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LOW ENERGY PP PHYSICS

E. PREDAZZI
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et

Istituto Nazionale di Fisica Nucleare, Sezione di Torino (ltalie)




INTRODUCTION AND MOTIVATIONS FOR pp STUDIES.

The interest‘in NN physics (particularly pp) has always been deemed by the difficulty of
having a suitable tool of investigation, namely, a reasonably intense beam of antiprotons. This
interest has so far been confined to the verification of the asymptotic theorems in the high
energy domain and to the spectroscepic analysis of the baryonium both in its theoretical and ex-
perimental aspects.

The recent development of cooling techniques opens new perspectives ranging from the very
low to the very high energy domain. Among the main issues from low energy data, many consequen-
ces of general theorems, such as CPT are going to be verified experimentally, the BB resonance
spectrum (baryenium) and very low energy cross—sections are going to be measured. In the high
energy domain, aside from the already mentioned verification of the asymptotic theorems for pp
and pp, an exciting new field has been the search for wd= and Z° on the one hand (at the level
of our understanding of the fundamental properties of the basic interactions) and the verifica-
tion of the hints provided by cosmic ray data, on the other hand, which has greatly renewed the
interest for hadronic physics.

All these developments have not been accessible so far with the use of the conventional
{low intensity) beam of antiprotons that have been traditionally available and whose contamina-
tion from pions has always been very largé. Furthermore, the range of available energies has
so far been limited and strongly correlated to that of the primary (proton]) beams. This can be
seen, as an example, from the momentum spectrum of antiprotons produced in the forward direc-
tion by a 23 GeV/c beam of protons on a lead target {Fig. 1}. In Fig. 1 the distribution peaks

Ny at 3.5 GeV/c corresponding to production
0 at rest 11, the C.M.

The situaticon is soon going to be
drastically modified by the new p beams
obtained with cooling techniquerwhich are
going to provide very intense sources of
antiprotons. The latter, produced at the
peak energy of Fig. 1 will be stocked in

an accumulator ring and the momentum

spread of each incoming bunch {Ap/p 2z 1%)

is poing to be reduced or "cooled down" to

-4 . .
Ap/p 2210 7. The present expectation is
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of stocking js 1012 antiprotons in a day.time at CERN by means of a specific antiprotons accu-
mulator ring {AA) to be then utilized in the new devices called LEAR and ICE; they will be di-
scussed together with the planned physics program in the lectures by U. Gastaldi (these procee-—
dings).

The options of using relatively low emerey beams (up te 2 maximum of few GeV/c per beam)
are both being pursued at CERN while the high energy option only is presently being considered
at FNAL.

In the high ;nergy option at CERN, the antiprotons stocked in the AA ring are first acce-
jerated at the PS up to 26 GeV/c and have then either been injected in the SPS used as collider
{i.e. accelerating at the same time beams of protons and antiprotons circulating in ppposaite di-
rections) or in the ISR. The latter alternative is now out due to the shut down of the ISR. In
the low energy option, the aptiprotens are first decelerated down to ~0.6 GeV/c and then tran-

gferred to a small storage ring (LEAR} wh1ch will provide beams whose energy will range from
0.1 GeV¥/c to 2 GeV/c with Apiv 10

The maximum energy of 270x2 = 540 GeV/c has been reached in the collider (i.e. nine times
the maximum energy attained at the ISR} leading to the discovery of the vector bosons W— and
20 mediating the electroweak interaction. The experimental finding of fuvdg 82 GeV/c and
m = 93 GeV/02 ig the best confirmation of the s0 called standard {or Weinberg-Salam} model uni-
fying the weak and the electromagnetic forces. Thus, once again, the first actual discovery of
Wi and Z° has been the product of hadronic machines. Quite probably, however, the Ep collider
will not be able to carry out the analysis of the spectroscopic properties of the vector bosons;
for this, the new generation of e+e_ machines (such as LEP) will be necessary. The Collider has
alsc been useful for measuring Giﬁﬁp) and for extracting cher data.

Much information has also been gathered from the second high energy option at CERN, i.e.
injecting the antiprotons in the ISR. This has allowed one to study the pE elastic and total
cross-sections up to the present highest energies at which they have been measured for pp
{ fg =22 to 63 GeV) and to verify both their expected analogies and the validity of the Pome-
ranchuk theorem as well as their appearent dlffEFBHCGSI.

While the high energy proton beam developad at CERN will presumably loose its competiti-
vity once the FNAL collider will be in operation, a lonper lifetime shoﬁld be expected for the
CERN low energy facility of antiprotons (LEAR) which jg going to be a Very flexible tool by pro
viding: first of all, a very clean external E beam with an average intensity of 4 H} p/sec and
high duty cycle; secondly, an internal beam to be used on a gas jet target; thirdly, the simul-
taneous stocking of H and E beams circulating in the same direction so that very low energy col
lisions should be possible; lastly, the work of a2 standard collider accumulating p and p circu-
lating in opposite directions to investigate low and medium pB physics.

More specifically. at low energies we expect the follpwing issues to be important in con-

nection with intense 5 beams :
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A/ Annihilation processes

B/ The baryonium (or q g g q) states

¢/ Quasinuclear states

D/ The protonium states

E/ The study of charmonium.

As already mentioned, this phyéics is going to be studied at LEAR with a high intensity

6 - -4
( :5 10  p/sec) high duty cycle, high momentum rescluticn Ap/p 2 10 , low energy

12 ~
p. In this

) 9
(0.1 + 2 GeV/c) extracted beam or within a storage ring operating with 10 %o S 10
mode of operation dense targets are required to provide iarge stopping rates above a~,0.1 GeV/c,
Alternatively, the pE spectroscopy can be studied with an internal beam on a gas jet target and

-5
an extremely high momentum resolution { A p/p &£10 ).

A/ Annihilation processes.

All modes of annihilation can be studied by stopping virtually all of the 106 E/sec in a
small volume (30 cm long hydrogen target). Alsoc annihilation into e+e_ pair should give the lar-
ge yield of 300 events/hour {to be compared with the present atatistice of ~s26 events de-
tected at the PS in the ELPAR experiment).

Annihilation is going to be investigated using degradation in matter and tagging with a
spectrometer or time of flight measurements. Below 0.2 GeV/c this field is totally unexplored.

B/ The baryonium states.

‘ An extremely important issue that can be studied with either an external beam or an in-
ternal gas jet target is that of baryonium states; namely, of those mesonic states that are
weakly coupled to mesons and should strongly effect pp channels at low energies. These states,
expected from duality considerations :<tended from meson-meson and meson—-baryon to baryon-anti-
baryoen, should be g q a a states whose experimental (and theoretical) evidence has been a rather
controversial issue in connection with the colour degree of freedom and they could be manifesta-
tions of diquark-antidiquark systems belonging to 3 3 (d &) and 6 6 {d d} representations {(re-
¢call that if g belongs to 3 and a to 5, than a gq state can give 3x3=3+6 with a coupling which

. 4 2 :
is - — and = respectively). These states are expected to be weakly coupled to meson-meson chan

3 3
nels and should lead to narrow states below or near the 3 3 threshold and narrow states above
the 6 6 threshold which should however be rather difficult to excite.
Generally, baryonium states should appear in formation experiments (pB —» X) or missing
mass experiments {pp —» X + TC).
Experimentally, the situation&presently rather obscure. Many states have been reported in
the past by varioas groups but, so far, none has been firmly established. Therefore, this point

arouses great expectations. This point will be taken up briefly in Secs. III.S5 and Iv.2.

¢/ Quasinuclear states.

From the study of N N interactions one expects short range attraction in the N N system

giving rise to resonances (quasinuclear states) around threshold. These states are, in princi-

|
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ple, expected to be (g a q) (q @ 9) systems as compared to the previous (q g q g) baryonium sta-

tes. In practice, however, it may be very difficult to discriminate among these two kinds of sta

tes.

p/ Protonium states.

These would correspond to the formation of hydrogen—-like systems bound

together by a

Coulomb force. Given the theoretical predictions, the issue here is to compare the latter with

high precision measurements of level shifts and widths associated with strong

low angular momentum gtates. They can be studied both with stopped E in a gas

interactions in the

targed (LEAR) or

by 5 H interactions in flight; one expects intense beams of protonium to be ocbtained from the

9 - - . s
straight sections of LEAR {typically, 104 atoms from 10 p and H stored in the LEAR ringl.

E/ Charmonium.

The whole charmonium family can be studied using LEAR as a collider with a high momentum

A -4 . R
resclution AP .~ 307" . The main point is, of course, to finally settle the varions questions

which are still open .

The plan of these lectures is the following: In part I we first recall
perties of the basic symmetries c,P,T and we then discuss the quantum numbers
rules of the NN system; Part II is devoted to seme kinematics of NN and NN in
tion modes; Fart IIT deals with a few aspects of the experimental side of low
nal" NN phenomenclogy; Fart v, finally, takes up very briefly the discussion

cal results in low energy EB phenomenclogy -

Part of the material used in these notes follows the presentation by L.

a
for the last part, we have borrowed from R. Vinh Man .

some general pro-
and the selection
the simplest reac-—
energy "conventio-

of some theoreti-

3
Bertocchi and,
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PART 1

GENERAL PROPERTIES

SPACE INVERSION, CHARGE CONJUGATION, TIME REVERSAL, PCT THEOREM,

G _CONJUGATIONS, QUANTUM NUMBERS

I.1 SPACE INVERSION

1.1.1 Introduction:

In ordinary -Quantum Mechanics, the invariance of the Hamiltonian upder space inversion
transformation (x,y,z) —» {-x,-y,-z) leads to the possibility of classifying states of the
system according to a parity quantum number 11. More precisely, there exists a unitary operator

P such that coordinates, momentum and spin transform according to

=P IR P=-%
- -

'§|= P'F P = - P , {1.1.1)
- -

=P 3FP=- 3

while state vectors with definite parity satisfy
P|>=il> (I.1.2)

Eq. (I.1.1) preserves the commutation rules and the equations of motieons.
In field theory there is a generalization corresponding to eq. (I.1.1) for the field ope-

rators which we will briefly recall here.

1.1.2 Electromagnetic field:

The charge of a particle is assumed to be a true scalar quantity. Thus the following spa-

ce—-inversion laws obtain

It

1% ) = ¢(-=)
3’[;)1—5“(—2) (1.1.3)

From Maxwell equations invariance under space inversion, the electric field is known to be a

pelar vector and the magnetic field to be an axial vector
—y -y —y
E'(R) =-E(-%)
= BT I.1.4)
B ()= B(-%) ‘

H

Thus, the four-vector potential transforms according to
-y - -
AlR) = - A(-%)
: —
P - L)

The guantum mechanical corresponding forms are all of the type

EL(;): P"" E_L(x.) J? = - Eﬂ[—-;z) ’ (-;_75,,2,3) {I.1.8)

(1.1.5)
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. . =2 a2 - ¥
and the two Lorentz invariant combinations of the electromagnetic fields (&' - g ), E B

have therefore opposite parities :
p1(E-BYP = EXE"
-l -

pPr(E-B)Y =~ E.-E (1.1.7)

1.1.3 Scalar and pseudoscalar fields:

P .
Spinless bosons are described by field operators ¢{x 7 &) which are rotationally in-
variant. Their spac‘e inversion transformations, however, depend ¢n whether they correspond to

sealar {S) or pseudoscalar (P) operators. In the first case:
! ~4 .
4%(5:;&)5 P (;bsfi',t')f-*- 51?5(-'3’:/ ) (1.1.8)
while

(P;:(';Z/ t)= P-i qbp (%, vFP=- d)P ("‘Z! £) (1.1.9)

when the field operator is expanded in an orthonormal set of plane waves, P acts only on

the creation and destruction operators. Thus, given

- . tred .
. l ] [ E,L';’“lwit L.'- —ii-z-}‘ let
T t)= — > — |4 e + e (1.1.10)
4)( ! vt g Vz—w: 3 +
the transformed field ¢ ’(;:, t) is given by
?: tovp & i;’:c;r.'-n-iwit
— —~1. A TN -1 + -
(P'(-SZ,{:):._'-I&Z__'__ [_P a, L' e . LKP € A1.1.11)
V i d?.w"_
Comparing with eqs. (1.1.8,9) we have for the transformation properties of QL p ]:.Z
- 4 _P _ a
,?-1 "LP 41? ;{" (1.1.12}
b} =
where
ﬁz = +1 for scalar particles
P (1.1.13)
"ZP—:. -4 for pseudoscalar particles

1.1.4 Dirac fields:

The single particle Dirac wave functions transform according to

4)’[7?')=/5 4}(—-2) (1.1.14)

/_J,.; Y, (1.1.14)
- 04
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being
.Zl-. + S = 0
» q;!’);aﬂ q’ - (1.1.16)
the basic Dirac equation where we have chosen '
- 10 20
i 0O 6 4 © ot &0
A=1[-> }3= : al po-10 (I.1.17)
G 0 / o -1 oo ol

(being E: the usual Pauli matrices) and where
- PO
Y= pL Y=
= o -1
=W ts ¥, = (%75

(I.1.18)

The adjeint field

?-—*— ‘P-’-Y’r (1.1.19)

satisfies the Dirac equation

S —
—,}—j';l B//A "'.'“" ¢ =0 , {1.1.20)

The plane wave solutions (spinors) of the free particle equation-(I.1.16) cen be written:

X1,z

W =)/ Em E3
12 (P) Y 2o ;{1 . (1.1.21)

ii) Negative energy:

z(P)‘ i‘/ E+w E+m xi’ (1.1.22)
A

where E is positive and the Pauli spinors ;15,2_ are defined as

]./d_-_-(;') / 7(2=(i) (1.1.23)

—ly
The spinor W, (p) is a positive energy spinor representing a particle with momentum p and
J

i} Positive energy:

S c , . . — .
5pin j. Similarly, vi(p) represents a negative energy particle with momentum -p and spin j. The

; c . - . . -
charge conjugate spinor v _(p)} represents a positive energy antiparticle of momentum p and oppo-
J

site spin.

The plane wave spinors wu(p) and v(p} cbey the free particles equations of motions
(Lyp+m) u(p) =0
(‘X‘f"”““) v(}a)so

while their adjoints obey

(1.1.24)




194

w(p) ({yp+w)=0
7)) (iYp-m)=0
Finally, the normalization of these spinors is
T (P) () = &
() v (p) =
= (p) v3 (1) ~ 85

and the projection operators for positive and negative energy states are

A (p)= i wi(p) ilp)= _:‘J'-P

A (D= z () % (p) = - ket

(1.1.25)

(1.1.26}

{(r.1.27}

Going back to the transformatlon properties (1.1.14) (which follows directly from the

equation of motion (I.1.16) using also {1.1.15} and (1.1.18) in terms of spinors {1.1.21,22) we

have

w}(F)= pwu;(F)=w;(-F)
vl (F)= p v (F)=-Vj[-F)
Rewriting eg. (1.1.14) for a pirac spinor fleld

L})’(;’} £)= P—i"})(;,'b) ?"-”ﬁ’ W("';z; t)

and making the usual plane wave decomposition in terms of creation and annih

. VL 2
pe0=75 2 (7) (40 © &yt Gire

we finally have, using both {1.1.28) and {1.1.79)

152 P=-a
_1 +
2 L,,Ij

‘P‘.’u

- L.
-F9

(1.1.28)

{1.1.29)

ilation operators

{1.1.31)

with similar relations for their adjoints. The relative minus sign between the particle and an-

tiparticle forms leads to the conclusion that a particle—antiparticle pair has an intrinsic odd

parity.

This is the only relevant gtatement that can be made in the sense tha

t the concept of

fahsolute parify" is meaningless for a fermion. Thus, -if we choosze, by convention, the parity of

a spin 1/2 particle to be positive, its antipaéticle will have nepative pari

To see how this checks with the experiment, let us consider the annih

ete —>2Y

ty.

jlation at threshold
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At threshold, the reaction proceeds via S-wave (L=0 of the e'e system). Furthermore, it is found
that the y's angular distribution is isotropic which implies a total angular momentum J=0 for
the initial state. As a consequence of J=L+S, and of L=0, J=0, we get also S = 0 {i.e. the ini-

tial state is a singlet}. Thus, the reaction takes place in a state
25+1 . 1
L.="5,
If the intrinsic e’e-state is negative, this, in turn, implies that the total parity of the ini-

tial state is L+4

P= (-1) = -1 Csi-ucc L=o)

So, the initial state is invariant under rotation (J=0) but has negative parity: it must be, the-

refore, a pseudoscalar.

Let us now see what this implies for the final state which must again be a pseudoscalar
owing to the fact that parity is conserved. To construct a pseudoscalar we have the following
elements to take into account (wé work in the C.M.):

i) the product of the intrinsic parities of the e{é is +1 since they are identical bosons;
ii) the two photons are real and therefore transverse (i.e.: -31.-1»? = 0, '32._}? =0 wherer? is the
photon momentum, ?1 and ?2 are the polarization vectors of the two photons}.

- —y
Thus, the only pseudoscalar that we can form is Ea xe .i_ predicting orthogonal polari

2
zation for the two )( rays. Notice that had the relative e+e- parity been positive, the state
would have been scalar which could be represented by a form E}.'gé predicting parallel polariza-
tion.

The data lead to orthogonal polarizations of the two Ffinal X'S thus confirming the rela-

s . + -
tive negative e ¢ parity.
The analogous te-t for the NN system would be that of a two-pion annihilation

NN —> 27T

The steps of the proof would be:

i} to prove that the reaction proceeds from an S-wave (for instance through its energy dependen—
ce at threshold):

ii) to prove that it proceeds from an isotropic state J=0 so that the initial state should again
be a S0 state.

In this case, however, the check that the NN system is in a nepative relative state would
require the absence of the reaction Nﬁ —» 2W for the case where the two piens have isotropic
angular distribution and have an energy dependence consistent with an S-wave. In the present ca-
8e, in fact, the plons are spinless and we cannct form a pseudoscalar with the varxables of the
final state.

