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Introduction

Rheolef is a programming environment that serves as a convenient laboratory for computations
involving finite element methods. Rheolef is both a C++ library and a set of commands for
unix shell programming, providing algorithms and data structures.

e Algorithms refer to the most up-to-date ones: preconditioned sparse solvers for linear sys-
tems, incompressible elasticity, Stokes and Navier-Stokes flows, characteristic method for
convection dominated heat problems, etc. Also nonlinear generic algorithms such as fixed
point and damped Newton methods.

e Data structures fit the standard variational formulation concept: spaces, discrete fields,
bilinear forms are C++ types for variables, that can be combined in any expressions, as you
write it on the paper.

Combined together, as a Lego game, these bricks allows the user to solve most complex nonlinear
problems. This Book details, step by step, how some simple and more complex problems can
be solved, most of them in less than 20 lines of code. The concision and readability of codes
written with Rheolef is certainly a major keypoint of this environment.

Classical features

e Poisson problems in 1D 2D and 3D with P1 or P2 elements
e Stokes problems in 2D and 3D, with Taylor-Hood P2-P1 or stabilized P1 bubble-P1 elements

e linear elasticity in 2D and 3D, with P1 and P2 elements, including the incompressible and
nearly incompressible elasticity

e characteristic method for convection-difusion, time-dependent problems and Navier-Stokes
equations.

e input and output in various file format for meshes generators and numerical data visualiza-
tion systems

Advanced features

e auto-adaptive mesh based for 2D problems
e axisymmetric problems
e multi-regions and non-constant coefficients

e nonlinear problems with either fixed-point algorithms or a provided generic damped Newton
solver

e 3d stereo visualization
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Preface to Rheolef version 6.0

What is new in Rheolef 6.0 ?

The major main features are:

e support distributed achitectures: the code looks sequential, is easy to read and write but
can be run massively parallel and distributed, based on the MPI library.

e high order polynomial approximation: Py basis are introduced in this version, for & > 0.
This feature will be improved in the future developments.

e mesh adaptation and the charateristic method are now available for three-
dimensional problems.

In order to evoluate in these directions, internal data structures inside the library are completely
rewritten in a different way, and thus this version is a completely new library.

Conversely, the library and unix command interfaces was as less as possible modified.

Nevertheless, the user will find some few backward incompatibilities: 5.93 based codes will not
directly compile with the 6.0 library version. Let us review how to move a code from 5.93 to 6.0
version.

Moving to Rheolef 6.0
1. Namespace

The namespace rheolef was already introduced in last 5.93 version. Recall that a code usually
starts with:

#include "rheolef.h"
using namespace rheolef;

2. Environment

The MPI library requires initialisation and the two command line arguments. This initialisation
is performed via the boost: :mpi class environment: The code entry point writes:

int main (int argc, char** argv) {
environment rheolef (argc,argv);

3. Fields and forms data accessors

The accesses to unknown and blocked data was of a field uh was direct, as uh.u and uh.b.
This access is no more possible in a distributed environment, as non-local value requests may be
optimized and thus, read and write access may be controled thought accessors. These accessors
are named uh.u() and uh.b() for read access, and uh.set_u() and uh.set_b() for write access.
Similarly, a form a has accessors as a.uu().

A typical 5.93 code writes:

ssk<Float> sa = 1dlt(a.uu);

uh.u = sa.solve (lh.u - a.ub*uh.b);
and the corresponding 6.0 code is:

solver sa (a.uu());
uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
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This major change in the library interface induces the most important work when porting to the
6.0 version.

Notice also that the old ssk<Float> class has been supersetted by the solver class, that man-
ages both direct and iterative solvers in a more effective way. For three-dimensional problems,
the iterative solver is the default while direct solvers are used otherwise. In the same spirit, a
solver_abtb has been introduced, for Stokes-like mixed problem. These features facilitate the
dimension-independent coding style provided by the Rheolef library.

4. Distributed input and output streams

Input and output sequential standard streams cin, cout and cerr may now replaced by distributed
Rheolef streams din, dout and derr as:

din >> omega;

dout << uh;

These new streams are available togeher with the idiststream and odiststream classes of the
Rheolef library.

5. File formats ‘.geo’ and .field have changed

The ‘.geo’ and ‘.field’ file formats have changed. The .mfield is now obsolete: it has been
merged into the .field format that supports now multi-component fields. Also, the corresponding
mfield unix command is obsolete, as these features are integrated in the field unix command.

At this early stage of the 6.0 version, it is not yet possible to read the old .geo format, but this
backward compatibility will be assured soon.
6. Space on a domain

A space defined on a domain "boundary" of a mesh omega was defined in the 5.93 version as:

space Wh (omegal["boundary"], omega, "P1");

It writes now:

space Wh (omegal["boundary"], "P1");

as the repetition of omega is no more required.
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The first part of this book starts with the Dirichlet problem with homogeneous boundary condition:
this example is declined with details in dimension 1, 2 and 3, as a starting point to Rheolef.

Next chapters present various boundary conditions: for completeness, we treat non-homogeneous
Dirichlet, Neumann, and Robin boundary conditions for model problems. The last two examples
presents some special difficulties that appears in most problems: the first one introduce to problems
with non-constant coefficients and the second one, a ill-posed problem where the solution is defined
up to a constant.

This first part can be viewed as a pedagogic preparation for more advanced applications, such as

Stokes and elasticity, that are treated in the second part of this book. Problem with non-constant
coefficients are common as suproblems generated by various algorithms for non-linear problem.
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Chapter 1

Getting started with Rheolef

For obtaining and installing Rheolef, see the installation instructions on the Rheolef home page:
http://www-1jk.imag.fr/membres/Pierre.Saramito/rheolef/

All examples presented along the present book are available in the example/ directory of the
Rheolef distribution. This directory is given by the following unix command:

rheolef-config --exampledir

This command returns you a path, something like /usr/share/doc/rheolef-doc/examples/ and
you should make a copy of these files:

cp -a /usr/share/doc/rheolef-doc/examples/ .
cd examples

Before to run examples, please check your Rheolef installation with:

rheolef-config --check

1.1 The model problem

Let us consider the classical Poisson problem with homogeneous Dirichlet boundary conditions in
a domain bounded Q C R%, d =1,2,3:

(P): find u, defined in ), such that:
—Au = 1inQ (1.1)
u = 0on o (1.2)

where A denotes the Laplace operator. The variational formulation of this problem expresses (see
appendix A.1 for details):

(VF): find u € H} () such that:
a(u,v) = l(v), Yo € H}(Q) (1.3)

where the bilinear form a(.,.) and the linear form I(.) are defined by

a(u,v) = /Vu.Vvdx, Yu,v € Hy ()
)

1(v) /dem, Yo e L3(Q)

13


http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef/

© w N e ok W N

[ T S o
o Uk W N R O

14 Rheolef version 6.0 update 1 April 2012

The bilinear form a(.,.) defines a scalar product in H}(Q) and is related to the energy form. This
form is associated to the —A operator.

1.2 Approximation

Let us introduce a mesh 7, of Q and the finite dimensional space X} of continuous piecewise
polynomial functions.
Xn = {U S Hl(Q); VK € P, VK € 771}

where k =1 or 2. Let V}, = X, N H}(Q) be the functions of X}, that vanishes on the boundary of
Q. The approximate problem expresses:

(VE): find up, € Vi, such that:
a(up,vp) = l(vy), Yo, € Vj

By developing uy on a basis of V},, this problem reduces to a linear system. The following C++
code implement this problem in the Rheolef environment.

1.3 File ‘dirichlet.cc’

#include "rheolef.h"

using namespace rheolef;

using namespace std;

int main(int argc, char*xargv) {
environment rheolef (argc, argv);
geo omega (argv([1]);
space Xh (omega, argv[2]);
Xh.block ("boundary");
form a (Xh, Xh, "grad_grad");
field 1h = riesz (Xh, 1);
field uh (Xh);
uh ["boundary"] = 0;
solver sa (a.uu());
uh.set_u() = sa.solve (lh.u() - a.ubO*uh.b());
dout << uh;

1.4 Comments

This code applies for both one, two or three dimensional meshes and for both piecewise linear or
quadratic finite element approximations. Four major classes are involved, namely: geo, space,
form and field.

Let us now comment the code, line by line.

#include "rheolef .h"

The first line includes the Rheolef header file ‘rheolef.h’.

using namespace rheolef;
using namespace std;

By default, in order to avoid possible name conflicts when using another library, all classe and
function names are prefixed by rheolef: :, as in rheolef: :space. This feature is called the name
space. Here, since there is no possible conflict, and in order to simplify the syntax, we drop all the
rheolef:: prefixes, and do the same with the standard c++ library classes and variables, that are
also prefixed by std: :.

int main(int argc, charxxargv) {
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The entry function of the program is always called main and accepts arguments from the unix
command line: argc is the counter of command line arguments and argv is the table of values.
The character string argv[0] is the program name and argv[i], for ¢ = 1 to argc-1, are the
additional command line arguments.

environment rheolef (argc, argv);

These two command line parameters are immediatly furnished to the distributed environment
initializer of the boost: :mpi library, that is a c++ library based on the usual message passing
interface (MpI) library. Notice that this initialization is requiered, even when you run with only
one processor.

geo omega (argv([1]);
This command get the first unix command-line argument argv[1] as a mesh file name and store
the corresponding mesh in the variable omega.

space Xh (omega, argv([2]);
Build the finite element space Xh contains all the piecewise polynomial continuous functions. The

polynomial type is the second command-line arguments argv[2], and could be either P1, P2 or
any Pk, where k > 1.

Xh.block ("boundary");

The homogeneous Dirichlet conditions are declared on the boundary.

form a (Xh, Xh, "grad_grad");

The form a(.,.) is the energy form.

field 1h = riesz (Xh, 1);

Here [h(.) is the Riesz representer of the constant right-hand side f =1 of the problem.
field uh (Xh);

The field uh contains the the degrees of freedom.
uh ["boundary"] = 0;

Some degrees of freedom are prescribed as zero on the boundary.
Let (©i)o<i<dim(x,) be the basis of X} associated to the Lagrange nodes, e.g. the vertices of
the mesh for the P; approximation and the vertices and the middle of the edges for the P
approximation. The approximate solution u; expresses as a linear combination of the continuous
piecewise polynomial functions (¢;):
Up = Z Uipi
i

Thus, the field wy is completely represented by its coefficients (u;). The coeflicients (u;) of this
combination are grouped into to sets: some have zero values, from the boundary condition and
are related to blocked coefficients, and some others are unknown. Blocked coefficients are stored
into the uh.b array while unknown one are stored into uh.u. Thus, the restriction of the bilinear
form a(.,.) to X X X} can be conveniently represented by a block-matrix structure:

a.uu a.ub uh.u
a(up,vp) = ( vh.u  vh.b ) ( a.bu a.bb ) ( uh.b )

This representation also applies for the linear form I(.):

l(vp) = ( vhu vhb ) < EE )
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Thus, the problem (V F);, writes now:
a.uu a.ub uh.u lh.u
( vh.u vh.b ) ( abu abb > < uhb ) = ( vh.u vh.b ) < 1hb )
for any vh.u and where vh.b = 0. After expansion, the problem reduces to find uh.u such that:

a.uu * uh.u = 1.u — a.ub * uh.b

The resolution of this linear system for the a.uu matrix is then performed. A preliminary step
build the LDLT factorization:

solver sa (a.uu());

Then, the second step solves the unknown part:

uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());

When d > 3, a faster iterative strategy is automatically preferred by the solver class for solving
the linear system: in that case, the preliminary step build an incomplete Choleski factorization
preconditioner, while the second step runs an iterative method: the preconditioned conjugate
gradient algorithm. Finally, the field is printed to standard output:

dout << uhj;

The dout stream is a specific variable defined in the Rheolef library: it is a distributed and
parallel extension of the usual cout stream in C++

1.5 How to compile the code

First, create a Makefile as follow:

include $(shell rheolef-config --1libdir)/rheolef/rheolef .mk
CXXFLAGS = $(INCLUDES_RHEOLEF)

LDLIBS = $(LIBS_RHEOLEF)

default: dirichlet

Then, enter:

make dirichlet

Now, your program, linked with Rheolef, is ready to run on a mesh.
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1.6 How to run the program
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Figure 1.1: Solution of the model problem for d = 2: (left) P; element; (right) P; element.

Enter the commands:

mkgeo_grid -t 10 > square.geo
geo square.geo

The first command generates a simple 10x10 bidimensional mesh of 2 =]0, 1[? and stores it in the
file square.geo. The second command shows the mesh. It uses gnuplot visualization program
by default.

The next command performs the computation:

./dirichlet square.geo P1 > square.field
field square.field

1.7 Distributed and parallel runs

Alternatively, a computation in a distributed and parallel environment writes:

mpirun -np 4 ./dirichlet square.geo P1 > square.field
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Figure 1.2: Alternative representations of the solution of the model problem (d = 2 and the Py
element): (left) in black-and-white; (right) in elevation and stereoscopic anaglyph mode.

1.8 Stereo visualization

Also explore some graphic rendering modes (see Fig. 1.2):

field square.field -bw

field square.field -gray

field square.field -mayavi

field square.field -elevation -nofill -stereo

The last command shows the solution in elevation and in stereoscopic anaglyph mode (see Fig. 1.4,
left). The anaglyph mode requires red-cyan glasses: red for the left eye and cyan for the right one,
as shown on Fig. 1.3.

Figure 1.3: Red-cyan anaglyph glasses for the stereoscopic visualization.

See http://en.wikipedia.org/wiki/Anaglyph_image for more and
http://www.alpes-stereo.com/lunettes.html for how to find anaglyph red-cyan glasses.
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Please, consults the corresponding unix manual page for more on field, geo and mkgeo_grid:

man mkgeo_grid
man geo
man field

1.9 High-order finite element methods

Turning to the P2 or P3 approximations simply writes:

./dirichlet square.geo P2 > square-P2.field
field square-P2.field

Fig. 1.1.right shows the result. You can replace the P2 command-line argument by any Pk, where
k>1.

Now, let us consider a mono-dimensional problem Q =]0, 1[:

mkgeo_grid -e 10 > line.geo
geo line.geo
./dirichlet line.geo P1 | field -

The first command generates a subdivision containing ten edge elements. The last two lines show
the mesh and the solution via gnuplot visualization, respectively.

Conversely, the P2 case writes:

./dirichlet line.geo P2 | field -

1.10 Tridimensional computations

Let us consider a three-dimensional problem €2 =]0, 1[?. First, let us generate a mesh:

mkgeo_grid -T 10 > cube.geo
geo cube.geo

geo cube.geo —stereo -full
geo cube.geo -stereo -cut

The previous commands draw the mesh with all internal edges (-full), stereoscopic anaglyph
(-stereo)and then with a cut (-cut inside the internal structure: a simple click on the central
arrow draws the cut plane normal vector or its origin, while the red square allows a translation.
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Figure 1.4: Solution of the model problem for d = 3 and the P; element : (left) mesh; (right)
isovalue, cut planes and stereo anaglyph renderings.

Then, we perform the computation and the visualization:

./dirichlet cube.geo P1 > cube.field
field cube.field

The visualization presents an isosurface. Also here, you can interact with the cutting plane. Click
on IsoSurface in the left menu and change the value of the isosurface. Finally exit from the
visualization and explore the stereoscopic anaglyph mode (see Fig. 1.4, right):

field cube.field -stereo

It is also possible to add a second IsoSurface or ScalarCutPlane module to this scene by using
the Visualize menu. After this exploration of the 3D visualisation capacities of our environment,
let us go back to the Dirichlet problem and perform the P2 approximation:

./dirichlet cube.geo P2 | field -

1.11 Quandrangles, prisms and hexahedra

Quadrangles and hexahedra are also supported in meshes:

mkgeo_grid —-q 10 > square.geo
geo square.geo

mkgeo_grid -H 10 > cube.geo
geo cube.geo

Notices also that the one-dimensional exact solution writes:

~z(l—x)
u(x) = ——5
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while the two-and three dimensional ones support a Fourier expansion (see e.g. [1], annex).
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Chapter 2

Standard boundary conditions

We show how to deal with various non-homogeneous boundary conditions of Dirichlet, Neuman
and Robin type.

2.1 Non-homogeneous Dirichlet conditions

Formulation

We turn now to the case of a non-homogeneous Dirichlet boundary conditions. Let f € H~(Q)
and g € Hz(99). The problem writes:
(P2) find u, defined in Q such that:

—Au = finQ
u = g ondf)

The variational formulation of this problem expresses:

(VFy) find uw € V such that:
a(u,v) =1(v), Yo € W

where
a(u,v) = Vu.Vvdz
Q
llv) = fvde
Q
V = {veH'Q); vjpa =g}
o = H&(Q)
Approximation

As usual, we introduce a mesh 7, of Q and the finite dimensional space Xj:
X, ={veH(Q); vk € Py, VK € Ty}
Then, we introduce:

Vi = {v e Xpn; voa =mn(9)}
Voo = {ve Xp; vjpq =0}

23
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where 7, denotes the Lagrange interpolation operator. The approximate problem writes:
(VFy)y: find up € Vi, such that:

a(up,vp) = U(vy), Yo, € Vo

The following C++ code implement this problem in the Rheolef environment.

File ‘dirichlet-nh.cc’

#include "rheolef.h"

using namespace rheolef;

using namespace std;

#include "cosinusprod_laplace.icc"

int main(int argc, charxxargv) {
environment rheolef (argc, argv);
geo omega (argv([1]);
size_t d = omega.dimension();
space Xh (omega, argv[2]);
Xh.block ("boundary");
form a (Xh, Xh, "grad_grad");
field 1h = riesz (Xh, f(d));
field uh (Xh);
space Wh (omegal["boundary"], argv[2]);
uh ["boundary"] = interpolate(Wh, g(d));
solver sa (a.uu());
uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
dout << uh;

}

Let us choose 2 C R?, d =1,2,3 with

d—1 d—1
flz) = d7T2H cos(mz;) and g(z) = H cos(mx;)
i=0 i=0
Remarks the notation z = (zo,...,z4_1) for points of R?: since all arrays start at index zero in

C++ codes, and in order to avoid any mistakes between the code and the mathematical formulation,
we also adopt this convention here. This choice of f and g is convenient, since the exact solution
is known:

d—1
u(x) = H cos(mx;)
i=0
The following C++ code implement this problem by using the concept of function object, also

called class-function (see e.g. [2]). A convenint feature is the abblility for function objects to store
auxilliary parameters, such as the space dimension d for f here, or some constants, as 7 for f and

g.

