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LE MODELE EN COUCHES

(vers une description unifiée de la structure nucléaire ) 1

Alfredo Poves

Departamento de Fisica Tedrica, Universidad Auténoma
Cantoblanco, 28049-Madrid (Esparia)

RESUME.

Nous présentons dans ce cours les fondements du modale en couches sphérique, que 'on
traite comme une approximation & la solution du probléme séculaire complet. Nous in-
troduisons les notions d’espace de valence, d’interaction effective et d’opérateur effectif.
Nous analysons la structure des interactions effectives réalistes et nous associons |a partie
monopolaire de celles-ci avec le champ moyen sphérique. Le hamiltonien multipolaire est
ramené a une forme universelle et simple contenant appariement (isoscalaire et isovecto-
riel), quadrupole, octupole, hexadecapole et (o-7) (¢ - 7). Les méthodes de résolution du
probleme séculaire sont décrites, en particulier la méthode de Lanczos. Nous appliquons
le modéle & la description de la déformation nucléaire et nous le mettons en rapport
avec les théories du champs moyen déformé. Nous proposons une nouvelle symétrie,
“quasi”-SU3, pour aborder la déformation en base sphérique. Finalement nous étudions
les noyaux trés éloignés de la vallée de stablité 4 en particulier en ce qui concerne la dis-
parition de quelques unes des fermetures magiques que nous expliquons en termes d’états
intrus.

ABSTRACT

In this series of lectures we present the foundations of the spherical shell model that we
treat as an approximation to the exact solution of the full secular problem. We introduce
the notions of valence space, effective interaction and effective operator. We analyse the
structure of the realistic effective interactions, identifying their monopole part with the
spherical mean field. The multipole hamiltonian is shown to have a universal (simple)
form that includes pairing (isovector and isoscalar), quadrupole, octupole, hexadecapole
and (o-7) (o-7). We describe the methods of resolution of the secular problem, in partic-
ular the Lanczos method. The model is applied to the description of nuclear deformation
and its relationship with the deformed mean field theories is studied. We propose a new
simmetry, “quasi”’-SU3, to understand deformation in the spherical basis. Finally we dis-
cuss the domain of nuclei very far from the valley of § stability, adressing the vanishing
of some magic closures that can be explained in terms of intruder states.

'Lectures given at the Ecole Internationale Joliot-Curie, “Structure nucleaire: Un nouvel horizon”,
September 1997,
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SUMMARY

1.- Introduction
2.- Basic notions of the Spherical Shell Model.

The nucleus as a system of non-(explicitely)-relativistic nucleons. The nucleon-
nucleon interaction. The independent particle model and the nuclear mean
field. Regularizability of the nucleon-nucleon interaction in the nuclear medium.
G-matrices and density dependence. The mean field as a basis for the occupa-
tion number space (Fock-space). Valence spaces; the secular problem. Exam-
ples of shell model valence spaces. The effective nuclear interaction written
in second quantization formalism in jj coupling.

3.- Realistic effective interactions.

Monopole and multipole hamiltonians. The separation theorem. The monopole
hamiltonian and the spherical mean field. Explicit expressions for the isoscalar
and isovector monopole hamiltonian. What is right and what is wrong in the
realistic effective interactions and how to cure it. An application; the quasi-
particle gaps of “*Ca and °*Ni. Randomness and coherence in the multipole
hamiltonian.

4.- The solution of the secular problem.

How to choose the basis; coupling schemes (m-scheme, JJ, quasi-spin, etc}
and truncations. The Lanczos method. Whitehead’s prescription for the cal-
culation of strength functions. Shell Model Monte Carlo. Some spectroscopic
results in the pf shell.

5.- Spherical Shell Model and deformation.

Rotors around A=48. Comparison of mean field and shell model results.
Alignment and back-bending. A word on neutron-proton pairing. The limit
of strong spin-orbit; Quasi-SU3 and Pseudo-SU3.

6.- Nuclei far from stability.

Magic numbers {Shell closures) far from stability; do they stand? The reduc-
tion of the shell gaps and the role of correlations. Intruder states. From **Mg
to ¥Mg. N=20 and N=28 in very heutron rich isotopes. The N=Z line. The
region of deformation around N=7Z=40.

7 - Conclusions.
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1. INTRODUCTION

The nuclear shell model has been often considered to be of application only to those
nuclear manifestations in which the single particle degrees of freedom are dominant. That
in spite of the work of Elliott (1], already 40 years old, that demonstrated the possibility of
explaining deformation in light nuclei using the SU3 properties of the quadrupole nuclear
force in an harmonic oscillator basis. In recent times the advent of new computers and
shell model codes has given access to new mass regions where collectivity shows up in a
more conspicous way, and the spherical shell model approach has proven to be able of
coping with the new challenges, either close or far from the valley of stability, giving a
unified description of the single particle and collective degrees of freedom of the nucleus.
In this lectures we plan to guide the reader from the very basic starting points of the
shell model description of nuclei to some of the latest applications. Our aim is to keep
while possible the contact with the underlying free nucleon-nucleon interaction and when
the link has to be broken to try to understand why. Many books exist that can serve as
introduction to the subject, but we shall quote only the more recent or those that fully
develop the mathematical formalism of the theory [2]. The last complete review of the
shell model approach to nuclei is due to B. A. Brown and B. H. Wildenthal [3]

The original aspects of this presentation come from a long lasting collaboration with
Etienne Caurier and Andres Zuker (Ires, Strasbourg), Joaquin Retamosa (UCM, Madrid),
Frederic Nowacki (IPT, Strasbourg) and Gabriel Martinez-Pinedo (Caltech). Although
adressed to a very different audience, there are two recent conference reports by A. Zuker
that in some cases overlap and in others complement these notes [4].

2. BASIC NOTIONS OF THE SPHERICAL SHELL MODEL

We shall consider the nucleus as composed of Z protons and N neutrons, that interact
via two-body forces and obey a non-relativistic (Schrodinger) equation. Therefore we will
not consider explicitely meson or quark degrees of freedom nor shall we use relativistic
kinematics. Recent advances in the relativistic mean field description of nuclei based on
meson exchanges have shown that the main advantages of such an approach are that
it accomodates the spin orbit interaction in a natural way, suggesting —perhaps— that
its isospin dependence is different from what is assumed in the non-relativistic effective
forces and that it provides a saturation mechanism for nuclear matter (see J. Mathiot’s
lectures in this volume). Many relativistic aspects are actually incorporated in the non
relativistic approach via the nucleon-nucleon interaction in the vacuum that contains
many terms of relativistic origin (spin-orbit, tensor etc). The problem of saturation can
be solved in the non-relativistic approach by introducing three-body forces. In mean field
effective interactions, density dependent terms take care of saturation. In the shell model
approach the size of the underlying mean field potential is adapted to the size of the
nucleus, although some problems originating in the regularization of the nucleon-nucleon
interaction may show up in the spectroscopic calculations too.

The starting point is the nucleon-nucleon interaction Vyy. As it corresponds to a
derived interaction it is not simple. It contains all kinds of terms, central, spin-orbit,
tensor, spin-spin etc. At long distances it has a Yukawa form, while at short distances
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it shows an extremely repulsive core. The short range repulsion is at the origin of most
of the theoretical and technical problems that the nuclear many-body theories have to
solve. Actually, the very idea of a shell model for the nucleus may seem contradictory
with this strong correlation because it rudely breaks the independent particle picture.
However, very early, experimental evidence of a shell model like behaviour was available -
magic numbers, single particle energies, magnetic moments et¢ — that led to the empirical
construction of the nuclear mean field, a surface corrected harmonic oscillator, whose main
novelty was the very strong spin-orbit splitting needed to explain the experimental magic
numbers.

