N

N
N

HAL

open science

Lambda-calculus types and models

Jean-Louis Krivine

» To cite this version:

Jean-Louis Krivine. Lambda-calculus types and models. DEA. Université Paris 7, 2002, pp.208.

cel-00574575

HAL Id: cel-00574575
https://cel.hal.science/cel-00574575
Submitted on 8 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://cel.hal.science/cel-00574575
https://hal.archives-ouvertes.fr

Jean-Louis Krivine

LAMBDA-CALCULUS
TYPES AND MODELS

Translated from french

by René Cori

To my daughter

Contents

Introduction

1 Substitution and beta-conversion

Simple substitution

Alpha-equivalence and substitution

Beta-conversion

Eta-conversion

2 Representation of recursive functions

Head normal forms
Representable functions . . .

Fixed point combinators . .

The second fixed point theorem

3 Intersection type systems
System D L.
System D
Typings for normal terms . .

4 Normalization and standardization

Typings for normalizable terms

Strong normalization
BI-reduction
The A -calculus
fn-reduction

The finite developments theorem

The standardization theorem

5 The Bohm theorem

12
17
23

29
29
31
34
38

41
41
o1
95

61
61
69
70
72
74
7
81

87

4 CONTENTS

6 Combinatory logic 95
Combinatory algebras 95
Extensionality axiomso oL 98
Curry’s equations 101
Translation of A-calculus 105

7 Models of lambda-calculus 111
Functional models 111
Spaces of continuous increasing functions oL L. 116
Spaces of initial segments 117
Applicationso 125
Retractions 130
Qualitative domains and stable functions 135

8 System F 147
Definition of system F types 147
Typing rules for system F 148
The strong normalization theorem 153
Data types in system F00 155
Positive second order quantifiers 161

9 Second order functional arithmetic 167
Second order predicate calculus 167
System FlAs L 174
Realizabilityo 181
Data types 184
Programming in FFAso 188

10 Representable functions in system F 195
Godel’s —-translation 198
Undecidability of strong normalization 201

Bibliography 205

INTRODUCTION

The lambda-calculus was invented in the early 1930’s, by A. Church, and
has been considerably developed since then. This book is an introduction
to some aspects of the theory today : pure lambda-calculus, combinatory
logic, semantics (models) of lambda-calculus, type systems. All these areas
will be dealt with, only partially, of course, but in such a way, I think, as to
illustrate their interdependence, and the essential unity of the subject.

No specific knowledge is required from the reader, but some familiarity with
mathematical logic is expected ; in chapter 2, the concept of recursive func-
tion is used ; parts of chapters 6 and 7, as well as chapter 9, involve elementary
topics in predicate calculus and model theory.

For about fifteen years, the typed lambda-calculus has provoked a great
deal of interest, because of its close connections with programming languages,
and of the link that it establishes between the concept of program and that of
intuitionistic proof : this is known as the “ Curry-Howard correspondence ”.
After the first type system, which was Curry’s, many others appeared : for
example, de Bruijn’s Automath system, Girard’s system F, Martin-Lof’s
theory of intuitionistic types, Coquand-Huet’s theory of constructions, Con-
stable’s Nuprl system...

This book will first introduce Coppo and Dezani’s intersection type sys-
tem. Here it will be called “ system D2 ”, and will be used to prove some
fundamental theorems of pure lambda-calculus. It is also connected with
denotational semantics : in Engeler and Scott’s models, the interpretation
of a term is essentially the set of its types. Next, Girard’s system F of
second order types will be considered, together with a simple extension, de-
noted by F'As (second order functional arithmetic). These types have a very
transparent logical structure, and a great expressive power. They allow the
Curry-Howard correspondence to be seen clearly, as well as the possibilities,
and the difficulties, of using these systems as programming languages.

A programming language is a tool for writing a program in machine lan-
guage (which is called the object code), in such a way as to keep control, as
far as possible, on what will be done during its execution. To do so, the prim-

6 Lambda-calculus, types and models

itive method would be to write directly, in one column, machine language,
and, alongside, comments indicating what the corresponding instructions are
supposed to do. The result of this is called a “ source program ”. Here, the
aim of the “ compilation ”, which transforms the source program into an
object code, will be to get rid of the comments.

Such a language is said to be primitive, or “ low level ”, because the
computer does not deal with the comments at all ; they are entirely intended
for the programmer. In a higher level language, part of these comments would
be checked by the computer, and the remainder left for the programmer ; the
“ mechanized ” part of the comments is then called a “ typing ”. A language
is considered high level if the type system is rich. In such a case, the aim of
the compilation would be, first of all, to check the types, then, as before, to
get rid of them, along with the rest of the comments.

The typed lambda-calculus can be used as a mathematical model for this
situation ; the role of the machine language is played by the pure lambda-
calculus. The type systems that are then considered are, in general, much
more rich than those of the actual programming languages ; in fact, the
types could almost be complete specifications of the programs, while the
type checking (compilation) would be a “ program proof ”. These remarks
are sufficient to explain the great interest there would be in constructing
a programming language based on typed lambda-calculus ; but the prob-
lems, theoretical and practical, of such an enterprise are far from being fully
resolved.

This book is the product of a D.E.A. (postgraduate) course at the Uni-
versity of Paris 7. I would like to thank the students and researchers of the
“ Equipe de Logique ” of Paris 7, for their comments and their contributions
to the early versions of the manuscript, in particular Marouan Ajlani, René
Cori, Jean-Yves Girard and Michel Parigot.

Finally, it gives me much pleasure to dedicate this book to my daughter
Sonia.

2

Paris, 1990

Chapter 1

Substitution and
beta-conversion

The terms of the A-calculus (also called A-terms) are finite sequences formed
with the following symbols : variables z, vy, ... (the set of variables is assumed
to be countable), left and right parenthesis, and the letter A\. They are
obtained by applying, a finite number of times, the following rules :

e any variable x is a A-term ;
e whenever ¢t and u are A-terms, then so is (t)u ;
e whenever t is a A-term and x is a variable, then Azt is a A-term.

The set of all terms of the A-calculus will be denoted by L.

The term (¢t)u should be thought of as “ ¢ applied to u 7 ; it will also be
denoted by tu if there is no ambiguity ; the term (... (((¢)uy)us)...)uy will
also be written (t)ujus ... ux or tujusy . .. u,. Thus, for example, (t)uv, (tu)v
and tuv denote the same term.

By convention, when k = 0, (t)ujus ... u, will denote the term t.

The free occurrences of a variable x in a term t are defined, by induction, as
follows :
if ¢t is the variable z, then the occurrence of x in t is free ;

if t = (u)v, then the free occurrences of x in ¢ are those of x in u
and v ;

if t = Ayu, the free occurrences of x in ¢ are those of x in u,
except if x = y ; in that case, no occurrence of x in t is free.

A free variable in t is a variable which has at least one free occurrence in ¢.
A term which has no free variable is called a closed term.
A bound variable in t is a variable which occurs in t just after the symbol A.

7

8 Lambda-calculus, types and models

1. Simple substitution

Let t,t1,...,t; be terms and 1, ..., x; distinct variables ; we define the term
t<ty/xi,...,tx/ x> as the result of the replacement of every free occurrence
of z; in t by t; (1 <14 < k). The definition is by induction on ¢, as follows :
ift =u; (1 <i<k), then t<ty/xy,... tx /x> =1; ;
if ¢ is a variable # w1, ..., xk, then t<t|/xy,... tx /x> =1 ;
if t = (u)v, then
t<ty/xy, ..., tp/x> = (u<ty/xq, ... /x> o<ty /xq, ... te/TR>
if t = Azyu (1 <i <k), then
t<t1/l’1, . ,tk/l’k> =)xxiu<t1/x1, . 7ti—1/xi—17 ti—i—l/xi—l—l; ce ,tk/xk> ;
if t = Axu, with = # x1, ..., x, then
t<ty/wy, ..., th/xp> = Axu<ty/zy, ... tp /x>,
Such a substitution will be called a simple one, in order to distinguish it from
the substitution defined further on, which needs a change of bound variables.
Simple substitution corresponds, in computer science, to the notion of macro-
instruction. It is also called substitution with capture of variables.

With the notation t<ty/xy,...,t;/xr>, it is understood that xi, ...,z are
distinct variables. Moreover, their order does not matter ; in other words :

t<ty/xy,..., /x> = t<lo1/To1,. .. tox/Tor> for any permutation o of
{1,...,k}.

The proof is immediate by induction on the length of ¢ ; also immediate is
the following :

If ty, ..., ty are variables, then the term t<ty/zy,...,tx/x> has the same
length as t.

Lemma 1.1. If the variable x1 is not free in the term t of L, then :
t<t1/£L‘1, e ,tk/l‘k> = t<t2/x2, e ,tk/l'k>.

Proof by induction on ¢t. The result is clear when t is either a variable or a
term of the form (u)v. Now suppose t = Az u ; then :

if x = xq, then :
t<ty/x1, ... th/x> = Aryu<ty/xo, ... tp/oK> = t<ty/To, ...ty /21> ;

if © = x; with i # 1, say x = xy, then :

t<t1/ZL‘1, ce ,tk/il,‘k> = /\Zl,‘k u<t1/a71, e 7tk—1/xk—1>
= Az} u<t2/x2, R 7tk71/xk71>
(by induction hypothesis, since x; is not free in u) = t<ty/z9, ..., tr /x> ;
if x #x,...,7, then :
t<ti/xy,....t/x> = Avu<ty/xy, ... tg/eg> = dvu<ty/zo, ...t /x>
(by induction hypothesis, since 7 is not free in u) = t<ty/xa, ..., tp/zr>.

Q.E.D.

Chapter 1. Substitution and beta-conversion 9

Remark. Usually, in textbooks on A-calculus (for example in [Bar84]), the simple
substitution is considered for only one variable. In a substitution such as t<u/x>,
the term ¢t is then called a context or a term with holes ; the free occurrences of
the variable z in ¢ are called holes and denoted by []. The term t<u/z> is then
denoted as t[u] and is called the result of the “ substitution of the term w in the
holes of the context ¢ ”.

The major problem about simple substitution is that it is not stable un-
der composition ; if you consider two substitutions <t;/x1,...,t, /x> and
<u1/yi, ..., Un/yn>, then the application :

o t<ty/my, ...t/ Tm><ui/yi, ..., Un/Yn>
is not, in general, given by a substitution. For instance, we have :
y<y/r><xz/y> = x and z<y/r><x/y> = z for every variable z # y. Thus,
if the operation <y/z><z/y> was a substitution, it would be <z /y>. But
this is false, because \y x<y/r><x/y> = Ayy and Ay z<z/y> = Ay z.
In the following lemma, we give a partial answer to this problem. The defini-
tive answer is given in the next section, with a new kind of substitution,
which is stable by composition.

Lemma 1.2. Let {x1,...,xm}, {v1,--.,yn} be two finite sets of variables,

and suppose that their common elements are 1 = yy,...,T = Y. Let
tity, ... tm, UL, ..., u, be terms of L, and assume that no free variable of
t1,...,t, is bound int. Then :
t<ti/w1, ..t/ T ><ur /Y1, ..., Uy Yn>

=t<ty/T1, o Ty Uk [Yl 1y - e Un [Yn >,
where t = t;<uy/y1, ..., Un/Yn>.

Proof by induction on the length of ¢ :

i) ¢t is a variable : the possible cases are t = z; (1 < i < m), t = y;
(k+1 < j <mn),ortis another variable. In each of them, the result is
immediate.

ii) t = (u)v ; the result is obvious, by applying the induction hypothesis to
u and v.

iii) ¢ = Az u ; we first observe that the result follows immediately from the

induction hypothesis for u, if x # x1,..., T, Y1, -, Yn.
Ifx =x; (1 <i<k),say z, then :
t<ti/xy, .. tm/Tm> = Axyu<te/xo, ... ty/Tm>.

Since x1 = ¥y, we have :
t<ti/x1, .. tm/Tm><ui/y1, ... Un/Yn>
= Arpu<ty/To, ..ty /T ><uUa /Yoy - .o Un/Yn>.
By the induction hypothesis for u, we get :
u<to/To, ...ty /Tm><Us /Yo, ... Up/Yn>
=u<th/xo,. . t [T U1 Ykt 1s - oy U Yn>,

10 Lambda-calculus, types and models

with 7 = t;<us/ya, ..., Un/Yn>.
But, since x; = y; is bound in ¢, by hypothesis, it is not a free variable of ¢;.

From lemma 1.1, it follows that t/ = t,<uy/y1, ..., un/yn> = t.. Therefore :
t<ty/x1, ..ot /T ><ur[Y1, ooy Un/Yn>
= ATy u<thy/xo, ...t [Ty U1 [Yt s - - - s Un/Yn>
:t<t/1/l'1,...,tlm/$m,uk+1/yk+1,...,Un/yn>.
If x=x; (k+1<1i<m),say z,, then :
t<t1/l’1,...,tm/l’m> =)\xmu<t1/x1,...,tm_l/xm_1>,
and since x,, # Y1, ..., Yn, We get :

t<t1/x1, . ot [T ><ur Y1,y - oo U/ Yn>

= ANl u<ty/x1, .o b1 [T 1> <UL Y1y - o Un [Yn >
By the induction hypothesis for u, we get :
u<ty /1, b1 T > <UL Y1y - U Y >

=u<ty /w1, .t Tt Ukt 1 [Ykt e Un/Yn >,
Therefore t<ti/x1, ..., tm/Tm><u1/y1, .. Un/Yn>
= ACp u<t) [z, Tt Uk YRty - s Un Y >
=t<ty/x1, o Ty Uk [Ykt 1y« e Un) Yn >
Ifz=vy; (k+1<j<n),say y,, then:
t<t1/x1, ..t /T > = Nypu<ty/xq1, ... ty/Tm>, SiNCe Yy # T1, ...\ Tiy.
Therefore t<ti/xy1,...,tm/Tm><ui/y1, ..., Un/Yn>

= Npu<ty/x1, ..ty /T ><ui /Y1, Un1/Yn—1>
By the induction hypothesis for u, we get :
u<ty /Ty, b T ><ur /Y1y Un1 [Yn—1>
=u<t)/xy,. .t Ty U1 Yt 1s - - oy Un—1/Yn—1>>,
with t;/ = ti<u1/y1, e ,un,l/yn,1>.
But, since y,, is bound in ¢, by hypothesis, it is not a free variable of ¢;. From
lemma 1.1, it follows that t = t;<uy/y1, ..., un/y,> = t;. Therefore :

t<ty/xy, ...t /Tm><ui /Y1, ..., Un/Yn>
= Ny u<ti/xy, .ot T, U1 [Ykt 1s - - e U1/ Yno1>
=t<ti/x1, . T, Uk [Ykt 1y - e Un [Yn >
Q.E.D.

Corollary 1.3. Let t,tq,...,t, be A-terms, and {z1,..., 2}, {y1, -, Ym}
two sets of variables such that none of the y;’s occur in t. Then :
t<ty1 /1, Ym /T ><t1 Y1y o b Y > = <ty)21, >

Let {x1,...,zx} = {21, .. .,z OV {y1, .-, Ym}, With z1 = y1, ..., 2 = Ys.
The hypothesis of lemma 1.2 is satisfied, because y; is not bound in ¢. There-
fore, we have :
t<y1/x1, - Ym /T ><t1 /Y1y - o b /Y >

=t<ti/x1, ot Tyt 1 [Ybt1y - - ot /Y >

Chapter 1. Substitution and beta-conversion 11

But yxi1, - .., Ym are not free in ¢, and therefore we get t<ty/x1, ..., tm/Tm>
by lemma 1.1.
Q.ED.

Let R be a binary relation on L ; we will say that R is A\-compatible if it is
reflexive and satisfies :
tRt' = AxtRAxt' ;tRt, uRu = (H)u R (t)u'.
Remark. A binary relation R is A-compatible if and only if :
x R x for each variable z ;
tRt' = et R xt' ; t Rt u Ru' = (t)u R (¢')u for all terms ¢, u,t',u'.
Indeed, t Rt is easily proved, by induction on the length of ¢.

Lemma 1.4. If R is A\-compatible and t; Rt), ... tx Rt,, then :
t<ti/xy,...,te/a> RE<t|/xy, ...t o>,

Immediate proof by induction on the length of .
Q.E.D.

Proposition 1.5. Let R be a binary relation on L. Then, the least A\-compa-
tible binary relation p containing R is defined by the following condition :
(1) tpt' < there exists terms T,ty, ... tg, th, ..., 1) and distinct variables
T1,..., T such that : t;Rt, (1 < i < k) and t = T<ty/xy,...,tx/x1>,
t=T<t|/xy,...,t <>

Let p' be the least A-compatible binary relation containing R, and p the
relation defined by condition (1) above. It follows from the previous lemma
that p' D p. It is easy to see that p D R (take T' = x1). It thus remains to
prove that p is A-compatible.
By taking k& = 0 in condition (1), we see that p is reflexive.
Suppose t = T'<ty/xq,...,tx /x>, ¢ = T<t/x1,...,t /x> Let y1, ..., yk
be distinct variables not occurring in 7. Let V = T<yi/xy,...,yp/z1>.
Then, it follows from corollary 1.3 that t = V<ty/y1,...,tx/yp> and t' =
V<t /y1,....t,./yr>. Thus the distinct variables x4, ...,z in condition (1)
can be arbitrarily chosen, except in some finite set.
Now suppose tpt’ and upu’ ; then :
t=T<ti/xy, ..., tp/ox>, t =T<t|/xy,...,t, /x> with t; Rt} ;
u=U<ui/y, ..., w/y>, v =U<uy/y1, ..., up/y;> with u; Ruj.
By the previous remark, we can assume that zy,...,zg, y1, ...,y are distinct,
different from x, and also that none of the z;’s occur in U, and none of the
y;’s occur in T'. Therefore :
et =AeT)<ty/zy, ..., t/x >, Aot = N T)<t)/xy, ..., t, >,
which proves that A\xtp Az t'.
Also, by lemma 1.1 :

12 Lambda-calculus, types and models

t=T<ti/x1, ... te/TK, U1 /Y1, w/y;>,
t=T<t)/x1,... b0 ¢k, Uy Y1, ... u)/y>
(since none of the yjs occur in T) ;
and similarly :
u = U<t1/f€1, c ,tk/xk,ul/yl, ce ,Ul/yl>,
u =U<tfzy, ..t e ul Jyn,) >
(since none of the z}s occur in U).
Let V.= (T)U ; then (t)u = V<ty/x1,.. ., tp/Tp,ur /Y1, . . w/yr>,
(' = V<t zy, ...t xg,uy /v, ... u)/y> and thus (8)up (F)u’.
Q.E.D.

2. Alpha-equivalence and substitution

We will now define an equivalence relation on the set L of all A-terms. It is
called a-equivalence, and denoted by =.

Intuitively, ¢ = ¢’ means that ¢’ is obtained from ¢ by renaming the bound
variables in ¢ ; more precisely, ¢ = t' if and only if £ and ¢’ have the same
sequence of symbols (when all variables are considered equal), the same free
occurrences of the same variables, and if each A binds the same occurrences
of variables in ¢ and in t'.

We define t = t/, on L, by induction on the length of ¢, by the following
clauses :

if ¢ is a variable, then ¢t =t if and only if t = ¢’ ;

if t = (u)v, then t = ¢’ if and only if ' = (v')v’, with v = " and
v=0;

if t = Az u, then t = ¢’ if and only if ¢/ = A\z/v/, with u<y/z> =
uw'<y/x'> for all variables y except a finite number.

(Note that u<y/z> has the same length as u, thus is shorter than ¢, which
guarantees the correctness of the inductive definition).

Proposition 1.6. Ift =t/, thent and t' have the same length and the same
free variables.

The proof is done by induction on the length of ¢. The cases when ¢ is a
variable, or t = uv are trivial.

Suppose now that ¢ = Ax v and therefore ' = Az’ v/. Thus, we have :
u<y/xr> = u'<y/x’'> for every variable y except a finite number.

We choose a variable y # x, 2’ which, moreover, does not appear (free or

Chapter 1. Substitution and beta-conversion 13

bound) in w,u’. Let U (resp. U’) be the set of free variables of u (resp. u').
The set V of free variables of u<y/x>is U if z ¢ U and (U \ {z}) U {y}
if z € U. Also, the set V' of free variables of u'<y/z'> is U’ if 2’ ¢ U’
and (U’ \ {«'}) U{y} if 2’ € U’. Now, we have V = V' by the induction
hypothesis.
Ifx¢U,wehavey ¢ V, thusy ¢ V' and 2/ ¢ U'. ThusU =V =V' =U'
and Az u, Az’ v’ have the same set of free variables, which is U.
If z € U, then y € V, thus y € V'’ and therefore 2’ € U’.
The set of free variables of Axu (resp. Az'u') is U \ {z} = V \ {y} (resp.
U'\{2'} =V'\ {y}). Since V = V', it is, once again, the same set.

Q.E.D.
The relation = is an equivalence relation on L.

Indeed, the proof of the three following properties is trivial, by induction
ont:t=t;t=t'=t=t;t=t,t'=t"=t=1".

Proposition 1.7. Let t,t',t1,t} ... tg, t) be A-terms, and x4, ...,z distinct
variables. If t =t', t; =t}, ..., ty = t;, and if no free variable in tq, ... t
is bound in t,t', then t<ti/xy, ..., tx x> = t'<t|/xy, ...t} K>,

Note that, since t = ¢/, t and ¢’ have the same free variables. Thus it can be
assumed that x1,...,x; are free in ¢ and ' ; indeed, if 21, ..., z; are those x;
variables which are free in ¢ and t’, then, by lemma 1.1 :
t<ti/xy,...,tp/xK> = t<ty/z1,...,t /2> and
t<th/xy, ... U x> =<ty ... 1 x>

Also, since t; = t, t; and t; have the same free variables. Therefore, no free
variable in 1,1}, ...t t) is bound in ¢,¢'.
The proof of the proposition proceeds by induction on ¢. The result is im-
mediate if ¢ is a variable, or ¢t = (u)v. Suppose t = Axu. Then t' = \z/u/
and u<y/x> = u'<y/2’> for all variables y except a finite number.
Since z1,...,x, are free in t and ¢, z and 2’ are different from x4, ..., z;.
Thus t<ty/x1, ..., tx/xp> = Az u<ty/zy, ..., b /x> and

t'<th/xy,t o> = '/ <t| Jxq, ... 8 o>
Hence it is sufficient to show that :

u<ty/xy, ..t /o> <y/x> =u'<t) Jxy, .t ee><y /o>
for all variables y except a finite number. Therefore, we may assume that
Yy # x1,...,%. Since x,x’ are respectively bound in ¢,t', they are not free in
t1, .o e, th, .o 1) 5 therefore, it follows from lemma 1.2 that

u<ty/xy, ..ty /p><y/x> = u<ty [z, ...t /3, y /> and

W<ty x> <y/r'> =u'<t) [z, o,y />
Since y # x4, ..., xk, we get, applying again lemma 1.2 :

u<y/x,ti/xq, ... tp /> = u<y/r><ti/xq,...,tx/zr> and

14 Lambda-calculus, types and models

w<y/x x> = U/ <y /ol > <t [z, .t o>
and therefore :
u<ty /a1, ...tk /o> <y/x> = u<y/x><ty/xi, ...t /x> and
u<thJxy, .t > <y /o> = u/ <y /o> <t [xy, .t o>
Now, since u<y/x> = u'<y/x’> for all variables y except a finite number,
and u<y/x> is shorter than ¢, the induction hypothesis gives :

u<y/r><ty/x1,... /o> = U <y/x'><t|/xq, ...t /x>, thus :
u<ty/xy, ..t /e><y/x> = u'<t)Jxy, ...t/ o><y/x'> for all variables
y except a finite number.

QED.

Corollary 1.8. The relation = is A-compatible.

Suppose t = t'. We need to prove that \xt = Az t/, that is to say t<y/z> =
t'<y/x> for all variables y except a finite number. But this follows from
proposition 1.7, provided that y is not a bound variable in ¢ or in ¢'.

Q.E.D.

Corollary 1.9. Ift. t1,... tg, 1, ... 1, are terms, and x1, ...,z are distinct
variables, then :
th=t,.. k=t = t<ty/zy, ... /o> =<t [z, ...t xp>.

This follows from corollary 1.8 and lemma 1.4.
Q.E.D.

However, note that it is not true that v = v’ = u<t/z> = v'<t/x>. For
example, Ay x = Az x, while \yx<y/z> = A\yy # Azz<y/xz> = Az y.

Lemma 1.10. Azt = A\yt<y/xz> whenever y is a variable which does not
occur 1 t.

By corollary 1.3, t<z/x> = t<y/x><z/y> for any variable z, since y does
not occur in ¢t. Hence the result follows from the definition of =.
Q.E.D.

Lemma 1.11. Lett be a term, and x4, ..., x be variables. Then there exists
a term t', t' = t, such that none of x1,...,x; are bound in t'.

The proof is by induction on ¢. The result is immediate if ¢ is a variable, or
if t = (u)v. If £ = Az w, then, by induction hypothesis, there exists a term
u', v = wu, in which none of z1, ...,z are bound. By the previous lemma,
t = v = Myu/'<y/x> with y # xq1,..., 2, Thus it is sufficient to take
t = yu'<y/xz>.

Q.E.D.

Chapter 1. Substitution and beta-conversion 15

From now on, a-equivalent terms will be identified ; hence we will deal with
the quotient set L/= ; it is denoted by A.

For each variable x, its equivalence class will still be denoted by z (it is
actually {z}). Furthermore, the operations ¢,u — (t)u and ¢,z +— Azt are
compatible with = and are therefore defined in A.

Moreover, if ¢ = ¢/, then ¢ and ¢’ have the same free variables. Hence it is
possible to define the free variables of a member of A.

Consider terms t,t1,...,t, € A and distinct variables z1,...,z;. Then the
term t[ty/z1, ..., tx/xK] € A (being the result of the replacement of every
free occurrence of x; in t by ¢;, for i = 1,...,k) is defined as follows : let
t,t,,...,1; be terms of L, the equivalence classes of which are respectively
t,ty,...,t. By lemma 1.11, we may assume that no bound variable of ¢ is
free in t1,...,tx. Then t[t1/z1, ..., tx/x)] is defined as the equivalence class
of t<t,/x1,...,t,/zr>. Indeed, by proposition 1.7, this equivalence class
does not depend on the choice of ¢,t;,...,1,.

So the substitution operation t,t, ..., t; — t[t1/xy, ..., tx/xx] is well defined
in A. It corresponds to the replacement of the free occurrences of x; in ¢ by
t; (1 <i <k), provided that a representative of ¢ has been chosen such that
no free variable in %4, ..., % is bound in it.

The substitution operation satisfies the following lemmas, already stated for
the simple substitution :

Lemma 1.12. If the variable x1 is not free in the term t of A, then :
t[tl/xl,. .. ,tk/xk] = t[tz/ﬂfg,. .. ,tk/ilfk]

Immediate from lemma 1.1 and the definition of t[t|/xy, ..., tx/xk].
Q.ED.

The following lemma shows that the substitution behaves much better in
A than in L (compare with lemma 1.2). In particular, it shows that the
composition of two substitutions gives a substitution.

Lemma 1.13. Let {z1,...,xn}, {y1,...,yn} be two finite sets of variables,
and suppose that their common elements are x1 = yi,..., T = yr. Let
tt, ... tm, U1, ..., u, be terms of A. Then :

tlt1/xe, ot/ Tl Ut fyn, - U Yn)

- t[tll/xlu s ,t;,n/l'n“ uk+1/yk+17 s 7un/yn]7
where t, = t;[uy /y1, . .., Un/Yn).
Let t,ty,...,t,,, Uy, .,u, be some representatives of ¢, 11, ..., s, ..., Up,.
By lemma 1.11, we may assume that no bound variable of t is free in
t1,.. ., tm, U1,...,u,, and that no bound variable of ¢,,...,t,, is free in

16 Lambda-calculus, types and models

uy, ..., U,. From lemma 1.2, we get :
t<ty/x1, .. by /T ><uy /Y1, - o Uy Yn>

= 2_f<§/1/$1, SR vt;n/xm’gk—l-l/yk—f—lv SR ’ﬂn/yn>v
where t) = t,<uy/y1, ..., u,/yn>.
The first member is a representative of t[t;/x1,. ..t /Tm][u1/y1, -« Un/Ynl,
since t<t,/x1,...,t,,/Tm> is a representative of t[t;/x1, ..., tm/xm], and no
bound variable of this term is free in u,,...,u,. The second member is
a representative of t[t|/x1, ..., t [Tum, Ukt1/Yks1s - - - Un/Yn], since no bound
variable of ¢ is free in ¢}, ...t w1, ... U,

QED.

