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METAL CLUSTERS: THEORETICAL APPROACHES

M. Brack

Institut fur Theoretische Physik, Universitat, D-8400 Regensburg, W-Germany

Résumé

Nous présentons une petite revue des méthodes théoriques utilisées pour la de-
scription des agrégats métalliques. En particulier, nous discutons du modéle auto-
consistant du "jellium” dans le cadre de la théorie des fonctionnelles de densité et
de quelques résultats récents concernant la structure des "super-couches” dans les

agrégats de sodium.

Abstract

We present a brief review of the theoretical concepts used for the description of
metal clusters. In particular, we discuss the selfconsistent jellium model within the
framework of density functional theory and some recent results on the super-shell

structure in Na clusters.

1. INTRODUCTION

It cannot be the aim of these lectures to give a detailed account of all theoretical
aspects of metallic clusters. This would be a truly interdisciplinary task, involving
quantum chemistry, molecular dynamics, atomic, molecular and solid state physics,
and many aspects of nuclear physics as well. For the more phenomenological models
used in cluster physics, we refer to the review article by de Heer et al. (1987b).
A more detailed description of the selfconsistent theories discussed below, as well
as a review of experimental results and their comparison with theory, will be found
in a forthcoming article by de Heer and Brack (1992). The figures shown below as
illustrations were taken from work in which the author was personally involved; they
were selected purely for reasons of convenience.

We shall try, in Sec. 2, to give an overview of some of the facettes of the quantum

many body problem given to us in the form of metal clusters, by going through a
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series of successive approximations and simplifications used in various approaches,
starting from purely microscopic quantal ’ab initio’ descriptions and ending up with
semiclassical mean field theory.

In the remaining part of these lectures we shall concentrate on the selfconsistent
mean field approach. The most poweful tool here is the density functional theory
(DFT) which is excessively used in cluster physics; we shall therefore devote Sec. 3
to a short presentation of the corresponding formalism.

Finally, in Sec. 4, we discuss the so-called selfconsistent jellium model for the
description of metal clusters and present some selected results. Although this model
greatly simplifies the physical situation by neglecting totally the geometric structure
of the ions which make up the body of the clusters, it retains the quantal description
of the valence electrons responsible for the shell structure, which is observed in many

experiments and which bears so much resemblance to nuclear physics.

2. FROM THE QUANTAL MANY-BODY PROBLEM TO SEMI-
CLASSICAL JELLIUM DROPS: A hierarchy of approximations
2.1) The quantal many body problem

Let us start by writing down the exact Hamiltonian for a neutral cluster consisting

of N nuclet with Z electrons each:

R N P2 Z 2 Ze? 1 N (Ze)z Y4 e? }
Pa €
H: o _—t —_ . S A - ,
Z{zM * Z (Qm |ra, _Ral) * 22 (lRa — Ryl * ig=1 [T —rﬁ,l

a=1 =1 fA=1
(1)

where M, P, R, are the mass, momenta and coordinates, respectively, of the nuclei,

and m, p,,, T, those of the electrons in the a-th nucleus. (Self interactions must be
left out of the double sums.) This constitutes a system of N(Z + 1) charged particles
interacting via the Coulomb forces. Although the Hamiltonian (1) is exactly known,
it is impossible to solve the corresponding Schrédinger equation.

Luckily, the different scales of nuclear and electronic masses allow a rather sharp
separation of their treatment: the motion of the nuclei may be treated classically
(see Sec. 2.3) or neglected altogether (see Sec. 2.2), whereas the electrons must be
treated quantum-mechanically since they lead to the all-dominant shell effects.

In simple metals such as alkalis and to some extent also in Ag, Al, etc., the

delocalisation of the valence electrons allows a further separation: to treat only the
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w valence electrons of each atom quantum-mechanically and to include the ’core
electrons’ with the nuclei into a compact ion of charge +we. The assumption: "atom
= ion + w valence electrons” is quite good for simple metals, esp. alkalis, and
provides the basis for the largest part of metal cluster calculations. The Hamiltonian
then is reduced to that of N interacting ions (Hy) and wN interacting electrons in

an external field (f}eg):

H=Hy+H., (2)
with
N 2 N 2
N P 1 (we)
Ay=5{Fe L5 (el 1 )
a=1 {2M 2 ﬁ(:Aa:)ﬂ R — Ry| }
wiN 2 whN 2
. P: 1 €
H, = =+ Vi(r:) + 5 (> 4
i=1 {2m (ki) 2 j(;%:l |ri — l'jl} )
where the 1onic potential
Vi) = -3 (5)
Hr) = — —_— )
a=1 |r — Rﬁl

couples the electronic and ionic degrees of freedom. The effect of the core electrons
is usually taken into account by replacing the pure Coulomb potential in (5) by a
suitable pseudopotential, as is has been done successfully in solid state theory (see,

e.g., Ashcroft and Mermin, 1976):
N
Vi(r) = 3 ViulJr - Ral). (6)
a=1

Even if the nuclear part of His ignored or treated by classical equations of motion
(Sect. 2.3), the electron-electron interactions in (1) or (4) constitute an unsolvable
many body problem. The most common solution for dealing with it 1s the mean
field approximation: The wavefunctions of the electrons are taken to be those of
non-interacting particles, i.e. Slater determinants. Determining them by an energy
variation principle leads to the familiar Hartree-Fock (HF) approximation (see the lec-
tures of J.-F. Berger). Hereby the average part of the electronic repulsion is included
in a mean field or potential which, due to the finite range of the Coulomb interaction,
is nonlocal. Extensions of the HF approximation are obtained by inclusion of {(many)

particle - (many) hole excitations in perturbation theory (’configuration mixing’ and

interaction).
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An alternative version of the mean field approach is obtained from density func-
tional theory in which correlations — also exchange contributions going beyond the
HF approximation — can be included approximately in a local mean field (see Sec. 3).
Both versions of mean field theory have been widely used for many-fermion systems
in all branches of physics.