V(r) = %mwzr2 +Dl?+Cl-§

‘The success of the independent particle model implies that the bare nucleon-nucleon
interaction can be regularized in the nuclear medium. Therefore an effective interaction
can be found such that

Heff ‘I’eff = Hbare lI’q:mr-reiated

This effective interaction can be aimed to be used in mean field calculations along the
periodic table and then it has to incorporate density dependent terms or for configuration
mixing calculations, in this case its comes under the name of G-matrix. The main problem
of the regularization procedures based on Brueckner theory is that they fail to reproduce
the saturation point of nuclear matter (the Coester line problem). This is something to
be recalled when using realistic G-matrices.

The use of a regularized interaction implies that what we are dealing with in a shell
model description are quasiparticles in Landau’s sense. This will show up in observables
such as spectroscopic factors in (d,p) or (e, e’ p) reactions, Gamow-Teller strengths or
partial shell occupancies as measured by electron scattering (the best know being the
3s1/2 orbit in lead isotopes). For a fully updated and accesible discussion of these points
see ref [5] and J. P. Blaizot’s lectures in this volume.

Once we adopt a regularized interaction that is compatible with the experimental
mean field (magic numbers) we can proceed using the spherical mean field orbits as
the basis for the occupation number space (Fock space). We have states i, j, k, ...
with energies ¢, €;, €, ... that bunch in shells and give rise to magic numbers when the
energy difference between them is large enough. The relevant operators create or anhilate
a particle in a generic state “i” and second quantization formalism appears as the natural
one.

A “formal” solution to the A-body problem can be sketched as follows:

i} We start by choosing a single particle basis, o} [0,

ii) then, we build the A-particle wavefunctions,

aii ... at 0> = ¢o >

iii) in terms of which, the physical states are expressed as:
| >=3%, Ca| da >

iv) The solution of the secular problem
H|&>=E|d>

v) is given by the eigenvalues and eigenvectors of the matrix
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< ¢o | Hepy | b >

What we call spherical shell model description is an approrimation to this formal
solution, using a finite number of many-particle states. The many-particle wavefunctions
must have the quantum numbers associated to the symmetries of the Hamiltonian

¥(J,T)*(N, 2)

The effective interaction H.;; can be written in j 7 coupling as:

Z ti + Z W;—Ekz(ﬂ?a}r)r(akaz)r

7kl
with I' representing the pair J,T and WE,, =< ij(JT)|V.s; |kl(JT) >

The spherical mean field provides a basis and a zeroth order view of the nuclear
dynamics. The regularized interaction is two-body and will govern the detailed behaviour
of nuclei. For the mean field picture to have a sense, we expect that it will survive to
the incorporation of the full interaction, at least in most of the cases, in other words,
the separation between major shells will not collapse when the interaction is switched
on. These constraints define the natural valence space (set of orbits) for a given class of
nuclear properties. Let’s be more precise on this point. For a given nucleus (N,Z) the
mean field dictates which states are occupied (those below the Fermi level} and which
are empty (those above). But other states can be close enough in energy or have such
an structure that the residual two-body interaction can mix all of them and produce
correlated states, deformed, superfluid or whatever. Therefore, the infinite set of mean
field orbits will be divided in three parts:

a) Inert core, the orbits that are forced to be always full. Imagine that
the core consists of N, neutrons and Z. protons, thus if we are studying
a nucleus (N,Z) there will remain n,=N-N, valence neutrons and Zo=2—Z¢
valence protons.

b} Valence space, the orbits available to the valence particles, that will
partially occupy them according to the dictates of the effective interaction.

¢) External space, the remaining orbits that are always empty .

It is the task of the theory to find the valence spaces that contain the relevant degrees
of freedom for a given problem as demanded by the effective interaction. In figure 1.
we have sketched the spherical mean field at the stability valley for A<100. The safer
valence spaces for shell model calculation are those comprised between magic closures.
We shall examine several typical ones and see which properties they can accomodate and
which not.

p-shell [1p3/2,1p1/2]. Calculations in this valence space can describe the
behaviour of nuclei with 2<N,Z<8 ( only positive/negative parity states in
even/odd nuclei).

sd-shell [1d5/2,251/2,1d3/2]. Positive parity states of nuclei 8<N,Z<20.

pf-shell [1f7/2,2p3/2,2p1/2,1f5/2]. Although this valence space would natu-
raly cover nuclei with 20<N,Z<40, the strong spin orbit term of the spherical
mean field breaks the harmonic oscillator ordering and beyond N,Z=32 the
orbit 1g9/2 has to be explicitely included.
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(6) 2d,, .
(10) 19, [50]
{6) H

@ 2p

4) 2p,.

®) - 1, [28]
) td,, [20]
o)) 25,

{©) 1d,,

) P (8
“4) tp,,

) 18, " [2]

n v

Figure 1: The spherical mean field close to the stability fo A<100

It is evident -that doubly magic nuclei and their neighbours play a central role in this
description. At the same time, in these valence spaces, they are represented by a single
Slater determinant and if we were aiming to a description of their excited sates, another
valence space containing orbits from two major shells had to be chosen. As an exam-
ple, the first and second excited states of 10 a 3~ (octupole vibration) and a 0% (head
of a deformed rotational band) at around 6 MeV excitation energy can be described in
the valence space [1p1/2,1d5/2,251/2] [6]. When the valence space allows for excitations
into different major oscillator shells, one has to pay attention to the appearance of spu-
rious states of the center of mass, kind of very disturbing guests that may destroy the
calculation if not under full control.

Far from stability or for heavy nuclei, the proton and neutron valence spaces may
have no common orbits. For instance for the very neutron rich (N>20) Al Si, P, S, Cl,
and Ar isotopes, a reasonable valence space is the sd-shell for the protons and the pf-shell
for the neutrons.

The rapid increase in the size of the basis limits the number of orbits that can be
active. Notice that for a number of valence particles n,, z, the number of different
Slater deteminants that can be built in a given valence space goes as the product of the
combinatorial numbers made with the degeneracy of the space and the number of active
particles. This gives

(o) () (2)-02) 62)- ()

for the p, sd and pf shells respectively. Therefore there will always be properties excluded
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from the description, as for instance negative parity states in an sd-shell calculation.
Giant resonances would demand at least, two contiguous major shells in the valence space
which is not usually the case. Only spin-like giant resonances —magnetic dipole and
Gamow-Teller- are naturally contained in 0Aw valence spaces. Clustering phenomena
can be tagged in simple shell model calculations but again the full spatial correlation will
demand huge valence spaces.

An example. We want to study the low energy spectrum of '2C. We limit ourselves
to positive parity states. The natural valence space is therefore the p-shell and we have an
“alpha particle” core. The number of active particles is four protons and four neutrons.
The two orbits of the p-shell are 1p3/2 and 1p1/2. The interaction is defined by the
single particle energies of these two orbits in A=5, that we can extract from experiment,
and 15 two body matrix elements < 15(J7T)|Vess|kI(JT) >, where ijkl may be any of the
two orbits above. For instance if ¢ = j = k ={ = 1p3/2, JT can take the values 01,10,21
and 30.