File ‘cosinusprod_laplace.icc’

struct f : unary_function<point,Float> {
Float operator() (const point& x) const {
return dxpixpi*cos(pi*x[0])*cos(pi*x[1])*cos(pix*x[2]); }
f(size_t d1) : d(d1), pi(acos(Float(-1))) {}
size_t d; const Float pi;
struct g : unary_function<point,Float> {
Float operator () (const point& x) comnst {
return cos(pi*x[0])*cos(pi*x[1])*cos(pi*x[2]); }
g(size_t d1) : pi(acos(Float(-1))) {}
const Float pij;

};
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Comments

The class point describes the coordinates of a point (zg,...,z4-1) € R? as a d-uplet of Float.
The Float type is usually a double. This type depends upon the Rheolef configuration (see [3],
installation instructions), and could also represent some high precision floating point class. The
dirichlet-nh.cc code looks like the previous one dirichlet.cc related to homogeneous bound-
ary conditions. Let us comments the changes. The dimension d comes from the geometry Q:

size_t d = omega.dimension();

The linear form [(.), defined as the Riesz representer of f, writes:
field 1h = riesz (Xh,f(d));

Notice that the function object f is build with the dimension d as parameter. The space W}, of
picewise Py functions defined on the boundary 0 is defined by:

space Wh (omegal["boundary"], argv[2]);

where Py is defined via the second command line argument argv[2]. This space is suitable for
the Lagrange interpolation of g on the boundary:

uh ["boundary"] = interpolate(Wh, g(d));
The values of the degrees of freedom related to the boundary are stored into the field uh.b, where
non-homogeneous Dirichlet conditions applies. The rest of the code is similar to the homogeneous
Dirichlet case.
2.1.1 How to run the program

First, compile the program:

make dirichlet-nh

Running the program is obtained from the homogeneous Dirichlet case, by remplacing dirichlet
by dirichlet-nh:

mkgeo_grid -e 10 > line.geo
./dirichlet-nh line.geo P1 > line.field
field line.field

for the bidimensional case:
mkgeo_grid -t 10 > square.geo
./dirichlet-nh square.geo P1 > square.field
field square.field

and for the tridimensional case:
mkgeo_grid -T 10 > box.geo

./dirichlet-nh box.geo P1 > box.field
field -mayavi box.field

Here, the P1 approximation can be remplaced by P2, P3, etc, by modifying the command-line
argument.
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2.2 Non-homogeneous Neumann boundary conditions for
the Helmholtz operator

Formulation

Let us show how to insert Neumann boundary conditions. Let f € H1(Q2) and g € H~2(9Q).
The problem writes:

(Ps3): find u, defined in Q such that:
u—Au = finQ

ou

m g on 0f)

The variational formulation of this problem expresses:
(VF3): findu € H() such that:

a(u,v) = I(v), Yo € H(Q)
where
a(u,v) = /uvdx—F/Vu.Vvdx
Q Q

vy = fvdx+/ guds
Q a0

Approximation

As usual, we introduce a mesh 7 of Q and the finite dimensional space Xp,:
X, ={veH(Q); vk € Py, VK € Ty}

The approximate problem writes:
(VF3)y: find up, € Xj, such that:

a(uh,vh) = l(vh), Yo, € Xy,

File ‘neumann-nh.cc’

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "sinusprod_helmholtz.icc"
int main(int argc, char*xargv) {
environment rheolef (argc, argv);
geo omega (argv[1]);
size_t d = omega.dimension();
space Xh (omega, argv[2]);
form m (Xh, Xh, "mass");
form a (Xh, Xh, "grad_grad");
a =m+ aj;
field 1h = riesz(Xh, £(d)) + riesz(Xh, "boundary", g(d));
field uh (Xh);
solver sa (a.uu());
uh.set_u() = sa.solve (lh.u() - a.ubO)*uh.b());
dout << uh;
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Let us choose 2 C R?, d =1,2,3 and

d—1
flx) = (1+dr?) H sin(ma;)
i=0
-7 when d =1

d—1

- (Z sin(ﬂ'azi)> when d = 2
i=0
d—1

- (Z sin(ma;) Sin(Z(;41)mod d) when d = 3

=0

This example is convenient, since the exact solution is known:
d—1
u(z) = H sin(ma;)
i=0

File ‘sinusprod helmholtz.icc’

struct f : unary_function<point,Float> {
Float operator() (const point& x) const {
switch (d) {
case 1: return (1+d*pi*pi)*sin(pi*x[0]);
case 2: return (1+d*pi*pi)*sin(pi*x[0])*sin(pix*x[1]);
default: return (1l+d*pi*pi)*sin(pi*x[0])*sin(pi*x[1])*sin(pi*x[2]);
f(size_t d1) : d(d1), pi(acos(Float(-1.0))) {}
size_t d; const Float pij;
3
struct g : unary_function<point,Float> {
Float operator () (const point& x) const {
switch (d) {
case 1: return -pi;
case 2: return -pi*(sin(pi*x[0]) + sin(pi*x[1]));
default: return -pi*( sin(pi*x[0])*sin(pix*x[1])
+ sin(pi*x[1])*sin(pi*x[2])
+ sin(pi*x[2])*sin(pi*x[0]));
}}
g(size_t d1) : d(d1l), pi(acos(Float(-1.0))) {}
size_t d; const Float pi;
3
Comments

The neumann-nh.cc code looks like the previous one dirichlet-nh.cc. Let us comments only
the changes.

form m (Xh, Xh, "mass");
form a (Xh, Xh, "grad_grad");

The bilinear forms m(.,.) and a(.,.), also called the mass and energy in mechanics, are defined as:
m(u,v) = / uvde and a(u,v) = / Vu.Vudzx
Q Q

Then, these two forms are added and stored in a:

a =m + a;

The right-hand side is computed as:
field 1h = riesz(Xh, £(d)) + riesz(Xh, "boundary", g(d));
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2.2.1 How to run the program

First, compile the program:

make neumann-nh

Running the program is obtained from the homogeneous Dirichlet case, by replacing dirichlet
by neumann-nh.

2.3 The Robin boundary conditions

Formulation

Let f € H () and Let g € Hz(9RQ). The problem writes:
(Py) find u, defined in Q2 such that:

—Au

%—i—u = g on 0]
on

fin Q
The variational formulation of this problem expresses:
(VEy): finduw € HY(Q) such that:

a(u,v) = I(v), Yo € H(Q)

where

a(u,v) = /Vu.Vvdx—i—/ uv ds
Q o9

/uvdx—l—/ guvds
Q o0

o~

—~
<

<

Approximation
As usual, let

Xp = {’U € Hl(Q); V/Kk € P, VK € 771}

The approximate problem writes:
(VFEy)y: find up € X), such that:

a(up,vp) = l(vy), Yo, € Xp,
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File ‘robin.cc’

#include "rheolef .h"
using namespace rheolef;
using namespace std;
#include "cosinusprod_laplace.icc"
int main(int argc, char*xargv) {
environment rheolef (argc, argv);
geo omega (argv[1]);
size_t d = omega.dimension();
space Xh (omega, argv[2]);
form a (Xh, Xh, "grad_grad");
form ab (Xh, Xh, "mass", omegal["boundary"]);
a = a + ab;
field 1h = riesz(Xh, £(d)) + riesz(Xh, "boundary", g(d));
field uh (Xh);
solver sa (a.uu());
uh.set_u() = sa.solve (lh.u() - a.ubO*uh.b());
dout << uhj;

Comments

The code robin.cc looks like the previous one neumann-nh.cc. Let us comments the changes.

form a (Xh, Xh, "grad_grad");
form ab (Xh, Xh, "mass", omegal["boundary"]);
a = a + ab;

The bilinear forms a(.,.) and a(.,.) are defined as:

a(u,v):/VU.Vvdx and ab(u,v)z/ Ul Vjon ds
Q a0

where wu|5q denotes the restriction to the boundary of a function u defined in Q. Then the sum
a + ap is stored in a. The boundary contribution to the a(.,.) form on X; x X}, is introduced.
Finally, the implementation of the right-hand sides f and ¢ in file ‘cosinusprod_laplace.icc’
has already been presented on page 24.

2.3.1 How to run the program

First, compile the program:

make robin

Running the program is obtained from the homogeneous Dirichlet case, by replacing dirichlet
by robin.
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Chapter 3

Non-constant coeflicients and
multi-regions

This chapter is related to the so-called transmission problem. We introduce some new concepts:
problems with non-constant coefficients, regions in the mesh, weighted forms and discontinuous
approximations.

Formulation

Let us consider a diffusion problem with a non-constant diffusion coefficient 7 in a domain bounded
QCc R, d=1,2,3:
(P): find u defined in Q such that:

—div(nVu) = finQ (3.1)

u = 0on g U ignt

0

6—u = 0on I'yp UT'vottom when d > 2 (3.3)
n

ou

o 0 on eront UT'pack when d = 3 (3.4)
n

where f is a given source term.
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west ——
east ——
bottom
right ——
top —
left —

Figure 3.1: Transmission problem: the domain Q partition: (Qest and Qeast)-

We consider here the important special case when 7 is picewise constant:

(@) = € when z € Qyest
=911 whenze Qeast

where (Qwest; Qeast) 18 @ partition of Q in two parts (see Fig. 3.1). This is the so-called trans-
mission problem: the solution and the flux are continuous on the interface I'g = 0Qeast N OQwest
between the two domains where the problem reduce to a constant diffusion one:

UQuess =  UQeae O Lo
- QU
€ = on Iy
on on

It expresses the transmission of the quantity w and its flux accross the interface I'y between two
regions that have different diffusion properties: Notice that the more classical problem, with
constant diffusion n on € is obtained by simply choosing when ¢ = 1.

The variational formulation of this problem expresses:
(VF): find uw € V such that:

a(u,v) =1l(v), Yv eV

where the bilinear forms a(.,.) and the linear one [(.) are defined by

a(u,v) = /77Vu.Vvdﬂlc7 Yu,v € H'Y()
Q

N
—
<
N
I

/fvdx, Vv € L3(Q)
Q
{ve H'(Q); v=0 on D U Tyight }

<
Il

The bilinear form af(.,.) defines a scalar product in V' and is related to the energy form. This form
is associated to the —divnV operator.

The approximation of this problem could performed by a standard Lagrange P, continuous ap-
proximation.
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File ‘transmission.cc’

#include "rheolef.h"

#include "rheolef/catchmark.h"
using namespace rheolef;

using namespace std;

int main(int argc, charxxargv) {

environment rheolef (argc, argv);
const Float epsilon = 0.01;
geo omega (argv([1]);
space Xh (omega, argv[2]);
Xh.block ("left");
Xh.block ("right");
string eta_approx = "P" + itos(Xh.degree()-1) + "d";
space Qh (omega, eta_approx);
field eta (Qh);
eta ["east"] = 1;
eta ["west"] = epsilon;
form a (Xh, Xh, "grad_grad", eta);
field 1h = riesz (Xh, 1);
field uh (Xh);
uh["left"] = uh["right"] = 0;
solver sa (a.uu());
uh.set_u() = sa.solve (lh.u() - a.ubO)*uh.b());
dout << catchmark("epsilon") << epsilon << endl
<< catchmark ("u" << uh;
}
Comments

This file is quite similar to those studied in the first chapters of this book. Let us comment only
the changes. The Dirichlet boundary condition applies no more on the whole boundary 92 but
on two parts I'iery and I'yigne. On the other boundary parts, an homogeneous Neumann boundary
condition is used: since these conditions does not produce any additional terms in the variational
formulation, there are also nothing to write in the C++ code for these boundries. We choose f = 1:
this leads to a convenient test-problem, since the exact solution is known when Q =0, 1[¢:

X0 1+ 3¢
— | —— — h 1/2
5 (2(1—1—5) x0> when z¢ < 1/

1-— X0 n 1—¢ th .
— | X —_— otherwise
2 T 21 +e)

u(z) =

The field 7 belongs to a discontinuous finite element Pj_; space denoted by Qp:

string eta_approx = "P" + itos(Xh.degree()-1) + "d";
space Qh (omega, eta_approx);
field eta (Qh);

For instance, when argv[2] contains "P2", i.e. k = 2, then the string eta_approx takes value
"P1d". Then 7 is initialized by:

eta["east"]
etal["weast"]

1;
epsilon;

The energy form a is then constructed with 7 as additional parameter:

form a (Xh, Xh, "grad_grad", eta);

Such forms with a additional weight function are called weighted forms in Rheolef.
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How to run the program 7

Build the program as usual: make transmission. Then, creates a one-dimensional geometry with
two regions:

mkgeo_grid -e 100 -region > line.geo
geo line.geo

The trivial mesh generator mkgeo_grid, defines two regions east and west when used with the
-region option. This correspond to the situation:

Q=100,1]%, Quest = 2N {xo < 1/2} and Qeas = QN {zo > 1/2}.

In order to avoid mistakes with the C++ style indexation, we denote by (zo, ..., z4—1) the cartesian
coordinate system in R?.

Finaly, run the program and look at the solution:

make transmission
./transmission line.geo P1 > line.field
field line.field

Since the exact solution is a piecewise second order polynom and the change in the diffusion
coeflicient value fits the element boundaries, we obtain the exact solution for all the degrees of
freedom of any P approximation, k > 1, as shown on Fig. 3.2 when k£ = 1. Moreover, when k > 2
then u;, = u since X}, contains the exact solution wu.

Figure 3.2: Transmission problem: wu;, = 7, (u) (¢ = 1072, d = 1, P, approximation).

The two dimensionnal case corresponds to the commands:

mkgeo_grid -t 10 -region > square.geo

geo square.geo

./transmission square.geo P1 > square.field
field square.field -elevation
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while the tridimensional to

mkgeo_grid -T 10 -region > cube.geo
./transmission cube.geo P1 > cube.mfield
field cube.field

As for all the others examples, you can replace P1 by higher-order approximations, change elments
shapes, such as g, H or P, and run distributed computations computations with mpirun.
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Chapter 4

Neumann boundary conditions fot
the Laplace operator

In this chapter we study how to solve a ill-posed problem with a solution defined up to a constant.

Formulation

Let f€ L?(Q) and g€ H B (09) satisfying the following compatibility condition:

/ fdx+ / gds =0
Q o0
The problem writes:

(Ps)n: find u, defined in Q2 such that:

—Au = finQ
8—u = n o2
on g0

Since this problem only involves the derivatives of u, it is clear that its solution is never unique [4,

p. 11]. A discrete version of this problem could be solved iteratively by the conjugate gradient
or the MINRES algorithm [5]. In order to solve it by a direct method, we turn the difficulty by
seeking u in the following space

V ={veHY(Q); bv,1)=0}

where
b(v, p) = / vde, Vv € L*(Q),VueR
Q

The variational formulation of this problem writes:

(VF5): findu €V such that:
a(u,v) =1(v), Vo eV

where
a(u,v) = /Q Vu.Vo da
= m(f,v) +ms(g,v)
m(fv) = /vadac

my(g,v) = /BQ gvds

37
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Since the direct discretization of the space V' is not an obvious task, the constraint b(u,1) = 0
is enforced by a Lagrange multiplier A € R. Let us introduce the Lagrangian, defined for all
v € HY(Q) and p € R by:

1
L(v, p) = 5a(v,v) +b(v, 1) = U(v)
The saddle point (u,\) € H'(Q) x R of this Lagrangian is characterized as the unique solution of:
a(u,v) +b(v,\) = I(v), Yve HY(Q)
b(u, u) = 0, VpeR

It is clear that if (u,\) is solution of this problem, then v € V and w is a solution of (VF3).
Conversely, let u € V' the solution of (VF5). Choosing v = vy where vg(z) = 1, Vo € Q leads to
Ameas(2) = I(vg). From the definition of I(.) and the compatibility condition between the data f
and g, we get A\ = 0. Notice that the saddle point problem extends to the case when f and g does
not satisfies the compatibility condition, and in that case A = I(vg)/meas({2).

Approximation
As usual, we introduce a mesh 7 of Q and the finite dimensional space Xp,:
X, ={veH(Q); vk € Py, VK € Ty}

The approximate problem writes:
(VF5)h~' find (uh,)\h) € X, x R such that:

a(up,v) +bv,Ap) = lp(v), Yve X,
b(up, 1) = 0, VpeR

where
lh(v) = m(L, f,vp) + my(Thg, vp)

File ‘neumann-laplace.cc’

#include "rheolef.h"
using namespace rheolef;
using namespace std;
size_t d;
Float f (const point& x) { return 1; }
Float g (const point& x) { return -0.5/4; }
int main(int argc, charx**xargv) {
environment rheolef (argc, argv);
geo omega (argv([1]);
d = omega.dimension();
space Xh (omega, argv[2]);
form m (Xh, Xh, "mass");
form a (Xh, Xh, "grad_grad");
field b = mxfield(Xh,1);
field 1h = riesz(Xh, f) + riesz(Xh, "boundary", g);

csr<Float> A = {{ a.uu(), b.u()},
{trans(b.u()), 0 }};
vec<Float> B = { 1h.u(), 0 };

solver sa (A);

vec<Float> U = sa.solve (B);

field uh(Xh);

uh.set_u() = U [range(O,uh.u().size())];

Float lambda = (U.size() == uh.u().size()+1) ? U [uh.u().size()] : 0;
#ifdef _RHEOLEF_HAVE_MPI
mpi::broadcast (U.comm(), lambda, U.comm().size() - 1);

#endif // _RHEOLEF_HAVE_MPI
dout << uh
<< "lambda'" << lambda << endl;
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Comments

Let  C RY, d =1,2,3. We choose f(x) = 1 and g(z) = —1/(2d). This example is convenient,
since the exact solution is known:

11
u(z) = ot ﬁ;xl(l —x;)

The code looks like the previous ones. Let us comment the changes. The discrete bilinear form b
is computed as by, € X}, that interprets as a linear application from X} to R: by (vy) = m(vp, 1).
Thus by, is computed as

field b = mxfield(Xh,1.0);

where the discrete bilinear form m is identified to its matrix and field(Xh,1.0) is the constant
vector equal to 1. Let

_( auu trans(b.u) _ uh.u _( lhu
A_(b.u 0 )’ u_(lambda>’ B_( 0 )

The problem admits the following matrix form:

AU=B8
The matrix and right-hand side of the system are assembled by concatenation:
csr<Float> A = {{ a.uu, b.u},
{trans(b.u), 0 }};
vec<Float> B = { 1h.u, 0 };

where csr and vec are respectively the matrix and vector classes. The csr is the abbreviation of
compressed sparse Trow, a sparse matrix compression standard format. Notice that the matrix A is
symmetric and non-singular, but indefinite : it admits eigenvalues that are either strictly positive
or strictly negative. Then, the uh.u vector is extracted from the U one:

uh.u = U [range(0O,uh.u.size())];

The extraction of lambda from U is more technical in a distributed environment. In a sequential
one, since it is stored after the uh.u values, it could be simply written as:
Float lambda = U [uh.u.size()];

In a distributed environment, lambda is stored in U on the last processor, identified by
U.comm() .size()-1. Here U.comm() denotes the communicator, from the boost::mpi library
and U.comm() .size() is the number of processors in use, e.g. as specified by the mpirun com-
mand. On this last processor, the array U has size equal to uh.u.size()+1 and lambda is stored
in Uluh.u.size()]. On the others processors, the array U has size equal to uh.u.size() and
lambda is not available. The following statement extract lambda on the last processor and set it
to zero on the others:

Float lambda = (U.size() == uh.u.size()+1) ? U [uh.u.size()] : 0;

Then, the value of lambda is broadcasted on the others processors:

mpi::broadcast (U.comm(), lambda, U.comm().size() - 1);

The preprocessing guards #idef. . .#tendif assure that this example compile also when the library
is not installed with the MPI support. Finally, the statement
dout << catchmark("u") << uh
<< catchmark("lambda") << lambda << endl;
writes the solution (up,A). The catchmark function writes marks together with the solution in
the output stream. These marks are suitable for a future reading with the same format, as:
din >> catchmark("u") >> uh
>> catchmark ("lambda") > lambda;

This is usefull for post-treatment, visualization and error analysis.
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4.0.2 How to run the program

As usual, enter:

make neumann-laplace
mkgeo_grid -t 10 > square.geo
./neumann-laplace square P1 | field -
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Fluids and solids computations
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Chapter 5