We shall briefly discuss in part III, the evidence for S-wave annihilation in NN - 2T

KK versus the P-wave annihilation (§ III 4),
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»

1.1.5 Bilinear forms:

Recall now that the most general 4x4 matrix needs 16 elements to characterize it and its
most general form can be made up with combinations of Dirac matrice. They can always be organized
in ‘& groups according to their Lorentz transformation: scalar, vector, tensor, axial vector and
pseudoscalar which will denoted by 01 (i=1,2,3,4,5). Explicigd}y, one introduces the Hermitian
operators (0+ =0}

P 17

i Lorentz property 0

i
1 § (scalar) 4
2 v (vector) ‘( J =) 2,% 4
3 T (tensor) qtpgfftﬁ$_xﬁyd) J d,p::,z,:,‘, ; AER
4 A (axial vector HE 'R 1 ; o=zl 2,3,4
5 P (pseudo-scalar] 1(
s

The adopted terminclogy is just conseguence of the space transformation which we are now
going to discuss.
From the transformation properties just diseussed for a Dirac field (1.1.29}, it follows

that

B4l O hE)E- L [RD%UBREE) o
4

where the subscript ¢{ denotes the appropriate Lorentz index or indices. The phase factors "-.d
i

are given by

Scalar +1
vector -1 for ol=1,2,3 +1 for of=4
Tensor +1 for o{{l =1,2,3 -1 for o(_orﬁ: 4
" (1.1.33)
Axial vector +1 for o= 1,2,3 -1 for ot=4
pseudoscalar ' -1

Notice that it is the space components of the above forms which transform according to their

names.,

1.2 CHARGE CONJUGATION

1.2.1 Introduction:
The definition of charge conjugation arose from the symmetry of Dirac eguations for elec-
trons and positrons interacting with the electromagnetic field. Its meaning is now broader since

it applies also to electrically'neutral systems (like K®, %) but the name has survived.

1.2.2 Charged scalar or pseudoscalat field:

A complex scalar or pseudoscalar field ¢ =‘(ﬁ+ \ ¢2_ { q&t..; i=1,2 being Hermitiaf

operators) describes spinless charged particles with an electromagnetic charge current 4-vector
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di = ief(2,9%) ¢ - ¢ (2] (1.2.1)
where 'Do(E’D/Dx“ and ¢+= ¢1_£¢2- . The field ¢ (cb"') destroys (creates)

particles and creates (destroys) antiparticles. We define the unitary operator ¢ which interchan

ges the roles of particles and antiparticles through the transformation properties
c -1 3 -+
P pC =9
+ -1 45 - {1.2.2)
Pz P ptc = ¢
i/ _ - (1.2.3)
du=C Iz C T

Examples of complex boson fields are of course those used to describe the picns being 7|'+ the

antiparticle of 'n'- . Another example is the pair of neutral K mesons (K® and K°) which differ

in their strangeness, '
From (1.1.10) one finds for the creation and destruction operators
-4
'd a_& C = b
£ (1.2.4)
-4 1+ +

and analogous for their adjoints.

I.2.3 Self conjugate scalar and pseudoscalar field:

Neutral particles with no distinguishing quantum numbers {like baryon number of strange-—

ness), such as T\" are described by an Hermitian field qbo which transforms into itself

dgc.:., C__itk C = iﬁb, (1.2.5)

In the case of pions, the plus sign is chosen te make invariant under charge conjugation

—_—n ¥
the charge symmetric coupling of pions to nucleons !’U T- ¢ LI) .

I.2.4 The electromagnetic field:

From the behavior of the e.m. 4 current under charge conjugation it follows that the e.m,

Tields and the 4 vector -potential transform as

—!‘C -] = —
E = ¢ EC=—~F
— —p
Be= c'Tec=-18 (1.2.6)

]

Ax

- —
which implies that the Lorentz invariant forms E —52 and E . Ti’are even under C. This is one

C?,ﬁdc' == ﬂo{

further reason to choose the sign + in the transformation of ¢o {eq.(1.2.5) for the T field

) - .
Bince the effective interaction (E . -ﬁ}gq’ responsible for the decay T‘t'o-->2}( is then

even under C,
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the transformation

I.2.5 Dirac field:
ation with electromagnetic coupling,

For the single particle pirac equ
which changes the sign of the e.m. coupling is
! ra
- = .
tf) W 31&'*’ (1.2.7)

jar to the representation of Y
, we have from {1.1.17,21,22)

matrices chosen in § 1.1.4.

where the operator Xi is pecul
In terms of the plane wave spinors uj(p) and vj(p)

t - *
w, (P)= ¥y %y = Vi (P) 5 vl (p)z Y, vy = Y2
(1.2.8)
* . *_
uy (B e = 2 (r) / ’?E'(P)s Yo Yz = Y4
rge conjugated

For the quantized Dirac field there exists a unitary operator ¢ such that the cha

field is given by
(1.2.9)

C._ - _ ,\,4-
Yo=Y =Ny

s only to the spinors not to the creation a
ta for the creation and destruction ope-

nd destruction opg

where the sign of transposed applie

NEa
rators; in other termws, the symbol q/
s for the plane waves.

implies adjein

Using the expansion {1.1.30) we have

rators and complex conjugate
cta c=b . ta,,C =)
p 1 pe s & Fpat T TR
N -1 4 + (1.2.10)
;€ bpeCt he

N
¢ bpaC= %2

together with the adjoint relations.
oduce the short-hand notation

it will be convenient to intr

Y=¥a ¥V EVg

{1.2.11)
c '
en particle a, its charge conjugated 9) is

to imply that if 4) is the spinor field of a giv

the field of the antiparticle a.

1.2.6 Bilinear forms:
.2.9) or, equivalently, (1.2.10}, the charge conjugation

Applying the transformations (I
can be proved to be

of the bilinear covariant forms q’; Q l;)b
(T 0 v5)=C (Bmo: p)C =5 (PO )

where "ZI.C - -1 for V,T and +1 for 5,A,P.
d in order to derive these results.

Anticommutation of

(1.2.12)

the fields lis assume

1.3 TIME REVERSAL
1.3.1 Introduction:
iously, represented by an antiunitary operator T defined by the

Time reversal is, notor

properties
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Tl > = <odp)
T (Cs. 14> + €, l‘"r.>> - Cy Loy 1+ €y, oty |

{Prlor> =L ITHTIE> = < RIS

The definition of the time reversed state ] 0(7-:> is that it has all momenta and angular mo-

{1.3.1)

menta reversed as compared to the state ,p(:> .

Reversing brqs with kets under T, amounts to complex conjugation of the wave functions.
This is understandable if we consider the process A —» B whose S-matrix element will be
‘<’Bout'Ain:> . The time reversed situation will correspond to the process B' —3 A' {where the

momenta and spins of A', B’ will be reversed as compared to the states A, B} with S—matrix am—

plitude '} B! > -

in
-1
Consider a general operator A and its time reversed counterpart A' = T AT. The last re-

lation in (I,3.1) can then be used to relate matrix elements of A in time reversed states, to

matrix elements of A' in the original states. We have

SpIAIaS™= x| QIS = < IT ATIAY = <p_ | Al yirn

I imple ¢ h At d A impl lated 1 d and
n simple cases when an are simply related as well as ’o() an ’q’.r>/ "B>
|(51F:> definite phase relations obtain implying, normally, that certain form factors are pu-

rely real (or imaginary).

In ordinary gquantum mechanics of spinless particles, the time reversed wave function is

)r— - MHf >
(:r. f_—) = L/) %, -t (1.3.3)
/ /
while for Pauli spinors
=" - -)r—(-—a _ )
q/ (7‘/ t) = ¢ 0, "}} x, -t (1.3.4)
whose relativistic generalization for Dirac particles

q/’{f,t) = Y: Ve L}/*(S',_"/_ t) (1.3.5)

is, once again peculiar to the choice of )/ matrices used in § T.1.4. The plane wave spinors

given by

(1.1.21,22) transform as
o (B) = Xa¥a ) (F) = - u,(-F)
u', (7) = w,(-F) (r.3.6)
w7 (F) = %[F)
v (F) = = u(-F).

In ordinary quantum mechanics the operators transform as
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e Tt T =%

Pl T ) 'F"T -F (1.3.7)
w— *

2T T =-

For the classical e.m. field, the transformation of charge and current densities under time re-
versal (§=*Q '1_"_;,_.?) implies
Bz, 0= E(Z,-t)
[w.- t)= -_1-3’(53;" t) (1.3.8)
3' (%, &) = —ﬁ(x ~t)
C;b ("’-/ &) = CP{"';"&) .

Let us now revert to the transformation of field operators.

1.3.2 Scalar or pseudoscalar fields:

The generalization of (I.3.3} is

o7, )= T P12, T =1, " (£,~ 1) 10

where /bl_r is a phase to be chosen [ "i_r -1 for pions}.

Inserting the expansion (1.1.10} one finds
-4 +
-1+
T =
T Bi = -&

Notice that momenta are reversed and creation (destruction) operators turn inte destruction

(1.3.10)

(creation) operators. This is the counterpart of kets (bras) turning into bras (kets).

I.3.3 The electromagnetic field:

The operator analog of Eqgs. {(I.3.8) are
_.4_ -
I—T— (*- t) = E()Z,'t) ([.3.11)
and similarly for-E? ? ('.i). Thus
jr (-vz_ —bZJ)HT, E; -—bz
. — =
T*(E-B)T = -E:8B

l-

U

I.3.4 Dirac fields:

Eq. (1.375) becomes, for a spinor field,

PT= T WEE) T = %Y FHE )

where, again, the transpose acts only on the C-number spinors.

Using the plane wave expansion {1.1.30) Logether with {1.3.36), we find, in term of
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creation and annihilation operators

-d + . —d, ='_ +
T G, T=ap, 5 T &p,T=-8a,,

-4, + ~1 o+ =
T J-’ﬁ,-.tT-: -b—P,r. Y T BP,zT B b"’!"

with their amalog for the adjoint operators. Again, the antiunitary character of T turns crea-

(1.3.13}

tion 4—_> destruction operators while reversing spins and momenta.

I.3.5 Bilinear forms:

The bilinear forms of {ield operators can be shown to transform under T according to

(‘ETO;:,( LPLT) = “ZI‘ ("-P_b 0"‘« (f)ﬂ) (1.3.14)

where the notation is similar to {1.1.32) and the phase factors dl;!; have the values

Scalar + 1

Vector -1 for ol=1,2,3 +1 for o= 4

Tensor -1 for q’p =1,2,3 +1 for o(or/:’. =4 {1.3.15})
Axial vector -1 for ef=1,2,3 +1 for =4

Pseudoscalar A -1

Here the spinor fields are treated as commuting since the interchange of ‘PA and "P$ in
(1.3.14) is connected with the antiunitarity of (71.3.1}.
A somewhat simpler expression obtains taking the adjoint of the left hand side of the bi-

linear form in (1.3.14)

TR it T ("' ‘ (1.3.16)
(q’)a. 0!. ‘Pb "'AZE q}aol."lvj,)
where now AZT =+1 for 8, V, P and -1 for T, A. Notice that (I.3.16) is all that is needed in

connection with the T properties of matrix elements of the type (1.3.2).

Equation (1.3.18) translates directly into spinor matrix elements

(TT 0wy ) =T (T, 0 u, Y -

where the time reversed spinor u:r coincides with what was denoted u_' in (I.3.8}.

I.4 PCT THEOREM

The ensemble of symmetry operations P, C, T can be combined in one single operation P C T
which: 1) reverses the sign of both space and ii)} time coardinates while iii) ccherting parti-
cles into antiparticles. This operation commutes with all proper homegeneous Lorentz transforma-
tions, so that a Lorentz invariant theory will be invariant under PCT. A necessary proviso is the
connection between spin and statistics, i.e. boson {spinor) fields commute (anticommute).

For creation and destruction operators of a boson field, the combination of (1.1.12},

(1.2.4) and (I.3.10) gives
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(.’E(:T)_:' a, (PCT) =157 b%
(BCT) by (BCT) = Ypt- S (1.4.1)

+
where 4&: -1 for scalar/pseudoscalar particles and 411_ was defined in (I.3.9).

For Dirac fields, Egs. (I.1.31), (I.2.10).and (I.3.13) give

) +
(PCT) &Bj (BCT).—_-:I: bP,:l'

(BeT) ™ b, (PCT)= % ap

where the sign + (~) goes with j =1 (j = 2).

(1.4.2)

From Eqs. (I.4.1,2) we see that the PCT operation converts a state with particles of de-
finite spins and momentum into a dual state with antiparticles of the same spins and momenta.

For the bilinear forms, from Egqs. (I.1.33), (1.2.12) and (I.3.15) we find
(—PCT)(% 5 "Pb) BT = 1 (?ﬁ' Oz "PE) (1.4.3)

where

1

Hi=+t (S/T/P)
4'[:"""1 (Vlﬁ)

The above result shows an example of a completely general theorem, i.e. even {odd} rank tensors

(1.4.4)

are even (odd) under PCT.

We list in the following a few of the most remarkable consequences of PCT invariance:
a) the mass of a (stable) particle is exactly equal to the mass of its antiparticle;
b} the lifetimes of unstable particles and antiparticles are equal;
c) the magnetic moments of particle and antiparticle are equal in magnitude but of opposite
sign;
e) a Lagrangian which is not invariant under one of the operations P, C, T {say P for weak in-
teractions) is necessarily not invariant under at least another one (PC is known not to be con-
served while not enough precise measurements so far exist to say whether or not also T is viola-

ted but is should if PCT is to be valid}.

I.5 G CONJUGATION
Strong interactions possess isotopic spin invariance (I, 13) implying invariance under

rotations in isospin space {charge independence}. This symmetry of strong interactions leads to

introduce a new symmetry operation, G parity, which combines charge conjggg}ion with isospin
rotations. We shall discuss the case of pions as an example of isospin triplet and of nucleons
as an isospin doublet. The properties of other isospin multiﬁlets can be inferred from these two;
thus (K*, K®) will transform like (p, n) and (K°, K ) like (n, p).
The charge conjugation properties of pions and nucleons are
ctpe
cCrtuc

— -—

¢t wte = wF
-~ C:f'i 'ro C: = %°

1"




203

where the symbols stay for the corresponding fields. The pions are expressed by

wE = le. (4’4*“@.)
T° = d)3 (1.5.2)

and from (I.5.1) we get
- _
- qbz C = 451
-4 - _ {I1.5.3)
C 4)2. C = 2

Cﬂi d’sC = d’s

We define "g conjugation" or "G-parity", the unitary operator

iw T, ' ' , (1.5.4)

G =e
i.e. charge conjugation followed by a rotation of 180° around the ¥ axis of isospace.
Before considering the effect of G, let us examine the rotation in isospin space
e I,
R=e

- 1 —iy .
For a system with I=2: I = ‘2‘ T [T is the Pauli isospin operator). Then Rg g_t,_

This means that for the nucleon isodoublet field we have the transformation
-1 -1 _—
R pR=-a R pR==n
-1 ~1 __ - — 7 (1.5.5)
R « R P R % R= ¢

2
with R = -1. Notice that the nucleon and antinucleon doublets with Iz= i1.-"2 are
(Ie>,0m>) , (175 -F3).
For a system with I=1, the simplest way is to study the effects ¥ R on a cartesian vec—

il
torycomponents (kt, ¢1_ ; é! in isospin space. We find

R—id>¢ R:—(lbi
R:iql’zR= C}’z_
Rid’z R = —sz

If we combine the effects of R {I.5.5,6) with that of C (I.5.1}) we find the transformation pro-

(1.5.86)

perties of nucleon and pion fields under @
-1 — -
G 3 G = - G— B G = -1
~1. - -1 _ =
G mnG = P G &G P (1.5.7)
-4
G w6 =-1
In the case of T fields, the concept of G conjugation is particularly useful in ruling out
loops or vertices with a purely odd number of pion lines (this is the analog of Furry's theorem
in electrodynamics}.
G conjugation is also useful for classifying states with zero baryon and zero strangeness

quantum numbers {}{.'IE, Nﬁ. ..} as we shall see in detail for the HN case.

The behavior under G transformation of bilinear forms marle up with nucleon fields can be
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derived from (I.2.12) and (1.5.5). We find
&P O i oo ®7 (7 0: )
G (V- 0: ¢p ) "Z,&. (Fu O ¥3) (1.5.8)
6 (P O e X - 1S (P 0: )
6 _ -1 for S,A,P.

with ;".. — c _ for v, T and
1=~ =+t {

Similar results hold for hyperons in bilinear forms
G'—i(‘f_z:* O 46 “Z,‘F('J_&\ 0 ¢g-)
P O Y6 = 12:?'((7:&)‘- Pa ) (1.5.9)
64 (Prs O: Y226 = =17 (P O V)

1.6 MISCELLANEOUS PROPERTIES OF NUCLEONS AND ANTINUCLEONS

i

Mass

As we have seen, by the CPT theorem, the mass of a particle and its antiparticle are the

same. Experimentally {in MeV}

m, 938.2796 + .0027
m_ = 938.229 + .049 Mot m_- 2 139.580

P B ® i (1.6.1)
m = 939.5371 + .0027 e X 134.974 e
N £

m_ = essentially unknown

n

Lifetime
CTP again tells us that particles and antiparticles have the same lifetime. Here, however,

we are in an even worse condition from the view-point af the experimental verification since as-

suming protons and antiprotons to be stable)the limits on their lifetimes are

tp > 1032 years

o
1%; > 1.2 10F4 sec. (1.6.2)
(see, however, "baryon number" below].
Nmmmms(umlmwthwmm)(mndwmyvhnwnkimemLm“( /QAMGU)
"nw —> pre+¥
- F+ e"'-l- »
and experimentally,
T, = G115+ 1y sec {1.6.3)
while, again T _ is experimentally unknown.
Spin
It is always CPT which tells us that
(1.6.4)

Sy = Sg = 5/,

While no doubt exists that SN = iflz , the proof bthat S“ is only indirect. If we recall the com-

ment following eq. (I.1.31) that particle-antiparticle palrs have intrinsic odd parity (i.e. if
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we assume parity to be a good guantum number), the argument that 5 as spip f{/; follows from the
fact that at low energy #e decay PFA,,z-q- and P P> KK are largely in S-wave

(see § I11.4).

