N

N

Nuclear structure at high and very high spin theoretical
description
Z. Szymanski

» To cite this version:

7. Szymanski. Nuclear structure at high and very high spin theoretical description. Ecole thématique.
Ecole Joliot Curie ”Structure nucléaire aux frontiéres de la stabilité”, Bombannes, (France), du 12-16
septembre 1983 : 2eme session, 1983. cel-00639878

HAL Id: cel-00639878
https://cel.hal.science/cel-00639878

Submitted on 10 Nov 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://cel.hal.science/cel-00639878
https://hal.archives-ouvertes.fr

NUCLEAR STRUCTURE AT HIGH AND VERY HIGH SPIN
THEORETICAL DESCRIPTION

Z, SZYMANSKI

institute for Theoretical Physics, Unlversity of Warsaw, Warsaw {Pologne)

Institut des Sciences Nucléalires, Grenoble






Abstract

Chapter I - Classical rotation

When the existence of nuclear shell structure is ignored and nuclear motion is assumed to
be classical we may expect that the nuclear rotation resembles that of a liquid drop. Energy
of the nucleus can be thus considered as a sum of three terms : surface energy, Coulomb enargy
and rotational energy. Nuclear moment of inertia is assumed to be that of a rigid-body.

At a slow rotation about a fixed axis the nucleus seems to acquire a slightly oblate shape.
An analogous argument has been used leng ago by Newton who calculated the deformation of Earth.
At a fast rotation the oblate shape of nucleus may become unstable with respect to the triaxial
very elongated deformation. This is again analogous to the Jacobi instability discussed in as—
trophysics. One finds that the same type of instability may settle in not too heavy nuclei. In
very heavy nuclei the fission process may occur first before the Jacobi instability can play
any role. The results of a calculation of the energy surfaces in rotating nuclei by Cohen,Pla~
51l and Swiateckil are discussed.

Chapter II - Quantal orbits in rotating nuclel

Cranking procedure is analysed as a tool to investigate nucleonic orbits in a rotating nu-
clear potential. Signature is introduced as a good quantum number in the rotating potential.
Energies and alignments in nucleonic orbits are discussed in terms of angular velocityd. The
potential energy surfaces are calculated and discussed for any (fixed) value of angular momen-
tum. They define various regimes of nuclear motion with different symmetries in nuclear shapes
and various relative positions of the nuclear symmetry axes with respect to the rotation axis.
Some predictions concerning the possible onset of a superdeformed phase are given.

Chapter III - High-spin rotational bands in deformed nuclei

The structure of nuclear rotation is examined in the presence of the short-range pairing
forces that generate the superfluid correlations in the nucleus., Examples of the Bengtsson—
Frauendorf plots {quasiparticle encrgies versus angular velocity of rotation) are given and
discussed. The backbending phenomenon is analysed in terms of band crossing. The dependence of
the creossing frequency on the pairing-force strength is discussed. Possibilities of the role
of new components in the two-body force {quadrupole-pairing) are considered. Possibilities of
the phase transition from superfluid to normal states in the nucleus are analysed. The role of
the second (dynamic) moment of inertia 3 (Z) in this analysis is discussed.

Chapter IV - Complete alignment in axially symmetric nuclei

In spherical or weakly deformed nuclei {mostly oblate) angular momentum is aligned parallel
to the nuclear symmetry axis. Rotation is of non collective origin in this case. The motion is
best analysed by representing nuclear single-particle energies as points in the (m,e) plane.
States with non zero angular momenta are those that populate levels corresponding to a sloping
Fermi surface in the {m,e) plane.

Examples of the analysis of nuclear spectra in this case (exhibiting also the iscmeric sta-
tes called yrast (traps) are given.