Let’s focuss now in the 0% T=0 states of 12C (these are the experimental quantum
numbers of the ground state, but the same procedure holds for any other values of the
total angular momentum and isospin). We can build such an state in five diffent ways cor-
responding to different particle distributions among the shells and different intermediate
angular momentum and isospin couplings.

1.- (1p3/2)® (J=0,T=0) (1p1/2)° (J=0,T=0)
2.- (1p3/2)® (J=0,T=1) (1p1/2)? (J=0,T=1)
3.- (1p3/2)° (J=1,T=0) (1p1/2)? (J=1,T=0)
4.- (1p3/2)° (J=1/2,T=1/2) (1p1/2)* (J=1/2,T=1/2)
5.- (1p3/2)* (3=0,T=0) (1p1/2)* (J=0,T=0)

After that we compute the matrix of the Hamiltonian in this basis (better if you
have a code to do all the angular momentum algebra cfp’s etc), diagonalize and obtain
eigenvalues and eigenvectors. Once this done for all the JT pairs you can draw the
theoretical level scheme. With the wave functions you can compute the diagonal matrix
elements of one body operators that give magnetic moments and quadrupole moments or
the off diagonals whose squares represent the electromagnetic (or weak) reduced transition
probabilities. Occupation numbers, spectroscopic factors and many other observables can
also be obtained.

We have said nothing yet about the precise effective interaction to be used in the
calculation. One way to proceed, that has been frequently used, is to determine empiricaly
the two body matrix elements from a fit to selected energy levels (and in some, rare, cases
also to transitions). For the p- shell this was done by Cohen and Kurath [7] while for the
sd-shell there are different fits by Wildenthal {8]. Another is to try to keep as close as
possible to realistic G-matrices. However, in this approach the empirical evidence is that
some averages of matrix elements, actually those that associated to extensive operators
as particle number or isospin are not well predicted in any G-matrix and have to be
phenomenologically corrected. This kind of approach is dicussed in detail in 9] and will
be the subject of the next section.
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3. REALISTIC EFFECTIVE INTERACTIONS

In this section we shall follow closely the work of M. Dufour and A. Zuker [10]. Their
starting point is the so called separation theorem that states:

The effective interaction can be split in two parts: H = H,,(monopole) + Hp(multipole)
where H,, contains all the terms that are affected by spherical Hartree-Fock variation
and that, by this fact, are responsible for global saturation properties and spherical single
particle behaviour.

It has been shown in [10] that the monopole hamiltonian can be written as:

3nr
= sp"‘Z{ é-rs)arsnr( rs)+ brs (T T~ 4 rs)}-

H,p is the single particle term generated by the core orbits, the a and & coefficients are
defined in terms of the centroids

1! T — K‘z?s [J]

ZJ[J]

as: ap, = {(3VL +V2), by, = V1 — V2, and the sums run over Pauli allowed values.

This Hamiltonian gives the full energy when applied to closed shells and closed shelis
plus or minus a particle. In other words it determines the evolution of the single particle
fields inside the model space. As commented before it is at this point that the defaults of
the realistic G-matrices —probably related to their bad saturation properties- show up.
Lets develop an example in the pf-shell. Starting with the experimental single particle
energies of *'Ca and the G-matrix obtained by Kuo and Brown [11] it is possible to obtain
the quasiparticle gap around **Ca and %®Ni in terms of the single particle energies and

the centroids defined above, using the expressions:

A(*Ca) = —2B.(*Ca) + B.(**Ca) + B.("Ca) = ¢, — &/ + 8V}, - TV},

3
A(P*Ni) = ~2B,(Ni) + B.(*"Ni) + B.(**Ni) = ¢, — ¢, + 16a;, — 150;; + b

The resulits for the KB interaction are:

A(*Ca) = 2.06 MeV and A(®N3i) = 3.42 MeV
while the experimental numbers are:

A(8Ca) = 4.81 MeV and A(®Ni) = 6.39 MeV
similar numbers are obtained for the other G-matrices available. All of them give too
much attraction between filled and empty shells reducing dangerously the gaps and driv-
ing the calculations to collapse. A very spectacular consequence of this unphysical reduc-
tion of the gap is that in a full pf shell calculation for % N using KB, the ground state,
instead of a closed shell is a 4-particles 4-holes state, with deformation B = 0.3, head of
a rotational band.

In order to restore the correct physical picture, the T=1 centroids of the interaction
between the 1f7/2 orbit and all the others have to be made more repulsive of about 300
keV. Once this done the agreement with the large body of experimental data becomes
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excellent. As a conclusion, a necessary condition for good shell model speciroscopy is to
have a good spherical mean field. We will see later that if realistic G-matrices are used,
it 1s also sufficient.

‘The multipole Hamiltonian Hy, is what is left of H when it has been made monopole
free. We expect it to contain pairing plus quadrupole, plus surely other terms. But whose
are they? and how many?, can we expect to unveil some hidden simplicity out of the
shell model interactions, that usually appear as long strings of numbers?

Lets start writing Hys in two different ways:

— r +
HM = Z WrstuZ,_sr . ZtuI‘a or
r<s t<u,I’

12(1 4 B )12
4

Hy = ¥ pyetitée)

retul’

“u:tsu(S:tSs-ru)()’

where Z[! is the coupled product of two creation operators and S” the coupled product
of one creation and one anhilation operator (see [10] for their precise definition). The
matrix elements are related through,

w:m:Z(—r“-'f-P{ ros T }w:;mm,

T w by

uw € vy

I'Vr[;tu — Z(_)Ht—"r—r{ r s I }wr?tsu[’”'
v

Replacing pairs by single indeces rs = z, tu = v, 7t = a and su = b in the above
equations, we bring the matrices W], and fJ = wzb\/(l +drs)(1 + 6i) /4, to diagonal
form through unitary transformations UL, , u],:

UT'WU =E—= W[, = ULULE{
[

“1p _ v YT LY
v fu=e=> f} = Zuakubkek,
K
and then,

Hy = ZE{EU;Z} ) Z UJkaF:
kI T v

0
Hy=Y¢ (Z WSy uzks:) ]2,
kv a b

which we call the E and e representations.

For the diagonalizations the KLS force [12] in two contiguous major shells was used be-
cause the matrix elements were easily generated, but no difference with other G-matrices
is to be expected. For the E representation the density of eigenvalues is asymmetric with
a long tail to the left, which is what to expect of an attractive force. For the e represen-
tation the result is shown in Fig. 2. When the contributions to Hys of the five largest
peaks (in absolute value) are eliminated, the F histogram in Fig. 3 becames symmetric,
the residual skewness being associated with the three isolated peaks. French and Mon
[13} have shown that a symmetric £ distribution is all that is needed to characterize a
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Figure 2: e-eigenvalue density for the KLS interaction in the pf+sdg major shells. The
largest ones are shown by arrows.

random Hamiltonian. Therefore, we conclude that the five peaks extracted from the e
distribution, plus the three big ones left in the E distribution design the candidates to a
realistic collective Hamiltonian.

