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Collective excitations in nuclei.

Ph. CHOMAZ

GANIL, BP 5027,
14076 CAEN Cedex 35,
FRANCE,
chomaz@ganil.fr

Abstract:

In these lectures we will describe several aspects of giant resonances observed in nuclei. We will present the theoretical tools in
order to describe collective vibrations in hot and cold, stable or unstable, nuclei. This presentation will be illustrated by many
experimental results.

Resumer ;

Dans ce cours nous abordons les différents aspects des résonances géantes observées dans les noyaux. Qu'ils soicnt chauds,
qu’ils soient froids, qu'ils soient exotiques, qu'ils soient stables, qu'ils soient instables nous nous attacherons 3 discuter les
méthodes théoriques employées pour les décrire. Cette présentaiion sera illustrée par de nombreux resultats expérimentaux.

Chapter 1 Introduction

Collective behaviors are a general property of systems with many degrees of freedom. Often they describe how they
react to an external stress. It is a general observation that complex systems are often able to self-organize in simple
collective motion while they are expected to present disorder and chaos because of their intrinsic complexity. This
paradox is well illustrated by the atomic nucleus. On the one hand, following the Bohr ideas, this strongly interacting
system can be seen as the prototype of quantum chaos, On the other hand, other experimental evidences, such as the
existence of magic numbers and the presence of giant resonances, are pleading in favor of a strongly organized system.
The study of this amazing self-organization and its transition from order to chaos is one of the subject of the present
article.

Of particular interest are the collective motions that can be interpreted in terms of vibration. If the associated
string constant is positive the motion corresponds to an oscillation around an equilibriunt or more generally around a
stable solution. Conversely, when the string constant is negative this is the signature of the presence of instabilities
in the system. Both cases correspond to typical situations encountered in many different physical systems. In this
article we will discuss these two different aspects of collective vibrations taking as an example the nuclear systems.

In quantum mechanics, stable vibrations are associated with boson degrees of freedom. At first glance, this may
scem surprising, particularly when considering excitations of macroscopic systems formed with fermions. Collective
oscillations have been observed in mesoscopic systems such as zero-sound phonons in helium-3 fAuids or plasmons in
metallic clusters. Also, the nucleus is known to exhibit a large variety of collective vibrations usually called phonons.
These giant resonances are understood as the first oscillator quanta of the collective vibrations. In particular, the
giant dipole resonance corresponds to a collective motion of the protons against the neutrens which is akin to the
plasmons in metals, the monopole vibration is a compression mode analogous to the zero- sound in Fermi liquids, and
the giant quadrupole resonance is understood as a surface vibration which resembles the wave at the interface of two
liquids.

From the microscopic point of view, these bosons can be understood as being built from fermion pairs, which carry
boson quantum numbers. However, the number of possible pairs much be large enough to insure that the effects of the
fermion antisymmetrization do not introduce significant deviations from a boson behavior. Moreover, the excitations
of small fermionic systems are not expected to be well described by a boson picture, in particular, because the Pauli
exclusion principle imposes constraints that cannot be accounted for in a boson representation. In this article we will
present some properties of giant resonances and we will discuss the above questions. We will also investigate their
properties at zerc and at finite temperature and we will discuss their role in the dynamics of nuclear reactions.

Until recently, the second and higher quanta, the so-called multiphonons states, remained unobserved, Therefore,
the observation of multiple excitations of giant resonances was an important missing piece in the puzzle of collective
excitations. The non-existence of multiple excitations would have undermined our understanding of giant. resonances.
In the early seventy’s it has been proposed that multiphonons states might be excited during heavy ion reactions.
It was proposed that the multiphonon excitations might be responsible for part of the energy lost observed in deep-
inelastic reactions. In 1977, structures were observed in heavy ion inefastic spectra and it was suggested that these
structures might be due to multiple excitations of giant, resonances. However, it is only recently that an unambiguous
signature of the multiphonon nature of the structures observed in heavy ion reactions have been reported. This study
about multiphonon states will also be part of the present articie.

Finally, in the recent years it has been increasingly evident that the systems formed during nuclear collisions might
run across instabilities. OF particular interest are the instabilities refated with the transition from liquid to gas becanse
it might be a way to get information about the nuclear equation of state. From a more general point of view, the
creation of domains during a phase transition might be thought as a highly collective motion. Therefore it is important,

to understand the possible links between phase transitions and collective motions. This will also be a subject of the
prescut article.
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Chapter 2 Phenomenology of Giant Resonances

Before proceeding to a study of giant resonances in many different contexts, it is necessary to briefly review their
phenomenoclogy. The subject of giant resonance excitations in nuclei has been treated extensively in many review
articles (see for example [Be75a, Sp81, BeT6a, WoB7]) to which one can refer for a detailed information.

2.1 An example: the Giant Dipole Resonance
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Figure 1 Giant Dipole Resonance in (+,n} Reactions: The total photo neutron cross section for three nuclei *°8 Pp, 2°5n,

and %°Cu from ref. [Be75b| showing the strong resonance associated with a dipole vibration of the nucleus, the so-called Giant
Dipole Resonance.

In 1947, Baldwin and Klaiber [Ba47] carried out photon-induced reactions and observed that at high excitation energies
of about 15 to 20 MeV, the nucleus acts as a strong absorber of the incident photons (see Fig. 1). This phenomenon
was named the nuclear giant resonance. In fact, this possibility of a resonant -y absorption was mention 10 years before
in a paper by Bothe and Gentner who noticed that some vy capture probabilities were much higher than expected. The
observed peak in the photo-absorption probability was interpreted by Goldhaber and Teller]God8) as the excitation
of a collective nuclear vibration in which all the protons in the nucleus move collectively against all the neutrons
providing a separation between the centers of mass and charge, thus ereating an electric dipole moment.

2.1.1 Experimental systematics about the GDR

Experimentally, the GDR is well established as a general feature of all nuclei. It has been observed in nuclei as light as
3He and as heavy as 232Th, Nearly all the systematic information comes from photoabsorption experiments because
of the high selectivity of this reaction to E) transitions. An example of spectra from photonuclear reactions on three
different targets is shown in Fig.l. However, complementary information has been obtained more recently in electron,
proton or heavy ion inelastic scattering associated with coincidence measurements.

2.1.1.1 Cross section

In spherical nuclei, the cross section o5 of photoabsorption can be approximated by a Lorentzian distribution

212
orETEna

T abs E = 1
belEn) (EZ - Elpp)? + EXTE g

(2.1)

where og is the maximum of the distribution, E;pn and Tgpr the energy and width of the GDR. In nuclei with a
large static deformation the GDR splits into two components corresponding to oscillations along and perpendicular
to the symmetry axis {see Fig.2).

In that case, the GDR cross section is well reproduced by the sum of two Lorentzian components. Both for spherical
and deformed nuclei, the Lorentzian parametrization provides a good description of the shape of the GDR in medium

and heavy nuclei by treating the resonance energy, width and strength as energy independent empirically adjustable
parameters.

2.1.1.2 Excitation energy

Using this methed, it has been shown that the A dependence of the excitation energy of the dipole is intermediate
between A™1/6 and A~/ and can be reproduced by a two parameter expression [Be75a]: (see Fig.3).

Ecpr = 312473 L 20 6AVE (MeV) . 2.2)

However, as far as medium and heavy nuclei are concerned, the energy of the GDR can be fairly reproduced by the
simple law, Eqcpr = 80A~ /3 (MeV).
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Figure 2 Evolution of the GDR with Deformation: Total phote neutron eross section for Sm isotopes showing the evolution
of the giant dipole resonance in going from the spherical nucleus **Sm to the deformed nucleus 154 Sm(see ref. [MaB4])
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Figure 3 Properties of the QDR : Systematics for the excitation energy Ey, width [ and fraction of the E; energy sum rule
strength of the GDR as a function of the nucleus mass A ( see ref. [Ga92]).

2.1.1.3 Width

The observed width zpg of the resonance, varies from 4 to 8 MeV with the narrowest width found in magic nuclei
{see Fig.3). As giant resonances are excited at energies above the particle emission threshold, their total width is,
apart from the effects of the possibile deformation, a sum of three terms the escape width T'7| the Landau damping AT,
and the spreading width I'!. The escape width ' iz due to the coupling of the 1p-1h state to the continuum which
gives rise to the direct decay of a particle into hole states of the residual nucleus and can provide an experimental
probe into the microscopic description of the giant resonances. It is the dominant contribution for light nuclei. The
Landau damping AT results from the fragmentation of the p-h strength due to shell structure effects and is ako
mainly apparent in light nuclei. The spreading width I'! arises from the coupling of the 1p-1h doorway states to
nuclear compound states, eventually, leading to the emission of low energy particles. With increasing mass number,

the decay proceeds mainly via mixing with more complicated states, so, for heavy nuclei, the total width is dominated
by the spreading width.

2.1.1.4 Collectivity and excitation properties

The collectivity of the excitation which is related to the number of participating nucleons, can be measured by the
fraction of the energy weighted sum rule {EWSR) exhausted. For example, the dipole strength integrated up to E,=30
MeV can be expressed in terms of Thomas Reiche-Kuhn sum rule[Le50]:

2re’h NZ

_—

A

where N and Z are the neutron and proton number of the nucleus respectively,
The fraction of the EWSR observed in the various nuclei is shown in figure 3.

60 {\-‘rj{ﬂ{ev’.mb ,

1 =

(2.3)

A=N+Z and m is the nucleon mass,

2.1.2 Macroscopic description

The giant dipole resonance {(GDR)
highly collective nuclear excitations

15 considered today as the prototype of giant resonances which are considered as
in which an appreciable fraction of the nucleons of a nucleus move together.
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In such a context, it is appropriate to think about these modes of excitation in hydrodynamical terms as the
oscillation of a liquid drop. To explain the observation of the GDR, different models were proposed. In the Stein-
wedel and Jensen model[St50], the total nucleus density is incompressible but the neutron and proton densities vary
independently. In that case, the restoring force is proportional to the volume energy coefficient of the Bethe and
Weiszacker formula. This model gives the energy of the vibration proportional to A=%/3, In the Goldhaber and Teller
model[Go48], the GDR is considered as an oscillation of a non-deformed neutron sphere against a proton one. In this
case, the restoring force is proportional to the surface energy coefficient of the Bethe and Weizacker formula and the
excitation energy of the GDR vary as A~1/5.

Let us discuss in a little bit more details these macroscopic models in order to introduce the basic concepts about
collective vibrations.

2.1.2.1 The Goldhaber and Teller model[Go48]}

In this model the protons and the neutrons are simply assumed to oscillate with opposite phases. Let us consider a
system with equal number of protons and neutrons, N = Z = A/2. If we call z(t} the displacement of each protons

and —z(t) the displacement of each neutrons (so that the center of mass is kept constant) in the #g direction we can
easily compute the total kinetic energy

T= > 1/2ma*+ Y 1/2m,i* = 1/2Ams? (2.4)

profons newirons

Figure 4 GDR vibration: Shematic picture of the GDR in the Goldhaber and Teller model 1Go48].

In order to compute the variation of binding energy induced by the displacement z Goldhaber and Teller. assumed
that the potential energy depends upon the difference of the neutron and proton densities and that for symmetry
reasons only the quadratic power of this difference appears in the symmetry energy

Esym = /.darvsym [Pp (T) - P (T‘)] ’ (25)

For example introducing the symmetry density

Psym = fPp — Pn (26)
the symmetry term of the binding energy may be approximated by the liquid-drop formulation
1 s Prym
Esym = Ebsyrn,/ddrT!:" (27)

where by, is a coefficient with an empirical value about 50 MeV.

Introducmg the displaced densities and assuming that proton and neutren densitics are equal the half of the matter
density p’we can write

pp (F) = Py T — 2 Gy) = 1p° (F— z #ip) =

[T

(¢ (9 - 2 G- G ()

y (2.8)
P ()= po(F+ zily) = 10" (F+ zlg) = & (pﬂ (F)+ 2z g 7" (F))
Then the potential energy reads
2 8V, b
_ % ) sym __ Ysym 2 3 _ 0 .
!‘JTI’{ = /d uo 6,09 = 20 /d (Vuﬂp ) (29}

where the last equality comes from the liquid-drop approximation. If the density p° is assumed to be sphericatly

symmetric! we can chose @ on the z axis and we can use the fact that 8p%/dz = 8p°/8r Or/0z = cos 80°/8r in
order to write,

'From this model, it is clear that the restauring force depends upon the shape of the system, as we will discuss later.
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1,47 dp®\? 52V
Eaym = =228 [ p2gr { S} £ aum _
sy 353 /r dr ( - ) ap {2.10)

Now we can write the total energy variation associated with the dipole motion as
L, o 1.,
AE=T + E‘sym = 5‘“{ z7 + EI’L z (211)

where the inertia parameter is noting but the total mass of the system

M=Am (2.12)
and the spring constant is given by
- 3., 1] z azvsyrrr _ bsytn 3 {) 2
K= /d T (vaup ) V - ‘;a_ d r(vﬁnp ) (213)

From these equations it is clear that M is proportional to the total mass of the system while K js proportional to
A3 because Va0 is picked at the surface. Equation 2.11 can be recognized as an harmonic oscillator Hamiltonian
which is the collective Hamiltonian for the vibration.

2.1.2.2 Classical vibration

To get a deeper insight into the dynamics associated with the Hamiltonian 2.11 we can solve the classical equation of
motion which simply reads
mEz_ -Kz {2.14)
de?
The corresponding free motion is a harmonic oscillation of frequency
K

w=1= (2.15)

Considering the mass dependence of the string constant and of the inertia parameter on gets
W(A) = wyA~E (2.16)

We have seen that this dependence is confirmed by the experimental results only in light nuclei. Therefore on needs
other models to describe dipole vibrations in larger nuclei.

2.1.2.3 Steinwedel and Jensen model

fime

v

Figure 5 GDR vibration : Shematic picture of the GDR in the Steinwedel and Jensen model {St50].

From the above derivation it appears that the GDR frequency should be a function of A~1/% while experimentally the
frequency appears to be closer to A™1/3. 1t appears that because of the strong force characteristics and in particular
of the strong short range attraction between protons and neutrons it is energetically not favorable to introduce a
displacement of the proton surface against the neutron one as it is assumed in the Goldhaber and Teller model. To
overcome this difficulty Steinwedel and Jensen have proposed to introduce a displacement field {i.e. it is not as before
a global displacement, of thie proton or the neutrons but a local one) which vanishes at the surface. This can be done
by introducing the following displacement of protons

wr) = Qrm (1} 72V (41 (g7) Yim (7)) (2.17)
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where 7z is the third component of isospin operator (-1 for protons +1 for neuironsjand where j; is the spherical

Bessel function®. Requiring that the motion at the surface is 0 means that the surface radius, R, should be associated

with a zero of the derivative of the Bessel function. The first zero being around 2.46 this condition leads to
g=246/R (2.18)
In infinite medium the collective oscillations of protons against neutrons look like sound waves with a sound velocity

almost. independent of ¢

T =

- {2.19
p )
so that we get for the frequency
1
S x ATV 2.20
w5 (2.20)

which exhibits the proper behavior as a function of A.

2.1.2.4 Electromagnetic excitations

Let us now how this mode can be excited through electromagnetic excitations and in particular let discuss relativistic
Coulomb excitations such s the 1**Xe excitation during the reaction 2® Pb+36 Xe at E/A = 700 MeV which has
been studied in refs [Ri93, Sc93a). In such relativistic reaction between heavy ions the strong transverse electric field

Zpeyb

B0 =~ Gy

(2.21)

dominates. In eq. (2.21) it is assumed that the projectile of charge Z,, is travelling on a straight line trajectory defined
by an impact parameter b and a constant velocity v [BaB8a].

ta) E

T
O

(1]
Pl

Figure 6 Schematic illustration of the electric field create by a relaticvistic heavy ion traveling on a straight line. This electric
field may excite the giant dipole mode [Ba88a).