Baryon number

If matter is stable (remember that doubts are raised in this respect by Grand Unification

Schemes) the number of protons and neutrons must remain constant. This requires

B.= B =4

P " (1.6.5)

Similarly, one should assume that the total number of isolated antinucleons remain stable
and since we know that the reaction N + N —» nI  takes place, we must assign negative ba-

ryon number to antinucleons

I;F = B = -4 {I.6.6)

"

The much smaller lifetime of E ag compared to p comes from the practical impossibility of

isolating antiprotons from protons so as to prevent their annihilation inte pions.

Electric charge

Experimentally, the opposite deflection of nucleons and antinuclecns in a magnetic field

proves that particles and antiparticles have opposite electrie charge. In particular

Q?=_~Qf3=+d y @, = Gz =0 (1.6.7)

(in units of e) as required by charge conjugation.

Magnetic moment

Charge conjugation, i.e. the operation of particle — antiparticle conjugation changes the
sign of electric charge and therefore the direction of the magnetic moment of a particle, but not
its spin. Thus, the relative orientation of magnetic moment and spin will be opposite for parti-

cles and antiparticles. In units of E'k/zc mP we have the experimental values

/M'P = 2.7928456 + Q.0000011
-
M

/4 - unknown
M
Isospin i

From the Gell Mann - Nishijima formula (without charm)

13 " (345)/2 = I;-!- Y/z.

uSingS_—_O} Qp = Ep =1, Qn = 0, Bn =1 we find

- 2.791 4+ 0.021

. {T.6.8) ‘
-~ 1.913148 + 0.000066 i

=
bl

—
1]

+ 1/2 for the proton

T
i

~ 1/2 for the neutron
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Thus, p, n form an isodoublet.

Assuming the same rule to be valid for antinucleons, weé have
Qp=-+ ,Bp=-1 = L=
- - - ! (I.6.9)
Qz=0 ,Bz=-1 = Tya=*h

so that also E, E form an iscdoublet.

The above result is in agreement with charge conjugation inverting the sign of_I3

Ty(r)= % I, (F)=-3%

{1.6.10)

T ()=-%  TalA)e

1.7 ISOSPIN OF THE NN SYSTEM.

1f we consider the isospin of a N N system we see that it results from the vector combi-
nation of two isospins % and can therefore go into either an isotriplet (I=1) or an isosinglet
(I = 0). A system p n has 13 = I and a system E n has I3 = -1, so that they will both belong
to a pure isotriplet (I=1} state; on the contrary, systems E p and n n have I3 = 0 and will the-—
refore belong to a combination of an isotriplet (I = 1} and an isosinglet (I = O).

To find the isospin decomposition of the N N elastic amplitudes we can apply the usual
technique of projection operators. The projection operators for the N N state can be formally
constructed in the same way as for the NK states since in both cases we have two particles with
isospin 1/2.

Let Qi be the eigenvalues of the {total) isospin operator'?l':I2 to which the i-th eigen-

state belongs. We have
Qo:" ') y @1: I(I«ri),Isi:Z {1.7.1}

together with

~~ — 2 22 =t -,)'_b - =D 1 -p =2
\ = _-C T, -'C,,__g 1 . _-:___( T 7.
Gz BB BRL 3, B R TR

4 b z

where i?, are the usual (isospin) Pauli matrices, From a general rule, the projection opera-
-y

tors Pi are given by

-\

B- (6-@J)/EE (&, -&;) | 1.7.9

Thus, we hf:e —
- P —
3 [1(+T B2 [ = (2T ")
g 3+ ‘E? i?;‘) (1.7.4)

[1(:+%-T) 1 /2 = ¢ (

Now, recalling that
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(F ~(E)=(Fp)([)=-(= »)(%)=1 i
(F )2 (D)= (F )5 (D)= (P2 2)] ()=
(Fo) (T %) (})=(F P (ms 5o (F)= (FRlen- )] (})=-1
(FP) (:Ef.' E:.) (f)""{F P)(turzx'rt;:’t:’)(i):('? P)['i-i.](£)= —2

and expressing the NN amplitudes in terms of those with a definite total isospih in the s-éhan-

nel T and T, we have
T(Fn—=>Fx)=T(xp>%p)= Ty
T(Fp—=Fp)= T(E">%) = L(T+ T, )
T(Fp = ®w)= TEn=Fp)= 4 (T=To)

(1.7.5)

I.8 ISOSPIN, CHARGE CONJUGATION AND G-PARITY F¥OR THE N N SYSTEM

We now consider in more general terms the guantum numbers problem for the N N system,

We shall formally deal with the N N system but all considerations apply to all other iso-
doublets (such as K mesons). Notice, however, that states with one meson and one nucleon cannot
be eigenstates of G since isospin changes, say p = n, Kk a—PE K° while C turns p == E,
T

Let us recall that for an isospin i doublet the isos’in operators Ii can be described by

the Pauli matrices
.= T¢
- = = I.g.1
t 2. {r.s.1)

where

o1 _fo -t _f1 0)
t:'l-:'(ip ) L“L--[‘: o) y, ra"“(o -1 (1.8.2)

1 0 . _
and the proton and neutron states are described by (0), (1) respectively. To deal with an N N

system we enlarge our notation by replacing (I1.8.1,2) by

01 090 o -L 00 100 v
T—_l.. y B, R | l: ? o v I——L o-1 0 0 {1.8.3) 1
—~4 2] 00 0 L » :[;fz STle e o - , "3 2fooe 1 0 !
oo ilo 00 L o oo o -~1 _

Owing to {I.6.10), the various states can he chosen either as
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; 0 o 0
o =t = b= (1.8.4)
P=1lo s ™ e / i 7 P
0 o o) 1
or, .given that the states are defined only up to a phase, as
4 0 3 5 g
Q = -~ = = {1.8.5)
n= "=
P={ o ’ 0 / 1 d 0
(7] P -1

(2]

For both choices (I.6. 10} are satisfied.

To choose among (1.8.4} and (1.8.9), we first i.mpose (1.5.1) which we rewrite as
Clis=l> , clw=1%> ,cl7m>=1w /¢ I[F>=1p> oo

It is immediate to see that this requires C to be of the form

0 0 0 ¢y

C _ o 0 ¢, 0 (1.8.7)
- 0o €3 © ©
<, © 0o o
Furthermore, from (I.8.8} we see also that
& =1 (1.8.8)
Imposing (I.8.6) we see that C]C =1, Cpca—l which leaves as possible solutions
a) ¢;= 1 (i=1,--4) C) Ci:'"i (.'*'1)" s)
) {1.8.9)
b) ci=ck=_i} Cl=53=1 CL) C|-:.-_Cl'=- " Cpu=lx™ -4

Solutions a,b are equivalent to ¢,d under the change C =% —C s0 we can limit to consider the

two possibilities (a) and (b}.

it is straightforward to see that with the choice

o o o 4

C _j e o 1 0 (1.8.10)
- o 4 o ©
4 © e 0

one has the “commutation rules®

I'ic.-CIi:o ] IIC'P'CIL‘-'—O 7 r36+CI3=O (1.8.11)

and corresponds to using {1.8.4) for the states, whereas the choice

o o o -1 _

C [ o9 £t © (1.8.12)
o 4 o ©O
-4 0 o o

leads to

I1C+CI1=O 7 I‘-‘,_C"C-Iz_j:’o b} I;C"'CI;:O (1.8.13)
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o

and corresponds to using (I.8.5} for the states.

IT we recall the definition of G {1.5.4)

G— = C t’-’-”rl—z' (1.8.14)

and we want C to commute with 12 we have to choose

o oo -1

e et

1 o
C = g ; o o (1.8.12)
l206 0 o
and ii
1 0 0 0 ‘
-/ 1 o =]0 B=(° ) ‘
bolg) s mo(3) o m=[o) i Fe (s ::
o 4 0 -1 ::;ié
while, from (recall T2 = 1)
0 1 o0 ;
v I, ' ok A P _— s -1 0 00 |
e = & = Cobd 5 +t T, 30H~EE SLT, = o 0 0 1 f;
0 0-1o0 .
we have
0 ¢ 41 p
- ¢ o o 4
G = ‘o o o (I.8.1%)
c -1 o o

From {I.8.15) and (1.8.3)

[I“: ) G.] =0 Lt=1213 (1.8.16)

so that G commutes with all the components of isospin {whereas C does not (1.8.139.

e

i
The baryon number operator is diagonal and, to comply with (1.6.5,6) is given by !

1 0 o0 o

B_" o ;‘ i g (1.8.17)
o -
0o 0o o0 -2

Notice that also B commutes with all component of isospin
[B,T;]=0

but anticommutes with both € ‘
Cr=p .B.19

{B,6f=0

» B and G cannot be measured together (unless B=0}.

™~

]
o
\N

w

(1.8.18)

and ¢

(1.8.20})

Thus

We know, however, that in a system containing nucleons and antinucleons, B is always con-
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served (it satisfies a superselection rule). Thus, for @ state of baryons, the concept of 6 pari
ty is useful only in the case B=0. This is just the case of an N N system for which B=0 and
we can therefore measure L, I3 and G. The eigenvalues of G for such a system can be i1 gince
G+G=1 and all the members of an igomueltiplet have the same value of G.

To determine the eigenvalues of G for the various N N systems, we recall that from

{1.5.7) we have {see also {1.8.5) and (1.68.15))

6‘,P>_ ",'")lé','"-> “’> G"'“> =pY G'IF> "‘”—) (1.8.21)

so that there follows
(G FR> =% - CIpp+RmD> = |Ant PR
G |ww>=PF> G|Fp-%n2 ==|Fp - ® W
{1.8.22)
\ eIt
G lpR>= 1P

Thus, to find the eigenvalues of G, one has simply to compute the effect of the exchange N.g:! N

with respect to the other guantum numbers .

The previous situation can be easily mpplied to states of K mesons where the role of B
is now replaced by strangeness 5. 5, 1ike B, is an additive quantum number which commutes with
both B and I,

1
[B, S]: 0 ) {S/I;]=0 {i=12 ,5) (1.8.23)
but anticommutes with G .

{ S/ G—} =0 {1.8.24)

Thus, here again, ¢ is a good guantum number only if g-0 {i.e. for K K systems).

1.9 C and G ETGENVALUES FOR THE N N SYSTEM

Considering an NN system, we have to implement the effects of ¢ and G Operations(I.B.G)

and {1.8.21)

Clp>=|F> 5 Clw> =172 L CIR> =1 L CIp>= 1P
clp--m> Gl =P ,6~l«>—1r> Gir>--h> (1922

with their effect on an N N state with respect to the other degrees of freedom guch as spin and
space coordinates. Firét of all, we recall that whlle ¢ is always a a good guan tum number for a
state with B=0 {such as any N N system) (1.8.16, 20), ¢ is a good quantum number only if 13=0.
Thus, as far as ¢ is concerned, we shall consider neutral NN systems {such as P p or n n) for

h 1 _=0.
which a

1f we denote by ¢ [t L )ﬁ ¢N {-E:) djﬁ'ﬁl) the space dependent N and N wave
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NN
funcrtion and by xs the spin wave function where S denotes the total spin of the system

(S = 1 for triplet or =0 for singlet), the general form of the (neutral) N N system will be

"K_,~N= Zs'm ‘ibﬂﬁ fé'.'ﬁ;'.) | (1.9.2)

Operating with C

NN NN NN
c ({; = lfls = xs 9&{_” (5':, 5';_) (1.9.3)

Recall now that the triplet {singlet) wave function is symmetric (antisymmetric) under N = N:

NN S+1 NN
Zs = (-4) X ' (1.9.4)

S

Next, remember that, owing to the negative intrinsic parity of an N N system

¢ (QH = (-1 L+i¢ (21/23.) (1.9.5)

Thus,

C: ’L’,"d - (-*‘d:) H;JA,EF

(1.9.6)

or, the C eigenvalues for a neutral N N system are

L+S
= (- 4_) {1.9.7)

Let us now consider the G eigenvalues for an N N state (neutral or not). Recall that

i I im L.
w Z,P>_—'-_"“> 5 _E“- z’%>= {P>
: - v, ;- =
e ED> = > T Fd =R
so that for a state withI:l(IS:il, 0}
im I - : - irXI,
TR > < B e R e s

eI | pFenE = - [pFenT>

whereas for a state with I = 0O:

{1.9.8)

eier,_I

PF""“—‘>= }PF"”"-":> (1.9.9)

Combining (I.9.6) with (1.9.8,9) (the argument holds alse for non-neutral states as can

be seen by repeating for the space and spin parts of the wave function the argument leading to
{I.9.6)):

L+S+ T

N NN
G L!DSNN = (-1) % (1.9.10)
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which proves that the G eigenvalues are
- L+S+I
(1.9.11)

(-1

um numbers to be used to classify the possible eigen-

I.10 QUANTUM NUMBERS FOR THE NN SYSTEM
r, €, G, Js L, 1 and 5 are the quant

values of the N [ system.

PC
d states:

i) Singlet (S=0) states. In this case J=L and
J+r1 ' J
T = (-1) J C= ("-"')' - (1.10.1)
so that )
C - - :P (1.10.2)
Thus, with increasing J=0,1, ... we have
P=-
J=o0 {C: +
— P=+
Thus, in the singlet case, we have
+- -+ 3+~ (1.10.3)

TR 077, 4

ii) Triplet (S=1) states. .
We turn now to the triplet S=1 when J = L +5

. In this case we can have two opposite parities

with the same J:
1 J+1
=1L  PB= (-2)" c=(-1)
¥
J=Lz1 P:.{.;j__):r ; C = {-1)
2=C
| (i.lo.d)

In both cases

what distinguishes asinglet from tripiet states is therefore that

=L, L =

{singlet)

(triplet)
% = 1 can only give

0 (=J) is excluded since L

Next, notice that for the triplet J
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J =L + 5 =1, Thus, we have the series

PC -
J=1L(S=1) Jo= 1, 2T, st L

On the other hand, for the triplet S=1, J=L * 1 we have the series

PC —
J=tta1s=1) 000, L2, L

Remark that among all these states, only the 1 triplet state can be explored diréctly

when studying the reaction
' ete = N
to the extent that this reaction proceeds via virtual x’ production
ete — y—a>wvv

or via vector meson (i.e. J?ﬁy 2 ¥ } 177 production.

Singlet {pseudoscalar 0_+) can be hunted for (in e+e-) by first emitting one B’ .
Similarly one can also reach other states than 1 but this is not "natural” in an e+e- reac—
tion whereas they are all present when studying N N annihilation.

28+1
In the spectroscopic notation — LJ, we have the following possibilities

—_ 4
J=L LJ‘ - 150 y i'P-‘l- s Dy / =lJ::3 )7
niplel. 3
LJ}:% 241y 2 PR, L %D, , PR
3 3 3 3
J=l+1 ZSHLJ. = 3¢, B, °Dy, R ,-.

:r}:l_—-ﬁ_ 2.8*111;:r - -511 , 31)4, y 3];1

I

P

+ - s
In this notation, the states which are directly accessible from e e are again those with

PC - 3
J 3

=1 , i.e. '8 LI

1' 1
For every series, we have also to specify the two possibilities I=0, I=1 and we have the-

refore to add IG to-specify the state completely. Recalling that
L+yS+T
G = (-1)
we have then the following relations between C, Pand G;
Sim ﬁf_z I+l J+ I
(s=0) T=L}‘ C"‘"P/ 6'=-P("'i)' -'-_['.i)
Jripfet
—xtpret I J+I+ 4
J= l__ ) C::: 2? ) (;-:::E>(;'d;) = {L'dz)
' T I+XL
J=Litd; c=P G=Pla1) = (-4)

According to whether one chooses $-0 and T=0 or T=1, the following mesonic (intermediate) states

(5=
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(e, |, ~ , "1 ) can occur:

€- we ve Spim T T o P c Mason
ls) 4 4 o - -_— — (78
o 1 1 4 + - — Y
o o o o + —_ 1 1
0 () o 4 - - + -

This is = useful rule when working with the quark model.

1.11 SELECTION RULES FOR_THE N N SYSTEM—P ®T®

The selection rules are particularly useful in the low energy domain when the B N system

annihilates into a small pumber of spinless bosons. We begin with the case NN —» 27

1.11a) Selection rules for the process BN —» 2W:

parity: Let us denote by T; {j = 1,2) the intrinsic parities of the two particles in the fi-

nal state (in our case Pl = Pz). If we denote by Lf and Li the orbital angular momenta of the

final and initial states, the initial parity is
Li+d

P = (-4 ' (I1.11.1)

2

whereas the final state parity is

?;_ = (-' d')L+ :Pﬁ. P?. =('— d‘):rPi P;_ {1.11.2)

since the final particles are spinless boscns.

Conservation of parity in the initial and final states (Pi = Ff) requires then (using

1

(1.11.3)

‘ Li+
(-2 = (-2)

=L ¥ | states are allowed and both the singlet and triplet J = L states

Thus, only triplet J
are forbidden.
The only allowed states are, therefore,

c -- ++ - ++
j'-E = O++, 1 ,2 3, 4 (1.11.4)

or

2441 3 3 3 3 3 3
L= S, %, , B, D, Dy, Ry Fy s oo (1.11.5)

1f, in particular, the two spinless final bosons are identical particles (such as ﬂ'or['.)}

J must be even and only
+ ¥

T?C = 0++ )2-++/ b,

25+1 - 3 o
LT - 3P° )3P7_ ) FZ. )3’:‘"}~-7-

(1.11.6)
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are allowed.
- 1
Notice that H N —> 2 is altogether forbidden in the singlet S|0 case and alsc that

the 1 state (i.e. the one with the photon quantum numbers) cannot produce 2.Tl'° ’s.

Charge conjugation: A new selection rule arises in the case when Pl = P2 but C1 = - C2 (such as

- 1 —
in the case NN —» K Ki , hot Tf+1r since a pion is not an eigenstate of C). In this
) 0

case, cfin= -1 and one has to select among (I.11.4,5) only those states with cin= =1.
Thus, the possible . states in this. case can be only
PC -~ -~ g--
T=¢ = 1477 ,377 ,577 .