Lemma 1.14. Let x, 2’ be variables and u,u’ € A be such that \x u = Az’ u'.
Then u[t/x] = W'[t/z'] for every t € A.

Let u, v’ € L be representatives of u,u’. Then Az u = Az’ v’ and, by definition

of the a-equivalence, we have u<y/x> = u'<y/x’> for every variable y
but a finite number. If we suppose that y is not bound in u,u’, we see
that uly/z] = u'[y/a'] for every variable y but a finite number ; therefore

uly/x][t/y] = «'[y/2'][t/y]. If we suppose that y is different from x,2’, then,
by lemma 1.13, we get ult/x,t/y] = u/'[t/x',t/y]. Assume now that y is not
free in w,u’ ; then, by lemma 1.12, we obtain u[t/x] = u'[t/2'].

Q.E.D.

Proposition 1.15. Let t € A such that t = Axwu. Then, for every variable
x' which is not free in t, there exists a unique u' € A such that t = \x’ v ; it
is given by u' = ulx'/x].

Remark. Clearly, if 2’ is a free variable of ¢, we cannot have t = Az’ u’.

If Azu = A/ o/, then ul2' /x| = u/[2'/2'] =« by lemma 1.14.

We prove now that, if «' = u[z’/z], then Axu = Az’u/. We may assume
that x and 2’ are different, the result being trivial otherwise. Let u be a
representative of u, in which the variable 2’ is not bound. Then v’ = u<z’/z>
is a representative of u'. It is sufficient to show that Az u = A2’ «/, that is
to say u<y/z> = u/<y/z'> for every variable y but a finite number. Now
u'<y/r'> = u<a'/x><y/x'>. By corollary 1.3, we get u<z'/z><y/x'> =
u<y/x> since the variable ' does not occur in u : indeed, it is not bound
in u by hypothesis, and it is not free in u, because it is not free in t = Az u.

Q.ED.

We can now give the following inductive definition of the operation of sub-
stitution [ty /x4, ..., tx/xx], which is useful for inductive reasoning :

ity /xy, .tk /o) =t for 1 <i <k

Chapter 1. Substitution and beta-conversion 17

if x is a variable different from z1, ..., x, then
xty/xe, ..tk /xy] = T ;
if t = wv, then t[ty/z1, ..., ty/xg]
= (u[ty/z1, ..., te/xE))v[t1/x1, . .t/ Tk ;
if t = Az u, we may assume that z is not free in ¢1,...,%; and
different from z1, ...,z (proposition 1.15). Then

t[tl/l’l, R ,tk/xk] =)\x(u[tl/xl, Ce ,tk/l’k]).

We need only to prove the last case : let u,t,,...,t, be representatives of
u,t1,...,t,, such that no free variable of t;,...,#; is bound in u. Then t =
Az u is a representative of t ; and 7 = t<t,/x1,...,t, /x> is a representative
of tlt1/x1,. .., tx/k], since the bound variables of t are x and the bound vari-
ables of u, and x is not free in t1,...,t;. Now 7 = Az u<t,/xy,...,t. /x>,
since © # x1,...,x,. The result follows, because u<t,/x1,...,t; /x> is a
representative of ufty/z1, ..., t;/xy].

We now define the notion of A-compatibility on A : if R is a binary relation
on A, we will say that R is A-compatible if it satisfies :

x Rx for each variable x ;
tRt = Mxt R xt'
tRt', uRu = (H)u R (t')u'.

A A-compatible relation is necessarily reflexive. Indeed, we have :

Lemma 1.16. If R is A\-compatible and t,Rt|, ... tyRt), then :
t[tl/xl, Ce ,tk/xk] Rt[/1/1'1, c. ,t;c/l‘k]

Immediate proof by induction on the length of .
Q.E.D.

3. Beta-conversion

Let R be a binary relation, on an arbitrary set F ; the least transitive binary
relation which contains R is obviously the relation R’ defined by :

t R'u < there exist a finite sequence t = vy, v1, ..., V,_1, 0, = u of elements
of E such that v;Rv;11 (0 <1i <n).

R is called the transitive closure of R.

We say that the binary relation R on FE satisfies the Church-Rosser (C.-R.)
property if and only if :

for every ¢, u,u’ € E such that t Ru and t R/, there exists some v € E such
that u Rv and v'Rv.

18 Lambda-calculus, types and models

Lemma 1.17. Let R be a binary relation which satisfies the Church-Rosser
property. Then the transitive closure of R also satisfies it.

Let R’ be that transitive closure. We will first prove the following property :
t R'u,t Ru' = for some v, u Rv and v R'v.
t R'u means that there exists a sequence t = vy, vy, ..., 0,_1, v, = u such that
viRvi1 (0 <i<mn).
The proof is by induction on n ; the case n = 1 is just the hypothesis of the
lemma.
Now since t R'v,,_; and ¢t R/, for some w, v,_1Rw and v'R'w. But v,_1Ru,
so u Rv and w Rv for some v (C.-R. property for R). Therefore v’ R'v, which
gives the result.
Now we can prove the lemma : the assumption is ¢t R'u and t R'u/, so there
exists a sequence : t = vg, V1, ...,V 1,0, = 4 such that v; Rv; 1 (0 < i < n).
The proof is by induction on n : the case n = 1 has just been settled.
Since t R'u and t R'v,_1, by induction hypothesis, we have u R'w and v, _1 R'w
for some w. Now v,,_1 R/, so, by the previous property, w Rv and v’ R'v for
some v. Thus u R'v.

Q.E.D.

In the following, we consider binary relations on the set A of A-terms.

Proposition 1.18.
If tou, t',u' € A and (Axu)t = (Ag'u'), then ult/x] = u/'[t'/2].

This is the same as lemma 1.14, since (Ax u)t = (Ax’u/)t" if and only if ¢ = ¢/
and A\xu = A\x'u'.
QED.
A term of the form (Azu)t is called a redex, u[t/z] is called its contractum.
Proposition 1.18 shows that this notion is correctly defined on A.
A binary relation 3y will now be defined on A ; t 5y t’ should be read as :
“ ' is obtained by contracting a redex (or by a (-reduction) in t .
The definition is by induction on t :
if ¢ is a variable, then there is no t' such that t Gyt ;
if t = Axu, then ¢ Gy t’ if and only if ¢/ = Az v/, with u Syu’ ;
if t = (u)v, then t By t’ if and only if
either t' = (u)v" with v Gy v/,
or t' = (u')v with u By v/,
orelse u = Az w and t' = wlv/z].
It is clear from this definition that, whenever ¢ 3y t’, any free variable in ¢’ is
also free in t.

Chapter 1. Substitution and beta-conversion 19

The (-conversion is the least binary relation 5 on A, which is reflexive,
transitive, and contains ;. Thus, we have :

t Bt < there exists a sequence t = tg,t1,...,t,_1,t, = t' such that ;5 t; 11
for1<i<n-—1(n>0).

Therefore, whenever t ', any free variable in t’ is also free in t.

The next two propositions give two simple characterizations of (.

Proposition 1.19. The (3-conversion is the least transitive \-compatible bi-
nary relation 3 such that (Axw)t fult/x] for all terms t,u and variable x.

Clearly, t fot',ufov’ = AxtfoAxt’ and (u)t (v)t’. Hence [is A-compa-
tible. Conversely, if R is a A-compatible binary relation and if (Azx u)t Ru[t/z]
for all terms ¢, u, then it follows immediately from the definition of 3, that
R D By (prove t fpt' = t Rt' by induction on t). So, if R is transitive, then
R D (.

Q.E.D.
Proposition 1.20. 3 is the transitive closure of the binary relation p defined
on A by : upu < there exist a term v and redexesty, . .., ty with contractums
Lot such that w = vty /xy, ... tg/zk], 0 = [t /z1, .. 1 /xg].

Since (3 is A-compatible, it follows from lemma 1.16 that 5 O p, and therefore
[contains the transitive closure of p. Conversely, the transitive closure of p
clearly contains 3y, and therefore contains (.

Q.E.D.

Proposition 1.21. Ift Sy t’ then t[ty /1, ... tx/xr] Bot' [t/ 21, . . . i/ xk].

The proof is by induction on the length of ¢. For the sake of brevity, we use
the notation # for t[t, /xy, ..., tx/xi]. It follows from the definition of 3, that
the different possibilities for ¢,t" are :
i)t =Azu, t' = Az, and u By u'. By proposition 1.15, we may assume that
x is not free in tq,...,t, and different from zq,...,x;. Then, by induction
hypothesis, we get @ 3y @', and therefore Az u Gy Az ¢'. Finally, by the choice
of x, this is the same as (Azw)[t1/x1, ..., tx/xk]) Bo Az) [t1/z1, ... ti/xk]).
ii) t = (u)v and t' = (u)v’, with v By v’. Then, by induction hypothesis, we
get 0 By 0" ; hence the result, by definition of .
iii) ¢t = (u)v and t' = (u)v, with u fyv'. Same proof.
iv) t = (Azu)v and t' = u[v/x].
Again, we may assume that x is not free in t;,...,t; and different from
x1,..., x5 Then # = ufv/x|[ty/z1, ... ty/2x] = u[d)z,ty)z, ... t/xi] (by
lemma 1.13) = u[ty /a1, ..., tx/zk][0/x] (by lemma 1.13 and the choice of z)
= a[t/z]. Now t = (Az@)d, and therefore £ Byt

QED.

20 Lambda-calculus, types and models

Proposition 1.22. Ift 5t t, 5t), ... tx Bt then :
Lty /@, ..ot /o) B[2, ../ xy].

Since [is A-compatible, we have t[t/xy, ..., tx/xg] Bt[t)/x1, ...t /xL], by
lemma 1.16. Then, we get t[t/xy1,... t; /x| B[t} /x1, ..., t}./zk] by propo-
sition 1.21.

QED.

A term t is said to be normal, or to be in normal form, if it contains no
redex.

So the normal terms are those which are obtained by applying, a finite num-
ber of times, the following rules :

any variable x is a normal term ;
whenever t is normal, so is Axt ;
if ¢, u are normal and if the first symbol in ¢ is not A, then (¢)u is normal.

This definition yields, immediately, the following properties :

A term is normal if and only if it is of the form Az ... Azy(z)ty ... ¢, (with
k,n > 0), where x is a variable and t;,...,t, are normal terms.

A term ¢ is normal if and only if there is no term ¢’ such that ¢ Gy t'.

13

Thus a normal term is “ minimal 7 with respect to , which means that,
whenever t is normal, t 5t = t = t'. However the converse is not true : take
t = (Az(x)z)Az(x)z, then t 5’ = t = ¢’ although ¢ is not normal.

A term ¢ is said to be normalizable if t 3t' for some normal term ¢. A
term t is said to be strongly normalizable if there is no infinite sequence
t = to,t1,...,tn,... such that t; Byt;s1 for all # > 0 (the term ¢ is then
obviously normalizable).

For example, Az x is a normal term, (Azx(x)z)\x z is strongly normalizable,
(Ax y)w is normalizable but not strongly, and w = (Az(z)x)A\z(z)x is not
normalizable at all.

For normalizable terms, the problem of the uniqueness of the normal form
arises. It is solved by the following theorem :

Theorem 1.23 (Church-Rosser). The (-conversion satisfies the property of
Church-Rosser.

This yields the uniqueness of the normal form : if ¢t 5t, t Bty, with t1,t,
normal, then, according to the theorem, there exists a term t3 such that
tl ﬁt3, tgﬁtg. Thus tl = t3 = tz.

In order to prove that 3 satisfies the Church-Rosser property, it is sufficient
to exhibit a binary relation p on A which satisfies the Church-Rosser property
and has the (3-conversion as its transitive closure.

Chapter 1. Substitution and beta-conversion 21

One could think of taking p to be the “ reflexive closure ” of 3y, which would
be defined by z py < x = y or x By y. But this relation p does not satisfy the
Church-Rosser property : for example, if t = (Ax(x)z)r, where r is a redex
with contractum /', u = (r)r and v = (Az(z)x)r’, then t Gy u and t Fy v, while
there is no term w such that u Gy w and v Gy w.

A suitable definition of p is as the least A-compatible binary relation on A
such that tpt',upu’ = (Azu)t pu'[t'/x].

To prove that 3 D p, it is enough to see that t G/, u fu' = (A\xw)t Su/[t'/x] ;
now : (Azu)t B (Axu)t' (since § is A-compatible) and (Ax u')t'Gu/[t'/x] ; then
the expected result follows, by transitivity.

Therefore, 5 contains the transitive closure p’ of p. But of course p D [y, so
DB

Hence [is the transitive closure of p. It thus remains to prove that p satisfies
the Church-Rosser property.

By definition, p is the set of all pairs of terms obtained by applying, a finite
number of times, the following rules :

1. x px for each variable z ;

2. tpt' = \xtpxt ;

3. tpt' and upu = (t)up(t')u ;

4. tpt' and upu = Axt)upt'[v'/z].

Lemma 1.24. i) If z pt’, where x is a variable, then t' = x.

ii) If \eupt’, then t/ = Az, and upu'.

i) If (u)v pt’, then either t' = (u')v" with wpu' and vpv', or u = Arw and
t'=w'[v'/x] with vpv' and wpw'.

i) x pt’ could only be obtained by applying rule 1, hence ¢’ = x.
ii) Consider the last rule applied to obtain Az u pt’ ; the form of the term on
the left shows that it is necessarily rule 2 ; the result then follows.
iii) Same method : the last rule applied to obtain (u)vpt’ is 3 or 4 ; this
yields the conclusion.

Q.ED.

Lemma 1.25. Whenever tpt’ and upu', then tfu/x] pt'[u'/z].

The proof proceeds by induction on the length of the derivation of ¢ pt’ by
means of rules 1, 2, 3, 4 ; consider the last rule used :

If it is rule 1, then ¢ = ¢’ is a variable, and the result is trivial.

If it is rule 2, then t = Ay v, = Ay v’ and v pv’. By proposition 1.15, we
may assume that y is different from = and is not free in u,u’. Since u pu’, the
induction hypothesis implies v[u/z| pv'[u’/z] ; hence Ayv[u/z] p Ay v'[u'/z]
(rule 2), that is to say t[u/z| pt'[u/x].

22 Lambda-calculus, types and models

If it is rule 3, then t = (v)w and ¢ = (v)w’, with vpv" and wpw'.
Thus, by induction hypothesis, v[u/z| pv'[u'/x] and w]u/x] pw'[u'/x]. There-
fore, by applying rule 3, we obtain (v[u/z])w[u/x] p (v'[u’/z])w' [’ /2], that is
tlu/x] pt'[u'/z].

If it is rule 4, then t = (Ayv)w and ¢’ = v'[w’/y], with v pv’ and w pw'.
We assume that y is not free in u,u’, and is different from x. By induction
hypothesis, we have v[u/x] pv'[uv’ /2] and w]u/z] pw'[v/x]. By rule 4, we get :

(x) Ay vlu/zlwlu/z] pv'[u [z][w' [’ [x] /y].
Now Ay v[u/z] = (Ayv)[u/x], by hypothesis on y. It follows that :
tlufz] = (Ayvlu/z])wlu/z].
On the other hand, we have ¢'[v//z] = v'[w' /y][u'/z] = V'[w'[v'/z]/y,u /x| (by
lemma 1.13) = o[/ /z][w'[v'/x]/y] (again by lemma 1.13, since the variable
y is not free in o).
Then, (x) gives the wanted result : t[u/z] pt'[u/x].
Q.E.D.

Now the proof of the Church-Rosser property for p can be completed. So we
assume that ty ptq,tg pte, and we look for a term t3 such that ¢, pts, ts pts.
The proof is by induction on the length of .

If ¢y is a variable, then by lemma 1.24(i), to = t; = to ; take t3 = .

If to = Ax ug, then, since tg pty,to pte, by lemma 1.24(ii), we have :
t1 = Az uy,ts = Arug and ug puy, ug pue. By induction hypothesis, uy pus
and wuy pug hold for some term uz. Hence it is sufficient to take t3 = Az us.

If to = (up)vo, then, since tg pty,to pta, by lemma 1.24(iii), the different
possible cases are :

a) ty = (u1)vy, ta = (ug)ve with ug puy, vo pr, ug p g, vo pve. By induc-
tion hypothesis, uy pus, ug pus, v1 pvs, va pvs hold for some uz and vs. Hence
it is sufficient to take t3 = (ug)vs.

b) t1 = (uy)vy, with wgpug,vopvy ; ug = Arwp,ts = welve/z|, with
Vo P U2, Wo pws. Since ug puy, by lemma 1.24(ii), we have u; = Azxw, for
some w; such that wy pw;. Thus t; = (Az wy)v;.
Since vy p vy, vg p U2, and wy p wy, wo p we, the induction hypothesis gives :
vy p U3, Vg pU3, and wy pws, we pws for some vy and wsz. Hence, by rule 4, we
get (Azwi)vy pwslvs/x], that is 1 pws[vs/z]. Now, by lemma 1.25, we get
walve/x] pwslvs/z].
Therefore we obtain the expected result by taking t3 = ws[vs/z].

c) ug = Ax wy, t; = wy vy /x], ty = wefve/x] and we have :
Vo P U1,V P U2, Wy PW1, Wy PW3.
By induction hypothesis, vy pvs, ve pvs, wy pws, wy pws hold for some v3 and
ws. Hence, by lemma 1.25, w;[vy/z]pwslvs/x], waelva /x| pws[vs/x], that is to

Chapter 1. Substitution and beta-conversion 23

say t1 pws[vs/x], ta pwslvs/x]. The result follows by taking t3 = ws[vs/x].
Q.E.D.
Remark. The intuitive meaning of the relation p is the following : ¢ pt’ holds if
and only if ¢’ is obtained from ¢ by contracting several redexes occurring in ¢. For
example, (A\z(z)x)Ax z p(Az x)A\x = ; a new redex has been created, but it cannot
be contracted ; (Ax(x)x)Azx p Ax z does not hold.
In other words, t pt’ means that ¢ and t' are constructed simultaneously : for ¢
the steps of the construction are those described in the definition of terms, while
for ¢/, the same rules are applied, except that the following alternative is allowed :
whenever t = (Azu)v, t' can be taken either as (Azu')v’ or as «/[v'/z]. This is
what lemma 1.24 expresses.

(-equivalence

The (-equivalence (denoted by ~3) is defined as the least equivalence relation
which contains 3y (or 3, which comes to the same thing). In other words :
t ~3 t' & there exists a sequence (t = t1),t9,...,tp1, (t, = '), such that
ti Botis1, or tivy Bot; for 1 <@ < n.

t ~ t’' should be read as : t is S-equivalent to t'.

Proposition 1.26. t ~g t' if and only if there exists a term u such that t fu
and t'Bu.

The condition is obviously sufficient. For the purpose of proving that it is
necessary, consider the relation ~ defined by : t ~ t' < t fu and t/Su for
some term u.

This relation contains 3, and is reflexive and symmetric. It is also transitive,
forif t ~ ', t' ~t”, then tSu, t'Su, and t'Gv, t"Fv for suitable u and v.
By theorem 1.23 (Church-Rosser’s theorem), u 3w and v fw hold for some
term w ; thus t fw, "B w.

Hence =~ is an equivalence relation which contains 3, so it also contains ~g.

Q.E.D.

Therefore, a non-normalizable term cannot be -equivalent to a normal term.

4. Eta-conversion
Proposition 1.27. If A\x(t)x = A\2/(t')2" and x is not free in t, then t =t'.

By proposition 1.15, we get t'a’ = (tz)[z’/x] which is tz’ since z is not free
in t. Therefore t =t'.
QED.

24 Lambda-calculus, types and models

A term of the form Az(t)x, where z is not free in ¢, is called an n-redez, its
contractum being t.

A term of either of the forms (Azt)u, Ay(v)y (where y is not free in v) will
be called a (n-redex.

We now define a binary relation 79 on A ; tnyt’ should be read as “ t' is
obtained by contracting an 7-redex (or by an n-reduction) in the term ¢ ”.
The definition is given by induction on ¢, as for 3, :
if ¢ is a variable, then there is no ¢’ such that tngt’ ;
if t = Axu, then tnyt’ if and only if :
either ' = Az v/, with ung ', or u = (t')z, with z not free in ¢ ;
if ¢ = (u)v, then tno,t if and only if :
either t' = (u')v with ungu’ or ¢ = (u)v" with vy’
The relation ¢ Gngt’ (which means : “ ¢’ is obtained from ¢ by contracting a
fBn-redex ”) is defined as : t fpt’ or tngt'.

The n-conversion (resp. the (Bn-conversion) is defined as the least binary
relation n (resp. (n) on A which is reflexive, transitive, and contains 7y

(vesp. (o).

Proposition 1.28. The [n-conversion is the least transitive \-compatible
binary relation Bn such that (Axt)u fntlu/x] and Ay(v)y Bnv whenever y is
not free in v.

The proof is similar to that of proposition 1.19 (which is the analogue for (3).
Q.E.D.

It can be proved, as for (3, that Bn is the transitive closure of the binary
relation p defined on A by : upu' < there exist a term v, and redexes
t1,...,t; with contractums t|,...,t, such that u = v[ty/z1, ... tx/xy], v =
o[ty [z, ..t).

Similarly : if ¢t Bnt’, then every free variable in ¢’ is also free in t.
Proposition 1.29. If t Bnot’ then t[ty /1, ... tx/ /x| B t'[t1 /1, . . .t /xk].

The proof is by induction on the length of ¢. For the sake of brevity, we use
the notation ¢ for t[t;/xy,...,tx/x;]. It follows from the definition of B
that the different possibilities for ¢, ¢ are :

i)t =Axu, t' = xd, and ufnou'.

ii) t = (u)v and t' = (u)v, with ufneu'.

iii) t = (u)v and t' = (u)v', with v By v'.

iv) t = (Aru)v and t' = ufv/x].

v) t = Ax(t')z, with = not free in t'.

Chapter 1. Substitution and beta-conversion 25

Cases 1) to iv) are settled exactly as in proposition 1.21. In case v), assume
that x is not free in ¢, . . ., t;, and different from z1, ..., 2. Then t = \z(#)z,
and therefore ¢ 31yt

QED.

Proposition 1.30. Iftgnt', t1 Bnt,t Bnt) then
/20, bfag] Bt 2,],

Since (n is A-compatible, we have t[ty/z1, ... tx/xg] Bnt[t) /1, ...t xL],
by lemma 1.16. Then, we get t[t|/x1,... .t xk] Bnt' [t} /21, ... /2] by
proposition 1.29.

Q.E.D.

A term t is said to be Sn-normal if it contains no fn-redex.
So the #n-normal terms are those obtained by applying, a finite number of
times, the following rules :

any variable x is a #n-normal term ;

whenever t is Sn-normal, then so is Az t, except if t = (¢')z, with = not
free in t' ;

whenever ¢, u are Sn-normal, then so is (¢)u, except if the first symbol in
tis A

Theorem 1.31. The n-conversion satisfies the Church-Rosser property.

The proof is on the same lines as for the -conversion. Here p is defined as
the least A\-compatible binary relation on A such that :

tpt, upu = (Axt)upt'[u'/x] ;

tpt' = \x(t)x pt’ whenever z is not free in t.

The first thing to be proved is : gn D p.

For that purpose, note that ¢ gnt’, ufnu' = (Axt)upnt'[u'/x] ; indeed,
since 1 is A-compatible, we have (Az t)u fn (Ax t')u’ and, on the other hand,
(Axt')u/'Bnt'[u'/x] ; the result then follows, by transitivity.

Now we show that ¢ fnt’ = Az(t)x fnt' if z is not free in ¢ ; this is immediate,
by transitivity, since Ax(t)x fnt.

Therefore 7 is the transitive closure of p. It thus remains to prove that p
satisfies the Church-Rosser property.

By definition, p is the set of all pairs of terms obtained by applying, a finite
number of times, the following rules :

x px for each variable z ;

tpt = A xtplet

tpt' and upu = (t)up () ;

tpt', upu = Axt)upt'|v'/z] ;

tpt' = \x(t)z pt’ whenever z is not free in ¢.

U o

The following lemmas are the analogues of lemmas 1.24 and 1.25.

26 Lambda-calculus, types and models

Lemma 1.32. i) If x pt', where z is a variable, then t' = x.

ii) If \zupt', then eithert' = Az v’ andupu', oru = (t)x and t pt’, with
x not free in t.

iii) If (u)v pt’, then either t' = (u')v" with upu' and vpv', or u = Axw
and t' = w'[v'/x] with v pv" and wpw'.

Same proof as for lemma 1.24.
Q.E.D.

Lemma 1.33. Whenever t pt’ and upu’, then tju/z| pt'[u'/x].

The proof proceeds by induction on the length of the derivation of ¢ pt’ by
means of rules 1 through 5 ; consider the last rule used :

if it is one of rules 1, 2, 3, 4, then the proof is the same as in lemma 1.25 ;

if it is rule 5, then ¢ = A\y(v)y and v pt’, with y not free in v. We may
assume that y is not free in u and different from x. By induction hypothesis,
v[u/z|pt'[u’/x], then, by applying rule 5, we obtain Ay(v[u/x])y pt'[u/z]
(since y is not free in v[u/z]), that is t{u/z|pt'[u'/x].

Q.E.D.
Now the proof of the Church-Rosser property for p can be completed. So we
assume that to pty, to pte, and we look for a term ¢3 such that ¢; pts, to pts.
The proof is by induction on the length of .

If ty has length 1, then it is a variable ; hence, by lemma 1.32, tg = t; = t5 ;
take tg = to.

If ty = Azwug, then, since tgpty, topty, by lemma 1.32, the different
possible cases are :

a) t1 = A\xuy, ty = Az ug, and ug puq, ug pug. By induction hypothesis,
uy puz and ug pug hold for some term ug. Then it is sufficient to take t3 =
AT Us.

b) t1 = Aruy, and ug puy ; ug = (ty)x, with z not free in ¢}, and t{pts.
According to lemma 1.32, since ug puy and uy = (t,)x, there are two possi-
bilities for uy :

i) up = (t))x, with typt}. Now t{pts, thus, by induction hypothesis,
tipts and to pt3 hold for some term ¢3. Note that, since t{p ¢}, all free variables
in t] are also free in ¢{, so x is not free in ¢]. Hence, by rule 5, Az (t))x pts,
that is t; pts.

i) ty = Ayug, uy = uylx/y] and uf pu). By proposition 1.15, we may
choose for y any variable which is not free in t{,, « for example. Then u; = v
and ug puy. Since p is A-compatible, Az ug p Az uy, that is ¢, pt;. Since t pto,
there exists, by induction hypothesis, a term t3 such that ¢; pts, to pts.

c) ug = (t)x, with x not free in t;, and ¢, pty, t; pt2. The conclusion
follows immediately from the induction hypothesis, since ¢, is shorter than ¢,.

Chapter 1. Substitution and beta-conversion 27

If to = (vo)ug, then, since tqpty, topts, by lemma 1.32, the different
possible cases are :

a) t1 = (v1)uy, to = (v9)ug with wgpuy, vopv1, ugpus, vopuve. By
induction hypothesis, uy pus, us pus, vy pvs, vo pvs hold for some uz and vs.
Then it is sufficient to take t3 = (v3)us.

b) t1 = (v1)uq, with ugpuy, vopvy ; Vg = Axwy, to = welus/x|, with
U P U2, Wy pWs. Since vy pvy, and vg = Axr wy, by lemma 1.32, the different
possible cases are :

i) v1 = Az wy, with wg pw;y. Then t; = (Ax wy)uy. Since ug puy, ug p ug,
and wy pwy, wy pws, by induction hypothesis, uy pus, us puz, and wy pws,
wy pws hold for some wugz, ws. Thus, by rule 4, (Axw;)u; pwslus/x], that
is t; pwsfus/x]. Hence, by lemma 1.33, wy|us/x] pwslus/x]. The expected
result is then obtained by taking t3 = ws|ug/x].

i) wy = (v))x, with z not free in v}, and vjpv;. Then (vj)z pws ;
since ug p ug, it follows from lemma 1.33 that ((v})z)[uo/x]p welus/x]. But x
is not free in vy, so this is equivalent to (v{)ug p ta.
Now vjpv; and ugpuy. Thus (v))ugp (v1)us, in other words : (v()ugpts.
Since (v))ug is shorter than ¢y (because vy = Ax(v()z), there exists, by in-
duction hypothesis, a term t3 such that t; pts, t2 pts.

) vo = AT wo, t1 = wy|ug/x], ta = welug /x|, with ug pus, ug pus, wo pw;
and wg pwy. By induction hypothesis, u; pus, us pus, wy pws, wy pws hold
for some ug and ws. Thus, by lemma 1.33, we have wi[uy /] pwslus/x],
walug/x] pwslus/x], that is to say ¢, pwslus/x], ta pwsluz/x]. The result
follows by taking t3 = ws[us/z].