The linear elasticity and the
Stokes problems

5.1 The linear elasticity problem

Formulation

The total Cauchy stress tensor expresses:

o(u) = Adiv(u).l +2puD(u) (5.1)

where A and p are the Lamé coefficients. Here, D(u) denotes the symmetric part of the gradi-
ent operator and div is the divergence operator. Let us consider the elasticity problem for the
embankment, in Q =]0,1[%, d = 2,3. The problem writes:

(P): find u = (ug,...,uq-1), defined in Q, such that:

— divo(u)
ou
on

fin Q,
0 on 1—‘top U Fright

0 on Fleft U Fbottoma
0 on I'tront U I'back, when d =3

(5.2)

where f = (0, —1) when d =2 and f = (0,0, —1) when d = 3. The Lamé coefficients are assumed
to satisfy p > 0 and A + p > 0. Since the problem is linear, we can suppose that p = 1 without

any loss of generality.
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Figure 5.1: The boundary domains for the square and the cube.
recall that, in order to avoid mistakes with the C++ style indexation, we denote by (xq,...,z4-1)
the cartesian coordinate system in R?.
For d = 2 we define the boundaries:
Flcft = {0} X}(), 1[3 Fright = {1}X]07 1[
Fbottom = ]07 1[X{0}7 1—‘top = ]07 l[X{].}
and for d = 3:
Fback - {O}X]Ov 1[27 Ffront = {1}X]Oa 1[2
et = 10,1[x{0}x]0,1[, Tugne = ]0,1[x{1}x]0,1[
I‘bottom = ]071[2X{0}7 I1‘cop = ]071[2X{1}’
These boundaries are represented on Fig. 5.1.
The variational formulation of this problem expresses:
(VF): findu €V such that:
a(u,v) =1I(v), Vv €'V, (5.3)
where
a(u,v) = )\/ divudivvdx +/ 2D(u) : D(v)dz,
Q Q
l(v) = / f.vdz,
Q
V = {ve(HY(N)?% v=0o0n T UTbottom}, when d =2
VvV = {V S (Hl(Q))S; v =0 on I'eg UTyottom U Fright U Fback}y when d = 3
Approximation

We introduce a mesh 7, of Q2 and for k& > 1, the following finite dimensional spaces:

X, = {vn e H Q)% viyk € (P)?, VK € Th},
VvV, = XNV

The approximate problem writes:
(VF)p: find uy, € Vi, such that:

a(up, vi) =U(vp), Yvi € Vy
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File ‘embankment.cc’

#include "rheolef.h"

using namespace rheolef;

using namespace std;

#include "embankment.icc"

int main(int argc, charx**xargv) {
environment rheolef (argc, argv);
geo omega (argv[i]);

space Xh = embankment_space (omega, argv[2]);
Float lambda = (argc > 3) ? atof(argv[3]) : 1;
size_t d = omega.dimension();

point £ (0,0,0);

fld-11 = -1;

field 1h = riesz (Xh, f);

form al (Xh, Xh, "div_div");

form a2 (Xh, Xh, "2D_D");

form a = lambdaxal + a2;

field uh (Xh, 0);

solver sa (a.uu());

uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());

dout << catchmark("inv_lambda") << 1/lambda << endl
<< catchmark ("u" << uh;

File ‘embankment.icc’

space embankment_space (const geo& omega, string approx) {
space Xh (omega, approx, "vector");
Xh.block("left");
if (omega.dimension() >= 2) {
Xh.block("bottom");
}

if (omega.dimension() == 3) {
Xh.block ("right");
Xh.block ("back");

return Xh;

Comments

The space is defined in a separate file ‘embankment .icc’, since it will be reused in others examples
along this chapter:

space Vh (omega, "P2", "vector");

Note here the multi-component specification "vector" as a supplementary argument to the space
constructor. The boundary condition contain a special cases for bi- and tridimensionnal cases.
The right-hand-side f;, represents the dimensionless gravity forces, oriented on the vertical axis:
the last component of f}, is set to —1 as:

fh [omega.dimension()-1] = -1;

Finally, the 1/ parameter and the multi-field result are printed, using mark labels, thanks to the
catchmark stream manipulator. Labels are convenient for post-processing purpose, as we will see
in the next paragraph.
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]

Figure 5.2: The linear elasticity for A =1 and d = 2 and d = 3: both wireframe and filled surfaces
; stereoscopic anaglyph mode for 3D solutions.

We assume that the previous code is contained in the file ‘embankment.cc’. Compile the program
as usual (see page 16):

make embankment

and enter the comands:

mkgeo_grid -t 10 > square.geo
geo square.geo
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The triangular mesh has four boundary domains, named left, right, top and bottom. Then,
enter:

./embankment square.geo P1 > square-P1l.field

The previous command solves the problem for the corresponding mesh and writes the multi-
component solution in the ‘.field’ file format. Run the deformation vector field visualization
using the default gnuplot render:

field square-P1l.field
field square-P1l.field -nofill

Note the graphic options usage ; the unix manual for the field command is available as:

man field

The view is shown on Fig. 5.2. A specific field component can be also selected for a scalar
visualization:

field -comp O square-P1l.field
field -comp 1 square-P1l.field

Next, perform a P, approximation of the solution:

./embankment square.geo P2 > square-P2.field
field square-P2.field -mayavi -nofill

Finally, let us consider the three dimensional case

mkgeo_grid -T 10 > cube.geo

./embankment cube.geo P1 > cube-P1l.field
field cube-P1.field -stereo

field cube-Pl.field -stereo -fill

The two last commands show the solution in 3D stereoscopic anaglyph mode. The graphic is
represented on Fig. 5.2. The P, approximation writes:

./embankment cube.geo P2 > cube-P2.field
field cube-P2.field

5.2 Computing the stress tensor

Formulation and approximation

The following code computes the total Cauchy stress tensor, reading the Lamé coefficient A and
the deformation field uy, from a .field file. Let us introduce:

Tn ={m € (LQ(Q))dXd; Th = ThT and Tp,5/ € Pr_1, VK € Tp, 1 <4,j < d}
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This computation expresses:
find oy, such that:

m(op,7) = b(T,up),v7 € T},

where

m(o,7) = /U:de,
Q

b(t,u) = )\/Qdiv(u) tr(7) dx—l—/QQD(u):de,

where tr(r) = Zle 7;; 1s the trace of the tensor 7.

File ‘stress.cc’

#include "rheolef.h"

using namespace rheolef;

using namespace std;

int main(int argc, char**x argv) {
environment rheolef (argc,argv);
Float inv_lambda;

© 0 N UA W N =
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field uh;
din >> catchmark("inv_lambda") >> inv_lambda
>> catchmark ("u" >> uh;
const geo& omega = uh.get_geo();
const space& Xh = uh.get_space();
string grad_approx = "P" + itos(Xh.degree()-1) + "d";

space Th (omega, grad_approx, "tensor");
space TOh (omega, grad_approx);

form two_D (Xh, Th, "2D");
form div (Xh, TOh, "div");
form inv_mt (Th, Th, "inv_mass");
form inv_m (TOh, TOh, "inv_mass");
field trace_h = inv_m*(div*uh);
field sigma_h = inv_mt*(two_D*uh);
if (inv_lambda != 0)
for (size_t i_comp = 0; i_comp < uh.size(); i_comp++)

sigma_h(i_comp,i_comp) += (1/inv_lambda)*trace_h;
dout << catchmark("s") << sigma_h;

Comments

First notice that this code applies for any deformation field, and is not rectricted to our embank-
ment problem.

The PO and P1d stands for the piecewise constant and picewise linear discontinuous approximations,
respectively. Since elements of T}, are discontinuous accross interelement boundaries, the mass
operator is block-diagonal and can be inverted one time for all: this operation results in the
inv_mass operator.
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Figure 5.3: The stress tensor visualization (linear elasticity A = 1).

First, compile the program:

make stress

The visualization for the stress tensor as ellipes writes:

./stress < square-Pl.field > square-stress-Pl.field
field square-stress-Pl.field -proj -mayavi

Recall that the stress, as a derivative of the deformation, is PO (resp. P1d) and discontinuous when
the deformation is P1 (resp. P2) and continuous. The approximate stress tensor field is projected
on a continuous piecewise linear space, using the -proj option. Conversely, the 3D visualization
bases on ellipsoides:

./stress < cube-Pl.field > cube-stress-Pl.field
field cube-stress-Pl.field -proj -mayavi -stereo
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Figure 5.4: The 0¢; stress component (linear elasticity A = 1): d = 2 (top) and d = 3 (bottom) ;
Py (left) and P; discontinuous approximation (right).

You can observe a discontinuous constant or piecewise linear representation of the approximate
stress component o¢; (see Fig. 5.4):

field square-stress-P1l.field -comp 01

field square-stress-P2.field -comp 01 -elevation
field square-stress-P2.field -comp 01 -elevation -stereo

Notice that the -stereo implies the -mayavi one, as this feature is not available with others
visualization systems. The approximate stress field can be also projected on a continuous piecewise
space:

field square-stress-P2.field -comp 01 -elevation -proj

The tridimensionnal case writes simply (see Fig. 5.4):

./stress < cube-P1.field > cube-stress-P1.field
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./stress < cube-P2.field > cube-stress-P2.field
field cube-stress-Pl.field -comp 01 -stereo
field cube-stress-P2.field -comp 01 -stereo -iso

and also the P1-projected versions write:

field cube-stress-P1l.field -comp 01 -stereo -proj -iso
field cube-stress-P2.field -comp 01 -stereo -proj -iso

These operations can be repeated for each ¢;; components and for both P1 and P2 approximation
of the deformation field.

5.3 Mesh adaptation

The main principle of the auto-adaptive mesh writes [6-11]:

cin >> omega;

uh = solve(omega);

for (unsigned int i = 0; i < n; i++) {
ch = criterion(uh);
omega = adapt(ch);
uh = solve(omega);

The initial mesh is used to compute a first solution. The adaptive loop compute an adaptive
criterion, denoted by ch, that depends upon the problem under consideration and the polynomial
approximation used. Then, a new mesh is generated, based on this criterion. A second solution
on an adapted mesh can be constructed. The adaptation loop converges generaly in roughly 5 to
20 iterations.

Let us apply this principle to the elasticity problem.
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File ‘embankment_adapt.cc’

#include "rheolef .h"
using namespace rheolef;
using namespace std;
#include "elasticity_solve.icc"
#include "elasticity_criterion.icc"
#include "embankment.icc"
int main(int argc, charxxargv) {
environment rheolef (argc, argv);
const Float lambda = 1;
geo omega (argv[i]);
adapt_option_type options;
string approx (argc > 2) 7 argv[2] : "P1";
options.err (argc > 3) 7 atof(argv([3]) : 5e-3;
size_t n_adapt (argc > 4) 7 atoi(argv[4]) : 5;

options.hmin 0.004;
for (size_t i = 0; true; i++) {
space Xh = embankment_space (omega, approx);

field uh = elasticity_solve (Xh, lambda);
odiststream of (omega.name(), "field");
of << catchmark("lambda") << lambda << endl

<< catchmark ("u" << uh;
if (i == n_adapt) break;
field ch = elasticity_criterion (lambda,uh);
omega = adapt(ch, options);

odiststream og (omega.name(), "geo");
og << omega;

File ‘elasticity_solve.icc’

field elasticity_solve(const space& Xh, Float lambda) {
size_t d = Xh.get_geo().dimension();
point £ (0,0,0);
fld-1]1 = -1;
field 1h = riesz (Xh, £f);
form m (Xh, Xh, "mass");
form al (Xh, Xh, "div_div");
form a2 (Xh, Xh, "2D_D");
form a = lambda*al + a2;
solver sa (a.uu());
field uh (Xh, 0);
uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
return uh;

File ‘elasticity_criterion.icc’

field elasticity_criterion (Float lambda, const field& uh) {
string grad_approx = (uh.get_approx() == "P2") 7 "Pid" : "PO";
if (grad_approx == "P0") return norm(uh);
space Th (uh.get_geo(), grad_approx, "tensor");
space Xh (uh.get_geo(), grad_approx);
form two_D (uh.get_space(), Th, "2D");

form div (uh.get_space(), Xh, "div");
form mt (Th, Th, "mass");

form m (Xh, Xh, "mass");

form inv_mt (Th, Th, "inv_mass");

form inv_m (Xh, Xh, "inv_mass");

field qh = inv_m*(div*uh);

field two_Duh = inv_mt*x(two_D*uh);
return sqrt(lambda*sqr(qh) + norm2(two_Duh));
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Comments

The criterion is here: |
g when using P;
h = { (o(up) : D(up))?  when using P,

The adapt_option_type declaration is used by Rheolef to send options to the mesh generator.
The err parameter controls the error via the edge length of the mesh: the smaller it is, the smaller

the edges of the mesh are. In our example, is set by default to one. Conversely, the hmin parameter
controls minimal edge length.

How to run the program

Py: 6661 elements, 3620 vertices P5: 1734 elements, 969 vertices
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Figure 5.5: Adapted meshes: the deformation visualization for P; and P, approximations.

The compilation command writes:
make embankment_adapt
The mesh loop adaptation is initiated from a bamg mesh (see also appendix B.1).

bamg -g square.bamgcad -o square.bamg
bamg2geo square.bamg square.dmn > square.geo
./embankment_adapt square P1

The code performs a loop of five mesh adaptations: the corresponding meshes are stored in
files, from square-1.geo.gz to square-5.geo.gz, and the associated solutions in files, from
square-1.field.gz to square-5.field.gz. The additional ‘.gz’ suffix expresses that the files
are compressed using gzip.

geo square-5.geo
field square-5.field -mayavi -nofill

Note that the ‘. gz’ suffix is automatically assumed by the geo and the field commands.
For a piecewise quadratic approximation:
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./embankment_adapt square P2
Then, the visualization writes:

geo square-5.geo
field square-5.field -mayavi -nofill

A one-dimensional mesh adaptive procedure is also possible:

gmsh -1 line.mshcad -o line.msh

msh2geo < line.msh | geo -upgrade - > line.geo
geo line.geo

./embankment_adapt line P2

geo line-5.geo

field line-5.field -comp 0 -elevation

The three-dimensional extension this mesh adaptive procedure is in development.

5.4 The Stokes problem

Formulation

Let us consider the Stokes problem for the driven cavity in @ =]0,1[?, d = 2,3. The problem
writes:

(S) find u = (ug,...,uq—1) and p defined in Q0 such that:

—div(2D(u)) + Vp = 0inQ,
— divu = 0in Q,
u = (1,0) on I'tep,
u = Oon g U I—‘right U Fbotton'n
% = % = uy =0on I'pack Ul ont when d = 3,
On On

where D(u) = (Vu+ Vu?)/2. The boundaries are represented on Fig. 5.1, page 44.
The variational formulation of this problem expresses:
(VFES) findu e V(1) and p € LE(Q) such that:

a(u,v) + b(v,p) = 0, Vv eV(0),
b(u, q) = 0, Yq € L§(9),
where
a(u,v) = /QQD(u):D(V) dz,

b(v,q) = / div(v) g dz.
V(a) = {ve(HY(2)?% v=0on e UTignt UTbottom and v = («,0) on T'yp}, when d = 2,
V(a) = {V € ( (Q))37 v=0on Fleft ) I‘rlght U Fbottoma
v = (,0,0) on I'top, and vy = 0 on Thack U Tront}, when d = 3,

Lg(Q) = {qGL2 Q gdx =0}.
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Approximation

The Taylor-Hood [12] finite element approximation of the Stokes problem is considered. We
introduce a mesh 7, of Q and the following finite dimensional spaces:

X, = {veH'(Q) vk € () VK € Ty},
Vi) = XpnVia),
Qn = {q€L*(Q)NC°(Q); q/x € P, VK € Tp},

The approximate problem writes:
(VES)y, find up, € Vi (1) and p € Qp such that:

a(up,v) + b(v,pn) = 0, Vv e Vy(0),

b(un, @) 0, Vg € Qn. (54)

File ‘cavity.icc’

space cavity_space (const geo& omega_h, std::string approx) {
space Xh (omega_h, approx, "vector");
Xh.block ("top"); ZXh.block("bottom");
if (omega_h.dimension() == 3) {
Xh.block("back"); Xh.block("front");
Xh[1].block("left"); Xh[1] .block ("right");
} else {
Xh.block("left"); Xh.block("right");
}
return Xh;
}
field cavity_field (const space& Xh, Float alpha) {
field uh (Xh, 0.);
uh [0] ["top"] = alpha;
return uh;

File ‘stokes_cavity.cc’

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "cavity.icc"
int main(int argc, charxxargv) {
environment rheolef (argc, argv);
geo omega (argv[i]);
space Xh = cavity_space (omega, "P2");
field uh = cavity_field (Xh, 1);
space Qh (omega, "P1");
field ph (Qh, 0.);
form a (Xh, Xh, "2D_D");
form b = - form(Xh, Qh, "div");
form mp (Qh, Qh, "mass");
solver_abtb stokes (a.uu(), b.uu(), mp.uu());
stokes.solve (-(a.ub()*uh.b()), -(b.ub()*uh.b()),

uh.set_u(), ph.set_u());
dout << catchmark("u" << uh
<< catchmark("p") << ph;
}
Comments

The spaces and boundary conditions and grouped in specific functions, defined in file ‘cavity.icc’.
This file is suitable for a future reusage. Next, forms are defined as usual, in file
‘stokes_cavity.cc’.
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The problem admits the following matrix form:

auu trans(b.uu) uhu \ [ —aubxuhb
b.uu 0 phau /  \ —b.ubx*uhb
An initial value for the pressure field is provided:

field ph (Qh, 0);

The main Stokes solver call writes:

solver_abtb stokes (a.uu(), b.uu(), mp.uu());
stokes.solve (-(a.ub()*uh.b()), -(b.ub)*uh.b()),
uh.set_u(), ph.set_u());

For tridimensional geometries (d = 3), this system is solved by the preconditioned conjugate
gradient algorithm. the preconditioner is here the mass matrix mp.uu for the pressure: as showed
in [13], the number of iterations need by the conjugate gradient algorithm to reach a given precision
is then independent of the mesh size. For more details, see the Rheolef reference manual related
to mixed solvers, available e.g. via the unix command:

man solver_abtbc

When d = 2, it is interessant to turn to direct methods and factorize the whole matrix of the linear
system. As the pressure is defined up to a constant, the whole matrix is singular. By adding a
Lagrange multiplier that impose a nul average pressure value, the system becomes regular and
the modified matrix can be inverted. Such a technic has already been presented in section 4 for
the Neumann-Laplace problem. Finaly, he choice between iterative and direct algorithm for the
Stokes solver is automatically done, regarding the geometry dimension.

How to run the program

b
' 4

Figure 5.6: The velocity visualization for d = 2 and d = 3 with stereo anaglyph.

We assume that the previous code is contained in the file ‘stokes_cavity.cc’. Then, compile the
program as usual (see page 16):
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make stokes_cavity

and enter the comands:
mkgeo_grid -t 10 > square.geo

./stokes_cavity square > square.field

The previous command solves the problem for the corresponding mesh and writes the solution in
a ‘.field’ file. Run the velocity vector visualization :

field square.field -velocity

Run also some scalar visualizations:

field square.field -comp O
field square.field -comp 1
field square.field -catchmark p

Note the -catchmark option to the field command: the file reader jumps to the label and then
starts to read the selected field. Next, perform another computation on a finer mesh:

mkgeo_grid -t 20 > square-20.geo

./stokes_cavity square-20.geo > square-20.field

and observe the convergence.

