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INTRODUCTION

The lambda-calculus was invented in the early 1930’s, by A. Church, and
has been considerably developed since then. This book is an introduction
to some aspects of the theory today : pure lambda-calculus, combinatory
logic, semantics (models) of lambda-calculus, type systems. All these areas
will be dealt with, only partially, of course, but in such a way, I think, as to
illustrate their interdependence, and the essential unity of the subject.

No specific knowledge is required from the reader, but some familiarity with
mathematical logic is expected ; in chapter 2, the concept of recursive func-
tion is used ; parts of chapters 6 and 7, as well as chapter 9, involve elementary
topics in predicate calculus and model theory.

For about fifteen years, the typed lambda-calculus has provoked a great
deal of interest, because of its close connections with programming languages,
and of the link that it establishes between the concept of program and that of
intuitionistic proof : this is known as the “ Curry-Howard correspondence ”.
After the first type system, which was Curry’s, many others appeared : for
example, de Bruijn’s Automath system, Girard’s system F , Martin-Löf’s
theory of intuitionistic types, Coquand-Huet’s theory of constructions, Con-
stable’s Nuprl system...

This book will first introduce Coppo and Dezani’s intersection type sys-
tem. Here it will be called “ system DΩ ”, and will be used to prove some
fundamental theorems of pure lambda-calculus. It is also connected with
denotational semantics : in Engeler and Scott’s models, the interpretation
of a term is essentially the set of its types. Next, Girard’s system F of
second order types will be considered, together with a simple extension, de-
noted by FA2 (second order functional arithmetic). These types have a very
transparent logical structure, and a great expressive power. They allow the
Curry-Howard correspondence to be seen clearly, as well as the possibilities,
and the difficulties, of using these systems as programming languages.

A programming language is a tool for writing a program in machine lan-
guage (which is called the object code), in such a way as to keep control, as
far as possible, on what will be done during its execution. To do so, the prim-
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6 Lambda-calculus, types and models

itive method would be to write directly, in one column, machine language,
and, alongside, comments indicating what the corresponding instructions are
supposed to do. The result of this is called a “ source program ”. Here, the
aim of the “ compilation ”, which transforms the source program into an
object code, will be to get rid of the comments.

Such a language is said to be primitive, or “ low level ”, because the
computer does not deal with the comments at all ; they are entirely intended
for the programmer. In a higher level language, part of these comments would
be checked by the computer, and the remainder left for the programmer ; the
“ mechanized ” part of the comments is then called a “ typing ”. A language
is considered high level if the type system is rich. In such a case, the aim of
the compilation would be, first of all, to check the types, then, as before, to
get rid of them, along with the rest of the comments.

The typed lambda-calculus can be used as a mathematical model for this
situation ; the role of the machine language is played by the pure lambda-
calculus. The type systems that are then considered are, in general, much
more rich than those of the actual programming languages ; in fact, the
types could almost be complete specifications of the programs, while the
type checking (compilation) would be a “ program proof ”. These remarks
are sufficient to explain the great interest there would be in constructing
a programming language based on typed lambda-calculus ; but the prob-
lems, theoretical and practical, of such an enterprise are far from being fully
resolved.

This book is the product of a D.E.A. (postgraduate) course at the Uni-
versity of Paris 7. I would like to thank the students and researchers of the
“ Equipe de Logique ” of Paris 7, for their comments and their contributions
to the early versions of the manuscript, in particular Marouan Ajlani, René
Cori, Jean-Yves Girard and Michel Parigot.
Finally, it gives me much pleasure to dedicate this book to my daughter
Sonia.

Paris, 1990



Chapter 1

Substitution and
beta-conversion

The terms of the λ-calculus (also called λ-terms) are finite sequences formed
with the following symbols : variables x, y, . . . (the set of variables is assumed
to be countable), left and right parenthesis, and the letter λ. They are
obtained by applying, a finite number of times, the following rules :

• any variable x is a λ-term ;
• whenever t and u are λ-terms, then so is (t)u ;
• whenever t is a λ-term and x is a variable, then λx t is a λ-term.

The set of all terms of the λ-calculus will be denoted by L.

The term (t)u should be thought of as “ t applied to u ” ; it will also be
denoted by tu if there is no ambiguity ; the term (. . . (((t)u1)u2) . . .)uk will
also be written (t)u1u2 . . . uk or tu1u2 . . . uk. Thus, for example, (t)uv, (tu)v
and tuv denote the same term.
By convention, when k = 0, (t)u1u2 . . . uk will denote the term t.

The free occurrences of a variable x in a term t are defined, by induction, as
follows :

if t is the variable x, then the occurrence of x in t is free ;

if t = (u)v, then the free occurrences of x in t are those of x in u
and v ;

if t = λy u, the free occurrences of x in t are those of x in u,
except if x = y ; in that case, no occurrence of x in t is free.

A free variable in t is a variable which has at least one free occurrence in t.
A term which has no free variable is called a closed term.
A bound variable in t is a variable which occurs in t just after the symbol λ.

7



8 Lambda-calculus, types and models

1. Simple substitution

Let t, t1, . . . , tk be terms and x1, . . . , xk distinct variables ; we define the term
t<t1/x1, . . . , tk/xk> as the result of the replacement of every free occurrence
of xi in t by ti (1 ≤ i ≤ k). The definition is by induction on t, as follows :

if t = xi (1 ≤ i ≤ k), then t<t1/x1, . . . , tk/xk> = ti ;
if t is a variable 6= x1, . . . , xk, then t<t1/x1, . . . , tk/xk> = t ;
if t = (u)v, then

t<t1/x1, . . . , tk/xk> = (u<t1/x1, . . . , tk/xk>)v<t1/x1, . . . , tk/xk> ;
if t = λxiu (1 ≤ i ≤ k), then
t<t1/x1, . . . , tk/xk> = λxiu<t1/x1, . . . , ti−1/xi−1, ti+1/xi+1, . . . , tk/xk> ;
if t = λxu, with x 6= x1, . . . , xk, then

t<t1/x1, . . . , tk/xk> = λxu<t1/x1, . . . , tk/xk>.

Such a substitution will be called a simple one, in order to distinguish it from
the substitution defined further on, which needs a change of bound variables.
Simple substitution corresponds, in computer science, to the notion of macro-
instruction. It is also called substitution with capture of variables.

With the notation t<t1/x1, . . . , tk/xk>, it is understood that x1, . . . , xk are
distinct variables. Moreover, their order does not matter ; in other words :

t<t1/x1, . . . , tk/xk> = t<tσ1/xσ1, . . . , tσk/xσk> for any permutation σ of
{1, . . . , k}.
The proof is immediate by induction on the length of t ; also immediate is
the following :

If t1, . . . , tk are variables, then the term t<t1/x1, . . . , tk/xk> has the same
length as t.

Lemma 1.1. If the variable x1 is not free in the term t of L, then :
t<t1/x1, . . . , tk/xk> = t<t2/x2, . . . , tk/xk>.

Proof by induction on t. The result is clear when t is either a variable or a
term of the form (u)v. Now suppose t = λxu ; then :

if x = x1, then :
t<t1/x1, . . . , tk/xk> = λx1 u<t2/x2, . . . , tk/xk> = t<t2/x2, . . . , tk/xk> ;

if x = xi with i 6= 1, say x = xk, then :
t<t1/x1, . . . , tk/xk> = λxk u<t1/x1, . . . , tk−1/xk−1>

= λxk u<t2/x2, . . . , tk−1/xk−1>
(by induction hypothesis, since x1 is not free in u) = t<t2/x2, . . . , tk/xk> ;

if x 6= x1, . . . , xk, then :
t<t1/x1, . . . , tk/xk> = λxu<t1/x1, . . . , tk/xk> = λxu<t2/x2, . . . , tk/xk>
(by induction hypothesis, since x1 is not free in u) = t<t2/x2, . . . , tk/xk>.

Q.E.D.
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Remark. Usually, in textbooks on λ-calculus (for example in [Bar84]), the simple
substitution is considered for only one variable. In a substitution such as t<u/x>,
the term t is then called a context or a term with holes ; the free occurrences of
the variable x in t are called holes and denoted by [ ]. The term t<u/x> is then
denoted as t[u] and is called the result of the “ substitution of the term u in the
holes of the context t ”.
The major problem about simple substitution is that it is not stable un-
der composition ; if you consider two substitutions <t1/x1, . . . , tm/xm> and
<u1/y1, . . . , un/yn>, then the application :

t 7→ t<t1/x1, . . . , tm/xm><u1/y1, . . . , un/yn>
is not, in general, given by a substitution. For instance, we have :
y<y/x><x/y> = x and z<y/x><x/y> = z for every variable z 6= y. Thus,
if the operation <y/x><x/y> was a substitution, it would be <x/y>. But
this is false, because λy x<y/x><x/y> = λy y and λy x<x/y> = λy x.

In the following lemma, we give a partial answer to this problem. The defini-
tive answer is given in the next section, with a new kind of substitution,
which is stable by composition.

Lemma 1.2. Let {x1, . . . , xm}, {y1, . . . , yn} be two finite sets of variables,
and suppose that their common elements are x1 = y1, . . . , xk = yk. Let
t, t1, . . . , tm, u1, . . . , un be terms of L, and assume that no free variable of
t1, . . . , tm is bound in t. Then :
t<t1/x1, . . . , tm/xm><u1/y1, . . . , un/yn>

= t<t′1/x1, . . . , t
′
m/xm, uk+1/yk+1, . . . , un/yn>,

where t′i = ti<u1/y1, . . . , un/yn>.

Proof by induction on the length of t :
i) t is a variable : the possible cases are t = xi (1 ≤ i ≤ m), t = yj

(k + 1 ≤ j ≤ n), or t is another variable. In each of them, the result is
immediate.
ii) t = (u)v ; the result is obvious, by applying the induction hypothesis to
u and v.
iii) t = λxu ; we first observe that the result follows immediately from the
induction hypothesis for u, if x 6= x1, . . . , xm, y1, . . . , yn.

If x = xi (1 ≤ i ≤ k), say x1, then :
t<t1/x1, . . . , tm/xm> = λx1 u<t2/x2, . . . , tm/xm>.

Since x1 = y1, we have :
t<t1/x1, . . . , tm/xm><u1/y1, . . . , un/yn>

= λx1 u<t2/x2, . . . , tm/xm><u2/y2, . . . , un/yn>.
By the induction hypothesis for u, we get :
u<t2/x2, . . . , tm/xm><u2/y2, . . . , un/yn>

= u<t′′2/x2, . . . , t
′′
m/xm, uk+1/yk+1, . . . , un/yn>,



10 Lambda-calculus, types and models

with t′′i = ti<u2/y2, . . . , un/yn>.
But, since x1 = y1 is bound in t, by hypothesis, it is not a free variable of ti.
From lemma 1.1, it follows that t′′i = ti<u1/y1, . . . , un/yn> = t′i. Therefore :
t<t1/x1, . . . , tm/xm><u1/y1, . . . , un/yn>

= λx1 u<t
′
2/x2, . . . , t

′
m/xm, uk+1/yk+1, . . . , un/yn>

= t<t′1/x1, . . . , t
′
m/xm, uk+1/yk+1, . . . , un/yn>.

If x = xi (k + 1 ≤ i ≤ m), say xm, then :
t<t1/x1, . . . , tm/xm> = λxm u<t1/x1, . . . , tm−1/xm−1>,

and since xm 6= y1, . . . , yn, we get :
t<t1/x1, . . . , tm/xm><u1/y1, . . . , un/yn>

= λxm u<t1/x1, . . . , tm−1/xm−1><u1/y1, . . . , un/yn>.
By the induction hypothesis for u, we get :
u<t1/x1, . . . , tm−1/xm−1><u1/y1, . . . , un/yn>

= u<t′1/x1, . . . , t
′
m−1/xm−1, uk+1/yk+1, . . . , un/yn>,

Therefore t<t1/x1, . . . , tm/xm><u1/y1, . . . , un/yn>
= λxm u<t

′
1/x1, . . . , t

′
m−1/xm−1, uk+1/yk+1, . . . , un/yn>

= t<t′1/x1, . . . , t
′
m/xm, uk+1/yk+1, . . . , un/yn>.

If x = yj (k + 1 ≤ j ≤ n), say yn, then :
t<t1/x1, . . . , tm/xm> = λyn u<t1/x1, . . . , tm/xm>, since yn 6= x1, . . . , xm.
Therefore t<t1/x1, . . . , tm/xm><u1/y1, . . . , un/yn>

= λyn u<t1/x1, . . . , tm/xm><u1/y1, . . . , un−1/yn−1>.
By the induction hypothesis for u, we get :
u<t1/x1, . . . , tm/xm><u1/y1, . . . , un−1/yn−1>

= u<t′′1/x1, . . . , t
′′
m/xm, uk+1/yk+1, . . . , un−1/yn−1>,

with t′′i = ti<u1/y1, . . . , un−1/yn−1>.
But, since yn is bound in t, by hypothesis, it is not a free variable of ti. From
lemma 1.1, it follows that t′′i = ti<u1/y1, . . . , un/yn> = t′i. Therefore :
t<t1/x1, . . . , tm/xm><u1/y1, . . . , un/yn>

= λyn u<t
′
1/x1, . . . , t

′
m/xm, uk+1/yk+1, . . . , un−1/yn−1>

= t<t′1/x1, . . . , t
′
m/xm, uk+1/yk+1, . . . , un/yn>.

Q.E.D.

Corollary 1.3. Let t, t1, . . . , tm be λ-terms, and {x1, . . . , xm}, {y1, . . . , ym}
two sets of variables such that none of the yi’s occur in t. Then :
t<y1/x1, . . . , ym/xm><t1/y1, . . . , tm/ym> = t<t1/x1, . . . , tm/xm>.

Let {x1, . . . , xk} = {x1, . . . , xm} ∩ {y1, . . . , ym}, with x1 = y1, . . . , xk = yk.
The hypothesis of lemma 1.2 is satisfied, because yi is not bound in t. There-
fore, we have :
t<y1/x1, . . . , ym/xm><t1/y1, . . . , tm/ym>

= t<t1/x1, . . . , tm/xm, tk+1/yk+1, . . . , tm/ym>.
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But yk+1, . . . , ym are not free in t, and therefore we get t<t1/x1, . . . , tm/xm>
by lemma 1.1.

Q.E.D.

Let R be a binary relation on L ; we will say that R is λ-compatible if it is
reflexive and satisfies :

t R t′ ⇒ λx tRλx t′ ; t R t′, uRu′ ⇒ (t)uR (t′)u′.

Remark. A binary relation R is λ-compatible if and only if :
xR x for each variable x ;
t R t′ ⇒ λx tR λx t′ ; t R t′, u R u′ ⇒ (t)u R (t′)u′ for all terms t, u, t′, u′.
Indeed, t R t is easily proved, by induction on the length of t.

Lemma 1.4. If R is λ-compatible and t1R t
′
1, . . . , tk R t

′
k, then :

t<t1/x1, . . . , tk/xk>R t<t
′
1/x1, . . . , t

′
k/xk>.

Immediate proof by induction on the length of t.
Q.E.D.

Proposition 1.5. Let R be a binary relation on L. Then, the least λ-compa-
tible binary relation ρ containing R is defined by the following condition :
(1) tρ t′ ⇔ there exists terms T, t1, . . . , tk, t

′
1, . . . , t

′
k and distinct variables

x1, . . . , xk such that : tiR t
′
i (1 ≤ i ≤ k) and t = T<t1/x1, . . . , tk/xk>,

t′ = T<t′1/x1, . . . , t
′
k/xk>.

Let ρ′ be the least λ-compatible binary relation containing R, and ρ the
relation defined by condition (1) above. It follows from the previous lemma
that ρ′ ⊃ ρ. It is easy to see that ρ ⊃ R (take T = x1). It thus remains to
prove that ρ is λ-compatible.
By taking k = 0 in condition (1), we see that ρ is reflexive.
Suppose t = T<t1/x1, . . . , tk/xk>, t′ = T<t′1/x1, . . . , t

′
k/xk>. Let y1, . . . , yk

be distinct variables not occurring in T . Let V = T<y1/x1, . . . , yk/xk>.
Then, it follows from corollary 1.3 that t = V <t1/y1, . . . , tk/yk> and t′ =
V <t′1/y1, . . . , t

′
k/yk>. Thus the distinct variables x1, . . . , xk in condition (1)

can be arbitrarily chosen, except in some finite set.
Now suppose tρt′ and uρu′ ; then :

t = T<t1/x1, . . . , tk/xk>, t′ = T<t′1/x1, . . . , t
′
k/xk> with tiRt

′
i ;

u = U<u1/y1, . . . , ul/yl>, u′ = U<u′1/y1, . . . , u
′
l/yl> with ujRu

′
j.

By the previous remark, we can assume that x1, . . . , xk, y1, . . . , yl are distinct,
different from x, and also that none of the xi’s occur in U , and none of the
yj’s occur in T . Therefore :

λx t = (λxT )<t1/x1, . . . , tk/xk>, λx t′ = (λxT )<t′1/x1, . . . , t
′
k/xk>,

which proves that λx t ρ λx t′.
Also, by lemma 1.1 :
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t = T<t1/x1, . . . , tk/xk, u1/y1, . . . , ul/yl>,
t′ = T<t′1/x1, . . . , t

′
k/xk, u

′
1/y1, . . . , u

′
l/yl>

(since none of the y′js occur in T ) ;
and similarly :

u = U<t1/x1, . . . , tk/xk, u1/y1, . . . , ul/yl>,
u′ = U<t′1/x1, . . . , t

′
k/xk, u

′
1/y1, . . . , u

′
l/yl>

(since none of the x′is occur in U).
Let V = (T )U ; then (t)u = V <t1/x1, . . . , tk/xk, u1/y1, . . . , ul/yl>,
(t′)u′ = V <t′1/x1, . . . , t

′
k/xk, u

′
1/y1, . . . , u

′
l/yl> and thus (t)u ρ (t′)u′.

Q.E.D.

2. Alpha-equivalence and substitution

We will now define an equivalence relation on the set L of all λ-terms. It is
called α-equivalence, and denoted by ≡.
Intuitively, t ≡ t′ means that t′ is obtained from t by renaming the bound
variables in t ; more precisely, t ≡ t′ if and only if t and t′ have the same
sequence of symbols (when all variables are considered equal), the same free
occurrences of the same variables, and if each λ binds the same occurrences
of variables in t and in t′.
We define t ≡ t′, on L, by induction on the length of t, by the following
clauses :

if t is a variable, then t ≡ t′ if and only if t = t′ ;

if t = (u)v, then t ≡ t′ if and only if t′ = (u′)v′, with u ≡ u′ and
v ≡ v′ ;

if t = λxu, then t ≡ t′ if and only if t′ = λx′u′, with u<y/x> ≡
u′<y/x′> for all variables y except a finite number.

(Note that u<y/x> has the same length as u, thus is shorter than t, which
guarantees the correctness of the inductive definition).

Proposition 1.6. If t ≡ t′, then t and t′ have the same length and the same
free variables.

The proof is done by induction on the length of t. The cases when t is a
variable, or t = uv are trivial.
Suppose now that t = λxu and therefore t′ = λx′ u′. Thus, we have :
u<y/x> ≡ u′<y/x′> for every variable y except a finite number.
We choose a variable y 6= x, x′ which, moreover, does not appear (free or
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bound) in u, u′. Let U (resp. U ′) be the set of free variables of u (resp. u′).
The set V of free variables of u<y/x> is U if x /∈ U and (U \ {x}) ∪ {y}
if x ∈ U . Also, the set V ′ of free variables of u′<y/x′> is U ′ if x′ /∈ U ′

and (U ′ \ {x′}) ∪ {y} if x′ ∈ U ′. Now, we have V = V ′, by the induction
hypothesis.
If x /∈ U , we have y /∈ V , thus y /∈ V ′ and x′ /∈ U ′. Thus U = V = V ′ = U ′

and λxu, λx′ u′ have the same set of free variables, which is U .
If x ∈ U , then y ∈ V , thus y ∈ V ′ and therefore x′ ∈ U ′.
The set of free variables of λxu (resp. λx′ u′) is U \ {x} = V \ {y} (resp.
U ′ \ {x′} = V ′ \ {y}). Since V = V ′, it is, once again, the same set.

Q.E.D.

The relation ≡ is an equivalence relation on L.

Indeed, the proof of the three following properties is trivial, by induction
on t : t ≡ t ; t ≡ t′ ⇒ t′ ≡ t ; t ≡ t′, t′ ≡ t′′ ⇒ t ≡ t′′.

Proposition 1.7. Let t, t′, t1, t
′
1 . . . , tk, t

′
k be λ-terms, and x1, . . . , xk distinct

variables. If t ≡ t′, t1 ≡ t′1, . . . , tk ≡ t′k and if no free variable in t1, . . . , tk
is bound in t, t′, then t<t1/x1, . . . , tk/xk> ≡ t′<t′1/x1, . . . , t

′
k/xk>.

Note that, since t ≡ t′, t and t′ have the same free variables. Thus it can be
assumed that x1, . . . , xk are free in t and t′ ; indeed, if x1, . . . , xl are those xi

variables which are free in t and t′, then, by lemma 1.1 :
t<t1/x1, . . . , tk/xk> = t<t1/x1, . . . , tl/xl> and

t′<t′1/x1, . . . , t
′
k/xk> = t′<t′1/x1, . . . , t

′
l/xl>.

Also, since ti ≡ t′i, ti and t′i have the same free variables. Therefore, no free
variable in t1, t

′
1, . . . , tk, t

′
k is bound in t, t′.

The proof of the proposition proceeds by induction on t. The result is im-
mediate if t is a variable, or t = (u)v. Suppose t = λxu. Then t′ = λx′u′

and u<y/x> ≡ u′<y/x′> for all variables y except a finite number.
Since x1, . . . , xk are free in t and t′, x and x′ are different from x1, . . . , xk.
Thus t<t1/x1, . . . , tk/xk> = λxu<t1/x1, . . . , tk/xk> and

t′<t′1/x1, . . . , t
′
k/xk> = λx′u′<t′1/x1, . . . , t

′
k/xk>.

Hence it is sufficient to show that :
u<t1/x1, . . . , tk/xk><y/x> ≡ u′<t′1/x1, . . . , t

′
k/xk><y/x

′>
for all variables y except a finite number. Therefore, we may assume that
y 6= x1, . . . , xk. Since x, x′ are respectively bound in t, t′, they are not free in
t1, . . . , tk, t

′
1, . . . , t

′
k ; therefore, it follows from lemma 1.2 that

u<t1/x1, . . . , tk/xk><y/x> = u<t1/x1, . . . , tk/xk, y/x> and
u′<t′1/x1, . . . , t

′
k/xk><y/x

′> = u′<t′1/x1, . . . , t
′
k/xk, y/x

′>.
Since y 6= x1, . . . , xk, we get, applying again lemma 1.2 :

u<y/x, t1/x1, . . . , tk/xk> = u<y/x><t1/x1, . . . , tk/xk> and
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u′<y/x′, t′1/x1, . . . , t
′
k/xk> = u′<y/x′><t′1/x1, . . . , t

′
k/xk>

and therefore :
u<t1/x1, . . . , tk/xk><y/x> = u<y/x><t1/x1, . . . , tk/xk> and
u′<t′1/x1, . . . , t

′
k/xk><y/x

′> = u′<y/x′><t′1/x1, . . . , t
′
k/xk>.

Now, since u<y/x> ≡ u′<y/x′> for all variables y except a finite number,
and u<y/x> is shorter than t, the induction hypothesis gives :
u<y/x><t1/x1, . . . , tk/xk> ≡ u′<y/x′><t′1/x1, . . . , t

′
k/xk>, thus :

u<t1/x1, . . . , tk/xk><y/x> ≡ u′<t′1/x1, . . . , t
′
k/xk><y/x

′> for all variables
y except a finite number.

Q.E.D.

Corollary 1.8. The relation ≡ is λ-compatible.

Suppose t ≡ t′. We need to prove that λx t ≡ λx t′, that is to say t<y/x> ≡
t′<y/x> for all variables y except a finite number. But this follows from
proposition 1.7, provided that y is not a bound variable in t or in t′.

Q.E.D.

Corollary 1.9. If t, t1, . . . , tk, t
′
1, . . . , t

′
k are terms, and x1, . . . , xk are distinct

variables, then :
t1 ≡ t′1, . . . , tk ≡ t′k ⇒ t<t1/x1, . . . , tk/xk> ≡ t<t′1/x1, . . . , t

′
k/xk>.

This follows from corollary 1.8 and lemma 1.4.
Q.E.D.

However, note that it is not true that u ≡ u′ ⇒ u<t/x> ≡ u′<t/x>. For
example, λy x ≡ λz x, while λy x<y/x> = λy y 6≡ λz x<y/x> = λz y.

Lemma 1.10. λx t ≡ λy t<y/x> whenever y is a variable which does not
occur in t.

By corollary 1.3, t<z/x> = t<y/x><z/y> for any variable z, since y does
not occur in t. Hence the result follows from the definition of ≡.

Q.E.D.

Lemma 1.11. Let t be a term, and x1, . . . , xk be variables. Then there exists
a term t′, t′ ≡ t, such that none of x1, . . . , xk are bound in t′.

The proof is by induction on t. The result is immediate if t is a variable, or
if t = (u)v. If t = λxu, then, by induction hypothesis, there exists a term
u′, u′ ≡ u, in which none of x1, . . . , xk are bound. By the previous lemma,
t ≡ λxu′ ≡ λy u′<y/x> with y 6= x1, . . . , xk. Thus it is sufficient to take
t′ = λy u′<y/x>.

Q.E.D.
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From now on, α-equivalent terms will be identified ; hence we will deal with
the quotient set L/≡ ; it is denoted by Λ.
For each variable x, its equivalence class will still be denoted by x (it is
actually {x}). Furthermore, the operations t, u 7→ (t)u and t, x 7→ λx t are
compatible with ≡ and are therefore defined in Λ.
Moreover, if t ≡ t′, then t and t′ have the same free variables. Hence it is
possible to define the free variables of a member of Λ.

Consider terms t, t1, . . . , tk ∈ Λ and distinct variables x1, . . . , xk. Then the
term t[t1/x1, . . . , tk/xk] ∈ Λ (being the result of the replacement of every
free occurrence of xi in t by ti, for i = 1, . . . , k) is defined as follows : let
t, t1, . . . , tk be terms of L, the equivalence classes of which are respectively
t, t1, . . . , tk. By lemma 1.11, we may assume that no bound variable of t is
free in t1, . . . , tk. Then t[t1/x1, . . . , tk/xk] is defined as the equivalence class
of t<t1/x1, . . . , tk/xk>. Indeed, by proposition 1.7, this equivalence class
does not depend on the choice of t, t1, . . . , tk.
So the substitution operation t, t1, . . . , tk 7→ t[t1/x1, . . . , tk/xk] is well defined
in Λ. It corresponds to the replacement of the free occurrences of xi in t by
ti (1 ≤ i ≤ k), provided that a representative of t has been chosen such that
no free variable in t1, . . . , tk is bound in it.
The substitution operation satisfies the following lemmas, already stated for
the simple substitution :

Lemma 1.12. If the variable x1 is not free in the term t of Λ, then :
t[t1/x1, . . . , tk/xk] = t[t2/x2, . . . , tk/xk].

Immediate from lemma 1.1 and the definition of t[t1/x1, . . . , tk/xk].
Q.E.D.

The following lemma shows that the substitution behaves much better in
Λ than in L (compare with lemma 1.2). In particular, it shows that the
composition of two substitutions gives a substitution.

Lemma 1.13. Let {x1, . . . , xm}, {y1, . . . , yn} be two finite sets of variables,
and suppose that their common elements are x1 = y1, . . . , xk = yk. Let
t, t1, . . . , tm, u1, . . . , un be terms of Λ. Then :
t[t1/x1, . . . , tm/xm][u1/y1, . . . , un/yn]

= t[t′1/x1, . . . , t
′
m/xm, uk+1/yk+1, . . . , un/yn],

where t′i = ti[u1/y1, . . . , un/yn].

Let t, t1, . . . , tm, u1, . . . , un be some representatives of t, t1, . . . , tm, u1, . . . , un.
By lemma 1.11, we may assume that no bound variable of t is free in
t1, . . . , tm, u1, . . . , un, and that no bound variable of t1, . . . , tm is free in



16 Lambda-calculus, types and models

u1, . . . , un. From lemma 1.2, we get :
t<t1/x1, . . . , tm/xm><u1/y1, . . . , un/yn>

= t<t′1/x1, . . . , t
′
m/xm, uk+1/yk+1, . . . , un/yn>,

where t′i = ti<u1/y1, . . . , un/yn>.
The first member is a representative of t[t1/x1, . . . , tm/xm][u1/y1, . . . , un/yn],
since t<t1/x1, . . . , tm/xm> is a representative of t[t1/x1, . . . , tm/xm], and no
bound variable of this term is free in u1, . . . , un. The second member is
a representative of t[t′1/x1, . . . , t

′
m/xm, uk+1/yk+1, . . . , un/yn], since no bound

variable of t is free in t′1, . . . , t
′
m, uk+1, . . . , un.

Q.E.D.

Lemma 1.14. Let x, x′ be variables and u, u′ ∈ Λ be such that λxu = λx′ u′.
Then u[t/x] = u′[t/x′] for every t ∈ Λ.

Let u, u′ ∈ L be representatives of u, u′. Then λxu ≡ λx′ u′ and, by definition
of the α-equivalence, we have u<y/x> ≡ u′<y/x′> for every variable y
but a finite number. If we suppose that y is not bound in u, u′, we see
that u[y/x] = u′[y/x′] for every variable y but a finite number ; therefore
u[y/x][t/y] = u′[y/x′][t/y]. If we suppose that y is different from x, x′, then,
by lemma 1.13, we get u[t/x, t/y] = u′[t/x′, t/y]. Assume now that y is not
free in u, u′ ; then, by lemma 1.12, we obtain u[t/x] = u′[t/x′].

Q.E.D.

Proposition 1.15. Let t ∈ Λ such that t = λxu. Then, for every variable
x′ which is not free in t, there exists a unique u′ ∈ Λ such that t = λx′ u′ ; it
is given by u′ = u[x′/x].

Remark. Clearly, if x′ is a free variable of t, we cannot have t = λx′ u′.

If λxu = λx′ u′, then u[x′/x] = u′[x′/x′] = u′ by lemma 1.14.
We prove now that, if u′ = u[x′/x], then λxu = λx′ u′. We may assume
that x and x′ are different, the result being trivial otherwise. Let u be a
representative of u, in which the variable x′ is not bound. Then u′ = u<x′/x>
is a representative of u′. It is sufficient to show that λxu ≡ λx′ u′, that is
to say u<y/x> ≡ u′<y/x′> for every variable y but a finite number. Now
u′<y/x′> = u<x′/x><y/x′>. By corollary 1.3, we get u<x′/x><y/x′> =
u<y/x> since the variable x′ does not occur in u : indeed, it is not bound
in u by hypothesis, and it is not free in u, because it is not free in t = λxu.

Q.E.D.

We can now give the following inductive definition of the operation of sub-
stitution [t1/x1, . . . , tk/xk], which is useful for inductive reasoning :

xi[t1/x1, . . . , tk/xk] = ti for 1 ≤ i ≤ k ;
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if x is a variable different from x1, . . . , xk, then
x[t1/x1, . . . , tk/xk] = x ;

if t = uv, then t[t1/x1, . . . , tk/xk]
= (u[t1/x1, . . . , tk/xk])v[t1/x1, . . . , tk/xk] ;

if t = λxu, we may assume that x is not free in t1, . . . , tk and
different from x1, . . . , xk (proposition 1.15). Then

t[t1/x1, . . . , tk/xk] = λx(u[t1/x1, . . . , tk/xk]).

We need only to prove the last case : let u, t1, . . . , tk be representatives of
u, t1, . . . , tk, such that no free variable of t1, . . . , tk is bound in u. Then t =
λxu is a representative of t ; and τ = t<t1/x1, . . . , tk/xk> is a representative
of t[t1/x1, . . . , tk/xk], since the bound variables of t are x and the bound vari-
ables of u, and x is not free in t1, . . . , tk. Now τ = λxu<t1/x1, . . . , tk/xk>,
since x 6= x1, . . . , xk. The result follows, because u<t1/x1, . . . , tk/xk> is a
representative of u[t1/x1, . . . , tk/xk].

We now define the notion of λ-compatibility on Λ : if R is a binary relation
on Λ, we will say that R is λ-compatible if it satisfies :

xRx for each variable x ;
t R t′ ⇒ λx tRλx t′ ;
t R t′, uR u′ ⇒ (t)uR (t′)u′.

A λ-compatible relation is necessarily reflexive. Indeed, we have :

Lemma 1.16. If R is λ-compatible and t1R t
′
1, . . . , tkR t

′
k, then :

t[t1/x1, . . . , tk/xk]R t[t
′
1/x1, . . . , t

′
k/xk].

Immediate proof by induction on the length of t.
Q.E.D.

3. Beta-conversion

Let R be a binary relation, on an arbitrary set E ; the least transitive binary
relation which contains R is obviously the relation R′ defined by :
t R′u ⇔ there exist a finite sequence t = v0, v1, . . . , vn−1, vn = u of elements
of E such that viRvi+1 (0 ≤ i < n).
R′ is called the transitive closure of R.

We say that the binary relation R on E satisfies the Church-Rosser (C.-R.)
property if and only if :
for every t, u, u′ ∈ E such that t R u and t R u′, there exists some v ∈ E such
that uR v and u′Rv.



18 Lambda-calculus, types and models

Lemma 1.17. Let R be a binary relation which satisfies the Church-Rosser
property. Then the transitive closure of R also satisfies it.

Let R′ be that transitive closure. We will first prove the following property :
t R′u, tR u′ ⇒ for some v, uR v and u′R′v.
t R′u means that there exists a sequence t = v0, v1, . . . , vn−1, vn = u such that
viRvi+1 (0 ≤ i < n).
The proof is by induction on n ; the case n = 1 is just the hypothesis of the
lemma.
Now since t R′vn−1 and t R u′, for some w, vn−1Rw and u′R′w. But vn−1Ru,
so uR v and wRv for some v (C.-R. property for R). Therefore u′R′v, which
gives the result.
Now we can prove the lemma : the assumption is t R′u and t R′u′, so there
exists a sequence : t = v0, v1, . . . , vn−1, vn = u′ such that viRvi+1 (0 ≤ i < n).
The proof is by induction on n : the case n = 1 has just been settled.
Since t R′u and t R′vn−1, by induction hypothesis, we have uR′w and vn−1R

′w
for some w. Now vn−1Ru

′, so, by the previous property, wRv and u′R′v for
some v. Thus uR′v.

Q.E.D.

In the following, we consider binary relations on the set Λ of λ-terms.

Proposition 1.18.
If t, u, t′, u′ ∈ Λ and (λxu)t = (λx′u′)t′, then u[t/x] = u′[t′/x′].

This is the same as lemma 1.14, since (λxu)t = (λx′u′)t′ if and only if t = t′

and λxu = λx′u′.
Q.E.D.

A term of the form (λxu)t is called a redex, u[t/x] is called its contractum.
Proposition 1.18 shows that this notion is correctly defined on Λ.
A binary relation β0 will now be defined on Λ ; t β0 t

′ should be read as :
“ t′ is obtained by contracting a redex (or by a β-reduction) in t ”.
The definition is by induction on t :

if t is a variable, then there is no t′ such that t β0 t
′ ;

if t = λxu, then t β0 t
′ if and only if t′ = λxu′, with u β0 u

′ ;
if t = (u)v, then t β0 t

′ if and only if
either t′ = (u)v′ with v β0 v

′,
or t′ = (u′)v with u β0 u

′,
or else u = λxw and t′ = w[v/x].

It is clear from this definition that, whenever t β0 t
′, any free variable in t′ is

also free in t.
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The β-conversion is the least binary relation β on Λ, which is reflexive,
transitive, and contains β0. Thus, we have :
t β t′ ⇔ there exists a sequence t = t0, t1, . . . , tn−1, tn = t′ such that tiβ0 ti+1

for 1 ≤ i ≤ n− 1 (n ≥ 0).

Therefore, whenever t β t′, any free variable in t′ is also free in t.
The next two propositions give two simple characterizations of β.

Proposition 1.19. The β-conversion is the least transitive λ-compatible bi-
nary relation β such that (λxu)t β u[t/x] for all terms t, u and variable x.

Clearly, t β0 t
′, u β0 u

′ ⇒ λx t β0 λx t
′ and (u)t β (u′)t′. Hence β is λ-compa-

tible. Conversely, if R is a λ-compatible binary relation and if (λxu)t R u[t/x]
for all terms t, u, then it follows immediately from the definition of β0 that
R ⊃ β0 (prove t β0 t

′ ⇒ t R t′ by induction on t). So, if R is transitive, then
R ⊃ β.

Q.E.D.

Proposition 1.20. β is the transitive closure of the binary relation ρ defined
on Λ by : u ρ u′ ⇔ there exist a term v and redexes t1, . . . , tk with contractums
t′1, . . . , t

′
k such that u = v[t1/x1, . . . , tk/xk], u

′ = v[t′1/x1, . . . , t
′
k/xk].

Since β is λ-compatible, it follows from lemma 1.16 that β ⊃ ρ, and therefore
β contains the transitive closure of ρ. Conversely, the transitive closure of ρ
clearly contains β0, and therefore contains β.

Q.E.D.

Proposition 1.21. If t β0 t
′ then t[t1/x1, . . . , tk/xk] β0 t

′[t1/x1, . . . , tk/xk].

The proof is by induction on the length of t. For the sake of brevity, we use
the notation t̂ for t[t1/x1, . . . , tk/xk]. It follows from the definition of β0 that
the different possibilities for t, t′ are :
i) t = λxu, t′ = λxu′, and u β0 u

′. By proposition 1.15, we may assume that
x is not free in t1, . . . , tk and different from x1, . . . , xk. Then, by induction
hypothesis, we get û β0 û

′, and therefore λx û β0 λx û
′. Finally, by the choice

of x, this is the same as (λxu)[t1/x1, . . . , tk/xk]) β0 (λxu′)[t1/x1, . . . , tk/xk]).
ii) t = (u)v and t′ = (u)v′, with v β0 v

′. Then, by induction hypothesis, we
get v̂ β0 v̂

′ ; hence the result, by definition of β0.
iii) t = (u)v and t′ = (u′)v, with u β0 u

′. Same proof.
iv) t = (λxu)v and t′ = u[v/x].
Again, we may assume that x is not free in t1, . . . , tk and different from
x1, . . . , xk. Then t̂′ = u[v/x][t1/x1, . . . , tk/xk] = u[v̂/x, t1/x1, . . . , tk/xk] (by
lemma 1.13) = u[t1/x1, . . . , tk/xk][v̂/x] (by lemma 1.13 and the choice of x)
= û[v̂/x]. Now t̂ = (λx û)v̂, and therefore t̂ β0 t̂

′.
Q.E.D.
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Proposition 1.22. If t β t′, t1 β t
′
1, . . . , tk β t

′
k then :

t[t1/x1, . . . , tk/xk] β t
′[t′1/x1, . . . , t

′
k/xk].

Since β is λ-compatible, we have t[t1/x1, . . . , tk/xk] β t[t
′
1/x1, . . . , t

′
k/xk], by

lemma 1.16. Then, we get t[t′1/x1, . . . , t
′
k/xk] β t

′[t′1/x1, . . . , t
′
k/xk] by propo-

sition 1.21.
Q.E.D.

A term t is said to be normal, or to be in normal form, if it contains no
redex.
So the normal terms are those which are obtained by applying, a finite num-
ber of times, the following rules :

any variable x is a normal term ;
whenever t is normal, so is λx t ;
if t, u are normal and if the first symbol in t is not λ, then (t)u is normal.

This definition yields, immediately, the following properties :
A term is normal if and only if it is of the form λx1 . . . λxk(x)t1 . . . tn (with
k, n ≥ 0), where x is a variable and t1, . . . , tn are normal terms.
A term t is normal if and only if there is no term t′ such that t β0 t

′.

Thus a normal term is “ minimal ” with respect to β, which means that,
whenever t is normal, t β t′ ⇒ t = t′. However the converse is not true : take
t = (λx(x)x)λx(x)x, then t β t′ ⇒ t = t′ although t is not normal.

A term t is said to be normalizable if t β t′ for some normal term t′. A
term t is said to be strongly normalizable if there is no infinite sequence
t = t0, t1, . . . , tn, . . . such that ti β0 ti+1 for all i ≥ 0 (the term t is then
obviously normalizable).
For example, λxx is a normal term, (λx(x)x)λxx is strongly normalizable,
(λx y)ω is normalizable but not strongly, and ω = (λx(x)x)λx(x)x is not
normalizable at all.
For normalizable terms, the problem of the uniqueness of the normal form
arises. It is solved by the following theorem :

Theorem 1.23 (Church-Rosser). The β-conversion satisfies the property of
Church-Rosser.

This yields the uniqueness of the normal form : if t β t1, t β t2, with t1, t2
normal, then, according to the theorem, there exists a term t3 such that
t1 β t3, t2 β t3. Thus t1 = t3 = t2.

In order to prove that β satisfies the Church-Rosser property, it is sufficient
to exhibit a binary relation ρ on Λ which satisfies the Church-Rosser property
and has the β-conversion as its transitive closure.
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One could think of taking ρ to be the “ reflexive closure ” of β0, which would
be defined by x ρ y ⇔ x = y or x β0 y. But this relation ρ does not satisfy the
Church-Rosser property : for example, if t = (λx(x)x)r, where r is a redex
with contractum r′, u = (r)r and v = (λx(x)x)r′, then t β0 u and t β0 v, while
there is no term w such that u β0w and v β0w.

A suitable definition of ρ is as the least λ-compatible binary relation on Λ
such that t ρ t′, u ρ u′ ⇒ (λxu)t ρ u′[t′/x].

To prove that β ⊃ ρ, it is enough to see that t β t′, u β u′ ⇒ (λxu)t β u′[t′/x] ;
now : (λxu)t β (λxu′)t′ (since β is λ-compatible) and (λxu′)t′β u′[t′/x] ; then
the expected result follows, by transitivity.
Therefore, β contains the transitive closure ρ′ of ρ. But of course ρ ⊃ β0, so
ρ′ ⊃ β.
Hence β is the transitive closure of ρ. It thus remains to prove that ρ satisfies
the Church-Rosser property.

By definition, ρ is the set of all pairs of terms obtained by applying, a finite
number of times, the following rules :
1. x ρ x for each variable x ;
2. t ρ t′ ⇒ λx t ρ λx t′ ;
3. t ρ t′ and u ρ u′ ⇒ (t)u ρ (t′)u′ ;
4. t ρ t′ and u ρ u′ ⇒ (λx t)u ρ t′[u′/x].

Lemma 1.24. i) If x ρ t′, where x is a variable, then t′ = x.
ii) If λxu ρ t′, then t′ = λxu′, and u ρ u′.
iii) If (u)v ρ t′, then either t′ = (u′)v′ with u ρ u′ and v ρ v′, or u = λxw and
t′ = w′[v′/x] with v ρ v′ and w ρw′.

i) x ρ t′ could only be obtained by applying rule 1, hence t′ = x.
ii) Consider the last rule applied to obtain λxu ρ t′ ; the form of the term on
the left shows that it is necessarily rule 2 ; the result then follows.
iii) Same method : the last rule applied to obtain (u)v ρ t′ is 3 or 4 ; this
yields the conclusion.

Q.E.D.

Lemma 1.25. Whenever t ρ t′ and u ρ u′, then t[u/x] ρ t′[u′/x].

The proof proceeds by induction on the length of the derivation of t ρ t′ by
means of rules 1, 2, 3, 4 ; consider the last rule used :

If it is rule 1, then t = t′ is a variable, and the result is trivial.
If it is rule 2, then t = λy v, t′ = λy v′ and v ρ v′. By proposition 1.15, we

may assume that y is different from x and is not free in u, u′. Since u ρ u′, the
induction hypothesis implies v[u/x] ρ v′[u′/x] ; hence λy v[u/x] ρ λy v′[u′/x]
(rule 2), that is to say t[u/x] ρ t′[u′/x].
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If it is rule 3, then t = (v)w and t′ = (v′)w′, with v ρ v′ and w ρw′.
Thus, by induction hypothesis, v[u/x] ρ v′[u′/x] and w[u/x] ρw′[u′/x]. There-
fore, by applying rule 3, we obtain (v[u/x])w[u/x] ρ (v′[u′/x])w′[u′/x], that is
t[u/x] ρ t′[u′/x].

If it is rule 4, then t = (λy v)w and t′ = v′[w′/y], with v ρ v′ and w ρw′.
We assume that y is not free in u, u′, and is different from x. By induction
hypothesis, we have v[u/x] ρ v′[u′/x] and w[u/x] ρw′[u′/x]. By rule 4, we get :

(?) (λy v[u/x])w[u/x] ρ v′[u′/x][w′[u′/x]/y].

Now λy v[u/x] = (λy v)[u/x], by hypothesis on y. It follows that :
t[u/x] = (λy v[u/x])w[u/x].

On the other hand, we have t′[u′/x] = v′[w′/y][u′/x] = v′[w′[u′/x]/y, u′/x] (by
lemma 1.13) = v′[u′/x][w′[u′/x]/y] (again by lemma 1.13, since the variable
y is not free in u′).
Then, (?) gives the wanted result : t[u/x] ρ t′[u′/x].

Q.E.D.

Now the proof of the Church-Rosser property for ρ can be completed. So we
assume that t0 ρ t1, t0 ρ t2, and we look for a term t3 such that t1 ρ t3, t2 ρ t3.
The proof is by induction on the length of t0.

If t0 is a variable, then by lemma 1.24(i), t0 = t1 = t2 ; take t3 = t0.

If t0 = λxu0, then, since t0 ρ t1, t0 ρ t2, by lemma 1.24(ii), we have :
t1 = λxu1, t2 = λxu2 and u0 ρ u1, u0 ρ u2. By induction hypothesis, u1 ρ u3

and u2 ρ u3 hold for some term u3. Hence it is sufficient to take t3 = λxu3.

If t0 = (u0)v0, then, since t0 ρ t1, t0 ρ t2, by lemma 1.24(iii), the different
possible cases are :

a) t1 = (u1)v1, t2 = (u2)v2 with u0 ρ u1, v0 ρ v1, u0 ρ u2, v0 ρ v2. By induc-
tion hypothesis, u1 ρ u3, u2 ρ u3, v1 ρ v3, v2 ρ v3 hold for some u3 and v3. Hence
it is sufficient to take t3 = (u3)v3.

b) t1 = (u1)v1, with u0 ρ u1, v0 ρ v1 ; u0 = λxw0, t2 = w2[v2/x], with
v0 ρ v2, w0 ρw2. Since u0 ρ u1, by lemma 1.24(ii), we have u1 = λxw1, for
some w1 such that w0 ρw1. Thus t1 = (λxw1)v1.

Since v0 ρ v1, v0 ρ v2, and w0 ρw1, w0 ρw2, the induction hypothesis gives :
v1 ρ v3, v2 ρ v3, and w1 ρw3, w2 ρw3 for some v3 and w3. Hence, by rule 4, we
get (λxw1)v1 ρw3[v3/x], that is t1 ρw3[v3/x]. Now, by lemma 1.25, we get
w2[v2/x] ρw3[v3/x].
Therefore we obtain the expected result by taking t3 = w3[v3/x].

c) u0 = λxw0, t1 = w1[v1/x], t2 = w2[v2/x] and we have :
v0 ρ v1, v0 ρ v2, w0 ρw1, w0 ρw2.
By induction hypothesis, v1 ρ v3, v2 ρ v3, w1 ρw3, w2 ρw3 hold for some v3 and
w3. Hence, by lemma 1.25, w1[v1/x]ρw3[v3/x], w2[v2/x]ρw3[v3/x], that is to
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say t1 ρw3[v3/x], t2 ρw3[v3/x]. The result follows by taking t3 = w3[v3/x].
Q.E.D.

Remark. The intuitive meaning of the relation ρ is the following : t ρ t′ holds if
and only if t′ is obtained from t by contracting several redexes occurring in t. For
example, (λx(x)x)λx x ρ(λx x)λx x ; a new redex has been created, but it cannot
be contracted ; (λx(x)x)λx x ρλxx does not hold.
In other words, t ρ t′ means that t and t′ are constructed simultaneously : for t

the steps of the construction are those described in the definition of terms, while
for t′, the same rules are applied, except that the following alternative is allowed :
whenever t = (λx u)v, t′ can be taken either as (λxu′)v′ or as u′[v′/x]. This is
what lemma 1.24 expresses.

β-equivalence

The β-equivalence (denoted by 'β) is defined as the least equivalence relation
which contains β0 (or β, which comes to the same thing). In other words :
t 'β t′ ⇔ there exists a sequence (t = t1), t2, . . . , tn−1, (tn = t′), such that
ti β0 ti+1, or ti+1 β0 ti for 1 ≤ i < n.
t 'β t

′ should be read as : t is β-equivalent to t′.

Proposition 1.26. t 'β t
′ if and only if there exists a term u such that t β u

and t′β u.

The condition is obviously sufficient. For the purpose of proving that it is
necessary, consider the relation ' defined by : t ' t′ ⇔ t β u and t′β u for
some term u.
This relation contains β, and is reflexive and symmetric. It is also transitive,
for if t ' t′, t′ ' t′′, then t β u, t′β u, and t′β v, t′′β v for suitable u and v.
By theorem 1.23 (Church-Rosser’s theorem), u β w and v β w hold for some
term w ; thus t β w, t′′β w.
Hence ' is an equivalence relation which contains β, so it also contains 'β.

Q.E.D.

Therefore, a non-normalizable term cannot be β-equivalent to a normal term.

4. Eta-conversion

Proposition 1.27. If λx(t)x = λx′(t′)x′ and x is not free in t, then t = t′.

By proposition 1.15, we get t′x′ = (tx)[x′/x] which is tx′ since x is not free
in t. Therefore t = t′.

Q.E.D.
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A term of the form λx(t)x, where x is not free in t, is called an η-redex, its
contractum being t.
A term of either of the forms (λx t)u, λy(v)y (where y is not free in v) will
be called a βη-redex.

We now define a binary relation η0 on Λ ; t η0 t
′ should be read as “ t′ is

obtained by contracting an η-redex (or by an η-reduction) in the term t ”.
The definition is given by induction on t, as for β0 :

if t is a variable, then there is no t′ such that t η0 t
′ ;

if t = λxu, then t η0 t
′ if and only if :

either t′ = λxu′, with u η0 u
′, or u = (t′)x, with x not free in t′ ;

if t = (u)v, then t η0, t
′ if and only if :

either t′ = (u′)v with u η0 u
′ or t′ = (u)v′ with v η0 v

′.

The relation t βη0 t
′ (which means : “ t′ is obtained from t by contracting a

βη-redex ”) is defined as : t β0 t
′ or t η0 t

′.

The η-conversion (resp. the βη-conversion) is defined as the least binary
relation η (resp. βη) on Λ which is reflexive, transitive, and contains η0

(resp. βη0).

Proposition 1.28. The βη-conversion is the least transitive λ-compatible
binary relation βη such that (λx t)u βη t[u/x] and λy(v)y βη v whenever y is
not free in v.

The proof is similar to that of proposition 1.19 (which is the analogue for β).
Q.E.D.

It can be proved, as for β, that βη is the transitive closure of the binary
relation ρ defined on Λ by : u ρ u′ ⇔ there exist a term v, and redexes
t1, . . . , tk with contractums t′1, . . . , t

′
k such that u = v[t1/x1, . . . , tk/xk], u

′ =
v[t′1/x1, . . . , t

′
k/xk].

Similarly : if t βη t′, then every free variable in t′ is also free in t.

Proposition 1.29. If t βη0 t
′ then t[t1/x1, . . . , tk/xk] βη0 t

′[t1/x1, . . . , tk/xk].

The proof is by induction on the length of t. For the sake of brevity, we use
the notation t̂ for t[t1/x1, . . . , tk/xk]. It follows from the definition of βη0

that the different possibilities for t, t′ are :
i) t = λxu, t′ = λxu′, and uβη0u

′.
ii) t = (u)v and t′ = (u′)v, with uβη0u

′.
iii) t = (u)v and t′ = (u)v′, with v βη0 v

′.
iv) t = (λxu)v and t′ = u[v/x].
v) t = λx(t′)x, with x not free in t′.
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Cases i) to iv) are settled exactly as in proposition 1.21. In case v), assume
that x is not free in t1, . . . , tk and different from x1, . . . , xk. Then t̂ = λx(t̂′)x,
and therefore t̂ βη0 t̂

′.
Q.E.D.

Proposition 1.30. If t βη t′, t1 βη t
′
1, . . . , tk βη t

′
k then

t[t1/x1, . . . , tk/xk] βη t
′[t′1/x1, . . . , t

′
k/xk].

Since βη is λ-compatible, we have t[t1/x1, . . . , tk/xk] βη t[t
′
1/x1, . . . , t

′
k/xk],

by lemma 1.16. Then, we get t[t′1/x1, . . . , t
′
k/xk] βη t

′[t′1/x1, . . . , t
′
k/xk] by

proposition 1.29.
Q.E.D.

A term t is said to be βη-normal if it contains no βη-redex.
So the βη-normal terms are those obtained by applying, a finite number of
times, the following rules :

any variable x is a βη-normal term ;
whenever t is βη-normal, then so is λx t, except if t = (t′)x, with x not

free in t′ ;
whenever t, u are βη-normal, then so is (t)u, except if the first symbol in

t is λ.

Theorem 1.31. The βη-conversion satisfies the Church-Rosser property.

The proof is on the same lines as for the β-conversion. Here ρ is defined as
the least λ-compatible binary relation on Λ such that :
t ρ t′, u ρ u′ ⇒ (λx t)u ρ t′[u′/x] ;
t ρ t′ ⇒ λx(t)x ρ t′ whenever x is not free in t.
The first thing to be proved is : βη ⊃ ρ.
For that purpose, note that t βη t′, u βη u′ ⇒ (λx t)u βη t′[u′/x] ; indeed,
since βη is λ-compatible, we have (λx t)u βη (λx t′)u′ and, on the other hand,
(λx t′)u′βη t′[u′/x] ; the result then follows, by transitivity.
Now we show that t βη t′ ⇒ λx(t)x βη t′ if x is not free in t ; this is immediate,
by transitivity, since λx(t)x βη t.
Therefore βη is the transitive closure of ρ. It thus remains to prove that ρ
satisfies the Church-Rosser property.
By definition, ρ is the set of all pairs of terms obtained by applying, a finite
number of times, the following rules :
1. x ρ x for each variable x ;
2. t ρ t′ ⇒ λx t ρ λx t′ ;
3. t ρ t′ and u ρ u′ ⇒ (t)u ρ (t′)u′ ;
4. t ρ t′, u ρ u′ ⇒ (λx t)u ρ t′[u′/x] ;
5. t ρ t′ ⇒ λx(t)x ρ t′ whenever x is not free in t.

The following lemmas are the analogues of lemmas 1.24 and 1.25.
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Lemma 1.32. i) If x ρ t′, where x is a variable, then t′ = x.
ii) If λxu ρ t′, then either t′ = λxu′ and u ρ u′, or u = (t)x and t ρ t′, with

x not free in t.
iii) If (u)v ρ t′, then either t′ = (u′)v′ with u ρ u′ and v ρ v′, or u = λxw

and t′ = w′[v′/x] with v ρ v′ and w ρw′.

Same proof as for lemma 1.24.
Q.E.D.

Lemma 1.33. Whenever t ρ t′ and u ρ u′, then t[u/x] ρ t′[u′/x].

The proof proceeds by induction on the length of the derivation of t ρ t′ by
means of rules 1 through 5 ; consider the last rule used :

if it is one of rules 1, 2, 3, 4, then the proof is the same as in lemma 1.25 ;
if it is rule 5, then t = λy(v)y and v ρ t′, with y not free in v. We may

assume that y is not free in u and different from x. By induction hypothesis,
v[u/x]ρ t′[u′/x], then, by applying rule 5, we obtain λy(v[u/x])y ρ t′[u′/x]
(since y is not free in v[u/x]), that is t[u/x]ρ t′[u′/x].

Q.E.D.

Now the proof of the Church-Rosser property for ρ can be completed. So we
assume that t0 ρ t1, t0 ρ t2, and we look for a term t3 such that t1 ρ t3, t2 ρ t3.
The proof is by induction on the length of t0.

If t0 has length 1, then it is a variable ; hence, by lemma 1.32, t0 = t1 = t2 ;
take t3 = t0.

If t0 = λxu0, then, since t0 ρ t1, t0 ρ t2, by lemma 1.32, the different
possible cases are :

a) t1 = λxu1, t2 = λxu2, and u0 ρ u1, u0 ρ u2. By induction hypothesis,
u1 ρ u3 and u2 ρ u3 hold for some term u3. Then it is sufficient to take t3 =
λxu3.

b) t1 = λxu1, and u0 ρ u1 ; u0 = (t′0)x, with x not free in t′0, and t′0ρ t2.
According to lemma 1.32, since u0 ρ u1 and u0 = (t′0)x, there are two possi-
bilities for u1 :

i) u1 = (t′1)x, with t′0ρ t
′
1. Now t′0ρ t2, thus, by induction hypothesis,

t′1ρ t3 and t2 ρ t3 hold for some term t3. Note that, since t′0ρ t
′
1, all free variables

in t′1 are also free in t′0, so x is not free in t′1. Hence, by rule 5, λx(t′1)x ρ t3,
that is t1 ρ t3.

ii) t′0 = λy u′0, u1 = u′1[x/y] and u′0 ρ u
′
1. By proposition 1.15, we may

choose for y any variable which is not free in t′0, x for example. Then u1 = u′1
and u′0 ρ u1. Since ρ is λ-compatible, λxu′0 ρ λx u1, that is t′0 ρ t1. Since t′0 ρ t2,
there exists, by induction hypothesis, a term t3 such that t1 ρ t3, t2 ρ t3.

c) u0 = (t′0)x, with x not free in t′0, and t′0 ρ t1, t
′
0 ρ t2. The conclusion

follows immediately from the induction hypothesis, since t′0 is shorter than t0.
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If t0 = (v0)u0, then, since t0 ρ t1, t0 ρ t2, by lemma 1.32, the different
possible cases are :

a) t1 = (v1)u1, t2 = (v2)u2 with u0 ρ u1, v0 ρ v1, u0 ρ u2, v0 ρ v2. By
induction hypothesis, u1 ρ u3, u2 ρ u3, v1 ρ v3, v2 ρ v3 hold for some u3 and v3.
Then it is sufficient to take t3 = (v3)u3.

b) t1 = (v1)u1, with u0 ρ u1, v0 ρ v1 ; v0 ≡ λxw0, t2 = w2[u2/x], with
u0 ρ u2, w0 ρw2. Since v0 ρ v1, and v0 = λxw0, by lemma 1.32, the different
possible cases are :

i) v1 = λxw1, with w0 ρw1. Then t1 = (λxw1)u1. Since u0 ρ u1, u0 ρ u2,
and w0 ρw1, w0 ρw2, by induction hypothesis, u1 ρ u3, u2 ρ u3, and w1 ρw3,
w2 ρw3 hold for some u3, w3. Thus, by rule 4, (λxw1)u1 ρw3[u3/x], that
is t1 ρw3[u3/x]. Hence, by lemma 1.33, w2[u2/x] ρw3[u3/x]. The expected
result is then obtained by taking t3 = w3[u3/x].

ii) w0 = (v′0)x, with x not free in v′0, and v′0ρ v1. Then (v′0)x ρw2 ;
since u0 ρ u2, it follows from lemma 1.33 that ((v′0)x)[u0/x]ρw2[u2/x]. But x
is not free in v′0, so this is equivalent to (v′0)u0 ρ t2.
Now v′0ρ v1 and u0 ρ u1. Thus (v′0)u0 ρ (v1)u1, in other words : (v′0)u0 ρ t1.
Since (v′0)u0 is shorter than t0 (because v0 = λx(v′0)x), there exists, by in-
duction hypothesis, a term t3 such that t1 ρ t3, t2 ρ t3.

c) v0 = λxw0, t1 = w1[u1/x], t2 = w2[u2/x], with u0 ρ u1, u0 ρ u2, w0 ρw1

and w0 ρw2. By induction hypothesis, u1 ρ u3, u2 ρ u3, w1 ρw3, w2 ρw3 hold
for some u3 and w3. Thus, by lemma 1.33, we have w1[u1/x] ρw3[u3/x],
w2[u2/x] ρw3[u3/x], that is to say t1 ρw3[u3/x], t2 ρw3[u3/x]. The result
follows by taking t3 = w3[u3/x].

Q.E.D.

The βη-equivalence (denoted by 'βη) is defined as the least equivalence re-
lation which contains βη. In other words :
t 'βη t

′ ⇔ there exists a sequence t = t1, t2, . . . , tn−1, tn = t′, such that either
ti βη ti+1 or ti+1 βη ti, for 1 ≤ i < n.
As for the β-equivalence, it follows from Church-Rosser’s theorem that :

Proposition 1.34. t 'βη t
′ ⇔ t βη u and t′βη u for some term u.

The relation 'βη satisfies the “ extensionality axiom ”, that is to say :

If (t)u 'βη (t′)u holds for all u, then t 'βη t
′.

Indeed, it is enough to take u as a variable x which does not occur in t, t′.
Since 'βη is λ-compatible, we have λx(t)x 'βη λx(t′)x ; therefore, by η-
reduction, t 'βη t

′.

References for chapter 1
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Chapter 2

Representation of recursive
functions

1. Head normal forms

In every λ-term, each subsequence of the form “ (λ ” corresponds to a unique
redex (this is obvious since redexes are terms of the form (λx t)u). This allows
us to define, in any non normal term t, the leftmost redex in t. Let t′ be the
term obtained from t by contracting that leftmost redex : we say that t′ is
obtained from t by a leftmost β-reduction.
Let t be an arbitrary λ-term. With t we associate a (finite or infinite) se-
quence of terms t0, t1, . . . , tn, . . . such that t0 = t, and tn+1 is obtained from
tn by a leftmost β-reduction (if tn is normal, then the sequence ends with
tn). We call it “ the sequence obtained from t by leftmost β-reduction ” ; it
is uniquely determined by t.
The following theorem will be proved in chapter 4 (theorem 4.13) :

Theorem 2.1. If t is a normalizable term, then the sequence obtained from t
by leftmost β-reduction terminates with the normal form of t.

We see that this theorem provides a “ normalizing strategy ”, which can be
used for any normalizable term.

The next proposition is simply a remark about the form of the λ-terms :

Proposition 2.2. Every term of the λ-calculus can be written, in a unique
way, in the form λx1 . . . λxm(v)t1 . . . tn, where x1, . . . , xm are variables, v is
either a variable or a redex (v = (λx t)u) and t1, . . . , tn are terms (m,n ≥ 0).

Recall that (v)t1 . . . tn denotes the term (. . . ((v)t1) . . .)tn.
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We prove the proposition by induction on the length of the considered term τ :
the result is clear if τ is a variable.

If τ = λx τ ′, then τ ′ is determined by τ , and can be written in a unique way
in the indicated form, by induction hypothesis ; thus the same holds for τ .

If τ = (w)v, then v and w are determined by τ . If w starts with λ, then τ is
a redex, so it is of the second form, and not of the first one. If w does not
start with λ, then, by induction hypothesis, w = (w′)t1 . . . tn, where w′ is a
variable or a redex ; thus τ = (w′)t1 . . . tnv, which is in one and only one of
the indicated forms.

