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ALGEBRAIC APPROACHES TO NUCLEAR STRUCTURE

K.Heyde
Institute for Theoretical Physics,
Proeftuinstraat, 86 - B 9000 Gent {Belgium)

In the present lecture notes, I have tried +to present a
short overview of how recent developments in nuclear structure
calculations, concentrating mainly on low-lying collective exci-
tations, can be understocod in the light of <the nuclear shell-
model. The particular approach where the independent-particle
motion in an average nuclear potential and the residual interac-
tions amongst nucleons are assumed to form the basic ingredients
for studying nuclear collective motion 1is of course a personal
view. Alsc, many aspects of recent developments in nuclear
structure studies starting from self-consistent methecds (eg using
Skyrme type forces), the interesting studies on nuclear deforma-
tion within the Nilsson model (Crancked shell-model, etc.), the
observation in a systematic way of coexistence of different types
of excitations near closed shells (0Y levels in Pb, Sn region)
nor the extended shell-model calculations (MONSTER, ...) could be
discussed in this lectures although sometimes very exciting
results have been cbtained.
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1.1. Introduction

When studying the atomic nucleus, in the early stages,
use has been made of nuclear models to approximate the nuclear

many-body problem that can be described by a Hamiltonian of the
form

= + ';- Vi'j + L3R ) ? (1-1)

for the A-body system. Starting from the nuclear shell-model as
outlined by M.G.Hayerl) and H.Jensenz), which emphasises the
independent particle motion in an average potential U(r), the
structure of many properties (excitation energies,
electreomagnetic proberties, ++.) is largely understood. 1In the
average potential, the bne-body Schrodinger equation can be

solved for the single-particle wave functions and single-particle
energies as

ho(1)P,(xy) = £,0,(Ty) (1.2)

and the original Hamiltonian can be rewritten as

H=H + Hyag . (1.3)

with

B =3
@ i=1

hy(i) (1.4)
where H, describes the independent-particle model and Hyag
residual interactions that have to be treated in the basis
spanned by the independent-particle wave functions. Even in its
simplest form, the independent-particle model describes the
ground-state spin of most odd-A nuclei. However, for nuclei with
many nucleons outside of the closed shells, determined via the
shell-model itself, the residual interactions play a major role
in determining the precise nuclear structure. Here, the

the
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independent-particle shell-model wave functions 'a(;i) are used
to construct a basis for expressing the total nuclear wave
function as '

v=Fav o, (1.5)

where ¥; is a short-hand notation for a particular wave function
conform to a given nucleus A(Z,N) i.e.

v = YL (3502 )M (1.6)

i~ 1 2 e ' .
a7, azxda 3r12

where n; nucleons are moving in the single-particle orbital

characterized by the gquantum number jj(31 = ni,li,ji). Here, J;

is the angular momentum, ®; denotes extra quantum numbers needed

to specify states uniquely and J is the total angular momentum

(f n; = n) where n is the rumber of valence nucleons outside of

the closed shells).

The eigenvalue equation, using the Hamiltonian of eq. (1.3), now

leads to a matrix eigenvalue equation

H¥ = Ev , (1.7)

or substituting the expression (1.5}, one gets

n

1,5-1 21p* Mix 2kp = Fp Sppr - (1-8)
where

Hyp = <¥(IHy + Hpoogl%e> . (1.9)

In the next paragrahs, I will shortly discuss, as a reminder,
some properties of the two-particle system relating to the
pairing properties of the nuclear interaction and sketch the
extension to n particles in many shells.
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1.2. The nuclear shell-model

1.2.1. Two~particle systen

Using the notation j,(= n,,1,,J,), two-particle angular
momentum and antisymmetrized wave functions can be constructed

using the wave functions of the independent-particle shell-model
as

- 1 . . -
¥ JM)y = — Z <j.m m , JM>
(Jq35,dM) V2 mom, JqmqJamy |Jq3d5

(¥ (1)e, (2) - », (2) ¢, (1)]

P (1.10)
Jimy Jomy Jgm Jomy

or

¥(32,0M) = Z <im jm'|Jm>wjm(1) P (B (1.11)

where in (1.10) Ijl-j2| = J s j3+j, and in (1.11) J

=0,2,4, ...,
2j-1.

When considering non-identical nucleons, the isospin
quantum numbel has also to be taken into account. When calcula-
ting the nuclear twe-particle interaction matrix elements, {(using
Dirac bra-ket notation) one gets the binding energy that are

o
I

fig.1.1.

The experimental particle-
particle matrix elements for

three different shell-model
orbitals

EXPERIMENTAL P-P MATRIX ELEMENT (MeV) —==
1
|
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AEy = <ji35,dMIHpegliqiy, aM>
or ’ (1.12)
AE; = <j2,JM|H ,IM>

2
reslj

depicted in fig.1.1 for some typical j-values. All two-particle
energy spectra for nuclei having just two-particles (or holes)
ocutside closed shells are of this form eg 180, 420a, 134Te,
206pp, ... and indicate the pairing aspect of the residual
two-body interaction. Most effective interactions (that are
constructed explicitely for describing energy spectra in a
restricted model space) have this pairing property3'4). Also,
more realistic interactions, constructed for describing free
nucleon-nucleon scattering outside the nucleus, are shown to
exhibit this pairing property when putting nucleons in the
nuclear medium in a given model spaces). In the remaining part
of this lecture, I will simplify the residual interaction to the
pairing component only and discuss some consequences for the

energy spectra when considering many more valence nucleons.