Possible forms of the collective excitations superimposed on top of the high-spin states
are discussed. In particular, the gilant rescnance excitations formed on top of the high-spin
states are considered and their properties discussed:



1 . Glassical rotation

Considerahle changes in nuclear shape may be expected in the state of a fast nuclear ro-
tation. This is actually ome of the reasons why nuclear studies of the high-spin states are
so interesting. In the preliminary attempt te describe nuclear phenomena, it is reasonable
to ignore the existence of nuclear shell structure, the possible influence of particular
nuclear orhits etc., i.e. to consider a "macroscopic” description, Moreover, we shall also
ignore in this preliminary approach all the possible quantal effects thus limiting ourselves

to a classical motion. Let the equation

R =R, {1+ ;:\u B?\u qu(e,rb)} (1

describe a nuclear surface (if anything like a sharp nuclear surface exists; otherwise, we

may congider surfaces e,g. of equal density or potential). Deformation parameters GAU up

toa A & 3 and often of even higher multipolarity (BAO’ BSO’ 860) have been discussed in litera-
ture. We shall limit our discussion to the quadrupole defprmations only. We shall also employ
a system of axes overlapping with the main axes of the nucleus. We are then left with the

two deformation parameters, &

2p and 822 = 32_2. Using another notation

(2)
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we can employ a (3,7) ~ plane (Z-radial coordinate, y-angle) as to deseribe nuclear shape.

Fig. 1 (taken from ref.l} illustrates the calculated contour plots of equal energies
for a classical rotational motion of a uniformly charged nucleus of a constant density at an-
gular momentum I = 40, Values at v = - 120°, ~ 60°, 0° and 60° correspond to axially symmetri-—
cal shapes (prolate or oblate) corresponding to various orientations of the roration axis
with respeét to the symmetry axis as indicated in the figure. The intermediate regions corres—
pond to the rotations of the triaxial shapes about the axis of largest moment of inertia 1

(0° < - <60°), axis of intermediate o (~60% < ¥y < 0°), or axis of the lowest moment of

inertia q'(~120° <p < = 60,

It seems quite natural that the nucleus that is spherical at I = 0, will get oblate for
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I# 0. This is quite analogous to the conclusion of Newton who claimed that the Earth is
approximately of the shape of an oblate axially symmetric ellipsoid owing to its rotatiom
(Fig. 2). Knowing a gravitational potential of a slightly deformed sphere Newton has calcula-

ted the Earth deformation as

2
w® R

3‘5” °2 ¥ 0.0046 (4)
(YM/RD)

(here w denotes the angular velocity, R, - spherical radius, M - the Earth mass and  vy-

gravitation constant). The actual value of the Earth deformation is somewhat lower

Bexp ¥ 0.0036 ‘ (3)

the difference following mainly from the Newton assumption of constant mass density of the
Earth {(cf. ref.z). Nevertheless, Newtons first estimate (4) seems to lie quite close to this
value,

However, it is interesting to observe that when the nucleus rotates fast enough the oblate
shape may become unstable at certain angular velocity w with respect to the triaxial and
then very elengated shapes. This curious instability which is related to the breaking of axial
symmetry was already known long ago to Jacobi (cf. ref.z} and has been widely discussed in as-
trophysics in connection with the equilibrium of rotating stars. Similar situvation may occur
in principle in a rotating nucleus.However,contrary to the rotating astronomical objects that
are hold together by the long-range gravitational forces,in the rotating nuclel we have to deal
with the short-range attractive forces.They may show vp in the form of a surface tension of a-
nuclear "liquid drop'.The competition between the surface tension and Lhe centrifugal étretching
that acts in the nucleus at a very fast roration may tend to produce a situation similar to that
of the Jacobi instability.The hypothetical very elongated shapes of nuclei that may occur at ve=
ry fast rotation are often called nuclear superdeformed states.Fig, 3 shows z schematical but
veryrinstructive estimate by Mottelson of the balance between surface and rotational energy .of
a rotating cylinder.In Fig. 3a a very flat cylinder rotates about its symmetry axis while in
Fig. 3b a very eleongated cvlinder rotates about an axis perpendicular to its own symmetry axis.
In both cases the sum of surface and rotational cnergy is minimized for fixed angular momentum
I (and for fixed volume). Then,the asymptotic dependence of energy on I is examined. It is seen
that in the final account the elongated shape must win over the oblate one since it accomodates
becter the energy. We can thus expect the Jacobl instability to play an importaﬁt role in the

physics of nucleus at high angular momentum.

