0.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ψmax

We

Figure 5.15: The Oldroyd-B problem in the axisymmetric contraction: vortex activity vs We
(α = 8/9).

Chapter 5. Complex fluids 239

0
0.25

4

−4 0 4 8

uz(z, 0)

z

We = 0.7
We = 0.5
We = 0.3
We = 0 0

4

8

12

16

20

−4 −2 0 2 4

τzz(z, 0)

z

We = 0.7
We = 0.5
We = 0.3
We = 0

−2

−1

0

1

−4 −2 0 2 4

τrr(z, 0)

z

We = 0.7
We = 0.5
We = 0.3
We = 0

−2

−1

0

1

−4 −2 0 2 4

τθθ(z, 0)

z

We = 0.7
We = 0.5
We = 0.3
We = 0

Figure 5.16: The Oldroyd problem in the axisymmetric contraction: velocity and stress compo-
nents along the axis.

240 Rheolef version 7.1 update 22 March 2020

Appendix A

Technical appendices

A.1 How to write a variational formulation ?

The major key-point for using Rheolef is to put the problem in variational form. Then this
variational form can be efficiently translated into C++ language. This appendix is dedicated to
readers who are not fluent with variational formulations and some related functional analysis tools.

A.1.1 The Green formula

Let us come back to the model problem presented in section 1.1.1, page 12, equations (1.1)-(1.2)
and details how this problem is transformed into (1.3).

Let H1
0 (Ω) the space of functions whose gradient square has a finite sum over Ω and that vanishes

on ∂Ω:
H1

0 (Ω) = {v ∈ L2(Ω); ∇v ∈ L2(Ω)d and v = 0 on ∂Ω}
We start by multiplying (1.1) by an arbitrarily test-function v ∈ H1

0 (Ω) and then integrate over Ω :

−
∫

Ω

∆u v dx =

∫

Ω

f v dx, ∀v ∈ H1
0 (Ω)

The next step is to invoke an integration by part, the so-called Green formula:
∫

Ω

∆u v dx+

∫

Ω

∇u.∇v dx =

∫

∂Ω

∂u

∂n
v ds, ∀u, v ∈ H1(Ω)

Since our test-function v vanishes on the boundary, the integral over ∂Ω is zero and the problem
becomes: ∫

Ω

∇u.∇v dx =

∫

Ω

f v dx, ∀v ∈ H1
0 (Ω)

This is exactly the variational formulation (1.3), page 12.

A.1.2 The vectorial Green formula

In this section, we come back to the linear elasticity problem presented in section 2.1.1, page 41,
equations (2.1)-(2.2) and details how this problem is transformed into (2.3).

Let Γd (resp. Γn) denotes the parts of the boundary ∂Ω related to the homogeneous Dirichlet
boundary condition u = 0 (resp. the homogeneous Neumann boundary condition σ(u)n = 0).
We suppose that ∂Ω = Γd ∩ Γn. Let us introduce the following functional space:

V = {v ∈ H1(Ω)d; v = 0 on Γd}

241

242 Rheolef version 7.1 update 22 March 2020

Then, multiplying the first equation of (2.2) by an arbitrarily test-function v ∈ V and then
integrate over Ω :

−
∫

Ω

div(σ(u)).v dx =

∫

Ω

f .v dx, ∀v ∈ V

The next step is to invoke an integration by part:
∫

Ω

div τ.v dx+

∫

Ω

τ : D(v) dx =

∫

∂Ω

τ : (v ⊗ n) ds, ∀τ ∈ L2(Ω)d×d, ∀v ∈ V

Recall that div τ denotes
(∑d−1

j=0 ∂jτi,j

)
06i<d

, i.e. the vector whose component are the diver-

gence of each row of τ . Also, σ : τ denote the double contracted product
∑d−1
i,j=0 σi,jτi,j for any

tensors σ and τ , and that u ⊗ v dotes the τi,j = ui vj tensor, vectors u and v. Remark that

τ : (u⊗ v) = (τ v).u =
∑d−1
i,j=0 τi,j ui vj . Choosing τ = σ(u) in the previous equation leads to:

∫

Ω

σ(u) : D(v) dx =

∫

∂Ω

(σ(u)n).v ds+

∫

Ω

f .v dx, ∀v ∈ V

Since our test-function v vanishes on Γd and the solution satisfies the homogeneous Neumann
boundary condition σ(u)n = 0 on Γn, the integral over ∂Ω is zero and the problem becomes:

∫

Ω

σ(u) : D(v) dx =

∫

Ω

f .v dx, ∀v ∈ V

From the definition of σ(u) in (2.1) page 41 we have:

σ(u) : D(v) = λ div(u) (I : D(v)) + 2µD(u) : D(v)

= λ div(u) div(v) + 2µD(u) : D(v)

and the previous relation becomes:
∫

Ω

λdiv(u) div(v) dx+

∫

Ω

2µD(u) : D(v) dx =

∫

Ω

f .v dx, ∀v ∈ V

This is exactly the variational formulation (2.3), page 41.

A.1.3 The Green formula on a surface

Let Γ a closed and orientable surface of Rd, d = 2, 3 and n its unit normal. From [Laadhari et al.,
2010], appendix C we have the following integration by part:

∫

Γ

divsv ξ ds+

∫

Γ

v.∇sξ ds =

∫

Γ

v.n ξ divn ds

for all ξ ∈ H1(Γ) and v ∈ H1(Γ)d. Note that divn represent the surface curvature. Next, we
choose v = ∇sϕ, for any ϕ ∈ H2(Γ). Remaking that v.n = 0 and that divsv = ∆sϕ. Then:

∫

Γ

∆s ξ ds+

∫

Γ

∇sϕ.∇sξ ds = 0

This formula is the starting point for all variational formulations of problems defined on a surface
(see chapter 3.1).

A.2 How to prepare a mesh ?

Since there is many good mesh generators, Rheolefdoes not provide a built-in mesh generator.
There are several ways to prepare a mesh for Rheolef.

We present here several procedures: by using the bamg bidimensional anisotropic mesh generator,
written by Hecht [2006], and the gmsh mesh generator, suitable when d = 1, 2 and 3, and written
by Geuzaine and Remacle [2009].

Appendix A. Technical appendices 243

A.2.1 Bidimensional mesh with bamg

We first create a ‘square.bamgcad’ file:

MeshVersionFormatted

0

Dimension

2

Vertices

4

0 0 1

1 0 2

1 1 3

0 1 4

Edges

4

1 2 101

2 3 102

3 4 103

4 1 104

hVertices

0.1 0.1 0.1 0.1

This is an uniform mesh with element size h = 0.1. We refer to the bamg documentation Hecht
[2006] for the complete file format description. Next, enter the mesh generator commands:

bamg -g square.bamgcad -o square.bamg

Then, create the file ‘square.dmn’ that associate names to the four boundary domains of the mesh.
Here, there is four boundary domains:

EdgeDomainNames

4

bottom

right

top

left

and enter the translation command:

bamg2geo square.bamg square.dmn > square.geo

This command creates a ‘square.geo’ file. Look at the mesh via the command:

geo square

This presents the mesh it in a graphical form, usually with paraview. You can switch to the
gnuplot render:

geo square -gnuplot

A finer mesh could be generated by:

bamg -coef 0.5 -g square.bamgcad -o square-0.5.bamg

244 Rheolef version 7.1 update 22 March 2020

A.2.2 Unidimensional mesh with gmsh

The simplest unidimensional mesh is a line:

h_local = 0.1;

Point(1) = {0, 0, 0, h_local};

Point(2) = {1, 0, 0, h_local};

Line(3) = {1,2};

Physical Point("left") = {1};

Physical Point("right") = {2};

Physical Point("boundary") = {1,2};

Physical Line("interior") = {3};

The mesh generation command writes:

gmsh -1 line.mshcad -format msh2 -o line.msh

Then, the conversion to ‘.geo’ format and the visualization:

msh2geo line.msh > line.geo

geo line

A.2.3 Bidimensional mesh with gmsh

Figure A.1: Visualization of the gmsh meshes ‘square.geo’ and ‘cube.geo’.