1.2.2. Particles in deégenerate shells

Starting from the above pairing aspects, it is tempting
to use an interaction that has this pairing property of acting
only in J7 = 0¥ states. Knowing that a given two-body inter-
action, given in coordinate space can be written in a second
quantized form

1 +_+ '
V12 - I a%?d <aﬁ|V|76>aaaﬁa6a7 ' (1.13)
we can define an interaction Hamiltonian, immediately in second
quantized form as?:6)

= - T at . _732j+m+m!
H=-¢ m,§'>o 3im3j-n2j-m*3jm* (-1) J . (1.14)
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In the two-particle subspace (m-states), H has the matrix

respresentation
11i::

H=-¢6 | .00~ . (1.15)

It can be shown that the state
1
1 - 1 j+m_+ 4+
— 1 = == 3 -1 asz as 0> 1l.1s
1% . Tg m>0 -1 jm?j-m | ( )

= (j)23=0 M=0>

is the lowest energy eigenstate of (1.15). Here }0> denotes the
closed-shell wave function and Q is the shell degeneracy or Q = j
+ 1/2. The eigenznergy of the state (1.16) is E, = - G.Q.

To solve now for the n-particle system the pairing
interaction problem, we define the pair creation operator

st = 1 g (-1)3+m ot at

37 ¥ mo jmdj-m ¢ (1.17)

which creates the two-particle J" = 0% state. Using this operator

Sg, the Hamiltonian (1.14) can be rewritten as

- - ey ]
H=-¢0s)s;. (1.18)

The commutation relations are

[S5.87) = 1 - . (1.19)

ta )= ¥}

where n is the number operator

n = t.a. = * oa. + . . .
n = Ema Jm@ym m§o (ajmajm + a]_ma]_m) (1.20)




0.0
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3-10- fig.1.2.
5
&
i . The spectrum for a pairing
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4 and 6 as a function of n. The
pairing strength is G=0.25 MeV.
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5T ¢ i The experimental spectra for the
zag 4 N=50 single-closed shell nuclei
L3 o .
% ‘ 2 e H— 90Zr,92Mo,94Ru,96Pd. The senio-
=] ¢ Iy .
32 ¢~ 4 rity v=2 states are clearly
g | o
o : ; : observed (199/2)0.5-
., l
QoL o o o 18 .
-’ " * * " . ]
L0272 2 oy oy 7 opp s -1 L - 2 go P a2 meg AtAdL
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fig.1l.4. Systematics of the first 2% level in the even-even Sn
nuclei (102 = A < 130).
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A class of eigenstates of H (eq. 1.14) are now given by

[H,sgj =-~G sg(n-ﬁy = - G(n—ﬁ+2)s§ . (1.21)

Starting from zero valence particles, one gets

H s§xo> =-GQ g{:o> ,

H(s§)210> = - 26 (0-1)(35)2|0> ,

. . (1.22)

H (sg)“/2|o> - - % n(20-n+z)(s§)n/2|o> .

Here all particles are coupled pairwise to J" = o'. They are

described as seniority v = 0 states, where the seniority quantum
number v denotes number of unpaired particles. In shorthand we
can write

In,v=0> = (sg)n/2|o> , (1.23)

and

9

—

g
N

- % n(20-n+2) . (1.24)

One can generalize this procedure in adding to the S% operator,

the 0-1 operators B} which create pairs coupled to angular
momentum J(J # 0} defined as

+ + _+

= — j-m . ‘- 4 ] -
BJ mEO( 1) <jmj-m|J0O> ajma]_m ' (1.25)
and obey the relation
[(H,BI110> =0 . (1.26)

o




So we can construct a set of seniority v = 2 states

H BY|0> = HIn=2,v=2 J> = 0

’

H st BYj0o> = HI4,2,0> = - G(a-2)(3,2,0> ,
.. . . (1.27)
o,
+.2 o+ el
H(8})  B¥lo> = HIn,2,7> = - 4 (=2)(20-n)In,2,3> .

For v > 2 we cannot continue in this way since an overcomplete
set of states B}B}|o>, ... arises. 8till we can calculate the
energy since a state with maximum seniority v = n has energy zero
or Hin,v = n > = 0. We can now calculate succesively

Hin,n-2> = H(8}) In-2,n-2> = - G¢(0-n+2) |n,n-2>
Hin,n-4> = H(S})2|n-4,n-4> = - G(20-2n+6) |n,n-4> .
- - - . 4
(B=¥)
Hin,v> = H(S}) 2 |v,v> = - %—(n-v)(zn—n—v+2)|n,v> .

(1.28)

giving the general expression for the spectrum

E,(n) - Eg(n) = % v(20-v+2) . (1.29)

(see fig.1.2 and 1.3 for some illustrations).