The above argument was based on the assumption that the nuclear moment of imertia 3  is
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of the order of the rigid-body value corresponding to the actual nuclear size,deformation and
density. Ihis assumption seems to be reasonable in a more general situation and leads to a good
description of nuclear rotation. It appears that in the domain of a fast nucleaf rotation a
{when in particular, the nuclear superfluid correlations have disappeared; cf, Section 3

below) the asgumption of a rigid-body moment of inertia offers a better description of nuclear
mntion.than any other estimate for {e.g. the estimate following from hydrodynamics of an

ideal nonviscous fluid). The rigid-body estimate for the moment of inertia follows from the
cranking model (see Section 2 below) for the system of independent particles in a deformed
rotating nuclear potential.

In very heavy nuclei in addition to the surface energy E {B,Y} and the rotational energy

surf
Izhzf {23 (B,¥)} we have also to take into account the Coulomb energy (electrostatical
repulsion of protons) ECDul(B,Y) that obviously favours strongly deformed shapes leading even-

tually to nuclear fission. Let us consider for example potential-energy surfaces expressed

in terms pf two parameters, the fissionability parameter

L
5 .
. Peour.0 W AN (6)
2 E (0,0) 2. b A2/3~ 50 A
Surf*? * “surf
and the rotation parameter
2 2
+ I
) I
2 2, = AMER
P 00 e 7 &)
23 (0,0) 2/3
b
Surf

In the above formulae the expressions for ECoul(o’O)’ ESuff(O’O) and 3 (0,0) correspond

= 18 MeV for nuclear

to spherical shape ( 3= 7 = 0), They have been calculated using‘bsurf

radius

R =71 A1/3 =1.2 fm , A
o o

143 (8)

and M denoting the nuclepn mass.

The energy expansions of ESurf’ ECoul and J in terms of B and ¥y up to third

order in powers of & have been suggested by Bohr and Mottelson 3.
E (2,%) = 1 A2/3 s _;:ji -1 " 5 63 3 . } (%)
Surf "7 Surf ' 27 21w ¥ G cos 3y can
2 2 2
- = 3 ,....g._. Z - i - § - 1 Ea 3
ECDU]..(S’() = 5 ro ————A1f3 L1 4T "‘—"21” v T B~ cos 3'Y + ... ]' (10)

g oy = BT
Erot {2,y TEET (11)



10
where 3 (B,y) = 2 M Rz A {1 - = B cos (y+ 120°)} (12)
; ! 5 o S 47 Y

These expansions seem to be quite appropriate when nuclei are very heavy and the fissiona-
bility parameter x is close to unity. The sum of the three terms given above expresses the

total relevant nuclear energy

E (B,v) = Eg g (Ba¥) + ECOuICB,v) +E . (Boy)

2/3 (1-x) .2 LI B 3
=const + b, . A { Eﬂx " - TV 77 B (cos3y) (1+2x)

+y [1 +\/%B cos (y+ 120°ﬂ} (13)

The equipotential energy surfaces are illustrated in Fig. 4. Fig. 4a illustrates what

happens if the nucleus rotates slowly (y < ycrig’ The minimum occurs at v = 60° {oblate

shape) while there is also a saddle point inside the Y- plane, Fig. 4b illustrates the situa-

tion of a fast rotation (y > y

Yerit J. Here, the saddle point has moved to the oblate axis

and there is no stability. Examination of formula (i3} leads to the conclusion that

2 .
TR \
Yerie T 5 Tz (14)
which is equivalent to
Al 2 5
1 =484 b ;Lf” A7/3 Q-x) } Mz = 1.4 A7/6 I {15)
23>  Suorf hE 1+7x ’ VIR

This estimate which is valid enly for (1-x) << 1 may be used as a very crude estimate
for the critical angular momentum at which the heavy nucleus goes to Fission.