The mean-field concept explains most of the electronic shell effects and many
other properties of metallic clusters, at least semi-quantitatively, and will be futher
sketched in Secs. 2.4 - 2.5 below.

2.2) ’Ab initio’ quantum chemistry

The ambitious goal of the quantum chemical ’ab initio’ approach is to treat all
the electronic degrees of freedom in (1) fully quantum-mechanically. This can only be
done at the cost of 'freezing’ the positions R, of all nuclei. The Born-Oppenheimer
approximation then is used to vary adiabatically the positions of the nuclei, letting
the electrons adjust their motion at any time to the momentaneous external field
of the nuclei. Since the quantal many-electron problem is still too complicated, one
starts from the Hartree-Fock approximation for the electronic wavefunctions and then
treats their correlations perturbatively in a hierarchy of n-particle-n-hole configura-
tion interactions. This approach is, for practical reasons, limited to small clusters (N
up to about 20) and to a strict T=0 treatment; no zero point motion of the nuclei is

included. (See a recent review article of Koutecky et al., 1991, on this subject.}

2.3) Molecular dynamics and simulated annealing

The ’molecular dynamics’ method is more ambitious in one point: to include
the dynamics of the nuclei by solving their classical equations of motion. The price
to pay is that the electrons cannot all be treated quantum-mechanically. Usually,
they are treated in density functional theory (see Sect. 3). Car and Parrinello (1985)
formulated a theory which couples the classical Newton equations for the nuclei to the
quantum-mechanical Kohn-Sham equations of the electrons. In the applications to
metal clusters, a further simplification is made by only treating the valence elecirons
explicitly, i.e., by using the electronic Hamiltonian (4) above. In this method, finite
temperature effects can be included (Andreoni, 1991).

Often, however, a finite temperature is only used to allow the system to relax

into the lowest minimum of its total energy and to determine in this way the optimal
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ground state configuration. This is usually achieved by the 'simulated annealing’
technique (Kirkpatrick et el., 1983). A slightly modified version of this technique
was used by Manninen (1986} to calculate for the first time the structure of small Na
clusters with ¥V < 8.

Small Al clusters with N up to 10 have recently been calculated by Jones (1991)
and a series of small Na clusters (N < 10) by Réthlisberger and Andreoni (1991).
The results obtained so far by the molecular dynamics method for the ground-state
geometry of metal clusters are not much different from those found in the quantum-

chemical 'ab initio’ calculations.

2.4) Static mean field models

The next step is to ignore totally the motion of the nuclei, using only the electronic
Hamiltoian (4) - including, eventually, the potential energy part of (3) — and
treating Coulomb exchange and correlations of the electrons in density functional
theory. This represents the static limit of molecular dynamics. The ionic structure is
represented by the external potential V; (5) or a corresponding pseudopotential {6).

The solution of this mean field problem still requires a fully 3-dimensional solution
of the electronic Kohn-Sham equations; the optimal geometry of the ions entering the
potential V; must hereby be guessed. Several kinds of simplification have been used
in order to avoid, on one hand, the systematic search of the ground state geometry —
which would lead back to some form of molecular dynamics — and, on the other hand,
the difficulties of solving a 3-dimensional Schrédinger equation; mostly, a spherical
symmetry of the system was imposed (see, e.g., [iiguez et al., 1989).

The most dramatic and efficient simplification is to average out totally the ionic
structure, replacing the charge distribution of the ions by a constant background
charge in a finite (spherical or deformed) volume. This is the 3-dimensional, finite-
size version of the jellium model which has already long ago been successfully used
for the description of metallic bulk and surfaces properties (Lang and Kohn, 1970 -
1973).

The total neglect of the ionic structure is more justified than one perhaps might
think at first sight: the pseudopotentials have no singularities and their sum in Vj is,
indeed, a rather smooth function. This is the combined effect of screening and the

Pauli principle, coming from the inner core electrons which fill the lowest orbitals in
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the Coulomb-kike potentials of the individual nuclei. We refer to textbooks on solid
state phyics (see, e.g., Ashcroft and Mermin, 1976) for a more detailed discussion.

For finite clusters a wealth of papers, initiated by Ekardt (1984) and Beck (1984},
has shown that a selfconsistent and essentially parameter-free microscopic jellium
model calculation can account qualitatively, and in many cases even quantitatively,
for many experimentally observed properties of metal clusters, in particular those of
alkali metals (see also the lectures of S. Bjgrnholm). Deformation (axial or triaxial)
of the jellium background or a finite temperature of the electrons can be included at
reasonable cost in the jellium model. Some of these calculations will be reviewed in
Sec. 4.

The justification of the jellium model for the description of microclusters is, and
will remain, an object of much debate and research. However, its undoubted virtue
is that it can be applied also to large clusters with many hundreds or thousands of
atoms, where the more structural models cannot be applied for practical reasons.
The most beautiful example is the correct explanation of shells and supershells in

large alkali clusters which will be given further account in Sec. 4.4.

2.5) Semiclassical and classical approaches

One more simplification can be made which leads to a considerable gain of effi-
ciency in treating very large systems: the neglect of shell effects. This is done au-
tomatically by the explicit use of semiclassical approximations to the kinetic energy
functional 7[p]. The density functional formalism can then be exploited for direct
density variational calculations: one no longer varies many electronic single-particle
wavefunctions, but one single function, the electronic density p(r) (or, if relevant,
two spin densities). Hereby the single-particle structure, and with it the shell effects,
are sacrified. But the advantage is an enormous gain in simplicity and calculational
speed, and still such a model gives interesting results of average properties of the con-
sidered system. The famous prototype of such a model is the Thomas-Fermi (TF)
model of the atom.

Extensions of the TF model (TFWDG, ETF,...) have been developed since long
ago and been successfully used for finite fermion systems in many branches of physics.
The variation of the density p(r) can either be done exactly, leading to an Euler-

Lagrange type (integro-)differential equation, or in restricted variational spaces using
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trial density functions. In fact, the first selfconsistent jellium model calculations for
spherical metallic clusters have been done using such a semiclassical density varia-
tional method by Cini (1975). Later semiclassical calculations have been done by
Snider and Sorbello (1983), Brack (1989), Serra et al. (1989, 1990) and by Engel and
Perdew (1991).