Therefore, the excitation of the transverse GDR degrees of freedom in a nucleus of mass A, charge Z and neutron
number N, is simply due to the interaction of the protons with the constant electric field. Therefore, the interaction
energy associated with the displacement z in the transverse direction simply reads

W(t) = Ze EL(t) 2 = Fagy (t) 2 _ (2.22)

Then this energy can be used in conjugation with the collective Hamiltonian in order to write the dynarmical equations
for the dipole moment in presence of an external field
d?z

Md_t2 - K Z = ngg (t) (223)

where Fepe (t) = Ze E(t). In order to understand the resonant shape of the dipole excitation we should add to this

equation a term taking into account the damping of the GDR. This can be done by introducing a simple frictional
lorce conventionally written F, fric = -M'y Z. Then the classical cquations reads

&2z dz
Me— + My — —Kz=F,,( 2.24
352 it ET ext (t) { )
2This can be justified assuming a potential low u = x where the displacement potential is assumed to be the dipole term of the

muitipole expention of a plane wave with the momentum q.
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This equation can be easily solved going to the Fourier representation and introducing the field frequency w

ext
Femg (t) = Foe._“"”‘ ¢ (225)

However, one should remember that Physical external forces are real so that only the real part of the expression we
will derived are meaning full. With the above field the motion of the dipole reads

1/M

2 .
W? — w2,y — tTweg

2(t) = Fpe 7 ert £ =TT (weqy) Fpe est ¢ (2.26)

where the operator I1 {Wezt) gives the response of the System to an external field at the frequency w... In order to
compute the average rate of energy lost per unit time we should compute

P =Re (Fez: (1)) Re (2 (1)) (2.27)

where the ... means the average over time. Because of the time averaging only the imaginary part of II (were)
contributes and one gets

2 2
_ FO 7we.'ct

- b1
M {w2 - wEIf) + 'Yzwzzt

(2.28)

which is nothing but the Lorentzian shape.

Figure 7 Lorentzian resonance profile.

Here we took as an example the Coulomb excitation but the same arguments hold for the photoabsorption and
indeed this shape correctly describe the observed GDR data in heavy nuclei.

2.1.2.5 Quantization of the motion
In order to built & quantum version of the vibration in absence of friction we can first introduce P = A Q) the

momentum conjugated of the coordinate @ (in the simple models of the GDR above this collective coordinate was z
the displacement on the z axis of the proton against neutrons). Then, the total Hamiltonian,

K
H= —2—11‘-—4-132 + ?Qz : (2.29)

can now be quantized as a harmonic oscillator with the frequency:

K .
=, —= 2.
wy = 4f M, {2.30)

To do so we consider P and Q as operators, P and @ and we introduce the creation and annihilation operators for
the phonons, Ot and O, defined by the relations :

- _ w .1‘ -~
= W{O +0) {2.21)
and
p=if 20t -0 . (2.32)

Therefore, the excitation spectrum can be simply built from a ground state |0} by application of the creation operator

|GDR) = O |0) (2.33)
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2.1.2.6 Sum rules and Energy weighted Sum rule { m; )

When we will consider excitations or perturbations of the system induced by any operator D we will need matrix
elements for the induced transitions (0| D [GDR) . To be more general, we will not only consider one collective state
|IGDR) but several noted |7) . which are supposed to form a complete basis together with the ground state. Then we
can introduce various sum rules as

M =D

which are nothing but the n'* moments of the transition probability distribution usually called strength function

(2.34)

5 (E) = Za ~ (B - Eo)) |01 D | (2.35)
Among all the possible moments m, is very particular since the following relation holds

my = % (of [D, [H DH 10y (2.36)

which is easily demonstrated introducing a closure relation 1 = ¥, ¢} {i] 4+ |0} (0] in the expression of the double
commutator and using the fact that the |i} or the |0) are eigen vectors of the Hamiltonian H : H|i) = E;|i). The
important property of the relation (2.36) is that the expectation value of the double commutator on the ground state
can easily be compute.

For the dipole excitation operator associated with an electric field E in the z direction the operator is D =
Eey . .o fwwdlwuit where the fact that we are taking half the sum over protons and neutrons with opposite signs
instead of just the sum over protons come from the fact that we have removed the center of mass motion (and we have
assumed equal number of protons and neutrons). Then if the interaction does not depend upon the momenta of the
particles, the double commutator reduces to a double commutator only with the kinetic part which leads to

P P 1 E?¢?
[D, [H,D]] e (2.37)
and the sum rule is nothing but the TRK sum rule
AE%?
== 2.38
" 4 2m ( )

(in the case N # Z the factor A/4 should be simply replaced by NZ/4 ).

2.1.2.7 Polarizability sum m_; and adiabatic approaches

Another sum rule plays an important role because it appears in the case a static field A is applied to the systern.
Indeed, then the system adjust it self (polarized) to this perturbation. In the first order perturbation theory the state
of the system is

i| A]0) 5
= |0) +Z(E Eu) (2.39)

Therefore, if one measures the expectation value of A, also called polarizability, on the state ¥} one gets always at
the lowest order

, 2
(¥ AN - (0] Al0) = 3 % —m_; (2.40)

which is nothing but the Polarizability sum m_;.

To apply this method to dipole mode one can polarize the system with an external constant electric field E and
measure the induced dipole moment. To compute this moment we can simply minimize the energy of the system in
presence of the external field E. Let us introduce the isovector density

Psym = Pp — (241)
Then the energy associated with the external field is given by
Ecou = f BV (1) gpam = 5B [ dr2pym (2.42)

since the potential associated with E along the z axis is V = zE. The symmetry term of the binding energy acts
against the separation of protons and neutrons in nuclei. The corresponding energy variation is simply

Eopm = 18 /d?'rf’-fﬂﬂ {2.43)
syrn 2 sym p[] .
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where by, is a coefficient with an empirical value about 50 AfeV. Then the total energy reads

L 1p5m e
Eior = /-dar (Ebsymﬁ_p!:]_ + EEzpaym) (2.44)
Introducing a small variation of the density Psym We get a variation of the total energy
m e
B = / 38 pym (bs,,mpi + —E‘z) (2.45)
’ £o 2
The density which minimize £, should fullfil this relation for any fluctuation 6p,y.,. Thus we get
e
Psym = ———Fzpg (2.46)
2bsym

If we now measure the dipole moment D we should compute

2 Epg (r?)
= { d%ép, € = il 2.
D / rép, ymzz T2y (2.47)
So that the polarizability e which is nothing but the induced dipole divided by the applied field reads:
D €py(r?)
= _ 2.48
*TE T 2, (2.48)

2.1.2.8 GDR energy from sum rules approaches
If we use the relation between the polarizability and the m_, sum rule in the case of a unique collective state we get

DR D |0)|2
=M Egpr 249)

where A is the dipole operator A =e3, Znusliovsl () the other hand the TRK sum rule was

T
m1 = Egpr |(GDR| b m)] (2.50)
Therefore, the GDR energy can be simply abtained from the ration of m_; and my

LGS

Egpr = - {2.51)
m_
Using the derived expressions form_; and m1 we get
b
E2, . = sym 2.52
CPR T M (r2) (252)

Amazingly this simple model leads to a predicted energy Egpr = 93 MeV A~1/% which is very close from the actual
experimental value,

2.1.2.9 GDR in deformed nuclei

Up to now we have always consider spherical nuclei. If we now study deformed nuclei it is easy to realize that
the collective mass (or the TRK sum rule) is independent of the deformation but not the restoring force {or the
polarizability sum rule). Indeed, for a deformed system one cannot replace (z2) by (rz) /3. 1f we introduce a quadrupole
deformation ¢ {this deformation can also be noticed Q)
x -+ z(1 —€)
y—y{l—¢) (2.53)
2 — z{1+ 2¢)
we can see that the dipole vibration in the z direction scales like 1 [z

E¢pr; = Egpr(1+ 2¢) (2.54)
The two other orthogonal modes have the frequency

Ecpr, = Egpr, = Ecpr(l — €) (2.55)

These expressions are rather intuitive since the frequency of the oscillation is slower in the elongated direction.
Therefore in prolate nuclei, € is positive therefore the GDR strength presents two components one at a lower energy
with half the strength of the other at higher energy which contain the two contributions coming from vibration
perpendicular to the symmetry axis.
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2.1.3 Microscopic approaches

Microscopically, giant resonances are described as a coherent superposition of 1 particle - 1 hole (1p - 1h) excitations.
In a schematic model, the residual particle-hole interaction gives rise to the formation of one strongly collective state
which is a coherent superpaosition of all possible 1p - 1h transitions. Since the residual interaction is attractive for
isoscalar and repulsive for isovector states, the corresponding collective states will be shifted up and down with respect
to their unperturbed energy which is a multiple of the energy difference between two major shell, fuws 2= 41 4~H3 MeV.
One obtain immediately the correct A dependence of the centroid energy. For example, the energy of the GDR which
is built with 1hw particle-hole transition, is shifted up to its observed value of ~ 2fiw in intermediate and heavy nuclei
(Ecpr = 804~1/% MeV). This is illustrated in figure 8

-
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Figure § Schematic representation of E1 and E2 transitions between nuclear shell model states.

2.2 Other resonances

Within the same phenomenological liquid drop models with four different fluids protons/neutrons spin-up/spin-down,
it is already clear that various other resonances should exist[Ra1877, Bo37, Me39, Bo39, 5t50, Bo75, Ch76, Rig1, 3pol].
In particular, the surface of the liquid drop can be deformed following different multipolarities giving rise to the so-
called surface oscillations. Moreover, the isospin character of a transition with a given multipolarity L is shown to
be isovector AT = 1 or isoscalar AT = 0. Isoscalar transitions correspond to collective nuclear vibrations in which
protons and neutrons vibrate in phase and isovector transitions correspond to their vibrations out of phase. In a similar
way when all spin components move in phase the vibration is called electric while when spin-up and spin-down are
oscillating with opposite phases the mode is called magnetic. With the multipolarity and the spin and isospin character
of each mode, this generalization of the Goldhaber-Teller model [Go48] provides a straightforward classification of all
collective resonances of different multipolarities

Let us give some specific examples. The electric monopole vibration is for instance interpreted as a compression
of the whole nucleus. in the previous sections we have seen that the electric giant dipole is seen as a vibration of the
proton fluid against the neutrons (see Fig. 9). An other example of such a surface vibration is given by the giant
quadrupole resonance, which corresponds to quadrupole deformation of the nucleus shape (see Fig. 9).

: Dlpole " Quadrupole

Monopolé

Figure 9 Schematic Representation of Various Giant Resonances : Few giant resonances are illustrated within the liquid
drop model: left, the breathing mode, i.e. the isosealar giant monopole resanance, the oscillation of protons against neutrons;
middle, the isovector giant dipole resonance; right, a surface vibration, the isoscalar giant quadrupole resonance.

Microscopically, with the GDR we have seen that giant resonances are described as a coherent superposition of 1
particle - 1 hole (p - 1h) excitations. Because of the odd-even spin alternation in the shell structure natural parity
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(electric) transitions are odd or even muttiple of the energy difference between two major shell, hw =~ 41 4-1/3 MeV.
Moreover, considering the fact that the in the harmonic oscillator Hmit an excitation operator with a radial dependence
r¥ can induce jumps between major shells distant of at maximum L v we get immediately the ruie that collective
state of spin L and parity (wl)‘r‘ should be located around energies E, = L fur, (L —2) hw, ... Finally because of
the apposite signs of the nuclear interaction in the isoscalar and isovector channels, the energy of isovector modes are
expected to be higher than the simple rule expressed above while the energy of the isoscalar modes are lowered by the
residual interaction. we already discussed the fact that the energy of the GDR which is built with 1/ particie-hole
transition, is shifted up to its observed value of ~ 2%y in intermediate and heavy nuclei (Egpr &~ 80471/3 Mev).
We will sfee that the giant electric quadrupole resonance (GQR) consists of an isoscalar component with a resonance
5

energy Egnp = 65A7"/3MeV and an isovector one with an energy EQLp == 130471/% MeV,

In this section we will concentrate on the electric resonances which are already a very large subject of investigation..

More information and in particular information about the magnetic resonances can be found in review articles [Alge,
BeB1, Wo87, Spgi1]

2.2.1 The giant quadrupole resonance
2.2.1.1 Ohbservations

Only in 1972 was the isoscalar giant quadrupole resonance (GQR) observed for the first time. Today, the properties of
the isoscalar GQR are well understood from a large number of different experiments using hadron and electren beams
(see for example [Be76a, WoB7]). A schematic illustration of our understanding of this mode is presented in figure 10.

f '

<+

Figure 10 Shematic iilustration of the quadrupole resonance in nuclei.

Two examples of experimental data presenting a GQR obtained either with electron scattering or with hadron in-
teraction are shown on figure 11 and 12. In these data the various modes are identified using the fact that excitations
of different multipolaritjes couple in different ways with the waves associated with the projectile. In quantum me-
chanics the perturbation of the incident projectile waves produces various diffraction patterns. Therefore, the anguiar
distribution associated with excitations of modes of different multipolarities are different. Mareover, depending upon
their properties, different modes can be excited with different interactions with different spacial properties. This is
for example the case for the isovector electric modes {e.g. the GDR) which are excited by the long range Coulomb
excitation while the isoscalar electric modes are also excited by the short range nuclear interaction. Then, the partial
waves of the incident projectile participating in the excitation process are different leading to different diffraction
pattern.. This is illustrated in figure 13 for an heavy ion reaction.

Figure 14 shows an example experimental results on giant resonances obtained using the heavy ion beams of the
GANIL facility together with the high resolution magnetic spectrometer SPEG. The observed peak in the 10-15 MeV
region is identified as the excitation of glant resonances in the target [Su89]. The angular distribution of the peak
shows that it is composed of several multipolaritics essentially L=1 et L=2 [Sug9, Su80|. Conversely to the results
shown in figure 12 the decomposition in different components was not petformed assuming a particular shape for the
resonance but by a direct fit of the various energy bin of the inelastic spectra. The extracted cross section for the
coulomb excitation of giant dipole resonance (GDR) is in perfect agreement with the photoabsorption data. It should
be noticed that because of the time dependence of the Coulomb field the Lorentzan shape should be weighted by a
Fourier transform of the force acting on the nuclear dipole. Because of the finite interaction time this Fourier spectrum
happen to be strongly decreasing with E. Therefore, in heavy ion reaction at low incident energy, the Lorentzian shape
of the GDR. appears to be strongly deformed as shown in figure 15 Moreover, the heavy ion reaction results are showing
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Figure 11 Spectra of inelastically scatered electrons on a Zr target. The lines show the various components of different
multipolarities. It should be notice that the various components can be distinguished throught their angular distribution.
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Figure 12  Inelastic spectra from the 170 scattering on a Pb target : The lines coresponds to the various components
identified in the analysis of the angular distributions. from ref, [BaB8c).

Auvother important feature of the heavy ion data is that they present a very strong nuclear excitation of the giant
quadrupole resonance (GQR) with a very high peak to background ratio. ‘This is an important characteristic as far
as the feasibility of decay studies is concerned. The decay properties of the giant resonances studied using heavy ion
probes present very small systematic error due to various contaminations.

The various data reported in Fig.16 coming from proton, a or electron inelastic scattering experiments show that
the results obtained using different probes are in good agreement with each other.

For nuclei with A> 40 , 50-100% of the E; EWSR has been localized in a peak at about 65A4-1/3MeV. Its width
varics from 6 to 2.5 MeV for nuelei from Ca to Pb. For lighter nuclei, the isoscalar GQR is highly fragmented.

2.2.1.2 Microscopic description: a simple diabatic scaling model and its connection with the hydro-
dynamical picture.

To get a deeper insight into the structure of giant resonances and to be able to make predictions about their properties,
one clearly needs a description of these collective states in terms of the underlying fermionic degrees of freedom. At
the leading order the deseription of giant resonances is based on the mean-field approach which can be justify a good
starting point because the frequency of the vibration is so high that the nucleons have no time to undergo a collision
during one oscillation.

let us first present a simple example of the diabatic motion of a Fermi gas in a deformed container.