Q.E.D.

Definitions. A term τ is a head normal form (or in head normal form) if it
is of the first form indicated in proposition 2.2, namely if :

τ = λx1 . . . λxm(x)t1 . . . tn,

where x is a variable.

In the second case, if τ = λx1 . . . λxm(λx u)tt1 . . . tn, then the redex (λxu)t
is called the head redex of τ .

The head redex of a term τ , when it exists (namely when τ is not a head
normal form), is clearly the leftmost redex in τ .

It follows from proposition 2.2 that a term t is normal if and only if it is a
head normal form : τ = λx1 . . . λxm(x)t1 . . . tn, where t1, . . . , tn are normal
terms. In other words, a term is normal if and only if it is “ hereditarily in
head normal form ”.

The head reduction of a term τ is the (finite or infinite) sequence of terms
τ0, τ1, . . . , τn, . . . such that τ0 = τ , and τn+1 is obtained from τn by a β-
reduction of the head redex of τn if such a redex exists ; if not, τn is in head
normal form, and the sequence ends with τn.

The weak head reduction of a term τ is the initial part of its head reduction
which stops as soon as we get a λ-term which begins with a λ. In other
words, we reduce the head redex only if there is no λ in front of it.

Notation. We will write t � u (resp. t �w u) whenever u is obtained from t
by a sequence of head β-reductions (resp. weak head β-reductions).
For example, we have (λxx)λx(λy y)z �w λx(λy y)z � λx z.

A λ-term t is said to be solvable if, for any term u, there exist variables
x1, . . . , xk and terms u1, . . . , uk, v1, . . . , vl, (k, l ≥ 0) such that :

i) (t[u1/x1, . . . , uk/xk])v1 . . . vl 'β u.

We have the following equivalent definitions :

(ii) t is solvable if and only if there exist variables x1, . . . , xk and terms
u1, . . . , uk, v1, . . . , vl such that (t[u1/x1, . . . , uk/xk])v1 . . . vl 'β I (I is the
term λxx).
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(iii) t is solvable if and only if, given any variable x which does not occur
in t, there exist terms u1, . . . , uk, v1, . . . , vl such that :

(t[u1/x1, . . . , uk/xk])v1 . . . vl 'β x.

Obviously, (i)⇒ (ii)⇒ (iii). Now if (t[u1/x1, . . . , uk/xk])v1 . . . vl 'β x, then :
(t[u1/x1, . . . , uk/xk][u/x])v

′
1 . . . v

′
l 'β u,

and therefore
(t[u′1/x1, . . . , u

′
k/xk])v

′
1 . . . v

′
l 'β u,

where u′i = ui[u/x], v
′
j = vj[u/x] ; so we also have (iii) ⇒ (i).

Remarks. The following properties are immediate :
1. Let t be a closed term. Then t is solvable if and only if there exist terms v1, . . . , vl

such that (t)v1 . . . vl 'β I.
2. A term t is solvable if and only if its closure t̄ is solvable (the closure of t is,
by definition, the term t̄ = λx1 . . . λxn t, where x1, . . . , xn are the free variables
occurring in t).
3. If (t)v is a solvable term, then t is solvable.
4. Of course, the head normal form of a term needs not be unique. Nevertheless :
If a term t has a head normal form t0 = λx1 . . . λxk(x)u1 . . . un, then any head
normal form of t can be written λx1 . . . λxk(x)u′1 . . . u′n, with ui 'β u′i.
Indeed, let t1 = λy1 . . . λyl(y)v1 . . . vp be another head normal form of t. By the
Church-Rosser theorem 1.23, there exists a term t2 which can be obtained by β-
reduction from t0 as well as from t1. Now, in t0 (resp. t1) all possible β-reductions
have to be made in u1, . . . , un (resp. v1, . . . , vp). Hence :

t2 ≡ λx1 . . . λxk(x)u′1 . . . u′n ≡ λy1 . . . λyl(y)v′1 . . . v′p

with ui β u′i , vj β v′j . This yields the expected result.

The following theorem will be proved in chapter 4 (theorem 4.9) :

Theorem 2.3. For every λ-term t, the following conditions are equivalent :
i) t is solvable ;
ii) t is β-equivalent to a head normal form ;
iii) the head reduction of t terminates (with a head normal form).

2. Representable functions

We define the Booleans : 0 = λxλy y and 1 = λxλy x. Then, for all terms
t, u, ((0)t)u can be reduced (by head reduction) to u, while ((1)t)u can be
reduced to t.

Given two terms t, u and an integer k, let (t)ku denote the term (t) . . . (t)u
(with k occurrences of t) ; in particular, (t)0u = u.
Beware : the expression (t)k alone is not a λ-term.
We define the term k = λfλx(f)kx ; k is called “ the numeral (or integer) k
of the λ-calculus ” (also known as Church numeral k, or Church integer k).
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Notice that the Boolean 0 is the same term as the numeral 0, while the
Boolean 1 is different from the numeral 1.

Let ϕ be a partial function defined on Nn, with values either in N or in {0, 1}.
Given a λ-term Φ, we say that Φ represents (resp. strongly represents) the
function ϕ if, for all k1, . . . , kn ∈ N :

if ϕ(k1, . . . , kn) is undefined, then (Φ)k1 . . . kn is not normalizable (resp.
not solvable) ;

if ϕ(k1, . . . , kn) = k, then (Φ)k1 . . . kn is β-equivalent to k (or to k, in
case the range of ϕ is {0, 1}).
Clearly, for total functions, these two notions of representation are equivalent.

Theorem 2.4. Every partial recursive function from Nk to N is (strongly)
representable by a term of the λ-calculus.

Recall the definition of the class of partial recursive functions.
Given f1, . . . , fk, partial functions from Nn to N, and g, partial function from
Nk to N, the partial function h, from Nn to N, obtained by composition, is
defined as follows :

h(p1, . . . , pn) = g(f1(p1, . . . , pn), . . . , fk(p1, . . . , pn))
if f1(p1, . . . , pn), . . . , fk(p1, . . . , pn) are all defined, and h(p1, . . . , pn) is unde-
fined otherwise.
Let h be a partial function from N to N. If there exists an integer p such that
h(p) = 0 and h(q) is defined and different from 0 for all q < p, then we denote
that integer p by µn{h(n) = 0} ; otherwise µn{h(n) = 0} is undefined.
We call minimization the operation which associates, with each partial func-
tion f from Nk+1 to N, the partial function g, from Nk to N, such that
g(n1, . . . , nk) = µn{f(n1, . . . , nk, n) = 0}.
The class of partial recursive functions is the least class of partial functions,
with arguments and values in N, closed under composition and minimiza-
tion, and containing : the one argument constant function 0 and succes-
sor function ; the two arguments addition, multiplication, and characteristic
function of the binary relation x ≤ y ; and the projections P k

n , defined by
P k

n (x1, . . . , xn) = xk.

So it is sufficient to prove that the class of partial functions which are strongly
representable by a term of the λ-calculus satisfies these properties.

The constant function 0 is represented by the term λd 0.
The successor function on N is represented by the term :

suc = λnλfλx((n)f)(f)x.
The addition and the multiplication (functions from N2 to N) are respectively
represented by the terms λmλnλfλx((m)f)((n)f)x and λmλnλf(m)(n)f .
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The characteristic function of the binary relation m ≤ n on N is represented
by the term M = λmλn(((m)A)λd1)((n)A)λd0, where A = λfλg(g)f .
The function P k

n is represented by the term λx1 . . . λxn xk.

From now on, we denote the term (suc)n0 by n̂ ; so we have n̂ 'β n, and
(suc)n̂ = (n+ 1)̂ .

Representation of composite functions

Given any two λ-terms t, u, and a variable x with no free occurrence in t, u,
the term λx(t)(u)x is denoted by t◦u.

Lemma 2.5. (λg g◦s)kh � λx(h)(s)kx for all closed terms s, h and every
integer k ≥ 1.

Recall that t � u means that u is obtained from t by a sequence of head
β-reductions.
We prove the lemma by induction on k. The case k = 1 is clear. Assume the
result for k ; then
(λg g◦s)k+1h = (λg g◦s)k(λg g◦s)h � λx((λg g◦s)h)(s)kx

(by induction hypothesis, applied with (λg g◦s)h instead of h)
� λx(h◦s)(s)kx ≡ λx(λy(h)(s)y)(s)kx � λx(h)(s)k+1x.

Q.E.D.

Lemma 2.6. Let Φ, ν be two terms. Define [Φ, ν] = ( ((ν)λg g◦suc)Φ )0.
Then :

if ν is not solvable, then neither is [Φ, ν] ;
if ν 'β n (Church numeral), then [Φ, ν] 'β (Φ)n ; and if Φ is not solvable,

then neither is [Φ, ν].

The first statement follows from remark 3, page 31. If ν 'β n, then :
(ν)λg g◦suc 'β (n)λg g◦suc = (λfλh(f)nh)λg g◦suc 'β λh(λg g◦suc)nh.
By lemma 2.5, this term gives, by head reduction, λhλx(h)(suc)nx.
Hence [Φ, ν] 'β (Φ)(suc)n0 'β (Φ)n. Therefore, if Φ is not solvable, then
neither is [Φ, ν] (remark 3, page 31).

Q.E.D.

The term [Φ, ν1, . . . , νk] is defined, for k ≥ 2, by induction on k :
[Φ, ν1, . . . , νk] = [ [Φ, ν1, . . . , νk−1], νk].

Lemma 2.7. Let Φ, ν1, . . . , νk be terms such that each νi is either β-equiva-
lent to a Church numeral, or not solvable. Then :

if one of the ν ′is is not solvable, then neither is [Φ, ν1, . . . , νk] ;
if νi 'β ni (1 ≤ i ≤ k), then [Φ, ν1, . . . , νk] 'β (Φ)n1 . . . nk.
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The proof is by induction on k : let Ψ = [Φ, ν1, . . . , νk−1] ; then :
[Φ, ν1, . . . , νk] = [Ψ, νk].

If νk is not solvable, then, by lemma 2.6, neither is [Ψ, νk]. If νk is solvable
(and β-equivalent to a Church numeral), and if one of the νi’s (1 ≤ i ≤ k−1)
is not solvable, then Ψ is not solvable (induction hypothesis), and hence
neither is [Ψ, νk] (lemma 2.6). Finally, if νi 'β ni (1 ≤ i ≤ k), then, by
induction hypothesis, Ψ 'β (Φ)n1 . . . nk−1 ; therefore, [Ψ, νk] 'β (Φ)n1 . . . nk

(lemma 2.6).
Q.E.D.

Proposition 2.8. Let f1, . . . , fk be partial functions from Nn to N, and g a
partial function from Nk to N. Assume that these functions are all strongly
representable by λ-terms ; then so is the composite function g(f1, . . . , fk).

Choose terms Φ1, . . . ,Φk, Ψ which strongly represent respectively the func-
tions f1, . . . , fk, g. Then the term :

χ = λx1 . . . λxn[Ψ, (Φ1)x1 . . . xn, . . . , (Φk)x1 . . . xn]
strongly represents the composite function g(f1, . . . , fk).
Indeed, if p

1
, . . . , p

n
are Church numerals, then :

(χ)p
1
. . . p

n
'β [Ψ, (Φ1)p1

. . . p
n
, . . . , (Φk)p1

. . . p
n
].

Now each of the terms (Φi)p1
. . . p

n
(1 ≤ i ≤ k) is, either unsolvable (and in

that case fi(p1, . . . , pn) is undefined), or β-equivalent to a Church numeral
q

i
(then fi(p1, . . . , pn) = qi). If one of the terms (Φi)p1

. . . p
n

is not solvable,
then, by lemma 2.7, neither is (χ)p

1
. . . p

n
. If (Φi)p1

. . . p
n
'β q

i
for all i

(1 ≤ i ≤ k) where q
i
is a Church numeral, then by lemma 2.7, we have :

(χ)p
1
. . . p

n
'β (Ψ)q

1
. . . q

k
.

Q.E.D.

3. Fixed point combinators

A fixed point combinator is a closed term M such that (M)F 'β (F )(M)F
for every term F . The main point is the existence of such terms. Here are
two examples :

Proposition 2.9. Let Y be the term λf(λx(f)(x)x)λx(f)(x)x ; then, for
any term F , (Y )F 'β (F )(Y )F .

Indeed, (Y )F � (G)G, where G = λx(F )(x)x ; therefore :
(Y )F � (λx(F )(x)x)G � (F )(G)G 'β (F )(Y )F .

Q.E.D.

Y is known as Curry’s fixed point combinator. Note that we have neither
(Y )F � (F )(Y )F , nor even (Y )F β (F )(Y )F .
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Proposition 2.10. Let Θ be the term (A)A, where A ≡ λaλf(f)(a)af .
Then, for any term F , we have (Θ)F � (F )(Θ)F .

Indeed, (Θ)F ≡ (A)AF � (F )(A)AF ≡ (F )(Θ)F .
Q.E.D.

Θ is called Turing’s fixed point combinator.

Proposition 2.11.
Every fixed point combinator is solvable, but not normalizable.

Let M be a fixed point combinator and f a variable. Then :
(M)0f 'β ((0)(M)0)f 'β f and it follows that M is solvable.
If M is normalizable, then so is Mf . Let M ′ be the normal form of Mf .
Since Mf 'β (f)(M)f , it follows that M ′ 'β (f)M ′. But these terms are
normal, so that M ′ = (f)M ′ which is clearly impossible.

Q.E.D.

Representation of functions defined by minimization

The following lemma is an application of results in chapter 4.

Lemma 2.12. Let b, t0, t1 be terms, and suppose b 'β 1 (resp. 0). Then
(b)t0t1 �w t0 (resp. t1).

Recall that 1,0 are respectively the booleans λxλy x and λxλy y ; and that �w
denotes the weak head reduction (see page 30).

This lemma is the particular case of theorem 4.11, when k = 2 and n = 0.
Q.E.D.

Lemma 2.13. There exists a closed term ∆ such that, for all terms Φ, n :
(∆Φ)n � ( (Φn)(∆Φ)(suc)n )n.

Let T = λδλϕλν( (ϕν)(δϕ)(suc)ν )ν. Then ∆ is defined as a fixed point
of T , by means, for example, of Curry’s fixed point combinator : we take
∆ = (D)D, where D = λx(T )(x)x. Then :
(∆Φ)n = (D)DΦn � ((T )(D)D)Φn = (T )∆Φn � ( (Φn)(∆Φ)(suc)n )n.

We can also take ∆ = D′D′, where D′ is the normal form of D, that is :
D′ = λxλϕλν( (ϕν)(xxϕ)(suc)ν )ν.

The Turing fixed point combinator gives another solution :
∆ = AAT with A = λaλf(f)(a)af .
Q.E.D.
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Lemma 2.14. Let Φ be a λ-term and n ∈ N.
If Φn is not solvable, then neither is (∆Φ)n.
If Φn 'β 0 (Boolean), then (∆Φ)n 'β n.
If Φn 'β 1 (Boolean), then (∆Φ)n̂ � (∆Φ)p̂ with p = n+ 1.

(Recall that n̂ = (suc)n0).

Indeed, it follows from lemma 2.13 that (∆Φ)n � ( (Φn)(∆Φ)(suc)n )n.
Hence, if Φn is not solvable, then neither is (∆Φ)n (remark 3, page 31).
Obviously, if Φn 'β 0 (Boolean), then (∆Φ)n 'β n.
On the other hand, according to the same lemma, we also have :
(∆Φ)n̂ � ( (Φn̂)(∆Φ)(suc)n̂ )n̂ ; by lemma 2.12, if Φn̂ 'β 1 (Boolean), then
( (Φn̂)(∆Φ)(suc)n̂ )n̂ � (∆Φ)(suc)n̂.
Therefore (∆Φ)n̂ � (∆Φ)(suc)n̂ = (∆Φ)p̂ with p = n+ 1.

Q.E.D.

Proposition 2.15. Let f(n1, . . . , nk, n) be a partial function from Nk+1 to
N, and suppose that it is strongly representable by a term of the λ-calculus.
Then the partial function defined by g(n1, . . . , nk) = µn{f(n1, . . . , nk, n) = 0}
is also strongly representable.

Let ψ be the partial function from Nk+1 to {0, 1}, which has the same domain
as f , and such that ψ(n1, . . . , nk, n) = 0 ⇔ f(n1, . . . , nk, n) = 0 . Then
g(n1, . . . , nk) = µn{ψ(n1, . . . , nk, n) = 0}.
Let F denote a λ-term which strongly represents f ; consider the term :

Ψ = λx1 . . . λxkλx((Fx1 . . . xkx)λd1)0.
Then, it is easily seen that Ψ strongly represents ψ.
Now consider the term ∆ constructed above (lemma 2.13).
We show that the term :

G = λx1 . . . λxk((∆)(Ψ)x1 . . . xk)0
strongly represents the function g. Indeed, let n1, . . . , nk ∈ N ; we put
Φ = (Ψ)n1 . . . nk and therefore, we get Gn1 . . . nk � (∆Φ)0.

If g(n1, . . . , nk) is defined and equal to p, then ψ(n1, . . . , nk, n) is defined
and equal to 1 for n < p and to 0 for n = p. Thus Φn = (Ψ)n1 . . . nkn 'β 1
for n < p, and Φp = (Ψ)n1 . . . nkp 'β 0.

Now, we can apply lemma 2.14, and we get successively (since 0 = 0̂) :
Gn1 . . . nk � (∆Φ)0 � (∆Φ)1̂ � · · · � (∆Φ)p̂ 'β p.

If g(n1, . . . , nk) is undefined, there are two possibilities :

i) ψ(n1, . . . , nk, n) is defined and equal to 1 for n < p and is undefined for
n = p. Then we can successively deduce from lemma 2.14 (since 0 = 0̂) :
Gn1 . . . nk � (∆Φ)0 � (∆Φ)1̂ � · · · � (∆Φ)p̂ ; the last term obtained is
not solvable, since neither is Φp = Ψn1 . . . nkp (lemma 2.14). Consequently,
Gn1 . . . nk is not solvable (theorem 2.3,iii) ;
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ii) ψ(n1, . . . , nk, n) is defined and equal to 1 for all n. Then (again by
lemma 2.14) :

Gn1 . . . nk � (∆Φ)0 � (∆Φ)1̂ � · · · � (∆Φ)n̂ � · · ·
So the head reduction of Gn1 . . . nk does not end. Therefore, by theorem 2.3,
Gn1 . . . nk is not solvable.

Q.E.D.

It is intuitively clear, according to Church’s thesis, that any partial function
from Nk to N, which is representable by a λ-term, is partial recursive. We
shall not give a formal proof of this fact. So we can state the

Theorem 2.16 (Church-Kleene theorem). The partial functions from Nk to
N which are representable (resp. strongly representable) by a term of the
λ-calculus are the partial recursive functions.

The λ-terms which represent a given partial recursive function, that we ob-
tain by this method, are not normal in general, and even not normalizable.
Indeed, in the proof of lemma 2.13, we use a fixed point combinator, which
is never a normalizable term (proposition 2.11). Let us show that we can get
normal terms.

Lemma 2.17. Let x be a variable and t ∈ Λ. Then, there exists a normal
term t′ such that t[n/x] 'β t

′[n/x] for every n ∈ N.

We define t′ by induction on the length of t :

if t is a variable, then t′ = t ;

if t = λy u, then t′ = λy u′ ;

if t = uv, then t′ = (x)Iu′v′ (with I = λy y).

It is trivial to show, by induction on the length of t, that t′ is normal and that
t[n/x] 'β t

′[n/x] for every n ∈ N. We simply have to observe that (n)I 'β I
if n ∈ N.

Q.E.D.

Corollary 2.18. For every partial recursive function ϕ, there exists a normal
term which (strongly) represents ϕ.

For simplicity, we suppose ϕ to be a unary function. Let Φ be a closed λ-term
which strongly represents ϕ (theorem 2.16) and put t = Φx. Then Ψ = λx t′

is normal, by lemma 2.17, and strongly represents ϕ : indeed, if n ∈ N, we
have Ψn 'β t

′[n/x] 'β t[n/x] = Φn.

Q.E.D.
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4. The second fixed point theorem

Consider a recursive enumeration : n 7→ tn of the terms of the λ-calculus.
The inverse function will be denoted by t 7→ [[t]] : more precisely, if t is a
λ-term, then [[t]] is the Church numeral n such that tn = t, which will be
called the numeral of t.
The function n 7→ [[(tn)n]] is thus recursive, from N to the set of Church
numerals. By theorem 2.16, there exists a term δ such that (δ)n 'β [[(tn)n]],
for every integer n.

Now, given an arbitrary term F , let B = λx(F )(δ)x. Then, for any integer n,
we have (B)n 'β (F )[[(tn)n]]. Take n = [[B]], that is to say tn = B ; then
(tn)n = (B)[[B]]. If we denote the term (B)[[B]] by A, we obtain A 'β (F )[[A]].
So we have proved the

Theorem 2.19. For every λ-term F , there exists a λ-term A such that
A 'β (F )[[A]].

Remark. The intuitive meaning of theorem 2.19 is that we can write, as ordinary
λ-terms, programs using a new instruction σ (for “self”) which denotes the numeral
of the program itself.
Indeed, if such a program is written as Φ[σ/x], where Φ is a λ-term, consider the
λ-terms F = λxΦ, and A given by theorem 2.19. Then, we have A 'β (F )[[A]]
and therefore, A 'β Φ[[[A]]/x] ; thus, A is the λ-term we are looking for.

Theorem 2.20. Let X ,Y be two non-empty disjoint sets of terms, which are
saturated under the equivalence relation 'β. Then X and Y are recursively
inseparable.

Suppose that X and Y are recursively separable. This means that there
exists a recursive set A ⊂ Λ such that X ⊂ A and Y ⊂ Ac (the complement
of A). By assumption, there exist terms ξ and η such that ξ ∈ X and η ∈ Y .
Since the characteristic function of A is recursive, there is a term Θ such
that, for every integer n : (Θ)n 'β 1⇔ tn ∈ A and (Θ)n 'β 0⇔ tn /∈ A.
Now let F = λx(Θ)xηξ. According to theorem 2.19, there exists a term A
such that (F )[[A]] 'β A, which implies (Θ)[[A]]ηξ 'β A.
If A ∈ A, then, by the definition of Θ, (Θ)[[A]] 'β 1, and it follows that
(Θ)[[A]]ηξ 'β η. Therefore A 'β η. Since η ∈ Y ⊂ Ac and Y is saturated
under the equivalence relation 'β, we conclude that A ∈ Y , thus A /∈ A,
which is a contradiction.
Similarly, if A /∈ A, then (Θ)[[A]] 'β 0, hence (Θ)[[A]]ηξ 'β ξ, and A 'β ξ.
Since ξ ∈ X ⊂ A and X is saturated under the equivalence relation 'β, we
conclude that A ∈ X , thus A ∈ A, which is again a contradiction.

Q.E.D.
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Corollary 2.21. The set of normalizable (resp. solvable) λ-terms is not
recursive.

Apply theorem 2.20 : take X as the set of normalizable (resp. solvable)
terms, and Y = X c.

Q.E.D.

The same method shows that, for instance, the set of λ-terms which are β-
equivalent to a Church integer, or the set of λ-terms which are β-equivalent
to a given one t0, are not recursive.

The set of strongly normalizable λ-terms is also not recursive but, since it is
not closed for β-equivalence, the above method does not work to prove this.
The undecidability of strong normalization will be proved in chapter 10.

References for chapter 2

[Bar84], [Hin86].
(The references are in the bibliography at the end of the book).
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Chapter 3

Intersection type systems

1. System DΩ

A type system is a class of formulas in some language, the purpose of which
is to express some properties of λ-terms. By introducing such formulas,
as comments in the terms, we construct what we call typed terms, which
correspond to programs in a high level programming language.

The main connective in these formulas is “ → ”, the type A→ B being that
of the “ functions ” from A to B, that is to say from the set of terms of type
A to the set of terms of type B.

The first type system which we shall examine consists of propositional for-
mulas. It uses the conjunction ∧ in a very special way (this is why it is called
intersection type system). It does not seem that this system can be used as
a model for a programming language. However, it is very useful as a tool for
studying pure λ-calculus.

We will call it system DΩ.

The types of this system are the formulas built with :

a constant Ω (type constant) ;

variables X, Y, . . . (type variables) ;

the connectives → and ∧.

We will write A1, A2, . . . , Ak → A instead of :

A1 → (A2 → (. . . (Ak → A) . . .)).

The positive and negative occurrences of a variable X in a type A are defined
by induction on the length of A :

if A is a variable, or A = Ω, then the possible occurrence of X in
A is positive ;

41
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if A = B ∧C, then any positive (resp. negative) occurrence of X
in B or in C is positive (resp. negative) in A ;

if A = B → C, then the positive (resp. negative) occurrences of
X in A are the positive (resp. negative) occurrences of X in C,
and the negative (resp. positive) occurrences of X in B.

We also define the final occurrences of the variable X in the type A :

if A is a variable, or A = Ω, then the possible occurrence of X in
A is final ;

if A = B ∧ C, then the final occurrences of X in A are its final
occurrences in B and its final occurrences in C ;

if A = B → C, then the final occurrences of X in A are its final
occurrences in C.

Hence every final occurrence of a variable in a type is positive.

By a variable declaration, we mean an ordered pair (x,A), where x is a
variable of the λ-calculus, and A is a type. It will be denoted by x : A
instead of (x,A).

A context Γ is a mapping from a finite set of variables to the set of all types.
Thus it is a finite set {x1 : A1, . . . , xk : Ak} of variable declarations, where
x1, . . . , xk are distinct variables ; we will denote it by x1 : A1, . . . , xk : Ak

(without the braces). So, in such an expression, the order does not matter.
We will say that xi is declared of type Ai in the context Γ.
The integer k may be 0 ; in that case, we have the empty context.
We will write Γ, x : A in order to denote the context obtained by adding the
declaration x : A to the context Γ, provided that x is not already declared
in Γ.

Given a λ-term t, a type A, and a context Γ, we define, by means of the
following rules, the notion : t is of type A in the context Γ (we will also
say : “ t may be given type A in the context Γ ”) ; this will be denoted by
Γ `DΩ t : A (or Γ ` t : A if there is no ambiguity) :

1. If x is a variable, then Γ, x : A `DΩ x : A.
2. If Γ, x : A `DΩ t : B, then Γ `DΩ λx t : A→ B.
3. If Γ `DΩ t : A→ B and Γ `DΩ u : A, then Γ `DΩ (t)u : B.
4. If Γ `DΩ t : A ∧B, then Γ `DΩ t : A and Γ `DΩ t : B.
5. If Γ `DΩ t : A and Γ `DΩ t : B, then Γ `DΩ t : A ∧B.
6. Γ `DΩ t : Ω (for all t and Γ).

Any expression of the form Γ `DΩ
t : A obtained by means of these rules will

be called a typing of t in system DΩ. A typable term is a term which may be
given some type in some context.
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The notation `DΩ t : A will mean that t is of type A in the empty context.

Note that, because of rule 6, there are terms which are typable in the con-
text Γ, while not all of their free variables are declared in that context.

Proposition 3.1. Suppose Γ `DΩ t : A, and let Γ′ ⊂ Γ which contains all
those declarations in Γ which concern variables occurring free in t. Then
Γ′ `DΩ t : A.

The proof is immediate, by induction on the number of rules used to obtain
Γ `DΩ t : A.

Q.E.D.

Lemma 3.2. If Γ, x : F `DΩ t : A, then for every variable x′ which is not
declared in Γ and not free in t, we have Γ, x′ : F `DΩ t[x′/x] : A, and the
length of the derivation is the same for both typings.

We consider the derivation of Γ, x : F `DΩ t : A, and we perform on it an
arbitrary permutation of variables. Obviously we obtain a correct derivation
in DΩ. Now, we choose the permutation which swap x and x′, and does
not change any other variable. Since x′ is not declared in Γ, we obtain a
derivation of Γ, x′ : F `DΩ t[x′/x, x/x′] : A. But x′ is not free in t, and
therefore t[x′/x, x/x′] = t[x′/x].

Q.E.D.

Proposition 3.3. If Γ `DΩ t : A and Γ′ ⊃ Γ, then Γ′ `DΩ t : A.

Proof by induction on the length of the derivation of Γ `DΩ t : A. Consider
the last rule used in this derivation. If it is one of the rules 1, 3, 4, 5, 6, then
the induction step is immediate.
If it is rule 2, then t = λxu, A = B → C, and we have Γ, x : B `DΩ u : C.
Let x′ be any variable not declared in Γ′ and not free in u. By lemma 3.2,
we get Γ, x′ : B `DΩ u[x′/x] : C, and the derivation has the same length.
By induction hypothesis, we get Γ′, x′ : B `DΩ u[x′/x] : C. Therefore
Γ′ `DΩ λx

′u[x′/x] : B → C by rule 2. But, since x′ is not free in u, we have
λx′u[x′/x] = λxu = t, and therefore Γ′ `DΩ t : A.

Q.E.D.

Normalization theorems

Since types can be thought of as properties of λ-terms, it seems natural to
try and associate with each type a subset of Λ (the set of all λ-terms). We
shall now describe a way of doing this.
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Given any two subsets X and Y of Λ, we define a subset of Λ, denoted by
X → Y , by the following condition :

u ∈ (X → Y)⇔ (u)t ∈ Y for all t ∈ X .

Obviously :

If X ⊃ X ′ and Y ⊂ Y ′, then (X → Y) ⊂ (X ′ → Y ′).
A subset X of Λ is said to be saturated if and only if, for all terms t, t1,. . . , tn,
u, we have (u[t/x])t1 . . . tn ∈ X ⇒ (λxu)tt1 . . . tn ∈ X .

The intersection of any set of saturated subsets of Λ is clearly saturated. Also
clear is the fact that, for any subset X of Λ, the set of terms which reduce
to an element of X by leftmost reduction is saturated. Similarly, the set of
terms which reduce to an element of X by head reduction is saturated.

Proposition 3.4. Let Y be a saturated subset of Λ ; then X → Y is saturated
for all X ⊂ Λ.

Assume (u[t/x])t1 . . . tn ∈ X → Y ; then for all v in X , (u[t/x])t1 . . . tnv ∈ Y ,
and, since Y is saturated, (λxu)tt1 . . . tnv ∈ Y ; therefore (λxu)tt1 . . . tn ∈
X → Y .

Q.E.D.

An interpretation I is, by definition, a function which associates, with each
type variable X, a saturated subset of Λ, denoted by |X|I (or |X| if there is
no ambiguity). Given such a function, we can extend it and associate with
each type A a saturated subset of Λ, denoted by |A|I (or simply |A|), defined
as follows, by induction on the length of A :

if A is a type variable, then |A| is given with the interpretation I ;
|Ω| = Λ ;
if A = B → C, then |A| = |B| → |C| ;
if A = B ∧ C, then |A| = |B| ∩ |C|.

Lemma 3.5 (Adequacy lemma). Let I be an interpretation, and u a λ-term,
such that x1 : A1, . . . , xk : Ak `DΩ u : A. If t1 ∈ |A1|I,. . . , tk ∈ |Ak|I, then
u[t1/x1, . . . , tk/xk] ∈ |A|I.

The proof proceeds by induction on the number of rules used to obtain the
typing of u. Consider the last one :

If it is rule 1, then u is one of the variables xi, and A = Ai ; in that case
u[t1/x1, . . . , tk/xk] = ti, and the conclusion is immediate.

If it is rule 2, then A = B → C and u = λx v. We can assume that x
does not occur free in t1, . . . , tk and is different from x1, . . . , xk ; moreover :
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x : B, x1 : A1, . . . , xk : Ak `DΩ v : C.
By induction hypothesis, v[t/x, t1/x1, . . . , tk/xk] ∈ |C| holds for every t ∈ |B|.
But it then follows from our assumptions about x that :

v[t/x, t1/x1, . . . , tk/xk] = v[t1/x1, . . . , tk/xk][t/x].
Then we have (λx v[t1/x1, . . . , tk/xk])t ∈ |C|, since C is saturated. Now this
holds for all t ∈ |B|, so λx v[t1/x1, . . . , tk/xk] ∈ (|B| → |C|) = |A|.

If it is rule 3, then u = (w)v, where w is of type B → A and v is of type
B in the context x1 : A1, . . . , xk : Ak. By induction hypothesis, we have :
w[t1/x1, . . . , tk/xk] ∈ |B → A|, and v[t1/x1, . . . , tk/xk] ∈ |B|, thus :
(w[t1/x1, . . . , tk/xk])v[t1/x1, . . . , tk/xk] ∈ |A|.

If it is rule 4, then we know that a previous typing of u gave it the type
A ∧B (or B ∧ A), in the same context. By induction hypothesis :
u[t1/x1, . . . , tk/xk] ∈ |A ∧B| = |A| ∩ |B|, and therefore :
u[t1/x1, . . . , tk/xk] ∈ |A|.

If it is rule 5, then A = B ∧ C, and, by previous typings (in the same
context), u is of type B as well as of type C. By induction hypothesis, we have
u[t1/x1, . . . , tk/xk] ∈ |B|, |C|, and therefore u[t1/x1, . . . , tk/xk] ∈ |B ∧ C|.

If it is rule 6, then the result is obvious.
Q.E.D.

A type A is said to be trivial if no variable has a final occurrence in A. (For
example A→ Ω ∧ (B → Ω) is a trivial type, for all A and B).
The trivial types are those obtained by applying the following rules :

Ω is trivial ;
if A is trivial, then B → A is trivial for every B ;
if A, B are trivial, then so is A ∧B.

As an immediate consequence, we have :

If A is a trivial type, then its value |A|I under any interpretation I is the
whole set Λ.

Lemma 3.6. Let N0, N be subsets of Λ, with the following properties :
N is saturated, N0 ⊂ N , N0 ⊂ (Λ→ N0), N ⊃ (N0 → N ).

Let I be the interpretation such that |X|I = N for every type variable X.
Then |A|I ⊃ N0 for every type A, and |A|I ⊂ N for every non-trivial type A.

We first prove, by induction on A, that |A|I ⊃ N0 ; this is obvious whenever
A is a type variable, or A = Ω, or A = B ∧ C.
If A = B → C, then |A| = |B| → |C|, and |B| ⊂ Λ, |C| ⊃ N0 (induction
hypothesis) ; hence |A| ⊃ Λ → N0, and since it has been assumed that
Λ→ N0 ⊃ N0, we have |A| ⊃ N0.
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Now we prove, by induction on A, that |A| ⊂ N for every non-trivial type A.
The result is immediate whenever A is a type variable, or A = Ω, or A =
B ∧ C.
If A = B → C, then C is not trivial ; we have |A| = |B| → |C|, |B| ⊃ N0

(this has just been proved), and |C| ⊂ N (induction hypothesis). Hence
|A| ⊂ (N0 → N ), and since we assumed that (N0 → N ) ⊂ N , we can
conclude that |A| ⊂ N .

Q.E.D.

Theorem 3.7 (Head normal form theorem). Let t be a term which is typable
with a non-trivial type A, in system DΩ. Then the head reduction of t is
finite.

The converse of this theorem is true and will be proved later (theorem 4.9).

Let N0 = {(x)v1 . . . vp ; x is a variable, v1, . . . , vp ∈ Λ} and N = {t ∈ Λ ; the
head reduction of t is finite}.

Lemma 3.8. N0 and N satisfy the hypotheses of lemma 3.6.

Clearly, N0 ⊂ N and N0 ⊂ Λ → N0. Also, N is saturated : indeed,
if (u[t/x])t1 . . . tn has a finite head reduction, then the head reduction of
(λxu)tt1 . . . tn is also finite.
We now prove that N ⊃ N0 → N : let u ∈ N0 → N ; then, for any
variable x, (u)x has a finite head reduction (since x ∈ N0). Suppose that the
head reduction of u is infinite, namely : u, u1, . . . , un, . . . Then there is an n
such that un starts with λ (otherwise the head reduction of (u)x would be :
(u)x, (u1)x, . . . , (un)x, . . . which is infinite). Let k be the least integer such
that uk starts with λ ; for instance uk = λy vk, and then un = λy vn for every
n ≥ k. Thus the head reduction of vk is : vk, vk+1, . . . Therefore, the head
reduction of (u)x is : (u)x, (u1)x, . . . , (uk)x, vk[x/y], vk+1[x/y], . . . Again, it
is infinite and we have a contradiction.

Q.E.D.

Now we can prove theorem 3.7 : let t be a term which is typable with a non-
trivial type A in the context x1 : A1, . . . , xk : Ak. Consider the interpretation
I such that |X|I = N for every type variableX. It follows from the adequacy
lemma that, whenever ai ∈ |Ai|I , t[a1/x1, . . . , ak/xk] ∈ |A|I . By lemma 3.6,
|Ai|I ⊃ N0, so all variables are in |Ai|I , and therefore t ∈ |A|I . Also by
lemma 3.6, |A|I ⊂ N , thus t ∈ N and the head reduction of t is finite.

Q.E.D.

An ordered pair (N0,N ) of subsets of Λ is said to be adapted if it satisfies
the following properties :



Chapter 3. Intersection type systems 47

i) N is saturated ;
ii) N0 ⊂ N ; N0 ⊂ (N → N0) ; (N0 → N ) ⊂ N .

An equivalent way of stating condition (ii) is :
ii’) N0 ⊂ (N → N0) ⊂ (N0 → N ) ⊂ N .

Indeed, the inclusion (N → N0) ⊂ (N0 → N ) is an immediate consequence
of N0 ⊂ N .

Lemma 3.9. Let (N0,N ) be an adapted pair, and I an interpretation such
that, for every type variable X, |X|I is a saturated subset of N containing
N0. Then, for every type A with no negative (resp. positive) occurrence of
the symbol Ω, we have the inclusion |A|I ⊃ N0 (resp. |A|I ⊂ N ).

The proof is by induction on A. The conclusion is immediate whenever A is
a type variable or A = Ω.
If A = B ∧ C, and if there is no negative (resp. positive) occurrence of Ω in
A, then the situation is the same in B, and in C. Therefore, by induction
hypothesis, we have |B|I , |C|I ⊃ N0 (resp. ⊂ N ). Thus |B ∧ C|I = |B|I ∩
|C|I ⊃ N0 (resp. ⊂ N ).
If A = B → C, and if Ω has no negative occurrence in A, then Ω has no
positive (resp. negative) occurrence in B (resp. C). By induction hypothesis,
|B|I ⊂ N and |C|I ⊃ N0. Hence |B|I → |C|I ⊃ N → N0. Since (N0,N ) is
an adapted pair, we have N → N0 ⊃ N0, and therefore |A|I ⊃ N0.
If A = B → C and Ω has no positive occurrence in A, then Ω has no
negative (resp. positive) occurrence in B (resp. C). By induction hypothesis,
|B|I ⊃ N0 and |C|I ⊂ N . Therefore, |B|I → |C|I ⊂ N0 → N . Now (N0,N )
is an adapted pair, so N0 → N ⊂ N , and, finally, |A|I ⊂ N .

Q.E.D.

Now we shall prove that the pair (N0,N ) defined below is adapted :
N is the set of all terms which are normalizable by leftmost β-reduction :
namely, t ∈ N if and only if the sequence obtained from t by leftmost β-
reduction ends with a normal term.
N0 is the set of all terms of the form (x)t1 . . . tn, where x is a variable, and
t1, . . . , tn ∈ N . In particular, all variables are in N0 (take n = 0).
We have to check conditions (i) and (ii) in the definition of adapted pairs
(page 46) :
i) N is saturated : clearly, if (u[t/x])t1 . . . tn is normalizable by leftmost
β-reduction, then so is (λxu)tt1 . . . tn.
ii) N0 ⊂ N : if t ∈ N0, say t = (x)t1 . . . tn for some variable x and t1, . . . , tn ∈
N , then t1, . . . , tn are all normalizable by leftmost β-reduction, thus t clearly
satisfies the same property.
The inclusion N0 ⊂ (N → N0) is obvious.
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Now we come to (N0 → N ) ⊂ N : let t ∈ N0 → N and x be some variable
not occurring in t ; since x ∈ N0, (t)x ∈ N , thus (t)x is normalizable by
leftmost β-reduction. We need to prove that the same property holds for t ;
this is done by induction on the length of the normalization of (t)x by leftmost
β-reduction.
If t does not start with λ, then the first step of this normalization is a
leftmost β-reduction in t, which produces a term t′ ; thus the term (t′)x has
a normalization by leftmost β-reduction which is shorter than that of (t)x.
Hence, by induction hypothesis, t′ is normalizable by leftmost β-reduction,
and therefore so is t.
If t = λy u, then the first leftmost β-reduction in (t)x produces the term
u[x/y], which is therefore normalizable by leftmost β-reduction. Hence u
satisfies the same property, and so does t = λy u : let u = u0, u1, . . . , un

be the normalization of u by leftmost β-reduction, then that of λy u is :
λy u, λy u1, . . . , λy un.

Theorem 3.10 (Normalization theorem). Let t be a typable term in system
DΩ, of type A in the context x1 : A1, . . . , xk : Ak. Suppose that the symbol Ω
has no positive occurrence in A, and no negative occurrence in A1, . . . , Ak.
Then t is normalizable by leftmost β-reduction.

Define an interpretation I by taking |X|I = N for every type variable X. It
follows from lemma 3.9 that |Ai|I ⊃ N0 ; now xi ∈ N0 (by definition of N0),
thus xi ∈ |Ai|I ; by the adequacy lemma, we have :
t = t[x1/x1, . . . , xn/xn] ∈ |A|I . Now by lemma 3.9, |A|I ⊂ N and therefore
t ∈ N .

Q.E.D.

The converse of this theorem will be proved later (theorem 4.13).

Corollary 3.11. Suppose that x1 : A1, . . . , xk : Ak `DΩ t : A, and Ω does
not occur in A, A1,. . . ,Ak. Then t is normalizable by leftmost β-reduction.

An infinite quasi leftmost reduction of a term t ∈ Λ is an infinite sequence
t = t0, t1, . . . , tn,. . . of terms such that :

for every n ≥ 0, tn β0 tn+1 (tn+1 is obtained by reducing a redex in tn) ;
for every n ≥ 0, there exists a p ≥ n such that tp+1 is obtained by reducing

the leftmost redex in tp.
We can state a strengthened normalization theorem :

Theorem 3.12 (Quasi leftmost normalization theorem).
Suppose x1 : A1, . . . , xk : Ak `DΩ t : A, and Ω does not occur in A,A1,. . . ,Ak.
Then there is no infinite quasi leftmost reduction of t.
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In order to prove it, we again define an adapted pair (N0,N ) :
N is the set of all terms which do not admit an infinite quasi leftmost re-
duction ; N0 is the set of all terms of the form (x)t1 . . . tn, where x is some
variable, and t1, . . . , tn ∈ N . In particular, all variables are in N0 (take
n = 0). We check conditions (i) and (ii) of the definition of adapted pairs
(page 46) :

i) N is saturated : given (λxu)tt1 . . . tn = τ0, we assume the exis-
tence of an infinite quasi leftmost β-reduction τ0, τ1, . . . , τn, . . ., and we prove
(u[t/x])t1 . . . tn /∈ N by induction on the least integer k such that τk+1 is
obtained from τk by reducing the leftmost redex.
If k = 0, then τ1 = (u[t/x])t1 . . . tn, and, therefore, this term admits an
infinite quasi leftmost β-reduction. If k > 0, then τ1 is obtained by a reduc-
tion either in u, or in t, t1, . . . , tn, so it can be written τ1 = (λxu′)t′t′1 . . . t

′
n

(with either u = u′ or u β0 u
′, and the same for t, t1, . . . , tn). Now the

induction hypothesis applies to τ1 (since the integer corresponding to its
quasi leftmost β-reduction is k − 1), so (u′[t′/x])t′1 . . . t

′
n /∈ N . But we have

(u[t/x])t1 . . . tn β (u′[t′/x])t′1 . . . t
′
n, and therefore there exists an infinite quasi

leftmost β-reduction for the term (u[t/x])t1 . . . tn.
ii) N0 ⊂ N : let τ ∈ N0, say τ = (x)t1 . . . tn, where t1, . . . , tn ∈ N and x is
some variable. Suppose that τ admits an infinite quasi leftmost β-reduction,
say τ = τ0, τ1, . . . , τk, . . . ; then τk = (x)tk1 . . . t

k
n, with either tki = tk+1

i or
tki β0 t

k+1
i . Clearly, there exists i ≤ n such that tki contains the leftmost redex

of τk for every large enough k. Hence ti admits an infinite quasi leftmost
β-reduction, contradicting our assumption.
The inclusion N0 ⊂ (N → N0) is obvious.
It remains to prove that (N0 → N ) ⊂ N : let τ ∈ N0 → N and x be a
variable which does not occur in τ ; since x ∈ N0, (τ)x ∈ N . If τ admits
an infinite quasi leftmost β-reduction, say τ = τ0, τ1, . . . , τk, . . . , then so
does (τ)x (contradicting the definition of N ) : indeed, if none of the τn’s
start with λ, then (τ0)x, (τ1)x, . . . , (τk)x,. . . is an infinite quasi leftmost
β-reduction of (τ)x. If τk = λy τ ′k, then τ ′k admits an infinite quasi leftmost
reduction, and so does τ ′k[x/y]. Hence (τ0)x, (τ1)x, . . . , (τk)x, τ

′
k[x/y] is an

initial segment of an infinite quasi leftmost reduction of the term (τ)x.

Now the end of the proof of the quasi leftmost normalization theorem 3.12
is the same as that of the normalization theorem 3.10.

Q.E.D.

The following theorem is another application of the same method.

Theorem 3.13. Suppose x1 : A1, . . . , xk : Ak `DΩ t : A, and Ω does not
occur in A,A1,. . . ,Ak. Then there exists a βη-normal term u such that, if
t βη t′ for some t′, then t′βη u.
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Remark. In particular, t is βη-normalizable (take t′ = t) and its βη-normal form
is unique. The interesting fact is that the proof does not use the Church-Rosser
theorems of chapter 1 (theorems 1.23 and 1.31).

We define a new adapted pair (N0,N ).
N is the set of all terms with the desired property ; in other words :
t ∈ N ⇔ there exists a βη-normal term u such that, if t βη t′ for some t′,
then t′βη u.
N0 = {(x)t1 . . . tn; x is any variable, t1 . . . tn ∈ N}.
We now check conditions (i) and (ii) of the definition of adapted pairs
(page 46) :

i)N is saturated : suppose that (u[t/x])t1 . . . tn ∈ N , and let τ be its (unique)
βη-normal form. Let v ∈ Λ be such that :
(?) (λxu)tt1 . . . tn βη v.
We show that v βη τ . Consider, at the beginning of the βη-reduction (?), the
longest possible sequence of βη-reductions which take place inside u or t or
t1 or . . . or tn ; this gives (λxu′)t′t′1 . . . t

′
n, with u βη u′, t βη t′ and ti βη t

′
i.

Then, there are three possibilities :
• The βη-reduction (?) stops there. Thus, v = (λxu′)t′t′1 . . . t

′
n so that

v βη (u′[t′/x])t′1 . . . t
′
n. But we have (u[t/x])t1 . . . tn βη (u′[t′/x])t′1 . . . t

′
n, be-

cause the relation βη is λ-compatible. Since (u[t/x])t1 . . . tn ∈ N , it follows
from the definition of N that (u′[t′/x])t′1 . . . t

′
n βη τ ; therefore v βη τ .

• The following step consists in reducing the β-redex (λxu′)t′ and gives
(u′[t′/x])t′1 . . . t

′
n. Therefore, we have (u′[t′/x])t′1 . . . t

′
n βη v and it follows that

(u[t/x])t1 . . . tn βη v. Since (u[t/x])t1 . . . tn ∈ N , it follows from the definition
of N that v βη τ .
• λxu′ is an η-redex, i.e. u′ = (u′′)x and x is not free in u′′ ; moreover, the
following step consists in reducing this η-redex. This gives (u′′)t′t′1 . . . t

′
n, i.e.

(u′[t′/x])t′1 . . . t
′
n. Thus, the result follows as in the previous case.

ii) N0 ⊂ N : let t = (x)t1 . . . tn ∈ N0, where x is some variable, and
t1, . . . , tn ∈ N . Suppose that t βη t′. We have t′ = (x)t′1 . . . t

′
n with ti βη t

′
i.

Therefore t′i βη ui, where ui is the (unique) βη-normal form of ti. It follows
that t′ βη (x)u1 . . . un.

The inclusion N0 ⊂ (N → N0) is obvious, by definition of N0.

It remains to prove that (N0 → N ) ⊂ N : let t ∈ (N0 → N ) and x be a
variable which does not occur in t ; since x ∈ N0, we have (t)x ∈ N .
Let u be the (unique) βη-normal form of (t)x and define w ∈ Λ as follows :
w = λxu if λxu is not a η-redex, and w = v if u = (v)x with x not free in v ;
then w is βη-normal.
Consider a βη-reduction t βη t′ ; we show that t′ βη w.
We have (t)x βη (t′)x βη u. If the βη-reduction from (t′)x to u takes place



Chapter 3. Intersection type systems 51

inside t′, we have u = (v)x and t′ βη v ; thus, x is not free in v (because
it is not free in t′) and t′ βη w = v. Otherwise, we have t′ βη λx t′′ and
t′′ βη u, so that t′ βη λx u ; and in case u = (v)x with x not free in v, we get
t′ βη λx(v)x βη v. Thus, we have again t′ βη w in any case, and this shows
that t ∈ N .

Now, the end of the proof of theorem 3.13 is the same as that of the normal-
ization theorem 3.10.

2. System D

In order to study the strongly normalizable terms, we shall deal with the
same type system, but without using the constant Ω. Here it will be called
system D.
The definitions below are quite the same as in the previous section, except
for those about saturated sets and interpretations.

So the types of system D are formulas built with :
variables X, Y, . . . (type variables) ;
the connectives → and ∧.

As before, a context Γ is a set of the form x1 : A1, x2 : A2, . . . , xk : Ak where
x1, x2, . . . , xk are distinct variables of the λ-calculus and A1, A2, . . . , Ak are
types of system D.

Given a λ-term t, a type A, and a context Γ, we define, by means of the
following rules, the notion : t is of type A in the context Γ (or t may be given
type A in the context Γ) ; this will be denoted by Γ `D t : A (or Γ ` t : A if
there is no ambiguity) :

1. If x is a variable, then Γ, x : A `D x : A.
2. If Γ, x : A `D t : B, then Γ `D λx t : A→ B.
3. If Γ `D t : A→ B and Γ `D u : A, then Γ `D (t)u : B.
4. If Γ `D t : A ∧B, then Γ `D t : A and Γ `D t : B.
5. If Γ `D t : A and Γ `D t : B, then Γ `D t : A ∧B.

Any expression of the form Γ `D t : A obtained by means of these rules will
be called a typing of t in system D. A term is typable if it may be given some
type in some context.

Clearly, if a term t is typed in the context x1 : A1, . . . , xk : Ak, then the free
variables of t are among x1, . . . , xk (this was not true in system DΩ).

As in DΩ, we have :

Proposition 3.14. If Γ `D t : A and Γ′ ⊃ Γ, then Γ′ `D t : A.
If Γ `D t : A, and if Γ′ ⊂ Γ is the set of those declarations in Γ which concern
variables occurring free in t, then Γ′ `D t : A.
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The strong normalization theorem

Consider a fixed subset N of Λ (in fact, we shall mostly deal with the case
where N is the set of strongly normalizable terms).
A subset X of Λ is said to be N -saturated if, for all terms t1, . . . , tn, u :
(u[t/x])t1 . . . tn ∈ X ⇒ (λxu)tt1 . . . tn ∈ X for every t ∈ N .

Proposition 3.15. If Y is an N -saturated subset of Λ, then X → Y is
N -saturated for all X .

Indeed, suppose t ∈ N and (u[t/x])t1 . . . tn ∈ X → Y ; for any t0 in
X , (u[t/x])t1 . . . tnt0 ∈ Y , and therefore (λxu)tt1 . . . tnt0 ∈ Y , since Y is
N−saturated. Hence (λxu)tt1 . . . tn ∈ X → Y .

Q.E.D.

An N -interpretation I is, by definition, a function which associates with each
type variableX anN -saturated subset of Λ, denoted by |X|I (or simply |X| if
there is no ambiguity). Given such a function, we can extend it and associate
with each type A an N -saturated subset of Λ, denoted by |A|I (or simply
|A|), defined as follows, by induction on the length of A :

if A is a type variable, then |A|I is given with the interpretation I ;
if A = B → C, then |A|I = |B|I → |C|I ;
if A = B ∧ C, then |A|I = |B|I ∩ |C|I .

Lemma 3.16 (Adequacy lemma). Let I be an N -interpretation such that
|F |I ⊂ N for every type F of system D, and u a λ-term, such that :

x1 : A1, . . . , xk : Ak `D u : A.
If t1 ∈ |A1|I, . . . , tk ∈ |Ak|I then u[t1/x1, . . . , tk/xk] ∈ |A|I.

The proof proceeds by induction on the number of rules used to obtain the
typing of u. Consider the last one :

If it is rule 1, 3, 4 or 5, then we can repeat the proof of the adequacy
lemma (lemma 3.5), for the corresponding rules.

If it is rule 2, then A = B → C and u = λx v ; we can assume that x
does not occur free in t1, . . . , tk and is different from x1, . . . , xk. Moreover :
x : B, x1 : A1, . . . , xk : Ak `D v : C.
By induction hypothesis, v[t/x, t1/x1, . . . , tk/xk] ∈ |C| holds for any t ∈ |B|.
It then follows from our assumptions about x that : v[t/x, t1/x1, . . . , tk/xk] =
v[t1/x1, . . . , tk/xk][t/x]. Since C is N -saturated and t ∈ |B| ⊂ N , we have :
(λx v[t1/x1, . . . , tk/xk])t ∈ |C|. Now since t is an arbitrary element of |B|,
we obtain : λx v[t1/x1, . . . , tk/xk] ∈ (|B| → |C|) = |A|.

Q.E.D.

We now give a method which will provide a set N such that |F |I ⊂ N for
every N -interpretation I and every type F of system D.
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Here, an ordered pair (N0,N ) of subsets of Λ is said to be adapted if and
only if :

i) N is N -saturated ;
ii) N0 ⊂ N ; N0 ⊂ (N → N0) ; (N0 → N ) ⊂ N .

The difference with the definition page 46 lies in condition (i).

As above, condition (ii) can also be stated this way :
ii’) N0 ⊂ (N → N0) ⊂ (N0 → N ) ⊂ N .

Lemma 3.17. Let (N0,N ) be an adapted pair, and I an N -interpretation
such that, for every type variable X, |X|I is an N -saturated subset of N
containing N0. Then, for every type A, |A|I is an N -saturated subset of N
which contains N0.

Proof by induction on A. The result is clear whenever A is a type variable
or A = B ∧ C.
If A = B → C, then |A| = |B| → |C|, thus |A| is N -saturated since |C|
is (proposition 3.15). Moreover, by induction hypothesis, |B| ⊃ N0, and
|C| ⊂ N . Hence |B| → |C| ⊂ N0 → N . Now N0 → N ⊂ N according to
the definition of adapted pairs ; therefore |B → C| ⊂ N .
Similarly, we have |B| ⊂ N , and |C| ⊃ N0. Hence |B → C| ⊃ N → N0 ;
since N → N0 ⊃ N0 (definition of adapted pairs), we obtain |B → C| ⊃ N0.

Q.E.D.

Now we define two sets N and N0 and show that (N0,N ) is an adapted pair :

N is the set of strongly normalizable terms ; in other words, t ∈ N ⇔ there is
no infinite sequence t = t0, t1, . . . , tn, . . . such that ti β0 ti+1 for all i ; therefore
each maximal sequence of this form (called normalization of t) ends with the
normal form of t.

N0 is the set of all terms of the form (x)t1 . . . tn, where x is some variable,
and t1, . . . , tn ∈ N .

Proposition 3.18. A strongly normalizable term admits only finitely many
normalizations.

(This is an application of the well known König’s lemma). Let t be a term
which admits infinitely many normalizations. Then at least one of the terms
obtained by contracting a redex in t admits infinitely many normalizations.
Let t1 be such a term ; we have t β0 t1. Now the same argument applies to
t1 ; so we can carry on and construct an infinite sequence t = t0, t1, . . . , tn, . . .
such that tn β0 tn+1 for all n ; therefore t is not strongly normalizable.

Q.E.D.

Proposition 3.19. N is N -saturated.
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Let t ∈ N , (u[t/x])t1 . . . tn ∈ N . We need to prove that (λxu)tt1 . . . tn ∈ N .
Let p (resp. q) be the sum of all the lengths of the normalizations of t (resp.
(u[t/x])t1 . . . tn).
The proof is by induction on p, and, for each fixed p, by induction on q.
Consider the terms obtained by contracting a redex in (λxu)tt1 . . . tn. It
is sufficient to prove that all of them are in N . The redex on which the
contraction is done may be :
1. The redex (λxu)t ; then the reduced term is (u[t/x])t1 . . . tn, which is
in N ;
2. A redex in u, the reduced term being u′, with u β0 u

′ ; we want to prove
that (λxu′)tt1 . . . tn ∈ N . But we have u[t/x] β0 u

′[t/x] (proposition 1.21),
and therefore u[t/x]t1 . . . tn β0 u

′[t/x]t1 . . . tn ; thus, the sum of the lengths of
the normalizations of (u′[t/x])t1 . . . tn is < q, and the induction hypothesis
yields the expected result ;
3. A redex in ti ; same proof ;
4. A redex in t, the reduced term being t′ ; then the sum of the lengths of
the normalizations of t′ is p′ < p. On the other hand, we have u[t/x] β u[t′/x]
(proposition 1.22), so there is a normalization of (u[t/x])t1 . . . tn which in-
volves the term (u[t′/x])t1 . . . tn ; therefore, (u[t′/x])t1 . . . tn ∈ N . With the
induction hypothesis, we conclude that (λxu)t′t1 . . . tn ∈ N .

Q.E.D.

Now we prove that (N0,N ) is an adapted pair : condition (i) was checked in
proposition 3.19 ; we have obviously N0 ⊂ N and N0 ⊂ N → N0 ; in order
to prove that N0 → N ⊂ N , suppose that u is not strongly normalizable,
and let x be some variable (x ∈ N0) ; there exists an infinite sequence
u = u0, u1, . . . , un, . . . such that ui β0 ui+1 for all i ; then the sequence (u)x =
(u0)x, (u1)x, . . . , (un)x, . . . attests that (u)x is not strongly normalizable.

Theorem 3.20 (Strong normalization theorem). Every term which is typable
in system D is strongly normalizable.

Indeed, let t be a term of type A, in the context x1 : A1, . . . , xk : Ak. Define
an N -interpretation I by taking |X|I = N for every type variable X. We
have xi ∈ N0 by definition of N0, so xi ∈ |Ai| ; by the adequacy lemma,
t = t[x1/x1, . . . , xn/xn] ∈ |A|. Now by lemma 3.17, |A| ⊂ N ; thus t ∈ N .

Q.E.D.

Remark. Proposition 3.19 provides the following algorithm for checking whether
or not a term is strongly normalizable :
if t is a head normal form, say t = λx1 . . . λxn(x)t1 . . . tk, then do the checking
for t1, . . . , tk ; otherwise, we have t = λx1 . . . λxn(λx u)vt1 . . . tk : do the checking
for v and (u[v/x])t1 . . . tk. The algorithm terminates if and only if t is strongly
normalizable.
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3. Typings for normal terms

We intend to show that head normal forms and normal forms are typable,
in a notable way : a head normal form is typable in system DΩ, with a
non-trivial type ; a normal form is typable in system D (and therefore also
in system DΩ, with a type in which the symbol Ω does not occur).

Proposition 3.21. Let t be a term in head normal form. Then t is typable
in system DΩ, with a type of the form U1, . . . , Un → X (where X is a type
variable, and n ≥ 0).

Indeed, t = λx1 . . . λxn(y)u1 . . . uk. Now, (y)u1 . . . uk is of type X in the
context y : U (where U = Ω,Ω, . . . ,Ω→ X).
Thus t is of type U1, . . . , Un → X in the context y : U (U1, . . . , Un may be
arbitrarily chosen, except when y = xi ; in that case, take Ui = U).

Q.E.D.

Lemma 3.22. If x1 : A1, x2 : A2, . . . , xk : Ak ` t : A, then :
x1 : A1 ∧ A′1, x2 : A2, . . . , xk : Ak ` t : A.

Proof by induction on the number of rules used to obtain :
x1 : A1, x2 : A2,. . . , xk : Ak ` t : A (either rules 1 to 6, page 42 or
rules 1 to 5, page 51). Consider the last one. The only non-trivial case
is that of rule 1, when t = x1. Then we have A = A1. Now, by rule 1,
x1 : A1 ∧A′1, . . . ` x1 : A1 ∧A′1 ; therefore x1 : A1 ∧A′1, . . . ` x1 : A1 (rule 4).

Q.E.D.

Proposition 3.23. Given any two contexts Γ,Γ′, there exists a context Γ′′

such that, if Γ ` t : A and Γ′ ` u : B, then Γ′′ ` t : A, u : B.

Even if it means extending both contexts, we may assume that :
Γ is x1 : A1, . . . , xk : Ak and Γ′ is x1 : B1, . . . , xk : Bk.
Then it suffices to take for Γ′′ the context x1 : A1 ∧B1, . . . , xk : Ak ∧Bk and
apply the previous lemma.

Q.E.D.

The next proposition shows that every normal term is typable in system D.

Proposition 3.24. For every normal term t, there exist a type A and a
context Γ such that Γ `D t : A. Moreover, if t does not start with λ, then,
for every type A, there exists a context Γ such that Γ `D t : A.

Recall that the normal terms are defined by the following conditions :
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any variable x is a normal term ;

if t is a normal term, and if x is a variable, then λx t is a normal
term ;

if t, u are normal terms, and if t does not start with λ, then (t)u
is a normal term.

The proof of the proposition is by induction on the length of t. If t is a
variable, then t is of type A in the context t : A.
If t = λxu, then u is of type A in a context Γ ; we may assume that the
declaration x : B occurs in Γ, for some type B (otherwise we add it). Hence
Γ `D t : B → A.
Now suppose that t = (u)v, and u does not start with λ. Let A be any type
of system D. By induction hypothesis, v is of some type B, in some context
Γ. Moreover, there exists a context Γ′ such that Γ′ `D u : B → A. By
the previous proposition, there exists a context Γ′′ such that Γ′′ `D v : B,
u : B → A. Thus Γ′′ `D (u)v : A.

Q.E.D.

Principal typings of a normal term in system D
We have just shown that every normal term t is typable in systemD. We shall
improve this result and see that, actually, there is a type which characterizes
t up to η-equivalence.

Recall that, if x1 : A1, . . . , xk : Ak `D t : A, then the free variables of
t are among x1, . . . , xk, and the symbol Ω does not occur in the types
A1, . . . , Ak, A.

Let t be a normal term and {x1, . . . , xk} a finite set of variables, containing
all the free variables of t. We shall define a special kind of typings of t in
system D, of the form x1 : A1, . . . , xk : Ak `D t : A, which will be called
principal typings of t.
The definition is by induction on t :

If t is a variable xi, we take distinct type variables X1, . . . , Xk. The
principal typings are x1 : X1, . . . , xk : Xk `D xi : Xi.

If t = λxu, let x : A, x1 : A1,. . . , xk : Ak `D u : B be a principal typing
of u. Then x1 : A1,. . . , xk : Ak `D t : A→ B is a principal typing of t.