The rewarding aspect of this decomposition is that, not only the multipole hamiltonian
can be reduced to a few terms, besides, these terms are simple ( pairing is L=0 LS pairing,
quadrupole is Elliott quadrupole v =11 is o1 - 07 etc ) and universal in a double sense;
they are nearly equal for all different effective interactions and their mass dependence is
well undestood.

4. THE SOLUTION OF THE SECULAR PROBLEM

In large scale shell model calculations the strategy to build and diagonalize the secular
matrix is a major issue. First one has to decide in which coupling scheme to work.
The simplest one is the so called m — scheme, whose basis is formed by all the Slater
determinants contained in the valence space. It has the advantage of eliminating all
Racah algebra, cfps, etc. The inconvenient is that the full dimension of the basis has
to be carried on. The other choice is to implement “a priort” the symmetries of the
Hamiltonian in the construction of the many particle basis. The full matrix is then
divided in blocks and for each ensemble of values of the pertinent quantum numbers
the dimensions are smaller. This approach is called “coupled scheme”. The drawback
is that the computational simplicity of the m-scheme gets lost. Usually only the exact
quantum numbers JT are explicitely shown, however, approximate symmetries can be

implemented, for instance seniority, that can make truncation procedures much more
efficient.
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Figure 3: E-eigenvalue density for the KLS interaction in the pf+sdg major shells fiw = 9,
after removal of the five largest multipole contributions. The largest ones are shown by
arrows.

In order to obtain the relevant eigenvalues and eigenvectors two routes are available,
either to build the full matrix and proceed by direct diagonalization or to use other
methods as Lanczos’ to obtain a part of the spectrum. For very large matrices the
direct diagonalization approach is excluded due to computer size limitations, so we will
concentrate in the Lanczos method. Let’s mention however one of the first modern shell
model codes, the Rochester Oak-Rigde MULTISHELL, a coupled, direct diagonalization
code, based on the formalism of B. French [14]. Most of the present expertise in m-scheme
Lanczos shell model codes has its roots in the Glasgow code made by Whitehead and
collaborators [15].

In the Lanczos method the following iteration procedure is used:

- A starting vector {“pivot”) is taken in the space. It can be chosen at
random, be an approximation to the solution, a doorway etc. The choice of
pivot influences the convergence properties of the procedure, but not the final
results.

— Denoting the pivot as |0 > we construct |1 >= [H-< 0JH|0 >]|0 > and
normalize it to obtain |T >. This is the second state of the Lanczos basis and
we can already build a 2x2 matrix whose cigenvalues are approximations to
the exact ones.

- We continue adding vectors to the basis
H|T >= Hy, |0 >+ H11|-1- >+ H21|§ >

— By construction at iteration N we have a tridiagonal N-dimensional matrix.
The process has variational properties and the convergence for the lowest
eigenvalues is very efficient.
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Furthermore, the Lanczos method may be used to compute global properties of the
spectra, even if approximate, via the calculation of strength distributions. The idea, due
to Whitehead [16] is very simple. Suppose the ground state |G > of a given nucleus
has been obtained by the conventional Lanczos method. Let O* denote the multipole
operator we are interested in. Acting with 2* on |G > we obtain the sum rule state (or
the doorway). It is not a physical state if H do not comimute with the multipole operator,
but its norm is the sum rule or equivalently the total strength of the multipole operator
in the ground state of the nucleus. Lets call its normalized version |A > and develop it
in energy eigenstates as:

A >= =Y S(E)|E >
E

[~

where
N?=%"SYE)
E
and S%(E) is the strength function. The equality
1 Tl
< AJHPIA >= o \L;:SQ(E)E

shows that, taking |A > as the pivot, each Lanzos iteration brings in the expectation
value of two new powers of H on |A >, therefore after N iterations we have 2N moments
of the strength function S*(E). Diagonalizing the Lanczos matrix after N iterations, the
overlaps of the eigenvectors with {A > give an approximation to S?(F) which has the
same lowest 2N moments. In other words, one starts with a single peak that contains
all the strength located at the centroid. Iteration after iteration it goes on fragmenting
until the number of iterations equals the dimension of the basis. However, for a relatively
small number of iterations we should have already a very good understanding of the
global behaviour of the strength.

In figure 4. we give one example of this method in the case of the Gamow Teller
strength function of ¥Ca. We went to 700 iterations (the number of 1t T=3 states in
8S¢ being 8590) and smoothed the peaks with gaussians of the experimental width to
compare with the results of (p, n) experiments. Beyond the agreement and other matters,
as the spreading of the experimental strength compared with the calculated one in the
high energy region, due to the mixing with configurations outside the space, this is an
illustration of the ability of the shell model approach to describe resonances in large
valence spaces.

The problem of the size of the shell model spaces has motivated other —approximate—
ways of solving the secular problem. The first one is the Shell Model Monte Carlo method,
(sec ref. [17] for a complete review) that treats the problem statistically introducing a
partition function e® where 3 is the inverse of the temperature. The problem involving
two body propagation is amenable to a superposition of one body propagations by using
the Hubbard-Stratonevich transformation. The multidimensional integrals are then eval-
uated by Monte Carlo sampling. The advantage of the method is that, as the problem
remains essentially that of one body dynamics, the dimensions of the basis are tractable.
However the method demands many different extrapolations: first in temperature (T—0),
and then in some parameters added to the interaction in order to overcome the sign prob-
lem of the realistic interactions. It suffers also of limitations in the treatment of excited
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Figure 4: **Ca (p,n) *¥Sc cross section compared with the calculated Gamow Teller
strength function using the Lanczos methaod

states because the cooling selects naturally the ground state. One final remark is that
the method is very well suited to study finite temperature properties with the caveat,
common to every shell model approach, that beyond some excitation energy the valence
space will run out of states and the description will be unphysical.

Recently the same type of approach using the partition functions and Monte Carlo
techniques has been applied in a quite different way in ref [18]. These techniques are used
to sample the Hilbert space searching for an optimal, hopefully small, basis in which
to diagonalize the full hamiltonian (Quantum Monte Chrlo Diagonalization Method).
The starting basis vectors are mean field solutions that break the symmetries, therefore
projections have to be enforced and the method ressembles to the GCM used since long
in other contexts.

Some sﬁectroscopic results in the pf-shell

In the last years it has been possible to tackle the shell model description of nuclei
in the pf shell using the m — scheme code ANTOINE written by E. Caurier and a
realistic effective interaction (KB3) obtained from the Kuo-Brown G-matrix [11] with
the necessary monopole corrections (19] in line with what we have already discussed. The
results are fully satisfactory and we shall only present here a couple of level schemes and
a few tables that give an idea of the quality of the description. For a complete discussion
of the pf shell see refs. {20, 21, 22, 23, 24].

In figures 5 and 6 the theoretical predictions are compared with the experimental
results in the odd-odd nucleus *V and in the even-odd **V in both cases the agreement
is excellent for the low spins and also for the high spin states. These are representative
of the type of agreement obtained in all the cases studied

In tables 1,2 and 3 we have selected some electromagnetic and weak observables, mag-
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Table 1: Dipole magnetic moments and quadrupole electric moments of the 4 = 49

isobars.