We will first recall the intimate connection between hydrodynamics and the Schrédinger equation, showing how
the phase of the wave function can be interpreted as a velocity field and its module as a density. These concepts
will be helpful to the understanding of approaches such as adiabatic time dependent Hartree-Fock approximation.
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Figure 13  Inelastic angular distribution from the 170 scattering on a Pb target. The dotes are the experimental data for the
GDR. and GQR. The the lines corespond to the theoretical angular distribution which are only due to the Coulonb interaction
for the GDR. In the GQR case the Coulomb and the nuclear interaction can interfere. The observed differences between the
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in the inelastic data.
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Figure 14  The inelastic Spectra measured for the reactions 20Ne + 208Pb and 40Ar + 208PDb at 40 MeV per nucleon can be
decomposed in components of various multipolarities taking advantage of their different multipolarities,

Introducing the motion of collective variables through a simple scaling of the nuclear shape, we will show how the
vaniational formulation of quantum mechanics reduces to the classical action of an oscillator. This simple model
illustrates how a quantum many-body system can exhibit collective vibrations.

2.2.1.2.1 Equivalence between Quantum Evolution and Hydi'odynamics First, let us make clear the
connection between the independent particle picture and the liquid drop model. The Schrédinger equation for a single
particle

(1, 1) il
— = W t} = | —+Ulr,t r,t 2.56
O plr,t) = | 5= +U(r,1) }o(r, ) {2.56)
can be viewed as equivalent to the Euler equation for irrotational fluids, Indeed, if we separate the wave function into
a modulus and a phase: ‘
plr,t) = /p(r, t)e7xlmt) (2.57)
it is easy to verify that the quantum current j = Sm (™ V) satisfies the relation:

Jj=pVyx . (2.58)
This relation allows to define an irrotational low v = V.

The equivalence between quantum evolution and hydrodynamics can be easily demonstrated directly from the
variational formulation of quantum mechanics. Indeed the wave function [(t} > solution of the Schriidinger equation
{2.56) can be seen as a stationary solution of the action (see appendix A)

6.7 = [ Lo, (2.59)
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Figure 15 The GDR cross section in various heavy ion reactions (histogram). The dashed lines correspond to the expected

photoabsorption spectra while the solid lines corresponds to the Coulomb excitation probability taking into account the energy
dependence of the Coulomb field.
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Figure 16 Properties of the GQR : Systematics for the excitation energy E., width I' and fraction of the E; energy weighted
sum rule strength of the isoscalar giant quadrupole resonance presented as a function of the nuclens mass (see ref. [Be8(]).

where the Lagrangian functional is defined as

L), () =< $l0)li; — WId(t) > (260)

and where W is nothing but the one-body Hamiltonian: W = p? /2m + U, If we use p and x as variational quantities

we get!
. 1 2 _ |V ol
v —— . 61

The condition of a stationary action in the x direction leads to the dynamical equations for p which are identical to
the continuity equation
1
i+ —V.ij=0, 2.62
pt+ -V {2.62)

where j is the quantum current j = p¥Vyx . This relation suggests that v = ¥y can be interpreted as an irrotational
flow and indeed the stationarity condition for variations of p implies that the velocity field x evolves according to an

Euler-like equation:
. 1 Ap
—— (V¥ -XV+U =0 . 2.63
X~ 5 (l x| 77 ) + (2.63)

In conclusion the quantum evolution of a single particle can be equivalent to an irrotational motion in a potential feld
containing quantum corrections associated with the spacial variationof p: I/ = U + -2—1"75-‘/3?
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2.2.1.2.2 A Simple Model: the Diabatic Mean-Field approximation It is interesting to apply and illus-
trate the previous concept using a simple quadrupole scaling of the whole density assuming the time dependent
transformation of the coordinates

T — z(l 4+ Q)

y—oull+ @) (2.64}

z— 2(1-2Q)

When Q is time dependent this implies that in each point the matter moves with the velocity

I
V(Iayaz) = Q Y (265)
-2z
which simply derived from the velocity field
x=Q(x* +4° —2:%) j2 (2.66)

To implement this scheme in quantum mechanics, we can introduce the deformed (but static) single-particle wave
functions ¢ (n, Q, r) associated with different quantum numbers (n) through the relation

P, Q2 9. 2) = ¢ (n,0,2(1 - Q) y(1 - Q). (1 + 2Q)2) (2.67)

where we have assumed that @ is small. We will create a collective motion by multiplying all the wave functions by
an overall phase representing a collective velocity field x(2) so that the time dependent single particle wave function
reads

p(r,t) = X0 Q,r) (2.68)

Then we can introduce the one-body density associated with the Slater determinant. of A nucleons: pry=3%_ oo [e(n, 1) B
- The occupation numbers are supposed to be "frozen”during the motion, i.e. kept fixed at the ground state, Q@ = 0
(diabatic approximation). With the definition of the scaling of the box size we get a static one body density (for small

Q)
PUQ.r) = p (0, 2(1 - Q), (1 - @), (1 +2Q)2) (2.69)
fptid 8pl®) 8pl
) ) —olx _ _
@0 = a0 -0 (x24T 0% (270)
while the time dependent one-bady density reads
plr, £) = eXPHOH Q1) p)e=rE0) (2m)
It is easy to see that indeed the potential x defined in (2.66 ) corresponds to the minimization of the action (2.59) or
(2.61)
ta
I= / S Lalon, @l - (2.72)
t

L n oce

which in the studied case reads®
t
- [ o1 2y _ (0) (0} (W | (O 3
- [Ta ( Jar (o5 gAAvi) - T <ot @misia)> (2.73

Indeed, the induced current verify the continuity relation p + %V.j = 0 {2.62).
Then the quantum action,2.73, can be simply expressed as a functional of Q:

tz 1 .
I= dt(—V(Q)«i-EMQz) , (2.74)
ty
where
M=2m4<ri> (2.75)
is the irrotational mass equivalent to that found in the liquid drop model (3.6) and where V(Q) is the diabatic
potential:
VIQ)=D)_ <¢® @ wis (@) > . (2.76)
n occ

Therefore, one can define a classical Lagrangian, £{Q, () = M2 /2-V(Q) , and a classical Hamiltonian:

H(Q,P)=PY2M +V{(Q) , (2.77)

3The diference with the previous case is that the phase e™("*) represents only the phase variation and not the total phase.
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where the conjugate momentum P = 8L/8Q = M. These two terms have a simple interpretation; the first one
is the additional kinetic energy due to the collective motion which can be simply obtained by integrating the local
kinetic energy 1/2ma{®v? over the space

. . 1.
T = %M Q= % f drmp®y? = %cﬁ f dr2mp!Vs? = 5922mA <r?> (2.78}

while the second one is noting but the total energy associated with the static but deformed Slater state ¥(Q) built
from the q5£10} ()
V@)= <¥(Q)IWH(Q) > . (2.79)

It is important to notice that this energy contain both potential and kinetic terms. This kinetic contribution to V{Q)
would not be present in a hydrodynamies approach (since in such a case the matter is supposed to be at the local
equilibrium). We will illustrate this point by computing the variation of kinetic energy of a Fermi gas in a deformed
box in the next section..

It is easy to demonstrate that the reduction of quantum mechanics to a classical picture is related to the fact that
we are studying the time evolution of wave packet. Indeed, the evolution of the parameters of the wave packet is
equivalent to the evolution of the mean-value of some observable < A > which is governed by the classical equation
id < A>/dt =< [A,W] >. Therefore, to obtain the excitation spectrum of the system the classical Hamiltonian
{2.77) needs to be requantified.

2.2.1.2.3 Scaling of a Fermi gas in a cubic box Let us consider a Fermi gas in a deformed cubic box of size,

L:
L,

L,=(1+Q)L® {2.80)
L1497, (2.81)

which correspond to the scaling 2.64. In the Fermi gas approximation V(Q) is duc only to the deformation of the
Fermi sphere {see Fig. 17}, and can be expanded as

Kl
ViQ) = EFAg(l +4{Q* ~ % + i—;Q"" +...0) . (2.82)

where Er is the Fermi energy.
At the lowest order in € the potential (2.82) is cquivalent to a harmonic oscillator potential:

V@) =V + KQ? (283)

wlere the restoring parameter K is defined as
24
K =FErA . (2.84)

One recognizes in the expression of the action I {2.74), the classical action of a vibrator. Conserving only the leading
term in (@ we get a harmonic vibrational spectrum of frequency

w= ,f% = 65473 eV | {2.85)

where we have used the mean square radius of a uniform sphere: < r? >= %r%AQ/a.

Figure 17  Schematic representation of the quadrupole dformation of a Fermi gas both in r aud p -space.
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The presented derivation may also yield an estimate of the anharmonicities as can be seen from expression {2.82),

In this case, anharmonicities are limited due to the small zero point m

otion:

1 ’
Qo=yf T 0.36472/3 (2.86)

so that the potential

_ w@? Qo @ | 11Q Q7

V@ = S (-Pa g ) @&
~ W ~23 9 o an i@’ )

ViQ) = 3 QS (I 0.124 0o +0.334 QS + ... {2.88)

contains only small anharmonic corrections if one considers a large number of nucleous.

In summary, we have shown how a collective deformation of the nucleus follows the equation of motion of a classical
oscillator. The above derivation illustrates the extreme importance of the deformation in phase space {diabatic motion)
and the fact that a giant vibration cannot be described by an equilibrated evelution as in the hydrodynantical picture.
Finally, it may give some hint about the importance of the anharmonicities which appears to be small.

2.2.2 The giant monopole resonance
2.2.2.1 Systematic study

‘The existence of the electric isoscalar giant monopole resonance (GMR) in medium and heavy nuclei was first estab-
lished in 1977[Ma76, Ha77, Yo77). The giant monopole resonance GMR, is the L=0 mode and is the only volume
oscillation (see fig 18) which has been isolated.

Figure 18 Shematic illustration of the monopole resonance in nuclei.

The frequency of this breathing mode is directly related to the comnpressibility of the nucleus and the determination
of its energy is the most direct way to access to the compressibility modulus of nuclear matter, Indeed, this modulus
is simply proportional to the variation of energy density ¢ = E/4 when the hulk of the nuclear matter is compressed

d’c
_q, L€ 8
which as the dimension of an energy therefore when a nucleus is compressed the variation of potential energy is directly
related to the compressibility modulus. However, nuclei do not resembla to symmetric nuclear matter because of their
important surface, of their charge and of the possible neutron-proton asymmetry. This point will be discussed latter
on when we will have different models at our disposal.

A large amount of data has been obtained from (o, &'} and (*He,® He') reactions|Wo87, Bu84]. The study of
the GMR located at nearly 804~'/3 MeV which is mixed with other resonances such as the GDR and the ISGQR,
requited particularly selective measurements. In particular, the contribution of the QDR is strongly inhibited in
inelastic scattering of weakly-charged isoscalar projectiles such as a particles. Furthermore, as the GMR is strongly
excited in forward angle scattering, 0° measurements allow to disentangle the GMR. from the other contributions (see
Fig.19). Coincidence experiments have complemented successfully our knowledge of this resonance[Br83, Wos7|
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Figure 19 Excitation of the GMR and GQR : Inclusive a spectra for 2°6Pb at E, = 120 MeV for three different angular
range (a,b,c), d) Difference between b and ¢ (for more details see refs. [Br83,Wo87] ). Since the GMR crass-section is peaked

at 0% while the GQR has a rather flat angular distribution, the difference spectrum d) contains mainly the GMR exctta.tmm.
whereas the large angie spectrum c is dominated by the GQR.

2.2.2.2 A simple scaling model of the GMR

Let us assume that the collective motion corresponds to a global self-similar motion of the nucleus associated with the
scaling of the radii:

r— (1+Qo)r (2.90)
then the associated local velocity is noting but a radial fow:

v(r)=rgy (2.91)
With the definition of the scaling (2.90) the static density reads

()
uﬁm”m@m:%0=wm”“Q%ﬁp m) 242

where the last equation is obtained retaining only the lowest order in Qo. Therefore, the density variation takes the

form
wm=—m( ) (2.93)

which corresponds to the famous Tassie transition density. Using the velocity field (2.91), it is easy to get the kinetic
encrgy variation

P (Qo,r) =

ap(U)

; ) ) . 1. .
T = %/d"r mp@e? = -;»Qﬁ /d“"r mp Wt = %ngA <rl»= EM Q2 {2.94)
defining the mass parameter associated with the monopole vibration

M=mA<r®> (2.95)
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Figure 20 Properties of the GMR. : a) the centroid energy as a function of the mass A and b) the fraction of the observed

monopolar sum rule. The dashed curve indicated by (31.2){“”3 + 20.644_1/6) in a) is the GDR energy in order to show that
the GDR and the GMR are almost always degenerated. The second dashed line corespond to the GQR energy.

The potential energy can be obtained from the density variation {2.93) as soon as we know the potential energy as
a function of the density. If we consider only the volume part of the nucleus, we can use an expansion of the energy
around the saturation density

1d% 2
] = (0 il (0)
e (p” @) = (s @) + 35 7 (900 (o) (2.96)
Iutegrated over the nucleus the energy variation reads leads to the collective potential energy
1 d% 2 1 1
= —— (8p® = -2 KoV = ZQIAK 2.97
V (Qo) fdrmpg (867 @0))" = 303 [ arkp® = 203 297)

Then the total energy variation .
. 1
E=T+V= %ngA <r?> +§Q§AK (2.98)

look like an harmonic oscillator Hamiltonian associated with the frequency

K
Y=Vm<es (2.99)

This frequency has a A=1/3 dependence which is close to the experimental data. However, a direct application of

this equation to the observed monopolar vibration in Pb would lead to an estimation of the compressibility around
K =140 MeV.

2.2.2.3 Discussion of the Link of the GMR frequency with the nuclear compressibility

From the above simple breathing mode model the link between the GMR frequency and the parameters of the nuclear
Equation of States (EQS) is clear. However, as we will see in the chapter devoted to results from microscopic
calculations this model is by far too simple and neglect many physical effects such as the surface, coulomb potential,
nuclear asymmetry effects, ... Therefore the first idea is to replace in the relation (2.99) the infinite nuclear matter
compressibility by a compressibility of a finite nucleus, K 4. Then one may think to mimic the liquid drop expansion
of the binding energy hy introducing volume (Kvor), surface {(Ksurr), symmetry {Ksgym) and Coulomb (Keouw )
contributions to this finite system compressibility (¥ 4)

N-z\? z?
K= Kvor+ Koueg A+ sy (S22 ) 4 Komias + - (2.100)

In the scaling model of a finite nucleus the volume term, Ky, , would simply be identified with the infinite medinm
compressibility K [I3180, B195]. Then K4 should be extracted from a fit of the available data about the GMR.

Here, we touch the second problem because the simple models are predicting a single resonance frequency while a
whole distribution is experimentally observed. Therefore, the single GMR energy which should enter in the ft of the
various K should be understood as a well defined average. It can be shown that the mean energy |/m3/m; where m.,
are the n moment of the observed distribution, must be used in order to be abie to extrapolate from the compressibility
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of the finite nuclei to the compressibility of the nuclear matter. One possibility widely used in the literature is to
consider the position (E;) and the width " of the GMR. bump and to use the relation

Ky . r\?

or even more sophisticated expression [My95, Na95, $h93)].

The first problem of the above method is that the A dependence of K 4 appears to be rather weak making difficult
and ambiguous the fit procedure {Al96) and in fact rather good fits of the available data can be obtained with a Ky
varying from 100 to 400 MeV. Moreover, the extraction of a single number K from the observed strength distribution
can be ambiguous especially when only a part of the EWSR has been observed. finally it is discussed in ref. [Ch95a]
that even the experimental procedure to extract the GMR strength assumes that the transition density has the Tassie
form. Figure 21 present the RPA (solid line) and Tassie (dashed line) transition densities for two strongly excited
states of the ““Ni. The normalization factor of Tassie density has been adjusted to match the actual RPA response
to the excitation operator 72.0ne can notice that, whereas some states are perfectly described by the macroscopic
picture other states cannot be reduced to the simple scaling approximation.