Finally, Figs. 5 and & illustrate the results of a more realistic description by Cohen,
Plasil and SwiatcckiQ based on a concept of a rotacing liquid drop of nuclear matter, Fig. 5
illustrates the region of existing rotating nuclei with respect to various types of instabi-

lities. Fig., 6 gives the estimate for the maximum angular momentum that can be accomodated

in the nucleus.

2 . Quantal orbits in a rotating nucleus.

A procedure that describes successfully the dynamical coupling between nuclear rotation
. . . . . . 5,6
as a whole and its intrinsic degrees of freedom has been formulated and developed under
the name of cranking model, This procedure turns out to account properly for the caleulation

of the nuclear moments of inertia and provides most probably an adequate description of nuclear

behaviour at high angylar momenta. Cofortunately the cranking model procedure does not provide
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a derivation of the rigorous solutions in the many-body problém corresponding to nuclear
rotation. ‘We shall see that the procedure is based on a concept of an imposed rotation of the -
nuclear potential that is a pure c¢lassical motion. Moreover, the solutions to the corresponding
cranking model Hamiltonian are not eigenfunctions of angular momentum. Finally, the rotation

of a nuclear potential is imposed about an axis that is fixed in space. Thus the cranking

model is not able to describe a wobbling motion of the nucleus that often accompanies the rota-
tion. Fortunately, this last drawback of the method seems to play a minor role in the case of

a fast rotation (I > > 1) where the wobbling correction behaves as 1/I. In spite of all the

above negative aspects of the cranking model it has been widely employed as the only method

that has proved up to now to describe successfully the fast nuclear rotation.

General idea of the cranking model consists on solving the Schrddinger equation for a
particle moving in an externally rotated deformed nuclear potential that is rotated with a
constant angular velocity « about an axis fixed in space. The resulting equation is of the
form

o= =H ¥ (16)

where

iy

H =H-Huw JX an

is called a cranking Hamiltonian (or, a Routhian) while H is the original Hamiltonian that
describes the system without rotation. It may be shown that u* may be alsounderstood as a
Hamiltonian in the rotating frame of reference. The additional term =~ K u JX appearing in
g (Jx is the component on a total angular momentum vector on a rotation axis) takes care
of both the centrifugal and Ceriolis term known from classical mechanics to act in the rotating
system., If we have a nucleonic orbit of angular moméntum 3 in the rotating frame of reference
then the Coriolis force attempts to align the "intrinsic" angular momentum 7 with the axis of
ratation.

Another derivation of the cranking model can be given that is based on a variationmal

principle. We simply want to minimize the energy

o> (18)

I=¢ . J] u> (19)

Here, again the total angular momentum I is identified with its projection on the symmetry
axis. Using the method of Lagrange multipliers we have to minimize the auxiliary functional

M=, H L > - <] il o> (20)
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which is then reduced to the minimisation of the auxiliary Hamiltonian
W =H-pu1 on
%
The Lagrange multiplier p is then to be determined from eq. (19) after minimisation. One

can now show that the Lagrange multiplier y is proportiomal to the angular velocity of rotation

w (= # w)., Indeed differentiating the energy E with respect to I (which then defines w ) we

cbtain

_g-‘%= & <ulrly > - §;<w|H|w> -
- g_;{(gn@lﬂ“ltp)+g—p(u<¢|JX|¢>}
= %{(j-u<w')ﬂiw>+<w:n(gﬂw>)+
+<w|%“Iwuwmxw>+p%—<waxlw>} (22)
Since ;p > minimizes HY we have

il IV S (23)

thus the first two terms in the bracket in (22) vanish

d L Lo a '
(E‘:ﬂ Y EY L s v L EY ¢ o v = gV j—“- <y > =0 (24)
Moreover
d ¥ .
e (25)

at - ) (26)

However, . can be regarded as a variable conjugate canonically to angular momentum-K I. Hence
finally
- d E

Lo . M
Y2 gmo T om 27)

and the two derivations of the cranking model ceincide.