QED.
The Bn-equivalence (denoted by =g,) is defined as the least equivalence re-
lation which contains #7. In other words :
t ~p, t' < there exists a sequence t = ty,to,...,t,_1,t, = t/, such that either
t; Bntizq or tiyq Bnt;, for 1 <7 < n.
As for the (-equivalence, it follows from Church-Rosser’s theorem that :

Proposition 1.34. t ~g, t' & t fnu and t'Bnu for some term w.

¢

The relation ~g, satisfies the “ extensionality axiom ”, that is to say :
If (t)u ~g, (t')u holds for all u, then t ~g, t'.

Indeed, it is enough to take u as a variable x which does not occur in ¢,¢'.
Since ~g, is A-compatible, we have \x(t)x ~g, Az(t)x ; therefore, by n-
reduction, ¢ ~g, t'.

References for chapter 1

[Bar84], [Chu4l], [Hin86].

28 Lambda-calculus, types and models

(The references are in the bibliography at the end of the book).

Chapter 2

Representation of recursive
functions

1. Head normal forms

In every A-term, each subsequence of the form “ (A7 corresponds to a unique
redex (this is obvious since redexes are terms of the form (Az ¢)u). This allows
us to define, in any non normal term ¢, the leftmost redex in t. Let t' be the
term obtained from ¢ by contracting that leftmost redex : we say that ¢’ is
obtained from t by a leftmost 3-reduction.

Let t be an arbitrary A-term. With ¢ we associate a (finite or infinite) se-
quence of terms tg,¢1,...,%,,... such that t, = ¢, and ¢,,,; is obtained from
t, by a leftmost [-reduction (if ¢, is normal, then the sequence ends with
tn). We call it “ the sequence obtained from ¢ by leftmost S-reduction ” ; it
is uniquely determined by ¢.

The following theorem will be proved in chapter 4 (theorem 4.13) :

Theorem 2.1. If t is a normalizable term, then the sequence obtained from t
by leftmost (B-reduction terminates with the normal form of t.

We see that this theorem provides a “ normalizing strategy ”, which can be
used for any normalizable term.

The next proposition is simply a remark about the form of the A-terms :

Proposition 2.2. Fvery term of the A-calculus can be written, in a unique
way, in the form \xy ... Ay, (V)ty ... t,, where x1,...,x,, are variables, v is
either a variable or a redex (v = (Axt)u) and ty,. .., t, are terms (m,n > 0).

Recall that (v)t;...t, denotes the term (... ((v)t1)...)t,.

29

30 Lambda-calculus, types and models

We prove the proposition by induction on the length of the considered term 7 :
the result is clear if 7 is a variable.
If 7 = Az 7/, then 7/ is determined by 7, and can be written in a unique way
in the indicated form, by induction hypothesis ; thus the same holds for 7.
If 7 = (w)v, then v and w are determined by 7. If w starts with A, then 7 is
a redex, so it is of the second form, and not of the first one. If w does not
start with A, then, by induction hypothesis, w = (w')t; ...t,, where w' is a
variable or a redex ; thus 7 = (w')¢; ... t,v, which is in one and only one of
the indicated forms.

Q.E.D.

Definitions. A term 7 is a head normal form (or in head normal form) if it
is of the first form indicated in proposition 2.2, namely if :

T=Ar1... Az (T)t; ... 1y,
where z is a variable.
In the second case, if 7 = Az ... A&, (Ax w)tty ... t,, then the redex (Azu)t
is called the head redex of 7.
The head redex of a term 7, when it exists (namely when 7 is not a head
normal form), is clearly the leftmost redex in 7.

It follows from proposition 2.2 that a term ¢ is normal if and only if it is a
head normal form : 7 = Azy... Az, (2)t; ... t,, where ti,... ¢, are normal
terms. In other words, a term is normal if and only if it is “ hereditarily in
head normal form ”.

The head reduction of a term 7 is the (finite or infinite) sequence of terms
T0sT1s-- -5 Tn,--. such that 79 = 7, and 7,41 is obtained from 7, by a [-
reduction of the head redex of 7, if such a redex exists ; if not, 7, is in head
normal form, and the sequence ends with 7,.

The weak head reduction of a term 7 is the initial part of its head reduction
which stops as soon as we get a A-term which begins with a A. In other
words, we reduce the head redex only if there is no A in front of it.

Notation. We will write ¢ > u (resp. t >, u) whenever u is obtained from ¢
by a sequence of head f-reductions (resp. weak head (-reductions).
For example, we have (Azx)A\z(Ayy)z =, Az(Ayy)z = Az 2.

A Aterm t is said to be solvable if, for any term wu, there exist variables
x1,..., Tk and terms u, ..., U, v1,...,v;, (k,0 > 0) such that :

1) (t[ul/xl, Ce ,uk/mk])vl LU =g U

We have the following equivalent definitions :

(ii) ¢ is solvable if and only if there exist variables xy,...,z; and terms
Uy ...y Uk, V1,...,v such that (tfug/z1, ..., ux/zg])vr ... 00 ~g I (I is the
term Az x).

Chapter 2. Representation of recursive functions 31

(iii) ¢ is solvable if and only if, given any variable z which does not occur
in ¢, there exist terms w4, ..., ux, v1,...,v; such that :
(tlur /@1, .. ug/zg])vr .. v g
Obviously, (i) = (ii) = (iil). Now if (t[u1/x1, ..., ux/xx])v1 ... v 225 x, then :
(tlur/z1, . .. /zg][u/x])v] .. 0] 2 u,
and therefore
(t[u) Jxr, .. ugx])vy v 2w,

where u} = u;[u/x], v = vj [u/z] ; so we also have (iii) = (i).
Remarks. The following properties are immediate :
1. Let ¢ be a closed term. Then t is solvable if and only if there exist terms vq, ...,y
such that (t)vy...v ~g 1.
2. A term ¢ is solvable if and only if its closure ¢ is solvable (the closure of t is,
by definition, the term ¢ = Axy...\x,t, where z1,...,x, are the free variables
occurring in t).
3. If (t)v is a solvable term, then ¢ is solvable.
4. Of course, the head normal form of a term needs not be unique. Nevertheless :
If a term t has a head normal form ty = Axy... Azg(x)uy ... u,, then any head
normal form of t can be written Axy ... Az (z)u] ... ul,, with u; ~g ul.
Indeed, let t; = Ay; ... Ayi(y)v1 ... vp be another head normal form of ¢. By the
Church-Rosser theorem 1.23, there exists a term to which can be obtained by (-
reduction from ¢y as well as from ¢;. Now, in ¢y (resp. ¢1) all possible F-reductions
have to be made in uy,...,u, (resp. vi,...,vp,). Hence :

to = Axy .. Azg(x)u) ouh = Ayp L Ay (y)or .
with w; Bu}, v; Bv}. This yields the expected result.

The following theorem will be proved in chapter 4 (theorem 4.9) :

Theorem 2.3. For every A-term t, the following conditions are equivalent :
i) t is solvable ;

ii) t is (B-equivalent to a head normal form ;

iii) the head reduction of t terminates (with a head normal form).

2. Representable functions

We define the Booleans : 0 = AxAyy and 1 = AxAyx. Then, for all terms
t,u, ((0)t)u can be reduced (by head reduction) to u, while ((1)¢)u can be
reduced to .

Given two terms t,u and an integer k, let (t)*u denote the term (t)... (t)u
(with k occurrences of t) ; in particular, (¢)%u = u.
Beware : the expression (¢)* alone is not a A-term.
We define the term k = AfAz(f)kz ; k is called “ the numeral (or integer) k
of the A-calculus ” (also known as Church numeral k, or Church integer k).

32 Lambda-calculus, types and models

Notice that the Boolean 0 is the same term as the numeral 0, while the
Boolean 1 is different from the numeral 1.

Let ¢ be a partial function defined on N”, with values either in N or in {0, 1}.
Given a A-term &, we say that ® represents (resp. strongly represents) the
function ¢ if, for all kq,...,k, € N :

if o(ky,...,k,) is undefined, then (®)k, ...k, is not normalizable (resp.
not solvable) ;

if o(ki1,...,k,) = k, then (®)k, ...k, is f-equivalent to k (or to k, in
case the range of ¢ is {0, 1}).

Clearly, for total functions, these two notions of representation are equivalent.

Theorem 2.4. Every partial recursive function from N¥ to N is (strongly)
representable by a term of the \-calculus.

Recall the definition of the class of partial recursive functions.
Given fi, ..., fr, partial functions from N” to N, and g, partial function from
N* to N, the partial function h, from N” to N, obtained by composition, is
defined as follows :

h(p1, .- pn) = 9(fi(Pr, - 0n)s s fr(P1, - D))
if fi(p1,--sPn)s---s fu(p1s--.,pn) are all defined, and h(pi, ..., p,) is unde-
fined otherwise.
Let h be a partial function from N to N. If there exists an integer p such that
h(p) = 0 and h(q) is defined and different from 0 for all ¢ < p, then we denote
that integer p by un{h(n) = 0} ; otherwise pn{h(n) = 0} is undefined.
We call minimization the operation which associates, with each partial func-
tion f from N**! to N, the partial function g, from N¥ to N, such that
gny,...,ng) = pn{f(n,...,ng,n) =0}
The class of partial recursive functions is the least class of partial functions,
with arguments and values in N, closed under composition and minimiza-
tion, and containing : the one argument constant function 0 and succes-
sor function ; the two arguments addition, multiplication, and characteristic
function of the binary relation < y ; and the projections P*, defined by
Pr(zy,. .. 2,) = 25
So it is sufficient to prove that the class of partial functions which are strongly
representable by a term of the A-calculus satisfies these properties.

The constant function 0 is represented by the term Ad 0.
The successor function on N is represented by the term :

suc = AnAfix((n)f)(f)z.

The addition and the multiplication (functions from N? to N) are respectively
represented by the terms AmAnAfAz((m)f)((n)f)z and AmAnAf(m)(n)f.

Chapter 2. Representation of recursive functions 33

The characteristic function of the binary relation m < n on N is represented
by the term M = AmAn(((m)A)Ad1)((n)A)Ad 0, where A = AfAg(g)f.
The function Pf is represented by the term Axy ... Az, xp.

From now on, we denote the term (suc)"0 by n ; so we have n ~g n, and
(suc)n = (n+1)".

Representation of composite functions

Given any two A-terms ¢, u, and a variable z with no free occurrence in t, u,
the term Az (t)(u)x is denoted by towu.

Lemma 2.5. (Aggos)kh = \x(h)(s)*z for all closed terms s,h and every
integer k > 1.

Recall that ¢ > u means that u is obtained from ¢ by a sequence of head
(-reductions.
We prove the lemma by induction on k. The case k = 1 is clear. Assume the
result for k ; then
(Aggos)"h = (Aggos)*(\ggos)h = Az((Ag gos)h)(s)*x

(by induction hypothesis, applied with (Ag gos)h instead of h)
= Ar(hos)(s)kx = Ax(\y(h)(s)y)(s)kz = Az (h)(s) ' x.

Q.E.D.

Lemma 2.6. Let ®, v be two terms. Define [®,v] = (((v)Aggosuc)®)0.
Then :

if v is not solvable, then neither is [®,v] ;

if v ~g n (Church numeral), then [®,v] ~g (®)n ; and if ® is not solvable,
then neither is [®, v].

The first statement follows from remark 3, page 31. If v ~3 n, then :

(v)Ag gosuc ~g (n)Ag gosuc = (AfAR(f)"h)\g gosuc ~z Ah(Ag gosuc)™h.
By lemma 2.5, this term gives, by head reduction, AhAz(h)(suc)"z.

Hence [®,v] ~p (®)(suc)"0 ~3 (P)n. Therefore, if ® is not solvable, then
neither is [®, v| (remark 3, page 31).

Q.E.D.
The term [®, 14, ..., 4] is defined, for k > 2, by induction on k :
(D, v1,. . v = [P, v,y ko], Ui
Lemma 2.7. Let ®,vq, ..., be terms such that each v; is either [(3-equiva-
lent to a Church numeral, or not solvable. Then :
if one of the Vs is not solvable, then neither is [® vy, ... v ;

ifvi~gn, (1<i<k) then [,vy,... 0] ~5 (P)ny...10.

34 Lambda-calculus, types and models

The proof is by induction on k : let ¥ = [® vq,... v 1] ; then :
(D, 11, .., v = [V,).
If vy is not solvable, then, by lemma 2.6, neither is [V, vg]. If v is solvable
(and [-equivalent to a Church numeral), and if one of the v;’s (1 <7 < k—1)
is not solvable, then ¥ is not solvable (induction hypothesis), and hence
neither is [V, v;] (lemma 2.6). Finally, if v; ~5 n, (1 < i < k), then, by
induction hypothesis, ¥ ~g (®)n, ...n,_, ; therefore, [V, ;] ~5 (P)n, ... n,
(lemma 2.6).
QED.

Proposition 2.8. Let f1,..., fr be partial functions from N* to N, and g a
partial function from N* to N. Assume that these functions are all strongly
representable by A-terms ; then so is the composite function g(fi,..., fr).

Choose terms @4, ..., ®,, ¥ which strongly represent respectively the func-
tions f1,..., fx, 9. Then the term :
X = A2y Az, [V (P oy, ()T o Ty
strongly represents the composite function g(fi, ..., fx).
Indeed, if p oo b, are Church numerals, then :

(X)]_ol D, g [V, (<I>1)£1 D (<I>k)]_91 . .]_on].
Now each of the terms (®;)p, ...p (1 <i < k) is, either unsolvable (and in
that case fi(p1,...,p,) is undefined), or [-equivalent to a Church numeral
g, (then fi(p1,...,pn) = ¢;). If one of the terms (®;)p, ...p is not solvable,
then, by lemma 2.7, neither is (x)p,...p . If (®i)p, ...p =4 g for all i
(1 <i<k) where g, is a Church numeral, then by lemma 2.7, we have :

(X)]_)l P 5 (\If)g1 g,
Q.E.D.

3. Fixed point combinators

A fized point combinator is a closed term M such that (M)F ~g (F)(M)F
for every term F. The main point is the existence of such terms. Here are
two examples :

Proposition 2.9. Let Y be the term \f(Ax(f)(z)x) \z(f)(x)x ; then, for
any term F, (Y)F ~5 (F)(Y)F.
Indeed, (Y)F > (G)G, where G = Ax(F)(x)z ; therefore :
(Y)F > (A\z(F)(2)x)G = (F)(G)G ~5 (F)(Y)F.
Q.E.D.

Y is known as Curry’s fized point combinator. Note that we have neither
(Y)F = (F)(Y)F, nor even (Y)F 5 (F)(Y)F.

Chapter 2. Representation of recursive functions 35

Proposition 2.10. Let © be the term (A)A, where A = XaA\f(f)(a)af.
Then, for any term F, we have (O)F = (F)(©)F.

Indeed, (©)F = (A)AF = (F)(A)AF = (F)(©)F.
Q.E.D.

O is called Turing’s fixed point combinator.

Proposition 2.11.
FEvery fized point combinator is solvable, but not normalizable.

Let M be a fixed point combinator and f a variable. Then :
(M)Of ~5 ((0)(M)0)f ~p f and it follows that M is solvable.
If M is normalizable, then so is M f. Let M’ be the normal form of M f.
Since M f ~g (f)(M)f, it follows that M’ ~5 (f)M'. But these terms are
normal, so that M’ = (f)M’ which is clearly impossible.

Q.ED.

Representation of functions defined by minimization

The following lemma is an application of results in chapter 4.

Lemma 2.12. Let b,ty,t1 be terms, and suppose b ~5 1 (resp. 0). Then
(b)totl > t() (T@Sp. tl)

Recall that 1,0 are respectively the booleans AzAyx and AxAyy ; and that =,
denotes the weak head reduction (see page 30).

This lemma is the particular case of theorem 4.11, when k =2 and n = 0.
Q.E.D.

Lemma 2.13. There exists a closed term A such that, for all terms ®,n :
(AP)n = ((Pn)(AP)(suc)n)n.

Let T = M pAv((pv)(0¢)(suc)v)v. Then A is defined as a fixed point
of T', by means, for example, of Curry’s fixed point combinator : we take
A = (D)D, where D = \x(T)(x)z. Then :
(A®)n = (D)DPn - ((T)(D)D)Pn = (T)APn = ((Pn)(AP)(suc)n)n.
We can also take A = D’D’, where D’ is the normal form of D, that is :

D" = Xx o v((ov)(zzp)(suc)v v.
The Turing fixed point combinator gives another solution :

A = AAT with A = XaAf(f)(a)af.

QED.

36 Lambda-calculus, types and models

Lemma 2.14. Let ® be a A-term and n € N.

If ®n is not solvable, then neither is (A®)n.

If ®n ~3 0 (Boolean), then (A®)n ~3 n.

If ®n ~3 1 (Boolean), then (A®)n > (AP)p with p =n+ 1.

(Recall that n = (suc)"0).

Indeed, it follows from lemma 2.13 that (A®)n > ((Pn)(AP)(suc)n)n.
Hence, if ®n is not solvable, then neither is (A®)n (remark 3, page 31).
Obviously, if ®n ~3 0 (Boolean), then (A®)n ~4 n.
On the other hand, according to the same lemma, we also have :
(AD)n = ((Pn)(AP)(suc)n)n ; by lemma 2.12, if &n ~5 1 (Boolean), then
((Pn)(AP)(suc)n)i = (AD)(suc)n.
Therefore (A®)n = (A®)(suc)n = (AP)p with p=n+ 1.

Q.E.D.

Proposition 2.15. Let f(ny,...,ng,n) be a partial function from NFL to
N, and suppose that it is strongly representable by a term of the A-calculus.
Then the partial function defined by g(ni, ...,ng) = pn{f(ny,...,ng,n) =0}
15 also strongly representable.

Let v be the partial function from N*+1 to {0, 1}, which has the same domain
as f, and such that ¥(ny,...,ng,n) = 0 < f(ng,...,ng,n) = 0. Then
g(ny,...,ng) = pn{(ny,...,nk,n) =0}
Let F' denote a A-term which strongly represents f ; consider the term :
U= Azy ... Az de((Foy ... 2x2)Ad 1)0.
Then, it is easily seen that W strongly represents).
Now consider the term A constructed above (lemma 2.13).
We show that the term :
G=Ary... Az ((A)(W)xy ... x)0

strongly represents the function g. Indeed, let ny,...,ny € N ; we put
® = (U)n, ...n, and therefore, we get Gn,...n, = (AD)0.

If g(ny,...,nk) is defined and equal to p, then ¢(ny, ..., ng,n) is defined
and equal to 1 for n < p and to 0 for n = p. Thus ®n = (V)n,...nn 51
for n < p, and ®p = (V)n, ... np ~3 0.
Now, we can apply lemma 2.14, and we get successively (since 0 = f)) :
Gny ...y, = (AP)0 = (AR)L = -+ = (AD)p ~4 p.

If g(nq,...,n;) is undefined, there are two possibilities :

i) ¥(nq,...,ng,n) is defined and equal to 1 for n < p and is undefined for
n = p. Then we can successively deduce from lemma 2.14 (since 0 = 0) :
Gn,...ny = (A®)0 = (A®)1 = --- = (A®)p ; the last term obtained is
not solvable, since neither is ®p = ¥n, ...n,p (lemma 2.14). Consequently,
Gn, ...n, is not solvable (theorem 2.3iii) ;

Chapter 2. Representation of recursive functions 37

ii) ¥(nq,...,ng,n) is defined and equal to 1 for all n. Then (again by
lemma 2.14) :
Gn, ...ny = (A®)0 = (ADP)L = - = (AD)A > - - -
So the head reduction of Gn, ...n; does not end. Therefore, by theorem 2.3,
Gn, . ..n; is not solvable.

Q.E.D.

It is intuitively clear, according to Church’s thesis, that any partial function
from N¥ to N, which is representable by a A-term, is partial recursive. We
shall not give a formal proof of this fact. So we can state the

Theorem 2.16 (Church-Kleene theorem). The partial functions from N to
N which are representable (resp. strongly representable) by a term of the
A-calculus are the partial recursive functions.

The A-terms which represent a given partial recursive function, that we ob-
tain by this method, are not normal in general, and even not normalizable.
Indeed, in the proof of lemma 2.13, we use a fixed point combinator, which
is never a normalizable term (proposition 2.11). Let us show that we can get
normal terms.

Lemma 2.17. Let x be a variable and t € A. Then, there exists a normal
term t' such that t[n/z] ~p t'[n/x] for every n € N.

We define ' by induction on the length of ¢ :

if ¢ is a variable, then ¢/ = ¢ ;

if t = Ay u, then t/ = Ay’ ;

if t = uv, then t' = (x)Iu'v' (with I = A\yy).
It is trivial to show, by induction on the length of ¢, that ¢’ is normal and that
tn/x] ~ t'[n/x] for every n € N. We simply have to observe that (n)l ~z I
if neN.

Q.E.D.

Corollary 2.18. For every partial recursive function o, there exists a normal
term which (strongly) represents .

For simplicity, we suppose ¢ to be a unary function. Let ® be a closed A-term
which strongly represents ¢ (theorem 2.16) and put t = ®x. Then ¥ = Az t/
is normal, by lemma 2.17, and strongly represents ¢ : indeed, if n € N, we
have Un ~3 t'[n/x] ~5 t{n/x] = Pn.

Q.E.D.

38 Lambda-calculus, types and models

4. The second fixed point theorem

Consider a recursive enumeration : n — t, of the terms of the A-calculus.
The inverse function will be denoted by ¢ +— [t] : more precisely, if ¢ is a
A-term, then [t] is the Church numeral n such that ¢, = ¢, which will be
called the numeral of t.

The function n — [(t,)n] is thus recursive, from N to the set of Church
numerals. By theorem 2.16, there exists a term d such that (6)n ~4 [(¢,)n],
for every integer n.

Now, given an arbitrary term F', let B = Ax(F')(d)z. Then, for any integer n,
we have (B)n ~3 (F)[(t,)n]. Take n = [B], that is to say ¢, = B ; then
(tn)n = (B)[B]. If we denote the term (B)[B] by A, we obtain A ~4 (F)[A].
So we have proved the

Theorem 2.19. For every A\-term F', there exists a A\-term A such that
A~ (F)[A].

Remark. The intuitive meaning of theorem 2.19 is that we can write, as ordinary
A-terms, programs using a new instruction o (for “self”) which denotes the numeral
of the program itself.

Indeed, if such a program is written as ®[o/z]|, where ® is a A-term, consider the
A-terms F' = Az @, and A given by theorem 2.19. Then, we have A ~3 (F)[A]
and therefore, A ~3 ®[[A]/xz] ; thus, A is the A-term we are looking for.

Theorem 2.20. Let X, Y be two non-empty disjoint sets of terms, which are
saturated under the equivalence relation ~z. Then X and Y are recursively
inseparable.

Suppose that X' and) are recursively separable. This means that there
exists a recursive set A C A such that X C A and) C A° (the complement
of A). By assumption, there exist terms £ and 7 such that £ € X and n €).
Since the characteristic function of A is recursive, there is a term © such
that, for every integer n : (©O)n~31<t, € Aand (O)n ~30 < ¢, ¢ A.
Now let F' = \z(0)zn&. According to theorem 2.19, there exists a term A
such that (F)[A] ~s A, which implies (0)[A]n§ ~5 A.
If A € A, then, by the definition of O, (0©)[A] ~5 1, and it follows that
(©)[A]né ~p n. Therefore A ~5 n. Since n € Y C A° and Y is saturated
under the equivalence relation ~3, we conclude that A €), thus A ¢ A,
which is a contradiction.
Similarly, if A ¢ A, then (©)[A] ~5 0, hence (©)[A]n§ ~5 &, and A ~5 &.
Since £ € X C A and X is saturated under the equivalence relation ~g3, we
conclude that A € X, thus A € A, which is again a contradiction.

Q.E.D.

Chapter 2. Representation of recursive functions 39

Corollary 2.21. The set of normalizable (resp. solvable) \-terms is not
recursive.

Apply theorem 2.20 : take X as the set of normalizable (resp. solvable)
terms, and) = X°.

Q.E.D.
The same method shows that, for instance, the set of A-terms which are (-
equivalent to a Church integer, or the set of A-terms which are (-equivalent
to a given one %y, are not recursive.

The set of strongly normalizable A-terms is also not recursive but, since it is
not closed for (B-equivalence, the above method does not work to prove this.
The undecidability of strong normalization will be proved in chapter 10.

References for chapter 2

[Bar84], [Hin86].
(The references are in the bibliography at the end of the book).

40

Lambda-calculus, types and models

Chapter 3

Intersection type systems

1. System DY)

A type system is a class of formulas in some language, the purpose of which
is to express some properties of A-terms. By introducing such formulas,
as comments in the terms, we construct what we call typed terms, which
correspond to programs in a high level programming language.

The main connective in these formulas is “ — 7, the type A — B being that
of the “ functions ” from A to B, that is to say from the set of terms of type
A to the set of terms of type B.

The first type system which we shall examine consists of propositional for-
mulas. It uses the conjunction A in a very special way (this is why it is called
intersection type system). It does not seem that this system can be used as
a model for a programming language. However, it is very useful as a tool for
studying pure A-calculus.

We will call it system DS).

The types of this system are the formulas built with :

a constant) (type constant) ;
variables X, Y, ... (type variables) ;
the connectives — and A.

We will write Ay, Ao, ..., A — A instead of :
Ay — (A — (.. (Ag — A) ..).

The positive and negative occurrences of a variable X in a type A are defined
by induction on the length of A :

if A is a variable, or A = (2, then the possible occurrence of X in
A is positive ;

41

42 Lambda-calculus, types and models

if A= BAC, then any positive (resp. negative) occurrence of X
in B or in C is positive (resp. negative) in A ;

if A= B — (| then the positive (resp. negative) occurrences of
X in A are the positive (resp. negative) occurrences of X in C,
and the negative (resp. positive) occurrences of X in B.

We also define the final occurrences of the variable X in the type A :

if A is a variable, or A = €2, then the possible occurrence of X in
A is final ;

if A= B AC, then the final occurrences of X in A are its final
occurrences in B and its final occurrences in C' ;

if A= B — C, then the final occurrences of X in A are its final
occurrences in C.

Hence every final occurrence of a variable in a type is positive.

By a wvariable declaration, we mean an ordered pair (x, A), where z is a
variable of the A-calculus, and A is a type. It will be denoted by z: A
instead of (z, A).

A context I" is a mapping from a finite set of variables to the set of all types.
Thus it is a finite set {z1 : Ay,..., 2 @ Ag} of variable declarations, where
x1,...,x are distinct variables ; we will denote it by x1: Aq,... 21 : Ay
(without the braces). So, in such an expression, the order does not matter.

We will say that x; is declared of type A; in the context I'.

The integer £ may be 0 ; in that case, we have the empty context.

We will write I', = : A in order to denote the context obtained by adding the
declaration = : A to the context I', provided that x is not already declared
in I

Given a A-term t, a type A, and a context I', we define, by means of the
following rules, the notion : ¢ is of type A in the context I' (we will also
say : “t may be given type A in the context I' ”) ; this will be denoted by
Chpot:A(or I'Et: Aif there is no ambiguity) :

1. If x is a variable, then I', z : A bpq x : A.

Il x: Abpot: B, then ' Fpg Axt: A — B.
UTlkpot: A— Band I'Fpg u: A, then I' Fpg (t)u : B.
IfF"DQtIA/\B, thenFl—DQt:AandI’l—DQt:B.
IfFI—DQt:Aande—DQt:B,thenfl—pgt:A/\B.

6. ['Fpot:Q (for all t and I).

Any expression of the form I' Fp,, ¢ : A obtained by means of these rules will
be called a typing of t in system D). A typable term is a term which may be
given some type in some context.

Cuk

Chapter 3. Intersection type systems 43

The notation Fpot: A will mean that ¢ is of type A in the empty context.

Note that, because of rule 6, there are terms which are typable in the con-
text I', while not all of their free variables are declared in that context.

Proposition 3.1. Suppose I' bpg t : A, and let I" C T which contains all
those declarations in I' which concern wvariables occurring free in t. Then
I’ l_DQ t:A.

The proof is immediate, by induction on the number of rules used to obtain
I I_DQ t:A.
Q.E.D.

Lemma 3.2. If I', z: F bpgt: A, then for every variable x' which is not
declared in T' and not free in t, we have T', 2’ : F Fpq t[z'/x] 1 A, and the
length of the derivation is the same for both typings.

We consider the derivation of I', = : F' Fpg t : A, and we perform on it an
arbitrary permutation of variables. Obviously we obtain a correct derivation
in D). Now, we choose the permutation which swap x and 2/, and does
not change any other variable. Since 2’ is not declared in I', we obtain a
derivation of I', &’ : F Fpq t[z'/z,z/2'] : A. But 2’ is not free in ¢, and
therefore t[z'/x, x /2’| = t[x'/x].