Many average properties of metal clusters can be described in such density vari-
ational calculations. A more formal and fundamental interest of this approach is the
possibilty to connect the microscopic models to purely classical ones. In the large-NV
limit, the clusters behave like classical spheres or liquid droplets; this transition can,
indeed, be quantitatively persued. In fact, a systematic 'leptodermous’ expansion (see
Myers and Swiatecki, 1969, for the nuclear case) of the semiclassical density varia-
tional results for spherical clusters allows for a selfconsistent determination of their
surface and curvature energies, leading to the selfconsistent foundation of a classical
liquid drop model, as it has been done in nuclear physics. Likewise, the asymptotic
behaviour of electronic ionization potentials and affinities and their classical limits,
which have recieved much attention in the literature, can be studied rigorously using
this technique (see, e.g., Seidl et al., 1991, and the literature quoted therein). Also,
the collective multipole excitation frequencies obtained in a random phase (RPA) de-
scription can be shown in the classical limit { Brack, 1989) to go over to the so-called
surface plasmon frequencies calculated by Mie (1908) (see also Sec. 4.2 and Fig. 2
below).

3. DENSITY FUNCTIONAL THEORY

We start from the Hamiltonian of a system of Z electrons moving in an external

potential V,,.(r) and interacting through the Coulomb forces:

~ z p2 1 z el
H= ot Vea(ri} + 5 —( " (7)
; 2m o(rs) 2 j(%:l Ir; — x]

The exact wavefunction ¥(ry, 1z, ...,rz) belonging to this Hamiltonian can in general

not be calculated, From it we define the one-body density matrix’ py(r’,r):

(¥, ) :fd%] rs .../darz T, g ooy ) U(E, Tay o T3 (8)

IFor the sake of simpliciy, and since they will not really be needed here, we do not exhibit the spin

degrees of freedom.
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Its diagonal part is the density p(r) which shall be normalized to the number Z of

electrons:
pr)=prr),  [om)dr=2. )
In both Hartree-Fock (HF) theory and density functional theory, the density p(r)

is written in terms of single-particlé wavefunctions ;(r):

Z
p(x) = Y lei(e)l* - . (10)

=1
In HF theory the ground-state wavefunction of the Z-body system is approxi-
mated by a Slater determinant ® built from a complete set {¢.(r)} of single-particle
wavefunctions:

®(ry,ry, ..., 1) = det |pi(r;)] ij=1.2,..2 - (11)

The density matrix (8) then takes the form

p(r',x) = gﬂp?(r')ve(r) , (12)

from which Eq. (10) follows. The choice of the single-particle wavefunctions ¢; is
governed by a variational principle: One makes the expectation value of the total
Hamiltonian (7) between the Slater determinants (11) stationary with respect to the
wavefunctions ;, subject to the condition of their orthogonalization by means of
Lagrange multipliers ¢;. This leads to the so-called HF equations which are discussed
extensively in J.-F. Berger’s lectures.

Density functional theory (DFT) goes beyond the HF approach in that correla-
tions are taken into account which are not contained in the HF energy — however,
at the cost of an approximate treatment of the Coulomb exchange terms. The basic
idea of DFT is almost as old as quantum mechanics and has already been used by
Thomas (1927) and Fermi (1928) in their famous work: to calculate the total energy
of a system by an integral over an expression depending only on the local density
pir):

Bui = [ Elp(r)] & = Elp] (13)
Mathematically speaking, the energy is assumed to be a functional of the local density

p(r), denoted by E|[p]. The formal basis of the ensuing theory was laid by Hohenberg

and Kohn (1964) in their famous theorem which they proved for a non-degenerate
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electronic system. A more general proof, independent of ground-state degeneracy
and of the so-called V-representability assumed by Hohenberg and Kohn, was given
by Levy (1989) for this theorem which states that the ezact ground-state energy of
& correlated electron system is a functional of the local density p(r), and that this
functional has its variational minimum when evaluated for the exact ground-state
density. This means that, ideally, the variational equation
o= [Blp(n)] - A o) %] =0, (14)
6p(r)
using the Lagrange multiplier A to fix the number of particles according to (9), would
lead to the knowledge of the exact ground-state energy and density — if the exact
functional E{p] were known (which, alas, it is not).

We do not need to go into further details about this basic theorem and the general
formalism of DFT, since this is the subject of many excellent reviews. [For a recent
review on DFT and its applications in atomic, molecular and solid state physics,
see Jones and Gunnarsson (1989); further reviews are quoted therein.] For further
reference, let us just sketch the main steps and list the most important formulae.
The usual way to break up the energy functional (13) for the Hamiltonian given by
Eq. (7) is:

Bl = T+ [ {Veet)ole) + 5Valo(o) } & + Eudlp]. (15)

Hereby T,[p] contains that part of the kinetic energy which corresponds to a system of
independent particles with density p, and Vy(r) is the Hartree (or direct, or classical)

Coulomb potential
]
/ ) d3 ! (16)
|r —

The last term in (15) is the so-called ezchangc-carr‘elation energy; it contains the
exchange part of the Coulomb energy plus all the contributions due to the other
correlations (hereby also a correlation part of the kinetic energy), i.e. due to the fact
that the exact wavefunction is not a Slater determinant.

E..[p] is not known exactly for any finite interacting fermion system, and it is a
matter of state-of-the-art of DFT to use more or less fancy approximations to it. The
same holds for the kinetic energy functional Ti[p] which is not known explicitly for

many-fermion systems. The approximations derived from the Thomas-Fermi model




- 334 -

and its extensions (ETF etc.) allow to perform the direct density variation (14), as
briefly sketched in Sec. 2.5 above.

