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Introduction

Rheolef is a programming environment for finite element method computing.

This book presents in details how some simple and more complex problems from solid and fluid
mechanics can be solved, most of them in less than 20 lines of code. The concision and readability
of codes written with Rheolef is certainly a major keypoint of this environment (see Fig. 1).

form a (Xh, Xh, "grad grad");

field lh = riesz(Xh, 1);

uh ["boundary"] = 0;

solver sa (a.uu());

uh.u = sa.solve (lh.u());

dout ≪ uh;

}

field uh (Xh);

Xh.block ("boundary");

space Xh (omega, argv[2]);

geo omega (argv[1]);

environment rheolef (argc, argv);

int main (int argc, char** argv) {

a(u, v) =
∫
Ω
∇u.∇v dx

l(v) =
∫
Ω
v dx

(P ) : find uh ∈ Vh such that

a(uh, vh) = l(vh), ∀vh ∈ Vh

Vh = Xh ∩H1
0 (Ω)

Xh = {v ∈ H1(Ω); v|K ∈ Pk, ∀K ∈ Th}
Let Ω ⊂ RN , N = 1, 2, 3

Figure 1: Example of a Rheolef code for solving the Poisson problem with homogeneous boundary
conditions. The right column shows the one-to-one line correspondence between the code and the
variational formulation of the problem.

Let us quote B. Stroustrup [49], the conceptor of the c++ language:

”The time taken to write a program is at best roughly proportional to the number of
lines written, and so is the number of errors in that code. If follows that a good way
of writing correct programs is to write short programs. In other words, we need good
libraries to allow us to write correct code that performs well. This in turn means that
we need libraries to get our programs finished in a reasonable time. In many fields,
such c++ libraries exist.”

Rheolef is an attempt to provide such a library in the field of finite element methods for partial
differential equations. As a Lego game, the Rheolef bricks allow the user to solve most complex
nonlinear problems. Rheolef provides both a c++ library and a set of unix commands for shell
programming, providing data structures and algorithms [52].

• Data structures fit the variational formulation concept: fields, bilinear forms and func-
tional spaces, are c++ types for variables. They can be combined in expressions, as you write
it on the paper.

• Algorithms refer to the most up-to-date ones: preconditioned sparse matrix solvers for linear
systems, distributed memory and parallel computations, high order polynomial approxima-
tions, incompressible elasticity, Stokes and Navier-Stokes flows, characteristic method for
convection dominated heat problems, etc. Also linear and nonlinear generic algorithms such
as fixed point and damped Newton methods.

An efficient usage of Rheolef supposes a raisonable knowledge of the c++ programming language
(see e.g. [48]) and also of the classical finite element method and its variational principles.
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Getting started with simple
problems
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The first part of this book starts with the Dirichlet problem with homogeneous boundary condition:
this example is declined with details in dimension 1, 2 and 3, as a starting point to Rheolef.

Next chapters present various boundary conditions: for completeness, we treat non-homogeneous
Dirichlet, Neumann, and Robin boundary conditions for model problems. The last two examples
presents some special difficulties that appears in most problems: the first one introduce to problems
with non-constant coefficients and the second one, a ill-posed problem where the solution is defined
up to a constant.

This first part can be viewed as a pedagogic preparation for more advanced applications, such as
Stokes and elasticity, that are treated in the second part of this book. Problem with non-constant
coefficients are common as suproblems generated by various algorithms for non-linear problem.
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Chapter 1

Getting started with Rheolef

For obtaining and installing Rheolef, see the installation instructions on the Rheolef home page:

http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef/

All examples presented along the present book are available in the example/ directory of the
Rheolef distribution. This directory is given by the following unix command:

rheolef-config --exampledir

This command returns you a path, something like /usr/share/doc/rheolef-doc/examples/ and
you should make a copy of these files:

cp -a /usr/share/doc/rheolef-doc/examples/ .

cd examples

Before to run examples, please check your Rheolef installation with:

rheolef-config --check

1.1 The model problem

Let us consider the classical Poisson problem with homogeneous Dirichlet boundary conditions in
a domain bounded Ω ⊂ Rd, d = 1, 2, 3:

(P): find u, defined in Ω, such that:

−∆u = 1 in Ω (1.1)

u = 0 on ∂Ω (1.2)

where ∆ denotes the Laplace operator. The variational formulation of this problem expresses (see
appendix A.1 for details):

(VF): find u ∈ H1
0 (Ω) such that:

a(u, v) = l(v), ∀v ∈ H1
0 (Ω) (1.3)

where the bilinear form a(., .) and the linear form l(.) are defined by

a(u, v) =

∫

Ω

∇u.∇v dx, ∀u, v ∈ H1
0 (Ω)

l(v) =

∫

Ω

v dx, ∀v ∈ L2(Ω)

9

http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef/
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The bilinear form a(., .) defines a scalar product in H1
0 (Ω) and is related to the energy form. This

form is associated to the −∆ operator.

1.2 Approximation

Let us introduce a mesh Th of Ω and the finite dimensional space Xh of continuous piecewise
polynomial functions.

Xh = {v ∈ H1(Ω); v/K ∈ Pk, ∀K ∈ Th}

where k = 1 or 2. Let Vh = Xh ∩H1
0 (Ω) be the functions of Xh that vanishes on the boundary of

Ω. The approximate problem expresses:

(V F )h: find uh ∈ Vh such that:

a(uh, vh) = l(vh), ∀vh ∈ Vh

By developing uh on a basis of Vh, this problem reduces to a linear system. The following C++
code implement this problem in the Rheolef environment.

Example file 1.1: dirichlet.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char**argv) {
5 environment rheolef (argc , argv);
6 geo omega (argv [1]);
7 space Xh (omega , argv [2]);
8 Xh.block ("boundary");
9 form a (Xh, Xh, "grad_grad");

10 field lh = riesz (Xh , 1);
11 field uh (Xh);
12 uh ["boundary"] = 0;
13 solver sa (a.uu());
14 uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
15 dout << uh;
16 }

1.3 Comments

This code applies for both one, two or three dimensional meshes and for both piecewise linear or
quadratic finite element approximations. Four major classes are involved, namely: geo, space,
form and field.

Let us now comment the code, line by line.

#include "rheolef.h"

The first line includes the Rheolef header file ‘rheolef.h’.

using namespace rheolef;
using namespace std;

By default, in order to avoid possible name conflicts when using another library, all class and
function names are prefixed by rheolef::, as in rheolef::space. This feature is called the name
space. Here, since there is no possible conflict, and in order to simplify the syntax, we drop all the
rheolef:: prefixes, and do the same with the standard c++ library classes and variables, that are
also prefixed by std::.

int main(int argc , char**argv) {

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/dirichlet.cc
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The entry function of the program is always called main and accepts arguments from the unix
command line: argc is the counter of command line arguments and argv is the table of values.
The character string argv[0] is the program name and argv[i], for i = 1 to argc-1, are the
additional command line arguments.

environment rheolef (argc , argv);

These two command line parameters are immediately furnished to the distributed environment
initializer of the boost::mpi library, that is a c++ library based on the usual message passing
interface (mpi) library. Notice that this initialization is required, even when you run with only
one processor.

geo omega (argv [1]);

This command get the first unix command-line argument argv[1] as a mesh file name and store
the corresponding mesh in the variable omega.

space Xh (omega , argv [2]);

Build the finite element space Xh contains all the piecewise polynomial continuous functions. The
polynomial type is the second command-line arguments argv[2], and could be either P1, P2 or
any Pk, where k ≥ 1.

Xh.block ("boundary");

The homogeneous Dirichlet conditions are declared on the boundary.

form a (Xh , Xh , "grad_grad");

The form a(., .) is the energy form.

field lh = riesz (Xh , 1);

Here lh(.) is the Riesz representer of the constant right-hand side f = 1 of the problem.

field uh (Xh);

The field uh contains the the degrees of freedom.

uh ["boundary"] = 0;

Some degrees of freedom are prescribed as zero on the boundary.

Let (ϕi)0≤i<dim(Xh) be the basis of Xh associated to the Lagrange nodes, e.g. the vertices of
the mesh for the P1 approximation and the vertices and the middle of the edges for the P2

approximation. The approximate solution uh expresses as a linear combination of the continuous
piecewise polynomial functions (ϕi):

uh =
∑

i

uiϕi

Thus, the field uh is completely represented by its coefficients (ui). The coefficients (ui) of this
combination are grouped into to sets: some have zero values, from the boundary condition and
are related to blocked coefficients, and some others are unknown. Blocked coefficients are stored
into the uh.b array while unknown one are stored into uh.u. Thus, the restriction of the bilinear
form a(., .) to Xh ×Xh can be conveniently represented by a block-matrix structure:

a(uh, vh) =
(
vh.u vh.b

)( a.uu a.ub
a.bu a.bb

)(
uh.u
uh.b

)

This representation also applies for the linear form l(.):

l(vh) =
(
vh.u vh.b

)( lh.u
lh.b

)
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Thus, the problem (V F )h writes now:

(
vh.u vh.b

)( a.uu a.ub
a.bu a.bb

)(
uh.u
uh.b

)
=
(
vh.u vh.b

)( lh.u
lh.b

)

for any vh.u and where vh.b = 0. After expansion, the problem reduces to find uh.u such that:

a.uu ∗ uh.u = l.u− a.ub ∗ uh.b

The resolution of this linear system for the a.uu matrix is then performed. A preliminary step
build the LDLT factorization:

solver sa (a.uu());

Then, the second step solves the unknown part:

uh.set_u () = sa.solve (lh.u() - a.ub()*uh.b());

When d > 3, a faster iterative strategy is automatically preferred by the solver class for solving
the linear system: in that case, the preliminary step build an incomplete Choleski factorization
preconditioner, while the second step runs an iterative method: the preconditioned conjugate
gradient algorithm. Finally, the field is printed to standard output:

dout << uh;

The dout stream is a specific variable defined in the Rheolef library: it is a distributed and
parallel extension of the usual cout stream in C++

1.4 How to compile the code

First, create a file ‘Makefile’ as follow:

include $(shell rheolef-config --libdir)/rheolef/rheolef.mk

CXXFLAGS = $(INCLUDES_RHEOLEF)

LDLIBS = $(LIBS_RHEOLEF)

default: dirichlet

Then, enter:

make dirichlet

Now, your program, linked with Rheolef, is ready to run on a mesh.
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1.5 How to run the program

Figure 1.1: Solution of the model problem for d = 2: (left) P1 element; (right) P2 element.

Enter the commands:

mkgeo_grid -t 10 > square.geo

geo square.geo

The first command generates a simple 10x10 bidimensional mesh of Ω =]0, 1[2 and stores it in the
file square.geo. The second command shows the mesh. It uses gnuplot visualization program
by default.

The next command performs the computation:

./dirichlet square.geo P1 > square.field

field square.field

1.6 Distributed and parallel runs

Alternatively, a computation in a distributed and parallel environment writes:

mpirun -np 4 ./dirichlet square.geo P1 > square.field
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Figure 1.2: Alternative representations of the solution of the model problem (d = 2 and the P1

element): (left) in black-and-white; (right) in elevation and stereoscopic anaglyph mode.

1.7 Stereo visualization

Also explore some graphic rendering modes (see Fig. 1.2):

field square.field -bw

field square.field -gray

field square.field -mayavi

field square.field -elevation -nofill -stereo

The last command shows the solution in elevation and in stereoscopic anaglyph mode (see Fig. 1.4,
left). The anaglyph mode requires red-cyan glasses: red for the left eye and cyan for the right one,
as shown on Fig. 1.3.

Figure 1.3: Red-cyan anaglyph glasses for the stereoscopic visualization.

In the book, stereo figures are indicated by the logo in the right margin. See http:

//en.wikipedia.org/wiki/Anaglyph_image for more and http://www.alpes-stereo.com/

http://en.wikipedia.org/wiki/Anaglyph_image
http://en.wikipedia.org/wiki/Anaglyph_image
http://www.alpes-stereo.com/lunettes.html
http://www.alpes-stereo.com/lunettes.html
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lunettes.html for how to find anaglyph red-cyan glasses. Please, consults the corresponding
unix manual page for more on field, geo and mkgeo grid:

man mkgeo_grid

man geo

man field

1.8 High-order finite element methods

Turning to the P2 or P3 approximations simply writes:

./dirichlet square.geo P2 > square-P2.field

field square-P2.field

Fig. 1.1.right shows the result. You can replace the P2 command-line argument by any Pk, where
k ≥ 1. Now, let us consider a mono-dimensional problem Ω =]0, 1[:

mkgeo_grid -e 10 > line.geo

geo line.geo

./dirichlet line.geo P1 | field -

The first command generates a subdivision containing ten edge elements. The last two lines show
the mesh and the solution via gnuplot visualization, respectively.

Conversely, the P2 case writes:

./dirichlet line.geo P2 | field -

1.9 Tridimensional computations

Let us consider a three-dimensional problem Ω =]0, 1[3. First, let us generate a mesh:

mkgeo_grid -T 10 > cube.geo

geo cube.geo

geo cube.geo -stereo -full

geo cube.geo -stereo -cut

The previous commands draw the mesh with all internal edges (-full), stereoscopic anaglyph
(-stereo)and then with a cut (-cut) inside the internal structure: a simple click on the central
arrow draws the cut plane normal vector or its origin, while the red square allows a translation.

http://www.alpes-stereo.com/lunettes.html
http://www.alpes-stereo.com/lunettes.html
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Figure 1.4: Solution of the model problem for d = 3 and the P1 element : (left) mesh; (right)
isovalue, cut planes and stereo anaglyph renderings.

Then, we perform the computation and the visualization:

./dirichlet cube.geo P1 > cube.field

field cube.field

The visualization presents an isosurface. Also here, you can interact with the cutting plane. Click
on IsoSurface in the left menu and change the value of the isosurface. Finally exit from the
visualization and explore the stereoscopic anaglyph mode (see Fig. 1.4, right):

field cube.field -stereo

It is also possible to add a second IsoSurface or ScalarCutPlane module to this scene by using
the Visualize menu. After this exploration of the 3D visualization capacities of our environment,
let us go back to the Dirichlet problem and perform the P2 approximation:

./dirichlet cube.geo P2 | field -

1.10 Quadrangles, prisms and hexahedra

Quadrangles and hexahedra are also supported in meshes:

mkgeo_grid -q 10 > square.geo

geo square.geo

mkgeo_grid -H 10 > cube.geo

geo cube.geo

Notices also that the one-dimensional exact solution writes:

u(x) =
x(1− x)

2
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while the two-and three dimensional ones support a Fourier expansion (see e.g. [45], annex).
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Chapter 2

Standard boundary conditions

We show how to deal with various non-homogeneous boundary conditions of Dirichlet, Neuman
and Robin type.

2.1 Non-homogeneous Dirichlet conditions

Formulation

We turn now to the case of a non-homogeneous Dirichlet boundary conditions. Let f ∈ H−1(Ω)

and g ∈ H 1
2 (∂Ω). The problem writes:

(P2) find u, defined in Ω such that:

−∆u = f in Ω

u = g on ∂Ω

The variational formulation of this problem expresses:

(V F2) find u ∈ V such that:
a(u, v) = l(v), ∀v ∈ V0

where

a(u, v) =

∫

Ω

∇u.∇v dx

l(v) =

∫

Ω

f v dx

V = {v ∈ H1(Ω); v|∂Ω = g}
V0 = H1

0 (Ω)

Approximation

As usual, we introduce a mesh Th of Ω and the finite dimensional space Xh:

Xh = {v ∈ H1(Ω); v/K ∈ Pk, ∀K ∈ Th}

Then, we introduce:

Vh = {v ∈ Xh; v|∂Ω = πh(g)}
V0,h = {v ∈ Xh; v|∂Ω = 0}

19
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where πh denotes the Lagrange interpolation operator. The approximate problem writes:

(V F2)h: find uh ∈ Vh such that:

a(uh, vh) = l(vh), ∀vh ∈ V0,h

The following C++ code implement this problem in the Rheolef environment.

Example file 2.1: dirichlet-nh.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cosinusprod_laplace.icc"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo omega (argv [1]);
8 size_t d = omega.dimension ();
9 space Xh (omega , argv [2]);

10 Xh.block ("boundary");
11 form a (Xh, Xh, "grad_grad");
12 field lh = riesz (Xh , f(d));
13 field uh (Xh);
14 space Wh (omega["boundary"], argv [2]);
15 uh ["boundary"] = interpolate(Wh, g(d));
16 solver sa (a.uu());
17 uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
18 dout << uh;
19 }

Let us choose Ω ⊂ Rd, d = 1, 2, 3 with

f(x) = d π2
d−1∏

i=0

cos(πxi) and g(x) =

d−1∏

i=0

cos(πxi)

Remarks the notation x = (x0, . . . , xd−1) for the Cartesian coordinates in Rd: since all arrays
start at index zero in C++ codes, and in order to avoid any mistakes between the code and the
mathematical formulation, we also adopt this convention here. This choice of f and g is convenient,
since the exact solution is known:

u(x) =

d−1∏

i=0

cos(πxi)

The following C++ code implement this problem by using the concept of function object, also
called class-function (see e.g. [29]). A convenient feature is the ability for function objects to store
auxiliary parameters, such as the space dimension d for f here, or some constants, as π for f and
g.

Example file 2.2: cosinusprod laplace.icc

1 struct f : unary_function <point ,Float > {
2 Float operator () (const point& x) const {
3 return d*pi*pi*cos(pi*x[0])* cos(pi*x[1])* cos(pi*x[2]); }
4 f(size_t d1) : d(d1), pi(acos(Float ( -1))) {}
5 size_t d; const Float pi;
6 };
7 struct g : unary_function <point ,Float > {
8 Float operator () (const point& x) const {
9 return cos(pi*x[0])* cos(pi*x[1])* cos(pi*x[2]); }

10 g(size_t d1) : pi(acos(Float ( -1))) {}
11 const Float pi;
12 };

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/dirichlet-nh.cc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/cosinusprod_laplace.icc
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Comments

The class point describes the coordinates of a point (x0, . . . , xd−1) ∈ Rd as a d-uplet of Float.
The Float type is usually a double. This type depends upon the Rheolef configuration (see [43],
installation instructions), and could also represent some high precision floating point class. The
dirichlet-nh.cc code looks like the previous one dirichlet.cc related to homogeneous bound-
ary conditions. Let us comments the changes. The dimension d comes from the geometry Ω:

size_t d = omega.dimension ();

The linear form l(.), defined as the Riesz representer of f , writes:

field lh = riesz (Xh ,f(d));

Notice that the function object f is build with the dimension d as parameter. The space Wh of
piecewise Pk functions defined on the boundary ∂Ω is defined by:

space Wh (omega["boundary"], argv [2]);

where Pk is defined via the second command line argument argv[2]. This space is suitable for
the Lagrange interpolation of g on the boundary:

uh ["boundary"] = interpolate(Wh, g(d));

The values of the degrees of freedom related to the boundary are stored into the field uh.b, where
non-homogeneous Dirichlet conditions applies. The rest of the code is similar to the homogeneous
Dirichlet case.

2.1.1 How to run the program

First, compile the program:

make dirichlet-nh

Running the program is obtained from the homogeneous Dirichlet case, by replacing dirichlet

by dirichlet-nh:

mkgeo_grid -e 10 > line.geo

./dirichlet-nh line.geo P1 > line.field

field line.field

for the bidimensional case:

mkgeo_grid -t 10 > square.geo

./dirichlet-nh square.geo P1 > square.field

field square.field

and for the tridimensional case:

mkgeo_grid -T 10 > box.geo

./dirichlet-nh box.geo P1 > box.field

field -mayavi box.field

Here, the P1 approximation can be replaced by P2, P3, etc, by modifying the command-line
argument.
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2.1.2 Error analysis

Principle

Since the solution u is regular, the following error estimates holds:

‖u− uh‖0,2,Ω ≈ O(hk+1)

‖u− uh‖0,∞,Ω ≈ O(hk+1)

‖u− uh‖1,2,Ω ≈ O(hk)

providing the approximate solution uh uses Pk continuous finite element method, k ≥ 1. Here,
‖.‖0,2,Ω, ‖.‖0,∞,Ω and ‖.‖1,2,Ω denotes as usual the L2(Ω), L∞(Ω) and H1(Ω) norms.

By denoting πh the Lagrange interpolation operator, the triangular inequality leads to:

‖u− uh‖0,2,Ω ≤ ‖(I − πh)(u)‖0,2,Ω + ‖uh − πhu‖0,2,Ω

From the fundamental properties of the Laplace interpolation πh, and since u is smooth enough,
we have ‖(I−πh)(u)‖0,2,Ω ≈ O(hk+1). Thus, we have just to check the ‖uh−πhu‖0,2,Ω term. The
following code implement the computation of the error.

Example file 2.3: cosinusprod error.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cosinusprod.icc"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 Float error_linf_expected = (argc > 1) ? atof(argv [1]) : 1e+38;
8 field uh; din >> uh;
9 space Xh = uh.get_space ();

10 size_t d = Xh.get_geo (). dimension ();
11 field pi_h_u = interpolate(Xh , u(d));
12 field eh = uh - pi_h_u;
13 form m(Xh, Xh, "mass");
14 form a(Xh, Xh, "grad_grad");
15 dout << "error_l2 " << sqrt(m(eh,eh)) << endl
16 << "error_linf " << eh.max_abs () << endl
17 << "error_h1 " << sqrt(a(eh,eh)) << endl;
18 return (eh.max_abs () <= error_linf_expected) ? 0 : 1;
19 }

Example file 2.4: cosinusprod.icc

1 struct u : std:: unary_function <point ,Float > {
2 Float operator () (const point& x) const {
3 return cos(pi*x[0])* cos(pi*x[1])* cos(pi*x[2]); }
4 u(size_t d1) : d(d1), pi(acos(Float ( -1.0))) {}
5 size_t d; Float pi;
6 };

Running the program

make dirichlet-nh cosinusprod_error

After compilation, run the code by using the command:

mkgeo_grid -t 10 > square.geo

./dirichlet-nh square.geo P1 | ./cosinusprod_error

The three L2, L∞ and H1 errors are printed for a h = 1/10 uniform mesh. Note that an unstruc-
tured quasi-uniform mesh can be simply generated by using the mkgeo ugrid command:

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/cosinusprod_error.cc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/cosinusprod.icc
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Figure 2.1: Strait geometry: error analysis in L2, L∞ and H1 norms.
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mkgeo_ugrid -t 10 > square.geo

geo square.geo

Let nel denotes the number of elements in the mesh. Since the mesh is quasi-uniform, we have

h ≈ n
1
d

el where d is the physical space dimension. Here d = 2 for our bidimensional mesh. Figure 2.1

plots in logarithmic scale the error versus n
1
2

el for both Pk approximations, k = 1, 2, 3 and the
various norms. Observe that the error behaves as predicted by the theory.

Curved domains

The error analysis applies also for curved boundaries and high order approximations.

Example file 2.5: cosinusrad laplace.icc

1 struct f : unary_function <point ,Float > {
2 Float operator () (const point& x) const {
3 Float r = sqrt(sqr(x[0])+ sqr(x[1])+ sqr(x[2]));
4 Float sin_over_ar = (r == 0) ? 1 : sin(a*r)/(a*r);
5 return sqr(a)*((d-1)* sin_over_ar + cos(a*r)); }
6 f(size_t d1) : d(d1), a(acos(Float ( -1.0))) {}
7 size_t d; Float a;
8 };
9 struct g : std:: unary_function <point ,Float > {

10 Float operator () (const point& x) const {
11 return cos(a*sqrt(sqr(x[0])+ sqr(x[1])+ sqr(x[2]))); }
12 g(size_t =0) : a(acos(Float ( -1.0))) {}
13 Float a;
14 };

Example file 2.6: cosinusrad.icc

1 struct u : std:: unary_function <point ,Float > {
2 Float operator () (const point& x) const {
3 Float r = sqrt(sqr(x[0])+ sqr(x[1])+ sqr(x[2]));
4 return cos(a*r); }
5 u(size_t =0) : a(acos(Float ( -1.0))) {}
6 Float a;
7 };

First, generate the test source file and compile it:

sed -e ’s/sinusprod/sinusrad/’ < dirichlet-nh.cc > dirichlet_nh_ball.cc

sed -e ’s/sinusprod/sinusrad/’ < cosinusprod_error.cc > cosinusrad_error.cc

make dirichlet_nh_ball cosinusrad_error

Then, generates the mesh of a circle and run the test case:

mkgeo_ball -order 1 -t 10 > circle-P1.geo

geo circle-P1

./dirichlet_nh_ball circle-P1.geo P1 | ./cosinusrad_error

For a high order k = 3 isoparametric approximation:

mkgeo_ball -order 3 -t 10 > circle-P3.geo

geo circle-P3

./dirichlet_nh_ball circle-P3.geo P3 | ./cosinusrad_error

Observe Fig. 2.2: for meshes based on triangles: the error behave as expected when k = 1, 2, 3, 4.

A similar result occurs for quadrangles, as shown on Fig. 2.3.

mkgeo_ball -order 3 -q 10 > circle-q-P3.geo

geo circle-q-P3

./dirichlet_nh_ball circle-q-P3.geo P3 | ./cosinusrad_error

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/cosinusrad_laplace.icc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/cosinusrad.icc
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Figure 2.2: Curved domains (triangles): error analysis in L2, L∞ and H1 norms.
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Figure 2.3: Curved domains (quadrangles): error analysis in L2, L∞ and H1 norms.
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These features are currently in development for arbitrarily Pk high order approximations and
three-dimensional geometries.

2.2 Non-homogeneous Neumann boundary conditions for
the Helmholtz operator

Formulation

Let us show how to insert Neumann boundary conditions. Let f ∈ H−1(Ω) and g ∈ H− 1
2 (∂Ω).