3
ZS“LJ =3, ,3D, LD, ,%6, , %65,

G-parity selection rules: A useful selection rule obtains when all the final particles are

eigenstates of G as in the case under discussion (NN --» 2T).
. +
As seen previously (I.11.3), we have to consider only the triplet J = L — 1 states for
which

T+ I T
G‘ = ("1) = C ('1) (I.11.7)

Therefore, we can only have the series

NN—s2F , IT=0 ,C=G

J..I?C - D-:--r) 2++) Mo _ | (1.11.8)

+1 - 3
25 LJ'— 3_P° y P?./ 3;‘:1)“_

(implying, in particular, that also N -—> 2T in the 1 state with I=0 is forbidden)and
NN »2w , I=4 ,C=-&

TEC= 1_-, 377, 5 (1.11.9)

25t - 3 3 3
LJ- - gsi » 3)1_ e D3/ 6'3/ G‘sl e
}

In conclusion, only odd waves for the N N system are allowed to decay into 2 's in

the T = O case and only even waves in the I = 1 case.

1.11b) Selection rules for NN —p ‘WL TU

Much less detailed conclusions can be reached here.

G-parity: Recalling (I.9.11)

G— - (_i)L'PS‘f’I

we can say that
L+S+T evem — M even

L+ S.—i-I_' odd —> wm  odol (1.11.10)

' L+5
€ conjugation: Recalling that {2.8.7) O = C—- l)
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L + 5 odd requires € odd. If only we’s are produced, Cf= +1 so NN ~> N’I‘I‘" jg allowed only
if m is even.

A general method to study the kinematical dependence of an annihilation matrix element
can be illustrated in the case NN-—3T and can be used to prove that this transition is
forbidden if we start from the state 3P . To show this we use'parity conservation.

In the initial state, P = (-1)"* =1 for L =1 and J = 0.

In the final state each pion has odd jntrinsic parity and given that the initial total an
gular momentum J = 0, to match the parities of the final and initial states, with the three mo-

-
menta of the final pions k ,.ﬂ;,.ﬁé we should be able to form a pseudoscalar. The only such

e diirnd —} - = =y
pseudoscalar is klx k2 . k3 which is zero since in the C.M. gystem kl, k2, k3 are in a plane

(El +.E; + E; = @) and the triple product vanishes.

In the next Tables we summarize the transitions NN —» m W which are forbidden {X to-
tally forbidden, + forbidden by G-parity) for the two cases P p {orn n) and pn =W (‘w&,‘)_

As a last comment on the consequences of G-invariance, We€ notice that in the case when
an N N state is a pure eigenstate of I (like 5 nor p n) and decays into an eigenstate of G
{such a non strange mesonic state), G invariance tells us that the angular distribution must be
target-beam symmetric or, in other words, éhat it must be forward-backward symmetric in the C.M.
This is trivially true in the case of decay into 217,5 when, as we have Seen, only odd waves
contribute in the case I = 0 and only even waves in the case I = 1. Since in both case there is
no interference between odd and even waves, the angular distribution is indeed forward-backward
symmetric in the C.M..

This theorem, which can be proven quite generally, gives testable consequences only in
the case of B n annihilation which is the only accessicle state of definite I =1 (Iz = -1) and

does not apply to neither B p nor n n which are not pure eigenstates of I and G.

1.12 ELECTROMAGNETIC DECAYS OF THE W N_SYSTEM

So far we have considered only strong interaction decays of N N when G, P, C, I may be
conserved. We now turn briefly to the case when also photons can be emitted and the smallness of
the fine structure constant & guarantees that the most probable transitions will involve
just one photon emission which will accordingly be depressed compared to processes involving

just hadrons.

In the case of e.m. transitions, G and I are not conserved any longer but C and P are.
Useful selection rules obtain for transitions from neutral N [ systems {such as p E)
which are eigenstates of C belonging to the eigenvalugs.(1.9.7}

- [_1)L+S | (1.12.1)

If we consider the transition

(1.12.2)

PF —~ Y
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BRI E |t

4|+ XTI T TIT|T

1—TTX><TT

1| =[x T|T

T T il

c |z le "zn-" P m”w“ i :‘;Efrsw 1 %’{:
15o°_+2t:fffnrf+.TT+
3541“";):5T§+§TT§T1‘
A A i:§x§+§f+llif<f+
3EO++‘2iT+§§<++TITf
331++fi§if+f++f++
3RZ++2tT+TTTTTuTT+

where C & =
fin

allowed,

On the contrary, in the case

where C
in

If we now consider

spectively).

-1 (C“_°=+':L, CX'_'_i)

we see that only L + S = odd transitions are

PP = ww Y

we have to distinguish the two possibilities C

PP > 'y, @'Y

= +1 (Cgoz Cw":_’ ’ CB« :—-]) the only allowed transitions require §+S=even.

(1.12.3)

(1.12.4)

= +1 and ¢ - = -1 (or L+35 even, L+S=odd re-
P pp
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= -1 contributes to 'q'“-"x

+Rfme,mbering that C_“..“.. = 4 we see that the case Cp 5=
and T W Y  decays ( Cl"'l\"' can be either +1 or -1 and the case € o~ = 4
has to be selected since C_r =] ). On the other hand, the choice Cp 5 = +1 can contribute
only to 'lr+'1r_ Y " {where we select C"_,,'r_ = —~ 4 ) and the w*a" ¥ transition
is strictly forbidden.

Similarly, p P —3 K;KE{ is allowed only for LS even and p p —> Kl' K .

2 2
X K Y is allowed only for L+S odd.
a o
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PART II

BASIC KINEMATICS OF NN DECAYS

In this part we shall discuss the kinematics of the basic reaction modes for the N M
system such as elastic N N reactions, two and three pion snnihilations. The main point will be
of providing the theoretical tools to study rencnances in formation experiments (i.e. states for
med in N N decay) ahd to find the allowed quantum numbers. Though somewhat tedious, this exerci

se is particularly useful in studying low energy N 7] physics.

1I.1 ELEMENTS OF KINEMATICS OF N N ELASTIC SCATTERING

Most of the kinematics of N N elastic scattering can be borrowed directly from that for.
N N scattering. A number of important differences must, however, be emphasized:
i) In N N scattering, below pion production threshold the only open channel iz the elastic one
and the phase shifts are correspondingly real, In N ﬁ, on the contrary, we have a large number
of annihilation channels open such as

PF > mw , wwrwm(kiK)

In particular, Q.nnzﬁa A 13 is the number of 7(Jg that can be produced by N N at rest.
As a consequence, the phase shifts in N N are always complex {absorption is always present),
ii) In N N the symmetry for nucleon-nucleon interchange {Pauli symmetry) reduces the number of
partial waves to one half (once the total épin and isospin are given, only either even 4! or
odd £ waves are present). Again, this is not true in N N when both even and odd waves are pre
sent. Being these complex (as compared to their being real in the case N N), this makes four ti-
mes larger the number of re_l parameters needed to describe N N elastic scattering at low ener-
gy as compared to the N N case.
iii) Last but not least, the simplest N N elastic reaction (p p) i= a pure I = 1 state whereas
the simplest N N reaction (p E) is a mixture of both I = 0 and I = 1, so that a further doubling
of parameters is involved.

In what concerns the kinematics of 'N N — N N reaction

N P4 P-? N

Fig. II.1

— N

o P2 Z

its structure differs very little from the kinematics of NN ~—2 NN {other than in the points

previously stressed). In particular, we still have energy momentum conservation which reads

,:1"' F‘-‘- = Pys+ Py | . ‘ (I1.1.1)
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We introduce the so called Mandelstam variables

s=(popo);
b‘[l’l"l’s)z srten = lr‘M?' (11.1.2)

i =“’:" P#)L

In the Lab system [P. s (ﬂ/.of‘ol. p)J, P':.E (Eai"/ o’rb)} we have

S=2awmlt 2z £ = bmrzwm T (I1.1.3)
being T the N kinetle enerey (q_., mMm+T = (.....';', ‘F:-)’/t-) while in the CM system
(F+Pe=0, Fiatk=-F)

s=4 (mz—l» ZL) .
bam 21— s®) {11.1.4)
= -2£2[H' M?)

N
1 Fig. I11.2

Fig., I1.3

“Fe

by just reverting the corresponding arrow lines, i.e. to making the inversions p2 —_— -p2,

P, —> P, In this case, the variable s (II.1.2) which played the role of the total squared
C.M. energy in the N N reaction becomes a momentum transfer while the momentum transfer u plays
now thé role of the total squared C.M. energy fér the N N reaction. All in all s 2 w,

t &> t, and we have, in the respective C.M. frames (?1 +_p72 =0 for NN and'f)'l +_p'4 =0

for N N)

NN NN
= -zf.i:. (|+w9;,) S:#(*—i""‘“z)
Eamz L5 (1- %) k=-2 £} [(~e8,) (11.1.4°)
M-=lf('ﬁ-:+ ‘""1') u=-2£; (H- .-_..,9";)

It is useful to introduce instead of Py-++P, four vectors which have simpler properties

under crossing p — P, such as

2 -—
{ = - = -
P=%‘;[P|+P}) /N:"i(PZ"'PA-) /'A—_IO’ P-‘-Ib'r Fl (I1.1.5}
which under p2 — —pq, p‘1 —_— -p2 give

P}A —""!’_I?,A VN-——>~‘-/\/

It is trivial to show that P, N are orthogonal to A as four vectors
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PA = NA=0 (11.1762
NA = ‘;':(T‘z* Pe)(Pu-p) = ’%‘.(P:‘P:' =0 (P:"Prrz“‘t)-
Furthermore, comparing with (II.1.2) 7
Az: & ; Pz= NL-_-. %(5.’-») ) (11.1,7)
as can be seen from |
?:'- I:" (”t*)’B)l"" ",'!"(P:-"“ P:"'zrlri): ;:" (zr“?-oz’o:'— “’l"P!)z)=
=t (am?-t) = L(ssu)

having used

s+bsn =¢,.wz'

Spin properties.

As in the elastic N N case, we end up with five invariant amplitudes. This can be seen as
follows for N N, Let us, for convenience, imagine first that the nucleon of momentum p1 *flows"
inte the nucleon of momentum p3 and that the nucleon of momentum p2 "flows" into pd identifying
two sets of Lorentz covariants for "space 1" and "space 2" corresponding to the matrix elements
of all possgible b/ matrices ]

2, ¥ Y, %l , Gu=t (L% -NY)
between the corresponding spinors u (p3) cer U (‘Fi} (for space 1) and u (-p4) e.. u {-p2] (for
space 2). Every index Y/A can ?nly be saturated with P/” A/f“ {I1.1.5).

The matrix elements involving 6/""’ however, are absent because (i"y is antisymme—
tric in },\).I and the contraction with the symmetric tensor ]\}LN}, or /, P,, gives zero.

Thus, a priori, in "space 1" we have the following structure

&, Su)-!- 54, V(i)'!' C'ﬁ_ 'PS“J-I- C‘j_ PV“-) (11.1.8)

(and a similar structure holds for space 2} where al. bl' cl, dl are invariant scalar functions

Sz & (pa)u (p) VO (P i g N, wlp.)
PS”s (P2 Y u () PSPz B Y YON, wlp)  xas

and

where the first line gives true Lorentz scalars and the second line Lorentz pseudo-scalars.
Notice that the Dirac equations (I.1.24, 25) for w, "
(iyp+w)u(p)=o
W(p) (iyprm)=0
guarantees that only saturation with the four vector N gives non zero (when particles 1,3
are in play)} and only saturation with P gives non zero (when particles 2,4 are in play}.

Multiplying the two structures (II.1.8) for spaces 1 and 2 we are a priori left with eight
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possible terms of the form
Sh)sh-) , Sll) V(z} , Sh) vh) , v(r) vh—)
.Pslu) Psh.) , PS"" PV(*-) 3 .PS(,,) PV“‘) /PV“) Pv-ll)

since, of course, contracting Lorentz scalars with Lorentz pseudo-scalars gives no contribution

(11.1.10)

because of parity conservation.

Having imposed already parity, we still have to enforce time reversal conservation.
Rather than working out the time reversal transformation of each term, we use the following sim-
ple physical arguments (see, however, eq. {1.3.16)).

Scalars, pseudo-scalars and vectors are unaffected by changing the direction of time and,

therefore, S, P3 and V are invariant under time reversal. This is not the case for pseudo-vectors
which are the analog of the magnetic momént generated by the current circulating in a ring.
Changing t —3 -t inverts the sign of the current, and therefore, of the magnetic moment.
In other words, pseudo-vectors are odd under time reversal (remérk that, having already imposed
P, by the PCT theorem, T invariance is the same as C conjugation. The latter, changing the sign
of the electric charge of the particle circulating in the ring would have had the same effects).
Thus, time reversal kills the two terms PS(I) PV{Z} and Ps(z) PV{I) in (II.1.,10}.

Finally, the identity of protons for p p scattering (or charge symmetry for p n) demands
that if we exchange particles 1 (3) and 2 (4) both in spin space (y e Yy *7) and momen-
tum space (P &% N} the amplitude must remain the same. This is already the case for

(1) 5(2)

2 1 2 2 '
S(l) S( }. V( ) V[ ), PS(l) PS( ], Pvtl) PV(Z} but requires the coefficients of V and

2) (1 G
v( ) 5 ) to be the same so that we are finally left with a total of five independent scalar

amplitudes to describe N N scattering which we can write in the general form

WP E(-pe) [Gals,8,) ¢ Hym+ YR B) 6o (siE, )+
+i(}’"?l'92“;-'?)6-3+(E£Yt’?N)({ﬁ9wa)%+xsra)a/sn)6's{s’f__’” U{‘P:.)M[m).{n'i'n)

Each of the above amplitudes comes, of course, in two isospin states I = 0, I=1.

Crossing in spin space.

wWe denote the N N and N N matrix elements of the scattering operator by
-, — 14
-,:VN-"NN' = “’l(P}) ""';,{—P#-) M‘:] u{("PL) uj{f-‘) (11.1.12)

— — A4
- = u.«( ar; ”_) M,. ) U (11.1.13)
T i D Filp My () %(pa)
where an ingoing antinucleon corresponds to an cutgoing nucleon, v, v are the antiparticle spi-
nors and i, j, k, 1 are spin indices. The matrix M has the }( structure given in (1X.1.11}).
The substitution law tells that the same matrix M describes the two processes provided

the appropriate analytical continuation of the various scalar functions Gi {i =1,...5) in the

respective physical regions of reactions N N and N N (II.1.4') is made.
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Crossing requires p2 >

P, (i.e. P —» P, N —3>» -N). To see how this affects
the scalar functions ¢

» one has to recall how v(p) isg related to u {
(i¥p+»)ufp)=o U(p) (iyp+wm)=o
Ly p- ) v(r)=o T [rp-») =0

together with {I.1.19)

-p}. Recalling {I.1 .24,25)

R aury, v, - (555)
and 4
CyTEt ey,

one finds under charge conjugation the following transformation properties
(P (pe) = =& (-py) wl-pe)
;(P*) ).;"n)v—{h’) = u [- P") h;‘u)““(‘f’l) (II.1.14)
F(Pe) (P (py=-H (o) . Pu (- p.)
v (bs) a’._;"’,JY,")'U‘(I’!)= - uf- P.) Ysm b;u) wi-pe)

using (IT.1.14) and keeping in mind that under crossing P
clude that

i)

Thus,

— P, N -~ -N, we con-

The coefficients of @ . GS' GS change sign,
ii) The coefficients of G2. G4 do not change sign,
Recalling that ¢rossing on u, s, t amounts to

S T u
Le> E (11.1.15)
we finally have the following transfc}rmétion properties for the sealar functions Gi (s, £, u)
under crossing '
N
= — (FI.1.16)
G‘;— (S, ":z "“) ( i) G,'_ U, é} S)

The non-relativistic limit,

We will recall that in the non-relativistic limit, the matrix ¢lements between four di-
mensional spinors can be rewritten in terms of matrix elements between two dimensional Pauli

spinors of expressions involving Pauli matrices (see Section I.1.4),

The amplitude {for the two
isospin values i = 0, 1) ecan be written as

T du)_,L /_,.n‘) (;m‘g,)(ym' ;})+ ¢ Yﬁ) (;_*ai-'m))_;}

-~ - -~ ¢} - -y - ? (I1.1.17)
{ - —» — 1 i
+S(|) (6_(,). w)(é—lz)lw)_'.s (b"()-‘ﬂ_)(o-“)- )
[ T ) - g ”~~ L]
= = 3 = -+
where T’l‘.. T. -:rfare the unit vectors in the dir‘ections-f= k +"I:'. m =Qk.-.:k", —r? =m x1 (-l: and k'
where defined in Fig.

(Ir1.2) and are the initial and final nucleon three momenta in the N N c.m.
system) .
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The five functions of /3 / ]’! :; A can be expressed in terms of the G_'s (i=1,...5).

We shall simply recall without proof that introducing the auxiliary variables (in the

C.M.) Ea (Ia+w1)h ;A= -(ZE _“) V= - _?Ma/l-l-‘b/‘m

Bz]f——_ 2E7m /'7 B=i+_..£:—__.
Gmdl E+m 4w (Etm)

and the 3 x 3 matrix

Z T

B ~2)AB 3a

1
L3ty -é[i 5 2(264m) (15*“)?_]

wEem)" & (II.1.18)

H =

H{e ) [E , [wre)B B, —(zsm),m]

2in(£;twq
the relation between the two sets of amplitudes is given by
o &y
P = & Gy
Y 6—3 (11.1.19)
5= £ G

4wt 4

Amplitudes with definite toual spin.