If t does not start with λ, we have t = (x)t1 . . . tn, where x is a variable,
and t1, . . . , tn are normal terms. Let x : Ai, x1 : A1

i , . . . , xk : Ak
i `D ti : Bi

be a principal typing of ti (1 ≤ i ≤ n). Even if it means changing the type
variables, we may assume that, whenever i 6= j, the typings of ti and tj have
no type variable in common. Then we take a new type variable X, and we
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obtain a principal typing of t, which is Γ `D t : X, where Γ is the context :

x :
∧n

i=1Ai ∧ (B1, . . . , Bn → X), x1 :
∧n

i=1A
1
i , . . . , xk :

∧n
i=1A

k
i .

This is indeed a typing of t : it follows from lemma 3.22 that
Γ `D ti : Bi and Γ `D x : (B1, . . . , Bn → X) ;

then it remains to apply rule 3, page 51.

Lemma 3.25. Let x1 : A1, . . . , xk : Ak `D t : A be a principal typing of
a normal term t, and y1, . . . , yl be new variables. Then there exist types
B1, . . . , Bl such that x1 : A1, . . . , xk : Ak, y1 : B1, . . . , yl : Bl `D t : A is a
principal typing of t.

Immediate proof by induction on the length of t.
Q.E.D.

Definition. Given any λ-term t, every term u such that t η u will be called
an η-reduced image of t.

Theorem 3.26. Let x1 : A1, . . . , xk : Ak `D t : A be a principal typing of
a normal term t, and let u be a typed term in system DΩ, of type A in the
context x1 : A1, . . . , xk : Ak. Then there exists an η-reduced image of t which
can be obtained from u by leftmost β-reduction.

Examples : t = λx(x)x ; the principal type is X ∧ (X → Y )→ Y ; any term
of that type can therefore be reduced to t by leftmost β-reduction ;
t = λfλx(f)x ; the principal type is (X → Y ) → (X → Y ) ; any term of
that type can be reduced either to t, or to λf f (which is an η-reduced image
of t), by leftmost β-reduction ;
t = λfλx(f)(f)x ; the principal type is (X → Y ) ∧ (Y → Z)→ (X → Z).

Lemma 3.27. Suppose t is normal and t η t′ ; then t′ is normal. Moreover,
if λ is not the first symbol in t, then neither is it in t′.

We can assume that t η0 t
′ (t′ is obtained by one single η-reduction in t).

The proof is by induction on t. If t is a variable, then t = t′ and the result
is obvious. If t starts with λ, then there are two possibilities :

t = λxu, t′ = λxu′, and u η0 u
′ ; then u′ is normal, thus so is t′.

t = λx(t′)x, and x does not occur free in t′ ; then t′ needs to be normal,
since t is.
If t does not start with λ, then t = (u)v, and the first symbol in u is not λ.
In that case, either t′ = (u)v′ or (u′)v, with u η0 u

′ or v η0 v
′. By induction

hypothesis, u′ and v′ are normal and u′ does not start with λ. Thus t′ is
normal (and does not start with λ).

Q.E.D.
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Lemma 3.28. Consider two terms t, v, and a variable x with no free occur-
rence in v. Suppose (v)x �� t. Then there exists an η-reduced image u of
λx t such that v �� u.

Recall that t0 �� t1 means that t1 is obtained from t0 by leftmost β-
reduction.
The proof proceeds by induction on the number of steps of leftmost β-
reduction which transform (v)x in t.
1. (v)x = t ; then λx t η v (definition of η) ; take u = v.
2. (v)x 6= t and v does not start with λ. Then the first leftmost β-reduction
in (v)x is done in the subterm v ; it gives a term (v′)x, where v′ is obtained
from v by a leftmost β-reduction. By induction hypothesis, there exists a
term u such that λx t η u and v′ �� u. Thus v �� u.
3. (v)x 6= t and v starts with λ. Since x is not free in v, we may write
v = λxw ; therefore, a leftmost β-reduction in (v)x produces the term w.
Thus it follows from our assumption that w �� t. Hence v = λxw �� λx t.

Q.E.D.

Theorem 3.29. Let t be a normal term, and x1 : A1, . . . , xk : Ak `D t : A a
principal typing of t. Then there exists an interpretation I such that :

i) x1 ∈ |A1|I,. . . , xk ∈ |Ak|I ;
ii) for every term v ∈ |A|I having all its free variables among x1, . . . , xk,

there exists an η-reduced image u of t such that v �� u.

We first show how theorem 3.26 easily follows from theorem 3.29 : indeed,
let v be any typed term in system DΩ, of type A in the context x1 : A1,. . . ,
xk : Ak ; by lemma 3.25, we may assume that the free variables of v
are all among x1, . . . , xk. By the adequacy lemma (lemma 3.5), we have
v[a1/x1, . . . , ak/xk] ∈ |A|I whenever ai ∈ |Ai|I ; now xi ∈ |Ai|I , and there-
fore v ∈ |A|I . Then theorem 3.29 ensures the existence of an η-reduced image
of t which can be obtained from v by leftmost β-reduction.

Now we prove theorem 3.29 by induction on the length of t :

If t is a variable, say x1, then the given typing is x1 : X1, . . . , xk : Xk `D
x1 : X1, where the X ′is are type variables. The interpretation I can be
defined by v ∈ |Xi|I ⇔ v �� xi.

If t = λxu, then we have a principal typing of u of the form :
x : A, x1 : A1,. . . , xk : Ak `D u : B ; by induction hypothesis, there exists
an interpretation I such that x ∈ |A|I , x1 ∈ |A1|I ,. . . , xk ∈ |Ak|I . Now the
given principal typing of t = λxu is x1 : A1,. . . , xk : Ak `D t : A → B.
Let v ∈ |A→ B|I be a term with no free variables but x1, . . . , xk (so x does
not occur free in v). Since x ∈ |A|I , (v)x ∈ |B|I . Therefore, by induction
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hypothesis, (v)x �� w, where w is an η-reduced image of u. By lemma 3.28,
there exists a term t′ such that v �� t′ and λxw η t′ ; thus v �� t′ and
λxu η t′.

If t does not start with λ, then t = (x)t1 . . . tn, where x is some variable
and t1, . . . , tn are normal terms. We also have principal typings for the ti’s :
x : Ai, x1 : A1

i ,. . . , xk : Ak
i `D ti : Bi, and interpretations Ii. Observe that

the typings of the t′is have no type variable in common, so it is possible to
define one single interpretation I such that for every i, Ii and I have the
same restriction to the type variables occurring in the typing of ti. Now the
given principal typing of t is Γ `D t : X, where Γ is the context :

x :
∧n

i=1Ai ∧ (B1, . . . , Bn → X), x1 :
∧n

i=1A
1
i , . . . , xk :

∧n
i=1A

k
i .

By induction hypothesis, x ∈ |Ai|I , thus x ∈ |
∧n

i=1Ai|I ; similarly, xj ∈
|
∧n

i=1A
j
i |I .

We define the value of X in the interpretation I by taking :

|X|I = {v ∈ Λ; there exist t′1 ∈ |B1|I , . . . , t′n ∈ |Bn|I
such that v �� (x)t′1 . . . t

′
n}

(this is indeed a saturated subset of Λ).

It follows from this definition that x ∈ |B1, . . . , Bn → X|I . Thus :

x ∈ |
∧n

i=1Ai ∧ (B1, . . . , Bn → X)|I .
Let v ∈ |X|I , with no free variables but x1, . . . , xk. Then v reduces to
(x)t′1 . . . t

′
n by leftmost β-reduction ; we have t′i ∈ |Bi|I and therefore, by

induction hypothesis, t′i �� t′′i , where t′′i is an η-reduced image of ti. Hence
v �� (x)t′′1 . . . t

′′
n, which is clearly an η-reduced image of t = (x)t1 . . . tn.

So we have shown that the interpretation I satisfies all the required properties
with respect to the given principal typing of t.

Q.E.D.

Corollary 3.30. Let t, t′ be two normal terms ;
i) Suppose that Γ `DΩ t : A ⇒ Γ `DΩ t′ : A, for any type A and any
context Γ ; then t η t′.
ii) Suppose that Γ `DΩ t : A ⇔ Γ `DΩ t′ : A, for any type A and any
context Γ ; then t = t′.

i) Take Γ and A such that Γ `DΩ t : A is a principal typing of t. By
assumption, we have Γ `DΩ t′ : A ; by theorem 3.26, there exists a term u
such that t η u and t′ �� u. Now since t′ is normal, this implies t′ = u.

ii) It follows from (i) that t η t′ and t′η t ; therefore t = t′ (indeed, if t η t′ and
t 6= t′, then t′ is strictly shorter than t).

Q.E.D.
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Chapter 4

Normalization and
standardization

1. Typings for normalizable terms

Notation. In this chapter, the notation ` refers to system D or system DΩ
(the result hold in both cases). Of course, the notation `DΩ refers to system
DΩ only, and the notation `D refers to system D only.

Proposition 4.1.
Let Γ be a context and x1, . . . , xk variables which are not declared in Γ. Sup-
pose that Γ, x1 : A1, . . . , xk : Ak ` u : B, and Γ ` ti : Ai for all i such that
xi occurs free in u (1 ≤ i ≤ k). Then Γ ` u[t1/x1, . . . , tk/xk] : B.

Proof by induction on the number of rules used for the typing
Γ, x1 : A1, . . . , xk : Ak ` u : B. Consider the last one :

If it is rule 1, then u is a variable ;
if u = xi, then B = Ai, and u[t1/x1, . . . , tk/xk] = ti, which is of type B

in the context Γ.
if u is a variable and u 6= x1, . . . , xk, then u[t1/x1, . . . , tk/xk] = u, and Γ

contains the declaration u : B ; thus Γ ` u : B.

If it is rule 2, then u = λy v, B = C → D, and :
Γ, x1 : A1, . . . , xk : Ak, y : C ` v : D.

By induction hypothesis, we have Γ, y : C ` v[t1/x1, . . . , tk/xk] : D. There-
fore, by rule 2, we obtain Γ ` λy v[t1/x1, . . . , tk/xk] : C → D, that is to say
Γ ` u[t1/x1, . . . , tk/xk] : C → D.

If it is rule 3, then u = vw and :
Γ, x1 : A1, . . . , xk : Ak ` v : C → B, w : C.

By induction hypothesis :

61
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Γ ` v[t1/x1, . . . , tk/xk] : C → B and Γ ` w[t1/x1, . . . , tk/xk] : C.
Hence Γ ` (v[t1/x1, . . . , tk/xk])w[t1/x1, . . . , tk/xk] : B.
In other words Γ ` u[t1/x1, . . . , tk/xk] : B.

The other cases are obvious.
Q.E.D.

We will say that a type A is prime if A 6= Ω and A is not a conjunction. So
a prime type is either a type variable or a type of the form A→ B.
Any type A is a conjunction of prime types and of Ω (when A is prime, this
conjunction reduces to one single element). These prime types will be called
the prime factors of A. The formal definition, by induction on the length
of A, of the prime factors of A, is as follows :

• if A = Ω, it has no prime factor ;
• if A is a variable, or A = B → C, it has exactly one prime factor, which
is A itself ;
• if A = B ∧ C, the prime factors of A are the prime factors of B and the
prime factors of C.

Lemma 4.2. Suppose Γ ` t : A, where A is a prime type.
i) If t is some variable x, then x is declared of type A′ in Γ, A being a prime
factor of A′.
ii) If t = λxu, then A = B → C, and Γ, x : B ` u : C.
iii) If t = uv, then Γ ` v : B, Γ ` u : B → A′, and A is a prime factor of A′.

In case (ii), recall that the notation “ Γ, x : B ” implies that x is not declared
in Γ (otherwise, one should rename the bound variables of λxu).

The given typing of t (with a prime type A in the context Γ) is obtained by
the rules listed on p. 42 or p. 51. Consider the first step when one of these
rules produces a typing Γ ` t : A′, where A is a prime factor of A′.
The rule applied at that step is neither rule 4 nor rule 5 :
Indeed, rule 4 requires a previous typing of the form Γ ` t : A′ ∧ B, and A
would already be a prime factor of A′ ∧B. As for rule 5, it requires previous
typings of the form Γ ` t : A′1, and Γ ` t : A′2, with A′ = A′1 ∧ A′2 ; then A
would already be either a prime factor of A′1 or of A′2.

In case (i), the rule applied may only be 1, 4 or 5, since the term obtained
is a variable. But 4 and 5 have just been eliminated ; so it is rule 1, and
therefore x is declared of type A′ in Γ.

In case (ii), the rule applied may only be 2, 4, or 5, since the term obtained
is λxu. So it is rule 2, which implies that A′ is of the form B → C ; now
this is a prime type, thus A′ = A = B → C. Moreover, in this case, rule 2
requires as a previous typing : Γ, x : B ` u : C.
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In case (iii), the rule applied may only be 3, 4 or 5, since the term obtained
is uv. So it is rule 3, and therefore we have : Γ ` v : B and Γ ` u : B → A′.

Q.E.D.

Proposition 4.3. If Γ ` t : A and t β t′, then Γ ` t′ : A.

We may assume t β0 t
′ (that is to say that t′ is obtained by contracting one

redex in t). The proposition is proved by induction on the number of rules
used to obtain Γ ` t : A. Consider the last one :
It cannot be rule 1, since t β0 t

′ is impossible when t is a variable.
If it is rule 2, then t = λxu, A = B → C, and Γ, x : B ` u : C. In this case,
t′ = λxu′ and u β0u

′. By induction hypothesis, we have Γ, x : B ` u′ : C ;
thus Γ ` λxu′ : B → C, that is to say Γ ` t′ : A.
If it is rule 3, then t = uv, Γ ` u : B → A, and Γ ` v : B. Here there are
three possible situations for t′ :
i) t′ = u′v, with u β0 u

′ ; by induction hypothesis, we have Γ ` u′ : B → A,
and therefore Γ ` t′ : A.
ii) t′ = uv′, with v β0 v

′ ; by induction hypothesis, Γ ` v′ : B ; thus Γ ` t′ : A.
iii) u = λxw and t′ = w[v/x] ; so we have Γ ` λxw : B → A. Therefore, by
lemma 4.2(ii), Γ, x : B ` w : A ; now, since Γ ` v : B, proposition 4.1 proves
that Γ ` w[v/x] : A, that is to say Γ ` t′ : A.
If the last rule used is 4, 5 or 6, then the result is obvious.

Q.E.D.

Proposition 4.4. Let Γ be a context and x1, . . . , xk variables which are not
declared in Γ. If Γ ` u[t1/x1, . . . , tk/xk] : B, and if t1, . . . , tk are typable
in the context Γ, then there exist types A1, . . . , Ak such that Γ ` ti : Ai

(1 ≤ i ≤ k) and Γ, x1 : A1, . . . , xk : Ak ` u : B.

Remarks.
1. If the type system is DΩ, then the condition “ ti is typable in the context Γ ”
is satisfied anyway (Γ ` ti : Ω).
2. The necessity of introducing the conjunction symbol ∧, with its specific syntax,
appears in this proposition ; the result is characteristic of this kind of type systems.

First, observe that the proposition is obvious when u = xi. Indeed, in that
case, we have Γ ` ti : B, and, of course, Γ, xi : B ` xi : B. Thus we can
take Ai = B, and, for j 6= i, take Aj as any type satisfying Γ ` tj : Aj.
Now suppose u 6= x1, . . . , xk. The proof is by induction on the number of
rules used to obtain Γ ` u[t1/x1, . . . , tk/xk] : B. Consider the last one.

If it is rule 1, then u[t1/x1, . . . , tk/xk] is a variable y, and Γ contains the
declaration y : B. Thus u is also a variable. Now since u 6= x1, . . . , xk, we



64 Lambda-calculus, types and models

have u[t1/x1, . . . , tk/xk] = u, and u = y. Therefore Γ ` u : B ; besides, it
has been assumed that Γ ` ti : Ai for appropriate types Ai.

If it is rule 2, then we have B = C → D, u[t1/x1, . . . , tk/xk] = λy u′ and
Γ, y : C ` u′ : D. Since u 6= x1, . . . , xk, we have u = λy v. As usual, we may
suppose that y does not occur free in Γ, u, t1, . . . , tk, and y 6= x1, . . . , xk. We
have u′ = v[t1/x1, . . . , tk/xk] and therefore Γ, y : C ` v[t1/x1, . . . , tk/xk] : D.
By induction hypothesis, there exist types Ai such that Γ, y : C ` ti : Ai,
and Γ, y : C, x1 : A1, . . . , xk : Ak ` v : D. Consequently :
Γ, x1 : A1, . . . , xk : Ak ` u : C → D.
Moreover, since y does not occur in ti, we have Γ ` ti : Ai (propositions 3.1,
3.3 and 3.14).

If it is rule 3, then u[t1/x1, . . . , tk/xk] = v′w′, and Γ ` v′ : C → B,
Γ ` w′ : C. Since u 6= x1, . . . , xk, we have u = vw, and therefore :
v′ = v[t1/x1, . . . , tk/xk], w

′ = w[t1/x1, . . . , tk/xk]. Consequently :
Γ ` v[t1/x1, . . . , tk/xk] : C → B, and Γ ` w[t1/x1, . . . , tk/xk] : C.
By induction hypothesis, there exist types A′i, A

′′
i such that :

Γ ` ti : A′i ; Γ ` ti : A′′i ;
Γ, x1 : A′1, . . . , xk : A′k ` v : C → B ; Γ, x1 : A′′1, . . . , xk : A′′k ` w : C.
Let Ai = A′i ∧ A′′i ; then we have :
Γ, x1 : A1, . . . , xk : Ak ` v : C → B, w : C. Thus :
Γ, x1 : A1, . . . , xk : Ak ` u : B. Moreover, Γ ` ti : Ai.

If it is rule 4 or rule 6, then the result is trivial.

If it is rule 5, then B = B′ ∧ B′′, and Γ ` u[t1/x1, . . . , tk/xk] : B′,
Γ ` u[t1/x1, . . . , tk/xk] : B′′. By induction hypothesis, there exist types
A′i, A

′′
i such that :

Γ ` ti : A′i ; Γ ` ti : A′′i ;
Γ, x1 : A′1, . . . , xk : A′k ` u : B′ ; Γ, x1 : A′′1, . . . , xk : A′′k ` u : B′′.
Let Ai = A′i ∧ A′′i ; then we have x1 : A1, . . . , xk : Ak ` u : B′ ∧ B′′, that is
to say u : B. Moreover, Γ ` ti : Ai.

Q.E.D.

Corollary 4.5. If Γ ` u[t/x] : B and if t is typable in the context Γ, then
Γ ` (λxu)t : B.

Remark. In system DΩ, the condition about t is satisfied anyway, since Γ ` t : Ω.

Proof. By proposition 4.4, we have Γ ` t : A and Γ, x : A ` u : B for
some type A. Hence Γ ` λxu : A → B (rule 2), and therefore, by rule 3,
Γ ` (λxu)t : B.

Q.E.D.

Theorem 4.6. Let t and t′ be two λ-terms such that t′ is obtained from t by
β-reduction (in other words t β t′). If Γ `DΩ t

′ : A, then Γ `DΩ t : A.
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We may suppose t β0 t
′ (i.e. t′ is obtained by contracting a redex in t).

The proof is by induction on the length of t and, for each fixed t, by induction
on the length of A.
If A = Ω, the result is trivial.
If A = A1 ∧ A2, then Γ ` t′ : A1 and Γ ` t′ : A2. By induction hypothesis,
we have Γ ` t : A1, and Γ ` t : A2, therefore Γ ` t : A.

So we may now suppose that A is a prime type. There are three possible
cases for t :

i) t is a variable ; this is impossible since t β0 t
′.

ii) t = λxu ; then t′ = λxu′ and u β0 u
′. Since λxu′ is of prime type A in

the context Γ, by lemma 4.2(ii), we have A = B → C, and Γ, x : B ` u′ : C.
Now u is shorter than t, so by induction hypothesis, Γ, x : B ` u : C. Thus
t = λxu is of type A = B → C in the context Γ.

iii) t = uv ; then we have three possible situations for t′ :
a) t′ = uv′, with v β0 v

′ ; by assumption uv′ is of prime type A in the
context Γ. By lemma 4.2(iii), we have Γ ` v′ : B and Γ ` u : B → A′,
A being a prime factor of A′. Now v is shorter than t so, by induction
hypothesis, Γ ` v : B. Thus t = uv is of type A′, and hence also of type A,
in the context Γ.

b) t′ = u′v, with u β0 u
′ ; similarly, we have :

Γ ` v : B and Γ ` u′ : B → A′, A being a prime factor of A′. By induction
hypothesis, Γ ` u : B → A′. Thus t = uv is of type A′, and hence also of
type A in the context Γ.

c) u = λxw, (so t = (λxw)v) and t′ = w[v/x].
The assumption is Γ ` w[v/x] : A. By corollary 4.5, and since we are in
system DΩ, we also have Γ ` (λxw)v : A.

Q.E.D.

As an immediate consequence of theorem 4.6 and proposition 4.3, we obtain :

Theorem 4.7.
If t is β-equivalent to t′, and if Γ `DΩ t : A, then Γ `DΩ t

′ : A.

We are then able to give an alternative proof of the uniqueness of the normal
form :

Corollary 4.8. Suppose t and t′ are normal and t 'β t
′. Then t = t′.

Apply theorem 4.7 and corollary 3.30.
Q.E.D.

Theorem 4.9. For every λ-term t, the following conditions are equivalent :
i) t is solvable ;
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ii) t is β-equivalent to a head normal form ;
iii) the head reduction of t is finite ;
iv) t is typable with a non-trivial type in system DΩ.

Recall that the trivial types are those obtained by the following rules :
Ω is trivial ;
if A is trivial, then so is B → A for every B ;
if A,B are trivial, then so is A ∧B.

Lemma 4.10. If λx t (resp. tu) is typable with a non-trivial type in system
DΩ, then the same property holds for t.

We may assume that this type is non-trivial and prime, since any non-trivial
type has a prime factor which is also non-trivial.
Suppose that Γ ` λx t : A, where A is a prime non-trivial type. By
lemma 4.2(ii), we get A = B → C and Γ, x : B ` t : C. Moreover, C
is non-trivial since A is.
Suppose that Γ ` tu : A, where A is a prime non-trivial type.
By lemma 4.2(iii), we get Γ ` t : B → A′ and A is a prime factor of A′. It
follows that A′ is non-trivial.

Q.E.D.

We are now able to prove theorem 4.9.

(i) ⇒ (iv) : Let u = λx1 . . . λxk t be the closure of t. Then u is solvable
(remark 2, p. 31, chapter 2), and therefore uv1 . . . vn 'β x, where x is some
variable with no occurrence in u. Since x can obviously be typed with a
non-trivial type, the same holds for uv1 . . . vn (theorem 4.7), and hence also
for u, according to lemma 4.10. Applying this lemma again, we can see that
t itself is typable with a non-trivial type.

(iv) ⇒ (iii) : This is the head normal form theorem 3.7.

(iii) ⇒ (ii) : Obvious.

(ii) ⇒ (i) : We may suppose that t is a closed term (otherwise, take its
closure). We have t 'β λx1 . . . λxk(xi)u1 . . . ul (closed term in head normal
form). Let vi = λy1 . . . λyl x (where x is a new variable), and vj be arbitrary
terms for j 6= i, 1 ≤ j ≤ k. Then (t)v1 . . . vk 'β x, which proves that t is
solvable.

Q.E.D.

As an application of theorem 4.9, we now prove the following property of
solvable terms, which we have used in chapter 2 (namely, lemma 2.12) :

Theorem 4.11. If t 'β λx1 . . . λxk(xi)t1 . . . tn (with 1 ≤ i ≤ k) then, there
exist t′j 'β tj (1 ≤ j ≤ n) such that, for any u1, . . . , uk ∈ Λ, we have
(t)u1 . . . uk �w (ui)t

′′
1 . . . t

′′
n with t′′j = t′j[u1/x1, . . . , uk/xk].
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Recall that �w denotes weak head reduction (see page 30).

Lemma 4.12. If t � (x)t1 . . . tn, then t[u/x, u1/x1, . . . , uk/xk] �w (u)t′1 . . . t
′
n

where t′j = tj[u/x, u1/x1, . . . , uk/xk] for 1 ≤ j ≤ k.

Proof by induction on the length of the head reduction from t to (x)t1 . . . tn.
Note that this reduction is, indeed, a weak head reduction, because the final
term does not begin with a λ.
The result is trivial if this length is 0, i.e. if t = (x)t1 . . . tn. Otherwise, by
proposition 2.2, we have t = (λz w)vv1 . . . vp (since t does not begin with a λ).
Let t∗ = (w[v/z])v1 . . . vp ; we can apply the induction hypothesis to t∗, so
that t∗[u/x, u1/x1, . . . , uk/xk] �w (u)t′1 . . . t

′
n.

Define v′ = v[u/x, u1/x1, . . . , uk/xk], and the same for v1, . . . , vp, w.
Thus, we have :
t∗[u/x, u1/x1, . . . , uk/xk] = (w[v/z][u/x, u1/x1, . . . , uk/xk])v

′
1 . . . v

′
p

= (w[u/x, u1/x1, . . . , uk/xk, v
′/z])v′1 . . . v

′
p (by lemma 1.13)

= (w′[v′/z])v′1 . . . v
′
p (again by lemma 1.13, since z is not free in u, u1, . . . , uk).

Therefore, we have (w′[v′/z])v′1 . . . v
′
p �w (u)t′1 . . . t

′
n.

It follows trivially that (λz w′)v′v′1 . . . v
′
p �w (u)t′1 . . . t

′
n. This gives the result,

because t[u/x, u1/x1, . . . , uk/xk] = (λz w′)v′v′1 . . . v
′
p.

Q.E.D.

We can now prove theorem 4.11. The hypothesis gives :
(t)x1 . . . xk 'β (xi)t1 . . . tn and the variables x1, . . . , xk are not free in t.
By theorem 4.9, the head reduction of (t)x1 . . . xk is finite and gives a λ-term
which is β-equivalent to (xi)t1 . . . tn. In other words :
(t)x1 . . . xk � (xi)t

′
1 . . . t

′
n, with t′j 'β tj (1 ≤ j ≤ n).

We now use lemma 4.12, with the substitution [u1/x1, . . . , uk/xk], and we
obtain (t)u1 . . . uk �w (ui)t

′′
1 . . . t

′′
n with t′′j = t′j[u1/x1, . . . , uk/xk].

Q.E.D.

Theorem 4.13. For every λ-term t, the following conditions are equivalent :
i) t is normalizable ;
ii) t is normalizable by leftmost β-reduction ;
iii) there exist a type A and a context Γ, both containing no occurrence of
the symbol Ω, such that Γ `DΩ t : A ;
iv) there exist a type A with no positive occurrence of Ω, and a context Γ
with no negative occurrence of Ω, such that Γ `DΩ t : A.

Clearly, (ii) ⇒ (i) and (iii) ⇒ (iv). We already know that (iv) ⇒ (ii) : this
is the normalization theorem 3.10.
It remains to prove that (i) ⇒ (iii) :
If t is normalizable, then t 'β t

′ for some normal term t′ ; by proposition 3.24,
there exist a type A and a context Γ, both containing no occurrence of the
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symbol Ω, such that Γ `D t′ : A. It then follows from theorem 4.7 that we
also have Γ `DΩ t : A.

Q.E.D.

Theorem 4.14. A λ-term t is normalizable if and only if it admits no infinite
quasi leftmost reduction.

The condition is obviously sufficient. Conversely, if t is normalizable, then,
by theorem 4.13, there exist a type A and a context Γ, both containing no
occurrence of the symbol Ω, such that Γ `DΩ t : A. Thus, it follows from
the quasi leftmost normalization theorem 3.12 that t admits no infinite quasi
leftmost reduction.

Q.E.D.

With the help of the results above, we can now give yet another proof of the
uniqueness of the normal form (the third, see corollary 4.8) which makes no
use of the Church-Rosser theorem 1.23.

Theorem 4.15. If t is normalizable, then it has only one normal form. In
other words, if t β u, t β u′ and u, u′ are normal, then u = u′.

By theorem 4.13(i)(ii), t is normalizable by leftmost β-reduction. We prove
the theorem by induction on the total length of this reduction (i.e. the total
number of symbols which appear in it).
By proposition 2.2, we have t = λx1 . . . λxk(ξ)t1 . . . tn where ξ is a variable
or a redex.
If ξ is a variable, the leftmost β-reduction of t is exactly the succession of
the leftmost β-reductions of t1, . . . , tn. Therefore, we can apply the induction
hypothesis to t1, . . . , tn and we see that t has only one normal form, which is
λx1 . . . λxk(ξ)t

∗
1 . . . t

∗
n where t∗i is the (unique) normal form of ti.

If ξ = (λxu)v is a redex, the first step of leftmost β-reduction in t gives
t∗∗ = λx1 . . . λxk u[v/x]t1 . . . tn. By the induction hypothesis, t∗∗ has a unique
normal form t∗.
Consider now any β-reduction of t, which gives a normal form. We show that
it gives t∗. Since t = λx1 . . . λxk(λxu)vt1 . . . tn, this reduction begins with
some β-reductions in u, v, t1, . . . , tn, which give λx1 . . . λxk(λxu

′)v′t′1 . . . t
′
n,

with u β u′, v β v′, t1 β t
′
1, . . . , tn β t

′
n. Then, the head redex is reduced, which

gives λx1 . . . λxk u
′[v′/x]t′1 . . . t

′
n. But β-reduction is a λ-compatible relation,

and therefore, we have t∗∗ β λx1 . . . λxk u
′[v′/x]t′1 . . . t

′
n. This shows that this

β-reduction will finally give a normal form of t∗∗, i.e. t∗.

Q.E.D.
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Strong normalization

The next proposition is a generalization of corollary 4.5. It holds for both
systems D and DΩ (in the case of system DΩ, the condition “ t is typable
in the context Γ ” is satisfied anyway, since Γ `DΩ t : Ω).

Proposition 4.16. For all terms u, t, t1, . . . , tn, and any variable x,
if Γ ` (u[t/x])t1 . . . tn : B, and if t is typable in the context Γ, then
Γ ` (λx u)tt1 . . . tn : B.

The proof is by induction on n and, for each fixed n, by induction on the
length of B. The case n = 0 is precisely corollary 4.5.
If B = B1 ∧B2, then(u[t/x])t1 . . . tn may be given both type B1 and type B2

in the context Γ ; by induction hypothesis, the same holds for (λx u)tt1 . . . tn,
which is thus typable in the context Γ, with type B1 ∧B2.
Now we may suppose that B is a prime type and that n ≥ 1.
We have Γ ` u[t/x]t1 . . . tn : B ; it follows from lemma 4.2(iii) that tn is of
type C, and (u[t/x])t1 . . . tn−1 of type C → B′, in the context Γ, B being a
prime factor of B′.
By induction hypothesis, we have Γ ` (λx u)tt1 . . . tn−1 : C → B′. Therefore
(λxu)tt1 . . . tn is of type B′, and hence also of type B, in the context Γ.

Q.E.D.

Theorem 4.17. Every strongly normalizable term is typable in system D.

Consider a strongly normalizable term τ , and let N(τ) be the sum of the
lengths of all possible normalizations of τ (proposition 3.18 ensures the cor-
rectness of this definition). The proof is by induction on N(τ). By proposi-
tion 2.2, we have : τ = λx1 . . . λxm(v)t1 . . . tn, where v is either a variable or
a redex.
If v is a variable, then t1, . . . , tn are strongly normalizable and N(τ) >
N(t1), . . . , N(tn). Thus t1, . . . , tn are typable, with types A1, . . . , An, re-
spectively, in system D ; we may suppose that all these typings are in the
same context Γ (proposition 3.23) and that Γ contains a declaration for each
of the variables x1, . . . , xm, v, say x1 : U1, . . . , xm : Um, v : V (with V = Ui

whenever v = xi).
Let X be a new type variable, V ′ = V ∧ (A1, . . . , An → X), and Γ′ the
context obtained by replacing in Γ the declaration of v with : v : V ′. Then
we have Γ′ `D ti : Ai (1 ≤ i ≤ n), and thus Γ′ `D (v)t1 . . . tn : X ; hence
τ may be given either type U1, . . . , Um → X (if v 6= x1, . . . , xm) or type
U1, . . . , Ui−1, V

′, Ui+1, . . . , Um → X (if v = xi).
If v = (λxu)t (v is a redex), then τ = λx1 . . . λxm(λxu)tt1 . . . tn ;
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let τ ′ = u[t/x]t1 . . . tn. Clearly, N(τ) > N(τ ′) (every normalization of τ ′ is
strictly included in a normalization of τ) ; it is also clear that N(τ) > N(t)
(since t is a subterm of τ). Thus, by induction hypothesis, τ ′ and t are
typable in system D ; moreover, proposition 3.23 allows us to assume that
they are typable in the same context. It then follows from proposition 4.16
that (λx u)tt1 . . . tn is typable, with some type B, in some context Γ : even if
it means extending it, we may assume that Γ contains a declaration for each
of the variables x1, . . . , xm, say x1 : U1, . . . , xm : Um. Finally, τ is seen to be
typable, with type U1, . . . , Um → B.

Q.E.D.

Corollary 4.18. A term is strongly normalizable if and only if it is typable
in system D.

Indeed, by the strong normalization theorem 3.20, every term which is ty-
pable in system D is strongly normalizable.

Remarks.
1. Theorem 4.6 does not hold any more if we replace system DΩ with system D.
For instance, the term t = λy(λx y)(y)y is β-equivalent to λy y, which is of type
Y → Y , where Y is any type variable. Now t may not be given type Y → Y :
Indeed, if `D t : Y → Y , then, by lemma 4.2(ii), we have :
y : Y `D (λx y)(y)y : Y ; therefore, by lemma 4.2(iii), y : Y `D (y)y : A for some
type A ; hence y : Y `D y : B → C (by lemma 4.2(iii)) ; but this is in contradiction
with lemma 4.2(i).
Nevertheless, t is typable ; for example, it may be given type
Y ∧ (Y → X)→ Y ∧ (Y → X).
There is an analogue of theorem 4.6 for system D, which uses βI-reduction instead
of β-reduction (see below theorem 4.21).

2. A normalizable term, of which every proper subterm is strongly normalizable,
need not be strongly normalizable. For instance, the term t = (λx(λy z)(x)δ)δ,
where δ = λx xx, is normalizable (it is β-equivalent to z), but not strongly nor-
malizable (t reduces to (λy z)(δ)δ, and (δ)δ is not normalizable).

βI-reduction

A λ-term of the form (λx t)u will be called a I-redex if x is a free variable of t.
Reducing a I-redex will be called a step of βI-reduction. A finite sequence
of such steps will be called a βI-reduction. The notation t βI t′ means that
t′ is obtained by βI-reduction from t.
We will now prove the following result (Barendregt’s conservation theorem) :

Theorem 4.19. If t′ is strongly normalizable and if t βI t′, then t is strongly
normalizable.
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Lemma 4.20. If Γ `D u[v/x] : A and if x is free in u, then v is typable, in
system D, in the context Γ.

We first observe that the result is trivial if u is a variable : indeed, this vari-
able must be x. Therefore, from now on, we assume that u is not a variable.
We prove the lemma by induction on the length of the proof of the typ-
ing Γ `D u[v/x]:A in system D. Consider the last rule used in this proof
(page 51).
If it is rule 1, u[v/x] is a variable, thus u must also be a variable.
If it is rule 2, then u[v/x] = λy w and we have A = B → C and Γ, y:B ` w:C.
Now, u is not an application (u[v/x] would also be an application) and we
assumed it is not a variable. Therefore, we have u = λy u′ and w = u′[v/x].
Thus Γ, y:B ` u′[v/x]:C is the previous step of the proof. Now, the variable
x is free in u′, since it is free in u. By the induction hypothesis, we see that
v is typable, in system D, in the context Γ, y:B. But y is not free in v and
it follows from proposition 3.14 that v is typable in the context Γ.
If it is rule 3, then u[v/x] = w0w1 and we have :
Γ ` w0:B → A, Γ ` w1:B. Now, u is not an abstraction (u[v/x] would also
be an abstraction) and we assumed it is not a variable. Therefore, we have
u = u0u1 and w0 = u0[v/x], w1 = u1[v/x]. Thus, some previous steps of the
proof are Γ ` u0[v/x]:B → A, Γ ` u1[v/x]:B. But x is free in u = u0u1,
and therefore, it is free in u0 or in u1. We may thus apply the induction
hypothesis, and we see that v is typable, in system D, in the context Γ.
The case of the rules 4 and 5 is trivial.

Q.E.D.

Theorem 4.21. Let t and t′ be two λ-terms such that t βI t′. If Γ `D t′ : A,
then Γ `D t : A.

Remark. This means that the typings in system D are preserved by inverse βI-
reduction. This theorem is close to theorem 4.6, which says that, in system DΩ,
the typings are preserved by inverse β-reduction.

We may assume that t′ is obtained from t by one step of βI-reduction.
The proof is by induction on the length of t and, for each fixed t, by induction
on the length of A. It is exactly the same as for theorem 4.6, except for :

• the very first step : of course, the case A = Ω is not considered.

• the very last step (iii)(c), which is managed as follows :

c) u = λxw, (so t = (λxw)v) and t′ = w[v/x]. Since we have a step of
βI-reduction, the variable x is free in w.
Now, the assumption is : Γ `D w[v/x] : A. By lemma 4.20, v is typable in
the context Γ, in system D. By corollary 4.5, we also have Γ `D (λxw)v : A.

Q.E.D.
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We can now prove theorem 4.19 : if t′ is strongly normalizable, it is typable
in system D (corollary 4.18). By theorem 4.21, t is also typable in system D ;
thus, by corollary 4.18, t is strongly normalizable.

Q.E.D.

Two redexes (λx t)u and (λx′ t′)u′ will be called equivalent if u = u′ and
t[u/x] = t′[u′/x′] (they have identical arguments and reducts). A redex
which is equivalent to a I-redex will be called a I ′-redex.
For example, (λxuv)u is always a I ′-redex, even when x is not free in u, v.
Indeed, in this case, it is equivalent to the I-redex (λxxv)u.
We shall write t βI ′ t′ if t′ is obtained from t by a sequence of reductions of
I ′-redexes.

We can strengthen theorems 4.21 and 4.19 in the following way, with exactly
the same proof :

Theorem 4.22. Let t and t′ be two λ-terms such that t βI ′ t′. If Γ `D t′ : A,
then Γ `D t : A.

Theorem 4.23. If t′ is strongly normalizable and if t βI ′ t′, then t is strongly
normalizable.

The λI-calculus

The terms of the λI-calculus form a subset ΛI of Λ, which is defined as
follows :

• If x is a variable, then x ∈ ΛI .
• If t, u ∈ ΛI , then tu ∈ ΛI .
• If t ∈ ΛI and x is a variable which appears free in t, then λx t ∈ ΛI .

The typical example of a closed λ-term which is not in ΛI is λxλy x.

If t ∈ ΛI , then every subterm of t is in ΛI (trivial proof, by induction on the
length of t).

Proposition 4.24. If t, t1, . . . , tn ∈ ΛI , then t[t1/x1, . . . , tn/xn] ∈ ΛI .

Proof by induction on the length of t : the result is immediate if t is a
variable, or if t = uv, with u, v ∈ ΛI .
If t = λxu, then t[t1/x1, . . . , tn/xn] = λxu[t1/x1, . . . , tn/xn] (we suppose
x 6= x1, . . . , xn). By hypothesis, there is a free occurrence of x in u and
therefore, there is also one in u[t1/x1, . . . , tn/xn]. By induction hypothesis,
we have u[t1/x1, . . . , tn/xn] ∈ ΛI . It follows that λxu[t1/x1, . . . , tn/xn] ∈ ΛI .

Q.E.D.
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Proposition 4.25. ΛI is closed by β-reduction. More precisely, if t ∈ ΛI

and t β t′, then t′ ∈ ΛI and t′ has the same free variables as t.

Suppose t ∈ ΛI and t β0 t
′ ; we show the result by induction on the length

of t ; observe that t cannot be a variable.
If t = λxu, then t′ = λxu′ with u β0 u

′. Since u ∈ ΛI and x is a free variable
of u, by induction hypothesis, u′ has the same properties. It follows that
t′ ∈ ΛI and t′ has the same free variables as t.
If t = uv, we have three possibilities for t′ :

t′ = u′v with u β0 u
′ ; by induction hypothesis, we have u′ ∈ ΛI and u′

has the same free variables as u. Hence, t′ ∈ ΛI and t′ has the same free
variables as t.

t′ = uv′ with v β0 v
′ ; same proof.

u = λxw (so that t = (λxw)v), and t′ = w[v/x] ; we have v, w ∈ ΛI and
therefore, by proposition 4.24, we have t′ ∈ ΛI . Now, let Fv (resp. Fw) the
set of free variables of v (resp. w) ; thus, we have x ∈ Fw. The set of free
variables of t is Fv ∪ (Fw \ {x}). The set of free variables of t′ is the same,
because v is really a subterm of t′ = w[v/x].

Q.E.D.

Theorem 4.26. If t ∈ ΛI is normalizable, then t is strongly normalizable.

We prove first the following lemma on strong normalization :

Lemma 4.27. Let t1, . . . , tn, u, v ∈ Λ be such that u[v/x]t1 . . . tn and v are
strongly normalizable. Then (λxu)vt1 . . . tn is strongly normalizable.

By corollary 4.18, we know that u[v/x]t1 . . . tn and v are typable in system D.
By proposition 3.23, they are typable in the same context. Then, we apply
proposition 4.16, which shows that (λxu)vt1 . . . tn is typable in system D.
Applying again corollary 4.18, we see that (λxu)vt1 . . . tn is strongly normal-
izable.

We can give a more direct proof, which does not use types. Suppose that there
exists an infinite sequence of β-reductions for the λ-term (λxu)vt1 . . . tn.
There are two possible cases :
• Each β-reduction takes place in one of the terms u, v, t1, . . . , tn.

Thus, there is an infinite sequence of β-reductions in one of these terms. But
it cannot be v, which is strongly normalizable ; and it can be neither u, nor
t1, . . . , nor tn, because u[v/x]t1 . . . tn is strongly normalizable.
• The sequence begins with a finite number of β-reductions in the terms

u, v, t1, . . . , tn and then, the head redex is reduced. This gives (λxu′)v′t′1 . . . t
′
n

with u β u′, v β v′, t1 β t
′
1, . . . , tn β t

′
n and then u′[v′/x]t′1 . . . t

′
n. Therefore, this
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term is not strongly normalizable. But β-reduction is a λ-compatible relation,
and it follows that u[v/x]t1 . . . tn β u

′[v′/x]t′1 . . . t
′
n. Therefore, u[v/x]t1 . . . tn

is also not strongly normalizable, which is a contradiction.
Q.E.D.

Now, we prove theorem 4.26 : by theorem 4.13, we know that t is normalizable
by leftmost reduction. We prove the result by induction on the total length
of this leftmost reduction (i.e. the sum of the lengths of the λ-terms which
appear in it).
By proposition 2.2, there are two possibilities for t :

• t = λx1 . . . λxm(y)t1 . . . tn where y is a variable.
Then, we have t1, . . . , tn ∈ ΛI and their leftmost reductions are stricly shorter
than the one of t. By induction hypothesis, they are all strongly normalizable,
and so is t.

• t = λx1 . . . λxm(λxu)vt1 . . . tn ; we have to show that (λxu)vt1 . . . tn is
strongly normalizable. By lemma 4.27, it suffices to show that u[v/x]t1 . . . tn
and v are strongly normalizable. Now, u[v/x]t1 . . . tn is obtained by β-
reduction from (λxu)vt1 . . . tn ∈ ΛI . Thus, u[v/x]t1 . . . tn ∈ ΛI (proposi-
tion 4.25). It is clear that its leftmost reduction is strictly shorter than the
one of t = λx1 . . . λxm(λxu)vt1 . . . tn. Thus, by induction hypothesis, we see
that u[v/x]t1 . . . tn is strongly normalizable. But λxu ∈ ΛI , because it is a
subterm of t ; thus, x is a free variable of u. It follows that v is a subterm of
u[v/x]t1 . . . tn, and therefore v is also strongly normalizable.

Q.E.D.

There is a short proof of theorem 4.26, by means of the above results on
βI-reduction : suppose that t ∈ ΛI is normalizable and let t′ be its normal
form. Thus, t′ is typable in sytem D (proposition 3.24). But we have t βI t′,
since the reduction of t takes place in ΛI . Therefore, by theorem 4.21, t is
typable in sytem D and thus, t is strongly normalizable (theorem 3.20).

Q.E.D.

βη-reduction

LetX1, . . . , Xk be distinct type variables, A a type, Γ a context, and U1, . . . Uk

arbitrary types. The type (resp. the context) obtained by replacing, in A
(resp. in Γ), each occurrence of Xi by Ui (1 ≤ i ≤ k) will be denoted by :
A[U1/X1, . . . , Uk/Xk] (resp. Γ[U1/X1, . . . , Uk/Xk]).

The next two propositions hold for both systems D and DΩ.

Proposition 4.28.
If Γ ` t : A, then Γ[U1/X1, . . . , Uk/Xk] ` t : A[U1/X1, . . . , Uk/Xk].



Chapter 4. Normalization and standardization 75

Immediate, by induction on the number of rules used to obtain Γ ` t : A.
Q.E.D.

Proposition 4.29. Suppose t η0 t
′ and Γ ` t′ : A, and let X1, . . . , Xk be the

type variables which occur either in Γ or in A.Then :
Γ[U1/X1, . . . , Uk/Xk] ` t : A[U1/X1, . . . , Uk/Xk] for all types U1, . . . , Uk of
the form V → W .

Recall that t η0 t
′ means that t′ is obtained from t by one η-reduction.

The proof of the proposition is by induction on the length of t and, for a
given t, by induction on the length of A.
If A = Ω, the result is trivial.
If A = A1 ∧ A2, then Γ ` t′ : A1, Γ ` t′ : A2. By induction hypothesis, we
have Γ[U1/X1, . . . , Uk/Xk] ` t : Ai[U1/X1, . . . , Uk/Xk](i = 1, 2) ; therefore,
by rule 5, Γ[U1/X1, . . . , Uk/Xk] ` t : A[U1/X1, . . . , Uk/Xk].

So we now may suppose that A is a prime type. The three possible situations
for t are :

i) t is a variable : this is impossible since t η0 t
′.

ii) t = λxu ; then we have two possible cases for t′ :
a) t′ = λxu′, with u η0 u

′. Since Γ ` t′ : A (prime type), it follows from
lemma 4.2(ii) that A = B → C, and Γ, x : B ` u′ : C. By induction
hypothesis :
Γ[U1/X1, . . . , Uk/Xk], x : B[U1/X1, . . . , Uk/Xk] ` u : C[U1/X1, . . . , Uk/Xk]
for all types Ui of the form V → W . Thus t is of type :
B[U1/X1, . . . , Uk/Xk]→ C[U1/X1, . . . , Uk/Xk] = A[U1/X1, . . . , Uk/Xk]
in the context Γ[U1/X1, . . . , Uk/Xk].

b) t = λx t′x, and x does not occur free in t′. By assumption, we have
Γ ` t′ : A, A being a prime type. According to the definition of prime types,
we have two cases :

If A = B → C, then, x : B ` t′x : C ; hence Γ ` λx t′x : B → C, in other
words Γ ` t : A ; by proposition 4.28, we have :
Γ[U1/X1, . . . , Uk/Xk] ` t : A[U1/X1, . . . , Uk/Xk].

If A is a type variable Xi, then Γ ` t′ : Xi ; therefore, by proposition 4.28,
we have Γ[U1/X1, . . . , Uk/Xk] ` t′ : Ui. Now, by assumption, Ui = V → W .
It then follows that Γ[U1/X1, . . . , Uk/Xk], x : V ` t′x : W and, consequently,
Γ[U1/X1, . . . , Uk/Xk] ` λx t′x : Ui, that is to say
Γ[U1/X1, . . . , Uk/Xk] ` t : Ui.

iii) t = uv ; again, we have two possible cases for t′ :
a) t′ = uv′, with v η0 v

′ ; since uv′ is of prime type A in the context Γ, it
follows from lemma 4.2(iii) that v′ is of type B and u of type B → A′ in the
context Γ, A being a prime factor of A′. By induction hypothesis :
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Γ[U1/X1, . . . , Uk/Xk] ` v : B[U1/X1, . . . , Uk/Xk] for all types Ui of the form
V → W .
By proposition 4.28, we have :
Γ[U1/X1, . . . , Uk/Xk] ` u : B[U1/X1, . . . , Uk/Xk] → A′[U1/X1, . . . , Uk/Xk].
Thus t = uv is of type A′[U1/X1, . . . , Uk/Xk] in the context
Γ[U1/X1, . . . , Uk/Xk], and hence is also of type A[U1/X1, . . . , Uk/Xk].

b) t = u′v, with u η0 u
′ ; the proof is the same as in case (a).

Q.E.D.

Theorem 4.30. A λ-term is βη-normalizable if and only if it is normalizable.

Necessity : let t be a βη-normalizable term ; we prove that t is normalizable,
by induction on the length of its βη-normalization. Consider the first βη-
reduction done in t : it produces a term t′, which is normalizable (induction
hypothesis). If it is a β-reduction, then t β0 t

′, thus t is also normalizable. If it
is an η-reduction, then t η0 t

′ ; since t′ is normalizable (induction hypothesis),
we have Γ `DΩ t′ : A, where both A and Γ contain no occurrence of the
symbol Ω (theorem 4.13). By proposition 4.29, there exist a type A′ and a
context Γ′, with no occurrence of Ω, such that Γ′ `DΩ t : A′ ; it then follows
from theorem 4.13 that t is normalizable.
Sufficiency : if t is normalizable, then t β t′ for some normal term t′ ; consider
a maximal sequence of η-reductions starting with t′ (such a sequence needs to
be finite, since the length of terms strictly decreases under η-reduction) : it
produces a term which is still normal (lemma 3.27) and contains no η-redex,
in other words a βη-normal term.

Q.E.D.

We can now give an alternative proof of the uniqueness of the βη-normal
form :

Theorem 4.31. If t ∈ Λ is βη-normalizable, then it has only one βη-normal
form. More precisely, there exists a βη-normal term u such that, if t βη t′ for
some t′, then t′βη u.

Remark. This is exactly the Church-Rosser property for t.

By theorem 4.30, t is normalizable ; by theorem 4.13(i)(iii), there exist a
type A and a context Γ, both containing no occurrence of the symbol Ω, such
that Γ `DΩ t : A. Then the result follows immediately from theorem 3.13.

Q.E.D.

Theorem 4.32. A λ-term t is solvable if, and only if there exists a head
normal form u such that t βη u.



Chapter 4. Normalization and standardization 77

If t is solvable, then t β u for some head normal form u and, therefore, t βη u.
Conversely, suppose that t βη u, u being a head normal form. Then, there
exists a sequence t0, t1, . . . , tn such that t0 = t, tn is solvable and, for each
i = 0, . . . , n we have ti β ti+1 or ti η0 ti+1.
We show that t is solvable by induction on n. This is trivial if n = 0. If
n ≥ 1, then t1 is solvable, by induction hypothesis and there are two cases :

i) t0 β t1 ; then t = t0 is solvable.
ii) t0 η0 t1 ; since t1 is solvable, by theorem 4.9(i)(iv), it is typable with

a non-trivial type in system DΩ. By proposition 4.29, t = t0 has the same
property ; it is therefore solvable, again by theorem 4.9(i)(iv).

Q.E.D.

2. The finite developments theorem

Remark. Until the end of this chapter, we shall only use the Church-Rosser
theorem 1.23 and the strong normalization theorem 3.20.

Let t ∈ Λ ; recall that a redex in t is, by definition, an occurrence, in t, of a
subterm of the form (λxu)v. In other words, a redex is defined by a subterm
of the form (λxu)v, together with its position in t. So we clearly have the
following inductive definition for the redexes of a term t :

if t is a variable, then there is no redex in t ;
if t = λxu, the redexes in t are those in u ;
if t = uv, the redexes in t are those in u, those in v, and, if u starts with

λ, t itself.

We add to the λ-calculus a new variable, denoted by c, and we define Λ(c)
as the least set of terms satisfying the following rules :

1. If x is a variable 6= c, then x ∈ Λ(c) ;
2. If x is a variable 6= c, and if t ∈ Λ(c), then λx t ∈ Λ(c) ;
3. If t, u ∈ Λ(c), then (c)tu ∈ Λ(c) ;
4. If t, u ∈ Λ(c), and if t starts with λ, then tu ∈ Λ(c).

Lemma 4.33. If t, u ∈ Λ(c), and if x is a variable 6= c, then u[t/x] ∈ Λ(c).

The proof is by induction on u. The result is obvious whenever u is a vari-
able 6= c, or u = λy v, or u = (c)vw. If u = (λy v)w, then u[t/x] =
(λy v[t/x])w[t/x]. By induction hypothesis, v[t/x], w[t/x] ∈ Λ(c), and there-
fore u[t/x] ∈ Λ(c).

Q.E.D.

Lemma 4.34. If t ∈ Λ(c) and t β0 t
′, then t′ ∈ Λ(c).
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By induction on t. If t = λxu, then t′ = λxu′, with u β0 u
′ ; then the

conclusion follows from the induction hypothesis.
If t = (c)uv, then t′ = (c)u′v or (c)uv′, with u β0 u

′ or v β0 v
′. By induction

hypothesis, u′, v′ ∈ Λ(c), and therefore t′ ∈ Λ(c).
If t = (λxu)v, there are three possibilities for t′ :

t′ = (λxu′)v, or (λxu)v′, with u β0 u
′ or v β0 v

′. By induction hypothesis,
u′, v′ ∈ Λ(c), and then t′ ∈ Λ(c).

t′ = u[v/x] ; then t′ ∈ Λ(c) by lemma 4.33.
Q.E.D.

We see that Λ(c) is invariant under β-reduction (if t ∈ Λ(c) and t β t′, then
t′ ∈ Λ(c)).

Lemma 4.35. Let t ∈ Λ(c), and Γ be any context in which all the variables
of t, except c, are declared. Then there exist two types C, T of system D such
that Γ, c : C `D t : T .

Proof by induction on t : this is obvious when t is a variable 6= c.
If t = λxu, we can assume that the variable x is not declared in Γ (otherwise,
we change the name of this variable in t). By induction hypothesis, we have
Γ, x : A, c : C ` u : U , and therefore Γ, c : C ` λxu : A→ U .
If t = (c)uv, with u, v ∈ Λ(c), then, by induction hypothesis :
Γ, c : C ` u : U , and Γ, c : C ′ ` v : V . Hence :
Γ, c : C ∧ C ′ ∧ (U, V → W ) ` (c)uv : W .
If t = (λxu)v, with u, v ∈ Λ(c), we may assume that the variable x is not
declared in Γ (otherwise, we change the name of this variable in λxu). By
induction hypothesis :
Γ, x : A, c : C ` u : U , and Γ, c : C ′ ` v : V ; but here A is an arbitrary
type, so we can take A = V . Then Γ, c : C ` λxu : V → U , and therefore
Γ, c : C ∧ C ′ ` (λxu)v : U .

Q.E.D.

Corollary 4.36. Every term in Λ(c) is strongly normalizable.

This is immediate, according to the strong normalization theorem 3.20.
Q.E.D.

We define a mapping from Λ(c) onto Λ, denoted by T 7→ |T |, by induction
on T :

if T is a variable 6= c, then |T | = T ;
if T = λxU , with U ∈ Λ(c), then |T | = λx|U | ;
if T = (c)UV , with U, V ∈ Λ(c), then |T | = (|U |)|V | ;
if T = (λxU)V , with U, V ∈ Λ(c), then |T | = (λx|U |)|V | ;

Roughly speaking, one obtains |T | by “ forgetting ” c in T .
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Let T ∈ Λ(c) and t = |T | ; there is an obvious way of associating, with each
redex R in T , a redex r = |R| in t, called the image of R. Distinct redexes in
T have distinct images in t ; this property, like the next ones, is immediate,
by induction on T :
If T, U ∈ Λ(c), and |T | = t, |U | = u, then |T [U/x]| = t[u/x].
Let T ∈ Λ(c), R be a redex in T , T ′ the term obtained by contracting R in
T , t = |T |, r = |R|, and t′ = |T ′| ; then t′ is the term obtained by contracting
the redex r in t.

Lemma 4.37. Let t ∈ Λ and R be a set of redexes of t. Then there exists a
unique term T ∈ Λ(c) such that t = |T | and R is the set of all images of the
redexes of T .

This term T will be called the representative of (t,R). So we have a one-
to-one correspondence between Λ(c) and the set of ordered pairs (t,R) such
that t ∈ Λ and R is a set of redexes of t.

We define T by induction on t. If t is a variable, then R = ∅ ; the only way
of obtaining a term T ∈ Λ(c) such that |T | is a variable is to use rule 1 in
the inductive definition of Λ(c) given above. Thus T = t.
If t = λxu, then R is a set of redexes of u. Only rule 2 can produce a
term T such that |T | starts with λ. So T = λxU , and U needs to be the
representative of (u,R).
If t = t1t2, let R1 (resp. R2) be the subset of R consisting of those redexes
which occur in t1 (resp. t2). T is obtained by rule 3 or rule 4, thus either
T = (c)T1T2, or T = T1T2, Ti being the representative of (ti,Ri).
If t itself is not a member of R, then T cannot be obtained by rule 4 ;
otherwise T would be a redex, and its image t would be in R. Thus T =
(c)T1T2.
If t is a member of R, then T needs to be a redex, so T cannot be obtained
by rule 3, and therefore T = T1T2.

Q.E.D.

Intuitively, the representative of (t,R) is obtained by using the variable c to
“ destroy ” those redexes of t which are not in R, and to “ neutralize ” the
applications in such a way that they cannot be transformed in redexes via
β-reduction.

Let t ∈ Λ, R be a set of redexes of t, r0 a redex of t, and t′ the term obtained
by contracting r0 in t. We define a set R′ of redexes of t′ called residues of
R relative to r0 : let S = R∪ {r0}, T be the representative of (t,S), R0 the
redex of T of which r0 is the image, and T ′ the term obtained by contracting
R0 in T ; so we have t′ = |T ′|. Then R′ is, by definition, the set of images in
t′ of the redexes of T ′.
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Remark. The set of residues of R relative to r0 does not only depend on t and t′,
but also on the redex r0. For example, take t = (λx x)(λx x)x, t′ = (λx x)x, r0 = t

and r1 = t′ : clearly, t′ is obtained by contracting either the redex r0 or the redex
r1 in t ; but {r0} has a residue relative to r1, while it has no residue relative to r0.

Let t ∈ Λ ; a reduction B starting with t consists, by definition, of a finite
sequence of terms (t0 = t), t1, . . . , tn, together with a sequence of redexes
r0, r1, . . . , rn−1, such that each ri is a redex of ti, and ti+1 is obtained by
contracting the redex ri in the term ti(0 ≤ i < n). The term tn is called the
result of the reduction B. We shall also say that the reduction B leads from
t to tn.
Now let R be a set of redexes of t. We define the set of residues of R in tn,
relative to the reduction B, by induction on n : we just gave the definition
for the case n = 1 ; suppose n > 1, and let Rn−1 be the set of residues of
R in tn−1 relative to B ; then the residues of R in tn relative to B are the
residues of Rn−1 in tn relative to rn−1.

Let t ∈ Λ and R be a set of redexes of t. A development of (t,R) is, by
definition, a reduction D starting with t such that its redexes r0, r1, . . . , rn−1

satisfy the following conditions : r0 ∈ R, and ri is a residue of R relative
to the reduction r0, r1, . . . , ri−1(0 < i < n). The development is said to be
complete provided that R has no residue in tn relative to the reduction D.

The main purpose of the next theorem is to prove that the lengths of the
developments of a set of redexes are bounded.

Theorem 4.38 (Finite developments theorem). Let t ∈ Λ, and R be a set
of redexes of t. Then :
i) There exists an integer N such that the length of every development of
(t,R) is ≤ N .
ii) Every development of (t,R) can be extended to a complete development.
iii) All complete developments of (t,R) have the same result.

Let D be a development of (t,R), (t0 = t), t1, . . . , tn its sequence of terms,
r0, r1, . . . , rn−1 its sequence of redexes,Ri the set of residues ofR in ti relative
to the β-reduction r0, . . . , ri−1(1 ≤ i ≤ n), and R0 = R. We have r0 ∈ R0,
each ti (1 ≤ i ≤ n) is obtained by contracting the redex ri−1 in ti−1, and
ri ∈ Ri. Therefore Ri is the set of residues of Ri−1 relative to ri−1.
Let T ∈ Λ(c) be the representative of (t,R) and Ti ∈ Λ(c) (0 ≤ i ≤ n) the
representative of (ti,Ri) (T0 = T ). Since ri ∈ Ri, ri is the image of a redex
Ri in Ti. Let Ui+1 ∈ Λ(c) (0 ≤ i ≤ n−1) be the term obtained by contracting
the redex Ri in Ti. Then |Ui+1| = ti+1 (the term obtained by contracting the
redex ri in ti). The set of all images of the redexes of Ui+1 is therefore the set
of residues of Ri in ti+1 relative to ri (by definition of this set of residues),
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that is to say Ri+1. Consequently, Ui+1 is the representative of (ti+1,Ri+1),
and therefore Ui+1 = Ti+1. So we have proved that the sequence of terms
(T0 = T ), T1, . . . , Tn and the sequence of redexes R0, R1, . . . , Rn−1 form a
reduction B(D) of T .

Clearly, the mapping D → B(D) is a one-to-one correspondence between the
developments of (t,R) and the reductions of its representative T . In partic-
ular, the length of any development of (t,R) is that of some reduction of T .
Thus it is ≤ N , where N is the maximum of the lengths of the reductions
of T (T ∈ Λ(c) is strongly normalizable). Moreover, every reduction of T
can be extended to a reduction which reaches the normal form of T . Because
of the correspondence defined above, this implies that every development of
(t,R) can be extended to a development in which the last term contains no
residue of R, in other words to a complete development.

Finally, if (t0 = t), t1, . . . tn is a complete development of (t,R), and if (T0 =
T ), T1, . . . , Tn is the corresponding reduction of T , then Tn is the normal form
of T ; therefore, tn = |Tn| does not depend on the development.

Q.E.D.

3. The standardization theorem

Let t be a λ-term. Any redex of t which is not the head redex will be
called an internal redex of t. An internal reduction (resp. head reduction) is,
by definition, a sequence t1, . . . , tn of λ-terms such that ti+1 is obtained by
contracting an internal redex (resp. the head redex) of ti.

A standard reduction consists of a head reduction followed by an internal one.

Theorem 4.39 (Standardization theorem). If t β t′, then there is a standard
reduction leading from t to t′.

Let t be a λ-term, R a set of redexes of t, and NR the sum of the lengths of
all complete developments of (t,R). Consider the result u of any complete

development of (t,R) ; we shall write t
R−→ u. The finite developments

theorem ensures that NR and u are uniquely determined (if R = ∅, then
NR = 0 and u ≡ t).

We shall say that the set R is internal if all the members of R are internal
redexes of t.

Lemma 4.40. Let r be an internal redex of t, and t′ the term obtained by
contracting r. If t′ has a head redex, then this is the only residue, relative
to r, of the head redex of t.
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The term t cannot be a head normal form, otherwise t′ would also be one.
So we have t ≡ λx1 . . . λxm(λy u)vt1 . . . tn. The result of the contraction of
the redex r is the term : t′ ≡ λx1 . . . λxm(λy u′)v′t′1 . . . t

′
n, and the head redex

of t′ can be seen to be the only residue (relative to r) of the head redex of t.
Q.E.D.