The problem writes:

(P3): find u, defined in Ω such that:

u−∆u = f in Ω

∂u

∂n
= g on ∂Ω

The variational formulation of this problem expresses:

(V F3): find u ∈ H1(Ω) such that:

a(u, v) = l(v), ∀v ∈ H1(Ω)

where

a(u, v) =

∫

Ω

u v dx+

∫

Ω

∇u.∇v dx

l(v) =

∫

Ω

f v dx+

∫

∂Ω

g v ds
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Approximation

As usual, we introduce a mesh Th of Ω and the finite dimensional space Xh:

Xh = {v ∈ H1(Ω); v/K ∈ Pk, ∀K ∈ Th}

The approximate problem writes:

(V F3)h: find uh ∈ Xh such that:

a(uh, vh) = l(vh), ∀vh ∈ Xh

Example file 2.7: neumann-nh.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sinusprod_helmholtz.icc"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo omega (argv [1]);
8 size_t d = omega.dimension ();
9 space Xh (omega , argv [2]);

10 form m (Xh, Xh, "mass");
11 form a (Xh, Xh, "grad_grad");
12 a = m + a;
13 field lh = riesz(Xh , f(d)) + riesz(Xh , g(d), "boundary");
14 field uh (Xh);
15 solver sa (a.uu());
16 uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
17 dout << uh;
18 }

Let us choose Ω ⊂ Rd, d = 1, 2, 3 and

f(x) = (1 + dπ2)

d−1∏

i=0

sin(πxi)

g(x) =





−π when d = 1

−π
(
d−1∑

i=0

sin(πxi)

)
when d = 2

−π
(
d−1∑

i=0

sin(πxi) sin(x(i+1)mod d

)
when d = 3

This example is convenient, since the exact solution is known:

u(x) =

d−1∏

i=0

sin(πxi)

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/neumann-nh.cc
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Example file 2.8: sinusprod helmholtz.icc

1 struct f : unary_function <point ,Float > {
2 Float operator () (const point& x) const {
3 switch (d) {
4 case 1: return (1+d*pi*pi)*sin(pi*x[0]);
5 case 2: return (1+d*pi*pi)*sin(pi*x[0])* sin(pi*x[1]);
6 default: return (1+d*pi*pi)*sin(pi*x[0])* sin(pi*x[1])* sin(pi*x[2]);
7 }}
8 f(size_t d1) : d(d1), pi(acos(Float ( -1.0))) {}
9 size_t d; const Float pi;

10 };
11 struct g : unary_function <point ,Float > {
12 Float operator () (const point& x) const {
13 switch (d) {
14 case 1: return -pi;
15 case 2: return -pi*(sin(pi*x[0]) + sin(pi*x[1]));
16 default: return -pi*( sin(pi*x[0])* sin(pi*x[1])
17 + sin(pi*x[1])* sin(pi*x[2])
18 + sin(pi*x[2])* sin(pi*x[0]));
19 }}
20 g(size_t d1) : d(d1), pi(acos(Float ( -1.0))) {}
21 size_t d; const Float pi;
22 };

Comments

The neumann-nh.cc code looks like the previous one dirichlet-nh.cc. Let us comments only
the changes.

form m (Xh , Xh , "mass");
form a (Xh , Xh , "grad_grad");

The bilinear forms m(., .) and a(., .), also called the mass and energy in mechanics, are defined as:

m(u, v) =

∫

Ω

u v dx and a(u, v) =

∫

Ω

∇u.∇v dx

Then, these two forms are added and stored in a:

a = m + a;

The right-hand side is computed as:

field lh = riesz(Xh , f(d)) + riesz(Xh , g(d), "boundary");

2.2.1 How to run the program

First, compile the program:

make neumann-nh

Running the program is obtained from the homogeneous Dirichlet case, by replacing dirichlet

by neumann-nh.

2.3 The Robin boundary conditions

Formulation

Let f ∈ H−1(Ω) and Let g ∈ H 1
2 (∂Ω). The problem writes:

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/sinusprod_helmholtz.icc
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(P4) find u, defined in Ω such that:

−∆u = f in Ω

∂u

∂n
+ u = g on ∂Ω

The variational formulation of this problem expresses:

(V F4): find u ∈ H1(Ω) such that:

a(u, v) = l(v), ∀v ∈ H1(Ω)

where

a(u, v) =

∫

Ω

∇u.∇v dx+

∫

∂Ω

uv ds

l(v) =

∫

Ω

uv dx+

∫

∂Ω

gv ds

Approximation

As usual, let
Xh = {v ∈ H1(Ω); v/K ∈ Pk, ∀K ∈ Th}

The approximate problem writes:

(V F4)h: find uh ∈ Xh such that:

a(uh, vh) = l(vh), ∀vh ∈ Xh

Example file 2.9: robin.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cosinusprod_laplace.icc"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo omega (argv [1]);
8 size_t d = omega.dimension ();
9 space Xh (omega , argv [2]);

10 form a (Xh, Xh, "grad_grad");
11 form ab (Xh, Xh, "mass", omega["boundary"]);
12 a = a + ab;
13 field lh = riesz(Xh , f(d)) + riesz(Xh , g(d), "boundary");
14 field uh (Xh);
15 solver sa (a.uu());
16 uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
17 dout << uh;
18 }

Comments

The code robin.cc looks like the previous one neumann-nh.cc. Let us comments the changes.

form a (Xh , Xh, "grad_grad");
form ab (Xh , Xh, "mass", omega["boundary"]);
a = a + ab;

The bilinear forms a(., .) and ab(., .) are defined as:

a(u, v) =

∫

Ω

∇u.∇v dx and ab(u, v) =

∫

∂Ω

u|∂Ω v|∂Ω ds

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/robin.cc
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where u|∂Ω denotes the restriction to the boundary of a function u defined in Ω. Then the sum
a + ab is stored in a. The boundary contribution to the a(., .) form on Xh × Xh is introduced.
Finally, the implementation of the right-hand sides f and g in file ‘cosinusprod laplace.icc’
has already been presented on page 20.

2.3.1 How to run the program

First, compile the program:

make robin

Running the program is obtained from the homogeneous Dirichlet case, by replacing dirichlet

by robin.

2.4 Neumann boundary conditions for the Laplace operator

In this chapter we study how to solve a ill-posed problem with a solution defined up to a constant.

Formulation

Let Ω be a bounded open and simply connected subset of Rd, d = 1, 2 or 3. Let f ∈ L2(Ω) and

g ∈ H 1
2 (∂Ω) satisfying the following compatibility condition:

∫

Ω

f dx+

∫

∂Ω

g ds = 0

The problem writes:
(P5)h: find u, defined in Ω such that:

−∆u = f in Ω

∂u

∂n
= g on ∂Ω

Since this problem only involves the derivatives of u, it is clear that its solution is never unique [19,
p. 11]. A discrete version of this problem could be solved iteratively by the conjugate gradient
or the MINRES algorithm [34]. In order to solve it by a direct method, we turn the difficulty by
seeking u in the following space

V = {v ∈ H1(Ω); b(v, 1) = 0}
where

b(v, µ) =

∫

Ω

v dx, ∀v ∈ L2(Ω),∀µ ∈ R

The variational formulation of this problem writes:

(V F5): find u ∈ V such that:
a(u, v) = l(v), ∀v ∈ V

where

a(u, v) =

∫

Ω

∇u.∇v dx

l(v) = m(f, v) +mb(g, v)

m(f, v) =

∫

Ω

fv dx

mb(g, v) =

∫

∂Ω

gv ds
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Since the direct discretization of the space V is not an obvious task, the constraint b(u, 1) = 0
is enforced by a Lagrange multiplier λ ∈ R. Let us introduce the Lagrangian, defined for all
v ∈ H1(Ω) and µ ∈ R by:

L(v, µ) =
1

2
a(v, v) + b(v, µ)− l(v)

The saddle point (u, λ) ∈ H1(Ω)×R of this Lagrangian is characterized as the unique solution of:

a(u, v) + b(v, λ) = l(v), ∀v ∈ H1(Ω)

b(u, µ) = 0, ∀µ ∈ R

It is clear that if (u, λ) is solution of this problem, then u ∈ V and u is a solution of (V F5).
Conversely, let u ∈ V the solution of (V F5). Choosing v = v0 where v0(x) = 1, ∀x ∈ Ω leads to
λmeas(Ω) = l(v0). From the definition of l(.) and the compatibility condition between the data f
and g, we get λ = 0. Notice that the saddle point problem extends to the case when f and g does
not satisfies the compatibility condition, and in that case λ = l(v0)/meas(Ω).

Approximation

As usual, we introduce a mesh Th of Ω and the finite dimensional space Xh:

Xh = {v ∈ H1(Ω); v/K ∈ Pk, ∀K ∈ Th}
The approximate problem writes:
(V F5)h: find (uh, λh) ∈ Xh × R such that:

a(uh, v) + b(v, λh) = lh(v), ∀v ∈ Xh

b(uh, µ) = 0, ∀µ ∈ R

where
lh(v) = m(Πhf, vh) +mb(πhg, vh)

Example file 2.10: neumann-laplace.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 size_t d;
5 Float f (const point& x) { return 1; }
6 Float g (const point& x) { return -0.5/d; }
7 int main(int argc , char**argv) {
8 environment rheolef (argc , argv);
9 geo omega (argv [1]);

10 d = omega.dimension ();
11 space Xh (omega , argv [2]);
12 form m (Xh, Xh, "mass");
13 form a (Xh, Xh, "grad_grad");
14 field b = m*field(Xh ,1);
15 field lh = riesz(Xh , f) + riesz(Xh , g, "boundary");
16 csr <Float > A = {{ a.uu(), b.u()},
17 {trans(b.u()), 0 }};
18 vec <Float > B = { lh.u(), 0 };
19 A.set_symmetry(true);
20 solver sa = ldlt(A);
21 vec <Float > U = sa.solve (B);
22 field uh(Xh);
23 uh.set_u() = U [range(0,uh.u(). size ())];
24 Float lambda = (U.size() == uh.u(). size ()+1) ? U [uh.u(). size ()] : 0;
25 #ifdef _RHEOLEF_HAVE_MPI
26 mpi:: broadcast (U.comm(), lambda , U.comm (). size() - 1);
27 #endif // _RHEOLEF_HAVE_MPI
28 dout << uh
29 << "lambda" << lambda << endl;
30 }

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/neumann-laplace.cc
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Comments

Let Ω ⊂ Rd, d = 1, 2, 3. We choose f(x) = 1 and g(x) = −1/(2d). This example is convenient,
since the exact solution is known:

u(x) = − 1

12
+

1

2d

d∑

i=1

xi(1− xi)

The code looks like the previous ones. Let us comment the changes. The discrete bilinear form b
is computed as bh ∈ Xh that interprets as a linear application from Xh to R: bh(vh) = m(vh, 1).
Thus bh is computed as

field b = m*field(Xh ,1.0);

where the discrete bilinear form m is identified to its matrix and field(Xh,1.0) is the constant
vector equal to 1. Let

A =

(
a.uu trans(b.u)
b.u 0

)
, U =

(
uh.u

lambda

)
, B =

(
lh.u

0

)

The problem admits the following matrix form:

A U = B

The matrix and right-hand side of the system are assembled by concatenation:

csr <Float > A = {{ a.uu, b.u},
{trans(b.u), 0 }};

vec <Float > B = { lh.u, 0 };

where csr and vec are respectively the matrix and vector classes. The csr is the abbreviation of
compressed sparse row, a sparse matrix compression standard format. Notice that the matrix A is
symmetric and non-singular, but indefinite : it admits eigenvalues that are either strictly positive
or strictly negative. While the Choleski factorization is not possible, its variant the LDLT one is
performed, thanks to the ldlt function:

solver sa = ldlt(A);

Then, the uh.u vector is extracted from the U one:

uh.u = U [range(0,uh.u.size ())];

The extraction of lambda from U is more technical in a distributed environment. In a sequential
one, since it is stored after the uh.u values, it could be simply written as:

Float lambda = U [uh.u.size ()];

In a distributed environment, lambda is stored in U on the last processor, identified by
U.comm().size()-1. Here U.comm() denotes the communicator, from the boost::mpi library
and U.comm().size() is the number of processors in use, e.g. as specified by the mpirun com-
mand. On this last processor, the array U has size equal to uh.u.size()+1 and lambda is stored
in U[uh.u.size()]. On the others processors, the array U has size equal to uh.u.size() and
lambda is not available. The following statement extract lambda on the last processor and set it
to zero on the others:

Float lambda = (U.size() == uh.u.size ()+1) ? U [uh.u.size ()] : 0;

Then, the value of lambda is broadcasted on the others processors:

mpi:: broadcast (U.comm(), lambda , U.comm (). size() - 1);

The preprocessing guards #idef. . .#endif assure that this example compile also when the library
is not installed with the MPI support. Finally, the statement
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dout << catchmark("u") << uh
<< catchmark("lambda") << lambda << endl;

writes the solution (uh, λ). The catchmark function writes marks together with the solution in
the output stream. These marks are suitable for a future reading with the same format, as:

din >> catchmark("u") >> uh
>> catchmark("lambda") >> lambda;

This is useful for post-treatment, visualization and error analysis.

2.4.1 How to run the program

As usual, enter:

make neumann-laplace

mkgeo_grid -t 10 > square.geo

./neumann-laplace square P1 | field -



Chapter 3

Non-constant coefficients and
multi-regions

This chapter is related to the so-called transmission problem. We introduce some new concepts:
problems with non-constant coefficients, regions in the mesh, weighted forms and discontinuous
approximations.

Formulation

Let us consider a diffusion problem with a non-constant diffusion coefficient η in a domain bounded
Ω ⊂ Rd, d = 1, 2, 3:

(P ): find u defined in Ω such that:

−div(η∇u) = f in Ω (3.1)

u = 0 on Γleft ∪ Γright (3.2)

∂u

∂n
= 0 on Γtop ∪ Γbottom when d ≥ 2 (3.3)

∂u

∂n
= 0 on Γfront ∪ Γback when d = 3 (3.4)

where f is a given source term.

35
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west
east

bottom
right
top
left

Figure 3.1: Transmission problem: the domain Ω partition: (Ωwest and Ωeast).

We consider here the important special case when η is piecewise constant:

η(x) =

{
ε when x ∈ Ωwest

1 when x ∈ Ωeast

where (Ωwest,Ωeast) is a partition of Ω in two parts (see Fig. 3.1). This is the so-called trans-
mission problem: the solution and the flux are continuous on the interface Γ0 = ∂Ωeast ∩ ∂Ωwest

between the two domains where the problem reduce to a constant diffusion one:

uΩwest
= uΩeast

on Γ0

ε
∂u/Ωwest

∂n
=

∂uΩeast

∂n
on Γ0

It expresses the transmission of the quantity u and its flux across the interface Γ0 between two
regions that have different diffusion properties: Notice that the more classical problem, with
constant diffusion η on Ω is obtained by simply choosing when ε = 1.

The variational formulation of this problem expresses:

(V F ): find u ∈ V such that:

a(u, v) = l(v), ∀v ∈ V

where the bilinear forms a(., .) and the linear one l(.) are defined by

a(u, v) =

∫

Ω

η∇u.∇v dx, ∀u, v ∈ H1(Ω)

l(v) =

∫

Ω

f v dx, ∀v ∈ L2(Ω)

V = {v ∈ H1(Ω); v = 0 on Γleft ∪ Γright}

The bilinear form a(., .) defines a scalar product in V and is related to the energy form. This form
is associated to the −div η∇ operator.

The approximation of this problem could performed by a standard Lagrange Pk continuous ap-
proximation.



Rheolef version 6.3 update 18 June 2012 37

Example file 3.1: transmission.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char**argv) {
5 environment rheolef (argc , argv);
6 const Float epsilon = 0.01;
7 geo omega (argv [1]);
8 space Xh (omega , argv [2]);
9 Xh.block ("left");

10 Xh.block ("right");
11 string eta_approx = "P" + itos(Xh.degree ()-1) + "d";
12 space Qh (omega , eta_approx );
13 field eta (Qh);
14 eta ["east"] = 1;
15 eta ["west"] = epsilon;
16 form a (Xh, Xh, "grad_grad", eta);
17 field lh = riesz (Xh , 1);
18 field uh (Xh);
19 uh["left"] = uh["right"] = 0;
20 solver sa (a.uu());
21 uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
22 dout << catchmark("epsilon") << epsilon << endl
23 << catchmark("u") << uh;
24 }

Comments

This file is quite similar to those studied in the first chapters of this book. Let us comment only
the changes. The Dirichlet boundary condition applies no more on the whole boundary ∂Ω but
on two parts Γleft and Γright. On the other boundary parts, an homogeneous Neumann boundary
condition is used: since these conditions does not produce any additional terms in the variational
formulation, there are also nothing to write in the C++ code for these boundaries. We choose
f = 1: this leads to a convenient test-problem, since the exact solution is known when Ω =]0, 1[d:

u(x) =





x0

2ε

(
1 + 3ε

2(1 + ε)
− x0

)
when x0 < 1/2

1− x0

2

(
x0 +

1− ε
2(1 + ε)

)
otherwise

The field η belongs to a discontinuous finite element Pk−1 space denoted by Qh:

string eta_approx = "P" + itos(Xh.degree ()-1) + "d";
space Qh (omega , eta_approx );
field eta (Qh);

For instance, when argv[2] contains "P2", i.e. k = 2, then the string eta approx takes value
"P1d". Then η is initialized by:

eta["east"] = 1;
eta["weast"] = epsilon;

The energy form a is then constructed with η as additional parameter:

form a (Xh, Xh, "grad_grad", eta);

Such forms with a additional weight function are called weighted forms in Rheolef.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/transmission.cc
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How to run the program ?

Build the program as usual: make transmission. Then, creates a one-dimensional geometry with
two regions:

mkgeo_grid -e 100 -region > line.geo

geo line.geo

The trivial mesh generator mkgeo grid, defines two regions east and west when used with the
-region option. This correspond to the situation:

Ω = [0, 1]d, Ωwest = Ω ∩ {x0 < 1/2} and Ωeast = Ω ∩ {x0 > 1/2}.

In order to avoid mistakes with the C++ style indexes, we denote by (x0, . . . , xd−1) the Cartesian
coordinate system in Rd.
Finally, run the program and look at the solution:

make transmission

./transmission line.geo P1 > line.field

field line.field

Since the exact solution is a piecewise second order polynomial and the change in the diffusion
coefficient value fits the element boundaries, we obtain the exact solution for all the degrees of
freedom of any Pk approximation, k ≥ 1, as shown on Fig. 3.2 when k = 1. Moreover, when k ≥ 2
then uh = u since Xh contains the exact solution u.

0

1

2

3

0 0.25 0.5 0.75 1

exact
h = 1/6
h = 1/10
h = 1/14

Figure 3.2: Transmission problem: uh = πh(u) (ε = 10−2, d = 1, P1 approximation).

The two dimensional case corresponds to the commands:

mkgeo_grid -t 10 -region > square.geo

geo square.geo

./transmission square.geo P1 > square.field

field square.field -elevation
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while the tridimensional to

mkgeo_grid -T 10 -region > cube.geo

./transmission cube.geo P1 > cube.mfield

field cube.field

As for all the others examples, you can replace P1 by higher-order approximations, change elements
shapes, such as q, H or P, and run distributed computations computations with mpirun.
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Part II

Fluids and solids computations
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Chapter 4

The linear elasticity and the
Stokes problems

4.1 The linear elasticity problem

Formulation

The total Cauchy stress tensor expresses:

σ(u) = λ div(u).I + 2µD(u) (4.1)

where λ and µ are the Lamé coefficients. Here, D(u) denotes the symmetric part of the gradi-
ent operator and div is the divergence operator. Let us consider the elasticity problem for the
embankment, in Ω =]0, 1[d, d = 2, 3. The problem writes:

(P ): find u = (u0, . . . , ud−1), defined in Ω, such that:

− div σ(u) = f in Ω,
∂u

∂n
= 0 on Γtop ∪ Γright

u = 0 on Γleft ∪ Γbottom,
u = 0 on Γfront ∪ Γback, when d = 3

(4.2)

where f = (0,−1) when d = 2 and f = (0, 0,−1) when d = 3. The Lamé coefficients are assumed
to satisfy µ > 0 and λ + µ > 0. Since the problem is linear, we can suppose that µ = 1 without
any loss of generality.

43
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x2

x1

left right

bottom

top

front

x1

x0bottom

rightleft

top

x0

back

Figure 4.1: The boundary domains for the square and the cube.

recall that, in order to avoid mistakes with the C++ style indexes, we denote by (x0, . . . , xd−1) the
Cartesian coordinate system in Rd.
For d = 2 we define the boundaries:

Γleft = {0}×]0, 1[, Γright = {1}×]0, 1[
Γbottom = ]0, 1[×{0}, Γtop = ]0, 1[×{1}

and for d = 3:

Γback = {0}×]0, 1[2, Γfront = {1}×]0, 1[2

Γleft = ]0, 1[×{0}×]0, 1[, Γright = ]0, 1[×{1}×]0, 1[
Γbottom = ]0, 1[2×{0}, Γtop = ]0, 1[2×{1}

These boundaries are represented on Fig. 4.1.

The variational formulation of this problem expresses:

(V F ): find u ∈ V such that:
a(u,v) = l(v), ∀v ∈ V, (4.3)

where

a(u,v) = λ

∫

Ω

div u div v dx+

∫

Ω

2D(u) : D(v) dx,

l(v) =

∫

Ω

f .v dx,

V = {v ∈ (H1(Ω))2; v = 0 on Γleft ∪ Γbottom}, when d = 2

V = {v ∈ (H1(Ω))3; v = 0 on Γleft ∪ Γbottom ∪ Γright ∪ Γback}, when d = 3

Approximation

We introduce a mesh Th of Ω and for k ≥ 1, the following finite dimensional spaces:

Xh = {vh ∈ (H1(Ω))d; vh/K ∈ (Pk)d, ∀K ∈ Th},
Vh = Xh ∩V

The approximate problem writes:

(V F )h: find uh ∈ Vh such that:

a(uh,vh) = l(vh), ∀vh ∈ Vh
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Example file 4.1: embankment.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "embankment.icc"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo omega (argv [1]);
8 space Xh = embankment_space (omega , argv [2]);
9 Float lambda = (argc > 3) ? atof(argv [3]) : 1;

10 size_t d = omega.dimension ();
11 point f (0,0,0);
12 f[d-1] = -1;
13 field lh = riesz (Xh , f);
14 form a1 (Xh, Xh, "div_div");
15 form a2 (Xh, Xh, "2D_D");
16 form a = lambda*a1 + a2;
17 field uh (Xh , 0);
18 solver sa (a.uu());
19 uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
20 dout << catchmark("inv_lambda") << 1/ lambda << endl
21 << catchmark("u") << uh;
22 }

Example file 4.2: embankment.icc

1 space embankment_space (const geo& omega , string approx) {
2 space Xh (omega , approx , "vector");
3 Xh.block("left");
4 if (omega.dimension () >= 2) {
5 Xh.block("bottom");
6 }
7 if (omega.dimension () == 3) {
8 Xh.block("right");
9 Xh.block("back");

10 }
11 return Xh;
12 }

Comments

The space is defined in a separate file ‘embankment.icc’, since it will be reused in others examples
along this chapter:

space Vh (omega , "P2", "vector");

Note here the multi-component specification "vector" as a supplementary argument to the space
constructor. The boundary condition contain a special cases for bi- and tridimensional cases. The
right-hand-side fh represents the dimensionless gravity forces, oriented on the vertical axis: the
last component of fh is set to −1 as:

fh [omega.dimension ()-1] = -1;

Finally, the 1/λ parameter and the multi-field result are printed, using mark labels, thanks to the
catchmark stream manipulator. Labels are convenient for post-processing purpose, as we will see
in the next paragraph.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/embankment.cc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/embankment.icc
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How to run the program

Figure 4.2: The linear elasticity for λ = 1 and d = 2 and d = 3: both wireframe and filled surfaces
; stereoscopic anaglyph mode for 3D solutions.

Compile the program as usual (see page 12):

make embankment

and enter the commands:

mkgeo_grid -t 10 > square.geo

geo square.geo

The triangular mesh has four boundary domains, named left, right, top and bottom. Then,
enter:
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./embankment square.geo P1 > square-P1.field

The previous command solves the problem for the corresponding mesh and writes the multi-
component solution in the ‘.field’ file format. Run the deformation vector field visualization
using the default gnuplot render:

field square-P1.field

field square-P1.field -nofill

Note the graphic options usage ; the unix manual for the field command is available as:

man field

The view is shown on Fig. 4.2. A specific field component can be also selected for a scalar
visualization:

field -comp 0 square-P1.field

field -comp 1 square-P1.field

Next, perform a P2 approximation of the solution:

./embankment square.geo P2 > square-P2.field

field square-P2.field -mayavi -nofill

Finally, let us consider the three dimensional case

mkgeo_grid -T 10 > cube.geo

./embankment cube.geo P1 > cube-P1.field

field cube-P1.field -stereo

field cube-P1.field -stereo -fill

The two last commands show the solution in 3D stereoscopic anaglyph mode. The graphic is
represented on Fig. 4.2. The P2 approximation writes:

./embankment cube.geo P2 > cube-P2.field

field cube-P2.field

4.2 Computing the stress tensor

Formulation and approximation

The following code computes the total Cauchy stress tensor, reading the Lamé coefficient λ and
the deformation field uh from a ‘.field’ file. Let us introduce:

Th = {τh ∈ (L2(Ω))d×d; τh = τTh and τh;ij/K ∈ Pk−1, ∀K ∈ Th, 1 ≤ i, j ≤ d}

This computation expresses:

find σh such that:
m(σh, τ) = b(τ,uh),∀τ ∈ Th
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where

m(σ, τ) =

∫

Ω

σ : τ dx,

b(τ,u) = λ

∫

Ω

div(u) tr(τ) dx+

∫

Ω

2D(u) : τ dx,

where tr(τ) =
∑d
i=1 τii is the trace of the tensor τ .