Finally, let us consider the three dimensional case:
mkgeo_grid -T 5 > cube.geo
./stokes_cavity cube.geo > cube.field

and the corresponding visualization:

field cube.field -velocity
field cube.field -comp O
field cube.field —-comp 1
field cube.field -comp 2
field cube.field -catchmark p

5.5 Computing the vorticity

Formulation and approximation

When d = 2, we define [4, page 30| for any distributions ¢ and v:

_ (99 0¢
curl ¢ = (axl, 8%) 5
8’1)1 6’00
curlv. = ———

3900 6x17
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and when d = 3:

curly — (22 _0v 9w vz Oui Ovg
n 8171 83527 8502 81’07 81’0 81‘1

Let u be the solution of the Stokes problem (). The vorticity is defined by:

w = curlu whend=2,
w = curlu whend=3.

Since the approximation of the velocity is piecewise quadratic, we are looking for a discontinuous
piecewise linear vorticity field that belongs to:

Vi, = {£eLl*(Q); ¢k e P, VK € Th}, when d = 2
Y, = {£€(L?(Q)% &k e P, VKeT,}, whend=3

The approximate variational formulation writes:

wp, € Ya, Llwhfdm

Jocurluy&dx, VE €Y,  whend =2,

weYy, [qwn€dr = [jcurlu,.fdr, V€ €Y, whend=3.

File ‘vorticity.cc’

#include "rheolef.h"

using namespace rheolef;

using namespace std;

int main(int argc, char**x argv) {
environment rheolef (argc, argv);

field uh;

din >> uh;

string grad_approx = "P" + itos(uh.get_space().degree()-1) + "4d";
string valued = (uh.size() == 3) 7 "vector" : "scalar";

space Lh (uh.get_geo(), grad_approx, valued);
form curl (uh.get_space(), Lh, "curl");

form inv_m (Lh, Lh, "inv_mass");

dout << catchmark("w") << inv_m*(curl*uh);
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e
AN
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Figure 5.7: The vorticity: elevation view for d = 2 and vector representation for d = 3 (with

anaglyph).

For d = 2, just enter:

make vorticity
./vorticity < square.field | field -elevation -stereo -

and you observe a discontinuous piecewise linear representation of the approximate vorticity. Also,
the vorticity presents two sharp peacks at the upper corners of the driven cavity: the vorticity is
unbounded and the peacks will increase with mesh refinements. This singularity of the solution is
due to the boundary condition for the first component of the velocity ug that jumps from zero to
one at the corners. The approximate vorticity field can also be projected on a continuous piecewise

linear space, using the -proj option (See Fig. 5.7 left):

./vorticity < square.field | field -elevation -stereo -nofill -
./vorticity < square.field | field -elevation -stereo -proj -

For d = 3, the whole vorticity vector can also be visualized (See Fig. 5.7 right):

./vorticity < cube.field | field -proj -velocity -stereo -

In the previous command, the -proj option has been used: since the 3D render has no support for
discontinuous picewise linear fields, the P1-discontinuous field is transformed into a P1-continuous
one, thanks to a L? projection. P1 The following command shows the second component of the

vorticity vector, roughtly similar to the bidimensionnal case.

./vorticity < cube.field | field -comp 1 -
./vorticity < cube.field | field -comp 1 -proj -
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5.6 Computing the stream function

Formulation and approximation
When d = 3, the stream function is a vector-valued field v that satisfies [4, page 90]: curlyp =u
and divip = 0. From the identity:

curlcurlyp = —Avy + V(div v)

we obtain the following caracterization of 9 :

—AvY = curlu inQ,
1;[’ = 0 on I'pack U T front U Ftop U Fbottoma
o

o = 0 on Dlege U Dight-

When d = 2, the stream function ¢ is a scalar-valued field the solution of the following problem [4,
page 88]:

—Avy = curlu in Q,
v = 0 on 0f).

File ‘streamf cavity.cc’

#include "rheolef.h"
using namespace rheolef;
using namespace std;
int main (int argc, char** argv) {
environment rheolef (argc, argv);
field uh;
din >> uh;
string valued = (uh.size() == 3) 7?7 "vector" : "scalar';
space Ph (uh.get_geo(), "P2", valued);
Ph.block("top"); Ph.block("bottom");

if (uh.get_geo().dimension() == 3) {
Ph.block("back"); Ph.block("front");
} else {
Ph.block("left"); Ph.block("right");
}

const space& Xh = uh.get_space();

form a (Ph, Ph, "grad_grad");

form b (Xh, Ph, "curl");

field psi_h (Ph, 0.);

field 1h = bx*xuh;

solver sa (a.uu());

psi_h.set_u() = sa.solve (lh.u() - a.ubQO*psi_h.b());
dout << catchmark("psi") << psi_h;
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Figure 5.8: The stream function visualization: isolines for d = 2, and combined vectors and
isonorm surface for d = 3.

For d = 2, just enter (see Fig. 5.8 left):

make streamf_cavity

./streamf_cavity < square.field | field -bw -
For d = 3, the whole stream function vector can be visualized:

./streamf_cavity < cube.field | field -velocity -

The second component of the stream function is showed by:

./streamf_cavity < cube.field | field -comp 1

The combined representation of Fig. 5.8.right has been obtained in two steps. First, enter:

./streamf_cavity < cube.field | field -comp 1 -noclean -noexecute -
mv output.vtk psil.vtk
./streamf_cavity < cube.field | field -velocity -

The -noclean -noexecute options cause the creation of the ‘.vtk’ file for the second componnt,
without running the mayavi visualization. Next, in the mayavi window associated to the whole
stream function, select the File/Load data/VTK file menu and load ‘psil.vtk’. Finaly, se-
lect the Vizualize/Module/IsoSurface menu. Observe that the 3D stream function is mainly
represented by its second component.



62

Rheolef version 6.0 update 1 April 2012




Chapter 6

Nearly incompressible elasticity
and the stabilized Stokes problems

6.1 The incompressible elasticity problem

Formulation

Let us go back to the linear elasticity problem.

When A becomes large, this problem is related to the incompressible elasticity and cannot be
solved as it was previously done. To overcome this difficulty, the pressure is introduced :

p=—Adivu

and the problem becomes:
(E) find u and p defined in Q such that:

—div(2D(u)) + Vp = finQ,
1
— divu - 3P = 0 in £,
+B.C.

The variational formulation of this problem expresses:
(VFE) findu € V(1) and p € L*(2) such that:

a(u,v) + b(v,p) = m(f,v), Yv e V(0),
b(“?Q) - - 07 Vq S L(%(Q)a

o
—~
=
S
~

|

where
m(u,v) = /u.vdx,

Q
a(u,v) = D(u) : D(v)dz,
Q

b(v,q) = f/Qdiv(v)qdz.

1
cpg) = X/ pqdz.
Q
Vo= {V € (Hl(Q))27 v =0on 1—‘lleft U 1—‘bottom}

When A\ becomes large, we obtain the incompressible elasticity problem, that coincides with the
Stokes problem.
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Approximation

As for the Stokes problem, the Talor-Hood [12] finite element approximation is considered. We
introduce a mesh 7, of Q and the following finite dimensional spaces:

X, = {ve(H'(O); v/k € (P)* VK € Tp},
Vﬁ(a) = XNV,
Qn = {g€L*(Q)NC°(Q); q/x € P1, VK € Tp},

The approximate problem writes:
(VFE)y find up, € V(1) and p € Qp, such that:

a(up,v) + b(v,pn) = 0, Vv e V,(0),
b(up,q) — cpg) = 0, Vg€ Qn.

File ‘incompressible-elasticity.cc’

#include "rheolef .h"
using namespace rheolef;
using namespace std;
#include "embankment.icc"
int main(int argc, char*xargv) {
environment rheolef (argc, argv);
geo omega (argv([1]);
Float inv_lambda = (argc > 2 ? atof (argv[2]) : 0);
size_t d omega.dimension ();
space Xh embankment_space (omega, "P2");
space Qh (omega, "P1");
point £ (0,0,0);
f [d-1] = -1;
field 1h = riesz (Xh, £f);
form mp (Qh, Qh, "mass");
form a (Xh, Xh, "2D_D");
form b (Xh, Qh, "div"); b = -b;
form ¢ = inv_lambda*mp;
field uh (Xh, 0);
field ph (Qh, 0);
solver_abtb elasticity (a.uu(), b.uu(), c.uu(), mp.uu());
elasticity.solve (lh.u() - a.ubO*uh.b(), -(b.ub*uh.b()),

uh.set_u(), ph.set_u());
dout << catchmark("inv_lambda") << inv_lambda << endl
<< catchmark ("u" << uh
<< catchmark("p") << ph;
}
Comments

The problem admits the following matrix form:
auu trans(b.uu) uhu \ [ lhu—aubxuhb
b.uu —c.uu phu / —b.ub * uh.b

The problem is similar to the Stokes one (see page 56). This system is solved by:

solver_abtb elasticity (a.uu(), b.uu(), c.uu(), mp.uu());
elasticity.solve (lh.u() - a.ubO*uh.b(), -(b.ubO*uh.b()),
uh.set_u(), ph.set_u());

For two-dimensional problems, a direct solver is used by default. In the three-dimensional case,
an iterative algorithm is the default: the preconditionned conjugate gradient. The preconditioner
is here the mass matrix mp.uu for the pressure. As showed in [13], the number of iterations need
by the conjugate gradient algorithm to reach a given precision is then independent of the mesh
size and is uniformly bounded when A becomes small, i.e. in the incompressible case.
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117

Figure 6.1: The incompressible linear elasticity (A = 4+o00) for N =2 and N = 3.

We assume that the previous code is contained in the file ‘incompressible-elasticity.cc’.
Compile the program as usual (see page 16):

make incompressible-elasticity

and enter the comands:

mkgeo_grid -t 10 > square.geo
./incompressible-elasticity square.geo O > square.field
field square.field -mayavi -nofill

mkgeo_grid -T 10 > cube.geo
./incompressible-elasticity cube.geo 0 > cube.field
field cube.field -mayavi -fill

The visualization is performed as usual: see section 5.1, page 46. Compare the results on FiG. 6.1,
obtained for A = 400 with those of FIG. 5.2, page 46, obtained for A = 1.

Finally, the stress computation and the mesh adaptation loop is left as an execice to the reader.

6.2 The Pb— P, element for the Stokes problem

Formulation and approximation

Let us go back to the Stokes problem. In section 5.4, page 54, the Taylor-Hood finite element was
considered. Here, we turn to the mini-element [14] proposed by Arnold, Brezzi and Fortin, also
well-known as the P1-bubble element. This element is generaly less precise than the Taylor-Hood
one, but becomes popular, mostly because it is easy to implement in two and three dimensions
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and furnishes a P; approximation of the velocity field. Moreover, this problem develops some links
with stabilization technics and will presents some new Rheolef features.

We consider a mesh 7, of @ ¢ RV, N = 2,3 composed only of simplicial elements: triangles when
N =2 and tetraedra when N = 3. The following finite dimensional spaces are introduced:

XV = {veHQ)Y; vk e (P)N, VK € T},
B, = {Be(C°(Q)Y; B,k € BIK)N,VK € Ty}
X, = XVoB,

Vi(a) = XpnV(a),
Qn = {geL2())NC°Q); ¢k € P, VK € T},

where B(K) = vect(A1 X ... X Any41) and A; are the barycentric coordinates of the simplex K.
The B(K) space is related to the bubble local space. The approximate problem is similar to (5.4),
page 55, up to the choice of finite dimensional spaces.

Remark that the velocity field splits in two terms: uy, = u;ll) +u§Lb), where ug) € X;ll) is continuous

and piecewise linear, and uflb) € Bj, is the bubble term.

File ‘stokes_contraction_bubble.cc’

#include "rheolef .h"

using namespace rheolef;

using namespace std;

#include "poiseuille.h"

int main(int argc, char*xargv) {
environment rheolef (argc, argv);
geo omega (argv[1]);

string sys_coord = omega.coordinate_system_name ();
Float c = omega.xmax () [1];
space X1h (omega, "P1", "vector");

space Bh (omega, "bubble", "vector");
Xih.block ("wall");

X1h.block ("upstream");

X1h[1].block ("axis");

X1h[1].block ("downstream");

space Xh = X1h * Bh;

space Qh (omega, "P1");

space Wh (omegal["upstream"], "P1");
field uh (Xh, 0);

field ph (Qh, 0);

uh [0] [0] ["upstream"] = interpolate (Wh, u(c,sys_coord));
form a1l (X1ih, Xih, "2D_D");

form ab (Bh, Bh, "2D_D");

form bl = - form(Xih, Qh, "div");
form bb = - form(Bh, Qh, "div");
form a = {{a1, 0},

{ 0, ab}};
form b = {bl, bb};

form mp (Qh, Qh, "mass");
solver_abtb stokes (a.uu(), b.uu(), mp.uu());
stokes.solve (-(a.ub()*uh.b()), -(b.ubO*uh.b()),

uh.set_u(), ph.set_u());
dout << catchmark("inv_lambda") << 0 << endl
<< catchmark ("u" << uh[0]

<< catchmark ("ub") << uh[1]
<< catchmark("p") << ph;
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Comments

The matrix structure is similar to those of the Taylor-Hood element, and thus the same mixed
solver approach applies. We consider the abrupt contraction geometry:

Q =]~ Ly, 0[x]0, ¢[ U [0, Lg[x]0, 1]

where ¢ > 1 stands for the contraction ratio, and L,, Lg > 0, are the upstream and downstream
tube lengths. The boundary conditions on u = (ug, u1) for this test case are:

Up = Upoiseuille and u1 =0 on Iypstream
u = 0 onTyan

Ouyg

— = 0 and u; =0 on I'yys

0x1

g% = 0 on I'jownstream

where
Fupstream = {—LU}X]O, C[
TCaownstream = {La}x]0,1]
FCaxis = |—=Lu, La[*x{0}
Twan = |—Lu,0[x{c} U {0}x]1,¢[ U]0, La[x{1}

Notices the automatic computation of the geometric contraction ratio ¢ from the input mesh, as:

Float c = omega.xmax () [1];

The global form a(.,.) over X}, is obtained by concatenation of the forms a;(.,.) and a(.,.) over
Xgll) and By, repectively, thanks to the form initializer list:

al 0
a:(o ab) and b = (bl bb )

that writes simply with Rheolef:

form a = {{al, 0},
{ 0, ab}};
form b = {bl, Dbb};

File ‘poiseuille.h’

struct u : std::unary_function<point,Float> {
Float operator() (const point& x) const {
return a*(c+x[1]1)*(c-x[11); 3}
u (const Float& cl, std::string sc) : c(cl)
{ a = (sc == "cartesian") 7 3/(2xpow(c,3)) : 4/pow(c,4); 1}
protected: Float c, a;
struct psi : std::unary_function<point,Float> {
Float operator() (const point& x) comnst {
return xy 7?7 a*sqr(c-x[1])*(2*xc+x[1]) : axsqr(c-x[1])#*sqr(c+x[1]); }
psi (const Float& cl, std::string sc) : c(cl), xy(sc == "cartesian")
{ a=xy ? -1/(2*pow(c,3)) : -1/pow(c,4); }
protected: Float c, a; bool xy;

The file poiseuille.h contains code for the velocity and stream function boundary conditions.
The Poiseuille velocity upstream boundary condition upoiscuille has been scaled such that the total
flow rate is equal to one. The stream function is equal to —1 on the axis and to zero on the wall.
This file contains also a treatment of the axisymmetric variant of the geometry: this case will be
presented in the next paragraphs.
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Figure 6.2: Solution of the Stokes problem in the abrupt contraction: (top) the mesh; (center) the

Py stream function associated to the P1b— P element; (bottom) the P, stream function associated
to the P, — P, Taylor-Hood element.

The boundary conditions in this example are related to an abrupt contraction geometry with a
free surface. The corresponding mesh ‘contraction.geo’ can be easily builded from the geometry
description file ‘contraction.mshcad’, which is provided in the example directory of the Rheolef
distribution. The building mesh procedure is presented with details in appendix B, page B.

gmsh -2 contraction.mshcad -o contraction.msh

msh2geo < contraction.msh | geo -upgrade - > contraction.geo
geo contraction.geo

The mesh is represented on Fig. 6.2.top. Then, the computation and the visualization writes:

make stokes_contraction_bubble
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./stokes_contraction_bubble contraction.geo > contraction-Pl.field
field contraction-Pl.field -mayavi -velocity

The visualization of the velocity field brings few informations about the properties of the flow.
The stream function is more relevant for stationnary flow visualization.

File ‘streamf_contraction.cc’

#include "rheolef.h"

using namespace rheolef;

using namespace std;

#include "poiseuille.h"

int main (int argc, char** argv) {
environment rheolef (argc, argv);

field uh;

din >> uh;

const geo& omega = uh.get_geo();

string sys_coord = omega.coordinate_system_name();
Float c = omega.xmax()[1];

string approx = "P" + itos(uh.get_space().degree());

space Ph (omega, approx);
Ph.block("upstream");
Ph.block("wall");

Ph.block("axis");

space Wh (omega["upstream"], approx);
const space& Xh = uh.get_space();
form a (Ph, Ph, "s_grad_grad");

form b (Ph, Xh, "s_curl");

field psi_h (Ph, O
psi_h["upstream"]
psi_h["wall"] = O0;
psi_h["axis"] = -1;

field 1h = b.trans_mult (uh);

solver sa (a.uu());

psi_h.set_u() = sa.solve (lh.u() - a.ubQO*psi_h.b());
dout << catchmark("psi") << psi_h;

>

interpolate (Wh, psi(c,sys_coord));

I~

}

Notice the use of special extensions of the grad_grad and curl forms for the stream function
computation:

form a (Ph, Ph, "s_grad_grad");
form b (Ph, Xh, "s_curl");

These form are suitable for the axisymmetric coordinate system specific definition of the stream
function, while they coincide with the usual grad_grad and curl forms on cartesian coordinate
systems. The axisymmetric case will be presented in the next section.

The stream function 1 (see also section 5.6) is computed and visualized as:

make streamf_contraction

./streamf_contraction < contraction-P1.field > contraction-Pl-psi.field
field contraction-Pl-psi.field

field contraction-Pl-psi.field -n-iso 15 -n-iso-negative 10 -bw

The P; stream function is represented on Fig. 6.2.center. The stream function is zero along the
wall and the line separating the main flow and the vortex located in the outer corner of the
contraction. Thus, the isoline assoiated to the zero value separates the main flow from the vortex.
In order to observe this vortex, an extra -n-iso-negative 10 option is added: ten isolines are
drawed for negatives values of 1, associated to the main flow, and n_iso-10 for the positives
values, associated to the vortex.
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A similar computation based on the Taylor-Hood P, — P; element is implemented in
stokes_contraction.cc. The code is similar, up to the boundary conditions, to
stokes_cavity.cc (see page 55): thus it is not listed here but is available in the Rheolef example
directory.

make stokes_contraction

./stokes_contraction contraction.geo > contraction-P2.field

field contraction-P2.field -mayavi -velocity

./streamf_contraction < contraction-P2.field > contraction-P2-psi.field
field contraction-P2-psi.field -n-iso-negative 10 -bw

The associated P>, stream function is represented on Fig. 6.2.bottom. Observe that the two
solutions are similar and that the vortex activity, defined as %, is accurately computed with
the two methods (see also [15], Fig. 5.11.a, page 143).

field contraction-Pl-psi.field -max
field contraction-P2-psi.field -max

Recall that the stream function is negative in the main flow and positive in the vortex located
in the outer corner of the contraction. Nevertheless, the Taylor-Hood based solution is more
accurate : this is perceptible on the graphic, in the region where the upstream vortex reaches the
boundary.