Corollary 4.41. Let R be an internal set of redexes of t. Then every de-
velopment of (t,R) is an internal reduction of t ; if t′ is the result of a
development of (t,R), then the head redex of t′ (if there is one) is the only
residue of the head redex of t.

By lemma 4.40, every residue of an internal redex of t relative to an internal
redex of t is an internal redex ; this proves the first part of the corollary. For
the second one, it is enough to apply repeatedly the same lemma.

Q.E.D.

We shall call head reduced image of a term t any term obtained from t by
head reduction.

Theorem 4.42. Consider a sequence t0, t1, . . . , tn of λ-terms, and, for each

i, a set Ri of redexes of ti, such that : t0
R0−→ t1

R1−→ t2 · · · tn−1
Rn−1−→ tn.

Then there exist a sequence u0, u1, . . . , un of terms, and, for each i, a set Si

of internal redexes of ui, such that : u0
S0−→ u1

S1−→ u2 · · · un−1
Sn−1−→ un, u0 is

a head reduced image of t0, and un ≡ tn.

The proof is by induction on the n-tuple (NRn−1 , . . . , NR0), with the lexico-
graphical order on the n-tuples of integers. The result is obvious if all the
Ri’s are internal. Otherwise, consider the least integer k such that tk has a
head redex, which is in Rk.
If k = 0, then t0 has a head redex ρ, which is in R0. Let t′0 be the term
obtained by contracting the redex ρ, and R′0 the set of residues of R0 relative

to ρ. We have t0
R0−→ t1, and therefore t′0

R′
0−→ t1. Moreover, it is clear

that NR′
0
< NR0 . Thus we obtain the expected conclusion by applying the

induction hypothesis to the sequence : t′0
R′

0−→ t1
R1−→ t2 · · · tn−1

Rn−1−→ tn.

Now suppose k > 0, and let ρk be the head redex of tk, t
′
k the term obtained

by contracting that redex, and R′k the set of residues of Rk relative to ρk.

Since ρk ∈ Rk, and tk
Rk−→ tk+1, we clearly have NR′

k
< NRk

and t′k
R′

k−→ t′k+1.

On the other hand, Rk−1 is an internal set of redexes of tk−1, so by the
previous corollary there is an internal reduction which leads from tk−1 to tk.
Thus tk−1 has a head redex, which we denote by ρk−1. Now let R′k−1 =
Rk−1∪{ρk−1} ; the result of a complete development of tk−1 relative to R′k−1
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can be obtained by taking the result tk of a complete development of tk−1

relative to Rk−1, then the result of a complete development of tk relative
to the set of residues of ρk−1 relative to Rk−1. But there is only one such
residue, namely the head redex of tk. So the result is t′k, and therefore we

have : t0
R0−→ t1 · · · tk−1

R′
k−1−→ t′k

R′
k−→ tk+1 · · · tn−1

Rn−1−→ tn.

This yields the conclusion, since the induction hypothesis applies ; indeed,
we have :
(NRn−1 , . . . , NRk+1

, NR′
k
, NR′

k−1
, . . . , NR0)

< (NRn−1 , . . . , NRk+1
, NRk

, NRk−1
, . . . , NR0),

since NR′
k
< NRk

.
Q.E.D.

Now we are able to complete the proof of the standardization theorem :
consider a reduction (t0 = t), t1, . . . , tn−1, (tn = t′) which leads from t to t′.
One obtains ti+1 from ti by contracting a redex ri of ti, that is by a complete
development of the set Ri = {ri}. Thus, by theorem 4.42, there exists a

sequence u0
S0−→ u1

S1−→ u2 · · · un−1
Sn−1−→ un such that u0 is a head reduced

image of t0, un ≡ tn and Si is an internal set of redexes of ui. Hence there
is an internal reduction which leads from u0 to tn and therefore, there is a
standard reduction which leads from t0 to tn.

Q.E.D.

As a consequence, we obtain an alternative proof of part of theorem 4.9 :

Corollary 4.43. A λ-term is β-equivalent to a head normal form if and only
if its head reduction is finite.

If t is β-equivalent to a head normal form, then, by the Church-Rosser the-
orem, we have t β u, where u is a head normal form. By the standardization
theorem, there exists a head reduced image of t, say t′, such that some in-
ternal reduction leads from t′ to u. If t′ has a head redex, then also u has a
head redex (an internal reduction does not destroy the head redex) : this is
a contradiction. Thus the head reduction of t ends with t′.
The converse is obvious.

Q.E.D.

Corollary 4.44. If t 'β λxu, then there exists a head reduced image of t of
the form λx v.

Indeed, by the Church-Rosser theorem, we have t β λx u′. By the standard-
ization theorem, there exists a head reduced image t′ of t, such that some
internal reduction leads from t′ to λxu′. Now an internal reduction cannot
introduce an occurrence of λ in a head position. Therefore t′ starts with λ.

Q.E.D.
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A term t is said to be of order 0 if no term starting with λ is β-equivalent
to t. Therefore, corollary 4.44 can be restated this way : a term t is of order 0
if and only if no head reduced image of t starts with λ.

Remark.
The standardization theorem is very easy to prove with the hypothesis that the
head reduction of t is finite or, more generally, that there exists an upper bound
for the lengths of those head reductions of t which lead to a term which can be
reduced to t′.
Indeed, in such a case, it is enough to consider, among all the reductions which
lead from t to t′, any of those starting with a head reduction of maximal length,
say (t0 = t), t1, . . . , tk. The proof of the theorem will be completed if we show that
all the reductions which lead from tk to t′ are internal.
This is obvious if tk is a head normal form.
Now suppose that tk = λx1 . . . λxm(λx u)vv1 . . . vn and consider a reduction,
leading from tk to t′, which is not internal ; it cannot start with a head reduction
(otherwise we would have a reduction, leading from t to t′, starting with a head
reduction of length > k). Consequently, it starts with an internal reduction, which
leads from tk = λx1 . . . λxm(λx u)vv1 . . . vn to λx1 . . . λxm(λx u′)v′v′1 . . . v′n (with
u β u′, v β v′, vi β v′i). This internal reduction is followed by at least one step of
head reduction, which leads to λx1 . . . λxm u′[v′/x]v′1 . . . v′n. Now this term can be
obtained from tk by the following path : first one step of head reduction, which
gives λx1 . . . λxm u[v/x]v1 . . . vn ; then a β-reduction applied to u, v, v1, . . . , vn,
which leads to λx1 . . . λxm u′[v′/x]v′1 . . . v′n. Since λx1 . . . λxm u′[v′/x]v′1 . . . v′n β t′,
what we have obtained is a reduction which leads from tk to t′ and starts with a
head reduction : this is impossible.

Q.E.D.

The standardization theorem is usually stated in a (slightly) stronger form.
First, we define the rank of a redex ρ in a λ-term t, by induction on the
length of t.
If t = λxu, then ρ is a redex of u ; the rank of ρ in t is the same as in u.
If t = (u)v then either ρ = t, or ρ is a redex of u, or ρ is a redex of v ;
if ρ = t, then the rank of ρ in t is 0 ;
if ρ is in u, then its rank in t is the same as in u ;
if ρ is in v, then its rank in t is its rank in v plus the number of redexes in u.
Remark. The rank describes the order of redexes in t, from left to right (the
position of a redex is given by the position of its leading λ).

Consider a reduction t0, . . . , tk and let ni be the rank, in ti, of the redex ρi

which is reduced at this step. The reduction will be called strongly standard
if we have n0 ≤ n1 ≤ . . . ≤ nk−1.

Remark. A strongly standard reduction is clearly a standard one. Indeed, if
there is a head redex, then its rank is 0.
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Theorem 4.45 (Standardization theorem, 2nd form). If t β t′, then there is
a strongly standard reduction leading from t to t′.

The proof is by induction on the length of t′. By theorem 4.39, we consider
a standard reduction from t to t′. This standard reduction begins with a
head reduction from t to u, which is followed by an internal reduction from u
to t′. By proposition 2.2, we have u = λx1 . . . λxk(ρ)u1 . . . un where ρ is a
redex or a variable ; therefore, we have t′ = λx1 . . . λxk(ρ

′)u′1 . . . u
′
n, with

ρ β ρ′, u1 β u
′
1, . . . , un β u

′
n. Then, there are two possibilities :

i) If ρ = (λx v)w is a redex, then ρ′ = (λx v′)w′ (because the reduction from
u to t′ is internal) and we have v β v′, w β w′.
By induction hypothesis, there are strongly standard reductions leading from
v to v′, w to w′, u1 to u′1, . . . , un to u′n. By putting these reductions in
sequence, we get a strongly standard reduction from u to t′ ; and therefore,
also a strongly standard reduction from t to t′.

ii) If ρ is a variable, then ρ = ρ′ and we have u1 β u
′
1, . . . , un β u

′
n. The end

of the proof is the same as in case (i).
Q.E.D.

References for chapter 4

[Bar83], [Bar84], [Cop78], [Hin86], [Mit79], [Pot80].
(The references are in the bibliography at the end of the book).
The proof given above of the finite developments theorem was communicated
to me by M. Parigot.
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Chapter 5

The Böhm theorem

Let αn = λz1 . . . λznλz(z)z1 . . . zn for every n ≥ 0 (in particular, α0 = λz z) ;
αn is the “ applicator ” of order n (it applies an n-ary function to its argu-
ments).
Propositions 5.1 and 5.8 show that, in some weak sense, applicators behaves
like variables with respect to normal terms.

Proposition 5.1. Let t be a normal λ-term and x1, . . . , xk variables ; then
t[αn1/x1, . . . , αnk

/xk] is normalizable provided that n1, . . . , nk ∈ N are large
enough.

The proof is by induction on the length of t. If t is a variable, then the result
is clear, since αn is normal.

If t = λy u, then t[αn1/x1, . . . , αnk
/xk] = λy u[αn1/x1, . . . , αnk

/xk] ; by
induction hypothesis, u[αn1/x1, . . . , αnk

/xk] is normalizable provided that
n1, . . . , nk are large enough, thus so is t[αn1/x1, . . . , αnk

/xk].

Now we can assume that t does not start with λ. Since t is normal, by propo-
sition 2.2, we have t = (y)t1 . . . tp, where y is a variable. Now ti is shorter
than t, so ti[αn1/x1, . . . , αnk

/xk] is normalizable provided that n1, . . . , nk are
large enough. Let ui be its normal form.

If y /∈ {x1, . . . xk}, then t[αn1/x1, . . . , αnk
/xk] 'β (y)u1 . . . up, which is a

normal form.

If y ∈ {x1, . . . xk}, say y = x1, then :

t[αn1/x1, . . . , αnk
/xk] 'β (αn1)u1 . . . up

'β (λx1 . . . λxn1λx(x)x1 . . . xn1)u1 . . . up ;
if n1 ≥ p, this term becomes, after β-conversion :

λxp+1 . . . λxn1λx(x)u1 . . . upxp+1 . . . xn1

which is in normal form.

Q.E.D.

87
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Remark. In proposition 5.1, the condition “ provided that n1, . . . , nk are large
enough ” is indispensable : if δ = λy(y)y and t = (x)δδ, then t[α0/x] is not
normalizable.

The main result in this chapter is the following theorem, due to C. Böhm :

Theorem 5.2. Let t, t′ be two closed normal λ-terms, which are not βη-equi-
valent ; then there exist closed λ-terms t1, . . . , tk such that :

(t)t1 . . . tk 'β 0, and (t′)t1 . . . tk 'β 1.

Recall that, by definition, 0 = λxλy y and 1 = λxλy x.

Corollary 5.3. Let t, t′ be two closed normal λ-terms, which are not βη-
equivalent, and v, v′ two arbitrary λ-terms. Then there exist λ-terms t1, . . . , tk
such that (t)t1 . . . tk 'β v and (t′)t1 . . . tk 'β v

′.

Indeed, by theorem 5.2, we have (t)t1 . . . tk 'β 0 and (t′)t1 . . . tk 'β 1 ; thus
(t)t1 . . . tkv

′v 'β v and (t′)t1 . . . tkv
′v 'β v

′.

Q.E.D.

The following corollary shows that the βη-equivalence is maximal, among the
λ-compatible equivalence relations on Λ which contain the β-equivalence.

Corollary 5.4. Let ' be an equivalence relation on Λ, containing 'β, such
that : t ' t′ ⇒ (t)u ' (t′)u and λx t ' λx t′, for every term t, t′, u and every
variable x. If there exist two normalizable non βη-equivalent terms t0, t

′
0 such

that t0 ' t′0, then v ' v′ for all terms v, v′.

Indeed, let x1, . . . , xk be the free variables of t0, t
′
0, let t = λx1 . . . λxkt0 and

t′ = λx1 . . . λxkt
′
0. Then t ' t′ and t is not βη-equivalent to t′. Thus, by

corollary 5.3, we have (t)t1 . . . tk 'β v and (t′)t1 . . . tk 'β v
′ ; therefore v ' v′.

Q.E.D.

We will call Böhm transformation any function from Λ into Λ, obtained by
composing “ elementary ” functions of the form : t 7→ (t)u0 or t 7→ t[u0/x]
(where u0 and x are given term and variable).

The function t 7→ (t)u0, from Λ to Λ, will be denoted by Bu0 .

The function t 7→ t[u0/x] will be denoted by Bu0,x.

Note that every Böhm transformation F is compatible with both β- and
βη-equivalence : t 'β t

′ ⇒ F (t) 'β F (t′) and t 'βη t
′ ⇒ F (t) 'βη F (t′).

Lemma 5.5. For every Böhm transformation F , there exist terms t1, . . . , tk
such that F (t) = (t)t1 . . . tk for every closed term t.
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Immediate proof, by induction on the number of elementary functions of
which F is the composite. Indeed, if F (t) is in the indicated form, then so
are (F (t))u0 and (F (t))[u0/x] : the former is (t)t1 . . . tku0, and the latter
(t)t′1 . . . t

′
k, where t′i = ti[u0/x], since t is closed.

Q.E.D.

Theorem 5.6. Let x1, . . . , xk be distinct variables and t, t′ be two normal
non-βη-equivalent terms. Then, for all distinct integers n1, . . . , nk, provided
that they are large enough, there exists a Böhm transformation F such that :
F (t[αn1/x1, . . . , αnk

/xk]) 'β 0 and F (t′[αn1/x1, . . . , αnk
/xk]) 'β 1.

Theorem 5.2 is an immediate consequence of theorem 5.6 : indeed, if t is a
closed term, and F a Böhm transformation, then, by lemma 5.5, we have
F (t) = (t)t1 . . . tn, where t1, . . . , tn depend only on F . By applying theo-
rem 5.6, we therefore obtain (t)t1 . . . tn 'β 0, and (t′)t1 . . . tn 'β 1. We
may suppose that t1, . . . , tn are closed terms (in case they have free variables
x1, . . . , xp, replace ti by ti[a1/x1, . . . , ap/xp], where a1, . . . , ap are fixed closed
terms, for instance 0).

We also deduce :

Corollary 5.7. Let ' be an equivalence relation on Λ, containing 'β, such
that t ' t′ ⇒ (t)u ' (t′)u and t[u/x] ' t′[u/x] for every term t, t′, u and
every variable x. If there exist two normalizable non-βη-equivalent terms
t0, t

′
0 such that t0 ' t′0, then t ' t′ for all terms t, t′.

By theorem 5.6 (where we take k = 0), there exists a Böhm transformation F
such that F (t0) 'β 0, and F (t′0) 'β 1. Thus it follows from the assumptions
about relation ' that t0 ' t′0 ⇒ F (t0) ' F (t′0). Therefore 0 ' 1, and hence
(0)t′t ' (1)t′t, that is t ' t′.
Q.E.D.

Proposition 5.8. Let x1, . . . , xk be distinct variables and t, t′ be two normal
non-βη-equivalent terms. Then, for all distinct integers n1, . . . , nk, provided
that they are large enough, the terms :
t[αn1/x1, . . . , αnk

/xk] and t′[αn1/x1, . . . , αnk
/xk] are not βη-equivalent.

Immediate from theorem 5.6.
Q.E.D.

Corollary 5.9. Let t, t′ be two normalizable terms :
i) if t[αn/x] 'βη t

′[αn/x] for infinitely many integers n, then t 'βη t
′ ;

ii) if (t)αn 'βη (t′)αn for infinitely many integers n, then t 'βη t
′.
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Proof of (i) : it is the particular case k = 1 of proposition 5.8.
Proof of (ii) : let x be a variable with no occurrence in t, t′ ; by applying (i) to
the terms (t)x and (t′)x, we obtain : (t)x 'βη (t′)x, thus λx(t)x 'βη λx(t

′)x,
and therefore t 'βη t

′.
Q.E.D.

The following result will be used to prove theorem 5.6 :

Lemma 5.10. Let t, u be two λ-terms. If one of the following conditions
hold, then there exists a Böhm transformation F such that :

F (t) 'β 0 and F (u) 'β 1.
i) t = (x)t1 . . . tp, u = (y)u1 . . . uq, where x 6= y or p 6= q ;
ii) t = λx1 . . . λxmλx(x)t1 . . . tp, u = λx1 . . . λxnλx(x)u1 . . . uq, where m 6= n
or p 6= q.

Proof of (i).
Case 1 : x 6= y ; let σ0 = λz1 . . . λzp0, σ1 = λz1 . . . λzq1. By β-reduction,
we obtain immediately Bσ0,xBσ1,y(t) 'β 0 and Bσ0,xBσ1,y(u) 'β 1. Thus
Bσ0,xBσ1,y is the desired Böhm transformation.
Case 2 : x = y and p 6= q, say p < q ; then we have :
Bαq ,x(t) = (αq)t

′
1 . . . t

′
p and Bαq ,x(u) = (αq)u

′
1 . . . u

′
q (where τ ′ = τ [αq/x] for

every term τ). By β-reduction, we obtain :
Bαq ,x(t) 'β λzp+1 . . . λzqλz(z)t

′
1 . . . t

′
pzp+1 . . . zq and

Bαq ,x(u) 'β λz(z)u
′
1 . . . u

′
q.

Then the result follows from case 1 of part (ii), treated below.

Proof of (ii).
Case 1 : m 6= n, say m < n ; take distinct variables z1, . . . , zn, z not occurring
in t, u. Let B = BzBzn . . . Bz1 . Then, by β-reduction, we have : B(t) 'β

(zm+1)t
′
1 . . . t

′
pzm+2 . . . znz, and B(u) 'β (z)u′′1 . . . u

′′
q (where τ ′ is the term

τ [z1/x1, . . . , zm/xm, zm+1/x], and τ ′′ is the term τ [z1/x1, . . . , zn/xn, z/x]).
Since zm+1 6= z, the result follows from case 1 of part (i) above.
Case 2 : m = n and p 6= q ; let B = BxBxm . . . Bx1 . We have :
B(t) = (x)t1 . . . tp and B(u) = (x)u1 . . . uq. Since p 6= q, the result follows
from case 2 of (i).
Q.E.D.

The length lg(t) of a term t is inductively defined as follows (actually, it is
the length of the expression obtained from t by erasing all the parentheses) :

if t is a variable, then lg(t) = 1 ;
lg((t)u) = lg(t) + lg(u) ; lg(λx t) = lg(t) + 2.

We now prove theorem 5.6 by induction on lg(t) + lg(t′).

Take a variable y 6= x1, . . . , xk, with no occurrence in t, t′, and let w,w′

be the terms obtained from (t)y, (t′)y by normalization. If w 'βη w
′, then
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λy w 'βη λy w
′, thus λy(t)y 'βη λy(t

′)y and hence t 'βη t
′, which contradicts

the hypothesis. Thus w and w′ are not βη-equivalent.

If both t, t′ start with λ, say t = λxu, t′ = λx′u′, then :
w = u[y/x], w′ = u′[y/x′] and lg(w) + lg(w′) = lg(t) + lg(t′)− 4.
If t starts with λ, say t = λx u, while t′ does not, then either t′ = (v′)u′ or t′ is
a variable. Thus, w = u[y/x], w′ = (t′)y and lg(w)+lg(w′) = lg(t)+lg(t′)−1.

Therefore, in both cases, we can apply the induction hypothesis to w,w′.

Thus, given large enough distinct integers n1, . . . , nk, there exists a Böhm
transformation F such that :

F (w[αn1/x1, . . . , αnk
/xk]) 'β 0 and F (w′[αn1/x1, . . . , αnk

/xk]) 'β 1.
Now we have :

w[αn1/x1, . . . , αnk
/xk] 'β (t[αn1/x1, . . . , αnk

/xk])y and

w′[αn1/x1, . . . , αnk
/xk] 'β (t′[αn1/x1, . . . , αnk

/xk])y.
It follows that Böhm transformation FBy have the required properties :

FBy(t[αn1/x1, . . . , αnk
/xk]) 'β 0 and FBy(t

′[αn1/x1, . . . , αnk
/xk])) 'β 1.

Now we may suppose that none of t, t′ start with λ (note that this happens
at the first step of the induction, since we then have lg(t) = lg(t′) = 1, so t
and t′ are variables).
Since t, t′ are normal, we have t = (x)t1 . . . tp and t′ = (y)t′1 . . . t

′
q, where x, y

are variables, and t1, . . . , tp, t
′
1, . . . , t

′
q are normal terms.

We now fix distinct integers n1, . . . , nk and distinct variables x1, . . . , xk. We
will use the notation τ [] as an abbreviation for τ [αn1/x1, . . . , αnk

/xk], for
every λ-term τ .
Now, there are the following three possibilities :

1. Suppose that x, y /∈ {x1, . . . , xk}. Then we have :

t[] = (x)t1[] . . . tp[] and t′[] = (y)t′1[] . . . t
′
q[].

If x 6= y or p 6= q, then, by lemma 5.10(i), there exists a Böhm transformation
F such that F (t[]) 'β 0 and F (t′[]) 'β 1 : this is the expected result.
In case x = y and p = q, take any integer n > n1, . . . , nk, p. Then :

Bαn,x(t[]) = (αn)t1[[]] . . . tp[[]] and Bαn,x(t
′[]) = (αn)t′1[[]] . . . t

′
p[[]]

(the notation τ [[]] stands for τ [αn1/x1, . . . , αnk
/xk, αn/x], for every term τ).

Since αn = λz1 . . . λznλz(z)z1 . . . zn, we therefore obtain, by β-reduction :

Bαn,x(t[]) 'β λzp+1 . . . λznλz(z)t1[[]] . . . tp[[]]zp+1 . . . zn and

Bαn,x(t
′[]) 'β λzp+1 . . . λznλz(z)t

′
1[[]] . . . t

′
q[[]]zp+1 . . . zn.

Note that the terms ti[[]] and t′i[[]] contain none of the variables z, z1, . . . , zn.
We have :

BzBzn . . . Bzp+1Bαn,x(t[]) 'β (z)t1[[]] . . . tp[[]]zp+1 . . . zn and
BzBzn . . . Bzp+1Bαn,x(t

′[]) 'β (z)t′1[[]] . . . t
′
p[[]]zp+1 . . . zn.
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Now, by hypothesis, t = (x)t1 . . . tp and t′ = (x)t′1 . . . t
′
p, and t and t′ are not

βη-equivalent. Thus, for some i(1 ≤ i ≤ p), ti and t′i are not βη-equivalent.
Let πi = λx1 . . . λxn xi and B = BzBzn . . . Bzp+1Bαn,x. Since the variable z
occurs neither in ti[[]] nor in t′i[[]], we have :
Bπi,zB(t[]) 'β ti[[]] ; Bπi,zB(t′[]) 'β t

′
i[[]].

Now lg(ti) + lg(t′i) < lg(t) + lg(t′). Thus, by induction hypothesis, provided
that n1, . . . , nk, n are large enough distinct integers, there exists a Böhm
transformation, say F , such that F (ti[[]]) 'β 0 and F (t′i[[]]) 'β 1. Therefore,
FBπi,zB(t[]) 'β 0 and FBπi,zB(t′[]) 'β 1, which is the expected result.

2. Now suppose that x ∈ {x1, . . . , xk}, for instance x = x1, while
y /∈ {x1, . . . , xk}. Then we have t[] = (αn1)t1[] . . . tp[] and t′[] = (y)t′1[] . . . t

′
q[].

For every n1 ≥ p, we have, by β-reduction :

t[] 'β λzp+1 . . . λzn1λz(z)t1[] . . . tp[]zp+1 . . . zn1 .

Therefore, if we let B = BzBzn1
. . . Bzp+1 , we have :

B(t[]) 'β (z)t1[] . . . tp[]zp+1 . . . zn1 and
B(t′[]) = (y)t′1[] . . . t

′
q[]zp+1 . . . zn1z.

Since y and z are distinct variables, lemma 5.10(i) provides a Böhm transfor-
mation F such that FB(t[]) 'β 0 and FB(t′[]) 'β 1, which is the expected
result.

3. Finally, suppose that x, y ∈ {x1, . . . , xk}.
If x 6= y, say, for instance, x = x1, y = x2, then :

t[] = (αn1)t1[] . . . tp[] and t′[] = (αn2)t
′
1[] . . . t

′
q[].

For all n1 ≥ p and n2 ≥ q, we have, by β-reduction :

t[] 'β λzp+1 . . . λzn1λz(z)t1[] . . . tp[]zp+1 . . . zn1 and
t′[] 'β λzq+1 . . . λzn2λz(z)t

′
1[] . . . t

′
q[]zq+1 . . . zn2 .

Since n1 6= n2 (by hypothesis), the result follows from lemma 5.10(ii).

If x = y, say, for instance, x = y = x1, then :

t[] = (αn1)t1[] . . . tp[] and t′[] = (αn1)t
′
1[] . . . t

′
q[].

For every n1 ≥ p, q, we have, by β-reduction :

t[] 'β λzp+1 . . . λzn1λz(z)t1[] . . . tp[]zp+1 . . . zn1 and
t′[] 'β λzq+1 . . . λzn1λz(z)t

′
1[] . . . t

′
q[]zq+1 . . . zn1 .

If p 6= q, then the results follows from lemma 5.10(ii) (n1 − p 6= n1 − q).
If p = q, then :

t[] 'β λzp+1 . . . λzn1λz(z)t1[] . . . tp[]zp+1 . . . zn1 and
t′[] 'β λzp+1 . . . λzn1λz(z)t

′
1[] . . . t

′
p[]zp+1 . . . zn1 .

Now, by hypothesis, t = (x)t1 . . . tp and t′ = (x)t′1 . . . t
′
p, and t and t′ are not

βη-equivalent. Thus, for some i(1 ≤ i ≤ p), ti and t′i are not βη-equivalent.
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Let πi = λx1 . . . λxn1xi and B = BzBzn1
. . . Bzp+1 . Since the variables z, zj

occur neither in ti[] nor in t′i[], we have :

Bπi,zB(t[]) 'β ti[] ; Bπi,zB(t′[]) 'β t
′
i[].

Now lg(ti) + lg(t′i) < lg(t) + lg(t′). Thus, by induction hypothesis, pro-
vided that n1, . . . , nk are large enough distinct integers, there exists a Böhm
transformation, say F , such that F (ti[]) 'β 0 and F (t′i[]) 'β 1. Therefore,
FBπi,zB(t[]) 'β 0 and FBπi,zB(t′[]) 'β 1.
This completes the proof.

Q.E.D.

References for chapter 5

[Bar84], [Boh68].
(The references are in the bibliography at the end of the book).
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Chapter 6

Combinatory logic

1. Combinatory algebras

In this chapter, we shall deal with theories in the first order predicate calcu-
lus with equality and we assume that the reader has some familiarity with
elementary model theory. We consider a language L0 consisting of one binary
function symbol Ap (for “ application ”). Given terms f , t, u, v, . . . , the
term Ap(f, t) will be written (f)t or ft ; the terms ((f)t)u, (((f)t)u)v, . . .
will be respectively written (f)tu, (f)tuv, . . . or even ftu, ftuv, . . .

A model for this language (that is a non-empty set A, equipped with a binary
function) is called an applicative structure.

Let L be the language obtained by adding to L0 two constant symbols K,S.

We shall use the following notations :

t ≡ u will mean that t and u are identical terms of L ;

M |= F will mean that the closed formula F is satisfied in the model M
(of L) ;

A ` F will mean that F is a consequence of the set A of formulas, in other
words, that every model of A satisfies F .

Given terms t, u of L, and a variable x, t[u/x] denotes the term obtained
from t by replacing every occurrence of x with u.

Consider the following axioms :

(C0) (K)xy = x ; (S)xyz = ((x)z)(y)z.

Actually, we consider the closure of these formulas, namely, the axioms :
∀x∀y{(K)xy = x} ; ∀x∀y∀z{(S)xyz = ((x)z)(y)z}.

The term (S)KK is denoted by I. Thus C0 ` (I)x = x.

A model of this system of axioms is called a combinatory algebra. The com-
binatory algebra consisting of one single element is said to be trivial.

95
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For every term t of L, and every variable x, we now define a term of L,
denoted by λx t, by induction on the length of t :

• if x does not occur in t, then λx t ≡ (K)t ;
• λxx ≡ (S)KK ≡ I ;
• if t ≡ (u)v and x occurs in t, then λx t ≡ ((S)λxu)λx v.

Proposition 6.1. For every term t of L, the term λx t does not contain the
variable x, and we have C0 ` ∀x{(λx t)x = t}.

It follows that C0 ` (λx t)u = t[u/x], for all terms t, u of L.

It is obvious that x does not occur in λx t. The second part of the statement
is proved by induction on the length of t :
If x does not occur in t, then (λx t)x ≡ (K)tx, and C0 ` (K)tx = t.
If t ≡ x, then (λx t)x ≡ (I)x, and C0 ` (I)x = x.
If t ≡ (u)v and x occurs in t, then (λx t)x ≡ (((S)λxu)λx v)x. By the
second axiom of C0, we have C0 ` (λx t)x = ((λxu)x)(λx v)x. Now, by
induction hypothesis : C0 ` (λxu)x = u and (λx v)x = v. Therefore,
C0 ` (λx t)x = (u)v = t.

Q.E.D.

It follows immediately that :
C0 ` (λx1 . . . λxkt)x1 . . . xk = t for all variables x1, . . . , xk.

Proposition 6.2. All non-trivial combinatory algebras are infinite.

Let A be a finite combinatory algebra, and n its cardinality. For 0 ≤ i ≤ n, let
ai ∈ A be the interpretation in A of the term λx0λx1 . . . λxn xi. Then there
exist two distinct integers i, j ≤ n such that ai = aj. Suppose, for example,
that i = 0 and j = 1. We therefore have a0b0b1 . . . bn = a1b0b1 . . . bn, for all
b0, b1, . . . , bn ∈ A. Thus b0 = b1 for all b0, b1 ∈ A, which means that A is
trivial.

Q.E.D.

An applicative structure A is said to be combinatorially complete if, for every
term t of L0, with variables among x1, . . . , xk, and parameters in A, there
exists an element f ∈ A such that A |= (f)x1 . . . xk = t (that is to say
(f)a1 . . . ak = t[a1/x1, . . . , ak/xk] for all a1, . . . , ak ∈ A).
This property is therefore expressed by the following axiom scheme :

(CC) ∃f∀x1 . . . ∀xn{(f)x1 . . . xn = t}
where t is an arbitrary term of L0, and n ≥ 0.

Proposition 6.3. An applicative structure A is combinatorially complete if
and only if A can be given a structure of combinatory algebra.
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In other words, A is combinatorially complete if and only if the constant
symbols K and S may be interpreted in A in such a way as to satisfy C0.

Indeed, if A is a combinatory algebra, and t is any term with variables among
x1, . . . , xn, then it suffices to take f = λx1 . . . λxnt.
Conversely, if A is combinatorially complete, then there exist k, s ∈ A satis-
fying C0 : it is enough to apply CC, first with n = 2 and t = x1, then with
n = 3 and t = ((x1)x3)(x2)x3.

Q.E.D.

The axiom scheme CC is thus equivalent to the conjunction of two particular
cases :
(CC ′) ∃k∀x∀y{(k)xy = x} ; ∃s∀x∀y∀z{(s)xyz = ((x)z)(y)z}
Let E denote the term λxλy(x)y. By proposition 6.1, we therefore have :

C0 ` (E)xy = (x)y.
By definition of λ, we have λy(x)y ≡ ((S)(K)x)I, and hence :

E ≡ λx((S)(K)x)I.
Thus, by proposition 6.1 : C0 ` (E)x = ((S)(K)x)I.
Let t be a term containing no occurrence of the variable x. Then, by definition
of λ : λx(t)x ≡ ((S)λx t)I ≡ ((S)(K)t)I. We have thus proved :

Proposition 6.4. Let t be a term and x a variable not occurring in t ; then :
C0 ` λx(t)x = (E)t = ((S)(K)t)I.

We now consider the axioms :

(C1) K = λxλy(K)xy ; S = λxλyλz(S)xyz.

According to proposition 6.1, the following formulas are consequences of the
axioms C0 + C1 :

(K)x = λy(K)xy ; (S)xy = λz(S)xyz ;

thus, by proposition 6.4, so are the formulas :

(C0
1) (E)(K)x = (K)x ; (E)(S)xy = (S)xy.

Proposition 6.5. The following formulas are consequences of C0 + C0
1 :

i) λx t = (E)λx t = λx(λx t)x for every term t of L ;
ii) (E)E = E ; (E)(E)x = (E)x.

i) The second identity follows from proposition 6.4, since x does not occur
in λx t. On the other hand, by definition of λx t, we have either λx t ≡
(K)t, or λx t ≡ (S)KK, or λx t ≡ (S)uv for suitable terms u, v. It follows
immediately that C0

1 ` (E)λx t = λx t.
ii) We have E = λxλy(x)y, and hence C0 +C0

1 ` (E)E = E, by (i). Now, by
proposition 6.4, C0 ` (E)x = λy(x)y, and therefore, by (i) again :
C0 + C0

1 ` (E)(E)x = (E)x.
Q.E.D.
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2. Extensionality axioms

The following axiom scheme :

(WEXT ) ∀x(t = u)→ λx t = λxu

(where t, u are arbitrary terms of L, allowed to contain variables) is called
the weak extensionality scheme.
As a consequence of this axiom, we obtain (by induction on n) :

∀x1 . . . ∀xn{t = u} → λx1 . . . λxnt = λx1 . . . λxnu.

The weak extensionality axiom is the following formula :

(Wext) ∀y∀z{∀x[(y)x = (z)x]→ (E)y = (E)z}.

Proposition 6.6. WEXT and Wext are equivalent modulo C0 + C0
1 .

Indeed, let A be a model of C0 + C0
1 + WEXT , and b, c ∈ A such that

(b)x = (c)x for every x ∈ A. Applying WEXT with t ≡ (b)x and u ≡ (c)x,
we obtain λx(b)x = λx(c)x. Now both λx(b)x = (E)b and λx(c)x = (E)c
hold in A, since A |= C0 (proposition 6.4). Thus (E)b = (E)c.
Conversely, let A be a model of C0 + C0

1 + Wext, and t, u two terms with
parameters in A, where x is the only variable ; assume that A |= ∀x(t = u).
Since A |= C0, we have A |= (λx t)x = t, (λxu)x = u (proposition 6.1). Thus
A |= ∀x{(λx t)x = (λxu)x}.
By Wext, we obtain A |= (E)λx t = (E)λxu, and hence A |= λx t = λxu
(by proposition 6.5).

Q.E.D.

We shall denote by CL (combinatory logic) the system of axioms :
C0 + C1 +Wext (or, equivalently, C0 + C1 +WEXT ).

Now we consider the axioms :

(C ′1) (E)K = K ; (E)(K)x = (K)x ;
(E)S = S ; (E)(S)x = (S)x ; (E)(S)xy = (S)xy.

Proposition 6.7. CL is equivalent to C0 + C ′1 +Wext.

The following formulas (in fact, their closures) are obviously consequences of
C0 + C1 :

K = λxλy(K)xy ; (K)x = λy(K)xy ;
S = λxλyλz(S)xyz ; (S)x = λyλz(S)xyz ; (S)xy = λz(S)xyz.

In view of proposition 6.5, we deduce immediately that C ′1 is a consequence
of C0 + C1, and therefore of CL.
Conversely, we have C ′1 ` (S)xy = (E)(S)xy, and hence C0 + C ′1 ` (S)xy =
λz(S)xyz. Now we also have : C0 ` (λyλz(S)xyz)y = λz(S)xyz. Thus
C0 + C ′1 ` (S)xy = (λyλz(S)xyz)y. By Wext, we obtain first (E)(S)x =
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(E)λyλz(S)xyz, then (S)x = λyλz(S)xyz (by C ′1 and proposition 6.5) ;
thus (S)x = (λxλyλz(S)xyz)x. By applying Wext again, we conclude that
(E)S = (E)λxλyλz(S)xyz, and hence S = λxλyλz(S)xyz (by C ′1 and propo-
sition 6.5 again). The same kind of proof gives the equationK = λxλy(K)xy.

Q.E.D.

The extensionality axiom is the formula :

(Ext) ∀y∀z{∀x[(y)x = (z)x]→ y = z}.
As a consequence of this axiom, we obtain (by induction on n) :

(Extn) ∀y∀z{∀x1 . . . ∀xn[(y)x1 . . . xn = (z)x1 . . . xn]→ y = z}.
We now prove that, modulo C0, the extensionality axiom is equivalent to :

Wext+ (E = I).

Indeed, it is clear that Wext + (E = I) + C0 ` Ext (since C0 + (E = I) `
(E)x = x). Conversely, we have C0 ` (E)xy = (I)xy = (x)y. With Ext2, we
obtain C0 + Ext ` E = I.

We shall denote by ECL (extensional combinatory logic) the system of ax-
ioms C0 + Ext.
Note that C0 +Ext ` C1, and thus ECL ` CL ; indeed, by proposition 6.1,
for every term T , we have :
C0 ` (T )x1 . . . xn = (λx1 . . . λxn(T )x1 . . . xn)x1 . . . xn ;
then, by Extn, we can deduce T = λx1 . . . λxn(T )x1 . . . xn.

Scott-Meyer’s axioms

Let A be an applicative structure, with a distinguished element e, satisfying
the following axioms, known as Scott-Meyer’s axioms :
i) Combinatorial completeness
∃k∀x∀y[(k)xy = x] ; ∃s∀x∀y∀z[(s)xyz = ((x)z)(y)z] ;

ii) ∀x∀y[(e)xy = (x)y] ;
iii) Weak extensionality
∀y∀z{∀x[(y)x = (z)x]→ (e)y = (e)z}

Theorem 6.8. Let A be an applicative structure satisfying the Scott-Meyer’s
axioms. Then there is a unique way of assigning values in A to the symbols
K,S of L so that A becomes a model of CL satisfying ∀x[(E)x = (e)x].
Moreover, in that model, we have E = (e)e.

Notice that E is a term of L, not a symbol.

Unicity : suppose that values have been assigned to K,S so that CL is
satisfied. We have (E)x = (e)x, thus (E)E = (e)E (take x = E), and hence
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E = (e)E (we have seen that CL ` E = (E)E). Now the above weak
extensionality axiom gives :
∀x[(E)x = (e)x]→ (e)E = (e)e. Therefore, E = (e)e.
Let K1, S1 and K2, S2 be two possible interpretations of K,S in A such
that the required conditions hold, and let E1, E2 be the corresponding in-
terpretations of E (actually, we have seen that E1 = E2 = (e)e) ; thus
(E1)x = (E2)x = (e)x and (S1)xyz = (S2)xyz = ((x)z)(y)z ; by weak ex-
tensionality, it follows that (e)(S1)xy = (e)(S2)xy, and we therefore obtain :
(E1)(S1)xy = (E2)(S2)xy. Since CL holds, the axioms of C ′1 are satisfied
and we have : (Ei)(Si)xy = (Si)xy(i = 1, 2) ; therefore (S1)xy = (S2)xy.
By weak extensionality again, it follows that (e)(S1)x = (e)(S2)x, that
is (E1)(S1)x = (E2)(S2)x, and hence (S1)x = (S2)x (by C ′1). Using the
weak extensionality once more, we obtain (e)S1 = (e)S2, that is to say
(E1)S1 = (E2)S2, and hence S1 = S2 (by C ′1). The proof of K1 = K2 is
similar.

Existence : take k, s ∈ A such that (k)xy = y and (s)xyz = ((x)z)(y)z for all
x, y, z ∈ A ; this is possible according to the first two axioms of Scott-Meyer.
For every term t with parameters in A (and containing variables), we now
define, inductively, a term λ′x t :
λ′x t = (e)(k)t if x does not occur in t ;
λ′x x = (e)i with i = (s)kk (thus (i)x = x for every x ∈ A) ;
λ′x t = (e)((s)λ′x u)λ′x v if t = (u)v and x occurs in t.

Notice that (e)xy = xy, and hence, by weak extensionality (Scott-Meyer’s
axioms), (e)(e)x = (e)x. It follows immediately that (e)λ′x t = λ′x t for every
term t.
Moreover, we have (λ′x t)x = t (by induction on t, as in proposition 6.1).

Let K = λ′xλ′y x ; S = λ′xλ′yλ′z((x)z)(y)z.
We do have (K)xy = x, (S)xyz = ((x)z)(y)z ; moreover, since (S)xy =
λ′z . . ., we also have (S)xy = (e)(S)xy ; similarly, (e)(S)x = (S)x and
(e)S = S. On the other hand, since (S)xyz = (s)xyz, we obtain (e)(s)xy =
(e)(S)xy = (S)xy by weak extensionality ; similarly, (e)(k)x = (K)x. There-
fore, we may restate the definition of λ′x t this way :
λ′x t = (K)t if x does not occur in t ;
λ′x x = I with I = (S)KK (indeed, we have (I)x = (i)x, thus (e)I = (e)i ;
but (e)I = I by definition of I) ;
λ′x t = ((S)λ′x u)λ′x v if t = (u)v and x occurs in t.
We see that this definition is the same as that of the term λx t ; thus λ′x t =
λx t. Now let E = λxλy(x)y ; thus (E)x = λy . . ., and therefore (e)(E)x =
(E)x ; now (E)xy = (x)y, and hence, by weak extensionality, (e)(E)x = (e)x,
that is to say (E)x = (e)x.
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This proves that the axiom Wext holds, as well as C0. Besides, we have
(E)λx t = λx t for every term t (since (e)λ′x t = λ′x t).
SinceK = λxλy x and S = λxλyλz((x)z)(y)z, we may deduce, using C0, that
(K)x = λy x ; (S)x = λyλz((x)z)(y)z ; (S)xy = λz((x)z)(y)z. Thus (E)K =
K, (E)(K)x = (K)x, (E)S = S, (E)(S)x = (S)x and (E)(S)xy = (S)xy.
Thus the axioms C ′1 hold, and finally our model satisfies C0 + C ′1 + Wext,
that is to say CL.

Q.E.D.

3. Curry’s equations

Let A be a model of C0 +C0
1 . We wish to construct an embedding of A in a

model of Wext.
Let k, s, e denote the interpretations in A of the symbols K,S and the closed
term E of L. Define B = (e)A = {(e)a ; a ∈ A} = {a ∈ A, (e)a = a}
(indeed, (e)(e)a = (e)a). We shall define an applicative structure over B :
its binary operation will be denoted by [a]b, and defined by [a]b = (s)ab (note
that we do have (s)ab ∈ B since (e)(s)ab = (s)ab, by C0

1).
We define a one-one function j : A → B by taking j(a) = (k)a (note that
(k)a ∈ B since (e)(k)a = (k)a, by C0

1) : indeed, if (k)a = (k)b, then (k)ax =
(k)bx for arbitrary x ∈ A, which implies a = b.
Let A′ ⊂ B be the range of this function. We want j to be an isomorphism of
applicative structures from A into B. This happens if and only if [(k)a](k)b =
(k)(a)b for all a, b ∈ A. In other words, j is an isomorphism if and only if A
satisfies the following axiom :

(C2) ((S)(K)x)(K)y = (K)(x)y ;

this will be assumed from now on.
Notice that :
B is a proper extension of A′ (that is B ⊃ A′ and B 6= A′) if and only if A
is non-trivial (that is A has at least two elements). In that case, i ∈ B \ A′
(where i = (s)kk is the interpretation of I).
Indeed, if i ∈ A′, then i = (k)a, thus (i)b = (k)ab, that is to say b = a, for
every b ∈ A, and A is trivial. Conversely, if A contains only one element,
then, obviously, A = B = A′.

The interpretations of K,S in B are the same as in A′, namely : (k)k and
(k)s. B satisfies C0 if and only if :

i) [[(k)k](e)a](e)b = (e)a and
ii) [[[(k)s](e)a](e)b](e)c = [[(e)a](e)c][(e)b](e)c

for all a, b, c ∈ A.
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(i) can be written ((s)((s)(k)k)(e)a)(e)b = (e)a. Now consider the axiom :

(C3) ((S)((S)(K)K)x)y = (E)x.

It implies (i) since, by proposition 6.5, we have C0 + C0
1 ` (E)(E)x = (E)x.

C3 is equivalent, modulo C0, to :

(C ′3) ((S)((S)(K)K)x)y = λz(x)z.

(ii) can be written :
((s)((s)((s)(k)s)(e)a)(e)b)(e)c = ((s)((s)(e)a)(e)c)((s)(e)b)(e)c.

Now consider the axiom :

(C4) ((S)((S)((S)(K)S)x)y)z = ((S)((S)x)z)((S)y)z.

At this point, we have proved the first part of :

Lemma 6.9. Let A be a combinatory algebra satisfying C0+C
0
1+C2+C3+C4.

Then B is an extension of A′ (a combinatory algebra, isomorphic with A)
which satisfies C0. Moreover, if a ∈ A, then [ka]i = (e)a.

Indeed, we have [ka]i = ((s)(k)a)i = (e)a (by proposition 6.4).
Q.E.D.

Let t, u be two terms of L, and {x1, . . . , xn} the set of variables occurring in
t or u. The formula t = u (in fact, its closure ∀x1 . . . ∀xn{t = u}) is called
an equation ; this equation is said to be closed if both t and u contain no
variables (n = 0) ; the equation λx1 . . . λxn t = λx1 . . . λxn u will be called
the λ-closure of the equation t = u.
For each axiom Ci (2 ≤ i ≤ 4), let CLi denote its λ-closure, that is to say :

(CL2) λxλy((S)(K)x)(K)y = λxλy(K)(x)y
(CL3) λxλy((S)((S)(K)K)x)y = λxλyλz(x)z
(CL4) λxλyλz((S)((S)((S)(K)S)x)y)z = λxλyλz((S)((S)x)z)((S)y)z.

Proposition 6.10. Let A be a combinatory algebra, and Q a set of closed
equations such that C0 +Q ` C0

1 . If A |= C0 +Q+ CL2 + CL3 + CL4, then
there exist an extension A1 of A satisfying the same axioms, and an element
ξ1 ∈ A1 such that, for all a, b ∈ A : (a)ξ1 = (b)ξ1 ⇒ (e)a = (e)b.

Indeed, C0+CLi ` Ci (proposition 6.1), thus A |= C0+C0
1 +C2+C3+C4. By

lemma 6.9, there exists an extension B of A′ satisfying C0. Since A |= CLi

and A |= Q, and CLi and Q are closed equations, we have B |= CLi et
B |= Q. Now j is an isomorphism from A onto A′, and hence there exist an
extension A1 of A and an isomorphism J from A1 onto B extending j. Let
ξ1 = J−1(i) ; for every a, b ∈ A such that (a)ξ1 = (b)ξ1, we have [Ja]Jξ1 =
[Jb]Jξ1, that is [ka]i = [kb]i, and therefore (e)a = (e)b, by lemma 6.9.

Q.E.D.
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Theorem 6.11. Let A be a combinatory algebra, and Q a set of closed
equations such that C0 + Q ` C0

1 . Then there exists an extension A∗ of A
satisfying C0 +Q+Wext if and only if A |= C0 +Q+ CL2 + CL3 + CL4.

First, notice that the systems of axioms C0+Q+Wext and C0+Q+WEXT
are equivalent (since C0 + Q ` C0

1 , and C0 + C0
1 ` Wext ⇔ WEXT ). We

shall denote by Q this system of axioms.

The condition is necessary : it suffices to prove that Q ` CLi (2 ≤ i ≤ 4).
By definition of the axiom scheme WEXT , we have WEXT ` Ci ⇒ CLi,
thus it is enough to prove : Q ` Ci. We have :

C0 ` (((S)(K)x)(K)y)z = ((Kx)z)(Ky)z = (x)y ;
thus C0 ` (((S)(K)x)(K)y)z = ((K)(x)y)z. By weak extensionality, it fol-
lows that Q ` (E)((S)(K)x)(K)y = (E)(K)(x)y, and then, by C0

1 , that :
Q ` ((S)(K)x)(K)y = (K)(x)y ; therefore Q ` C2.
The equation (C3) is written ((S)((S)(K)K)x)y = (E)x. Now we have
C0 ` (((S)((S)(K)K)x)y)z = ((((S)(K)K)x)z)(y)z = (((K)Kz)(x)z)(y)z =
((K)(x)z)(y)z = (x)z ; hence C0 + Wext ` (E)((S)((S)(K)K)x)y = (E)x.
Thus C0 + C0

1 +Wext ` ((S)((S)(K)K)x)y = (E)x, that is to say Q ` C3.
The axiom (C4) is written ((S)((S)((S)(K)S)x)y)z = ((S)((S)x)z)((S)y)z.
Now we have
C0 ` (((S)((S)((S)(K)S)x)y)z)a = {[((S)((S)(K)S)x)y]a}(z)a

= {[(((S)(K)S)x)a](y)a}(z)a = {[(((K)S)a)(x)a](y)a}(z)a
= {[(S)(x)a](y)a}(z)a = (((x)a)(z)a)((y)a)(z)a.

On the other hand :
C0 ` (((S)((S)x)z)((S)y)z)a = ((S)xza)(S)yza = (((x)a)(z)a)((y)a)(z)a.
Therefore, C0 ` (((S)((S)((S)(K)S)x)y)z)a = (((S)((S)x)z)((S)y)z)a.
Thus C0 + Wext ` (E)((S)((S)((S)(K)S)x)y)z = (E)((S)((S)x)z)((S)y)z.
It follows that
C0 + C0

1 +Wext ` ((S)((S)((S)(K)S)x)y)z = ((S)((S)x)z)((S)y)z ;
that is to say Q ` C4.

The condition is sufficient : Let A be a model of C0 +Q+CL2 +CL3 +CL4.
By proposition 6.10, we may define an increasing sequence :
A = A0 ⊂ A1 ⊂ . . . ⊂ An ⊂ . . . of combinatory algebras which satisfy the
same axioms, and such that, for each n, there exists a ξn+1 ∈ An+1 such that,
if a, b ∈ An and (a)ξn+1 = (b)ξn+1, then (e)a = (e)b. Let A∗ = ∪nAn. Then
A∗ |= C0 +Q+CLi (2 ≤ i ≤ 4) as well as the weak extensionality axiom : if
a, b ∈ A∗ and (a)x = (b)x for every x ∈ A∗, then we have a, b ∈ An for some
n ; hence (a)ξn+1 = (b)ξn+1 and therefore (e)a = (e)b.

Q.E.D.

Intuitively, the extension of A constructed here is obtained by adding in-
finitely many “ variables ” which are the ξn ’s.
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Now we consider the system of axioms :

(CL=) C0 + C1 + CL2 + CL3 + CL4.

Theorem 6.12. Let A be a combinatory algebra. Then there exists an ex-
tension of A satisfying CL if and only if A satisfies CL=.

It suffices to apply theorem 6.11, whereQ is taken as the system of axioms C1.
Q.E.D.

Corollary 6.13. The universal consequences of CL are those of CL=.

Indeed, let A be a model of CL= , and F a universal formula which is a
consequence of CL (see chapter 9). We need to prove that A |= F . By
theorem 6.12, A can be embedded in some model B of CL. Thus B |= F
and, since F is universal and A is a submodel of B, we deduce that A |= F .
Conversely, it follows from theorem 6.12 that every model of CL is a model
of CL= .

Q.E.D.

We now consider the axiom :

(CL5) E = I

that is to say (by definition of E) :

(CL5) λx((S)(K)x)I = I.

Clearly, C0 + CL5 ` C0
1 . Moreover, C3 is obviously equivalent, modulo

C0 + CL5, to :

(C ′′3 ) ((S)((S)(K)K)x)y = x.

Let CL′′3 denote the λ-closure of C ′′3 , that is to say :

(CL′′3) λxλy((S)((S)(K)K)x)y = λxλy x.

We also define the following system of axioms ECL= :

(ECL=) C0 + CL2 + CL′′3 + CL4 + CL5.

Theorem 6.14. Let A be a combinatory algebra. Then there exists an ex-
tension of A satisfying ECL if and only if A satisfies ECL= .

This follows immediately from theorem 6.11, where Q is taken as the axiom
E = I.

Q.E.D.

Corollary 6.15. The universal consequences of ECL are those of ECL=.

Let A be a model of L. The diagram of A, denoted by DA , is defined as the
set of all formulas of the form t = u or t 6= u which hold in A, t and u being
arbitrary closed terms with parameters in A. The models of DA are those
models of L which are extensions of A.
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Theorem 6.16. Let A be a model of CL= , and t, u two terms with param-
eters in A (and variables). Then :
i) if DA + C0 ` t = u, then DA + C0 ` λx t = λxu ;
ii) if DA + C0 ` (t)x = (u)x, where x is a variable which does not occur in
t, u, then DA + C0 ` (E)t = (E)u.

DA + C0 ` F means : every extension of A satisfying C0 satisfies F .

Proof of (i) : let B be an extension of A satisfying C0. Then B satisfies CL=

and, by theorem 6.12, there exists an extension B′ of B which satisfies CL.
By hypothesis, we have DA + C0 ` t = u, and hence B′ |= t = u ; by weak
extensionality, it follows that :
B′ |= λx t = λxu ; therefore, B |= λx t = λxu.
Same proof for (ii).

Q.E.D.

A similar proof yields the following theorem :

Theorem 6.17. Let A be a model of ECL= , and t, u two terms with pa-
rameters in A where x does not occur. If DA + C0 ` (t)x = (u)x, then
DA + C0 ` t = u.

4. Translation of λ-calculus

We define a model M0 of L, called “ model over λ-terms ”, as follows :
the domain M0 is the quotient set Λ/'β ; the constant symbols K,S are
respectively interpreted by the (equivalence classes of) λ-terms λxλy x and
λxλyλz((x)z)(y)z ; the function symbol Ap is interpreted by the function
u, t 7→ (u)t from M0 ×M0 to M0.

Lemma 6.18. M0 is a model of CL. For every term t ∈ Λ, we have
(E)t 'β λx(t)x, where x is any variable which does not occur free in t.

Here we will only use the definition of β-equivalence, not its properties shown
in chapter 1.
We first prove thatM0 |= C0 : that is to say that (K)uv 'β u and (S)uvw 'β

((u)w)(v)w for all u, v, w ∈ Λ, which is clear in view of the interpretations of
K and S.
Now we come to the second part of the lemma : since M0 |= C0, we have,
by proposition 6.4 : (E)t = ((S)(K)t)I, with I = (S)KK. Looking again to
the interpretations of K and S inM0, we obtain easily I 'β λxx, and then
((S)(K)t)I 'β λx(t)x, which gives the desired result.
Then we prove that M0 |= Wext : suppose that M0 |= ∀x[(t)x = (u)x],
with t, u ∈ Λ/'β. Take a variable x which does not occur in t, u ; then
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(t)x 'β (u)x, and therefore λx(t)x 'β λx(u)x. Now we have seen that
λx(t)x 'β (E)t and λx(u)x 'β (E)u. Thus (E)t 'β (E)u and hence M0 |=
(E)t = (E)u.

Finally, we show thatM0 is a model of C ′1, in other words, of the formulas :
(E)K = K ; (E)(K)x = (K)x ;

(E)S = S ; (E)(S)x = (S)x ; (E)(S)xy = (S)xy.
So we need to prove that

(E)K 'β K ; (E)(K)x 'β (K)x ;
(E)S 'β S ; (E)(S)x 'β (S)x ; (E)(S)xy 'β (S)xy.

We have seen that (E)t 'β λz(t)z, where z does not occur in t. Thus it
remains to prove that : λx(K)x 'β K ; λy(K)xy 'β (K)x ; λx(S)x 'β S ;
λy(S)xy 'β (S)x ; λz(S)xyz 'β (S)xy. Now all these equivalences are
trivial, in view of the interpretations of K and S inM0.

Q.E.D.

We define similarly a model M1 of L, over the domain M1 = Λ/'βη (the
quotient set of Λ by the βη-equivalence relation) ; again, the constant symbols
K and S are interpreted by the (equivalence classes of) terms λxλy x and
λxλyλz((x)z)(y)z, and the function symbol Ap is interpreted by the function
u, t 7→ (u)t from M1 ×M1 to M1.

Lemma 6.19. M1 is a model of ECL.

We only prove thatM1 |= Ext (the other axioms are checked as above). Let
t, u ∈ Λ/'βη be such that M1 |= ∀x[(t)x = (u)x]. Take a variable x not
occurring in t, u : we have (t)x 'βη (u)x, thus λx(t)x 'βη λx(u)x, and hence
t 'βη u. ThereforeM1 |= t = u.

Q.E.D.

Recall that a combinatory algebra A (that is a model of C0) is trivial if it
contains only one element. Actually, A is trivial if and only if it is a model
of the axiom 0 = 1, where 0 ≡ λxλy y ≡ (K)I and 1 ≡ λxλy x = (E)K :
indeed, if A |= 0 = 1, then, for all a, b ∈ A, we have A |= (0)ab = (1)ab, thus
A |= b = a, and hence A has only one element.
The axiom 0 = 1 is equivalent to K = S : indeed, from K = S, we deduce
(K)abc = (S)abc, thus (a)c = ((a)c)(b)c for all a, b, c ∈ A. Taking a = (K)I,
b = (K)d, we obtain I = d for every d ∈ A, and therefore A is trivial.

Theorem 6.20. CL and ECL have a non-trivial model, and are not equiv-
alent theories.

We have seen that M1 |= ECL, thus both CL and ECL have a non-trivial
model (to make sure that M1 is not trivial, notice, for instance, that two
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distinct variables of the λ-calculus may not be βη-equivalent, according to
the Church-Rosser property for βη).

On the other hand, M0 is a model of CL, but not of ECL : indeed, let
ξ, ζ ∈ Λ be such that ξ is a variable of the λ-calculus and ζ = λx(ξ)x, where
x 6= ξ. Then (ξ)t 'β (ζ)t and henceM0 |= (ξ)t = (ζ)t for every t ∈ Λ. Now
ξ and ζ are not β-equivalent and thereforeM0 |= ξ 6= ζ.

Q.E.D.

For every λ-term t, we define, inductively, a term tL of the language of
combinatory logic :

if t is a variable, then tL = t (by convention, we identify variables of the
λ-calculus and variables of the language L) ;

if t = (u)v, then tL = (uL)vL ;

if t = λxu, then tL = λxuL.

Notice that the symbol λ is used here in two different ways : on the one hand
in the λ-terms, and on the other hand in the terms of L.

Conversely, with each term t of the language L, we associate a λ-term tΛ,
defined by induction on t :

KΛ = λxλy x ; SΛ = λxλyλz((x)z)(y)z ;

if t = (u)v, then tΛ = (uΛ)vΛ.

Clearly, for every term t of L (with or without variables), tΛ is the value of t
in both modelsM0 andM1, when each variable of L is interpreted by itself
(considered as an element of Λ). Therefore :

Lemma 6.21. Let t, u be two terms of L. If CL ` t = u, then tΛ 'β uΛ ; if
ECL ` t = u, then tΛ 'βη uΛ.

Lemma 6.22. For every λ-term t, tLΛ 'β t.

The proof is by induction on t. This is obvious in case t is a variable or
t = (u)v. Suppose that t = λxu ; then tL = λxuL. Therefore, CL ` (tL)x =
uL (proposition 6.1). Thus, by lemma 6.21, we have (tLΛ)x 'β uLΛ and,
by induction hypothesis, uLΛ 'β u. It follows that (tLΛ)x 'β u, and hence
λx(tLΛ)x 'β λxu = t.

Now tL = λxuL , and hence CL ` (E)tL = tL (proposition 6.5). Thus, by
lemma 6.21, we have (E)tLΛ 'β tLΛ. On the other hand, by lemma 6.18,
(E)tLΛ 'β λx(tLΛ)x. It follows, finally, that tLΛ 'β λx(tLΛ)x 'β t.

Q.E.D.

Lemma 6.23. For every term t of L, CL ` tΛL = t.
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The proof is by induction on t. This is immediate whenever t is a variable
or t = (u)v. It remains to examine the cases where t = K or t = S.
If t = K, then KΛ = λxλy x (λ-term), thus KΛL = λxλy x (term of L).
Now CL ` Kxy = x (axioms C0), and hence (by weak extensionality) :

CL ` λxλy(K)xy = λxλy x = KΛL.
Since CL ` K = λxλy(K)xy (axioms C1), it follows that CL ` K = KΛL.
If t = S, then SΛL = λxλyλz((x)z)(y)z (term of L).
Now CL ` (S)xyz = ((x)z)(y)z, thus, by weak extensionality :

CL ` λxλyλz(S)xyz = λxλyλz((x)z)(y)z = SΛL.
On the other hand :
CL ` S = λxλyλz(S)xyz (axioms C1), and therefore CL ` S = SΛL.

Q.E.D.

Lemma 6.24. Let t, u ∈ Λ and v = u[t/x]. Then CL ` vL = uL[tL/x].

The proof is by induction on u. This is immediate whenever u is a variable
or u = (u1)u2. Suppose that u = λy u′ ; then, we have v = λy v′, where
v′ = u′[t/x]. Thus, by induction hypothesis, CL ` v′L = u′L[tL/x]. Now
vL = λy v′L and hence :
CL ` (vL)y = u′L[tL/x] (proposition 6.1).
But we also have uL = λy u′L , and therefore CL ` (uL)y = u′L. It follows
that CL ` (uL[tL/x])y = u′L[tL/x], and hence CL ` (uL[tL/x])y = (vL)y. By
weak extensionality, we obtain CL ` (E)vL = (E)uL[tL/x].
Now vL = λy v′L , uL = λy u′L , and therefore :

CL ` (E)vL = vL and CL ` (E)uL = uL (proposition 6.5) ;
thus CL ` (E)uL[tL/x] = uL[tL/x]. Finally, we have CL ` vL = uL[tL/x].

Q.E.D.

Theorem 6.25. Let t, u be two λ-terms. Then :
i) t 'β u if and only if CL ` tL = uL.
ii) t 'βη u if and only if ECL ` tL = uL.

This theorem means that the β (resp. the βη)-equivalence is represented by
the notion of consequence in CL (resp. ECL).