Example file 4.3: stress.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char** argv) {
5 environment rheolef (argc ,argv);
6 Float inv_lambda;
7 field uh;
8 din >> catchmark("inv_lambda") >> inv_lambda
9 >> catchmark("u") >> uh;

10 const geo& omega = uh.get_geo ();
11 const space& Xh = uh.get_space ();
12 string grad_approx = "P" + itos(Xh.degree ()-1) + "d";
13 space Th (omega , grad_approx , "tensor");
14 space T0h (omega , grad_approx );
15 form two_D (Xh, Th, "2D");
16 form div (Xh, T0h , "div");
17 form inv_mt (Th, Th, "inv_mass");
18 form inv_m (T0h , T0h , "inv_mass");
19 field trace_h = inv_m*(div*uh);
20 field sigma_h = inv_mt *( two_D*uh);
21 if (inv_lambda != 0)
22 for (size_t i_comp = 0; i_comp < uh.size (); i_comp ++)
23 sigma_h(i_comp ,i_comp) += (1/ inv_lambda )* trace_h;
24 dout << catchmark("s") << sigma_h;
25 }

Comments

First notice that this code applies for any deformation field, and is not restricted to our embankment
problem.

The P0 and P1d stands for the piecewise constant and piecewise linear discontinuous approxima-
tions, respectively. Since elements of Th are discontinuous across inter-element boundaries, the
mass operator is block-diagonal and can be inverted one time for all: this operation results in the
inv mass operator.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/stress.cc
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How to run the program

Figure 4.3: The stress tensor visualization (linear elasticity λ = 1).

First, compile the program:

make stress

The visualization for the stress tensor as ellipses writes:

./stress < square-P1.field > square-stress-P1.field

./stress < square-P2.field > square-stress-P2.field

field square-stress-P1.field -proj -mayavi

Recall that the stress, as a derivative of the deformation, is P0 (resp. P1d) and discontinuous when
the deformation is P1 (resp. P2) and continuous. The approximate stress tensor field is projected
on a continuous piecewise linear space, using the -proj option. Conversely, the 3D visualization
bases on ellipsoids:

./stress < cube-P1.field > cube-stress-P1.field

field cube-stress-P1.field -proj -mayavi -stereo
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Figure 4.4: The σ01 stress component (linear elasticity λ = 1): d = 2 (top) and d = 3 (bottom) ;
P0 (left) and P1 discontinuous approximation (right).

You can observe a discontinuous constant or piecewise linear representation of the approximate
stress component σ01 (see Fig. 4.4):

field square-stress-P1.field -comp 01

field square-stress-P2.field -comp 01 -elevation

field square-stress-P2.field -comp 01 -elevation -stereo

Notice that the -stereo implies the -mayavi one, as this feature is not available with others
visualization systems. The approximate stress field can be also projected on a continuous piecewise
space:

field square-stress-P2.field -comp 01 -elevation -proj

The tridimensional case writes simply (see Fig. 4.4):

./stress < cube-P1.field > cube-stress-P1.field
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./stress < cube-P2.field > cube-stress-P2.field

field cube-stress-P1.field -comp 01 -stereo

field cube-stress-P2.field -comp 01 -stereo -iso

and also the P1-projected versions write:

field cube-stress-P1.field -comp 01 -stereo -proj -iso

field cube-stress-P2.field -comp 01 -stereo -proj -iso

These operations can be repeated for each σij components and for both P1 and P2 approximation
of the deformation field.

4.3 Mesh adaptation

The main principle of the auto-adaptive mesh writes [6, 10,21,39,40,50]:

cin >> omega;

uh = solve(omega);

for (unsigned int i = 0; i < n; i++) {

ch = criterion(uh);

omega = adapt(ch);

uh = solve(omega);

}

The initial mesh is used to compute a first solution. The adaptive loop compute an adaptive
criterion, denoted by ch, that depends upon the problem under consideration and the polynomial
approximation used. Then, a new mesh is generated, based on this criterion. A second solution
on an adapted mesh can be constructed. The adaptation loop converges generally in roughly 5 to
20 iterations.

Let us apply this principle to the elasticity problem.
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Example file 4.4: embankment adapt.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "elasticity_solve.icc"
5 #include "elasticity_criterion.icc"
6 #include "embankment.icc"
7 int main(int argc , char**argv) {
8 environment rheolef (argc , argv);
9 const Float lambda = 1;

10 geo omega (argv [1]);
11 adapt_option_type options;
12 string approx = (argc > 2) ? argv [2] : "P1";
13 options.err = (argc > 3) ? atof(argv [3]) : 5e-3;
14 size_t n_adapt = (argc > 4) ? atoi(argv [4]) : 5;
15 options.hmin = 0.004;
16 for (size_t i = 0; true; i++) {
17 space Xh = embankment_space (omega , approx );
18 field uh = elasticity_solve (Xh , lambda );
19 odiststream of (omega.name(), "field");
20 of << catchmark("lambda") << lambda << endl
21 << catchmark("u") << uh;
22 if (i == n_adapt) break;
23 field ch = elasticity_criterion (lambda ,uh);
24 omega = adapt(ch , options );
25 odiststream og (omega.name(), "geo");
26 og << omega;
27 }
28 }

Example file 4.5: elasticity solve.icc

1 field elasticity_solve(const space& Xh , Float lambda) {
2 size_t d = Xh.get_geo (). dimension ();
3 point f (0,0,0);
4 f[d-1] = -1;
5 field lh = riesz (Xh , f);
6 form m (Xh, Xh, "mass");
7 form a1 (Xh, Xh, "div_div");
8 form a2 (Xh, Xh, "2D_D");
9 form a = lambda*a1 + a2;

10 solver sa (a.uu());
11 field uh (Xh , 0);
12 uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
13 return uh;
14 }

Example file 4.6: elasticity criterion.icc

1 field elasticity_criterion (Float lambda , const field& uh) {
2 string grad_approx = (uh.get_approx () == "P2") ? "P1d" : "P0";
3 space Xh (uh.get_geo(), grad_approx );
4 if (grad_approx == "P0") return interpolate (Xh, norm(uh));
5 space Th (uh.get_geo(), grad_approx , "tensor");
6 form two_D (uh.get_space (), Th, "2D");
7 form div (uh.get_space (), Xh, "div");
8 form mt (Th, Th, "mass");
9 form m (Xh, Xh, "mass");

10 form inv_mt (Th, Th, "inv_mass");
11 form inv_m (Xh, Xh, "inv_mass");
12 field qh = sqrt(lambda )* inv_m*(div*uh);
13 field two_Duh = inv_mt *( two_D*uh);
14 return interpolate (Xh, sqrt(sqr(qh) + norm2(two_Duh )));
15 }

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/embankment_adapt.cc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/elasticity_solve.icc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/elasticity_criterion.icc
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Comments

The criterion is here:

ch =

{
|uh| when using P1

(σ(uh) : D(uh))1/2 when using P2

The adapt option type declaration is used by Rheolef to send options to the mesh generator.
The err parameter controls the error via the edge length of the mesh: the smaller it is, the smaller
the edges of the mesh are. In our example, is set by default to one. Conversely, the hmin parameter
controls minimal edge length.

How to run the program

P1: 6661 elements, 3620 vertices P2: 1734 elements, 969 vertices

Figure 4.5: Adapted meshes: the deformation visualization for P1 and P2 approximations.

The compilation command writes:

make embankment_adapt

The mesh loop adaptation is initiated from a bamg mesh (see also appendix B.1).

bamg -g square.bamgcad -o square.bamg

bamg2geo square.bamg square.dmn > square.geo

./embankment_adapt square P1

The code performs a loop of five mesh adaptations: the corresponding meshes are stored in
files, from square-1.geo.gz to square-5.geo.gz, and the associated solutions in files, from
square-1.field.gz to square-5.field.gz. The additional ‘.gz’ suffix expresses that the files
are compressed using gzip.

geo square-5.geo

field square-5.field -mayavi -nofill

Note that the ‘.gz’ suffix is automatically assumed by the geo and the field commands.

For a piecewise quadratic approximation:
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./embankment_adapt square P2

Then, the visualization writes:

geo square-5.geo

field square-5.field -mayavi -nofill

A one-dimensional mesh adaptive procedure is also possible:

gmsh -1 line.mshcad -o line.msh

msh2geo line.msh > line.geo

geo line.geo

./embankment_adapt line P2

geo line-5.geo

field line-5.field -comp 0 -elevation

The three-dimensional extension this mesh adaptive procedure is in development.

4.4 The Stokes problem

Formulation

Let us consider the Stokes problem for the driven cavity in Ω =]0, 1[d, d = 2, 3. The problem
writes:

(S) find u = (u0, . . . , ud−1) and p defined in Ω such that:

− div(2D(u)) + ∇p = 0 in Ω,
− div u = 0 in Ω,

u = (1, 0) on Γtop,
u = 0 on Γleft ∪ Γright ∪ Γbottom,
∂u0

∂n
=

∂u1

∂n
= u2 = 0 on Γback ∪ Γfront when d = 3,

where D(u) = (∇u + ∇uT )/2. The boundaries are represented on Fig. 4.1, page 44.

The variational formulation of this problem expresses:

(V FS) find u ∈ V(1) and p ∈ L2
0(Ω) such that:

a(u,v) + b(v, p) = 0, ∀v ∈ V(0),
b(u, q) = 0, ∀q ∈ L2

0(Ω),

where

a(u,v) =

∫

Ω

2D(u) : D(v) dx,

b(v, q) = −
∫

Ω

div(v) q dx.

V(α) = {v ∈ (H1(Ω))2; v = 0 on Γleft ∪ Γright ∪ Γbottom and v = (α, 0) on Γtop}, when d = 2,

V(α) = {v ∈ (H1(Ω))3; v = 0 on Γleft ∪ Γright ∪ Γbottom,

v = (α, 0, 0) on Γtop and v2 = 0 on Γback ∪ Γfront}, when d = 3,

L2
0(Ω) = {q ∈ L2(Ω);

∫

Ω

q dx = 0}.
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Approximation

The Taylor-Hood [22] finite element approximation of the Stokes problem is considered. We
introduce a mesh Th of Ω and the following finite dimensional spaces:

Xh = {v ∈ (H1(Ω))d; v/K ∈ (P2)d, ∀K ∈ Th},
Vh(α) = Xh ∩V(α),

Qh = {q ∈ L2(Ω)) ∩ C0(Ω̄); q/K ∈ P1, ∀K ∈ Th},

The approximate problem writes:

(V FS)h find uh ∈ Vh(1) and p ∈ Qh such that:

a(uh,v) + b(v, ph) = 0, ∀v ∈ Vh(0),
b(uh, q) = 0, ∀q ∈ Qh. (4.4)

Example file 4.7: cavity.icc

1 space cavity_space (const geo& omega_h , std:: string approx) {
2 space Xh (omega_h , approx , "vector");
3 Xh.block("top"); Xh.block("bottom");
4 if (omega_h.dimension () == 3) {
5 Xh.block("back"); Xh.block("front");
6 Xh[1]. block("left"); Xh[1]. block("right");
7 } else {
8 Xh.block("left"); Xh.block("right");
9 }

10 return Xh;
11 }
12 field cavity_field (const space& Xh , Float alpha) {
13 field uh (Xh , 0.);
14 uh[0]["top"] = alpha;
15 return uh;
16 }

Example file 4.8: stokes cavity.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cavity.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh = cavity_space (omega , "P2");
9 field uh = cavity_field (Xh , 1);

10 space Qh (omega , "P1");
11 field ph (Qh , 0.);
12 form a (Xh, Xh, "2D_D");
13 form b = - form(Xh, Qh, "div");
14 form mp (Qh, Qh, "mass");
15 solver_abtb stokes (a.uu(), b.uu(), mp.uu());
16 stokes.solve (-(a.ub()*uh.b()), -(b.ub()*uh.b()),
17 uh.set_u(), ph.set_u ());
18 dout << catchmark("u") << uh
19 << catchmark("p") << ph;
20 }

Comments

The spaces and boundary conditions and grouped in specific functions, defined in file ‘cavity.icc’.
This file is suitable for a future re-usage. Next, forms are defined as usual, in file
‘stokes cavity.cc’.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/cavity.icc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/stokes_cavity.cc
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The problem admits the following matrix form:

(
a.uu trans(b.uu)
b.uu 0

)(
uh.u
ph.u

)
=

(
−a.ub ∗ uh.b
−b.ub ∗ uh.b

)

An initial value for the pressure field is provided:

field ph (Qh , 0);

The main Stokes solver call writes:

solver_abtb stokes (a.uu(), b.uu(), mp.uu());
stokes.solve (-(a.ub()*uh.b()), -(b.ub()*uh.b()),

uh.set_u(), ph.set_u ());

For tridimensional geometries (d = 3), this system is solved by the preconditioned conjugate
gradient algorithm. the preconditioner is here the mass matrix mp.uu for the pressure: as showed
in [24], the number of iterations need by the conjugate gradient algorithm to reach a given precision
is then independent of the mesh size. For more details, see the Rheolef reference manual related
to mixed solvers, available e.g. via the unix command:

man solver_abtb

When d = 2, it is interesting to turn to direct methods and factorize the whole matrix of the linear
system. As the pressure is defined up to a constant, the whole matrix is singular. By adding a
Lagrange multiplier that impose a null average pressure value, the system becomes regular and
the modified matrix can be inverted. Such a technique has already been presented in section 2.4
for the Neumann-Laplace problem. Finally, he choice between iterative and direct algorithm for
the Stokes solver is automatically done, regarding the geometry dimension.

How to run the program

Figure 4.6: The velocity visualization for d = 2 and d = 3 with stereo anaglyph.

We assume that the previous code is contained in the file ‘stokes cavity.cc’. Then, compile the
program as usual (see page 12):
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make stokes_cavity

and enter the commands:

mkgeo_grid -t 10 > square.geo

./stokes_cavity square > square.field

The previous command solves the problem for the corresponding mesh and writes the solution in
a ‘.field’ file. Run the velocity vector visualization :

field square.field -velocity

Run also some scalar visualizations:

field square.field -comp 0

field square.field -comp 1

field square.field -catchmark p

Note the -catchmark option to the field command: the file reader jumps to the label and then
starts to read the selected field. Next, perform another computation on a finer mesh:

mkgeo_grid -t 20 > square-20.geo

./stokes_cavity square-20.geo > square-20.field

and observe the convergence.

Finally, let us consider the three dimensional case:

mkgeo_grid -T 5 > cube.geo

./stokes_cavity cube.geo > cube.field

and the corresponding visualization:

field cube.field -velocity

field cube.field -comp 0

field cube.field -comp 1

field cube.field -comp 2

field cube.field -catchmark p

4.5 Computing the vorticity

Formulation and approximation

When d = 2, we define [19, page 30] for any distributions φ and v:

curlφ =

(
∂φ

∂x1
, − ∂φ

∂x0

)
,

curl v =
∂v1

∂x0
− ∂v0

∂x1
,
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and when d = 3:

curl v =

(
∂v2

∂x1
− ∂v1

∂x2
,
∂v0

∂x2
− ∂v2

∂x0
,
∂v1

∂x0
− ∂v0

∂x1

)

Let u be the solution of the Stokes problem (S). The vorticity is defined by:

ω = curl u when d = 2,
ω = curl u when d = 3.

Since the approximation of the velocity is piecewise quadratic, we are looking for a discontinuous
piecewise linear vorticity field that belongs to:

Yh = {ξ ∈ L2(Ω); ξ/K ∈ P1, ∀K ∈ Th}, when d = 2
Yh = {ξ ∈ (L2(Ω))3; ξi/K ∈ P1, ∀K ∈ Th}, when d = 3

The approximate variational formulation writes:

ωh ∈ Yh,
∫

Ω
ωh ξ dx =

∫
Ω

curl uh ξ dx, ∀ξ ∈ Yh when d = 2,

ω ∈ Yh,
∫

Ω
ωh.ξ dx =

∫
Ω

curl uh.ξ dx, ∀ξ ∈ Yh when d = 3.

Example file 4.9: vorticity.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char** argv) {
5 environment rheolef (argc , argv);
6 field uh;
7 din >> uh;
8 string grad_approx = "P" + itos(uh.get_space (). degree ()-1) + "d";
9 string valued = (uh.size() == 3) ? "vector" : "scalar";

10 space Lh (uh.get_geo(), grad_approx , valued );
11 form curl (uh.get_space (), Lh, "curl");
12 form inv_m (Lh, Lh, "inv_mass");
13 dout << catchmark("w") << inv_m *(curl*uh);
14 }

How to run the program

Figure 4.7: The vorticity: elevation view for d = 2 and vector representation for d = 3 (with
anaglyph).

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/vorticity.cc
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For d = 2, just enter:

make vorticity

./vorticity < square.field | field -elevation -stereo -

and you observe a discontinuous piecewise linear representation of the approximate vorticity. Also,
the vorticity presents two sharp peaks at the upper corners of the driven cavity: the vorticity is
unbounded and the peaks will increase with mesh refinements. This singularity of the solution is
due to the boundary condition for the first component of the velocity u0 that jumps from zero to
one at the corners. The approximate vorticity field can also be projected on a continuous piecewise
linear space, using the -proj option (See Fig. 4.7 left):

./vorticity < square.field | field -elevation -stereo -nofill -

./vorticity < square.field | field -elevation -stereo -proj -

For d = 3, the whole vorticity vector can also be visualized (See Fig. 4.7 right):

./vorticity < cube.field | field -proj -velocity -stereo -

In the previous command, the -proj option has been used: since the 3D render has no support for
discontinuous piecewise linear fields, the P1-discontinuous field is transformed into a P1-continuous
one, thanks to a L2 projection. P1 The following command shows the second component of the
vorticity vector, roughly similar to the bidimensional case.

./vorticity < cube.field | field -comp 1 -

./vorticity < cube.field | field -comp 1 -proj -

4.6 Computing the stream function

Formulation and approximation

When d = 3, the stream function is a vector-valued field ψ that satisfies [19, page 90]: curlψ = u
and divψ = 0. From the identity:

curl curlψ = −∆ψ +∇(divψ)

we obtain the following characterization of ψ :

−∆ψ = curl u in Ω,
ψ = 0 on Γback ∪ Γfront ∪ Γtop ∪ Γbottom,

∂ψ

∂n
= 0 on Γleft ∪ Γright.

When d = 2, the stream function ψ is a scalar-valued field the solution of the following problem [19,
page 88]:

−∆ψ = curl u in Ω,
ψ = 0 on ∂Ω.
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Example file 4.10: streamf cavity.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main (int argc , char** argv) {
5 environment rheolef (argc , argv);
6 field uh;
7 din >> uh;
8 string valued = (uh.size() == 3) ? "vector" : "scalar";
9 space Ph (uh.get_geo(), "P2", valued );

10 Ph.block("top"); Ph.block("bottom");
11 if (uh.get_geo (). dimension () == 3) {
12 Ph.block("back"); Ph.block("front");
13 } else {
14 Ph.block("left"); Ph.block("right");
15 }
16 const space& Xh = uh.get_space ();
17 form a (Ph, Ph, "grad_grad");
18 form b (Xh, Ph, "curl");
19 field psi_h (Ph , 0.);
20 field lh = b*uh;
21 solver sa (a.uu());
22 psi_h.set_u() = sa.solve (lh.u() - a.ub()* psi_h.b());
23 dout << catchmark("psi") << psi_h;
24 }

How to run the program

Figure 4.8: The stream function visualization: isolines for d = 2, and combined vectors and
isonorm surface for d = 3.

For d = 2, just enter (see Fig. 4.8 left):

make streamf_cavity

./streamf_cavity < square.field | field -bw -

For d = 3, the whole stream function vector can be visualized:

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/streamf_cavity.cc
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./streamf_cavity < cube.field | field -velocity -

The second component of the stream function is showed by:

./streamf_cavity < cube.field | field -comp 1 -

The combined representation of Fig. 4.8.right has been obtained in two steps. First, enter:

./streamf_cavity < cube.field | field -comp 1 -noclean -noexecute -

mv output.vtk psi1.vtk

./streamf_cavity < cube.field | field -velocity -

The -noclean -noexecute options cause the creation of the ‘.vtk’ file for the second component,
without running the mayavi visualization. Next, in the mayavi window associated to the whole
stream function, select the File/Load data/VTK file menu and load ‘psi1.vtk’. Finally, se-
lect the Vizualize/Module/IsoSurface menu. Observe that the 3D stream function is mainly
represented by its second component.
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Chapter 5

Nearly incompressible elasticity
and the stabilized Stokes problems

5.1 The incompressible elasticity problem

Formulation

Let us go back to the linear elasticity problem.

When λ becomes large, this problem is related to the incompressible elasticity and cannot be
solved as it was previously done. To overcome this difficulty, the pressure is introduced :

p = −λdiv u

and the problem becomes:

(E) find u and p defined in Ω such that:

− div(2D(u)) + ∇p = f in Ω,

− div u − 1

λ
p = 0 in Ω,

+B.C.

The variational formulation of this problem expresses:

(V FE) find u ∈ V (1) and p ∈ L2(Ω) such that:

a(u,v) + b(v, p) = m(f ,v), ∀v ∈ V (0),
b(u, q) − c(p, q) = 0, ∀q ∈ L2

0(Ω),

where

m(u,v) =

∫

Ω

u.v dx,

a(u,v) =

∫

Ω

D(u) : D(v) dx,

b(v, q) = −
∫

Ω

div(v) q dx.

c(p, q) =
1

λ

∫

Ω

p q dx.

V = {v ∈ (H1(Ω))2; v = 0 on Γleft ∪ Γbottom}
When λ becomes large, we obtain the incompressible elasticity problem, that coincides with the
Stokes problem.

63
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Approximation

As for the Stokes problem, the Talor-Hood [22] finite element approximation is considered. We
introduce a mesh Th of Ω and the following finite dimensional spaces:

Xh = {v ∈ (H1(Ω)); v/K ∈ (P2)2, ∀K ∈ Th},
Vh(α) = Xh ∩ V,
Qh = {q ∈ L2(Ω)) ∩ C0(Ω̄); q/K ∈ P1, ∀K ∈ Th},

The approximate problem writes:

(V FE)h find uh ∈ Vh(1) and p ∈ Qh such that:

a(uh,v) + b(v, ph) = 0, ∀v ∈ Vh(0),
b(uh, q) − c(p, q) = 0, ∀q ∈ Qh.

Example file 5.1: incompressible-elasticity.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "embankment.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 Float inv_lambda = (argc > 2 ? atof(argv [2]) : 0);
9 size_t d = omega.dimension ();

10 space Xh = embankment_space(omega , "P2");
11 space Qh (omega , "P1");
12 point f (0,0,0);
13 f [d-1] = -1;
14 field lh = riesz (Xh , f);
15 form mp (Qh, Qh, "mass");
16 form a (Xh, Xh, "2D_D");
17 form b (Xh, Qh, "div"); b = -b;
18 form c = inv_lambda*mp;
19 field uh (Xh , 0);
20 field ph (Qh , 0);
21 solver_abtb elasticity (a.uu(), b.uu(), c.uu(), mp.uu());
22 elasticity.solve (lh.u() - a.ub()*uh.b(), -(b.ub()*uh.b()),
23 uh.set_u(), ph.set_u ());
24 dout << catchmark("inv_lambda") << inv_lambda << endl
25 << catchmark("u") << uh
26 << catchmark("p") << ph;
27 }

Comments

The problem admits the following matrix form:
(

a.uu trans(b.uu)
b.uu −c.uu

)(
uh.u
ph.u

)
=

(
lh.u− a.ub ∗ uh.b
−b.ub ∗ uh.b

)

The problem is similar to the Stokes one (see page 56). This system is solved by:

solver_abtb elasticity (a.uu(), b.uu(), c.uu(), mp.uu());
elasticity.solve (lh.u() - a.ub()*uh.b(), -(b.ub()*uh.b()),

uh.set_u(), ph.set_u ());

For two-dimensional problems, a direct solver is used by default. In the three-dimensional case,
an iterative algorithm is the default: the preconditioned conjugate gradient. The preconditioner
is here the mass matrix mp.uu for the pressure. As showed in [24], the number of iterations need
by the conjugate gradient algorithm to reach a given precision is then independent of the mesh
size and is uniformly bounded when λ becomes small, i.e. in the incompressible case.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/incompressible-elasticity.cc
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How to run the program

Figure 5.1: The incompressible linear elasticity (λ = +∞) for N = 2 and N = 3.

We assume that the previous code is contained in the file ‘incompressible-elasticity.cc’.
Compile the program as usual (see page 12):

make incompressible-elasticity

and enter the commands:

mkgeo_grid -t 10 > square.geo

./incompressible-elasticity square.geo 0 > square.field

field square.field -mayavi -nofill

mkgeo_grid -T 10 > cube.geo

./incompressible-elasticity cube.geo 0 > cube.field

field cube.field -mayavi -fill -scale 2.5

The visualization is performed as usual: see section 4.1, page 46. Compare the results on Fig. 5.1,
obtained for λ = +∞ with those of Fig. 4.2, page 46, obtained for λ = 1.

Finally, the stress computation and the mesh adaptation loop is left as an exercise to the reader.

5.2 The P1b− P1 element for the Stokes problem

Formulation and approximation

Let us go back to the Stokes problem. In section 4.4, page 54, the Taylor-Hood finite element was
considered. Here, we turn to the mini-element [3] proposed by Arnold, Brezzi and Fortin, also
well-known as the P1-bubble element. This element is generally less precise than the Taylor-Hood
one, but becomes popular, mostly because it is easy to implement in two and three dimensions
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and furnishes a P1 approximation of the velocity field. Moreover, this problem develops some links
with stabilization technique and will presents some new Rheolef features.

We consider a mesh Th of Ω ⊂ Rd, d = 2, 3 composed only of simplicial elements: triangles when
d = 2 and tetrahedra when d = 3. The following finite dimensional spaces are introduced:

X
(1)
h = {v ∈ (H1(Ω))d; v/K ∈ (P1)d, ∀K ∈ Th},
Bh = {β ∈ (C0(Ω̄))d; β/K ∈ B(K)d,∀K ∈ Th}
Xh = X

(1)
h ⊕Bh

Vh(α) = Xh ∩V(α),

Qh = {q ∈ L2(Ω)) ∩ C0(Ω̄); q/K ∈ P1, ∀K ∈ Th},

where B(K) = vect(λ1 × . . . × λd+1) and λi are the barycentric coordinates of the simplex K.
The B(K) space is related to the bubble local space. The approximate problem is similar to (4.4),
page 55, up to the choice of finite dimensional spaces.