Nucleus State it (1n) Q (e fm?)
Expt. Theor. Expt. Theor.
¥Ca 3/27 (g.s.) —~1.38(6) —1.46 ~3.95
. 98e 7/27 (gs.) 5.38 -19.3

AT 7/27 (gs.) —-1.10417(1) -1.12 24(1) 22
Py 7/27 (g.s.) +4.47(5) 4.37 —11.1
3/27 (0.153) 2.37(12) 2.25 18.87

¥Cr 5/27 (gs.) +0.476(3)  —0.50 36.1
19/2~ (4.365) 7.4(12) 6.28 —3.43

9Mn 5/27 (g.s.) —3.24 36.4

Table 2: Experimental vs theoretical half-lives in the isobaric multiplets A=47 and A=49.

Nucleus Half-Life Fermi (%)
Expt. Theor. Expt. Theor.

Ca  4.336(3)d  420d
7S¢ 3.3492(6)d  3.794d
LAY 36.6(3)m  20.7Tm
Cr  500(15) ms 480 ms 787  76.1
TMn 65.2 ms 54.1
1TFe 18.7 ms 26
®Ca 8718(6)m 3.17m
98¢ 572(2) m 414 m
Wy 330(15) d 1088 d
9Cr 423(1) m 382 m
“Mn  382(7)ms 398ms 72 75
e 75(10) 55 ms 61 42
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Figure 7: Individual Gamow-Teller reduced transition probabilities in the pf-shell, ex-
periment vs. theory

netic and quadrupole moments and half-lives. In all cases the agreement with experiment
is very good and we can safely make predictions for other cases in which there are no
experimental measures.

Finally in figure 7 we have collected the Gamow-Teller matrix elements of many
individual 8 decays for A=41 to 52. Comparing with experiment an effective value for
the weak axial constant ga(eff)=0.74 g4(bare) is found. This result is consistent with
the value extracted from similar comparisons in the p and sd shells and point to an
asymptotic value of the renormalization of 0.7.
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5. SPHERICAL SHELL MODEL AND DEFORMATION

We have seen how successful can be the shell model description of nuclei, provided a
good valence space and a good effective interaction are used. We are therefore in solid
grounds to address the topic of the collective behaviour in nuclei. We shall proceed to
examine the following key questions:

— Can we describe rotational motion within the spherical shell model, beyond
the sd-cases to which Elliott’s SU3 is applicable?

- Which are the minimal valence spaces that contain the relevant degrees of
freedom?

— Is there anything like an intrinsic state in the shell model wavefunctions?

— How compares the (spherical) shell model description whith the (deformed)
mean field ones?

Some of these questions may sound rhetorical —and indeed they arel- but nonetheless
their proper answers do not belong yet to the nuclear physics “common knowledge”.

The pf-shell mass region could a very good place to study these aspects because full
0hw calculations are still feasible and the mass and the number of active particles in the
valence space make the link with heavy deformed nuclei much easier than in the very light
cases. That, provided deformation shows up. But this is actually the case, as it is seen in
figure 8 where the experimental level scheme of **Cr [25] is compared with the shell model
calculation [26]. Notice the rotor-like spectrum up to J=10 and the backbending at J=12,
reminiscent of the behaviour of heavier rotors. The E2 transition probabilities are fully
collective and follow the Bohr-Mottelson prescription for a rotor in the strong coupling
limit with a deformation 8=0.3 (see table 3 for the experimental data [27]). Therefore,
considering the nearly perfect agreement between experiment and theory in fig. 8 and
in table 3, we can claim that **Cr is good candidate for a rotor amenable to a spherical
shell model description. We want to be a bit more precise in our definition of a rotor
and for that we shall rely in three indicators; i) the yrast band follows approximately
a J(J+1) law, ii) the intrinsic quadrupole moment extracted from the B(E2) transition
probabilities is constant for the different yrast states, ii) the intrinsic quadrupole moment
extracted from the spectroscopic quadrupole moment is also constant for the yrast states
and equal to the one extracted from the B(E2). The connexion between intrinsic and
laboratory frame is made by the formulae [28]:

_(J+1)(27+3)
3K J(J+1)

Qo Qspec(J), for K#1

B(ELJ — J~9)= lﬁiﬁeﬂ(JK?OU C9K)PQR

(for I{ # 4,1)

For even-even nuclei this is about as far as we can go in deciding whether we are
faced with a good rotor or not. When a particle is added or removed, the collective
model description of its coupling to the rotor leads to some very precise predictions that
make the comparison with microscopic calculations more stringent in particular in what
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Figure 8: **Cr level scheme, experiment vs. theory
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Table 3: Quadrupole properties of the yrast band of “*Cr. B(E2) in e fm*, Q in e fin?.
The Qg values are extracted from the BE2's or the (spec as indicated

J B(E2)e; B(E2)w  Qu(B(E2)) Qo(Qupec) Qu[lf7/2, 2p3/2]

2 321(41) 298 107 103 104
4 330(100) 312 105 108 104
6 300(80) 311 100 99 103
8 220(60) 285 93 93 102
10 185(40) 201 77 52 98
12 170(25) 146 65 12 80
14 100(16) 115 55 13 50
16 37(6) 60 40 15 40

concerns magnetic properties. This analysis has been carried out in ref. [21] and we will
not discuss it here.

Table 3 contains the information we were after, as given by the calculations (we
use effective charges 1.5 for protons and 0.5 for neutrons). We have listed the B(E2)
values, and the intrinsic quadrupole moments extracted from those, Qo(B(E2)), or from
the spectroscopic quadrupole moments, Qo{Qspec). The requirements stated above are
fulfilled up to the backbending, therefore we can conclude that **Cr is a good rotor up
to J=10 where the backbending takes place. The intrinsic quadrupole moment that we
obtain corresponds to a deformation =0.3 as we had anticipated. Notice that all the
quadrupaole properties of the full pf-shell calculation are reproduced (and even enhanced)
if we reduce the valence space to the lowest two orbits, 1f7/2 and 2p3 /2 (fp space). These
results are shown in the last column of the table and give us the first hint on the minimal
valence spaces that can accomodate deformed nuclei. The yrast band in the reduced
space follows also the J(J+1) law although with a moment of inertia much larger than
the experimental one.

Once the existence of a well behaved rotor is established, we can move around and ask
ourselves what will happen if particles or holes are added to it. It has been shown in [21]
that the mirror pairs 7V-#"Cr and *Cr-**Mn closely follow the semiclasical picture of a
particle/hole strongly coupled to a rotor. When more particles or holes are added the
collective behaviour starts disappearing, nevertheles even for *Fe (the largest detailed
spectroscopic calculation ever made) a rotor like band appears at low spin and an yrast
trap at J=12%, both are accounted for in the shell model calculation [29]. Another
exemple is **Cr that was predicted to be a double backbender in [30], prediction confirmed
In a recent experiment [31] (see figure 9).

We have also the oportunity to compare the spherical shell model results with the
deformed mean field ones, more precisely with the Cranked Hartree Fock Bogolyuvov
calculations using the Gogny force {26]. The results for the yrast band are presented in
figure 10. At first glance one could conclude that the CHFB model is doing a rather
poor job in view of the discrepancies. However a closer look tell us that in fact all the
experimental trends are there except for a too large moment of inertia. Due to that
the CHFB E,'s are systematically smaller than the experimental ones. But, from our
discussion of the results in the reduced fp space, we are aware of the fact that the
quadrupole properties may be right and the moment of inertia wrong. We know also that
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the decoupling of the quadrupcle moment and the moment of inertia is a characteristic
feature of the SU3 model of Elliott. So we go on with the comparison and in figure 11
we show the CHFB results for the intrinsic deformation parameters § and v. We see
that up to the backbending the nucleus is axially deformed with a deformation close to
0.3 that decreases slowly with J (0.2 at J=10) in full agreement with the shell model
results. Beyond the backbending the deformation continues to decrease and there are
some excursions into triaxiallity that are difficult to recast in collective terms. A very nice
feature of the CHFB calculation is that it makes it possible to separate the contributions
to the quadrupole moment coming from the core and from the valence orbits. The result,
independent of J, is that both blocks contribute evenly, which is consistent with the
effective charges we use in the shell model calculation.