E=170 MV E=22.4 ba¥

U trem ™Y
E B

e fim)

Figure 21 Transition densities (part a and b} and form factors (part ¢ and d) for two monopole states in %°Ni. The solid lines

represent the Tassi parametrisation normalized to reproduce the rpa response whereas the dashed lines are obtained from the
RPA wave functions.

The figure 22 presents a comparison of the RPA monopole strength functions (hashed histograms) :

S(E) = §E —w,)| < 0[O0[n > |? (2.102)

Al

with the result of our pseudo-experiment (black histogram in the up-side-down position). The analysis was performed
on four different sct of pseudo data corresponding to the reactions: a (140 MeV) + 1%Ca, 8Ni, % Z7 and 208ph.

The shapes of these two strength distributions look quite similar especially for the lightest nuclei. However,
the experimental analysis overestimates the total strength by some ten to thirty percents. This demonstrates that
measuring 100% of a given sum rule do not insure that the whole strength distribution have been observed.

This error on the extracted sum rules can strongly affected the calculation of the compressibility of nuclear matter.
It was concluded in ref. [Ch95a| that whereas for the light nuclei (Ca and Ni) the analysis does not induce any sizable
bias for the heavy nuclei (Zr and Pb) the difference lies between 300 and 500 KeV making the compressibility smaller
and therefore the equation of state softer. This may induce a systematic over estimation of R by at most 10%.

To overcome these difficulties one should directly compare the experimental inelastic spectra with predictions of
for exaraple a distorted wave Born approximation (DWDBA) using the strength and the form factors coming from a
microscopic description of the GMR (c.f. the RPA) as discussed in ref.{Ch95a). This analysis was only partially
performed in ref. [Bla5]. Indeed, Blaizot et al. have used microscopic approaches to relate the nuclear compressibility
of different effective forces to determine the position of GMR in various nuclei. Figure 23 shows their comparison of
the experimental GMR. position and of the predicted value (C.f. also {A196] for a review of these points). Taking into
account all the available results they get

207 < K < 225 MeV (2.103)

However, this analysis does not take into account the points razed in ref. [Ch95a)] concerning the possible systematic
errors in the extraction of the monopole strength due to the use of the Tassie form factors in the experimental analysis.
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Figure 22 Monopole strength distributions in 4001, SUNT, ¥97r and 2% Pb nuclei in the giant resonance region: the upper part
of each figures is the RPA prediction while the lower {up-side-down} part is the strength as extracted from the pseudo-inelastic
cross sections.

2.2.3 Other electric resonances

The isovector manopole resonance has been observed mainly via (=, 7% reactions which are well-adapted to excite
isovector giant resonances, but their identification in {#*, #%) reaction remains much more difficult. Data are available
now on several nuclei{Ba83, Bo84|(see Fig.24). Complementary studies are now in progress using heavy-ion charge
exchange reactions, For the isovector giant quadrupole experimental evidence is still very scarce. :

A reliable and systematic extraction of the characteristics of giant resonances of high multipolarity turns out to be
difficult for many reasons. As these resonances are expected to be at higher excitation energy and with a large width
which increases with excitation energy, their localization may become somewhat speculative. Furthermore, recent
RPA calculations[Lh93] have shown that the strength of high multipolarity giant resonances is spread out and that
the amount of collective strength clearly decreases for increasing multipolarities,

2.3 Physical interpretation of angular distribution: diffraction effects.

It is important to understand one of the basic tools to study giant resonances which is the angular distribution. Indeed,
in nuclear physics because of the small dimensions of the considered systems the scattering processes have a strong
quantal nature. In fact inelastic scatterings are dominated by the wave dynamics. Moreover, because of the short
range of the nuclear interaction and because of it strength inelastic interaction are confined in a small region around
the surface: Too far there is no interaction, too close the interactions are so violent that the inelastic precesses are
destroyed. Therefore, the inelastic scattering look like a surface diffraction effect. Figure 25 shows how a incident
wave interact with the motion of the induced vibration,

In fact depending upon the local collective motion the different wavelets associated with the incident projectile
are phase shifted. Now depending upon the collective mation these phase shift will be different leading to different
interference (diffraction) pattern.

The physies depicted above can be systematically computed using the DWBA and the optical potential cancepts.
The interested readers can find detailed discussion of this point in the review article |Al96).

2.4 Giant Resonances Built on Excited States

In 1955, D. Brink proposed, that giant resonances can be built on all nuclear states and that their properties should not
depend strongly on the details of the considered nuclear state. These giant resonances will have the same characteristics
as the giant resonance built on the ground state but their energy will be shifted according to the energy of the state
on which they are built. This statement is known as the Brink-Axel hypothesis{Br62]. In this section we will briefly
present the actual knowledge about this subject. Some of the presented points especially about hot resonances and
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Figure 24 GDR and IVGMR in Charge Exchange Reactions: Doubly differential cross section for the S0Ni(n~,n") reaction
at B = 165 MeV.(see rel. [Bo84}). The dashed line shows the continuum and the dotted lines the IVGMR (left peak) and the
GDR. {right peak).

multiphonons will be more developed in the next chapters. However, I believe that in this phenomenological chapter
it is important to summarize the actual experimental knowledge about Giant resonances.

2.4.1 GDR built on low lying states

The first observation of a giant resonance built on excited states is reported in the proton capture (p,y) experiment
on "' B performed in 1964 where the GDR built on the first 2t state was observed [Ko79].

Since this pioneering work, many experiments have shown that the GDR persists as a collective motion under
extreme conditions of excitation energies and angular momentum. We refer the reader to very complete reviews on
the subject (see for example {Sn86, Ga88, Ga92]). In the following, we will just mention the main features of these
observations.

Since 1980, medium encrgy (20-80 MeV) (p,y) experiments in light nuclei {12 <A< 40) have provided new infor-
mation on the properties of the GDR built on a variety of different states within the same nucleus. These studies
demonstrate the existence of y-decays populating excited final states. The v-strength function for each excited state
can be determine by varying the proton energy giving access to the characteristics of the GDR built on specific states.

The proton capture reaction on ?7 Al provides a good example of a reaction where the giant dipole resonance built
on well separate excited states was observed[Do83}. Figure 28 shows a vy-ray spectrum from this reaction measured
at 22 MeV. In the presented spectrum, superimposed on a large bump, one can see many peaks that correspond to
known 1p-1h states. These final states are in close correspondence with the states excited in stripping reactions, such
as (*He,d), and a simple proportionality of the strength of the observed resonances to the spectroscopic factors of the
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Figure 25 Shematic picture of a projectile as a incident wave, depicted with a broad arrows, envelopping a nucleus. The
motion of the latter is represented by small arrows,

Figure 26 Shematic picture of the diffraction of differsnt wavelets at the peripherie of a nucleus performing a monopole
vibration. because of the sperical symmetry the differents wavelats receives the same phase shift and therefore they always
interfere positively in the forward direction..

populated final states ( see ref, [Do83|} is observed. Thus, the (p.7) reactions appear to be a good tool for studying
single proton strength in lght nuclei.

A cross section for the excitation of every final state can be obtained from the line-shape decomposition of the y-ray
spectrum (see Fig. 28). Performing this analysis for different incident proton energies yield an excitation function
for all the final states. The excitation function for various final states is displayed in Fig. 29 as a function of the
emitted-y energy, E.,, ie. the proton-capture excitation energy minus the excitation energy of the final state. In
Fig. 29, resonances are observed all peaked at E, =~ 20 MeV which correspond to the energy of the GDR built on
the ground state. These results clearly show that the observed resonances are due to giant dipale excitations built
on various states as expected from the Brink-Axel hypothesis. However, the width of these resonances (see Fig. 29)
strongly increases with the increasing excitation energy of the excited states.

2.4.2 GDR in hot nuclei

Studies at higher bombarding energies on the same nucleus have been performed and show that, when the incident
energy is high enough, the spectrum of single particle strength in the final nucleus is washed out, leaving only an
enhancement peaked at the vy energy expected for the GDR. This transition can be interpreted as the transition from
the excitation of a giant resonance built on well defined single particle states toward the excitation of a giant, resonance
built on a compound nucleus. Indeed, at high excitation energy the single particle states form a dense continuum
strongly coupled to more complex states. Therefore, they can be identified with compeound nucleus states.

These collectives modes of a compound nucleus can also be studied by measuring the 7y decay from a hot equilibrated
system formed in heavy ion collisions. The presence of GDR excitations in the composite systems is now clearly
demonstrated from a variety of recent experiments. The hot GDR was first observed in the ¥-ray spectra from the
statistical decay of compound nuclei formed in % Ar induced fusion reactions at 170 MeV[Ne83]. In Fig. 30, the
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Figure 27 Shematic picture of the diffraction of different Wavelets at the peripherie of a nucleus performing a quadrupole
vibration. depending about the phase of the local vibration of the surface the differents wavelets receive different phase shif. In
particular, the wavelets at the maximum elongation and the others at the minimum elongation have oposite phases. Therefore
they interfere negatively in the forward direction leading to a minimum in this direction. However, ai an other angle they may
interfere positively and so a maximum cross section can be expected at a finite angle.

y-ray spectrum obtained in such reactions shows an enhancement for a value E; corresponding to the average energy
of the GDR. Indeed, the fact that the GDR is observed in the decay of compound nuclei can be understood as the
Ieverse process of the statistical decay of a GDR built on excited states. As a matter of fact, the existence of such a
coupling between the resonance and the compound nucleus states allows to consider that the phonon gas is in thermal
equilibrium with the nucleus and the observed photons are the signature of the presence of these phonon excitations.

The main features of the GDR decay which emerge from the available data can be summarized as follow [Sn86,
Ga92).

At low temperature (T < 2-3 MeV), the statistical description of the GDR decay gives a good account of the
measured spectra. The GDR strength and mean energy of the resonance follow the ground state GDR systematics
over a wide range of masses. The extracted E; strength is in general in good agreement with the energy weighted sum
rule suggesting that the high collectivity of the vibration is not affected by the temperature. The width and shape
of the GDR is sensitive to the shape deformation and fluctuation of the excited nucleus. This, in general, results in
a broadening of the observed resonance. The coupling of the GDR to the quadrupole shape degrees of freedom is
important and allows to study nuclear structure effects as a function of temperature. In particular, the importance
of the nuclear shell structures appears to diminish strongly for temperature about 1.5 MeV as shown in studies of
the nuclear shapes as a function of temperature and spin. At higher temperature (T > 3 MeV), the position and the
strength of the GDR remain constant at its ground state values but contradictory results on the width of the GDR
have been published. However, some observations indicate that the width does not increase as fast as in the lower
excitation energy domain because of the saturation of the spin transferred during the fusion process. At T > 5-6
MeV, experimental results are more fragmentary but have yielded indications for a saturation of the y-multiplicity
in the GDR region. The interesting new physics lies in the way in which the properties of the GDR are modified in
lighly excited nuclei. This study may provide new insight into the mechanisms of thermal equilibration and into the
properties of hot nuclear matter.

T ali the discussed experiments, because real photaons are observed, E, transition dominates. Relatively little is
known about giant resonances of other multipolarity built on excited states. In particular, it would be extremely
interesting to investigate properties of the giant manopale resonance in a hot nucleus and to obtain informations
about the compressibility of nuclear matter at high temperature. Indeed, the compressibility is a key ingredient of
the equation of state of the nuclear matter. This equation governs the behavior of hot nuclear system and is of great
interest for astrophysics as well as for nuclear physics. Recent experiments on the dilepton decay of the giant monopole
resonance are in progress[Bu94] but no results are available today.

2.4.3 Giant resonances built on top of other giant resonances: The multiphonons

We have discussed in the previous chapters that the gilant resonances were understood as a first quantum of vibration.
However, until recently, the higher quanta were escaping from the experimental observation. This fact was a puzzle
for our understanding of these collective modes. The observation of different multiphonon states in various types of

reactions is a strong confirmation that these modes are the first states of vibrational band (for more details see ref.
ICh95a]).
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Figure 28  ~-ray spectrum from the proton capture reaction on 27 Al measured at 22 MeV showing the preferential population
of particular final states {see ref. [Do83] ).

2.4.3.1 Excitation of multiphonons in heavy ion reactions.

The first observations of structures in the inelastic spectra of heavy ion reactions that could be interpreted as
multiphonon back traces back to 1977 (Fr77, Fr80]. In 1984, new data were showing high-energy structures that could
be interpreted as multipole excitations of giant resonances [Ch84c, Ch84b, Ch84a, Ch84] (see figure 31). Since our
theoretical predictions [Ch86b] were showing that the excitation of multiphonon states built with the giant quadrupole
resonance is optimum around 50 MeV per nucleons, experiments have been performed at the GANIL |[Fr87] (see figure
32).

However, the unambiguous signatures of the multiphonon nature of the observed resonances have been found only
recently with the study of their decay modes in particle coincidence experiments.

The idea is simple, when the target nucleus is excited above its particle emission threshold it decays by emitting
particles. The observation of these particles is therefore a signature of target excitations. This is exactly what is done
in ref. [Sc91, Sc93]. Figure 303 shows the inelastic spectrum of the 40Ca + 40Ca reaction at 50 MeV per nucleon gated
by the requirement that a proton is detected in the backward hemisphere. According to the previous discussion, this
spectrum corresponds to target excitations. On this figure one can see the a structure at twice the giant quadrupole
resonance in 40Ca that is interpreted as the excitation of two GQR phenons in the target nucleus.

However, this observation is not sufficient to sign unambiguously the excitation of & two- phonon state. To
demonstrate that these states correspond to a two-phonon state, we will take advantage of the existence of a direct,
decay channel (the escape width) which can be used as a fingerprint of the excitation of a given mode. Indeed, in the
case of the GQR in 40Ca, we have seen that it was decaying directly toward the ground state and the first hole state
of 39K (as recall schematically on figure 34).

If we now look at the missing energy spectrum associated with the emission of one proton from the structure
situated at twice the GQR energy, we can see sharp peaks on top of large background coming from the statistical
decay of a compound nucleus. These peaks are the signature that the decay cascade went through well defined states.
These peaks can be associated with the excitation of two GQR in the target which directly decay independently just as
the GQR does, going to well-defined hole states. The simulation of this independent decay gives a good reproduction
of the positions of the abserved peaks as seen on figure 35 (see references [S¢93, Ch95a] for more details).

This demonstrates that the structures, observed around 34 MeV excitation energy, are indeed due to the excitation
of two GQR Phonons. This state appears to correspond to a very harmonic vibration since the observed energy of the
peak is very close to twice the GQR. energy which centroid energy is around 17 MeV.

The observed width of the two-phonon state is very close to 1.5 the width of the GQR itself, This is also pleading
in favor of an independent phonon picture. Indeed, the multiphonon theory predicts that the width of an N-phonon
state should vary in [Ch84c, Ya85, Ch92, Ch95a]

Finally, the two-phonon state appears to decay directly as two non-interacting modes. All these properties show
that giant resonances are behaving as weakly interacting excitations.
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Figure 29 Excitation of the GDR on Top of Various States : Excitation function of the population of well defined final states
in a (p,7) reaction obtained by varying the incident proton energy. This cross section is plotted as a function of vy-energy, E,
= E{™ + Q- E.. (for more details see ref. [Do83)).

2.4.3.2 Observations of two-phonon states.

During the past 5 years the multiphonon studies have been widely extended using not only heavy ion beams from
10 to 14 000 MeV per nucieon {Ri93, La93, Au93] but also pion beams [Mo88, Mo91]. Figures 36 and 37 give two
illustrations of these results while figure 38 summarized the essential properties observed experimentally {for a complete
experimental and theoretical review see ref. [Ch95a]).