In order to avoid the difficulty of finding an explicit density functional for the
kinetic energy, Kohn and Sham (1965) proposed to write the density p(r) in the form
of Eq. (10) in terms of some trial single-particle wavefunctions ¢;(r). This is, in fact,
possible for any realistic, non-negative normalizable density (Gilbert, 1975). The

non-interacting part of the kinetic energy density 7(r) can then be given in the form

Z
r(r) = 3 [Vei(r)l’ - 4n

i=1
in terms of the same ;(r). The variation (14) of the energy functional can now
be done through a variation of the trial functions ¢;(r) with a constraint on their
norms like in the HF method, except that the HF ground-state energy (tI>|I'? |®) here
is replaced by E[p] (15). This leads to the Kohn-Sham (KS) equations

{T + Vies(r)} ¢u(r) = esi(r) (18)
in which the local potential Vgg(r) is a sum of three terms:

Vis(r) = Vislp(r)] = Veau(r) + Vir[p(r)] + Vac[o(r)] - (19)

The first two parts are clear from above; the third term is the variational derivative

of the exchange-correlation energy:

Veelo(r)] = 5—;;—).5“{;)] . (20)

Since both Vi and V. depend on the density, the KS equations (18) are nonlinear
and must be solved selfconsistently; this is usually done iteratively like in the HF
method. The important difference, however, is that the potential Vxs(r) is local and
the KS equations therefore are much easier to solve.

A remark is necessary concerning the interpretation of the wavefunctions ¢;(r) and
the energies ¢; obtained from the KS equations: they do not have the same physical
meaning as in HF theory. The ansatz (10) for the density does not imply that the
total wavefunction of the system here is taken to be a Slater determinant. In fact,
one does not know the total wavefunction in DFT; the wavefunctions ¢;(r) are just a

variational tool to obtain an approximated ground-state density. Likewise, the £; do
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not, in general, have the meaning of single-particle energies. An exception is made
by the energies of the highest occupied KS level (¢y0) and the lowest unoccupied KS
level (e17) on either side of the Fermi energy: they can be used to estimate ionization
potentials and electron affinities, respectively (see, e.g., Levy and Perdew, 1985, and
references quoted therein).

The DFT can easily be extended to take the electron spin explicitly into account
by introducing a spin-up density and a spin-down density. This leads, instead of (18),
to two coupled equations for the two spin densities. Since there is no need, so far, to
make use of this spin density formalism for metallic clusters, we refer to the literature
for further details (see, e.g., Jones and Gunnarsson, 1989; Dreizler and Gross, 1990).

Another extension of DFT concerns the inclusion of a finite temperature T > 0 of
the electrons. Mermin (1965) derived the Hohenberg-Kohn theorem and the Kohn-
Sham formalism at T > 0 for a grand canonical system of electrons. Later Evans
(1979) showed that the DFT also applies to canonical systems. In essence, one goes

over from the (internal) energy E[p} (15) of the system to the free energy F|p]:
Flp] = Elp] - TS[p] , (21)

where S, is noninteracting part of the entropy. The exchange-correlation energy
E.c[p] will, in general, depend explicitly on T (i.e., not only through the density}.
The Kohn-Sham formalism then is obtained by including into the definition of the
densities (10,17) the finite-temperature occupation numbers n;:

o(r) = Lledr)l’ni,  m(r) = X IVeu(r)'ni,  Lm=N  (22)

and by minimizing F[p] with respect to both the ¢; and the n;. Since §, does not
depend explicitly on the wavefunctions ¢, their variation gives exactly the same form
(18) of the KS equations, the only difference being that the potential Vs becomes
temperature dependent. Variation of the n; gives their explicit form in terms of
the €;; the result depends on whether one treats the system as a canonical or a
grand canonical ensemble. (In the latter case, where the chemical potential y is
used to constrain the average particle number N, one obtains the familiar Fermi
occupation numbers.) For an extensive discussion of the finite-temperature DFT
and calculations, we refer to a review article by Gupta and Rajagopal (1982). Its

application to metallic clusters is discussed in Sec. 4.4 below.
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The Kohn-Sham approach is very appealing since, ideally, it allows to reduce the
correlated many-body problem to the solution of a selfconsistent one-body problem
of Hartree type. The reality is that only approximate functionals for the exchange-
correlation part of the energy are at hand. The simplest and most frequently applied
functionals for E..[p] make use of the local density approzimation (LDA): One per-
forms more or less sophisticated many-body calculations for a hypothetical infinite
system of electrons with constant density p, whereby the diverging Hartree energy is
cancelled by embedding the electrons in a jellium-like background of opposite charge
density. The resulting energy per electron is used to extract the corresponding xc-
part e..(p) which is a function of the variable p. The LDA for a finite system with
variable density p(r) then consists in assuming the local xc-energy density to be that

of the corresponding system with density p = p(r):

EEPAp) = [ plx)esdp(r)) & . (23)

By construction, this approximation is exact in those regions of space where the
density p(r) is constant, and it is badly justified where the density varies strongly,
as e.g. in the surface region of metal clusters. In spite of its simplicity, the LDA in
connection with the Kohn-Sham approach has met a considerable success in almost
all branches of physics. (See, e.g., Jones and Gunnarsson, 1989, for its applications to
electronic systems.) The extension to the spin density formalism is straightforward;
it is usully termed ’local spin density’ (LSD) formalism.

A lot of research has been done in going beyond the LDA and LSD schemes.
Both gradient expansions and explicitly nonlocal forms of E..[p] have been developed
and extensively studied. They have, however, only occasionally been applied to
metallic clusters and so far not appeared to bring significant improvements over
results obtained with the LDA; we therefore refrain from discussing them explicitly
here.