Proof of (i) : If CL ` tL = uL , then tLΛ 'β uLΛ by lemma 6.21, thus t 'β u
by lemma 6.22.
Conversely, suppose that t 'β u. To prove that CL ` tL = uL , we may
suppose that t β0 u (that is to say : u is obtained from t by contracting one
redex). The proof is then by induction on t ; t may not be a variable (there
is no redex in a variable).
If t = λx t′, then u = λxu′ with t′ β0 u

′. Thus CL ` t′L = u′L (induction
hypothesis) and, by weak extensionality, we have CL ` λx t′L = λxu′L , that
is to say CL ` tL = uL.
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If t = (t′)t′′, then there are three possible cases for u :
u = (u′)t′′, with t′ β0 u

′ ; then CL ` t′L = u′L (induction hypothesis), and
therefore CL ` (t′L)t

′′
L = (u′L)t

′′
L, that is to say CL ` tL = uL.

u = (t′)u′′, with t′′ β0u
′′ ; same proof.

t = (λx t′)t′′ and u = t′[t′′/x]. By lemma 6.24, CL ` uL = t′L[t
′′
L/x] ;

on the other hand, we have tL = (λx t′L)t
′′
L and hence CL ` tL = t′L[t

′′
L/x]

(proposition 6.1). Thus CL ` tL = uL.

Proof of (ii) : If ECL ` tL = uL, then tLΛ 'βη uLΛ by lemma 6.21, thus
t 'βη u by lemma 6.22.
Conversely, suppose that t 'βη u. To prove that ECL ` tL = uL, we may
suppose that t β0 u or t η0 u. If t β0 u, we obtain the desired result in view
of (i).
If t η0 u, the proof proceeds by induction on t (which may not be a variable) ;
if t = (t′)t′′, then u = (u′)t′′ or u = (t′)u′′, with t′ η0 u

′ or t′′ η0 u
′′. Thus the

result follows from the induction hypothesis.
If t = λx t′, there are two possible cases for u :

u = λxu′, with t′ η0 u
′. By induction hypothesis, ECL ` t′L = u′L ; it

follows, by weak extensionality, that ECL ` λx t′L = λxu′L, that is to say
ECL ` tL = uL.

t = λx(u)x, x having no occurrence in u ; then tL = λx(uL)x, and
therefore, by proposition 6.1, ECL ` (tL)x = (uL)x. Using extensionality
(since x does not occur free in t, u), we conclude that ECL ` tL = uL.

Q.E.D.

There is a “ canonical ” method for constructing a model of CL (resp. ECL) :
let T be the set of all terms of L (with variables). We define on T an
equivalence relation ∼0 (resp. ∼1) by taking t ∼0 u ⇔ CL ` t = u (resp.
t ∼1 u ⇔ ECL ` t = u). Then we have a model N0 of CL (resp. a model
N1 of ECL) over the domain T /∼0 (resp. T /∼1) where the symbols K, S,
Ap have obvious interpretations (take the canonical definition on the set of
terms and then pass to the quotient set).
We now prove, for example, that N0 |= CL :
For those axioms of CL which are equations, the proof is immediate : for
instance, the axiom (K)xy = x holds since, for all terms t, u of L, we have
CL ` (K)tu = t, and thus, by definition of N0, N0 |= (K)tu = t.
It remains to check the weak extensionality axiom. Therefore, let t, u ∈ N0

be such that N0 |= (t)x = (u)x for every x ∈ N0. Take x as a variable which
does not occur in t, u. Then, by definition of N0 : CL ` (t)x = (u)x, thus
CL ` (E)t = (E)u, and hence N0 |= (E)t = (E)u, which is the desired
conclusion.

Proposition 6.26. M0 and N0 (resp. M1 and N1) are isomorphic models.
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Consider the mapping t 7→ tL of Λ into T ; we know from theorem 6.25 that :
t 'β u ⇔ CL ` tL = uL ; that is to say : M0 |= t = u ⇔ N0 |= tL = uL.
Therefore, this mapping induces an isomorphism fromM0 into N0.
Now consider the mapping t 7→ tΛ of T into Λ. By lemma 6.21, we have :
N0 |= t = u ⇒ M0 |= tΛ = uΛ. Therefore, this mapping induces a homo-
morphism from N0 into M0. According to lemmas 6.22 and 6.23, these are
inverse homomorphisms.
The proof is similar forM1 and N1.

Q.E.D.

Theorem 6.27. Let t, t′ be two normalizable closed λ-terms which are not
βη-equivalent. Then ECL ` tL = t′L ↔ 0 = 1.

In other words, the theory ECL+tL = t′L has no other model than the trivial
one.

Proof : we have seen that ECL ` 0 = 1 → ∀x∀y{x = y} ; thus ECL `
0 = 1→ tL = t′L.
Conversely, since t and t′ are normalizable closed terms which are not βη-
equivalent, in view of Böhm’s theorem (theorem 5.2), there exist closed terms
t1, . . . , tn ∈ Λ such that (t)t1 . . . tn 'βη 0 and (t′)t1 . . . tn 'βη 1. It then
follows from theorem 6.25 that :
ECL ` (tL)t

1
L . . . t

n
L = 0 and ECL ` (t′L)t

1
L . . . t

n
L = 1. Therefore :

ECL ` tL = t′L → 0 = 1.
Q.E.D.

References for chapter 6

[Bar84], [Cur58], [Hin86].
(The references are in the bibliography at the end of the book).



Chapter 7

Models of lambda-calculus

1. Functional models

Given a set D, let F(D) denote the set of all functions from DN into D
which depend only on a finite number of coordinates ; for every i ≥ 0, the
i-th coordinate function will be denoted by xi+1. Therefore, any member of
F(D) may be denoted by f(x1, . . . , xn), for every large enough integer n.
For any two functions f(x1, . . . , xn), g(x1, . . . , xp) in F(D), we will denote
the function f(x1, . . . , xi−1, g(x1, . . . , xp), xi+1, . . . , xn) ∈ F(D) by f [g/xi].
Clearly, if f does not depend on the coordinate xi, then f [g/xi] = f .

Let us consider a subset F of DD, and two functions Φ : D → F , and
Ψ : F → D.

For all a, b ∈ D, define (a)b to be Φ(a)(b) (so D is an applicative structure).
For every f ∈ F , Ψ(f) will also be denoted by λx f(x).

Let f, g ∈ F(D), f = f(x1, . . . , xn), and g = g(x1, . . . , xn). We define
(f)g ∈ F(D), by taking [(f)g](a1, . . . , an) = (f(a1, . . . , an))g(a1, . . . , an), for
all a1, . . . , an ∈ D.

We now consider a subset F∞ of F(D) such that :

0. If f ∈ F∞, f = f(x1, . . . , xn), and a1, . . . , ai−1, ai+1, . . . , an ∈ D, then
f(a1, . . . , ai−1, x, ai+1, . . . , an) ∈ F (1 ≤ i ≤ n).

For each f ∈ F∞, f = f(x1, . . . , xn), and each coordinate xi, we define
λxi f ∈ F(D) to be the function g(x1, . . . , xi−1, xi+1, . . . , xn) such that :
g(a1, . . . , ai−1, ai+1, . . . , an) = λx f(a1, . . . , ai−1, x, ai+1, . . . , an)
for all a1, . . . , ai−1, ai+1, . . . , an ∈ D.
Thus λxi f does not depend on the coordinate xi.

We now suppose that the following conditions hold :

1. Every coordinate function xi is in F∞ ;
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2. If f, g ∈ F∞, then (f)g ∈ F∞.
3. If f ∈ F∞, then λxi f ∈ F∞ for every i.

Sets D,F ,F∞, and functions Φ and Ψ satisfying conditions 0, 1, 2, 3 form
what we will call a functional model of λ-calculus.

Lemma 7.1. Let f, h ∈ F∞, x, y be two distinct coordinate functions, and
g = λy h. Then λy h[f/x] = g[f/x] provided that f does not depend on y.
In particular, λy h[z/x] = g[z/x] for every coordinate z 6= y.

Let f = f(x1, . . . , xn, x), h = h(x1, . . . , xn, x, y) ; for all a1, . . . , an, b ∈ D, we
have λy h(a1, . . . , an, b, y) = g(a1, . . . , an, b).
In particular, if b = f(a1, . . . , an, a), this gives :
λy h(a1, . . . , an, f(a1, . . . , an, a), y) = g(a1, . . . , an, f(a1, . . . , an, a))
which is the desired result.

Q.E.D.

Lemma 7.2. Let f ∈ F∞, and x, y be two distinct coordinates. If f does
not depend on y, then λy f [y/x] = λx f .

If f = f [x1, . . . , xn, x], then f [y/x] = f [x1, . . . , xn, y], which gives the result.
Q.E.D.

We now define a mapping of the set L of λ-terms into F∞, denoted by
t 7→ ‖t‖. We assume that the variables of the λ-calculus are x1, . . . , xn, . . .
The definition is by induction on t :

• if t is the variable xi, then ‖t‖ is the coordinate function xi ;
• if t = (u)v, then ‖t‖ = (‖u‖)‖v‖ ;
• if t = λxu, then ‖t‖ = λx‖u‖.

Clearly, if the free variables of t are among x1, . . . , xk, then the function
‖t‖ ∈ F∞ depends only on the coordinates x1, . . . , xk.

Lemma 7.3. Let t be a λ-term, and f = ‖t‖ ; then ‖t<z/x>‖ = f [z/x] for
all variables z except a finite number.

From now on, we will use the expression : “ for almost all variables z ” as
an abbreviation for : “ for all variables z except a finite number ”.

The proof is by induction on t ; the result is immediate if t is a variable, or
t = (u)v, or t = λxu.
Suppose t = λy u, where y 6= x, and let g = ‖u‖ ; then f = λy g. Now
‖t<z/x>‖ = ‖λy u<z/x>‖ = λy‖u<z/x>‖ = λy g[z/x] for almost all vari-
ables z, by induction hypothesis. By lemma 7.1, we have λy g[z/x] = f [z/x]
for almost all z ; this completes the proof.

Q.E.D.
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Proposition 7.4. Let t, t′ be two λ-terms. If t ≡ t′ (t is α-equivalent to t′),
then ‖t‖ = ‖t′‖.

Proof by induction on t ; the result is immediate if t is a variable, or t = (u)v.
If t = λxu, then t′ = λx′u′ and u<z/x> ≡ u′<z/x′> for almost all variables
z. Hence, by induction hypothesis, ‖u<z/x>‖ = ‖u′<z/x′>‖. Let g = ‖u‖,
g′ = ‖u′‖ ; then ‖t‖ = λx g and ‖t′‖ = λx′g′. By lemma 7.3, we have
‖u<z/x>‖ = g[z/x] and ‖u′<z/x′>‖ = g′[z/x′] for almost all variables z.
Thus g[z/x] = g′[z/x′], and therefore λz g[z/x] = λz g′[z/x′] for almost all
variables z. Hence, by lemma 7.2, λx g = λx′g′, that is ‖t‖ = ‖t′‖.

Q.E.D.

Therefore, we may consider t 7→ ‖t‖ as a mapping of Λ into F∞.

Proposition 7.5.
Let t, u ∈ Λ, and f = ‖t‖, g = ‖u‖. Then ‖u[t/x]‖ = g[f/x].

Proof by induction on u ; this is immediate whenever u is a variable or
u = (v)w. If u = λy v, then take y not free in t (thus f does not depend
on the coordinate y), and let ‖v‖ = h. Then ‖u[t/x]‖ = ‖λy v[t/x]‖ =
λy‖v[t/x]‖ = λy h[f/x] (by induction hypothesis). Now, by definition of
‖u‖, we have g = λy h. Therefore, by lemma 7.1, λy h[f/x] = g[f/x].

Q.E.D.

Now consider the following assumption :

(β) Φ◦Ψ is the identity function on F
in other words :

(β) (λx f(x))a = f(a) for all a ∈ D and f ∈ F .

Under this assumption, f 7→ λx f is obviously a one-one mapping of F
into D.

Any functional model satisfying (β) will be called a functional β-model.

Lemma 7.6. In any β-model, we have (λx g)f = g[f/x], for every coordinate
x and all f, g ∈ F∞.

Let f = f [x1, . . . , xn, x], g = g[x1, . . . , xn, x] and λx g = g′[x1, . . . , xn]. By
(β), we have (g′[a1, . . . , an])b = g[a1, . . . , an, b], for all a1, . . . , an, b ∈ D. Thus,
by taking b = f [a1, . . . , an, a], we obtain (g′[a1, . . . , an])f [a1, . . . , an, a] =
g[a1, . . . , an, f [a1, . . . , an, a]], which yields the result.

Q.E.D.

The following proposition explains the name “ β-model ”.

Proposition 7.7. In any β-model, if t, t′ ∈ Λ and t 'β t
′, then ‖t‖ = ‖t′‖.
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We may suppose that t β0 t
′ (t′ is obtained from t by one single β-reduction).

The proof is by induction on t ; t is not a variable (if it were, no β-reduction
could be made on it).
If t = λxu, then t′ = λxu′, with u β0 u

′ ; by induction hypothesis, ‖u‖ = ‖u′‖,
thus λx‖u‖ = λx‖u′‖, that is to say ‖t‖ = ‖t′‖.
If t = (u)v, then there are three possible cases for t′ :

t′ = (u′)v with u β0 u
′ ; then ‖u‖ = ‖u′‖, by induction hypothesis, and

therefore (‖u‖)‖v‖ = (‖u′‖)‖v‖, that is ‖t‖ = ‖t′‖.
t′ = (u)v′ with v β0 v

′ ; same proof.
t = (λx v)u and t′ = v[u/x] ; let f = ‖u‖, g = ‖v‖ ; then ‖t‖ = (λx g)f

and ‖t′‖ = g[f/x] (proposition 7.5). Thus ‖t‖ = ‖t′‖ by lemma 7.6.
Q.E.D.

Proposition 7.8. Every β-model is a model of the Scott-Meyer axioms (and
hence it provides a model of CL, see chapter 6, pages 98-99).

We define a model of the Scott-Meyer axioms, where the domain is D, Ap is
the function (a, b) 7→ (a)b from D×D to D, e = λxλy(x)y, k = λxλy x, and
s = λxλyλz((x)z)(y)z.
Indeed, it is obvious from condition β that (k)xy = x, (s)xyz = (xz)yz and
(e)xy = (x)y. In order to check the weak extensionality axiom, suppose that
(a)x = (b)x for all x ∈ D ; define f [x, y] ∈ F∞ by taking f [x, y] = (x)y
(conditions 1, 2 of the definition of functional models). By definition of F ,
both functions x 7→ (a)x and x 7→ (b)x are in F ; now they are assumed to be
equal, and hence λx(a)x = λx(b)x. Moreover, by definition of e, according
to condition β, we have (e)a = λx(a)x, (e)b = λx(b)x. Thus (e)a = (e)b.

Q.E.D.

A β-model is called trivial if it has only one element. A non-trivial β-model is
necessarily infinite, since it is a model of the Scott-Meyer axioms, and hence
a combinatory algebra (cf. proposition 6.2).

Remark. All functions of F∞ used in the proof of proposition 7.8 have at most
three arguments. Therefore, a model of the Scott-Meyer axioms can be obtained
whenever the following elements are given :
• an applicative structure D ; thus we have a function a, b 7→ (a)b from D×D

to D.
• a set F3 of functions from D ×D ×D to D, such that :

the three coordinate functions are in F3 ;
whenever f, g ∈ F3, then (f)g ∈ F3 ;
• a function f 7→ λx f from F to D such that (λx f)a = f(a) for all f ∈ F

and a ∈ D ; here F is defined as the set of functions from D to D obtained by
replacing, in every function of F3, two of the three variables by arbitrary elements
of D ;
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• it is assumed that, whenever f(x1, x2, x3) ∈ F3, then λxi f ∈ F3 (i = 1, 2, 3).

Consider a β-model (D,F ,F∞) ; we may define another model of the Scott-
Meyer axioms, over the domain F∞, where Ap is the function f, g 7→ (f)g,
and e = λxλy(x)y, k = λxλy x, s = λxλyλz(xz)(y)z.
Indeed, by lemma 7.6, we have : (k)fg = f , (s)fgh = (fh)gh, (e)fg = (f)g,
for all f, g, h ∈ F∞.
We now check the weak extensionality axiom : suppose that (f)h = (g)h for
all h ∈ F∞ ; take h as any coordinate function x, on which f and g do not
depend. Then we have (f)x = (g)x, thus λx(f)x = λx(g)x, and therefore
(e)f = (e)g, since it follows from the definition of e and lemma 7.6 that
(e)f = λx(f)x, (e)g = λx(g)x.

Proposition 7.9. Let (D,F ,F∞) be a β-model ; then the following condi-
tions are equivalent :
i) the extensionality axiom is satisfied in the model D ;
ii) f → λxf is a mapping of F onto D (thus it is one-to-one) ;
iii) λx(a)x = a for every a ∈ D.
iv) Ψ◦Φ is the identity function on D.
If these conditions hold, then the β-model under consideration is said to be
extensional.

(iii) ⇒ (ii) is obvious.
(i) ⇒ (iii) : for every b ∈ D, we have (a)b = (a′)b, where a′ = λx(a)x (by
condition β). Therefore, a = a′ by extensionality.
(ii) ⇒ (i) : let a, b ∈ D be such that (a)c = (b)c for every c ∈ D ; by
hypothesis, there exist f, g ∈ D such that a = λx f , b = λx g. Therefore
(λx f)c = (λx g)c, and hence f(c) = g(c) (by β) for every c ∈ D. Thus
f = g, and therefore λx f = λx g and a = b.
Finally (ii) ⇔ (iv) : indeed, condition (ii) means that Ψ is one-to-one ; since
we know that Φ◦Ψ is the identity function on F , we see that Ψ◦Φ is the
identity function on D.

Q.E.D.

Remark. Conversely, every model D of the Scott-Meyer axioms can be obtained
from a functional β-model : take F as the set of functions of the form x 7→ (a)x,
where a ∈ D, and F∞ as the set of functions of the form t[x1, . . . , xk], where t is
a term of L written with the indicated variables.
For all a2, . . . , ak, there exists a ∈ D such that t[x, a2, . . . , ak] = (a)x (combinatory
completeness of D). Thus condition 0 of the definition of functional models is
satisfied. Clearly, conditions 1 and 2 also hold.
Let f ∈ F be such that f(x) = (a)x ; define λx f(x) = (e)a. This is a correct
definition : indeed, if f(x) = (a′)x, then (e)a = (e)a′, by weak extensionality.
Condition β is satisfied : (λx f(x))c = (e)ac = (a)c = f(c).
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Finally, we check that condition 3 is satisfied : let f ∈ F∞ be defined by some term
t[x, x1, . . . , xk] of L ; consider the term u = λx t (here, and only here, λx is taken
in the sense of chapter 6), and let g ∈ F∞ be the corresponding function. Then we
have (u)x = t in D, and hence (g)x = f . Thus (g(a1, . . . , ak))c = f(c, a1, . . . , ak)
for all a1, . . . , ak, c ∈ D, and therefore, by definition :

λx f(x, a1, . . . , ak) = (e)g(a1, . . . , ak).
Thus we have λx f(x, x1, . . . , xk) = (e)g(x1, . . . , xk) and this function is defined by
the term (e)u, so it is in F∞.

2. Spaces of continuous increasing functions

We will say that an ordered set D is σ-complete if every increasing sequence
an(n ∈ N) of elements of D has a least upper bound. This least upper bound
will be denoted by supn an.
Let D, D′ be two σ-complete ordered sets, and f : D → D′ an increasing
function. We will say that f is σ-continuous increasing (σ-c.i.) if, for every
increasing sequence (an) in D, we have f(supn an) = supn f(an).
Let D, D′, E be σ-complete ordered sets. We may define a structure of
σ-complete ordered set on the cartesian product D ×D′, by putting :

(a, b) ≤ (a′, b′) ⇔ a ≤ a′ and b ≤ b′.

A function f : D × D′ → E is σ-continuous increasing if and only if it is
separately σ-continuous increasing (that is to say : for all a ∈ D and a′ ∈ D′,
f(x, a′) and f(a, x′) are σ-c.i. functions).

The proof is immediate.

Let D, D′ be two σ-complete ordered sets. We may define a structure of
σ-complete ordered set on the set C(D,D′) of all σ-c.i. functions from D to
D′, by putting : f ≤ g ⇔ f(a) ≤ g(a) for every a ∈ D.

If fn(n ∈ N) is an increasing sequence in C(D,D′), its least upper bound is
the function f : D → D′ defined by f(a) = supn fn(a).
Indeed, f is clearly increasing ; it is also σ-continuous : let ak(k ∈ N) be
an increasing sequence in D, and a = supk ak. Then f(a) = supn fn(a) =
supn supk fn(ak) = supn,k fn(ak) = supk supn fn(ak) = supk f(ak).

The next proposition provides a very useful method for constructing func-
tional β-models (and therefore models of combinatory logic).

Proposition 7.10.
The following data define a functional model of λ-calculus :

a σ-complete ordered set D ;
a σ-c.i. function Φ : D → C(D,D) ;
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a σ-c.i. function Ψ : C(D,D)→ D.

This model is a β-model if and only if Φ◦Ψ = Id (on C(D,D)).

This β-model is extensional if and only if we have also : Ψ◦Φ = Id (on D).
In this case, for all a, b ∈ D, a ≤ b if and only if (a)c ≤ (b)c for every c ∈ D.

For all a, b ∈ D, define (a)b = Φ(a)(b) ; then D is an applicative structure,
and the function (a, b) 7→ (a)b from D × D to D is σ-c.i. (obviously, it is
separately σ-c.i.).

Let F = C(D,D) and take F∞ as the set of all σ-c.i. functions from DN to
D which depend only on a finite number of coordinates. For every f ∈ F ,
we put, by definition, λx f(x) = Ψ(f).

It remains to check conditions 1, 2, 3 of the definition of functional models.

It is obvious that each coordinate xi is in F∞. If f, g ∈ F∞, then (f)g is
σ-c.i. (since (a, b) 7→ (a)b is σ-c.i.) and depends only on a finite number
of coordinates ; thus (f)g ∈ F∞. Finally, let f(x, x1, . . . , xk) ∈ F∞. Then
(a1, . . . , ak) 7→ f(x, a1, . . . , ak) is a σ-c.i. function from Dk to F ; hence
(a1, . . . , ak) 7→ λx f(x, a1, . . . , ak) is σ-c.i. from Dk to D, which proves that
λx f ∈ F∞.

The model obtained above is a β-model if and only if Φ◦Ψ = Id on C(D,D)
(by definition of β-models). This β-model is extensional if and only if we
have, also : Ψ◦Φ = Id on D (according to proposition 7.9.iv). Finally, if
(a)c ≤ (b)c for every c ∈ D, then Φ(a) ≤ Φ(b), thus Ψ(Φ(a)) ≤ Ψ(Φ(b)),
since Ψ is increasing, and therefore a ≤ b.

Q.E.D.

3. Spaces of initial segments

Let D be a countable preordered set (recall that a preorder is a reflexive and
transitive binary relation), the preorder on D being denoted by ≤. A subset
a of D will be called an initial segment if, for all α ∈ a and β ≤ α, we have
β ∈ a.
Let a ⊂ D ; the least initial segment containing a is denoted by ā ; it is the
set of lower bounds of the elements of a.

We will denote by S(D) the space of initial segments of D ; the inclusion
relation makes of S(D) a σ-complete ordered set. The set of finite subsets of
D will be denoted by D∗.

On D∗, we define a preorder, still denoted by ≤, by putting :

a ≤ b ⇔ ā ⊂ b̄ ⇔ every member of a is a lower bound of an element of b.

Consider two countable preordered sets D and E ; let D = S(D), E = S(E).
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For every f ∈ C(D, E), we define the trace of f , denoted by tr(f), which is a
subset of D∗×E :

tr(f) = {(a, α) ∈ D∗×E ; α ∈ f(ā)}.

Proposition 7.11. The function tr is an isomorphism of ordered sets from
C(D, E) onto the space S(D∗×E) of initial segments of D∗×E with the
product preorder : (a, α) ≤ (b, β) ⇔ a ≥ b and α ≤ β.
For every X ∈ S(D∗×E), we have X = tr(f), where f ∈ C(D, E) is de-
fined by : f(u) = {β ∈ E; (∃a ∈ D∗)(a ⊂ u and (a, β) ∈ X)}.

Let f ∈ C(D, E) ; then tr(f) is an initial segment of D∗×E : indeed, if
(b, β) ∈ tr(f) and (a, α) ≤ (b, β), then β ∈ f(b̄), ā ⊃ b̄ and α ≤ β. Thus
α ∈ f(b̄) (since f(b̄) is an initial segment of E) and, since f is increasing, we
have f(b̄) ⊂ f(ā), and therefore α ∈ f(ā).
Let f, g ∈ C(D, E) ; if f ≤ g, then tr(f) ⊂ tr(g) : indeed, if (a, α) ∈ tr(f),
then α ∈ f(ā), and hence α ∈ g(ā), since f(ā) ⊂ g(ā).
Conversely, we prove that tr(f) ⊂ tr(g) ⇒ f ≤ g : first, let a be a finite
subset of D ; if α ∈ f(ā), then α ∈ g(ā), (since tr(f) ⊂ tr(g)) and hence
f(ā) ⊂ g(ā).
Now let a be an initial segment of D ; since D is countable, we have, for
instance a = {α0, . . . , αn, . . .}. Let an = {α0, . . . , αn} ∈ D∗ ; ān is an
increasing sequence, the union of which is a. From what has just been proved,
we deduce that f(ān) ⊂ g(ān). Since both f and g are σ-c.i., we therefore
have f(a) = ∪nf(ān) ⊂ ∪ng(ān) = g(a).
Thus, tr is an isomorphism of ordered sets from C(D, E) into S(D∗×E). It
remains to prove that its image is the whole set S(D∗×E).
Let X ∈ S(D∗×E) ; we define f : D → E by taking f(u) = {β ∈ E; ∃a ∈ D∗,
a ⊂ u, (a, β) ∈ X} for every u ∈ D. Indeed, f(u) is an initial segment of E :
if β′ ≤ β ∈ f(u), then there exists a ∈ D∗ such that a ⊂ u and (a, β) ∈ X.
We have (a, β′) ≤ (a, β) in D∗×E, thus (a, β′) ∈ X, and hence β′ ∈ f(u).
Obviously, f is increasing ; it is also σ-continuous : indeed, let un be an
increasing sequence in D, and u = ∪nun. We have f(un) ⊂ f(u) for all n,
thus ∪nf(un) ⊂ f(u). Conversely, if β ∈ f(u), then there exists a ∈ D∗ such
that a ⊂ u and (a, β) ∈ X. Since a is finite, we have a ⊂ un for some n, and
therefore β ∈ f(un). Thus f(u) ⊂ ∪nf(un).
Finally, we prove that tr(f) = X : indeed, if (a, β) ∈ X, then, by definition
of f , we have β ∈ f(ā) (since a ⊂ ā) ; thus (a, β) ∈ tr(f). Conversely, if
(a, β) ∈ tr(f), then β ∈ f(ā), and hence, by definition of f , there exists
a′ ∈ D∗, a′ ⊂ ā, such that (a′, β) ∈ X. Since a′ ⊂ ā, we have a′ ≤ a, thus
(a, β) ≤ (a′, β), and hence (a, β) ∈ X, since X is an initial segment.

Q.E.D.
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We now consider a countable set D, and a function i : D∗×D → D. If
a = {α1, . . . , αn} ∈ D∗ and α ∈ D, then i(a, α) will be denoted by a→ α, or
{α1, . . . , αn} → α.
We assume that a preorder is given on D ; we denote it by ≤ (as well as its
extension to D∗, defined above). Let D = S(D).
We wish to define two σ-c.i. functions :

Φ : D → C(D,D) and Ψ : C(D,D)→ D.

This will be done as follows : there is a natural way of associating with
the function i : D∗×D → D two functions on the power sets denoted by i
and i−1 :

i : P(D∗×D)→ P(D) and i−1 : P(D)→ P(D∗×D).

Let s : P(D) → S(D) and s′ : P(D∗×D) → S(D∗×D) be the functions
defined by :

s(X) (resp. s′(X)) = X = the least initial segment containing X
(X is any subset of D (resp. D∗×D) and X is the set of lower bounds of
elements of X). Thus we may define :
ϕ = s′◦i−1 : S(D)→ S(D∗×D) and ψ = s◦i : S(D∗×D)→ S(D).
Now, by proposition 7.11, tr is an isomorphism of ordered sets from C(D,D)
onto S(D∗×D). Let tr−1 : S(D∗×D) → C(D,D) be the inverse function.
Then, we may define :
Φ = tr−1◦ϕ : S(D)→ C(D,D) and Ψ = ψ◦tr : C(D,D)→ S(D).
Since i, i−1, s, s′ are σ-c.i. functions, Φ and Ψ are also σ-c.i. Thus, by propo-
sition 7.10, (D,Φ,Ψ) defines a functional model of λ-calculus.

Lemma 7.12.
1. u ⊃ Ψ◦Φ(u)(≡ λx(u)x) for every u ∈ D if and only if, for all α, β ∈ D

and a, b ∈ D∗ : b ≥ a and β ≤ α⇒ (b→ β) ≤ (a→ α).
2. u ⊂ Ψ◦Φ(u) for every u ∈ D if and only if, for every γ ∈ D, there exist

α, β ∈ D and a, b ∈ D∗ such that : b ≥ a, β ≤ α and (a→ α) ≤ γ ≤ (b→ β).
In particular, if i is onto, then u ⊂ Ψ◦Φ(u) for every u ∈ D.

Let u ∈ D ; then Ψ◦Φ(u) = ψ◦ϕ(u) = s◦i◦s′◦i−1(u) ; now
s′◦i−1(u) =

{(b, β) ∈ D∗×D ; (∃(a, α) ∈ D∗×D) (b, β) ≤ (a, α), i(a, α) ∈ u}.
Hence Ψ◦Φ(u) =
{γ ∈ D ; (∃(a, α), (b, β) ∈ D∗×D) γ ≤ i(b, β), (b, β) ≤ (a, α), i(a, α) ∈ u}.

1. Suppose that (b, β) ≤ (a, α) ⇒ i(b, β) ≤ i(a, α) (i is a homomorphism
with respect to ≤) ; then it is immediate that Ψ◦Φ(u) ⊂ u for every u ∈ D.
Conversely, suppose that Ψ◦Φ(u) ⊂ u for every u ∈ D, and let α, β ∈ D and
a, b ∈ D∗ be such that (b, β) ≤ (a, α). Take u as the set of lower bounds of
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i(a, α), and let γ = i(b, β). It follows immediately that γ ∈ Ψ◦Φ(u), thus
γ ∈ u, and therefore i(b, β) ≤ i(a, α).

2. Suppose that, for every γ ∈ D, there exist α, β ∈ D, a, b ∈ D∗ such that
(b, β) ≤ (a, α) and i(a, α) ≤ γ ≤ i(b, β). If γ ∈ u, then i(a, α) ∈ u since u is
an initial segment, thus γ ∈ Ψ◦Φ(u).
Conversely, suppose u ⊂ Ψ◦Φ(u) for every u ∈ D. Let γ ∈ D, and take u
as the set of lower bounds of γ. Then γ ∈ Ψ◦Φ(u), and hence there exist
α, β ∈ D and a, b ∈ D∗ such that : γ ≤ i(b, β) ; (b, β) ≤ (a, α) ; i(a, α) ∈ u.
Therefore, i(a, α) ≤ γ.

Q.E.D.

We may give explicit definitions of Ψ and Φ : let f ∈ C(D,D) ; then
Ψ(f) = s◦i(tr(f)), that is :

Ψ(f) = {β ∈ D; (∃α ∈ D)(∃a ∈ D∗) β ≤ i(a, α) and α ∈ f(ā)}.
Now let u, v ∈ D ; then tr(Φ(u)) = ϕ(u) ; thus, by proposition 7.11 (where
we take X = ϕ(u)) :
Φ(u)(v) = {β ∈ D ; ∃b ∈ D∗, b ⊂ v, (b, β) ∈ ϕ(u)}, that is to say
Φ(u)(v) = {β ∈ D ; ∃a, b ∈ D∗, ∃α ∈ D, b ⊂ v, (b, β) ≤ (a, α), i(a, α) ∈ u}.
Now condition (b, β) ≤ (a, α) may be written b̄ ⊃ ā and β ≤ α. Since v is an
initial segment and b ⊂ v, we have b̄ ⊂ v, and hence a ⊂ v. Finally :

Φ(u)(v) = {β ∈ D; (∃α ∈ D)(∃a ∈ D∗) a ⊂ v, β ≤ α, i(a, α) ∈ u}.

The model defined by (D,Φ,Ψ) is a functional β-model if and only if Φ◦Ψ
is the identity function on C(D,D), or, equivalently, ϕ◦ψ is the identity
function on S(D∗×D) (since tr is an isomorphism). Now, if X ∈ S(D∗×D),
then ψ(X) = {β ; (∃(a, α) ∈ X) β ≤ i(a, α)}. Thus
ϕ◦ψ(X) = {(c, γ); (∃(a, α), (b, β) ∈ D∗×D) (c, γ) ≤ (b, β), i(b, β) ≤ i(a, α)
and (a, α) ∈ X}.
Clearly, X ⊂ ϕ◦ψ(X) ; ϕ◦ψ is the identity function if and only if, for every
initial segment X of D∗×D :
(c, γ) ≤ (b, β), i(b, β) ≤ i(a, α), and (a, α) ∈ X ⇒ (c, γ) ∈ X.
By taking (c, γ) = (b, β), and X as the set of lower bounds of (a, α), we see
that this condition can be written :

i(b, β) ≤ i(a, α)⇒ (b, β) ≤ (a, α)

or, equivalently :

(b→ β) ≤ (a→ α)⇒ b ≥ a and β ≤ α.

Let us notice that, if D 6= ∅, the β-model (D,Φ,Ψ) is non-trivial : indeed, it
has at least two elements, namely ∅ and D.
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The model (D,Φ,Ψ) is extensional if and only if we have, also, Ψ◦Φ(u) = u
for every u ∈ D. By applying lemma 7.12, we obtain the following conditions :

i(b, β) ≤ i(a, α)⇔ (b, β) ≤ (a, α) for all α, β ∈ D and a, b ∈ D∗ ;
for every γ ∈ D, there exist α, β ∈ D and a, b ∈ D∗, such that i(a, α) ≤

γ ≤ i(b, β) and (b, β) ≤ (a, α).

Now, by the previous condition, we therefore have i(b, β) ≤ i(a, α), and hence
γ ≤ i(a, α) ≤ γ. So we have proved :

Theorem 7.13. Let D be a countable preordered set, and i a function from
D∗×D into D. Define Φ : D → C(D,D) and Ψ : C(D,D)→ D as follows :
Φ(u)(v) (also denoted by (u)v)

= {β ∈ D; (∃α ≥ β)(∃a ∈ D∗) a ⊂ v and (a→ α) ∈ u} ;
Ψ(f) (also denoted by λx f(x))

= {β ∈ D; (∃α ∈ D)(∃a ∈ D∗) β ≤ (a→ α) and α ∈ f(ā)}.
Then (D,Φ,Ψ) defines a functional model of λ-calculus, which is a β-model
(necessarily non-trivial) if and only if :

(b→ β) ≤ (a→ α)⇒ b ≥ a and β ≤ α for all α, β ∈ D and a, b ∈ D∗.
(D,Φ,Ψ) is an extensional β-model if and only if :

1. (b→ β) ≤ (a→ α)⇔ b ≥ a and β ≤ α for all α, β ∈ D and a, b ∈ D∗.
2. For every γ ∈ D, there exist α ∈ D and a ∈ D∗ such that
γ ≤ (a→ α) ≤ γ.

In particular, if i is onto, and if condition 1 is satisfied, then (D,Φ,Ψ) is an
extensional β-model.

Non-extensional models (P(ω) and Engeler’s model)

Here we take D as any countable set with the trivial preorder :
α ≤ β ⇔ α = β. The induced preorder on D∗ is : a ≤ b⇔ a ⊂ b.
We have ā = a for every a ∈ D∗.
Any subset of D is an initial segment, thus D = P(D).
We take i as any one-one function from D∗×D to D. Clearly, the following
condition holds : (b→ β) ≤ (a→ α)⇒ b ≥ a and β ≤ α. We therefore have
a β-model of λ-calculus.
Note that, in this case, the definitions of Φ and Ψ are :

(u)v = {α ∈ D ; ∃a ∈ D∗, a ⊂ v and (a→ α) ∈ u} for all u, v ∈ D ;
λx f(x) = {a→ α ; α ∈ D, a ∈ D∗ and α ∈ f(a)} for every f ∈ C(D,D).

By lemma 7.12(1), this model does not satisfy the condition u ⊃ Ψ◦Φ(u),
so it cannot be extensional ; indeed, this condition can be written :
b ≥ a and α ≤ β ⇒ (b→ β) ≤ (a→ α), or equivalently :
b ⊃ a and α = β ⇒ b = a and α = β, which obviously does not hold.



122 Lambda-calculus, types and models

We obtain Plotkin and Scott’s model P(ω) by taking D = N ; i is the “ stan-
dard ” one-to-one function from D∗×D onto D defined by :

i(e, n) =
1

2
(m+ n)(m+ n+ 1) + n, where m =

∑
k∈e

2k.

Engeler’s model DA is obtained as follows :
Let A be either a finite or a countable set, and D be the least set containing
A such that α ∈ D, a ∈ D∗ ⇒ (a, α) ∈ D (it is assumed that none of the
members of A are ordered pairs). The one-one function i : D∗×D → D is
defined by taking i(a, α) = (a, α).

Extensional models

Theorem 7.14. Let D be a countable set, i a one-to-one mapping of D∗×D
into D, and ≤0 a preorder on D such that :

(b→ β) ≤0 (a→ α)⇒ a ≤0 b and β ≤0 α.
Then, there exists a preorder on D, which we denote by ≤, as well as its
extension to D∗, with the following properties :
i) β ≤0 α ⇒ β ≤ α.
ii) (b→ β) ≤ (a→ α) ⇔ a ≤ b and β ≤ α.

Remark. In view of theorem 7.13, we therefore obtain a non-trivial extensional
β-model. We have the following definitions for functions Φ and Ψ in this β-model
(u, v range in D, while f ranges in C(D,D)) :

Φ(u)v ≡ (u)v = {α ∈ D; ∃a ∈ D∗, a ⊂ v and (a→ α) ∈ u} ;
Ψ(f) ≡ λx f(x) = {a→ α; α ∈ D, a ∈ D∗, α ∈ f(ā)}.

Indeed, if β ≤ a → α and α ∈ f(ā), then β = a′ → α′, with a ≤ a′ (thus ā ⊂ ā′)
and α′ ≤ α. Hence α′ ∈ f(ā) and finally α′ ∈ f(ā′).

Proof of the theorem : let R be a preorder on D ; the corresponding preorder
on D∗ will be denoted by R∗. Thus, by definition, for all a, b ∈ D∗ :

aR∗b⇔ (∀α ∈ a)(∃β ∈ b)αRβ.

Consider the following condition, relative to the preorder R :
(C) aR∗b and β Rα⇒ (b→ β)R(a→ α) for all a, b ∈ D∗ and α, β ∈ D.
The intersection S of any set R of preorders which satisfy condition (C) still
satisfies (C) : indeed, if aS∗b and β S α, then, clearly, aR∗b and β Rα for
every R ∈ R. Hence, (b→ β)R(a→ α), and therefore (b→ β)S(a→ α).
This allows us to define the least preorder R0 on D which contains ≤0 and
satisfies condition (C) (R0 is the intersection of all preorders which satisfy
these conditions ; there exists at least one such preorder, namelyD×D). Now,
since i is one-to-one, we can define a binary relation S0 on D, by putting :
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(b→ β)S0 (a→ α)⇔ aR∗0 b and β R0 α. Obviously, S0 is a preorder, because
i is one-one, and both R0 and R∗0 are preorders.
Now S0 ⊂ R0, since R0 satisfies condition (C). It follows immediately that
S∗0 ⊂ R∗0. Let a, b ∈ D∗, α, β ∈ D be such that aS∗0 b and β S0 α ; then we
have aR∗0 b and β R0 α, and hence, by definition of S0, (b → β)S0 (a → α).
Thus S0 satisfies condition (C).
Moreover, S0 contains ≤0 : indeed, if β ≤0 α, then α = (a′ → α′) and
β = (b′ → β′) ; by the hypothesis on the preorder ≤0, we have a′ ≤0 b

′ and
β′ ≤0 α

′, and thus (b′ → β′)S0 (a′ → α′) by definition of S0.
By the minimality of R0, it follows that R0 ⊂ S0, and therefore R0 = S0.
Thus, by definition of S0 :

(b→ β)R0 (a→ α) ⇔ aR∗0 b and β R0 α.
So R0 satisfies conditions (i) and (ii) of the theorem, and can be taken as the
desired preorder ≤.

Proposition 7.15. For all α, β ∈ D, β ≤ α if and only if there exist k ≥ 0,
a1, . . . , ak, b1, . . . , bk ∈ D∗ and α′, β′ ∈ D, such that ai ≤ bi (1 ≤ i ≤ k),
β′ ≤0 α

′ and α = a1, . . . , ak → α′, β = b1, . . . , bk → β′.

The notation a1, a2, . . . , ak → α′ stands for a1 → (a2 → . . .→ (ak → α′) . . .).

Remark. In case k = 0, we understand that the condition means β ≤0 α.

Proof of the proposition : we still use the notation R0 for the preorder ≤.
We define a binary relation R on D by : β Rα ⇔
there exist k ≥ 0, a1, . . . , ak, b1, . . . , bk ∈ D∗ and α′, β′ ∈ D, such that aiR

∗
0 bi

(1 ≤ i ≤ k), β′ ≤0 α
′ and α = a1, . . . , ak → α′, β = b1, . . . , bk → β′.

We first prove that R is a preorder.
Let α, β, γ ∈ D be such that β Rα and γ Rβ. Thus we have :
α = a1, . . . , ak → α′, β = b1, . . . , bk → β′, with aiR

∗
0 bi, β

′ ≤0 α
′ and

β = b′1, . . . , b
′
l → β′′, γ = c1, . . . , cl → γ′, with b′j R

∗
0 cj, γ

′ ≤0 β
′′.

If l ≥ k, then (using both expressions for β, and the fact that i is one-one) :
b1 = b′1, . . . , bk = b′k and β′ = b′k+1, . . . , b

′
l → β′′. Since β′ ≤0 α

′, we have, by
the hypothesis on ≤0 and the fact that i is onto :
α′ = a′k+1, . . . , a

′
l → α′′ with β′′ ≤0 α

′′, and a′i ≤0 b
′
i (k+1 ≤ i ≤ l) ; therefore

γ′ ≤0 α
′′ and a′iR

∗
0ci for k + 1 ≤ i ≤ l.

Thus α = a1, . . . , ak, a
′
k+1, . . . , a

′
l → α′′ and γ = c1, . . . , ck, ck+1, . . . , cl → γ′.

Now b′iR
∗
0 ci(1 ≤ i ≤ l) and aiR

∗
0 bi, and thus aiR

∗
0 ci for 1 ≤ i ≤ k (since

b′i = bi). It follows that γ Rα.
The proof is similar in case k ≥ l.

We now prove that R ⊂ R0 : if β Rα, then we have α = a1, . . . , ak → α′,
β = b1, . . . , bk → β′, with aiR

∗
0 bi (1 ≤ i ≤ k) and β′ ≤0 α′. We prove

β R0 α by induction on k : this is obvious when k = 0. Assume the result for
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k − 1 ; then β′′R0 α
′′, with α′′ = a2, . . . , ak → α′, β′′ = b2, . . . , bk → β′. Now

α = a1 → α′′, β = b1 → β′′, and a1R
∗
0 b1, β

′′R0 α
′′ ; thus β R0 α.

Finally, we prove that R satisfies condition (C) :

Let a, b ∈ D∗, α, β ∈ D be such that aR∗ b and β Rα. Since R ⊂ R0, it
follows that aR∗0 b. Now β Rα and therefore, by definition of R :

α = a1, . . . , ak → α′, β = b1, . . . , bk → β′, with aiR
∗
0 bi (1 ≤ i ≤ k) and

β′ ≤0 α
′. Thus :

a→ α = a, a1, . . . , ak → α′, and b→ β = b, b1, . . . , bk → β′. Now aR∗0 b, and
hence (b→ β)R (a→ α).

Since R ⊂ R0 and R satisfies (C), we see that R0 = R : this is the expected
conclusion.

Q.E.D.

Models over a set of atoms (Scott’s model D∞)

Let A be a finite or countable non-empty set, the elements of which will be
called atoms. It is convenient to assume that no element of A is an ordered
pair. We define, inductively, a set D of formulas, and a one-to-one function
i : D∗×D → D (i(a, α) will also be denoted by a→ α) :

• Every atom α is a formula ;

Let α be a formula and a be a finite set of formulas ; then :

• If α ∈ A (α is an atom) and a = ∅, then we take ∅ → α = i(∅, α) = α.

• Otherwise, the ordered pair (a, α) is a formula, and we take :

a→ α = i(a, α) = (a, α).

It follows that the atoms are the only formulas which are not ordered pairs.

Clearly, i is onto ; it is also one-one : if a → α = b → β, then, either the
formula a → α is an atom, and then a = b = ∅ and α = β, or it is not an
atom, and then (a, α) = (b, β).

Every formula α can be written in the form α = a1, . . . , ak → α0, where
k ≥ 0, α0 ∈ A, ai ∈ D∗. This expression is unique if we impose ak 6= ∅, or
k = 0. Thus the other possible expressions for α are :

α = a1, . . . , ak, ∅, . . . , ∅ → α0.

The rank of a formula α, denoted by rk(α), is now defined by induction :
rk(α) = 0 whenever α is an atom ;
rk(a→ α) = 1 + sup(rk(α), sup{rk(ξ); ξ ∈ a}) if a 6= ∅ or α is not an atom.

We consider a preorder on A, denoted by ≤. We extend it to the whole set
D by defining β ≤ α by induction on rk(α) + rk(β), as follows :

If α, β ∈ A, then β ≤ α is already defined.
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If rk(α) + rk(β) ≥ 1, then we write α = a→ α′, β = b→ β′, and we put
β ≤ α⇔ β′ ≤ α′ and b ≥ a (every element of a is smaller than some element
of b).

Note that rk(α′) + rk(β′) < rk(α) + rk(β) ; also b ≥ a is already defined :
indeed, if α0 ∈ a and β0 ∈ b, then rk(α0) + rk(β0) < rk(α) + rk(β).

From this definition of the preorder ≤ on D, it follows that :

b→ β ≤ a→ α⇔ b ≥ a and β ≤ α ;

this shows that we have defined an extensional β-model of λ-calculus (theo-
rem 7.13).

Remark. This model could be obtained by using theorem 7.14 : define α ≤0 β

for α, β ∈ D, by : α = β or (α, β ∈ A and α ≤ β). It is easy to check that ≤0 is a
preorder and that (b→ β) ≤0 (a→ α) ⇒ a ≤0 b and β ≤0 α.

Below, we will take the trivial preorder on A (α ≤ β ⇔ α = β). In that case,
the atoms are the maximal elements ; among the upper bounds of a given
formula a1, . . . , ak → α0 (α0 ∈ A), there is one and only one atom : α0. Let
α, β ∈ D ; then α and β are not ≤-comparable unless there is an atom greater
than α and β. If α = a1, . . . , ak → α0 and β = b1, . . . , bl → β0 (α0, β0 ∈ A),
then β ≤ α if and only if α0 = β0, l ≥ k and a1 ≤ b1, . . . , ak ≤ bk.

4. Applications

i) Embeddings of applicative structures

Theorem 7.16. Every applicative structure may be embedded in a model of
ECL (extensional combinatory logic, see page 99).

Let A be an applicative structure (that is to say a set together with a bi-
nary function). We will assume that A is countable (the results below may
be extended to the case where A is uncountable by means of the compact-
ness theorem of predicate calculus). We consider the functional β-model
constructed as above (page 124), with A as the set of atoms.
We define J : A→ D by taking, for every α ∈ A :

J(α) = {d1, . . . , dk → δ ; k ≥ 0, δ ∈ D, d1, . . . , dk ∈ D∗,
∃α1, . . . , αk ∈ A, α1 ∈ d1, . . . , αk ∈ dk, δ ≤ (α)α1 . . . αk}.

Note that, if α, α1, . . . , αk ∈ A, then (α)α1 . . . αk ∈ A (A is an applicative
structure).

For every α ∈ A, J(α) is an initial segment of D ; indeed :
if d1, . . . , dk → δ ∈ J(α) and ξ ≤ d1, . . . , dk → δ, then ξ = c1, . . . , ck → γ,
with ci ≥ di and γ ≤ δ. Since δ ≤ (α)α1 . . . αk, we have γ ≤ (α)α1 . . . αk ;
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since αi ∈ di, αi is smaller than some element of ci ; now αi is an atom, thus
it is maximal, and hence αi ∈ ci. Therefore, ξ = c1, . . . , ck → γ ∈ J(α).
We have seen that D = S(D) is a model of ECL. Now we prove that J is
the desired embedding of A into D.
J is one-one : indeed, we have α ∈ J(α) for every α ∈ A (take k = 0 in the
definition of J(α)). Therefore, if J(α) = J(α′), then α′ ∈ J(α) ; α′ is of the
form α′ = d1, . . . , dk → δ, with αi ∈ di ; now, since α′ is an atom, we have
d1 = . . . = dk = ∅, and hence k = 0. It then follows from the definition of
J(α) that α′ ≤ α ; thus α′ = α.
(J(α))J(α′) ⊂ J(αα′) : let ξ ∈ (J(α))J(α′) ; by theorem 7.13, there exists
d0 ⊂ J(α′) such that d0 → ξ ∈ J(α). By definition of J(α), we have :
ξ = d1, . . . , dk → δ, α0, α1, . . . , αk ∈ A with αi ∈ di and δ ≤ (α)α0α1 . . . αk ;
it follows that α0 ∈ J(α′), and hence α0 = α′ (see above).
Thus δ ≤ (αα′)α1 . . . αk, and therefore ξ ∈ J(αα′).
J(αα′) ⊂ (J(α))J(α′) : if ξ ∈ J(αα′), then ξ = d1, . . . , dk → δ and we
have α1, . . . , αk ∈ A with αi ∈ di and δ ≤ (αα′)α1 . . . αk. Let d0 = {α′} ;
then d0 → ξ ∈ J(α) by definition of J(α) ; now d0 ⊂ J(α′), and hence
ξ ∈ (J(α))J(α′).

Q.E.D.

ii) Extensional combinatory logic with couple

Let L be the language of combinatory logic (see chapter 6), with additional
constant symbols c, p1, p2. The term (c)xy is called the couple (or ordered
pair) x, y ; the term (p1)x(resp. (p2)x) is called the first (resp. the second)
projection of x.

We denote by ECLC (for extensional combinatory logic with couple) the
following system of axioms, which an extension of ECL (extensional combi-
natory logic, see page 99) :

ECL, (p1)(c)xy = x, (p2)(c)xy = y, ((c)(p1)x)(p2)x = x ;
(p1)xy = (p1)(x)y, (p2)xy = (p2)(x)y.

The first three axioms mean that x (resp. y) is the first (resp. the second)
projection of the couple (c)xy, and that each x is identical to the couple
formed by p1x, p2x. The last two axioms mean that, for every x, the function
defined by p1x (resp. p2x) is p1◦x (resp. p2◦x).
As a consequence of these axioms, we have :

(c)xyz = ((c)(x)z)(y)z.

Indeed, according to the third axiom, it is sufficient to prove both :
(p1)(c)xyz = (p1)((c)(x)z)(y)z and (p2)(c)xyz = (p2)((c)(x)z)(y)z.

Now we have : (p1)(c)xyz = ((p1)(c)xy)z (4th axiom) = (x)z (1st axiom)
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= (p1)((c)(x)z)(y)z (1st axiom). Same proof for p2.
We also deduce :

p1c = 1, p2c = 0, (c)p1p2 = I.

Indeed (p1c)xy = ((p1)(c)x)y (4th axiom) = (p1)((c)x)y (4th axiom) = x
(1st axiom), and hence p1c = 1 by extensionality. Moreover, (cp1p2)x =
((c)(p1)x)(p2)x (see above) = x (3rd axiom), thus cp1p2 = I by extensionality.

Theorem 7.17.
ECLC has a non-trivial model (that is a model of cardinality > 1).

Consider an infinite countable set of atoms A, with the trivial preorder. Let
A = A1 ∪A2 be some partition of A in two infinite subsets. Let Di (i = 1, 2)
be the set of lower bounds in D of the elements of Ai. Then D = D1 ∪D2 is
a partition of D in two initial segments.
Let ϕ1 : A → A1, ϕ2 : A → A2 be two one-to-one mappings ; they can be
extended to isomorphisms of ordered sets from D onto D1, D2 : whenever
α = a1, . . . , ak → α0 (α0 ∈ A), take ϕ1(α) = a1, . . . , ak → ϕ1(α0) and
ϕ2(α) = a1, . . . , ak → ϕ2(α0).
Let D = S(D) ; the function ϕ−1

1 : P(D) → P(D) maps S(D) into S(D),
since ϕ1 is an isomorphism from D onto D1. Now this function is clearly
σ-c.i., so there exists p1 ∈ D such that (p1)u = ϕ−1

1 (u) for every u ∈ D.
Similarly, there is a p2 ∈ D such that (p2)u = ϕ−1

2 (u).
Also, we may define c ∈ D such that (c)uv = ϕ1(u) ∪ ϕ2(v) for all u, v ∈ D :
indeed, since ϕ1 and ϕ2 are isomorphisms of ordered sets, ϕ1(u) ∪ ϕ2(v) is
an initial segment of D whenever u, v ∈ D. Thus, this function maps D×D
into D, and it is σ-c.i. : this yields the existence of c.
We therefore have :

(p1)(c)uv = ϕ−1
1 (ϕ1(u) ∪ ϕ2(v)) = u and similarly (p2)(c)uv = v.

Also, ((c)(p1)u)(p2)u = ϕ1(ϕ
−1
1 u)∪ϕ2(ϕ

−1
2 u) = (u∩D1)∪(u∩D2) = u. Thus,

the first three axioms of ECLC are satisfied in the model under consideration.
Moreover, we have α ∈ (p1u)v ⇔ (∃a ⊂ v)(a → α) ∈ p1u (theorem 7.13) ;
now, by definition of p1u : α ∈ (p1u)v ⇔ (∃a ⊂ v)ϕ1(a → α) ∈ u ; on
the other hand, ϕ1(a → α) = a → ϕ1(α) by definition of ϕ1, and hence
α ∈ (p1u)v ⇔ (∃a ⊂ v)a → ϕ1(α) ∈ u ; therefore, we obtain α ∈ (p1u)v ⇔
ϕ1(α) ∈ (u)v, that is to say α ∈ (p1u)v ⇔ α ∈ ϕ−1

1 ((u)v), and finally :
(p1)uv = (p1)(u)v. This proves the last two axioms.

Q.E.D.

We now give a set of equational formulas, denoted by ECLC=, which axiom-
atize the universal consequences of ECLC :
ECL= (a set of equations which axiomatize the universal consequences of
ECL, see chapter 6, page 104) ;
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λxλy(p1)xy = λxλy x ; λxλy(p2)xy = λxλy y ; λx((c)(p1)x)(p2)x = λxx ;
λxλy(p1)xy = λxλy(p1)(x)y ; λxλy(p2)xy = λxλy(p2)(x)y.
Clearly, these formulas are universal consequences of ECLC. Conversely,
let M be a model of these formulas : since M satisfies ECL=, it can be
embedded in a model of ECL, which satisfies the last five axioms (these
are equations involving closed terms : since they hold in M, they also hold
in any extension of M). Thus M is embedded in a model of ECLC, and
therefore it satisfies all universal consequences of ECLC.

Theorem 7.18. ECLC is not equivalent to a system of universal axioms.

It follows that neither CL nor ECL are equivalent to systems of universal
axioms, since ECLC is obtained by adding universal axioms either to CL or
to ECL.

Proof : it suffices to exhibit a submodel of the above model of ECLC, in
which the extensionality axiom fails.
With each formula α ∈ D, we associate a value |α| ∈ {0, 1}, defined by
induction on the rank of α, as follows :

if α is an atom, then |α| = 0 ;
if rk(α) ≥ 1, say α = a → β, then we define |a| = inf{|γ|; γ ∈ a} (note

that |γ| is already defined since rk(γ) < rk(α) ; also, if a = ∅, then |a| = 1).
Then we take |α| = |a| → |β|, where ε → ε′ is defined in the usual way for
ε, ε′ ∈ {0, 1} (|β| is already defined since rk(β) < rk(α)).

For every subset u of D (particularly for u ∈ D), we define |u| = inf{|α|;
α ∈ u}.

Lemma 7.19. If α, β ∈ D and α ≤ β, then |α| ≥ |β|.

The proof is by induction on rk(α)+rk(β). If α, β are atoms, then α ≤ β ⇒
α = β. Otherwise, we have α = a → γ, β = b → δ. Since α ≤ β, we have
a ≥ b and γ ≤ δ.
Suppose |α| < |β|, that is |α| = 0 and |β| = 1 ; thus |a| = 1 and |γ| = 0.
Since a ≥ b, every element of b is smaller than some element of a ; therefore
|b| = 1 (if b = ∅, this is obvious ; if b 6= ∅, it follows from the induction
hypothesis). Since |β| = |b| → |δ| = 1, it follows that |δ| = 1 ; since γ ≤ δ,
we have, by induction hypothesis, |γ| ≥ |δ|, and hence |γ| = 1, which is a
contradiction.

Q.E.D.

Lemma 7.20. Let u ∈ D. Then |u| = 1 if and only if |(u)v| = 1 for every
v ∈ D such that |v| = 1.
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Let u, v ∈ D be such that |u| = |v| = 1 ; we prove that |(u)v| = 1 : if α ∈ uv,
then a ⊂ v and a → α ∈ u ; thus |a| = |a → α| = 1, and therefore |α| = 1,
by definition of |a→ α|.
Conversely, suppose that |u| = 0 ; then there exists α ∈ u such that |α| = 0.
Since i is onto, we have α = b→ β for some b ∈ D∗ and β ∈ D. Thus |b| = 1
and |β| = 0. Let v ∈ D be the set of lower bounds of the elements of b. By
lemma 7.19, we have |v| = 1 ; now β ∈ (u)v since b ⊂ v and b → β ∈ u.
Since |β| = 0, we have |(u)v| = 0.

Q.E.D.

Lemma 7.21. Let u ∈ D and k be an integer. Then |u| = 1 if and only if
|(u)v1 . . . vk| = 1 for all v1, . . . , vk ∈ D such that |v1| = . . . = |vk| = 1.

This follows immediately from lemma 7.20, by induction on k.
Q.E.D.

Lemma 7.22. |K| = |S| = |p1| = |p2| = |c| = 1.

The considered model satisfies ECL, and therefore the axiom (K)xy = x.
Thus (K)uv = u for all u, v ∈ D. Hence, |u| = |v| = 1 ⇒ |(K)uv| = 1 ;
therefore, |K| = 1, by lemma 7.21.
Similarly, we have (S)uvw = ((u)w)(v)w for all u, v, w ∈ D. If |u| = |v| =
|w| = 1, then |((u)w)(v)w| = 1 by lemma 7.20, and hence |(S)uvw| = 1.
Therefore, |S| = 1 (lemma 7.21).
Note that, for every formula α ∈ D, we have |α| = |ϕ1(α)| = |ϕ2(α)| : this
is immediate from the definition of ϕ1, ϕ2, by induction on rk(α). Now, by
definition of p1, we have α ∈ (p1)u⇔ ϕ1(α) ∈ u, for every u ∈ D. Therefore,
if |u| = 1, then |α| = 1 for every α ∈ (p1)u, and hence |(p1)u| = 1. It follows
that |p1| = 1 (lemma 7.21). Similarly, |p2| = 1. Finally, for every formula
α ∈ D, and all u, v ∈ D, we have α ∈ (c)uv ⇔ α ∈ ϕ1(u) or α ∈ ϕ2(v).
If |u| = |v| = 1, then |ϕ1(u)| = |ϕ2(v)| = 1, and hence |α| = 1 for every
α ∈ (c)uv ; thus |(c)uv| = 1, and therefore |c| = 1 by lemma 7.21.

Q.E.D.

It follows that |t| = 1 for every closed term t.

Let D0 = {α ∈ D ; |α| = 1} ; by lemma 7.19, D0 is an initial segment of D.
Then we define D0 ⊂ D by taking D0 = {u ∈ D ; |u| = 1}. So D0 is the
set of initial segments of D0. By lemma 7.20, D0 is closed under Ap ; by
lemma 7.22, it contains K,S, p1, p2, c. Thus it is a submodel of D. We will
see that D0 is the desired submodel of D.
We define a mapping ϕ : D → D by taking ϕ(u) = u ∩D0 for every u ∈ D.
Clearly, ϕ is σ-c.i. ; let f = λxϕ(x) ∈ D, therefore (f)u = u ∩D0 for every
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u ∈ D. If I = λxx, then (f)u = (I)u = u for every u ∈ D0. By lemma 7.20,
it follows that |f | = |I| = 1, and hence f, I ∈ D0.
Now D ∈ D (the whole set D is an initial segment), and (f)D = D0 6= D =
(I)D (indeed, D0 contains no atom). Thus f 6= I, and therefore D0 does not
satisfy the extensionality axiom.

Q.E.D.

In fact, D0 does not even satisfy the formula ∀a(∀x(ax = x) → a = I).
Therefore, we have proved the following strenghtening of theorem 7.18 :

Theorem 7.23. The set of universal consequences of ECLC (and also, a
fortiori, of ECL) does not imply the formula ∀a(∀x(ax = x)→ a = I).

Recall that the set of universal consequences of ECLC (resp. ECL) is equiv-
alent to the equations ECLC= (resp. ECL=) given above, page 127 (resp.
in chapter 6, page 104).

5. Retractions

Let D = S(D) be a β-model of λ-calculus. Given f, g ∈ D, we define
f ◦g = λx(f)(g)x ∈ D ; clearly, ◦ is an associative binary operation on D.
An element ε ∈ D will be called a retraction if ε◦ε = ε. Then the image
of ε, which will be called a retract, and will be denoted by Im(ε), is the set :
{u ∈ D ; (ε)u = u}.
Remark. Since S(D) is a complete lattice and Im(ε) is the set of fixed points of ε

(considered as a σ-c.i. function from D to D), we see that every retract is a subset
of S(D) which is a complete lattice ; this follows from a theorem due to Tarski,
which claims that the set of fixed points of a monotone function on a complete
lattice is a complete lattice [Tar55].

For every retraction ε, the retract Im(ε) is a σ-complete subspace of D :
let un (n ∈ N) be an increasing sequence in Im(ε), and u = ∪nun ; then
u ∈ Im(ε) (indeed, we have (ε)u = u since ε defines a σ-c.i. function on D).
Moreover, it is easy to prove that, if εn (n ∈ N) is an increasing sequence
of retractions, then also ε = ∪nεn is a retraction (indeed, (f, g) 7→ f ◦g is a
σ-c.i. function on D×D).

Proposition 7.24. If ε, ε′ are retractions, then also
ε × ε′ = λxλf((f)(ε)(x)1)(ε′)(x)0 and ε;ε′ = λyλx(ε′)(y)(ε)x = λy ε′◦y◦ε
are retractions.