From these studies, it appears that the two-phonon states are very harmonic. Their energy is within 10deduced from
the independent phonon picture. Only their cross-section seems always underestimated by the theoretical calculation
based on a harmonic approximation. Let us now discuss all these properties. '

2.4.3.3 Width.

In the previous sections we have shown that the giant resonances are good vibrators giving, some foundation to the
widely-used picture of independent phonons. The anharmonicities are small: they induce a splitting of the strength
smaller than 1 MeV, which will resuit in a small increase of the multiphonon width. Therefore the multiphonon width
can be discussed within the independent phonon picture. Since this model predicts that the muitiphonon response
involves a folding of the one-phonon strength function (see eq. (3.60)) one may conclude that the widths are added
quadratically as the variances of statistically independent processes [Ya85, Ch88}. However, as far as the interpretation
of the width in terms of the inverse of a life-time is concerned, one would predict that the widths are simply additive.

This apparent contradiction is in fact solved in ref. [Ch92], using the relation between the life-time and the strength
function. A phonon state at an energy w which is decaying exponentially with a life-time 7 = 1 /T, is associated by
Fourier transform with a Lorentzian response

So

SE) = oo

(2.104)
where S is a normalization. If the Lorentzian shape (2.104) is introduced in equation 3.60 to compute the two-phonon
strength function one can show easily, using Fourier transform for example, that the line shape of the two-phonon

state is again a Lorentzian with a width
r,=2r , (2.105)

because the inverses of the life-times are additive. In this case the argument about the variances does not hold because
the variances diverge.

However, as soon as the variance can be defined (for example when the strength function appears to be more like
a normal distribution) the width appears to be quadratically additive

Ty =20, (2.106)

because the variances are additive and proportional to the square of the widths (Ch84a).
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Figure 30 GDR Excitation in Hot Nuclei : ~y-ray spectra from the decay of compound nuclei formed in fusion reactions
using an ** Ar beam at an energy of 170 MeV (see ref. [NeB3]). The observed shoulder can be associated with the statistical
excitation of a GD'R in the compound system.
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Figure 31  Inelastic spectrum showing high energy structures which are candidates for multiphonon excitations [Ch84, Ch84a,
Ch84b, Ch84c].

This is not a violation of the Heisenberg relation AE A¢ > 1 because in the case of a distribution which is
not of a Lorentzian type the width cannot be directly related to a life-time except through the inequality I' > 1/7.
For example we discussed in section 3.2.3 that the Landau spreading of the strength cannot be related to a life-
time[Ya85, Ch87, Gi87, Ch8g, Lagg] .

Both the Lorentzian and the Gaussian line shapes correspond to idealized pictures which are found neither in real-
istic models nor in nature. For instance, the resonance damping due to the eoupling to more complicated states{Be83]
leads to a Lorentzian shape only in an oversimplified model. In detailed calculations, strength distributions are pre-
dicted to be neither Lorentzian nor Gaussian[Ca92]. The Landau broadening itself gives line shapes which can be
somewhat complicated. The possibility to obtain normal distribution in the case of nearly chaotic spreading dynamics
is discussed in ref. [Ze93]. Therefore, the concept of width is not well defined, either theoretically or experimentalty.
Moreover, concerning the folding procedure, one is always dealing with truncated strength distributions since there is
no strength at negative energies whereas physical conservation laws impose an upper energy limit. All the moments
of the strength are finite allowing us to use the variance as a measure of the width. So, as far as the independent
excitation picture is valid, the multiple excitation spectrum is predicted to be the folding of the single excitation
spectrum and the variance of the multiphonon spectrum is the sum of the variances associated with each individual
plionon.

For instance, we have already discussed that the strength of the giant dipole resonance {GDR), which is one of the
best examples of a Lorentzian, must be multiplied by a Gaussian cut-off in order to fit the data on the low energy
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Figure 32 Inelastic spectra showing high energy structures excited in different target nuclei by a heavy ion projectile at about
50 MeV per nucleon.
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Figure 33  Inelastic spectrum measured in the 40Ca + 40Ca reaction at 50 MeV per nucleons in coincidence with backward

emitted pratons. This spectrum corresponds to target excitation. The structured observed at high excitation energy is
interpreted as the excitation of two GQR. phonons.

side and that in actual experiments; the GDR strength is weighted by the virtual photon spectrum which decreases
exponentially up to a maximum energy given by energy- and momentum-conservation. Also in this case, the relation
{2.106) is expected to hold. Another way to compute the anharmonicities is to consider that the first phonon is
already damped when the second phonon is excited. Therefore, the second phonon is built on a hot system. Since
the temperature effects on giant resonances are relatively small, one may conclude that the anharmonicities are very
small [Su86).

In conclusion, the life-time of a multiphonon state is inversely additive whereas the variance of a multiphonon
cross-section is predicted to be always defined and additive. One generally expects relation {2.106) to hold in the limit
of an independent-phonon picture. The introduction of anharmonicities induces a small increase of the two phonon
width of about 1 MeV [Cag9, Bed2] if the different components are not resolved. Consequently, one can estimate that
the width of the two-phonen states will be +/2 times that of the single phonon plus 0.5-1 MeV due to the anharmenicity.
This simple law, originally predicted in reference [Ch84a) and later on rederived by many authors [Ba92, L1192, Ze93|,
is in very good agreement with all the present multiphonon measurements [Ya85, Mo88a, Fr88, MoS0, Ku92, Em94] .
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Figure 34  Schematic diagram of the direct decay of a giant resonance and of a two-phonon state
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Figure 36  Spectrum of the Coulomb excitations of 136Xe arrizing from its collision with a Pb target at 700 MeV per nucleons.
The first peak corresponds to the GDR while the second one is attributed to the two GDR phonon states (see ref. [La%3])
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Chapter 3 Theoretical descriptions

In this chapter we present an overview of the different approaches which have been applied to the descrition of collective
vibrations,

3.1 Macroscopic Models of Surface Vibrations
We will use the surface vibration model as an illustration of these macroscopic models based on the liquid drop
approach[Bo75, Br81]. These surface modes are analogous to the ripples on the interface of two fluid as shown on
figure 1. The inertia comes from the fluid motion while the restoring force is due to the surface tension..

Figure 1 Shematic ilustration of the vibration of the surface of a fluid.

Let us consider a spherical incompressible liquid drop. The excitation of the shape can be described by expanding
the surface coordinate on the spherical harmonic basis

R(®.6)=Ro [ 14+ Qu.Yi,(6,¢)] . (3.1)
Ap

We will show in this section that the motion of the collective deformation parameters @5, can be associated with a
harmonic escillator Hamiltonian (3.7).! This fact justifies the introduction of the concept of vibrations and phonons,
We will describe how the surface-vibration model can be used in a phenomenaological manner (see section 3.1.4) and we
will discuss how it is possible to go beyond the harmonic picture (see section 3.1.5). In particular, we will introduce the

so-called nuclear field theory (see Fig. 2) which is a powerful tool to study phonon properties such as anharmonicities
{see Fig, 2).

3.1.1 Potential Energy of a Deformed Liquid Drop

In the surface oscillation model, the restoring force arises from two opposite effects: the surface tension which favors
the spherical configuration, and the Coulomb force which tends to deform the nucleus. The increase of surface energy
is proportional to the increase of the surface AEg5 = aAS ,where ¢ is the surface tension parameter. The increase of
the surface due to the deformation @ can easily be obtained at the first order in Q [Bo75]:

ABs =23 (A= LA+ 2@l . (3.2}
Au

The Coulomb energy variations of a deformed uniformly-charged drop is given by (at the lowest order in Q)

3 722 A-1 3
AEw ) — Onal? 3.3
Coul T Ry §2z\+l| wul (3:3)

Therefore, the total energy variation can be approximated by a harmonic potential V:

1
V= ABs+ ABcou = 3 > KAQal? - (3.4)
Ap

Except for ao which is constrained by the volume conservation and 1a which corrects for the center of mass motion.
P Y “
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3.1.2 Kinetic Energy

In order to get a complete description of the considered excitation, one still needs to derive the kinetic energy associated
with the surface motion. This quantity depends on the flow associated with the collective motion. If an irrotational
flow is assumed, a simple expression of the mass of the collective motion can be derived. Indeed, one can introduce a
velocity v = —Vx , where velocity potential x fulfills the condition Ay = 0 when the fluid is incompressible. Using the
boundary condition at the surface which, for small values of Q, reads v,(R,) = Ronegets y = — ¥ u ATTRETAQ M v
In this case, the total kinetic energy becomes

M, -
T=) SlQn (3.5)
Ap
where the parameter
My = (3/47)M ARL/) (3.6)
can be interpreted as the mass of the vibration,
3.1.3 Quantization of the vibrations
The total Hamiltonian,
1 2 I{,\ 2
= _ 100 . T
H=D g |Pul + Rl (3.7)

A

in which Py, = Af ,\Q;u is the momentum conjugated of the coordinate @y, can now be quantified as a harmonic
oscillator with the frequency:

S
M

Therefore, the excitation spectrum exhibits single and multiple phonon excitations. We can introduce the creation
and annihilation operators for the phonons, 31 and O, defined by the relations :

w
Q= \/ﬁ(OVFO) (3.9)

P=i “"TM(OT—O) . (3.10)

wn = (3.8)

and

The Hamiltonian (3.7) gives a good framework to describe giant resonances. However, the liguid drop parameters
for the potential energy do not always give the correct energy for the resonance. For example, for the quadrupale
resonance, one gets w & 384~ !/2MeV which is far from the experimental value E = 644 ~1/3MeV .

The reason why the liquid-drop picture fails to reproduce some giant resonances is due to the fact that the motions
described by the hydrodynamical model must be slow in comparison with the characteristic equilibration time. Indeed,
we suppose that all the internal degrees of freedom are equilibrated when we assume that only the surface modification
is contributing to the energy increase (adiabatic approximation). However, the equilibration time can be computed
by investigating the time between two collisions undergone by one nucleon. At low excitation energy, this time is
very long because many collisions are blocked by the Pauli exclusion principle. If the mean free path of the nucleon
is found to be larger than the nuclear size, the equilibration time is greater than 10™%%. Therefore fluid dynamics
can be applied only to slow processes{slower than 10~%%s}, such as fission, but not to giant resonances which have a
period of oscillation of the order of 10225,

The correct picture is to assume that the nucleons do not have the time to readjust their distribution to the
variations of the mean-field (diabatic approximation) and that they still move on the same orbital {see chapter on
TDHF approximation). Therefore, not only is the surface deformed but rather the whole nucieus is out of equilibrium.
In this case the restoring force becomes a volume force generating the correct A3 behavior.. .

In conclusion, the liquid drop model helps in understanding the vibrational nature of giant resonance but cannot
be used to quantitatively derive their properties. Therefore, this model must be considered as phenomenological, the
parameters X and M being derived from experiment [Br81].

3.1.4 Phenomenological appreoach

In the phenomenological approach the mass Af and the restoring force K are considered as free parameters which

are fitted in order to reproduce the resonance frequency and the electric multiple moments B(E,,.) . Indeed, the
transition between the ground state {0) > and the first phonon state |1, > is refated to the amplitude of the vibration.
In particular, assuming a sharp uniform charge distribution one gets [Br8l]:

3Ze
B(E)) = | < LilMsJo > |* = %4—;1{3\/2“1 , (3.11)
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where M are the electric multiple moments (M, = er*Yy o). The actual strength associated with a given mode can
be measured experimentally through inelastic collisions.

The B(E\) value together with the excitation energy w uniquely define the two parameters K and Af of the
vibration,

3.1.5 Anharmonicities and Phonon Couplings

The surface vibration model have been widely used for the study of low-lying states such as the low frequency
quadrupole mode. In the fifties, the experimental observation that low-lying quadrupole states are the basis of a
vibrational band with a large anharmonicity [Go59, Bo6s, Bo75| stimulated many theoretical efforts. Some studies
were simply based on a phenomenologica] expression for the Hamiltonian describing the interaction between phonons
{Br65, Bo75]. Others were based on a general expansion of the deformation potential (3.4) and of the kinetic energy
(3.5} in terms of the deformation parameters @ and velocities  [Be6l, Ke62, Beb2, Ch64]. However, the properties
of the phonons such as the anharmonicity were derived from phenomenological analyses of experimental observations
[Ba75]. None of these developments have been applied to multiple excitation of giant resonances because of the lack
of experimental data to fit the phenomenological parameters of the models.

To avoid this difficulty, an alternative route is to consider the particle-vibration coupling model {or the nuclear
field theory)[Bo75]. Since this model opens the possibility of predicting properties of multiple phonon states built
with giant resonances, we will discuss it in some detail?.

‘The basic idea is that the leading order of the particle-vibration coupling is identical to the excitation of a phonon
during the scattering of a particle. Therefore, the coupling interaction can be written as

Hoop =F.Q =) F(r)Y Vi@ . (3.12)
A i

where €} is the deformation operator and F is a one-body operator. The operator £ can either be abtained phe-
nomenologically or can be derived from the microscopic models (see section 3.2.3). In equation (3.12) the collective
coordinate @ can be quantified as a harmonic oscillator

w

=y/3x

(0" +0) , (3.13)
where O and O are creation and annihilation operators for phonons and the one body operator F' can be expressed
as
F=Y"Fala, , (314
ij

where cr,tf (resp. a;) creates (resp. annihilates) a particle in the orbital i. Therefore,the interaction between particle

and phonons, Heoupn, can be graphically represented as in Fig. 2. Higher order terms require computing variety of

<VIHli> = higgs < IVIHI > = gy, < iHIV> = -y, <" VilHIO> = -hyy

Figure 2 Graphic Representation of the Coupling Hamillonian :  In this figure the straight lines represent particle states
noted i or j, (lines going upward) or hole states, noted i~! or 71, (lines going downward). The heavy lines symbolize phonon
excitations labelled by v. The different point represents vertices associated with a given matrix element.

interactions. For example, the coupling between one- and two-phonon states can be estimated computing the three
diagrams shown in Fig. 3 and the additional diagrams obtained by interchanging the direction of the particle arrow
(in fact, interchanging particles and holes} and the two final phonons.
The four-phonon interaction requires the estimate of more diagrams which are obtained by attaching the four
phonon lines to the four possible fermion vertices shown in Fig. 4 and by inverting the direction of the fermion line.
By generalizing this approach it is, in principle, possible to compute all matrix elements between multiphonon
states and to infer properties such as anharmonicities or mixing between one and two phonon states.

2Some preliminary results obtained within the nuclear field theory are contained in ref. [CeR9] but no extensive study of the multiple
giant resonance cxcitations have been yet published.

CONTENTS
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<v'v"|H|v>

Figure 3 Interactions between one and two Phonons: Different graphs contributing to the coupling between one- and

two-phonon states.
v
v

vlll
”

Vl
v ..

<v"v™Hjwv'>

Figure 4 Two-Phonon Interactions: Different graphs containing four phonons in interaction, iwo in the intial state and two
in the final state.
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3.1.6 Discussion

The macroscopic model is a useful phenomenological approach which provides a simple representation of the collective
excitations of the nucleus. The general concepts such as the small amplitude vibrations of the nuclear density or
the quantization of the motions in terms of harmonic oscillations are in common with the microscopic approaches
presented in the following section. However, the macroscopic model must be considered with some caution because it
basically ignores the microscopic content of the collective excitations. In particular, the macroscopic model provides
only a rough estimate of the transition densities associated with the collective modes, i.e. the variation of density
observed during the vibration of the nucleus. This may be an important drawback of the method when macroscopic
and microscopic form factors are compared. In conclusion, a quantum microscopic description of giant resonances and
multiphonons is called for.