One serious break-down of the LDA concerns the asymptotic behaviour of the
KS potential for Coulombic systems. In HF theory, where the Coulomb exchange
is treated exactly, it is well-known that the mean field asymptotically falls off like
1/r far outside the surface of a spherical system; this is simply the field, seen by one
electron which is taken far away, of the remaining spherical charge distribution. This

is no longer so in the KS theory when the exchange is treated in local density ap-
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proximation. In fact, the Hartree potential Vj; (16) contains spurious self interaction
contributions of the electrons which are exactly cancelled when the Fock potential is
added to it. However, with the LDA one makes a crude approximation to the Fock
potential, whereas the Hartree potential is left intact, so that this cancellation cannot
take place. As a consequence, one obtains too much screening and the KS potential
falls off much faster than 1/r. A ’self interaction correction’ (SIC), which restores
the correct asymptotic behaviour of the KS potential, has therefore been introduced
and tested for atomic systems (Perdew and Zunger, 1981). It makes, however, the
KS potential state-dependent and thereby complicates the selfconsistent calculations

appreciably.

We should point out here that the HF approach with zero-range forces, as it is
widely used in nuclear physics with the Skyrme type effective interactions, is formally
identical to the Kohn-Sham approach with a local spin density functional {(except
for a straightforward generalization to take effective masses into account). Having
this and the Hohenberg-Kohn theorem in mind, one should be aware of the fact
that correlations are contained in what is usually called the HF energy, albeit in an

implicit way through the fit of the HF energy to physical nuclear masses.

The application of the KS method to atomic clusters becomes very complex with
increasing number of atoms. The variation of the positions of all atoms and a simul-
taneous, fully selfconsistent treatment of all electrons in large clusters exceeds the
capacities even of modern computers. For clusters consisting of simple metal atoms,
in particular alakalis, one therefore exploits the approximate separability into one or
a few valence electrons and an ionic core to restrict the degreees of freedom. The
idea thus is to treat only the valence electrons explicitly by DFT as interacting par-
ticles in the pseudopotentials created by the ions. If the ionic structure is neglected
altogether and replaced by a homogeneous, positive background density, one arrives

at the jellium model wich has been surprisingly successful and will be discussed in

the following section.
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4. THE SELFCONSISTENT JELLIUM MODEL

4.1. Basic concepts

The basic idea of the selfconsistent jellilum model is to replace the distribution of
the ionic cores by a constant positive background or ’jellium’ density? pro in a finite
volume and to treat only the valence electrons explicitly in the mean field approx-
imation, either microscopically as described in this section, or semiclassically (see
Sec. 2.5). The jellium background may be either spherical, ellipsoidal or arbitrarily
deformed.

Almost all jellium calculations so far have been performed within DFT. The total

energy of the cluster is therefore expressed as a functional of the local electron density
p(r) by:

Blg) = Tlol + Exclol + | {VJ(r)p(r) + 2o(o) [ )y ]} £r+ By (20)

v —r'|
The notation here is as in Sec. 3 above; V; and E; are the potential and the total
electrostatic energy, respectively, of the ionic jellium background. The energy Ey
does not depend on the electron density but is included so that E represents the
total binding energy of the cluster. The density p(r) must be normalized to the

number wN of valence electrons: ‘
fp(r) d’r = wN, (25)

where w is the valence factor (number of valence electrons per atom). By a variation
of the energy E[p] (24) with respect to the ¢} (r), one then arrives at the Kohn-Sham
equations (18,19} with V..(r) replaced by the jellium potential V;(r).

Most applications of the jellium model to metal clusters so far were restricted to
the local density approzimation (LDA) for the exchange-correlation functional E..[p].
(For a recent Hartree-Fock calculation, see the remark at the end of Sec. 4.2 below.)
Metal clusters (besides metal surfaces) present perhaps one of the most crucial testing
grounds for the LDA, s...ce their surfaces are typically much steeper than those of
atoms or small molecules. However, the success of the LDA in conjuncion with the

jellium model in describing surface energies and work functions for metal surfaces

2Throughout this paper, we denote by p the particle densities and not the charge densities, The

charges (in multiples of e) appear explicitly in all formulae with their correct signs.
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(Lang and Kohn, 1970, 1971; Monnier ef al., 1978) — at least of alakli-like metals -
has encouraged, and some extent also justified, its application to metallic clusters.
One essential point of the jellium model is that it contains only one single param-

eter, namely the Wigner-Seitz radius r, which characterizes the metal. It is related

dr N\7!
Pla = (TT,S) . (26)

Otherwise, the model is completely free of parameters since the electron density is

to the jellium density pro by

determined variationally. Usually, one takes the bulk value for r, corresponding to
the ionic lattice in the crystal. This is, naturally, only justified for large clusters.
In microclusters there is some weak experimental evidence for a decreasing density
(i.e. an increase of the volume). In the jellium model we have, however, no way to
determine the finite-size variation of r, theoretically, so that the simplest choice is
that of the bulk value.

A remark aout the internal consistency of the jellium model might be appropriate
at this place. If we consider the inner part of a large neutral cluster and neglect the
surface effects, the energy per electron e(p) as a function of the (constant) density p
is given by

e(p) = kp™* + exe(p) , (27)

where the first part is the kinetic energy per electron. The Coulomb energies cancel
exactly if the density p is chosen to be equal to the jellium density pro, which must
be done to ensure charge neutrality. If we now search for a minimum of e(p) (27)
with respect to varying p (and, with it, py!), we find it for values r, >~ 4 - 4.3
a.u., depending somewhat on the detailed LDA xc-functional used. For the LDA
functional of Gunnarsson and Lundqvist (1976), e.g., which has often been used for
metal cluster calculations, this minimum is at r, = 4.08 a.u. In such a variational
calculation there is, of course, only one metal which has a stationary value of its
density in the bulk region. It is perhaps no coincidence that the jellilum model works
best for alkali metals, in particular sodium, with r, values close to this minimuimn.

A large majority of KS calculations so far has been performed assuming sphen-
cal symmetry of the clusters. The calculation then becomes one-dimensional and is
relatively easy to do for not too large clusters. We shall briefly review these calcula-

tions in Sec. 4.2. In Sec. 4.3, calculations in two and three dimensions are discussed,
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corresponding to axially and non-axially deformed clusters, respectively. Finally, in
Sec. 4.4, we report on recent spherical calculations for very heavy clusters at finite

temperatures, focusing especially on the so-called supershell structure.