Indeed, we have (ε × ε′)(ε × ε′)u = λf [(f)(ε)(ε × ε′)u1](ε′)(ε × ε′)u0. Now
(ε× ε′)u1 = (ε)(u)1 and (ε× ε′)u0 = (ε′)(u)0 ; thus (ε× ε′)(ε× ε′)u = (ε× ε′)u
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for every u ∈ D. Therefore, (ε×ε′)◦(ε×ε′) = λx(ε×ε′)(ε×ε′)x = λx(ε×ε′)x.
Now λx(ε× ε′)x = ε× ε′ by definition of ε× ε′.
On the other hand, we have, for every v ∈ D :
(ε;ε′)(ε;ε′)v = λx(ε′)((ε;ε′)v)(ε)x ; now, for every u ∈ D :
((ε;ε′)v)(ε)u = (ε′)(v)(ε)(ε)u = (ε′)(v)(ε)u. Thus
(ε;ε′)(ε;ε′)v = λx(ε′)(ε′)(v)(ε)x = λx(ε′)(v)(ε)x = (ε;ε′)v
for every v ∈ D. It follows that :
(ε;ε′)◦(ε;ε′) = λy(ε;ε′)(ε;ε′)y = λy(ε;ε′)y.
Now, by definition of ε;ε′, we have λy(ε;ε′)y = ε;ε′.

Q.E.D.

The retract Im(ε×ε′) is the set of all “ couples ” λf(f)aa′ such that a ∈ Im(ε)
and a′ ∈ Im(ε′).

Proposition 7.25. The retract Im(ε;ε′) is canonically isomorphic with the
space C(Im(ε), Im(ε′)) of σ-c.i. functions from Im(ε) to Im(ε′).

We now define two σ-c.i. functions :

F : Im(ε;ε′)→ C(Im(ε), Im(ε′)) and G : C(Im(ε), Im(ε′))→ Im(ε;ε′).

Whenever a ∈ Im(ε;ε′), F (a) is the σ-c.i. function defined on Im(ε) by
F (a)(u) = au. We do have au ∈ Im(ε′) since a = (ε;ε′)a = ε′◦a◦ε and
hence au = (ε′)(a)(ε)u. Clearly, F is σ-c.i.

Whenever ϕ ∈ C(Im(ε), Im(ε′)), we define ψ ∈ C(D,D) by taking ψ(x) =
ϕ(εx). Then we put aϕ = λxψ(x) and G(ϕ) = ε′◦aϕ◦ε.
Thus G(ϕ) = (ε;ε′)aϕ, and hence G(ϕ) ∈ Im(ε;ε′). Moreover, G is σ-c.i.
since it is obtain by composing σ-c.i. functions.

We now prove that F and G are isomorphisms, each of them being the inverse
of the other.

G(F (a)) = a for every a ∈ Im(ε;ε′) :

Let F (a) = ϕ ; then G(F (a)) = ε′◦aϕ◦ε. Now aϕ = λxϕ(εx) = λx(a)(ε)x ;
on the other hand, a = ε′◦a◦ε since a ∈ Im(ε;ε′) ; thus (a)(ε)x =
(ε′)(a)(ε)x. It follows that aϕ = λx(ε′)(a)(ε)x = ε′◦a◦ε = a. Therefore
G(F (a)) = ε′◦a◦ε = a.

F (G(ϕ)) = ϕ for every ϕ ∈ C(Im(ε), Im(ε′)) :

Let u ∈ Im(ε). We have G(ϕ) = ε′◦aϕ◦ε, thus :

F (G(ϕ))(u) = (ε′◦aϕ◦ε)u = (ε′)(aϕ)(ε)u = (ε′)(aϕ)u since (ε)u = u. Now :

(aϕ)u = ϕ(εu) (by definition of aϕ) = ϕ(u), and (ε′)(aϕ)u = (ε′)ϕ(u) = ϕ(u)
since ϕ(u) ∈ Im(ε′). Thus F (G(ϕ))(u) = ϕ(u) for every u ∈ Im(ε), and
therefore F (G(ϕ)) = ϕ.

Q.E.D.
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Extensional β-model constructed from a retraction

Let ε be a retraction 6= ∅, such that ε = ε;ε ; take D′ = Im(ε) and
F ′ = C(D′,D′). We shall define an extensional β-model by applying propo-
sition 7.10. We first notice that a, b ∈ D′ ⇒ (a)b ∈ D′. Indeed, (ε)ab =
(ε;ε)ab = (ε)(a)(ε)b ; since (ε)a = a and (ε)b = b, it follows that ab =
(ε)(a)b, and hence ab ∈ D′.
We define F : D′ → F ′ and G : F ′ → D′ as in the proof of proposition 7.25,
with ε = ε′ = ε;ε′. We have D′ = Im(ε;ε) and F ′ = C(Im(ε), Im(ε)).
Thus F (a)(b) = (a)b for all a, b ∈ D′ and G(ϕ) = ε◦aϕ◦ε = (ε)aϕ, where
aϕ = λxϕ(εx).

We have seen that F ◦G is the identity function on C(D′,D′) and that G◦F is
the identity function onD′. Thus, by proposition 7.10, we have an extensional
β-model of λ-calculus.

In order to obtain a retraction ε with the required properties, it is enough to
have a retraction ε0 6= ∅, such that ε0 ⊂ (ε0;ε0). Indeed, if F = λz(z;z) =
λzλyλx(z)(y)(z)x, then ε0 ⊂ (F )ε0 ; then we define a sequence εn of retrac-
tions by taking εn+1 = εn;εn = (F )εn. This is an increasing sequence (easy
proof, by induction on n). Let ε = ∪nεn ; then ε is a retraction 6= ∅, and
ε;ε = (F )ε = ∪n(F )εn = ∪nεn+1 = ε.

Example.
Obviously, I = λxx is a retraction ; we have I;I = λyλx(I)(y)(I)x, that is
I;I = λyλx(y)x. Consider a non-extensional model D = S(D) (so that I 6=
I;I), in which the mapping i : D∗×D → D is onto (for instance, the model
P(ω) defined above, page 121). Then, by lemma 7.12(2), we have u ⊂ λx(u)x
for every u ∈ D. Thus λy y ≤ λyλx(y)x (since ϕ ≤ ψ ⇒ λyϕ(y) ≤ λyψ(y)
whenever ϕ, ψ ∈ C(D,D)). Therefore, I ≤ I;I ; this provides a retraction
ε ≥ I such that ε = ε;ε. Thus Im(ε) is an extensional β-model of λ-calculus.

Models over a set of atoms

We consider an extensional model D = S(D) constructed over a set A of
atoms (see page 124). Let ε0 be the initial segment of D generated by the
set {{α} → α ; α ∈ A}. If β ∈ D and u ∈ D, then :
β ∈ ε0u ⇔ (∃b ⊂ u) b→ β ∈ ε0 ⇔ (∃b ⊂ u, α ∈ A) β ≤ α ∈ b

⇔ (∃α ∈ A ∩ u) β ≤ α.
It follows that ε0u = A ∩ u (recall that this denotes the initial segment of D
generated by A ∩ u).
Let α ∈ A ; then α ∈ (ε0)(ε0)u ⇔ α ∈ (ε0)u ⇔ α ∈ u. It follows that
(ε0)(ε0)u = (ε0)u and hence ε0 is a retraction.
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The retract Im(ε0) is the set of all initial segments of D generated by the
subsets of A ; this is a complete lattice which is isomorphic with the power
set P(A).

Let ε1 = ε0;ε0 ; we wish to prove that ε0 ⊂ ε1. To do so, it suffices to show
that {α} → α ∈ ε1 for every α ∈ A. Let a = {α} ; then α ∈ (ε0)a (since
{α} → α ∈ ε0) and a = (a)∅ (since α = ∅ → α) ; thus a = (a)(ε0)∅. Finally,
we have α ∈ (ε0)(a)(ε0)∅ ; now since ε1 = λyλx(ε0)(y)(ε0)x, we conclude that
{α}, ∅ → α ∈ ε1, that is to say {α} → α ∈ ε1.
Now consider the increasing sequence εn of retractions and the retraction
ε = ∪nεn defined above. We therefore have ε = ε;ε.

Clearly, (ε0)u ⊂ u for every u ∈ D, thus ε0 ≤ I = λxx (case of extensional
models in proposition 7.10). We prove, by induction on n, that εn ≤ I for
every n ∈ N : indeed, by induction hypothesis, εn ≤ I ; thus εn+1 = εn;εn ≤
I;I = λyλx(y)x = I since D is an extensional model. Therefore εn+1 ≤ I.
It follows that ε ≤ λxx.

Lemma 7.26. i) If α ∈ D and rk(α) ≤ n, then ({α} → α) ∈ εn ;
ii) ε = λxx.

i) The proof is by induction on n. If rk(α) = 0, then α ∈ A, and hence
{α} → α ∈ ε0.
Now let α ∈ D be such that rk(α) = n+1 ; we may write α = b→ β, and put
a = {α}. We have b = {β1, . . . , βk} ; by induction hypothesis, {βi} → βi ∈ εn
for 1 ≤ i ≤ k ; it follows that (εn)b̄ ⊃ b, and hence (εn)b̄ ⊃ b̄ ; since εn ≤ λxx,
we have (εn)b̄ = b̄. Now, clearly, β ∈ (ā)b̄, since b → β ∈ a. By induction
hypothesis, {β} → β ∈ εn, thus β ∈ (εn)(ā)b̄ = (εn)(ā)(εn)b̄. Therefore
(a, b→ β) ∈ λyλx(εn)(y)(εn)x = εn;εn = εn+1. Now a, b→ β = {α} → α ;
this completes the inductive proof.

ii) Since λxx is the initial segment of D generated by the elements of the
form {α} → α, where α ∈ D, we have ε ⊃ λxx, and therefore ε = λxx.

Q.E.D.

Lemma 7.27. εn◦εm = (εn+1)εm = εp, where p = inf(m,n).

If n ≥ m, then (εn)(εm)u ≥ (εm)(εm)u = (εm)u since εn ≥ εm. Now εn ≤ λxx,
so we have (εn)(εm)u = (εm)u. Thus, by extensionality, εn◦εm = εm. The
case n ≤ m is similar.

Now εn+1 = εn;εn, and hence (εn+1)εmu = (εn)(εm)(εn)u ; we have just seen
that the latter is equal to (εm)u if n ≥ m and to (εn)u if n ≤ m. The result
follows, by extensionality.

Q.E.D.
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Let Dn = Im(εn) ⊂ D. By lemma 7.27, we have (εm)(εn)u = (εn)u whenever
m ≥ n. Thus Dn is an increasing sequence of σ-complete ordered sets (since
they are retracts). D0 is isomorphic with P(A) and Dn+1 is isomorphic with
C(Dn,Dn).

For every u ∈ D, let un = (εn)u. (un) is an increasing sequence, un ∈ Dn,
and supn un = u (we have supn εn = λxx by lemma 7.26).

Thus we have a structure in the model D which is similar to that of Scott’s
model D∞ (see [Bar84], [Hin86]).

Now let Dn = {α ∈ D; rk(α) ≤ n} ; then we have D0 = A, (Dn) is an
increasing sequence and ∪nDn = D.

The next proposition describes the structure of spaces Dn.

Proposition 7.28. i) D0 = A ; Dn+1 (with the preorder induced by D) is
isomorphic with D∗n ×Dn ;

ii) εn is the initial segment of D generated by {{α} → α ; rk(α) ≤ n} ;

iii) Dn is the set of all initial segments generated by the subsets of Dn ; it is
isomorphic with S(Dn).

Proof of (i) : if b → β, c → γ have rank ≤ n + 1, then b, c ∈ D∗n and
β, γ ∈ Dn ; moreover, (b→ β) ≤ (c→ γ)⇔ b ≥ c et β ≤ γ ⇔ (b, β) ≤ (c, γ)
in D∗n ×Dn.

We prove (ii) by induction on n. This is obvious when n = 0, by definition
of ε0.

For all β ∈ D, u ∈ D, we have : β ∈ εnu ⇔ ∃b ⊂ u, b → β ∈ εn. By
induction hypothesis, it follows that :
β ∈ εnu ⇔ ∃b ⊂ u, ∃α ∈ Dn,b → β ≤ {α} → α ⇔ ∃α ∈ Dn, β ≤ α, α ∈ u
(indeed, b → β ≤ {α} → α ⇔ β ≤ α et α ∈ b̄). Therefore, εnu = Dn ∩ u
(which proves part (iii) of the proposition).

Now let β be an arbitrary element of εn+1 ; we are looking for some α ∈ Dn+1

such that β ≤ {α} → α. We may write β = b, c → γ ; since εn+1 =
λyλx(εn)(y)(εn)x, we have γ ∈ (εn)(b̄)(εn)c̄. Let d′ = (εn)c̄ = Dn ∩ c̄. Then

γ ∈ (εn)(b̄)d′, that is γ ∈ Dn ∩ b̄d′.
Hence γ ≤ δ for some δ ∈ Dn ∩ b̄d′. Therefore, there exists d′′ ⊂ d′ such
that d′′ → δ ∈ b̄. Now d′′ is finite and d′′ ⊂ Dn ∩ c̄. Thus there exists some
finite d such that d ⊂ Dn ∩ c̄ and d′′ ⊂ d̄. Since γ ≤ δ and d ⊂ c̄, we have
c → γ ≤ d → δ ; now d → δ ≤ d′′ → δ, and hence d → δ ∈ b̄. It follows
that b, c → γ ≤ {d → δ}, d → δ. Take α = d → δ ; then α ∈ Dn+1 (since
d ⊂ Dn and δ ∈ Dn), and b, c→ γ ≤ {α} → α. This yields the result, since
β = b, c→ γ.

Q.E.D.
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6. Qualitative domains and stable functions

Let E be a countable set. A subset D of P(E) will be called a qualitative
domain if :
i) for every increasing sequence un ∈ D (n ∈ N), we have ∪nun ∈ D ;
ii) if u ∈ D and v ⊂ u, then v ∈ D.

Let D0 be the set of finite elements of D. Thus every element of D is the
union of an increasing sequence of elements of D0.
We define the web D of D to be the union of all elements of D : D is the least
subset of E such that D ⊂ P(D). We also have D = {α ∈ E; {α} ∈ D}.
Let D,D′ be two qualitative domains, and D, D′ their webs. Then D × D′
is a qualitative domain (up to isomorphism), with web D ⊕D′ (the disjoint
union of D and D′, which can be represented by (D × {0}) ∪ (D′ × {1})).
Let D,D′ be two qualitative domains. A σ-c.i. function f : D → D′ is said
to be stable if and only if :
for every u, v, w ∈ D such that u, v ⊂ w, we have f(u ∩ v) = f(u) ∩ f(v).

We will denote by S(D,D′) the set of all stable functions from D to D′.
Note that a σ-c.i. function f is stable if and only if :

u ∪ v ∈ D ⇒ f(u ∩ v) ⊃ f(u) ∩ f(v).

Let D1, . . . ,Dk,D be qualitative domains, and f : D1 × . . . × Dk → D a
σ-c.i. function. Then f is stable (with respect to the above definition of the
qualitative domain D1 × . . .×Dk) if and only if :

u1 ∪ v1 ∈ D1, . . . , uk ∪ vk ∈ Dk ⇒
f(u1 ∩ v1, . . . , uk ∩ vk) = f(u1, . . . , uk) ∩ f(v1, . . . , vk).

Clearly, every projection function pi : D1 × . . .×Dk → Di, defined by :

pi(u1, . . . uk) = ui

is stable.

Proposition 7.29. i) Let fi : D → Di (1 ≤ i ≤ k) be stable functions. Then
the function f : D → D1 × . . .×Dk, defined by f(u) = (f1(u), . . . , fk(u)) for
every u ∈ D, is stable.
ii) If f : D → D′ and g : D′ → D′′ are stable, then so is g◦f .

i) Immediate, by definition of the qualitative domain D1 × . . .×Dk.
ii) If u∪ v ∈ D, then f(u∩ v) = f(u)∩ f(v) ; now f(u), f(v) ⊂ f(u∪ v), and
hence
g(f(u)∩f(v)) = g(f(u))∩g(f(v)). Therefore, g(f(u∩v)) = g(f(u))∩g(f(v)).

Q.E.D.

It follows from this proposition that any composite function obtained from
stable functions of several variables is also stable.
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Proposition 7.30. Let D,D′ be qualitative domains, D,D′ their webs, and
f : D → D′ a σ-c.i. function. Then the following conditions are equivalent :
i) f is stable.
ii) If u ∈ D, α ∈ D′ and α ∈ f(u), then the set {v ⊂ u ; α ∈ f(v)} has a
least element v0.
iii) If u ∈ D, a ∈ D′, a is finite and a ⊂ f(u), then {v ⊂ u ; a ⊂ f(v)} has
a least element v0.
Moreover, if f is stable, then this least element v0 is a finite set.

It is obvious that (iii)⇒ (ii). We now prove that (i)⇒ (iii) : let f : D → D′
be a stable function, u ∈ D, and a a finite subset of f(u). Then there
exists a finite subset v of u such that a ⊂ f(v) : indeed, u is the union of
an increasing sequence (un) of finite sets, and a ⊂ f(u) = ∪nf(un), thus
a ⊂ f(un) for some n. On the other hand, if v, w ⊂ u and a ⊂ f(v), f(w),
then a ⊂ f(v) ∩ f(w) = f(v ∩ w). Therefore, the least element v0 is the
intersection of all finite subsets v ⊂ u such that a ⊂ f(v).
Proof of (ii) ⇒ (i) : let f : D → D′ be a σ-c.i. function satisfying condition
(ii), and α, u, v be such that u ∪ v ∈ D and α ∈ f(u) ∩ f(v). Let v0 be the
least element of {w ⊂ u ∪ v ; α ∈ f(w)}. Since u and v are members of this
set, we have v0 ⊂ u, v, thus v0 ⊂ u∩v. Since α ∈ f(v0), we have α ∈ f(u∩v),
and therefore f(u) ∩ f(v) ⊂ f(u ∩ v).

Q.E.D.

Let D,D′ be qualitative domains, D,D′ their webs, and f : D → D′ a stable
function. The trace of f , denoted by tr(f), is a subset of D0×D′, defined as
follows :

tr(f) = {(a, α) ∈ D0×D′; α ∈ f(a) and α /∈ f(a′), for every a′ ⊂ a, a′ 6= a}.
If u ∈ D and α ∈ u, then α ∈ f(u) ⇔ there exists a ∈ D0, such that a ⊂ u
and (a, α) ∈ tr(f). Therefore, a stable function is completely determined by
its trace.
We define a binary relation ≺ on S(D,D′) by putting, for any two stable
functions f, g : D → D′, f ≺ g ⇔ f(u) = f(v) ∩ g(u) for all u, v ∈ D such
that u ⊂ v. This relation is seen to be an order on S(D,D′), known as the
Berry order. Thus, if f ≺ g, then f(u) ⊂ g(u) for every u ∈ D.

Proposition 7.31. Let f, g be two stable functions from D to D′. Then :
f ≺ g ⇔ tr(f) ⊂ tr(g).

Suppose that f ≺ g and (a, α) ∈ tr(f). Then α ∈ f(a) ⊂ g(a), and hence
α ∈ g(a). Thus there exists a′ ⊂ a such that (a′, α) ∈ tr(g). Now f(a′) =
f(a) ∩ g(a′), so α ∈ f(a′), and hence a′ = a, by definition of tr(f). Thus
(a, α) ∈ tr(g) and therefore tr(f) ⊂ tr(g).
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Now suppose that tr(f) ⊂ tr(g), and let u, v ∈ D, u ⊂ v. If α ∈ f(u),
then there exists a ⊂ u such that (a, α) ∈ tr(f). Thus (a, α) ∈ tr(g) and
α ∈ g(a) ⊂ g(u). Therefore α ∈ f(v) ∩ g(u).
Conversely, if α ∈ f(v) ∩ g(u), then there exist a ⊂ u, b ⊂ v, such that
(a, α) ∈ tr(g), (b, α) ∈ tr(f). Thus (a, α), (b, α) ∈ tr(g) and a ∪ b ⊂ v ∈ D.
It follows that a = b, hence (a, α) ∈ tr(f), α ∈ f(a), and therefore α ∈ f(u).

Q.E.D.

Proposition 7.32. Let us consider two qualitative domains D, D′, and their
webs D, D′. Then the set of all traces of stable functions from D to D′ is a
qualitative domain with web D0 ×D′.

Let fn (n ∈ N) be a sequence of stable functions, such that tr(fn) ⊂ tr(fn+1),
and therefore fn ≺ fn+1. Define f : D → D′ by taking f(u) = ∪nfn(u) for
every u ∈ D (note that fn(u) is an increasing sequence in D). Then f is
stable : indeed, if u∪v ∈ D, then f(u∩v) = ∪nfn(u∩v) = ∪n(fn(u)∩fn(v)) =
f(u) ∩ f(v). Moreover, fn ≺ f : if u ⊂ v, then fn(u) = fn(v) ∩ fp(u)
for every p ≥ n, thus fn(u) = fn(v) ∩ ∪pfp(u) = fn(v) ∩ f(u). Therefore
∪ntr(fn) ⊂ tr(f).
Conversely, if (a, α) ∈ tr(f), then α ∈ f(a), and therefore there exists an
integer n such that α ∈ fn(a). Thus (a′, α) ∈ tr(fn) for some a′ ⊂ a.
Since tr(fn) ⊂ tr(f), we have (a′, α) ∈ tr(f), and hence a = a′. Thus
(a, α) ∈ tr(fn) and therefore tr(f) ⊂ ∪ntr(fn). Finally, tr(f) = ∪ntr(fn).
Now let f ∈ S(D,D′) and X ⊂ tr(f). We prove that X is the trace of some
stable function g, which we define by putting : α ∈ g(u) ⇔ there exists
a ⊂ u such that (a, α) ∈ X.
Using proposition 7.30(ii), we prove that g is stable : let α ∈ g(u) ; then
(a, α) ∈ X for some a ⊂ u. If v ⊂ u and α ∈ g(v), then (b, α) ∈ X for some
b ⊂ v. Now (a, α), (b, α) ∈ tr(f), and a, b ⊂ u, thus a = b. Hence a ⊂ v, and
a is the least element of the set {v ∈ D ; α ∈ f(v)}.
We have X = tr(g) : indeed, if (a, α) ∈ tr(g), then α ∈ g(a), thus (b, α) ∈ X
for some b ⊂ a. So α ∈ g(b), and hence a = b, by definition of tr(g).
Therefore (a, α) ∈ X.
Conversely, if (a, α) ∈ X, then α ∈ g(a), thus (b, α) ∈ tr(g) for some b ⊂ a. It
follows that (b, α) ∈ X (see above) ; hence (a, α), (b, α) ∈ tr(f), and therefore
a = b, and (a, α) ∈ tr(g).

Q.E.D.

In view of the previous proposition, the space S(D,D′) of all stable functions
from D to D′, equipped with the order ≺, may be identified with a qualitative
domain with web D0 ×D′ (note that D0 ×D′ is countable).
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Proposition 7.33. Let us consider two qualitative domains D, D′, and their
webs D, D′. Then the function Eval : S(D,D′) × D → D′, defined by
Eval(f, u) = f(u), is stable.

Let u, v ∈ D, such that u ∪ v ∈ D, and f, g ∈ S(D,D′) such that tr(f) ∪
tr(g) = tr(h), h ∈ S(D,D′). We need to prove : f(u) ∩ g(v) ⊂ k(u ∩ v),
where k ∈ S(D,D′) is defined by tr(k) = tr(f) ∩ tr(g).
Let α ∈ f(u), g(v). Then there exist a ⊂ u, b ⊂ v such that (a, α) ∈ tr(f),
(b, α) ∈ tr(g). Thus (a, α), (b, α) ∈ tr(h), and a, b ⊂ u ∪ v. It follows that
a = b ⊂ u ∩ v and (a, α) ∈ tr(f) ∩ tr(g) = tr(k). Thus α ∈ k(u ∩ v).

Q.E.D.

Proposition 7.34.
Let D,D′,D′′ be qualitative domains, and f : D×D′ → D′′ a stable function.
Then the function Curf : D → S(D′,D′′), defined by Curf (u)(u

′) = f(u, u′)
for all u ∈ D, u′ ∈ D′, is also stable.

Remark. The operation f 7→ Curf is sometimes called “ curryfication ”.

We first prove that, if u ⊂ v, then Curf (u) ≺ Curf (v) : let u′, v′ ∈ D′ be
such that u′ ⊂ v′ ; since f is stable, we have :
f(u, v′) ∩ f(v, u′) = f(u ∩ v, u′ ∩ v′) = f(u, u′). In other words :
Curf (u)(v

′)∩Curf (v)(u
′) = Curf (u)(u

′), which is the desired property.

Thus Curf is an increasing function ; it is also σ-continuous : let un (n ∈ N)
be an increasing sequence in D, and u = ∪nun. We need to prove that
Curf (u)(u

′) = ∪nCurf (un)(u′) for every u′ ∈ D′, that is to say :
f(u, u′) = ∪nf(un, u

′), which is clear, since f is σ-continuous.

Finally, we show that Curf is stable : let u, v ∈ D be such that u ∪ v ∈ D.
We have to prove tr(Curf (u ∩ v)) ⊃ tr(Curf (u)) ∩ tr(Curf (v)).
Let (a, α) ∈ tr(Curf (u)) ∩ tr(Curf (v)) ; we have α ∈Curf (u)(a) = f(u, a)
and α ∈ f(v, a). Since f is stable, α ∈ f(u ∩ v, a) = Curf (u ∩ v)(a). Thus
there exists b ⊂ a such that (b, α) ∈ tr(Curf (u ∩ v)) ⊂ tr(Curf (u)). Since
(a, α) ∈ tr(Curf (u)), we have b = a, and therefore (a, α) ∈ tr(Curf (u ∩ v)).

Q.E.D.

The next proposition provides a new method for constructing β-models :

Proposition 7.35. Let D be a qualitative domain, D its web ; let :

Φ : S(D,D)→ D, Ψ : D → S(D,D) two stable functions.
Then D is a functional model of λ-calculus. D is a β-model provided that
Φ◦Ψ is the identity function on D ; in that case, the β-model is extensional
if and only if Ψ◦Φ is the identity function on S(D,D).
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In order to define the functional model, we take F = S(D,D), and we take
F∞ as the set of those stable functions from DN to D which depend only on
a finite number of coordinates.

Remark. More precisely, let f : DN → D be a function which depends only on a
finite number of coordinates. Thus, we may consider f as a function from Dn to
D for some integer n ; we say that f ∈ F∞ if, and only if this function is stable.

We put (u)v = Φ(u)(v) for all u, v ∈ D, and λxf(x) = Ψ(f) for every f ∈ F .

Let Ap : D×D → D be defined by Ap(u, v) = (u)v ; it is a stable function :
indeed, we have Ap(u, v) = Eval(Φ(u), v) (composition of stable functions
Eval and Φ).

We now check conditions 1, 2, 3 of the definition of functional models of
λ-calculus :

(1) Every coordinate function xi is in F∞ : already seen, page 135.

(2) If f, g ∈ F∞, then (f)g ∈ F∞ :
Indeed (f)g is stable, since (f)g = Ap(f, g) is given by composition of stable
functions Ap, f, g.

(3) If f(x1, . . . , xn) ∈ F∞, then λxif ∈ F∞ :
For simpler notations, we suppose i = n and we put :
g(x1, . . . , xn−1) = λxnf(x1, . . . , xn−1). We need to prove that g is stable.
Now, if u1, . . . , un−1 ∈ D, then g(u1, . . . , un−1) = Ψ(Curf (u1, . . . , un−1)) (we
consider f as a stable function from Dn−1×D to D). Thus g is stable, since
it is obtained by composing the stable functions Ψ and Curf .

Q.E.D.

Coherence spaces

A coherence space D is a finite or countable non-empty set, equipped with a
coherence relation denoted by � (a reflexive and symmetric binary relation) ;
α � β should be read : “ α is coherent with β ”. If D, D′ are two coherence
spaces, then we can make of the product set D × D′ a coherence space, by
putting : (α, α′) � (β, β′)⇔ α � α′ and β � β′.

An antichain of D is a subset A of D such that α, β ∈ A, α � β ⇒ α = β.

The set of all antichains (resp. all finite antichains) of D is denoted by A(D)
(resp. A0(D)).

The space D = A(D) is a qualitative domain, with web D, called the quali-
tative domain associated with the coherence space D. The set D0 = A0(D) of
all finite antichains of D is a coherence space, the coherence relation being :
a � b⇔ a ∪ b ∈ A0(D), for all a, b ∈ A0(D).

Let D,D′ be two coherence spaces, and D,D′ the associated qualitative do-
mains. It follows from the above properties that D0 ×D′ can be considered
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as a coherence space.

A qualitative domain D, with web D, is associated with a coherence space
if and only if it satisfies the following property : for every u ⊂ D, if every
two-element subset of u is in D, then u is in D.
Indeed, if this property holds, then we may define a coherence relation on D
by putting : α � α′ ⇔ α = α′ or {α, α′} /∈ D, for all α, α′ ∈ D ; then it can
be seen easily that D = A(D).

Proposition 7.36. Let D,D′ be two coherence spaces, D = A(D), D′ =
A(D′) the corresponding qualitative domains. Then a subset X of the coher-
ence space D0×D′ is an antichain if and only if it is the trace of some stable
function from D to D′.

Let X be an antichain in D0 × D′. We define f : D → D′ by taking α ∈
f(u)⇔ there exists a ⊂ u such that (a, α) ∈ X (for all u ∈ D, α ∈ D′). f(u)
is an antichain of D′ : if α, β ∈ f(u) and α � β, then there exist a, b ⊂ u such
that (a, α), (b, β) ∈ X. Thus (a, α) � (b, β), and, since X is an antichain, we
have α = β (and a = b).
The function f is obviously σ-c.i. We now prove that f is stable : if u∪v ∈ D
and α ∈ f(u)∩f(v), then there exist a ⊂ u, b ⊂ v such that (a, α), (b, α) ∈ X.
Now (a, α) � (b, α) since a∪b ∈ D0. It follows that a = b, and hence a ⊂ u∩v,
and α ∈ f(u ∩ v) by definition of f . Thus f(u) ∩ f(v) ⊂ f(u ∩ v).
Finally, X is the trace of f : if (a, α) ∈ tr(f), then α ∈ f(a), and hence
(b, α) ∈ X for some b ⊂ a. Therefore, α ∈ f(b), by definition of f , so b = a
by definition of tr(f). Thus (a, α) ∈ X.
Conversely, if (a, α) ∈ X, then α ∈ f(a), and hence (b, α) ∈ tr(f) for some
b ⊂ a. Then (b, α) ∈ X, as proved above. Since (a, α) � (b, α) and X is an
antichain, it follows that a = b, and therefore (a, α) ∈ tr(f).
Now let f : D → D′ be a stable function. It remains to prove that tr(f) is an
antichain in D0×D′. If (a, α) � (b, β) and both are in tr(f), then a∪ b ∈ D,
and α � β. Now α ∈ f(a), β ∈ f(b), and hence α, β ∈ f(a∪b). Since f(a∪b)
is an antichain in D′, we have α = β. Therefore, (a, α), (b, α) ∈ tr(f) and
a ∪ b ∈ D. It then follows from the definition of tr(f) that a = b.

Q.E.D.

Therefore, for any two coherence spaces D,D′, the space of all stable func-
tions from A(D) to A(D′) may be identified with A(D0 ×D′), where D0 =
A0(D).

Proposition 7.37. Let D be a coherence space, D = A(D) the corresponding
qualitative domain, and D0 = A0(D). Let i be an isomorphism of coherence
spaces from D0 × D onto D. Then, with the following definitions, D is an
extensional β-model :
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(u)v = {α ∈ D; (∃a ⊂ v)i(a, α) ∈ u} for all u, v ∈ D ;

λxf(x) = {i(a, α); a ∈ A0(D), α ∈ f(a) and α /∈ f(a′) for every a′ ⊂ a,
a′ 6= a} for every f ∈ S(D,D).

Define Φ : D → S(D,D) by taking, for every u ∈ D, tr(Φ(u)) = i−1(u) =
{(a, α) ; i(a, α) ∈ u} which is an antichain in D0×D′, and therefore the trace
of some stable function from D to D. Thus Φ is an isomorphism of qualitative
domains from D onto S(D,D). Now, define Ψ : S(D,D) → D by taking
Ψ(f) = i(tr(f)) = {i(a, α) ; (a, α) ∈ tr(f)} which is, indeed, an antichain
in D (an isomorphism of coherence spaces takes antichains to antichains).
Then Φ and Ψ are inverse isomorphisms, so they are stable ; thus, it follows
from proposition 7.35 that D is an extensional β-model of λ-calculus. For
all u, v ∈ D, we have (u)v = Φ(u)(v) = {α ∈ D ; (a, α) ∈ tr(Φ(u)) for some
a ⊂ v} = {α ∈ D ; i(a, α) ∈ u for some a ⊂ v}.

Q.E.D.

Models over a set of atoms

Let A be a finite or countable non-empty set ; the elements of A will be called
atoms. We are going to repeat the construction of the set of “ formulas ” over
A, already used in the definition of Scott’s model. Here it will be denoted
by ∆, D being used to denote the coherence space which will be defined
after. So we suppose that none of the atoms are ordered pairs, and we give
an inductive definition of ∆ and the one-to-one function i : ∆∗ × ∆ → ∆
(i(a, α) will be denoted by a→ α) :

• every atom is a formula ;

• whenever a is a finite set of formulas and α is a formula, if a 6= ∅ or
α /∈ A, then (a, α) is a formula and we take a→ α = i(a, α) = (a, α).

• if α ∈ A, then we take ∅ → α = i(∅, α) = α.

As above, we define the rank of a formula α ∈ ∆, which is denoted by rk(α).
Let ∆n be the set of all formulas with rank ≤ n.

We now consider a coherence relation, denoted by �, on A = ∆0. Let D0

be the coherence space therefore obtained. We define, by induction on n,
a coherence space Dn ⊂ ∆n : if α ∈ ∆n, then α ∈ Dn ⇔ there exist
β ∈ Dn−1, b ∈ A0(Dn−1) such that α = (b→ β). Thus the restriction of i to
A0(Dn−1)×Dn−1 is a one-to-one mapping of A0(Dn−1)×Dn−1 into Dn. We
define the coherence relation on Dn in such a way as to make of this mapping
an isomorphism of coherence spaces.

Now we prove, by induction on n, that Dn is a coherence subspace of Dn+1.
If n = 0, then A ⊂ D1, since α ∈ A⇒ α = (∅ → α). If α, β ∈ A, then α � β
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holds in D0 if and only if (∅ → α) � (∅ → β) holds in D1. Thus D0 is a
coherence subspace of D1.
Assume that Dn−1 is a coherence subspace of Dn. Then A0(Dn−1) × Dn−1

is a coherence subspace of A0(Dn) × Dn. Since i is an isomorphism from
A0(Dn)×Dn onto Dn+1, and also from A0(Dn−1)×Dn−1 onto Dn, it follows
that Dn is a coherence subspace of Dn+1.
Now we may define a coherence space D as the union of the Dn’s ; i is
therefore an isomorphism of coherence spaces from A0(D)×D onto D.
We will call D the coherence space constructed over the set of atoms (A,�).
If the coherence relation on A is taken as the least one (α � β ⇔ α = β),
then D is called the coherence space constructed over A.
The qualitative domain D = A(D) associated with D is therefore an exten-
sional β-model of λ-calculus.

Universal retractions

Let D be a β-model of λ-calculus. Recall that by a retraction in D, we mean
an element ε such that ε◦ε = ε. The image of ε is called the retract associated
with ε.
The coherence models constructed above have a universal retraction : this
means that the set of all retractions of the model is a retract. This final
section is devoted to the proof of :

Theorem 7.38. Let ρ be a constant symbol added to the language of combi-
natory logic, and UR be the set of formulas :

ρ◦ρ = ρ ; ∀x[(ρx)◦(ρx) = ρx] ; ∀x[x◦x = x→ ρx = x].
Then the system of axioms ECL+ UR has a non-trivial model.

We shall prove that this system of axioms is indeed satisfied in the model
D = A(D), where D is the coherence space constructed over a set of atoms.
This result is due to S. Berardi [Bera91]. The proof below is Amadio’s
[Ama92]. See also [Berl92].
The first lemma is about a simple combinatorial property of any function
f : X → X, with finite range. The notation fn will stand for f ◦ . . . ◦f (f
occurs n times) ; f 0 = Id.

Lemma 7.39. Let f : X → X be a function with finite range. Then there
is one and only one retraction in {fn; n ≥ 1}.

Uniqueness : if both fm and fn are retractions, then (fm)n = fm (since
n ≥ 1), and (fn)m = fn (since m ≥ 1). Thus fm = fn.

Existence : let Xn be the image of fn. Xn (n ≥ 1) is a decreasing sequence
of finite sets, thus there exists an integer k ≥ 1 such that Xk = Xn for all
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n ≥ k. Let fk be the restriction of f to Xk. Then fk is a permutation of Xk,
and hence (fk)

N is the identity function on Xk if N = (card(Xk))!. It follows
that fN is the identity on Xk, thus so is fNk. Now the image of fNk = (fk)N

is Xk and therefore fNk is a retraction from X into Xk.
Q.E.D.

Let D0 be the set of all finite elements of D (finite antichains of D). If f ∈ D0,
then {fu; u ∈ D} is a finite set : indeed, if we put Kf = {α ∈ D; there
exists a ∈ D0 such that (a → α) ∈ f}, then Kf is clearly a finite subset of
D and, for every u ∈ D, fu is an antichain of Kf .
By the previous lemma, we may associate with each f ∈ D0 a retraction
ρ0(f) : D → D, with finite range. Since ρ0(f) = fn, we have ρ0(f) ∈ D0,
and therefore ρ0 : D0 → D0.
ρ0 is an increasing function : let f, g ∈ D0, f ⊂ g ; then ρ0(f) = fm,
ρ0(g) = gn. Now fm = (fm)n ⊂ (gm)n = (gn)m = gn since both fm and gn

are retractions.
Now we may define ρ : D → D by taking ρ(u) = ∪iρ0(ui), where ui is
any increasing sequence in D0 such that u = ∪iui. In order to verify the
soundness of this definition, let u′i be any other such sequence ; then we have
ui ⊂ u′j for a suitable j (since ui is finite), thus ρ0(ui) ⊂ ∪jρ0(u

′
j), and hence

∪iρ0(ui) ⊂ ∪jρ0(u
′
j). We also have the inverse inclusion, since ui and u′j play

symmetric parts.
Obviously, ρ : D → D is an increasing function ; moreover, it is σ-continuous :
indeed, if ui (i ∈ N) is an increasing sequence in D, and u = ∪iui, then we
may take an increasing sequence vi of finite sets such that vi ⊂ ui and
u = ∪ivi. Then we have ρ(u) = ∪iρ0(vi), and hence ρ(u) ⊂ ∪iρ0(ui). Since ρ
is increasing, we obtain immediately the inverse inclusion.
Finally, ρ is a stable function from D to D : indeed, consider first f, g ∈ D0

such that f ∪ g ∈ D0. We have ρ0(f) = fm, ρ0(g) = gn and ρ0(f ∩ g) =
(f ∩ g)p. Since fm, gn and (f ∩ g)p are retractions, and x → xmnp is a
stable function (all functions represented by a λ-term are stable), we obtain :
(f ∩ g)p = (f ∩ g)mnp = fmnp ∩ gmnp. Now fmnp = fm and gmnp = gn, thus
(f ∩ g)p = fm ∩ gn, that is to say ρ0(f ∩ g) = ρ0(f) ∩ ρ0(g).
Now, let u, v ∈ D be such that u ∪ v ∈ D. Take two increasing sequences
ui, vi ∈ D0, such that u = ∪iui, v = ∪ivi. Then we have ρ(u∩ v) = ∪iρ0(ui ∩
vi) = ∪i[ρ0(ui) ∩ ρ0(vi)] (according to the property which was previously
proved) = ∪iρ0(ui) ∩ ∪iρ0(vi) = ρ(u) ∩ ρ(v).
Therefore, ρ ∈ D. Now we will see that ρ is a universal retraction.

Lemma 7.40. ρ◦ρ = ρ ; (ρu)◦(ρu) = ρu for every u ∈ D.

It can be seen easily that ρ0◦ρ0 = ρ0 : if f ∈ D0, then ρ0(f) = fm for the
least m ≥ 1 such that fm is a retraction. Thus ρ0(f

m) = fm.
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Now let u ∈ D ; we have u = ∪iui, where ui is an increasing sequence in
D0. Therefore : ρ(u) = ∪iρ0(ui) = ∪iρ0(ρ0(ui)) = ρ◦ρ(u), since ρ0(ui) is an
increasing sequence in D0 such that its union is ρ(u).
The proof of (ρu)◦(ρu) = ρu is immediate, since (ρ0ui)◦(ρ0ui) = ρ0ui, and
(x, y)→ x◦y is a σ-c.i. function from D ×D to D.

Q.E.D.

We will now prove that r◦r = r ⇒ ρr = r, that is to say that the image of
ρ contains all the retractions of D. Let r be a retraction of D, and ri ∈ D0

an increasing sequence such that r = ∪iri.
We have ρ(r) ⊂ r : indeed, ρ0(ri) = rki

i ⊂ rki = r. Thus ρ(r) = ∪iρ0(ri) ⊂ r.
So it remains to prove that r ⊂ ρ(r).

Lemma 7.41. Let a, u, r ∈ D be such that r = r◦r, a ⊂ ru and a is finite.
Then there exists a finite c ∈ D such that a ⊂ rc, c ⊂ rc, c ⊂ ru.

Since r = r◦r, we have a ⊂ rru. According to proposition 7.30(iii), there
exists a least finite c such that a ⊂ rc and c ⊂ ru. Now, if we put d = rc, we
have rd = rrc = rc, thus a ⊂ rd ; on the other hand, c ⊂ ru, thus rc ⊂ rru,
that is d ⊂ ru. Since c is the least element satisfying these properties, we
have c ⊂ d, thus c ⊂ rc.

Q.E.D.

Lemma 7.42. Let a, r ∈ D be such that r◦r = r, a ⊂ ra and a is finite.
Then ra = ρ(r)a.

We have a ⊂ ra = ∪iria, thus, for some i0, a ⊂ ria holds for every i ≥ i0.
By applying ri on both sides of this inclusion, we obtain a ⊂ ria ⊂ r2

i a ⊂
. . . ⊂ rn

i a ⊂ . . . Now ρ0(ri) = rki
i for some ki ≥ 1 ; thus ria ⊂ ρ0(ri)a for

every i ≥ i0. It suffices to take the limits to obtain ra ⊂ ρ(r)a. The inverse
inclusion is immediate, since ρ(r) ⊂ r.

Q.E.D.

Now we are able to complete the proof of theorem 7.38.
Take u ∈ D and a ∈ D0 such that a ⊂ ru. By lemma 7.41, there exists c ∈ D0

such that a ⊂ rc, c ⊂ rc and c ⊂ ru. By lemma 7.42, we have rc = ρ(r)c
and hence a ⊂ ρ(r)c.
Since c is finite and contained in ru and rc, there exists i ≥ 1 such that
c ⊂ riu, c ⊂ ric. By applying ri on both sides, we obtain c ⊂ ric ⊂ r2

i c ⊂
. . . ⊂ rn

i c ⊂ . . . Now ρ0(ri) = rki
i for some ki ≥ 1. Since c ⊂ riu, we have

rki−1
i c ⊂ rki

i u = ρ(ri)u ⊂ ρ(r)u. Thus c ⊂ ρ(r)u. Since a ⊂ ρ(r)c and ρ(r)
is a retraction, we have a ⊂ ρ(r)◦ρ(r)u = ρ(r)u. Now a is an arbitrary
finite subset of ru, and hence we obtain ru ⊂ ρ(r)u. The inverse inclusion
ρ(r)u ⊂ ru follows from ρ(r) ⊂ r. Finally, ρ(r)u = ru, thus ρ(r) = r since u
is an arbitrary element in D and D is extensional.
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Chapter 8

System F

1. Definition of system F types

In this chapter, we deal with the second order propositional calculus, i.e. the
set of formulas built up with :

• a countable set of variables X, Y ,. . . , (called type variables or propo-
sitional variables)

• the connective → and the quantifier ∀.
Remark. We observe that the second order propositional calculus is exactly the
same as the set L of λ-terms defined in chapter 1 (page 7), with simply a change
of notation : → instead of application, ∀ instead of λ. Indeed, we could define
inductively an isomorphism as follows (denoting by tA the λ-term associated with
the formula A) :

if X is a type variable, then tX is X itself, considered as a λ-variable ;
if A,B are formulas, then tA→B is (tA)tB and t∀X A is λX tA.

For instance, the λ-term which corresponds to the formula :
∀X∀Y (X, Y → X)→ ∀Z(Z → Z) would be (λXλY (X)(Y )X)λZ(Z)Z.
In fact, we are not interested in the λ-term associated with a formula. We simply
observe that this isomorphism allows us to define, for second order propositional
calculus, all the notions defined in chapter 1 for the set L of λ-terms : simple
substitution, α-equivalence, . . .

Thus, let F,A1, . . . , Ak be formulas and X1, . . . , Xk distinct variables.
The formula F<A1/X1, . . . , Ak/Xk>, obtained by simple substitution, is de-
fined as in chapter 1 (page 8), and has exactly the same properties.

We similarly define the α-equivalence of formulas, denoted by F ≡ G, by
induction on F :

• if X is a propositional variable, then X ≡ G if and only if G = X ;

147
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• if F = A→ B, then F ≡ G if and only if G = A′ → B′, where A ≡ A′

and B ≡ B′ ;
• if F = ∀X A, then F ≡ G if and only if G = ∀Y B and A<Z/X> ≡

B<Z/Y > for all variables Z but a finite number.

We shall identify α-equivalent formulas. Like in chapter 1, this allows the
definition of substitution :
We define the formula F [A1/X1, . . . , Ak/Xk] as F<A1/X1, . . . , Ak/Xk>, pro-
vided that we choose a representative of F , no bound variable of which occurs
free in A1, . . . , Ak.
All the lemmas about substitution in chapter 1 still hold.

The types of system F are, by definition, the equivalence classes of formulas,
relative to the α-equivalence.

2. Typing rules for system F
We wish to build typings of the form Γ `F t : A, where Γ is a context, that
is an expression of the form x1:A1, . . . , xk:Ak, where x1, . . . , xk are distinct
variables, A1, . . . , Ak, A are types of system F , and t is a λ-term. The typing
rules are the following :

1. If x is a variable not declared in Γ, then Γ, x:A `F x:A ;
2. If Γ, x:A `F t:B, then Γ `F λx t : A→ B ;
3. If Γ `F t : A and Γ `F u : A→ B, then Γ `F (u)t : B ;
4. If Γ `F t : ∀X A, then Γ `F t : A[F/X] for every type F ;
5. If Γ `F t : A, then Γ `F t : ∀X A for every variable X such that no type
in Γ contains a free occurrence of X.

From now on, throughout this chapter, the notation Γ ` t:A will stand
for Γ `F t:A.
Obviously, if Γ ` t:A, then all free variables of t are declared in the context Γ.

Proposition 8.1. If Γ ` t:A and Γ ⊂ Γ′, then Γ′ ` t:A.

Same proof as proposition 3.3.
Q.E.D.

Proposition 8.2. Let Γ be a context, and x1, . . . , xk be variables which are
not declared in Γ. If Γ ` ti:Ai (1 ≤ i ≤ k) and Γ, x1:A1, . . . , xk:Ak ` u:B,
then Γ ` u[t1/x1, . . . , tk/xk] : B.

In particular :

If x1, . . . , xk do not occur free in u, and if Γ, x1:A1, . . . , xk:Ak ` u:B, then
Γ ` u:B.
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The proof is by induction on the number of rules used to obtain the typing
Γ, x1:A1, . . . , xk:Ak ` u:B. Consider the last one :

If it is rule 1, 2 or 3, the proof is the same as that of proposition 4.1.

If it is rule 4, then B ≡ A[F/X], and the previous step was :
Γ, x1:A1, . . . , xk:Ak ` u : ∀X A. By induction hypothesis, we get :
Γ ` u[t1/x1, . . . , tk/xk] : ∀X A, and therefore, by rule 4 :
Γ ` u[t1/x1, . . . , tk/xk] : A[F/X].

If it is rule 5, then B ≡ ∀X A, and Γ, x1:A1, . . . , xk:Ak ` u:A is a
previous typing such that X does not occur free in Γ, A1, . . . , Ak. By in-
duction hypothesis, Γ ` u[t1/x1, . . . , tk/xk] : A, and therefore, by rule 5,
Γ ` u[t1/x1, . . . , tk/xk] : ∀X A.

Q.E.D.

Lemma 8.3. If Γ ` t : ∀X1 . . . ∀XkA, then Γ ` t : A[B1/X1, . . . , Bk/Xk].

Indeed, suppose that X1, . . . , Xk have no occurrence in B1, . . . , Bk (this is
possible by taking a suitable representative of ∀X1 . . . ∀XkA). By rule 4, we
get Γ ` t : A[B1/X1] . . . [Bk/Xk].
Now A[B1/X1] . . . [Bk/Xk] ≡ A[B1/X1, . . . , Bk/Xk] by lemma 1.13.

Q.E.D.

The part of the quantifier ∀ in system F is similar to that of the connective
∧ in system D. The next proposition is the analogue of lemma 3.22 :

Proposition 8.4.
If Γ, x : F [A1/X1, . . . , Ak/Xk] ` t : B, then Γ, x : ∀X1 . . . ∀XkF ` t : B.

The proof is done by induction on the number of rules used to obtain :
Γ, x : F [A1/X1, . . . , Ak/Xk] ` t : B.
Consider the last one ; the only non-trivial case is that of rule 1, when t is
the variable x. Then B ≡ F [A1/X1, . . . , Ak/Xk] and the result follows from
lemma 8.3.

Q.E.D.

Notation.
Let Γ be the context x1:A1, . . . , xn:An. We define Γ[B1/X1, . . . , Bk/Xk] as
the context x1 : A1[B1/X1, . . . , Bk/Xk], . . . , xn : An[B1/X1, . . . , Bk/Xk].

Proposition 8.5.
If Γ ` t : A, then Γ[B1/X1, . . . , Bk/Xk] ` t : A[B1/X1, . . . , Bk/Xk].

By induction on the length of the proof of Γ ` t : A ; we also prove that the
length of the proof of Γ[B1/X1, . . . , Bk/Xk] ` t : A[B1/X1, . . . , Bk/Xk] is the
same as that of Γ ` t : A. Consider the last rule used.
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The result is obvious whenever it is rule 1, 2 or 3.

If it is rule 4, then A ≡ A′[C/Y ] and we have a previous typing of the form
Γ ` t : ∀Y A′. By induction hypothesis, we have :
Γ[B1/X1, . . . , Bk/Xk] ` t : ∀Y A′[B1/X1, . . . , Bk/Xk] (Y 6= X1, . . . , Xk and
Y does not occur free in B1, . . . , Bk). Moreover, the length of the proof of
this typing is the same as that of Γ ` t : ∀Y A′.
Thus, by rule 4, we have :
Γ[B1/X1, . . . , Bk/Xk] ` t : A′[B1/X1, . . . , Bk/Xk][C

′/Y ]
for any formula C ′. Since Y does not occur free in B1, . . . , Bk, by lemma1.13,
this is equivalent to :
Γ[B1/X1, . . . , Bk/Xk] ` t : A′[B1/X1, . . . , Bk/Xk, C

′/Y ].
Now take C ′ ≡ C[B1/X1, . . . , Bk/Xk]. Again by lemma 1.13, we have :
A′[B1/X1, . . . , Bk/Xk, C

′/Y ] ≡ A′[C/Y ][B1/X1, . . . , Bk/Xk]
≡ A[B1/X1, . . . , Bk/Xk].

Hence Γ[B1/X1, . . . , Bk/Xk] ` t : A[B1/X1, . . . , Bk/Xk], and we obtain a
proof of the same length as that of Γ ` t : A.

If it is rule 5, we have Γ ` t : A′ as a previous typing, and A ≡ ∀Y A′, where
Y does not occur free in Γ. Take a variable Z 6= X, which does not occur in
Γ, A′, B1, . . . , Bk. By induction hypothesis, we have :
Γ[Z/Y ] ` t : A′′, where A′′ ≡ A′[Z/Y ]. In other words, Γ ` t : A′′ (since Y
does not occur in Γ). Moreover, the length of the proof is the same, so we
may use the induction hypothesis, and obtain :
Γ[B1/X1, . . . , Bk/Xk] ` t : A′′[B1/X1, . . . , Bk/Xk]. Since Z does not occur in
Γ, B1, . . . , Bk, it does not occur in [B1/X1, . . . , Bk/Xk] ; therefore, by rule 5 :

Γ[B1/X1, . . . , Bk/Xk] ` t : ∀Z A′′[B1/X1, . . . , Bk/Xk].
Now ∀Z A′′ ≡ ∀Y A′ (lemma 1.10) ≡ A ; hence :
∀Z A′′[B1/X1, . . . , Bk/Xk] ≡ A[B1/X1, . . . , Bk/Xk], and therefore :
Γ[B1/X1, . . . , Bk/Xk] ` t : A[B1/X1, . . . , Bk/Xk].

Q.E.D.

By an open formula, we mean a formula of which the first symbol is different
from ∀ ; so it is either a type variable or a formula of the form B → C.

For every formula A, we denote by A0 the unique open formula such that :
A ≡ ∀X1 . . . ∀XnA

0 (n ∈ N).
This formula A0 will be called the interior of A.

Let Γ be a context (resp. F be a formula), X1, . . . , Xk type variables with
no free occurrence in Γ (resp. F ), and A a formula. Any formula of the
form A[B1/X1, . . . , Bk/Xk] will be called a Γ-instance of A (resp. F -instance
of A). Therefore :
If A ≡ ∀X1 . . . ∀Xk A

0, then any formula of the form A0[B1/X1, . . . , Bk/Xk]
is an A-instance of A0.
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The next lemma is the analogue of lemma 4.2.

Lemma 8.6. Suppose that Γ ` t : A, where A is an open formula.
i) if t is a variable x, then Γ contains a declaration x : B such that A is a
B-instance of B0.
ii) if t = λxu, then A ≡ (B → C), and Γ, x : B ` u : C.
iii) if t = (u)v, then Γ ` u : C → B, Γ ` v : C, where B is such that A is a
Γ-instance of B0.

In the proof of Γ ` t : A, consider the first step at which one obtains Γ ` t : B,
for some formula B such that A is a Γ-instance of B0 (this happens at least
once, for example with B = A). Examine the typing rule (page 148) used at
that step.

It is not rule 4 : indeed, if it were, we would have obtained at the previous
step Γ ` t : ∀XC, with B = C[U/X]. We may suppose that X does not
occur in Γ.
We have C = ∀X1 . . . ∀Xn C0, where C0 is an open formula ; thus C0 is
either a variable or a formula of the form F → G.

If C0 = X, then every formula (therefore particularly A) is a Γ-instance
of C0 ; this contradicts the definition of B.

If C0 is a variable Y 6= X, then B = C[U/X] = C, so B0 = C0, and A is
a Γ-instance of C0 ; again, this contradicts the definition of B.

If C0 = F → G, then B = ∀X1 . . . ∀XnC
0[U/X].

Now C0[U/X] = F ′ → G′ is an open formula. Thus B0 = C0[U/X]. Since
A is a Γ-instance of B0, we have, by lemma 1.13 :
A = B0[U1/Z1, . . . , Uk/Zk] = C0[U/X][U1/Z1, . . . , Uk/Zk]

= C0[U1/Z1, . . . , Uk/Zk, U
′/X]

where U ′ = U [U1/Z1, . . . , Uk/Zk]. Now, by hypothesis, Z1, . . . , Zk are vari-
ables which do not occur in Γ, and neither does X. Thus A is a Γ-instance
of C0, contradicting the definition of B.

It is not rule 5 : suppose it were ; then B = ∀X C, and therefore B0 = C0.
Hence Γ ` t : C at the previous step, and A is a Γ-instance of C0 ; this
contradicts the definition of B.

Now we can prove the lemma :
In case (i), the rule applied at that step needs to be rule 1, since t is a
variable x. Therefore Γ contains the declaration x : B, and A is a Γ-instance
of B0. Since the formula B = ∀X1 . . . ∀Xk B

0 appears in the context Γ, the
free variables of B0 which do not occur free in Γ are X1, . . . , Xk. Thus A is
a B-instance of B0.
In case (ii), the rule applied is rule 2. Thus :
B = (C → D), and Γ, x : C ` u : D.
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Now B is an open formula, so A is a Γ-instance of B0 = B.
Hence, we have A = C ′ → D′, with :
C ′ = C[U1/X1, . . . , Uk/Xk] and D′ = D[U1/X1, . . . , Uk/Xk].
By proposition 8.5, one deduces from Γ, x : C ` u : D that :

Γ[U1/X1, . . . , Uk/Xk], x : C[U1/X1, . . . , Uk/Xk] ` u : D[U1/X1, . . . , Uk/Xk].
Since X1, . . . , Xk do not occur in Γ, we finally obtain Γ, x : C ′ ` u : D′ and
A = C ′ → D′.

In case (iii), the rule applied at that step is rule 3 since the term t is (u)v.
Hence Γ ` u : C → B and Γ ` v : C, so A is a Γ-instance of B0.

Q.E.D.

Theorem 8.7. If Γ ` t : A and t β t′, then Γ ` t′ : A.

Recall that t β t′ means that t′ is obtained from t by β-reduction.

It is sufficient to repeat the proof of proposition 4.3 (which is the correspond-
ing statement for system D), using lemma 8.6(ii) instead of lemma 4.2(ii) and
proposition 8.2 instead of proposition 4.1.

Q.E.D.

Theorem 8.7 fails if one replaces the assumption t β t′ with t 'β t′. Take
for instance t = λxx, t′ = λx(λy x)(x)x ; then ` t : X → X, where X is
a variable. Yet ` t′ : X → X does not hold : indeed, by lemma 8.6, this
would imply x : X ` (λy x)(x)x : X, and therefore x : X ` (x)x : A for some
formula A, which is clearly impossible (again by lemma 8.6).

We shall denote by ⊥ the formula ∀X X ; thus we have Γ, x : ⊥ ` x : A for
every formula A (rules 1 and 4, page 148).
We define the connective ¬ by taking ¬A ≡ A→ ⊥ for every formula A.

Proposition 8.8. Every normal term t is typable in system F , in the context
x1 : ⊥, . . . , xk : ⊥, where x1, . . . , xk are the free variables of t.

Proof by induction on the length of t. Let Γ be the context x1 : ⊥, . . . , xk : ⊥,
where x1, . . . , xk are the free variables of t.
If t = λxu, then, by induction hypothesis, we have Γ, x : ⊥ ` u : A ; thus
Γ ` λxu : ⊥ → A.

If t does not start with λ, then t = (x1)t1 . . . tn. By induction hypothesis,
Γ ` ti : Ai. On the other hand, Γ ` x1 : ⊥, so Γ ` x1 : A1, . . . , An → X
(rule 4). Therefore, Γ ` t : X.

Q.E.D.

Nevertheless, there are strongly normalizable closed terms which are not
typable in system F (see [Gia88]).
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3. The strong normalization theorem

Our purpose in this section is to prove the following theorem of J.-Y. Gi-
rard [Gir71] :

Theorem 8.9. Every term which is typable in system F is strongly normal-
izable.

We shall follow the proof of the corresponding theorem for system D (the-
orem 3.20). As there, N denotes the set of strongly normalizable terms
and N0 the set of terms of the form (x)t1 . . . tn, where x is a variable and
t1, . . . , tn ∈ N .
A subset X of Λ is N -saturated if and only if :
(λxu)tt1 . . . tn ∈ X whenever t ∈ N and (u[t/x])t1 . . . tn ∈ X .
We proved in chapter 3 (page 53) that (N0,N ) is an adapted pair, that is :
i) N is N -saturated ;
ii) N0 ⊂ N ; N0 ⊂ (N → N0) ; (N0 → N ) ⊂ N .

An N -interpretation I is a mapping X → |X|I of the set of type variables
into the set of N -saturated subsets of N which contain N0.

Let I be an N -interpretation, X a type variable, and X an N -saturated
subset of Λ such that N0 ⊂ X ⊂ N . We define an N -interpretation J =
I[X ← X ] by taking |Y |J = |Y |I for every variable Y 6= X and |X|J = X .

For every type A, the value |A|I of A in an N -interpretation I is a set of
terms defined as follows, by induction on A :

• if A is a type variable, then |A|I is given with I ;
• |A→ B|I = (|A|I → |B|I), in other words :

for every term t, t ∈ |A→ B|I if and only if (t)u ∈ |B|I for every u ∈ |A|I ;
• |∀X A|I =

⋂
{|A|I[X←X ]; X is N -saturated, N0 ⊂ X ⊂ N},

in other words : for every term t, t ∈ |∀X A|I if and only if t ∈ |A|I[X←X ]

for every N -saturated subset X of Λ such that N0 ⊂ X ⊂ N .

Clearly, the value |A|I of a type A in an N -interpretation I depends only on
the values in I of the free variables of A. In particular, if A is a closed type,
then |A|I is independent of the interpretation I.

Lemma 8.10. For every type A and every N -interpretation I, the value
|A|I is an N -saturated subset of N which contains N0.

The proof is by induction on A :
If A is a type variable, this is obvious from the definition of N -interpre-

tations.
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If A = B → C, then, by induction hypothesis, N0 ⊂ |B|I and |C|I ⊂ N .
Therefore, |B → C|I = |B|I → |C|I ⊂ N0 → N . Now N0 → N ⊂ N
(definition of the adapted pairs) ; hence |B → C|I ⊂ N .
Also by induction hypothesis, we have N0 ⊂ |C|I and |B|I ⊂ N . It follows
that |B → C|I = (|B|I → |C|I) ⊃ N → N0. Now N → N0 ⊃ N0, and
therefore |B → C|I ⊃ N0.
On the other hand, |A|I = (|B|I → |C|I) isN -saturated since |C|I is (propo-
sition 3.15).

If A = ∀X B, then |∀X B|I ⊂ |B|I ⊂ N (by induction hypothesis) ; now
N0 ⊂ |B|J for any N -interpretation J (induction hypothesis), and therefore
N0 ⊂ |∀X B|I . Finally, |∀X B|I is N -saturated, as the intersection of a set
of N -saturated subsets of Λ.

Q.E.D.

Lemma 8.11. Let A,U be two types, X a variable, I an N -interpretation
and X = |U |I. Then |A[U/X]|I = |A|J , where J = I[X ← X ].

Proof by induction on A. This is obvious whenever A is a type variable or
A = B → C.
Suppose A = ∀Y B (Y 6= X, and Y does not occur in U). For each term
t ∈ Λ, we have :
i) t ∈ |∀Y B[U/X]|I if and only if t ∈ |B[U/X]|I[Y←Y] for every N -saturated
subset Y of Λ such that N0 ⊂ Y ⊂ N ;
ii) t ∈ |∀Y B|J if and only if t ∈ |B|J [Y←Y] for every N -saturated subset Y
of Λ such that N0 ⊂ Y ⊂ N .
Let I0 = I[Y ← Y ] and J0 = J [Y ← Y ] ; then J0 = I0[X ← X ] since
Y 6= X. On the other hand, X = |U |I = |U |I0 since Y is not a free variable
in U . Hence, by induction hypothesis, |B[U/X]|I0 = |B|J0 . Thus, it follows
from (i) and (ii) that |∀Y B[U/X]|I = |∀Y B|J .
Q.E.D.

Lemma 8.12 (Adequacy lemma). Let I be an N -interpretation.
If x1 : A1, . . . , xk : Ak ` u : A and ti ∈ |Ai|I (1 ≤ i ≤ k), then :
u[t1/x1, . . . , tk/xk] ∈ |A|I.