6.3 The stabilized Stokes problem

An alternative and popular implementation of this element eliminates the unknowns related to the
bubble components (see e.g. [16], page 24). Remark that the system has the following structure:

Ay 0 BT Uy I
0 A B;;F Uy = F,
By B, 0 P G

This elimination can be easily performed since the form a;(.,.) over By, is diagonal, due to the
fact that the bubble functions vanishes on the boundary of elements. The system reduces to:

A BY U\ _( F

B, -C P T\ G
where G = G — BbAb_lFb and C = BbAb_leT. Recall that A, is diagonal, since each bubble
function vanishes at element boundary. Remarks that the matrix structure is similar to those of

the nealy incompressible elasticity (see 6.1, page 6.1). A direct matrix formulation for this problem
is similar to the direct P; — P stabilized element, proposed by Brezzi and Pitkéaranta [17].

6.4 Axisymmetric geometries

Axisymmetric geometries are fully supported in Rheolef: the coordinate system is associated to
the geometry description, stored together with the mesh in the ‘.geo’ and this information is
propagated in spaces, forms and fields without any change in the code. Thus, a code that works in
plane a 2D plane geometry is abble to support a 3D axisymmetric one without changes. A simple
axisymimetric geometry writes:



Rheolef version 6.0 update 1 April 2012 71

mkgeo_grid -t 10 -zr > square-zr.geo
more square-zr.geo

Remark the additional line in the header:
coordinate_system zr

The axis of symmetry is denoted as z while the polar coordinates are (r,6). By symmetry, the
problem is supposed to be independent upon 6 and the computationnal domain is described by
(xo,21) = (#,7). Conversely, in some cases, it could be convenient to swap the order of the
coordinates and use (r, z): this feature is obtanied by the -rz option:

mkgeo_grid -t 10 -rz > square-rz.geo
more square-rz.geo

Axisymmetric problems uses L? functional space equipped with the following weighted scalar
product

(f’g)Z/Qf(z,r)g(z,r)rdrdz

and all usual bilinear forms support this weight. Thus, the coordinate system can be chosen
at run time and we can expect an efficient source code reduction.

6.5 The axisymmetric stream function and stress tensor

In the axisymmetric case, the velocity field u = (u., u,) can be expressed in terms of the Stokes
stream function ¢ by (see [18, p.453] and [19]):

10y 16‘1/)) (6.1)

w= o = (150 g

Recall that in the axisymmetric case:

mmwzC“w’—M)

r or = 0z

Thus, from this definition, in axisymmetric geometries u # curle and the definition of 4 differs
from the 2D plane or 3D cases (see section 5.6, page 60).

Let us turn to a variational formulation in order to compte 1 from u. For any £ € H(Q), let us
multiply (6.1) by v = (9,§, —30.€) and then integrate over  with the rdrdz weight. For any
known u velocity field, the problem writes:

(P): find ¢ € ¥(¢r) such that
a(¥,§) =b(&,u), V¢ e ¥(0)

where we have introduced the following bilinear forms:

B oY og Oy O
a(,§) = /gz<37"(‘37"+6328z> drdz

b(&u) = A(gfuz—giur) rdrdz

As an exemple, let us reconsider the contraction geometry (see section 6.2, page 65), extended in
the axisymmetric case. In that case, the functional space is defined by:

‘I’(wr) = {(p € Hl(Q)7 Y = 1/)1—‘ on 1—‘upstream U jFwaull U 1—‘axis}
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with
1ppoiseuile on Fupstream
7/]F = 0 on DI'yan
-1 on Faxis

This space corresponds to the imposition of Dirichlet boundary conditions on I'ypstream, I'wan and
T'.xis and a Neuman boundary condition on I'qownstream-
These forms are defined in ‘streamf_contraction.cc’ as:

form a (Ph, Ph, "s_grad_grad");

form b (Ph, Xh, "s_curl");

Notice that a is similar to the grad_grad form, but where the usual r dr dz measure is replaced
by drdz, i.e. without the r weight. Conversely, b is related to the s_curl operator:

0 0
s_curl¢ = (af, —ai)

that is closely related to the standard curl operator:

19(r§) 43
r or ' _82>

curlé = (

Notice the apparition of r and 1/r in the last expression.

Vuax = 1.84 x 1073

Figure 6.3: Solution of the axisymmetric Stokes problem in the abrupt contraction: (top) the P,
stream function associated to the P2 — P; element; (bottom) comparison with the 2D cartesian
solution (in red).

The following unix commands generate the axisymmetric geometry:

gmsh -2 contraction.mshcad -o contraction.msh
msh2geo -zr < contraction.msh | geo -upgrade - > contraction-zr.geo
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more contraction-zr.geo
geo contraction-zr.geo

The previous code stokes_contraction.cc and streamf_contraction.cc are both reused as:

./stokes_contraction contraction-zr.geo > contraction-zr-P2.field
./streamf_contraction < contraction-zr-P2.field > contraction-zr-P2-psi.field
field contraction-zr-P2-psi.field -n-iso-negative 10 -bw

The solution is represented on Fig. 6.3: it slighly differs from the 2D cartesian solution, as
computed in the previous section (see Fig. 6.2). The vortex size is smaller but its intensity
Ymax = 1.84 x 1073 is higher. Despite the stream functions looks like similar, the plane solutions

. B T O
ug(z,0 axisymetric
U( ’ ) cartesian Too (Z ) O)

-8 -4 0 2

Figure 6.4: Solution of the plane and axisymmetric Stokes problem in the abrupt contraction: cut
along the axis of symmetry: (left): ug; (right) 9.

are really different, as we can observe from a cut of the first component of the velocity along the
axis (see Fig. 6.4):

field contraction-P2.field -comp O -cut -normal O 1 -origin O le-15
field contraction-zr-P2.field -comp O -cut -normal O 1 -origin O le-15

The 1e-15 argument replace the zero value, as the mesh intersection cannot yet be done exactly
on the boundary. Notice that the stokes_contraction_bubble.cc can be also reused in a similar
way:

./stokes_contraction_bubble contraction-zr.geo > contraction-zr-Pl.field
./streamf_contraction < contraction-zr-P1.field > contraction-zr-Pl-psi.field
field contraction-zr-Pl-psi.field -n-iso-negative 10 -bw

There is another major difference with axisymmetric problems: the rate of deformation tensor

writes:
Tzz Trz 0
7=2D(u) = Try Trr O
0 0 Too
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Thus, there is an additional non-zero component 7y¢ that is automatically integrated into the
computations in Rheolef. The incompressibility relation leads to tr(r) = 7., + 7 + 799 = 0.
Here o1t = —p.I + 7 is the total Cauchy stress tensor (by a dimensionless procedure, the visosity
can be taken as one). By reusing the stress.cc code (see page 48) we are abble to compute the
tensor components:

make stress
./stress < contraction-zr-P1.field > contraction-zr-Pl-tau.field
The visualization along the axis of symmetry for the 799 component is obtained by (see Fig. 6.4):
field contraction-zr-Pl-tau.field -comp 22 -proj -cut -normal O 1 -origin 0 1le-15
Recall that the 7., and 7., components are obtained by the -comp 00 and -comp 11 options,

respectively. The non-zero values along the axis of symmetry expresses the elongationnal effects
in the entry region of the abrupt contraction.



Chapter 7

Time-dependent problems

7.1 The heat equation

Formulation

Let T>0,QCR% d=1,23 and fdefined in . The heat problem writes:

(P): find u, defined in Qx]0,T], such that

% —Au = f inQx]0,T7,
u(0) = 0 in €,
u(t) = 0 on 00Qx]0,T].

where f is a known function.

Approximation

Let At > 0 and t,, = nAt, n > 0. The problem is approximated with respect to time by the
following first-order implicit Euler scheme:
n+1 _ u™

At

u

— Au"t = f(t,41) in Q

where u" =~ u(nAt) and u(®) = 0. We reuse the bilinear forms a and m defined in section 1.1,
page 13 for the Dirichlet problem and introduce the bilinear form ¢ = m + At a. The variationnal
formulation of the time-discretized problem writes:

(VF),: Let u™ being known, find u™t € HE(Q) such that

C(un+1’ ’U) _ m(un + At f(tn+1)7 ’U), Yv € H(}(Q)

This is a Poisson-like problem. The discretization with respect to space of this problem is similar
to those presened in section 1.1, page 13.

(0]
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File ‘heat.cc’

#include "rheolef.h"
using namespace rheolef;
using namespace std;
int main (int argc, char x*xargv) {
environment rheolef (argc, argv);
geo omega (argv([1]);
size_t n_max = (argc > 2) 7 atoi(argv[2]) : 100;
Float delta_t = 0.5/n_max;
space Xh (omega, "P1");
Xh.block ("boundary");
form m (Xh, Xh, "mass");
form a (Xh, Xh, "grad_grad");
form ¢ = m + delta_tx*a;
solver sc = 1dlt (c.uu());
field 1h = riesz (Xh, 1);
field uh (Xh, 0);
branch event ("t","u");
dout << event (0, uh);
for (size_t n = 1; n <= n_max; n++) {
field kh = m*uh + delta_tx*1lh;
uh.set_u() = sc.solve (kh.u() - c.ubO*uh.b());
dout << event (Float(mn)*delta_t, uh);

Comments

Notice the use of the branch class:

branch event ("t","u");

this is a wrapper class that is used here to print the branch of solution (¢,, u™),>0, on the standard

output in the ¢.branch’ file format. An instruction as:

dout << event (t,uh);

is equivalent to the formated output

dout << catchmark("t") << t << endl
<< catchmark ("u") << uh;
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Figure 7.1: Animation of the solution of the heat problem.

We assume that the previous code is contained in the file ‘heat.cc’. Then, compile the program
as usual (see page 16):

make heat

For a one dimensional problem, enter the comands:

mkgeo_grid -e 10 > line.geo

./heat line.geo > line.branch
The previous commands solve the problem for the corresponding mesh and write the solution in
the field-family file format ‘.branch’. For a bidimensional one:

mkgeo_grid -t 10 > square.geo

./heat square.geo > square.branch

For a tridimensional one:
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mkgeo_grid -T 10 > box.geo
./heat box.geo > box.branch

How to run the animation

branch line.branch -gnuplot -umax 0.125

A gnuplot window appears. Enter q to exit the window. For a bidimensional case, a more
sophisticated procedure is required. Enter the following unix commands:

branch square.branch -paraview
paraview &

A window appears, that looks like a video player. Then, open the File->open menu and load
square-..vtk. The first ".” stands for a wildcard, i.e. the time index family. Then, press the

apply | green button and, clic a first time on the video button, at the top of the window.

Next, go to the object inspector window, select display and clic on the|rescale to data range

button. Then clic a second time on the video m button. An elevation view can be also obtained:
Select the Filter->alphabetical->wrap(scalar) menu, choose 10 as scale factor and press
the apply green button. Then, clic on the graphic window, rotate the view and finally re-play the
animation

To generate an animation file!, go to the File->save animation menu and enter as file name
square and as file type jpeg. A collection of jpeg files are generated by paraview. Then, run
the unix command:

ffmpeg -r 2 -i ’square.%04d.jpg’ square.mov

The animation file square.mov can now be started from any video player, such as vlc:

vlc --loop square.mov

For the tridimensional case, the animation feature is similar.

7.2 The convection-diffusion problem

Formulation
Let T'> 0 and v > 0. The convection-diffusion problem writes:

(P): find ¢, defined in 2x]0, T, such that

% fuVé—vAG+ 0 = 0 inQx]0,T]
$(0) = ¢o inQ
o(t) = or(t) on 00x]0,T]|

where u, 0 > 0, ¢y and ¢r being known. Notice the aditional u.V operator.

LAt this time, the avi output feature is broken in paraview, and an alternate mpeg output is here suggested.
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Time approximation

This problem is approximated by the following first-order implicit Euler scheme:

¢n+1 _ d)n o X

o n+1 _ .
Al vA¢p 0 in Q

where At > 0, ¢" ~ ¢(nAt) and ¢ = ¢y.

Let ¢, = nAt, n > 0. The term X"(x) is the position at ¢, of the particule that is in x at ;41
and is transported by u”. Thus, X"(x) = X (t,, ) where X (¢, z) is the solution of the differential
equation

dX
w = w(X(t,x),t) p.p. tE€ Jtn,tniil,
X(tpe1,2) = =z

Then X" (x) is approximated by the first-order Euler approximation

X"(z) =z — Atn"(z).

This algorithm has been introduced by O. Pironneau (see e.g. [20]), and is known as the method
of characteristic in the finite difference context and as the Lagrange-Galerkin in the finite element
one. The efficient evaluation of ¢, o X™(x) in an unstructured mesh involves a hierarchical d-tree
(quadtree, octree) data structure for the localization of the element K of the mesh that contains
x. When d = 3 requieres also sophisticted geometric predicates to test whether x € K without
rounding errors, and avoid to conclude that no elements contains a point = close to 0K up to
rounding errors. This problems is addressed in Rheolef based on the cgal library.

The following code implements the classical rotating Gaussian hill test case (see e.g. [21]).



© W N U W N

W oW W W W NNNNNNNNNN R e R e e e e
B WM FE O © N0 e N = O XN U R ® N O

35
36
37
38
39
40

80 Rheolef version 6.0 update 1 April 2012

File ‘convect.cc’

// mkgeo_grid -e 20 -a -2 -b 2 > line2.geo
// ./convect-P2 line2 P1 le-2 100 > line2-P1.branch
// ./convect-P2 line2 P2 le-2 100 > line2-P2.branch
// ./convect_error < line2-P1.branch > line2-Pl-cmp.branch
// ./convect_error < line2-P2.branch > line2-P2-cmp.branch
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "rotating-hill.h"
int main (int argc, char x**xargv) {
environment rheolef (argc,argv);
geo omega (argv([1]);
string approx = (argc > 2) 7 argv[2] : "P1";
Float nu (argc > 3) 7 atof(argvI[3]) : 1le-2;
size_t n_max (argc > 4) 7 atoi(argv([4]) : 50;

size_t d = omega.dimension();
Float delta_t = 2%acos(-1.)/n_max;
space Vh (omega, approx, "vector");

field uh = interpolate (Vh, u(d));
space Xh (omega, approx);
Xh.block ("boundary");
field phi_h = interpolate (Xh, phi(d,nu,0));
characteristic X (-delta_t*uh);
quadrature_option_type qopt;
gopt.set_family (quadrature_option_type::gauss_lobatto);
qopt.set_order (Xh.degree());
form m (Xh, Xh, "mass", qopt);
form a (Xh, Xh, "grad_grad");
branch event ("t","phi");
dout << catchmark("nu") << nu << endl
<< event (0, phi_h);
for (size_t n = 1; n <= n_max; n++) {
Float t = nxdelta_t;
field 1lh = riesz(Xh, compose(phi_h, X), qopt);
form ¢ = (1 + delta_t*phi::sigma(d,nu,t))*m + delta_t*nux*a;
solver sc (c.uu());
phi_h.set_u() = sc.solve (lh.u() - c.ub()*phi_h.b());
dout << event (t, phi_h);

Comments

The characteristic variable X implements the localizer X™(x):

characteristic X (-delta_t*uh);
Combined with the compose function, it perform the composition ¢, o X™. The right-hand side
is then computed as usual by using the riesz function:

field 1h = riesz(Xh, compose(phih, X));

Notice also the use of the lumped mass matrix:

form m (Xh, Xh, "lumped_mass");

The lumped procedure leads to profitable spectral properties of the mass matrix that are benefict
to the stability of the method. As test case is described in [22]: we take Q =] —2,2[? and T = 27.
This problem provides an example for a convection-diffusion equation and a known analytical
solution:

$(t, ) = exp (=t —r(t)|z — zo(t)[*)

where A = 4vty > 0 with ¢9 > 0 and v > 0, xo(t) is the moving center of the hill and r(t) =
1/(to + 4vt). The source term is time-dependent: o(t) = A — 2dvr(¢t) and has been adjusted such
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that the right-hand side is zero. The moving center of the hill z(t) is associated to the velocity
field u(t, z) as:

dut,x) [wxo(t) ‘
1|1/(2m) t/(2m) —1/2

2| (y,—x) (—cos(t)/2, sin(t)/2)

3| (y,—,0) | (—cos(t)/2, sin(t)/2,0)

File ‘rotating-hill.h’

struct u : std::unary_function<point,point> {
point operator () (const point & x)
return (d == 1) ? point(u0) : point(x[1], -x[0]1); }

u (size_t d1) : d(d1), u0 (0.5/acos(Float(-1))) {}
protected: size_t d; Float u0;

struct phi : std::unary_function<point,Float> {
static Float sigma(size_t d, Float nul, Float t) {
const Float t0 = 0.2;
return 4*nul/t0 - 2*d*nul/(t0 + 4xnulx*t); }
Float operator() (const point& x) {

point xO0t;

if (d == 1) { x0t = point(x0[0] + uO*t); }

else { x0t = point( x0[0]*cos(t) + x0[1]*sin(t),
-x0[0]*sin(t) + xO0[1]l*cos(t));

}

return exp(-4*nu*(t/t0) - dist2(x,x0t)/(t0O+4*nux*xt));
}
phi (size_t d1, Float nul, Float t1) : d(d1), nu(nul), t(tl),
t0(0.2), u0 (0.5/acos(Float(-1))), x0(-0.5,0) {}
protected: size_t d; Float nu, t, tO, uO; point xO0;
};

Notice the use of a class-function phi for the implementation of ¢(t) as a function of x. Such
programation style has been introduced in the standard template library [23], which is a part of
the standard C++ library. By this way, for a given ¢, ¢(t) can be interpolated as an usual function
on a mesh.

How to run the program

We assume that the previous code is contained in the file ‘convect.cc’. Then, compile the program
as usual (see page 16):

make convect

and enter the comands: Running the one-dimensional test case:

mkgeo_grid -e 500 -a -2 -b 2 > line2.geo
./convect line2.geo P1 > line2.branch
branch line2.branch -gnuplot

Notice the hill that moves from © = —1/2 to = 1/2. Since the exact solution is known, it is
possible to analyze the error:
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Figure 7.2: Animation of the solution of the rotating hill problem.