Q.E.D.

Proposition 3.3. If'Fpqgt: A and " DT, then IV Fpo t: A.

Proof by induction on the length of the derivation of I' Fpg t : A. Consider
the last rule used in this derivation. If it is one of the rules 1, 3, 4, 5, 6, then
the induction step is immediate.

If it is rule 2, then t = Axu, A= B — C, and we have I', x : B lpq u : C.
Let 2’ be any variable not declared in IV and not free in u. By lemma 3.2,
we get I', 2’ © B bFpg ulz’/z] : C, and the derivation has the same length.
By induction hypothesis, we get T, 2/ : B Fpq u[z’/x] : C. Therefore
I Fpo Ar'ulz’/z] + B — C by rule 2. But, since 2’ is not free in u, we have
Az'ulz’ [z] = Az u = t, and therefore I Fpg ¢ : A.

Q.ED.

Normalization theorems

Since types can be thought of as properties of A-terms, it seems natural to
try and associate with each type a subset of A (the set of all A-terms). We
shall now describe a way of doing this.

44 Lambda-calculus, types and models

Given any two subsets A and Y of A, we define a subset of A, denoted by
X — Y, by the following condition :

ve (X —=Y) e (uteYforallt e X.
Obviously :
IfX>&X andy C), then (X = Y) C (X' —=)').
A subset X of A is said to be saturated if and only if, for all terms ¢, ¢4,.. ., t,,
u, we have (ult/x])t;...t, € X = Az u)tt,...t, € X.
The intersection of any set of saturated subsets of A is clearly saturated. Also
clear is the fact that, for any subset X of A, the set of terms which reduce

to an element of X by leftmost reduction is saturated. Similarly, the set of
terms which reduce to an element of X by head reduction is saturated.

Proposition 3.4. Let Y be a saturated subset of A ; then X — Y is saturated
for all X C A.

Assume (uft/x])t;...t, € X — Y ; then for all vin X, (u[t/x])t;...t,v € Y,
and, since) is saturated, (Axu)tt;...t,v € Y ; therefore (Azu)tt;...t, €
X —).

Q.E.D.

An interpretation Z is, by definition, a function which associates, with each
type variable X, a saturated subset of A, denoted by | X |z (or |X| if there is
no ambiguity). Given such a function, we can extend it and associate with
each type A a saturated subset of A, denoted by |A|7 (or simply |A|), defined
as follows, by induction on the length of A :

if A is a type variable, then |A| is given with the interpretation Z ;
Q= A

if A= B — C, then |A| = |B| — |C] ;

if A= BAC, then |A| = |B|N|C|.

Lemma 3.5 (Adequacy lemma). Let Z be an interpretation, and u a A-term,
such that x1 : Al, e, T A Fpo u : A.]ftl € ’AlyI;- o, by € ‘Ak|1', then
ulty /a1, ..t /xy) € Al

The proof proceeds by induction on the number of rules used to obtain the
typing of u. Consider the last one :

If it is rule 1, then u is one of the variables x;, and A = A; ; in that case
ulty/xq, ..., tx/x] = t;, and the conclusion is immediate.

If it is rule 2, then A = B — C and u = Axv. We can assume that x
does not occur free in tq,...,t; and is different from x4, ...,z ; moreover :

Chapter 3. Intersection type systems 45

x:B,x1: A, ... 1 A Fpo v C.
By induction hypothesis, v[t/x,t,/x1, ..., tx/xx] € |C]| holds for every t € |B|.
But it then follows from our assumptions about x that :
v[t/x ty/xy, .t fTg] = vt x, L e Jxk][E x).

Then we have (Axv[t/x1, ... tx/x])t € |C], since C is saturated. Now this
holds for all t € |B|, so Axv[ty /1, ..., tx/xx] € (|1B] — |C]) = |A|.

If it is rule 3, then u = (w)v, where w is of type B — A and v is of type
B in the context x1 : Aq,..., 7 : Ax. By induction hypothesis, we have :
wlty/xy, ... tx/zk] € |B — A, and v[t; /a1, ..., tx/zx] € |B|, thus :
(wlty/x1, .. te/ze))v[t /21, - .t /2] € A

If it is rule 4, then we know that a previous typing of u gave it the type
AN B (or BA A), in the same context. By induction hypothesis :
ulty/xy, ... tx/zk] € |AAN B| = |A| N |BJ, and therefore :
u[tl/xl, e ,tk/l'k] € |A|

If it is rule 5, then A = B A C, and, by previous typings (in the same
context), u is of type B as well as of type C'. By induction hypothesis, we have
ulty/xy1, ... tx/xg) € |B], |C|, and therefore u[ty /1, ... tx/xx] € |B A C|.

If it is rule 6, then the result is obvious.

Q.ED.

A type A is said to be trivial if no variable has a final occurrence in A. (For
example A — QA (B — Q) is a trivial type, for all A and B).
The trivial types are those obtained by applying the following rules :

Q is trivial ;

if A is trivial, then B — A is trivial for every B ;

if A, B are trivial, then so is A A B.

As an immediate consequence, we have :

If A is a trivial type, then its value |A|lz under any interpretation T is the
whole set A.

Lemma 3.6. Let Ny, N be subsets of A, with the following properties :

N s saturated, No C N, No C (A — Np), N D (Ny — N).
Let T be the interpretation such that |X|z = N for every type variable X.
Then |Alz D Ny for every type A, and |Alz C N for every non-trivial type A.

We first prove, by induction on A, that |A|r D N ; this is obvious whenever
A is a type variable, or A=Q, or A= BAC.

If A= B — C, then |A| = |B] — |C|, and |B| C A, |C| D N, (induction
hypothesis) ; hence |A] D A — N, and since it has been assumed that
A — Ny D Ny, we have |[A] D No.

46 Lambda-calculus, types and models

Now we prove, by induction on A, that |A] C N for every non-trivial type A.
The result is immediate whenever A is a type variable, or A = Q, or A =
BAC.

If A= B — C, then C is not trivial ; we have |A| = |B| — |C|, |B| > Ny
(this has just been proved), and |C] C N (induction hypothesis). Hence
Al € (My — N), and since we assumed that (Mg — N) C N, we can
conclude that |A| C V.

Q.E.D.

Theorem 3.7 (Head normal form theorem). Let t be a term which is typable
with a non-trivial type A, in system DS). Then the head reduction of t is
finite.

The converse of this theorem is true and will be proved later (theorem 4.9).

Let No = {(z)vy ... v, ; x is a variable, vy, ...,v, € A} and N = {t € A ; the
head reduction of ¢ is finite}.

Lemma 3.8. Ny and N satisfy the hypotheses of lemma 3.6.

Clearly, Ny € N and Ny € A — MNy. Also, N is saturated : indeed,
if (u[t/z])t;...t, has a finite head reduction, then the head reduction of
(Azu)tty ... t, is also finite.

We now prove that ' D Ny — N : let u € Ny — N ; then, for any
variable z, (u)z has a finite head reduction (since x € Nj). Suppose that the
head reduction of « is infinite, namely : u,uq,...,u,,... Then there is an n
such that w, starts with A (otherwise the head reduction of (u)z would be :
(w)z, (u1)z, ..., (u,)z, ... which is infinite). Let k be the least integer such
that uy starts with X ; for instance u, = Ay vy, and then u,, = Ay v,, for every
n > k. Thus the head reduction of vy is : vk, vgi1, ... Therefore, the head

reduction of (u)x is : (w)z, (w)z,. .., (uk)x, ve[z/yl, vz /Y], ... Again, it
is infinite and we have a contradiction.

Q.E.D.
Now we can prove theorem 3.7 : let t be a term which is typable with a non-
trivial type A in the context zy : Ay, ...,z : Ax. Consider the interpretation
7 such that | X|z = N for every type variable X. It follows from the adequacy
lemma that, whenever a; € |A;|z, tla1/z1,. .., ax/xx] € |Alz. By lemma 3.6,

|A;|lz D N, so all variables are in |A;|7, and therefore ¢ € |A|z. Also by
lemma 3.6, |A|z C N, thus t € N and the head reduction of ¢ is finite.
Q.ED.

An ordered pair (Ny, N') of subsets of A is said to be adapted if it satisfies
the following properties :

Chapter 3. Intersection type systems 47

i) N is saturated ;
) No CN s Ny C (N =Ny 5 (Ng—N) CN.
An equivalent way of stating condition (ii) is :
i) My C N = Ny) C Ny —=N)CN.
Indeed, the inclusion (N — Nj) C (Ny — N) is an immediate consequence

of Ny C .

Lemma 3.9. Let (Ny, N) be an adapted pair, and I an interpretation such
that, for every type variable X, |X|z is a saturated subset of N containing
No. Then, for every type A with no negative (resp. positive) occurrence of
the symbol Q, we have the inclusion |Alz D Ny (resp. |Alz C N).

The proof is by induction on A. The conclusion is immediate whenever A is
a type variable or A = Q.
If A= B AC, and if there is no negative (resp. positive) occurrence of €2 in
A, then the situation is the same in B, and in C. Therefore, by induction
hypothesis, we have |B|z, |C|z D Ny (resp. C N). Thus |[BAC|z = |B|z N
|Clz D Ny (resp. C N).
If A= B — C, and if 2 has no negative occurrence in A, then Q has no
positive (resp. negative) occurrence in B (resp. C'). By induction hypothesis,
|Blz € N and |C|r D Ny. Hence |B|zr — |Clzr D N — Ny. Since (Ny, N) is
an adapted pair, we have N' — Ny D N, and therefore |A|z D Nb.
If A= B — C and Q has no positive occurrence in A, then €2 has no
negative (resp. positive) occurrence in B (resp. C'). By induction hypothesis,
|Blz D No and |C|z C N. Therefore, |B|z — |C|z € Ny — N. Now (N, N)
is an adapted pair, so Ny — N C N, and, finally, |A|z C N.

Q.ED.

Now we shall prove that the pair (Ny, N') defined below is adapted :

N is the set of all terms which are normalizable by leftmost (-reduction :
namely, ¢ € N if and only if the sequence obtained from ¢ by leftmost 3-
reduction ends with a normal term.

Ny is the set of all terms of the form (z)t;...t,, where z is a variable, and
t1,...,t, € N. In particular, all variables are in N (take n = 0).

We have to check conditions (i) and (ii) in the definition of adapted pairs
(page 46) :

i) N is saturated : clearly, if (u[t/z])t;...t, is normalizable by leftmost
[-reduction, then so is (Az u)tty .. .t,.

i) Ny C N :ift € Ny, say t = (x)ty ... t, for some variable z and ¢4, ... ,t, €
N, then t1,...,t, are all normalizable by leftmost (-reduction, thus ¢ clearly
satisfies the same property.

The inclusion Ny C (N — Np) is obvious.

48 Lambda-calculus, types and models

Now we come to (Mg — N) C N : let t € Ny — N and z be some variable
not occurring in ¢ ; since x € Ny, (t)x € N, thus (¢)z is normalizable by
leftmost [S-reduction. We need to prove that the same property holds for ¢ ;
this is done by induction on the length of the normalization of (¢)x by leftmost
[B-reduction.

If ¢t does not start with A, then the first step of this normalization is a
leftmost [-reduction in ¢, which produces a term ¢’ ; thus the term (¢')z has
a normalization by leftmost f-reduction which is shorter than that of (¢)z.
Hence, by induction hypothesis, ¢’ is normalizable by leftmost (-reduction,
and therefore so is t.

If ¢t = Ayu, then the first leftmost f-reduction in (t)x produces the term
u[z/y], which is therefore normalizable by leftmost g-reduction. Hence u
satisfies the same property, and so does t = Ayu : let u = wug,uy,...,u,
be the normalization of u by leftmost (-reduction, then that of Aywu is :
AY U AY Uy ooy AY Uy

Theorem 3.10 (Normalization theorem). Let t be a typable term in system
D2, of type A in the context x1 : Ay, ..., 1 : Ax. Suppose that the symbol)
has no positive occurrence in A, and no megative occurrence in Aq, ..., Ag.
Then t is normalizable by leftmost B-reduction.

Define an interpretation Z by taking | X|z = N for every type variable X. It
follows from lemma 3.9 that |A;|z D N ; now x; € Ny (by definition of Ap),
thus x; € |A;|7 ; by the adequacy lemma, we have :
t =tlx1/x1, ..., x0/2s] € |Alz. Now by lemma 3.9, |A|z € N and therefore
teN.

Q.E.D.

The converse of this theorem will be proved later (theorem 4.13).

Corollary 3.11. Suppose that x1 : Ay,...,x, : Ap Fpa t : A, and) does
not occur in A, Ai,...,Ax. Then t is normalizable by leftmost (-reduction.

An nfinite quasi leftmost reduction of a term ¢ € A is an infinite sequence
t =tg,t1,...,t,,...of terms such that :
for every n > 0, ¢, Botni1 (11 is obtained by reducing a redex in ¢,) ;
for every n > 0, there exists a p > n such that ¢, is obtained by reducing
the leftmost redex in t,,.
We can state a strengthened normalization theorem :

Theorem 3.12 (Quasi leftmost normalization theorem).
Suppose 1 : Ay, ..., x : Ax Fpa t : A, and Q does not occur in A,Aq,. .., A.
Then there is no infinite quast leftmost reduction of t.

Chapter 3. Intersection type systems 49

In order to prove it, we again define an adapted pair (N, N) :

N is the set of all terms which do not admit an infinite quasi leftmost re-
duction ; Nj is the set of all terms of the form (z)t ...t,, where x is some
variable, and t,...,t, € N. In particular, all variables are in N, (take
n = 0). We check conditions (i) and (ii) of the definition of adapted pairs
(page 46) :

i) N is saturated : given (Azw)tt;...t, = 79, we assume the exis-
tence of an infinite quasi leftmost S-reduction 7y, 71, ..., 7,, ..., and we prove
(ult/z))ty ... t, ¢ N by induction on the least integer k such that 7441 is
obtained from 7, by reducing the leftmost redex.
If £ =0, then 7y = (u[t/z])t;...t,, and, therefore, this term admits an
infinite quasi leftmost J-reduction. If £ > 0, then 7y is obtained by a reduc-
tion either in w, or in t,t1,...,t,, so it can be written 7 = (Azu/)t't] ...t}
(with either v = u' or ufyv/, and the same for ¢,¢;,...,t,). Now the
induction hypothesis applies to 7 (since the integer corresponding to its
quasi leftmost [-reduction is k — 1), so (u/[t'/x])t} ...t ¢ N. But we have
(u[t/z])ty ... t, B (W[t /x])t] ...t and therefore there exists an infinite quasi
leftmost B-reduction for the term (uft/z])t; .. .t,.
i) Ny CN : let 7 € Ny, say 7 = (z)ty...1,, where ty,...,t, € N and x is
some variable. Suppose that 7 admits an infinite quasi leftmost 3-reduction,
SAY T = To, Tiy -+ Thy --- ; then 7, = (2)th ... t5 with either ¥ = tF™ or
tk 3yt Clearly, there exists ¢ < n such that ¥ contains the leftmost redex
of 7, for every large enough k. Hence ¢; admits an infinite quasi leftmost
(B-reduction, contradicting our assumption.
The inclusion Ny C (N — Nj) is obvious.
It remains to prove that (Ny — N) C N : let 7 € Ny — N and z be a
variable which does not occur in 7 ; since z € Ny, (7)x € N. If 7 admits
an infinite quasi leftmost (-reduction, say 7 = 79, 74, ..., 7%, ..., then so
does (7)z (contradicting the definition of A) : indeed, if none of the 7,’s
start with A, then (m)x, (m)z, ..., (7%)z,... is an infinite quasi leftmost
B-reduction of (7)x. If 7, = Ay 7}, then 7/, admits an infinite quasi leftmost
reduction, and so does 7/[z/y|. Hence (19)x, (1), ..., (7)), Ti[x/y] is an
initial segment of an infinite quasi leftmost reduction of the term (7)x.
Now the end of the proof of the quasi leftmost normalization theorem 3.12
is the same as that of the normalization theorem 3.10.

Q.E.D.

The following theorem is another application of the same method.

Theorem 3.13. Suppose x1 : A1,...,x1 : A Fpa t @ A, and € does not
occur in A,A1,...,Ar. Then there exists a Bn-normal term u such that, if
tBnt’ for some t', then t'Bnu.

50 Lambda-calculus, types and models

Remark. In particular, ¢t is Sn-normalizable (take ¢’ = ¢) and its Sn-normal form
is unique. The interesting fact is that the proof does not use the Church-Rosser
theorems of chapter 1 (theorems 1.23 and 1.31).

We define a new adapted pair (Ny, V).

N is the set of all terms with the desired property ; in other words :

t € N & there exists a Sn-normal term u such that, if ¢t Bnt’ for some ¢/,
then ¢’ Gnu.

No = {(x)t; .. .t,; x is any variable, ¢, ...t, € N'}.

We now check conditions (i) and (ii) of the definition of adapted pairs
(page 46) :

i) NV is saturated : suppose that (u[t/x])t;...t, € N, and let 7 be its (unique)
fBn-normal form. Let v € A be such that :

() (Axu)tty ... t, Bno.

We show that v fn 7. Consider, at the beginning of the fn-reduction (x), the
longest possible sequence of Gn-reductions which take place inside u or t or
ty or ... or t, ; this gives (Az ')t't) .. .t!, with u Gnu' ¢t fnt’ and t; Bnt.
Then, there are three possibilities :

e The (n-reduction (x) stops there. Thus, v = (Azu/)t't]...t, so that
v By (Wt x))ty ...t But we have (u[t/z])ty...t, Bn(W[t'/x])t] ...t be-
cause the relation 07 is A-compatible. Since (u[t/z])t;...t, € N, it follows
from the definition of N that («'[t'/z])t] ...t BnT ; therefore v BnT.

e The following step consists in reducing the [-redex (Azu/)t’ and gives
(W'[t'/x])t) ... t!. Therefore, we have (u'[t'/x])t} ...t/ Bnv and it follows that
(ult/x])ty ... t, Pnv. Since (uft/x])t;...t, € N, it follows from the definition
of N that v 8n .

e \xu/ is an n-redex, i.e. v = (u”)x and z is not free in w” ; moreover, the
following step consists in reducing this n-redex. This gives (u”)t't| ...t i.e.
(W'[t'/x])t) ... tl. Thus, the result follows as in the previous case.

i) No € N : let t = (x)ty...t, € Np, where z is some variable, and
t1,...,t, € N. Suppose that t fnt’. We have t' = (z)t; ...t with ¢; Gnt..
Therefore t; Bnu;, where wu; is the (unique) fn-normal form of ¢;. It follows
that ¢ Bn (x)uy . .. up,.

The inclusion Ny C (N — Nj) is obvious, by definition of Nj.

It remains to prove that (Vg — N) C N : let t € (My — N) and = be a
variable which does not occur in ¢ ; since x € Ny, we have (t)z € N.

Let u be the (unique) fn-normal form of (¢)z and define w € A as follows :
w = Az u if Az w is not a n-redex, and w = v if u = (v)z with = not free in v ;
then w is fn-normal.

Consider a fgn-reduction t fnt’ ; we show that ¢’ Gnw.

We have (t)z On (t')x fnu. If the pn-reduction from (t')z to u takes place

Chapter 3. Intersection type systems 51

inside ', we have u = (v)x and t' fnv ; thus, x is not free in v (because
it is not free in ') and ' fnw = v. Otherwise, we have ¢ fnAzt” and
t" fnu, so that t' fn Az u ; and in case u = (v)x with x not free in v, we get
t' By Ax(v)x fnv. Thus, we have again ¢ fpw in any case, and this shows
that ¢t € V.

Now, the end of the proof of theorem 3.13 is the same as that of the normal-
ization theorem 3.10.

2. System D

In order to study the strongly normalizable terms, we shall deal with the
same type system, but without using the constant 2. Here it will be called
system D.

The definitions below are quite the same as in the previous section, except
for those about saturated sets and interpretations.

So the types of system D are formulas built with :
variables X, Y, ... (type variables) ;
the connectives — and A.

As before, a context I' is a set of the form z1 : Ay, 29 : Ag, ..., 21 : A where
x1,xa,..., T are distinct variables of the A-calculus and Aq, A,, ..., A are
types of system D.
Given a A-term t, a type A, and a context I', we define, by means of the
following rules, the notion : ¢ is of type A in the context I' (or t may be given
type A in the context I') ; this will be denoted by ' p ¢ : A (or I' ¢ : A if
there is no ambiguity) :

1. If = is a variable, then I', x : AbFp x: A.

2. fT,x: Abpt: B, then'Fp Azt : A — B.

3. UTFpt:A— Band'Fpu: A, then T'bFp (t)u : B.

4. YT Fpt: AANB,then'Fpt: Aand I'Fpt: B.

5 fI'kpt:Aand 'Fpt: B, then'Fpt: AN B.
Any expression of the form I" Fp ¢ : A obtained by means of these rules will
be called a typing of t in system D. A term is typable if it may be given some
type in some context.
Clearly, if a term t is typed in the context xy : Ay, ...,z : Ay, then the free
variables of t are among 1, ...,z (this was not true in system D).
As in Df), we have :

Proposition 3.14. IfTkpt: A and " DT, then ' Fpt: A.
IfT'Fpt: A, and if TV C T is the set of those declarations in I' which concern
variables occurring free in t, then I Fp t : A.

52 Lambda-calculus, types and models

The strong normalization theorem

Consider a fixed subset N of A (in fact, we shall mostly deal with the case
where N is the set of strongly normalizable terms).

A subset X of A is said to be N-saturated if, for all terms ¢, ..., t,, u :
(ult/z)ty ... t, € X = (Azu)tty...t, € X for everyt € N.

Proposition 3.15. If) is an N -saturated subset of A, then X — Y is
N -saturated for all X.

Indeed, suppose t € N and (u[t/x])t;...t, € X — Y ; for any ¢y in
X, (ut/x])ty ... tytg € Y, and therefore (A\xu)tty...t,to € Y, since Y is
N —saturated. Hence (Azu)tty...t, € X —).

Q.E.D.

An N-interpretation T is, by definition, a function which associates with each
type variable X an A-saturated subset of A, denoted by | X |z (or simply | X | if
there is no ambiguity). Given such a function, we can extend it and associate
with each type A an N-saturated subset of A, denoted by |A|z (or simply
|Al), defined as follows, by induction on the length of A :

if A is a type variable, then |A|z is given with the interpretation Z ;

if A= B — C, then |A|lz = |B|lzr — |C|z ;

ifA=BA C, then ‘A|I = ’B‘I N ‘C‘Z

Lemma 3.16 (Adequacy lemma). Let Z be an N -interpretation such that
|F|z CN for every type F of system D, and u a A-term, such that :

x1: A, o ApbFpu s Al
Ifty € |Ailz, ..., ty € |Ag|z then u[ty/xq, ... tp/xk] € |Al7.

The proof proceeds by induction on the number of rules used to obtain the
typing of u. Consider the last one :

If it is rule 1, 3, 4 or 5, then we can repeat the proof of the adequacy
lemma (lemma 3.5), for the corresponding rules.

If it is rule 2, then A = B — C and u = Axv ; we can assume that x
does not occur free in ty,...,t; and is different from x4, ..., z;. Moreover :
r:B,x1: A, 1 A Fp v C
By induction hypothesis, v[t/z, t1/x1, ..., t;/xx] € |C] holds for any t € |B|.
It then follows from our assumptions about z that : v[t/z,t1/z1, ... t;/xK] =
vty /@1, ... te/xi][t/xz]. Since C is N-saturated and t € |B| C N, we have :
(Azolty/xy,. .., tx/xx])t € |C|. Now since t is an arbitrary element of |B],
we obtain : Az vty /z1, ..., tx/xk] € (|1B] — |C]) = |A|.

Q.ED.

We now give a method which will provide a set AN such that |F|r C N for
every N-interpretation Z and every type F of system D.

Chapter 3. Intersection type systems 53

Here, an ordered pair (Ny, N') of subsets of A is said to be adapted if and
only if :

i) NV is N-saturated ;

i) No CN s Ng TNV = No) 5 No = N) CN.
The difference with the definition page 46 lies in condition (i).

As above, condition (ii) can also be stated this way :

i) Ny C (N —=Ny) € (Nyg —N) CN.

Lemma 3.17. Let (Ny, N') be an adapted pair, and T an N -interpretation
such that, for every type variable X, |X|z is an N -saturated subset of N
containing Ny. Then, for every type A, |Alz is an N -saturated subset of N
which contains Ny.

Proof by induction on A. The result is clear whenever A is a type variable
or A=BAC.

If A= B — C, then |A| = |B| — |C|, thus |A] is N-saturated since |C|
is (proposition 3.15). Moreover, by induction hypothesis, |B| D N, and
|C| € N. Hence |B| — |C] € Ny — N. Now Ny — N C N according to
the definition of adapted pairs ; therefore |B — C| C N.

Similarly, we have |B| € N, and |C| D Ny. Hence |B — C| D N — N ;
since N — Ny D N (definition of adapted pairs), we obtain |B — C| D Nj.

Q.E.D.

Now we define two sets A" and Ny and show that (N, V) is an adapted pair :

N is the set of strongly normalizable terms ; in other words, t € A < there is
no infinite sequence t = tg, t1,...,t,,...such that t; 5y t;11 for all ¢ ; therefore
each maximal sequence of this form (called normalization of ¢) ends with the
normal form of £.

Ny is the set of all terms of the form (z)t;...t,, where x is some variable,
andtl,...,tn GN.

Proposition 3.18. A strongly normalizable term admits only finitely many
normalizations.

(This is an application of the well known Kdnig’s lemma). Let t be a term

which admits infinitely many normalizations. Then at least one of the terms

obtained by contracting a redex in ¢ admits infinitely many normalizations.

Let t; be such a term ; we have t 3yt;. Now the same argument applies to

t1 ; so we can carry on and construct an infinite sequence t = tg, t1,...,t,,. ..

such that t,, By t,.1 for all n ; therefore ¢ is not strongly normalizable.
Q.E.D.

Proposition 3.19. N is N -saturated.

54 Lambda-calculus, types and models

Let t € N, (u[t/z])t;...t, € N. We need to prove that (Azu)tt;...t, € N.
Let p (resp. q) be the sum of all the lengths of the normalizations of ¢ (resp.
(u[t/x])ty ... t,).
The proof is by induction on p, and, for each fixed p, by induction on gq.
Consider the terms obtained by contracting a redex in (Azxu)tty...t,. It
is sufficient to prove that all of them are in . The redex on which the
contraction is done may be :
1. The redex (Azu)t ; then the reduced term is (u[t/x])t;...t,, which is
in NV ;
2. A redex in u, the reduced term being u', with u Gy v’ ; we want to prove
that (A\xu/)tty...t, € N. But we have u[t/x] Sy u'[t/x] (proposition 1.21),
and therefore u[t/z|ty ... t, Bou'[t/x]t1 ...t ; thus, the sum of the lengths of
the normalizations of (u'[t/x])t;...t, is < ¢, and the induction hypothesis
yields the expected result ;
3. A redex in t; ; same proof ;
4. A redex in t, the reduced term being ¢’ ; then the sum of the lengths of
the normalizations of ¢’ is p’ < p. On the other hand, we have u[t/z] 5 u[t'/z]
(proposition 1.22); so there is a normalization of (u[t/z])t;...t, which in-
volves the term (u[t'/x])t; .. .t, ; therefore, (u[t'/x])t;...t, € N. With the
induction hypothesis, we conclude that (Axu)t't;...t, € N.

QED.

Now we prove that (N, N) is an adapted pair : condition (i) was checked in
proposition 3.19 ; we have obviously Ny € N and Ny € N — N ; in order
to prove that Ny — N C N, suppose that u is not strongly normalizable,
and let x be some variable (z € Nj) ; there exists an infinite sequence
U = Ug, U, - - -, Up, . .. such that u; Gy u;q for all ¢ ; then the sequence (u)x =
(wo)x, (uy)x, ..., (uy)z, ... attests that (u)x is not strongly normalizable.

Theorem 3.20 (Strong normalization theorem). Every term which is typable
in system D is strongly normalizable.

Indeed, let ¢ be a term of type A, in the context x1 : Ay,...,) : Ax. Define
an N-interpretation Z by taking |X |z = N for every type variable X. We
have z; € Ny by definition of Ny, so x; € |A;| ; by the adequacy lemma,
t =tlr1/x1, ..., 2,/2,) € |A]. Now by lemma 3.17, |[A| C N ; thus t € N.
Q.E.D.
Remark. Proposition 3.19 provides the following algorithm for checking whether
or not a term is strongly normalizable :
if t is a head normal form, say t = Axi... Az, (x)t; ...k, then do the checking
for t1,...,t; ; otherwise, we have t = Az ... Az, (Ax u)vty ...t : do the checking
for v and (u[v/x])t;...tx. The algorithm terminates if and only if ¢ is strongly
normalizable.

