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FORMAL THEORY OF ELECTRO-MAGNETIC FIELD FLUCTUATIONS

Gerard Nienhuis, Frédéric Schuller! and Renaud Savalle?

1 Laboratoire de Physique des Lasers, UMR 7538 du CNRS, Université Paris 13,
F-93430 Villetaneuse, France

2 Observatoire de Paris, 5 Pl Jules Janssen, 92195 Meudon, France. E-mail :

renaud.savalle@obspm.fr

In this lecture the theory of electro-magnetic field fluctuations is introduced in a
somewhat unconventional manner. Subsequently the specific example of electro-
magnetic fields in infinite media is treated according to the usual Green’s

function method.

Electric field correlation functions

We define correlation functions by the following relations:

(1a) C,;(t)=(E,(x",1)E,(r,0))=Tr

oo E .00 " E (r 0))
i ) j\bs

(1b) D,(t)=(E,;(x,0)E,(r',1))=Tr

PE,(r,0)e" E, (r',O)e_th)

The indices i and j stand for cartesian field components conceived as operators.
The brackets then designate statistical ensemble averages represented by traces

taken with the corresponding density matrix p.

In order to establish a relationship between the two correlation functions, we

use the identity

(2) (TrQ) =TrQ"



which is obvious given the fact that trace elements are not affected by

permutation of indices.

For hermitian operators such that p=p*,A=A",B=B" we also have

( ,oAB)+ =BAp and further, due to the invariance of the trace under cyclic
permutations,

TrBAp = TrpBA . This immediately yields
(3) C,(t)="Tr(pE,(r,0)E,(r',1)) = D;(t)

Introducing real functions a(t) , b(t) , we can therefore write
(4a) Cjj(t) =a(t) +ib(t)
(4b) Dy(t) =a(t)-ib(t)

Symmetry properties with respect to time reversal can be approached by means
of the time reversal operator T. This operator replaces wave functions in

coordinate representation by their complex conjugates. T is antilinear and TT = 1.
Using the fact that the property TAT = A* yields the identity

Tr (TQT) = TrQ* = (TrQ)*

we write

(5) C;.(t) = Tr(TpEi(r',t)Ej(r,O)T) . Furthermore, with time reversal acting on
the electric field and on the evolution operator according to the relations
TET=E, T/ T=¢ "

we have

in —th —iHl iHl‘
(6) TE(x'.0)T =Te" E(r'\0)e" T=e" E/(r'0)e"

and therefore from eq.’s (5) and (1a)



* —in , ilHt
(7) C(t)=Tr|pe " E,(xr',0)e" E (r,0)|=C,(-1).

Finally by combining eq.’s (3) and (7), we arrive at the following symmetry

relations:
(8) C;(t) = C,:j(_t) = D,j(t) = D,;(_t)
This implies that a(t) and b(t) are respectively even and odd functions of t.

FOURIER TRANSFORMS

Let us define Fourier transforms of our correlation functions by the following

relations:
(9) Cy(w)= [die”'Cy(t) ; Dyw)= [ de” Dy(t)

As has been stated above, the real parts of Cj(t) , Djj(t) are even functions of time

whereas the imaginary parts are odd. Therefore, introducing Fourier transforms
a(w) = [die”a(t) ; bw)= [ dte”b(r)

and writing

(10a) C,(w)=a(w)+ib(w)
(10b) D, (@) = a(w) - ib(w)

it follows that a(w)must be real and b(®w) imaginary. As a consequence it is clear

that both C;(w) and D,(w) must be real.
Furthermore, replacing w by - we write
C,(-w)= [ die™C,(1)

and hence with eq.(6)

C,(-w)= [ die™ Cy(t) = [ dre Dy (1)



yielding as a result the symmetry relation

(11) Cj(-w)=Dy(w)

In terms of a(w), b(w) this relation takes the form

(12) a(-w)+ib(-w)=a(w)-ib(w)

given the fact that

(13) b (~w)=-b(-w).

Eq.(13) shows that a(w) and b(w) are respectively even and odd functions of w.