3.2 Mean Field Approximation and Beyond
Since the discovery of magic numbers and their interpretation in terms of shell effects (see textbooks such as [Bo69,
Ri81]), the idea that nuclei can be described in terms of independent particle motion is well estahlished. The main
justifications of such a picture are related to the quantal and fermionic nature of the nucleons: on the one hand,
their zero-point motion (= 5§ fm) is large in comparison with the strong interaction range (= 1 fm) and the radivs of
the hard repulsive core {= 0.4 fm); on the ather hand, in the interior of the nucleus, most of the collisions are Pauli
blocked so that the nucleon mean-free path is long in comparison with the nuclear dimensions. Therefore, the

nucleons can be described in a first approximation as interaction-free particles moving in the mean-field created by
all the other particles.
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‘The mean-field approximation is the starting point of elaborated descriptions of the nucleus. When looking at
static properties of a system, the mean- field treatment leads to the Hartree-Fock approximation (HF) which has
been very successful in describing static properties of nuclei (see textbooks such as [Ri81] or recent reviews such as
[AbY0] and ref. therein). The time-dependent generalization of this approximation, the time-dependent Hartree-Fock
(TDHF) approximation [Di30, Feb7, Fa59, Bo76, Ri81], has also been very successful in describing the dynamical
properties of nuclei and low energy heavy-ion reactions. Recently, the semi-classical version of TDHF , the Vlasov
equation, has proven to yield a valid description of nuclear properties and reactions, especially in its extended version
which includes a Pauli-blocked collision term, the so-called Boltzmann-Uehling-Uhlenbeck {BUU) equation[Be8g].

In this section we will first recall a modern derivation of the TDHF approximation where we will define the
notations used in the following. In particular we will intraduce the Liouville formakism and we will define a natural
metric in the Liouville space. Then, we will present the concept of collective vibrations through the linearization of the
TDHF equation leading to the Random Phase Approximation (RPA}, This introduction will lead to the presentation of
various extensions of the mean-field approach. We will start by discussing the so-called Adiabatic TDHF approximation
and its predictions for multiphonon anharmonicities. We will then present the Generator Coordinate Method which
can be seen as one of the possible bridges towards the Boson mapping method developed in the last section of this

chapter. Finally, we will describe the different attempts to use quantified periodic orbits of TDHF in order to go
beyond the RPA.

3.2.1 Link between structure calculation and time dependent approximation

The fact that time dependent approaches are general tools to get information on the eigenenergies and eigenstates of the
time independent Schrédinger equation is an important concept in physics which deserves some detailed explanations..

From the general point of view time dependent approximations are espoused to provide good approximations for the
evolution of quantum systems. In fact, these approximations are often restricted to the prediction of few observations
on the system. For example, the time-dependent mean-field approaches are optimized to predict the evolution of the
observations of one-body observables < I} > To understand the link between these approximations and the exact
quantum problem one should first introduce the exact eigenstates of the Hamiltonian

Hn) = w, [n) (3.15)
Then any initial states
) =" An |n) (3.16)
"
evolve according to the Schrédinger equation
() =3 Ane™nt |n) (3.17)
n

Therefore, the result of the observation of any ohservable D happens to be

< D> @)= (EOIDN D) =T Ape™ @2 (| n) (3.18)

ttn

This means that the Fourier transform of the quantity < D > (t) implicitly contains both the energy difference
(wn ~ wyn) and the transition amplitude {m|D|n}. A case of particular interest correspond to the measure of an
observable D on a slightly perturbed ground state (as the suddent application of an operator B). In such a case, at
the first order of the perturbation theory we can write

() =10} + > (n| BIO) e~ |n) (3.19)
int#£0
and so we get
< D> ()= e w0l (0] B0y (0] D |n) + hc. (3.20)
n#Ed

Therefore, the Fourier transform of the predictions of time dependent approximations may give information on the
eigen energies and transitions amplitudes of states correctly connected through the corresponding observable. For
example, time-dependent mean field approaches are known to be built to predict evolutions of one-body observables
therefore the Fourier analysis of the TDHF dynamics may give information on the excitation energy and transition
amplitude of states strongly connected to the ground state through one body operators. This means that only the
frequencies and amplitude of transition should be interpreted and not other predictions of the approximation such as
the wave-function. We will come back to this point when we will discuss periodic orbits of TDHF or correlated ground
states of the guasi-boson approximation.
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3.2.2 Time-Dependent Hariree-Fock Approximatian

Let us consider the Hamiltonian H of a fermionic system {e.g. a nucleus) with a two-body interaction V:
1
H= Ztijazﬂ.j + i Z ‘f}j,kgaga}agak Y {3.21)
3

where a! is the creation operator of a particle in the orbital i.
The TDHF approximation reads (see appendix 5.2):

ip = [W{p),p} , (8.22}
where p is the one-body density matrix, p;, =< a;a! >= 'I}'Daj.a,- and where the mean-field Hamiltonian is:

SE(p)
;o 23
" el (3.23)

with E being the total energy E(p) =< H >= TrHD. In these definitions D is the many-body density matrix of the
system supposed to be of independent-particle type (see eq. 5.8).
Diagonalizing the one-body density matrix |

p=> lpi>n < i (3.24)

1

we can define single-particle orbitals ¢, and occupation numbers p;; = §;n;. The occupation numbers are constants
of the motion and the TDHF equation corresponds, for each orbital y,, to a single-particle Schroedinger evolution
generated by the self-consistent one-body (HF) Hamiltonian W:

D

 ——— = . 3.25

i @, (3.25)
An important application is to consider the evolution of Slater determinants (ie. n, = 0 or 1).  However,

the derivation presented in appendix 5.2, was performed in a general framework so that one can consider mixing of
independent particle states in which 0 < n; < 1, This is, in particular, the case when one considers a hat system.

In the following, we will use the Liouville formalism [Zw60, Fa64] in the single-particle space. The one-body density
matrices, p, are considered as super-kets, noted ||p »3, with elements p, where the index « labels the pair of single
particle indices (4, 7). The super-operators acting on the Liouville space will be noted by calligraphic letters. In
particular, we can write the TDHF equation {5.10):

illp»=Wijp>» , (3-26}

where we have introduced the super matrix W defined by W/l 3= ||[W, ] 3. The dual of the single-particle Liouville
space is the space of the one-body observables, A4, (i.e. of the Hermitian one-body operators) and the result of a
measurement is given by :

<« Allp »= Z Alpa =trdp=< A > (3.27)
This relation provides a scalar. product in the Liouville space

< olp = Z ol ps =trop (3.28)
4]

if we define the super-bra < pl| as being the Hermitian one-body operator associated with p. It should be noticed
tliat the conjugate of a super-matrix, £, is CL-‘*,E = L], since it is defined by < p||Lle »=< || Ljp 3~
The TDHF equation (3.26) and the scalar product {3.28) will be the building-blocks of the following developments.

3.2.3 Random Phase Approximation

In this section we will present the linearization of the TDHF equation which leads to the so-called RPA. . Considering
the discussion about the link between time dependent approaches and eigen-energies and transition amplitudes we can
directly understood that a Fourier analysis of the linearized TDHF should directly give access to excitation energies
of states which can be excited from the ground state through a one-body operator.

*We will sometimes omit the super-ket symbois || ... 3» when no confusions are possible
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3.2.3.1 Small Amplitude Vibrations

Let us consider the case of small amplitude motion around a given density /% [Ri81). In this case if we expand the
TDHF equation (3.26) to the first order assuming that

p=p® 4o 4 (3.29)
we get
fp) >=Kllp™M > . (3.30)
In this equation we have introduced the RPA matrix defined by
7
Knﬁ = M ’ (331)
Jpp
or equivalently by
K=¢8+FL | (3.32)
where the super matrices £, F, £ are defined by:
fle>» = [[WO0]»
Fle» =~ 0> (3.33)
L = W . 2°F
dp dp*dp
In order to solve equation 3.30, we introduce the eigenmodes, X', of the RPA matrix K:
KXY »=w,|X¥ » . (3.34)
Realizing that the operator 1K is Hermitian according to the scalar product < [| 3 of the Liouville space (i.e.
KIF=1 = (FIK) = F71)C ) we can easily show that the lincar evolution, 3.30, presetves the simplectic RPA form
& || FY] >
d
5 <AVDIF MM @) »=0 (3.35)

where p(t} and ¢(1) are any linear perturbations of p{%. Therefore, according to this simplectic structure of X , each
eigenmode || X" > with an energy w, can be associated with the eigenmode X ' % with an energy --w,. Moreover,
the different modes are orthonormalized according to the RPA simplectic form;

L XYF X >= b usgn(uwn) | (3.36)

and the closure relation reads:
> sgn(w)|X > AY|F = 1 (3.37)

Eq. (3.34) is the most general RPA equation valid for time dependent problems with occupation numbers different
from 0 or 1. It is also built to accommodate density dependent interactions or three body forces.

3.2.3.2 Linearization in a moving frame

Let us generalize a little the above presentation by considering the case of a small amplitude motion around a TDHF
trajectory. In the mean-field approximation, the single-particle density matrix p of the system is determined by the
time-dependent Hartree-Fock (TDHF) equation,

208 = i), ate) (2.38)

where Wp| = p2/2m + U [¢] denotes the mean-field Hamiltonian, and U[g] is the density dependent self-consistent
mean-field potential. Let us assume that the system is represented at the initial time £ = 0 by a density matrix
Ao = p(0) determined by the constraint Hartree-Fock equation [W(oo] — AQ, jo] = 0, where W[ﬁg] is the mean-
field Hamiltonian at the initial state, ¢ is a suitable constraining operator for preparing the system and ) is the
associated Lagrange multiplier. To study the propagation of small perturbations around the trajectory defined by
the initial constrained state By it is more convenient to consider the density matrix (t) in the "moving frame”,
8(1) = exp{E 2@} A(E) exp[~L AtQ], and transform the TDHF equation into the moving frame,

ih—= = [W(t) - AQ, é(t)), (3.39)

Ba(t)
Ot
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where the mean-field Hamiltonian in the moving frame is given by,

W(t) = exp[int@Q! W(t) exp[—irtQ). (3.40)

In order to investigate the early evolution of instabilities, we linearize this equation around go(t), §(t) = go(t) +85(t),
where dp(t) is the solution of the TDHF eq.(2) with the initial condition gy determined by the constraint Hartree-Fock
equation. The small fluctuation 85(t) is determined by the linearized TDHF equation in the moving frame,

6:5 o

S = Dholt) - AQ, 8]+ 60(8), (0] = M(1) - 60(2), (3.41)

where the mean-field Hamiltonian Wy(¢) and the fluctuations of the mean-field potential 5/ (t) in the moving frame
are defined in a manner similar to eq.(3), and M(t) denotes the instantaneous RPA matrix. The formal solution of
this equation can be expressed as

8p(t) = U(t) - 6p(0), (3.42)

where
U(t) = T(exp|— - f dsM(s))) (3.43)

denotes the linearized evolution operator with T as the time ordering operator. The eigenvalues of the evolution
operator U(t) determine the stability of the TDHF trajectories as a function of time. However the construction of
U(t) is, in general, a very difficult task. Therefore, we consider the early evolution of the instabilities in the vicinity
of the initial state o and solve the RPA problem associated with AM(0) = M. Introducing the eigenmodes §3(w)
associated with the eigenvalue fus and incorporating the representation |i >, which diagonalizes Wy — AQ) and do, the
RPA equation M §j(w) = fw §4(w) for the collective modes becomes

(fn — i +¢5) <ildplwlli > = <doU(w)i > (o; — p:), (3.44)

where p, and ¢; are the occupation number and the energy associated with the constraint Hartree-Fock state |i >,
respectively. The temperature dependence may enters into the calculations through the occupation number p;if it is
given by the Fermi-Dirac function in terms of the single-particle energies ¢;.

3.2.3.3 Dispersion relation method

The RPA q.(3.44) can be solved using standard techniques [Ri81]. However, we can consider a simplified approach,
and parametrize the transition density associated with an isoscalar collectlve mode in terms of a known operator
such as a multipole operator,

85(w) = a(w) F (3.45)

where a(w) is the amplitude associated with the collective mode. This relation can be inverted using any observable

afw) = K trDi(w), (3.46)
where the normalization factor Ky is given by

Ki =trDF (3.47)

Such a density variation induces a variation of the mean-field
U (w) = a(w)dl [/8a (3.48)

A dispersion relation for the frequencies of the collective modes can be deduced from the self-consistency condition
that is obtained by inserting the solution of the RPA equation for §3(w) into the right hand side of eq..(3.44). This
gives
alw) afw) < i|dU/8a|j >< §|D)i >

K Z o — €, +¢; (pj = 1), (3.49)

1§

This dispersion relation is valid, in principle, for any choice of D, provided that the parametrization (3.45) is a good
approximation for the density fluctuations in a multipole mode. In fact, the dispersion relation is not very sensitive
to the specific form of D so we can take D = 38U/ /8a. This gives rise to a symmetric dispersion relation,

Z |< J_ujh:el (pi — pi)s (3.50)
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which is equivalent to the RPA problem with a separable interaction of the form,
1 . .
V(1,2) = 5 K D(1)D(2), (3.51)
with the coupling constant K given by the normalization factor in eq.(3.47).

The dispersion relation (3.50) allows to determine frequencies w associated with the collective modes. This disper-
sion relation can be solve graphically outing the intersection of the curve

" 2
< j|D)i >
y= ,Z,: Iﬁx_—fl_“_'; (p; — pi)s (3.52)

with the line .
y= ra (3.53}

=]

Figure 5 Shematic picture of the graphic resolution of the dispesion relation.

3.2.3.4 Zero-Temperature RPA

At zero-temperature the ground state is described by a single Slater determinant. The occupied states are usually
called holes (h) while the unoccupied orbitals are named particles {p)- In this case the RPA Eq. (3.34) reduces to the

zero-temperature RPA equation :
.(1) (1
; pph _ ( A B ) ( pph ) .
o =l _p- . 1) . (3.54)
(8)-( %)%

In this equation, we have introduced the matrices 4 and B which are given by:

Aph,p‘h' = !Cph,p'h'
Bph,p’h‘ = Kph,h’p‘

Solving the RPA equation (3.54), we must introduce the eigenenergy and eigenvalues of the RPA matrix -

(1?‘ f)(§)=“(—)§f) ‘ (3-56)

The positive frequencies define the eigenmodes of the nucleus and X and Y , the transition from the ground state to
the excited state | v > induced by the one-body operator F' (see appendix 5.3):

< o|Fly>= 3" FipXi + FpYih =< F|lAY > (3.57)

ph

We can therefore compute the strength function associated with the operator F

S(BY=) | <olFlv>PS(E-w,) =3 | < Fllsd > 26(E —w,) . (3.58)

15
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Since the introduction of the RPA[Bo53] in nuclear physics (G159, Fabda, Go59a, Tab9, IkE9, Ar60, Ba60, Ka60,
Ma60, Thé1a] numerous applications have been worked-out and it is beyond the scope of the present article to review
them all. We will only discuss some important points and refer the reader to the existing articles and textbooks (for
example see refs. [Ri81, Sp9l]) for a more complete status report on this subject. We will in particular concentrate
the discussion on the self-consistent RPA approaches which are fully microscopic [Be75, Be74, Li76, BI76, Kr77, BI77,
Li76a.

Two avenues have been investigated up to now. The first approach consists in the diagonalization of the H.F,

10—
- > % EWSR

3 Ca (5= )q

Z =2 :

[17]

>

w

5
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Momentum tronsfer q {fm-1)

Figure 6 Quadrupole Strength : From ref. [De82] and [BI88] . Bidimensional contour plot of the [.=2 response of **Ca to the
iz(gr) operator as a function of the momentum transfer q and of excitation energy E.

mean-field on a discrete basis followed by a diagonalization of the RPA matrix. Figure 6 presents the quadrupole
strength obtained from a self consistent RPA calculation using a finite range effective force, the Gogny force D1{De82].
The giant quadrupole resonance is clearly observed around 20MeV, This figure also illustrates the extreme sensitivity
of the shape of the strength to the excitation operator F,

The second possibility is to compute directly the strength function in the continuum. This approach is based
on the Green’s function methods. The RPA Green’s function can be directly computed from equation (5.21). For
finite-range nuclear forces, this method presents enormous numerical difficulties. However, the problems become much
simpler for zero-range eflective interactions such as Skyrme forces [Be73, Sh75, Be?5, Li76a, Ts78] because one can
solve the Bethe-Salpeter equation (5.21) directly in coordinate space (see appendix 5.2).