It follows from the above comsiderations that the cranking model procedure can be regarded
as a quantal calculation in which the cranking Hamiltonian B (the Routhian) is used as to ge-
nerate the eigenfunctions | > while the original Hamiltonian H as the true emergy operator.

The transformation from H to H” with the simultaneous change of variables from I to w
is of the type of a contact transformation. Table 1 illustrates the conjugate relations

between angular momentum I and angular velocity of rotation w
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Iable T
CONJUGATT, RELATIONS

e =<, ih [ >

WeH-nw J
%

s =8 v

E=<y|H[y >

(E - total energy; Em ~ total Routhian)

t=<y i lv o>

GBS
dEwY

single-particle version :
W _ - .
h™ =nh How I

w
h > = gl
!¢‘\) e_\)!fbv >

N Ay
(e\'J ~ 5.P. ENErgY; ES - s.p. Routhian)
. " ! .
= ¢ =
ty I oy <@y Ix |¢v >
d ee
ETT:L'= ’(jw)v‘ = - i {(alignment in the orbit v )

Table II
SIGNATURE QUANTUM NUMBER

signature signature exponentr angular momentum number of particles
r, = e-iwu o3 . I = o mod 2 A=20md 2
+1 0 0,2, 4, even
~1 1 143,5,... even
-i 1/2 1/2,5/2,9/2,... odd
+i -1/2 /212, .., odd




Particle energies (in K)
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Before going to a detailed discussion of the single-particle orbits in a rotating nucleus
let us still discuss the symmetry properties of the cranking Hamiltonian. In absence of the
negative-multipolarity deformations (such as e.g. the octupole deformations determined by
parameters B3H) the original Hamiltonian H is symmetric with respect to the three rotations
R1, R2 and R3, each through an angle 180° about any of the three intrinsic axes x', y' and z' :

R, =c > T %y (28)

A

with 2= x', ' or z'. In the case of w # 0 (rotating nucleus; we usually assume that x' is
the aﬁis of retation) the two operatprs Ry, anr Rz" are mot any more the symmetries of the
cranking Hamiltonian HY . The only symmetry that remains valid isg Rk" The {(complex) eigen-
values of Rx' define a symmetry quantum number called signature. In the case of independent
particles the total signature operator Rx‘ turns out to be a product of the individuwal single-
particle signatures

R,= ¢ (r]) (29)
. .' U
in all occupied orbits. The signature R1 which is an eigenvalue of Rx' can be expressed in terms
of the signature exponent o as
R, = ) (30)
where according to eq. (28)

I = o mod 2 {31)

Table 2 summarizes the resulting values of angular momenta I for a given signature.
Fig. 7 and B (taken from Refs? and 1) present the single-particle Routhians eﬁ and alignments
iv = (jx')uu as functions of w for the j = 13/2 and j = 11/2 configurations, respecti-
vely, The plots correspond to certain deformation B that defines the original splitting of
the multiplet at .. = 0. We can see that the I = 1/2 levels are aligned most easily (i.e.
oceur already for low values of ).

It is interesting to examine the potential energy surfaces and their minima which determine
the nuclear behaviour at various fixed values of angular momentum, For this purpose, one has
to calculate the total energy E calculated by methods described above for fixed values of I at
the mesh points in the deformation plane. The results (including also the Strutinsky renorma-

160Yb. Four following regimes

lisation) are given in Fig, 9 (taken from ref.1) for the nucleus
of nuclear motion can be distinguished in this nucleus
1} A prolate shape of the nucleus at low angular momenta with collective rotation about

an axis perpendicular to the nuclear symmetry axis. The nucleus in this region is in its

superfluid phase. We shall discuss the relevant phenomena in Section 3 of the present review
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Figure 9
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report.

2} A triaxial regime induced by the Coriolis and centrifugal forces which tend to align
nuclear orbits with the axis of rotation and to change the shape from prolate to oblate. The
superfluid correlations are probably vanishing in this regionm.