We derive now another very important relationship between the functions

C,(w)and D ().
Consider the following integral :
(14) I(w)= [ die” (BO)A(®))

With the average obtained by taking the trace with the density operator
represented by the Boltzmann factor (1/Z)e™”" this integral is explicitly given by

the expression
w)= te"" Tre” et Ao~ HIM 1o Tre™H (=it it
15) I(w)=(1/2Z) [ dte” Tre " Be™" Ae™™" =1/ Z) [ dte’ Tre """ Be™" A

Now, setting r—inf3=t', integration along the real t axis can be replaced by

integration over t’ i.e. over a line parallel to this axis at distance —izf3 . (figure).

Hence with fdt —>fdt' we obtain

I(a)) = (I/Z)f dtleiw(t'+ih/5)Tr€—th'/hBeiH(t'+ihﬁ)/hA =

(16) e—ﬁhwfdl,lei(ul'Tre—ﬁHeth'/hAe—th'/hB -
e [ die" (A(t)B(0))

where the invariance of the trace with respect to cyclic

permutation has been used.



Applying this result to the functions defined by eq.’s (1a,b) we thus arrive at the

following relation

(17) D, =e™Cy(w)



The Green's function

The Green’s function involves a commutator between field variables according to

the defining relation
(18) G,(1)= %<[Ei (r.1).E,(r,0)])0(1)

with ©(r) the Heaviside step function.

In terms of correlation functions we thus have the expression
i
(19) G,(1)=—(C,(0-D,(1)0®)

Taking the Fourier transform of this expression, by applying the general formula

(A6) derived in the appendix, leads to the result
(1 .
(20) G;(w)= %{E(Clj(a}) - Dl.j(a))) +éPfda)'(Cij(w') - Dl.j(a)')) /(w —a)')}

We now turn to the special form of the correlation functions as defined by eq.’s
(7),(8) and the corresponding Fourier transforms of eq.’s (10a,b). Then eq.(20)

takes the form

L pwy- L )
(21) Gy@)=-—b(@)-—P [dw

w-o'

Now, as stated above (cf. line after (10a,b)) b(w) is purely imaginary so that on

the r.h.s. the first term is also imaginary whereas the second one is real. We can

therefore write

(22) b(w)=-ihIlmG (w)

On the other hand we have from eq.’s (10a,b)
2ib(w)=C;(w)-D;(w).

With the symmetry relation (17) this yields

(23) 2ib(w)=Cy(w)(1-"™)



We thus arrive at the following relationship between Green’s and correlation

function:

_ 1 -phw
(24) ImG,(w)= 5(1 - ) Cy()
with the inverted relation

(25) C,(@)=2h(1-¢") ImG,(w)



Symmetrized relations
Let us now consider a symmetrized correlation function defined by the
expression

(26) @L(w)=~ (c () + Dy(w)) = 2(1+e ) Cy(@) .

where the relation (17) has been used.

With C;(w) given by eq.(25) this expression takes the form

-Bhw Phw

 mGy (@) - hcoth(e2 )ImGl.j(a))

(27) ®F -

As will be shown below, this equation represents a law known as the fluctuation-

dissipation theorem.

At this stage it is convenient to introduce the vector potential A . From its

definition
(28) B=VxA
together with Maxwell’s equation, it follows

(29) E=-A

072

For the corresponding correlation functions we thus have @ (f) = —— ®2(¢)
u all y

yielding Fourier components obeying the relation
E 2HA
(30) @;(w)=w"d;

Defining a Green'’s function G;‘ with in eq.(18) E-components replaced by A-

components, we write instead of eq.(27)

Phw

(31) q>ga))=hcoth(e 2 )ImG,;‘(w)

@f is thus obtained by multiplying this quantity with w”according to eq.(30).



Linear response

Let us consider a quantum system driven by an external perturbation. Let’s write

the Hamiltonian in the form
(32) H=H,-BS(1)

with Ho the Hamiltonian of the unperturbed system and -BS(t) the perturbation

Hamiltonian with B a certain operator and S(t) a given function of time.