File ‘convect_error.cc’

#include "rheolef .h"
using namespace rheolef;
using namespace std;
#include "rotating-hill.h"
int main (int argc, char x*xargv) {
environment rheolef (argc,argv);
Float nu;
din >> catchmark ("nu") > nu;
branch get ("t","phi");
branch put ("t","phi_h","pi_h_phi");
derr << "# t\terror_l2\terror_linf" << endl;
field phi_h;
Float err_12_12 = 0;
Float err_linf_1linf = 0;
for (Float t = 0, t_prec = 0; din>> get (t, phi_h); t_prec = t) {
const space& Xh = phi_h.get_space();
size_t d = Xh.get_geo().dimension();
field pi_h_phi = interpolate (Xh, phi(d,nu,t));
form m (Xh, Xh, "mass");
field eh = phi_h - pi_h_phi;
Float err_12 = sqrt(m(eh,eh));

Float err_linf = eh.max_abs();
err_12_12 += sqr(err_12)*(t - t_prec);
err_linf_linf = max(err_linf_linf, err_linf);

dout << put (t, phi_h, pi_h_phi);

derr << t << "\t" << err_12 << "\t" << err_linf << endl;
}
derr << "# error_12_12
derr << "# error_linf_1linf

}

" << sqrt(err_12_12) << endl;
" << err_linf_linf << endl;
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The numerical error ¢, — 7, () is computed as:
field eh = phih - interpolate (Xh, phi(t));

and its L? norm is printed on the standard error. Observe the use of the branch class as both
input and output field stream.

make convect_error
./convect_error < line2.branch > line2-cmp.branch
branch line2-cmp.branch -gnuplot

The instantaneous L?(2) norm is printed at each time step and the total error in L?(]0, T[; L?(£2))
is finaly printed at the end of the stream.

Hfi:hfﬂh(éb)l\\m(m) | H%*Wh(cb)\\lm(m) . .

P P

Py—— I Py——

0.1 0.1
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Figure 7.3: Diffusion-convection when d = 1 and v = 1072: convergence versus h and At for P,
and P, elements: (left) in L?(L?) norm; (right) in L°°(L°) norm.

A P2 approximation can be used as well:

./convect line2.geo P2 > line2.branch
branch line2.branch -gnuplot
./convect_error < line2.branch > line2-cmp.branch

On Fig. 7.3.left we observe the L?(L?) convergence versus h for the P; and P, elements when
d = 1: the errors reaches a plateau that decreases versus At. On Fig. 7.3.right the L>°(L°) norm
of the error presents a similar behavior. Since the plateau are equispaced, the convergence versus
At is of first order.

These computation was performed for a convection-diffusion problem with v = 1072, The pure
transport problem (v = 0, without diffusion) computation is obtained by:

./convect line2.geo P1 0 > line2.branch
branch line2.branch -gnuplot

Let us turn to the two-dimensional test case:
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mkgeo_grid -t 80 -a -2 -b 2 -¢c -2 -d 2 > square2.geo
./convect square2.geo P1 > square2.branch

branch square2.branch -paraview

paraview &

The visualization and animation are similar to those of the head problem previously presented
in paragraph 7.1. Observe the rotating hill. The result is shown on Fig. 7.2. The error analysis
writes:

./convect_error < square2.geo > square2-cmp.branch
branch square2-cmp.branch -paraview

From the paraview menu, you can visualize simultaneously both the approximate solution and the
Lagrange interpolate of the exact one. Finaly, the three-dimensional case:

mkgeo_grid -T 15 -a -2 -b 2 -¢c -2 -d 2 -f -2 -g 2 > cube2.geo
./convect cube2.geo P1 > cube2.branch

The visualization is similar to the two-dimensional case.

7.3 The Navier-Stokes problem

Formulation

This longer example combines most fonctionalities presented in the previous examples.
Let us consider the Navier-Stokes problem for the driven cavity in =0, 1[4, d = 2, 3. Let Re > 0
be the Reynolds number, and T > 0 a final time. The problem writes:

(NS): find u = (ug,...,u4—1) and p defined in Qx]0,T[ such that:

Re (%ltl + u.Vu> —div(2D(u)) + Vp = 0in Qx]0,T7,
— divu = 0in Qx]0,T7,
u(t=0) = 0in Q x {0,T},
u = (1,0) on I'to, x]0, T7,
u = 0Oon (Pleft U Pright U 1_‘bottom)><]07 T[7
8’11,0 8u1

= = uy =0 on (Tpack U Tfont) x]0,T[ when d = 3,

on on

where D(u) = (Vu + Vu®)/2. This nonlinear problem is the natural extension of the linear
Stokes problem, as presented in paragraph 7.3, page 84. The boundaries are represented on
Fig. 5.1, page 44.

Time approximation

Let At > 0. Let us consider the following backward second order scheme, for all ¢ € C?([0,T]) :

dg .\ _ 3(t) = 46(t — At) + 9(t — 2A1)
E( )= 2At

+ O(At?)
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The problem is approximated by the following second-order implicit Euler scheme:

R 3un+1 —4u" o X" + un—l ° Xn—l
e

SAT —div(2D(u"t)) + Vprtl = 0inQ,

— divu"t! = 0in Q,
u"t! = (1,0) on Tgop,
unt! = 0on I'eg U 1—‘right U Fbottom,

n+1 n+1

% = aL = uSH = 0on I'vack Ul rons when d = 3,
On On
where, following [24, 25]:
X"z) = z—Atu*(a)
X" Yz) = z—2Atu*(x)
ll* — 211” _ un—l

It is a second order extension of the method previously introduced in paragraph 7.2 page 79. The
scheme defines a second order recurence for the sequence (u™),,>_1, that starts withu=! = u® = 0.
Variationnal formulation

The variationnal formulation of this problem expresses:
(NS)ar: find u"tt € V(1) and p"*t € LE(Q) such that:

a(u"tt v) 4+ b(v,p"th) = m(f",v), Yve V(0),
b(u"tt q) = 0, Vg € L3(Q),
where
f = E (411 o X —u 1 e} X )
where
a(u,v) = 3fie u.vd:ch/ 2D(u) : D(v)dzx
2At Jg, 0

and b(.,.) and V(«) was already introduced in paragraph 5.4, page 54, while studying the Stokes
problem.

Space approximation

The Taylor-Hood [12] finite element approximation of this generalised Stokes problem was also
considered in paragraph 5.4, page 54. We introduce a mesh 7; of 2 and the finite dimensional
spaces Xj,, Vi (a) and @p. The approximate problem writes:

NS)aen: find u?™ € V(1) and p"t' € Qp such that:
: h

a(upthv) o+ b(vpp™) = mEv), Vv € Vi(0), (7.1)
b(up ™, q) = 0, Vg € Q. '
where
£y :E(AluhoX —u} o X™)

The problem reduces to a sequence resolution of a generalized Stokes problems.
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File ‘navier_stokes_solve.icc’

using namespace std;
int navier_stokes_solve (
Float Re, Float delta_t, field 10h, field& uh, field& ph,
size_t& max_iter, Float& tol, odiststream *p_derr=0) {
const space& Xh = uh.get_space();
const space& Qh = ph.get_space();
string label = "navier-stokes-" + Xh.get_geo () .name();
quadrature_option_type qopt;
qopt.set_family(quadrature_option_type::gauss_lobatto);
qgopt.set_order (Xh.degree());
form m (Xh, Xh, "mass", qopt);
form a (Xh, Xh, "2D_D");
form mp(Qh, Qh, "mass");
a = a + 1.5x(Re/delta_t)*m;
solver sa (a.uu());

form b (Xh, Qh, "div"); b = -b;
solver_abtb stokes (a.uu(), b.uu(), mp.uu());
if (p_derr != 0) #*p_derr << "[" << label << "] #n |[du/dt|" << endl;
field uhl = uh;
for (size_t n = 0; true; n++) {
field uh2 = uhl;
uhl = uh;
field uh_star = 2.0*%uhl - uh2;
characteristic X1 ( -delta_t*uh_star);

characteristic X2 (-2.0*delta_t*uh_star);

field 1i1h = riesz(Xh, compose(uhl,X1), qopt);

field 12h riesz(Xh, compose(uh2,X2), qopt);

field 1h 10h + (Re/delta_t)=*(2%x11h - 0.5%12h);

stokes.solve (lh.u() - a.ubO)*uh.b(), -(b.ub()*uh.b()),
uh.set_u(), ph.set_u());

field duh_dt = (3*uh - 4*uhl + uh2)/(2*delta_t);

Float residual = sqrt(m(duh_dt,duh_dt));

if (p_derr != 0) *p_derr << "[" << label << "] "<< n << " " << residual
if (residual < tol) {
tol = residual;
max_iter = n;
return O;
}
if (n == max_iter-1) {
tol = residual;
return 1;
}
}
}
Comments

The navier_stokes_solve function is similar to the ‘stokes_cavity.cc’. It solves here a gener-
alised Stokes problem and manages a right-hand side fj,:

characteristic X1 ( -delta_t*uh_star);
characteristic X2 (-2.0*delta_t*uh_star);

field 11h = riesz(Xh, compose(uhl,X1), qopt);
field 12h = riesz(Xh, compose(uh2,X2), qopt);
field 1h = 10h + (Re/delta_t)*(2*x11h - 0.5%12h);

This last computation is similar to those done in the ‘convect.cc’ example. The generalized Stokes

problem is solved by the solver_abtb class. The stopping criterion is related to the stationnary

solution or the maximal iteration number.

<< endl;
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File ‘navier_stokes_cavity.cc’

#include "rheolef .h"
using namespace rheolef;
using namespace std;
#include "navier_stokes_solve.icc"
#include "navier_stokes_criterion.icc"
#include "cavity.icc"
int main (int argc, charx*xargv) {
environment rheolef (argc, argv);
if (arge < 2) {

cerr << "usage: " << argv[0] << " <geo> <Re> <err> <hmin> <delta t> <n_
exit (1);

}

geo omega (argv[1]);

adapt_option_type options;

Float Re (argc > 2) 7 atof(argv([2]) : 100;

options.err
size_t n_adapt

(argc > 3) 7 atof(argv[3]) : le-2;
(argc > 4) 7 atoi(argv[4]) : 5;

Float delta_t 0.05;
options.hmin 0.004;
options.hmax 0.1;

space Xh = cavity_space (omega, "P2");
space Qh (omega, "P1");
field uh = cavity_field (Xh, 1.0);
field ph (Qh, 0);
field fh (Xh, 0);
for (size_t i = 0; true; i++) {
size_t max_iter = 1000;
Float tol = 1le-5;
navier_stokes_solve (Re, delta_t, fh, uh, ph, max_iter,
odiststream o (omega.name(), "field");
0 << catchmark("Re") << Re << endl
<< catchmark("delta_t") << delta_t << endl
<< catchmark ("u" << uh
<< catchmark("p") << ph;
o.close();
if (i >= n_adapt) break;

field ch = navier_stokes_criterion (Re,uh);
omega = adapt (ch, optiomns);
o.open (omega.name(), "geo");

0 << omega;
o.close();

Xh = cavity_space (omega, "P2");
Qh = space (omega, "P1");

uh = cavity_field (Xh, 1.0);

ph = field (Qh, 0);

fh = field (Xh, 0);

tol,

&derr);

pdapt >"

File ‘navier_stokes_criterion.icc’

field navier_stokes_criterion (Float Re, const field& uh) {
space Xh (uh.get_geo(), "Pld", "vector");
form mpt (uh.get_space(), Xh, "mass");
form inv_m (Xh, Xh, "inv_mass");
field c1 = norm2(inv_m*(mpt*uh));
space Th (uh.get_geo(), "P1d", "temnsor");
form two_D (uh.get_space(), Th, "2D");
form inv_mt (Th, Th, "inv_mass");
field two_Duh = inv_mt*x(two_D*uh);
field c2 = norm2(two_Duh);
return sqrt(Rexcl + c2);

<< endl;


file://localhost/usr/share/doc/rheolef-doc/examples/navier_stokes_cavity.cc
file://localhost/usr/share/doc/rheolef-doc/examples/navier_stokes_criterion.icc

88 Rheolef version 6.0 update 1 April 2012

Comments

The code performs a computation by using adaptive mesh refinement, in order to capture recir-
culation zones. The adapt_option_type declaration is used by rheolef to send options to the
mesh generator. The code reuse the file ‘cavity.icc’ introduced page 55. This file contains two
functions that defines boundary conditions associated to the cavity driven problem.

The criteria function computes the adaptive mesh refinement criteria:

cn = (Relun[* + 2| D(uy)[*)'/?

The criteria function is similar to those presented in the ‘embankment-adapt-2d.cc’ example.
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Figure 7.5: Meshes and stream functions associated to the solution of the Navier-Stokes equations
for Re = 1000.

The mesh loop adaptation is initiated from a bamg mesh (see also appendix B.1).

bamg -g square.bamgcad -o square.bamg
bamg2geo square.bamg square.dmn > square.geo

Then, compile and run the Navier-Stokes solver for the driven cavity for Re = 100:

make navier_stokes_cavity
./navier_stokes_cavity square.geo 100

The program performs a computation with Re = 100. By default the time step is At = 0.05
and the computation loops for five mesh adaptations. At each time step, the program prints an
approximation of the time derivative, and stops when a stationary solution is reached. Then, we
visualise the ‘square-5’ adapted mesh and its associated solution:

geo square-5.geo
field square-5.field.gz -velocity -scale 4 -mayavi

Notice the -scale option that applies a multiplicative factor to the arrow length when plotting.
The representation of the stream function writes:

make streamf_cavity
zcat square-5.field.gz | ./streamf_cavity | field -bw -n-iso-negative 10 -

The programs streamf_cavity, already introduced page 60, is here reused. The last options of
the field program draws isocontours of the stream function using lines, as shown on Fig. 7.4.
The zero isovalue separates the main flow from recirculations, located in corners at the bottom of
the cavity.

For Re = 400 and 1000 the computation writes:
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./navier_stokes_cavity square.geo 400
./navier_stokes_cavity square.geo 1000

1 T
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Figure 7.6: Navier-Stokes: velocity profiles along lines passing throught the center of the cavity,
compared with data from [26]: (a) uo along the vertical line; (b) u; along the horizontal line line.

The visualization of the cut of the horizontal velocity along the vertical median line writes:

field square-5.field.gz -comp O -cut -normal -1 O -origin 0.5 0
field square-5.field.gz -comp 1 -cut -normal O 1 -origin O 0.5

Fig. 7.6 compare the cuts with data from [26], table 1 and 2 (see also [27]). Observe that the
solution is in good agreement with these previous computations.

Re Le Ye ~%min Ymax

100 present 0.613 0.738 0.103 9.5 x 1076
Labeur and Wells [28]  0.608 0.737 0.104 -
Donea and Huerta [29] 0.62  0.74  0.103 -

400 present 0.554 0.607 0.111 5.6 x 1072
Labeur and Wells [28]  0.557 0.611 0.115 -
Donea and Huerta [29] 0.568 0.606 0.110 -

1000 present 0.532 0.569 0.117 1.6 x 1073
Labeur and Wells [28]  0.524 0.560 0.121 -
Donea and Huerta [29] 0.540 0.573 0.110 -

Figure 7.7: Cavity flow: primary vortex position and stream function value.

Finaly, table 7.7 compares the primary vortex position and its associated stream function value.
Notice also the good agreement with previous simulations. The stream function extremal values
are obtained by:
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zcat square-5.field.gz | ./streamf_cavity | field -min -
zcat square-5.field.gz | ./streamf_cavity | field -max -

The maximal value has not yet been communicated to our knoledge and is provided in table 7.7
for cross validation purpose. The small program that computes the primary vortex position is
showed below.

make vortex_position
zcat square-5.field.gz | ./streamf_cavity | ./vortex_position

File ‘vortex_position.cc’

#include "rheolef.h"
using namespace rheolef;
using namespace std;
int main (int argc, charx**x argv) {
environment rheolef (argc, argv);
check_macro (communicator ().size() == 1, "please, use sequentially");
field psi_h;
din >> psi_h;
size_t idof_min = O;
Float psi_min = std::numeric_limits<Float>::max();
for (size_t idof = 0, ndof = psi_h.ndof(); idof < ndof; idof++) {
if (psi_h.dof(idof) >= psi_min) continue;
psi_min = psi_h.dof (idof);
idof_min = idof;
}
const array<point>& xdof = psi_h.get_space().get_xdofs();
point xmin = xdof [idof_min];
dout << "xc\t\tyc\t\tpsi" << endl
<< xmin [0] << "\t" << zmin[1] << "\t" << psi_min << endl;
}

For higher Reynolds number, Shen [30] showed in 1991 that the flow converges to a stationary state
for Reynolds numbers up to 10000; for Reynolds numbers larger than a critical value 10000 <
Re; < 10500 and less than another critical value 15000 < Res < 16 000, these authors founded
that the flow becomes periodic in time which indicates a Hopf bifurcation; the flow loses time
periodicity for Re > Res. In 1998, Ould Salihi [31] founded a loss of stationarity between 10 000
and 20000. In 2002, Auteri et al. [32] estimated the critical value for the apparition of the first
instability to Re; = 8018. In 2005, Erturk et al. [33] computed steady driven cavity solutions up
to Re < 21000. Also in 2005, this result was infirmed by [34]: these authors estimated Re; close
to 8000, in agreement with [32]. The 3D driven cavity has been investigated in [35] by the method
of characteristic (see also [36] for 3D driven cavity computations). In conclusion, the exploration
of the driven cavity at large Reynolds number is a fundamental challenge in computational fluid
dynamics.
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Chapter 8

The highly nonlinear p-laplacian
problem

8.1 Problem statement

Let us consider the classical p-laplacian problem with homogeneous Dirichlet boundary conditions
in a domain bounded Q C RY, d = 1,2, 3:

(P): find u, defined in Q0 such that:

—div (|[Vu[f7?Vu) = finQ
u = 0on o0

where f is known and f = 1 in the computational examples. When p = 2, this problem reduces

to the linear Poisson problem with homogeneous Dichlet boundary conditions. Otherwise, for any
p > 1, the nonlinear problem is equivalent to the following minimisation problem:

(MP): find u € Wy (Q) such that:

1
u = argmin 7/|Vv|pdmf/f’udx,
q;EWol’p(Q) pJa JQ

where W, (Q) denotes the usual Sobolev spaces of functions in W'?(Q) that vanishes on the
boundary [37, p. 118]. The variational formulation of this problem expresses:
(VF): find u € WP (Q) such that:

a(u; u,v) = m(f,v), Yo € Wy P(Q)

where af(.,.) and m(.,.) are defined for any wug,u,v € W1P(Q) by

alvoiwn) = /WUO\”*QVU-Vvdx, Yu,v € WyP(Q)
Q

m(u,v) = /uvdz, Vu,v € L*()
Q

The m(.,.) is here the classical scalar product on L?(f2), and is related to the mass form. The
quantity a(u;u,u) = ||Vu|p o induces a norm in WP, equivalent to the standard norm. The
form a(.;.,.) is bilinear with respect to the two last variable and is related to the energy form.