We first create a ‘square.mshcad’ file:

n = 10.0;

hloc = 1.0/n;

Point(1) = {0, 0, 0, hloc};

Point(2) = {1, 0, 0, hloc};

Appendix A. Technical appendices 245

Point(3) = {1, 1, 0, hloc};

Point(4) = {0, 1, 0, hloc};

Line(1) = {1,2};

Line(2) = {2,3};

Line(3) = {3,4};

Line(4) = {4,1};

Line Loop(5) = {1,2,3,4};

Plane Surface(6) = {5} ;

Physical Point("left_bottom") = {1};

Physical Point("right_bottom") = {2};

Physical Point("right_top") = {3};

Physical Point("left_top") = {4};

Physical Line("boundary") = {1,2,3,4};

Physical Line("bottom") = {1};

Physical Line("right") = {2};

Physical Line("top") = {3};

Physical Line("left") = {4};

Physical Surface("interior") = {6};

This is an uniform mesh with element size h = 0.1. We refer to the gmsh documentation Geuzaine
and Remacle [2009] for the complete file format description. Next, enter the mesh generator
commands:

gmsh -2 square.mshcad -format msh2 -o square.msh

Then, enter the translation command:

msh2geo square.msh > square.geo

This command creates a ‘square.geo’ file. Look at the mesh via the command:

geo square

Remark that the domain names, defined in the .mshcad file, are included in the gmsh .msh input
file and are propagated in the .geo by the format conversion.

A.2.4 Tridimensional mesh with gmsh

First, create a ‘cube.mshcad’ file:

Mesh.Algorithm = 7; // bamg

Mesh.Algorithm3D = 7; // mmg3d

a = 0; c = 0; f = 0;

b = 1; d = 1; g = 1;

n = 10;

hloc = 1.0/n;

Point(1) = {a, c, f, hloc};

Point(2) = {b, c, f, hloc};

Point(3) = {b, d, f, hloc};

Point(4) = {a, d, f, hloc};

Point(5) = {a, c, g, hloc};

Point(6) = {b, c, g, hloc};

Point(7) = {b, d, g, hloc};

Point(8) = {a, d, g, hloc};

Line(1) = {1,2};

246 Rheolef version 7.1 update 22 March 2020

Line(2) = {2,3};

Line(3) = {3,4};

Line(4) = {4,1};

Line(5) = {5,6};

Line(6) = {6,7};

Line(7) = {7,8};

Line(8) = {8,5};

Line(9) = {1,5};

Line(10) = {2,6};

Line(11) = {3,7};

Line(12) = {4,8};

Line Loop(21) = {-1,-4,-3,-2};

Plane Surface(31) = {21} ;

Line Loop(22) = {5,6,7,8};

Plane Surface(32) = {22} ;

Line Loop(23) = {1,10,-5,-9};

Plane Surface(33) = {23} ;

Line Loop(24) = {12,-7,-11,3};

Plane Surface(34) = {24} ;

Line Loop(25) = {2,11,-6,-10};

Plane Surface(35) = {25} ;

Line Loop(26) = {9,-8,-12,4};

Plane Surface(36) = {26} ;

Surface Loop(41) = {31,32,33,34,35,36};

Volume(51) = {41};

Physical Surface("bottom") = {31};

Physical Surface("top") = {32};

Physical Surface("left") = {33};

Physical Surface("front") = {35};

Physical Surface("right") = {34};

Physical Surface("back") = {36};

Physical Volume("internal") = {51};

Next, enter the mesh generator commands:

gmsh -3 cube.mshcad -format msh2 -o cube.msh

Then, enter the translation command:

msh2geo cube.msh > cube.geo

This command creates a ‘cube.geo’ file. Look at the mesh via the command:

geo cube

geo cube.geo -cut

The second command allows one to see inside the mesh.

Appendix B

GNU Free Documentation License

Version 1.1, March 2000

Copyright © 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

247

248 Rheolef version 7.1 update 22 March 2020

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup has been
designed to thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LATEX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML designed for human modification. Opaque formats include PostScript,
PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept com-
pensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you

Appendix B. GNU Free Documentation License 249

use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

• Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

• In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

250 Rheolef version 7.1 update 22 March 2020

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

• Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties – for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled “Ac-
knowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled
“Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

Appendix B. GNU Free Documentation License 251

Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an “aggregate”, and this License does not apply to
the other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may
be placed on covers that surround only the Document within the aggregate. Otherwise they must
appear on covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License provided that you also include the original English version of this License.
In case of a disagreement between the translation and the original English version of this License,
the original English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License ”or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

*

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.1 or any later version published by the Free Software Foundation; with the

http://www.gnu.org/copyleft

252 Rheolef version 7.1 update 22 March 2020

Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Bibliography

E. M. Abdalass. Résolution performante du problème de Stokes par mini-éléments, maillages auto-
adaptatifs et méthodes multigrilles – applications. PhD thesis, Thèse de l’école centrale de Lyon,
1987.

L. Abouorm. Méthodes mathématiques pour les écoulements sur des surfaces. Master’s thesis,
M2R Université J. Fourier, Grenoble, 2010. URL http://www-ljk.imag.fr/membres/Pierre.

Saramito/Lara-Abouorm-m2r-2010.pdf.

P. Alart. Méthode de Newton généralisée en mécanique du contact. Journal de Mathématiques
Pures et Appliquées, 76(1):83–108, 1997.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1):15–41, 2001.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.4181&rep=rep1&

type=pdf.

P. R Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the parallel
solution of linear systems. Parallel Comput., 32(2):136–156, 2006. URL http://hal.inria.

fr/inria-00070599/PDF/RR-5404.pdf.

D. N. Arnold and J. Qin. Quadratic velocity/linear pressure Stokes elements. Adv. Comput. Meth.
Partial Diff. Eqn., 7:28–34, 1992.

D. N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equations. Calcolo,
21:337–344, 1984.

U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit-explicit Runge-Kutta methods for time-
dependent partial differential equations. Appl. Numer. Math., 25(2):151–167, 1997.

C. Ashcraft and J. W. H. Liu. Robust ordering of sparse matrices using multisection. SIAM J.
Matrix Anal. Appl., 19(3):816–832, 1998.

F. Auteri, N. Parolini, and L. Quartapelle. Numerical investigation on the stability of singular
driven cavity flow. J. Comput. Phys., 183(1):1–25, 2002.