Remark that the velocity field splits in two terms: uh = u
(1)
h +u

(b)
h , where u

(1)
h ∈ X

(1)
h is continuous

and piecewise linear, and u
(b)
h ∈ Bh is the bubble term.

We consider the abrupt contraction geometry:

Ω =]−Lu, 0[×]0, c[ ∪ [0, Ld[×]0, 1[

where c ≥ 1 stands for the contraction ratio, and Lu, Ld > 0, are the upstream and downstream
tube lengths. The boundary conditions on u = (u0, u1) for this test case are:

u0 = upoiseuille and u1 = 0 on Γupstream

u = 0 on Γwall

∂u0

∂x1
= 0 and u1 = 0 on Γaxis

∂u

∂n
= 0 on Γdownstream

where

Γupstream = {−Lu}×]0, c[

Γdownstream = {Ld}×]0, 1[

Γaxis = ]−Lu, Ld[×{0}
Γwall = ]−Lu, 0[×{c} ∪ {0}×]1, c[ ∪ ]0, Ld[×{1}

The matrix structure is similar to those of the Taylor-Hood element (see section 4.4, page 54).

Since Xh = X
(1)
h ⊕ Bh, any element uh ∈ Xh can be written as a sum uh = u1,h + ub,h where

u1,h ∈ X
(1)
h and ub,h ∈ Bh. Remark that

a(u1,h, vb,h) = 0, ∀u1,h ∈ X
(1)
h , ∀vb,h ∈ Bh.

Thus, the form a(., .) defined over Xh × Xh writes simply as the sum of the forms a1(., .) and

ab(., .), defined over X
(1)
h ×X

(1)
h and Bh × Bh respectively. Finaly, the form b(., .) defined over

Xh ×Qh writes as the sum of the forms b1(., .) and bb(., .), defined over X
(1)
h ×Qh and Bh ×Qh

respectively. Then, the linear system admits the following block structure :




A1 0 BT1
0 Ab BTb
B1 Bb 0






U1

Ub
P


 =




L1

Lb
Lp
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An alternative and popular implementation of this element eliminates the unknowns related to
the bubble components (see e.g. [1], page 24). Remark that, on any element K ∈ Th, any bubble
function vK that belongs to B(K) vanishes on the boundary of K and have a compact support
in K. Thus, the Ab matrix is diagonal. Moreover, its diagonal elements are nonzero, thus Ab is
invertible and Ub writes :

Ub = A−1
b (BTb p− Lb)

Then, Ub can be easily eliminated from the system that reduces to:

(
A1 BT1
B1 −C

)(
U1

P

)
=

(
L1

L̃p

)

where L̃p = Lp − A−1
b Lp and C = BbA

−1
b BTb . Remarks that the matrix structure is similar to

those of the nearly incompressible elasticity (see 5.1, page 5.1). This reduced matrix formulation
of the P1b − P1 element is similar to the direct P1 − P1 stabilized element, proposed by Brezzi
and Pitkäranta [9].

Example file 5.2: stokes contraction bubble.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "poiseuille.h"
5

6 int main(int argc , char**argv) {
7 environment rheolef (argc , argv);
8 geo omega (argv [1]);
9 space X1h (omega , "P1", "vector");

10 space Bh (omega , "bubble", "vector");
11 space Qh (omega , "P1");
12 space Wh (omega["upstream"], "P1");
13 X1h.block ("wall");
14 X1h.block ("upstream");
15 X1h [1]. block ("axis");
16 X1h [1]. block ("downstream");
17 form a1 (X1h , X1h , "2D_D");
18 form ab (Bh, Bh, "2D_D");
19 form b1 = - form(X1h , Qh, "div");
20 form bb = - form(Bh, Qh, "div");
21 form c(Bh,Bh);
22 c.set_uu () = bb.uu()* diag (1./ diag(ab.uu ()))* trans(bb.uu());
23 form mp (Qh, Qh, "mass");
24 field u1h (X1h , 0);
25 field ph (Qh , 0);
26 string sys_coord = omega.coordinate_system_name ();
27 Float cr = omega.xmax ()[1];
28 u1h [0]["upstream"] = interpolate (Wh , u(cr ,sys_coord ));
29 solver_abtb stokes (a1.uu(), b1.uu(), c.uu(), mp.uu());
30 stokes.solve (-(a1.ub()* u1h.b()), -(b1.ub()* u1h.b()),
31 u1h.set_u(), ph.set_u ());
32 dout << catchmark("inv_lambda") << 0 << endl
33 << catchmark("u") << u1h
34 << catchmark("p") << ph;
35 }

Comments

The C = BbA
−1
b BTb form is computed as:

c.set_uu () = bb.uu()* diag (1./ diag(ab.uu ()))* trans(bb.uu());

As the spaces Bh and Qh have no blocked domains, the components c.ub, c.bu and c.bb are zero.
only c.uu has non-zero entries. Here diag(ab.uu()) returns a vector that represents the diagonal
of the matrix ab.uu. Then 1/diag(ab.uu()) converts the vector of the inverse values into a

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/stokes_contraction_bubble.cc
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diagonal matrix: the diagonal matrix is inverted. Finaly, the form is obtained from a product of
forms. Recall that forms are represented by sparse matrix.

Notice also the automatic computation of the geometric coordinate system and contraction ratio
c from the input mesh, as:

string sys_coord = omega.coordinate_system_name ();
Float cr = omega.xmax ()[1];

These parameters are send to the function that computes the Poiseuille input flow boundary
condition:

u1h [0]["upstream"] = interpolate (Wh , u(cr ,sys_coord ));

The file poiseuille.h contains code for the velocity and stream function boundary conditions.

Example file 5.3: poiseuille.h

1 struct u : std:: unary_function <point ,Float > {
2 Float operator () (const point& x) const {
3 return a*(c+x[1])*(c-x[1]); }
4 u (const Float& c1 , std:: string sc) : c(c1)
5 { a = (sc == "cartesian") ? 3/(2* pow(c,3)) : 4/pow(c,4); }
6 protected: Float c, a;
7 };
8 struct psi : std:: unary_function <point ,Float > {
9 Float operator () (const point& x) const {

10 return xy ? a*sqr(c-x[1])*(2*c+x[1]) : a*sqr(c-x[1])* sqr(c+x[1]); }
11 psi (const Float& c1 , std:: string sc) : c(c1), xy(sc == "cartesian")
12 { a = xy ? -1/(2*pow(c,3)) : -1/pow(c,4); }
13 protected: Float c, a; bool xy;
14 };

The Poiseuille velocity upstream boundary condition upoiseuille has been scaled such that the total
flow rate is equal to one. The stream function is equal to −1 on the axis and to zero on the wall.
This file contains also a treatment of the axisymmetric variant of the geometry: this case will be
presented in the next paragraphs.

How to run the program

The boundary conditions in this example are related to an abrupt contraction geometry with a
free surface. The corresponding mesh ‘contraction.geo’ can be easily builded from the geometry
description file ‘contraction.mshcad’, which is provided in the example directory of the Rheolef
distribution. The building mesh procedure is presented with details in appendix B, page B.

gmsh -2 contraction.mshcad -o contraction.msh

msh2geo contraction.msh > contraction.geo

geo contraction.geo

The mesh is represented on Fig. 5.2.top. Then, the computation and the visualization writes:

make stokes_contraction_bubble

./stokes_contraction_bubble contraction.geo > contraction-P1.field

field contraction-P1.field -mayavi -velocity

The visualization of the velocity field brings few informations about the properties of the flow.
The stream function is more relevant for stationary flow visualization.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/poiseuille.h
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ψmax = 1.109× 10−3

ψmax = 1.118× 10−3

Figure 5.2: Solution of the Stokes problem in the abrupt contraction: (top) the mesh; (center) the
P1 stream function associated to the P1b−P1 element; (bottom) the P2 stream function associated
to the P2 − P1 Taylor-Hood element.
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Example file 5.4: streamf contraction.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "poiseuille.h"
5 int main (int argc , char** argv) {
6 environment rheolef (argc , argv);
7 field uh;
8 din >> uh;
9 const geo& omega = uh.get_geo ();

10 string sys_coord = omega.coordinate_system_name ();
11 Float c = omega.xmax ()[1];
12 string approx = "P" + itos(uh.get_space (). degree ());
13 space Ph (omega , approx );
14 Ph.block("upstream");
15 Ph.block("wall");
16 Ph.block("axis");
17 space Wh (omega["upstream"], approx );
18 const space& Xh = uh.get_space ();
19 form a (Ph, Ph, "s_grad_grad");
20 form b (Ph, Xh, "s_curl");
21 field psi_h (Ph , 0);
22 psi_h["upstream"] = interpolate (Wh , psi(c,sys_coord ));
23 psi_h["wall"] = 0;
24 psi_h["axis"] = -1;
25 field lh = b.trans_mult(uh);
26 solver sa (a.uu());
27 psi_h.set_u() = sa.solve (lh.u() - a.ub()* psi_h.b());
28 dout << catchmark("psi") << psi_h;
29 }

Notice the use of special extensions of the grad grad and curl forms for the stream function
computation:

form a (Ph , Ph , "s_grad_grad");
form b (Ph , Xh , "s_curl");

These form are suitable for the axisymmetric coordinate system specific definition of the stream
function, while they coincide with the usual grad grad and curl forms on Cartesian coordinate
systems. The axisymmetric case will be presented in the next section.

The stream function ψ (see also section 4.6) is computed and visualized as:

make streamf_contraction

./streamf_contraction < contraction-P1.field > contraction-P1-psi.field

field contraction-P1-psi.field -mayavi

field contraction-P1-psi.field -n-iso 15 -n-iso-negative 10 -bw

The P1 stream function is represented on Fig. 5.2.center. The stream function is zero along the wall
and the line separating the main flow and the vortex located in the outer corner of the contraction.
Thus, the isoline associated to the zero value separates the main flow from the vortex. In order
to observe this vortex, an extra -n-iso-negative 10 option is added: ten isolines are drawn for
negatives values of ψ, associated to the main flow, and n iso-10 for the positives values, associated
to the vortex.

A similar computation based on the Taylor-Hood P2 − P1 element is implemented in
stokes contraction.cc. The code is similar, up to the boundary conditions, to
stokes cavity.cc (see page 55): thus it is not listed here but is available in the Rheolef example
directory.

make stokes_contraction

./stokes_contraction contraction.geo > contraction-P2.field

field contraction-P2.field -mayavi -velocity

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/streamf_contraction.cc
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./streamf_contraction < contraction-P2.field > contraction-P2-psi.field

field contraction-P2-psi.field -n-iso-negative 10 -bw

The associated P2 stream function is represented on Fig. 5.2.bottom. Observe that the two
solutions are similar and that the vortex activity, defined as ψmax, is accurately computed with
the two methods (see also [42], Fig. 5.11.a, page 143).

field contraction-P1-psi.field -max

field contraction-P2-psi.field -max

Recall that the stream function is negative in the main flow and positive in the vortex located
in the outer corner of the contraction. Nevertheless, the Taylor-Hood based solution is more
accurate : this is perceptible on the graphic, in the region where the upstream vortex reaches the
boundary.

5.3 Axisymmetric geometries

Axisymmetric geometries are fully supported in Rheolef: the coordinate system is associated to
the geometry description, stored together with the mesh in the ‘.geo’ and this information is
propagated in spaces, forms and fields without any change in the code. Thus, a code that works in
plane a 2D plane geometry is able to support a 3D axisymmetric one without changes. A simple
axisymmetric geometry writes:

mkgeo_grid -t 10 -zr > square-zr.geo

more square-zr.geo

Remark the additional line in the header:

coordinate_system zr

The axis of symmetry is denoted as z while the polar coordinates are (r, θ). By symmetry, the
problem is supposed to be independent upon θ and the computational domain is described by
(x0, x1) = (z, r). Conversely, in some cases, it could be convenient to swap the order of the
coordinates and use (r, z): this feature is obtained by the -rz option:

mkgeo_grid -t 10 -rz > square-rz.geo

more square-rz.geo

Axisymmetric problems uses L2 functional space equipped with the following weighted scalar
product

(f, g) =

∫

Ω

f(z, r) g(z, r) r drdz

and all usual bilinear forms support this weight. Thus, the coordinate system can be chosen
at run time and we can expect an efficient source code reduction.

5.4 The axisymmetric stream function and stress tensor

In the axisymmetric case, the velocity field u = (uz, ur) can be expressed in terms of the Stokes
stream function ψ by (see [5, p.453] and [51]):

u = (uz, ur) =

(
1

r

∂ψ

∂r
, −1

r

∂ψ

∂z

)
(5.1)
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Recall that in the axisymmetric case:

curlψ =

(
1

r

∂(rψ)

∂r
, −∂ψ

∂z

)

Thus, from this definition, in axisymmetric geometries u 6= curlψ and the definition of ψ differs
from the 2D plane or 3D cases (see section 4.6, page 59).

Let us turn to a variational formulation in order to compute ψ from u. For any ξ ∈ H1(Ω), let
us multiply (5.1) by v = (∂rξ, −∂zξ) and then integrate over Ω with the r dr dz weight. For any
known u velocity field, the problem writes:

(P): find ψ ∈ Ψ(ψΓ) such that

a(ψ, ξ) = b(ξ,u), ∀ξ ∈ Ψ(0)

where we have introduced the following bilinear forms:

a(ψ, ξ) =

∫

Ω

(
∂ψ

∂r

∂ξ

∂r
+
∂ψ

∂z

∂ξ

∂z

)
dr dz

b(ξ,u) =

∫

Ω

(
∂ξ

∂r
uz −

∂ξ

∂z
ur

)
r dr dz

As an example, let us reconsider the contraction geometry (see section 5.2, page 65), extended in
the axisymmetric case. In that case, the functional space is defined by:

Ψ(ψΓ) = {ϕ ∈ H1(Ω); ϕ = ψΓ on Γupstream ∪ Γwall ∪ Γaxis}

with

ψΓ =





ψpoiseuile on Γupstream

0 on Γwall

−1 on Γaxis

This space corresponds to the imposition of Dirichlet boundary conditions on Γupstream, Γwall and
Γaxis and a Neumann boundary condition on Γdownstream.

These forms are defined in ‘streamf contraction.cc’ as:

form a (Ph , Ph , "s_grad_grad");
form b (Ph , Xh , "s_curl");

Notice that a is similar to the grad grad form, but where the usual r dr dz measure is replaced
by dr dz, i.e. without the r weight. Conversely, b is related to the s curl operator:

s curl ξ =

(
∂ξ

∂r
, −∂ξ

∂z

)

that is closely related to the standard curl operator:

curl ξ =

(
1

r

∂(rξ)

∂r
, −∂ξ

∂z

)

Notice the apparition of r and 1/r in the last expression.

The following unix commands generate the axisymmetric geometry:

gmsh -2 contraction.mshcad -o contraction.msh

msh2geo -zr contraction.msh > contraction-zr.geo

more contraction-zr.geo

geo contraction-zr.geo
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ψmax = 1.84× 10−3

Figure 5.3: Solution of the axisymmetric Stokes problem in the abrupt contraction: (top) the P2

stream function associated to the P2 − P1 element; (bottom) comparison with the 2D Cartesian
solution (in red).

The previous code stokes contraction.cc and streamf contraction.cc are both reused as:

./stokes_contraction contraction-zr.geo > contraction-zr-P2.field

./streamf_contraction < contraction-zr-P2.field > contraction-zr-P2-psi.field

field contraction-zr-P2-psi.field -n-iso-negative 10 -bw

The solution is represented on Fig. 5.3: it slightly differs from the 2D Cartesian solution, as
computed in the previous section (see Fig. 5.2). The vortex size is smaller but its intensity
ψmax = 1.84× 10−3 is higher. Despite the stream functions looks like similar, the plane solutions
are really different, as we can observe from a cut of the first component of the velocity along the
axis (see Fig. 5.4):

field contraction-P2.field -comp 0 -cut -normal 0 1 -origin 0 1e-15

field contraction-zr-P2.field -comp 0 -cut -normal 0 1 -origin 0 1e-15

The 1e-15 argument replace the zero value, as the mesh intersection cannot yet be done exactly
on the boundary. Notice that the stokes contraction bubble.cc can be also reused in a similar
way:

./stokes_contraction_bubble contraction-zr.geo > contraction-zr-P1.field

./streamf_contraction < contraction-zr-P1.field > contraction-zr-P1-psi.field

field contraction-zr-P1-psi.field -n-iso-negative 10 -bw
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Figure 5.4: Solution of the plane and axisymmetric Stokes problem in the abrupt contraction: cut
along the axis of symmetry: (left): u0; (right) τθθ.

There is another major difference with axisymmetric problems: the rate of deformation tensor
writes:

τ = 2D(u) =




τzz τrz 0
τrz τrr 0
0 0 τθθ




Thus, there is an additional non-zero component τθθ that is automatically integrated into the
computations in Rheolef. The incompressibility relation leads to tr(τ) = τzz + τrr + τθθ = 0.
Here σtot = −p.I+ τ is the total Cauchy stress tensor (by a dimensionless procedure, the viscosity
can be taken as one). By reusing the stress.cc code (see page 48) we are able to compute the
tensor components:

make stress

./stress < contraction-zr-P1.field > contraction-zr-P1-tau.field

The visualization along the axis of symmetry for the τθθ component is obtained by (see Fig. 5.4):

field contraction-zr-P1-tau.field -comp 22 -proj -cut -normal 0 1 -origin 0 1e-15

Recall that the τzz and τrr components are obtained by the -comp 00 and -comp 11 options,
respectively. The non-zero values along the axis of symmetry expresses the elongational effects in
the entry region of the abrupt contraction.



Chapter 6

Time-dependent problems

6.1 The heat equation

Formulation

Let T > 0, Ω ⊂ Rd, d = 1, 2, 3 and fdefined in Ω. The heat problem writes:

(P ): find u, defined in Ω×]0, T [, such that

∂u

∂t
−∆u = f in Ω×]0, T [,

u(0) = 0 in Ω,

u(t) = 0 on ∂Ω×]0, T [.

where f is a known function.

Approximation

Let ∆t > 0 and tn = n∆t, n ≥ 0. The problem is approximated with respect to time by the
following first-order implicit Euler scheme:

un+1 − un
∆t

−∆un+1 = f(tn+1) in Ω

where un ≈ u(n∆t) and u(0) = 0. We reuse the bilinear forms a and m defined in section 1.1,
page 9 for the Dirichlet problem and introduce the bilinear form c = m + ∆t a. The variational
formulation of the time-discretized problem writes:

(V F )n: Let un being known, find un+1 ∈ H1
0 (Ω) such that

c (un+1, v) = m(un + ∆t f(tn+1), v), ∀v ∈ H1
0 (Ω).

This is a Poisson-like problem. The discretization with respect to space of this problem is similar
to those presented in section 1.1, page 9.

75
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Example file 6.1: heat.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main (int argc , char **argv) {
5 environment rheolef (argc , argv);
6 geo omega (argv [1]);
7 size_t n_max = (argc > 2) ? atoi(argv [2]) : 100;
8 Float delta_t = 0.5/ n_max;
9 space Xh (omega , "P1");

10 Xh.block ("boundary");
11 form m (Xh, Xh, "mass");
12 form a (Xh, Xh, "grad_grad");
13 form c = m + delta_t*a;
14 solver sc = ldlt (c.uu());
15 field lh = riesz (Xh , 1);
16 field uh (Xh , 0);
17 branch event ("t","u");
18 dout << event (0, uh);
19 for (size_t n = 1; n <= n_max; n++) {
20 field kh = m*uh + delta_t*lh;
21 uh.set_u () = sc.solve (kh.u() - c.ub()*uh.b());
22 dout << event (Float(n)*delta_t , uh);
23 }
24 }

Comments

Notice the use of the branch class:

branch event ("t","u");

this is a wrapper class that is used here to print the branch of solution (tn, u
n)n≥0, on the standard

output in the ‘.branch’ file format. An instruction as:

dout << event (t,uh);

is equivalent to the formatted output

dout << catchmark("t") << t << endl
<< catchmark("u") << uh;

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/heat.cc
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How to run the program

Figure 6.1: Animation of the solution of the heat problem.

We assume that the previous code is contained in the file ‘heat.cc’. Then, compile the program
as usual (see page 12):

make heat

For a one dimensional problem, enter the commands:

mkgeo_grid -e 10 > line.geo

./heat line.geo > line.branch

The previous commands solve the problem for the corresponding mesh and write the solution in
the field-family file format ‘.branch’. For a bidimensional one:

mkgeo_grid -t 10 > square.geo

./heat square.geo > square.branch

For a tridimensional one:
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mkgeo_grid -T 10 > box.geo

./heat box.geo > box.branch

How to run the animation

branch line.branch -gnuplot -umax 0.125

A gnuplot window appears. Enter q to exit the window. For a bidimensional case, a more
sophisticated procedure is required. Enter the following unix commands:

branch square.branch -paraview

paraview &

A window appears, that looks like a video player. Then, open the File->open menu and
load square-..vtk. The first ’.’ stands for a wildcard, i.e. the time index family. Then,

press the apply green button and, click a first time on the video play button, at the top

of the window. Next, go to the object inspector window, select display and click on the

re-scale to data range button. Then click a second time on the video play button. An eleva-

tion view can be also obtained: Select the Filter->alphabetical->wrap(scalar) menu, choose
10 as scale factor and press the apply green button. Then, click on the graphic window, rotate
the view and finally re-play the animation

To generate an animation file1, go to the File->save animation menu and enter as file name
square and as file type jpeg. A collection of jpeg files are generated by paraview. Then, run
the unix command:

ffmpeg -r 2 -i ’square.%04d.jpg’ square.mov

The animation file square.mov can now be started from any video player, such as vlc:

vlc --loop square.mov

For the tridimensional case, the animation feature is similar.

6.2 The convection-diffusion problem

Formulation

Let T > 0 and ν > 0. The convection-diffusion problem writes:

(P ): find φ, defined in Ω×]0, T [, such that

∂φ

∂t
+ u.∇φ− ν∆φ+ σφ = 0 in Ω×]0, T [

φ(0) = φ0 in Ω

φ(t) = φΓ(t) on ∂Ω×]0, T [

where u, σ ≥ 0, φ0 and φΓ being known. Notice the additional u.∇ operator.

1At this time, the avi output feature is broken in paraview, and an alternate mpeg output is here suggested.
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Time approximation

This problem is approximated by the following first-order implicit Euler scheme:

φn+1 − φn ◦Xn

∆t
− ν∆φn+1 = 0 in Ω

where ∆t > 0, φn ≈ φ(n∆t) and φ(0) = φ0.

Let tn = n∆t, n ≥ 0. The term Xn(x) is the position at tn of the particle that is in x at tn+1

and is transported by un. Thus, Xn(x) = X(tn, x) where X(t, x) is the solution of the differential
equation {

dX

dt
= u(X(t, x), t) p.p. t ∈ ]tn, tn+1[,

X(tn+1, x) = x.

Then Xn(x) is approximated by the first-order Euler approximation

Xn(x) ≈ x−∆tnn(x).

This algorithm has been introduced by O. Pironneau (see e.g. [35]), and is known as the method
of characteristic in the finite difference context and as the Lagrange-Galerkin in the finite element
one. The efficient evaluation of φh ◦Xn(x) in an unstructured mesh involves a hierarchical d-tree
(quadtree, octree) data structure for the localization of the element K of the mesh that contains
x. When d = 3 requires also sophisticated geometric predicates to test whether x ∈ K without
rounding errors, and avoid to conclude that no elements contains a point x close to ∂K up to
rounding errors. This problems is addressed in Rheolef based on the cgal library.

The following code implements the classical rotating Gaussian hill test case (see e.g. [41]).