We end the list of various amplitudes used in the literature, by introducing the ampli-
tudes with definite total spin singlet (S=0) or triplet {S=1). There is just one singlet ampli-
tude (TS (E, &)} and, a priori five triplet amplitudes T;'m where m, m' are the projections of
the total spin. The m m' dependence is relevant only for spin correlation parameters and not for
the unpolarized cross-section. If we retain in Tt o only the ‘B dependence, their c? dependen—
ce obtains by multiplying them by el(m—m )c? . The T e m amplitudes are related to the Tm '’

-, —

¥

{via the properties of the d functions) so that, appearently, we are left with five triplet am-

plitudes
t t t t

T;f ’ —rd'.v ,'T;-:, /T:z:t. /T;fi
among which, however, there exists one relat:onsh1p

’]::-_. T;_i - T =z V-fs 9" ( of {11.1.20)
so that only 5 amplitudes altogether (singlet plus triplet) are actually linearly independent
as it should be.

The following correspondences exist
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& me ov
& (11.1.21}
(T TS T
& t
vi £ T - T

4 -

‘ & t t
=¢m {(-,—4::,‘,7;5_- Tf) + dec 9(7:1 - T;_-i. - —roo)}

Recall, one apain, that two of these amplitudes exist for isospin I = 0, 1, respectively.

PhmTY - e O (T Tl - )]

Partial wave expansions.

We end this section by just giving the expressions for the partial wave decompositions
which are particularly useful in the low energy domain when few partisl wave are relevant and,
in particular, when resonances of given 2S+1L quantum numbers can be produced. In this case,
the proper amplitudes to use are the T and T amplitudes just introduced and the only formal
difference between the N N and N N case, as already noticed, is that the latter case both even )
and odd waves contribute at the same time {besides, they are all complex).

The singlet case is very simple

-—S =
| (L,9)= -[ 2. (2L+1) SL(UFB.(MQ) (1I.1.22)
L=o

where

{s)
i £ . 11.1.23
SL ['L) = e - ( / /"V“Sf‘s)({) ( )

i=s the {singlet) S matrix element and Eﬂfsﬁg{) are the complex phase shifts for the singlet
state.
The triplet case is more complex and it is convenient to consider separately the case

L = J for which we introduce the partial wave amplitudes
p(J —WST et‘SJJ-

F T (11.1.24)
from the cases L = J ha 1. For the latter we introduce the partial wave amplitudes

FS,:{ . %J‘ fs;- . %‘T

D(J-= € a0, / /33*2 e L 7o (11.1.25)
and the so-called admixture parameter E:r which allows the transition from L-1 €= Ll at

J J J J
r . x r N} » s Il = - b ith
fixed J. With these definitions, the amplitudes aJ_1 , bJ_1 with L J 1 and aJ+1, a1 w

L =J + 1 are given by
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L=J-1 ’
' o : L2 ..1’3' .
4 qjm%‘-ﬂ"%s’ ¥ ';:(KJ'.PJ')’MISJ—

=1

)
by = of_efe +p_suls_+ T

-1 " £+____l_( - - 2
J-1 J J'P:J' ¥ 5 2.“3/33')"‘“““-

{11.1.26)

L=J+1

|= Ay el +P3_ooo & \/3::’_ (d ’133')4“2 (11.1.27)
".'31- ﬁw£+/5TmEIJ\{; L (o= f3) > ‘

L {11.1.24, 26, 27} that the trxplet amplitudes

It is in terms of the amplitudes aL ’
s of Legendre polynomials PL(x)

t
Tm.m have the following (relaktively) simple expansions 1n term
and of associated Legendre functions Pim}(x)

Po(x)= (-2 A T

(11.1.28)

t Qo L+d L-4
_r;., = -‘;::[__Z;o {(L-)‘ﬂ-) l:: +L'9L }B(MG-)
Tiex iw aracw) R L A

t

\_

Mg 'n-MS TpME

~

T2
L+d 2L +1 -1 0,
+_____a a

4 Li{t+t) b . - ]?_[w?)

L2 L-4 {+)
g 7LL.4'<L é; -i_
zi‘-”' - T ee) L A e

[ p,_w(m)
1

.3n-

L+2 g
+4

—~

o

-
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u
I
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II.2 KINEMATICS OF TWO PION ANNIHILATIONS
he simplest case of N N —x T

NN =P 20T

reactions, i.e.

Let us now consider t

—

M M where M is a pseudoscalar spinless boson, i,e. elther M

{or, more generally, N N

This process is schematized by

- 5 -
N :ﬁﬂ— Fig. 11.4
\ 9 "

" 7h

or KJ.

The Mandelstam variables are now

s (P-*P») = (971 )
b“[h "7) = (Pl— ’-)
w=(p19"= ( p- 9 )"

} )‘SH:-ru =z-[-m2-p-/'z) (11.2.1)
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. . i
Spin structure . : ;

;
The spin structure of N R - 2n can be most easily obtained by noticing that it igs ‘
obtained frem Af;r - A0 by croseing .
'
Ge —> - 9. ki~ ~p,
. (11.2.2)
s¢» & n _{-n‘xcol ..
In terms of the usual invariant amplitude decomposition for mN ->vr!"
T =-A+iBYy, Lfo, |
= Il 2 11.2.3 :
N2 M P =z 7t? ( ) .'
we get for N N - T
. ) ) : .
I _ - -+ B -{ ,_7.,,) (I1.2.4)
NN T B}‘ 2 ? ‘a
where use has been made of (I1.2.2) so that the invariant amplitudes A, B in {I1.2.4) obtain
from (11.2.3) by interchange of s 2t
The invariant matrix element Tf‘i for the process of Fig, II.4 [
]J'i = M.(P!) [—- H -+ Y--T' BJ’U-(PI) (11.2-5) 'j.
b
can be rewritten here again using two dimensional Pauli matrices and spiners in the C.M. and i
one gets it
s . i
—_— -
T = x [fi e d o+ Aﬂz_ T'?Jz— {11.2.6) o
i N N 'i
where z’r ;i..-,. }‘
‘ ‘
'£1=—'TL-[\H‘+B ] |
- Erme (11.2.7} J
ﬂf, = ﬁ- B k
. * . A
This form is the analog of the decomposition x :f—l— ¢ g b"--uJX for |'N scattering 4
N N !
in terms of the spin - non flip and spin flip amplitudes f and g, 5
A further useful decomposition is in terms of helicity amplitudes FM, where the indi-
ce8 refer to the quantization of the N, N spins along the direction of motion. Once again there
are two independent spin amplitudes F < F |, F o .p whose partial wave expansion is given
++ -7 4= —+
by
— i > T
Frvo = 37 26701) T B ()
++ 2? o ) + { I (
I+ T 7/ (I1.2.8)
F = -}'—' ) _’: (’5_) ')-:.:-«9‘ FP L0 T
= 29 F [Sw))* J (%)
7 . .
and the 'r+ partial wave amplitudes are given by the unitary S-—matrix partial waves through

T () 8]

The Commection with the partial wave projections of th
1y

(EI.2.9)

e invariant amplitudes A, B used previous-
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)
(a B,)- {de Bl (4,B)
is given by -
a l + '
T,.I T' % ST‘} k" Ay E‘ETUI*)B‘“'-PT B‘T"‘]} (I1.2.11)
T3 4 o L7 BEEl™ (B~ Ba)

A last final form on which we ghall come pack later one concerns the decomposition of spin am-
plitudes in terws 6f amplitudes of definite J = L+1 or J = L-1 {remember that J=L is forbidden
ag we have discussed previously (I.11.3}). This decomposition will turn out to be particularly
useful because, as we have discussed, Bose symmetry allows only even {odd) J values according to
whether I is = 0 (I = 1}.

Before doing this, we shall discuss the relation between the differential cross—-section

and the transition matrix elements.

pifferential cross-section (N N —» 2 Tr )

The T-matrix element between the initial (i} and final {f) state is the matrix element

between a positive energy spinor u,fhb) for N and a negative energy spinor 1’1Fﬁ) for N

T;; = W(lp,) T v(p) (11.2.12)

where the usual relation holds between Tfi and the corresponding S-matrix element Sfi

(11.2.13)

& ﬂE%( J—
ES .=t (zvr) S + - Teg
£ PP ‘?) JG Ve, Ezenes +¢
where m is the nucleon mass, E. {QJ;) the nucleons {p1ons} energy and the elastic channel is
i
absent [no Sh- term).
The above form corresponds to having chosen a plane wave for a scalar particle normalized

3
to one particle in the volume {2) , i-e.

I s
[

»>) = L
5’(3 (7‘) Tz (z-r)%- (11.2.14)
giving 7
{3) =
4?"f'>=%3(;f"?’), (11.2.18)
together with
' — o V1 s o
(11.2.16)
h — F? =
s,y (2 ri e
1’%}(’L) (.E’) (2“9hh
where the spinors normalization was given previously {111;26)
T p) wip)= - TYp)vIp) = i
wi(p) vi(p)=0

(11.2.17)

corresponding again to
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<pizlpis>= Sc)(F' F') o, (1I.2.18)

(i.e. we have one particle in the volume {zn-)"’)'

Normalizing in a box, we replace
3)fs = v
o (P "Pz,)'ég;a‘, Sﬁ,i&;’
(+) 21 BT
3 (P' ~Py)= ('nr)" BE/ S:l_’..: Pe

where V iz the three dimensional volume of the box and T is the time interval.

(II1.2.19)

—ry
Ir CP::- l-v;-ﬁ-','_} /[11!')3 is, with our normalization ('\?; are the incident particle

velocities), the incident flux, the cross-=section is given by
(,‘; - ‘?f:]- /¢. (11.2.20)

where Pif ias the transiti.on probability for unit time

Ej_: ! l_l:l}—,—— S{ (P. *Pp.-9,- ‘7:.) (11.2.22)

Upon using

— L 4. Z‘ﬂ_ \}E- W Vs-4mt

|%-72 % E. E e T v (11.2.23)
, |

we get for the cross-section AF for p1+92 - q1+q2 in the C.M.
1.- ~
de= T: ) + S{w sea,-vs ) d
(228 ER 00, 1 + ) ?”) (et 2 ) ’ 2 (11.2.24)

The differential cross-section for one particle to be diffused in the solid angle JJZ will

therefore be

- ! w
dﬁ" S‘q' d‘,lj‘F S T7,+71 u}-f-aJ,—-Jj "5!'

dJZ §(zw)2E L e, wy (11.2.25)
Integrating over AB?L (‘% q’b'—' "‘“T; =‘>’?7J =} 7,’ = W,:N;_: \/t}:zvaz_,_.;, ?fc’%:“Jm:‘)
we pet

ra
"O!E = LI !7?}{2 (1I.2.26)

dJL Tk gwts
where 1“/“,2;_/42-:_\/%_/42

Eq. {I1.2.26} shows the usual '/‘U"‘ law of exothermic processes since, at threshold
(5")4-““2)/ £= %-w" —_— o while ?-—) sz'.:/cz .

In terms of invariant scalar variables, using
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t= (Pl""‘?l)?;' (VZ':"““Z - \/‘?‘"‘/"’)z"- (‘r"‘_f)L
Jt'-z'ﬂ-«i J(wbs-) 9 d R

we have for the angular distribution

d “lM?' b
3{ T gres (s-uwd) IT:‘” (11.2,27)

We can now return to the problem of expressing the angular distribution using the partial
wave expansion.

This is most conveniently done using the 'I‘J amplitudes with definite J since a resonance
occurs at given values 2S+1LJ which means a Breit Higﬁer pole in TJ. As we have already discus-
sed, the only allowed quantum numbers for the reaction under study are HLJ=L11 so that only
(triplet) amplitudes of .J = L — ? 1 occur. Furthermere, remember that only even (odd) waves are

present according to whether I = 0 (1 =1).

We have
oo
d6 i [ [~ v ra
diz.  et* ,'g—a Fern T T ] Y% (58] +
{11.2.28)
o0 —— 4 2 )
+]2" [ T —)}:Lﬁ il 737-1_*4].)’3- (B}'f)l }
=1
where TJ=L11 = :Q..S.Li, exr['ﬁ;_ﬂ ] and the sums involve only J even or odd according to

whether I = Q or 1.

Isospin decomposition

Just like in WN scattering {i.e. the crossed channel of N § —KMm )} we introd:-
ce the decomposition of the scattering amplitude with respect to the jsospin indices of the pion
(" [3 } into an even part T( +) {which can only be proportional to the symmetric tensor which
one can construct with two isospin Pauli matrices, i.e. iru!rﬁ} or S— ) and into an
odd part T{_) {(which can only be propartionnl to the antisymctric tensor Ltd/ Ep ] )

-T;{s =Sn’/5 T 4 ,%- [—z_;“r[sj T!") {11.2.29)

Working ocut the Clebsch~Gordan coefficients we. have the proportionality relation

T, 1v@
T(":Tﬂ_/'z.

{I1.2.30)

between the crossing even {(odd) and the total isospin I =0 (I = 1) inthe NN — R ™ chan-
nel. '

For the two most useful processes -(;': .':x -2 I and pn —» W T } we get
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- - {+) - | )
pF-nrr‘T-:&‘-nrr"“ T+ T )57—2'7: + 3T, _
{11.2.31)

p——— ——

= =)_
'ra‘:-v-nr = IFM.—':‘ur =2 T 7= 7—1

NN —>7r polarization

The determination of the amplitudes in a given N N reaction will require also measurements
of polarization. For this it will be ugeful the decomposition (II.2. 6) ) y
Define k and ?a; the CM momenta of the p and of the 'n'- in the reaction p;-)—)rr""rr"

and let us introduce the usual vector

-y
%= hxj ' (11.2.32)

normal to the scattering plane.

We call F_'r and 51 . the cross-sections for the case when the target proton is po-

larized parallel and, respectively, antiparallel to? .

The (unpelarized) differential cross-section and the asymmetry parameter A (9‘) will

v’b"’ (6"4'

o T T,

e et

then be

(11.2.33)

F}fa—) = —E;-L (11.2.34)

Ot

> .
Choose now the reference system in such a way that k is along the x axis and the y axis

. . - -, R
lies in the {k, q) plane, so that 0 is along z. In this case
=

—y
T.&= 0. L
—y

5'-?: ﬂ(ﬂ‘m9‘+

- (11.2.35)
5, o D)
which we use in (II.2.6) making use of the two—dimensional spinors

l+>=(é) / I-> 2{3_) | (11.2,36)

The polarized cross-sections are

l<+h‘l+>}z+ I<+JT"‘>IZ
,<_IT]+>J + ’<’—IT"">’

(11.2.37}

Using the explicit form of the Pauli matrices together with (II.2.36) we have

CHEI+> = <HIG |+ 5> = &0 1~ = <6y |-> =0
H6]-> =<&=)0m > =1

= &H G 1> 2 oy le>=d

which implﬂ
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L¥IT)I+D> = L=-ITI->=0
<+lTl-> = by '2-+'£'r-? (““9’{ ”“:"‘9')-
C=ITI> = .f,l.z_ + ﬁz? (m9+:' :-w-9~)

G;ﬁl' = lﬂ'l‘z 45 ’.QL)?-?Z-+ 2 &{e' ﬂ:’) B.'Ef * (11.2.38)
129 w® T, { %, (££,+q£zm9)*}
Inserting (I1.2.38) into (II.2.34) we finally get
d 'y 2 ‘ :
TE = l'e':i. £+ ﬂz‘i I . (11.2.39)
hle)- 29 2lnD I’,,,{&z(iﬁ.ﬂﬂzwb?) }
dv/dJz

(11.2.40)

II.3 THREE BODY ANNIHILATION (N N —» 3W )

II1.3.1 Kinematics of a + b —®»  13243:

We now consider in some detail the kinematics of a two - to three body reaction

P“-"Pb —_ P’-}- Pb-r ,93 (11.3.1)

where a, b are the initial particles (clearly, what we have in mind is to specialize to the
three pions annihilation N N —® 3T ).

The first question is the choice of variables. Remember that given a process involving N
particles altogether, one is left with a total of 3N-10 scalar variables (4N components of four—
—vectors minus N mass shell constraints, minus 4 energy-momentum conservation constraints, minus
6 Euler angles in four dimensional space). It will be useful to choose the variables to use ac-

cording to what one is locking for. 1F one is searching for quantum number effects, it will be

convenient to use the variables suggested in Fig. II.5

(squared total energy in the C.M.)

$= (P‘-r}:b)z-ﬁ (b P+ Pa )z




233

z
Siz = [P'* P'-) squared invariant masses of the different

Sis "(Pl"’ )’3)1
S23 = (P!-"' h)l

t. = (P‘..P') z squares of momentum

poiring of final particles

t 2= (P L P3 )L transfer variables

As we must have only five independent variables, one of the previcusly defined ones must be ex—
pressible in terms of the others. In fact, from (II.3.1), squaring

S® S +Sp3+S;y ~ M z 3 (11.3.2)

where we have used P:’: -mt.?'

If we now write the invariant three body phace space (w- JF#W.-)

3 3 3
JS?.“ dw':' . dth i? S-MJ{ atPL—pi= P Pa) (11.3.3)

we shall prove that this can be rewritten as

dS, = E-R';‘ ds,, ds,, desn dop (11.3.4)

where 9 is the angle between?}' and ;-); (as we shall see o~} $M9' & 4 ) and CPtls

the angle between the planes p p and p p (it will turn out that 0 & '—f &£ 2 ). We

3 1
shall also introduce the angle /5 between T, Py and p2 and the overall azimuth around the direc-

tien of flight of the incident particles (E; or ‘E;).

Upon integrating over this last angle (which gives a factor of 4w ) and over?:; one

gets (w‘ =[[,;T+F;, +W3J’/z.')
dss . Sr- P dp, F,;Z:)Pz. deos ‘J‘*f g(,;g-w,—w,__-w-,).!mﬁ.(u.a.s)

3 &y

Recalling the definition of ﬁ olubﬁ = 3 J"JS one can perform the /3 integration

i
to obtain
OISB = 2w de, dew, deos B dy (11.3.6)
where we have also used Py dp1 = o dw, ' Py dp2 = taty d(..:z- . 3ince all conservation con-

straints have been used, 02 G ¢ T, © 5@? LR
To get (I1.3.4) we notice that, in the C.M.