Proof by induction on the number of rules used to obtain x1 : A1, . . . , xk :
Ak ` u : A. Consider the last one. If it is rule 1, 2 or 3, then the proof is the
same as for the second adequacy lemma 3.16.

If it is rule 4, then A = B[U/X], and we have :
x1 : A1, . . . , xk : Ak ` u : ∀X B as a previous typing.
By induction hypothesis, u[t1/x1, . . . , tk/xk] ∈ |∀X B|I ;
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thus u[t1/x1, . . . , tk/xk] ∈ |B|J , where J = I[X ← X ], for every N -
saturated subset X of Λ such that N0 ⊂ X ⊂ N .
By taking X = |U |I , we obtain |B|J = |B[U/X]|I , in view of lemma 8.11.
Therefore u[t1/x1, . . . , tk/xk] ∈ |B[U/X]|I .
If it is rule 5, then A = ∀X B, and we have a previous typing :
x1 : A1, . . . , xk : Ak ` u : B ; moreover, X does not occur free in A1, . . . , Ak.
Let X be an N -saturated subset of Λ such that N0 ⊂ X ⊂ N , and let
J = I[X ← X ]. Thus |Ai|I = |Ai|J , since X does not occur free in Ai.
Hence ti ∈ |Ai|J . By induction hypothesis, u[t1/x1, . . . , tk/xk] ∈ |B|J and
therefore u[t1/x1, . . . , tk/xk] ∈ |∀X B|I .

Q.E.D.

Now the proof of the strong normalization theorem easily follows :

Suppose x1 : A1, . . . , xk : Ak ` t : A and consider the N -interpretation
I defined by taking |X|I = N for every variable X. By lemma 2, we
have N0 ⊂ |Ai|I , so xi ∈ |Ai|I . Thus, by the adequacy lemma 8.12,
t[x1/x1, . . . , xk/xk] = t ∈ |A|I . Now |A|I ⊂ N (by lemma 2), and there-
fore t ∈ N .

Q.E.D.

4. Data types in system F
Recall some definitions from chapter 3 :

A subset X of Λ is saturated if and only if (λx u)tt1 . . . tn ∈ X whenever
(u[t/x])t1 . . . tn ∈ X .

An interpretation I is a mapping X → |X|I of the set of type variables
into the set of saturated subsets of Λ.

Let I be an interpretation, X a type variable, and X a saturated subset
of Λ. We define an interpretation J = I[X ← X ] by taking |Y |J = |Y |I for
every variable Y 6= X and |X|J = X .

For every type A, the value |A|I of A in an interpretation I is a set of terms
defined as follows, by induction on A :

• if A is a type variable, then |A|I is given with I ;

• |A→ B|I = |A|I → |B|I , in other words :
for every term t, t ∈ |A→ B|I if and only if tu ∈ |B|I for every u ∈ |A|I ;

• |∀X A|I =
⋂
{|A|I[X←X ]; X is any saturated subset of Λ},

in other words : for every term t, t ∈ |∀X A|I if and only if t ∈ |A|I[X←X ]

for every saturated subset X of Λ.
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Lemma 8.13 (Adequacy lemma). Let I be an interpretation ;
if x1 : A1, . . . , xk : Ak ` u : A and ti ∈ |Ai|I (1 ≤ i ≤ k), then :
u[t1/x1, . . . , tk/xk] ∈ |A|I.

Same proof as above.
Q.E.D.

The value of a closed type A (that is a type with no free variables) is the
same in all interpretations ; it will be denoted by |A|.
A closed type A will be called a data type if :
i) |A| 6= ∅ ;
ii) every term t ∈ |A| is β-equivalent to a closed term.

Condition (ii) can also be stated this way :
ii’) every term t ∈ |A| can be transformed in a closed term by β-reduction.

Indeed, if (ii) holds, then t 'β u for some closed term u ; by the Church-
Rosser theorem, t and u reduce to the same term v by β-reduction. Now
β-reduction applied to a closed term produces only closed terms. Thus v is
closed.

Proposition 8.14. The types :
Id = ∀X(X → X) (identity type) ;
Bool = ∀X{X,X → X} (Booleans type) ;
Int = ∀X{(X → X)→ (X → X)} (integers type)

are data types. More precisely :
t ∈ |Id| ⇔ t 'β λxx ;
t ∈ |Bool| ⇔ t 'β λxλy x or t 'β λxλy y ;
t ∈ |Int| ⇔ t 'β λfλx(f)nx for some integer n or t 'β λf f .

Note that, in view of the adequacy lemma 8.13, we have the following
consequences :

If ` t : Id, then t 'β λx x.
If ` t : Bool, then t 'β λxλy x or t 'β λxλy y ;
If ` t : Int, then t 'β λfλx(f)nx for some integer n or t 'β λf f .

Proof of the proposition : we first show the implications ⇒.

1. Identity type :
Let t ∈ |Id| and x be a variable of the λ-calculus which does not occur in t ;
we define an interpretation I by taking |X|I = {τ ∈ Λ; τ 'β x} for every
type variable X. Since t ∈ |Id|, we have t ∈ |X → X|. Now x ∈ |X|, so
(t)x ∈ |X|, and therefore (t)x 'β x. Thus t is normalizable (t 'βη λxx).
Let t′ be its normal form ; then t′ = λx1 . . . λxm(y)t1 . . . tn.
If m = 0, then (t′)x 'β (y′)u1 . . . unx, where y′ is a variable. This term
cannot be equal to x, so we have a contradiction.
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If m ≥ 1, then we have t′ = λxu. So (t′)x 'β u ; therefore u 'β x, and
t′ 'β λxx. Since t′ is normal, t′ = λxx.

2. Booleans type :
Let t ∈ |Bool| and x, y be variables of the λ-calculus which do not occur in t ;
we define an interpretation I by taking |X|I = {τ ∈ Λ; τ 'β x or τ 'β y}.
Since t ∈ |Bool|, we have t ∈ |X,X → X|. Now x, y ∈ |X|, so (t)xy ∈ |X|,
that is, for instance, (t)xy 'β x. Thus t 'βη λxλy x, and t is normalizable.
Let t′ be its normal form ; then t′ = λx1 . . . λxm(z)t1 . . . tn.
If m = 0 or 1, then (t′)xy 'β (z′)u1 . . . unxy or (z′)u1 . . . uny, where z′ is a
variable. None of these terms can be equal to x, so we have a contradiction.
If m ≥ 2, then we have t′ = λxλy u. So (t′)xy 'β u ; therefore u 'β x and
t′ 'β λxλy x. Since t′ is normal, t′ = λxλy x.

3. Integers type :
Let t ∈ |Int| and f, x be variables of the λ-calculus which do not occur in t ;
we define an interpretation I by taking |X|I = {τ ∈ Λ; τ 'β (f)kx for some
k ≥ 0} for every type variable X. Thus x ∈ |X| and f ∈ |X → X|.
Since t ∈ |Int|, we have t ∈ |(X → X), X → X|. Thus (t)fx ∈ |X|, and
hence (t)fx 'β (f)kx. It follows that t 'βη λfλx(f)kx, so t is normalizable.
Let t′ be its normal form ; then t′ = λx1 . . . λxm(y)t1 . . . tn.
If m = 0, then (t′)fx 'β (y′)u1 . . . unfx, where y′ is a variable. This term
cannot be equal to (f)kx, so we have a contradiction.
If m = 1, then we have t′ = λf(y)t1 . . . tn. So (t′)fx 'β (y)t1 . . . tnx. Since
this term needs to be equal to (f)kx, we necessarily have y = f and n = 0 ;
thus t′ = λf f .
If m ≥ 2, then we have t′ = λfλx u ; so (t′)fx 'β u. Therefore u 'β (f)kx
and t′ 'β λfλx(f)kx. Since t′ is normal, we conclude that t′ = λfλx(f)kx.

Now we come to the implications ⇐ . We shall treat for instance the case
of the type Int. Suppose t 'β λf f or t 'β λfλx(f)kx for some k ≥ 0. In
system DΩ, we have `DΩ λf f : (X → X)→ (X → X) and
`DΩ λfλx(f)kx : (X → X)→ (X → X).
Thus, by theorem 4.7, we have `DΩ t : (X → X) → (X → X). In view of
the adequacy lemma for system DΩ (lemma 3.5), we have :
t ∈ |(X → X)→ (X → X)|I for every interpretation I.
Hence t ∈ |∀X{(X → X)→ (X → X)}| = |Int|.

Q.E.D.

We can similarly define the type ∀X{(X → X), (X → X), X → X} of binary
lists (finite sequences of 0’s and 1’s), the type ∀X{(X,X → X), X → X} of
binary trees, etc. All of them are data types.
In the next section, we give a syntactic condition which is sufficient in order
that a formula be a data type (corollary 8.19).
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The type Int→ Int (of the functions from the integers to the integers) is not
a data type.

Indeed, let ξ = λnnI0y where y is a variable and I = λxx. Then ξ is a
non-closed normal term, so it is not β-equivalent to any closed term. Now
ξ ∈ |Int → Int| : suppose ν ∈ |Int|, then ν is β-equivalent to a Church
numeral, and therefore ξν 'β λxx ∈ |Int|.
Indeed, even the type Id → Id is not a data type : apply the same method
to ξ′ = λf f0y.

The next proposition shows that it is possible to obtain new data types from
given ones :

Proposition 8.15. Let A,B be two data types. Then the types :
A ∧B : ∀X{(A,B → X)→ X} (product of A and B) ;
A ∨B : ∀X{(A→ X), (B → X)→ X} (disjoint sum of A and B) ;
L[A] : ∀X{(A,X → X), X → X} (type of the lists of objects of type A)

are data types. More precisely :
If t ∈ |A ∧B|, then t 'β λf(f)ab, where a ∈ |A| and b ∈ |B|.
If t ∈ |A∨B|, then either t 'β λfλg(f)a for some a ∈ |A| or t 'β λfλg(g)b
for some b ∈ |B|.
If t ∈ |L[A]|, then either t 'β λfλx(fa1)(fa2) . . . (fan)x, where n ≥ 0 and
ai ∈ |A| for 1 ≤ i ≤ n, or t 'β λf(f)a for some a ∈ |A|.

Remark.
The term λfλx(fa1)(fa2) . . . (fan)x represents the n-tuple (a1, . . . , an) in the λ-
calculus ; if n = 0, this term is λfλxx which represents the empty sequence ;
if n = 1, the one element sequence (a) is represented either by λfλx(fa)x or by
λf(f)a which are η-equivalent.

Product type :
Let t ∈ |A ∧ B| and f be a variable with no free occurrence in t. Define
an interpretation I by : |X|I = {τ ∈ Λ ; τ 'β (f)ab for some a ∈ |A| and
b ∈ |B|}. Then f ∈ |A,B → X|I ; since t ∈ |(A,B → X) → X|I , we see
that (t)f ∈ |X|I . Thus there exist a ∈ |A|, b ∈ |B| such that (t)f 'β (f)ab.
It follows that t is solvable ; let t′ be a head normal form of t.
If t′ starts with λ, say t′ = λf u, then (t)f 'β (t′)f 'β u, and therefore
u 'β (f)ab. Hence t 'β t′ 'β λf(f)ab, which is β-equivalent to a closed
term since so are a and b, by hypothesis.
Otherwise, t′ = (x)t1 . . . tn, thus (t′)f 'β (x)t1 . . . tnf 'β (t)f 'β (f)ab.
Now (x)t1 . . . tnf 'β (f)ab, so we have n = 1 and b 'β f . But this is
impossible since b is β-equivalent to a closed term.

Disjoint sum type :
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Let t ∈ |A ∨ B| and f, g be two distinct variables which do not occur free
in t. Define an interpretation I by :

|X|I = {τ ∈ Λ ; τ 'β (f)a for some a ∈ |A| or τ 'β (g)b for some b ∈ |B|} ;

then f ∈ |A→ X|I and g ∈ |B → X|I .
Since t ∈ |(A → X), (B → X) → X|I , we can see that (t)fg ∈ |X|I . So
we have, for instance, (t)fg 'β (f)a for some a ∈ |A|. It follows that t is
solvable ; let t′ be a head normal form of t.

If t′ starts with at least two occurrences of λ, say t′ = λfλg u, then we have
(t)fg 'β (t′)fg 'β u, and therefore u 'β (f)a. Thus t 'β t

′ 'β λfλg(f)a,
which is β-equivalent to a closed term since so is a, by hypothesis.

If t′ starts with only one occurrence of λ, then t′ = λf(x)t1 . . . tn (x need not
be distinct from f) ; thus (t′)fg 'β (x)u1 . . . ung 'β (t)fg 'β (f)a.
Now (x)u1 . . . ung 'β (f)a, so we have n = 0 and a 'β g. But this is
impossible since a is β-equivalent to a closed term.

If t′ does not start with λ, then t′ = (x)t1 . . . tn ; so we have :

(t′)fg 'β (x)t1 . . . tnfg 'β (t)fg 'β (f)a.
It follows that (x)t1 . . . tnfg 'β (f)a, but this is impossible : the head vari-
able has at least two arguments in the first term, but only one in the second.

List type :

Let t ∈ |L[A]| and f, x be two variables which do not occur free in t. Define
an interpretation I by :
|X|I = {τ ∈ Λ; τ 'β (fa1)(fa2) . . . (fan)x, with n ≥ 0 and ai ∈ |A|}. Then
f ∈ |A,X → X|I and x ∈ |X|I ; since t ∈ |(A,X → X), X → X|I , we get
(t)fx ∈ |X|I . So we have (t)fx 'β (fa1)(fa2) . . . (fan)x. It follows that t is
solvable ; let t′ be a head normal form of t.

If t′ starts with at least two occurrences of λ, say t′ = λfλx u, then we have
(t)fx 'β (t′)fx 'β u, and therefore u 'β (fa1)(fa2) . . . (fan)x.
Thus t 'β t

′ 'β λfλx(fa1)(fa2) . . . (fan)x, which is a closed term since so
are the ai’s, by hypothesis.

If t′ starts with only one occurrence of λ, then t′ = λf(y)t1 . . . tn (y may be
equal to f) ; thus :

(t′)fx 'β (y)u1 . . . unx 'β (t)fx 'β (fa1)(fa2) . . . (fan)x.
So we have (y)u1 . . . unx 'β (fa1)(fa2) . . . (fan)x, and therefore y = f ,
n = 1 and u1 'β a1 (in both terms, the head variable is the same and its
arguments are β-equivalent). It follows that t 'β t

′ 'β λf(f)a1.

If t′ does not start with λ, then t′ = (y)t1 . . . tn, so we have :

(t′)fx 'β (y)t1 . . . tnfx 'β (t)fx 'β (fa1)(fa2) . . . (fan)x. Therefore :

(y)t1 . . . tnfx 'β (fa1)(fa2) . . . (fan)x ; as before, it follows that n = 0,
y = f , and an = f ; but this is impossible since, by hypothesis, an is β-equi-
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valent to a closed term.
Q.E.D.

Proposition 8.15 gives some particular cases of a general construction on data
types, which will be developed in the next section (theorem 8.28). Let us,
for the moment, consider one more instance.

Proposition 8.16.
For every data type A, the type BT [A] = ∀X{(A,X,X → X), X → X} is
also a data type, called the type of binary trees indexed by objects of type A.

Let A = {t ∈ Λ; there exists a ∈ |A| such that t 'β a}. Thus A 6= ∅ and
every element of A is β-equivalent to a closed term.
We choose two distinct variables f, x, and we define Efx as the least subset
of Λ with the following properties :

(?) x ∈ Efx ; if a ∈ A and t, u ∈ Efx, then (fa)tu ∈ Efx.

In other words, Efx is the intersection of all subsets of Λ which have these
properties. It follows that :

If τ ∈ Efx, then
τ is β-equivalent to a term which has the only free variables f, x ;
if τ 6= x, then f, x are free in τ ;
either τ = x, or τ = (fa)tu with a ∈ A and t, u ∈ Efx ;
if τ β τ ′ then τ ′ ∈ Efx.

Indeed, the set of λ-terms which have these properties has the properties (?).

Proposition 8.17 below shows, in particular, that every term in |BT [A]| is
β-equivalent to a closed term. This proves proposition 8.16.

Q.E.D.

Proposition 8.17. If t ∈ |BT [A]| and f, x are not free in t, then there is a
τ ∈ Efx such that t β λfλx τ .

Remark. The terms of the form λfλx τ , with τ ∈ Efx, are exactly the λ-terms
which represent binary trees indexed by elements of A.

We define an interpretation I by setting, for every type variable X :
|X|I = {ξ ∈ Λ; there exists τ ∈ Efx such that ξ β τ}.
Then, by definition of Efx, we have : x ∈ |X|I and f ∈ |A,X,X → X|I .
Since t ∈ |(A,X,X → X), X → X|I , we get (t)fx ∈ |X|I . In other words :

(t)fx β τ for some τ ∈ Efx.
Since every element of Efx is a head normal form, it follows that t is solvable ;
thus, t β t′ where t′ is a head normal form of t.
If t′ starts with at least two occurrences of λ, say t′ = λfλx u, then we have
(t)fx β (t′)fx β u β τ ∈ Efx. Therefore, t β t′ β λfλx τ .



Chapter 8. System F 161

If t′ starts with only one occurrence of λ, then t′ = λf(y)t1 . . . tn for some
variable y ; thus (t)fx β (t′)fx β (y)t1 . . . tnx β τ ∈ Efx.
Since τ 'β (y)t1 . . . tnx, we cannot have τ = x. Therefore, τ = (fa)uv with
a ∈ A and u, v ∈ Efx. Now, we have (y)t1 . . . tnx β (f)auv and therefore
y = f, n = 2, t1 β a, t2 β u and v = x. Thus, t β t′ β λf(f)au with u ∈ Efx.
But x is free in u ∈ Efx, and therefore is also free in t, which is a contradiction.

If t′ does not start with λ, then t′ = (y)t1 . . . tn, so we have :
(t)fx β (t′)fx β (y)t1 . . . tnfx β τ ∈ Efx. Thus τ 6= x, so that τ = (fa)uv
with a ∈ A and u, v ∈ Efx. Therefore y = f and it follows that f is free in
t′ ; thus, f is also free in t (because t β t′), which is a contradiction.

Q.E.D.

5. Positive second order quantifiers

We define formulas with positive (resp. negative) second order quantifiers,
also called ∀+-formulas (resp. ∀−-formulas), by the following rules :

Every type variable is a ∀+ and ∀−-formula.
If A is a ∀+-formula, then ∀X A is also a ∀+-formula.
If A is ∀− (resp. ∀+) and B is ∀+ (resp. ∀−), then A→ B is ∀+ (resp. ∀−).

Remark. Every quantifier free formula is ∀+ and ∀−.
There is no closed ∀−-formula.

We shall now prove the following :

Theorem 8.18. If A is a closed ∀+-formula and t ∈ |A|, then t is β-
equivalent to a normal closed λ-term.

Corollary 8.19. Every closed ∀+-formula which is provable in system F is
a data type.

Let A be such a formula. By theorem 8.18, every term in |A| is 'β to a closed
term ; so we only need to prove that |A| 6= ∅. But, since A is provable in
system F , there is a λ-term t such that ` t : A. By the adequacy lemma 8.13,
we deduce that t ∈ |A|.

Q.E.D.

In order to prove theorem 8.18, we need to generalize the notion of “value of
a formula”, defined page 155.
A truth value set is, by definition, a non empty set V of saturated subsets of
Λ, which is closed by → and arbitrary intersection. In other words :

• V 6= ∅ ; X ∈ V ⇒ X is a saturated subset of Λ ;
• the intersection of any non empty subset of V is in V ;
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• X ,Y ∈ V ⇒ (X → Y) ∈ V.

For example, the set V0 of all saturated subsets of Λ is a truth value set ;
other trivial examples are the two-elements set {∅,Λ} and the singleton {Λ}.
A V-interpretation I is, by definition, a mapping X 7→ |X|VI of the set of
type variables into V.
Let I be a V-interpretation, X a type variable and X ∈ V. We define a V-
interpretation J = I[X ← X ] by taking |Y |VJ = |Y |VI for every type variable
Y 6= X, and |X|VJ = X .

For every type A, the value |A|VI of A in a V-interpretation I is an element
of V defined as follows, by induction on A :

• if A is a type variable, then |A|VI is given with I ;
• |A→ B|VI = |A|VI → |B|VI , in other words :

for every term t, t ∈ |A→ B|VI if and only if tu ∈ |B|VI for every u ∈ |A|VI ;
• |∀X A|VI =

⋂
{|A|VI[X←X ]; X ∈ V}, in other words :

for every term t, t ∈ |∀X A|VI if and only if t ∈ |A|VI[X←X ] for every X ∈ V.

Remarks.
i) The value |A|I of a formula, defined page 155, is the particular case when the
truth value set is the set V0 of all saturated subsets of Λ.
ii) The value |A|VI does not really depends on the interpetation I, but only on the
restriction of I to the set of free variables of A. In particular, if A is a closed
formula, this value does not depends on I at all and will be denoted |A|V.

Lemma 8.20. Let V ⊂W be two truth value sets and I a V-interpretation.
If A is a ∀+(resp. a ∀−)-formula then |A|WI ⊂ |A|VI (resp. |A|VI ⊂ |A|WI ).

Proof by induction on the length of the formula A. The result is trivial if A
is a variable, because we have |A|VI = |A|WI .
If A ≡ B → C and A is ∀+, then B is ∀− and C is ∀+. By induction
hypothesis, we get |B|VI ⊂ |B|WI and |C|WI ⊂ |C|VI .
It follows that |B → C|WI ⊂ |B → C|VI which is the result.
If A ≡ B → C and A is ∀−, the proof is the same.
If A ≡ ∀X B and B is ∀+, then |A|VI =

⋂
{|B|VI[X←X ]; X ∈ V} and

|A|WI =
⋂
{|B|WI[X←X ]; X ∈W}. By induction hypothesis, we have :

|B|WI[X←X ] ⊂ |B|VI[X←X ] ; now, since V ⊂W, it follows that |A|WI ⊂ |A|VI .
Q.E.D.

Corollary 8.21. If A is a closed ∀+-formula, then |A| ⊂ |A|V for every truth
value set V.

Immediate from lemma 8.20, since |A| = |A|V0 and V ⊂ V0 for every truth
value set V.

Q.E.D.
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Consider now the pair (N0,N ) of subets of Λ defined page 47 :
N is the set of all terms which are normalizable by leftmost β-reduction ;
N0 = {(x)t1 . . . tn; n ∈ N, t1, . . . , tn ∈ N}.
We put V = {X ⊂ Λ; X is saturated, N0 ⊂ X ⊂ N}.

Lemma 8.22. V is a truth value set.

V is obviously closed by arbitrary (non void) intersection. Now, if X ,Y ∈ V,
we have N0 ⊂ X ,Y ⊂ N and therefore :
(N → N0) ⊂ (X → Y) ⊂ (N0 → N ). But we have proved, page 47,
that (N0,N ) is an adapted pair, and therefore that N0 ⊂ (N → N0) and
(N0 → N ) ⊂ N . It follows that N0 ⊂ (X → Y) ⊂ N .

Q.E.D.

We now choose a fixed λ-variable x ; let Λx ⊂ Λ be the set of λ-terms the
only free variable of which is x (every closed term is in Λx). We put :
N x = {t ∈ Λ; (∃u ∈ Λx) t reduces to u by leftmost β-reduction}
N x

0 = {(x)t1 . . . tn; n ∈ N, t1, . . . , tn ∈ N}.

Lemma 8.23.
i) N x

0 ⊂ N x ; ii) N x
0 ⊂ (N x → N x

0 ) ; iii) (N x
0 → N x) ⊂ N x.

Remark. This lemma means that the pair (N x
0 ,N x) is an adapted pair, as defined

page 46.

i) and ii) follow immediately from the definitions of N x and N x
0 .

iii) Let t ∈ (N x
0 → N x) ; since x ∈ N x

0 , we have tx ∈ N x, so that tx reduces
to u ∈ Λx by leftmost reduction. If this reduction takes place in t, then
u = vx and t reduces to v ∈ Λx by leftmost reduction. Otherwise, t reduces
to λy t′ and t′[x/y] reduces to u by leftmost reduction. Thus, there exists
a λ-term u′ with the only free variables x, y, such that t′ reduces to u′ by
leftmost reduction. Therefore, by leftmost reduction, t reduces to λy t′, then
to λy u′ and x is the only free variable of λy u′.

Q.E.D.

Now, we define Vx = {X ; X is a saturated subset of Λ, N x
0 ⊂ X ⊂ N x}.

Lemma 8.24. Vx is a truth value set.

We have only to check that (X → Y) ∈ Vx if X ,Y ∈ Vx. By definition of
Vx, we have N x

0 ⊂ X ,Y ⊂ N x and therefore :
(N x → N x

0 ) ⊂ (X → Y) ⊂ (N x
0 → N x).

Using lemma 8.23, we get N x
0 ⊂ (X → Y) ⊂ N x.

Q.E.D.

We can now prove theorem 8.18. Let A be a closed ∀+-formula and t ∈ |A|.
By corollary 8.21 and lemma 8.22, we have |A| ⊂ |A|V ⊂ N . It follows that
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t ∈ N , which means that t is normalizable.
Now, choose a λ-variable x which is not free in t. By corollary 8.21 and
lemma 8.24, we get |A| ⊂ |A|Vx ⊂ N x. It follows that t ∈ N x, which means
that t reduces, by leftmost reduction, to a term with the only free variable x.
Since x is not free in t, this reduction gives a closed term.

Q.E.D.

The next theorem gives another interesting truth value set.

Theorem 8.25. Let C = {t ∈ Λ; there exists a closed term t′ such that
t β t′}. Then {C} is a (one-element) truth value set.

Remark. By the Church-Rosser theorem 1.23, C is also the set of λ-terms which
are β-equivalent to closed terms.

Lemma 8.26.
Let ω = (λz zz)λz zz and t ∈ Λ. A step of β-reduction in t[ω/x] gives
t′[ω/x], where t′ = t or t′ is obtained by a step of β-reduction in t.

Proof, by induction on the length of t. The result is immediate if t is a variable
or if t = λxu. If t = uv, then a redex in t[ω/x] = u[ω/x]v[ω/x] is either a
redex in u[ω/x], or a redex in v[ω/x], or t[ω/x] itself. In the first two cases,
we simply apply the induction hypothesis. In the last case, u[ω/x] begins
with a λ and, therefore, u = λy u′ and t = (λy u′)v. The redex we consider
is (λy u′[ω/x])v[ω/x] and its reduction gives u′[ω/x][v[ω/x]/y] = t′[ω/x] with
t′ = u′[v/y].

Q.E.D.

Lemma 8.27. Let t ∈ Λ ; if there is a closed term u such that t[ω/x] β u,
then there is a term u′ with the only free variable x, such that t β u′.

Proof by induction on the length of the given β-reduction from t[ω/x] to u. If
this length is 0, then t[ω/x] is closed and t has the only free variable x. Oth-
erwise, by lemma 8.26, after one step of β-reduction, we get t′[ω/x] with t β t′.
By the induction hypothesis, we have t′β u′ (u′ has the only free variable x)
and, therefore, t β u′.

Q.E.D.

We can now prove the theorem 8.25. It is clear that C is a saturated set ;
thus, we only have to show : C = (C → C) and, in fact only : (C → C) ⊂ C,
because the reverse inclusion is trivial.
Let t ∈ (C → C), so that we have tω ∈ C and, therefore, tω β u where u is
closed. If this β-reduction takes place entirely in t, we have t β t′ and t′ω = u ;
thus, t′ is closed and t ∈ C. Otherwise, we have t β λx t′ and t′[ω/x] β u. By
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lemma 8.27, we have t′β u′ (u′ has the only free variable x) and, therefore,
t β λx u′. Since λxu′ is closed, we get t ∈ C.

Q.E.D.

This gives another proof of the second part of theorem 8.18 : if A is a closed
∀+-formula, then by corollary 8.21 with V = {C}, we obtain |A| ⊂ |A|V = C.
This shows that every term in |A| is β-equivalent to a closed term.

Consider a formula F and a type variable X ; for each free occurrence of X
in F , we define its sign (positive or negative), inductively on the length of F :
• if F ≡ X, the occurrence of X is positive ;
• if F ≡ (G → H), the positive (resp. negative) free occurrences of X

in F are the positive (resp. negative) free occurrences of X in H and the
negative (resp. positive) free occurrences of X in G ;
• if F ≡ ∀Y G, with Y 6= X, the positive (resp. negative) free occurrences

of X in F are the positive (resp. negative) free occurrences of X in G.

Theorem 8.28. Suppose that ∀X1 . . . ∀Xk F is a closed ∀+-formula which is
provable in system F , and that every free occurrence of X1, . . . , Xk in F is
positive. If A1, . . . , Ak are data types, then F [A1/X1, . . . , Ak/Xk] is a data
type.

Remark. In fact, we may suppose only that |A1|, . . . , |Ak| ⊂ C ; the hypothesis
|Ai| 6= ∅ is useless.

Lemma 8.29. Let X1, . . . , Xk be distinct type variables, and I,J be two
V-interpretations such that : |Xi|VI ⊃ |Xi|VJ for 1 ≤ i ≤ k and |X|VI = |X|VJ
for every type variable X 6= X1, . . . , Xk.
If X1, . . . , Xk have only positive (resp. negative) free occurrences in a for-
mula F , then |F |VI ⊃ |F |VJ (resp. |F |VI ⊂ |F |VJ ).

Easy proof, by induction on the length of F .
Q.E.D.

Proof of theorem 8.28.
By hypothesis, we have `F t : ∀X1 . . . ∀Xk F for some t ∈ Λ. By the
adequacy lemma 8.13, we deduce that t ∈ |∀X1 . . . ∀Xk F | and, therefore
t ∈ |F [A1/X1, . . . , Ak/Xk]|. This shows |F [A1/X1, . . . , Ak/Xk]| 6= ∅.
In lemma 8.20, we take V = {C} and W = V0 (the set of all saturated subsets
of Λ) ; I is the single V-interpretation, which is defined by |X|I = C for
every type variable X. We apply this lemma to the ∀+-formula F and we
obtain : |F |I = |F |WI ⊂ |F |VI = C.
We define an interpetation J as follows : |Xi|J = |Ai| for 1 ≤ i ≤ k and
|X|J = C for any type variable X 6= X1, . . . , Xk.
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Now, one hypothesis of the theorem is that |A1|, . . . , |Ak| ⊂ C. Moreover,
the variables X1, . . . , Xk have only positive occurrences in the formula F .
Therefore, the hypothesis of lemma 8.29 are fulfilled (the truth value set
being W = V0) and it follows that |F |J ⊂ |F |I ; thus, |F |J ⊂ C.
Now, |F |J is the same as |F [A1/X1, . . . , Ak/Xk]|, and therefore we obtain
the desired result : |F [A1/X1, . . . , Ak/Xk]| ⊂ C.

Q.E.D.

References for chapter 8

[Boh85], [For83], [Gia88], [Gir71], [Gir72], [Gir86].
(The references are in the bibliography at the end of the book).



Chapter 9

Second order functional
arithmetic

1. Second order predicate calculus

In this chapter, we will deal with the classical second order predicate calculus,
with a syntax using the following symbols :

the logical symbols → and ∀ (and no other ones) ;
individual variables : x, y, . . . (also called first order variables) ;
n-ary relation variables (n = 0, 1, . . .) : X, Y, . . . (also called second order

variables) ;
n-ary function symbols (n = 0, 1, . . .) (on individuals) ;
n-ary relation symbols (n = 0, 1, . . .) (on individuals).

Each relation variable, each function or relation symbol, has a fixed arity
n ≥ 0. Function symbols of arity 0 are called constant symbols. Relation
variables of arity 0 are also called propositional variables.
It is assumed that there are infinitely many individual variables and, for each
n ≥ 0, infinitely many n-ary relation variables.

The function and relation symbols determine what we call a language ; the
other symbols are common to all languages.
Let L be a language.
The (individual) terms of L are built up in the usual way, that is by the
following rules :

each individual variable, and each constant symbol, is a term ;
whenever f is an n-ary function symbol and t1, . . . , tn are terms,
f(t1, . . . , tn) is a term.

The atomic formulas are the expressions of the form A(t1, . . . , tk), where A
is a k-ary relation variable or symbol and t1, . . . , tk are terms.

167
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The formulas are the expressions obtained by the following rules :

every atomic formula is a formula ;

whenever F,G are formulas, (F → G) is a formula ;

whenever F is a formula, x is an individual variable and X is a relation
variable, ∀xF and ∀X F are formulas.

Definitions and notations

A closed term of L is a term which contains no variable. A closed formula is
a formula in which no variable occurs free.

The closure of a formula F is the formula obtained by universal quantification
of all the free variables of F .

A universal formula consists of a (finite) sequence of universal quantifiers
followed by a quantifier free formula.

The formula F1 → (F2 → (. . . → (Fn → G) . . .)) will also be denoted by
F1, F2, . . . , Fn → G.

Let X be a 0-ary relation variable, ξ any individual or relation variable,
ξ 6= X, and F,G arbitrary formulas in which X does not occur free.

The formula ∀X X is denoted by ⊥ (read “ false ”).

The formula F →⊥ is denoted by ¬F (read “ not F ”).

The formula ∀X[(F → X), (G → X) → X] is denoted by F ∨ G (read “ F
or G ”).

The formula ∀X[(F,G→ X)→ X] is denoted by F ∧G (read “ F and G ”).

The formula (F → G) ∧ (G → F ) is denoted by F ↔ G (read “ F is
equivalent to G ”).

The formula ∀X[∀ξ(F → X)→ X] is denoted by ∃ξ F (read “ there exists a
ξ such that F ”).

α-equivalent formulas and substitution

Let F be a formula, ξ a variable, and η the same sort of symbol as ξ (if ξ is
an individual variable, then so is η ; if ξ is an n-ary relation variable, then η
is an n-ary relation variable or symbol) ; we define the formula F<η/ξ> by
replacing in F all free occurrences of ξ by η.

We now define, by induction on F , the α-equivalence of two formulas F,G,
denoted by F ≡ G :

• if F is an atomic formula, then F ≡ G if and only if F = G ;

• if F = A→ B, then F ≡ G if and only if G = A′ → B′, where A ≡ A′

and B ≡ B′ ;
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• if F = ∀ξ A, ξ being an individual or relation variable, then F ≡ G if
and only if G = ∀η B, where η is the same sort of variable as ξ, and
A<ζ/ξ> ≡ B<ζ/η> for all variables ζ of the same sort as ξ but a
finite number.

From now on, we shall identify α-equivalent formulas.
If V is a finite set of variables (of any kind), and A is a formula, then there
exists a formula A′ ≡ A, such that no variable of V is bound in A′. A′ has
the same length as A (the only difference between A and A′ is the name of
the bound variables).

Let A be a formula, x1, . . . , xk individual variables, and t1, . . . , tk terms. The
formula A[t1/x1, . . . , tk/xk] is defined by choosing a representative of A such
that none of its bound variables occur in the ti’s, and then by replacing in it
each free occurrence of xi by ti (1 ≤ i ≤ n).

Consider two formulas A and F , an n-ary relation variable X, and n indi-
vidual variables x1, . . . , xn. We define the substitution of F to X(x1, . . . , xn)
in A : this produces a formula, denoted by A[F/Xx1 . . . xn] ; the definition
is by induction on A and requires a representative of A such that its bound
variables do not occur in F :

• if A is an atomic formula of the form X(t1, . . . , tn), then
A[F/Xx1 . . . xn] is the formula F [t1/x1, . . . , tn/xn] ;

• if A is atomic and does not start with X, then A[F/Xx1 . . . xn] = A ;

• if A = B → C, then
A[F/Xx1 . . . xn] = B[F/Xx1 . . . xn]→ C[F/Xx1 . . . xn] ;

• if A = ∀ξ B, where ξ is an individual variable, or a relation variable
different from X, then A[F/Xx1 . . . xn] = ∀ξ B[F/Xx1 . . . xn] ;

• if A = ∀X B, then A[F/Xx1 . . . xn] = A.

Models

Recall briefly some classical definitions of model theory.
A second order model for the language L is a structureM consisting of :

a domain |M| (the set of individuals, assumed non-empty) ;
for each integer n ≥ 0, a subset |M|n of P(|M|n), which is the range

for the values of the n-ary relation variables. If n = 0, we assume that
|M|0 = P(|M|0) = {0, 1} ;
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an interpretation, in |M|, of the function and relation symbols of the
language L : namely, a mapping which associates with each n-ary function
symbol f of L, an n-ary function fM : |M|n → |M|, and with each n-ary
relation symbol S of L, an n-ary relation onM, that is a subset SM ⊂ |M|n.
In particular, it associates with each constant symbol c an element cM ∈ |M|.
We will say that an n-ary relation R on |M| (in other words a subset of
|M|n) is part of the modelM whenever R ∈ |M|n.
The elements of |M|1 are called the classes ofM.

The modelM is called a full model if, for each n ≥ 0, |M|n = P(|M|n) (that
is to say : if all relations on |M| are part of the modelM).

Let LM denote the language obtained by adding to L every element of |M|
as a constant symbol, and, for each n ≥ 0, every element of P(|M|n) as
an n-ary relation symbol (of course, we suppose that no symbol in L is an
element of |M| or of P(|M|n)).
The terms and formulas of LM are respectively called terms and formulas of
L with parameters in M.
There is an obvious way of extending the model M to a model for the lan-
guage LM : the new symbols of LM are their own interpretation.
With each closed term of L, with parameters in M, we associate its value
tM ∈ |M|, which is defined by induction on t :

if t is a constant symbol of LM, then tM is already defined ;
if t = f(t1, . . . , tn), then tM = fM(t1M, . . . , t

n
M).

Let F be a closed formula of L, with parameters in M. We define, by
induction on F , the expression M satisfies F , which is denoted byM |= F :

if F is an atomic formula, say R(t1, . . . , tn), where R is an n-ary relation
symbol of LM , and t1, . . . , tn are closed terms of LM, then M |= F if and
only if (t1M, . . . , t

n
M) ∈ RM.

if F = G→ H, thenM |= F if and only ifM |= G⇒M |= H.
if F = ∀xG, x being the only free variable in G, thenM |= F if and only

ifM |= G<a/x> for every a ∈ |M|.
if F = ∀X G, where the n-ary relation variable X is the only free variable

in G, thenM |= F if and only ifM |= G<R/X> for every R ∈ |M|n.

Let A be a system of axioms of the language L (that is to say a set of closed
formulas, also called a theory). By a model of A, we mean a model which
satisfies all formulas of A. A closed formula F is said to be a consequence
of A (which is denoted by A ` F ) if every model of A satisfies F . A closed
formula F is said to be valid (we write ` F ) if it is a consequence of ∅, in
other words, if it is satisfied in every model.
Clearly, for every 0-ary relation variable X, no model satisfies the formula
∀X X. This is a justification for the definition of ⊥.
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Proposition 9.1. Let A,F be two formulas with parameters in M, such
that the only free variable in A is an n-ary relation variable X, and all
the free variables in F are among the individual variables x1, . . . , xn ; let
Φ = {(a1, . . . , an) ∈ |M|n ; M |= F [a1/x1, . . . , an/xn]} (which is an n-ary
relation on |M|). Then M |= A[F/Xx1 . . . xn]⇔M |= A<Φ/X>.

The proof is by induction on A. If A is atomic and starts with X, then
A = Xt1 . . . tn, so :
M |= A[F/Xx1 . . . xn]⇔M |= F [t1M/x1, . . . , t

n
M/xn]

⇔M |= Φ(t1M, . . . , t
n
M)⇔M |= A<Φ/X>.

If A = ∀xB, where x is an individual variable, then :
M |= ∀xB[F/Xx1 . . . xn]⇔ (∀a ∈ |M|)M |= B[F/Xx1 . . . xn]<a/x>
⇔ (∀a ∈ |M|)M |= B<a/x>[F/Xx1 . . . xn]
⇔ (∀a ∈ |M|)M |= B<a/x><Φ/X> (by induction hypothesis)
⇔ (∀a ∈ |M|)M |= B<Φ/X><a/x>⇔M |= ∀xB<Φ/X>.

Same proof when A = ∀Y B, for some relation variable Y 6= X.
The other cases of the inductive proof are trivial.

Q.E.D.

The comprehension axiom

This is an axiom scheme, denoted by CA ; it consists of the closure of all
formulas of the following form :

(CA) ∀X A→ A[F/Xx1 . . . xn]

where A and F are arbitrary formulas, X is an n-ary relation variable (n ≥ 0),
and x1, . . . , xn are n individual variables.

Proposition 9.2. Every full model satisfies the comprehension axiom.

LetM be a full model, X an n-ary relation variable, x1, . . . , xn, n individual
variables, A a formula with parameters inM in which X is the only free vari-
able, and F a formula with parameters inM in which all the free variables are
among x1, . . . , xn. Suppose M |= ∀X A, and let Φ = {(a1, . . . , an) ∈ |M|n ;
M |= F [a1/x1, . . . , an/xn]}. We have Φ ∈ P(|M|n) and M is full : thus
Φ ∈ |M|n. Since M |= ∀X A, M |= A<Φ/X> ; therefore, by proposi-
tion 9.1,M |= A[F/Xx1 . . . xn].

Q.E.D.

Given a language L, the second order predicate calculus on L is the theory
consisting of all the axioms of the comprehension scheme.
Thus a model of the second order predicate calculus on the language L is a
second order modelM for L such thatM |= CA.
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Proposition 9.3. The comprehension axiom is equivalent to the following
axiom scheme :
(CA′) ∃Y ∀x1 . . . ∀xn[Y (x1, . . . , xn)↔ F ]
where Y is an n-ary relation variable (n ≥ 0) and F an arbitrary formula.

(In fact, as above, we consider the closure of the formulas of CA′).
Clearly, we have ` ∀X A, where A is the formula :
∃Y ∀x1 . . . ∀xn[Y (x1, . . . , xn)↔ X(x1, . . . , xn)].

Therefore CA ` A[F/Xx1 . . . xn], that is to say CA ` CA′.
Conversely, consider any modelM of CA′. Suppose thatM |= ∀X A, where
X is an n-ary relation variable, and A a formula with parameters in M,
where the only free variable is X. Let F be a formula with parameters inM
and free variables among x1, . . . , xn. Let Φ = {(a1, . . . , an) ∈ |M|n ; M |=
F [a1/x1, . . . , an/xn]}. We have M |= ∃Y ∀x1 . . . ∀xn[Y (x1, . . . , xn) ↔ F ] by
hypothesis ; henceM |= ∀x1 . . . ∀xn[Ψ(x1, . . . , xn)↔ F ] for some Ψ ∈ |M|n.
Therefore : M |= ∀x1 . . . ∀xn[Ψ(x1, . . . , xn)↔ Φ(x1, . . . , xn)]. It follows that
Φ = Ψ, so Φ ∈ |M|n. SinceM |= ∀X A, we haveM |= A<Φ/X> ; thus, by
proposition 9.1,M |= A[F/Xx1 . . . xn].

Q.E.D.

Equational formulas

We consider a second order language L.
The formula ∀X[X(x) → X(y)] will be denoted by x = y. Obviously, we
have ` x = x and ` x = y, y = z → x = z. Moreover, CA ` x = y → y = x
(apply CA, taking A as the formula X(x) → X(y), then replace X(y) with
the formula y = x).
We also have, clearly, for every formula F (x), CA, x = y ` F (x)→ F (y).
It follows that, in every model M of the second order predicate calculus,
the formula x = y defines an equivalence relation which is compatible with
the whole structure of the model. By taking the quotient, we thus obtain a
model M′ in which the interpretation of the formula x = y is the identity
relation. Such a model will be called an identity model.
Now it is clear that the modelsM andM′ satisfy exactly the same formulas
of L. This allows us, when we deal with models of CA, to consider only
identity models ; from now on, it is what we will do.

By an equation (or an equational formula), we mean the closure of any formula
of the form t = u (where t, u are terms). A set of equations will also be called
a system of equational axioms.
A particular case of an equation t = u is, by definition, a formula of one of
two forms :
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t[v1/x1, . . . , vk/xk] = u[v1/x1, . . . , vk/xk] or
u[v1/x1, . . . , vk/xk] = t[v1/x1, . . . , vk/xk],

where v1, . . . , vk are terms.

Proposition 9.4. Let E be a system of equational axioms in some language
L, and u, v two terms of L ; then CA+E ` u = v if and only if the expression
`E u = v can be obtained by means of the following rules :
i) if u = v is a particular case of an axiom of E, then `E u = v ;
ii) for all terms u, v, w of L, we have : `E u = u ; if `E u = v and `E v = w,
then `E u = w ;
iii) if f is an n-ary function symbol of L, and if `E u1 = v1, . . ., `E un = vn,
then `E f(u1, . . . , un) = f(v1, . . . , vn).

Clearly, if one obtains `E u = v by these rules, then every model of CA+ E
satisfies u = v.
In order to prove the converse, we first show that `E u = v ⇒ `E v = u, by
induction on the length of the derivation of `E u = v by rules (i), (ii), (iii).
Consider the last rule used. If it is rule (i), then the result is clear (if u = v
is a particular case of an axiom of E , then so is v = u). If it is rule (ii), then
`E u = w and `E w = v are already deduced ; thus, by induction hypothesis,
`E w = u and `E v = w ; therefore `E v = u.
The proof is similar in the case of rule (iii).
Thus the relation `E u = v defined by these rules is an equivalence relation
on the set T of individual terms of L : indeed, it is reflexive and transitive
by rule (ii), and it has just been proved that it is symmetric. By rule (iii),
it is compatible with the natural interpretation of the functional symbols of
L in T . It follows that the quotient set of T by this equivalence relation is
a (first order) modelM for the language L. By rule (i), this model satisfies
E . By taking the full model overM, we obtain a model of CA+ E .
Now let u, v be two terms of L, such that CA + E ` u = v ; it is clear that
the considered model satisfies u = v, which means that `E u = v.

Q.E.D.

Notice that the system of axioms CA + E cannot be contradictory. Indeed,
the full model over a one element set (with the unique possible interpretation
of the function symbols) is clearly seen to satisfy CA+ E .

Deduction rules for the second order predicate calculus

Consider a second order language L, and a system E of equational axioms
of L. Let A be a formula, and A = {A1, . . . , Ak} a finite set of formulas of
L. By the completeness theorem of predicate calculus (applied to the system
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of axioms CA + E), A is a consequence of CA + E + A if and only if the
expression A `E A can be obtained by means of the following “ deduction
rules ” :

D0. For every formula A and every finite set of formulas A : A, ¬¬A `E A.
D1. For every formula A and every finite set of formulas A : A, A `E A.
D2. If A, A `E B, then A `E A→ B.
D3. If A `E A and A `E A→ B, then A `E B.
D4. If A `E ∀xA, then A `E A[u/x] for every term u of L.
D5. If A `E A and if the individual variable x does not occur free in A, then
A `E ∀xA.
D6. If A `E ∀X A, where X is an n-ary relation variable, and if F is any
formula of L, then A `E A[F/Xx1 . . . xn].
D7. If A `E A and if the n-ary relation variable X does not occur free in A,
then A `E ∀X A.
D8. Let A be a formula, x an individual variable and u, v two terms of L
such that u = v is a particular case of an axiom of E . If A `E A[u/x], then
A `E A[v/x].

So the meaning of the expression A `E A is : “ A is a consequence of A with
the system of equational axioms E , in the classical second order predicate
calculus ”.
Similarly, we define the expression : “ A is a consequence of A with the
system of equational axioms E , in the intuitionistic second order predicate
calculus ” ; this will be denoted by A `i

E A. The definition uses rules D1
through D8 above, but not D0.

2. System FA2

We consider a second order language L, and a system E of equational axioms
of L. We are going to describe a system of typed λ-calculus, called second
order functional arithmetic (FA2), where the types are the formulas of L
(modulo α-equivalence). When writing the typed terms of this system, we
will use the same symbols to denote the variables of the λ-calculus and the
individual variables of the language L.
A context Γ is a set of the form x1 : A1, x2 : A2, . . . , xk : Ak, where
x1, x2, . . . , xk are distinct variables of the λ-calculus, and A1, A2, . . . , Ak are
formulas of L. We will say that an individual variable x (or a relation variable
X) of L is not free in Γ if it does not occur free in A1, A2, . . . , Ak.
The rules of typing are the following (t stands for a term of the λ-calculus) :

T1. Γ, x : A `E x : A whenever x is a variable of the λ-calculus which is not
declared in Γ.
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T2. If Γ, x : A `E t : B, then Γ `E λx t : A→ B.
T3. If Γ `E t : A and Γ `E u : A→ B, then Γ `E (u)t : B.
T4. If Γ `E t : ∀xA, and if u is a term of L, then Γ `E t : A[u/x].
T5. If Γ `E t : A, and if the individual variable x is not free in Γ, then
Γ `E t : ∀xA.
T6. If Γ `E t : ∀X A, where X is an n-ary relation variable, then Γ `E t :
A[F/Xx1 . . . xn] for every formula F of L.
T7. If Γ `E t : A, and if the relation variable X is not free in Γ, then
Γ `E t : ∀X A.
T8. Let u, v be two terms of L, such that u = v is a particular case of an
axiom of E , and A a formula of L. If Γ `E t : A[u/x], then Γ `E t : A[v/x].

Whenever we obtain the typing Γ `E t : A by means of these rules, we will
say that “ the λ-term t is of type A (or may be given type A) with the axioms
of E , in the context Γ ”.

Clearly, if Γ `E t : A, then all the free variables of t are declared in Γ. Thus
all terms which are typable in the empty context are closed.

The following statement, which is a form of the so called Curry-Howard
correspondence, is an immediate consequence of the above definitions :

There exists a term which may be given type A with the equational system E
in the context x1 : A1, x2 : A2, . . . , xk : Ak if and only if A1, A2, . . . , Ak `i

E A.

Indeed, the constructions of typed terms by means of rules T1 through T8
correspond, in an obvious and canonical way, to the intuitionistic proofs with
rules D1 through D8.

System F and the normalization theorem

The types of system F are, by definition (see chapter 8), the formulas built
up with the logical symbols ∀, →, and the 0-ary relation variables X, Y, . . .
(propositional variables). So these formulas are seen to appear in all second
order languages.
The typing rules of system F form a subsystem of the above rules : they are
rules T1, T2, T3, and T6, T7 restricted to the case n = 0.

Proposition 9.5. Given a language L and a system E of equations of L, a
λ-term t is typable with E if and only if it is typable in system F .

The condition is obviously sufficient, since the typing rules of system F form
a subsystem of rules T1, . . . , T8.
To prove the converse, we associate with each formula A of L, a formula
A− of system F , obtained by “ forgetting in A the first order part ”. The
definition of A− is by induction on A :
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if A is atomic, say A = X(t1, . . . , tn)(X being an n-ary relation variable
or symbol), then A− = X (which is, here, a propositional variable) ;

if A = B → C, then A− = B− → C− ;
if A = ∀xB(x being an individual variable), then A− = B−.
if A = ∀X B(X being an n-ary relation variable), then A− = ∀X B− (X

being, here, a propositional variable).

Now consider a derivation of a typing x1 : A1, . . . , xk : Ak `E t : A, with the
system of equations E . In this derivation, replace each formula F of L by
F−. We therefore obtain a derivation, in system F , of the typing :

x1 : A−1 , x2 : A−2 , . . . , xk : A−k ` t : A−.
Note that rules T4, T5 and T8 disappear after this transformation, since
(∀xA)− = A−, and A[u/x]− = A[v/x]−.

Q.E.D.

Theorem 9.6 (Normalization theorem). Let L be a second order language
and E a system of equations of L. Then, every term of the λ-calculus which
is typable with E is strongly normalizable.

By proposition 9.5, a λ-term which is typable with E is also typable in system
F , so the result follows from the normalization theorem for that system
(theorem 8.9).

Q.E.D.

Derived rules for constructing typed terms

Let L be a second order language, and E a system of equations of L.

Proposition 9.7. If Γ `E t : A and Γ ⊂ Γ′, then Γ′ `E t : A.

Immediate proof, by induction on the length of the derivation of Γ `E t : A.
Q.E.D.

Proposition 9.8. Let Γ be a context, and x1, . . . , xk variables which are not
declared in Γ. If Γ `E ti : Ai (1 ≤ i ≤ k) and Γ, x1 : A1, . . . , xk : Ak `E u : B,
then Γ `E u[t1/x1, . . . , tk/xk] : B.

In particular, if x1, . . . xk do not occur free in u, and Γ, x1 : A1, . . . , xk :
Ak `E u : B, then Γ `E u : B.
The proof is the same as that of proposition 8.2.

Q.E.D.

Our purpose now is to prove :
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Theorem 9.9. Let t, t′ be two λ-terms such that t β t′ ; if Γ `E t : A, then
Γ `E t′ : A.

Recall that t β t′ means that t′ is obtained from t by β-reduction.

Lemma 9.10. Let u be a term and x a variable of L. If Γ `E τ : A, then
Γ[u/x] `E τ : A[u/x].

The proof is by induction on the length l of the derivation of Γ `E τ : A ; in
fact we will show that Γ[u/x] `E τ : A[u/x] also has a derivation of length l.

Consider the last rule used. The result is immediate if it is T1,T2 or T3.

If it is T4, then we have Γ `E τ : ∀y A′ (as a previous typing), and A =
A′[v/y]. By induction hypothesis, Γ[u/x] `E τ : ∀y A′[u/x] and therefore,
by applying T4, Γ[u/x] `E τ : A′[u/x][v′/y]. Take v′ = v[u/x] ; then
A′[u/x][v′/y] = A′[v/y][u/x] since y does not occur in u. Hence Γ[u/x] `E τ :
A[u/x].

If it is T5, then we have Γ `E τ : A′ (previous typing) and A = ∀y A′, where y
is an individual variable which is not free in Γ. If we take a variable z with no
occurrence in Γ, A′, u, then, by induction hypothesis : Γ[z/y] `E τ : A′[z/y],
and the length of this derivation is l. Now Γ[z/y] is identical to Γ. Let A′′ =
A′[z/y] ; then Γ `E τ : A′′, and therefore Γ[u/x] `E τ : A′′[u/x]. Since z does
not occur in Γ[u/x], we may apply T5, so we obtain Γ[u/x] `E τ : ∀z A′′[u/x].
Now ∀z A′′ ≡ ∀y A′ ≡ A ; thus Γ[u/x] `E τ : A[u/x].

If it is T6, then we have Γ `E ∀X A′ (previous typing), X being an n-
ary relation variable, and A = A′[F/Xx1 . . . xn]. By induction hypothesis,
Γ[u/x] `E τ : ∀X A′[u/x] ; therefore, by applying T6, we obtain Γ[u/x] `E
τ : A′[u/x][F ′/Xx1 . . . xn]. Take F ′ as F [u/x] ; then :

A′[u/x][F ′/Xx1 . . . xn] = A′[F/Xx1 . . . xn][u/x] (since we may assume that
x1, . . . , xn do not occur in u) = A[u/x].

If it is T7, the proof is the same as for T5.

If it is T8, we have Γ `E τ : A′[v/y] (previous typing) and A = A′[w/y],
v = w being a particular case of E . By induction hypothesis, Γ[u/x] `E τ :
A′[v/y][u/x] ; now, since we may assume that y does not occur in u, we also
have A′[v/y][u/x] = A′[u/x][v′/y], where v′ = v[u/x]. Thus Γ[u/x] `E τ :
A′[u/x][v′/y]. Let w′ = w[u/x] : we see that v′ = w′ is a particular case of
E . By rule T8, we obtain Γ[u/x] `E τ : A′[u/x][w′/y]. Now :

A′[u/x][w′/y] = A′[w/y][u/x] = A[u/x]. This yields the expected conclusion.

Q.E.D.

Lemma 9.11. Let X be an n-ary relation variable of the language L. If
Γ `E τ : A, then Γ[F/Xx1 . . . xn] `E τ : A[F/Xx1 . . . xn].
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The proof of the previous lemma applies in cases 1, 2, 3, 4, 5, 7 and 8.
Suppose that the last rule applied is T6 ; then we have Γ `E τ : ∀Y A′
(as a previous typing) and A = A′[G/Y y1 . . . yp]. By induction hypothesis,
Γ[F/Xx1 . . . xn] `E τ : ∀Y A′[F/Xx1 . . . xn] ; by applying T6, we obtain :
Γ[F/Xx1 . . . xn] `E τ : A′[F/Xx1 . . . xn][G′/Y y1 . . . yp] ; if we take G′ as
G[F/Xx1 . . . xn], we see that :

A′[F/Xx1 . . . xn][G′/Y y1 . . . yp] = A′[G/Y y1 . . . yp][F/Xx1 . . . xn]
(since Y does not occur in F ) = A[F/Xx1 . . . xn] ; this ends the proof.

Q.E.D.

Lemma 9.12. If u = v is a particular case of E and Γ[u/x] `E τ : A[u/x],
then Γ[v/x] `E τ : A[v/x].

Let Γ = x1 : A1, . . . , xk : Ak. By hypothesis, we have Γ[u/x] `E τ : A[u/x],
therefore, by rule T8, x1 : A1[u/x], . . . , xk : Ak[u/x] `E τ : A[v/x]. Now
Γ[v/x] `E xi : Ai[v/x] (rule T1) ; thus, by rule T8, Γ[v/x] `E xi : Ai[u/x].
Then it follows from proposition 9.8 that Γ[v/x] `E τ : A[v/x].

Q.E.D.

Let Γ be a context and A a formula. We define the class CΓ,A of Γ-instances
of A, which is the least class C of formulas of L which contains A and is such
that :

if B ∈ C, then B[t/x] ∈ C whenever x is an individual variable not free
in Γ, and t is a term.

if B ∈ C, then B[F/Xx1 . . . xn] ∈ C whenever X is an n-ary relation
variable not free in Γ, and F is a formula.

if B[t/x] ∈ C, then B[u/x] ∈ C whenever t = u is a particular case of E .
A formula is said to be open if it does not start with ∀ (so it is either atomic
or of the form B → C). Every formula F can be written ∀ξ1 . . . ∀ξkF 0 where
F 0 is an open formula called the interior of F (ξ1, . . . , ξk are individual or
relation variables).

Lemma 9.13. If A′ is an open formula, and if Γ `E t : A′ can be deduced
from Γ `E t : A using only rules T4 through T8, then A′ is a Γ-instance of
A0.

The proof is by induction on the number of steps in the deduction by means
of rules T4 through T8. Consider the first rule used.
If it is T5 or T7, then the first step is to pass from Γ `E t : A to Γ `E t : ∀ξ A ;
the result follows immediately, since A and ∀ξ A have the same interior.
If it is T4, then A can be written ∀x∀ξ1 . . . ∀ξk A0, and the first step of the
derivation gives Γ `E t : ∀ξ1 . . . ∀ξk A0[u/x]. By induction hypothesis A′ is a
Γ-instance of A0[u/x], and thus also of A0.
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If it is T6, then A can be written ∀X∀ξ1 . . . ∀ξk A0, and the first step of the
derivation gives Γ `E t : ∀ξ1 . . . ∀ξk A0[F/Xx1 . . . xn]. Now A0 is an open
formula :
If A0 is either an atomic formula not beginning with X, or a formula of the
form B → C, then A0[F/Xx1 . . . xn] is of the same form, so it is open. By
induction hypothesis, A′ is a Γ-instance of A0[F/Xx1 . . . xn], thus also of A0.
Otherwise, A0 is of the form Xt1 . . . tn ; then :
A0[F/Xx1 . . . xn] ≡ F [t1/x1, . . . , tn/xn], and it follows from the induction
hypothesis that A′ is a Γ-instance of F 0[t1/x1, . . . , tn/xn], in other words of
A0[F 0/Xx1 . . . xn], thus also of A0.
If it is T8, then A is written B[u/x], and the first step of the derivation gives
Γ `E t : B[v/x], u = v being a particular case of E . We have A0 = B0[u/x],
and the interior of B[v/x] is B0[v/x]. By induction hypothesis, A′ is a Γ-
instance of B0[v/x], thus also of A0.

Q.E.D.

Lemma 9.14. Suppose that Γ `E t : A, where A is an open formula.
i) If t is some variable x, then Γ contains a declaration x : B, and A is a
Γ-instance of B0.
ii) If t = λxu, then A = B → C and Γ, x : B `E u : C.
iii) If t = (v)u, then Γ `E v : C → B and Γ `E u : C, and A is a Γ-instance
of B0.

Consider, in the derivation of Γ `E t : A, the last step where rules T1, T2
or T3 occur. Suppose that the typing obtained at this step is Γ `E t : B ;
we can then go on to Γ `E t : A using only rules T4, . . . , T8. Therefore, by
lemma 9.13, A is a Γ-instance of B0.
If t is some variable x, the rule applied to obtain Γ `E t : B (which must be
T1, T2 or T3) can only be T1. This proves case (i) of the lemma.
If t = (v)u, the rule applied to obtain Γ `E t : B can only be T3. This proves
case (ii).
If t = λxu, the rule applied to obtain Γ `E t : B can only be T2. Therefore
B ≡ C → D, and Γ,x : C `E u : D. Since B is open, A is a Γ-instance of B.
Let C be the class of formulas P → Q such that Γ, x : P `E u : Q ;
clearly, this class contains B. We now prove that it contains the class CΓ,B

of Γ-instances of B (yielding case (ii) of the lemma, since A ∈ CΓ,B) ; so let
R ∈ C, R ≡ P → Q.
If y is an individual variable not occurring in Γ, and v a term, then Γ,
x : P `E u : Q and therefore Γ, x : P [v/y] `E u : Q[v/y], by lemma 9.10.
Thus R[v/y] ∈ C.
Similarly, we see, using lemma 9.11, that R[F/Xx1 . . . xn] ∈ C whenever X
is a relation variable not occurring in Γ.
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Now suppose that R ≡ R′[v/y] ≡ P ′[v/y]→ Q′[v/y], and v = w is a particu-
lar case of E . By hypothesis, we have Γ, x : P ′[v/y] `E u : Q′[v/y] ; therefore,
by lemma 9.12, we also have Γ, x : P ′[w/y] `E u : Q′[w/y], which proves that
R′[w/y] ∈ C.

Q.E.D.

Now we are able to prove theorem 9.9 : we simply repeat the proof of propo-
sition 4.3 (which is the same statement for system D), using proposition 9.8
instead of proposition 4.1, and lemma 9.14(ii) instead of lemma 4.2(ii).

Note the following derived rules :

Proposition 9.15.
If Γ `E t : A and A′ is a Γ-instance of A, then Γ `E t : A′.

Let C be the class of all formulas B such that Γ `E t : B. We prove that C
contains CΓ,A (the class of Γ-instances of A). Clearly, A ∈ C. Let B ∈ C. If
x is an individual variable not occurring in Γ, then Γ `E t : ∀xB (rule T5) ;
thus Γ `E t : B[u/x] for every term u (rule T4) ; therefore B[u/x] ∈ C.
Similarly, it can be seen that B[F/Xx1 . . . xn] ∈ C whenever X is a relation
variable with no occurrence in Γ (apply rule T7, then rule T6).
Finally, if B = C[u/x] and u = v is a particular case of E , then, by applying
rule T8 to Γ `E t : C[u/x], we obtain : Γ `E t : C[v/x], and therefore
C[v/x] ∈ C.

Q.E.D.

Proposition 9.16. Let u, v be two terms such that CA + E ` u = v. If
Γ `E t : A[u/x], then Γ `E t : A[v/x].