95
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8.2 The fixed-point algorithm

8.2.1 Principe of the algorithm

This nonlinear problem is then reduced to a sequence of linear subproblems by using the fixed-point

algorithm. The sequence (u(”))n>0 is defined by recurrence as:

e n=0: let u® € W, P(€) be known.

e n > 0: suppose that u(™ € WP (Q) is known and find «**1) € W;?(Q) such that:

a (u(");u(”+1),v> =m(f,v), Yv e WyP(Q)

Let u(»*) = G (u(”)) denotes the operator that solve the previous linear subproblem for a given
u(™. Since the solution u satisfies u = G(u), it is a fixed-point of G.
Let us introduce a mesh 7T, of © and the finite dimensional space X}, of continuous picewise poly-

nomial functions and V},, the subspace of X}, containing elements that vanishes on the boundary
of €:

X, = {Uh EC(()) (ﬁ), Vh/K € Py, VKGIEL}
Vi, = {vn € Xp; vy, =0 on 00}

where £ = 1 or 2. The approximate problem expresses: suppose that ugln) € V}, is known and find

ugnﬂ) € V}, such that:

a (ugln);ugln+1),vh) = ’[’)’]l(.f7 Uh)7 V/Uh c Vh

By developping u;, on a basis of V},, this problem reduces to a linear system. The implementation
with Rheolef, involving weighted forms, is quite standard: the weight field wh is inserted as
the last argument to the form constructor. The following code implement this problem in the
Rheolefenvironment.
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8.2.2 File ‘p_laplacian _fixed point.h’

#include "not_too_small.h"
int p_laplacian_fixed_point (
Float p, field 1h,
field& uh, Float& r, size_t& n)

Float tol = r;

Float r0 = 0;

size_t max_iter = n;

const geo& omega = uh.get_geo();
const space& Xh = uh.get_space();

string grad_approx = "P" + itos(Xh.degree()-1) + "d";
space Th (omega, grad_approx, "vector'");
form inv_mt (Th, Th, "inv_mass");

form grad (Xh, Th, "grad");

derr << "# Fixed-point algorithm" << endl
<< "# p = " << p << endl
<< "# n r v" << endl;

n = 0;

do {

field grad_uh = inv_mt*(grad*uh);

field nh = norm2(grad_uh);

if (p/2 -1 <= 0) nh = compose (not_too_small(le-10), nh);
field wh = pow(nh, p/2-1);
form a (Xh, Xh, "grad_grad", wh);
field mrh = a*uh - 1h;
r = mrh.u().max_abs();
if (n == 0) r0 = r;
Float v. = (n == 0) ? 0 : 1logl0(r0/r)/n;
derr << n << " " K< r << " " <K< vy << endl;
if (r <= tol || n++ >= max_iter) break;
solver sa(a.uu());
uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
} while (true);
return (r <= tol) 7 0 : 1;
}
8.2.3 File ‘p_laplacian _fixed point.cc’
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "p_laplacian_fixed_point.icc"
#include "dirichlet.icc"
int main(int argc, char*xargv) {
environment rheolef (argc,argv);
geo omega (argv([1]);
string approx = (argec > 2) ? argv[2] : "P1";
Float p = (argc > 3) 7 atof(argv[3]) : 1.5;
Float tol = (argc > 4) 7?7 atof(argv([4]) : 1le-10;
size_t max_iter = 500;
derr << "# P-Laplacian problem by fixed-point:" << endl
<< "# geo = " << omega.name() << endl
<< "# approx = " << approx << endl
<< "# p = " << p << endl;

space Xh (omega, approx);
Xh.block ("boundary");
field uh (Xh);
uh ["boundary"] = 0;
field 1h = riesz (Xh, 1);
dirichlet (1h, uh);
int status = p_laplacian_fixed_point (p, lh, uh, tol,
dout << catchmark("p") << p << endl
<< catchmark ("u") << uh;
return status;

}

max_iter);
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8.2.4 File ‘dirichlet.icc’

void dirichlet (field 1h, field& uh) {
const space& Xh = uh.get_space();
form a (Xh, Xh, "grad_grad");
solver sa(a.uu());

uh.set_u() = sa.solve (lh.u() - a.ub(O*uh.b());

8.2.5 Comments

The fixed-point algorithm is amorced with u(?) as the solution of the linear problem associated to

p = 2, i.e. the standard Poisson problem with Dirichlet boundary conditions. The construction of

the weighted form a(.;.,.) writes:

field eta_h = pow(sqr(grad_uh[0]) + sqr(grad_uh[1]),
form a (Vh, Vh, "grad_grad", eta_h);

8.2.6 Running the program

p/2.-1);

We assume that the previous code is contained in the file ‘p_laplacian_fixed_point.cc’. Compile

the program, as usual:

make p_laplacian_fixed_point

and enter the comands:

mkgeo_grid -t 10 > square.geo
geo square.geo

The triangular mesh has a boundary domain named boundary.

./p_laplacian_fixed_point square.geo P1 1.2 > square.field

The previous command solves the problem for the corresponding mesh and writes the solution in

the file format ‘.field’.
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Figure 8.1: The p-laplacian for d = 2: (a) elevation view for p = 1.2;
bissectice g — x1 = 0.
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Run the field visualization:

field square.field -elevation
field square.field -cut -origin 0.5 0.5 -normal 1 1

The first command shows an elevation view of the solution (see 8.1.a) while the second one shows
a cut along the first bissectrice o = x;1. (see 8.1.b).

8.2.7 Convergence properties of the fixed-point algorithm
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Figure 8.2: The fixed-point algorithm on the p-laplacian for d = 2: (a) convergence when p < 2;
(b) when p > 2; (c¢) convergence rate versus p; (d) convergence rate versus p in semi-log scale.

The fixed-point algorithm prints also at each iteration n, the residual term 7, in discrete H~1(Q)
and the convergence rate v, = log10(r,,/ro)/n. The residual term is defined by

A = A () = 215

where Aj, and M}, are the discrete operators induced by the forms a(.;.,.) and m(.,.) on V4, and
defined for all up,v, € VA by:

Ap(up) vl = alup;un, vp)
(Mhuh)v,{ = m(up,vn)
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where the elements of Vj, are identified to elements of RY™(Va) The W~1P(Q) norm, defined for
all r € W=1P(Q) by duality:
Irlloipe= swp mrv)
vewlP(Q)
lvll1,p,0=1
By analogy, the discrete W ~=17(Q) norm, denoted as ||.||_1 1, is defined by duality for all r, € V},
by:
[rall-1n = sup  m(rp,on) = sup  |rp(x)]
VR E€VR xexdof (Vy)
lvnlly,p,0=1
where xdof(V},) denotes the set of nodes associated to the V}, degrees of freedom. Since elements
of V}, vanishes on the boundary, the xdof(V}) contains all nodes associated to the degrees of
freedoms of X}, except nodes located on the boudnary. Fig 8.2.a and 8.2.b show that the residual
term decreases exponentially versus n, since the slope of the plot in semi-log scale tends to be strait.
Thus, the convergence rate v, = log10(r,, /7¢)/n tends to a constant, denoted by ©. Fig 8.2.c shows
the dependence of ¥: r,, = rg x 107?". Observe that ¥ tends to +oc when p = 2, since the system
becomes linear and the algorithm converge in one iteration. Observe also that v tends to zero in
p =1 and p = 3. The singularity in p = 1 is not surprising, since the problem is defined only
when p > 1. Conversely, the singularity in p = 3 is not clear and requires more analysis. Fig 8.2.d
shows the same plot in semi-log scale and shows that o behaves as: ¥ &~ 2 X logyo(|p — 2|). Finally,
this study shows that the residual term behaves as:

T R 2|p—2|rgl07"

8.3 The Newton algorithm

8.3.1 Principe of the algorithm

An alternative to the fixed-point algorithm is to solve the nonlinear problem (P) by using the
Newton algorithm. Let us consider the following operator:

F o WyP(Q) — wWir(Q)
u — F(u) = —div (|Vu[P?Vu) - f

The F operator computes simply the residual term and the problem expresses now as: find u €
WyP(Q) such that F(u) = 0.
The Newton algorithm reduces the nonlinear problem into a sequence of linear subproblems: the

sequence (u(”))n> o Is classically defined by recurrence as:

o n=0: let ul® € Wy*(€2) be known.
e n > 0: suppose that u(™ is known, find éu(™, defined in €, such that:

F' (u(”)) oul™ = —F (u(”))

and then compute explicitely:
wtD = () 4 5y ()

The notation F'(u) stands for the Fréchet derivative of F, as an operator from W~1?(Q) into
WyP(Q). For any r € W~12(Q), the linear tangent problem writes:
find du € W, P(Q) such that:

F'(u) du = —r
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After the computation of the Fréchet derivative, we obtain the strong form of this problem:
(LT): find du, defined in , such that

—div (|VulP 2V (6u) + (p — 2)|VuP* {Vu.V(6u)} Vu) = —r inQ
dou = 0 on 0N

This is a Poisson-like problem with homogeneous Dirichlet boundary conditions and a non-constant
tensorial coefficient. The variational form of the linear tangent problem writes:
(VLT): find 6u € WyP(€) such that

a1 (u; 6u, §v) = m(r,v), Yov € W, P(Q)

where the a1 (.;.,.) is defined for any u, du, dv € Wol’p(Q) by:
a1 (u; 61, 60) = / (VP 2V (50).9 (60) + (p — 2)| VP4 { V.V ($u)} { V.V (50)}) da
Q

For any &€ € R? let us denote by 7(€&) the following d x d matrix:

nE) =EPPI+(p-2)EP "t Exe

where I stands for the d-order identity matrix. Then the a; expresses in a more compact form:

aq (u; du, 6v) :/Q(n(Vu)V((Su)).V((SU) dz

Clearly a; is linear and symmetric with respect to the two last variables.

8.3.2 File ‘p_laplacian newton.cc’

#include "rheolef.h"

#include "rheolef/newton.h"

using namespace rheolef;

using namespace std;

#include "p_laplacian.h"

int main(int argc, charxxargv) {
environment rheolef (argc, argv);
geo omega_h (argv[1]);

string approx = (argc > 2) 7 argv[2] : "P1";
Float p = (argc > 3) 7 atof(argv[3]) : 1.5;
derr << "# P-Laplacian problem by Newton:" << endl

<< "# geo = " << omega_h.name() << endl

<< "# approx = " << approx << endl

<< "# p = " << p << endl;

p_laplacian F (p, omega_h, approx);
field uh = F.initial ();

Float tol = le6*numeric_limits<Float>::epsilon();
size_t max_iter = 500;
int status = newton (F, uh, tol, max_iter, &derr);

dout << setprecision(numeric_limits<Float>::digits10)
<< catchmark("p") << p << endl
<< catchmark ("u") << uh;

return status;
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8.3.3 File ‘p_laplacian.h’

1 [ class p_laplacian {

2 | public:

3 typedef field value_type;

4 typedef Float float_type;

5 p_laplacian(Float p, const geo& omega_h, string approx = "P1");
6 void reset(const geo& omega_h, string approx = "previous");
7 field initial () const;

8 field residue (const field& uh) const;

9 void update_derivative (const field& uh) const;

10 field derivative_solve (const field& mrh) const;

11 field derivative_trans_mult (const field& mrh) const;

12 Float norm (const field& uh) const;

13 Float dual_norm (const field& Muh) const;

14 Float dot (const field& uh, const field& vh) const;

15 Float dual_dot (const field& Muh, const field& Mvh) const;
16 field criteria(const field& uh) const;

17 Float p;

18 space Xh, Kh;

19 field f£fh;

20 form m, inv_mt, grad;

21 solver sm;

22 mutable form al;

23 mutable solver sal;

24 | };

25 |#include "p_laplacianl.icc"

26 |#include "p_laplacian2.icc"
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8.3.4 File ‘p_laplacian.icc’

#include "dirichlet.icc"
#include "not_too_small.h"
p_laplacian::p_laplacian(Float pl, const geo& omega_h, string approxi)
p(pl), Xh(), Kh(), fh(),
m(), inv_mt (), grad(), sm(), al(), sal() {
reset (omega_h, approxl);

void p_laplacian::reset(const geo& omega_hl, string approxl) {
if (approxl == '"previous") approxl = Xh.get_approx();
Xh = space(omega_hl, approxl);
Xh.block ("boundary");
fh = field(Xh, 1);
m = form (Xh, Xh, "mass");

sm = solver(m.uu());

string grad_approx = "P" + itos(Xh.degree()-1) + "d";
space Th (fh.get_geo(), grad_approx, "vector");
inv_mt = form (Th, Th, "inv_mass");

grad = form (Xh, Th, "grad");
Kh = space(fh.get_geo(), grad_approx, "tensor'");
}
field p_laplacian::initial () const {
field uh(Xh);
uh [Xh.get_geo () ["boundary"]] = 0;
dirichlet (fh, uh);
return uh;
}
void p_laplacian::update_derivative (const field& uh) const {
field grad_uh = inv_mt*(grad*uh);
field norm2_grad_uh = norm2(grad_uh);
if (p/2 - 4 <= 0) norm2_grad_uh = compose (not_too_small(le-10), norm2_gr
field wOh = pow(norm2_grad_uh, p/2)/norm2_grad_uh;
field wih = pow(norm2_grad_uh, p/2)/sqr(norm2_grad_uh);
field eta_h (Kh);
eta_h(0,0) = wOh + (p-2)*wlh*sqr(grad_uh[0]);

size_t d = uh.get_geo().dimension();
if (d >= 2) {
eta_h(1,1) wOh + (p-2)*wlhx*sqr(grad_uh[1]);

eta_h(0,1) (p-2)*wih*grad_uh [0]*grad_uh[1];

¥
if (d == 3) {

eta_h(2,2) = wOh + (p-2)*wlhx*sqr(grad_uh[2]);
eta_h(1,2) = (p-2)*wih*grad_uh[1]*grad_uh [2];
eta_h(0,2) = (p-2)*wihxgrad_uh [0]*grad_uh[2];

}

al = form (Xh, Xh, "grad_grad", eta_h);

sal = solver(al.uu());

}
field p_laplacian::residue (const field& uh) const {
field grad_uh = inv_mt*(gradx*uh);
field norm2_grad_uh = norm2(grad_uh);
field wOh = pow(norm2_grad_uh, p/2-1);
form a (Xh, Xh, "grad_grad", wOh);
field mrh = a*uh - m*fh;
mrh.set_b () = 0;
return mrh;
}
field p_laplacian::derivative_solve (const field& mrh) const {
field delta_uh (Xh,0);
delta_uh.set_b() = 0;
delta_uh.set_u() = sal.solve(mrh.u());
return delta_uh;

ad_uh) ;
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field p_laplacian::derivative_trans_mult (const field& mrh) const {
field rh (Xh);
rh.set_b () ;
rh.set_u()
field mgh;
mgh = al*rh;
mgh.set_b() = 0;
return mgh;

0 )
sm.solve(mrh.u());

}
Float p_laplacian::dot (const field& uh, const field& vh) const {
return m(uh,vh);

Float p_laplacian::norm (const field& uh) const {
return sqrt(m(uh,uh));
}

Float p_laplacian::dual_dot (const field& mrh, const field& msh) const {
field sh (Xh);
sh.set_b() = 0;
sh.set_u() = sm.solve(msh.u());
return ::dot(mrh,sh);
}
Float p_laplacian::dual_norm (const field& mrh) const {
return sqrt(dual_dot (mrh,mrh));

field p_laplacian::criteria(const field& uh) const {
if (uh.get_approx() == "P1") return abs(uh);
field grad_uh = inv_mt*(gradx*uh);
field norm2_grad_uh = norm2(grad_uh);
return pow(norm2_grad_uh, p/4);

}

8.3.5 Comments

The code implements a generic Newton algorithm in the file ‘newton.h’. The main program
is ‘p_laplacian newton.cc’, that uses a class p_laplacian. This class interface is definied in
the file ‘p_laplacian.h’ and its implementation in ‘p_laplacian.icc’ The residual term F'(uy) is
computed by the member function residual while the resolution of F'(up,)déup = Mry, is performed
by the function derivative_solve. The derivative F’(up) is computed separately by the function
update_derivative. Notice that the aj(u;.,.) bilinear form is a tensorial weighted form, where
n(Vu) is the weight tensor. In Rheolef, the tensorial weight field eta h is inserted as an usual
scalar weight, by passing the weight parameter as the last argument to the form constructor. The
introduction of the class ‘p_laplacian’ allows an easiest implementation of several variants of the
Newton algorithm.
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8.3.6 Running the program
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Figure 8.3: The Newton algorithm on the p-laplacian for d = 2: (a) convergence when p < 2; (b)
when p > 2.

We assume that the previous code is contained in the file ‘p-laplacian-newton.cc’. As usual,
enter:

make p_laplacian_newton
mkgeo_grid -t 10 > square.geo
./p_laplacian_newton square.geo P1 1.5 | field -mayavi -elevation -

The program prints at each iteration n, the residual term r, in discrete L?(Q) norm. Fig. 8.3.a
and. 8.3.b shows that the residual terms tends very fast to zero. Observe that the slope is no more
constant in semi-log scale: the convergence rate accelerates and the slope tends to be vertical, the
so-called super-linear convergence. This is the major advantage of the Newton method. Also the
algorithm converge when p > 3, until p &= 4. It was not the case with the fixed point algorithm that
diverges in that case. Finally, the Newton algorithm diverges for small values of p, e.g. p < 1.5
and the plot is not showed here. Conversely, when p > 4, the first iterations increases dramatically
the residual terms, before to decrease. In that case, another strategy should be considered: the
damped Newton algorithm. This is the subject of the next section.

8.4 The damped Newton algorithm

8.4.1 Principe of the algorithm

The Newton algorithm diverges when the initial u(?) is too far from a solution. Our aim is to
modify the Newton algorithm and to obtain a globaly convergent algorith, i.e to converge to a
solution for any initial u(?). The basic idea is to decrease the step length while maintaining the
direction of the original Newton algorithm:

) =™ ), su™
where (™) €0, 1] and §u(™ is the direction from the Newton algorithm, given by:
i (um)) su™ = _F (um))
Let V' a Banach space and let T : V — R defined for any v € V' by:

T(0) = S IC I},
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where C is some non-singular operator, easy to invert, used as a non-linear preconditioner. The
simplest case, without preconditioner, is C' = I. The T function furnishes a measure of the residual
term in L? norm. The convergence is global when for any initial u(?), we have for any n > 0:

T (u(n+1)) <T (u(n)) ta <T’ (u(n)) ) u(n)> (8.1)
ViV

where (., )y v is the duality product between V and its dual V’/, and « €]0, 1] is a small parameter.
Notice that

T'w) = {C7'F'(u)}*C~'F(u)

where the superscript * denotes the adjoint operator, i.e. the transpose matrix the in finite
dimensional case. In practice we consider & = 10™* and we also use a minimal step length
Amin = 1/10 in order to avoid too small steps. Let us consider a fixed step n > 0: for convenience
the n superscript is dropped in u(™ and 6u(™. Let g : R — R defined for any A € R by:

g(A\) =T (u+ \u)
Then :

g/()\) = <T/(U + )\(5u), 5u>V’,V
= (CT'F(u+ \ou), F'(u+ \ou)C ™ ou)y v

where the superscript * denotes the adjoint operator, i.e. the transpose matrix the in finite
dimensional case. The practical algorithm for obtaining A was introduced first in [38] and is also
presented in [39, p. 385]. The step length A that satify (8.1) is computed by using a finite sequence
A, k=0,1... with a second order recurrence:

e k = 0 : initialisation \g = 1. If (8.1) is satified whith u + Agd then let X := Ao and the
sequence stop here.

e k =1: first order recursion. The quantities g(0) = f(u) et ¢'(0) = (f'(u), d) are already
computed at initialisation. Also, we already have computed ¢(1) = f(u+ d) when verifiying
whether (8.1) was satified. Thus, we consider the following approximation of g(A) by a
second order polynom:

91N = {9(1) = g(0) — g'(0)}N* + ¢'(0)A + ¢(0)
After a short computation, we find that the minimum of this polynom is:
5\1 _ —g'(0)
2{g(1) — 9(0) — g’(0)}

Since the initialisation at k = 0 does not satisfy (8.1), it is possible to show that, when « is
small enougth, we have A\ < 1/2 and A\~ 1/2. Let A1 := max(Amin, A1). If (8.1) is satisfied
with u + A1 d then let A := A\ and the sequence stop here.

e k > 2 : second order recurrence. The quantities g(0) = f(u) et ¢'(0) =)f'(u), d{ are
available, ytogether with A\g_1, g(Ak—1), Ap—2 and g(Ap—2). Then, g(\) is approximed by
the following third order polynom:

Gr(\) = aX® +bA? + ¢'(0)\ + ¢(0)
where a et b are expressed by:

( a ) B 1 Ail_l _Ail_g ( i(kk—l)*g’(O)Ak—l - 9(0) )

b ) Aem1— Ak—2 _)";*2 Ak—1

Neo1 i
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The minimum of gx () is

< —b+ /b% — 3ag’(0)
Ak = 3a

Let A, = min(1/2 Ag, max(j\k/w, 5\k+1) in order for A\ to be at the same order of magnitude
as A\p—1. If (8.1) is satisfied with u + Mg d then let A := A\, and the sequence stop here.