G. K. Batchelor. An introduction to fluid dynamics. Cambridge university press, UK, sixth edition,
1967.

R. Bird, R. C. Armstrong, and O. Hassager. Dynamics of polymeric liquids. Volume 1. Fluid
mechanics. Wiley, New-York, second edition, 1987.

H. Borouchaki, P. L. George, F. Hecht, P. Laug, B. Mohammadi, and E. Saltel. Mailleur bidi-
mensionnel de Delaunay gouverné par une carte de métriques. Partie II: applications. Technical
Report RR-2760, INRIA, 1995.

K. Boukir, Y. Maday, B. Metivet, and E. Razafindrakoto. A high-order characteristic/finite ele-
ment method for the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 25:
1421–1454, 1997.

253

http://www-ljk.imag.fr/membres/Pierre.Saramito/Lara-Abouorm-m2r-2010.pdf
http://www-ljk.imag.fr/membres/Pierre.Saramito/Lara-Abouorm-m2r-2010.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.4181&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.4181&rep=rep1&type=pdf
http://hal.inria.fr/inria-00070599/PDF/RR-5404.pdf
http://hal.inria.fr/inria-00070599/PDF/RR-5404.pdf

254 Rheolef version 7.1 update 22 March 2020

S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods. Springer,
second edition, 2002.

H. Brezis. Analyse fonctionnelle. Théorie et application. Masson, Paris, 1983.

F. Brezzi and J. Pitkäranta. On the stabilization of finite element approximation of the Stokes
equations. In Efficient solutions of elliptic systems, Kiel, Notes on numerical fluid mechanics,
volume 10, pages 11–19, 1984.

A. Caglar and A. Liakos. Weak imposition of boundary conditions for the Navier-Stokes equations
by a penalty method. Int. J. Numer. Meth. Fluids, 61(4):411–431, 2009.

M. P. Calvo, J. de Frutos, and J. Novo. Linearly implicit Runge-Kutta methods for advection-
reaction-diffusion equations. Appl. Numer. Math., 37(4):535–549, 2001.

G. F. Carey and B. Jianng. Least-squares finite elements for first-order hyperbolic systems. Int.
J. Numer. Meth. Eng., 26(1):81–93, 1988.

P. Castillo. Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci.
Comput., 24(2):524–547, 2002.

M. J. Castro-Diaz, F. Hecht, B. Mohammadi, and O. Pironneau. Anisotropic unstructured mesh
adaption for flow simulations. Int. J. Numer. Meth. Fluids, 25(4):475–491, 1997.

J. C. Chrispell, V. J. Ervin, and E. W. Jenkins. A fractional step θ-method approximation of
time-dependent viscoelastic fluid flow. J. Comput. Appl. Math., 232(2):159–175, 2009.

B. Cockburn. An introduction to the discontinuous Galerkin method for convection-dominated
problems, chapter 2, pages 151–268. Springer, 1998.

B. Cockburn, S. Hou, and C.-W. Shu. The Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws. IV. the multidimensional case. Math. Comput., 54
(190):545–581, 1990.

B. Cockburn, G. Kanschat, D. Schötzau, and C. Schwab. Local discontinuous Galerkin methods
for the Stokes system. SIAM J. Numer. Anal., 40(1):319–343, 2002.

B. Cockburn, G. Kanschat, and D. Schötzau. A locally conservative LDG method for the incom-
pressible Navier-Stokes equations. Math. Comput., 74(251):1067–1095, 2005.

B. Cockburn, B. Dong, J. Guzmán, and J. Qian. Optimal convergence of the original DG method
on special meshes for variable transport velocity. SIAM J. Numer. Anal., 48(1):133–146, 2010.

M. Crouzeix and J. Rappaz. On numerical approximation in bifurcation theory. Masson, Paris,
1990.

K. Deckelnick, G. Dziuk, C.M. Elliott, and C.-J. Heine. An h-narrow band finite element method
for elliptic equations on implicit surfaces. IMA Journal of Numerical Analysis, to appear:0,
2009.

D. A. di Pietro and A. Ern. Discrete functional analysis tools for discontinuous Galerkin methods
with application to the incompressible Navier-Stokes equations. Math. Comp., 79:1303–1330,
2010.

D. A. di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods. Springer,
2012.

D. A. Di Pietro, S. Lo Forte, and N. Parolini. Mass preserving finite element implementations of
the level set method. Appl. Numer. Math., 56(9):1179–1195, 2006.

Bibliography 255

M. Dicko. Méthodes mathématiques pour les écoulements sur des surfaces. Master’s thesis,
M2P Université J. Fourier, Grenoble, 2011. URL http://www-ljk.imag.fr/membres/Pierre.

Saramito/mahamar-dicko-m2r.pdf.

J. Donea and A. Huerta. Finite element methods for flow problems. Wiley, New-York, 2003.

D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method for improved
interface capturing. J. Comput. Phys., 183(1):83–116, 2002.

Y. Epshteyn and B. Rivière. Estimation of penalty parameters for symmetric interior penalty
Galerkin methods. J. Comput. Appl. Math., 206(2):843–872, 2007.

E. Erturk, T. C. Corke, and C. Gökçol. Numerical solutions of 2-D steady incompressible driven
cavity flow at high Reynolds numbers. Int. J. Numer. Meth. Fluids, 48:747–774, 2005.

G. Fourestey and S. Piperno. A second-order time-accurate ALE Lagrange-Galerkin method
applied to wind engineering and control of bridge profiles. Comput. Methods Appl. Mech. Engrg.,
193:4117–4137, 2004.

T. Gelhard, G. Lube, M. A. Olshanskii, and J. H. Starcke. Stabilized finite element schemes with
LBB-stable elements for incompressible flows. J. Comput. Appl. Math., 177:243–267, 2005.

A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal., 10:345–363,
1973.

C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh generator with
built-in pre- and post-processing facilities. Int. J. Numer. Meths Engrg., 79(11):1309–1331,
2009.

U. Ghia, K. N. Ghia, and C. T. Shin. High Re solutions for incompressible flow using the Navier-
Stokes equations and a multigrid method. J. Comput. Phys., 48:387–411, 1982.

V. Girault and P. A. Raviart. Finite element methods for the Navier-Stokes equations. Theory
and algorithms. Springer, 1986.

S. Gottlieb and C.-W. Shu. Total variation diminishing Runge-Kutta schemes. Math. Comput.,
67(221):73–85, 1998.

S. Gottlieb, Chi-W. Shu, and E. Tadmor. Strong stability-preserving high-order time discretization
methods. SIAM review, 43(1):89–112, 2001.

M. M. Gupta and J. C. Kalita. A new paradigm for solving Navier-Stokes equations:
streamfunction-velocity formulation. J. Comput. Phys., 207:52–68, 2005.

A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high order accurate essen-
tially non-oscillatory schemes, III. J. Comput. Phys., 71(2):231–303, 1987.

F. Hecht. BAMG: bidimensional anisotropic mesh generator, 2006. http://www.ann.jussieu.

fr/~hecht/ftp/bamg.

J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods. Algorithms, analysis
and applications. Springer, 2008.