Example file 6.2: convect.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "rotating -hill.h"
5 int main (int argc , char **argv) {
6 environment rheolef (argc ,argv);
7 geo omega (argv [1]);
8 string approx = (argc > 2) ? argv [2] : "P1";
9 Float nu = (argc > 3) ? atof(argv [3]) : 1e-2;

10 size_t n_max = (argc > 4) ? atoi(argv [4]) : 50;
11 size_t d = omega.dimension ();
12 Float delta_t = 2*acos ( -1.)/ n_max;
13 space Vh (omega , approx , "vector");
14 field uh = interpolate (Vh , u(d));
15 space Xh (omega , approx );
16 Xh.block ("boundary");
17 field phi_h = interpolate (Xh , phi(d,nu ,0));
18 characteristic X (-delta_t*uh);
19 quadrature_option_type qopt;
20 qopt.set_family(quadrature_option_type :: gauss_lobatto );
21 qopt.set_order(Xh.degree ());
22 form m (Xh, Xh, "mass", qopt);
23 form a (Xh, Xh, "grad_grad");
24 branch event ("t","phi");
25 dout << catchmark("nu") << nu << endl
26 << event (0, phi_h );
27 for (size_t n = 1; n <= n_max; n++) {
28 Float t = n*delta_t;
29 field lh = riesz(Xh , compose(phi_h , X), qopt);
30 form c = (1 + delta_t*phi::sigma(d,nu,t))*m + delta_t*nu*a;
31 solver sc (c.uu());
32 phi_h.set_u() = sc.solve (lh.u() - c.ub()* phi_h.b());
33 dout << event (t, phi_h );
34 }
35 }

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/convect.cc
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Comments

The characteristic variable X implements the localizer Xn(x):

characteristic X (-delta_t*uh);

Combined with the compose function, it perform the composition φh ◦Xn. The right-hand side
is then computed as usual by using the riesz function:

field lh = riesz(Xh , compose(phih , X));

Notice also the use of the lumped mass matrix:

form m (Xh , Xh , "lumped_mass");

The lumped procedure leads to profitable spectral properties of the mass matrix that are profitable
to the stability of the method. As test case is described in [36]: we take Ω =]− 2, 2[d and T = 2π.
This problem provides an example for a convection-diffusion equation and a known analytical
solution:

φ(t, x) = exp
(
−λt− r(t)|x− x0(t)|2

)

where λ = 4νt0 ≥ 0 with t0 > 0 and ν ≥ 0, x0(t) is the moving center of the hill and r(t) =
1/(t0 + 4νt). The source term is time-dependent: σ(t) = λ− 2dνr(t) and has been adjusted such
that the right-hand side is zero. The moving center of the hill x0(t) is associated to the velocity
field u(t, x) as:

d u(t, x) x0(t)

1 1/(2π) t/(2π)− 1/2
2 (y,−x) (− cos(t)/2, sin(t)/2)
3 (y,−x, 0) (− cos(t)/2, sin(t)/2, 0)

Example file 6.3: rotating-hill.h

1 struct u : std:: unary_function <point ,point > {
2 point operator () (const point & x) const {
3 return (d == 1) ? point(u0) : point(x[1], -x[0]); }
4 u (size_t d1) : d(d1), u0 (0.5/ acos(Float ( -1))) {}
5 protected: size_t d; Float u0;
6 };
7 struct phi : std:: unary_function <point ,Float > {
8 static Float sigma(size_t d, Float nu1 , Float t) {
9 const Float t0 = 0.2;

10 return 4*nu1/t0 - 2*d*nu1/(t0 + 4*nu1*t); }
11 Float operator () (const point& x) const {
12 point x0t;
13 if (d == 1) { x0t = point(x0[0] + u0*t); }
14 else { x0t = point( x0[0]* cos(t) + x0[1]* sin(t),
15 -x0[0]* sin(t) + x0[1]* cos(t));
16 }
17 return exp(-4*nu*(t/t0) - dist2(x,x0t )/(t0+4*nu*t));
18 }
19 phi (size_t d1 , Float nu1 , Float t1) : d(d1), nu(nu1), t(t1),
20 t0(0.2), u0 (0.5/ acos(Float (-1))), x0(-0.5,0) {}
21 protected: size_t d; Float nu , t, t0 , u0; point x0;
22 };

Notice the use of a class-function phi for the implementation of φ(t) as a function of x. Such
programming style has been introduced in the standard template library [30], which is a part of
the standard C++ library. By this way, for a given t, φ(t) can be interpolated as an usual function
on a mesh.

How to run the program

We assume that the previous code is contained in the file ‘convect.cc’. Then, compile the program
as usual (see page 12):

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/rotating-hill.h
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Figure 6.2: Animation of the solution of the rotating hill problem.

make convect

and enter the commands: Running the one-dimensional test case:

mkgeo_grid -e 500 -a -2 -b 2 > line2.geo

./convect line2.geo P1 > line2.branch

branch line2.branch -gnuplot

Notice the hill that moves from x = −1/2 to x = 1/2. Since the exact solution is known, it is
possible to analyze the error:
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Example file 6.4: convect error.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "rotating -hill.h"
5 int main (int argc , char **argv) {
6 environment rheolef (argc ,argv);
7 Float nu;
8 din >> catchmark("nu") >> nu;
9 branch get ("t","phi");

10 branch put ("t","phi_h","pi_h_phi");
11 derr << "# t\terror_l2\terror_linf" << endl;
12 field phi_h;
13 Float err_l2_l2 = 0;
14 Float err_linf_linf = 0;
15 for (Float t = 0, t_prec = 0; din >> get (t, phi_h); t_prec = t) {
16 const space& Xh = phi_h.get_space ();
17 size_t d = Xh.get_geo (). dimension ();
18 field pi_h_phi = interpolate (Xh , phi(d,nu ,t));
19 form m (Xh , Xh , "mass");
20 field eh = phi_h - pi_h_phi;
21 Float err_l2 = sqrt(m(eh ,eh));
22 Float err_linf = eh.max_abs ();
23 err_l2_l2 += sqr(err_l2 )*(t - t_prec );
24 err_linf_linf = max(err_linf_linf , err_linf );
25 dout << put (t, phi_h , pi_h_phi );
26 derr << t << "\t" << err_l2 << "\t" << err_linf << endl;
27 }
28 derr << "# error_l2_l2 = " << sqrt(err_l2_l2) << endl;
29 derr << "# error_linf_linf = " << err_linf_linf << endl;
30 }

The numerical error φh − πh(φ) is computed as:

field eh = phih - interpolate (Xh , phi(t));

and its L2 norm is printed on the standard error. Observe the use of the branch class as both
input and output field stream.

make convect_error

./convect_error < line2.branch > line2-cmp.branch

branch line2-cmp.branch -gnuplot

The instantaneous L2(Ω) norm is printed at each time step and the total error in L2(]0, T [;L2(Ω))
is finally printed at the end of the stream.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/convect_error.cc
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Figure 6.3: Diffusion-convection when d = 1 and ν = 10−2: convergence versus h and ∆t for P1

and P2 elements: (left) in L2(L2) norm; (right) in L∞(L∞) norm.

A P2 approximation can be used as well:

./convect line2.geo P2 > line2.branch

branch line2.branch -gnuplot

./convect_error < line2.branch > line2-cmp.branch

On Fig. 6.3.left we observe the L2(L2) convergence versus h for the P1 and P2 elements when
d = 1: the errors reaches a plateau that decreases versus ∆t. On Fig. 6.3.right the L∞(L∞) norm
of the error presents a similar behavior. Since the plateau are equispaced, the convergence versus
∆t is of first order.

These computation was performed for a convection-diffusion problem with ν = 10−2. The pure
transport problem (ν = 0, without diffusion) computation is obtained by:

./convect line2.geo P1 0 > line2.branch

branch line2.branch -gnuplot

Let us turn to the two-dimensional test case:

mkgeo_grid -t 80 -a -2 -b 2 -c -2 -d 2 > square2.geo

./convect square2.geo P1 > square2.branch

branch square2.branch -paraview

paraview &

The visualization and animation are similar to those of the head problem previously presented
in paragraph 6.1. Observe the rotating hill. The result is shown on Fig. 6.2. The error analysis
writes:

./convect_error < square2.branch > square2-cmp.branch

branch square2-cmp.branch -paraview



84 Rheolef version 6.3 update 18 June 2012

From the paraview menu, you can visualize simultaneously both the approximate solution and the
Lagrange interpolate of the exact one. Finally, the three-dimensional case:

mkgeo_grid -T 15 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube2.geo

./convect cube2.geo P1 > cube2.branch

The visualization is similar to the two-dimensional case.

6.3 The Navier-Stokes problem

Formulation

This longer example combines most functionalities presented in the previous examples.

Let us consider the Navier-Stokes problem for the driven cavity in Ω =]0, 1[d, d = 2, 3. Let Re > 0
be the Reynolds number, and T > 0 a final time. The problem writes:

(NS): find u = (u0, . . . , ud−1) and p defined in Ω×]0, T [ such that:

Re

(
∂u

∂t
+ u.∇u

)
− div(2D(u)) + ∇p = 0 in Ω×]0, T [,

− div u = 0 in Ω×]0, T [,
u(t=0) = 0 in Ω× {0, T},

u = (1, 0) on Γtop×]0, T [,
u = 0 on (Γleft ∪ Γright ∪ Γbottom)×]0, T [,
∂u0

∂n
=

∂u1

∂n
= u2 = 0 on (Γback ∪ Γfront)×]0, T [ when d = 3,

where D(u) = (∇u + ∇uT )/2. This nonlinear problem is the natural extension of the linear
Stokes problem, as presented in paragraph 6.3, page 84. The boundaries are represented on
Fig. 4.1, page 44.

Time approximation

Let ∆t > 0. Let us consider the following backward second order scheme, for all φ ∈ C2([0, T ]) :

dφ

dt
(t) =

3φ(t)− 4φ(t−∆t) + φ(t− 2∆t)

2∆t
+O(∆t2)

The problem is approximated by the following second-order implicit Euler scheme:

Re
3un+1 − 4un ◦Xn + un−1 ◦Xn−1

2∆t
− div(2D(un+1)) + ∇pn+1 = 0 in Ω,

− div un+1 = 0 in Ω,
un+1 = (1, 0) on Γtop,
un+1 = 0 on Γleft ∪ Γright ∪ Γbottom,

∂un+1
0

∂n
=
∂un+1

1

∂n
= un+1

2 = 0 on Γback ∪ Γfront when d = 3,

where, following [7, 15]:

Xn(x) = x−∆tu∗(x)

Xn−1(x) = x− 2∆tu∗(x)

u∗ = 2un − un−1

It is a second order extension of the method previously introduced in paragraph 6.2 page 79. The
scheme defines a second order recurrence for the sequence (un)n≥−1, that starts with u−1 = u0 = 0.
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Variational formulation

The variational formulation of this problem expresses:

(NS)∆t: find un+1 ∈ V(1) and pn+1 ∈ L2
0(Ω) such that:

a(un+1,v) + b(v, pn+1) = m(fn,v), ∀v ∈ V(0),

b(un+1, q) = 0, ∀q ∈ L2
0(Ω),

where

fn =
Re

2∆t

(
4 un ◦Xn − un−1 ◦Xn

)

where

a(u,v) =
3Re

2∆t

∫

Ω

u.v dx+

∫

Ω

2D(u) : D(v) dx

and b(., .) and V(α) was already introduced in paragraph 4.4, page 54, while studying the Stokes
problem.

Space approximation

The Taylor-Hood [22] finite element approximation of this generalized Stokes problem was also
considered in paragraph 4.4, page 54. We introduce a mesh Th of Ω and the finite dimensional
spaces Xh, Vh(α) and Qh. The approximate problem writes:

(NS)∆t,h: find un+1
h ∈ Vh(1) and pn+1 ∈ Qh such that:

a(un+1
h ,v) + b(v, pn+1

h ) = m(fnh ,v), ∀v ∈ Vh(0),
b(un+1

h , q) = 0, ∀q ∈ Qh.
(6.1)

where

fnh =
Re

2∆t

(
4 unh ◦Xn − un−1

h ◦Xn
)

The problem reduces to a sequence resolution of a generalized Stokes problems.
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Example file 6.5: navier stokes solve.icc

1 using namespace std;
2 int navier_stokes_solve (
3 Float Re , Float delta_t , field l0h , field& uh , field& ph ,
4 size_t& max_iter , Float& tol , odiststream *p_derr =0) {
5 const space& Xh = uh.get_space ();
6 const space& Qh = ph.get_space ();
7 string label = "navier -stokes -" + Xh.get_geo (). name ();
8 quadrature_option_type qopt;
9 qopt.set_family(quadrature_option_type :: gauss_lobatto );

10 qopt.set_order(Xh.degree ());
11 form m (Xh, Xh, "mass", qopt);
12 form a (Xh, Xh, "2D_D");
13 form mp(Qh, Qh, "mass");
14 a = a + 1.5*(Re/delta_t )*m;
15 solver sa (a.uu());
16 form b (Xh, Qh, "div"); b = -b;
17 solver_abtb stokes (a.uu(), b.uu(), mp.uu());
18 if (p_derr != 0) *p_derr << "[" << label << "] #n |du/dt|" << endl;
19 field uh1 = uh;
20 for (size_t n = 0; true; n++) {
21 field uh2 = uh1;
22 uh1 = uh;
23 field uh_star = 2.0* uh1 - uh2;
24 characteristic X1 ( -delta_t*uh_star );
25 characteristic X2 (-2.0* delta_t*uh_star );
26 field l1h = riesz(Xh , compose(uh1 ,X1), qopt);
27 field l2h = riesz(Xh , compose(uh2 ,X2), qopt);
28 field lh = l0h + (Re/delta_t )*(2* l1h - 0.5* l2h);
29 stokes.solve (lh.u() - a.ub()*uh.b(), -(b.ub()*uh.b()),
30 uh.set_u(), ph.set_u ());
31 field duh_dt = (3*uh - 4*uh1 + uh2 )/(2* delta_t );
32 Float residual = sqrt(m(duh_dt ,duh_dt ));
33 if (p_derr != 0) *p_derr << "[" << label << "] "<< n << " " << residual << endl;
34 if (residual < tol) {
35 tol = residual;
36 max_iter = n;
37 return 0;
38 }
39 if (n == max_iter -1) {
40 tol = residual;
41 return 1;
42 }
43 }
44 }

Comments

The navier stokes solve function is similar to the ‘stokes cavity.cc’. It solves here a gener-
alized Stokes problem and manages a right-hand side fh:

characteristic X1 ( -delta_t*uh_star );
characteristic X2 (-2.0* delta_t*uh_star );
field l1h = riesz(Xh , compose(uh1 ,X1), qopt);
field l2h = riesz(Xh , compose(uh2 ,X2), qopt);
field lh = l0h + (Re/delta_t )*(2* l1h - 0.5* l2h);

This last computation is similar to those done in the ‘convect.cc’ example. The generalized Stokes
problem is solved by the solver abtb class. The stopping criterion is related to the stationary
solution or the maximal iteration number.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/navier_stokes_solve.icc
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Example file 6.6: navier stokes cavity.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "navier_stokes_solve.icc"
5 #include "navier_stokes_criterion.icc"
6 #include "cavity.icc"
7 int main (int argc , char**argv) {
8 environment rheolef (argc , argv);
9 if (argc < 2) {

10 cerr << "usage: " << argv [0] << " <geo > <Re> <err > <hmin > <delta t> <n_adapt >" << endl;
11 exit (1);
12 }
13 geo omega (argv [1]);
14 adapt_option_type options;
15 Float Re = (argc > 2) ? atof(argv [2]) : 100;
16 options.err = (argc > 3) ? atof(argv [3]) : 1e-2;
17 size_t n_adapt = (argc > 4) ? atoi(argv [4]) : 5;
18 Float delta_t = 0.05;
19 options.hmin = 0.004;
20 options.hmax = 0.1;
21 space Xh = cavity_space (omega , "P2");
22 space Qh (omega , "P1");
23 field uh = cavity_field (Xh , 1.0);
24 field ph (Qh , 0);
25 field fh (Xh , 0);
26 for (size_t i = 0; true; i++) {
27 size_t max_iter = 1000;
28 Float tol = 1e-5;
29 navier_stokes_solve (Re , delta_t , fh , uh , ph , max_iter , tol , &derr);
30 odiststream o (omega.name(), "field");
31 o << catchmark("Re") << Re << endl
32 << catchmark("delta_t") << delta_t << endl
33 << catchmark("u") << uh
34 << catchmark("p") << ph;
35 o.close ();
36 if (i >= n_adapt) break;
37 field ch = navier_stokes_criterion (Re ,uh);
38 omega = adapt (ch , options );
39 o.open (omega.name(), "geo");
40 o << omega;
41 o.close ();
42 Xh = cavity_space (omega , "P2");
43 Qh = space (omega , "P1");
44 uh = cavity_field (Xh, 1.0);
45 ph = field (Qh, 0);
46 fh = field (Xh, 0);
47 }
48 }

Example file 6.7: navier stokes criterion.icc

1 field navier_stokes_criterion (Float Re , const field& uh) {
2 space X0h (uh.get_geo(), "P1d");
3 space Xh (uh.get_geo(), "P1d", "vector");
4 space Th (uh.get_geo(), "P1d", "tensor");
5 form mpt (uh.get_space (), Xh, "mass");
6 form _2D (uh.get_space (), Th, "2D");
7 form inv_m (Xh, Xh, "inv_mass");
8 form inv_mt (Th, Th, "inv_mass");
9 field uh1 = sqrt(Re)* inv_m*(mpt*uh);

10 field _2Duh = inv_mt *(_2D*uh);
11 return interpolate (X0h , sqrt(norm2(uh1) + norm2(_2Duh )));
12 }

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/navier_stokes_cavity.cc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/navier_stokes_criterion.icc
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Comments

The code performs a computation by using adaptive mesh refinement, in order to capture recir-
culation zones. The adapt option type declaration is used by rheolef to send options to the
mesh generator. The code reuse the file ‘cavity.icc’ introduced page 55. This file contains two
functions that defines boundary conditions associated to the cavity driven problem.

The criteria function computes the adaptive mesh refinement criteria:

ch = (Re|uh|2 + 2|D(uh)|2)1/2

The criteria function is similar to those presented in the ‘embankment adapt.cc’ example.
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How to run the program

Re = 100: 4804 elements, 2552 vertices ψmax = 9.5× 10−6, ψmin = −0.103

Re = 400: 5233 elements, 2768 vertices ψmax = 6.4× 10−4, ψmin = −0.111

Figure 6.4: Meshes and stream functions associated to the solution of the Navier-Stokes equations
for Re = 100 (top) and Re = 400 (bottom).
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Re = 1000: 5873 elements, 3106 vertices ψmax = 1.64× 10−3, ψmin = −0.117

Figure 6.5: Meshes and stream functions associated to the solution of the Navier-Stokes equations
for Re = 1000.

The mesh loop adaptation is initiated from a bamg mesh (see also appendix B.1).

bamg -g square.bamgcad -o square.bamg

bamg2geo square.bamg square.dmn > square.geo

Then, compile and run the Navier-Stokes solver for the driven cavity for Re = 100:

make navier_stokes_cavity

./navier_stokes_cavity square.geo 100

The program performs a computation with Re = 100. By default the time step is ∆t = 0.05
and the computation loops for five mesh adaptations. At each time step, the program prints an
approximation of the time derivative, and stops when a stationary solution is reached. Then, we
visualize the ‘square-5.geo’ adapted mesh and its associated solution:

geo square-5.geo

field square-5.field.gz -velocity -scale 4 -mayavi

Notice the -scale option that applies a multiplicative factor to the arrow length when plotting.
The representation of the stream function writes:

make streamf_cavity

zcat square-5.field.gz | ./streamf_cavity | field -bw -n-iso-negative 10 -

The programs ‘streamf cavity.cc’, already introduced page 60, is here reused. The last options
of the field program draws isocontours of the stream function using lines, as shown on Fig. 6.4.
The zero isovalue separates the main flow from recirculations, located in corners at the bottom of
the cavity.

For Re = 400 and 1000 the computation writes:
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./navier_stokes_cavity square.geo 400

./navier_stokes_cavity square.geo 1000
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Figure 6.6: Navier-Stokes: velocity profiles along lines passing thought the center of the cavity,
compared with data from [18]: (a) u0 along the vertical line; (b) u1 along the horizontal line line.

The visualization of the cut of the horizontal velocity along the vertical median line writes:

field square-5.field.gz -comp 0 -cut -normal -1 0 -origin 0.5 0

field square-5.field.gz -comp 1 -cut -normal 0 1 -origin 0 0.5

Fig. 6.6 compare the cuts with data from [18], table 1 and 2 (see also [20]). Observe that the
solution is in good agreement with these previous computations.

Re xc yc −ψmin ψmax

100 present 0.613 0.738 0.103 9.5× 10−6

Labeur and Wells [26] 0.608 0.737 0.104 -
Donea and Huerta [13] 0.62 0.74 0.103 -

400 present 0.554 0.607 0.111 5.6× 10−4

Labeur and Wells [26] 0.557 0.611 0.115 -
Donea and Huerta [13] 0.568 0.606 0.110 -

1000 present 0.532 0.569 0.117 1.6× 10−3

Labeur and Wells [26] 0.524 0.560 0.121 -
Donea and Huerta [13] 0.540 0.573 0.110 -

Figure 6.7: Cavity flow: primary vortex position and stream function value.

Finally, table 6.7 compares the primary vortex position and its associated stream function value.
Notice also the good agreement with previous simulations. The stream function extremal values
are obtained by:
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zcat square-5.field.gz | ./streamf_cavity | field -min -

zcat square-5.field.gz | ./streamf_cavity | field -max -

The maximal value has not yet been communicated to our knowledge and is provided in table 6.7
for cross validation purpose. The small program that computes the primary vortex position is
showed below.

make vortex_position

zcat square-5.field.gz | ./streamf_cavity | ./vortex_position

Example file 6.8: vortex position.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 int main (int argc , char** argv) {
4 environment rheolef (argc , argv);
5 check_macro (communicator (). size() == 1, "please , use sequentially");
6 field psi_h;
7 din >> psi_h;
8 size_t idof_min = 0;
9 Float psi_min = std:: numeric_limits <Float >::max();

10 for (size_t idof = 0, ndof = psi_h.ndof (); idof < ndof; idof ++) {
11 if (psi_h.dof(idof) >= psi_min) continue;
12 psi_min = psi_h.dof(idof);
13 idof_min = idof;
14 }
15 const array <point >& xdof = psi_h.get_space (). get_xdofs ();
16 point xmin = xdof [idof_min ];
17 dout << "xc\t\tyc\t\tpsi" << std::endl
18 << xmin [0] << "\t" << xmin [1] << "\t" << psi_min << std::endl;
19 }

For higher Reynolds number, Shen [47] showed in 1991 that the flow converges to a stationary state
for Reynolds numbers up to 10 000; for Reynolds numbers larger than a critical value 10 000 <
Re1 < 10 500 and less than another critical value 15 000 < Re2 < 16 000, these authors founded
that the flow becomes periodic in time which indicates a Hopf bifurcation; the flow loses time
periodicity for Re ≥ Re2. In 1998, Ould Salihi [33] founded a loss of stationarity between 10 000
and 20 000. In 2002, Auteri et al. [4] estimated the critical value for the apparition of the first
instability to Re1 ≈ 8018. In 2005, Erturk et al. [14] computed steady driven cavity solutions up
to Re ≤ 21 000. Also in 2005, this result was infirmed by [16]: these authors estimated Re1 close
to 8000, in agreement with [4]. The 3D driven cavity has been investigated in [28] by the method
of characteristic (see also [27] for 3D driven cavity computations). In conclusion, the exploration
of the driven cavity at large Reynolds number is a fundamental challenge in computational fluid
dynamics.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/vortex_position.cc
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Chapter 7

Equation defined on a surface

This chapter deals with equations defined on a closed hypersurface. We present three different
numerical methods: the direct resolution of the problem on an explicit surface mesh generated
independently of Rheolef, the direct resolution on a surface mesh generated by Rheolef from a
volume mesh, and finally a level set type method based on a volume mesh in an h-narrow band
containing the surface. This last method allows to define hybrid operators between surface and
volume-based finite element fields. These methods are demonstrated on two model problems and
two different surfaces.

Let us consider a closed surface Γ ∈ Rd, d = 2 or 3 and Γ is a connected C2 surface of dimension
d− 1 with ∂Γ = 0. We first consider the following problem:

(P1) find u, defined on Γ such that:

u−∆su = f on Γ (7.1)

where f ∈ L2(Γ). For all function u defined on Γ, ∆s denotes the Laplace-Beltrami operator:

∆su = divs(∇su)

where ∇s and divs are the tangential derivative and the surface divergence along Γ, defined
respectively, for all scalar field ϕ and vector field v by:

∇sϕ = (I − n⊗ n)∇ϕ
divs v = (I − n⊗ n) : ∇v

Here, n denotes a unit normal on Γ.

We also consider the following variant of this problem:
(P2) find u, defined on Γ such that:

−∆su = f on Γ (7.2)

This second problem is similar to the first one: the Helmholtz operator I −∆s has been replaced
by the Laplace-Beltrami one −∆s. In that case, the solution is defined up to a constant: if u is
a solution, then u + c is also a solution for any constant c ∈ R. Thus, we refers to (P1) as the
Helmholtz-Beltrami problem and to (P2) as the Laplace-Beltrami one.

7.1 Approximation on an explicit surface mesh

The Helmholtz-Beltrami problem

Tanks to the surface Green formula (see appendix A.3), the variational formulation of problem
(P1) writes:

95
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(V F1): find u ∈ H1(Γ) such that:

a(u, v) = l(v), ∀v ∈ H1(Γ)

where

a(u, v) =

∫

Γ

u v ds+

∫

Γ

∇su.∇sv ds

l(v) =

∫

Γ

f v ds

Let k ≥ 1 and consider a k-th order curved surface finite element mesh Γh of Γ. We define the
space Wh:

Wh =
{
vh ∈ H1(Γh); v|S ∈ Pk,∀S ∈ Γh

}

The approximate problem writes:
(V F1)h: find uh ∈Wh such that:

a(uh, vh) = l(vh), ∀vh ∈Wh

Example file 7.1: helmholtz s.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sphere.icc"
5 int main(int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo gamma (argv [1]);
8 space Wh (gamma , argv [2]);
9 size_t d = gamma.dimension ();

10 form m (Wh, Wh, "mass");
11 form a (Wh, Wh, "grad_grad");
12 a = m + a;
13 field lh = riesz(Wh , f(d));
14 field uh (Wh);
15 solver sa (a.uu());
16 uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
17 dout << uh;
18 }

Comments

The problem involves the Helmholtz operator and thus, the code is similar to ‘neumann-nh.cc’
presented page 28. Let us comments the only differences:

field lh = riesz(Xh , f(d));

The right-hand-side does not involve any boundary term, since the surface Γ is closed: the bound-
ary domain ∂Γ = ∅. As test problem, the surface Γ is the unit circle when d = 2 and the unit
sphere when d = 3. The data f has been chosen as in [11, p. 17]. This choice is convenient since
the exact solution is known. Recall that the spherical coordinates (ρ, θ, φ) are defined from the
artesian ones (x0, x1, x2) by:

ρ =
√
x2

0 + x2
1 + x2

2, φ = arccos (x2/ρ) , θ =





arccos
(
x0/
√
x2

0 + x2
1

)
when x1 ≥ 0

2π − arccos
(
x0/
√
x2

0 + x2
1

)
otherwise
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Example file 7.2: sphere.icc

1 struct p : std:: unary_function <point ,Float > {
2 Float operator () (const point& x) const {
3 if (d == 2) return 26*( pow(x[0] ,5) - 10* pow(x[0] ,3)* sqr(x[1])
4 + 5*x[0]* pow(x[1] ,4));
5 else return 3*sqr(x[0])*x[1] - pow(x[1] ,3);
6 }
7 p (size_t d1) : d(d1) {}
8 protected: size_t d;
9 };

10 struct f : std:: unary_function <point ,Float > {
11 Float operator () (const point& x) const {
12 if (d == 2) return _p(x)/pow(norm(x),5);
13 else return alpha*_p(x);
14 }
15 f (size_t d1) : d(d1), _p(d1) {
16 Float pi = acos(Float ( -1));
17 alpha = -(13./8.)* sqrt (35./pi);
18 }
19 protected: size_t d; p _p; Float alpha;
20 };
21 struct u : std:: unary_function <point ,Float > {
22 Float operator () (const point& x) const {
23 if (d == 2) return _f(x)/(25+ sqr(norm(x)));
24 else return sqr(norm(x))/(12+ sqr(norm(x)))*_f(x);
25 }
26 u (size_t d1) : d(d1), _f(d1) {}
27 protected: size_t d; f _f;
28 };
29 Float phi (const point& x) { return norm(x) - 1; }

How to run the program

The program compile as usual:

make helmholtz_s

A mesh of a circle is generated by:

mkgeo_ball -s -e 100 > circle.geo

geo circle -mayavi

The mkgeo ball is a convenient script that generates a mesh with the gmsh mesh generator. Then,
the problem resolution writes:

./helmholtz_s circle P1 > circle.field

field circle.field -mayavi

field circle.field -mayavi -elevation

The tridimensional case is similar:

mkgeo_ball -s -t 10 > sphere.geo

geo sphere.geo -mayavi -stereo

./helmholtz_s sphere.geo P1 > sphere.field

field sphere.field -mayavi -stereo

The solution is represented on Fig .7.1.left.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/sphere.icc
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Figure 7.1: Helmholtz-Beltrami problem: high-order curved surface mesh and its corresponding
isoparametric solution: (top) order = 1; (bottom) order = 3.