The expression `E u = v can be obtained by applying rules (i), (ii), (iii)
of proposition 9.4. We reason by induction on the number of steps in this
derivation. Consider the last rule used :

if it is rule (i), then u = v is a particular case of E . Then, by rule T8, we
obtain immediately Γ `E t : A[v/x].

if it is rule (ii), then either u = v (in that case the result is trivial),
or expressions of the form `E u = w and `E w = v are obtained at the
previous step ; therefore, by induction hypothesis, we have, successively,
Γ `E t : A[w/x] and Γ `E t : A[v/x].

if it is rule (iii), then we have obtained `E ui = vi (1 ≤ i ≤ n) at the
previous step, and we have u = f(u1, . . . , un) and v = f(v1, . . . , vn). By
assumption, Γ `E t : A[f(u1, . . . , un)/x]. Now we may apply, repeatedly
(n times), the induction hypothesis ; thus we have, successively : Γ `E
t : A[f(v1, u2, . . . , un)/x], Γ `E t : A[f(v1, v2, u3 . . . un)/x], . . . , and finally
Γ `E t : A[f(v1, . . . vn)/x].

Q.E.D.
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3. Realizability

Let L be a second order language. With each n-ary relation variable X, we
associate an (n+ 1)-ary relation variable X+ (the mapping being one-one) ;
with each n-ary relation symbol R, we associate a new (n + 1)-ary relation
symbol R+ (not found in L). Let L+ be the language obtained by adding to
L these new relation symbols, as well as the constant symbols K,S and the
binary function symbol Ap (in case they are not already in L).

With each formula A of L, we associate a formula A+ of L+, also denoted by
x ‖−A, where x is an individual variable not occurring in A. x ‖−A should
be read : x realizes A. It is defined, by induction on A, by the following
conditions :

if A is atomic, say A ≡ X(t1, . . . , tn), where the ti’s are terms and X is
an n-ary relation variable or symbol, then x ‖−A is X+(t1, . . . , tn, x) ;

if A ≡ B → C, then x ‖−A is ∀y[y ‖−B → (x)y ‖−C] (it is assumed that
the individual variable y is distinct from x and does not occur free in A) ;

if A ≡ ∀y B, then x ‖−A is ∀y(x ‖−B) (the individual variable y is
assumed 6= x) ;

if A ≡ ∀X B, then x ‖−A is ∀X+(x ‖−B) (X is an n-ary relation vari-
able).

Lemma 9.17. Let A be a formula, x, x1, . . . , xk distinct individual variables,
t1, . . . , tk terms, and A+ = x ‖−A. Then x ‖−A[t1/x1, . . . , tk/xk] is the for-
mula A+[t1/x1, . . . , tk/xk].

This is immediate, by induction on the length of A.
Q.E.D.

Lemma 9.18. Let A,F be two formulas, x, x1, . . . , xk distinct individual
variables, X a k-ary relation variable, and F+ = x ‖−F . Then :

x ‖−A[F/Xx1 . . . xk] is the formula {x ‖−A}[F+/X+x1 . . . xkx].

The proof is by induction on the length of A :
If A is atomic, then the result follows immediately from the previous

lemma.
If A ≡ B → C, then x ‖−A is ∀y{y ‖−B → (x)y ‖−C}, thus
{x ‖−A}[F+/X+x1 . . . xkx] is
∀y({y ‖−B}[F+/X+x1 . . . xkx]→ {(x)y ‖−C}[F+/X+x1 . . . xkx]).

By induction hypothesis, this is :
∀y{y ‖−B[F/Xx1 . . . xk]→ (x)y ‖−C[F/Xx1 . . . xk]},

that is to say x ‖−A[F/Xx1 . . . xk].
The other cases of the induction are obvious.

Q.E.D.
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Notation. We shall use the correspondence between λ-terms and terms of
combinatory logic, as it was settled in chapter 6. Therefore, we use notations
from that chapter : with each λ-term t, we associate a term of L, denoted
by tL.
We shall also consider the system of equational axioms C0 defined in chap-
ter 6 :
(C0) (K)xy = x ; (S)xyz = ((x)z)(y)z.

Theorem 9.19. Let E be a system of equational axioms of L, and t a λ-term
such that x1 : A1, . . . , xk : Ak `E t : A. Then, we have :
x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ t : (tL ‖−A), where E ′ is the equa-
tional system E + C0, and tL the term of L which is associated with t.
In particular, CA+C0 +E ` ∀x1 . . . ∀xk{x1 ‖−A1, . . . , xk ‖−Ak → tL ‖−A}.

In view of the Curry-Howard correspondence, the second part of the theorem
easily follows from the first one. Indeed, if there exists a typing of the form :
x1: (x1 ‖−A1), . . . , xk: (xk ‖−Ak) `E ′ t: (tL ‖−A), then tL ‖−A is an intu-
itionistic consequence of CA, E ′, x1 ‖−A1, . . . , xk ‖−Ak ; this yields the ex-
pected result.
The proof of the first part is by induction on the length of the derivation of
the typing x1 : A1, . . . , xk : Ak `E t : A. Consider the last rule used :

If it is T1, then the given typing can be written :
x1 : A1, . . . , xk : Ak `E xi : Ai ; it is then clear that
x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ xi : (xi ‖−Ai).

If it is T2, then we have t = λy u, A ≡ B → C
and x1 : A1, . . . , xk : Ak, y : B `E u : C was obtained as a previous typing. We
may suppose that y does not occur in A,A1, . . . , Ak, and that y 6= x1, . . . , xk.
By induction hypothesis :
x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak), y : (y ‖−B) `E ′ u : (uL ‖−C).
By rule T2, we obtain
x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ λy u : (y ‖−B)→ (uL ‖−C).
Since y does not occur free in the formulas x1 ‖−A1, . . . , xk ‖−Ak, we have,
by rule T5 :
x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ t : ∀y{y ‖−B → uL ‖−C}.
Now the equation uL = tL y is a consequence of C0, since t = λy u. Thus, by
rule T8, we obtain :
x1 : (x1 ‖−A1),. . . , xk : (xk ‖−Ak) `E ′ t : ∀y{y ‖−B → tL y ‖−C},
that is to say x1 : (x1 ‖−A1), . . ., xk : (xk ‖−Ak) `E ′ t : tL ‖−B → C.

If it is T3, then we have t = uv and two previous typings :
x1 : A1, . . . , xk : Ak `E u : B → A and x1 : A1, . . . , xk : Ak `E v : B.
Therefore, by induction hypothesis :
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x1 : (x1 ‖−A1), . . ., xk : (xk ‖−Ak) `E ′ u : (uL ‖−B → A) and :

x1 : (x1 ‖−A1), . . ., xk : (xk ‖−Ak) `E ′ v : (vL ‖−B).

Now the formula uL ‖−B → A is ∀y[y ‖−B → uL y ‖−A].
By applying rule T4, we obtain :
x1 : (x1 ‖−A1), . . ., xk : (xk ‖−Ak) `E ′ u : vL ‖−B → uLvL ‖−A.
Finally, by rule T3, we deduce :
x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ uv : uLvL ‖−A.

If it is T4, then A ≡ B[u/x], where u is some term of L, and we have the
previous typing x1 : A1, . . . , xk : Ak `E t : ∀xB. The induction hypothesis
implies that :

x1 : (x1 ‖−A1), . . ., xk : (xk ‖−Ak) `E ′ t : (tL ‖−∀xB), that is to say :

x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ t : ∀x(tL ‖−B). By applying rule T4,
we obtain x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ t : {tL ‖−B}[u/x]. Now,
by lemma 9.17, the formula {tL ‖−B}[u/x] is precisely tL ‖−B[u/x].

If it is T5, then A ≡ ∀xB, and we have the previous typing :
x1 : A1, . . . , xk : Ak `E t : B, where x does not occur free in A1, . . . , Ak.
According to lemma 9.10, it can be assumed that x 6= x1, . . . , xk (otherwise,
change the variable x : this does not modify A1, . . . , Ak) ; thus x does not
occur free in t. By induction hypothesis, we have :
x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ t : (tL ‖−B).
Since x has no occurrence in xi ‖−Ai, by applying rule T5, we obtain :
x1 : (x1 ‖−A1),. . . , xk : (xk ‖−Ak) `E ′ t : ∀x(tL ‖−B).
Now x does not occur in tL, so the formula ∀x(tL ‖−B) is identical to
tL ‖−∀xB ; this yields the result.

If it is T6, then A ≡ B[F/Xx1 . . . xn], and we have the previous typing :

x1 : A1, . . . , xk : Ak `E t : ∀X B, (X being an n-ary relation variable). By
induction hypothesis :

x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ t : ∀X+(tL ‖−B) ;
therefore, by applying rule T6, we obtain

x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ t : {tL ‖−B}[F+/X+x1 . . . xnx],

F+ being the formula x ‖−F . Now, by lemma 9.18, the formula :
{tL ‖−B}[F+/X+x1 . . . xnx] is precisely tL ‖−B[F/Xx1 . . . xn].

If it is T7, then A ≡ ∀X B, and we have the previous typing :
x1 : A1, . . . , xk : Ak `E t : B, (X having no free occurrence in A1, . . . , Ak).
By induction hypothesis, we have :

x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ t : (tL ‖−B). Since X+ does not
occur in xi ‖−Ai, by applying rule T7, we obtain :

x1 : (x1 ‖−A1), . . ., xk : (xk ‖−Ak) `E ′ t : ∀X+(tL ‖−B). Now the formula
∀X+(tL ‖−B) is identical to tL ‖−∀X B ; this yields the result.
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If it is T8, then A ≡ B[v/x], and we have x1 : A1, . . . , xk : Ak `E t :
B[u/x] as a previous typing, the equation u = v being a particular case of E .
By induction hypothesis, we have :
x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ t : (tL ‖−B[u/x]) ;
now, by lemma 9.17, the formula tL ‖−B[u/x] is {tL ‖−B}[u/x].
Thus, by applying rule T8, we obtain :
x1 : (x1 ‖−A1), . . . , xk : (xk ‖−Ak) `E ′ t : {tL ‖−B}[v/x], which is precisely
the expected result, since {tL ‖−B}[v/x] is identical to tL ‖−B[v/x].

Q.E.D.

4. Data types

Let L be a second order language, and L+ the extended language defined in
the beginning of the previous section, page 181 (so L+ contains the constant
symbols K,S and the binary function symbol Ap).
We define a standard model of L+ as a full model such that its domain is
Λ/'βη (the set of λ-terms modulo βη-equivalence) and the interpretations of
the symbols K,S and Ap are the standard ones.
In other words, we will say that a full model of L+ is standard if its restriction
to the language of combinatory logic is the standard model of the extensional
combinatory logic.

Let M be a standard model of L+, and D[x] a formula of L, where the
individual variable x is the only free variable. We will say that D[x] defines
a data type in the modelM if and only if the following conditions hold :

i) each a ∈ |M| = Λ/'βη, such thatM |= D[a], is a closed λ-term ;
ii)M |= ∀x∀y{y ‖−D[x]↔ x = y ∧D[x]}.

We now give some basic examples of data types.

Booleans.

Consider two closed terms of L, which we will denote by 0,1 (they may be
constant symbols, terms of combinatory logic . . . ). Then :

Proposition 9.20. The formula Bool[x] ≡ ∀X[X1, X0 → Xx] defines a
data type in a standard modelM if and only if the interpretation of 1 (resp. 0)
in M is the Boolean 1 (resp. 0) of the λ-calculus.

Indeed y ‖−Bool[x] is the formula ∀X∀u∀v[X(1, u), X(0, v)→ X(x, (y)uv)].
It is equivalent to ∀u∀v[(x = 1 ∧ (y)uv = u) ∨ (x = 0 ∧ (y)uv = v)].
Now, let M be a standard model, and y any element of |M| = Λ/'βη. We
can take u, v as two distinct variables of the λ-calculus, not occurring in y.
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Then (y)uv = u (resp. v) if and only if y = 1 (resp. 0) (Booleans of the
λ-calculus). Therefore :
M |= (y ‖−Bool[x])↔ (x = 0 ∧ y = 0) ∨ (x = 1 ∧ y = 1). Thus we see that
Bool[x] defines a data type if and only ifM satisfies : (x = 0∧y = 0)∨ (x =
1 ∧ y = 1)→ x = y. This completes the proof of our statement.

Q.E.D.

Integers.

Here we consider a closed term 0 and a term s(x) of L having no variables
but x. The integers type is then defined by the formula :

Int[x] ≡ ∀X[∀y(Xy → Xs(y)), X0→ Xx].
If M is a standard model and a ∈ |M|, then M |= Int[a] if and only if
M |= a = sn(0) for some n ∈ N.

Proposition 9.21. The formula Int[x] defines a data type in a standard
model M if and only if, for every integer n, the interpretation of the term
sn(0) in M is Church numeral λfλx(f)nx.

Indeed, y ‖− Int[x] is the formula ∀X∀f∀a{∀z∀u[X(z, u) → X(s(z), (f)u)],
X(0, a) → X(x, (y)fa)}. Let x0, y0 ∈ |M| = Λ/'βη ; take f, a as two
variables of the λ-calculus, not occurring in the terms x0, y0, and X as the
binary relation onM : {(sn(0), (f)na) ; n ∈ N}. With these interpretations
of f, a,X, we clearly have : M |= ∀z∀u[X(z, u)→ X(s(z), (f)u)], X(0, a).
Therefore, ifM satisfies y0 ‖− Int[x0], then :
M |= X(x0, (y0)fa)), that is x0 = sn(0) and (y0)fa = (f)na for some n ∈ N.
Now f, a are variables which do not occur in y0. Hence y0 = λfλa(f)na.
It follows that M |= y0 ‖− Int[x0] if and only if x0 = sn(0) and y0 =
λfλa(f)na for some n ∈ N. Hence, if Int[x] is a data type, then M |=
(y0 ‖− Int[x0]) → x0 = y0, and therefore sn(0) = λfλa(f)na. Conversely, if
sn(0) = λfλa(f)na for all n ∈ N, we have, clearly,M |= Int[x0]∧x0 = y0 ⇔
x0 = y0 = sn(0) for some n, thus x0 = sn(0) and y0 = λfλa(f)na ; therefore,
M |= y0 ‖− Int[x0].

Q.E.D.

Product of data types.

Let cpl(x, y) be a term of L, with no variables but x, y, and A[x], B[y]
two formulas which define data types in a standard modelM. We define the
product type (A×B)[x] as the formula ∀X{∀y∀z(A[y], B[z]→ Xcpl(y, z))→
Xx}. If c ∈ |M|, then M |= (A × B)[c] if and only if M |= c = cpl(a, b),
where a, b ∈ |M| andM |= A[a], B[b].
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Proposition 9.22. (A×B)[x] defines a data type in a standard modelM if
and only if, for every a, b ∈ |M| such thatM |= A[a], B[b], the interpretation
of cpl(a, b) in M is the ordered pair λf(f)ab.

u ‖− (A×B)[x] is the following formula :

∀X∀f{∀y∀z∀v∀w[v ‖−A[y], w ‖−B[z]→ X(cpl(y, z), (f)vw)]→ X(x, uf)}.
Now the modelM satisfies (v ‖−A[y])↔ A[y] ∧ (v = y) and (w ‖−B[z])↔
B[z] ∧ (w = z). Thus, inM, u ‖− (A×B)[x] is equivalent to :

∀X∀f{∀y∀z(A[y], B[z] → X(cpl(y, z), (f)yz)) → X(x, uf)}, and therefore
to :

(i) ∀f∃y∃z{A[y] ∧B[z] ∧ x = cpl(y, z) ∧ uf = (f)yz}.

Suppose that : M |= A[a], B[b] → cpl(a, b) = λf(f)ab. Let u0, x0 ∈ |M| be
such thatM |= (u0 ‖− (A×B)[x0]). Take any variable not occurring in u0 as
the interpretation of f . Then, by (i), there exist a, b ∈ |M| such that M |=
A[a], B[b], x0 = cpl(a, b) and (u0)f = (f)ab. Now a, b are closed terms, thus
u0 = λf(f)ab. Hence u0 = x0 = cpl(a, b), and therefore M |= (A × B)[x0] ;
it follows that (A×B)[x] defines a data type inM.

Conversely, suppose that (A×B)[x] defines a data type inM and let a, b ∈
|M| be such that M |= A[a], B[b] ; take x0 = cpl(a, b) and u0 = λf(f)ab.
Then, by (i), M satisfies u0 ‖− (A × B)[x0] ; therefore, u0 = x0, that is
cpl(a, b) = λf(f)ab.

Q.E.D.

Direct sum of data types.

Let i(x) and j(x) be two terms of L, where x is the only variable, and A[x]
and B[y] two formulas which define data types in a standard modelM. We
define the direct sum type : (A+B)[x] ≡ ∀X{∀y(A[y]→ Xi(y)),∀z(B[z]→
Xj(z)) → Xx}. If c ∈ |M|, then M |= (A + B)[c] if and only if either
M |= c = i(a) for some a ∈ |M| such that M |= A[a], or M |= c = j(b) for
some b ∈ |M| such thatM |= B[b].

We have the same kind of property as in the previous case (with a similar
proof) :

Proposition 9.23. (A + B)[x] defines a data type in a standard model M
if and only if, for each a (resp. b) ∈ |M| such that M |= A[a] (resp. B[b]),
the interpretation of i(a) (resp. j(b)) in M is the term λfλg(f)a (resp.
λfλg(g)b).
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Lists of elements of a data type.

Let $ be a closed term of L (for the empty list), and cons(x, y) a term of
L where x, y are the only variables. Let A[x] be a data type in a standard
model M. We define the type LA[x] (the type of lists of objects of type A)
as the following formula :

LA[x] ≡ ∀X{∀y∀z(A[y], Xz → Xcons(y, z)), X$→ Xx}.
If c ∈ |M|, thenM |= LA[c] if and only if

M |= c = cons(a1, cons(a2, . . . , cons(an, $) . . .))

whereM |= A[ai] (1 ≤ i ≤ n).

Proposition 9.24. LA[x] defines a data type in a standard modelM if and
only if, for all a1, . . . , an ∈ |M| such that M |= A[ai] (1 ≤ i ≤ n), the
interpretation of cons(a1, cons(a2, . . . , cons(an, $) . . .)) (term of L+) inM is
the λ-term λfλx((f)a1)((f)a2 . . . ((f)an)x.

Indeed, t ‖−LA[x] is the formula :

∀X∀f∀a{∀y∀z∀u∀v[u ‖−A[y], X(z, v)→ X(cons(y, z), (f)uv)],

X($, a)→ X(x, (t)fa)}.
NowM satisfies u ‖−A[y]↔ A[y]∧u = y ; thus, inM, t ‖−A[x] is equivalent
to :

∀X∀f∀a{∀y∀z∀v[A[y], X(z, v)→ X(cons(y, z), (f)yv],

X($, a)→ X(x, (t)fa)}.
Now this formula holds in the standard modelM if and only if :

(ii) for all f, a ∈ |M|, there exist a1, . . . , an ∈ |M| such that M satisfies
A[ai], x = cons(a1, . . . , cons(an, $) . . .), and (t)fa = ((f)a1) . . . ((f)an)a.

Suppose that M |= cons(a1, . . . , cons(an, $) . . .) = λfλa((f)a1) . . . ((f)an)a
whenever M |= A[ai]. Let t0, x0 ∈ |M| be such that M |= (t0 ‖−LA[x0]).
Take two variables not occurring in t0 as the interpretations of f and a.
Then, by (ii), there exist a1, . . . , an ∈ |M| such that M |= A[ai], x0 =
cons(a1, . . . , cons(an, $) . . .) and (t0)fa = ((f)a1) . . . ((f)an)a. Now, since A
is a data type, the ai’s are closed terms ; thus t0 = λfλa((f)a1) . . . ((f)an)a.
Therefore, t0 = x0 and LA[x] defines a data type inM.

Conversely, suppose that LA[x] defines a data type inM and let a1, . . . , an ∈
|M| be such that M |= A[ai] ; take x0 = cons(a1, . . . , cons(an, $) . . .), and
t0 = λfλa((f)a1) . . . ((f)an)a. Then, by (ii), M satisfies t0 ‖−LA[x0], and
hence t0 = x0, that is :

cons(a1, . . . , cons(an, $) . . .) = λfλa((f)a1) . . . ((f)an)a.
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5. Programming in FA2

We consider a standard modelM of a second order language L, and a system
E of equations of L which is satisfied inM. Let f be an n-ary function symbol
of L, and D1[x1], . . . , Dn[xn], E[y] formulas which define data types in M.
Let D1, . . . , Dn, E ⊂ |M| the sets of λ-terms defined inM by these formulas.
Then, for every λ-term t such that :

`E t : ∀x1 . . . ∀xn{D1[x1], . . . , Dn[xn]→ E[f(x1, . . . , xn)]}

we have M |= (t)u1 . . . un = f(u1, . . . , un) for all u1 ∈ D1, . . . , un ∈ Dn.
In other words, the term t is a program for the function f on the domain
D1 × . . .×Dn.
Indeed, it then follows from theorem 9.19 that :
CA+ C0 + E ` tL ‖−∀x1 . . . ∀xn{D1[x1], . . . , Dn[xn]→ E[f(x1, . . . , xn)]}
that is to say :
CA+ C0 + E ` ∀x1 . . . ∀xn∀y1 . . . ∀yn{y1 ‖−D1[x1], . . . , yn ‖−Dn[xn]

→ (tL)y1 . . . yn ‖−E[f(x1, . . . , xn)]}.
Therefore, this formula holds in M. According to the definition of data
types, we haveM |= yi ‖−Di[xi]↔ yi = xi ∧Di[xi]. Hence :
M |= ∀x1 . . . ∀xn{D1[x1], . . . , Dn[xn]

→ (E[f(x1, . . . , xn)] ∧ (tL)x1 . . . xn = f(x1, . . . , xn))}.
Now the interpretation of the term tL inM is the λ-term t (lemma 6.22).

Thus we obtain a program for f , by proving :
D1[x1], . . . , Dn[xn] `E E[f(x1, . . . , xn)]

in second order intuitionistic logic, by means of rules D1 through D8.

Examples with integers

Let ϕ1, . . . , ϕn be functions such that ϕi : Nki → N ; we wish to program ϕ1,
that is to say to obtain a λ-term t such that (t)p

1
. . . p

k1
'βη ϕ1(p1, . . . , pk1)

for all Church numerals p
1
, . . . , p

k1
.

We consider a language L consisting only of functions symbols f1, . . . , fn (the
arity of fi being ki), including 0 et s, which will be interpreted in N as the
integer 0 and the successor function.
Let E be the set of those equational formulas of L which are satisfied in the
following model N : the domain is N, and each symbol fi is interpreted by
the function ϕi.
We define a standard model M of E , in which the interpretation of each
symbol fi is a function ψi which extends ϕi (thus ψi is a mapping of |M|ki

into |M|, where |M| = Λ/'βη).
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For that purpose, we consider the language L′ obtained by adding to L an
infinite sequence c0, . . . , cn, . . . of constant symbols. Let T (resp. T ′) be the
set of closed terms of L (resp. L′). We define an equivalence relation on
T ′ by : t ∼ u ⇔ E ` t = u. Let M′ be the model of L′ such that its
domain is |M′| = T ′/∼ and the function symbols are given their canonical
interpretation. Then the restriction ofM′ to the subset T /∼ is a submodel
N ′ which is obviously isomorphic to N .

Moreover, cn ∈ |M′| \ |N ′| : otherwise, we would have E ` cn = τ , for some
closed term τ of L, and therefore E ` ∀x(x = τ), since cn occurs neither in E
nor in τ . Then N would contain only one element, but this is false (actually,
|N | is an infinite countable set).

Also,M′ |= cm 6= cn whenever m 6= n : otherwise, we would have :
E ` cm = cn, thus E ` ∀x∀y(x = y),
which would lead us to the same contradiction.

It follows that |M′| \ |N ′| is an infinite countable set.

Finally, M′ satisfies E : indeed, let t = u be an equation of E , where t and
u are terms of L, with variables x1, . . . , xn, and let τ1, . . . , τn ∈ T ′. We need
to prove thatM′ |= t[τ1/x1, . . . , τn/xn] = u[τ1/x1, . . . , τn/xn], that is to say :

E ` t[τ1/x1, . . . , τn/xn] = u[τ1/x1, . . . , τn/xn], which is clear.

Then the isomorphism from N ′ onto N can be extended to a one to one
function from |M′| onto Λ/'βη : indeed, since |N | is the set of Church
numerals, its complement in Λ/'βη is countable. This allows us to transfer
on Λ/'βη the structure ofM′, defining therefore over Λ/'βη a modelM of
E which is an extension of N ; this is what was expected.

Remark
The above method will be systematically used in the further examples of “ pro-
gramming ” with various data types. It consists in extending, to the whole set
Λ/'βη, functions which are defined only on data types, and preserving the equa-
tions which they satisfy. The above proof still applies, provided that the data types
under consideration do not consist of one single element.
Thus we will take, as equational system E , the set of all equational formulas
satisfied by the functions to be programmed, on their domains, and we will be
allowed to assume that E is satisfied on the whole standard modelM.

The formula Int[x] ≡ ∀X{∀y(Xy → Xsy), X0 → Xx} is written in the
language L, using the functions symbols 0 and s. We proved above that this
formula defines a data type. In order to program the function ϕ1, it is thus
sufficient to obtain an intuitionistic proof of :

∀x1 . . . ∀xk1{Int[x1], . . . , Int[xk1 ] → Int[f1(x1, . . . , xk1)]}, by means of rules
D1 through D8. In rule D8, we can use any equation satisfied in N by
ϕ1, . . . , ϕn.
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Consider, for instance, the language L, consisting of the symbols 0, s, +,
× and p (for the predecessor function). In order to program the successor
function, we look for an intuitionistic proof of ∀x{Int[x]→ Int[s(x)]}, thus
for a term of this type.
Now we have :

ν : Int[x], f : ∀y(Xy → Xsy), a : X0 ` (ν)fa : Xx
(by rules T1, T6, T4). Hence :

ν : Int[x], f : ∀y(Xy → Xsy), a : X0 ` (f)(ν)fa : Xsx ;
therefore, by rule T2 :

ν : Int[x] ` λfλa(f)(ν)fa : ∀y(Xy → Xsy), X0→ Xsx
and finally :
` suc : Int[x]→ Int[sx], where suc is defined as λνλfλa(f)(ν)fa.

We shall need below the derived rules stated in the next two propositions :

Proposition 9.25.
x : A, y : B ` λf(f)xy : A ∧B ;
x : A ∧B ` (x)1 : A ; x : A ∧B ` (x)0 : B ;
x : A ` λfλg(f)x : A ∨B ; y : B ` λfλg(g)y : A ∨B ;
a : A[t/x] ` λf(f)a : ∃xA ;
a : A[t/x]→ B ` λz(a)z : ∀xA→ B.

Notice that, using proposition 9.8, we obtain the following consequences :
if Γ ` t : A and Γ ` u : B, then Γ ` λf(f)tu : A ∧B ;
if Γ ` t : A ∧B, then Γ ` (t)1 : A and Γ ` (t)0 : B ;
if Γ ` t : A, then Γ ` λfλg(f)t : A ∨B ;
if Γ ` u : B, then Γ ` λfλg(g)u : A ∨B ; etc.

Recall that A ∧B, A ∨B, ∃xA are, respectively, the following formulas :
∀X{(A,B → X)→ X},
∀X{(A→ X), (B → X)→ X},
∀X{∀x(A→ X)→ X}.

Proof of the proposition : x : A, y : B, f : A,B → X ` (f)xy : X by rules
T1 and T3 ; therefore, x : A, y : B ` λf(f)xy : (A,B → X)→ X ; then, by
T7, we obtain the first property.
x : A∧B ` x : (A,B → A)→ A by T1 and T6 ; now ` λxλy x : A,B → A ;
thus x : A ∧B ` (x)1 : A.
x : A, f : A → X, g : B → X ` (f)x : X and therefore x : A ` λfλg(f)x :
(A→ X), (B → X)→ X ; hence x : A ` λfλg(f)x : A ∨B.
a : A[t/x], f : ∀x(A→ X) ` f : A[t/x]→ X by T1 and T6 ; thus :
a : A[t/x], f : ∀x(A → X) ` (f)a : X ; then a : A[t/x] ` λf(f)a : ∀x(A →
X)→ X, and finally a : A[t/x] ` λf(f)a : ∃xA.
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a : A[t/x]→ B, z : ∀xA ` z : A[t/x], thus a : A[t/x]→ B, z : ∀xA ` (a)z :
B and finally : a : A[t/x]→ B ` λz(a)z : ∀xA[x]→ B.

Q.E.D.

Proposition 9.26 (Proofs by induction on N).
i) ν : Int[x], ϕ : ∀y(A[y]→ A[sy]), α : A[0] ` (ν)ϕα : A[x] ;
ii) ν : Int[x], ϕ : ∀y(A[y] → A[sy]), α : A[0], ψ : ∀z(A[z], B[z] → B[sz]),
β : B[0] ` t : B[x],
where t can be taken either as :
((νλcλf((f)(ϕ)(c)1)((ψ)(c)1)(c)0)λg(g)αβ)0 or as :
(νλfλaλb((f)(ϕ)a)(ψ)ab)0αβ.

(i) is immediate since, by rules T1 and T6, we have :
ν : Int[x] ` ν : ∀y(A[y]→ A[sy]), A[0]→ A[x].

(ii) First proof : we prove A[x] ∧ B[x] by induction (we mean : using (i)).
By proposition 9.25, we have : ` λg(g)αβ : A[0]∧B[0] ; on the other hand :
c : A[y]∧B[y] ` (c)1 : A[y], (c)0 : B[y] ; thus c : A[y]∧B[y] ` (ϕ)(c)1 : A[sy],
((ψ)(c)1)(c)0 : B[sy] ; therefore :
c : A[y] ∧B[y] ` λf((f)(ϕ)(c)1)((ψ)(c)1)(c)0 : A[sy] ∧B[sy] ; hence :
` τ0 : ∀y(A[y] ∧B[y]→ A[sy] ∧B[sy]),
where τ0 = λcλf((f)(ϕ)(c)1)((ψ)(c)1)(c)0.
It follows that : ν : Int[x] ` (ντ0)λg(g)αβ : A[x] ∧B[x], and, finally :
ν : Int[x] ` ((ντ0)λg(g)αβ)0 : B[x].

Second proof : we prove F [x] ≡ ∀y(A[y], B[y]→ B[x+y]) by induction on x,
using the following equations : x+ 0 = x ; 0 + y = y ; x+ sy = sx+ y.
These equations are obviously satisfied in N, so they also hold in the standard
model, according to our remark page 189.
Clearly, ` 0 : F [0] (use rule T8 and the equation 0 + y = y).
On the other hand, we have :
f : F [z], a : A[y], b : B[y] ` (ϕ)a : A[sy], (ψ)ab : B[sy], and therefore :
f : F [z], a : A[y], b : B[y] ` ((f)(ϕ)a)(ψ)ab : B[z + sy].
Then, using the equation z + sy = sz + y, we obtain :
f : F [z] ` λaλb((f)(ϕ)a)(ψ)ab : A[y], B[y]→ B[sz + y].
Hence, ` τ1 : F [z]→ F [sz], where τ1 = λfλaλb((f)(ϕ)a)(ψ)ab.
According to (i) it follows that ν : Int[x] ` (ν)τ10 : F [x].
Now, by rule T4, we obtain ν : Int[x] ` (ν)τ10 : A[0], B[0]→ B[x+ 0].
Finally, using the equation x+ 0 = x, we have :

ν : Int[x] ` (ν)τ10αβ : B[x].
Q.E.D.

We obtain an alternative form of the inductive reasoning :
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Corollary 9.27.
We have ν : Int[x], ψ : ∀y(Int[y], B[y] → B[sy]), β : B[0] ` u : B[x], where
u is the term t[suc/ϕ, 0/α], and t is defined as in proposition 9.26.

This is obvious from proposition 9.26, since ` suc : ∀x(Int[x] → Int[sx])
and ` 0 : Int[0].

Q.E.D.

To program the predecessor function on N, we use the equations p0 = 0 ;
psx = x (and, if needed, the previous equations involving +).
By rules T1 and T8, we have :

ν : Int[x], f : ∀y(Xy → Xsy), a : X0 ` a : Xp0, 1 : ∀y(Xy,Xpy → Xpsy).

Then we apply proposition 9.26(ii), taking A[x] ≡ Xx, B[x] ≡ Xpx, ϕ = f ,
ψ = 1, α = β = a. Thus we obtain a term u such that :
ν : Int[x], f : ∀y(Xy → Xsy), a : X0 ` u : Xpx ; therefore :
ν : Int[x] ` λfλa u : Int[px].
This provides the following term for the predecessor function :

λνλfλa(νλgλbλc((g)(f)b)b)0aa.

The next proposition expresses the principle : every integer is either the
successor of an integer or 0.

Proposition 9.28. ν : Int[x] ` t : ∀X{∀y(Int[y]→ Xsy), X0→ Xx},
where t = (νλhλfλa(f)((h)suc)0)0.

Let H[x] be the formula ∀X{∀y(Int[y]→ Xsy), X0→ Xx}. It is proved by
induction on x. Clearly, ` 0 : H[0]. Moreover :

h : H[z] ` h : ∀y{Int[y]→ Int[sy]}, Int[0]→ Int[z]

(replace Xy with Int[y] in H[z]). Since ` suc : ∀y{Int[y] → Int[sy]} and
` 0 : Int[0], we may deduce that h : H[z] ` ((h)suc)0 : Int[z]. Thus
h : H[z], f : ∀y{Int[y] → Xsy}, a : X0 ` (f)((h)suc)0 : Xsz. Hence,
` λhλfλa(f)((h)suc)0 : ∀z(H[z]→ H[sz]) and, finally, ν : Int[x] ` t : H[x].

Q.E.D.

We therefore obtain another λ-term for the predecessor function on N, using
the same equations as above. With this aim, we replace Xx by Int[px] in
proposition 9.28, which gives :
ν : Int[x] ` t : ∀y(Int[y]→ Int[psy]), Int[p0]→ Int[px].
Now we have psy = y and p0 = 0, thus ` I : ∀y(Int[y] → Int[psy]) and
` 0 : Int[p0]. It follows that we may take λν(νλhλfλa(f)((h)suc)0)0I0
(where I = λxx) as a term for the predecessor function.
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Examples with lists

We add to L the constant symbol $ and the binary function symbol cons.
Let A[x] be a data type ; then the type of the lists of objects of A is written :

LA[x] ≡ ∀X{∀y∀z(A[y], Xz → Xcons(y, z)), X$→ Xx}.
Thus, $ represents the empty list and cons(y, z) represents the list obtained
by putting the data y in front of the list z.

For every formula F , we obviously have the following typing (inductive rea-
soning on lists) :

σ : LA[x], ϕ : ∀y∀z(A[y], F [z]→ F [cons(y, z)]), α : F [$] ` (σ)ϕα : F [x].

Length of a list.
We use the equations : l($) = 0; l(cons(y, z)) = s(l(z)). In the context
σ : LA[x], f : ∀y(Xy → Xsy), a : X0, we prove Xl(x) by induction on x. By
the previous equations, we have :
σ:LA[x], f :∀y(Xy → Xsy), a:X0 ` a:Xl($), f :Xl(z) → Xl(cons(y, z)).
Hence :
σ:LA[x], f :∀y(Xy → Xsy), a:X0 ` λx f :A[y], Xl(z)→ Xl(cons(y, z)).
It follows that σ:LA[x], f :∀y(Xy → Xsy), a:X0 ` ((σ)λx f)a:Xl(x)
and therefore : ` λσλfλa((σ)λx f)a : ∀x(LA[x] → Int[l(x)]), which pro-
vides a λ-term for the length of lists.

Reversal (or mirror) of a list.
We add to L function symbolsmir (unary) and c (binary) ; mir(x) represents
the reversal of the list x and c(y, z) the list obtained by putting the data z
at the end of the list y.
We will use the equations :

c($, a) = cons(a, $) ; c(cons(b, x), a) = cons(b, c(x, a)) ;

mir($) = $ ; mir(cons(a, x)) = c(mir(x), a).

In the context σ : LA[x], we prove LA[mir(x)] by induction on x.

First, we have ` 0 : LA[mir($)].

Now we need a term of type ∀y∀z(A[y], LA[mir(z)]→ LA[mir(cons(y, z))]),
that is to say ∀y∀z(A[y], LA[mir(z)] → LA[c(mir(z), y)]). It suffices to
obtain a term of type : ∀y∀z(A[y], LA[z]→ LA[c(z, y)]). Now we have :

α : A[y0], τ : LA[z0], f : ∀y∀z(A[y], Xz → Xcons(y, z)), a : X$

` (f)αa : Xcons(y0, $)
and therefore ` (f)αa : Xc($, y0).
On the other hand, the type ∀y∀z(A[y], Xc(z, y0)→ Xc(cons(y, z), y0)) can
also be written: ∀y∀z(A[y], Xc(z, y0)→ Xcons(y, c(z, y0))).
To obtain a term of this type, it suffices to obtain one of type :

∀y∀z(A[y], Xz → Xcons(y, z)) ;
therefore, we have :
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α : A[y0], τ : LA[z0], f : ∀y∀z(A[y], Xz → Xcons(y, z)), a : X$
` f : ∀y∀z(A[y], Xc(z, y0)→ Xc(cons(y, z), y0)).

Finally :
α : A[y0], τ : LA[z0], f : ∀y∀z(A[y], Xz → Xcons(y, z)), a : X$

` (τf)(f)αa : Xc(z0, y0),
and therefore :
α : A[y0], τ : LA[z0] ` λfλa(τf)(f)αa : LA[c(z0, y0)], that is :
` λαλτλfλa(τf)(f)αa : ∀y∀z(A[y], LA[z]→ LA[c(z, y)]).
So we now have σ : LA[x] ` ((σ)λαλτλfλa(τf)(f)αa)0 : LA[mir(x)], which
provides the term λσ((σ)λαλτλfλa(τf)(f)αa)0 as a reversal operator for
lists.

References for chapter 9

[Kri87], [Kri90], [Lei83], [Par88].
(The references are in the bibliography at the end of the book).



Chapter 10

Representable functions in
system F

We wish to give a characterization of the class of those recursive functions
from N to N which are representable by a λ-term of type Int→ Int in system
F (in other words, the class of functions which can be “ programmed ” in
system F).

Our first remark is that this class does not contain all recursive functions ;
this can be seen by the following simple diagonal argument :

Let t0, t1, . . . , tn, . . . be a recursive enumeration of the λ-terms of type
Int → Int in system F . We define a recursive function ϕ : N → N by
taking, for every n ∈ N, ϕ(n) = 1 (resp. ϕ(n) = 0) if the normal form of
(tn)n is 0 (resp. is 6= 0). If the function ϕ was represented by tn for some
integer n, then (tn)n would be β-equivalent to the Church integer ϕ(n). This
is false and, therefore, the recursive function ϕ is not in the class under
consideration.

Consider the language L of combinatory logic, with the constant symbols
K,S and the binary function symbol Ap. Recall that, with each λ-term t,
we can associate a term tL of L, such that the interpretation of tL in the
standard model of L is t (lemma 6.22).

The λ-term λnλfλx(f)(n)fx is denoted by suc ; by abuse of notation, the
terms sucL and 0L (of L) will still be denoted, respectively, by suc and 0.
We define two formulas of L :

Int ≡ ∀X{(X → X) → (X → X)} (where X is a propositional variable),
and

Int[x] ≡ ∀X{∀y(Xy → X(suc)y), X0→ Xx}.
In chapter 9, we have seen that the formula Int[x] defines a data type in
the standard model of L, and therefore also in every standard model of any

195
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language L′ which extends L. Clearly, the interpretation of Int[x] in any
standard model is the set of Church numerals.
Let T be a theory (a system of axioms) in a language L(T ) ⊃ L, and
ϕ : N→ N a recursive function ; ϕ is said to be provably total in the theory
T if there exists a term t(x) of L(T ), of which x is the only variable, such
that :
• T ` ∀x{Int[x]→ Int[t(x)]} (in classical second order logic) ;
• There exists a standard model M of T , in which the term t(x) rep-

resents the function ϕ (in other words, for every Church numeral n, the
interpretation of t(n) inM is the Church numeral ϕ(n)).

Proposition 10.1. We have the following typings :
i) ν : (x ‖− Int) ` ν : Int[((x)suc)0] ;
ii) ν : Int[x] `C0 ((ν)suc)0 : (x ‖− Int).

Recall that the system of axioms C0 consists of both equations (K)xy = x
and (S)xyz = ((x)z)(y)z.
i) The formula x ‖− Int can be written

∀X∀f∀a{∀y(Xy → X(f)y), Xa→ X(x)fa}.
Therefore, by the typing rules T1 and T4 (replace f by suc and a by 0), we
immediately obtain :
ν : (x ‖− Int) ` ν : ∀X{∀y(Xy → X(suc)y), X0→ X((x)suc)0}, that is :
ν : (x ‖− Int) ` ν : Int[((x)suc)0].
ii) We prove x ‖− Int by induction on x ; 0 ‖− Int is the formula :
∀X∀f∀a{∀y(Xy → X(f)y), Xa→ X(0)fa}.
Now C0 ` (0)fa = a, and we have, trivially :
` 0 : ∀X∀f∀a{∀y(Xy → X(f)y), Xa→ Xa}.
Hence `C0 0 : (0 ‖− Int) (rule T8).
We now look for a term of type x ‖− Int→ (suc)x ‖− Int. We have :
ν : (x ‖− Int), ϕ : ∀y(Xy → X(f)y), α : Xa ` (ν)ϕα : X(x)fa, therefore :
ν : (x ‖− Int), ϕ : ∀y(Xy → X(f)y), α : Xa ` (ϕ)(ν)ϕα : X(f)(x)fa. Now :
C0 ` (suc)xfa = (f)(x)fa. By rule T8, we obtain :
ν : (x ‖− Int), ϕ : ∀y(Xy → X(f)y), α : Xa `C0 (ϕ)(ν)ϕα : X(suc)xfa
and therefore, by T2 :
ν : (x ‖− Int) `C0 λϕλα(ϕ)(ν)ϕα : ((suc)x ‖− Int). Hence :
`C0 suc : ∀x{x ‖− Int→ (suc)x ‖− Int}.
We have proved 0 ‖− Int and ∀x{x ‖− Int→ (suc)x ‖− Int} ; it follows that :
ν : Int[x] `C0 ((ν)suc)0 : (x ‖− Int).

Q.E.D.

Proposition 10.2. Let t be a λ-term such that ` t : Int→ Int is a typing
in system F . Then `C0 λn(t)(n)suc 0 : ∀x{Int[x] → Int[(tL)x suc 0]} is a
typing in system FA2, with the equational axioms C0.
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By theorem 9.19, we have `C0 t : tL ‖− Int→ Int, that is :
(*) `C0 t : ∀x{x ‖− Int→ (tL)x ‖− Int}.
By proposition 10.1(ii), n : Int[x] `C0 (n)suc 0 : x ‖− Int, and therefore, by
(*) and rule T3, we have n : Int[x] `C0 (t)(n)suc 0 : (tL)x ‖− Int. Then it
follows from proposition 10.1(i) that :
n : Int[x] `C0 (t)(n)suc 0 : Int[(tL)x suc 0], hence :
`C0 λn(t)(n)suc 0 : Int[x]→ Int[(tL)x suc 0].

Q.E.D.

Theorem 10.3. Let t be a λ-term such that ` t : Int → Int is a typing in
system F . Then t represents a function from N to N which is provably total
in the theory CA+ C0.

Using proposition 10.2 and the Curry-Howard correspondence (chapter 9,
page 175), we get CA+C0 ` ∀x{Int[x]→ Int[(tL)x suc 0]}. Thus the term
(tL)x suc 0 represents a function ψ : N → N, which is provably total in the
theory CA+ C0.
The term t represents a function ϕ : N → N : indeed, if n is a Church
numeral, then, in system F , we have ` n : Int, and therefore ` (t)n : Int.
It follows (by the adequacy lemma 8.13 and proposition 8.14) that (t)n is
β-equivalent to a Church numeral.
Then it is enough to prove that ϕ = ψ. The interpretation of tL in the stan-
dard model is tLΛ 'β t (lemma 6.22). Consequently, for every Church nu-
meral n, the interpretation of (tL)n suc 0 in the standard model is (t)n suc 0.
Now (t)n suc 0 'β (t)n, since (t)n is a Church numeral. Hence ψ(n) = ϕ(n).

Q.E.D.

The next theorem is a strengthened converse of theorem 10.3.

Theorem 10.4. Let E be a system of equations in a language L(E) ⊃ L, and
ϕ : N→ N a function which is provably total in CA+ E. Then there exists a
λ-term t, of type Int→ Int in system F , which represents the function ϕ.

By hypothesis, there exist a term u(x) of L(E), the only variable of which is
x, and a standard modelM of E , such that :
i) CA+ E ` ∀x{Int[x]→ Int[u(x)]} and
ii)M |= u(n) = ϕ(n) for every Church numeral n.
According to (i), the expression `E Int[x] → Int[u(x)] can be obtained by
means of the deduction rules D0 through D8 of chapter 9, page 174 (com-
pleteness theorem for the classical second order predicate calculus). In view
of theorem 10.5 below, there also exists an intuitionistic proof for this ex-
pression, that is a proof only involving rules D1 through D8. Now, by the
Curry-Howard correspondence (chapter 9, page 175), such a proof provides
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a λ-term t such that `E t : Int[x]→ Int[u(x)] (a typed term in system FA2

with the equational axioms E).
The term t represents the function ϕ ; indeed, by theorem 9.19, we have :

CA+ E + C0 ` (tL ‖− Int[x]→ Int[u(x)]), that is :

CA+ E + C0 ` ∀x∀y{y ‖− Int[x]→ (tL)y ‖− Int[u(x)]}.
Thus the standard modelM satisfies the formula :

∀x∀y{y ‖− Int[x] → (tL)y ‖− Int[u(x)]}. Now the formula Int[x] defines a
data type, in the standard modelM. Hence :
M |= ∀x∀y{y ‖− Int[x]↔ Int[x] ∧ x = y}, and therefore :

M |= ∀x{Int[x]→ (tL)x = u(x)}. In other words, the term (tL)x represents
the same function as u(x), that is ϕ. Since the interpretation of tL in the
standard modelM is t (lemma 6.22), we see that t represents ϕ.

Finally, the term t is of type Int → Int in system F . Indeed, we have
the typing `E t : Int[x] → Int[u(x)] in system FA2. Thus we also have
` t : Int[x]− → Int[u(x)]− as a typing in system F (see the proof of the
normalization theorem 9.6 for FA2).
Now this typing is simply ` t : Int→ Int.

Q.E.D.

Gödel’s ¬-translation

Theorem 10.5. Let E be a system of equations in a language L(E) ⊃ L, and
σ, τ two terms of L(E). If the expression `E Int[σ] → Int[τ ] can be proved
in classical second order logic (that is with rules D0 through D8, page 174),
then it can also be proved in intuitionistic second order logic (in other words,
without using rule D0).

We add to the language L(E) a propositional constant O (that is a 0-ary
relation symbol); whenever A is a formula, we will denote the formula A→ O
by ¬0A.

For every formula A, we define a formula A∗, by induction, by the following
conditions :

if A is atomic, then A∗ is ¬0A;

(A→ B)∗ is A∗ → B∗;

(∀ξ A)∗ is ∀ξ A∗ whenever ξ is an individual variable or a relation variable.

So the formula A∗ is obtained by putting ¬0 before every atomic subformula
of A. A∗ will be called the Gödel translation of A.

Remark. This is not exactly the classical definition of the Gödel translation of
A, according to which one should put ¬0¬0 before every atomic subformula of A.
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Lemma 10.6. i) ¬0¬0¬0A `i ¬0A ;
ii) ¬0¬0(A→ B) `i ¬0¬0A→ ¬0¬0B ;
iii) ¬0¬0∀ξ A `i ∀ξ¬0¬0A whenever ξ is a first or second order variable.

The notation A1, . . . , Ak `i Ameans that A is an intuitionistic consequence of
A1, . . . , Ak, that is to say that the expression A1, . . . , Ak ` A can be obtained
by means of the rules D1 through D8 of chapter 9 (page 174).

i) Remark that, if X `i Y , then ¬0Y `i ¬0X; indeed, if Y is deduced from
X, then O is deduced from X and Y → O.
Now, clearly, A `i ¬0¬0A. Therefore, by the previous remark, we have
¬0¬0¬0A `i ¬0A.
ii) With the premises ((A → B) → O) → O, (A → O) → O, B → O, we
have to deduce O. From B → O, we deduce (A → B) → (A → O); with
(A→ O)→ O, we obtain (A→ B)→ O.
From this and ((A→ B)→ O)→ O, we deduce O.
iii) We wish to show ((∀ξ A) → O) → O `i (A → O) → O; so with the
premises ((∀ξ A) → O) → O and A → O, we have to deduce O. Now
we know ∀ξ A `i A; with A → O, we deduce ∀ξ A → O; from this and
((∀ξ A)→ O)→ O, we obtain O.

Q.E.D.

Lemma 10.7. ¬0¬0A
∗ `i A∗ for every formula A.

The proof is by induction on the length of the formula A.
If A is atomic, what we have to prove is ¬0¬0¬0A `i ¬0A : this is precisely
lemma 10.6(i).
If A is B → C, ¬0¬0A

∗ is ¬0¬0(B
∗ → C∗); by lemma 10.6(ii), we have

¬0¬0A
∗ `i ¬0¬0B

∗ → ¬0¬0C
∗.

Now B∗ `i ¬0¬0B
∗ (obvious), and ¬0¬0C

∗ `i C∗ (induction hypothesis).
Hence ¬0¬0A

∗ `i B∗ → C∗, that is ¬0¬0A
∗ `i A∗.

If A is ∀ξ B, where ξ is a first order or second order variable, then ¬0¬0A
∗ is

¬0¬0∀ξ B∗. By lemma 10.6(iii), we have ¬0¬0A
∗ `i ∀ξ¬0¬0B

∗ and therefore
¬0¬0A

∗ `i ¬0¬0B
∗. Now, by the induction hypothesis, ¬0¬0B

∗ `i B∗. Thus
¬0¬0A

∗ `i B∗, and since ξ does not occur free in ¬0¬0A
∗, we have :

¬0¬0A
∗ `i ∀ξ B∗, that is ¬0¬0A

∗ `i A∗.
Q.E.D.

Lemma 10.8. (¬¬A)∗ `i A∗ for every formula A.

Since ⊥ is the formula ∀X X, ⊥∗ is ∀X¬0X, that is ∀X(X → O). Therefore
O `i⊥∗ (obvious) and ⊥∗`i O (replaceX by O → O in the previous formula).
Thus ⊥∗ is equivalent to O in intuitionistic logic.



200 Lambda-calculus, types and models

(¬¬A)∗ is the formula ((A →⊥) →⊥)∗, that is (A∗ →⊥∗) →⊥∗. Thus
(¬¬A)∗ `i (A∗ → O) → O, or equivalently (¬¬A)∗ `i ¬0¬0A

∗. Then the
conclusion follows from lemma 10.7.

Q.E.D.

Lemma 10.9. Let A, B be two formulas, and X a k-ary relation variable.
Then :
{A[B/Xx1 . . . xk]}∗ `i A∗[¬0B

∗/Xx1 . . . xk] and
A∗[¬0B

∗/Xx1 . . . xk] `i {A[B/Xx1 . . . xk]}∗.

The proof is by induction on the length of A. If A is atomic and its first
symbol is X, say A ≡ Xt1 . . . tk, then :

A∗[¬0B
∗/Xx1 . . . xk] ≡ ¬0¬0B

∗[t1/x1, . . . , tk/xk] and
{A[B/Xx1 . . . xk]}∗ ≡ B∗[t1/x1, . . . , tk/xk].

Then the result follows from lemma 10.7. The other cases of the inductive
proof are trivial.

Q.E.D.

Theorem 10.10. Let E be a system of equations in a language L(E) ⊃ L,
let A be a finite set of formulas of L(E), and A∗ = {F ∗; F ∈ A}. If one
can obtain A `E A by rules D0 through D8, page 174, then one can obtain
A∗ `i

E A
∗ by rules D1 through D8 only.

The theorem means that if A `E A can be proved in classical second order
logic, then the Gödel translation A∗ `i

E A
∗ can be proved in intuitionistic

second order logic.

We shall prove it by induction on the length of the derivation of A `E A with
rules D0, . . . , D8. Consider the last rule used.
If it is D0, then A `E A can be written : B, ¬¬A `E A. It is enough to show
that (¬¬A)∗ `i A∗ : this was done in lemma 10.8.
If it is D1, D2, D3, D5 or D7, the result is obvious from the definition of A∗.
If it is D4 or D8, we obtain the result by proving that {A[t/x]}∗ ≡ A∗[t/x]
for every term t and every formula A of L (this is immediate, by induction
on A).
If it is D6, then A ≡ B[C/Xx1 . . . xk] ; by the induction hypothesis, the
expression A∗ `i ∀X B∗ was previously deduced ; so we also obtain :
A∗ `i B∗[¬0C

∗/Xx1 . . . xk].
By lemma 10.9, we finally deduce A∗ `i {B[C/Xx1 . . . xk]}∗.

Q.E.D.

Proposition 10.11. Let U , V be two formulas of L(E) such that U `i
E U

∗

and V ∗ `i
E ¬0¬0V . If one can obtain U `E V by rules D0 through D8, then

one can obtain U `i
E V by rules D1 through D8 only.
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By theorem 10.10, U∗ `i
E V ∗ can be obtained by rules D1 through D8.

The hypotheses about the formulas U, V show that one can also deduce
U `i

E ¬0¬0V by means of these rules, that is : U `i
E (V → O) → O. Now

O is a propositional constant which does not occur in U . Thus it suffices to
replace O by V to obtain the desired result : U `i

E V .
Q.E.D.

Any type U [x] such that U [x] `i U∗[x] will be called an input type, while a
type V [x] such that V ∗[x] `i ¬0¬0V [x] will be called an output type.

Proposition 10.12. The type Int[x] is an input-output one, that is to say
that we have : Int[x] `i Int∗[x], and Int∗[x] `i ¬0¬0Int[x].

Int[x] is the formula : ∀X{∀y(Xy → X(suc)y), X0 → Xx}. By replacing
X with ¬0X, we immediately obtain Int∗[x], which is :
∀X{∀y(¬0Xy → ¬0X(suc)y),¬0X0→ ¬0Xx}.
Now in the formula Int∗[x], replace Xx with ¬0Int[x]; the result is :
∀y(¬0¬0Int[y]→ ¬0¬0Int[(suc)y]),¬0¬0Int[0]→ ¬0¬0Int[x].
Now it can be seen easily that `i Int[y]→ Int[(suc)y], so that :
`i ¬0¬0Int[y] → ¬0¬0Int[(suc)y]. We also have `i Int[0], and therefore
`i ¬0¬0Int[0]. Finally, Int∗[x] `i ¬0¬0Int[x].

Q.E.D.

Now we are able to prove theorem 10.5 : suppose that Int[σ] `E Int[τ ] have
been obtained by means of rules D0, D1, . . . , D8. By proposition 10.12,
we have Int[σ] `i Int∗[σ] and Int∗[τ ] `i ¬0¬0Int[τ ]. Therefore, by proposi-
tion 10.11, we can obtain Int[σ] `i

E Int[τ ] by rules D1, . . . , D8 only.
Q.E.D.

Theorems 10.3 and 10.4 provide a characterization of the class of those re-
cursive functions from N to N which are represented by a λ-term of type
Int → Int in system F (and therefore also of the class of those recur-
sive functions which are represented by a typed λ-term in FA2, of type
Int[x] → Int[t(x)], with an arbitrary equational system E , in a language
L(E) ⊃ L, t(x) being a term of L(E)). This is the class of functions which
are provably total in the theory CA + C0 ; it is also the class of functions
which are provably total in the theory CA + E , where E is any equational
system containing C0.

Undecidability of strong normalization

As an application of the above results (namely theorems 8.9 and 10.4), we
will now show :
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Theorem 10.13. The set of strongly normalizable λ-terms is not recursive.

The argument is a modification of [Urz03]. We first prove :

Theorem 10.14.
Let f : N2 → {0, 1} be representable by a λ-term of type Int, Int→ Bool in
system F . Then, there exists a λ-term Φ, with the only free variable x, such
that, for all m ∈ N :

i) Φ[m̂/x] is solvable ⇒ (∃n ∈ N) f(m,n) = 1.
ii) (∃n ∈ N) f(m,n) = 1 ⇒ Φ[m̂/x] is strongly normalizable.

Recall that Int ≡ ∀X((X → X), X → X) and Bool ≡ ∀X(X, X → X) ; and that,
if m ∈ N, then m̂ = (suc)m0 where suc = λnλfλx(f)(n)fx is a λ-term for the
successor ; 0 = 0 = λxλy y, 1 = λxλy x.

Let φ be a λ-term which represents f , such that:

`F φ : Int, Int→ Bool

Consider the following λ-term, with a free variable x :
W = λy(φxy0)λw(w)y+w, with y+ = (suc)y.

We define Φ = (W )0W and we show that Φ has the desired property.

For each integer m, we put : Wm = W [m̂/x] = λy(φm̂y0)λw(w)y+w.

Proof of (i)
Let m be a fixed integer such that f(m,n) = 0 for all n ∈ N. We have :

Wmn̂Wm �w ((φm̂n̂0)λw(w)n̂+w)Wm.
Recall that �w denotes the weak head reduction (see page 30).

Since φ represents f , we have φm̂n̂ 'β 0 for all n ∈ N. Therefore, by
lemma 2.12, we have :

((φm̂n̂0)λw(w)n̂+w)Wm �w (λw(w)n̂+w)Wm �w W
mn̂+Wm.

We have shown that Wmn̂Wm �w W
mn̂+Wm for all n. But n̂+ = (suc)n̂ = p̂

with p = n+ 1. It follows that :
Φ[m̂/x] = Wm0̂Wm �w W

m1̂Wm �w · · · �w W
mn̂Wm �w · · ·

This infinite weak head reduction shows that Φ[m̂/x] is not solvable (theo-
rem 4.9).

Proof of (ii)
Let A = Int→ ∀X(X → Id) where Id = ∀X(X → X). We first show that :

`F Wm : Int, A→ Id for every m ∈ N.
Indeed, we have :
y : Int `F y+ : Int because `F suc : Int→ Int.
y : Int, w : A `F wy+ : ∀X(X → Id) and therefore :
y : Int, w : A `F wy+w : Id. It follows that :
y : Int `F λwwy+w : A→ Id. Now, since 0 = λxλy y, we have trivially :
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y : Int `F 0 : A→ Id.
But, by hypothesis, x : Int, y : Int `F φxy : Bool, and therefore :
y : Int `F (φm̂y0)λwwy+w : A→ Id
(note that `F m̂ : Int, because `F 0 : Int and `F suc : Int→ Int).
Thus, we get `F λy(φm̂y0)λwwy+w : Int, A→ Id which is the result.

If p ∈ N, then we have `F p̂ : Int. It follows that :

`F Wmp̂ : A→ Id for every m, p ∈ N.

In particular, Wm and Wmp̂ are strongly normalizable (theorem 8.9).

Lemma 10.15. Let t, t∗, t1, . . . , tk ∈ Λ such that t �w t∗ (t∗ is obtained
from t by weak head reduction). If t and t∗t1 . . . tk are strongly normalizable,
then tt1 . . . tk is strongly normalizable.

Proof by induction on the length of the weak head reduction from t to t∗. If
this length is 0, the result is obvious, since t = t∗. Otherwise, we have :
t = (λxu)vu1 . . . ul and we put t′ = u[v/x]u1 . . . ul. By the induction hypoth-
esis, we see that t′t1 . . . tk = u[v/x]u1 . . . ult1 . . . tk is strongly normalizable.
But v is also strongly normalizable, since t is. Therefore, by lemma 4.27,
(λxu)vu1 . . . ult1 . . . tk = tt1 . . . tk is strongly normalizable.

Q.E.D.

We now consider a fixed integer m such that f(m, p) = 1 for some p. Let n be
the first such p. We have to show that Wm0̂Wm is strongly normalizable. In
fact we show, by a backward recursion from n to 0, that Wmp̂Wm is strongly
normalizable, for 0 ≤ p ≤ n. With this aim in view, we apply lemma 10.15,
with t = Wmp̂, k = 1, t1 = Wm. We have already proved that t and t1 are
strongly normalizable. We have :
t = (λy(φm̂y0)λw(w)y+w)p̂ �w (φm̂p̂0)λw(w)q̂w with q = p+ 1,
since (suc)p̂ = q̂.

Consider first the case p = n ; by hypothesis, we have φm̂n̂ 'β 1. Therefore,
by lemma 2.12, we have (φm̂n̂0)λw(w)q̂w �w 0.
It follows that t = Wmn̂ �w 0 and we can take t∗ = 0.
We have to show that t∗t1, i.e. 0Wm, is strongly normalizable, which is
trivial, since Wm is.

Consider now the case p < n ; by hypothesis, we have φm̂p̂ 'β 0. Therefore,
by lemma 2.12, we have (φm̂p̂0)λw(w)q̂w �w λw(w)q̂w.
It follows that t = Wmp̂ �w λw(w)q̂w and we can take t∗ = λw(w)q̂w.
We have to show that t∗t1, i.e. (λw(w)q̂w)Wm, is strongly normalizable.
By lemma 4.27, it suffices to show that Wm and Wmq̂Wm are strongly nor-
malizable. This is already known for Wm, and for Wmq̂Wm, this follows
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from the induction hypothesis, since q = p + 1 (we are doing a backward
induction).

Q.E.D.

We shall now assume the following results from recursivity theory :

(1) For every recursively enumerable set E ⊂ N, there exists a primitive
recursive function f : N2 → {0, 1} such that :

E = {m ∈ N; (∃n ∈ N) f(m,n) = 1}.
In other words, every recursively enumerable set of integers is the projection of a
subset of N2, the characteristic function of which is primitive recursive.

(2) Every primitive recursive function is provably total in the theory CA+E
for some set E of equations.
Remark. Given a primitive recursive function, the idea is simply to write down
the equations defining it and to prove with them, in classical second order logic,
that this function sends integers into integers. The details will be written in a
future version of this book.

We can now prove theorem 10.13. More precisely, we show :

Theorem 10.16. The set of strongly normalizable terms and the set of un-
solvable terms are recursively inseparable. In other words, a recursive set
which contains every strongly normalizable term must contain an unsolvable
term.

LetR be a recursive set which contains every strongly normalizable term and
no unsolvable term. We choose a recursively enumerable set E ⊂ N which is
not recursive. Let f be a primitive recursive function, obtained by (1). By
means of (2) and theorem 10.4, we see that f is representable, in system F ,
by a λ-term of type Int, Int→ Bool. By theorem 10.14, we get a λ-term Φ
such that, for all m ∈ N :

Φ[m̂/x] is solvable ⇒ m ∈ E ;
m ∈ E ⇒ Φ[m̂/x] is strongly normalizable.

By hypothesis on R, this gives : Φ[m̂/x] ∈ R ⇔ m ∈ E.
This is a contradiction, because R is recursive and E is not.

Q.E.D.

References for chapter 10

[Fri77], [Gir71], [Gir72], [Urz03].
(The references are in the bibliography at the end of the book).
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[Boh68] C. Böhm. Alcune proprietà delle forme βη-normali nel λ-K-calcolo.
Pubblicazioni dell’Istituto per le applicazioni del calcolo 696, Rome, 1968.
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