4.2. Spherical jellium model

In the spherical jellium model, the ionic background density pi(r) is that of a

uniformly charged sphere with radius Ry:
pi(r) = pre®(r — Ryp), Ry =r,N'/3, (28)

where the value of R; is fixed by the number N of ions. The jellium potential Vi(r),
which replaces the sum of individual ionic potentials (5} or (6), and the energy Ey;

are then easy to evaluate and given by

—wNe [3— (ﬁ’—!—)?] for r < R;

Vy(r) = 2R ; (29)
—wlNe for r>R;
3(whNe)?
_o\Wwae 30
Ey 5 R, (30)

If the electron density is also assumed to have sphericl symmetry, the total KS
potential (19) is spherical and the single-particle states ¢;(r} will have good angular
momentum quantum numbers £;, m;; their angular parts being given by Yio,m, (6, &)
in polar coordinates (r,8,$). Eqs. (18) can then be reduced to radial Schrédinger
equations for the radial parts R, (r) of the wavefunctions and solved numerically on
a one-dimensional mesh in the variable ». This was performed for the first time by
Ekardt (1984a,b) and independently by Beck (1984a,b). As a variational, though not
fully selfconsistent, precursor of this model we mention that of Martins et al. (1981),
who replaced the selfconsistent KS potential (19) by a simple variational square-well
potential. All these authors used LDA functionals for the exchange-correlation part
of the energy.

Later on, many spherical KS calculations in the jellium model were performed
by various groups. By way of an example, we mention here a recent review by
Balbas and Rubio (1991) which summarizes over 30 papers published by groups at
Valladolid, Valencia and other spanish universities, encompassing also semiclassical
density variational calculations and extensions of the jellium model. Some recent KS

calculations for very large clusters will be reported in Sect. 4.4 below.
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In Figure 1 we show as an illustration the density profile p(r) and the total mean
field V(r) of the electrons for Najgs, obtained both microscopically (KS) and in
semiclassical (ETF) density variational calculations.

Let us summarize briefly some of the main results and successes of the spherical
jellum-KS calculations. (For more details, we refer the interested reader to the
forthcoming review by de Heer and Brack, 1992.)

- Magic numbers for filled spherical major shells agree with few exceptions with
the observed peaks in the mass abundance spectra (see also Sect. 4.4).

- Jonization potentials (IP) and electron affinities (EA) show a good overall be-
haviour; the jumps of the saw-teeth are usually at right places but often too large in
absolute values. This is related to the bulk value of the work function W which 1s
asymptotically reached in the N — oo limit but comes out too large in the jellium
model as well-known since Lang and Kohn (1970, 1971). (See Seidl et al., 1991, for
a discussion of the asymptotic slopes of IP and EA when plotted versus 1/R;.)

- The optical response of alkali clusters can qualitatively be well described by
the jellium model in the framework of linear response theory (RPA or its equivalent,
the so-called time-dependent local density approximation, TDLDA). Beck (1984b)
was the first to calculate in this way static electric dipole polarisabilities and Ekardt
(1984a, 1985a,b, 1986) obtained dynamical dipole polarisabilities in TDLDA. The
RPA sum rule approach was used in semiclassical density variational calculations
by Brack (1989) and also by Serra et al. (1989) for the description of the collective
multipole excitations of the valence electrons, the so-called surface plasmons, with are
the anologues of the nuclear isovector giant resonances. Figure 2 shows as an example
the multipole frequencies, obtained for spherical clusters, and their asymptotic limits,
the classical Mie frequencies (Mie, 1908). An approximation to the RPA based on
local currents ("local RPA”), which is an extension of the usual sum rule approach
and allows to obtain rather good RPA spectra from ground-state densities (!), has
been developed by Brack (1989) and Reinhard et al. (1990). First microscopic RPA
calculations for spherical alkali clusters were performed by Yannouleas et al. (1989);
Bertsch (1990) wrote the first fully selfconsistent KS+RPA code using the spherical
jellium model. All TDLDA or RPA results for the lowest, and most collective, dipole
excitation energy are too high by about 10 — 15% with respect to the experimental
peak energies (de Heer et ol., 1987a; Bréchignac et al., 1989; Selby et al., 1991;
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Tiggesbaumker et al., 1991} which are systematically red-shifted with respect to the
classical Mie plasmon (cf. also Fig. 2). This goes along with a too low theoretical
dipole polarisability and is presumably the fault of the LDA which fails in the cluster
surface. In the region 8 < N < 18, several experiments show a clear splitting of the
dipole peak which can only be explained by a static deformation of the corresponding

clusters.

Finally, we draw attention to recent Hartree-Fock plus RPA calculations for spher-
ical Na clusters up to N = 92 within the jellium model, where the Coulomb exchange
is treated exactly but no further correlations are included, by Guet and Johnson
(1991). Their dipole excitation spectra resemble very much those obtained in the K5
+ RPA calculations just mentioned; this seems to imply that the correlation part of

the E,.[p] LDA functional does not contribute appreciably to the dipole response.

4.3. Deformed jellium model

Some of the shortcomings of the spherical jellium model can be removed, or
at least reduced, by relaxing the spherical shape of the clusters. Indeed, there is
good experimental evidence that clusters are deformed in regions between the major
spherical shell closures: The phenomenological Clemenger-Nilsson model (see de Heer
et al., 1987b, for a discussion of this model which is just a copy of the famous Nilsson
model for deformed nuclei) allows to interpret the fine structure of mass abundance
spectra and the splitting of the surface plasmons of clusters in the mass regions
8 < N < 18 and 20 < N < 40 (Selby et al., 1989, 1991; Tiggesbdumbker et al., 1991).
In the Nilsson model, the potential depends on one or two deformation parameters,
and the equilibrium {or ground state) shape of each cluster is calculated simply by
minimizing the sum of occupied single-particle energies. Obviously, such a model
is not selfconsistent in two respects: first, the density distribution of the electrons
is not guaranteed to have the same shape as that of the potential (although this is
approximately the case at the shapes of minimal total energy), and second, the sum
of single-particle energies is far from being equal to the total binding energy of an
interacting system.