Higher-order isoparametric finite elements can be considered for the curved geometry:

mkgeo_ball -s -e 30 -order 3 > circle-P3.geo

geo circle-P3.geo -subdivide 10

Observe the curved edges (see Fig .7.1). The -subdivide option allows a graphical representation
of the curved edges by subdividing each edge in ten linear parts, since graphical softwares are not
yet able to represent curved elements. The computation with the P3 isoparametric approximation
writes:

./helmholtz_s circle-P3 P3 > circle-P3.field

field circle-P3.field -mayavi -elevation

Notice that both the curved geometry and the finite element are second order. The tridimensional
counterpart writes simply:

mkgeo_ball -s -t 10 -order 3 > sphere-P3.geo

geo sphere-P3.geo

./helmholtz_s sphere-P3 P3 > sphere-P3.field

field sphere-P3.field -mayavi -stereo
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The solution is represented on Fig .7.1).right-bottom. The graphical representation is not yet able
to represent the high-order approximation: each elements is subdivided and a piecewise linear
representation is used in each sub-elements.

Since the exact solution is known, the error can be computed: this is done by the program
helmholtz s error.cc. This file is not presented here, as it is similar to some others examples,
but can be founded in the Rheolef example directory. Figure 7.2 plots the error in various norms
versus element size for different isoparametric approximations.
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Figure 7.2: Curved non-polynomial surface: error analysis in L2, L∞ and H1 norms.
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The Laplace-Beltrami problem

This problem has been introduced in (7.2), page 95. While the treatment of the Helmholtz-
Beltrami problem was similar to the Helmholtz problem with Neumann boundary conditions, here,
the treatment of the Laplace-Beltrami problem is similar to the Laplace problem with Neumann
boundary conditions: see section 2.4, page 31. Notice that for both problems, the solution is
defined up to a constant. Thus, the linear problem has a singular matrix. The ‘laplace s.cc’
code is similar to the ‘neumann-laplace.cc’ one, as presented in section 2.4. The only change
lies one the definition of the right-hand side.

Example file 7.3: laplace s.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "torus.icc"
5 int main (int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo gamma (argv [1]);
8 space Wh (gamma , argv [2]);
9 size_t d = gamma.dimension ();

10 form m (Wh, Wh, "mass");
11 form a (Wh, Wh, "grad_grad");
12 field b = m*field(Wh ,1);
13 field lh = riesz(Wh , f(d));
14 csr <Float > A = {{ a.uu(), b.u()},
15 {trans(b.u()), 0 }};
16 vec <Float > B = { lh.u(), 0 };
17 solver sa (A);
18 vec <Float > U = sa.solve (B);
19 field uh(Wh);
20 uh.set_u() = U [range(0,uh.u(). size ())];
21 dout << uh;
22 }

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/laplace_s.cc
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Example file 7.4: torus.icc

1 static const Float R = 1;
2 static const Float r = 0.6;
3 Float phi (const point& x) {
4 return sqr(sqrt(sqr(x[0])+ sqr(x[1]))- sqr(R)) + sqr(x[2])-sqr(r);
5 }
6 void get_torus_coordinates (const point& x,
7 Float& rho , Float& theta , Float& phi) {
8 static const Float pi = acos(Float (-1));
9 rho = sqrt(sqr(x[2]) + sqr(sqrt(sqr(x[0]) + sqr(x[1])) - sqr(R)));

10 phi = atan2(x[1], x[0]);
11 theta = atan2(x[2], sqrt(sqr(x[0]) + sqr(x[1])) - R);
12 }
13 struct u : unary_function <point ,Float > {
14 Float operator () (const point& x) const {
15 Float rho , theta , phi;
16 get_torus_coordinates (x, rho , theta , phi);
17 return sin (3* phi)*cos (3* theta+phi);
18 }
19 u (size_t d=3) {}
20 };
21 struct f : unary_function <point ,Float > {
22 Float operator () (const point& x) const {
23 Float rho , theta , phi;
24 get_torus_coordinates (x, rho , theta , phi);
25 Float fx = (9*sin(3*phi)*cos(3* theta+phi))/sqr(r)
26 - (-10*sin (3* phi)*cos (3* theta+phi) - 6*cos (3* phi)*sin (3* theta+phi))
27 /sqr(R + r*cos(theta))
28 - (3* sin(theta )*sin (3* phi)*sin (3* theta+phi))
29 /(r*(R + r*cos(theta )));
30 return fx;
31 }
32 f (size_t d=3) {}
33 };

As test problem, the surface Γ is the a torus when d = 3. The data f has been chosen as
in [32, p. 3355]. This choice is convenient since the exact solution is known. Let R and r denotes
the large and small torus radii, respectively. The torus coordinates (ρ, θ, φ) are defined linked to
the Cartesian ones by:




x0

x1

x2


 = R




cos(φ)
sin(φ)

0


+ ρ




cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)




Here ρ is the distance from the point to the circle in the x0x1 plane around 0 with radius R,
θ is the angle from the positive (x0, x1, 0) to x0 and φ is the angle from the positive x0 axis to
(x0, x1, 0).

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/torus.icc
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How to run the program ?

Figure 7.3: Laplace-Beltrami problem on a torus: high-order curved surface mesh and its corre-
sponding isoparametric solution: (top) order = 1; (bottom) order = 2.

The surface mesh of the torus is generated by:

gmsh -2 torus.mshcad -o torus.msh

msh2geo torus.msh > torus.geo

geo torus.geo -mayavi -stereo

The ‘torus.mshcad’ is not presented here: it can be founded in the Rheolef example directory.
Then, the computation and visualization writes:

make laplace_s

./laplace_s torus.geo P1 > torus.field

field torus.field -mayavi -stereo

For a higher-order approximation:

gmsh -2 -order 2 torus.mshcad -o torus-P2.msh

msh2geo torus-P2.msh > torus-P2.geo

geo torus-P2.geo

./laplace_s torus-P2.geo P2 > torus-P2.field

field torus-P2.field -mayavi

The solution is represented on Fig. 7.3. By editing ‘torus.mshcad’ and changing the density of
discretization, we can improve the approximate solution and converge to the exact solution. Due
to a bug [46] in the current gmsh version 2.5.1 the convergence is not optimal O(hk) for higher
values of k.
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7.2 Building a surface mesh from a level set function

The previous method is limited to not-too-complex surface Γ, that can be described by a regular
finite element surface mesh Γh. When the surface change, as in a time-dependent process, complex
change of topology often occurs and the mesh Γh can degenerate or be too complex to be efficiently
meshed. In that case, the surface is described implicitly as the zero isosurface, or zero level set, of
a function:

Γ = {x ∈ Λ; φ(x) = 0}
where Λ ⊂ Rd is a bounding box of the surface Γ.

The following code automatically generates the mesh Γh of the surface described by the zero
isosurface of a discrete φh ∈ Xh level set function:

Γh = {x ∈ Λ; φh(x) = 0}

where Xh is a piecewise affine functional space over a mesh Th of Λ:

Xh = {ϕ ∈ L2(Λ) ∩ C0(Λ); ϕ/K ∈ P1, ∀K ∈ Th}

The polynomial approximation is actually limited here to first order: building higher order curved
finite element surface meshes from a level set function is planed for the future versions of Rheolef.

Finally, a computation, as performed in the previous paragraph can be done using Γh. We also
point out the limitations of this approach.

Example file 7.5: level set sphere.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sphere.icc"
5 int main (int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 geo lambda (argv [1]);
8 level_set_option_type opts;
9 opts.split_to_triangle

10 = (argc > 2 && argv [2] == std:: string("-tq")) ? false : true;
11 space Xh (lambda , "P1");
12 field phi_h = interpolate(Xh , phi);
13 geo gamma = level_set (phi_h , opts);
14 dout << gamma;
15 }

Comments

All the difficult work of building the intersection mesh Γh, defined as the zero level set of the φh
function, is performed by the level set function:

geo gamma = level_set (phi_h , opts);

When d = 3, intersected tetrahedra leads to either triangular or quadrangular faces. By default,
quadrangular faces are split into two triangles. An optional -tq program flag allows to conserve
quadrangles in the surface mesh: it set the split to triangle optional field to false.

How to run the program ?

After the compilation, generates the mesh of a bounding box Λ = [−2, 2]d of the surface and run
the program:

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/level_set_sphere.cc
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make level_set_sphere

mkgeo_grid -t 20 -a -2 -b 2 -c -2 -d 2 > square2.geo

./level_set_sphere square2.geo > circle.geo

geo circle.geo -mayavi -stereo

The computation of the previous paragraph can be reused:

./helmholtz_s circle.geo P1 | field -mayavi -stereo -

Notice that, while the bounding box mesh was uniform, the intersected mesh could present arbi-
trarily small edge length (see also Fig. 7.4):

geo -min-element-measure circle.geo

geo -max-element-measure circle.geo

Let us turn to the d = 3 case:

mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube2.geo

./level_set_sphere cube2.geo | geo -upgrade - > sphere.geo

geo sphere.geo -mayavi -stereo

./helmholtz_s sphere.geo P1 | field -mayavi -stereo -

This approach can be extended to the Laplace-Beltrami problem on a torus:

sed -e ’s/sphere/torus/’ < level_set_sphere.cc > level_set_torus.cc

make level_set_torus

./level_set_torus cube2.geo | geo -upgrade - > torus.geo

geo torus.geo -mayavi -stereo

./laplace_s torus.geo P1 | field -mayavi -stereo -

While the bounding box mesh was uniform, the triangular elements obtained by intersecting the
3D bounding box mesh with the level set function can present arbitrarily irregular sizes nd shapes
(see also Fig. 7.4):

geo -min-element-measure -max-element-measure sphere.geo

geo -min-element-measure -max-element-measure torus.geo

Thus, there is no theoretical guaranties for the finite element method to converge on these irregular
families of meshes, despite, most of the time, the computations run well. This is the major
drawback of this method.
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Figure 7.4: Building an explicit surface mesh from level set: (top) circle; (center) sphere; (bottom)
torus.
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7.3 The banded level set method

The banded level set method presents the advantages of the two previous methods without their
drawback: it applies to very general geometries, as described by a level set funtion, and has
theoretical fundations, as usual finite element methods. The previous drawback of the intersection
mesh can be circumvented by enlarging the surface Γh to a band βh containing all the intersected
elements of Th (see [2, 12,32]):

βh = {K ∈ Th;K ∩ Γh 6= ∅}

Then, we introduce Bh the piecewise affine functional space over βh:

Bh = {v ∈ L2(βh) ∩ C0(βh); v/K ∈ P1, ∀K ∈ Th}

The problem is extended from Γh to βh as:
(V F )h: find uh ∈ Bh such that:

a(uh, vh) = l(vh), ∀vh ∈ Bh

where

a(uh, vh) =

∫

Γh

uh vh ds+

∫

Γh

∇suh.∇svh ds

l(vh) =

∫

Γh

f vh ds

for all uh, vh ∈ Bh. Notice that while uh and vh are defined over βh, the summations in the
variational formulations are restricted only to Γh ⊂ βh.

Example file 7.6: helmholtz band iterative.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 #include "sphere.icc"
5 int main (int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo lambda (argv [1]);
8 space Xh (lambda , "P1");
9 field phi_h = interpolate(Xh , phi);

10 band gh (phi_h );
11 space Bh (gh.band(), "P1");
12 form m (Bh, Bh, "mass", gh);
13 form a (Bh, Bh, "grad_grad", gh);
14 a = m+a;
15 size_t d = lambda.dimension ();
16 field lh = riesz (Bh , f(d), gh);
17 field uh (Bh ,0);
18 size_t max_iter = 10000;
19 Float tol = 1e-10;
20 pminres (a.uu(), uh.set_u(), lh.u(), eye(), max_iter , tol , &derr);
21 dout << catchmark("phi") << phi_h
22 << catchmark("u") << uh;
23 }

Comments

The band is build directly from the level set function as:

band gh (phi_h);

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/helmholtz_band_iterative.cc
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The band structure is a small class that groups the surface mesh Γh, available as gh.level set(),
and the βh mesh, available as gh.band(). It also manages some correspondance between both
meshes. Then, the space of piecewise affine functions over the band is introduced:

space Bh (gh.band(), "P1");

Next, two forms are declared, with the band gh as an additional domain-like argument:

form m (Bh , Bh , "mass", gh);
form a (Bh , Bh , "grad_grad", gh);

The right-hand side also admits an additional gh argument:

field lh = riesz (Bh , f(d), gh);

Recall that summations for both forms and right-hand side will be performed on Γh, represented
by gh.level set(), while the approximate functional space is Bh. Due to this summation on Γh
instead of βh, the matrix of the system is singular [2,31,32] and the MINRES algorithm has been
chosen to solve the linear system:

pminres (a.uu(), uh.set_u(), lh.u(), eye(), max_iter , tol , &derr);

The eye() argument represents here the identity preconditioner, i.e. no preconditioner at all. It
has few influence of the convergence properties of the matrix and could be replaced by another
simple one: the diagonal of the matrix diag(a.uu()) without sensible gain of performance:

pminres (a.uu(), uh.set_u(), lh.u(), diag(a.uu()), max_iter , tol , &derr);

How to run the program

The compilation and run writes:

make helmholtz_band_iterative

mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube-20.geo

./helmholtz_band_iterative cube-20.geo > sphere-band.field

The run generates also two meshes (see Fig. 7.5): the intersection mesh and the band around it.
The solution is here defined on this band: this extension has no interpretation in terms of the
initial problem and can be restricted to the intersection mesh for visualization purpose:

make proj_band

./proj_band < sphere-band.field | field -mayavi -stereo -

The ‘proj band.cc’ is presented below. The run generates also the Γh mesh (see Fig. 7.5), required
for the visualization. The two-dimensional case is obtained simply by replacing the 3D bounding
box by a 2D one:

mkgeo_grid -t 20 -a -2 -b 2 -c -2 -d 2 > square-20.geo

./helmholtz_band_iterative square-20.geo > circle-band.field

./proj_band < circle-band.field | field -mayavi -

./proj_band < circle-band.field | field -mayavi -elevation -
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Example file 7.7: proj band.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 int main (int argc , char**argv) {
5 environment rheolef (argc , argv);
6 field phi_h;
7 din >> catchmark("phi") >> phi_h;
8 const space& Xh = phi_h.get_space ();
9 band gh (phi_h );

10 space Bh (gh.band(), "P1");
11 field uh(Bh);
12 din >> catchmark("u") >> uh;
13 space Wh (gh.level_set(), "P1");
14 gh.level_set (). save ();
15 dout << interpolate (Wh, uh);
16 }

7.4 A direct solver for the banded level set method

The iterative algorithm previously used for solving the linear system is not optimal: for 3D
problems on a surface, the bidimensionnal connectivity of the sparse matrix suggests that a direct
sparse factorisation would be much more efficent.

Recall that φh = 0 on Γh. Thus, if uh ∈ Bh is solution of the problem, then uh + αφh|βh
∈ Bh

is also solution for any α ∈ R, where φh|βh
∈ Bh denotes the restriction of the level set function

φh ∈ Xh on the band βh. Thus there is multiplicity of solutions and the matrix of the problem
is singular. The direct resolution is still possible on a modified linear system with additional
constraints in order to recover the unicity of the solution. We impose the constraint that the
solution uh should be othogonal to φh|βh

∈ Bh. In some special cases, the band is composed of
several connected components (see Fig. 7.6): this appends when a vertex of the bounding box
mesh belongs to Γh. In that case, the constaint sould be expressed on each connected component.
Fig. 7.6 shows also the case when a full side of an element is included in Γh: such an element of
the band is called isolated.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/proj_band.cc
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Example file 7.8: helmholtz band.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 #include "sphere.icc"
5 int main (int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo lambda (argv [1]);
8 space Xh (lambda , "P1");
9 field phi_h = interpolate(Xh , phi);

10 band gh (phi_h );
11 field phi_h_band = phi_h [gh.band ()];
12 space Bh (gh.band(), "P1");
13 Bh.block ("isolated");
14 Bh.unblock ("zero");
15 form m (Bh, Bh, "mass", gh);
16 form a (Bh, Bh, "grad_grad", gh);
17 a = m+a;
18 size_t d = lambda.dimension ();
19 field lh = riesz (Bh , f(d), gh);
20 vector <vec <Float > > b (gh.n_connected_component ());
21 vector <Float > z (gh.n_connected_component (), 0);
22 for (size_t i = 0; i < b.size (); i++) {
23 const domain& cci = gh.band() ["cc"+itos(i)];
24 field phi_h_cci (Bh , 0);
25 phi_h_cci [cci] = phi_h_band [cci];
26 b[i] = phi_h_cci.u();
27 }
28 csr <Float > A = { { a.uu(), trans(b)},
29 { b, 0 } };
30 vec <Float > F = { lh.u(), z };
31 A.set_symmetry(true);
32 solver sa = ldlt(A);
33 vec <Float > U = sa.solve (F);
34 field uh(Bh ,0);
35 uh.set_u() = U [range(0,uh.u(). size ())];
36 dout << catchmark("phi") << phi_h
37 << catchmark("u") << uh;
38 }

Comments

The management of the special sides and vertices that are fully included in Γh is perfomed by:

Bh.block ("isolated");
Bh.unblock ("zero");

The addition of linear constraints is similar to the ‘neumann-laplace.cc’ code, as presented in
section 2.4:

csr <Float > A = { { a.uu(), trans(b)},
{ b, 0 } };

Here b is a vector<vec<Float> >, i.e. a vector of linear constraints, one per connected component
of the band βh.

How to run the program

The commands are similar to the previous iterative implementation, just replacing
helmholtz band iterative by helmholtz band.

This approach could be also adapted to the Laplace-Beltrami problem on the torus.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/helmholtz_band.cc
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Example file 7.9: laplace band.cc

1 #include "rheolef.h"
2 using namespace std;
3 using namespace rheolef;
4 #include "torus.icc"
5 int main (int argc , char**argv) {
6 environment rheolef(argc , argv);
7 geo lambda (argv [1]);
8 space Xh (lambda , "P1");
9 field phi_h = interpolate(Xh , phi);

10 band gh (phi_h );
11 field phi_h_band = phi_h [gh.band ()];
12 space Bh (gh.band(), "P1");
13 Bh.block ("isolated");
14 Bh.unblock ("zero");
15 form m (Bh, Bh, "mass", gh);
16 form a (Bh, Bh, "grad_grad", gh);
17 size_t d = lambda.dimension ();
18 field lh = riesz (Bh , f(d), gh);
19 vector <vec <Float > > b (gh.n_connected_component ());
20 vector <Float > z (gh.n_connected_component (), 0);
21 for (size_t i = 0; i < b.size (); i++) {
22 const domain& cci = gh.band() ["cc"+itos(i)];
23 field phi_h_cci (Bh , 0);
24 phi_h_cci [cci] = phi_h_band [cci];
25 b[i] = phi_h_cci.u();
26 }
27 field c = m*field(Bh ,1);
28 csr <Float > A = { { a.uu(), trans(b), c.u()},
29 { b, 0, 0 },
30 { trans(c.u()), 0, 0 } };
31 vec <Float > F = { lh.u(), z, 0};
32 A.set_symmetry(true);
33 solver sa = ldlt(A);
34 vec <Float > U = sa.solve (F);
35 field uh(Bh ,0);
36 uh.set_u() = U [range(0,uh.u(). size ())];
37 dout << catchmark("phi") << phi_h
38 << catchmark("u") << uh;
39 }

Comments

The code is simlar to the previous one helmholtz band.cc. Since the solution is defined up to a
constant, an additional linear constraint has to be inserted:

∫

Γh

uh dx = 0

This writes:

field c = m*field(Bh ,1);
csr <Float > A = { { a.uu(), trans(b), c.u()},

{ b, 0, 0 },
{ trans(c.u()), 0, 0 } };

How to run the program

make laplace_band

mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube-20.geo

./laplace_band cube-20.geo > torus-band.field

geo cube-20.band.geo -stereo -cut

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/laplace_band.cc
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./proj_band < torus-band.field | field -mayavi -stereo -

The solution is represented on Fig. 7.5.bottom.
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Figure 7.5: The banded level set method: (top) circle; (center) sphere; (bottom) torus.
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Figure 7.6: The banded level set method: the band is composed of several connected components.



Chapter 8

The highly nonlinear p-laplacian
problem

8.1 Problem statement

Let us consider the classical p-Laplacian problem with homogeneous Dirichlet boundary conditions
in a domain bounded Ω ⊂ Rd, d = 1, 2, 3:

(P): find u, defined in Ω such that:

−div
(
η
(
|∇u|2

)
∇u
)

= f in Ω

u = 0 on ∂Ω

where η : z ∈ R+ 7−→ z
p−2

2 ∈ R+. Several variants of the η can be considered: see [44] for practical
and usefull examples. Here p ∈]1,+∞[ and f are known. For the computational examples, we
choose f = 1. When p = 2, this problem reduces to the linear Poisson problem with homogeneous
Dirichlet boundary conditions. Otherwise, for any p > 1, the nonlinear problem is equivalent to
the following minimization problem:

(MP): find u ∈W 1,p
0 (Ω) such that:

u = arg min
v∈W 1,p

0 (Ω)

1

2

∫

Ω

H
(
|∇v|2

)
dx−

∫

Ω

f v dx,

where H denotes the primitive of η:

H(z) =

∫ z

0

η(z) dz =
2zp

p

Here W 1,p
0 (Ω) denotes the usual Sobolev spaces of functions in W 1,p(Ω) We also assume that f ∈

W−1,p(Ω), where W−1,p
0 (Ω) denotes the dual space of W 1,p

0 (Ω) that vanishes on the boundary [8,
p. 118]. The variational formulation of this problem expresses:

(VF): find u ∈W 1,p
0 (Ω) such that:

a(u;u, v) = l(v), ∀v ∈W 1,p
0 (Ω)

where a(., .) and l(.) are defined for any u0, u, v ∈W 1,p(Ω) by

a(u0;u, v) =

∫

Ω

η
(
|∇u0|2

)
∇u.∇v dx, ∀u, v ∈W 1,p

0 (Ω) (8.1)

l(v) =

∫

Ω

f v dx, ∀u, v ∈ L2(Ω) (8.2)

The quantity a(u;u, u)1/p = ‖∇u‖0,p,Ω induces a norm in W 1,p
0 , equivalent to the standard norm.

The form a(.; ., .) is bilinear with respect to the two last variable and is related to the energy form.

115
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8.2 The fixed-point algorithm

8.2.1 Principe of the algorithm

This nonlinear problem is then reduced to a sequence of linear subproblems by using the fixed-point
algorithm. The sequence

(
u(n)

)
n≥0

is defined by recurrence as:

• n = 0: let u(0) ∈W 1,p
0 (Ω) be known.

• n ≥ 0: suppose that u(n) ∈W 1,p
0 (Ω) is known and find u∗ ∈W 1,p

0 (Ω) such that:

a
(
u(n);u∗, v

)
= l(v), ∀v ∈W 1,p

0 (Ω)

and then set

u(n+1) = ωu∗ + (1− ω) ∗ u(n)

Here ω > 0 is the relaxation parameter: when ω = 1 we obtain the usual un-relaxed fixed point
algorithm. For stiff nonlinear problems, we will consider the under-relaxed case 0 < ω < 1. Let
u(n+1) = G

(
u(n)

)
denotes the operator that solve the previous linear subproblem for a given u(n).

Since the solution u satisfies u = G(u), it is a fixed-point of G.

Let us introduce a mesh Th of Ω and the finite dimensional space Xh of continuous piecewise poly-
nomial functions and Vh, the subspace of Xh containing elements that vanishes on the boundary
of Ω:

Xh = {vh ∈ C0
0

(
Ω
)

; vh/K ∈ Pk, ∀K ∈ Th}
Vh = {vh ∈ Xh; vh = 0 on ∂Ω}

where k = 1 or 2. The approximate problem expresses: suppose that u
(n)
h ∈ Vh is known and find

u∗h ∈ Vh such that:

a
(
u

(n)
h ;u∗h, vh

)
= l(vh), ∀vh ∈ Vh

By developing u∗h on a basis of Vh, this problem reduces to a linear system. The implementation

with Rheolef, involving weighted forms, is quite standard: the weight η

(∣∣∣∇u(n)
h

∣∣∣
2
)

is inserted

as the last argument to the form constructor. The following code implement this problem in the
Rheolef environment.