As an example suppose that S(t) represents a classical current density

component j(¢) at position r,and and A,(r,)a vector potential operator at that

same position. BS(t) then stands for the interaction potential A,(x,);.(¢).

Note that from now on we apply Einstein’s summation prescription i.e. automatic

summation over repeated indices.

We start from the Liouville equation

d .
(33) E(po +p1) = _%[H’(po +p1)]

where we have split the density operator p into an unperturbed part p, ,
corresponding to Ho and a part p, due to the application of the external

perturbation. Substituting for H the expression of eq.(32) and expanding to

lowest order in the perturbation, we then derive for p, the equation

d i i
(34) Epl = _g[Ho’pJ"'%[B»po]S(t)

Introducing an interaction representation defined in the usual way by
performing the transformation
»

duy  im
(35) p=e" oe"

we obtain for the reduced density operator o the equation



36) Lo=e"[B.p,]5(e "

dt
for which an exact solution is given by the expression
(37) o= —fe” " [B.p,]50% "

Transforming back to p, by inverting eq.(35) we arrive at the result

H(t-t") Hy(t-t")

(38) m(r)-—fe Y ANG )eh

By means of this expression we can now calculate the change in the average
value of some operator Q produced by applying the external perturbation. We

therefore consider the expression
(39) 8(Q)=7r{p}=—Tr[[B.p,Jot-1)S(@")

where we have substituted eq.(38) for p,and where we have used the defining

relation

Ho(=t) _ ~LHy (1)
{

(40) Q(t-1)= e” Qe "

after having shifted the factor e_EHn(H') in the right position. Writing explicitly
[B.p,]0 =Bp,Q-p,BQ ; TrBp,Q=TrOBp, =Trp,0B
and hence

17{[8.0.0))=7r{,[0.5]

we arrive at the expression

(41) &(Q ——fdt< [QG-1),B])S(t")

10



Specializing to the case where Q represents the vector potential operator at
position r and where BS(t') is the interaction energy of the external current with

the field at position ro, such that
BS(t)=A;(r)j;(t) 5 Q=A(r),

eq.(41) yields the expression, using A,(r,) = A,(x,,0),

(42) <A(r,t)>=% f dr' ([A(r,t-1),A(x,,0)])j, (1)

in the case however that without the external perturbation the average A value

is zero.

Assuming that the external perturbation oscillates at frequency w, according to

the expression j (1) = jje'i“’" and making the substitution ¢#'=7-7, we find

[’

(43) (Ar.1)= %e""‘” [dr([A@0).A,@.0]) e,

0

Introducing the Green'’s function
44 ; i
(44) G,(rrim)=—([4,067),4,@,.0])0()
we can write eq.(43) in the form
(45) (A(r,0)=e™ [dTG,(r,x;1)e™ ),
With the Fourier transform of the Green’s function defined by the expression
G, (r,r;w) = fer,.j(r,ro;r)ei“”

we obtain for the response of the system to a monochromatic perturbation the

following result:

(46) (A(r,0))=e "G (r,r;m)j,

11



Setting further

(47) (A(r,0))= A (r,w)e™™.

we finally arrive at the expression
(48) A (r,0)=G,(r,r;m)j(r,)

Note that so far in this section we have dropped the superscription on the

Green’s function.

Energy dissipation

According to the definition BS(#) = A,(r,)j;(t) the mean value of the energy

density of the system considered above is given by the expression
(49) £=-A,j
For the change in energy density we therefore have

(50) W=£= 'Aiji

Having assumed for j; a monochromatic oscillation, we write j, =——j.. This
—iw

relation together with eq.(48) thus yields for W the value
1. i .
(51) W=-Gjj, (ff,-) =-—GJjj
—iw w

Setting j,j, = jzéi]. and taking then the real part we obtain for the change in

energy density the result

1

(52) W= EImG,;‘jz =wImG; j*

Comparing with the energy dissipation per unit volume W = p;’ in a classical

resistor with resistivity p, we can consider ImG; as a measure for energy

dissipation in the present case.