A. J. Hoffman, M. S. Martin, and D. J. Rose. Complexity bounds for regular finite difference and
finite element grids. SIAM J. Numer. Anal., 10(2):364–369, 1973.

P. Hood and C. Taylor. A numerical solution of the Navier-Stokes equations using the finite
element technique. Comp. and Fluids, 1:73–100, 1973.

J. S. Howell. Computation of viscoelastic fluid flows using continuation methods. J. Comput.
Appl. Math., 225(1):187–201, 2009.

http://www-ljk.imag.fr/membres/Pierre.Saramito/mahamar-dicko-m2r.pdf
http://www-ljk.imag.fr/membres/Pierre.Saramito/mahamar-dicko-m2r.pdf
http://www.ann.jussieu.fr/~hecht/ftp/bamg
http://www.ann.jussieu.fr/~hecht/ftp/bamg

256 Rheolef version 7.1 update 22 March 2020

Jr. J. E. Dennis and R. B. Schnablel. Numerical methods for unconstraint optimization and
nonlinear equations. Prentice Hall, Englewood Cliff, N. J., 1983.

C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method for a scalar
hyperbolic equation. Math. Comp., 46(173):1–26, 1986.

A. Klawonn. An optimal preconditioner for a class of saddle point problems with a penalty term.
SIAM J. Sci. Comput, 19(2):540–552, 1998.

A. Laadhari, C. Misbah, and P. Saramito. On the equilibrium equation for a generalized biological
membrane energy by using a shape optimization approach. Phys. D, 239:1568–1572, 2010.

R. J. Labeur and G. N. Wells. A Galerkin interface stabilisation method for the advection-diffusion
and incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Engrg., 196(49–52):
4985–5000, 2007.

R. J. LeVeque. High-resolution conservative algorithms for advection in incompressible flow. SIAM
J. Numer. Anal., 33(2):627–665, 1996.

A. Liakos. Discretization of the Navier-Stokes equations with slip boundary condition. Numer.
Meth. Part. Diff. Eqn., 17(1):26–42, 2001.

E. Marchandise, J.-F. Remacle, and N. Chevaugeon. A quadrature-free discontinuous Galerkin
method for the level set equations. J. Comput. Phys., 212:338–357, 2006.

S. Melchior, V. Legat, P. Van Dooren, and A. J. Wathen. Analysis of preconditioned iterative
solvers for incompressible flow problems. Int. J. Numer. Meth. Fluids, 68(3):269–286, 2012.

P. D. Minev and C. R. Ethier. A characteristic/finite element algorithm for the 3-D Navier-Stokes
equations using unstructured grids. Comput. Meth. in Appl. Mech. and Engrg., 178(1-2):39–50,
1998.

P. P. Mosolov and V. P. Miasnikov. Variational methods in the theory of the fluidity of a viscous-
plastic medium. J. Appl. Math. Mech., 29(3):545–577, 1965.

P. P. Mosolov and V. P. Miasnikov. On stagnant flow regions of a viscous-plastic medium in pipes.
J. Appl. Math. Mech., 30(4):841–853, 1966.

P. P. Mosolov and V. P. Miasnikov. On qualitative singularities of the flow of a viscoplastic medium
in pipes. J. Appl. Math. Mech., 31(3):609–613, 1967.

D. R. Musser and A. Saini. C++ STL tutorial and reference guide. Addison Wesley, Reading,
1996a.

D. R. Musser and A. Saini. STL tutorial and reference guide. Addison-Wesley, 1996b.

J. G. Oldroyd. On the formulation of rheological equations of states. Proc. R. Soc. Lond. A, 200:
523–541, 1950.

M. A. Olshanskii and A. Reusken. A finite element method for surface PDEs: matrix properties.
Numer. Math., 114:491–520, 2010. URL http://www.mathcs.emory.edu/~molshan/ftp/pub/

interfaceLA.pdf.

M. A. Olshanskii, A. Reusken, and J. Grande. A finite element method for elliptic equations on
surfaces. SIAM J. Num. Anal., 47(5):3339–3358, 2009. URL http://www.mathcs.emory.edu/

~molshan/ftp/pub/PaperInterface.pdf.

M. A. Olshanskii, A. Reusken, and X. Xu. On surface meshes induced by level set functions.
Computing and visualization in science, 15(2):53–60, 2012.

http://www.mathcs.emory.edu/~molshan/ftp/pub/interfaceLA.pdf
http://www.mathcs.emory.edu/~molshan/ftp/pub/interfaceLA.pdf
http://www.mathcs.emory.edu/~molshan/ftp/pub/PaperInterface.pdf
http://www.mathcs.emory.edu/~molshan/ftp/pub/PaperInterface.pdf

Bibliography 257

S. Osher and J. A. Sethian. Front propaging with curvature-dependent speed: agorithms based
on Hamilton-Jacobi formulations. J. Comput. Phys., 79(12), 1988. URL http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.46.1266&rep=rep1&type=pdf.

M. L. Ould Salihi. Couplage de méthodes numériques en simulation directe d’écoulements incom-
pressibles. PhD thesis, Université J. Fourier, Grenoble, 1998.

O. Ozenda, P. Saramito, and G. Chambon. A new rate-independent tensorial model for suspensions
of non-colloidal rigid particles in newtonian fluids. J. Rheol., 62:889–903, 2018.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J.
Numer. Anal., 12(4):617–629, 1975. URL http://www.stanford.edu/group/SOL/software.

html.

T.-W. Pan, J. Hao, and R. Glowinski. On the simulation of a time-dependent cavity flow of an
Oldroyd-B fluid. Int. J. Numer. Meth. Fluids, 60(7):791–808, 2009.

J.-C. Paumier. Bifurcation et méthodes numériques. Applications aux problèmes elliptiques semi-
linéaires. Masson, Paris, 1997.

F. Pellegrini. PT-Scotch and libscotch 5.1 user’s guide. Université de Bordeaux and INRIA,
France, 2010. URL http://www.labri.fr/~pelegrin/scotch.

T. E. Peterson. A note on the convergence of the discontinuous Galerkin method for a scalar
hyperbolic equation. SIAM J. Numer. Anal., 28(1):133–140, 1991.

O. Pironneau. Méthode des éléments finis pour les fluides. Masson, Paris, 1988.

O. Pironneau and M. Tabata. Stability and convergence of a galerkin-characteristics finite element
scheme of lumped mass type. Int. J. Numer. Meth. Fluids, 64:1240–1253, 2010.

W. H. Press, S. A. Teulkolsky, W. T. Vetterling, and B. P. Flannery. Numerical recepies in C.
The art of scientific computing. Cambridge University Press, UK, second edition, 1997. Version
2.08.

G. R. Richter. An optimal-order error estimate for the discontinuous galerkin method. Math.
Comput., 50(181):75–88, 1988.

N. Roquet and P. Saramito. An adaptive finite element method for Bingham fluid flows around
a cylinder. Comput. Meth. Appl. Mech. Engrg., 192(31-32):3317–3341, 2003. URL http://

www-ljk.imag.fr/membres/Pierre.Saramito/cylindre.pdf.

N. Roquet and P. Saramito. Stick-slip transition capturing by using an adaptive finite element
method. M2AN, 38(2):249–260, 2004. URL http://archive.numdam.org/article/M2AN_

2004__38_2_249_0.djvu.