In figure 12 we compare the fractional occupancies of the valence orbits in the two
approaches. The similarities are striking and confirm the closeness of the wave functions
obtained in the different descriptions. We learn from the figure that in the zone of the
yrast band where the rigid rotor picture holds, the occupancy of the 2p3 /2 orbit is large
and constant. At the backbending, the decrease in deformation is correlated with its
decrease in occupation. Here again we have an indication of the role of the fp orbits
in the onset and offset of deformation. Actually, at high spin the configurations with
p particles are geometrically hindered and the quadrupole correlations cannot develop.
Another subtle difference is that the occupancy of the 1f5/2 orbit in the SM results is
larger that in the CHFB ones, indicating a stronger pairing mixing.

Pairing vs quadrupole has been one of the classical themes in nuclear physics for ages.
The advent of high spin physics and improven spectroscopic data in heavy Na~Z nuclei
has brought up again an old question; how does pairing evolve with angular momentum?
and then a new one; which is the role of proton neutron pairing close to N=Z7 We
shall examine these issues in what follows. To start with we select as our pairing T=0
and T=1 hamiltonians those extracted in ref. [10] from the realistic G-matrices (in this
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Figure 12: Fractional occupancies of the valence orbits in CHFB (upper panel) and SM
(lower panel)

reference the analytical expressions —eq. 2.6— and the numeric values of the two body
matrix elements —table - can be found). We keep their notation and call P! and P'°
the isovector and isoscalar L=0 pairing hamiltonians. In order to evaluate the effect of
pairing, we substract each pairing hamiltonian from KB3, make the calculations again
and compare the results with the original ones.

The first, aparently unexpected, result is that for the states below the backbending —
i.e. for those that can be viewed as proceeding of the same intrinsic, well deformed state—
the wave functions with or without pairing have the same structure. To be more precise,
their B(E2)’s and quadrupole moments are equal within a few percent and their overlaps
are always better than 95%. This means that pairing does not affect the quadrupole

properties that have somehow reached saturation in the deformed regime. This strongly
suggest that:

— The differences between the CHFB and the SM results must be due to the
deficiencies in the treatement of pairing in the mean field deseription.

— A calculation in the minimal valence space fp that reproduce the quadrupole
properties can recover the correct moment of inertia including pairing in first
order perturbation theory.

Having a look at figure 13, we realize that although the T=1 contribution almost
doubles the T=0 one at J=0, it decreases more rapidly with increasing J, and already
at J=6 they become comparable. At J=8 both reach a plateau and drop abruptly to
zero at the band termination. Consequently T=0 pairing has to be properly taken into
account when approaching N=Z. The same for the neutron proton part of T=1 pairing
that amounts to one fourth of the total. To include them is not a very difficult task
in the deformed regime, because, as we have just shown, perturbation theory will hold.
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We can now move to fig 14 where we compare the KB3 results with the results without
T=0 and without T=1 pairing, in a backbending plot. Remember that the KB3 results
and the experimental data are nearly indistinguishable. The efect of T=0 pairing is
to make a paralel displacement of the KB3 line; the backbending stays at the same J,
whereas the static moment of inertia is increased from the KB3 value 7.5 MeV~! to 10
MeV-!l. Althoug the distorsion of the E, plot above the backbending is stronger if we
take out the T=1 pairing, the same conclusions apply; backbending J unchanged, paralel
displacement and increase of the moment of inertia to 20 MeV~!. In view of these figures
we can conclude that the difference in moment of inertia between the CHFB and the
experiment is mostly due to the absence of neutron proton pairing in the Bogolyuvov
description.

The indications coming from the study of these deformed nuclei have been used in [32]
to investigate the symmetries underlying the development of rotational motion in nuclei.
As we mentioned at the begining, the SU3 model of Elliott gives a laboratory frame
description of nuclear deformation that is exact if the spherical mean field is the harmonic
oscillator without spin-orbit splitting and the two body interaction has a quadrupole-
quadrupole form. In this case SU3 commutes with the hamiltonian and rotational bands
appear that can be traced back algebraically to an intrinsic deformed state. Everything
we whished!!

Lets consider the quadrupole force alone, taken to act in the p-th oscillator shell. It will
tend to maximize the quadrupole moment, which means filling the lowest orbits obtained
by diagonalizing the operator Qy = 22® — z? — 2. Using the cartesian representation,
Qo = 2n, — n, — n,, we find eigenvalues 2p, 2p — 3,..., etc., as shown in the left panel
of Fig. 15, where spin has been included. By filling the orbits orderly we obtain the
intrinsic states for the lowest SU(3) representations: (A, 0) if all states are occupied up to
a given level and (A, i) otherwise. For instance: putting two neutrons and two protons in
the K = 1/2 level leads to the (4p,0) representation. For four neutrons and four protons,
the filling is not complete and we have the (triaxial) (8(p — 1),4) representation for which
we expect a low lying v band.

Next consider the influence of the spin-orbit splittting that will separate the subshells
into two Aj = 2 groups. For even p we have the sequences j= p+ 1/2...1/2 below and
7= 3/2 ...p — 1/2 above, while for odd p we have the sequences j= p+1/2...3/2 below
and j=1/2...p—1/2 above. Let us keep only the lowest sequence and diagonalize again
the quadrupole operator Q. We can keep only Aj = 2 sequences, because the Aj = 1
matrix elements are strongly suppressed both for large and small m, i.e., which lead to
the orbits with largest oblate and prolate deformations respectively. The Aj = 2 matrix
elements are practically identical to those in LS scheme if we make the identifications

l—j=1+1/2 m — m+1/2 xsign(m).

The correspondence is one-to-one and the resulting “quasi SU(3)" quadrupole operator
respects SU(3) relationships, ezcept for m = 0, where the correspondence breaks down.
Still, it suggests that sequences j= 1/2, 5/2, 9/2...or 3/2, 7/2, 11/2..., must have a
behaviour close to that of the sequences [= 0, 2, 4...or 1, 3, 5.. . that span the one particle
representations of SU(3). The resulting spectrum for quasi-Qq is shown in the right panel
of fig. 15. The result is not exact for the K = 1/2 orbits but a very good approximation.

The way to use the approximate quasi-SU(3) symmetry is simply to reason with the
right panel of fig. 15 as we would do with the left one. Then, both the four and eight
particle “representations” for T = 0 will be axial, while the ten particle 7 = 1 ones
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Figure 15: Nilsson orbits for SU(3) (k = 2p) and quasi-SU(3) (k = 2p — 1/2).

would be triaxial. At this point we note a positive indication in the absence of a v band
in **Cr (its counterpart in the sd shell, 2Mg, is triaxial). It is then seen that the two
lowest Aj = 2 sequence of orbits, separated from the rest by the spin-orbit splitting, are
sufficient to ensure quadrupole coherence.