Rheolef version 6.3 update 18 June 2012 117

Example file 8.1: p laplacian fixed point.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "eta.icc"
5 #include "dirichlet.icc"
6 int main(int argc , char**argv) {
7 environment rheolef (argc ,argv);
8 geo omega (argv [1]);
9 Float eps = std:: numeric_limits <Float >:: epsilon ();

10 string approx = (argc > 2) ? argv [2] : "P1";
11 Float p = (argc > 3) ? atof(argv [3]) : 1.5;
12 Float w = (argc > 4) ? (is_float(argv [4]) ? atof(argv [4]) : 2/p) : 1;
13 Float tol = (argc > 5) ? atof(argv [5]) : 1e5*eps;
14 size_t max_iter = (argc > 6) ? atoi(argv [6]) : 500;
15 derr << "# P-Laplacian problem by fixed -point:" << endl
16 << "# geo = " << omega.name() << endl
17 << "# approx = " << approx << endl
18 << "# p = " << p << endl
19 << "# w = " << w << endl
20 << "# tol = " << tol << endl;
21 space Xh (omega , approx );
22 Xh.block ("boundary");
23 string grad_approx = "P" + itos(Xh.degree ()-1) + "d";
24 space Th (omega , grad_approx , "vector");
25 form inv_mt (Th, Th, "inv_mass");
26 form m (Xh, Xh, "mass");
27 form b (Xh, Th, "grad");
28 solver sm (m.uu());
29 quadrature_option_type qopt;
30 qopt.set_family (quadrature_option_type ::gauss );
31 qopt.set_order (2*Xh.degree () -1);
32 field uh (Xh);
33 uh ["boundary"] = 0;
34 field lh = riesz (Xh , 1);
35 dirichlet (lh , uh);
36 derr << "# n r v" << endl;
37 Float r = 1, r0 = 1;
38 size_t n = 0;
39 do {
40 field grad_uh = inv_mt *(b*uh);
41 form a (Xh , Xh , "grad_grad", compose(eta(p), norm2(grad_uh)), qopt);
42 field mrh = a*uh - lh;
43 field rh (Xh , 0);
44 rh.set_u () = sm.solve (mrh.u());
45 r = rh.max_abs ();
46 if (n == 0) { r0 = r; }
47 Float v = (n == 0) ? 0 : log10(r0/r)/n;
48 derr << n << " " << r << " " << v << endl;
49 if (r <= tol || n++ >= max_iter) break;
50 solver sa (a.uu());
51 vec <Float > u_star = sa.solve (lh.u() - a.ub()*uh.b());
52 uh.set_u () = w*u_star + (1-w)*uh.u();
53 } while (true);
54 dout << catchmark("p") << p << endl
55 << catchmark("u") << uh;
56 return (r <= tol) ? 0 : 1;
57 }

8.2.2 Comments

The construction of the weighted form a(.; ., .) writes:

form a (Xh , Xh , "grad_grad", compose(eta(p), norm2(grad_uh)), qopt);

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/p_laplacian_fixed_point.cc
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Remarks the usage of the compose and norm2 libray functions. As the integrals involved by this
weighted form cannot be computed exactly for a general η function, a quadrature formula is used:

∫

K

f(x) dx =

nK−1∑

q=0

f(xK,q)ωK,q +O(hk
′+1)

where (xK,q, ωK,q)0≤q<nK
are the quadrature nodes and weights on K and k′ is the order of the

quadrature: when f is a polynomial of degree less than k′, the integral is exact. The bilinear form
a(., .) introduced in (8.1) is then re-defined for all u0, u, v ∈ Xh by:

a(u0;u, v) =
∑

K∈Th

nK−1∑

q=0

η
(
|∇u0(xK,q)|2

)
∇u(xK,q).∇v(xK,q) ωK,q (8.3)

We choose the Gauss quadrature formula and the order k′ is choosen as k′ = 2k − 1: the number
nK of nodes and weights in K is adjusted correspondingly. This choice writes:

quadrature_option_type qopt;
qopt.set_family (quadrature_option_type ::gauss );
qopt.set_order (2*Xh.degree ());

while the qopt variable is send as an optional argument to the weighted form a(., .) declaration.
Remark that the integral would be exact for a constant weight. For a general weight, this choice
also guarantee that the approximate solution uh converges optimaly with mesh refinements to the
exact solution u (see [38, p. 129]). Notice also that the Gauss quadrature formula is convenient
here, as quadrature nodes are internal to the elements: evaluation of η does not occurs at the
domain boundaries, where the weight function could be singular when p < 2 and where the
gradient vanishes, e.g. at corners.

Example file 8.2: eta.icc

1 struct eta : std:: unary_function <Float ,Float > {
2 Float operator () (const Float& z) const {
3 check_macro(z != 0 || p > 2, "eta: division by zero (HINT: check mesh)");
4 return pow(z, (p -2)/2);
5 }
6 Float derivative (const Float& z) const {
7 check_macro(z != 0 || p > 4, "eta ’: division by zero (HINT: check mesh)");
8 return 0.5*(p-2)* pow(z, (p -4)/2);
9 }

10 eta (const Float& q) : p(q) {}
11 Float p;
12 };

The η function is implemented separately, in file named eta.icc in order to easily change its
definition. The derivative member function is not yet used here: it is implemented for a
forthcoming application (the Newton method). Notice the guards that check for division by
zero and send a message related to the mesh: this will be commentated in the next paragraph.
Finally, the fixed-point algorithm is initiated with u(0) as the solution of the linear problem
associated to p = 2, i.e. the standard Poisson problem with Dirichlet boundary conditions.

Example file 8.3: dirichlet.icc

1 void dirichlet (const field& lh, field& uh) {
2 const space& Xh = lh.get_space ();
3 form a (Xh, Xh, "grad_grad");
4 solver sa (a.uu());
5 uh.set_u() = sa.solve (lh.u() - a.ub()*uh.b());
6 }

8.2.3 Running the program

Compile the program, as usual:

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/eta.icc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/dirichlet.icc
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make p_laplacian_fixed_point

and enter the commands:

mkgeo_ugrid -t 50 > square.geo

geo square.geo

The triangular mesh has a boundary domain named boundary.

./p_laplacian_fixed_point square.geo P1 1.5 > square.field

field square.field -elevation -stereo

Figure 8.1: The p-Laplacian for d = 2: elevation view for p = 1.25 (left), p = 2 (center) and
p = 2.5 (right).

Run the field visualization:

field square.field -elevation -stereo

field square.field -cut -origin 0.5 0.5 -normal 1 1

The first command shows an elevation view of the solution (see 8.1) while the second one shows
a cut along the first bisector x0 = x1. Observe that the solution becomes flat at the center
when p decreases. The p = 2 case, corresponding to the linear case, is showed for the purpose of
comparison.

There is a technical issue concerning the mesh: the computation could failed on some mesh that
presents at least one triangle with two edges on the boundary:

mkgeo_grid -t 50 > square-bedge.geo

geo square-bedge.geo

./p_laplacian_fixed_point square-bedge.geo P1 1.5 > square-bedge.field

The computation stops and claims a division by zero: the three nodes of such a triangle, the
three nodes are on the boundary, where uh = 0 is prescribed: thus ∇uh = 0 uniformly inside this
element. Notice that this failure occurs only for linear approximations: the computation works
well on such meshes for Pk approximations with k ≥ 2. While the mkgeo grid generates uniform
meshes that have such triangles, the mkgeo ugrid calls the gmsh generator that automatically splits
the triangles with two boundary edges. When using bamg, you should consider the -splitpbedge.
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8.2.4 Convergence properties of the fixed-point algorithm

The fixed-point algorithm prints also rn, the norm of the residual term, at each iteration n, and the
convergence rate vn = log10(rn/r0)/n. The residual term of the non-linear variational formulation
is defined by:

r
(n)
h ∈ Vh and m

(
r

(n)
h , vh

)
= a

(
u

(n)
h ; u

(n)
h , vh

)
− l(vh), ∀vh ∈ Vh

where m(., .) denotes the L2 scalar product. Clearly, u
(n)
h is a solution if and only if r

(n)
h = 0.

For clarity, let us drop temporarily the n index of the current iteration. The field rh ∈ Vh can be
extended as a field rh ∈ Xh with vanishing components on the boundary. The previous relation
writes, after expansion of the bilinear forms and fields on the unknown and blocked parts (see
page 11 for the notations):

m.uu*rh.u = a.uu*uh.u + a.ub*ub.b - lh.u

rh.b = 0

This relation expresses that the residual term rh is obtained by solving a linear system involving
the mass matrix.

It remains to choose a good norm for estimating this residual term. For the corresponding con-
tinuous formulation, we have:

r = −div
(
η
(
|∇u|2

)
∇u
)
− f ∈W−1,p(Ω)

Thus, for the continuous formulation, the residual term may be measured with the W−1,p(Ω)
norm. It is defined, for all ϕ ∈W−1,p(Ω), by duality:

‖ϕ‖−1,p,Ω = sup
ϕ∈W1,p

0 (Ω)

v 6=0

〈ϕ, v〉
‖v‖1,p,Ω

= sup
v∈W1,p

0 (Ω)

‖v‖1,p,Ω=1

〈ϕ, v〉

where 〈., .〉 denotes the duality bracked between W 1,p
0 (Ω) and W−1,p(Ω).

By analogy, let us introduce the discrete W−1,p(Ω) norm, denoted as ‖.‖−1,h, defined by duality
for all ϕh ∈ Vh by:

‖ϕh‖−1,h = sup
vh∈Vh

‖vh‖1,p,Ω=1

〈ϕh, vh〉

The dual of space of the finite element space Vh is identified to Vh and the duality bracked is the
Euclidian scalar product of Rdim(Vh). Then, ‖ϕh‖−1,h is the largest absolue value of components
of ϕh considered as a vector of Rdim(Vh). With the notations of the Rheolef library, it simply
writes:

Float r = rh.u().max_abs()

Fig 8.2.top-left shows that the residual term decreases exponentially versus n, since the slope of
the plot in semi-log scale tends to be strait. Moreover, observe that the slope is independent of
the mesh size h. Also, by vertue of the previous carreful definition of the residual term and its
corresponding norm, all the slopes falls into a master curve.

These invariance properties applies also to the polynomial approximation Pk : Fig 8.2.top-right
shows that all the curves tends to collapse when k increases. Thus, the convergence properties
of the algorithm are now investigated on a fixed mesh h = 1/50 and for a fixed polynomial
approximation k = 1.

Fig 8.2.bottom-left and 8.2.bottom-right show the convergence vesus the power-law index p: ob-
serve that the convergence becomes easier when p approaches p = 2, where the problem is linear.
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Figure 8.2: The fixed-point algorithm on the p-Laplacian for d = 2: when p = 3/2, independence
of the convergence properties of the residue (top-left) with mesh refinement; (top-right) with
polynomial order Pk; when h = 1/50 and k = 1, convergence (bottom-left) for p > 2 and (bottom-
right) for p < 2.

In that case, the convergence occurs in one iteration. Nevertheless, it appears two limitations.
From one hand, when p → 3 the convergence starts to slow down and p ≥ 3 cannot be solved
by this algorithm (it will be solved later in this chapter). From other hand, when p → 1, the
convergence slows down too and numerical rounding effets limits the convergence: the machine
precision canot be reached. Let us introduce the convergence rate vn = log10(rn/r0)/n it tends to
a constant, denoted as v̄ and: rn ≈ r0 × 10−v̄ n. Observe on Fig 8.3.left that v̄ tends to +∞ when
p = 2, since the system becomes linear and the algorithm converge in one iteration. Observe also
that v̄ tends to zero for p = 1 and p = 3 since the algorithm diverges. Fig 8.3.right shows the
same plot in semi-log scale and shows that v̄ behaves as: v̄ ≈ − log10 |p− 2|. This study shows
that the residual term of the fixed point algorithm behaves as:

rn ≈ r0 |p− 2|n

8.2.5 Improvement by relaxation

The relaxation parameter can improve the fixed-point algorithm: for instance, for p = 3 and
ω = 0.5 we get a convergent sequence:

./p_laplacian_fixed_point square.geo P1 3 0.5 > square.field
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Figure 8.3: The fixed-point algorithm on the p-Laplacian for d = 2: (left) convergence rate versus
p; (right) convergence rate versus p in semi-log scale.

Observe on Fig. 8.4 the effect on the relaxation parameter ω upon the convergence rate v̄: for
p < 2 it can improve it and for p > 2, it can converge when p > 3. For each p, there is clearly an
optimal relaxation parameter, denoted by ωopt. A simple fit shows that (see Fig. 8.4.bottom-left):

ωopt = 2/p

Let us denote v̄opt the corresponding rate of convergence. Fig. 8.4.top-right shows that the con-
vergence is dramatically improved when p > 2 while the gain is less prononced when p < 2.
Coveniently replacing the extra parameter ω on the command line by - leads to compute auto-
matically ω = ωopt: the fixed-point algorithm is always convergent with an optimal convergent
rate, e.g.:

./p_laplacian_fixed_point square.geo P1 4.0 - > square.field

There is no way to improve more the fixed point algorithm: the next paragraph shows a different
algorithm that dramatically accelerates the computation of the solution.
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Figure 8.4: The fixed-point algorithm on the p-Laplacian for d = 2: effect of the relaxation
parameter ω (top-left) when p < 2; (top-right) when p > 2; (bottom-left) optimal ωopt; (bottom-
right) optimal v̄opt.
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8.3 The Newton algorithm

8.3.1 Principe of the algorithm

An alternative to the fixed-point algorithm is to solve the nonlinear problem (P ) by using the
Newton algorithm. Let us consider the following operator:

F : W 1,p
0 (Ω) −→ W−1,p(Ω)
u 7−→ F (u) = −div

(
η
(
|∇u|2

)
∇u
)
− f

The F operator computes simply the residual term and the problem expresses now as: find u ∈
W 1,p

0 (Ω) such that F (u) = 0.

The Newton algorithm reduces the nonlinear problem into a sequence of linear subproblems: the
sequence

(
u(n)

)
n≥0

is classically defined by recurrence as:

• n = 0: let u(0) ∈W 1,p
0 (Ω) be known.

• n ≥ 0: suppose that u(n) is known, find δu(n), defined in Ω, such that:

F ′
(
u(n)

)
δu(n) = −F

(
u(n)

)

and then compute explicitly:

u(n+1) := u(n) + δu(n)

The notation F ′(u) stands for the Fréchet derivative of F , as an operator from W−1,p(Ω) into
W 1,p

0 (Ω). For any r ∈W−1,p(Ω), the linear tangent problem writes:
find δu ∈W 1,p

0 (Ω) such that:

F ′(u) δu = −r
After the computation of the Fréchet derivative, we obtain the strong form of this problem:
(LT ): find δu, defined in Ω, such that

−div
(
η
(
|∇u|2

)
∇(δu) + 2η′

(
|∇u|2

)
{∇u.∇(δu)}∇u

)
= −r in Ω

δu = 0 on ∂Ω

where

η′(z) =
1

2
(p− 2)z

p−4
2 , ∀z > 0

This is a Poisson-like problem with homogeneous Dirichlet boundary conditions and a non-constant
tensorial coefficient. The variational form of the linear tangent problem writes:
(V LT ): find δu ∈W 1,p

0 (Ω) such that

a1(u; δu, δv) = l1(v), ∀δv ∈W 1,p
0 (Ω)

where the a1(.; ., .) is defined for any u, δu, δv ∈W 1,p
0 (Ω) by:

a1(u; δu, δv) =

∫

Ω

(
η
(
|∇u|2

)
∇(δu).∇(δv) + 2η′

(
|∇u|2

)
{∇u.∇(δu)} {∇u.∇(δv)}

)
dx

l1(v) = −
∫

Ω

r v dx

For any ξ ∈ Rd let us denote by ν(ξ) the following d× d matrix:

ν(ξ) = η
(
|ξ|2
)
I + 2η′

(
|ξ|2
)
ξ ⊗ ξ
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where I stands for the d-order identity matrix. Then the a1 expresses in a more compact form:

a1(u; δu, δv) =

∫

Ω

(ν(∇u)∇(δu)) .∇(δv) dx

Clearly a1 is linear and symmetric with respect to the two last variables.

Example file 8.4: p laplacian newton.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "p_laplacian.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega_h (argv [1]);
8 Float eps = std:: numeric_limits <Float >:: epsilon ();
9 string approx = (argc > 2) ? argv [2] : "P1";

10 Float p = (argc > 3) ? atof(argv [3]) : 1.5;
11 Float tol = (argc > 4) ? atof(argv [4]) : 1e5*eps;
12 size_t max_iter = (argc > 5) ? atoi(argv [5]) : 500;
13 derr << "# P-Laplacian problem by Newton:" << endl
14 << "# geo = " << omega_h.name() << endl
15 << "# approx = " << approx << endl
16 << "# p = " << p << endl
17 << "# tol = " << tol << endl
18 << "# max_iter = " << max_iter << endl;
19 p_laplacian F (p, omega_h , approx );
20 field uh = F.initial ();
21 int status = newton (F, uh , tol , max_iter , &derr);
22 dout << setprecision(numeric_limits <Float >:: digits10)
23 << catchmark("p") << p << endl
24 << catchmark("u") << uh;
25 return status;
26 }

Example file 8.5: p laplacian.h

1 class p_laplacian {
2 public:
3 typedef field value_type;
4 typedef Float float_type;
5 p_laplacian (Float p, const geo& omega , string approx );
6 field initial () const;
7 field residue (const field& uh) const;
8 void update_derivative (const field& uh) const;
9 field derivative_solve (const field& mrh) const;

10 field derivative_trans_mult (const field& mrh) const;
11 Float space_norm (const field& uh) const;
12 Float dual_space_norm (const field& mrh) const;
13 Float duality_product (const field& mrh , const field& msh) const;
14 Float p;
15 space Xh , Th;
16 field lh;
17 form m, grad;
18 solver sm;
19 quadrature_option_type qopt;
20 mutable form a1;
21 mutable solver sa1;
22 };
23 #include "p_laplacian1.icc"
24 #include "p_laplacian2.icc"

8.3.2 Comments

The Newton algorithm is implemented in a generic way, for any F function, by the newton function
from the Rheolef librarys. The reference manual for the newton generic function is available
online:

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/p_laplacian_newton.cc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/p_laplacian.h
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man newton

The function F and its derivative F ′ are provided by a template class argument. Here,
the p laplacian class describes our F function, i.e. our problem to solve: its inter-
face is defined in the file ‘p laplacian.h’ and its implementation in ‘p laplacian1.icc’
and ‘p laplacian2.icc’. The introduction of the class p laplacian will allow an easy explo-
ration of some variants of the Newton algorithm for this problem, as we will see in the next section.

Example file 8.6: p laplacian1.icc

1 #include "eta.icc"
2 #include "nu.icc"
3 #include "dirichlet.icc"
4 p_laplacian :: p_laplacian (Float q, const geo& omega , string approx)
5 : p(q), Xh(), Th(), lh(), m(), grad(), sm(), qopt(), a1(), sa1() {
6 Xh = space (omega , approx );
7 Xh.block ("boundary");
8 string grad_approx = "P" + itos(Xh.degree ()-1) + "d";
9 Th = space (omega , grad_approx , "vector");

10 lh = riesz (Xh, 1);
11 qopt.set_family(quadrature_option_type ::gauss );
12 qopt.set_order (2*Xh.degree () -1);
13 form inv_mt = form (Th, Th, "inv_mass");
14 form b (Xh, Th, "grad");
15 grad = inv_mt*b;
16 m = form (Xh, Xh , "mass");
17 sm = solver (m.uu());
18 }
19 field p_laplacian :: initial () const {
20 field uh (Xh , 0);
21 dirichlet (lh , uh);
22 return uh;
23 }
24 field p_laplacian :: residue (const field& uh) const {
25 field grad_uh = grad*uh;
26 form a (Xh, Xh, "grad_grad", compose(eta(p), norm2(grad_uh)), qopt);
27 field mrh = a*uh - lh;
28 mrh.set_b() = 0;
29 return mrh;
30 }
31 void p_laplacian :: update_derivative (const field& uh) const {
32 field grad_uh = grad*uh;
33 size_t d = Xh.get_geo (). dimension ();
34 a1 = form (Xh, Xh, "grad_grad", compose(nu<eta >(eta(p),d), grad_uh), qopt);
35 sa1 = ldlt (a1.uu());
36 }
37 field p_laplacian :: derivative_solve (const field& rh) const {
38 field delta_uh (Xh ,0);
39 delta_uh.set_u () = sa1.solve(rh.u());
40 return delta_uh;
41 }

The residual term F (uh) is computed by the member function residual while the resolution of
F ′(uh)δuh = Mrh is performed by the function derivative solve. The derivative F ′(uh) is
computed separately by the function update derivative:

a1 = form (Xh, Xh, "grad_grad", compose(nu<eta >(eta(p),d), grad_uh), qopt);

Notice that the a1(u; ., .) bilinear form is a tensorial weighted form, where ν(∇u) is the weight
tensor. In Rheolef, the tensorial weight is inserted as an usual scalar weight, by passing the
weight parameter as the last argument to the form constructor. As the weight is non-polynomial
for general η function, a quadrature formula is used:

a1(u0;u, v) =
∑

K∈Th

nK−1∑

q=0

(
ν
(
|∇u0(xK,q)|2

)
∇u(xK,q).∇v(xK,q)

)
ωK,q (8.4)

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/p_laplacian1.icc


Rheolef version 6.3 update 18 June 2012 127

By using exactly the same quadrature for computing both a1(., .) and a(., .) in (8.4), then we have
that F ′ is always the derivative of F at the discrete level: while, in general, the derivation and
the discretization of problems does not commute, it is the case when using the same quadrature
formulae on both problems. This is an important aspect of the Newton method at discrete level,
for conservating the optimal convergence rate of the residual terms versus n.

The linear system involving the derivative F ′(uh) is solved by the p laplacian member function
derivative solve. Finally, applying the generic Newton method requires a stopping criteria
on the residual term: this is the aim of the member function dual space norm. The three last
member functions are not used by the Newton algorithm, but by its extension, the damped Newton
method, that will be presented later.

Example file 8.7: p laplacian2.icc

1 Float p_laplacian :: dual_space_norm (const field& mrh) const {
2 field rh (Xh , 0);
3 rh.set_u() = sm.solve (mrh.u());
4 return rh.max_abs ();
5 }
6 Float p_laplacian :: space_norm (const field& uh) const {
7 return sqrt (m(uh,uh));
8 }
9 Float p_laplacian :: duality_product (const field& mrh , const field& msh) const {

10 field rh (Xh , 0);
11 rh.set_u() = sm.solve (mrh.u());
12 return dual (rh, msh);
13 }
14 field p_laplacian :: derivative_trans_mult (const field& mrh) const {
15 field rh (Xh , 0);
16 rh.set_u() = sm.solve(mrh.u());
17 field mgh = a1*rh;
18 mgh.set_b() = 0;
19 return mgh;
20 }

The ν function is implemented for a generic η function, as a class-function that accept as template
agument another class-function.

Example file 8.8: nu.icc

1 template <class Function >
2 struct nu : std:: unary_function <point ,tensor > {
3 tensor operator () (const point& grad_u) const {
4 Float x2 = norm2 (grad_u );
5 Float a = f(x2);
6 Float b = 2*f.derivative(x2);
7 tensor value;
8 for (size_t i = 0; i < d; i++) {
9 value(i,i) = a + b*grad_u[i]* grad_u[i];

10 for (size_t j = 0; j < i; j++)
11 value(j,i) = value(i,j) = b*grad_u[i]* grad_u[j];
12 }
13 return value;
14 }
15 nu (const Function& f1, Float d1) : f(f1), d(d1) {}
16 Function f;
17 size_t d;
18 };

8.3.3 Running the program

Enter:

make p_laplacian_newton

mkgeo_ugrid -t 50 > square.geo

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/p_laplacian2.icc
file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/nu.icc
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Figure 8.5: The Newton algorithm on the p-laplacian for d = 2: comparison with the fixed-point
algorithm.