An example of such a calculation is shown in Fig. 7 from [Ch88]. Only the continuum part of the strength is
represented. It can be seen that this calculation predicts a width for the peaks and giant resonances. This width

& *=0 |2 A2 |2 A=t |4
hic) ViRl N AT] vy (oR)
(-]
2. 1 1 0
2 0 0 K
23 E| -1 -2
a} L] ¢l dl
-4 2 -2 3t
o . A=zD s 154 o As2 8 A=zd iy 1 11 -
;5 ri r ri ré
22 2 7 10
1 1 6 9
0 0 5 '
e th [ |
- 1
v wm v 0 o T T E @

Excitotion Energy E (MeV)
Figure 7 Multipole Strength : From refl. [Ch88] : RPA strength distributions in 2°8 Pp induced by an %6 A7 projectile
calculated with : (1) the excitation operator corresponding to the Ar at a distance R = 11.35fm, (parts(a)-(d) in MeV}) ; (2)
AV (F) with M = AHA>Tor ¥ =A+2iA< 1 {parts(e)-(h) in fm?* MeV—1)

includes both the Landau spreading and the escape width.

3.2.3.5 Multiphonon Strength
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The RPA approximation is an harmonic approximation therefore we can define a multiple excitation strength as

S(E,n}= Z {<olFln > .| < of Floy > [*8(E - (W, + .. 4 w,)) {3.59)

LR

which reduces to the usual strength function S(E) {3.58) for n=1. This multiple excitation strength can be also
expressed as a folding of the strength function

S(E,n) = %/dEl ...deﬂS(m). CDS(E(E — (B + ...+ EL)) {3.60)

This expression is also valid in the case of a continuous spectrum. The folding product (3.60) is intimately related
to the assumption that phonons are purely harmonic vibrations. This is clearly a very crude approximation which
needs to be carefully investigated. To get a handle on the magnitude of the anharmonic effects one clearly needs to
go beyond the RPA. This will be the subject of the next paragraphs.

3.2.4 Adiabatic TDHF approximation

The adiabatic TDHF (ATDHF) approximation is intended to describe slow coflective motion of large amplitude.
However, from the previous discussions, it appears that giant resonances are akin to the diabatic maotion of the
nucleons in a rapidly vibrating mean-field. So, it may seem surprising to use the ATDHF formalism to study giant
resonances. This apparent contradiction can be resolved by recalling that the adiabaticity condition is in fact defined
by comparing the collective velocity measured by the collective kinetic energy with the single-particle energy times
the number of nucleons involved in the motion [Ba72, Vi72, Vi75, Br76, Vi77, Ba78, Ri81]. Therefore it can be valid
for the description of collective modes in which many nucleons are participating. This is precisely the case of giant
resonances.

In this section we will show how the approximation leads to the definition of collective potentials and masses
which give direct access to the anharmonicity of the phonons {a more detailed discussion can be found in appendix
5.4). Indeed, we will show that the problem reduces to the quantization of the collective degrees of freedom in this
collective potential,

The basic idea is to decompose g in order to extract a velocity field and a set of collective coordinates. Since the
coordinates are usually time reversal invariant quantities, Baranger and Vénéront [Ba78) proposed to decompose the
density using two time-even Hermitian matrices, a density p®(t) and a velocity field x(t) :

p(t) = X O pye—ix(t) - {3.81)

They also proposed the adiabatic approximation assuming that p(t) is very close to p0)(¢), i.e. that the velocity feld
is small enough to be treated perturbatively. Using the density (5.35) the Hartree-Fock energy can be expanded as :

1
E(p) = E(p®) + 5 <M (3.62)
where we have introduced the mass tensor which reads using the RPA notation:

M=(KFH)F . (3.63)
The first term in equation (3.62) can be interpreted as a potential energy V(p!®) whereas the second one corresponds
to a kinetic energy term T(x, p(0)). The energy E plays the role of a classical Hamiltonian for which p{® and y
appear as conjugate variables. ‘Therefore, the dynamical equations for 4 and X can be derived from the Hamiltonian
equations: |5 »= |§E/3x* > and —||x = |0E/8'" > However, they are often too difficult to solve without
further approximations. In fact this approach is really useful if we can assume that the density p'®)(¢) is driven by an
ensemble of collective coordinates Q(¢)

16948) = Q) > (3.60)

In such a case, we can write the kinetic energy as T = %QMQ where the mass tensor is defined in appendix 5.4.
Therefore, if we define the momentum P = M, equation (3.62) yields the collective Hamiltonian

Blp) = H(P,Q) = 5 PMP + V(Q) | (3.65)

where the potential is the mean value of the energy associated with p(®); V(Q) = E(p'®). Therefore, the ATDHF
approximation leads to a classical Hamiltonian similar to the one of the macroscopic approaches.

The last step of the ATDHF approximation is to requantify the classical collective Hamiltonian {3.65) in order to
define the ground state and the excited states of the system. If the anharmonicity is weak the lowest excited states
can be associated with the single phonon whereas the higher states can be interpreted as multiple excitations.

However before studying the spectrum of predicted excitations one must discuss the validity of the ATDHF treat-
ment as far as the giant resonances are concerned.
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The adiabaticity approximation implies that the time-odd component of any single particle wave function is small.
This condition can be shown to be equivalent to the requirement that the collective kinetic energy is small in comparison
with the typical particle-hole energy times the number of states participating in the collective mode. Therefore, it can
be applied to the description of giant resonances.

In principle, the ATDHF treatment also gives access to the anharmonicities of the modes because the Hamiltonian
{3.62) or (3.65) do not imply an harmonic approximation. Realistic calculations have been carried out with Skyrme
forces {En75, Va75, Gi76, Go77, Gi80]. They all have to face the problem of defining the collective variable i.e. the
collective path p°/(Q). Two possibilities are often explored, either performing a constrained Hartree-Fock calculation
or simply scaling the ground state density. Fig 8 shows the potential energy V(Q) computed in ref. [Gi80] using the
scaling approach and Fig.9 presents the associated mass parameter.
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Figure 8 ATDHF Potential.: From ref. [Gi80] , Potential energy V(a)as a function of the quadrupole deformation parameter
Q for *C,'5 0,%° Ca and " Ni. The dashed line were obtained using the Skyrme interaction SIV while the solid curve represents
the resulis obtained using the SIII interaction.
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Figure 9 ATDHF Masses. : From ref.[Gi80], adiabatic mass parameters, Moy p, associated with the quadrupole modes in
various nuclei '*C,*% 0,%° 14,5 Ni obtained from a constrained HF calculation with the quadrupole operator Qo of the static
HF solution

It can be seen that open shell nuclei such as 12C' present strong anharmonicities whereas closed-shell nuclei can be
considered as good harmonic vibrators. For example in the case of the quadrupole deformation , Q =< ri4y? -2 >,
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of the *°Cq nucleus we can parametrize the potential energy and the mass as [Tr81]

It

V@ = M+ Vg (3.66)
M(Q) = Mo+ MQ (3.67)

where Mg/m, = 0.285 1073 (m, being the nucleon mass) M;/m, = ~0.28 10~6 fm—~* o — 17.5 MeV and
Vi=—-0.14 1075 MeV fm~S.

The relative anharmonicity can be estimated from the ratio between the harmonic and the anharmonic parts of
the potential computed at a typical deformation. If we introduce the zero point motion Q3 = 1/Mw as a typical
deformation we get a relative anharmonicity (2V3Qq)/Mow? of the order of -0.1. This is a rather small value which is
however larger than the simple estimate (2.87) which gives around -0.02 for the 90Cq.

The ATDHF method can be useful for the computation of non linearities and anharmonicities. However, a SYs-
tematic study remains necessary to realistically extract the properties of multiphonon states. One difficulty lies in
the fact that for such calculations, many degrees of freedom need to be taken into account. such as the different
angular momenta Agn. Moreover, the ambiguities in the definition of the collective variable complicate the problem.
In particular, one may think of using several collective variables for the same angular momentum, or even a complete
set of collective operators such as in equations (5.41) and (5.42 ). But then the method becomes intractable. A way
to construct the “good” collective variables is to introduce the RPA eigenstates and to use the ATDHF treatment
to compute corrections to the RPA.  In the next section we will discuss two other ways to requantify TDHF and we
will discuss their predictions concerning in particular the anharmonicities. However, as far as the ATDHF approach is
concerned, we have seen that the anharmonicity of the glant resonances in closed-shell nuclei is predicted to be around
0% .

3.2.5 Generator Coordinate Method
In the previous section we have discussed the ATDHF approximation and have shown how this method leads to the
definition of a classical Hamiltonian in terms of 29 and y (see eq. (3.61}) or in terms of some collective variables
@ and P (see eq. (5.35)). These resuits were derived within the mean-field approximation, However, requantifying
the ATDHF Hamiltonian goes beyond the mean-feld approximation. Indeed, an eigenstate will correspond to a wave
function f in the collective coordinate Q so that the many-body wave function can be viewed as a superposition of
Slater determinants which cannot be considered as an independent particle wave function.

This idea to coherently mix several generating many-body wave functions such as Slater determinants is in fact
the starting point of the method called GCM, Generator Coordinate Method IHi53, Gr57, La7d, Mo76, La76, To77,
To78, RiB1]. Let us consider a continuous set of generating many-body wave functions { #(Q) > which are labelled

by an ensemble:of coordinates {Q.) and let us construct a many-body wave function | ¥ > as a linear superposition
of the | #(Q) >

¥ 5= / dQFQ) | B(Q) > (2.68)

where f is a weight function. The | ¥ >’s form a trial set which can be used to variationally determine the eigenstates
of the exact many body problem. It should be noticed that the trial set may possibly contain all the Hilbert space.
This is for example the ease if Q is the one-body density itself because the Slater determinants are a basis of the
Hilbert space.

Determining the extremum of < ¥ JH| ¥ > -E< ¥ | T >, where E is a Lagrange multiplier associated with the
normalization of the wave functions, yields the equation

/dQ'< QNH | 2(Q) > f(@) = E]dQ < 2(Q)IBQ) > f(Q) (3.69)

when variations of f* are considered.
The equation (3.69) can be viewed as a generalized eigenvalue problem for the weight function [, the so-called
Hill-Wheller equation [Hi53) :
Hf=ENS | (3.70)

where H(Q), Q") =< ®(Q)|H | ¥(Q') > and where N(Q, Q') =< ®(@Q)P(Q') > is an overlap metrics.

The equation {3.70} can be solved directly in some cases by discretization of the variable Q. This method was used
in different calculations of monopole and quadrupole phonon spectra [Ca73, Ab75, Gi75, FI75, Kr76, FI76}).

One can see on table 3.1 that, the CGM method predicts rather small anharmonicities.

In addition to the direct solutions of the Hill-Wheeler equation, numnerous approximations have been developed to
transform it into a Schridinger equation in the collective variable Q [Fe72, Ha73, Ba73, Ho73, Gi75, Re76].

For example, assuming that the overlap metrics is Gaussian, one gets a collective Hamiltonian which is close to the
ATDHF Hamiltonian except for the mass parameter [Hi53, Pe62, Ja64, Ka68, Vi75), which is generally not as good.
Moreover, it should be noticed that, as far as the ambiguity in the definition of the collective variable is concerned,
the CGM method faces the same problems as the ATDHF approach,
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18¢) HCa
Ey || —140.3 | —403.3
E, || —108.7 | —374.9
E, || —-81.8 | —347.0
Table 3.1  GCM Results. From ref. [FI76}, energies of the three first solution of the Hill-Wheeler equation for the isoscalar
monopole resonance calculated using the ST Skyrme force.

Two other avenues have been followed in the literature. The first one is to use the CGM to deduce a mapping of
the fermion dynamics into a dynamics of bosons. This will be the subject of the section on boson expansions. The
second avenue is to introduce schematic models. In particular the Lipkin model or other two level models can be
explicitly solved {3e92]. Another classical example is given by the deformed oscillator model [Dr88] in which the single
particle wave functions are simply boosted harmonic oscillator eigenfunctions. However these simple models must be
considered as tests for more elaborated approximations or treatments. In particular the above models have been used
to test the description of eigenstates in terms of TDHF periodic orbits as we will discuss in the next section.

3.2.6 Periodic orbits of TDHF

The TDHF approximation assumes that at each time t the nucleus is described by a Slater determinants or more
generally a density matrix which is the exponential of a one body operator. Therefore, the TDHF equation can
be considered as the evolution equation of mean values of one-body observables.. In this sense, it is a classical
approximation and it needs to be quantified in order to yvield energy levels of the system. One standard approach is
the semiclassical quantization of periodic orbits.

In fact, the importance of periodic orbits has been recognized in classical mechanics Pol1892] for more than a
hundred years. The idea of obtaining the energy levels of a microscopic system by quantifying its action along periodic
orbits proposed by Bohr for the description of the hydrogen atoms, was a key step towards the elaboration of quantum
mechanics

In the 70%s, a well-founded relation between thie periodic orbits of a classical system and the encrgy levels of the
associated quantum problem has been developed by Gutzwilter |Gu67, Gu69, Gu70, Gu7l]. In particular, this author
showed how Lo approximate the quantum Green’s function {or the level density) as a sum over all possible periodic
trajectories, These studies were pursued and extended by many authors [Ba72, Ba74, Be76, Be77, Pe77]. As far
as the periodic orbits of mean field approxiniations are concerned, their connections with the energy spectrum were
clucidated in several refcrences {Ka79, Le80, Le80a, B181, Ne§2, Za84, Dr86a.

In particular, using functional integral techniques and saddle point approximations, the role of periodic arbits was
made explicit and the condition of quantization derived. The result can be qualitatively understood by noting that
the Green’s function in its spectral representation involves a Fourier transform in the time coordinate. Periodic orbits
will dominate because they provide an equal contribution at each period. However, the phase of this contribution
over a period must be a multiple of 27 otherwise the different terms do cancel out. This condition yields the desired
quantization procedure.

Then the general problem of finding exact periodic trajectories of a given Hamiltonian arises. For a classical
system with few degrees of freedom this problem has already been widely discussed (see for example ref. {Zad4]).
In the nuclear context, similar methads were tested. For example, the method proposed in ref. [Ca85) is based on
an iterative construction of a family of periodic orbits. From a periodic orbit at an energy £ one can build another
trajectory at an energy E + §E using the linear response theory. The new trajectory can be adjusted in order to
be periodic through the Newton metiwd. However, this method was only applied to schematic cases because of its
intrinsic complexity when many degrees of freedom are coupled.

The method proposed in ref. |CL86) is an iterative method based on the existence of a distance in the Liouville
space constructed from the scalar product (3.28)

Upo) =< p—ollp-e» . (3.71)

Therctore, if one starts with an arbitrary solution p(0), one can first find the period T for which the distance,
£{p{0), p(T)), is minimum. One can thus look for the small variation §p(0) which will reduce the distance £(p(0), p(T).
It is explained in appendix 5.5 how using a linear approximation for the evolution of bp it is possible to iteratively
reduce the distance £.

This method was successfully applied in ref. [Ch86] to the monopole vibration. However, an exhaustive study of
different vibrations remains to be done. The main difficulties associated with this method is that it requires important
numerical effort. Moreover, this method faces some difficulties when considering unbound states which cannot be
periodic due to their decay except if an external gas of nucleons is added which will however perturb the response.

The problem of finding periodic trajectories was recently revisited by A. Abada and D. Vautherin [AbO1, ALOZ,
AbS2a], who proposed an elegant method, a perturbative expansion in the amplitude of the collective vibrations, to
find periodic orbits. This method is in fact a standard technique used in celestial mechanics [P01892] or in the theory
of non linear oscillators |La6y].
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The basic idea is to expand the density in powers of a small number, the amplitude of the oscillations ¢

0 wt wt 3 3y, wt )
p(t) = p +€P(”(m)+52!’(2](m)+53f’(1)(m)+"' : (3.72)
where the frequency is also expanded in a power series of ¢ -
W= O g e g 2 L A (3.73)

The dynamical equations for p{"? are obtained from the expansion of the TDHF equations (3.26) at the n'th order in
£ (see appendix 5.5).