S22 (Pt ) = (Par bi- p)'= [ravPin b 250 m2auf¥ 157

(l;, j; ¥4 .-..'cﬂl‘ﬂ'c P‘J ‘12;3)
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1I.3.2 Dalitz plot:

So far we have only imposed energy momentum conservation and integrated over an irrele-
vant angular variable so that the result could be simply multiplied by the proper matrix element
to get the differential cross section. Suppose now that the matrix element is independent of <
and ﬂo . Integrating over the latter vafiables, one sees that the phase space is uniform in
S,s ’ ‘Sz; therefore, a Dalitz plot where one plots the events ag function of the invariant
masses would be uniformely populated in what concerns the contribution coming from the phase
space and any departure from uniform density is Jue to the matrix element and must reflect some
dynamical property such as a resonance formation in one {or more) subchannel.

The boundaries of the physical reglon in S5 3&3 can be found using ..-lgmﬁs 4
Squaring ,

Wy = \/..S——ud' —edy = }_;:z-i- F:_l-rm;'-a-:_ 15 ]F',_Iuaﬂ]/"

one gets

0 < [{J?—W. —wz)L—F,z- -:z._w: ]a L & F"z b 2 (11.3.8)

Using (I1.3.7) with wil= F:Z'PWF- we find after some algebra the curve
t t

- 1 & z Ly & z

[(S 533+m|).-t;sm. J[(S“S|3+""L) -—L.SM,_J

whose shape is approximately given by the one in Fig. (II1.6) and whose boundaries (dotted lines}
= . .

obtain noticing that S53: is maximum when P‘ﬁ. is at rest in the C.M., i.e. for &J -..-.wﬁ

J —
and is minimum when F = P =0 . Thus
L d

wax z Vs = [vs - =

SEJ = S -rwﬁ—zwg_ s (5 m{) {11.3.9)
| TP z

S;J. = (W;-{-Wj)

The wavy lines indicate where a more dense population of events in the Dalitz plot would
' ' - ( 2@ sl
be expected in case of resonances in the various subchannels {4) S .+ b3 , Tl

(z) 3.= “’t"‘ P‘a‘—)z'

sz,‘h
N 1 \
kS
(=) PN\ — — O -}- — Fig. 11.8
l' L
[-n._-rw;)L 1&"’} 2 —— ‘
1 R —>
[t m) ey )= () GE =) g

LE]

Often it is more convenient to introduce the kinetic energies TI, = ...mt;

related to Sj LR

Sife= S- ’“:—*2“’;‘&’3%&'- m.-..)z-z.-/?.'ﬁ (11.3.10)
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Owing to the linear relationship between the S"j and 'E_ variables, a uniform

distributicn in the s;j variables entails also a uniform distribution in the 'Ti ’s . In the

case of interest to us (KN —> 3 T+ ) where m1=m2=m3=/4. » the constraint (1I.3.2) becomes

32
Vs =30+ 7 T
7 5
implying that the total energy 1s the sum of the kinetic energies and of the magses.

In temg of the Q value

Q: J’S——S/-t

the boundary value of the Dalitz plot becomes 2
[Q%28p 2@ (Trm)+2uT, - 4o (re )]
= T3 o (Tar 2u) (T 4+ 2p)

whose non-relativistic limit _rE <</q
(TI'T2) (Fig. 11.7):

(I1.3.11)

(I1.3.12)

glves a circle of radius /2 centered in the plane

[&-2(mem)]*-T7; (11,319

T 1

\

it is more useful to introduce the variablesg 'l'3 and

i e
X = 5 [T‘,_ —'T,_) so that substituting in {I1I1.3.12):

Fig. II.7
197/ 3

—2

Q/ L Tg_

In the opposite limit Q»,/.

one finds

Z 2
28 5 @n) g (@=L o023 s

leading to the rounded triangle of Fig. II.8 where again, the wavy lines simulate dynamical ef-

fects such as given, for instance,

by resonances in the varieus channels.
]3

Fig. I1.8

X

arme Em s m e
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TI.4 QUANTUM NUMBERS AND THE DALITZ PLOT

In the present context where we are investigating N N apnihilation, the emphasis ig. of
course, on S-channel resonances and it is therefore of interest to study how (formation of re-
sonances in) particular sub channels with given quantum numbers can give kinematical festrictipus
which can be extracted from the transition matrix element. What we are interested in is to see
how selection rules can affect the Dalitz plot which, as we just saw, would be uniformely popu-
lated in the three final subchannels were it not for either kinematical constraints or dyna-
mical effects (which we are not geing to consider in the following). We shall not discuss in-
detail the general case but rather give a few examples related to the case of three body decay

anllrin particular, N N —»3T.

II1.4.1 Quantum numbers effects in the case N N~ 3.

If we restrict ourselves to consider the angular momenta L = O and L = 1 only, we recall
that the result of § T.11b showed that three pions annihilation can occur only if the N N systems

is in one of the following states

4
3 Se
T =0 S1 I=4 P,

4
}%L ‘SlaL
and since we have three identical particles in the final state, they must be in a totally sym—

metric configuration of both isospin and space coordinates.

II.4.1a I = Q

Let I (i=1,2,3) be the isospin vectors of the final pions. The only rotationally inva-
riant form (1n isospin space) which cerresponds to I = is (I x E;) . T;. The latter, however,
is totally antisymmetric and this requires the amplitude ko be correspondingly antisymmetric
under the exchange of'ﬁl (i=1,2,3).

Let us consider first the case of a state BS] when J =1, L = 0 and P = -1 in the initial
state. Therefore, given that the three final pions have already negative intrinsic parity, the
matrix element must have the rotational properties of a vector (since T = 1) and the parity of
an axial vector (+1). If E'is the initial spin, the only allowed form for the matrix element

will thus be

Moc T LP:X Pr + Pa¥ Pa + Pa” P (11.4.1)
-
or, given that in the C.M. Eq +'3; +-35 = {, we can choose-S; and Py as independent vectors and

we have -
g —
—
M e J- (PJ"‘FL) (11.4.2)
The effect on the Dalitz plot distribution will therefore be a kinematical form of the kind

IMB:,_) ]?_ o< ) P1 X F.‘ ,?—-': P Pa IR (11.4.3)
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1
Let us now consider the case of an initial state P1 corresponding to J=1, L=1, P= +1,
so that the final state must have the rotational properties and the parity of a vector. Further-

more, it must be completely antisymmetric in‘E;,'B;.'E; as we have already remarked. Thus, the

matrix element must be proportional to
z -» L 2
Magy o< T [P (R2F) B (BB B (FEF]
or, using the two independent vectors

F’:-.('F: + F’-,_ )/z ";’,{F: "Fz)/?- ' | (I1.4.4)

and momentum conservation

M{".P) ec J [P (F- ?)" ‘I(B_”' 4?9] (I1.4.5)

whose modulus squared

™~ {F?)Z (‘J-F,z- '{T_' ;i’?')-b?z(.%gial.?vz (1I.4.6)

tells us how we should expect the Dalitz plot to be correspondingly affected.

IT.4.1b | = 1

-l s
We have now to combine the three pion isospin vectors Ii (i =1,2,3) to form a vector in
.# -'* x - 2
isospin space. This can be done in three different ways, i.e. combining Il and 12 to give isospin
g

— — . \ .
zero to the subsystem 112 = I1 . 12 and leaving to 13 the vector character, or permuting cycli-

cally 1,2,3, Thus we have the three possibilities:

33 (-f:i::,) s fi(f},f}.) J f,_ (i‘:-fi) (11.4.7)

Notice that one could similarly form combinations which are antisymmetric in the various pairs,

that is
(fixf:)xii y (f?—"' f;)xf;_ /(fs" f?:r..)“'—_:l‘:a‘

They would correspond to have, say Il? in an isospin I = 1 and to combining it with I3 te get

again I = 1, The above forms c a n, however, be expressed in terms of the previous ones (11.4.7)

since, for instance,

Fu(f. «E)- T(L.T,) - T (F
Iﬂ_x(l‘,__ xI_:,)': 'LL(Iﬂ- “3)"-.-3 L
To get a matrix element totally symmetric in the combination of isospin and momenta, we can

either take

— g — —y =P —h .
M oc %23 ?ﬁ- (IL' I3 )"’ 0{31 Iz. (IJ' ri)*"’ﬂz.rg (—I..‘IJ{II.A.B}

with p{ 0(.] symmetmc for the exchanges p1 = p. or

M oC Py .LX(J. x T, )1-/3311';;{_?31'1) +/3”_IX/I‘ xT‘ ) (11.4.9)
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with ﬁ 'J = - /3,31' antisymmetric under the exchanges;; ;_,"’ -gj or one can make more
general combinations of mixed space and isospin symmetry.

Let us now investigate the momentum dependence of the matrix element for the lowest per-
missible state 150 when J =L =0, P = -1. Since the 3 pions final state has already intrinsic
negative parity, and J = O, the simplest choices to have a true scalar in the symmetric and enti

gymmetric combinations, respectively, are

-
oy = &y vE pecPi T

. . T r2
By = P~k

3
In the state P1 when J = L = 1, P = +1 the matrix element will have to be propertional to

‘ (11.4.10}

? . -\T wherev ig a true vector. Thus, the‘ simplest choices are
— —
o« o< P+ Pi)
-y -
[53,_,' oc (P - i)

. . 3 .
Finally, in the state P2 where L = &, J = 2, P = +1, the matrix element must have in character

{1I.4,11)

of a second order tensor in its rotational properties, being pseudo tensor in its space inver-
sion properties. This tensor must be constructed using the'vector% 32 and the pseudo vectors

-

P; X Eﬁ and must be saturated by the analogous tensar deseribing the angular momentum of a sta-

te 3F2. If /“," are the Lorentz indices and i, J the usual pion indices, the following quan-
4 P - = - — V¥V s
a)” oe [(F-FiY (P ) (B~ F3) (ForBi) ]
MY o - - Y v oI B
Ik "c[(P:'*PJ)/‘(P:XPJ)*{ﬁ*E) (FixFi]

v v
are both traceless ( r, 5 =/Bf = ) symmetric tensors in the 3+ indices and
oA Guy G =0 y Y
their properties differ only for the exchange of the pion indices i j. Both are pseudotensors,

i . Vi N >
0(/‘ v (Pu' / PJ) == 0()“ ["P,‘,",})aymmetr‘ic and antisymmetric respectively under

—
=2 Pj

tities

(11.4.12}

i.

ot

I1.4.2 General method (N N —¥ 310 ):

The cases discussed earlier are special examples of the general case of three pion an-
nihilations with unrestricted angular momenta vélueé which can be treated by a general method
of spherical tensors due to ZemachG.

Let the initial state have a definite JP and be desgribed by a traceless irreducible
tensor of order J (scalar when J=0, vector when J=1, tensd%-when J=2, ...) if the parity is
(—I)J or by a traceless irreducible Eseudotenso;lor order J if the parity is (---1)‘“1 construc—

ted with the spins degrees of freedon of the initial state.

In writing down the most general form of a matrix element, owing to the intrinsic nega-

tive parity of the three pions in the final state, this tensor {or pseudotensor} will have to be
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contracted and saturated with a similar pseudotensor {or tenser) constructed with the final mo-

menta. This means, the final state will contribute with a pseudotensor if L is odd and with a

tensor if L is even. Furthermore, the combined space-isospin symmetry will have to be even {the

isoepin analysis is the ‘same as in § 11.4.1}.

Thus, if we denote by Sij; (§) the traceless, irreducible tensor of order J describ-
ing the angular momentum of the initial state, by I (T) the isospin factor (discussed previou-
sly, i.e. (I X I ). I3 for I = Q0), and by P(ji ﬁi) the traceless tensor (or pseudotensor

as the case, i.e. the parity may be) made with the final momenta'B;. the matrix element will be

a combination of the form

(7) o { .
M = S5 () TIE)RT () R(FY

Here F (p ) is a form factor depending only upon the pion energy variables which contains all
informatlon which comes neither from kinematics nor from general properties, i.e. contains all
the dynam1cal_1nf0rmat;on. In general, there may be several of the above expressions for a given
decay depending on the symmetry of I (iﬁ and P(%ﬁ)and so several form factors will also have to
be used. ' |

The guestion is then how to construct the most general tensor P(J) of a given parity hav-
ing at one's disposal the momenta ?{ 's (i = 1,2,3) of which only two are independent (say'?a,
-; ) in the three body final state owing to momentum conservation and the pseudovectors p x pJ
of which only q El b4 p2 is independent given our previous choice. The latter cannot appear at
powers higher then one since all even povers can, cobviously, be reexpressed in terms of powers
of the momenta themselves.

P —_ -
Thus, if the state is J = 0 , l+. 2 ,... (which are usually termed "unnatural parity"

J
states) the tensor P( 1 can be constructed using only the vectors p {i =1,2) whereas the
1 L

pseudovector q will have to appear at power one in the case of "natural Earltz" states

J = 1_, 2+,... (recall 0 cannot go into 3% ).

I1.4.3 Connection with general properties in the Dalitz plot:

The previous analysis enables one to study in detail what kind of population one should
expect in the Dalitz plot in the varicus castes.

As an example, we consider the case [ = 0, when the matrix element was found to be com-

pletely antisymmetric in ?ﬁ,'ﬁ;, 3; implying that the rate (i.e. the modulus squared) will be
completely symmetric in ?a}'ﬁé, B;. This means that if we divide the Dalitz plot with the lines 1

;; =0 (i =1,2,3}, each sextant thus. cbtained will be uniformely populated.

Next, reecall that the periphery of the Dalltz plot corresponds to p1 =+ p? which leads

P -+
h)?;t'ﬁl x p2 = 0., Therefore, the natural parlty series J =1, 2 ,... which was seen to de-

Pend linearly on q [see § 11.4.2) is depopulated at the border of the Dalitz plot whereas the

- + — !
unnatural parity series 0 , 1, 2 ,... is not.
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II.4.4 Covariant formulaticn:

J)

So far we have used three dimensional vectors Py to construct the tensor Pijk .« to use
in Zemach method and this is good so long as one gticks to the CM system. In most cases of in-
terest, however, it is convenient to visualize the production mechanism as following from a
sequential decay of successive resonances

®+b —» A+B
L ¢+ D+ E
L— Fr 6+~
Ly .-

whereby after having studied in- the CM the first reaction, one would want to study the subse-
quent resonance decays in the respective rest systems of the various decaying resonances.

It is therefore convenient to generalize Zemach's method to use four vectors rather than
three dimensional vectbr‘s. The trick is to intreduce four vectars Plf‘ orthogonal to the to-—
tal momentum P}* (just as-p*_ (i=1,2) in the C.M. having only space components were orthogo~-

1 —
nal to P/ which in the c.m. had only non zero time component  Fp=Vs , =0,

It is straightforward to see that the four vectors

Pi.)u‘ p. ~ Pr z??—;' (I1.4.14)

are orthogonal to Pf
P/ P/f=o

and reduce to -[:i in the rest frame where Bo vanish as can be checked directly from{I1.4.14).

Similarly, the generalization of-&' to its covariant form is given by

G G
Q/*\z Eﬂv‘g P.J Pf P/f? (11.4.15)

where gfv'gi is the usual Levi-Civita antisymmetric tensar. Again Q)‘P‘»s ¢ and
-—

Q=0 , & =19 in the C.M..

. MY
Finally, the tensor 5 is replaced by

v ‘
/41): S}‘W'__ ?"“P ' (11.4.18)
3 :
which satisfies
v ¥
AR S T e

The covariant use of Zemach method amounts therefore to the use of (I1.4.14,15,16) instead of

E’T'Sﬂ" ’
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IT1.5 CASCADE PRODUCTION WITH RESONANCE FORMATION

The method outlined above is very useful in connection with a decay analysis where reso-
nances are formed sequentially and then decay
NN — n +R .
(11.5.1)
|_.>B+Rl

Specific examples could be

N — T+
NN I 5 (11.5.2)
L T
NN = 4 w
L o Wetrerr : . {11.5.3)

NN — T+ A,
I—':'71'-n-“ﬂ'-a-ll'

(11.5.4})

I1.5.1 Two pions resonance:

As a specific example, we will investigate reaction (II.5.1) starting from a state of

given quantum numbers decaying via a two pion resonance with definite quantum numbers (I)R,
13
J -
(}R
For simplicity, if the reaction is NN —> ﬁj‘W}_Tfé we will suppose that the pro-

cesg goes via
NN — (Jr,n-;)RW;

2 .
so that the invariant mass of R is S = {P:* ,gt_) and the matrix element close to the

mass of the resonance will be proportional to

4 ‘
{11.5.5)

'J';-"MR'I’ l‘ rlR/L

Diagrammatically, the reaction proceeds via

1Y R ™,
v :')T'< Tz

"3

and we have to consider the isospin and momentum structure of the vertices (1,2) and (1,2)3.

i e e e YR gl

B T —
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I1.5.1a Isospin structure

If IR = 1, the isospin structure of {1,2) is a vector
= —r =
I-.!.,z.= I'X .1_"
whereas if IR = 0, the isospin structure of (1,2) is a scalar
’ . —_— —»
T, =T, T
We can now distinguish two cases for the isospin structure of the complete vertex {1,2)3

according two whether T =0or 1.

NN

A/ IN 5= 0. We have two poszibilities:

The vertex (1,2) 3 will have the isospin form

(T.x Ia)' I, (11.5.6)
ii) IR = 0

The reaction is forbidden because with IR = 0 we can only form IN = 1.

N

B/ I = 1. We have two possibilities:

NN

leads to the (1,2) 3 isospin structure
g — —
( I, x IL) x T, (11.5.7)

ii} 1_ =0
R

gives the (1,2)3 vertex
— —2y -
) 1.5.8)
. T L.
(T, L.)

z —3

11.5.1b Momentum structure (N N —>»mTs )

We recall that for a tworpion state, J even (odd) implies I even {odd).