The sequence (Ag)r>o is strictly decreasing: when the stopping criteria is not satified until A
reaches the machine precision €., then the algorithm stops with an error.

8.4.2 File ‘p_laplacian damped newton.cc’

#include "rheolef.h"
#include "rheolef/damped-newton.h"
using namespace rheolef;
using namespace std;
#include "p_laplacian.h"
int main(int argc, charxxargv) {
environment rheolef (argc,argv);
geo omega_h (argv[1]);
string approx = (argc > 2) 7 argv[2] : "P1";
Float p = (argc > 3) 7?7 atof(argv([3]) : 1.5;
derr << "# P-Laplacian problem by damped Newton:" << endl
<< "# geo = " << omega_h.name() << endl
<< "# approx = " << approx << endl
<< "# p = " << p << endl;
p_laplacian F (p, omega_h, approx);
field uh = F.initial ();
Float tol = numeric_limits<Float>::epsilon();
size_t max_iter = 500;
int status = damped_newton (F, uh, tol, max_iter, &derr);
dout << catchmark("p") << p << endl
<< catchmark ("u") << uh;
return status;

8.4.3 Comments

The file damped-newton-generic.h implements the damped Newton algorithm for a generic T'(u)
function, i.e. a generic nonlinear preconditioner. This algorithms use a backtrack strategy imple-
mented in file ‘newton-backtrack.h’. The simplest choice of the identity preconditioner C' = I
ie. T(u) = ||F(u)||?%, /2 is showed in file damped-newton.h. The gradient at A = 0 is

T (u) = F'(u)*F(u)
and the slope at A = 0 is:

g'(0) = (T'(u), su)yry
<F(u)7 F,(U)6U>V/,V/
= —|FWI

The ‘p_-laplacian_damped newton.cc’ is the application program to the p-Laplacian problem
together with the ||.||12(q) discrete norm for the function T'.



file://localhost/usr/share/doc/rheolef-doc/examples/p_laplacian_damped_newton.cc

108 Rheolef version 6.0 update 1 April 2012

8.4.4 Running the program
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Figure 8.4: The damped Newton algorithm on the p-laplacian for d = 2: (a) convergence when
p < 2; (b) when p > 2.

We assume that the previous code is contained in the file ‘p_laplacian_damped newton.cc’. As
usual, enter:

make p_laplacian_damped_newton
mkgeo_grid -t 10 > square.geo
./p_laplacian_damped_newton square.geo P1 1.5 | field -
./p_laplacian_damped_newton square.geo P1 5.0 | field -

The algorithm is now quite robust: the convergence occurs for a large range of p > 1 values. and
has been pushed until p = 100. The only limitation is due to machine roundoff when p = 1.1: the
residual term reaches only 10719 instead of 10715,
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8.4.5 Robustness and mesh invariance
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Figure 8.5: Convergence versus n for various meshes: (a) Newton algorithm when p = 1.7 and (b)
p = 1.6; (c) Newton algorithm when p = 1.5; (d) damped-Newton algorithm when p = 1.5.

Fig. 8.5.a, 8.5.b and. 8.5.c show the convergence of the Newton method when p = 1.7, 1.6 and
1.5, respectively. Observe that the convergence is asymptotically invariant of the mesh when the
element size decreases. The convergence is more difficult when p decreases to 1.5 and the Newton
algorithm is no more mesh invariant. Fig. 8.5.d shows the convergence of the damped Newton
method when p = 1.5 : the convergence is now very fast and also mesh-invariant.
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Chapter 9

Error analysis for P, isoparametric
elements

9.1 Error analysis

Principle

Let us go back to the non-homogeneous Dirichlet problem, as presented in section2.1, page 24.

Since the solution w is regular, the following error estimates holds:

lu—unloze =~ O
[u—unllosoe =~ O
Ju—unl120 ~ O

providing the approximate solution uj uses Py continuous finite element method, £ > 1. Here,
l-llo.2.25 [I-lo.00.0 and ||.||1.2.00 denotes as usual the L2(£2), L>°(Q) and H!(£2) norms.

By denoting 7, the Lagrange interpolation operator, the triangular inequality leads to:

lu —unlloz.a < II(I —7mm)(wWlloz2.0 + lun — mrullo2.0

From the fundamental properties of the Laplace interpolation 7, and since u is smooth enought,
we have ||(I —73)(u)|lo,2.0 &~ O(R**1). Thus, we have just to check the ||uj, — mhul.2.0 term. The
following code implement the computation of the error.

111
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File ‘cosinusprod_error.cc’

#include "rheolef.h"

using namespace rheolef;

using namespace std;

#include "cosinusprod.icc"

int main(int argc, charxxargv) {
environment rheolef (argc, argv);
Float error_linf_expected = (argc > 1) 7 atof(argv[1]) : 1e+38;
field uh; din >> uh;
space Xh = uh.get_space();
size_t d = Xh.get_geo().dimension();
field pi_h_u = interpolate(Xh, u(d));
field eh = uh - pi_h_u;
form m(Xh, Xh, "mass");
form a(Xh, Xh, "grad_grad");

dout << "error_12 " << sqrt(m(eh,eh)) << endl

<< "error_linf " << eh.max_abs () << endl

<< "error_hi " << sqrt(a(eh,eh)) << endl;
return (eh.max_abs() <= error_linf_expected) 7 0 : 1;

File ‘cosinusprod.icc’

struct u : std::unary_function<point,Float> {
Float operator() (const point& x) const {
return cos(pi*x[0])*cos(pi*x[1])*cos(pi*x[2]); 2}
u(size_t d1) : d(d1), pi(acos(Float(-1.0))) {}
size_t d; Float pi;
3

Running the program

make dirichlet-nh cosinusprod_error

After compilation, run the code by using the command:

mkgeo_grid -t 10 > square.geo
./dirichlet-nh square.geo P1 | ./cosinusprod_error

The three L?, L> and H'! errors are printed for a h = 1/10 uniform mesh. Note that an unstruc-
tured quasi-uniform mesh can be simply generated by using the mkgeo_ugrid command:

mkgeo_ugrid -t 10 > square.geo
geo square.geo

Let ne denotes the number of elements in the mesh. Since the mesh is quasi-uniform, we have
1

h ~ ng where d is the physical space dimension. Here d = 2 for our bidimensionnal mesh.
1

Figure 9.1 plots in logarithmic scale the error versus nJ for both P approximations, k¥ = 1,2,3

and the various norms. Observe that the error behaves as predicted by the theory.
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Figure 9.1: Strait geometry: error analysis in L?, L> and H' norms.
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Curved domains

File ‘cosinusrad_laplace.icc’

struct f : unary_function<point,Float> {
Float operator() (const point& x) const {
Float r = sqrt(sqr(x[0])+sqr(x[1])+sqr(x[2]1));
Float sin_over_ar = (r == 0) ? 1 : sin(a*r)/(ax*r);
return sqr(a)*((d-1)*sin_over_ar + cos(a*r)); }
f(size_t d1) : d(dl1), a(acos(Float(-1.0))) {}
size_t d; Float a;
3
struct g : std::unary_function<point,Float> {
Float operator () (const point& x) const {
return cos(a*sqrt(sqr(x[0])+sqr(x[1]1)+sqr(x[21))); }
g(size_t=0) : a(acos(Float(-1.0))) {}
Float aj;
3

File ‘cosinusrad.icc’

struct u : std::unary_function<point,Float> {
Float operator() (const point& x) const {
Float r = sqrt(sqr(x[0])+sqr(x[1])+sqr(x[2]));
return cos (a*r);
u(size_t=0) : a(acos(Float(-1.0))) {}
Float a;
3
sed -e ’s/sinusprod/sinusrad/’ < dirichlet-nh.cc > dirichlet_nh_ball.cc

sed -e ’s/sinusprod/sinusrad/’ < cosinusprod_error.cc > cosinusrad_error.cc
make dirichlet_nh_ball cosinusrad_error

mkgeo_ball -order 1 -t 10 > circle-Pl.geo

geo circle-P1

./dirichlet_nh_ball circle-Pl.geo P1 | ./cosinusrad_error

mkgeo_ball -order 3 -t 10 > circle-P3.geo

geo circle-P3

./dirichlet_nh_ball circle-P3.geo P3 | ./cosinusrad_error

Observe Fig. 9.2: for meshes based on triangles: the error behave as expected when k = 1,2, 3,4.

A similar result occurs for quadrangles, as shown on Fig. 9.3.

mkgeo_ball -order 3 -q 10 > circle-q-P3.geo
geo circle-q-P3
./dirichlet_nh_ball circle-q-P3.geo P3 | ./cosinusrad_error

These features are curently in development for arbitrarily Py high order approximations and three-
dimensional geometries.
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Appendix A

How to write a variational
formulation ?

The major keypoint for using Rheolef is to put the problem in variational form. Then this
variational form can be efficiently translated into C++ language. This appendix is dedicated to
readers who are not fluent with variational formulations and some related functionnal analysis
tools.

A.1 The Green formula

Let us come back to the model problem presented in section 1.1, page 13, equations (1.1)-(1.2)
and details how this problem is transformed into (1.3).

Let H{(£2) the space of functions whose gradient square has a finite sum over 2 and that vanishes
on OS2
H(Q) = {v e L*Q); Vve L*(Q)? and v =0 on 9Q}

We start by multiplying (1.1) by an arbitrarily test-function v € Hg(£2) and then integrate over ) :

f/Auvdx:/fvdx, Yo € HY(Q)
Q Q

The next step is to invoque an integration by part, the so-called Green formula:

/Auvdz+/Vu.Vvdx= %vds, Yu,v € HY(Q)
Q Q o On

Since our test-function v vanishes on the boundary, the integral over 92 is zero and the problem
becomes:

VuVvdr = [ fodz, Yo € Hj(Q)
Q Q

This is exactly the variational formulation (1.3), page 13.

A.2 The vectorial Green formula

In this section, we come back to the linear elasticity problem presented in section 5.1, page 43,
equations (5.1)-(5.2) and details how this problem is transformed into (5.3).

Let T'y (resp. I';)) denotes the parts of the boundary 9 related to the homogeneous Dirichlet
boundary condition u = 0 (resp. the homogeneous Neumann boundary condition o(u)n = 0).
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We suppose that 9Q =Ty NT,,. Let us introduce the following functional space:
V={ve H'(O)% v=0o0nTy}

Then, multiplying the first equation of (5.2) by an arbitrarily test-function v € V and then
integrate over (Q :

—/div(a(u)).vdx:/f.vdx, YvevVv
Q Q

The next step is to invoque an integration by part:

/diVT.vdx—i—/T:D(v)dx:/ 7:(ven)ds, Vre Q)™ vweV
Q Q o0

Recall that div 7 denotes (Z;l;é Bij) , i.e. the vector whose component are the diver-
0<i<d
d—1

gence of each row of 7. Also, ¢ : 7 denote the double contracted product Zi,g_':O 0;,4Ti,; for any
tensors ¢ and 7, and that u ® v dotes the 7, ; = u; v; tensor, vectors u and v. Remark that

T:(u®v)= (TV).UZZZ

-1 : . . .
=0 Ti,j 4; vj. Choosing 7 = o(u) in the previous equation leads to:

/Qo(u):D(v)dx:/BQ(a(u)n).vds—k/ﬂf.vd% VeV

Since our test-function v vanishes on I'y and the solution satisfie the homogeneous Neumann
boundary condition o(u)n = 0 on I, the integral over 02 is zero and the problem becomes:

/Qa(u):D(v) dx:/f.vdx, VeV

Q

From the definition of o(u) in (5.1) page 43 we have:

o(u): D(v) = Adiv(u)({: D(v))+2uD(u) : D(v)
= Adiv(u)div(v) 4+ 2uD(u) : D(v)

and the previous relation becomes:

/Q)\div(u) div(v) dz +/Q2,uD(u) :D(v)dx = /Qf.v dz, YWweV

This is exactly the variational formulation (5.3), page 44.

A.3 The Green formula on a surface

TODO



Appendix B

How to prepare a mesh 7

Since there is many good mesh generators, Rheolefdoes not provide a built-in mesh generator.
There are several ways to prepare a mesh for Rheolef.

We present here several procedures: by using the bamg bidimensional anisotropic mesh generator,
written by Fréderic Hecht [8], and the gmsh mesh generator, suitable when d = 1,2 and 3, and
written by Christophe Geuzaine and Jean-Franois Remacle [40].

B.1 Bidimensionnal mesh with bamg

We first create a ‘square.bamgcad’ file:

MeshVersionFormatted

0
Dimension
2
Vertices
4
0 O 1
1 0 2
11 3
0 1 4
Edges
4
1 2 101
2 3 102
3 4 103
4 1 104
hVertices

0.10.10.10.1

This is an uniform mesh with element size h = 0.1. We refer to the bamg documentation [8] for
the complete file format description. Next, enter the mesh generator commands:

bamg -g square.bamgcad -o square.bamg

Then, create the file ‘square.dmn’ that associate names to the four boundary domains of the mesh.
Here, there is four boundary domains:
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EdgeDomainNames
4
bottom
right
top
left

and enter the translation command:

bamg2geo square.bamg square.dmn > square.geo

This command creates a ‘square.geo’ file. Look at the mesh via the command:

geo square
This presents the mesh it in a graphical form, usually with gnuplot. You can switch to the mayavi
renders:

geo square -mayavi

A finer mesh could be generated by:

bamg -coef 0.5 -g square.bamgcad -o square-0.5.bamg

B.2 Unidimensionnal mesh with gmsh
The simplest unidimensional mesh is a line:

h_local = 0.1;

Point(1) = {0, 0, 0, h_local};
Point(2) = {1, 0, 0, h_local};
Line(3) = {1,2};

Physical Point("left") {1};
Physical Point("right") = {2};
Physical Point("boundary") = {1,2};
Physical Line("interior") = {3};

The mesh generation command writes:

gmsh -1 line.mshcad -format msh -o line.msh

Then, the conversion to ‘.geo’ format and the visualization:

msh2geo < line.msh | geo -upgrade - > line.geo
geo line
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B.3 Bidimensionnal mesh with gmsh
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Figure B.1: Visualization of the gmsh meshes ‘square.geo’ and ‘cube.geo’.

We first create a ‘square.mshcad’ file:

n = 10.0;

hloc = 1.0/n;

Point (1) = {0, 0, 0, hloc};
Point (2) {1, 0, 0, hloc};
Point (3) {1, 1, 0, hloc};
Point(4) = {0, 1, 0, hloc};
Line(1) = {1,2};

Line(2) = {2,3};

Line(3) = {3,4};

Line(4) = {4,1};

Line Loop(5) = {1,2,3,4};
Plane Surface(6) = {5} ;

Physical Point("left_bottom") = {1};
Physical Point("right_bottom") = {2};
Physical Point("right_top") = {3};
Physical Point("left_top") = {4};

Physical Line("boundary") = {1,2,3,4};

Physical Line("bottom") = {1};
Physical Line("right") = {2};
Physical Line("top") = {3};
Physical Line("left") = {4};

Physical Surface("interior") = {6};

This is an uniform mesh with element size h = 0.1. We refer to the gmsh documentation [40] for
the complete file format description. Next, enter the mesh generator commands:
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gmsh -2 square.mshcad -format msh -o square.msh

Then, enter the translation command:

msh2geo < square.msh | geo -upgrade - > square.geo

This command creates a ‘square.geo’ file. Look at the mesh via the command:

geo square

Remark that the domain names, defined in the .mshcad file, are included in the gmsh .msh input
file and are propagated in the .geo by the format conversion.

B.4 Tridimensionnal mesh with gmsh

First, create a ‘cube.mshcad’ file:

Mesh.Algor
Mesh.Algor
a=0; c=
b=1; d =
n = 10;

hloc = 1.0
Point (1) =
Point(2) =
Point(3) =
Point(4) =
Point(5) =
Point(6) =
Point(7) =
Point(8) =
Line(1)
Line(2)
Line(3)
Line(4)
Line(5)
Line(6)
Line(7)
Line(8)
Line(9)
Line(10)
Line(11)
Line(12) =

Line Loop(21) = {-1,-4,-3,-2};

ithm
ithm3D

/n;

{a, c,
{b, c,
{b, 4,
{a, d,
{a, c,
{b, c,
{b, 4,
{a, 4,
{1,2%};

= {2,3};

{3,4%};
{4,13};
{5,6%};
{6,7};

= {7,8};

{8,5%};
{1,5};
{2,6%};
{3,73};
{4,8%};

1;

=7; // bamg
7; // mmg3d
0; £ =0;
1; g =

hloc};
hloc};
hloc};
hloc};
hloc};
hloc};
hloc};
hloc};

Plane Surface(31) = {21} ;
Line Loop(22) = {5,6,7,8%};
Plane Surface(32) = {22} ;

Line Loop(23) = {1,10,-5,-9};

Plane Surface(33) = {23} ;

Line Loop(24) = {12,-7,-11,3};

Plane Surface(34) = {24} ;
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Line Loop(26) = {2,11,-6,-103};
Plane Surface(35) = {25} ;

Line Loop(26) = {9,-8,-12,4};

Plane Surface(36) = {26} ;

Surface Loop(41) = {31,32,33,34,35,36};
Volume(51) = {41};

Physical Surface("bottom") = {31};
Physical Surface("top") = {32};
Physical Surface("left") = {33};
Physical Surface("front") = {35};
Physical Surface("right") = {34};
Physical Surface("back") = {36};
Physical Volume("internal") = {51};

Next, enter the mesh generator commands:
gmsh -3 cube.mshcad -format msh -o cube.msh
Then, enter the translation command:
msh2geo < cube.msh | geo -upgrade - > cube.geo
This command creates a ‘cube.geo’ file. Look at the mesh via the command:

geo cube
geo cube.geo —mayavi -cut

The second command allows to see inside the mesh.
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Appendix C

GNU Free Documentation License

Version 1.1, March 2000

Copyright (© 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

*

Preamble

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary
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Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup has been
designed to thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, BTEX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML designed for human modification. Opaque formats include PostScript,
PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept com-
pensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
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If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

e Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

e List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has less than five).

e State on the Title page the name of the publisher of the Modified Version, as the publisher.
e Preserve all the copyright notices of the Document.

e Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

e Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

e Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

e Include an unaltered copy of this License.

e Preserve the section entitled “History”, and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

e Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.
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e In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

e Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

e Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

e Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties — for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled “Ac-
knowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled
“Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
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copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an “aggregate”, and this License does not apply to
the other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may
be placed on covers that surround only the Document within the aggregate. Otherwise they must
appear on covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License provided that you also include the original English version of this License.
In case of a disagreement between the translation and the original English version of this License,
the original English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License ”or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.
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*

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.1 or any later version published by the Free Software Foundation; with the
Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
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