In most of the cases, when deformation sets in, these Aj = 2 groups are available, for
instance, (1d5/2, 2s1/2)* gives deformation in ?Ne, (1d5/2, 2s1/2)%" (1f7/2, 2p3/2)% is
the configuration dominant in the ground state of **Mg, (117/2, 2p3/2)® in **Cr, (1g9/2,
2d5/2, 351/2)% in %Zr etc. In the region of #Zr and beyond we can put this in corre-
spondence with the Nilsson deformed mean field, that states that when nuclei acquire a
stable deformation, two orbits K=1/2 and K=3/2 become occupied and rephrase it in
spherical terms saying that rotational motion sets in when four protons and four neu-
trons are promoted to Aj = 2 blocks above the orbits normally filled. The normally filled
orbits from which the particles are promoted turn out to form a Pseudo-SU3 sequence
which reinforces the collectivity driven by Quasi-SU3. We have applied this extremely
simple analytical model to the onset of deformation in the Nd, Sm, Gd and Dy getting
B(E2) values in complete agreement with experiment without any extra parameter [32].
These QSU3-PSU3 combinations may be used to identify the spherical configurations
responsible for superdeformation.
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6. SHELL MODEL AND NUCLEI FAR FROM STABILITY

We have explained in detail that the two basic ingredients of the shell model descrip-
tion of nuclear dynamics are the effective interaction and the valence space. Furthermore,
we have been able to get a better handle in the effective interaction by splitting it in the
monopole and the multipole part. Which are the novelties to be expected when we try
to describe nuclei far from stability? Let’s avoid for the moment the very edge of the
nuclear stability at the neutron rich side, the neutron drip line. For the other cases we
use the same tools that we have developped close to the stability; first we determine the
spherical mean field, that gives us the neccessary hints on the choice of the valence space
and then we plug in the realistic multipole hamiltonian and solve the secular problem.
From the earlier discussion it must be clear that it’is the first requirement which is prob-
lematic. Because as we have mentioned repeatedly, the monopole part of the realistic
interactions is unrealiable already at the stability. What make things worse in that the
crucial data that are needed in order to fix the evolution of the spherical mean field are
not yet available far from stability. This is the new challenge, to learn how the monopole
hamiltonian evolves when the isospin has values that are much larger or much smaller
than the values defining the line of 3-stability. In order to reach this goal theory and
experiment are bound to advance together.

There are already evidences of abnormal behaviour in the very neutron rich or very
proton rich regimes that we can gather with the headline “vanishing of shell closures far
from stability”. It is however true that the cases presently known correspond only to
semimagic nuclei. Let’s start with the heavier example 8Zr. Tt is a proton rich N=Z=40
nucleus. Z=40 is a solid shell closure in the doubly magic **Zr, however *Zr turns out
to be an strongly deformed nucleus. For that to happen, the harmonic oscillator shell
closure 40 has to be completely broken. Actually, the experimental results can be very
well undestood if the yrast states of #Zr are given by configurations with eight holes in
the pf-shell and eight particles in the sdg-shell. These configurations build a Pseudo-
SU3 block in the hole orbits and a Quasi-SU3 block in the particle orbits that maximize
the quadrupole moment and the quadrupole correlation energy. The gain in correlation
energy of this 8p-8h configuration relative to the harmonic oscillator closed shell is about
25 MeV, the loss of monopole energy is more difficult to evaluate, however the experiment
tells us is that it is less than 25 MeV. The mechanism comes up in all its simplicity; the
monopole field locate different configurations at different unperturbed energies and each
configurations has its own correlation energy. The balance of both cnergy contributions
determines which configuration will be lower and in particular whether a shell closure
will stand or vanish.

Long chains of isotopes from Ne to Ar are presently under experimental investigation.
They give us the unique opportunity of exploring the behaviour of several magic closures
in one single isotopic chain. We can also attempt to give a common description of the
nuclei which show magic features and those in which the magicity disappears. We begin
with the sulphur chain in which isotopes are known to be bound with N=10 up to N=32.
In this case we come close to crossing three magic neutron numbers. The natural valence
space for the protons is the sd-shell; for neutron number N<20 the sd-shell is also the
right valence space, whereas beyond, either the pf-shell alone or both sd and pf will be
needed. In the calculations of ref [33] we showed that the first choice is good enough,
except in a small area around *'Na. These calculations employed effective interactions for




67

S
S2n
30 |
& 20l
2
2
) e Ex
ﬂThp
10
O 1 1 1 - 1 1 1

Figure 16: Syn for the isotopes of sulphur

the two major shells that had been already tested in full Ohw spaces, therefore describing
in a consistent way isotopic chains that cover two major shells.

We show in figure 16 the comparison of the theoretical two neutron separation energies
(S2n} with the experimental results. Beyond the vertical line the experimental points are
actually the extrapolated values from [34]. We see that the agreement is very satisfactory
and do not deteriorates by crossing N=20, that appears to be a good closure for this
isotope. At N=28 the discrepancy with the values from the systematics increases, which
can bear a relation with the issue of the vanishing of the N=28 magic closure in the
sulphur chain. This point was arisen by the mean field caleulations of ref [35] that
predicted deformation and shape coexistence in the sulphur isotopes around N=28. We
discussed that in [33], arguing that the situation is better explained considering N=28
as a strongly correlated closed shell, than by the much stronger statement of no shell
closure at all. The reasons are the following; the leading neutron configuration in the
ground state of **S (that amount to 50% of the wave function) is (1f7/2)%; the average
occupancy of the 1{7/2 orbit is 6.95 compared to the maximum value 8.0; the excitation
energy of the 2* increases relative to N=26 and N=30 (see fig. 17) and the BE2 slightly
decreases compared to N=26,30. Therefore, even if strong correlations are present we do
not think the N=28 shell closure has disappeared. Our calculated values agree with the
results of recent experiments at MSU [36, 37] and GANIL {38].

The situation for Z>13 can be summarized as follows; N=20 stands as a neat shell
closure (see [39] for an experimental reference on 5i); at N=28 the shell closure is eroded
by the correlations and collective aspects show up in some cases, but this do not imply
the vanishing of N=28 as shell closure.

Things change radically when we move to the neutron rich isotopes of neon, sodium
and magnesium with N~20. It was pointed out many years ago that data on masses and
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ground state spins were incompatible with the persistence of the N=20 closure [40, 41].
Subsequent spectroscopic studies confirmed this hypothesis in particular because of the
very low 2% in Mg [42], the long lifetimes of several isotopes and the very high density
of levels at very low energy in *'Mg {43}, in complete contradiction with the calculations
that assumed N=20 to be closed {44]. Early theoretical explanations were given using
a deformed mean field approach {45]. Later on a shell model interpretation in terms
of deformed intruders was proposed [46] that has been confirmed by other shell model
calculations [47, 48]. A very recent coulex experiment on **Mg [49] has measured a
very large B(E2) 0 — 2% corresponding to 3=0.5, in agreement with the theoretical
predictions.