3) An oblate shape axially symmetric with respect to the rotation axis., Further discussion
of this interesting region will be given in Section 4 of the present paper.

4) Finally a (superdeformed) triaxial and / or very elongated shape of the nucleus that
occurs above the Jacobi instability point. The high-spin limit of this regime is most probably
determined by nuclear fission induced by the fast rotation.

160Yb can be of course altered for some

The above picture with four regimes of motion for
other nuclei depending on their original deformatiom at I = O and on other nuclear parameters.
Nevertheless, we may expect that fast rotation induces substantial changes of nuclear structure
and many exotic effects may possibly show their presence.

Fig. 10 a, b (taken from ref.s) illustrates the search for the superdeformation that may

be favoured by the existence of special shell effects. One can see that nuclides around

Z = 66 and N = 86 may he good candidates for this search.

3. High—spin rctational bands in deformed nuclei,

In order to describe collective nuclear motion at the high (but not very high)-spin region
for I, say, up to 30 in nuclei that are originally already deformed at I = 0 we have to include
nuclear superfluid correlations in addition to the picture presented so far. The characteristics
of nuclear superfluid correlaticns induced by the short-range attractive pairing force are
fairly well known. They lead to the existence of the pairing gap A in the spectrum and the
elementary excitations are of the quasiparticle type. In the simplest version of the calcula-

tion the quasiparticle energy is given by

€ NG, ~nls 42 (32)

where e - } denotes the single particle esnergy calculated relative to the Fermi energy A
e

in a given nucleus. When we want to generate wavefunctionsin a rotating nucleus we have to

replace the Hamiltonian H by the Routhian H ™. It turns out that the relation (32) is not

valid anymore (unless . = 0) and the quasiparticle energies have to formed from a more compli-

cated system of matrix equations including the pairing field.
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i (33)

- A -\
B B

(numerous original references to these equations can be found for example in refs.9, 10 or
11} where W denotes a selfconsistent Hartree-Fock Hamiltenian (taken in a rotating frame of
reference and relative to the Ferni energy multiplied by the number of particles) while A
is a pairing gap in a rotating system. These equationg when treated fully selfconsistent afe
called Hartree-Fock~Bogolyubov (HFB) equations. When the selfconsistency is not fully taken
into account (i.e. when the potential appearing in W and the pair field A are not calculated
from the original two-body forece but instead asummed ad hoc) it would be perhaps more modest
to call them the independent quasiparticle equations in a rotating nuclear field. The solution
of these equations for the eigenvalues E:i enable to plot them as functions of angular
velocity W. In this way the widely used plots of Bengtssen and Frauendorf are obtained12.

In fact, equations (33) contain twice as many solutions relative to the number of the phy-

sical degrees of freedom. In the absence of rotation (W = 0) it is easy to distinguish between

the physical solutions (32) and the unphysical ones (E,Ozpﬁj(&v - A)z + 02 ). In the region
of w # 0 some of the solutions originally positive become negative and vice versa. We may
call "physical”™ those solutions & ; (w) that can be continuously connected to the positive
solutions at = 0. Fig. 11 illustrates the Bengtsson-Frauendorf plot for the nucleus 160Yb
(from ref. 13), One of the most striking features of this plot is the rapid change of the direc-
tions in the lowest two curves at around w = Q.22 MeV/H . According to the equation
a &
d(hw)

= =i (cf. Table 2)

this corresponds to the rapid negative chanée in i (i.e. alignhment of angular momentum I) pro-
portional to the change in slope. However, the levels denoted A.B. represented by two lower
curves correspond to the two quasiparticle excitatien. Consequently, these two unphysical
levels (not shown in the figure) represent a positive change im i, i.e. the rapid increase in
angular momentum. In fact, this change (which is also accompanied by some negative jumps in
angular velocity w ) corresponds to a crossing of two bands and the relevant rearrangement in
the quasiparticle vacuum. This is then the explanation of the back~bending effect discovered

14. It is now understood

experimentally by Johnsson, Ryde and Hjorth in 1970 in Stockholm
as a crossing of a lowest two-quasiparticle band (called Stockholwm band) with the ground-
state rotational band. Fig, 12 illustrates the double backbending plot (moment of imertia ¥

: vs.(ﬂm)z) in 156Er 15~ﬁhile Fig. 13 - the prediction for nuclei 237Np and 224Thm. Generally
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we do not expect much of the back-bending behaviour in Actinide nuelei (except for some special

224

cases). The exotic nucleus Th, for example, should exhibit a very strong double back-bending -

as predicted by the theory 16.

