SVM and kernel machines
Résumé
Kernel Machines is a term covering a large class of learning algorithms, including Splines and support vector machines (SVM) as a particular instance. Kernel Machines is an important and active field of all Machine Learning research. Not only the number of publications bear witness of this fact but also the high quality of the results obtained by kernel machines in recent pattern recognition competitions. This tutorial will provide an introduction to kernel machines by explaining how and why it works. It will be organized in three parts dealing with the problem: kernels and learning (part 1), tools: kernels, functions, costs and optimization (part 2), and algorithms for non sparse and sparse kernel machines (part 3).
Fichier principal
tutorial_04_Kernel_Advances.pdf (1.08 Mo)
Télécharger le fichier
Homework.pdf (75.95 Ko)
Télécharger le fichier
tutorial_01.pdf (641.57 Ko)
Télécharger le fichier
tutorial_02_Noyaux.pdf (555.7 Ko)
Télécharger le fichier
tutorial_03_kernel_machines.pdf (1.83 Mo)
Télécharger le fichier