We have used the same effective interaction of [33] to push the shell model description
to its limits, in order to settle the structure of these abnormal nuclei. We shall specialise
our examples in the magnesium isotopes although we have results for all the nuclei in the
region [50],

In figure 18 we compare the experimental Sy, with the predictions assuming N=20
closed. The agreement with the data is excelent for the Al isotopes, comparable to
what we had found for larger Z’s, but a clear discrepancy occurs at N=20 for the lighter
elements. The discrepancy amounts to saying that N=20 is not bound enough. This was
related to the breaking of the N=20 magicity.

The physics behind the vanishing of the N=20 shell closure far from stability is related
to our discussion of the onset of deformation in section 5 and to our discussion on % Zr
at the beginning of this section. The closed shell is protected by its gap, i.e. the energy
the system looses if particles are promoted above it. But it is also vulnerable, because
the configurations reached by opening the closed shell have, in general, a much larger
correlation energy. The final result depends solely on the local behaviour of the effec-
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70

2p-2h Gap

7.0

6o |
50|
40 |
0

20

E»p-m- - Ezp-:u-

1.0

0.0

-1.0 |

17 18 19 10 21 22 3

-Figure 19: Energy of the 2p-2h intruders relative to the normally filled state

tive spherical mean field, that determines which are the "unperturbed” energies of the
configurations that can maximize the correlations induced by the multipole hamiltonian,
whose dominant terms, as we have scen in section 3, are pairing and quadrupole. Take
%*Mg; if we promote two neutrons to the pf-shell we open two new correlation channels;
neutron-neutron pairing and proton-neutren quadrupole. This last one is particularly
efficient because the orbits around the fermi level form Quasi-SU3 sequences.

In figure 19 we see the result of adding all these contributions. The intruder con-
figurations are more bound in Ne, Na and Mg at N=20, for an amount that is roughly
what is needed to restore the agreement with experiment in fig. 18. One can wonder,
why not proton intruders? the reason is that the proton orbits are strongly bound due
to the neutron excess, an extreme that we have verified explicitely. Another aspect is,
why 2p-2h intruders and not 4p-4h intruders? Here we come back to the discussion of
the balance between monopole and multipole. In short, in our calculation the extra gain
of quadrupole energy in the 4p-4h intruder is not sufficient to compensate for the extra
loss of monopole energy. It could be argued that this is interaction dependent, but we
will show in a moment that the quadrupole properties strongly favour the 2p-2h intruder
interpretation. If we mix properly the intruder and the normal configuration, the per-
centage of closed shell in the ground state is about 20% and we are entitled to speak of
a shell closure that vanishes.

Lets focuss now on other known properties of 3*Mg, the excitation energy of the 2%
and the BE2 of the 07 — 2% transition. The experimental values are AE=0.89 MeV
[42] and BE21=450 e*fm* [49]. The theoretical results with N=20 closed are AE=1.71
MeV and BE21=150 e’ fm?. For the intruder state these values are AE=1.01 MeV and
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BE21=500 e’fm*. The agreement is very good and if anything, we overshoot the BE2.
This is normal because the mixing with the closed shell configuration will tend to reduce
this number. This bring us to the question we had arisen on the role of 4p-4h intruders
in ¥Mg. For that we compute the BE21 in this configuration and find 650 efm* which
is far bigger than the experimental number. Moreover, the jump in BE2 from the closed
shell to the 2p-2h intruder is much larger than the jump from 2p-2h to 4p-4h. As the gain
in quadrupole energy is roughly proportional to the BE2 value, the 4p-4h configurations
are higher in energy than the 2p-2h ones. Therefore we conclude that the breaking of the
N=20 shell closure is mainly the effect of 2p-2h intruders.

We can now proceed to see whether the intruders play a dominant role when neutrons
are added or not. The answer is already seen in figure 19 where the intruders are not
favoured energetically beyond N=21. The reason is that when we have particles in the pf-
shell already in the normal filling, correlation channels that were not active at the closed
shell are now open, therefore the relative correlation gain of the intruder is smaller, kind
of what happened to the 4p-4h intruder at N=20. Thus the intruding region is limited
to 2=10,11,12 and N=19,20,21, however we expect that at N=22 the “closed N=20"
predictions will underestimate the collective properties.

We can extend our calculations until the neutron drip line is reached -actually we can
overpass it without any problem beyond the conceptual one!~. We predict that ¥Mg is
definitely bound while *Mg’s Syx ~ 0, precludes any conclusion. Notice here that the
Relativistic mean field calculations of [33] place the drip line at a much lower value of N.
All Mg isotopes from N=20 to N=28 are deformed and bear similar quadrupole moments
(70-60 e fm®) and B(E2)1 (400-500 e*fm*). The excitation energy of the first 2% remains
also very constant at around 1 MeV. The mean field caleulations of [51] using Skyrme
forces give results very close to ours for the deformation and for the location of the drip
line. However they cannot explain the onset of deformation at N=20. This fact can be
better understood in the mean field calculations of ref. {52] using the Gogny force. The
energy vs deformation curves obtained with both forces are very similar. They present
a spherical minimum and a shoulder at 8=0.5. It is only when the Bohr hamiltonian is
solved in the (3, ) plane that a deformed ground state is obtained, and this calculation
is only available for the Gogny force [52]. A more detailed comparison between the shell
model and mean field results is in progress.

“®Mg represents a very special case in or results; it is the only N=28 isotone in
which the neutron shell closure is clearly broken. We have plotted in figure 20 the 17/2
occupancies from Z=10 to Z=20. The effect of the Z=14 and Z=20 proton subshell
closures in reinforcing the N=28 neutron closure is clearly seen. In **Mg we reach the
minimum of the 1f7/2 shell ocupation, and, what is more important, the closed shell
configuration has lost its leading status in the wave function because the configuration
with two neutrons in the 2p3/2 orbit has an equivalent weigth (22% vs 28%). We must
therefore admit that in our calculation N=28 is not a closed shell at 2=12.

7. CONCLUSIONS

The spherical shell model provides a description of the nuclear dynamics that makes
it possible to keep a connexion with the basic initial ingredients of the problem, i.e. nu-
cleons selfbound in vacuum by its mutual —non relativistic, two body- interaction. In the
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Figure 20: Occupation of the 1f7/2 orbit at N=28

route from the bare nucleon-nucleon to the prediction of the level scheme or decay prop-
erties of a particular nucleus, we have to pay many tolls; first, the bare interaction has
to be regularized, and then, due to saturation problems, its monopole part fitted to the
properties of the closed shells and closed shells +/- one nucleon. However, the separation
of the effective interaction in monopole and multipole parts, and the realization that the
multipole part of the realistic interactions is correct, paves the way to obtain an universal
interaction for the shell model. Secondly, the valence spaces that contain the necessary
degrees of freedom for a satisfactory description of the nuclear properties become ex-
ceedingly large for medium-heavy nucleus. Nevertheless, complete diagonalizations in
the pf-shell, that have become recently available thanks to the impressive algorithmic
advances of E. Caurier’s codes, provide a realistic microcosmos in which many of the
features of the heavier nuclei show up. In particular, collective deformed nuclei can be
perfectly accounted for by the spherical shell model. Furthermore, sound indications on
the symmetries or coupling schemes that will underlie the description of heavier nuclei
are obtained, in the form of Elliott’s SU3 variants. This approach has also proven to be
able to encompass in the same framework the behaviour of nuclei far from stability, in
spite of the increase of difficulty due to the lesser control that we have on the effective
spherical mean field in very neutron (or proton) rich nuclei.
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