Fig. 14 shows schematically the dependence of the crossing frequency w*on the pairing
force strength (and thus on energy gap A). This figure could be taken as the basis of the
discovery by Garrettet al, 17 that the crossing frequency w* is generally lower in odd-A nuclei
as compared to the even-even ones. Few important exceptions from this rule {illustrated on
Fig. 135, 13) concerning the oblate orbits may be an indication of an existence of a new compo-
nent in the nucleon-nucleon force (e.g. guadrupole - pairing) that causes different sensitivity

18. Fig. 16 illustrates the dependence of angu-

19 . 168
in

of some orbits with respect to the pair field A
lar momentum I on the angular velocity w found experimentally Hf. A remarkable fact
in this picture is a linear dependence of I on @ in a rather large interval of I (say, from

1 =18 to I = 34 !), Moreover, the straight line can be seen to go through the origin of the
coordinate system. Before analysing the implications of this remarkably simple linear dependence
let us first discuss the possible definitions of nuclear moments of inertia 20. We can define

3 as the ratio of angular momentum I to angular velocity w . The resulting moment of inertia

I BBy L (34)

2 dIz Y

("kinematical" moemnt of inertia) is labelled with superscript (1) since it involves a first-
order derivative of energy E with respect to IZ. The other possible gquantity ("dynamical" moment
of inertia) may be related to the curvature in the yrast line :

(2) _ .2 . d°E.-1 _ d1 .
3 =4 (=) =H 4= (35)

It invelves a second-order derivative of energy E with respect te angular momentum I. Now, the

two moments are related by the relation

1
3@ _ g, a3® (36)
- d.
Fow,let us come back to Fig. 6. The long linear part in the curve of I vs w geoing through

the origin means that
3 (- '3(2) = comst a7

independent roughly on « . Since it bas been known already that the main reason for the change

in moment of inertia (at least at low spins) comes mainly from the change in the pairing one

can conclude that perhaps the pairing correlations have already collapsed for I > 1§ in 168Hf.
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This conclusion is highly tentative, nevertheless the simple dependence of T on w in 168Hf

deserves attention.
Fig. 17 shows the observed and calculated two moments of inertia 3D and 2 {taken

from calculation by Dudek et 31.21) in 23

8U together with the calculated values of the pairing
gap 4. All the curves are plotted versus w . It has been suggested by Bohr and Mottelson 20
that when the pairing correlations are about to be destroyed there is a region of a fast
increase in angular momentum as function of w . In this region '3(2) should be rather large.
This is exactly what happens in Fig. 17 and it is remarkable that the peak in 3 (2) oCCurs
exactly in the region where the pairing gaps approach zero. Unfortunately, this exciting

evidence for the pairing phase transition is also highly tentative owing to the possible exis-

tence of another explanation by means of the band crossing.

4 ., Complete alignment in axially symmetric nuclei (mostly oblate or spherical)

We shall now discuss the case where the angular momentum is totally aligned aleng the
nuclear symmetry axis. Such a coupling scheme has most chances to prevail in nuclei that are
axially symmetric and oblate (or spherical) already at I = 0.The single-particle orbits in case
of such motion are governed by the cranking Hamiltonian

L

h" = h -4 jx (38)

] . . . ] . w
However, now since I, commutes with h and thus also with h the eigenvalues . ev N and m,

of b~ . hoand 3, vespecctive.y, are related by

e} =e =H.m (39)