1.2.3. Particles in non-degenerate shells

1f we now have two or n particles in non-degenerate
shells, much of the simplicity of the above discussion is lost
but the major ingredients of classification of energy spectra in
families of different senicrity v=0, v=2, v =4, ...,
remains and the above approximation of treating the many body
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system of n identical nucleons outside closed shells using a
product wave function of pairs is a good approximation4'6’. Many
calculations using this pair approximation and different types of
residual interactions have been carried out under the name of BCS
{Bardeen-Cooper-Schrieffer theory), broken-pair approximation,
generalized seniority, ({see ref.4 for a more detailed discussion
and references to the literature) and all result in a good
description of single-closed shell nuclei (see fig.1.4 for an
example) .

When however, both proton and neutron valence numbers are
present this seniority classification breaks down rapidly and
completely different types of enerqgy spectra, reminiscent of
coherent collective motion start to appear7). In the second
lecture we will come back to this point and try toc develop a
microscopic basis for describing nuclear collective motion. Now,
we mention a number of striking features relating to the presence
of both active protons and neutrons.

1.3. Collective modes of the nucleus

Parallel to the study of the nuclear shell-model to a
high degree of sophistication, the study of nuclear collective
motion as a description of a ligquid drop has been developed by
A.Bohr, B.Mcttelson7'9), S.G.Nilsson 19) anda many others in
particular in the Copenhagen schoo18:92) .

Here, one starts of with a nuclear shape, for which the
radius vector R is written as

R = Ry(1 + iu, TG Yaulf,9)), (1.30)

where A describes the multipelarity of the shape (A = 2 :
quadrupole, A = 3 : octupole, ... see fig.1.5). The dynamics for
such an object in the small amplitude limit of oscillations
around a spherical equilibrium shape is described starting form
the Hamiltonian (for quadrupole vibrations)

_1 - 2 .C 2
H=1B=2 |a,12+ECz a . (1.31)
2 p M 2#""'
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fig.1.5. fig.1.6.

Nuclear shapes with quadrupole The quadrupole phonon

(A=2) ,octupole (A=3) and hexa- spectrum for n = 4. The

decapole (A=4) deformations. angular momenta are indi-
cated on the right hand
side.

Defining the momentum m, = B a#* or - iﬁ(a/aaﬂ), one can quantize
the Hamiltonian in eq (1.31). It is convenient to define creation

and annihilation operators for oscillator quanta of a given
multipolarity wvia the relation

b, = - =L a, + (-1)* a, 5 (3 = {n?/a80) . (1.32)
—i

Using these boson operators, satisfying boson commutation
relations

1
[b#rb:;,] = 6#'#! (1.33)

the Hamiltonian takes the form

H= tw = (bfp, + 1 1.34)
z (byby 2). (

with frequency @ = VC/B. The energy spectrum consists of
equidistant sets of levels with angular momenta determined by the
multipolarity A=2 (see fig. 1.6). In more realistic cases, the
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degeneracies are broken through anharmonicities in the
vibrational Hamiltonian and many such posibilities have been
studied over the yearsa).

Whenever the nucleus is described by a non-spherical
shape, rotations can result besides vibrational motion. Here, it
is convenient to transform from the coordinates a, to three Euler
angles and two intrinsic variables (for A = 2) using

ay = T DZ,(Day . (1.35)
With Dﬁv the Wigner D or rotation matrix. In the new system we

reguire

a;] = aly =0 , aé = aly , (1.36)

if the new "intrinsic" axis are to be the principal axis of the
nuclear shape. So, we can parametrize

AcosY

1.37
siny ( )

|

Now, since the original potential energy was written in terms of
rotationally invariant expressions of the coordinates, the
following two forms will frequently occur i.e.

(a x a)éo) = ?% e

(a x a x a)so) = - ‘Ei-ﬁ3cos37

Here, 7 measures the departure from axial symmetry with »r = 0°
giving a prolate, 7 = 60° an coblate shape and thereby all shapes
can be obtained within the sector (0°,60°). Also, the potential
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{a} VIBRATOR
ViB.yt ~ 8° .
fig.1.7.

Different shapes V(#,7) in the 8,

{b} FROLATE ROTOR (7=0°~r=60") sector corresponding to
f:ﬁr a spherical vibrator, a prolate rotor, a
Y-soft vibrator and a triaxial rotor.
{c) v-50FT
VIBRATOR \
AR

{d) TRIAXIAL ROTOR

B=8,
y # 0%, 60*

energy V(#,7) will determine the nuclear dynamics in a major way
(fig.1.7). The energy for rigid, rotation for an axially

symmetric nucleus around an axis perpendicular to the symmetry
axis then becomes

g, = B J(J+1) (1.39)
J 2 ’ ’

with as a wave function

_ 2J+1
YoM = Ny Dio(Q) . (1.40)
m

In the more general case, when a general (#,7) shape exists,
vibrations in the # and 7 direction can be formed and classified
according to the number of quanta for each type (g-vibrations :
Ng, Y-vibrations : ny). This more general wave function becomes

Vo = |2 (o) +(-1)T K of_ ()¢, (A en (1)
16m2 g

(1.41)