Chapter 3. Intersection type systems 55

3. Typings for normal terms

We intend to show that head normal forms and normal forms are typable,
in a notable way : a head normal form is typable in system Df), with a
non-trivial type ; a normal form is typable in system D (and therefore also
in system DS, with a type in which the symbol € does not occur).

Proposition 3.21. Let t be a term in head normal form. Then t is typable
in system DSY, with a type of the form Uy, ..., U, — X (where X is a type
variable, and n > 0).

Indeed, t = Azy ... \x,(y)uy ... up. Now, (y)uy...ug is of type X in the
context y : U (where U = Q,Q,...,Q — X).
Thus ¢ is of type Uy,...,U, — X in the context y : U (Uy,...,U, may be
arbitrarily chosen, except when y = x; ; in that case, take U; = U).

Q.E.D.

Lemma 3.22. [fx;: Ay, x9: Ag, ...,z At A, then :
xy A NAY mo s Aoy xg s At AL

Proof by induction on the number of rules used to obtain :

xy o Ay, w9 i Agy., w0 A Bt 0 A (either rules 1 to 6, page 42 or

rules 1 to 5, page 51). Consider the last one. The only non-trivial case

is that of rule 1, when ¢ = ;. Then we have A = A;. Now, by rule 1,

xy: ALNAL L Ex s A A AL therefore xp Ay A AL L F xq s Ay (rule 4).
Q.ED.

Proposition 3.23. Given any two contexts I', I, there exists a context I"”
such that, if 'Ht: Aand " Fu: B, thenT"Ft: A, u:B.

Even if it means extending both contexts, we may assume that :
Disaxy: Ay,...,o: Ay and IV is oy : By, ..., 2 : By.
Then it suffices to take for I'” the context x1 : Ay A By, ..., 2 : Ax A By, and
apply the previous lemma.
Q.ED.

The next proposition shows that every normal term is typable in system D.

Proposition 3.24. For every normal term t, there exist a type A and a
context I' such that I' bp t : A. Moreover, if t does not start with X\, then,
for every type A, there exists a context I' such that I' Fp t : A.

Recall that the normal terms are defined by the following conditions :

56 Lambda-calculus, types and models

any variable x is a normal term ;

if ¢ is a normal term, and if x is a variable, then Azt is a normal
term ;

if ¢, u are normal terms, and if ¢ does not start with A, then (¢)u
is a normal term.

The proof of the proposition is by induction on the length of ¢t. If ¢ is a
variable, then ¢ is of type A in the context ¢ : A.
If t = Axu, then u is of type A in a context I' ; we may assume that the
declaration x : B occurs in I', for some type B (otherwise we add it). Hence
r "7_) t: B— A
Now suppose that ¢t = (u)v, and u does not start with A. Let A be any type
of system D. By induction hypothesis, v is of some type B, in some context
I'. Moreover, there exists a context IV such that I Fp u : B — A. By
the previous proposition, there exists a context I such that I Fp v : B,
u:B— A. Thus I' Fp (u)v : A.

Q.E.D.

Principal typings of a normal term in system D

We have just shown that every normal term ¢ is typable in system D. We shall
improve this result and see that, actually, there is a type which characterizes
t up to n-equivalence.

Recall that, if =1 : Ay,...,x, : Ay Fp t : A, then the free variables of

t are among xi,...,T;, and the symbol Q does not occur in the types
A, Ay, Al
Let ¢t be a normal term and {x1,..., 2} a finite set of variables, containing

all the free variables of ¢t. We shall define a special kind of typings of ¢ in
system D, of the form xy : Ay,...,x : Ay Fp t : A, which will be called
principal typings of t.

The definition is by induction on ¢t :

If t is a variable x;, we take distinct type variables Xi,..., X;. The
principal typings are x1 : Xy, ..., 2 : Xp Fp 2y X

Ift=MAeu,let x: A, xy: Ay,..., 21 : Ay Fp u: B be a principal typing
of u. Then x1 : Ay,..., 2 : Ay Fpt: A — B is a principal typing of ¢.

If ¢ does not start with A, we have ¢t = (z)t; .. .t,, where z is a variable,
and t,...,t, are normal terms. Let z : A;, zy : Al,... 2 : A¥ bp ty 1 By
be a principal typing of t; (1 <4 < n). Even if it means changing the type
variables, we may assume that, whenever ¢ # j, the typings of ¢; and ¢; have
no type variable in common. Then we take a new type variable X, and we

Chapter 3. Intersection type systems Y4

obtain a principal typing of ¢, which is I' Fp ¢ : X, where " is the context :
2 N, AiA(Br,y .o, By— X)), @0 Ny AL o s Al AR
This is indeed a typing of ¢ : it follows from lemma 3.22 that
Pbpt;:Biand 'pa: (By,...,B, — X) ;
then it remains to apply rule 3, page 51.

Lemma 3.25. Let x1 : Ay,...,x1 : Ay Fp t : A be a principal typing of
a normal term t, and y1,...,y; be new wvariables. Then there exist types
By,...,B; such that x1 : Ay,...,x, : Ag,y1 - By,...,y1 - BiFpt: Aisa
principal typing of t.

Immediate proof by induction on the length of .
Q.ED.

Definition. Given any A-term ¢, every term wu such that ¢nwu will be called
an n-reduced image of t.

Theorem 3.26. Let x1 : Ay,...,x1 : Ax Fp t 1 A be a principal typing of
a normal term t, and let u be a typed term in system DY, of type A in the
context x1 : Ay, ...,z Ag. Then there exists an n-reduced image of t which
can be obtained from u by leftmost (-reduction.

Examples : t = Az(z)x ; the principal type is X A (X — Y) — Y ; any term
of that type can therefore be reduced to t by leftmost (-reduction ;

t = AfAz(f)z ; the principal type is (X — Y) — (X — Y) ; any term of
that type can be reduced either to ¢, or to Af f (which is an n-reduced image
of t), by leftmost [-reduction ;

t = AfAx(f)(f)x ; the principal typeis (X = Y)A (Y — Z) — (X — Z).

Lemma 3.27. Suppose t is normal and tnt' ; then t' is normal. Moreover,
if A is not the first symbol in t, then neither is it in t'.

We can assume that ¢ 7ot (¢ is obtained by one single n-reduction in ¢).
The proof is by induction on t. If ¢ is a variable, then ¢t = ' and the result
is obvious. If ¢ starts with A, then there are two possibilities :

t=Axu,t =ru, and ungu' ; then u' is normal, thus so is t'.

t = Az(t')x, and x does not occur free in t' ; then ¢’ needs to be normal,
since t is.
If ¢ does not start with A, then ¢ = (u)v, and the first symbol in u is not A.
In that case, either ¢’ = (u)v" or (u')v, with unyu’ or vnyv'. By induction
hypothesis, ' and v are normal and u' does not start with A. Thus ¢’ is
normal (and does not start with \).

Q.ED.

58 Lambda-calculus, types and models

Lemma 3.28. Consider two terms t,v, and a variable x with no free occur-
rence in v. Suppose (v)x == t. Then there exists an n-reduced image u of
Axt such that v == u.

Recall that ty => t; means that t; is obtained from %, by leftmost (-

reduction.

The proof proceeds by induction on the number of steps of leftmost (-

reduction which transform (v)z in t.

1. (v)x =t ; then \xtnv (definition of n) ; take u = v.

2. (v)x # t and v does not start with A\. Then the first leftmost S-reduction

in (v)z is done in the subterm v ; it gives a term (v')z, where v’ is obtained

from v by a leftmost (-reduction. By induction hypothesis, there exists a

term u such that Az tnu and v' => u. Thus v => u.

3. (v)x # t and v starts with A\. Since z is not free in v, we may write

v = Axw ; therefore, a leftmost S-reduction in (v)z produces the term w.

Thus it follows from our assumption that w >=> t. Hence v = Az w == Axt.
Q.E.D.

Theorem 3.29. Let t be a normal term, and x1 : Ay,...,x : Ay Fpt: A a
principal typing of t. Then there exists an interpretation I such that :

i) 1 € |Ailz,. .., oy € [Aglz ;

it) for every term v € |Alr having all its free variables among 1, ..., xy,

there exists an n-reduced image u of t such that v >=> u.

We first show how theorem 3.26 easily follows from theorem 3.29 : indeed,
let v be any typed term in system Df), of type A in the context xy : Aq,.. .,
xr © Ag ; by lemma 3.25, we may assume that the free variables of v
are all among z1,...,7;. By the adequacy lemma (lemma 3.5), we have
vlay [z, ..., ax/zx] € |A|lz whenever a; € |A;|7 ; now z; € |A;|z, and there-
fore v € |A|z. Then theorem 3.29 ensures the existence of an n-reduced image
of t which can be obtained from v by leftmost §-reduction.

Now we prove theorem 3.29 by induction on the length of ¢ :

If ¢ is a variable, say x1, then the given typing is x1 : Xy,..., 2 : X Fp
x1 : Xy, where the X/s are type variables. The interpretation Z can be
defined by v € |X;|z & v == x;.

If t = Az u, then we have a principal typing of u of the form :
x: Az A, 2, » Ag Fp u - B ; by induction hypothesis, there exists
an interpretation Z such that x € |A|z, 1 € |Ailz,. .., xx € |Ak|z. Now the
given principal typing of t = Axwuis 1 : Ay,..., o : Ay Fpt : A — B.
Let v € |A — B|z be a term with no free variables but xy, ...,z (so x does
not occur free in v). Since z € |A|z, (v)xz € |B|z. Therefore, by induction

Chapter 3. Intersection type systems 59

hypothesis, (v)x => w, where w is an n-reduced image of u. By lemma 3.28,
there exists a term t' such that v >> ¢’ and Az wnt' ; thus v => ¢ and
Arxunt'.

If ¢ does not start with A, then ¢t = (z)t; ...t,, where x is some variable
and tq,...,t, are normal terms. We also have principal typings for the ¢;’s :
x: Ay, xy o AL my 0 AF Fp t; 0 B;, and interpretations Z;. Observe that
the typings of the t.s have no type variable in common, so it is possible to
define one single interpretation Z such that for every ¢, Z; and Z have the
same restriction to the type variables occurring in the typing of ¢;. Now the
given principal typing of ¢t is I' Fp t : X, where I' is the context :

z: N AiAN(Bry .o, By— X), @ NI AL o A AR

By induction hypothesis, z € |4;|z, thus x € | A}, Ai|z ; similarly, z; €
| Nzt Adlz
We define the value of X in the interpretation Z by taking :
| X |z = {v € A; there exist t| € |By|z,...,t, € |Bulz
such that v => ()t} ...t}

(this is indeed a saturated subset of A).
It follows from this definition that x € |By, ..., B, — X|z. Thus :

T € |/\?:1Ai/\(Bl7...,Bn —>X>|I
Let v € |X|z, with no free variables but zi,...,2;. Then v reduces to
(x)t) ...t by leftmost B-reduction ; we have t; € |B;|z and therefore, by
induction hypothesis, t; >=> ¢/, where t! is an n-reduced image of ¢;. Hence
v == ()t ...t which is clearly an n-reduced image of t = ()t ...t,.
So we have shown that the interpretation Z satisfies all the required properties
with respect to the given principal typing of .

Q.ED.

Corollary 3.30. Let t,t’ be two normal terms ;

i) Suppose that T Fpo t : A = T Fpq t' : A, for any type A and any
context I ; then tnt'.

ii) Suppose that T' Fpo t : A < T bpo t' @ A, for any type A and any
context I" ; thent =1t

i) Take I" and A such that I" Fpg t : A is a principal typing of ¢. By
assumption, we have I' Fpg t' : A ; by theorem 3.26, there exists a term u
such that tnu and t’ >=> u. Now since ¢’ is normal, this implies ¢’ = w.
ii) It follows from (i) that ¢ nt’ and t'nt ; therefore t = ¢’ (indeed, if tnt’ and
t #t', then t' is strictly shorter than ¢).

Q.ED.

60 Lambda-calculus, types and models

References for chapter 3

[Hin78], [Hin86], [Cop78], [Pot80], [Ron&4].
(The references are in the bibliography at the end of the book).

Chapter 4

Normalization and
standardization

1. Typings for normalizable terms

Notation. In this chapter, the notation - refers to system D or system DS
(the result hold in both cases). Of course, the notation Fpgq refers to system
DN only, and the notation p refers to system D only.

Proposition 4.1.

Let T' be a context and x4, ..., x variables which are not declared in I'. Sup-
pose that I'yxq @ Ay,...,xp : Ay Fu: B, and ' t;: A; for all i such that
x; occurs free inu (1 <i<k). Then T'tF ulty/xy1,... tx /2] @ B.

Proof by induction on the number of rules used for the typing
[,z : Ay, ..., 20 Ay b u: B. Consider the last one :

If it is rule 1, then w is a variable ;

if w = x;, then B = A;, and u[ty/xy, ..., tx/xr] = t;, which is of type B
in the context I

if u is a variable and u # x1,...,zy, then u[t;/xq,. .. tx/x] = u, and T
contains the declaration v : B ; thus ' - u : B.
If it is rule 2, then u = A\yv, B=C — D, and :

Doyt Ay, oooxg A,y : CHo s D
By induction hypothesis, we have I, y : C'F o[ty /xy, ..., tx/xx] : D. There-
fore, by rule 2, we obtain I' - Ay v[t/z1, ..., tx/x] : C — D, that is to say
U'Foulty /... tk/x] - C — D.
If it is rule 3, then u = vw and :
oy Ay, AgFov:C— B, w: C.

By induction hypothesis :

61

62 Lambda-calculus, types and models

I'Folty/xy,. . tk/xg) : C— B and I’ wlty /xq, ...t /ag] - C.
Hence I' b (v[ty/xq, . .. tp/zk])w[t1 /21, .. . t/x)] © B.
In other words T' b [ty /xy, ... tx/xi] : B.

The other cases are obvious.
Q.E.D.

We will say that a type A is prime if A # 2 and A is not a conjunction. So
a prime type is either a type variable or a type of the form A — B.

Any type A is a conjunction of prime types and of 2 (when A is prime, this
conjunction reduces to one single element). These prime types will be called
the prime factors of A. The formal definition, by induction on the length
of A, of the prime factors of A, is as follows :

e if A=), it has no prime factor ;

e if Ais a variable, or A = B — (), it has exactly one prime factor, which
is A itself ;

o if A= B AC, the prime factors of A are the prime factors of B and the
prime factors of C.

Lemma 4.2. Suppose I' =t : A, where A is a prime type.

i) If t is some variable x, then x is declared of type A" in T, A being a prime
factor of A’.

it) If t = Az u, then A=B — C, and I';z: BFu:C.

iit) If t =uv, thenTFv: B, 'Fu: B — A, and A is a prime factor of A’.

In case (ii), recall that the notation “ ',z : B ” implies that z is not declared
in I' (otherwise, one should rename the bound variables of Az).

The given typing of ¢ (with a prime type A in the context I') is obtained by
the rules listed on p. 42 or p. 51. Consider the first step when one of these
rules produces a typing I' - ¢ : A’, where A is a prime factor of A’.

The rule applied at that step is neither rule 4 nor rule 5 :

Indeed, rule 4 requires a previous typing of the form I' = ¢ : A’ A B, and A
would already be a prime factor of A’ A B. As for rule 5, it requires previous
typings of the form I' ¢ : A}, and I' - ¢ : AY, with A" = A} A A} ; then A
would already be either a prime factor of A} or of Aj.

In case (i), the rule applied may only be 1, 4 or 5, since the term obtained
is a variable. But 4 and 5 have just been eliminated ; so it is rule 1, and
therefore x is declared of type A" in T'.

In case (ii), the rule applied may only be 2, 4, or 5, since the term obtained
is Az u. So it is rule 2, which implies that A’ is of the form B — C' ; now
this is a prime type, thus A’ = A = B — (C. Moreover, in this case, rule 2
requires as a previous typing : 'z : BFu: C.

Chapter 4. Normalization and standardization 63

In case (iii), the rule applied may only be 3, 4 or 5, since the term obtained
is uv. So it is rule 3, and therefore we have : ' v: Band I'u: B — A'.
Q.ED.

Proposition 4.3. If '+t: A and t Bt', then T+t : A.

We may assume t Fyt’ (that is to say that ¢’ is obtained by contracting one
redex in t). The proposition is proved by induction on the number of rules
used to obtain I' -t : A. Consider the last one :
It cannot be rule 1, since t Gy t’ is impossible when ¢ is a variable.
Ifitisrule 2, thent =Aru, A=B — C,and ',z : BF u:C. In this case,
t' = Axu' and u fyu’. By induction hypothesis, we have I'yx : B+ ' : C ;
thus ' - Ax v’ : B — C, that is tosay [' ¢ : A.
If it is rule 3, then t = uv, ' Fu: B — A, and I' - v : B. Here there are
three possible situations for ¢’ :
i) t' = v'v, with u Sy« ; by induction hypothesis, we have I' -« : B — A,
and therefore I' - t' : A.
ii) t' = wv', with v Gy v’ ; by induction hypothesis, ' - v' : B ; thus ' ¢/ : A.
iii) v = Az w and ¢’ = w[v/z] ; so we have I' - Az w : B — A. Therefore, by
lemma 4.2(ii), I',z : BF w : A ; now, since I' - v : B, proposition 4.1 proves
that T'F wlv/x] : A, that is to say T'+ ¢ : A.
If the last rule used is 4, 5 or 6, then the result is obvious.

QED.

Proposition 4.4. Let I' be a context and x1, ...,z variables which are not
declared in T'. If T & ulty/z1,... /2] © B, and if ty,... tx are typable
in the context ', then there exist types Ai,..., A, such that I' = t; . A;
(1<i<k)andT, zy: Ay, ...,2p: Ay b u: B.

Remarks.

1. If the type system is Df2, then the condition “ ¢; is typable in the context I' ”
is satisfied anyway (I'F¢; : Q).

2. The necessity of introducing the conjunction symbol A, with its specific syntax,
appears in this proposition ; the result is characteristic of this kind of type systems.

First, observe that the proposition is obvious when u = z;. Indeed, in that

case, we have I' F ¢; : B, and, of course, I'x; : B+ x; : B. Thus we can
take A; = B, and, for j # i, take A; as any type satisfying I'F-¢; : A;.

Now suppose u # x1,...,7,. The proof is by induction on the number of
rules used to obtain I' b uty/z1, ..., tx/xk] : B. Consider the last one.
If it is rule 1, then u[ty /21, ..., tx/x)] is a variable y, and I" contains the

declaration y : B. Thus u is also a variable. Now since v # x1, ..., we

64 Lambda-calculus, types and models

have ult;/x1,...,tx/zx] = u, and u = y. Therefore I' - u : B ; besides, it
has been assumed that I' - t; : A; for appropriate types A;.

If it is rule 2, then we have B = C' — D, u[t;/x1, ..., tx/xx] = Ay’ and
Iyy:CHEW :D. Since u # x1,...,T,, we have u = Ayv. As usual, we may
suppose that y does not occur free in I', u, ty,...,tx, and y # x1,...,x5. We
have v’ = v[ty/x1, ..., t/xk] and therefore I', y : C' = o[ty /21, ...t /2y : D.
By induction hypothesis, there exist types A; such that I', y : C' ¢, : A;,
and ', y: C, xy: Ay,...,xp : Ax Fv: D. Consequently :

I,aoy Ay, xp AgFu:C— D.
Moreover, since y does not occur in t;, we have I' - ¢; : A; (propositions 3.1,
3.3 and 3.14).

If it is rule 3, then ult;/xy,... tx/zx] = VW', and T + o' : C — B,
I'+w' :C. Since u # x1, ...,z we have u = vw, and therefore :

v =wlty/xy, .t/ ak], W = wlty/xq, . ..tk /xy]. Consequently :
I'Folty/xy, .. tk/xg] - C — By and I' - wlty /oy, ...t /ag] - C.

By induction hypothesis, there exist types A;, A” such that :
Pt A TRt AT

Cyay ALyt Abv:C— By Tya Ao s Al w : C
Let A; = A; N A} ; then we have :

Ixi: Ay, 2 AgbFov:C — B, w: C. Thus:

I'zy: Ay, 2 A B u: B. Moreover, I' F ¢, : A;.

If it is rule 4 or rule 6, then the result is trivial.

If it is rule 5, then B = B’ A B”, and T' & u[ty/z1,...,tx/x] @ B,
I+ wlty/zy, ..., tx/x,] © B”. By induction hypothesis, there exist types
Al A7 such that :

Pt A, TRt AT
Oyay AL A bw: B Tyt Ao s A Fu e BY.
Let A; = A; N A7 ; then we have x; : Ay, ... 25 : Ay Fu: B’ A B”, that is
to say u : B. Moreover, I' - t; : A;.
Q.E.D.

Corollary 4.5. If T' - u[t/x] : B and if t is typable in the context T, then
I'F(Azu)t: B.

Remark. In system DS2, the condition about ¢ is satisfied anyway, since I' ¢ : Q.

Proof. By proposition 4.4, we have I' -t : A and I'yz : A+ u : B for
some type A. Hence I' F Axu : A — B (rule 2), and therefore, by rule 3,
I'E (Azu)t: B.

Q.ED.

Theorem 4.6. Let t and t' be two A-terms such that t' is obtained from t by
B-reduction (in other words t Gt'). If I'bFpo t' @ A, then I'Fpo t: A.

Chapter 4. Normalization and standardization 65

We may suppose t fpt’ (i.e. t' is obtained by contracting a redex in t).
The proof is by induction on the length of ¢ and, for each fixed ¢, by induction
on the length of A.
If A=, the result is trivial.
If A=A NAy, then T'Ht': Ay and I' = ¢ . A;. By induction hypothesis,
we have 't : Ay, and I' -t : Ay, therefore I' -t : A.

So we may now suppose that A is a prime type. There are three possible
cases for t :

i) t is a variable ; this is impossible since t 5y t'.
ii) t = Azrwu ; then ¢/ = Azu and u By u’. Since Az’ is of prime type A in
the context I', by lemma 4.2(ii), we have A= B — C,and ', z : BF o/ : C.

Now w is shorter than ¢, so by induction hypothesis, I', x : B+« : C'. Thus
t = Aruis of type A= B — C in the context I'.

iii) t = wv ; then we have three possible situations for ¢’ :

a) t' = wv', with v Gyv’ ; by assumption uv’ is of prime type A in the
context I'. By lemma 4.2(iii), we have ' - v/ : Band ' F v : B — A/,
A being a prime factor of A’. Now v is shorter than ¢t so, by induction
hypothesis, I' - v : B. Thus t = uv is of type A’, and hence also of type A,
in the context T'.

b) t' = v'v, with u Gy v ; similarly, we have :

'Fv:Band'H4 : B — A’, A being a prime factor of A’. By induction
hypothesis, I' F u : B — A’. Thus t = uv is of type A’, and hence also of
type A in the context I'.

¢)u=Arw, (sot=Arw)v)and t' = wlv/z|.

The assumption is I+ wlv/x] : A. By corollary 4.5, and since we are in
system DSY, we also have I' - (Az w)v : A.
Q.E.D.

As an immediate consequence of theorem 4.6 and proposition 4.3, we obtain :

Theorem 4.7.
If t is B-equivalent to t', and if T Fpogt: A, then T Fpgt': A.

We are then able to give an alternative proof of the uniqueness of the normal
form :

Corollary 4.8. Suppose t and t' are normal and t ~gt'. Thent =1,

Apply theorem 4.7 and corollary 3.30.
Q.E.D.

Theorem 4.9. For every A-term t, the following conditions are equivalent :
i) t is solvable ;

66 Lambda-calculus, types and models

ii) t is B-equivalent to a head normal form ;
ii1) the head reduction of t is finite ;
i) t is typable with a non-trivial type in system D).

Recall that the trivial types are those obtained by the following rules :
() is trivial ;

if A is trivial, then so is B — A for every B ;

if A, B are trivial, then so is A A B.

Lemma 4.10. If Axt (resp. tu) is typable with a non-trivial type in system
DX, then the same property holds for t.

We may assume that this type is non-trivial and prime, since any non-trivial
type has a prime factor which is also non-trivial.
Suppose that T' F Axt : A, where A is a prime non-trivial type. By
lemma 4.2(ii), we get A = B — C and I,z : B+t : C. Moreover, C
is non-trivial since A is.
Suppose that T't tu: A, where A is a prime non-trivial type.
By lemma 4.2(iii), we get I'¢: B — A’ and A is a prime factor of A". It
follows that A’ is non-trivial.

Q.E.D.

We are now able to prove theorem 4.9.

(i) = (iv) : Let u = Axy...Azgt be the closure of t. Then wu is solvable
(remark 2, p. 31, chapter 2), and therefore uv; ...v, ~5 x, where z is some
variable with no occurrence in uw. Since x can obviously be typed with a
non-trivial type, the same holds for uv; ... v, (theorem 4.7), and hence also
for u, according to lemma 4.10. Applying this lemma again, we can see that
t itself is typable with a non-trivial type.
(iv) = (iii) : This is the head normal form theorem 3.7.
(iii) = (ii) : Obvious.
(ii) = (i) : We may suppose that t is a closed term (otherwise, take its
closure). We have t ~g Az ... A\xg(x;)u; ... w (closed term in head normal
form). Let v; = Ayy ... Ay« (where z is a new variable), and v; be arbitrary
terms for j # i, 1 < j < k. Then (t)v;...v; ~g x, which proves that ¢ is
solvable.

QED.

As an application of theorem 4.9, we now prove the following property of
solvable terms, which we have used in chapter 2 (namely, lemma 2.12) :

Theorem 4.11. Ift ~g Axy ... Azg(z)t ... t, (with 1 <i < k) then, there
evist t; ~g t; (1 < j < n) such that, for any ui,...,ur € A, we have
(B)ur - up = (W)t .ty with 5 =t [uy [2q, .. ug /2]

Chapter 4. Normalization and standardization 67

Recall that >, denotes weak head reduction (see page 30).

Lemma 4.12. Ift > (x)ty ... t,, then tlu/x,ui/xy, ... up/xx) = (W)t] ...t
where t; = ti[u/x,u /1, ... up/m] for 1 < j < k.

Proof by induction on the length of the head reduction from ¢ to (z)t; ...t,.
Note that this reduction is, indeed, a weak head reduction, because the final
term does not begin with a \.

The result is trivial if this length is 0, i.e. if t = (2)t;...t,. Otherwise, by
proposition 2.2, we have t = (Az w)vv; ... v, (since t does not begin with a \).
Let t* = (w[v/z])vy ... v, ; we can apply the induction hypothesis to t*, so
that t*[u/x,ui /a1, ... uk/xg] = (W .. 2.

Define v/ = vlu/z,u1/x1, . .., ui/xx], and the same for vy, ..., v,, w.

Thus, we have :

tlu/o,uy /oy, u /o) = (wlv/2][u/z,un /T, g /a])vy v,

= (wlu/m,ur /1, up /TR, v/ 2])vy - ov, (by lemma 1.13)

= (w'[v'/2])v] ... v, (again by lemma 1.13, since z is not free in u, uy, . .., ug).

Therefore, we have (w'[v/2])v] ... v =y (u)t].. .1,
It follows trivially that (Azw')v'vy ... vy, =, (w)t]...¢,. This gives the result,

because t[u/x, uy/x1,. .. up/ox] = (Azw)v'v) .. v
Q.ED.
We can now prove theorem 4.11. The hypothesis gives :
(t)x1... 25 =g (x;)t1 ... t, and the variables xy, ...,z are not free in ¢.

By theorem 4.9, the head reduction of (¢)x; ... xy is finite and gives a A-term
which is f-equivalent to (x;)t;...t,. In other words :

We now use lemma 4.12, with the substitution [ui/x1,...,ux/zx], and we
obtain (t)uy ... up =y (ui)ty] ...t with t] = ti[uy /21, ... ug/zp].
Q.E.D.

Theorem 4.13. For every A\-term t, the following conditions are equivalent :
i) t is normalizable ;

i) t is normalizable by leftmost B-reduction ;

iii) there ezist a type A and a context I, both containing no occurrence of
the symbol €2, such that T Fpot: A ;

i) there exist a type A with no positive occurrence of 1, and a context T’
with no negative occurrence of), such that I' Fpo t: A.

Clearly, (ii) = (i) and (iii) = (iv). We already know that (iv) = (ii) : this
is the normalization theorem 3.10.