In this situation, the increase in angular velccity.of the motion does not modify any more

the orbits and the system can plck up angular momentum only through a rearrangement in the
population of various orbits. It is specially convenient in this case to consider a plane

with coordinates (m,e) where the pairs (mv €, ) can be represented as discrete points. The mi-

nimisation of

H" = I h” (40)

.l

is, in this case, reduced to the proper choice of the populatiom in the nuclear
orbits. In order to create as much angular momentum as possible with the least possible energy
loss one has to populate those orbits, i.e., those points in the {(m,e) — plane that lie below

a2 sloping Fermi surface represented by a straight line
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Figure 18
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e =pm+ )
where u =fi W determining the slope in this line is related to the angular velocity w . Howevegf\
W , has only a formal meaning, since there is no collective rotation in this case.

The irregular character of the sequence of levels of different nature may lead to the
existence of isomeric states (yrast traps) characterised by high angular mementa of the states.
The high-spin isomers are then a characteristic feature of this region of nuclides22
Fig.18 taken from 23 illustrates the resulting spectrum in 212Rn obtained by the methad
described abeove. The calculaticn is compared with experiment. One can easily see that the
agreement of the calculation with the observed energy levels as well as for the occurence of
the high-spin isomers is remarkable 23.

It is interesting to analyse the possible collective excitations that can be created in the
high-spin states of the type discussed above. We shall give few examples of the possible
collective modes -that can play a certain role in establishing the nuclear coupling scheme
just above the yrast line.

One possible mode is the gamma-vibration {i.e. non axial change of shape corresponding to
a dynamical change in the deformation parameter ¥). This type of vibration carries + 2 units
of angular momentum. The AL = - 2 mode may lead to the erosion of yrast traps 24 and the

AL = + Z modes may form a vibrational band raising just above the yrast line. The bands of
this type would compete with the rcotational bands that cerrespond te a rotation of an oblate

20,25,26

nucleus about the axis perpendicular to its symmetry axis These two types of excita-

tions can be derived from the dynamical variations of nuclear shape correspending to the

z and Y21m0des).

dynamical changes in nuclear shape of the gquadrupole type (Y2
Fig. 19 illustrates the nuclear response-functions estimated in 1saYb at small oblate

deformation 23. It can be seen that the calculation predicts much more strength for the

totation as compared to the v —vibrations which appear to be almost non collective,
Finally, a very interesting mode that has been observed in the nuclear states at high-

27’28. This type of excitations are presently intensively investi-

spin is the giant resonance
gated both in experiments and theory (seae e.g.zg). Fig. 20 illustrates the predictions of the
interesting splitting in the gilant-rescnance energy caused by the deformation and rotation

under the assumption of its dipole-isovector character3o(rSee a15031’3§l Another interesting

evidence {which is not available yet) would be provided by the angular distribution of the

.. . . . 28
gamma rays deexciting the giant resonance in a fast rotating nucleus™ .
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In this short and simplified review on the properties of the fast rotating nuclei we have
given only a very schematic picture emphasizing mostly some theoretical aspects of the problem.
It is needless to add that our discussion has been highly incomplete, Fortunately, in an
accompanying course by Henri Sergolle33 some of the beautiful and exciting experiments on the

_ fast rotating nuclei have been presented (see also Refs. 34 and 35).

We have based our discussiqn on a basic concept in nuclear structure of the independent
(or almost independent) nucleons moving in a given nuclear potential fieid . In fact, we
never worried in our considerations whether the assumed nuclear potential really corresponds
to the actual distribution of nucleons that move in this potential. In other words, we have
only occasionally taken into account the rich consequences of the selfconsistency conditions
that have proved to play such an important role in understanding various aspects of nuclear
dynamics. In this context, we would like to mention especially the works of the groups in
Bordeaux and Orsay (see e.g. refs. 36 to 39). Some of these aspects have been also discussed
in a lecture course by Mich&le Meyer AQ. One may hope that the Hartree-Fock and Hartree-Fock-
Bogolyubov methods would soon become basic and commonly used tools in the investigation of the

high-spin states in atomic nuclei.
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