1t is therefore of a basic theoretical interest to verify the phenomenological poten-
tial of the Clemenger-Nilsson model by microscopic, selfconsistent calculations in the

framework of density functional theory. Since in the jellium model there is no real
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selfconsistency between the ionic background density and that of the electrons, this
must be put in explicitly. In the deformed selfconsistent jellium model, one therefore
has to assume that the ionic background density follows, on the average, the shape of
the electrons. Practically, one parametrizes the deformed shape of the jellium den-
sity, lets the electrons adjust themselves in the corresponding deformed ionic potential
(including their interaction and exchange-correlation effects in Kohn-Sham approxi-
mation, as usual), and then one minimizes the total energy with respect to the jellium
shape. This is, or course, consistent with the spirit of the Born-Oppenheim approach
used in quantum chemical and molecluar dynamics calculations (see Secs. 2.2, 2.3
above), except that the microscopic ionic structure here is averaged out. Allowing
for axial or nonaxial shapes of the constant ionic background density, however, brings
the jellium model one step closer to those more fundamental approaches in the sense
that the average geometry of the ions can be varied.

One technical problem in the deformed jellium model is that the background
jellium potential Vs(r) is no longer a simple analytical function as in the spherical
case, cf. Eq. (29). It must therefore be calculated numerically either by direct
integration of the jellium density or by solving the Poisson equation. Similarly, the
KS equations become more complex with decreasing symmetry of the cluster and
have to be solved in two or three dimensions explicitly.

The existence of axially deformed equilibrium shapes within the framework of
the selfconsistent jellium model has been confirmed in Kohn-Sham calculations for
ellipsoidal clusters (Ekardt and Penzar, 1988, 1991; Penzar and Ekardt, 1990). These
authors use an axially symmetric ellipsoidal jellium density with constant volume
and half-axes zq, po given in terms of a single deformation parameter 6, restricted by
—2 < é < 2, and the cluster radius R; (28)

3
z = (2%2)2/3 Rp; po = @“i—?)l/ Ry; (31)
The electronic density is assumed to have axial symmetry, too, and the Kohn-Sham
equations are solved in spheroidal coordinates, using again the LDA functional of
Gunnarsson and Lundqvist (1976) for the xc-energy. The total energy of the clus-
ter must be calculated for each deformation é, and the ground state is found by
minimizing the resulting energy with respect to 4.

Results of this spheroidal model for IP’s and EA’s for sodium and copper clusters
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(Ekardt and Penzar, 1988; Penzar and Ekardt, 1990) show that the shell structure
in these quantities is appreciably reduced by the deformation effects and in reason-
able agreement with experiment, but still somewhat exaggerated. Ekardt and Penzar
(1991) also used their spheroidal model in TDLDA to calculate collective photoab-
sorption spectra of deformed clusters; as in the Clemenger-Nilsson model, the right
order of magnitude of the splitting was found for the dipole peaks.

Triaxial deformations of small sodium clusters have recently been investigated
in the selfconsistent KS framework by Lauritsch et al. (1991). Here, a triaxial
elliposid with constant volume was assumed for the jellium density; the jellium density
was given a diffuse surface with a width of approximately one atomic unit. The
KS equations (in LDA) were then solved numerically on a three-dimensional mesh
for each given deformation of the jellium background. Potential energy surfaces of
these triaxially deformed clusters were presented as functions of the two Hill-Wheeler
coordinates (3, ) (Hill and Wheeler, 1953). Naz was found to have its mimimum for
a triaxial shape, as can be seen from Figure 3, whereas Na,4 is predicted to be axial
with a prolate minimum; this confirms the results of the Clemenger-Nilsson model.
An interesting phenomenon in the results of Lauritsch et al. (1991) is the occurrence
of serveral almost degenerate shape isomers with different spherical, axial or non-axial
shapes, separated by barriers of ~ 0.5 - 1 eV. This shape isomerism reminds, indeed,

of that found in ab initio quantum chemical and molecular dynamics calculations.

4.4. Finite temperature calculations and supershells

In many experiments, clusters are produced at finite temperatures of up to several
hundred Kelvin or even more (see the lectures by Bjgrnholm). The manifestation of
shell structure in the abundance spectra of cluster beam experiments is thought to
be a result of evaporation of neutral atoms by the hot clusters: the closer the number
of valence electrons gets to a magic number corresponding to a filled spherical shell,
the more stable the cluster will be and the smaller the probability for evaporation of
a further atom, so that finally, at the time of detection — when the beam has cooled
off — the magic species are the most abundant.

The question therefore arizes to which extent a finite temperature affects the
magnitude of the electronic shell effects themselves. It is well-known from nuclear

physics, that large enough temperatures smear out the shell structure in a finite
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fermion system (Bohr and Mottelson, 1975, Brack and Cuentin, 1981). In particular,
the observability of the so-called super-shell structure (Nishioka et al, 1990) may
become difficult due to these temperature effects.

At first sight one may think that even many hundred Kelvin are small on the
scale of the electronic single-particle energies, so that their effect should be negligi-
ble. This is certainly true for microclusters with less than a hundred atoms, where
the main spacing between electronic levels corresponds to several thousand Kelvin.
However, in very large clusters in the mass region N 2 1000 — 2000, which now have
hecome available in expansion sources, the spectra are much more compressed and
the temperatures in question do have a noticeable effect. Furthermore, the detailed
shape of the abundance spectra depends in a rather subtle way on the first and sec-
ond differences of the total cluster (free) energies with respect to the atomic number,
AF(N) and A, F(N), respectivey, such that the temperature smearing effects can,
indeed, become visible in the experimental results (Bjgrnholm et al., 1991).

These questions were addressed recently in finite-temperature Kohn-Sham-LDA
calculations for sodium clusters in the spherical jellium model (Brack et al., 1991a,b;
Genzken and Brack, 1991). The electrons are treated as a canonical system in the
heat bath of the ions; the canonical partition function is calculated exactly and from
it, all relevant quantities such as the free energy, entropy and occupation numbers
are derived selfconsistently. We refer to Brack et al. (1991b) for the details of these
calculations and illustrate here the results with two figures.