It remains to prove that (i) = (iii) :

If ¢ is normalizable, then t ~g ¢’ for some normal term ¢’ ; by proposition 3.24,
there exist a type A and a context I', both containing no occurrence of the

68 Lambda-calculus, types and models

symbol €, such that I' Fp ¢’ : A. It then follows from theorem 4.7 that we
also have I' Fpq ¢ : A.
Q.ED.

Theorem 4.14. A \-term t is normalizable if and only if it admits no infinite
quasi leftmost reduction.

The condition is obviously sufficient. Conversely, if ¢ is normalizable, then,
by theorem 4.13, there exist a type A and a context I', both containing no
occurrence of the symbol €2, such that I' Fpg ¢ : A. Thus, it follows from
the quasi leftmost normalization theorem 3.12 that ¢t admits no infinite quasi
leftmost reduction.

Q.E.D.

With the help of the results above, we can now give yet another proof of the
uniqueness of the normal form (the third, see corollary 4.8) which makes no
use of the Church-Rosser theorem 1.23.

Theorem 4.15. Ift is normalizable, then it has only one normal form. In
other words, if t Gu, t fu' and u,u’ are normal, then u = u’.

By theorem 4.13(i)(ii), ¢ is normalizable by leftmost (-reduction. We prove
the theorem by induction on the total length of this reduction (i.e. the total
number of symbols which appear in it).
By proposition 2.2, we have t = Ax; ... A\xg(§)ty ... 1, where £ is a variable
or a redex.
If £ is a variable, the leftmost (-reduction of ¢ is exactly the succession of
the leftmost B-reductions of 1, ..., t,. Therefore, we can apply the induction
hypothesis to tq,...,t, and we see that ¢t has only one normal form, which is
Azy .. Axg(§)t] ...t where tf is the (unique) normal form of ¢;.
If £ = (Azu)v is a redex, the first step of leftmost [-reduction in ¢ gives
t** = Axq ... Az ulv/z|t; .. . t,. By the induction hypothesis, t** has a unique
normal form ¢*.
Consider now any f-reduction of ¢, which gives a normal form. We show that
it gives t*. Since t = Azy... Az (Azu)vty ... t,, this reduction begins with
some (-reductions in u,v,ty,...,t,, which give Azy ... Azp(Azu)v't) ...,
with u Su/,v Gty Bt), ... t, Bt,. Then, the head redex is reduced, which
gives Axy ... Az u/[v'/x]t) .. .t/ . But f-reduction is a A-compatible relation,
and therefore, we have t** B Ax; ... Az u'[v'/z]|t] ... t,. This shows that this
(B-reduction will finally give a normal form of t**, i.e. t*.

Q.E.D.

Chapter 4. Normalization and standardization 69

Strong normalization

The next proposition is a generalization of corollary 4.5. It holds for both
systems D and D2 (in the case of system DS, the condition “ ¢ is typable
in the context I' 7 is satisfied anyway, since ' Fpgq ¢ : 2).

Proposition 4.16. For all terms u,t,ty,...,t,, and any variable x,
if TE (u[t/x))ty...t,: B, and if t is typable in the context T, then
T+ (Az w)tty...t, : B.

The proof is by induction on n and, for each fixed n, by induction on the

length of B. The case n = 0 is precisely corollary 4.5.

If B = By A By, then(u[t/x])t; ...t, may be given both type B; and type By

in the context I' ; by induction hypothesis, the same holds for (Az u)tt; ... t,,

which is thus typable in the context I', with type By A Bs.

Now we may suppose that B is a prime type and that n > 1.

We have I' - u[t/z]t; ... t, : B ; it follows from lemma 4.2(iii) that ¢, is of

type C, and (u[t/z])t;...t,—1 of type C'— B’, in the context I'; B being a

prime factor of B’.

By induction hypothesis, we have I' b (Az w)tt; .. .1, 1 : C — B’. Therefore

(Arw)tty .. .t, is of type B’, and hence also of type B, in the context I
Q.E.D.

Theorem 4.17. Every strongly normalizable term is typable in system D.

Consider a strongly normalizable term 7, and let N(7) be the sum of the
lengths of all possible normalizations of 7 (proposition 3.18 ensures the cor-
rectness of this definition). The proof is by induction on N (7). By proposi-
tion 2.2, we have : 7 = Azy ... \x,,(v)ty ... t,, where v is either a variable or
a redex.

If v is a variable, then t¢;,...,t, are strongly normalizable and N(r) >
N(t1),...,N(t,). Thus tq,...,t, are typable, with types A;,..., A,, re-
spectively, in system D ; we may suppose that all these typings are in the
same context I' (proposition 3.23) and that I' contains a declaration for each
of the variables xy,..., 2y, v, say 1 : Uy, ..., Ty : Up,v : V (with V = U
whenever v = ;).

Let X be a new type variable, V! = V A (Ay,..., A, — X), and T” the
context obtained by replacing in I' the declaration of v with : v : V/. Then
we have IV bp t; : A; (1 < i < n), and thus IV Fp (v)t;...¢, : X ; hence
7 may be given either type Uy,..., U, — X (if v # z1,...,z,) or type
Ul, . .,Ui_l,vl,Ui+1,. . .,Um — X (lfU = xl)

If v=_(Azu)t (vis aredex), then 7 = Azy ... Az, (Axw)tty ... 1, ;

70 Lambda-calculus, types and models

let 7/ = w[t/z|ty ... t,. Clearly, N(7) > N(7’) (every normalization of 7’ is
strictly included in a normalization of 7) ; it is also clear that N(7) > N(¢)
(since t is a subterm of 7). Thus, by induction hypothesis, 7" and ¢ are
typable in system D ; moreover, proposition 3.23 allows us to assume that
they are typable in the same context. It then follows from proposition 4.16
that (A\x w)tt; ... t, is typable, with some type B, in some context I : even if
it means extending it, we may assume that I" contains a declaration for each

of the variables x1,...,2,,, say x1 : Uy, ..., 2, : U,,. Finally, 7 is seen to be
typable, with type Uy,...,U,, — B.
Q.E.D.

Corollary 4.18. A term is strongly normalizable if and only if it is typable
in system D.

Indeed, by the strong normalization theorem 3.20, every term which is ty-
pable in system D is strongly normalizable.

Remarks.

1. Theorem 4.6 does not hold any more if we replace system D) with system D.
For instance, the term ¢ = Ay(Axy)(y)y is [-equivalent to A\yy, which is of type
Y — Y, where Y is any type variable. Now ¢ may not be given type Y — Y :
Indeed, if Fpt:Y — Y, then, by lemma 4.2(ii), we have :

y:Y Fp (Azy)(y)y : Y ; therefore, by lemma 4.2(iii), y : Y Fp (y)y : A for some
type A; hencey : Y Fpy: B — C (by lemma 4.2(iii)) ; but this is in contradiction
with lemma 4.2(i).

Nevertheless, t is typable ; for example, it may be given type

YANY =-X)=YA(Y —X).

There is an analogue of theorem 4.6 for system D, which uses GI-reduction instead
of f-reduction (see below theorem 4.21).

2. A normalizable term, of which every proper subterm is strongly normalizable,
need not be strongly normalizable. For instance, the term t = (Az(A\y z)(z)d)0,
where 6 = Az zz, is normalizable (it is B-equivalent to z), but not strongly nor-
malizable (¢ reduces to (Ay z)(0)d, and (d)d is not normalizable).

GI-reduction

A A-term of the form (Ax t)u will be called a I-redez if x is a free variable of ¢.
Reducing a I-redex will be called a step of G1-reduction. A finite sequence
of such steps will be called a (31-reduction. The notation ¢t 31t means that
t' is obtained by (I-reduction from t.

We will now prove the following result (Barendregt’s conservation theorem)

Theorem 4.19. Ift' is strongly normalizable and if t B1t', then t is strongly
normalizable.

Chapter 4. Normalization and standardization 71

Lemma 4.20. If T'Fp ulv/z|: A and if x is free in u, then v is typable, in
system D, in the context I.

We first observe that the result is trivial if u is a variable : indeed, this vari-
able must be x. Therefore, from now on, we assume that u is not a variable.
We prove the lemma by induction on the length of the proof of the typ-
ing I' Fp u[v/z]:A in system D. Consider the last rule used in this proof
(page 51).
If it is rule 1, ufv/z] is a variable, thus v must also be a variable.
If it is rule 2, then u[v/z] = Ay w and we have A = B — C' and I', y: B - w:C.
Now, u is not an application (u[v/x] would also be an application) and we
assumed it is not a variable. Therefore, we have © = Ay’ and w = v/[v/z].
Thus T',y:B t u/[v/z]:C is the previous step of the proof. Now, the variable
x is free in o/, since it is free in w. By the induction hypothesis, we see that
v is typable, in system D, in the context I',y:B. But y is not free in v and
it follows from proposition 3.14 that v is typable in the context I'.
If it is rule 3, then ulv/z| = wyw; and we have :
'+ wy:B — A, T'Fw:B. Now, u is not an abstraction (u[v/z] would also
be an abstraction) and we assumed it is not a variable. Therefore, we have
u = upuy and wg = ug[v/x|, w; = ui[v/x]. Thus, some previous steps of the
proof are ' F wo[v/x]:B — A, T'F wfv/z]:B. But z is free in u = uguy,
and therefore, it is free in ug or in u;. We may thus apply the induction
hypothesis, and we see that v is typable, in system D, in the context I'.
The case of the rules 4 and 5 is trivial.

QED.

Theorem 4.21. Let t and t' be two A-terms such that t BIt. If TFpt': A,
then ' Fp t: A.

Remark. This means that the typings in system D are preserved by inverse (51-
reduction. This theorem is close to theorem 4.6, which says that, in system DS,
the typings are preserved by inverse S-reduction.

We may assume that t’ is obtained from t by one step of fI-reduction.
The proof is by induction on the length of ¢ and, for each fixed ¢, by induction
on the length of A. It is exactly the same as for theorem 4.6, except for :
e the very first step : of course, the case A = € is not considered.
e the very last step (iii)(c), which is managed as follows :
c) u=Arw, (sot = (Axw)v) and t' = wlv/z]. Since we have a step of
(B1-reduction, the variable z is free in w.
Now, the assumption is : T Fp wlv/z] : A. By lemma 4.20, v is typable in
the context I'; in system D. By corollary 4.5, we also have I' Fp (Az w)v : A.
Q.E.D.

72 Lambda-calculus, types and models

We can now prove theorem 4.19 : if ¢’ is strongly normalizable, it is typable
in system D (corollary 4.18). By theorem 4.21, ¢ is also typable in system D ;
thus, by corollary 4.18, t is strongly normalizable.

Q.E.D.
Two redexes (Axt)u and (Ax’t')u’ will be called equivalent if w = ' and
tlu/x] = t'[u'/2'] (they have identical arguments and reducts). A redex

which is equivalent to a I-redex will be called a I’-redex.

For example, (Az uv)u is always a I'-redex, even when z is not free in u,v.
Indeed, in this case, it is equivalent to the I-redex (Az xv)u.

We shall write ¢t I't" if ¢’ is obtained from t by a sequence of reductions of
I'-redexes.

We can strengthen theorems 4.21 and 4.19 in the following way, with exactly
the same proof :

Theorem 4.22. Lett and t’ be two \-terms such that t BI't'. If T Fpt' : A,
then'Fp t: A.

Theorem 4.23. Ift' is strongly normalizable and if t BI't', then t is strongly
normalizable.

The M\/-calculus

The terms of the Al-calculus form a subset A; of A, which is defined as
follows :

e If x is a variable, then z € A;.
o Ift.ue A, then tu € Aj.
e Ift € A; and z is a variable which appears free in t, then \xt € A;.

The typical example of a closed A-term which is not in A; is Az Ay x.

If t € Ay, then every subterm of ¢ is in A; (trivial proof, by induction on the
length of t).

Proposition 4.24. Ift,ty,... t, € Ar, then tlty/xq,... t,/x,] € AJ.

Proof by induction on the length of ¢ : the result is immediate if ¢ is a

variable, or if ¢t = wv, with u,v € Aj.

If t = Axu, then t[ty/z1,...,t,/x,] = Arulti/zq, ..., t,/x,] (We suppose

x # x1,...,x,). By hypothesis, there is a free occurrence of x in u and

therefore, there is also one in ult;/x1,...,t,/x,]. By induction hypothesis,

we have ulty/xq,. .., t,/x,] € Ar. Tt follows that A\x ult,/xq, ... t,/x,] € Af.
Q.E.D.

Chapter 4. Normalization and standardization 73

Proposition 4.25. A; is closed by (-reduction. More precisely, if t € Aj
and t Bt', then t' € A; and t' has the same free variables as t.

Suppose t € A; and t Gyt’ ; we show the result by induction on the length
of t ; observe that ¢ cannot be a variable.

If t = Az u, then ' = Az v with u Byu’. Since u € A; and z is a free variable
of u, by induction hypothesis, ' has the same properties. It follows that
t' € A; and t' has the same free variables as t.

If t = uv, we have three possibilities for ¢ :

t' = v'v with u Gy v ; by induction hypothesis, we have ' € A; and
has the same free variables as u. Hence, t' € A; and ¢’ has the same free
variables as t.

t' = uv’ with v By v ; same proof.

u=Axw (so that t = (Azw)v), and t' = wlv/x] ; we have v,w € A; and
therefore, by proposition 4.24, we have t' € A;. Now, let F, (resp. F,) the
set of free variables of v (resp. w) ; thus, we have x € F,,. The set of free
variables of t is F, U (Fy, \ {}). The set of free variables of ¢’ is the same,
because v is really a subterm of t' = w(v/x].

Q.ED.

Theorem 4.26. If t € A; is normalizable, then t is strongly normalizable.
We prove first the following lemma on strong normalization :

Lemma 4.27. Let t1,...,t,,u,v € A be such that u[v/x]t;...t, and v are
strongly normalizable. Then (Ax u)vty .. .t, is strongly normalizable.

By corollary 4.18, we know that u[v/x]t; .. .t, and v are typable in system D.
By proposition 3.23, they are typable in the same context. Then, we apply
proposition 4.16, which shows that (Axw)vt;...t, is typable in system D.
Applying again corollary 4.18, we see that (Azu)vt; .. .1, is strongly normal-
izable.

We can give a more direct proof, which does not use types. Suppose that there
exists an infinite sequence of f-reductions for the A-term (Azxw)vt;...t,.
There are two possible cases :

e Each f-reduction takes place in one of the terms u,v,tq,...,t,.
Thus, there is an infinite sequence of G-reductions in one of these terms. But
it cannot be v, which is strongly normalizable ; and it can be neither u, nor

t1, ..., nor t,, because u[v/x]t; ...t, is strongly normalizable.
e The sequence begins with a finite number of f-reductions in the terms
u,v,ty,...,t, and then, the head redex is reduced. This gives (Ax v/)v't| ...t}

with u Su',v Gty By, ... t, Bt and then «'[v'/z]t| .. .t,. Therefore, this

74 Lambda-calculus, types and models

term is not strongly normalizable. But S-reduction is a A-compatible relation,
and it follows that u[v/z|t; .. .t, B u'[v'/z]t] ... t,. Therefore, u[v/zlt; ... t,
is also not strongly normalizable, which is a contradiction.

Q.E.D.

Now, we prove theorem 4.26 : by theorem 4.13, we know that ¢ is normalizable
by leftmost reduction. We prove the result by induction on the total length
of this leftmost reduction (i.e. the sum of the lengths of the A-terms which
appear in it).
By proposition 2.2, there are two possibilities for ¢ :

o t=MAry... v (y)ty ... t, where y is a variable.
Then, we have tq, ..., t, € A; and their leftmost reductions are stricly shorter
than the one of t. By induction hypothesis, they are all strongly normalizable,
and so is t.

o t=\r1... \xp (AT u)vty ... 1, ; we have to show that (Azw)vty ..., is
strongly normalizable. By lemma 4.27, it suffices to show that u[v/z]t; .. .t,
and v are strongly normalizable. Now, wu[v/x]t;...t, is obtained by (-
reduction from (Azw)vty...t, € A;. Thus, u[v/zlt;...t, € A (proposi-
tion 4.25). It is clear that its leftmost reduction is strictly shorter than the
one of t = Axy ... Az (Arw)vty ... t,. Thus, by induction hypothesis, we see
that u[v/x]ty ... t, is strongly normalizable. But Az u € A, because it is a
subterm of ¢ ; thus, z is a free variable of u. It follows that v is a subterm of
u[v/xlt; ... t,, and therefore v is also strongly normalizable.

Q.E.D.

There is a short proof of theorem 4.26, by means of the above results on

(GI-reduction : suppose that ¢ € A; is normalizable and let ¢’ be its normal

form. Thus, ¢’ is typable in sytem D (proposition 3.24). But we have ¢t G t/,

since the reduction of ¢ takes place in A;. Therefore, by theorem 4.21, t is

typable in sytem D and thus, ¢ is strongly normalizable (theorem 3.20).
Q.E.D.

fn-reduction

Let X4, ..., X} be distinct type variables, A a type, I' a context, and Uy, ... Uy
arbitrary types. The type (resp. the context) obtained by replacing, in A
(resp. in I'), each occurrence of X; by U; (1 < i < k) will be denoted by :
A[Ul/Xl, ceey Uk/Xk] (resp. F[Ul/Xl, oy Uk/Xk])

The next two propositions hold for both systems D and D).

Proposition 4.28.
If TEt: A, then T[U/Xy,..., U/ X Ft: AU/ Xy, ..., Up/ Xy

Chapter 4. Normalization and standardization 75

Immediate, by induction on the number of rules used to obtain I' ¢ : A.
Q.E.D.

Proposition 4.29. Suppose tngt’ and ' =1 : A, and let Xq,..., X} be the
type variables which occur either in I" or in A.Then :

DU /Xy, U/ Xy Et s AU/ X, . U/ X for all types Un, ..., Uy of
the form' V. — W.

Recall that t 7y t" means that ¢’ is obtained from ¢ by one n-reduction.

The proof of the proposition is by induction on the length of ¢ and, for a
given t, by induction on the length of A.

If A=), the result is trivial.

If A= A NAy, then T'HH: A, 't : Ay. By induction hypothesis, we
have I'[Uy /Xy, ..., Up/ Xy B t 2 A[UL/ X, ..., U/ Xk] (i = 1,2) ; therefore,
by rule 5, T'[U /X1, ..., U/ Xkt AU/ Xy, ..., Up/ Xy

So we now may suppose that A is a prime type. The three possible situations
for ¢ are :

i) t is a variable : this is impossible since t g t'.

ii) t = Az u ; then we have two possible cases for ¢’ :

a) t' = Az, with ungu’. Since I' F ' : A (prime type), it follows from
lemma 4.2(ii) that A = B — C, and I', z : B + « : C. By induction
hypothesis :

F[Ul/Xl, ey Uk/Xk], Z . B[Ul/Xl, .. ,Uk/Xk] o C[Ul/Xl, ey Uk/Xk]
for all types U; of the form V' — W. Thus ¢ is of type :

BlU /Xy, ..., U/ Xk) — ClU /X1, ..., U/ Xk = AU/ X1, ..., U/ Xk

in the context I'[U; /Xy, . .., Up/Xy].

b) t = Axt'xz, and = does not occur free in ¢'. By assumption, we have
't : A, Abeing a prime type. According to the definition of prime types,
we have two cases :

If A=B — C,then, x: Btz :C ; hence ' - Axt'x : B — C, in other
words ' ¢ : A ; by proposition 4.28, we have :

F[Ul/Xl, ey Uk/Xk] Ft: A[Ul/Xl, ey Uk/Xk]

If Ais a type variable X;, then I' -t : X, ; therefore, by proposition 4.28,
we have T'[U,/X,...,Ux/Xi] Ft': U;. Now, by assumption, U; =V — W,
It then follows that I'[Uy /X, ..., Ux/Xk], 2 : V F t'x : W and, consequently,
LU /Xy, ..., Up/ X E Axt’'z 2 U;, that is to say
F[Ul/Xl, ey Uk/Xk] Ft: Uz
iii) t = wv ; again, we have two possible cases for ¢ :

a) t' = uv', with v v’ ; since uv’ is of prime type A in the context I, it
follows from lemma 4.2(iii) that v’ is of type B and u of type B — A’ in the
context I'; A being a prime factor of A’. By induction hypothesis :

76 Lambda-calculus, types and models

LU /Xy, ..., Uy/ X Fo: BlU /Xy, ..., Ux/Xy| for all types U; of the form
V—W.
By proposition 4.28, we have :
F[Ul/Xl,,Uk/Xk] Fou: B[Ul/Xl,,Uk/Xk] — A/[Ul/Xl,,Uk/Xk}
Thus t = uv is of type A’'[U;/ X1, ..., U/ X}] in the context
LU/ Xy, ..., Ux/Xk], and hence is also of type A[Uy/ X1, ..., U/ Xkl

b) t = v'v, with ungw’ ; the proof is the same as in case (a).

QE.D.

Theorem 4.30. A \-term is fn-normalizable if and only if it is normalizable.

Necessity : let ¢ be a fn-normalizable term ; we prove that ¢ is normalizable,
by induction on the length of its Sn-normalization. Consider the first gn-
reduction done in ¢ : it produces a term #', which is normalizable (induction
hypothesis). If it is a S-reduction, then ¢ 5y ', thus ¢ is also normalizable. If it
is an n-reduction, then ¢ nyt’ ; since ¢’ is normalizable (induction hypothesis),
we have I Fpg t' : A, where both A and T" contain no occurrence of the
symbol € (theorem 4.13). By proposition 4.29, there exist a type A’ and a
context I, with no occurrence of €2, such that IV Fpq ¢ : A" ; it then follows
from theorem 4.13 that ¢ is normalizable.

Sufficiency : if ¢ is normalizable, then ¢ Gt' for some normal term ¢’ ; consider
a maximal sequence of n-reductions starting with ¢’ (such a sequence needs to
be finite, since the length of terms strictly decreases under n-reduction) : it
produces a term which is still normal (lemma 3.27) and contains no 7-redex,
in other words a #n-normal term.

Q.E.D.

We can now give an alternative proof of the uniqueness of the [Sn-normal
form :

Theorem 4.31. Ift € A is fn-normalizable, then it has only one Bn-normal
form. More precisely, there exists a n-normal term u such that, if t Bnt’ for
some t', then t'(nu.

Remark. This is exactly the Church-Rosser property for t.

By theorem 4.30, t is normalizable ; by theorem 4.13(i)(iii), there exist a

type A and a context I', both containing no occurrence of the symbol €2, such

that I' Fpq £ : A. Then the result follows immediately from theorem 3.13.
Q.ED.

Theorem 4.32. A A-term t is solvable if, and only if there exists a head
normal form u such that t Bnu.

Chapter 4. Normalization and standardization 7

If t is solvable, then ¢ fu for some head normal form u and, therefore, t 57 u.
Conversely, suppose that t fnu, u being a head normal form. Then, there
exists a sequence tg,t1,...,t, such that ¢ty = t, t,, is solvable and, for each
t=20,...,n we have t; Bt; 1 or t;not;1.
We show that ¢ is solvable by induction on n. This is trivial if n = 0. If
n > 1, then t; is solvable, by induction hypothesis and there are two cases :

i) to Bty ; then t =ty is solvable.

ii) tomoty ; since ty is solvable, by theorem 4.9(i)(iv), it is typable with
a non-trivial type in system D). By proposition 4.29, t = ¢, has the same
property ; it is therefore solvable, again by theorem 4.9(i)(iv).

Q.E.D.

2. The finite developments theorem

Remark. Until the end of this chapter, we shall only use the Church-Rosser
theorem 1.23 and the strong normalization theorem 3.20.

Let t € A ; recall that a redex in t is, by definition, an occurrence, in ¢, of a
subterm of the form (Az u)v. In other words, a redex is defined by a subterm
of the form (Axu)v, together with its position in t. So we clearly have the
following inductive definition for the redexes of a term ¢ :

if t is a variable, then there is no redex in ¢ ;

if t = Az u, the redexes in t are those in u ;

if t = uw, the redexes in t are those in u, those in v, and, if u starts with
A, titself.

We add to the A-calculus a new variable, denoted by ¢, and we define A(c)
as the least set of terms satisfying the following rules :

1. If z is a variable # ¢, then z € A(c) ;

2. If x is a variable # ¢, and if t € A(c), then Azt € A(c) ;

3. If t,u € A(c), then (c)tu € A(c) ;

4. If t,u € A(c), and if ¢ starts with A, then tu € A(c).

Lemma 4.33. Ift,u € A(c), and if x is a variable # ¢, then ut/z] € A(c).

The proof is by induction on u. The result is obvious whenever u is a vari-
able # ¢, or u = Ayv, or u = (c)vw. If u = (A\y v)w, then u[t/z] =
(Ayv[t/x])w[t/x]. By induction hypothesis, v[t/z], w[t/x] € A(c), and there-
fore u[t/z] € A(c).

QED.

Lemma 4.34. Ift € A(c) and t fot’, then t' € A(c).

78 Lambda-calculus, types and models

By induction on ¢t. If ¢ = Axw, then ¢/ = Az, with uyu' ; then the
conclusion follows from the induction hypothesis.
If t = (c)uv, then t' = (c)u'v or (c)ur’, with u Sy u’ or v Gy v'. By induction
hypothesis, u/,v" € A(c), and therefore ¢’ € A(c).
If t = (Ax u)v, there are three possibilities for ¢’ :

t' = (Azu)v, or (Azuw)v', with u By u’ or v 5y v’. By induction hypothesis,
u',v" € A(c), and then ¢ € A(c).

t' = ufv/z] ; then ¢’ € A(c) by lemma 4.33.

QED.
We see that A(c) is invariant under S-reduction (if t € A(c) and t 3¢/, then
t' e Ac)).

Lemma 4.35. Let t € A(c), and I" be any context in which all the variables
of t, except c, are declared. Then there exist two types C,T of system D such

that T, ¢ : C'bpt:T.

Proof by induction on ¢ : this is obvious when t is a variable # c.
If t = Az u, we can assume that the variable z is not declared in I" (otherwise,
we change the name of this variable in t). By induction hypothesis, we have
e:A c:CFu:U, and therefore I', c: CF Axu: A — U.
If t = (¢)uv, with u,v € A(c), then, by induction hypothesis :
e:Chu:U,and T', c: C"Fov:V. Hence :
Coe:CANC'ANUYV - W) E (cuw = W.
If t = (Aru)v, with u,v € A(c), we may assume that the variable x is not
declared in I' (otherwise, we change the name of this variable in Az u). By
induction hypothesis :
D,z:A c:Chu:U,and ', c: C'"Fov:V ; but here A is an arbitrary
type, so we can take A=V. Then I', ¢: C F Azu : V — U, and therefore
C,e:CANC'E (Axu)v:U.

Q.E.D.

Corollary 4.36. Fvery term in A(c) is strongly normalizable.

This is immediate, according to the strong normalization theorem 3.20.
Q.E.D.

We define a mapping from A(c) onto A, denoted by T+ |T'|, by induction
on T :

if T is a variable # ¢, then |T| =T ;

if T'= Xz U, with U € A(c), then |T| = A\z|U| ;

if T'= (c)UV, with U,V € A(c), then |T| = (JU])|V] ;

if T'= Az U)V, with U,V € A(c), then |T'| = (A\z|U|)|V| ;

Roughly speaking, one obtains |T'| by “ forgetting ” ¢ in T.

Chapter 4. Normalization and standardization 79

Let T € A(c) and t = |T'| ; there is an obvious way of associating, with each
redex Rin T, aredex r = |R| in ¢, called the image of R. Distinct redexes in
T have distinct images in ¢ ; this property, like the next ones, is immediate,
by induction on 7" :

T, U € Ac), and |T| =t, |U| = u, then |T[U/z|| = tju/z].

Let T € A(c), R be a redex in T, T" the term obtained by contracting R in
T,t=|T|,r=|R|, and t' = |T'| ; then ¢’ is the term obtained by contracting
the redex r in ¢.

Lemma 4.37. Lett € A and R be a set of redexes of t. Then there exists a
unique term T € A(c) such that t = |T| and R is the set of all images of the
redezes of T'.

This term T will be called the representative of (t,R). So we have a one-
to-one correspondence between A(c) and the set of ordered pairs (¢, R) such
that t € A and R is a set of redexes of ¢.

We define T' by induction on t. If ¢ is a variable, then R = () ; the only way
of obtaining a term 7" € A(c) such that |T| is a variable is to use rule 1 in
the inductive definition of A(c) given above. Thus T' = t.
If t = Aru, then R is a set of redexes of u. Only rule 2 can produce a
term 7" such that |T'| starts with A\. So 7" = Az U, and U needs to be the
representative of (u, R).
If t = tyty, let Ry (resp. Rs) be the subset of R consisting of those redexes
which occur in #; (resp. t3). T is obtained by rule 3 or rule 4, thus either
T = ()1 T3, or T = T\ Ty, T; being the representative of (;, R;).
If t itself is not a member of R, then T cannot be obtained by rule 4 ;
otherwise 7" would be a redex, and its image ¢ would be in R. Thus T =
(C)TlTQ.
If t is a member of R, then T needs to be a redex, so T' cannot be obtained
by rule 3, and therefore T = T175.