Reaction N K —> {TT, 'ﬂ'-,__) "y can proceed with the two pions W, T, in any
state of the natural parity series 0+, 1, 2+,.... but we will for simplicity limit ocurselves
to the case (JP)R = 1 . As this requires IR = 1, this meané that the resonance R has the quantum
numbers of the ? MeSOon - /

First we write the vertex in the R rest frame and we then transform it in the covariant

formulation to boost it in the N N CcMS. It turns out that thig has no effect in the preSEﬂt

example, as we will see.
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Notice that being R a true vector (1~ ), the momentum structure will have the form
(P, ) in the R rest frame. We now boost the vertex from the R frame to the N N

CM. For this we rewrite F:-F;' in a covariant way using :Pﬂ :P'“ (11.4.14). We will then

take the space component of P I and use = Z= z .
We find ( 2-‘) " I; (Pl‘*PLJ/‘ 4 g‘ MR

B e B [P0 (renor- B b

which proves that the boost has no relevanoe in this case. Summing up the pre-
—_——
vious consideration, according to the I(J ) of the N N system we have for the various matrix

elements the following form of amplitudes

1(07) = (TxL)*T, (F-F). R
0(17) = (TxT)T, (F-F)pF = |
- (DA T )T (F-F)«(P+F)-

—p  —»

== 2(f1-x£)'fs 2X Pa
O(1%) = (T,x T, )-I, (F-F.)
1 (1Y) = (TxT )T, (B-F)

1(2) = (TuraZ)# T [{ﬁ-@%ﬁp (o), (FP.) ]

Proper symmetrization between the final pions should also he performed if the resonance is not

formed by a specifie couple of pions,
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PART 11T

THE EXPERIMENTAL SIDE OF LOW ENERGY N N PHENOMENOLOGY

III.1 INTRODUCTION

While it is always rather difficult to define "low energy" in an elastic reaction, this
becomes almost impossible in a reaction such as N N. Elastic reactions at low energy are in fact
usually dominated by resonances implying rapid variations and escillations of the cross-sections
(this is not the caée of exotic channel such as p p —> p p where the variatiens may be non
negligible but there are essentially no oscillations). In N N reactions, resonances may be pre-
sent (and if they are, they are an interesting phenomenon) but the dominant mechanism is that
of annihilation as we shall now discuss.

We will assume that "low energy" does not exceed a few GeV where the cross-section has
dropped of almost one order of magnitude from the lowest energy measured sc far (p o~ 300 MeV;

Lab
the coming in operation of the new CERN devices will no doubt lower very much this limit}.

III.2 THE p p CROSS-SECTION

As we have mentioned at the beginning, the low (as well as the high) energy region of N N
has been very little investigated before LEAR. In particular, the total cross—section 6’;:[,, F)

has been measured at pl b ~~ 300 MeV/c as the lowest value giving there G‘é_ {P F) A 300 mb.
3

G"'t_ (F F) decreases quickly with increasing plab dropping without major oscillations to

ahout B0 mb at Plab ™ 2.5 GeV/c and continuing to drop at a much slower space ( 6_}:, ~ 42 mb

at plab ~rs 300 GeV/c). After a broad winimum, GE’_ (P F_;) starts then growing and grows to
about 62 mb at Collider energies ( V3 = 548 GeV) where the comparison with cosmic rays gives
only a very rough indication for 6;“:,:9:"?0 + 10 mb. Even at the highest accelerator ener-

gies for which a comparison is meaningful (the ISR) O-i_(pp) is higher than 6_&'_ [F' P)
{and it is one of the contentions of Pomeranchuk theorem that they should tend to the same asymp
1 -
totic limit ) and this fact is interpreted with being p p more absorptive than p p because of
the annihilation channels. At lower cnergies, however, Lhis factor is enormous: 6_;_ {P F)
is about 80 mb at plabN 2.5 GeV/c, i.e. twice as large compared with ﬁ_'t {P P.) . The gap
reduces encrmously at high energy; for instance 6‘;‘ (p p}) ~ 42 wb and G;‘(p p) -~ 40 mb
at -+ 300 GeV/c.
g

From a qualitative point of view, we recall that exothermic reactions are expected to
proceed via the famour 1/v law which holds if the matrix element is finite at v=0. This law
seems indeed to represent the behavior of G‘t{p p) in the low energy domain (i.e. down to

~ 300 MeV/c) where is well parametrized by

e (PF) ~ [“_,, % b ' (T11.2.1)

being k the C.M. momentum (in &eV/c).
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If one now looks at 6:} (p E) one sees that again it decreases rather smoothly with
increasing energy, it is A+ B0 mb at Py b4~'300 MeV/c and goes down to 30 mb at
a
p ~ 2.5 GeV/c.

lab
The charge exchange reaction p E -3 n nisa very minor contribution (about 10 mb
at 300 MeV/c and 1 mb at 2.5 GeV/c). Therefore, we conclude that the large difference between
the total and the elastic p p cross sections comes from the annihilation channels p E a—t  ME-
sons which are pregent in p E and absent in p p.
Aside from the 1/v law of exothermic reactions, already mentioned, the following qualita-
tive remarks cén be made to shed some light on the situation:

a) if appears that P E cannot be represented in terms of scattering off a black sphere in spite
of the inelastic (annihilation) éontribﬁtion being large. In this case, in fact, one would have
6_": /G_m nr -4 which is not the case in p E where, at 300 MeV/c, 6:_/0"'.‘ a~r i_g% ~ LS5

{decreasing with increasing energy};

b) Analyzing the partial wave amplitudes of the amnihilation cross~section one finds that the

unitarity limit is essentially saturated

GE(M.),_U_@,DH) T"/‘iz' . (111.2.2)

c} The angular distribution of the elastic p 5 reaction shows the typical diffractive peak in
the momentum transfer t from an object of radius R ~ 1-1.4 fermi implying that the number of ef-
fective partial waves in the elastic channel is of the order of -& o~ ‘L R .

The above seemingly contradictory remarks have been interpreted as suggesting that in
p 5 there are two dimensions; one (R, = 1— 1.4 f) responsible for elastic scattering determining
the shape of ﬂﬁr{?ﬁi}ﬂjb through unitarity and the other, much smaller (Rznv 0.2 f) responsi-

ble for annihilatien and determining through the optical theorem
1T = i_ = L (6" + 0 ) 111.2.3

the optical point

de; !
%l ) 2 - (G“J + ﬁ"w) , (111.2.4)
de T,

In conclusicn, annihilation represents the majof contribution to the total p E cross—
-section at low energy. Of this, about 95% consists of pions and resonances decaying into pions,
It is perhaps a fortuitous (but exciting) coincidence that the inmner radius {R a 0.2 )

has the same rough value of the estimated "effective" guark radius.

III.3 MULTIPLICITY
Although annihtlation into pions appenré as the dominant process of p-g, still be obser-
ved multiplicity is much lower than that allowed by energy conservation. The relevance of this

statement can better be seen from Table 1I1.1.
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P
lab
a Q (alilowed by energy observed R
{Cev/c) (GeV) conservation) <M.“.>
+
. 5.0 — 0.1%
Q 1.88 13 5.0 -0 60% rable III.1
4+ ———
7 3.85 27 6.7 — 0.30 75%

where

R - 62 - <""rr>/-t
- {I11.3.1)

Q

is the fraction of energy that goes into kinetic energy of the produced pions. Although the lat

ter is very large, it is still relatively small compared with that of particles produced at high
energy in p p collisions where not more than 10% is used to produce the mass of particles; dif-
ferently stated, annihilation and production appeare quite different mechanisms. This considera-

tion is corroborated by the fact that two-bedy or guasi two-body annihilation

PF - M, M,

where Ml. M2 are particles or resonances, does not seem to contribute more than 7% to the obser
ved annihilation {at rest). By contrast, high energy particle production is known to be mostly
due to quasi two-body processes (although the ambiguities in such an analysis are many and va-
ried).

The multiplicity distribution is fairly ﬁarrow; for instance, at rest where (‘“q-> ~ 5 ,
the various branching ratios are s 45% for n = 5, ~20% for n = 4,6, ~B8% for n = 3,7, «s1%

for n = 2,8 (confirming the smallness of two pion annihilc*ion).

III.4 RELATIVE IMPORTANCE OF S s, P WAVES AT REST Z.Pi-'i

Fven through the phase shifts are complex in N ﬁ. the kinemabic behavior é% E/ *L
- >0

leads to conjecture that in the low energy region S waves should dominate. This can be checked

to be so in the ratio

(I11.4.1}

_ ':i;- — K, IE; (T(: =.i-4)
K™ PP~ Kok (¢=-9)

add
since we recall that the C = * 1 channels receive their contributicn only from { even partial
waves respectively thus, at rest, by ; waves. The ratio (II1I.4.1) is, experimentally, very
small at rest < 1.5% proving that 8 wave indeed dominate at low energy but is already .~ 40%

at 1.2 GeV¥/c.

If, however, we look at the ratio

—

— (-]
—> 2 ’
Rﬁ. —v.PP T (111.4.2)

PP — whwT
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where, we recall, the numerator gets contribution only from odd waves, we find the apparently
surprising result that this ratio, at rest, is of order 40% (i.e. almost 40% of the 2§ produe-
tion goes into 2mw* ) implying a large contribution from P waves. This is, however, only partly

surprising since in the annihilation p E at rest, a pair of nJE has a much larger share of

relative momentum than a pair of 's .

III.5 DETECTION OF RESONANCES

In the N N system, the process of multipion annihilation appears as the dominant mecha-

nism. It is interesting to analyze the methods by which pionic resonances can be detected in the

reaction
FF——a’ntr

and some experimental evidence for such resonances. For convenience we consider separately the

cases of resonances with mass M < 2mN and M EmN.

ITI.5.1 Resonances below threshold M & 2m_ :
Eh

I11.5.1a _ ¥ DE EXCITATION OF P P

Inp 5 amnihilation at rest, one measures the )l—ray spectrum in the reaction

FF-—;- XX (I11.5.1)

132-7 MoV Superimposed to the continuum, at
1837 Mev 42017 Mgy least three narrow states have been
?00:- J 215 9 Mgy ’ found with Xenergies of 183, 216
[ l and 420 MeV (Fig. III.1}.
0ol The peak at 132 MeV is the
g [ ) line of g p radiative capture.
S 3 {l These lines correspond to mag
°:' { ses of the X state [MX-;Z'WM-EX)
L h of 1456, 1660 and 1693 fitted with
k resonances (continuous curve) in

‘Fig. T11.1. These states are quite

narrow and the width quoted in Fig.
Energy Me¥

IT1.1 are due to the limitations of

FIG._ N1 the apparatus.

II1.5%.1b Missing mass.

Consider the reaction

FOL - Pslou.r"' pioms - (111.5.2)

RS

e
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where the colliding E annihilates with the neutron in the deuteron and the emerging proton is
"glow" {momentum ,ﬁ 150 MeV/c)}. By varying the momentum of the slow proton one can study the
yields for various values of the inva‘r‘iant mass of Lhe final pions. Let p, d, g be the momenta
of the colliding antiproton, of the deuteron and of the slow emerging proton respectively so

that the system of final pions has fourmomentum X = p + d — g whose invariant mass xz, in- the

laboratory system, neglecting the deuteron binding energy and assuming both p and q to be non=-
3

L -
-relativistic [Fa ‘-\%M”-t E_.. , Eg~ w4+ —— {where i), and q-"are the p and the p me
P Iwm,, 1 id 2w,

menta in the laboratory system) becomes

MY:X =(P+d‘?) =(EF+ZWM_£:?) _(P—-? (I111.5.3)
—F»Z;_—vz Z el o
'?'(Z‘WN"?'T?-) "(F"‘i.)

~

Retaining only terms up to order .52 and "52 we get from {I1I.5.3)
2. - 2 b
MXVQ-W:—Q-'? +(F’+If)
and
-2z (—D+ "')2
- :f_n -+ }’ ‘7 {111.5.4)

M, &2 2wm
X Mooy b,y

Therefore, one can vary the missing mass MX by varying the momentum of the final slow
proton and its direction relative to 'f)'. Notice that if the kinetic energy of the final proton

gbeys the relationship

-2 - —\F
T = 9 > (P*‘?) (IT1.5.5)
.M, 8w,

we will be in the kinematical configuration when
X

Sticking to the case of a slow recoiling proton has the advantage that the process in

4-2.144”

this case is dominated by the virtual exchange of a neutron

with the deuteron's proton acting as a spectator and the final pion system coming from the in-
teraction of the incident antiproton with the virtual net;tron. This is the case, however, if we

can assume that the above diagram dominates, which happens if MX <2 ", i.e. if the

Z

: z
dominant contribution comes indeed from the {unphysical) neutron's pole when {P - d) =—m,

It can be shown that this would require the kinetic energy of the final proton to be
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f_\_?.._ri, ==l MW/C_ (B being the deuteron binding energy ar 2.2 Me¥/c). It is
quite o;tious that the final proton being a physical particle cannot have this unphysical (ne-
gative) value for its kinetic energy. However we shall be the closest to this unphysical ﬁalue
when the final proton iz at rest or, in defect, very slow.
With the method just discussed, evidence of a further resonance below threshold (at
Mx = 1794 MeV, r' % 8 MeV) has been given. Furthermore, evidence has alsc been given of another

celebrated resonance above threshold at 1926 MeV ( ' &« 5 MeV}. Al}l these “evidences" are still

very much controversial and much clarification is expected from LEAR.

I11.5,2 Resonances above threshold (M > 2  n )

These resonances can be studied with a variety of methods either in “formation" experi-
ments when the resonance is found in the S—chammel as an intermediate state or in "production"
experiments when the resonance is formed among a group of final particles,

In the firsf cathegory we list the study of the energy variation of integrated quantities
(such as total, elastic, charge exchange, total amnihilation and particular annihilation chan-
nels cross-sections) and the study of the energy variation of angular distributions and palar;-
zations (elastic and particular two-body annihilation channels). In the second, we recall off
shell N N interactions in varioﬁs channels through backward production and a variety of other
production experiments.

Partial wave analyses are also oécasionally useful to provide further information.

In should be stressed, however, that hunting for resonances is always a very ambiguous
game where one can easily confuse kinematical effects (such as thresholds, the Deck effects etc.}
for bona fide resonances =nd the N N system is no exceptioﬁ to this general rule. The point is
that the only way to actually see a resonance would be to sit on the corresponding pole; this,
however, in the traditiocnal language of a Breit Wigner form lies ab physical values of angular
momentum and unphysical (complex) energy values or, in the Regge language, at physical (real)
energies but unphysical (complex) angular momenta so that in any case we lack direct evidence.
Further difficulties arise if either the resonance has too large a width (whatever this may mean}
or too low an elasticity (i.e. coupling constant). In the way of ambiguities, the N N case is
emblematic since a lot of rescnances have been reported above threshold and all of them have
successively been questioned so that it remains entirely to the new facilities to clear the

field.

III.5.2a Energy variation of integrated quantities near a resonance

Let us recall how a resonance is usually studied and let us for simplicity consider the
elastic scattering of two neutral spinless particles. A resonance of spin J, mass M, total width

fﬂ » elastic width f:l is conventionally attributed to a diagram of the kind
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and represented by a Breit Wigner amplitude of the form {in the C.M. system}

TS_ (£,9)= 2_:3"+ 1 <f P (009) (1I1.5.6)
E,-€& —i r 7
contributing to the J-th partial wave of the elastic amplitude (whose modulus squared is the

differential cross section). In (III1.5.6) the energy position of the resonance Bo is related to

the mass via

—"'[1" "‘r" ) 'L (E *"")-‘W‘ '-?E:z* 2w E, (I11.5.7)

f* is the total width of the resonance(poasibly contributing to several channels) and among
the many ambiguities connected with the use of a Breit Wigner (a vpelativistic" or "pon-relati-
v1st1c" form, such as (II11.5. 6)) we recall that the width is usually endowed with a threshold

behavior accounting for the so-called neentrifugal barrier” which is usually parametrized as

2341
M- P (L ) J- £ (111.5.8)
— ’ — ———
L¢ EO
with r: taken to be a constant, The form (1F1.5.8), convenient for low values of k, becomes

rapidly a practical problem if one wants to take into account the "tail” of a resonance {i.e.
when k increases) where, however, the concept of a resonance loogses meaning. The '"proper” treat—
ment of the tail of a rescnance was recognized as one of the unsclved problems at the time of
the duality program. |

{Ll {i.e. the width of the resonance in the elastic channel) acts as the coupling con-

stant and should also be parametrized in a form (1II.5.8) to take into account threshold effects.

1t is customary to introduce the claasticily paramcler

e = rl.u?/ri (T11.5.9)

which essentially tells us the relativé strength of the resonance in the elastic channels as

compared with all other channels.

Taking the modulus squared of (I11.5 6) and integrating over cos @& one gets the reso-

nant contributicn to the elastic cross-section

14

R O

{e —-E) r,zlq' (2T+L)B(E)xz {11.5.10)

where we have used (111.5.9} and introduced the Breit Wigner factor
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B(E) = ”Z/Q (111.5.11)
(E-E.)% ryy

In general interefence terms may appear if a background is superimposed to the resonant

partial wave or when two (or more) resonances lie close«by.
From the optical thecrem, the imaginary part of (III1.5.6) gives for the contribution of

the resonance to the total cross-section

2w b r'ef r (I11.5.12)
0;!__ :F (£,0)= (7_:1' )[ -Eo)*"‘z/ f-?' T (230 BLE) %

Recalling the definition

' (III.5.13)
G;:M._ ef+6—'

the resonant inelastic cross—section is now given hy

nes, e {II1.5.14)
L= AT (23s 1) BLE) % (1- %) |
Notice also that (II1.5.10,12} give
eh .
> = be (111.5.15)
s,
Stk

In the case of a resonance in a p ;-) channel, we must remember that the reaction has the
isospin decomposition (‘];.;.'};_)/7_ . Thus, if the resonance has a definite isospin, a factor of
1/2 appears in (II11.5.6,8,11) and a factor of 1/4 in {II1.5.10). Furthermore, the cross—section
must be divided by another factor of 4 coming from (2_ sl..‘:,)(zsaf 1) being 1A 3,
the spins of the incoming protons; furthermore, there is a charge exchange contr‘ibutmn.