12



Moreover we can interpret eq.(27) as a general relation between fluctuation and

dissipation in a given system.

13



The differential equations

Generally speaking, Green’s functions are a familiar tool for solving differential
equations. In the present case the differential equation that has to be solved is

deduced from Maxwell’s equation

(53) VxB=_[c 7B, d
c at g,

with ¢ the dielectric constant.

Considering Fourier components we replace % by —iwE so that with E =iwA

and B=V xA we have

o’ 1 .
(54) VxVxA=—¢cA+——]j
c c’g,

Since in Maxwell’s equations field variables enter only with their average values,
we can now use the expression of eq.(48) for the vector potential. Integrating

this expression over the entire space where j(r,) is present, we write
(55) A,(r,0)= [Gy(wr.r,)jr)d’
Using the relation VxVxA=V(V*A)-AA we further write

w’ 1,
(56) V(V*A)-AA-—cA-——]
c c’e,

Introducing components x, of r and j; of j (recalling that throughout this

treatise we apply Einstein’s summation prescription) we have

VoA:iAk

X,
and eq.(56) becomes

J 4 w* 1
57 — — A —-AA ——¢cA =- j
(57) dx, dx, ¢ T g, %

14



Setting A; = 8y;A this equation takes the form

J 4 w’ 1
58 ———A§,. - 85. A =——m0j
( ) {&Xi 07)Ck ki 2 kz} k C2€0 Jz

Substituting now for A the result of eq.(55) we obtain

59 [ {———Aékl 22 gak,.}ij(w;r,ro)jj(ro)d%o=— ji(r)

k 0

This equation is satisfied if the following relation is fullfilled:

w’ 1
(60) {g&——Aék, 2 eék,}ij(w;r,r0)=—2—806[./.5(1'—1'0)

Note that this can immediately verified by introducing the latter expression into

eq.(59).

With eq. (60) we recover the usual form of a Green’s function’s differential
equation characterized by the fact that the external perturbation is no longer

contained in it.

We shall now proceed to solving tis differential equation. In order to simplify
matters we shall restrict ourselves to the case of an infinite medium. Clearly in

this case the Green’s function will only depend on the difference x=r-r, and
eq.(60) can be written as follows:

2
(61) {ii_Aakz 2 gékl}ij(CU;X) = _ZL(S(S(X)
C €

y
ox; dx, o

As a first step we introduce Fourier transformed quantities defined by the

relations
(62a) G,(w;x)= [G,(w;k)e**dk

1 ikex

62b) 4(x) = d’k
(62b) o(x) 2

15



Substituting these expressions into eq.(61) transforms this differential equation

into the following set of algebraic equations:

1 1
Qu)* c’g, "’

(63) (kk; —k*8, —K°8,)Gy(w;k) =

where we have set

2
(64) L e=—.
C

The solution of these equations can be found by means of the trial expression

G, =Ad,; + Bkk; .

Substituting this relation into eq.(63) and summing over the index k yields for

the unknown coefficients the equation

1 1
Qn)’ c’e, !

(A-Bic?)kk, - A(K* +K%)8, =

with the result

S a1
Q) e, kX +K* Qn) k*\c’e, k¥ +x°

Hence the solution of the set of eq.’s(63) is given by the expression

kK.
(65) G (w:k)=- L ! (5kj+kf)

Qn) c’e, kX +x° K’

Naturally, in order to obtain the electromagnetic field variables from this

intermediate solution, its inverse Fourier transform has first to be taken.