N. Roquet and P. Saramito. An adaptive finite element method for viscoplastic flows in a square
pipe with stick-slip at the wall. J. Non-Newt. Fluid Mech., 155:101–115, 2008.

N. Roquet, R. Michel, and P. Saramito. Errors estimate for a viscoplastic fluid by using Pk finite
elements and adaptive meshes. C. R. Acad. Sci. Paris, ser. I, 331(7):563–568, 2000. URL
http://www-ljk.imag.fr/membres/Pierre.Saramito/cr2000.pdf.

H. Rui and M. Tabata. A second order characteristic finite element scheme for convection diffusion
problems. Numer. Math. (to appear), 2001.

P. Saramito. Simulation numérique d’écoulements de fluides viscoélastiques par éléments finis
incompressibles et une méthode de directions alternées; applications. PhD thesis, Institut Na-
tional Polytechnique de Grenoble, 1990. URL http://www-ljk.imag.fr/membres/Pierre.

Saramito/these.pdf.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.1266&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.1266&rep=rep1&type=pdf
http://www.stanford.edu/group/SOL/software.html
http://www.stanford.edu/group/SOL/software.html
http://www.labri.fr/~pelegrin/scotch
http://www-ljk.imag.fr/membres/Pierre.Saramito/cylindre.pdf
http://www-ljk.imag.fr/membres/Pierre.Saramito/cylindre.pdf
http://archive.numdam.org/article/M2AN_2004__38_2_249_0.djvu
http://archive.numdam.org/article/M2AN_2004__38_2_249_0.djvu
http://www-ljk.imag.fr/membres/Pierre.Saramito/cr2000.pdf
http://www-ljk.imag.fr/membres/Pierre.Saramito/these.pdf
http://www-ljk.imag.fr/membres/Pierre.Saramito/these.pdf

258 Rheolef version 7.1 update 22 March 2020

P. Saramito. Numerical simulation of viscoelastic fluid flows using incompressible finite element
method and a θ-method. Math. Model. Numer. Anal., 28(1):1–35, 1994. URL http://archive.

numdam.org/article/M2AN_1994__28_1_1_0.pdf.

P. Saramito. Efficient simulation of nonlinear viscoelastic fluid flows. J. Non Newt. Fluid Mech.,
60:199–223, 1995. URL http://www-ljk.imag.fr/membres/Pierre.Saramito/jnnfm2.pdf.

P. Saramito. Operator splitting in viscoelasticity. Élasticité, Viscoélasticité et Contrôle Optimal,
Lyon, décembre 1995, ESAIM: Proceedings, 2:275–281, 1997. URL http://www.esaim-proc.

org/articles/proc/pdf/1997/01/saramito.pdf.

P. Saramito. Rheolef home page. https://www-ljk.imag.fr/membres/Pierre.Saramito/

rheolef, 2012a.

P. Saramito. Language C++ et calcul scientifique. College Publications, London, 2013a.

P. Saramito. Méthodes numériques en fluides complexes : théorie et algorithmes. CNRS-CCSD,
2013b. http://cel.archives-ouvertes.fr/cel-00673816.

P. Saramito. On a modified non-singular log-conformation formulation for Johnson-Segalman
viscoelastic fluids. J. Non-Newt. Fluids Mech., 211:16–30, 2014.

P. Saramito. Efficient C++ finite element computing with Rheolef: volume 2: discontinu-
ous Galerkin methods. CNRS and LJK, 2015. URL http://cel.archives-ouvertes.fr/

cel-00863021. http://cel.archives-ouvertes.fr/cel-00863021.

P. Saramito. A damped Newton algorithm for computing viscoplastic fluid flows. J. Non-Newt.
Fluid Mech., 238:6–15, 2016a.

P. Saramito. Complex fluids: modelling and algorithms. Springer, 2016b.

P. Saramito. Efficient C++ finite element computing with Rheolef. CNRS and LJK, 2018. http:
//cel.archives-ouvertes.fr/cel-00573970.

P. Saramito and N. Roquet. An adaptive finite element method for viscoplastic fluid flows in pipes.
Comput. Meth. Appl. Mech. Engrg., 190(40-41):5391–5412, 2001. URL http://www-ljk.imag.

fr/membres/Pierre.Saramito/publi-poiseuille.pdf.

P. Saramito and A. Wachs. Progress in numerical simulation of yield stress fluid flows. J. Rheol.,
56(3):211–230, 2017.

Pierre Saramito. Are curved and high order gmsh meshes really high order ?, 2012b. http:

//www.geuz.org/pipermail/gmsh/2012/006967.html.

L. R. Scott and M. Vogelius. Norm estimates for a maximal right inverse of the divergence operator
in spaces of piecewise polynomials. M2AN, 19(1):111–143, 1985.

N. D. Scurtu. Stability analysis and numerical simulation of non-Newtonian fluids of Oldroyd
kind. PhD thesis, U. Nürnberg, Deutschland, 2005.

J. Sethian. Level set methods and fast marching methods. Cambridge University Press, UK, 1999.

K. Shahbazi. An explicit expression for the penalty parameter of the interior penalty method. J.
Comput. Phys., 205(2):401–407, 2005.

J. Shen. Hopf bifurcation of the unsteady regularized driven cavity flow. J. Comp. Phys., 95:
228–245, 1991. http://www.math.purdue.edu/~shen/pub/Cavity.pdf.

C.-W. Shu. TVB boundary treatment for numerical solutions of conservation laws. Math. Comput.,
49(179):123–134, 1987.

http://archive.numdam.org/article/M2AN_1994__28_1_1_0.pdf
http://archive.numdam.org/article/M2AN_1994__28_1_1_0.pdf
http://www-ljk.imag.fr/membres/Pierre.Saramito/jnnfm2.pdf
http://www.esaim-proc.org/articles/proc/pdf/1997/01/saramito.pdf
http://www.esaim-proc.org/articles/proc/pdf/1997/01/saramito.pdf
https://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef
https://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef
http://cel.archives-ouvertes.fr/cel-00673816
http://cel.archives-ouvertes.fr/cel-00863021
http://cel.archives-ouvertes.fr/cel-00863021
http://cel.archives-ouvertes.fr/cel-00863021
http://cel.archives-ouvertes.fr/cel-00573970
http://cel.archives-ouvertes.fr/cel-00573970
http://www-ljk.imag.fr/membres/Pierre.Saramito/publi-poiseuille.pdf
http://www-ljk.imag.fr/membres/Pierre.Saramito/publi-poiseuille.pdf
http://www.geuz.org/pipermail/gmsh/2012/006967.html
http://www.geuz.org/pipermail/gmsh/2012/006967.html
http://www.math.purdue.edu/~shen/pub/Cavity.pdf

Bibliography 259

C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing
schemes. J. Comput. Phys., 77(2):439–471, 1988.

P. Singh and L. G. Leal. Finite-element simulation of the start-up problem for a viscoelastic fluid
in an eccentric rotating cylinder geometry using a third-order upwind scheme. Theor. Comput.
Fluid Dyn., 5(2-3):107–137, 1993.