2ad LYY
In summary, we get instead of (111.5.10,12,14) (-no-w-' w = 2 5;’ /TM G-d 46, )

-
GZP = f%— [2T+1) B(E) =

- _
by ¥ P (23+ 1) Ble) » (II1.5.16)

b, = b";:”-; E;;‘— Dw'- bjal:,j‘ =Z-T—;-:'-’ (z23+1) B(g) x(f—-x.) : r
Ideally, the study of a resonance would thus reguire; to study the energy position Eo
of the resonance from the various cross—sections and to measure G;’!’_ P 5“‘4 , C'_L.. at
E = Eo to determine J and X.
In practice, if the resonance is not very narrow, the location of ED is already difficult
because of the interference between the resonance and the continuum or background. The latter
is particularly relevant in the case of p p where a large background is present (the .resonance

effect is never larger than some 10 mb out of a 0 rot of 2 100 mb.
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Taking the data on cross-sections at face values, vevidence" was given in the past for

the existence of several resonances.

Resonance p 'E ngw L ol nyw
Mass (MeV) 1936 X 1 2190 * 10 2350 ¥ 15
width (Mev) 448 20 + 90 20 + 160
Gy () 10.6 = 2.4 2+ 4 w2
Table III.2
Isospin 1 (0) 1 Qorl AR s
Gof (mb) 7.0 ¥ 1.4 »2.12 > 2.18
+
mh £ 0.3-0.3 0.2 0.2
G&-efx (mb) < <

and, possibly, of more complicated structures both in the iscspin I=0 and I=1 channels.
Assuming each contribution seen in 61_'.4_ and E';_’ to come from a single resonance,

one would come to the conclusion for X and J:

J X
[~ 1}
S 0 ! Table I1J1.3
"WE 1 0.74
"y 2 .85

challeuged

These conclusions have, however beei¥by several subsequent experiments. In particular,
for the "S" resonance, the charge exchange cross-section is much too small as compared with
5_;” while they should be the same if the resonance has a definite isospin value (remember
Tt = (T T, T o= (To-TdR )

This diff‘icul'ty has been investigated and at least three different {or concomitant} ex-
planations can be offered:
i} The bumps seemin 61,,{- (F’:) and 6':! ({:FP) do not contain a single resonance,
but two resonances with the same J but opposite I (O+ and 1) are present almost degenerate
in mass. In this case their effect would add up in T&? (pF -.=..l2-.[7'¢ +T,_) while they would
-t

cancel i =1 In thi , the fit gives PC_
n -]:2 = (7: _'];) n this case e giv T o

.o
This solution will be tested (when data will become available) by looking at PF""““'.
If in fact two resonances are present oné should see their effect in both p 5 —r even u"'s
and p E —_— odd !r's whereas their effect would show up in only one class if the reso-
nance is in a definite state of IG.
1i) A second, ;nore ad hoc explanation assumes the resonance to interfere in a different way with
the large background present in elastic and charge exchange amplitudes. In this case, one geis
also a larger J value and one could have either J =1, ¥ = 0.37 or J = 2, X 22 0.22.

iii) A third, more elegant explanation, could come from the assumption that the "3" resonance 1s
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a diguark-antidiquark stata. In this case, the resonance instead of being in a pure isospin sta-
te would become a pure 2 quark - 2 antiquark system that could consist of either {u u.)(E E)
.or (cld.)(JJ) * In the former case, the S resonance could couple strongly only to the

P F g(u_u,d_)(rt. EI) channel but not to the - 41 2= (l.(,cla'.)(ﬁ: II)

(see § III.6}, ) :

IT1.5.2b Angular distributions

A classical way of hunting for resonances starting from angular distributions is to ex-

pand them in Legendre polynomials

;—’E— = 7 A, (s) E (M‘B') (I11.5.17)
L 28

and to look for rapid energy variations of F}M (s)_ The addition theorem of Legendre polyno-

mial tells us that F)-M (S) is a combination of partial waves up to n = 2J. Thus, a resonant

wave of angular momentum J affects all coefficients F}M (-5) up to n = 2J. This method

may be useful, in practice, only for low angular momentum rescnances and can easily be applied

to data coming from elastic scattering, polarization and annihilation into twe mesons PF”M'MZ‘

Another indirect way of looking for resonant effects iz to analyze the energy variation
of the diffraction slope b (S) in the distribution expﬂa(s) t’] + It is known that at
intermediate energies (plab Al + 2 Ge'u'/c)/ b(s) oscillates around resonances and these oseil
lations are conspicuous for relatively large J (Jar2, 3) and fairly large elasticities.

A more largely used approach is to look at the backward direction where the diffractive
background should largely cancel. The difficulty is how to properly extrapolate the resonance
tail. In the pa: ticular case of p 5 elastic scattering, the overall difficulty of all partial
wave analyses resides in the large complexity of independent smplitudes we have to deal with.

We just rgcall that a total of 10 independent émplitudes are present in the combination of spin
(5 amnlitudes) - isospin space (2 components).

To add to these practical difficulties, in the charge exchange channel we are confronted with
the further difficulty that most p 5 resonances seem to be weakly coupled to the p 1:_> -_— n n
process.

More promizing seems to be the analysis of the yield in the p [—.) — M1M2 annihilations
channel . The reaéon for this it at least three-fold. First of all, like in any inelastic channel,
there is no diffractive contribution present. Secondly, if one looks at p E —» 2T being
the two final pions spinless partic‘les, only two (complex) spin amplitudes are present for each
of the two isespin amplitudes. Thirdly, as we have seen'previously, very often strict selection
rules allow oniy definite states of S-channel quantum numbers to be present.

The shortcoming of this process is, of course, the smallness of the relative cross-section

in this channel so that better data are heeded and should be provided by the new low energy p p

facilities.
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Among the reactions that have been investigated we notice that
(a)
(131.5.18)

S
— wemre (b))

n a state of positive G

have the gquantum numbers discussed previously (§ I.1ia}, proceed both i
0 or 1 with the decomposition (II.2.31):

parity and can contribute to either igogpin I =
(I1.5.19)

+o=y = T H =) _ ) !
THF2wrr)= T+ T = T, + =T

{111.5.20)

' — o (+) )
( - ° 1} ‘) - = e—

I {pp >0 ] T e

N —= T~ the two isospin amplitudes do not inter-

Furthermore, in the case N N
fere in the integrated cross-section since, we recall {1.11.8,9) only even (odd) waves contri-

bute to I=0 (I=1).

_'_5-4

We define
oz (ITF=rrw)) dR = 360+ 4
(I1I1.5.21)
6o = [ ITF > mdfdR s &5
(111.5.22)

i

where
= Jim oz da
5 ) 7:1"1 o J2
hi-

Fi-—
Thus, at least in principle, a clean separation of the two iLsospin channels in two pion anni
lation is possible
G- = £
[ +] Y.
: (111.5.23)
o = 4 (63— =6%)
and this has led to claiming evidence for the following situation:
PC G .
J I Mass (MeV) Width (MeV) Reaction
—_ +* '—‘__> F —
3 1 2150 200 Ep W
. - 4
++ + — T™m TABLE III.
a 0 2310 210 | BF o e e A
—— + i — + -
5 1 2480 280 pp = W W
F " .
T resonance reported in

where, perhaps, the first resonance could be identified with the
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Table III.3 while the second two could be the two isospin states of the "U" resonances of Table
I11.3. Notice, however, that none of the resonances in Table II1I.4 is narrow contrary to the in-
dications of Table I1I.3. Furthermore, the effects under discussion are Jjust of the order of few
nanobarns.
Another reaction were some data exist is
F F -> '79 T

whose IG guantum numbers are 1 (since 6-,7 = 4 )} and where some evidence has been given
o

Mass (Mv)

Zieo — Z4p0

f
of a resonance J_‘Pc_ IIG-

o | =

— G +
Other channels which can be studied are PP -y '7°1,° (whose I = 0 ) which should

8] - — LY )
be complementary to the W T channel and quasi two-body reactions such as rp 3 g

(ICG - 0++}'. FF e 84 {ICG . 1+—)' 30 5_0 (ICG _ 1—+)’ w {o (ICG = 0——) cover—

CG - +
ing all interesting I  combinations (IG of ?, uu, -f- being 1+,l o, 0).

III.5.2¢c Off-shell backward production

In a reaction like

T—P - ,j-nsf'

the fast proton travels in the direction of the initial n"- (in the Lab., Sys.) and one looks

Ti'-' F F (I111.5.25)

at the mass spectrum of the p E state. In the C.M. the picture would look

T . $ast
- =
L b
P__/
P
and would be interpreted in terms of virtual n exchange
w Psact
—_— . —— ——

>
™.
/"-"?F
P Y
P

which should dominate the backward production.
The reaction (II1.5.24) with a fast proton and n_.... forward forming as A\ (1326) or
*
N (1520) has been measured at 9 et 12 GeV/c finding three narrow peaks at 1930 Mev { 7= 10

+20
MeV) {the S resonance?), at 2020 Mev ( [¥ 22 12 + 24 MeV) and at 2204 Mev ( Fac 16 .., ). The
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presence of these narrow peaks has to be contrasted with the absence of narrow signals in the
K 1~ channel and with their absence in the reaction W ¥ P .

LEAR should clarify_all this.

I1I11.6 Conclusions

As we have seen, the rescnance situation is the B B system is far from gettled. The past
years have witnessed a tremendously controversial series of gtatements on the so called baryo-
nium states; a number of candidates have been reported and successively, their existence hag
invariably been demied. The first preliminary measurements from LEAR are, at the time of writ-

ing, still controversial. Undoubtedly, however, the situation will be soon clarified by the ex-

perimental groups working on the LEAR program.
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PART IV

THEORETICAL TOOLS IN LOW ENERGY PHENOMENOLOGY

The introduction of subhadronic structures in the realm of theoretical hadronic interac-
tions is in itself a very large subject2 and is covered in another course at this school for
what concerns the implications on nuclear physics. (see G. Ripka, these proceedings).

Thus, we shall not enter inte this field beyond the very few ideas put forward in § IV.2.
Also the more convéntional approach in terms of meson and baryon degrees of freedom is covered
in detail in yet another course at this school (see B. Desplanques, these proceedings). For this
reason, we shall confine ourselves here to a very gquick summary of the more conventional theore-
tical aspects of low energy N N phenomenology and we refer the interested reader to the specia-~

4
lized literature for a more comprehensive discussion on the subject .

IV.1 The potential approach to scattering data.

The traditional approach to low energy hadronic interactions views them as the result of
the exchange of mesons and baryomus so long, at least, as one is concerned with the langrange
(LR) and medium-range (MR) parts of the intereaction responsible of those effects which involve
large separations which are, presumably, the largest bulk of conventional low energy nuclear and
particle physics. Those aspects which are expected to be dominated by the short-range (SR) part
of the interaction where the quark and gluon cohtribution is fundamental will not be discussed
here (other than for the very sketchy diécussion of Sec. IV.Z2),

The conventional approach to the LR and MR parts of the interaction assumes dominance of
one -, two — and three - pion exchanges by which one constructs an effective potential which 1%

© checked, usually, by comparing the calculated peripheral partial waves (J » 2) with the ones
measured experimentally. The SR part of the interaction in this approach {i.e. distances smaller
than . 0.8 fm) is described phenomenclogically &mping our ignorance in a few parameters to be
adjusted from very low energy data. The above prescription has provided us with a quite satisfac-

tory overall account of low energy N N scattering.

IV,1.1 The N N interaction: collision data.

As already mentioned (§ II.1), low energy N N differs from low energy N N mostly because
of the presence of annihilation. channels which make the phase shifts complex. We can then write,
for the N N potential

VNF = {/L}vﬁ ~t \)VM;- {rv.1.1)
where UN R and WN § are real and, below production threshold WN 5 describes the annihilation.

As for the real part UN N this ecan be taken, most simply, to be given by the coﬁtribu—
tion to the crossed N N channel along the lines discussed in § 1I.1 {G-parity rule} so that the

LR. and MR contributions can be derived from N N scattering. The SR contribution is still trested

T A
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tential produces, of course, a richer spectrum of resonances.

expected to give the leading contribution (§ IIT.3). Symbolically, we have

I o L P3 » L _
w_ = + - -+ -
N = , ‘ l _i ) - ‘ l __“ T
e Py

We write UN 7 in the form of a dispersion relation

5 mc”:! S (s, t")

W (s, 8) =
o ¢ bk El-¢

spectral functions g: are presumably strongly dependent on 5, wN

tic reasons, W = 1is expected to be quite short range.

ref, 1).

ve our theoretical understanding ef low energy N N phenomenology.

phenomenologically. The main property which distinguishes the LR+MR parts is that this is strong
- 4

ly attractive in the N N as compared with the N N case. This is attributed to the fact that the

three—pion exchange simulated by w-exchange (which was repulsive in the N N case) becomes attrac

tive in the N N case whereas the two-pion contribution remains attractive. A more attractive po--

The widths of these resonances will be determined by the imaginary part WN i which are

given, from unitarity, by intermediate physical states among which the 4, S — pion states are

(IV.1.2)

where i denotes the intermediate states, s and t have been defined previously (I1.1.2}. As the

i is expected to be corre-

spondingly non-local. Moreover, as the threshold in {IV.1.2) is (?""AL)Z for purely kinema-

We shall not enter in the game of describing the specific forms which have actually been
used to fit the data and we refer to ref. 4 for details and literature on the subject. Suffices
to say that adjusting the various parameters intreduced, one fits a total of -~ 1000 p 5 data
points in the range 20f', T ﬁ A70 MeV on i) total cross sections, ii) differential elastic
cross section, 1ii) integrated charge exchange (CE) cross section, iv) differential charge ex-—
change cross section, v} elastic polarization. The quality of the fits obtained is illustrated

in fig. IV.1-5 (for the various data and theoretical models referred to in these figures, see

Again, the new data expected from LEAR in the coming few years will help preatly to impro-
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do/da (mb/sr )
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IV.2 The case of baryonium.

As we have seen (§ 1II1.5), the resonance situation in the baryon-antibaryon system is
highly controversial on the experimental side. It is also quite confused on the theoretical side
vhere ideas range from potential model approaches to diquark-antidiquark pictures to the string
and topological languagg7 but a true predictive theory is (as so often is the case} actually mis
sing.

We will not enter into any of the technicalities of the problem but let us recall very
briefly what makes the baryonium such an interesting issue in low energy N N interaction.

To introduce the notion of barycnium, let us use the conventional diagrammatic string
technigue whereby a baryon (an antibaryon) is a celer singlet "made" of three quarks (anti-
quarks) connected by a junction J {an antijunction J) by which, loosely speaking, we mean the

basycally unknown mechanism of what in a QCD language would be called "gluon binding"

—

9 q [ 5
Y \Tg

7 9
23 [

Conventionally, we will denote the effect of a junction by a dotted line so that a

baryon's flow in the usual quark diagrams will be represented as

v ¥y

e —y ————

where the straight lines represent the quark's flow.
A meson i.e. a celer singlet of a quark-antiquark system will be symbolized by a pair of

quark-antiquark lines

A

whith no junctions.

The process of B B scattering will then be represented as

> > >
B ——a3——F B

(s) —>
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where the t—channel content is meson exchange while the g-channel "force" is a qqaa system or

a diquark-antidiquark (qq}(aa) state if one works within a quark-diquark approach.

From the string model point ef view, one can visualize things as due to the merging of

(- X

e is due to the exchange of an ordinary meson whereas the s-channel

vertical lines

whereby the t-channel forc
contribution is a (qqaa) *meson’ (Md’ gometimes in the literature} which is not an ordinary me-

son (qa) but can be seen as an wunusual meson” made of 2a, 26 in a color singlet.
pnother possible Md-exchange contribution to B B scattering obtains if we now exchange

qq aa in the t-charmel rather than in the s—channel as follows

— o —— . — - —

.’_
P S
e =} ‘
4
[
ettt}
— 4= —= — . 4 —r

More complicated [MG) exchanges are also possible, i.e.

-—..—,—_—-.——_,—_—_——._’—._—-

e o

ey

[ s |

._.._4.._...__..._4.-_..___4»,.._.._

These new mesons are color singlets which do not decay into ordinary mesons pecause this

would leave unsaturated the J J lines which are typical of baryons and not of mesons. They are

’ 7
usually referred as "haryonium” in the literature .

as so often is the case with strong 1nteract10ns, the main problem with the theoretical

sige of barycnium is how to translate the above ideas into actual predictions based on some

dynamical relativistic scheme.
As a possible jndication we report the first few states predicted by one such model

{unpubl ished)
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(w w), (R&E), = 1763 Mev
(ww),, (&&),, = 2088 MeV
(uw)y, (& Wi = 2321 MeV
u[u. (& m)“]’.s = 1769 Mev

wlu (8 ©)as],, = 2109 Mev Table 1V.1
1 [u.. (& .,—‘_)1’ ]” = 2348 MeV
w [“_ (& &), ]“ = 2101 MeV
u[.,, (= .,1,)” ]zs = 2438 MeV
= 2398 MeV

“ ["' (z "—‘-)35],_5

where the notation is rather self-explanatory.

No parameters are used in deriving the numbers in Table IV.1 and the technique is an ex-
tension of the one used previously to give a very good account of the full hadron (both meson
as well as baryon) spectroscopya.

Agide from the remarkable mass staﬁility in the above predictions, note that, aside from
the much controversial S-resonance (at 1936 MeV) quoted previcusly (§ III.5.1.b see also Table
II), Table IV.1 predicts resonances not far from those for which "evidence" was given in the pre
vious sections,

As already mentioned, however, the values quoted in Table IV.1 are only indicative and

a much more careful analysis along the line of ref. 8 must be performed in one wants to really

make a prediction concerning the spectrum of baryonium.

IV.3 Conclusions,

The presentation of the theoretical tools used in N B phenomenoclogy has been confined to
the bare minimum sufficient to give the interested reader enough motivation to pursue further
this subject,

I strongly believe that low energy (as well as high energy) N N physics will be a main
field of investigation of the present decade, both from the experimental and from the theoreti-
tal point of view. From both points of view this is a very promising and challenging field in-

deed on whose large potentiality we have just tried to draw the attention of the young physi-

cists.,
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