Q.E.D.

Intuitively, the representative of (¢, R) is obtained by using the variable ¢ to
“ destroy ” those redexes of t which are not in R, and to “ neutralize ” the
applications in such a way that they cannot be transformed in redexes via
(B-reduction.

Let t € A, R be a set of redexes of t, ry a redex of ¢, and ¢’ the term obtained
by contracting ¢ in t. We define a set R’ of redexes of t' called residues of
R relative to ro : let S = RU{ro}, T be the representative of (¢,S), Ry the
redex of T of which r(is the image, and 7" the term obtained by contracting
Ry in T ; so we have t' = |T’|. Then R’ is, by definition, the set of images in
t' of the redexes of T".

80 Lambda-calculus, types and models

Remark. The set of residues of R relative to ro does not only depend on ¢ and ¢/,
but also on the redex ry. For example, take t = (Azz)(Az x)x, ' = Az z)x, 19 =t
and 7y = t' : clearly, t' is obtained by contracting either the redex rg or the redex
r1in t ; but {ro} has a residue relative to 71, while it has no residue relative to rg.

Let t € A ; a reduction B starting with ¢ consists, by definition, of a finite
sequence of terms (tyg = t),t1,...,t,, together with a sequence of redexes
ro,71,---,Tn_1, such that each r; is a redex of ¢;, and t;;1 is obtained by
contracting the redex r; in the term ¢;(0 < i < n). The term ¢, is called the
result of the reduction B. We shall also say that the reduction B leads from
ttot,.

Now let R be a set of redexes of t. We define the set of residues of R in t,,
relative to the reduction B, by induction on n : we just gave the definition
for the case n = 1 ; suppose n > 1, and let R,,_; be the set of residues of
R in t,,_; relative to B ; then the residues of R in t, relative to B are the
residues of R,,_1 in t,, relative to r,,_;.

Let ¢ € A and R be a set of redexes of t. A development of (t,R) is, by
definition, a reduction D starting with ¢ such that its redexes ro,71,..., 71
satisfy the following conditions : ry € R, and r; is a residue of R relative
to the reduction rg,7q,...,7,-1(0 < i < n). The development is said to be
complete provided that R has no residue in t, relative to the reduction D.

The main purpose of the next theorem is to prove that the lengths of the
developments of a set of redexes are bounded.

Theorem 4.38 (Finite developments theorem). Let t € A, and R be a set
of redexes of t. Then :

i) There exists an integer N such that the length of every development of
(t,R) is < N.

ii) Every development of (t,R) can be extended to a complete development.
iii) All complete developments of (t,R) have the same result.

Let D be a development of (t,R), (to = t),t1,...,t, its sequence of terms,
ro,T1, .., n_1 its sequence of redexes, R; the set of residues of R in t; relative
to the G-reduction rq,...,r;1(1 <i < n), and Rg = R. We have ry € Ry,
each t; (1 < i < n) is obtained by contracting the redex r;_; in ¢;_;, and
r; € R;. Therefore R; is the set of residues of R;_; relative to r;_;.

Let T' € A(c) be the representative of (t,R) and T; € A(c) (0 < i < n) the
representative of (t;, R;) (To = T). Since r; € R;, r; is the image of a redex
R;inT;. Let Uy € A(e) (0 <i < n—1) be the term obtained by contracting
the redex R; in T;. Then |U;y1| = t;41 (the term obtained by contracting the
redex r; in ¢;). The set of all images of the redexes of U, is therefore the set
of residues of R; in t;;; relative to r; (by definition of this set of residues),

Chapter 4. Normalization and standardization 81

that is to say R;y1. Consequently, U;,; is the representative of (¢;11, Rit1),
and therefore U;;1 = T;1;. So we have proved that the sequence of terms
(Ty = T),T1,...,T, and the sequence of redexes Ry, Ry,..., R, form a
reduction B(D) of T
Clearly, the mapping D — B(D) is a one-to-one correspondence between the
developments of (¢, R) and the reductions of its representative 7. In partic-
ular, the length of any development of (¢, R) is that of some reduction of 7T'.
Thus it is < N, where N is the maximum of the lengths of the reductions
of T (T € A(c) is strongly normalizable). Moreover, every reduction of T
can be extended to a reduction which reaches the normal form of T'. Because
of the correspondence defined above, this implies that every development of
(t, R) can be extended to a development in which the last term contains no
residue of R, in other words to a complete development.
Finally, if (¢ =t),t1,...t, is a complete development of (¢, R), and if (Tp =
T),Ty,...,T,is the corresponding reduction of 7', then 7T;, is the normal form
of T'; therefore, t,, = |T},| does not depend on the development.

Q.E.D.

3. The standardization theorem

Let t be a A-term. Any redex of ¢t which is not the head redex will be
called an internal redez of t. An internal reduction (resp. head reduction) is,
by definition, a sequence ti,...,t, of A\-terms such that t;,; is obtained by
contracting an internal redex (resp. the head redex) of ;.

A standard reduction consists of a head reduction followed by an internal one.

Theorem 4.39 (Standardization theorem). Ift 5t', then there is a standard
reduction leading from t to t'.

Let t be a A-term, R a set of redexes of t, and Ni the sum of the lengths of
all complete developments of (¢,R). Consider the result u of any complete

development of (¢,R) ; we shall write ¢ R, 4. The finite developments
theorem ensures that N and u are uniquely determined (if R = (), then
Nr =0and u=t).

We shall say that the set R is internal if all the members of R are internal
redexes of t.

Lemma 4.40. Let r be an internal redex of t, and t' the term obtained by
contracting r. If t' has a head redex, then this is the only residue, relative
to r, of the head redex of t.

82 Lambda-calculus, types and models

The term ¢ cannot be a head normal form, otherwise ¢ would also be one.

So we have t = Azy ... Az, (Ayuw)vty ... t,. The result of the contraction of

the redex r is the term : ¢/ = Az ... Az, (Ayu/)v't] ...t and the head redex

of t' can be seen to be the only residue (relative to r) of the head redex of t.
Q.E.D.

Corollary 4.41. Let R be an internal set of redexes of t. Then every de-
velopment of (t,R) is an internal reduction of t ; if t' is the result of a
development of (t,R), then the head redex of t' (if there is one) is the only
residue of the head redex of t.

By lemma 4.40, every residue of an internal redex of ¢ relative to an internal
redex of ¢ is an internal redex ; this proves the first part of the corollary. For
the second one, it is enough to apply repeatedly the same lemma.

Q.E.D.

We shall call head reduced image of a term ¢ any term obtained from ¢ by
head reduction.

Theorem 4.42. Consider a sequence to,tq,...,t, of A-terms, and, for each

. R
1, a set R; of redexes of t;, such that : tg Ro, ty R, to o tp1 =5 t,.

Then there exist a sequence ug,uy,...,u, of terms, and, for each i, a set S;

. S S Sn—1 .
of internal redexes of u;, such that : Uy — Uy —= Uy *+* Up_1 —— Uy, Uy IS

a head reduced image of ty, and u, = t,.

The proof is by induction on the n-tuple (Ng,_,,..., Ng,), with the lexico-
graphical order on the n-tuples of integers. The result is obvious if all the
R;’s are internal. Otherwise, consider the least integer k£ such that t; has a
head redex, which is in R.

If £ = 0, then ¢y, has a head redex p, which is in Ry. Let ¢, be the term
obtained by contracting the redex p, and Rj, the set of residues of R relative

R/
to p. We have t; =% #,, and therefore ty —> t;. Moreover, it is clear
that Ng; < Ng,. Thus we obtain the expected conclusion by applying the

. . . R¢ Rn—
induction hypothesis to the sequence : t{, —> t; R, ty o tuo1 —— by

Now suppose k > 0, and let pj be the head redex of ¢, ¢ the term obtained
by contracting that redex, and R, the set of residues of Ry relative to py.

Since pr € Ry, and ty R, tk+1, we clearly have Np; < Ng, and) B, i1
On the other hand, R;_; is an internal set of redexes of t,_1, so by the
previous corollary there is an internal reduction which leads from ¢,_; to t.
Thus tx—; has a head redex, which we denote by pr_1. Now let R}, =
Ri—1U{pr_1} ; the result of a complete development of t;_; relative to Rj_,

Chapter 4. Normalization and standardization 83

can be obtained by taking the result ¢, of a complete development of #;_;
relative to Ry_1, then the result of a complete development of ¢, relative
to the set of residues of py_; relative to Ry_;. But there is only one such

residue, namely the head redex of ¢;. So the result is ¢}, and therefore we

R R;c—l R! Rn—1
have : tg —> ty -ty — U —> tgyr o b1 — by

This yields the conclusion, since the induction hypothesis applies ; indeed,
we have :
(Nrpy_ys- s Nryyrs Nrys Ny s , Nr,)

< (NRn—l’ C.. 7NRk+1’ NRk, NRk—l’ ey NRO)?
since Ng; < Ng,.

Q.E.D.
Now we are able to complete the proof of the standardization theorem :
consider a reduction (ty = t),t1,...,t,_1,(t, = t') which leads from ¢ to .

One obtains ¢;,1 from ¢; by contracting a redex r; of ¢;, that is by a complete
development of the set R; = {r;}. Thus, by theorem 4.42 there exists a

sequence g o, Uy S, Ug *+* Up_1 St u, such that ug is a head reduced
image of ty, u, = t, and §; is an internal set of redexes of u;. Hence there
is an internal reduction which leads from wug to t¢,, and therefore, there is a
standard reduction which leads from ¢, to ,.

Q.E.D.

As a consequence, we obtain an alternative proof of part of theorem 4.9 :

Corollary 4.43. A \-term is B-equivalent to a head normal form if and only
if its head reduction is finite.

If t is f-equivalent to a head normal form, then, by the Church-Rosser the-
orem, we have t 3 u, where u is a head normal form. By the standardization
theorem, there exists a head reduced image of ¢, say t’, such that some in-
ternal reduction leads from t' to u. If ¢’ has a head redex, then also u has a
head redex (an internal reduction does not destroy the head redex) : this is
a contradiction. Thus the head reduction of ¢ ends with t'.

The converse is obvious.

Q.ED.

Corollary 4.44. Ift ~g Av u, then there exists a head reduced image of t of
the form Axv.

Indeed, by the Church-Rosser theorem, we have t 3 Az u/. By the standard-

ization theorem, there exists a head reduced image ¢’ of ¢, such that some

internal reduction leads from ¢’ to Az «’. Now an internal reduction cannot

introduce an occurrence of A in a head position. Therefore ¢’ starts with .
Q.E.D.

84 Lambda-calculus, types and models

A term t is said to be of order 0 if no term starting with A\ is f-equivalent
to t. Therefore, corollary 4.44 can be restated this way : a term ¢ is of order 0
if and only if no head reduced image of ¢ starts with .

Remark.

The standardization theorem is very easy to prove with the hypothesis that the
head reduction of t is finite or, more generally, that there exists an upper bound
for the lengths of those head reductions of ¢ which lead to a term which can be
reduced to t'.

Indeed, in such a case, it is enough to consider, among all the reductions which
lead from ¢ to ¢/, any of those starting with a head reduction of maximal length,
say (to =t),t1,...,t,. The proof of the theorem will be completed if we show that
all the reductions which lead from ¢, to ¢’ are internal.

This is obvious if ¢; is a head normal form.

Now suppose that tr = Ax1... \z,(Axw)vvy...v, and consider a reduction,
leading from tj to ¢, which is not internal ; it cannot start with a head reduction
(otherwise we would have a reduction, leading from ¢ to ¢, starting with a head
reduction of length > k). Consequently, it starts with an internal reduction, which
leads from t; = Azq... Az Az w)vvr .. v, to Az .. Az, (Az w00 L), (with
uBu', vBv, v; fu]). This internal reduction is followed by at least one step of
head reduction, which leads to A\z1 ... Az, v/[v//x]v] ... v),. Now this term can be
obtained from t; by the following path : first one step of head reduction, which
gives Axj... Az ufv/x]vr ... v, ; then a f-reduction applied to w,v,vy,..., vy,
which leads to Az ... Az, v/[v//x]v] ... v),. Since Axy ... Axp,u/ [V /z]v] .. 0l BY,
what we have obtained is a reduction which leads from ¢; to ¢’ and starts with a
head reduction : this is impossible.

Q.E.D.

The standardization theorem is usually stated in a (slightly) stronger form.
First, we define the rank of a redex p in a A-term ¢, by induction on the
length of .

If t = Az u, then p is a redex of u ; the rank of p in ¢ is the same as in u.

If ¢ = (u)v then either p = t, or p is a redex of u, or p is a redex of v ;

if p =1, then the rank of pin ¢is 0 ;

if p is in u, then its rank in ¢ is the same as in u ;

if p is in v, then its rank in ¢ is its rank in v plus the number of redexes in u.
Remark. The rank describes the order of redexes in ¢, from left to right (the
position of a redex is given by the position of its leading).

Consider a reduction ty, ..., ¢, and let n; be the rank, in ¢;, of the redex p;
which is reduced at this step. The reduction will be called strongly standard
if we have ng <ny; <...<ng_1.

Remark. A strongly standard reduction is clearly a standard one. Indeed, if
there is a head redex, then its rank is 0.

Chapter 4. Normalization and standardization 85

Theorem 4.45 (Standardization theorem, 2nd form). Ift 5t', then there is
a strongly standard reduction leading from t to t'.

The proof is by induction on the length of ¢'. By theorem 4.39, we consider
a standard reduction from ¢ to /. This standard reduction begins with a
head reduction from ¢ to u, which is followed by an internal reduction from
to t'. By proposition 2.2, we have u = Ax;...Axg(p)u; ... u, where p is a
redex or a variable ; therefore, we have t' = Azy... Axg(p')u] ...), with

ul
pBp,u ful, ... u, ful,. Then, there are two possibilities :

i) If p = (Azv)w is a redex, then p' = (Azv")w’ (because the reduction from
u to t' is internal) and we have v v, w Gw'.

By induction hypothesis, there are strongly standard reductions leading from
v to v, wto w, u; to u, ..., u, to u,. By putting these reductions in
sequence, we get a strongly standard reduction from u to ¢’ ; and therefore,
also a strongly standard reduction from ¢ to t'.

ii) If p is a variable, then p = p’ and we have uy fu}, ..., u, ful,. The end
of the proof is the same as in case (i).
Q.ED.

References for chapter 4

[Bar83], [Bar84], [Cop78], [Hin86], [Mit79], [Pot80].

(The references are in the bibliography at the end of the book).

The proof given above of the finite developments theorem was communicated
to me by M. Parigot.

86

Lambda-calculus, types and models

Chapter 5

The Bohm theorem

Let a, = Azy ... Az Az(2)21 . . . 2, for every n > 0 (in particular, ag = Az 2) ;
oy, is the “ applicator ” of order n (it applies an n-ary function to its argu-
ments).

Propositions 5.1 and 5.8 show that, in some weak sense, applicators behaves
like variables with respect to normal terms.

Proposition 5.1. Let t be a normal A-term and x4, ..., x; vartables ; then
tlom, /T, .. . Q JTE] is normalizable provided that ny,...,n; € N are large
enough.

The proof is by induction on the length of t. If ¢ is a variable, then the result
is clear, since «,, is normal.
If t = Ay w, then tlay, /z1,..., a0, /2k] = Ay ulon, /21, ... ap, /zk] 5 by
induction hypothesis, u[a,, /x1, ..., an, /2] is normalizable provided that
ni,...,ny are large enough, thus so is t[ay,, /x1, ..., an, [Tk
Now we can assume that ¢ does not start with A. Since ¢ is normal, by propo-
sition 2.2, we have t = (y)t; ...t,, where y is a variable. Now ¢, is shorter
than ¢, so t;[a,, /x1, ..., an, /x)] is normalizable provided that ng,...,ny are
large enough. Let u; be its normal form.
If y ¢ {z1,...2%}, then tlay, /x1,... a0, /xK] ~ (y)us...u,, which is a
normal form.
If y € {x1,... 2}, say y = x1, then :
tlom, [T1, - oy, JTr] 25 (Qny U -y

g (AT AT, AT ()X - Ty U - Uy
if n; > p, this term becomes, after 3-conversion :

AZpi1 o ATy AZ(T) Uy o UpTpiy - - - Ty
which is in normal form.
Q.E.D.

87

88 Lambda-calculus, types and models

Remark. In proposition 5.1, the condition “ provided that ni, ..., ng are large

enough ” is indispensable : if § = Ay(y)y and t = (z)dd, then t[ag/x] is not
normalizable.

The main result in this chapter is the following theorem, due to C. Bohm :

Theorem 5.2. Let t,t' be two closed normal A-terms, which are not Gn-equi-
valent ; then there exist closed \-terms ty,...,tx such that :
(t)tl Ce tk >3 0, and (t/)tl R tk] 1.

Recall that, by definition, 0 = AzAyy and 1 = Az Ay z.

Corollary 5.3. Let t,t" be two closed normal \-terms, which are not (3n-
equivalent, and v,v' two arbitrary A-terms. Then there exist A-termsty, ..., 1t
such that (t)t; ...t ~gv and (')t ...t =50V

Indeed, by theorem 5.2, we have ()t ...t ~3 0 and (¢')t; ...t ~5 1 ; thus
(D)1 ... tv'v ~g v and (t)t; ... t0'v 50
QED.

The following corollary shows that the Sn-equivalence is maximal, among the
A-compatible equivalence relations on A which contain the (-equivalence.

Corollary 5.4. Let >~ be an equivalence relation on A, containing ~g, such
that : t ~t' = (t)u ~ (t)u and \xt ~ \xt’, for every term t,t',u and every
variable x. If there exist two normalizable non Bn-equivalent terms ty, t, such
that to ~ t}, then v ~v' for all terms v,v’.

Indeed, let x4, ...,z be the free variables of ty, ¢, let t = Azy ... Axyty and
t' = Axy... Axgt). Then t ~ t' and t is not fn-equivalent to ¢'. Thus, by
corollary 5.3, we have (¢£)ty ...t, ~g v and (t')t; ...t ~5 v ; therefore v ~ v'.
Q.E.D.

We will call Béhm transformation any function from A into A, obtained by
composing “ elementary ” functions of the form : ¢ +— (t)ug or t — tug/x]
(where uy and x are given term and variable).

The function t — (t)uo, from A to A, will be denoted by B,,.

The function ¢ +— t[ug/x] will be denoted by By, .-

Note that every Bohm transformation F' is compatible with both g- and
Bn-equivalence : t ~gt' = F(t) ~3 F(t') and t ~g, t' = F(t) ~z, F(t').

Lemma 5.5. For every Bohm transformation F, there exist terms tq, ..., 1
such that F(t) = (t)t1 ...t for every closed term t.

Chapter 5. The Bohm theorem 89

Immediate proof, by induction on the number of elementary functions of
which F' is the composite. Indeed, if F(¢) is in the indicated form, then so
are (F(t))up and (F(t))[uo/x] : the former is (t)t1...txup, and the latter

(t)t) ... t,, where t; = t;[ug/z], since t is closed.

Q.E.D.

Theorem 5.6. Let x1,...,x; be distinct variables and t,t" be two normal
non-Gn-equivalent terms. Then, for all distinct integers nq, ..., ng, provided

that they are large enough, there exists a Bohm transformation F' such that :
F(tlom, /1, ... an, /zk]) 2~ 0 and F(t [an, /21, ..., o, J2k]) =5 1.

Theorem 5.2 is an immediate consequence of theorem 5.6 : indeed, if £ is a
closed term, and F' a Bohm transformation, then, by lemma 5.5, we have
F(t) = (t)ty...t,, where ty,...,t, depend only on F. By applying theo-
rem 5.6, we therefore obtain (¢)t;...t, ~g 0, and (t')t;...t, ~3 1. We
may suppose that tq, ..., ¢, are closed terms (in case they have free variables
T1,...,Tp, replace t; by t;[ai/x1, ..., a,/xp], where ay, ..., a, are fixed closed
terms, for instance 0).

We also deduce :

Corollary 5.7. Let ~ be an equivalence relation on A, containing ~g, such
that t ~ t' = (Hu ~ (t')u and tlu/x] ~ t'[lu/x] for every term t,t',u and
every variable x. If there exist two normalizable non-Bn-equivalent terms
to, ty such that tg >~ t{,, then t ~t' for all terms t,t'.

By theorem 5.6 (where we take k = 0), there exists a Bohm transformation F
such that F(ty) ~3 0, and F(t;) ~3 1. Thus it follows from the assumptions
about relation ~ that ¢ty ~ t{, = F(ty) ~ F(t{,). Therefore 0 ~ 1, and hence
(0)t't ~ (1)t't, that is t ~ t'.

Q.ED.

Proposition 5.8. Let x4, ...,z be distinct variables and t,t' be two normal
non-Gn-equivalent terms. Then, for all distinct integers ny, ..., ng, provided
that they are large enough, the terms :

tlom, /21, ..o an /o] and oy, /21, ..., o, /2K] are not Bn-equivalent.

Immediate from theorem 5.6.
Q.E.D.

Corollary 5.9. Let t,t' be two normalizable terms :
i) if t{o/x] ~p, V|, /2] for infinitely many integers n, then t ~g, t' ;
i) if (t)ou, g, ('), for infinitely many integers n, then t ~g, t'.

90 Lambda-calculus, types and models

Proof of (i) : it is the particular case k = 1 of proposition 5.8.

Proof of (ii) : let = be a variable with no occurrence in ¢, ¢" ; by applying (i) to
the terms (¢)x and (¢')z, we obtain : (t)x ~g, (t')z, thus Az(t)x ~g, Az(t)z,
and therefore t ~g, t'.

QED.

The following result will be used to prove theorem 5.6 :

Lemma 5.10. Let t,u be two A-terms. If one of the following conditions
hold, then there exists a Bohm transformation F such that :

F(t) ~5 0 and F(u) ~g 1.
i)t=(2)t;...tp, u= (Y)ur...uy, wherex #y orp#q ;
i) t=Ary . Az (@)t .ty uw = Az Az A (x)uy .. uy, where m # n
orp#q.

Proof of (i).

Case 1 : & #y;let og = Az1... 02,0, 01 = Az1... A%, 1. By [(-reduction,
we obtain immediately By, ,Bo, ,(t) ~g 0 and By, By, ,(u) ~ 1. Thus
B,y +Bs, 4 is the desired Bohm transformation.

Case 2 : x =y and p # ¢, say p < ¢q ; then we have :

Boyo(t) = (ag)t) ... 1, and Bq,.(u) = (ag)u) ... u;, (where 7 = 7la, /] for
every term 7). By [-reduction, we obtain :

Boga(t) ~g Azpi1 .. Azghz(2)t] ...t 2,01 ... 24 and

Bay2(u) =5 Az(2)u] ... uj,

Then the result follows from case 1 of part (ii), treated below.

Proof of (ii).

Case 1 : m # n, say m < n ; take distinct variables 21, ..., z,, 2 not occurring
in t,u. Let B = B.B,, ...B,,. Then, by f-reduction, we have : B(t) ~4
(Zm)t] - ty2myz .. 202, and B(u) ~p (2)uf...u; (where 7' is the term
Tlz1/x1, ooy Zm [T, Zme1/x], and 7" is the term 7T[z1/x1,..., 2, /%0, 2/2]).
Since z,41 # z, the result follows from case 1 of part (i) above.

Case2: m=nandp#q;let B=DB,B,, ...B;. We have :

B(t) = (2)t1...t, and B(u) = (x)uy ...u, Since p # g, the result follows
from case 2 of (i).

Q.E.D.

The length lg(t) of a term ¢ is inductively defined as follows (actually, it is
the length of the expression obtained from ¢ by erasing all the parentheses) :
if ¢ is a variable, then lg(t) =1 ;
lg((t)u) = lg(t) +lg(u) ; lg(Axt) = lg(t) + 2.
We now prove theorem 5.6 by induction on lg(t) + lg(t').
Take a variable y # xi,...,x;, with no occurrence in ¢,t', and let w,w’
be the terms obtained from (¢)y, (¢')y by normalization. If w ~g, w’, then

Chapter 5. The Bohm theorem 91

Ayw g, Ayw', thus Ay(t)y ~g, Ay(t')y and hence t ~~g, t, which contradicts
the hypothesis. Thus w and w’ are not Sn-equivalent.
If both ¢,t' start with A, say t = Az u, t' = Ax’u/, then :
w = uly/z], w' = u'[y/2'] and lg(w) + lg(w') = lg(t) +1g(t') — 4.
If ¢ starts with A, say ¢t = Az u, while ¢’ does not, then either ¢’ = (v')u’ or ' is
a variable. Thus, w = uly/z], w' = (t')y and lg(w)+Ilg(w") = lg(t)+1g(t')—1.
Therefore, in both cases, we can apply the induction hypothesis to w, w'.
Thus, given large enough distinct integers nq,...,ns, there exists a Bohm
transformation F' such that :

F(wlom, [x1, ..., an, /xi]) ~5 0 and F(w'[on, /21, ... an, /Tk]) ~5 1.
Now we have :

wlag, [T1, ..y o, JTk] 225 (Han, /21, .. . o, /xk])y and

Wl /21, a, o] g (P om, /21, - am, [Tk Y.
It follows that Bohm transformation F'B, have the required properties :
FBy(tlan, /x1, ..., an, /x]) =25 0 and FBy([an, /21, ..., 0n, /7k])) 22 1.

Now we may suppose that none of ¢,t start with A (note that this happens
at the first step of the induction, since we then have lg(t) = lg(t') = 1, so ¢
and t' are variables).

Since t,t" are normal, we have t = (x)t;...t, and t' = (y)t] ...t,, where x,y

are variables, and #y,...,,,1],...,t, are normal terms.
We now fix distinct integers nq,...,n; and distinct variables xq,...,x;. We
will use the notation 7[] as an abbreviation for 7[ay,, /1, ..., an, /x|, for

every A-term 7.
Now, there are the following three possibilities :

1. Suppose that z,y ¢ {z1,...,2zr}. Then we have :

t] = @)t ... 4[] and t'[] = ()&] ...).
If x # y or p # ¢, then, by lemma 5.10(i), there exists a Bohm transformation
F such that F(t[]) ~5 0 and F(#'[]) ~3 1 : this is the expected result.
In case x = y and p = ¢, take any integer n > nq,...,ng,p. Then :

Ba, o (t]) = (cn)ta[] - - £,[] and Ba, o(t'l]) = (an)ti[l - - 1]

(the notation 7[] stands for 7[a,, /21, ..., an, /Tk, /x|, for every term 7).
Since ay, = A2y ... AzpA\2(2) 21 . .. 2, we therefore obtain, by [-reduction :
Ba, 2 (t]]) 28 Azpi1 - Az Az(2)0]] - -] 2p41 - - - 20 and

Bapo(t']) 25 Azpi1 - Aza Xz ()8]] - [l 2p11 - - - 2

Note that the terms ¢;[] and ¢[] contain none of the variables z, z1, ..., z,.
We have :

B.B.,...B. Ba,(t]]) ~s (2)ta]] .. . tp[l2ps1 - - - 20 and

B.B.,...B., ., Ba,.(t']) = (U] .-t []2ps1- - 20

92 Lambda-calculus, types and models

Now, by hypothesis, t = (z)t;...t, and t' = ()t} ...t, and ¢ and ¢’ are not
fBn-equivalent. Thus, for some i(1 <1 < p), t; and ¢, are not Sn-equivalent.

Let m; = Axy... A\x, x; and B = B.B., ... B, ,, Ba, .. Since the variable z
occurs neither in ¢;[] nor in ¢[], we have :

BrB(t]) 25 tl] Br,-B(]) =5 £

Now lg(t;) + lg(t;) < lg(t) + lg(t'). Thus, by induction hypothesis, provided
that nq,...,ng,n are large enough distinct integers, there exists a Bohm
transformation, say F, such that F'(¢;[]) ~5 0 and F(t;[]) ~s 1. Therefore,
FB;, .B(t]]) ~5 0 and FB,, .B(t'[]) ~ 1, which is the expected result.

2. Now suppose that = € {xy,...,zx}, for instance x = x;, while
y & {x1,...,2x}. Then we have t[] = (o,)t1[] . . . tp[] and ¢'[] = (y)t1[] . . . £,[]-
For every ny > p, we have, by [-reduction :

t]] ~p MNepg1 - Az Az(2)t]] -] Zpat - - - 2
Therefore, if we let B = B.B., ...B we have :

C T Zp+1)
B(t[]) ~p (2)t1]] - - - tp[]zps1 - - - 20y and
B)) = Wl tillzper - 22
Since y and z are distinct variables, lemma 5.10(i) provides a Bohm transfor-
mation F' such that FB(t]]) ~3 0 and F'B(t'[]) ~ 1, which is the expected
result.