B. Stroustrup. C++ programming styles and libraries. InformIt.com, 0:0, 2002.

E. Süli and D. F. Mayers. An introduction to numerical analysis. Cambridge University Press,
UK, 2003.

M. Ta, F. Pigeonneau, and P. Saramito. An implicit high order discontinuous Galerkin level
set method for two-phase flow problems. In 9th international conference on multiphase flow
(ICMF), 2016.

G. I. Taylor. On the decay of vortices in a viscous fluid. Philos. Mag., 46:671–674, 1923.

M.-G. Vallet. Génération de maillages anisotropes adaptés, application à la capture de couches
limites. Technical Report RR-1360, INRIA, 1990.

R. Verfürth. Finite element approximation of steady Navier-Stokes equations with mixed boundary
conditions. ESAIM Math. Model. and Numer. Anal., 19(3):461–475, 1985.

R. Verfürth. Finite element approximation of incompressible Navier-Stokes equations with slip
boundary condition. Numer. Math., 50:697–721, 1987.

R. Verfürth. Finite element approximation of incompressible Navier-Stokes equations with slip
boundary conditions II. Numer. Math., 59:615–636, 1991.

H. Wang, C.-W. Shu, and Q. Zhang. Stability and error estimates of local discontinuous Galerkin
methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer.
Anal., 53(1):206–227, 2015a.

H. Wang, C.-W. Shu, and Q. Zhang. Stability analysis and error estimates of local discontinu-
ous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion
problems. Appl. Math. Comput., 2015b.

Wikipedia. The Stokes stream function. Wikipedia, 2012. http://en.wikipedia.org/wiki/

Stokes_stream_function.

N. Wirth. Algorithm + data structure = programs. Prentice Hall, NJ, USA, 1985.

S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput.
Phys., 31(3):335–362, 1979.

S. Zhang. A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput,
74(250):543–554, 2005.

X. Zhong and C.-W. Shu. A simple weighted essentially nonoscillatory limiter for Runge-Kutta
discontinuous galerkin methods. J. Comput. Phys., 232(1):397–415, 2013.

http://en.wikipedia.org/wiki/Stokes_stream_function
http://en.wikipedia.org/wiki/Stokes_stream_function

List of example files

Makefile, 12
burgers.icc, 157
burgers dg.cc, 159
burgers diffusion dg.cc, 170
burgers diffusion exact.h, 169
burgers diffusion operators.icc, 171
burgers flux godunov.icc, 157
cavity.h, 50
cavity dg.h, 188
combustion.h, 127
combustion1.icc, 127
combustion2.icc, 128
combustion continuation.cc, 133
combustion error.cc, 131
combustion exact.icc, 131
combustion keller.cc, 139
combustion keller post.cc, 140
combustion newton.cc, 129
contraction.h, 60
convect.cc, 75
convect error.cc, 77
cosinusprod.h, 23
cosinusprod error.cc, 23
cosinusprod laplace.h, 21
cosinusrad.h, 25
cosinusrad laplace.h, 24
d projection dx.h, 203
dirichlet-nh.cc, 20
dirichlet.cc, 10
dirichlet.icc, 110
dirichlet dg.cc, 164
elasticity criterion.icc, 47
elasticity solve.icc, 47
elasticity taylor dg.cc, 174
embankment.cc, 40
embankment.icc, 41
embankment adapt.cc, 46
eta.h, 110
harten.h, 157
harten show.cc, 158
heat.cc, 73
helmholtz band.cc, 102
helmholtz band iterative.cc, 100

helmholtz s.cc, 90
incompressible-elasticity.cc, 57
inertia.h, 181
inertia cks.icc, 184
inertia upw.icc, 189
lambda2alpha.h, 131
lambda c.cc, 130
lambda c.h, 130
laplace band.cc, 103
laplace s.cc, 94
level set sphere.cc, 97
leveque dg.cc, 151
mosolov augmented lagrangian.cc, 212
mosolov augmented lagrangian.h, 211
mosolov augmented lagrangian1.icc, 210
mosolov augmented lagrangian2.icc, 211
mosolov error yield surface.cc, 218
mosolov exact circle.h, 216
mosolov yield surface.cc, 215
navier stokes cavity.cc, 82
navier stokes criterion.icc, 83
navier stokes dg.h, 186
navier stokes dg1.icc, 186
navier stokes dg2.icc, 188
navier stokes solve.icc, 81
navier stokes taylor dg.cc, 181
navier stokes taylor newton dg.cc, 186
navier stokes upw dg.h, 190
navier stokes upw dg.icc, 190
neumann-laplace.cc, 32
neumann-nh.cc, 28
neumann dg.cc, 166
nu.h, 118
oldroyd contraction.cc, 232
oldroyd contraction.h, 232
oldroyd theta scheme.h, 228
oldroyd theta scheme1.h, 228
oldroyd theta scheme2.h, 229
oldroyd theta scheme3.h, 230
p laplacian.h, 116
p laplacian1.icc, 117
p laplacian2.icc, 117
p laplacian circle.h, 125

260

List of example files 261

p laplacian damped newton.cc, 122
p laplacian error.cc, 125
p laplacian fixed point.cc, 108
p laplacian newton.cc, 116
phi.h, 197
poisson robin.icc, 198
proj band.cc, 101
projection.h, 196
robin.cc, 30
rotating-hill.h, 77
sgn.icc, 190
sinusprod helmholtz.h, 29
sphere.icc, 91
stokes cavity.cc, 50
stokes contraction bubble.cc, 60
stokes dirichlet dg.icc, 177
stokes obstacle slip regul.cc, 70
stokes taylor dg.cc, 177
streamf cavity.cc, 55
streamf contraction.cc, 64
streamf obstacle slip move.cc, 70
stress.cc, 43
taylor.h, 175
torus.icc, 94
transmission.cc, 35
transport dg.cc, 145
transport tensor dg.cc, 223
vector projection.h, 210
vortex position.cc, 86
vorticity.cc, 53
yield slip.h, 204
yield slip1.icc, 204
yield slip2.icc, 205
yield slip augmented lagrangian.cc, 198
yield slip augmented lagrangian.icc,

198
yield slip damped newton.cc, 203
zalesak dg.cc, 148
bdf.icc, 147
cavity.h, 83
contraction.h, 232
contraction.mshcad, 62, 66
convect.cc, 82
cosinusprod error dg.cc, 166
cosinusrad error.cc, 25
cube.mshcad, 243
dirichlet nh ball.cc, 25
elasticity taylor error dg.cc, 175
harten0.h, 157
helmholtz s error.cc, 93
level set torus.cc, 98
leveque.h, 151
line.mshcad, 49, 242
mkview mosolov, 215

mosolov error.cc, 217
mosolov residue.cc, 213
navier stokes cavity newton dg.cc, 188
navier stokes cavity newton upw dg.cc,

190
navier stokes taylor error dg.cc, 182
neumann-nh.cc, 90
runge kutta semiimplicit.icc, 170
runge kutta ssp.icc, 154
square.bamgcad, 48, 84, 241
square.dmn, 48, 84, 241
square.mshcad, 242
stokes contraction.cc, 64
stokes taylor error dg.cc, 178
streamf cavity.cc, 85
streamf contraction.cc, 66, 234
stress.cc, 68
taylor.h, 178, 182
taylor exact.h, 175
torus.mshcad, 95
transport tensor error dg.cc, 225
transport tensor exact.icc, 224
yield slip circle.h, 207
yield slip error.cc, 207
yield slip residue.cc, 200
zalesak.h, 148