A standard quantity for studying shell effects is the shell-correction energy
§F(N)=F(N) -~ F(N), (32)

where F(N) is the average free energy of a cluster with N atoms. Here we have

simply used a liquid drop model (LDM) expansion
F(N) = Fpm(N) = &,N + a,N¥* + o N3 | (33)

determining the surface energy a, and the curvature energy a. by a simple eye fit such
that 6F(N) is oscillating around zero; this is done separately at each temperature.
The bulk energy is fixed at its theoretical value e, = -2.2567 eV, obtained for r, = 3.96
a.u., independently of temperature.

The results for §F(N) are plotted in Fig. 4 versus N'/2 at the three temperatures
T = 0 K, 400 K and 600 K. The magic numbers are given in the curve for T = 0 K
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at the corresponding minima. The amplitude of the shell effects is clearly reduced
with increasing temperature. Two minor shells in the transition region at N =506
and N = 638, still visible at T = 0 K, are wiped out at T > 0. All other minima
become less sharp than at T = 0.

The salient feature of the curves in Fig. 4 is the beating pattern of the otherwise
quite regular shell structure. Such a pattern was shown by Balian and Bloch (1971)
to be a very general feature of quantal eigenmodes in a cavity. The method of Balian
and Bloch was applied to metal clusters by Nishioka et al. (1990} who termed the
beating pattern ”super-shells”; they used a phenomenological Woods-Saxon potential
for the valence electrons.

The shell-correction energy § F(N) is, however, not directly observable. As men-
tioned above, the mass abundances in expansion beams depend rather on the differ-
ences AyF(N) and A, F(N) which are even more sensitive to the temperature. In
fact, these latter quantities were shown by Brack et ol (1991) to disappear com-
pletely for N 2 600 at temperatures T =~ 600 K or above, putting in doubt the
survival of the super-shell structure which only starts at N = 1000.

In order to make the super-shells visible, nevertheless, Pedersen et al. (1991)
proposed to scale up the mass yields by a factor depending exponentially on N /3,
The temperature dependence of §F(N) — and thus also of the differences AF(N)
and A, F(NV) in which the average energies practically cancel — can be schematically

estimated (Bohr and Mottelson, 1975) to go like

2
. =T 4
Sinht ’ t=T hw (34)

§F(T) = 6F(0)

Expanding for large temperatures and using fiw o< N -1/3 this gives, indeed, a tem-

perature suppression factor « exp(—N 1/3), Therefore, Pedersen et al. (1991) in the

analysis of their spectacular experiments multiplied the logarithmic derivatives of

the mass yields Iy by VN exp(cN'/3), where ¢ is a constant containing an effective

temperature, and the root factor compensates the decrease of the shell correction at
T = 0 with increasing N (Bohr and Mottelson, 1975).

We refer to Bjgrnholm’s lectures for the details of this analysis and of its results

in which the super-shell structure has, indeed, been put into evidence experimentally

for the first time. In Figure 5, we have copied the relevant figure of Pedersen et

al. (1991) and compare it to the theoretical KS results by Genzken and Brack
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(1991). Here the negative second difference —A,F(N) is shown, multiplied by the
same enhancement factor (with the value of ¢ readjusted by ~ 10%). Although
the assumption —A,F(N) o A;lnly is a very crude one (see Bjgrnholm et al.,
1991, for a discussion on this point), the agreement of the two curves is striking.
This demonstrates that the finite temperature of the valence electrons which alone
contribute to the quantities shown here — the ionic parts of the free energies cancel
in the differences A;F(N) and A ln Iy — plays an essential role in the mass yields
and can be correctly taken into account in selfconsistent KS calculations even in the
simple jellium model. No need to stress that no other, i.e. more structural, model

will ever be used to calculate the super-shells in such large systems!
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FIGURE CAPTIONS

Figure 1:

Variational densities p(r) (in units of po) and selfconsistent total potentials V(r)
for the neutral Na,gg cluster (r, = 4.0). Solid lines: KS results by Ekardt (1984b).
Dash-dotted and dashed lines: semiclassical results using the functional rerr(p] up
to 2nd and 4th order in %, respectively, by Brack (1989).

Figure 2:

Energies of surface plasmons of multipolarity L for spherical Na clusters versus
jellium radius R;. Solid lines: RPA sum-rule approximation Awy, = \/m in terms
of Tassie operators @ = r’¥o (L # 0) and Qo = r? (L = 0). Dashed lines: centroid
of collective spectrum obtained in "local RPA” (see text). All quantities evaluated
in terms of semiclassical ETF densities (Brack, 1989). On the right margin: classical

Mie frequencies.

Figure 3:

Potential energy surface of Na,; (equidistance 0.01 Ry for dashed and 0.05 Ry
for full lines) in the 3, plane. The minimum at § = 0.54, v = 15° is at -1.768 Ry
(Lauritsch et al., 1991).

Figure 4:

Free energy shell-correction §F(N) = F(N) — Frpym(N) for spherical Na clusters
versus N1/3 for three different temperatures T, obtained in selfconsistent KS calcu-
lations (Genkzen and Brack, 1991). LDM parameters used at T = 0 K: a, = 0.6259,
a, = 0.2041; at T = 400 K: a, = 0.5918, a, = 0.3796; and at T = 600 K: a, = 0.5755,
a, = 0.4204 (all in eV). Numbers near the bottom are the magic numbers of filled

major spherical electronic shells.

Figure 5:

Upper part: Relative variation < A, lnIy >k, in experimental Na cluster abun-
dance Iy versus N/3 (Pedersen et al., 1991; see this reference for the details). Lower
part: Negative second difference —A,F(N) of free energy obtained in selfconsistent
KS calculations at T = 600 K (Genzken and Brack, 1991). Both quantities are en-
hanced by a N-dependent factor to compensate for the temperature suppression (see

text).
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