3. Finally, suppose that z,y € {x1,..., 2}
If x # y, say, for instance, x = x1, y = 9, then :

t] = (an)ta]] .. - tp[] and #'] = (o,)B4 [] .. 2]
For all n; > p and ny > ¢, we have, by -reduction :

t]] ~p Nepi1 - Az Az(2)t]] - - o] Zpa - - - 20y and
] 5 Azgi1 - Az Az ()]t 2011 - - Zny
Since ny # na (by hypothesis), the result follows from lemma 5.10(ii).
If x =y, say, for instance, * = y = z, then :
t] = (om)tall .- tp[] and #'[] = (0,)11 [] . 24 .
For every ny > p, q, we have, by [-reduction :
t]] ~p Nepi1 - Az Az(2)t]] - -] Zpa - - - 2ny and
] g Azgrr - Az Az ()]t 1211 - 20y
If p # q, then the results follows from lemma 5.10(ii) (ny — p # ny — q).
If p=gq, then :
tl] g Aept1 - Az Az(2)t]] - -t Zpa - - - 20y and
] ~p Azpra - Az Az(2)H[] [2ph1 - 2y
Now, by hypothesis, t = (z)t;...t, and t' = (2)t]...t,, and ¢ and ¢’ are not
fBn-equivalent. Thus, for some i(1 <1 < p), t; and ¢, are not [Sn-equivalent.

Chapter 5. The Bohm theorem 93

Let m; = Azq1... \xp,x; and B = B.B,, ...B.,. Since the variables z, z;
occur neither in ¢;[] nor in ¢[], we have :

Br, . B(t]]) ~p till 5 Br, =B(t'l]) ~5 t;]].
Now lg(t;) + lg(t;) < lg(t) + lg(¢'). Thus, by induction hypothesis, pro-
vided that nq,...,n; are large enough distinct integers, there exists a Bohm
transformation, say F, such that F'(t;]]) ~3 0 and F(t[]) ~5 1. Therefore,
FB;, .B(t]]) ~5 0 and FB;,, .B(t'[]) ~5 1.
This completes the proof.

QED.

References for chapter 5

[Bar84], [Boh68].
(The references are in the bibliography at the end of the book).

94

Lambda-calculus, types and models

Chapter 6

Combinatory logic

1. Combinatory algebras

In this chapter, we shall deal with theories in the first order predicate calcu-
lus with equality and we assume that the reader has some familiarity with
elementary model theory. We consider a language L, consisting of one binary
function symbol Ap (for ¢ application 7). Given terms f, t, u, v, ..., the
term Ap(f,t) will be written (f)t or ft ; the terms ((f)t)u, (((f)t)u)v, ...
will be respectively written (f)tu, (f)tuv, ... or even ftu, ftuv, ...

A model for this language (that is a non-empty set A, equipped with a binary
function) is called an applicative structure.

Let L be the language obtained by adding to £y two constant symbols K, .S.
We shall use the following notations :

t = u will mean that ¢t and u are identical terms of L ;

M = F will mean that the closed formula F' is satisfied in the model M
(of £) ;

A F F will mean that F' is a consequence of the set A of formulas, in other
words, that every model of A satisfies F'.

Given terms ¢,u of £, and a variable z, t[u/z]| denotes the term obtained
from t by replacing every occurrence of x with w.

Consider the following axioms :

(Co) (K)zy =z ;5 (S)ayz = ((2)2)(y)z.

Actually, we consider the closure of these formulas, namely, the axioms :
Vavy{(K)zy = x} ; VaVyVz{(S)zyz = ((z)z)(y)=}.

The term (S)K K is denoted by I. Thus Cy F (I)z = z.

A model of this system of axioms is called a combinatory algebra. The com-
binatory algebra consisting of one single element is said to be trivial.

95

96 Lambda-calculus, types and models

For every term t of £, and every variable x, we now define a term of L,
denoted by Az t, by induction on the length of ¢ :

e if # does not occur in ¢, then Azt = (K)t ;
e \rx=(9KK=1;
e if t = (u)v and z occurs in ¢, then Azt = ((S)\x u) Az v.

Proposition 6.1. For every term t of L, the term Axt does not contain the
variable x, and we have Cy = Va{(Axt)x = t}.

It follows that Cy F (Axt)u = t{u/z], for all terms ¢, u of L.

It is obvious that x does not occur in Az t. The second part of the statement
is proved by induction on the length of ¢ :
If = does not occur in ¢, then (Axt)x = (K)tz, and Cy - (K)tx = t.
If t =z, then (\zt)x = ([)z, and Cy - (I)z = =.
If t = (u)v and z occurs in ¢, then (A\zxt)x = (((S)Azu)\xv)z. By the
second axiom of Cy, we have Cy F (Azt)r = ((Axu)x)(Azv)x. Now, by
induction hypothesis : Cy F (Azu)r = u and (Azxv)z = v. Therefore,
CoF (Axt)r = (u)v =t.
Q.E.D.

It follows immediately that :

Cob (Azq ... Axgt)zy ...z, =t for all variables xq, . .., xy.

Proposition 6.2. All non-trivial combinatory algebras are infinite.

Let A be a finite combinatory algebra, and n its cardinality. For 0 <17 < n, let
a; € A be the interpretation in A of the term AxgAz;... Az, x;. Then there
exist two distinct integers 7, j < n such that a; = a;. Suppose, for example,
that ¢ = 0 and 7 = 1. We therefore have agbyb; ...b, = a1bgb; . ..b,, for all
bo,b1,...,b, € A. Thus by = by for all by,b; € A, which means that A is

trivial.

Q.E.D.
An applicative structure A is said to be combinatorially complete if, for every
term t of Ly, with variables among 1, ..., z;, and parameters in A, there

exists an element f € A such that A | (f)z1...2, = t (that is to say
(flay...ap =tlar/xq,. .. a5 /xg] for all aq,. .., ax € A).
This property is therefore expressed by the following axiom scheme :

(Co) AfVry . Ve, {(f)xy ...z, =t}

where t is an arbitrary term of Ly, and n > 0.

Proposition 6.3. An applicative structure A is combinatorially complete if
and only if A can be given a structure of combinatory algebra.

Chapter 6. Combinatory logic 97

In other words, A is combinatorially complete if and only if the constant
symbols K and S may be interpreted in A in such a way as to satisfy Cj.

Indeed, if A is a combinatory algebra, and ¢ is any term with variables among
x1,...,T,, then it suffices to take f = Axy ... Ax,t.
Conversely, if A is combinatorially complete, then there exist k, s € A satis-
fying Cy : it is enough to apply C'C, first with n = 2 and ¢t = xy, then with
n =3 and t = ((x1)x3)(xe)xs.
Q.E.D.
The axiom scheme C'C' is thus equivalent to the conjunction of two particular
cases :
(cc) V2V {(k)xy = x} ; IsVaVyVz{(s)zyz = ((z)z)(y)z}
Let E denote the term A\xAy(z)y. By proposition 6.1, we therefore have :
CoF (E)xy = (2)y.
By definition of A, we have Ay(x)y = ((S)(K)z)I, and hence :
E = Xze((S)(K)x)I.
Thus, by proposition 6.1 : Cy F (E)z = ((S)(K)z)I.
Let t be a term containing no occurrence of the variable x. Then, by definition
of A : Ax(t)x = ((S)Axt)] = ((5)(K)t)I. We have thus proved :

Proposition 6.4. Lett be a term and x a variable not occurring int ; then :

Co F Ae(t)a = (E)t = ((S)(K))].

We now consider the axioms :
(Cy) K = Xx\y(K)zy ; S = AxdyAz(S)zyz.
According to proposition 6.1, the following formulas are consequences of the
axioms Cy + C] :
(K)z = Ay(K)zy 5 (S)zy = Az(S)zyz ;
thus, by proposition 6.4, so are the formulas :

(CY) (B)(K)x = (K)z ; (E)(S)zy = (S)zy.

Proposition 6.5. The following formulas are consequences of Co + CY :
i) \et = (E)Axt = Ax(Axt)x for every term t of L ;
i) (B)E=F ; (E)(E)x = (E)x.

i) The second identity follows from proposition 6.4, since x does not occur
in Axt. On the other hand, by definition of Axt¢, we have either Axt =
(K)t, or det = (S)KK, or A\xt = (S)uv for suitable terms u,v. It follows
immediately that CY + (E)A\zt = Az t.
ii) We have E = Az)y(z)y, and hence Cy +CY + (E)E = E, by (i). Now, by
proposition 6.4, Cy - (E)x = Ay(z)y, and therefore, by (i) again :
Co+ CY (E)(E)x = (E)x.

QED.

98 Lambda-calculus, types and models

2. Extensionality axioms

The following axiom scheme :
(WEXT) Ve(t =u) — Azt = Azru
(where ¢,u are arbitrary terms of £, allowed to contain variables) is called

the weak extensionality scheme.
As a consequence of this axiom, we obtain (by induction on n) :

V.. Ve {t =u} — Azy ... Azt = Axy .. Az,
The weak extensionality axiom is the following formula :
(Wext) Vyva{Ve((y)e = (2)2] — (E)y = (E)z}.

Proposition 6.6. WEXT and Wext are equivalent modulo Cy + C?.

Indeed, let A be a model of Cy + CY + WEXT, and b,c € A such that
(b)x = (c)x for every x € A. Applying WEXT with t = (b)z and u = (¢)z,
we obtain A\z(b)z = Az(c)z. Now both Az(b)x = (E)b and A\x(c)x = (E)c
hold in A, since A = Cy (proposition 6.4). Thus (E)b = (E)c.
Conversely, let A be a model of Cy + CY + Wext, and t,u two terms with
parameters in A, where x is the only variable ; assume that A = Va(t = u).
Since A = Cy, we have A |= (Azt)x =t, (Ax u)z = u (proposition 6.1). Thus
AEVe{(Azt)r = (A\zu)z}.
By Wext, we obtain A = (F)Azt = (E)Azu, and hence A = Azt = Az u
(by proposition 6.5).

QE.D.
We shall denote by C'L (combinatory logic) the system of axioms :
Co + Cy + Wext (or, equivalently, Cy + C; + WEXT).

Now we consider the axioms :
(C1) (B)K =K ; (B)(K)r = (K)x ;
(E)S =S ; (E)(S)x = () ; (E)(S)zy = (S)zy.

Proposition 6.7. C'L is equivalent to Cy + C] + Wext.

The following formulas (in fact, their closures) are obviously consequences of
C() + Cl .

K = eXy(K)zy ; (K)x = My(K)zy ;

S = AxAyrz(S)zyz ; (S)x = MyAz(S)xyz ; (S)zy = A2(9)zyz.
In view of proposition 6.5, we deduce immediately that C7 is a consequence
of Cy + C1, and therefore of C'L.
Conversely, we have C| - (S)zy = (E)(S)xy, and hence Cy + C| - (S)zy =
Az(S)zyz. Now we also have : Cy F (AyAz(S)zyz)y = Az(S)xyz. Thus
Co+ C] F (S)zy = (A\yAz(S)zyz)y. By Wext, we obtain first (E)(S)x =

Chapter 6. Combinatory logic 99

(E)AyAz(S)xyz, then (S)z = AyAz(S)xyz (by C] and proposition 6.5) ;

thus (S)x = (AxAyAz(S)zyz)z. By applying Weat again, we conclude that

(E)S = (E) Az yAz(S)zyz, and hence S = AzAyAz(S)zyz (by C] and propo-

sition 6.5 again). The same kind of proof gives the equation K = AzAy(K)zxy.
Q.E.D.

The extensionality axiom is the formula :

(Ext) Vyve{Ve[(y)r = (2)z] — y = 2}.

As a consequence of this axiom, we obtain (by induction on n) :

(Ext,) VyVe{Vxy .. Vo, [(y)x, ... xp = (2)21 .. 2] — y = 2}

We now prove that, modulo Cy, the extensionality axiom is equivalent to :
Wext + (E = 1).

Indeed, it is clear that Wext + (E = I) + Cy F Ext (since Co + (E = 1) I

(E)x = z). Conversely, we have Cy F (E)xy = (I)zy = (x)y. With Exts, we

obtain Cy + Faxt+ E = 1.

We shall denote by ECL (extensional combinatory logic) the system of ax-

ioms Cy + Eut.

Note that Cy + Ezt - C, and thus ECL F CL ; indeed, by proposition 6.1,
for every term T', we have :

CobF Ty ... xp = Ay .. Ay (T)xy ..oy - Ty 5

then, by Fxt,, we can deduce T'= Axq ... Az, (T)zy . .. 2.

Scott-Meyer’s axioms

Let A be an applicative structure, with a distinguished element e, satisfying
the following axioms, known as Scott-Meyer’s azioms :
i) Combinatorial completeness
IkV2Vy[(k)zy = 2] 5 IsVaVyVz((s)zyz = ((2)2)(y)2] ;
ii) Vavyl(e)zy = (z)y] ;
iii) Weak extensionality
Vyve{Va[(y)r = (2)z] — (e)y = (e)z}

Theorem 6.8. Let A be an applicative structure satisfying the Scott-Meyer’s
axioms. Then there is a unique way of assigning values in A to the symbols
K,S of L so that A becomes a model of CL satisfying Vz[(E)x = (e)x].

Moreover, in that model, we have E = (e)e.

Notice that E is a term of £, not a symbol.

Unicity : suppose that values have been assigned to K,S so that C'L is
satisfied. We have (E)x = (e)z, thus (E)E = (e)E (take x = E'), and hence

100 Lambda-calculus, types and models

E = (e)E (we have seen that CL - E = (E)E). Now the above weak
extensionality axiom gives :

Vz[(E)x = (e)x] — (e)E = (e)e. Therefore, E = (e)e.

Let K;,S; and K5, S5 be two possible interpretations of K,S in A such
that the required conditions hold, and let E;, E5 be the corresponding in-
terpretations of F (actually, we have seen that F; = FEy = (e)e) ; thus
(Ey)x = (E9)z = (e)x and (S1)zyz = (S2)zyz = ((x)2)(y)z ; by weak ex-
tensionality, it follows that (e)(S1)zxy = (e)(S2)zy, and we therefore obtain :
(E1)(S1)ry = (E2)(S2)xy. Since C'L holds, the axioms of € are satisfied
and we have : (E;)(S;)zy = (S;)zy(i = 1,2) ; therefore (S))zy = (S2)xy.
By weak extensionality again, it follows that (e)(S1)x = (e)(S2)x, that
s (E1)(S1)xr = (E2)(S2)z, and hence (Sy)z = (S2)z (by Cf). Using the
weak extensionality once more, we obtain (e)S; = (e)S,, that is to say
(E1)S1 = (FE3)Ss, and hence S; = Sy (by Cf). The proof of K1 = K, is
similar.

Existence : take k, s € A such that (k)zy = y and (s)zyz = ((z)z)(y)z for all
x,y,z € A ; this is possible according to the first two axioms of Scott-Meyer.
For every term ¢ with parameters in A (and containing variables), we now
define, inductively, a term Nzt :

Nzt = (e)(k)t if x does not occur in t ;

Nzx = (e)i with i = (s)kk (thus (i)z = z for every x € A) ;
Net=(e)((s)Nzu)Nzv if t = (u)v and = occurs in t.

Notice that (e)ry = zy, and hence, by weak extensionality (Scott-Meyer’s
axioms), (e)(e)x = (e)z. It follows immediately that (e)Nxt = Nzt for every
term ¢.

Moreover, we have (Nzt)x =t (by induction on ¢, as in proposition 6.1).
Let K = NaXNyx ; S = NaNyNz((x)z)(y)z.

We do have (K)zy = z, (S)zyz = ((v)z)(y)z ; moreover, since (S)xy =
Nz..., we also have (S)zy = (e)(S)zy ; similarly, (e)(S)r = (S)r and
(e)S = S. On the other hand, since (S)zyz = (s)zyz, we obtain (e)(s)zy =
(€)(S)zry = (S)zy by weak extensionality ; similarly, (e)(k)z = (K)x. There-
fore, we may restate the definition of Nxt this way :

Nzt = (K)tif x does not occur in t ;

Nrxx =1 with [= (S)KK (indeed, we have (I)z = (i)z, thus (e)I = (e)i ;
but (e)I = I by definition of I) ;

Nt = ((S)Nzu)Nzwv if t = (u)v and x occurs in ¢.

We see that this definition is the same as that of the term Ax ¢ ; thus Nxt =
Azt. Now let E = AzAy(x)y ; thus (E)z = \y. .., and therefore (e)(E)zx =
(E)z ; now (E)xy = (x)y, and hence, by weak extensionality, (e)(E)x = (e)z,
that is to say (E)zx = (e)z.

Chapter 6. Combinatory logic 101

This proves that the axiom Wext holds, as well as Cy. Besides, we have
(E)\xt = Axt for every term t (since (e)Nzt = Nxt).

Since K = AzAyz and S = Az A\yAz((x)z)(y)z, we may deduce, using Cy, that
() = M ; (S)z = ApAe((2)2)(9)2 1 (S)ey = A=((2)2)(y)2. Thus (E)K =
K, (E)(K)x = (K)z, (E)S =S, (E)(S)x = (S)x and (E)(S)zy = (5)xy.
Thus the axioms C] hold, and finally our model satisfies Cy + C] + Wext,
that is to say C'L.

QE.D.

3. Curry’s equations

Let A be a model of Cy + CY. We wish to construct an embedding of A in a
model of Wext.

Let k, s, e denote the interpretations in A of the symbols K, S and the closed
term E of £. Define B = (e)A = {(e)a ; a € A} = {a € A, (e)a = a}
(indeed, (e)(e)a = (e)a). We shall define an applicative structure over B :
its binary operation will be denoted by [ab, and defined by [a]b = (s)ab (note
that we do have (s)ab € B since (e)(s)ab = (s)ab, by C?).

We define a one-one function j : A — B by taking j(a) = (k)a (note that
(k)a € B since (e)(k)a = (k)a, by C?) : indeed, if (k)a = (k)b, then (k)az =
(k)bx for arbitrary x € A, which implies a = b.

Let A’ C B be the range of this function. We want j to be an isomorphism of
applicative structures from A into B. This happens if and only if [(k)a](k)b =
(k)(a)b for all a,b € A. In other words, j is an isomorphism if and only if A
satisfies the following axiom :

(Ca) ((S)(K)z)(K)y = (K)(x)y ;
this will be assumed from now on.
Notice that :
B is a proper extension of A" (that is B D A" and B # A’) if and only if A
is non-trivial (that is A has at least two elements). In that case, i € B\ A’
(where i = (s)kk is the interpretation of I).
Indeed, if i € A’, then i = (k)a, thus ()b = (k)ab, that is to say b = a, for
every b € A, and A is trivial. Conversely, if A contains only one element,
then, obviously, A= B = A'.
The interpretations of K,S in B are the same as in A’, namely : (k)k and
(k)s. B satisfies Cj if and only if :

i) [[(k)k] (e)al(e)b = (¢)a and

i) [[[(k)s](e)a](e)b](e)c = [[(e)a](e)c][(e)b](e)c

for all a,b,c € A.

102 Lambda-calculus, types and models

(i) can be written ((s)((s)(k)k)(e)a)(e)b = (e)a. Now consider the axiom :
(C3) (S)(S)E)K)z)y = (E)z.
It implies (i) since, by proposition 6.5, we have Cy + C? - (E)(E)x = (E)z.
Cj is equivalent, modulo Cy, to :
(C3) (S)K)K)x)y = Az(x)z,
(ii) can be written :
((s)((s)((s)(k)s)(e)a)(e)b)(e)e = ((s)((s)(e)a)(e)e)((s)(e)b)(e)c.
Now consider the axiom :
(C4) (S (K)S)x)y)z = ((S)((5))2)((S)y)=.

At this point, we have proved the first part of :

Lemma 6.9. Let A be a combinatory algebra satisfying Co+C{+Cy+Cs+C.
Then B is an extension of A" (a combinatory algebra, isomorphic with A)
which satisfies Cy. Moreover, if a € A, then [kali = (e)a.

Indeed, we have [ka]i = ((s)(k)a)i = (e)a (by proposition 6.4).

Q.E.D.
Let ¢, u be two terms of £, and {z1,...,x,} the set of variables occurring in
t or u. The formula ¢t = w (in fact, its closure Vz; ...Vx,{t = u}) is called
an equation ; this equation is said to be closed if both ¢t and u contain no
variables (n = 0) ; the equation Azy... Az, t = Ax;... Az, u will be called
the A\-closure of the equation t = wu.
For each axiom C; (2 < i < 4), let C'L; denote its A-closure, that is to say :
(CLy) Az Ay ((S)(K)z)(K)y = AzAy(K)()y
(CLs) Az Ay ((S)((S)(K)K)x)y = AzAyAz(x)z
(CLg) AxdyAz((S)((S)((S)(K)S)x)y)z = AxAyAz((S)((S)z)z)((S)y)z.

Proposition 6.10. Let A be a combinatory algebra, and @ a set of closed
equations such that Co+Q + CY. If A= Cy+ Q + CLy+ CL3 + CLy, then
there exist an extension Ay of A satisfying the same axioms, and an element
& € Ay such that, for all a,b € A : (a)& = (b)& = (e)a = (e)b.

Indeed, Cy+CL; - C; (proposition 6.1), thus A | Cy+CY+Cy+C3+Cy. By
lemma 6.9, there exists an extension B of A’ satisfying Cy. Since A | CL;
and A | @, and CL; and @ are closed equations, we have B = CL; et
B = @. Now j is an isomorphism from A onto A’, and hence there exist an
extension A; of A and an isomorphism J from A; onto B extending j. Let
& = J7U(i) ; for every a,b € A such that (a)¢; = (b)¢;, we have [Ja]J& =
[Jb]J&, that is [ka]i = [kb]i, and therefore (e)a = (e)b, by lemma 6.9.
Q.E.D.

Chapter 6. Combinatory logic 103

Theorem 6.11. Let A be a combinatory algebra, and Q) a set of closed
equations such that Cy + Q = CY. Then there exists an extension A* of A
satisfying Co + Q + Wext if and only if A= Co+ Q + CLy + CL3 + CLy.

First, notice that the systems of axioms Cy+Q +Wext and Co+Q+W EXT
are equivalent (since Co+ Q = CY, and Cy + CY = Wext & WEXT). We

shall denote by Q this system of axioms.

The condition is necessary : it suffices to prove that Q - CL; (2 < i < 4).
By definition of the axiom scheme WEXT, we have WEXT + C; = CL;,
thus it is enough to prove : Q F C;. We have :

Co k- ((S)(K)2)(K)y)z = (K2)2)(Ky)2 = (2)y
thus Co F (((S)(K)z)(K)y)z = ((K)(z)y)z. By weak extensionality, it fol-
lows that Q - (E)((S)(K)z)(K)y = (E)(K)(x)y, and then, by C?, that :
QF ((S)(K)x)(K)y = (K)(x)y ; therefore Q = Cs.
The equation (Cj3) is written ((S)((S)(K)K)x)y = (E)z. Now we have
Co - (((S)((SK)K)2)y)2 = ((S) () K)w)2)(9)2 = (K)K=)(2)2)(y)2 =
(K)@)2)()s = ()2 - hence Cy + Weat - (E)(S)(S)(E)K)2)y — (B)r.
Thus Cy + CY + Wext I— (9 ((S)K)K)x)y = (E)x, that is to say Q - Cs.
The axiom (Cy) is written ((S)((9)((S)(K)S)z)y)z = ((5)((9)z)2)((S)y)z.

Now we have

Co = (((S)((S)((9)(K)S)x)y)z)a = {[((S)((S)(K)S)x)yla} ()
= {l(((S)(K)S)x)a(y)a}(z)a = {[((K)S)a)(x)al(y)a}(2)
= {[(9)(@)d](y)a}(2)a = (((z)a)(2)a)((y)a)(2)a

On the other hand :
Co F (((S)((S)x)2)((S)
Therefore, Cy = (((S)((z
Thus Cy + Wext F (E)((S)((S)((S)(K)S)x)y)z
It follows that
Co + CY + Weat = ((S)((S)((S)(K)S)z)y)z = ((S)((S))2)((S)y)z ;
that is to say Q F Cj.
The condition is sufficient : Let A be a model of Cy+Q + CLy+ C L3+ CLy.
By proposition 6.10, we may define an increasing sequence :
A=Ay C A C ... C A, C...of combinatory algebras which satisfy the
same axioms, and such that, for each n, there exists a &,,1 € A, .1 such that,
if a,b € A, and (a)&,+1 = (b)&n11, then (e)a = (e)b. Let A* = U, A,. Then
A*E=ECo+Q+CL; (2 <i<4) as well as the weak extensionality axiom : if
a,b € A* and (a)r = (b)x for every x € A*, then we have a,b € A, for some
n ; hence (a)&,+1 = (b)€,41 and therefore (e)a = (e)b.

Q.ED.
Intuitively, the extension of A constructed here is obtained by adding in-
finitely many “ variables ” which are the &, ’s.

104 Lambda-calculus, types and models

Now we consider the system of axioms :
(CL-) Co+Cy+CLy+CL3+ CLy.

Theorem 6.12. Let A be a combinatory algebra. Then there exists an ez-
tension of A satisfying C'L if and only if A satisfies C'L_.

It suffices to apply theorem 6.11, where () is taken as the system of axioms C}.
Q.E.D.

Corollary 6.13. The universal consequences of C'L are those of C'L_.

Indeed, let A be a model of CL_ , and F' a universal formula which is a
consequence of C'L (see chapter 9). We need to prove that A &= F. By
theorem 6.12, A can be embedded in some model B of CL. Thus B |= F
and, since F' is universal and A is a submodel of B, we deduce that A = F.
Conversely, it follows from theorem 6.12 that every model of C'L is a model
of CL_ .

Q.E.D.
We now consider the axiom :
(CLs) E=1
that is to say (by definition of E) :
(CLs) Az ((S)(K)x)I = 1.

Clearly, Cy + CLs + C?. Moreover, Cs is obviously equivalent, modulo
Co+ CLs, to:

(C5) ((SS)E)K)x)y = .

Let C'L} denote the A-closure of CY, that is to say :
(CLy) Az Ay ((S)((S)(K)K)x)y = AzxAy x.
We also define the following system of axioms FCL_ :
(ECL-) Co+CLy+CLy +CLy + CLs.

Theorem 6.14. Let A be a combinatory algebra. Then there exists an ex-
tension of A satisfying EC'L if and only if A satisfies EC'L— .

This follows immediately from theorem 6.11, where () is taken as the axiom
E=1
Q.ED.

Corollary 6.15. The universal consequences of EC'L are those of EC'L_.

Let A be a model of £. The diagram of A, denoted by D, , is defined as the
set of all formulas of the form ¢ = w or ¢t # u which hold in A, ¢ and u being
arbitrary closed terms with parameters in A. The models of D4 are those
models of £ which are extensions of A.

Chapter 6. Combinatory logic 105

Theorem 6.16. Let A be a model of CL— , and t,u two terms with param-
eters in A (and variables). Then :

i)if Da+ Cobt=wu, then Dy+ Co b Axt =Aru ;

i) if Da+ Cy F (t)x = (u)x, where x is a variable which does not occur in
t,u, then Dy + Co F (E)t = (E)u.

D4+ Cy F F means : every extension of A satisfying Cy satisfies F.

Proof of (i) : let B be an extension of A satisfying Cy. Then B satisfies C'L_
and, by theorem 6.12, there exists an extension B’ of B which satisfies C'L.
By hypothesis, we have D4 + Cy = t = u, and hence B’ =t = u ; by weak
extensionality, it follows that :
B’ E Axt = Az u ; therefore, B = \xt = Az u.
Same proof for (ii).

Q.E.D.

A similar proof yields the following theorem :

Theorem 6.17. Let A be a model of ECL— , and t,u two terms with pa-
rameters in A where x does not occur. If Dy + Cy = (t)x = (u)z, then
DA + CO Ft=u.

4. Translation of \-calculus

We define a model My of L, called “ model over A-terms ”, as follows :
the domain M, is the quotient set A/~g ; the constant symbols K, S are
respectively interpreted by the (equivalence classes of) A-terms AzAy x and
Az yAz((x)z)(y)z ; the function symbol Ap is interpreted by the function
u,t — (u)t from My x My to M.

Lemma 6.18. M, is a model of CL. For every term t € A, we have
(E)t ~5 \x(t)z, where x is any variable which does not occur free in t.

Here we will only use the definition of S-equivalence, not its properties shown
in chapter 1.

We first prove that My = Cp