List of commands

bamg2geo, 241

bamg, 48, 84, 241

-splitpbedge, 111

branch, 77

-branch, 134, 140, 234

-bw, 150, 152

-extract, 134, 140, 234

-gnuplot, 172

-iso, 150, 152

-toc, 134, 140, 234

-umax, 172

-umin, 172

-volume, 75, 80

-vtk, 150

convect, 77

field, 13

-, 15

-bw, 13, 64, 67, 85, 101

-comp, 43, 46, 67, 68, 85

-cut, 67, 68, 85, 110, 200

-domain, 200

-elevation, 13, 45, 101, 110, 200

-fill, 43

-gnuplot, 13, 67, 68, 85, 110,

200

-gray, 13

-mark, 52

-max, 65, 86, 134

-min, 86

-n-iso, 64, 215

-n-iso-negative, 64, 67, 85, 215,

234

-noclean, 56

-noexecute, 56

-nofill, 13, 42, 48

-normal, 67, 68, 85, 110, 200

-origin, 67, 68, 85, 110, 200

-proj, 45, 215

-scale, 58

-stereo, 13, 15, 43, 45, 46, 91,

101

-velocity, 52, 85

-volume, 15, 22

geo, 13

-cut, 15

-fill, 15

-full, 15

-gnuplot, 96

-paraview, 241

-shrink, 15

-stereo, 15, 91

-subdivide, 92

gmsh, 49, 63, 66, 91, 95, 111, 242

gnuplot, 13, 15, 36, 43, 74, 77, 241

gzip, 48

library

boost, 11

CGAL, computational geometry, 75

MPI, message passing interface, 11

mumps, linear system direct solver, 17

scotch, mesh partition library, 17

STL, standard template library, 77

make, 12

man, 14

mkgeo ball, 91

-e, 91

-s, 91

-t, 25, 91

mkgeo contraction, 233

-split, 233

mkgeo grid, 13, 77, 111

-H, 16

-T, 15, 80

-a, 77

-b, 77

-c, 79

-d, 79

-e, 15

-f, 80

-g, 80

-q, 16

-region, 36

-t, 13

-zr, 65

mkgeo obstacle, 71

mkgeo sector, 214

mkgeo ugrid, 23, 111

262

List of commands 263

mpirun, 18, 37, 85, 150, 152, 214,

215, 234

msh2geo, 63, 242, 243

-zr, 66

paraview, 13, 15, 45, 46, 56, 74, 79,

150, 215, 241

rheolef-config, 9

--check, 9

--docdir, 9

--exampledir, 9

sed, 25

time, 85

visualization

mesh, 13

deformed, 42

vlc, 74

zcat, 85

Index

approximation, 10
P0, 45, 144
P1b-P1, 58
P1d, 45
P1, 11, 41, 45, 57, 58, 80, 178
P2-P1, Taylor-Hood, 50, 58, 59, 64, 70
P2-P1d, Scott-Vogelius, 227
P2, 11, 15, 41, 45, 57, 80, 178
Pk, 11, 15
bubble, 58
discontinuous, 35, 44, 45, 53, 143, 148,

150, 222
high-order, 11, 15, 37
isoparametric, 92
mixed, 50
geometry
curved, 24

high-order, 24, 217
isoparametric, 24, 217

argc, argv, command line arguments, 11

Babuška paradox, 70
benchmark

driven cavity flow, 49, 80, 176, 178
Dziuk-Elliott-Heine on a sphere, 91
embankment, 39, 174
flow in an abrupt contraction, 59, 66
Leveque vortex-in-box, 150
Olshanskii-Reusken-Grande on a torus,

95
pipe flow, 107
rotating hill, 75
Zalesak slotted disk, 148

boundary condition
Dirichlet, 10, 20, 35, 39, 49, 56, 80, 107,

115, 163, 166, 176, 178, 195
mixed, 56, 59, 66
Neumann, 28, 31, 35, 39, 56
Poiseuille flow, 62
Robin, 30, 69, 195
slip, 68
weakly imposed, 143, 163, 223, 232

broken Sobolev space H1(Th), 163, 169

class
Float, 21
adapt option, 48
band, 100
branch, 73, 79
characteristic, 76
eye, 101
field, 11
form, 11
geo, 11
integrate option, 60, 66, 76, 126
level set option, 97
man, 12, 43, 51, 101, 116
odiststream, 47
pbl em, 12
point, 21
problem mixed, 51, 57
problem, 11
reference manual, 12, 43, 51, 101, 116
solver abtb, 82
solver option, 16
solver, 12, 16
space, 11

compilation, 12
convergence

error
versus mesh, 22, 93, 124, 135, 145, 165
versus polynomial degree, 22, 93, 124

residue
rate, 111, 113
super-linear, 118

coordinate system
axisymmetric, 62, 64, 65
Cartesian, 21, 36
spherical, 91
torus, 95

directory of example files, 9, 62, 64, 207
distributed computation, 11, 18, 214, 234

element shape, 37
error analysis, 22, 79, 93, 124, 135

file format

264

Index 265

‘.avi’ avi file (video), 74
‘.bamgcad’ bamg geometry, 48, 241
‘.bamg’ bamg mesh, 48, 241
‘.branch’ family of fields, 74
‘.dmn’ domain names, 241
‘.field’ field, 13
‘.field’ multi-component field, 42
‘.geo’ mesh, 13, 63, 65, 241–243
‘.gz’ gzip compressed file, 48
‘.mshcad’ gmsh geometry, 49, 63, 66, 95,

242
‘.msh’ gmsh mesh, 49, 63, 66, 242
‘.vtk’ vtk file, 56

form
(η∇u).∇v, 117
2D(u) : D(v), 50, 56
2D(u) : D(v) + λdivu divv, 41
2D(u) : D(v) + u.v, 81
η∇u.∇v, 35, 109
[[u]]{{∇hv.n}}, 163, 166, 170
[[u]]{{v}}, 144
[[u]][[v]], 144, 163, 166, 170
∇su.∇sv + uv, 90
∇u.∇v, 10
∇u.∇v + uv, 29
uv, 23
bcurl(u).ξ, 64
curl(u).ξ, 53
div(u) q, 50, 56
energy, 10, 35, 107
product, 60
weighted, 35, 109
quadrature formula, 117
tensorial weight, 117

formal adjoint, 202
Fréchet derivative, 115
function

adapt, 46, 48
catchmark, 41, 52, 73
compose, 76, 83, 109, 117
damped newton, 122
diag, 101
dis wall time, 16
grad, 109, 117
integrate, 11, 29, 60, 64, 76, 90, 109,