16



Thermal radiation

As an example of application of the above concepts we shall now derive the
frequency distribution spectrum of thermal radiation. In that case the quantity of
interest is the trace of the field correlation matrix of eq.(30). According to

eq.(31) itinvolves the trace of the Green'’s function, with the additional condition

that their values are taken at r —r, i.e. at x — 0.The easiest way to reach this

goal is to take first the trace in k - space and afterwards perform a
transformation to x - space. The first step therefore consists in operating a

contraction in eq.(65) with the result

66) G (k- L 1 [3,F
S Qr) e, kK +x° | K

Rearranging this expression we write

1 1 1 1
67) G, (w;k)=- +—
(67) G (w:k) Qr) c’e, (k2 +K° Kz)

Transforming into x - space by means of the defining relation
(68) G, (w;x)= kak (w;k)eik°xd3k

we obtain

1 1 1 ; 1
69) G, (w;x)=- ™k + —8(x
(69) Gulw:x) c’e, (27r)3fk2+1(2 K> ®)

where the rule feik"‘dBk =(27)’8(x) has been used.

In order to evaluate the integral inside the parenthesis we introduce polar

coordinates through the relations kex = kxcos® ; d’k = 2wksinkd9dk and

write

2 .4

dk [ ™" sin®d ¥
K +x’ ‘Of

1 e h
fk2+K2ek d3k=2n_{

Performing the integration over 1 we thus arrive at the expression

17



1 4 4+ k
70 Mk =— sin(kx)dk
( )fk2+1(2 x‘{kzﬂcz (k)

The integral that is left has the value

k
kK +x?

71 [ sin(kx)dk = Le™ ; Rex >0
) 2
At this point a difficulty arises if the medium considered is the vacuum. As

indicated above, the value given by eq.(71) implies the additional condition

Rex >0.Now from eq.(64) it follows that in vacuum with ¢ =1 we have k = i
C

and hence Rex =0.This problem can however be circumvented by assuming
that a positive infinitesimal quantity has been added to « inside the integrant but
does not appear on the r.h.s. of eq.(71). We thus finally obtain

2% i

1 ke
- 2ethd3k=_e ¢
k™ +x X

(72) [

Substituting this result into eq.(69) and taking the imaginary part we arrive at

the expression

(73) ImG,j}c(cu;x)zzL ! lsin(gx)

wce, x  \c

where we have added the superscript A to recall that so far the vector potential
is the relevant parameter. The frequency distribution of the thermal radiation is
found from the fluctuation-dissipation theorem, (31) and the subsequent remark,
which has to be applied in the form

Phw

(74) ®F =hw’ coth(e2)ImGkk (w;r,r)

This notation indicates that in eq.(73) the limit x — 0 has to be taken. Thus we

find in the end

; pho
(75) @f =L © coth(e 2 ) .
2w c’g,

18



Using further the identity

=2—+
1—e P 2 e

-phw
coth Phw _1+e 2(1 1 )

we recover Planck’s radiation law with in addition a term corresponding to the
famous zero-point energy. This awkward term, which gives rise to an infinite
energy if it is summed over all frequencies, has been commented in textbooks in
various ways. Here we mention only that it is the origin of e.g. the Casimir force,
a force between parallel and perfectly conducting plates in vacuum. This effect,
predicted by Casimir in 1947 has been widely discussed since (Schuller and

Savalle 2011).
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APPENDIX

A useful integral formula

We consider a function of the type
(A1) G(n)=F(1)O()

with F(t) a well behaved function and ©(¢) the Heaviside step function. We define

the Fourier transform of G(t) by the relation
(A2) G@)= [diG()e" = [ diF ()"
- 0
Introducing the Fourier transform
(A3) F(o)= [diF (1"
we invert this relation and express F(t) in the form
(A4) F(¢)=$zdw'F(w')e‘f“’"

Substituting this expression into the r.h.s. of eq.(A2) and inserting a convergence

factor ¢ we find

1 ¢ T Titw-o)- 1 e 1
A5) G(w)=— [dw'F(w") [de"™"™" = — [do'——— F (o'
(45) G(@) 2Jr_‘£ ( )‘Of 2777_’£ -i(w-w")+n (@)

Using for the limit 7 — 0" the well-known expression involving a delta function

and a principal value

, ! = : — — g0(w—-w')+iP
—i(lw-w)+n w-w'+in w-w'

we arrive at the following final result:

21



F(w")

1 iR
(A6) G(a))=5F(a))+EP_fda) —

©