./p_laplacian_newton square.geo P1 3 > square.field

field square.field -elevation -stereo

The program prints at each iteration n, the residual term rn in discrete L2(Ω) norm. Convergence
occurs in less than ten iterations: it dramatically improves the previous algorithm (see Fig. 8.5).
Observe that the slope is no more constant in semi-log scale: the convergence rate accelerates and
the slope tends to be vertical, the so-called super-linear convergence. This is the major advantage
of the Newton method. Figs. 8.6.top-left and. 8.6.top-bottom shows that the algorithm converge
when p ≥ 3 and that the convergence properties are independant of the mesh size h and the
polynomial order k. There are still two limitations of the method. From one hand, the Newton
algorithm is no more independant of h and k when p ≤ 3/2 and to tends to diverges in that
case when h tends to zero (see Fig. 8.6.bottom-left). From other hand, when p becomes large
(see Fig. 8.6.bottom-right), an overshoot in the convergence tends to increases and distroys the
convergence, due to rounding problems. In order to circumvent these limitations, another strategy
is considered in the next section: the damped Newton algorithm.
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Figure 8.6: The Newton algorithm on the p-laplacian for d = 2: (top-left) comparison with the
fixed-point algorithm; when p = 3, independence of the convergence properties of the residue (top-
left) with mesh refinement; (top-right) with polynomial order Pk; (bottom-left) mesh-dependence
convergence when p < 2; (bottom-right) overshoot when p > 2.
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8.4 The damped Newton algorithm

8.4.1 Principe of the algorithm

The Newton algorithm diverges when the initial u(0) is too far from a solution, e.g. when p is
not at the vicinity of 2. Our aim is to modify the Newton algorithm and to obtain a globally
convergent algorithm, i.e to converge to a solution for any initial u(0). By this way, the algorithm
should converge for any value of p ∈]1,+∞[. The basic idea is to decrease the step length while
maintaining the direction of the original Newton algorithm:

u(n+1) := u(n) + λn δu
(n)

where λ(n) ∈]0, 1] and δu(n) is the direction from the Newton algorithm, given by:

F ′
(
u(n)

)
δu(n) = −F

(
u(n)

)

Let V a Banach space and let T : V → R defined for any v ∈ V by:

T (v) =
1

2
‖C−1F (v)‖2V ,

where C is some non-singular operator, easy to invert, used as a non-linear preconditioner. The
simplest case, without preconditioner, is C = I. The T function furnishes a measure of the residual
term in L2 norm. The convergence is global when for any initial u(0), we have for any n ≥ 0:

T
(
u(n+1)

)
≤ T

(
u(n)

)
+ α

〈
T ′
(
u(n)

)
, u(n+1) − u(n)

〉
V ′,V

(8.5)

where 〈., .〉V ′,V is the duality product between V and its dual V ′, and α ∈]0, 1[ is a small parameter.
Notice that

T ′(u) = {C−1F ′(u)}∗C−1F (u)

where the superscript ∗ denotes the adjoint operator, i.e. the transpose matrix the in finite
dimensional case. In practice we consider α = 10−4 and we also use a minimal step length
λmin = 1/10 in order to avoid too small steps. Let us consider a fixed step n ≥ 0: for convenience
the n superscript is dropped in u(n) and δu(n). Let g : R→ R defined for any λ ∈ R by:

g(λ) = T (u+ λδu)

Then :

g′(λ) = 〈T ′(u+ λδu), δu〉V ′,V
= 〈C−1F (u+ λδu), F ′(u+ λδu)C−1δu〉V,V ′

where the superscript ∗ denotes the adjoint operator, i.e. the transpose matrix the in finite
dimensional case. The practical algorithm for obtaining λ was introduced first in [23] and is also
presented in [37, p. 385]. The step length λ that satisfy (8.5) is computed by using a finite sequence
λk, k = 0, 1 . . . with a second order recurrence:

• k = 0 : initialization λ0 = 1. If (8.5) is satisfied with u + λ0 d then let λ := λ0 and the
sequence stop here.

• k = 1 : first order recursion. The quantities g(0) = f(u) et g′(0) = 〈f ′(u), d〉 are already
computed at initialization. Also, we already have computed g(1) = f(u+ d) when verifying
whether (8.5) was satisfied. Thus, we consider the following approximation of g(λ) by a
second order polynomial:

g̃1(λ) = {g(1)− g(0)− g′(0)}λ2 + g′(0)λ+ g(0)
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After a short computation, we find that the minimum of this polynomial is:

λ̃1 =
−g′(0)

2{g(1)− g(0)− g′(0)}

Since the initialization at k = 0 does not satisfy (8.5), it is possible to show that, when α is
small enough, we have λ̃1 ≤ 1/2 and λ̃1 ≈ 1/2. Let λ1 := max(λmin, λ̃1). If (8.5) is satisfied
with u+ λ1 d then let λ := λ1 and the sequence stop here.

• k ≥ 2 : second order recurrence. The quantities g(0) = f(u) et g′(0) =〉f ′(u), d〈 are
available, together with λk−1, g(λk−1), λk−2 and g(λk−2). Then, g(λ) is approximated by
the following third order polynomial:

g̃k(λ) = aλ3 + bλ2 + g′(0)λ+ g(0)

where a et b are expressed by:

(
a
b

)
=

1

λk−1 − λk−2




1

λ2
k−1

− 1

λ2
k−2

−λk−2

λ2
k−1

λk−1

λ2
k−2



(
g(λk−1)− g′(0)λk−1 − g(0)
g(λk−2)− g′(0)λk−2 − g(0)

)

The minimum of g̃k(λ) is

λ̃k =
−b+

√
b2 − 3ag′(0)

3a

Let λk = min(1/2λk,max(λ̃k/10, λ̃k+1) in order for λk to be at the same order of magnitude
as λk−1. If (8.5) is satisfied with u+ λk d then let λ := λk and the sequence stop here.

The sequence (λk)k≥0 is strictly decreasing: when the stopping criteria is not satisfied until λk
reaches the machine precision εmach then the algorithm stops with an error.

Example file 8.9: p laplacian damped newton.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "p_laplacian.h"
5 int main(int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 geo omega_h (argv [1]);
8 Float eps = numeric_limits <Float >:: epsilon ();
9 string approx = (argc > 2) ? argv [2] : "P1";

10 Float p = (argc > 3) ? atof(argv [3]) : 1.5;
11 Float tol = (argc > 4) ? atof(argv [4]) : eps;
12 size_t max_iter = (argc > 5) ? atoi(argv [5]) : 500;
13 derr << "# P-Laplacian problem by damped Newton:" << endl
14 << "# geo = " << omega_h.name() << endl
15 << "# approx = " << approx << endl
16 << "# p = " << p << endl;
17 p_laplacian F (p, omega_h , approx );
18 field uh = F.initial ();
19 int status = damped_newton (F, uh , tol , max_iter , &derr);
20 dout << catchmark("p") << p << endl
21 << catchmark("u") << uh;
22 return status;
23 }

8.4.2 Comments

The damped newton function implements the damped Newton algorithm for a generic T (u) func-
tion, i.e. a generic nonlinear preconditioner. This algorithms use a backtrack strategy implemented

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/p_laplacian_damped_newton.cc
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in the file ‘newton-backtrack.h’ of the Rheolef library. The simplest choice of the identity pre-
conditioner C = I i.e. T (u) = ‖F (u)‖2V ′/2 is showed in file damped-newton.h. The gradient at
λ = 0 is

T ′(u) = F ′(u)∗F (u)

and the slope at λ = 0 is:

g′(0) = 〈T ′(u), δu〉V ′,V
= 〈F (u), F ′(u)δu〉V ′,V ′
= −‖F (u)‖2V ′

The ‘p laplacian damped newton.cc’ is the application program to the p-Laplacian problem
together with the ‖.‖L2(Ω) discrete norm for the function T .

8.4.3 Running the program

Figure 8.7: The p-Laplacian for d = 2: elevation view for p = 1.15 (left) and p = 7 (right).

As usual, enter:

make p_laplacian_damped_newton

mkgeo_ugrid -t 50 > square.geo

./p_laplacian_damped_newton square.geo P1 1.15 | field -stereo -elevation -

./p_laplacian_damped_newton square.geo P1 7 | field -stereo -elevation -

See Fig. 8.7 for the elevation view of the solution. The algorithm is now quite robust: the
convergence occurs for quite large range of p > 1 values and extends the range previously presented
on Fig. 8.1. The only limitation is now due to machine roundoff on some architectures.

Figs. 8.8.top shows that the convergence properties seems to slightly depend on the mesh re-
finement. Nevertheless, there are quite good and support both mesh refinement and high order
polynomial degree. When p is far from p = 2, i.e. either close to one or large, Figs. 8.8.bottom
shows that the convergence becomes slower and that the first linear regime, corresponding to the
line search, becomes longer. This first regime finishes by a brutal super-linear regime, where the
residual terms fall in few iterations to the machine precision.
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Figure 8.8: The damped Newton algorithm on the p-Laplacian for d = 2: when p = 1.5 and
h = 1/50, convergence properties of the residue (top-left) with mesh refinement; (top-right) with
polynomial order Pk; (bottom-left) convergence when p < 2; (bottom-right) when p > 2.

8.5 Error analysis

While there is no simple explicit expression for the exact solution in the square Ω =]0, 1[2, there
is one when considering Ω as the unit circle:

u(x) =
(p− 1) 2−

1
p−1

p

(
1−

(
x2

0 + x2
1

) p
p−1)

)
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Figure 8.9: The p-Laplacian for d = 2: error analysis.

Example file 8.10: p laplacian circle.icc

1 struct u : unary_function <point ,Float > {
2 Float operator () (const point& x) const {
3 return (1 - pow(norm2(x), p/(2*p -2)))/((p/(p-1))* pow (2. ,1/(p -1)));
4 }
5 u (Float q) : p(q) {}
6 protected: Float p;
7 };
8 struct grad_u : unary_function <point ,point > {
9 point operator () (const point& x) const {

10 return - (pow(norm2(x), p/(2*p-2) - 1)/ pow (2. ,1/(p -1)))*x;
11 }
12 grad_u (Float q) : p(q) {}
13 protected: Float p;
14 };

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/p_laplacian_circle.icc
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Example file 8.11: p laplacian error.cc

1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "p_laplacian_circle.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc ,argv);
7 Float tol = (argc > 1) ? atof(argv [1]) : 1e-15;
8 Float p;
9 field uh;

10 din >> catchmark("p") >> p
11 >> catchmark("u") >> uh;
12 const geo& omega = uh.get_geo ();
13 const space& Xh = uh.get_space ();
14 string grad_approx = "P" + itos(Xh.degree ()-1) + "d";
15 space Th (Xh.get_geo(), grad_approx , "vector");
16 form inv_mt(Th, Th, "inv_mass");
17 form b (Xh, Th, "grad");
18 field pi_h_u = interpolate (Xh , u(p));
19 field eh = pi_h_u - uh;
20 field grad_uh = inv_mt *(b*uh);
21 quadrature_option_type qopt;
22 qopt.set_family(quadrature_option_type ::gauss );
23 qopt.set_order (2*Xh.degree ());
24 Float err_lp = pow(integrate (omega ,
25 pow(fabs(uh - field_function(u(p))), p), qopt), 1./p);
26 Float err_w1p = pow(integrate (omega ,
27 pow(norm(grad_uh - field_function(grad_u(p))), p), qopt), 1./p);
28 Float err_linf = eh.max_abs ();
29 dout << "err_linf = " << err_linf << endl
30 << "err_lp = " << err_lp << endl
31 << "err_w1p = " << err_w1p << endl;
32 return (err_linf < tol) ? 0 : 1;
33 }

Notice, in the file ‘p laplacian error.cc’, the usage of the integrate function, together with
a quadrature formula specificiation, for computing the errors in Lp norm and W 1,p semi-norm.
The field function wraps the class functions u and grad u into objects that can be mixed in
expression involving also field objects: the whole expression is evaluated at quadrature points
inside the elements of the mesh.

By this way, the error analysis investigation becomes easy:

make p_laplacian_error

mkgeo_ball -t 10 -order 2 > circle-10-P2.geo

./p_laplacian_damped_newton circle-10-P2.geo P2 1.5 | ./p_laplacian_error

We can vary both the mesh size and the polynomial order and the error plots are showed on
Fig. 8.9 for both the L2, L∞ norms and the W 1,p semi-norm. Observe the optimal error behavior:
the slopes in the log-log scale are the same as those obtained by a direct Lagrange interpolation
of the exact solution.

file://localhost/home/saramito/dsys/share/doc/rheolef-doc/examples/p_laplacian_error.cc
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Appendix A

How to write a variational
formulation ?

The major keypoint for using Rheolef is to put the problem in variational form. Then this
variational form can be efficiently translated into C++ language. This appendix is dedicated to
readers who are not fluent with variational formulations and some related functionnal analysis
tools.

A.1 The Green formula

Let us come back to the model problem presented in section 1.1, page 9, equations (1.1)-(1.2) and
details how this problem is transformed into (1.3).

Let H1
0 (Ω) the space of functions whose gradient square has a finite sum over Ω and that vanishes

on ∂Ω:
H1

0 (Ω) = {v ∈ L2(Ω); ∇v ∈ L2(Ω)d and v = 0 on ∂Ω}
We start by multiplying (1.1) by an arbitrarily test-function v ∈ H1

0 (Ω) and then integrate over Ω :

−
∫

Ω

∆u v dx =

∫

Ω

f v dx, ∀v ∈ H1
0 (Ω)

The next step is to invoque an integration by part, the so-called Green formula:

∫

Ω

∆u v dx+

∫

Ω

∇u.∇v dx =

∫

∂Ω

∂u

∂n
v ds, ∀u, v ∈ H1(Ω)

Since our test-function v vanishes on the boundary, the integral over ∂Ω is zero and the problem
becomes: ∫

Ω

∇u.∇v dx =

∫

Ω

f v dx, ∀v ∈ H1
0 (Ω)

This is exactly the variational formulation (1.3), page 9.

A.2 The vectorial Green formula

In this section, we come back to the linear elasticity problem presented in section 4.1, page 43,
equations (4.1)-(4.2) and details how this problem is transformed into (4.3).

Let Γd (resp. Γn) denotes the parts of the boundary ∂Ω related to the homogeneous Dirichlet
boundary condition u = 0 (resp. the homogeneous Neumann boundary condition σ(u) n = 0).
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We suppose that ∂Ω = Γd ∩ Γn. Let us introduce the following functional space:

V = {v ∈ H1(Ω)d; v = 0 on Γd}

Then, multiplying the first equation of (4.2) by an arbitrarily test-function v ∈ V and then
integrate over Ω :

−
∫

Ω

div(σ(u)).v dx =

∫

Ω

f .v dx, ∀v ∈ V

The next step is to invoque an integration by part:

∫

Ω

div τ.v dx+

∫

Ω

τ : D(v) dx =

∫

∂Ω

τ : (v ⊗ n) ds, ∀τ ∈ L2(Ω)d×d, ∀v ∈ V

Recall that div τ denotes
(∑d−1

j=0 ∂jτi,j

)
0≤i<d

, i.e. the vector whose component are the diver-

gence of each row of τ . Also, σ : τ denote the double contracted product
∑d−1
i,j=0 σi,jτi,j for any

tensors σ and τ , and that u ⊗ v dotes the τi,j = ui vj tensor, vectors u and v. Remark that

τ : (u⊗ v) = (τ v).u =
∑d−1
i,j=0 τi,j ui vj . Choosing τ = σ(u) in the previous equation leads to:

∫

Ω

σ(u) : D(v) dx =

∫

∂Ω

(σ(u) n).v ds+

∫

Ω

f .v dx, ∀v ∈ V

Since our test-function v vanishes on Γd and the solution satisfie the homogeneous Neumann
boundary condition σ(u) n = 0 on Γn, the integral over ∂Ω is zero and the problem becomes:

∫

Ω

σ(u) : D(v) dx =

∫

Ω

f .v dx, ∀v ∈ V

From the definition of σ(u) in (4.1) page 43 we have:

σ(u) : D(v) = λ div(u) (I : D(v)) + 2µD(u) : D(v)

= λ div(u) div(v) + 2µD(u) : D(v)

and the previous relation becomes:

∫

Ω

λdiv(u) div(v) dx+

∫

Ω

2µD(u) : D(v) dx =

∫

Ω

f .v dx, ∀v ∈ V

This is exactly the variational formulation (4.3), page 44.

A.3 The Green formula on a surface

Let Γ a closed and orientable surface of Rd, d = 2, 3 and n its unit normal. From [25], appendix C
we have the following integration by part:

∫

Γ

divsv ξ ds+

∫

Γ

v.∇sξ ds =

∫

Γ

v.n ξ div n ds

for all ξ ∈ H1(Γ) and v ∈ H1(Γ)d. Notice that div n represent the surface curvature. Next, we
choose v = ∇sϕ, for any ϕ ∈ H2(Γ). Remaking that v.n = 0 and that divsv = ∆sϕ. Then:

∫

Γ

∆s ξ ds+

∫

Γ

∇sϕ.∇sξ ds = 0

This formula is the starting point for all variational formulations of problems defined on a surface
(see chapter 7).



Appendix B

How to prepare a mesh ?

Since there is many good mesh generators, Rheolefdoes not provide a built-in mesh generator.
There are several ways to prepare a mesh for Rheolef.

We present here several procedures: by using the bamg bidimensional anisotropic mesh generator,
written by Fréderic Hecht [21], and the gmsh mesh generator, suitable when d = 1, 2 and 3, and
written by Christophe Geuzaine and Jean-Franois Remacle [17].

B.1 Bidimensional mesh with bamg

We first create a ‘square.bamgcad’ file:

MeshVersionFormatted

0

Dimension

2

Vertices

4

0 0 1

1 0 2

1 1 3

0 1 4

Edges

4

1 2 101

2 3 102

3 4 103

4 1 104

hVertices

0.1 0.1 0.1 0.1

This is an uniform mesh with element size h = 0.1. We refer to the bamg documentation [21] for
the complete file format description. Next, enter the mesh generator commands:

bamg -g square.bamgcad -o square.bamg

Then, create the file ‘square.dmn’ that associate names to the four boundary domains of the mesh.
Here, there is four boundary domains:
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EdgeDomainNames

4

bottom

right

top

left

and enter the translation command:

bamg2geo square.bamg square.dmn > square.geo

This command creates a ‘square.geo’ file. Look at the mesh via the command:

geo square

This presents the mesh it in a graphical form, usually with gnuplot. You can switch to the mayavi
renders:

geo square -mayavi

A finer mesh could be generated by:

bamg -coef 0.5 -g square.bamgcad -o square-0.5.bamg

B.2 Unidimensional mesh with gmsh

The simplest unidimensional mesh is a line:

h_local = 0.1;

Point(1) = {0, 0, 0, h_local};

Point(2) = {1, 0, 0, h_local};

Line(3) = {1,2};

Physical Point("left") = {1};

Physical Point("right") = {2};

Physical Point("boundary") = {1,2};

Physical Line("interior") = {3};

The mesh generation command writes:

gmsh -1 line.mshcad -format msh -o line.msh

Then, the conversion to ‘.geo’ format and the visualization:

msh2geo line.msh > line.geo

geo line
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B.3 Bidimensional mesh with gmsh

Figure B.1: Visualization of the gmsh meshes ‘square.geo’ and ‘cube.geo’.

We first create a ‘square.mshcad’ file:

n = 10.0;

hloc = 1.0/n;

Point(1) = {0, 0, 0, hloc};

Point(2) = {1, 0, 0, hloc};

Point(3) = {1, 1, 0, hloc};

Point(4) = {0, 1, 0, hloc};

Line(1) = {1,2};

Line(2) = {2,3};

Line(3) = {3,4};

Line(4) = {4,1};

Line Loop(5) = {1,2,3,4};

Plane Surface(6) = {5} ;

Physical Point("left_bottom") = {1};

Physical Point("right_bottom") = {2};

Physical Point("right_top") = {3};

Physical Point("left_top") = {4};

Physical Line("boundary") = {1,2,3,4};

Physical Line("bottom") = {1};

Physical Line("right") = {2};

Physical Line("top") = {3};

Physical Line("left") = {4};

Physical Surface("interior") = {6};

This is an uniform mesh with element size h = 0.1. We refer to the gmsh documentation [17] for
the complete file format description. Next, enter the mesh generator commands:
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gmsh -2 square.mshcad -format msh -o square.msh

Then, enter the translation command:

msh2geo square.msh > square.geo

This command creates a ‘square.geo’ file. Look at the mesh via the command:

geo square

Remark that the domain names, defined in the .mshcad file, are included in the gmsh .msh input
file and are propagated in the .geo by the format conversion.

B.4 Tridimensional mesh with gmsh

First, create a ‘cube.mshcad’ file:

Mesh.Algorithm = 7; // bamg

Mesh.Algorithm3D = 7; // mmg3d

a = 0; c = 0; f = 0;

b = 1; d = 1; g = 1;

n = 10;

hloc = 1.0/n;

Point(1) = {a, c, f, hloc};

Point(2) = {b, c, f, hloc};

Point(3) = {b, d, f, hloc};

Point(4) = {a, d, f, hloc};

Point(5) = {a, c, g, hloc};

Point(6) = {b, c, g, hloc};

Point(7) = {b, d, g, hloc};

Point(8) = {a, d, g, hloc};

Line(1) = {1,2};

Line(2) = {2,3};

Line(3) = {3,4};

Line(4) = {4,1};

Line(5) = {5,6};

Line(6) = {6,7};

Line(7) = {7,8};

Line(8) = {8,5};

Line(9) = {1,5};

Line(10) = {2,6};

Line(11) = {3,7};

Line(12) = {4,8};

Line Loop(21) = {-1,-4,-3,-2};

Plane Surface(31) = {21} ;

Line Loop(22) = {5,6,7,8};

Plane Surface(32) = {22} ;

Line Loop(23) = {1,10,-5,-9};

Plane Surface(33) = {23} ;

Line Loop(24) = {12,-7,-11,3};

Plane Surface(34) = {24} ;
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Line Loop(25) = {2,11,-6,-10};

Plane Surface(35) = {25} ;

Line Loop(26) = {9,-8,-12,4};

Plane Surface(36) = {26} ;

Surface Loop(41) = {31,32,33,34,35,36};

Volume(51) = {41};

Physical Surface("bottom") = {31};

Physical Surface("top") = {32};

Physical Surface("left") = {33};

Physical Surface("front") = {35};

Physical Surface("right") = {34};

Physical Surface("back") = {36};

Physical Volume("internal") = {51};

Next, enter the mesh generator commands:

gmsh -3 cube.mshcad -format msh -o cube.msh

Then, enter the translation command:

msh2geo cube.msh > cube.geo

This command creates a ‘cube.geo’ file. Look at the mesh via the command:

geo cube

geo cube.geo -mayavi -cut

The second command allows to see inside the mesh.
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Appendix C

Migrating to Rheolef version 6.0

Due to its new distributed memory and computation support, Rheolef version 6.0 presents some
backward incompatibilities with previous versions: codes using previous versions of the library
should be slightly modified. This appendix presents some indications for migrating existing code.

C.1 What is new in Rheolef 6.0 ?

The major main features are:

• support distributed achitectures: the code looks sequential, is easy to read and write but
can be run massively parallel and distributed, based on the MPI library.

• high order polynomial approximation: Pk basis are introduced in this version, for k ≥ 0.
This feature will be improved in the future developments.

• mesh adaptation and the charateristic method are now available for three-
dimensional problems.

In order to evoluate in these directions, internal data structures inside the library are completely
rewritten in a different way, and thus this version is a completely new library.

Conversely, the library and unix command interfaces was as less as possible modified.

Nevertheless, the user will find some few backward incompatibilities: 5.93 based codes will not
directly compile with the 6.0 library version. Let us review how to move a code from 5.93 to 6.0
version.

C.2 What should I have to change in my code ?

1. Namespace

The namespace rheolef was already introduced in last 5.93 version. Recall that a code usually
starts with:

#include "rheolef.h"
using namespace rheolef;

2. Environment

The MPI library requires initialisation and the two command line arguments. This initialisation
is performed via the boost::mpi class environment: The code entry point writes:
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int main (int argc , char** argv) {
environment rheolef (argc ,argv);
...

3. Fields and forms data accessors

The accesses to unknown and blocked data was of a field uh was direct, as uh.u and uh.b.
This access is no more possible in a distributed environment, as non-local value requests may be
optimized and thus, read and write access may be controled thought accessors. These accessors
are named uh.u() and uh.b() for read access, and uh.set u() and uh.set b() for write access.
Similarly, a form a has accessors as a.uu().

A typical 5.93 code writes:

ssk <Float > sa = ldlt(a.uu);
uh.u = sa.solve (lh.u - a.ub*uh.b);

and the corresponding 6.0 code is:

solver sa (a.uu());
uh.set_u () = sa.solve (lh.u() - a.ub()*uh.b());

This major change in the library interface induces the most important work when porting to the
6.0 version.

Notice also that the old ssk<Float> class has been supersetted by the solver class, that man-
ages both direct and iterative solvers in a more effective way. For three-dimensional problems,
the iterative solver is the default while direct solvers are used otherwise. In the same spirit, a
solver abtb has been introduced, for Stokes-like mixed problem. These features facilitate the
dimension-independent coding style provided by the Rheolef library.

4. Distributed input and output streams

Input and output sequential standard streams cin, cout and cerr may now replaced by distributed
Rheolef streams din, dout and derr as:

din >> omega;
dout << uh;

These new streams are available togeher with the idiststream and odiststream classes of the
Rheolef library.

5. File formats ‘.geo’ and ‘.field’ have changed

The ‘.geo’ and ‘.field’ file formats have changed. The ‘.mfield’ is now obsolete: it has been
merged into the ‘.field’ format that supports now multi-component fields. Also, the corre-
sponding mfield unix command is obsolete, as these features are integrated in the field unix
command.

At this early stage of the 6.0 version, it is not yet possible to read the old ‘.geo’ format, but this
backward compatibility will be assured soon.

6. Space on a domain

A space defined on a domain "boundary" of a mesh omega was defined in the 5.93 version as:

space Wh (omega["boundary"], omega , "P1");

It writes now:

space Wh (omega["boundary"], "P1");

as the repetition of omega is no more required.



Appendix D

GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

*

Preamble

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary
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Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup has been
designed to thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LATEX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML designed for human modification. Opaque formats include PostScript,
PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept com-
pensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
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If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

• Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.
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• In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

• Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties – for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled “Ac-
knowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled
“Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
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copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an “aggregate”, and this License does not apply to
the other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may
be placed on covers that surround only the Document within the aggregate. Otherwise they must
appear on covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License provided that you also include the original English version of this License.
In case of a disagreement between the translation and the original English version of this License,
the original English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License ”or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft
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*

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.1 or any later version published by the Free Software Foundation; with the
Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
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‘.mshcad’ gmsh geometry, 54, 68, 72,

103, 142
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namespace
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0 , 115

operator
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Laplace, 9
Laplace-Beltrami, 95

parallel computation, 11, 13, 33
polar coordinate system, 71
preconditioner, 55

Choleski incomplete factorization, 12
for nearly incompressible elasticity, 64
for Stokes problem, 55

problem
Helmholtz, 27
Navier-Stokes, 84
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non-constant tensorial coefficients,
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stabilized Stokes, 67
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Riesz representer, 11

singular solution, 59
space
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W−1,p, dual of W 1,p
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W 1,p, 115
W 1,p

0 , 115
dual, 120
duality bracket 〈., .〉, 120
weighted (axisymmetric), 71

stabilization, 63
stream function, 59, 70, 90

axisymmetric, 71
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field, 49
rate of deformation, 73
visualization as ellipsoid, 49

unknow and blocked components, 11
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derr, 148
din, 148
dout, 148

visualization
animation, 78
elevation view, 14, 119
stereoscopic anaglyph, 14, 47

vortex, 70, 73
vorticity, 57
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