117, 126
on a band, 101
on the boundary, 29

interpolate, 22, 47, 78
ldlt, 33
level set, 97
newton, 116
norm2, 47, 83, 109
sqr, 47

class-function object, 21, 77, 118
functor, 22, 126

geometry
axisymmetric, 62, 64
circle, 25, 91
contraction, 59, 66, 231
cube, 15, 243
curved, 92
line, 15, 242
obstacle, 68
pipe, 195, 209
sphere, 91
square, 13, 242
surface, 89

curvature, 240
torus, 95

Green formula, 90, 239

interface
moving, 146
yield surface, 215

internal sides of a mesh, 144

Lagrange
interpolation, 20, 22, 28, 32
multiplier, 32
node, 12

Lamé coefficients, 39

Makefile, 12
matrix

bloc-diagonal
inverse, 60

block structure, 12
concatenation, 33
diagonal, 101
factorization
Choleski, 12

identity, 101
indefinite, 33
singular, 33, 101

mesh, 11, 240
adaptation, 214, 217

anisotropic, 46, 83
connected components, 102
generation, 63, 66, 240

method
augmented Lagrangian, 195, 209
BDF(p), backward differentiation for-

mula, 147
BDF2 scheme, 81
characteristic, 75, 80
conjugate gradient algorithm, 31, 51, 57

266 Rheolef version 7.1 update 22 March 2020

continuation, 133
Euler explicit scheme, 154
Euler implicit scheme, 72, 75
fixed-point, 107, 118
relaxation, 108, 113

level set, 89, 97, 146
banded, 100

minres algorithm, 31, 101
Newton, 115
damped, 121

newton, 127, 130, 133, 197, 200, 202, 214
regularization, 69
Runge-Kutta scheme, 147, 154, 170
upwind scheme, 189

namespace
rheolef, 11
std, 11

norm
in W−1,p, 111
discrete version, 112

in W 1,p, 107
in W 1,p

0 , 107

operator
average, across sides, 144, 163
jump, across sides, 144, 163
adjoint, 121
curl, 53
divergence, 39
gradient, 39
symmetric part, 39

Helmholtz, 28
Helmholtz-Beltrami, 89
Laplace, 10
Laplace-Beltrami, 89

parallel computation, 11, 18, 234
penalty parameter, 163
polar coordinate system, 65
preconditioner, 51

for nearly incompressible elasticity, 57
for Stokes problem, 51

problem
Bingham, 209
Helmholtz, 28
Herschel-Bulkley, 209
Mosolov, 209
Navier-Stokes, 80, 178
Poisson, 10, 20, 30, 31, 73, 107, 109, 163,

166, 195
Stokes, 58, 80, 176, 178
combustion, 127
convection-diffusion, 75

elasticity, 39, 174
heat, 72
linear tangent, 115
nonlinear, 80, 178
p-Laplacian, 107
stabilized Stokes, 60
transmission, 34
yield slip, 195
Burgers equation, 157
elasticity
incompressible, 56

hyperbolic nonlinear equation, 153
oldroyd, 225
Poisson
non-constant tensorial coefficients,

115
Stokes, 49, 68
transport equation
evolution, 148, 150
steady, 143
tensor, 222
unsteady, 75, 79

projection
in L2 norm, 45, 54

quadrature formulae
Gauss, 76
Gauss-Lobatto, 76

region, 34, 36
residual term, 111, 115

singular solution, 54
space

W−1,p, 107
W−1,p, dual of W 1,p

0 , 111
W 1,p, 107
W 1,p

0 , 107
dual, 111
duality bracket 〈., .〉, 112
weighted (axisymmetric), 65

speedup, 18, 85
stabilization, 56
stream function, 54, 64, 85

axisymmetric, 65

tensor
Cauchy stress, 39, 68
field, 45
rate of deformation, 67
visualization as ellipsoid, 44

unknown and blocked components, 12
upstream boundary, 143
upwinding, 144

Index 267

visualization
animation, 74
elevation view, 13, 110
stereoscopic anaglyph, 13, 43

vortex, 64, 67
vorticity, 53

	Notations
	Getting started
	The model problem
	Problem statement
	Approximation
	Comments
	How to compile the code
	How to run the program
	Advanced and stereo visualization
	High-order finite element methods
	Tridimensional computations
	Quadrangles, prisms and hexahedra
	Direct versus iterative solvers
	Distributed and parallel runs
	Non-homogeneous Dirichlet conditions

	Non-homogeneous Neumann boundary conditions for the Helmholtz operator
	The Robin boundary conditions
	Neumann boundary conditions for the Laplace operator
	Non-constant coefficients and multi-regions

	Fluids and solids computations
	The linear elasticity and the Stokes problems
	The linear elasticity problem
	Computing the stress tensor
	Mesh adaptation
	The Stokes problem
	Computing the vorticity
	Computing the stream function

	Nearly incompressible elasticity and the stabilized Stokes problems
	The incompressible elasticity problem
	The P1b-P1 element for the Stokes problem
	Axisymmetric geometries
	The axisymmetric stream function and stress tensor

	[rgb]1,0,0[New] Slip boundary conditions
	Time-dependent problems
	The heat equation
	The convection-diffusion problem

	The Navier-Stokes equations

	Advanced and highly nonlinear problems
	Equation defined on a surface
	Approximation on an explicit surface mesh
	The Helmholtz-Beltrami problem
	The Laplace-Beltrami problem

	Building a surface mesh from a level set function
	The banded level set method
	Improving the banded level set method with a direct solver

	The highly nonlinear p-laplacian problem
	Problem statement
	The fixed-point algorithm
	The Newton algorithm
	The damped Newton algorithm
	Error analysis

	Continuation and bifurcation methods
	Problem statement and the Newton method
	Error analysis and multiplicity of solutions
	The Euler-Newton continuation algorithm
	Beyond the limit point : the Keller algorithm

	Discontinuous Galerkin methods
	Linear first-order problems
	The stationary transport equation
	[rgb]1,0,0[New] The time-dependent transport equation
	[rgb]1,0,0[New] Example: the Zalesak slotted disk
	[rgb]1,0,0[New] Example: the Leveque vortex-in-box

	Nonlinear first-order problems
	Abstract setting
	Slope limiters
	Example: the Burgers equation

	Scalar second-order problems
	The Poisson problem with Dirichlet boundary conditions
	The Helmholtz problem with Neumann boundary conditions
	Nonlinear scalar hyperbolic problems with diffusion
	Example: the Burgers equation with diffusion

	Fluids and solids computations revisited
	The linear elasticity problem
	The Stokes problem

	The stationnary Navier-Stokes equations
	Problem statemment
	The discrete problem
	A conservative variant
	Newton solver
	Application to the driven cavity benchmark
	Upwinding

	Complex fluids
	Yield slip at the wall
	Problem statement
	The augmented Lagrangian algorithm
	Newton algorithm
	Error analysis

	Viscoplastic fluids
	Problem statement
	The augmented Lagrangian algorithm
	Mesh adaptation
	Error analysis
	Error analysis for the yield surface

	Viscoelastic fluids
	A tensor transport equation
	The Oldroyd model
	The -scheme algorithm
	Flow in an abrupt ontraction

	Technical appendices
	How to write a variational formulation ?
	The Green formula
	The vectorial Green formula
	The Green formula on a surface

	How to prepare a mesh ?
	Bidimensional mesh with bamg
	Unidimensional mesh with gmsh
	Bidimensional mesh with gmsh
	Tridimensional mesh with gmsh

	GNU Free Documentation License
	List of example files
	List of commands
	Index