The equation for p'! is the RPA equation which implies that §p can be expended on to the RPA eigenstates as
follows

ESIGESD IS (||.1‘” e s e"‘"f”‘) , (3.74)
"

where the a, are free parameters. If we are looking for periodic solutions we can only mix commensurable frequencies.
The equations for o) are RPA equations containing source terms generated by products of lower order terms which
might be resonant. The requirement that no resonance are present in the source terms leads to the equations for the
w1 When this condition is fulfilled the equations for p{™) can be solved. The above procedure can be iterated
in order to find all the the frequencies w®) requiring that no resonant terms appear in the equation of evolution of
A The last step Is to caleulate the action on a given trajectory and to apply a quantization rule in order to define
the deformation parameter e.(see appendix 5.5 ) This procedure gives corrections to the one phonon state frequency
w) and also to the two phonon states wy. In realistic calculations, one needs to introduce the angular momentwn.
In refs. [Ab91, Ab92, Ab92| an ansatz is proposed in analogy with the idea of the projection onto a good angular
momentum.

160 400a

J7 | W8 E* SE || J7 | w® e SE
0% 13624 113793 ] T.683 [ 0% [ 4212 [ 10.131 | 3.i34
24 1 2607 | 13.251 | 1141 | 2+ | 121.2 | 8516 | 0.516
4* | -19.9 | 12.031 | —.079 §| 4+ | —16.1 | 7.936 | —.064
6% | —63.5 | 11.861 | —249 || 6% 209 8.085 | 0.085
Table 3.2 Periodic TDHF Results. From ref. [Ab92], two-octupole-phonon states in 0 and **Ca. For each state are
reported its spin and parity, w'® in keV, the cxcitation energy E” in MeV and the shift 6E (in McV) with respect to the
unperturbed energy w'®.

Table (3.2} gives the excitation energies of the two-phonon states built with the octupole low-lying collective states
in 150 and 9°Cq. For 180, ngr{) = 0.547TMeV and the quantization gives £ = 6.666MeV and Ej = 14.78. The
anharmonicity defined by A4, = 2wt is equal to 9% for the first state and 18% for the second state when the
angular momentum is not introduced and a splitting of 2 MeV is predicted using the projection ansatz. For the Cq,
Fe? = 0.547M eV so that E} = 4.63MeV and E5 = 11MeV when no projection is applied.

Ref. [Ab92] also presents results for the quadrupole state in %°Ca . In this case, it appears that a non-collective
state is very close to the excitation encrgy of the two-phonon state. This case can be included in the formalism by
introducing the resonant state in p(!), This coupling gives a first-order correction to w which yields a very small
splitting of the two phonon states of about 1 MeV,

To conclude on the use of periodic orbits, we may say that it is a very promising and powerful method. However,
many questions remain open and so there is still a lot of work to be done. In particular, the projection ento a good
angular momentum is not justified: there is no reason to associate the order of the perturbative cxpansion to the
number of phonons n. Indeed, if we are interested in 3-phonon states, the angular momenta can be coupled to Ay
between 0 and 3. We expect that the second order w(® will give corrections to all the 3-phonon states, but if we use
the projection assumption we realize that w(® does not contribute for the 3-phonon states of Ay greater than 2A. For
these states, only the third order will contribute, which is somewhat peculiar. This remark is related to the problem
of coupling different states, wlich has not yet been studied . The last question arises from the fact that the presented
methods are based on the mean-feld approach. This may induce specific features or limitations which have not yet
been investigated. In particular, one may want to investigate the dynamics of density matrices containing correlations,
eg. D= exp(0V) +0™), where 01} is a one-body operator and 02 is a two-body operator. This approach will yield
some extended TDHF approximation which will exhibit a variety of periodic orbits which can be different from the
trajectories found in the mean-field approach.

The present method naturally extends previously described approaches such as the RPA and it correctly treats the
Pauli exclusion principle. In the next section, we will present the boson expansion method which is supposed to be a
fully quantum approach. However, the present classical approach raises questions about the dynamics of the nucleus
vibrations described as non-linear oscillators. For example, it is known in classical mechanics that the response of an




152

anharmonic oscillator exhibits new phenomena. In particular, around a resonance wy, the response is different from
the linear case because it depends on the strength of the external perturbation {La69].
For example, let us consider the classical non linear damped oscillation of an oscillator with an equation of motion

i+ 20+ g = —ar® - 4% + %COSQUt : (3.75)

We can see that the resonance frequency is given by w(b) = w(® + w2b%, where b? is the amplitude of the oscillation
and w'?' is given by w(2 = {38/ 6wy — 5(12/12.‘1(”)3). The amplitude of the forced motion is given by the equation

f2

B ((wy —wb)? + 47} = ==z

(3.76)

so that the resonance looks like the schematic picture shown on Fig.(10} For a very small perturbation f we recover
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Figure 10 Classical Response : Schematic drawing of the non-linear response for increasing perturbation strength f showing
a transition from a linear regime (f —— 0) to a critical behavior f > fi, (from top to bottom).

the usual response but when f increases the response is deformed up to a critical value

f2 B 32m2 (0 )3

after which the strength exhibits regions with two stable and one unstable solutions. In the nuclear case we get a
critical perturbation :

(3.77)

| < X¥||Fe > |* = 8% (3.78)
k 3] .
where T is the width of the state  and w(? the quadratic correction to the frequency.

In conclusion, strong fields may generate a critical behavior for the response function. Other resonances, critical or
not critical, can be observed for frequencies around nwg/m. These non-linear features may also be inportant because
W anay excite a resonance at the energy w with an external field which does not contain components at this frequency
but only components at lower frequencies wo/2 or we/3. This may, for example, be the case for Coulomb excitation
at Jow incident energy, which presents a cut off at high energy response. However, the anharmonic oscillation need
to be studied further. In particular the discussed properties are observed in classical mechanics and may be different
when quantum mechanics is applied.

3.2.7 Aun Example the Lipkin model

Let me first illustrate this method on a simple model: the Lipkin model. Tn this model two levels containing states
labelled by the quantum oumber |, can be occupied by particles. (7]

3.2.7.1 The Hamiltonian

The energy difference hetween the two levels is €. The operator al |, ( @,,..) creates (annihilates) a particle on the level
with the energy E = g¢/2 with & = F1 at the position n. Since each particle n can only occupied two levels we can
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describe it in analogy with the spin 1/2 which is called pseudo-spin. The algebra

L8]

. 1
Ko = 2 mz—:l (at*'"‘a*'"" - a?—-ma-!m} (3.79)
1]
K+ = Z ai.ma—‘n:

hm=]
Q

I{_ = {I’i’#—)? = Z a‘r—‘:'rla+v“'I
m=]

does correspond to pseudo-spin operators which fulfils the standard SU(2) commutation algebra

(K4, K] = 2Ky [Ko Ky) = +K4 (3.80)

Level +

=1 n=2 =8 n=. n=N

Figure 11  Schematic representation of the Lipkin model in which twa levels with N available cites can be occupied by N
particles. is the energy distance between the two levels.

We introduce a residual interaction between the various particles in such a way that the Hamiltonian reads

Himeo = eKy + VI K2 {3.81)
where K K
K, = _"‘%;‘_" (3.82)

Looking at the form of the residual interaction we can see that it can only generate jumps from the lower level to
the upper one or vis versa without changing the quantum number.

3.2.7.2 The Hilbert space

The model we are considering thus reduces to the known problem of N coupled spin. Therefore the Hilbert space
can be decomposed into irreducible subspaces with a good total pseudo-spin. The state in which all the particles
occupied the lower level pertain to the unique subspace associated with the maximum pseudo-spin J = N/2 We note
this state |J, —J) while the other members of the considered multiplet are |J, M). It should be noticed that since the
Hamiltonian is completely written in terms of the pseudo-spin operators the Hamiltonian does not couple subspace
with different total pseudo-spin.

In each subspace all the operators can be computed using the pseudo-spin properties

Kl M)=  JIJ+DEMM+DUIMLD (3.83)
Ko | LA = M LT, M)
Therefore this model can be easily exactly solved.
If we neglect the residual interaction, the ground state of the system is naturally |.J, —J) which energy is nothing

but -eN/2. ln this state all the particles are occupying the lowest accessible orbital. This is the analogous of the
Hartree-Fock ground state. In the following we will use this state to construct the TDHF coherent, states.

3.2.7.3 Coherent states of SU(2)

For this model the coherent states are naturally provided by the application of a SU(2) unitary transformation on the
Hartree-Fock ground state which is equivalent to the rotation group. Therefore the parameters are nothing but the
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rotation angles. In the present case using the Euler angies we can define the Slater {3(t) >, through a rotation of the
HF groundstate par rotation de ,

[#(Z(£)) = R(Z(1}) [0) = e (DKeg=#BlIK, o —r (DKo |y (3.84)

where Z = (a, 3,7) are the Euler angles and Ky, = (K4 + K_)/2i. If we assume that |0) = |J, —J) then the rotation
of the angle 7 only modify the phase and so can be omitted. Then the parameters of the coherent state are only the
two Euler angles Z = (a, 3) i .

To evaluate expectation values aver the state f1(Z{t)}) = R{Z(t)} |0) of any operator D it is often convenient to
introduce the inverse transformation of £ :

D(Z(t)} = RY(Z(1)) D R(Z(1)) (3.85)
so that the relation ) . i
< D> {ty = @{Z(t) D [w(Z(t))) = (0| D{Z(1)) |0) (3.86)
In particular we only need to transform the operators K. Since K is a vector a simple geometrical analysis shows that
K. (Z) cosacos A —sina  cosasinB K,
KN, Z) | ={ sinacosd cosa sinasing Ry (3.87)
K, (Z) —sin g 0 cos A K.

Therefore it is easy to compute as

< K; > 0| K.(2)|0) cos asin 3
<K,> | =1 OKZ2)[0) | =~J] sinasing (3.88)
<K, > {0 K.{Z) |0} cos 3

These three relations gives the correspondence between < K > and the Euler parameters Z = (a, 8) . It should
be noticed that the < K > is a vector of norm J therefore only two angles are needed to define it completely.

3.2.7.4 Mean- eldsclution

Now we can study the dynamics of the system assuming that the wave functions are restricted to coherent states

[#(Z(t))}. The evolution of the Z = (a,f) or of the averaged value < K > are obtained using the generalized
Ehrenfest equation

1%<A>=—<[H,A]> (3.89)

where all the averages are evaluated over the coherent state{y(Z(t)))

1 < K > {{h.. H} c< Ky >
i <Ky > | = (K, HY | =i e<Ki> -V < KK, + KK, > (3.90)
15 < K, > {[&,, H]) V < K Ky + K K, >

Using the transformation 3.85 we can evaluate the contributions due to the residual interaction using the relations

1
< K K;+ K.,K; >= (2 - 7) <K >< K, » (3.91}
. 1 . .
< KKy +K,K; >= (2 - —]) < h;>< Ky > (3.92)
which leads to the following mean ficld equations

%<KI> c< K, >
G <HKy> | =] e<R;>-V{2-3)<K:><h,> (3.93)
& < K. > Vi2-3)<K;>< Ky >

These equations are highly non linear because the expectation values of two-body terms coming from the residual
two-body interaction have been approximated by products of average values of one-body operators (i.e. < K >). We
can try to analyze the small aniplitude oscillations around the HF ground state (< K >= (0,0, —J) ) but in principle
the corresponding dynamics could present characteristic behaviors of non-linear systems such as chaos. However, in
the simiple case studied here if the Hamiltonian is not time dependent the system possesses two constants of motion
(the encrgy and the norm |< A > : ) and only three degrees of freedom Therefore in this special case the mean-field
cquation of motion are integrable and so the mean-field dynamics will always be regular and will present oscillations
with a basic frequency and all its multiples.
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Figure 12 This figure presents the time evolution of the vector < K > after a short excitation with an operatar W{t)K,.
The left part corresponds to the mean field solution while the two diagrams on the right correspond to the exact dvnamics
with two different total number N.

<K >

1t

10" n L n " L
0 W W %M 4 N M8

E(MeV)

Figure 13 Time evolution of < K, > and its Fourier analysis after a time greater then the excitation time. The left part is
the TDHF result while the right part is the exact dynamics.

3.2.7.5 Small amplitude response

In figure 12 and 13 we present the evolution of the Lipkin model after a short excitation with an operator W (&) .
One can see that, after the transient period when a time dependent external field W () is applied, the mean-feld
approach is rather smooth (it is in fact regular) and present oscillations which resemble the exact dynamics. Indecd, the
frequency of the collective mode appears to be close from the exact frequencies directly related to the diagonalization
of the Schradinger equation.

However, TDHF approach fails to reproduce the details of the exact trajectory. Indeed, when going from the
quantum mechanics to the mean field approach we have replace the average value of two body operators such as by
essentially the simple product of two average values. This means that we have disregarded the quantum fluctuations
and correlations. In the complete dynamics these quantum terms are introducing fluctuations around the mean field
trajectory in such a way that the mean-field trajectory remains close to the exact one only during a finite time.

This illustrates the fact that in mean field approaches we always have only a partial knowledge of the systemi.
Indeed except for some algebraic models the complete description of the system would require an enormous ensermble
of expectation values while we have seen that the system is often described through a small subensemble of expectation
values of few operators (in the present case the I&"s). Therefore, in general we are forced to go beyond mean-field.

3.2.8 Discussion

In this section we have presented various microscopic many body theorics based on extensions of the mean-field
concepts. We have shown that these theories provide well-founded approaches to describe the properties of giant
resonances and multiphonons. The RPA can be considered as a first step in our understanding of collective vibrations.
However, the RPA is by essence a harmonic approximation and therefore we have discussed moare elaborate approaches
to study the praperties of multiphonon states. Formally, the method presented may yield & very accurate description
of the collective vibrations. In particular, the Generator Coordinate Method may in principle give an exact solution of
the many-body problem. However, the general solutions of the presented extensions of the mean-field are untractable
because they require the coupling of too many degrees of freedom. In fact all the results presented have been obtained
considering very few callective coordinates. This fact can be considered as a general drawback of the methods presented
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because not only is the choice of the collective coordinates somewhat arbitrary but very few collective degrees of freedom
can be actually coupled.

We have presented the results of several calculations in which few callective vibrations are considered. Despite
the diversity of the methods and approximations all the different results advocate a quasi-harmonic picture of giant
resonances.

3.3 Boson Expansion Methods

We have discussed in the beginning of the present chapter that the collective motions of the nucleus associated with the
excitation of giant resonances can be understood in terms of vibrations. This promotes the idea that the excitations
of & many-fermion system can be described in terms of boson degrees of freedom. In fact, this idea is underlying
numerous approximations such as phonons in solids or in nuclei, plasmons, Cooper pairs, *He atoms ..... Indeed the
excitations of an even number of fermions carry the quantum numbers of a boson. As an example we will recall how
the RPA can be recovered starting from a quasi-boson approximation for the particle-hole excitations. We will use
these new concepts to extend the formalism to include the 2particle-2hole states and we will see that this so-called
second-RPA allows to prediet the width of giant resonances.

As far as the multiple excitations are concerned we clearly need to go beyond the RPA and the quasi boson
approximation [Dy56, Us60, Bei2, Ma64, Pr68, Ma7l, Ha72, Sc73, Ma74, Bo75, Ma76, BI78, Ma80, Ma&0a, RiS1,
1a87. Bo88, Ca89, Bed2, Ca%4]. This problem finds a natural solution in the boson mapping methods which are
mathematical connections between fermion pairs and bosons.

In this section, we will present different methods involving boson representations and indicate how they can be
used to study the properties of multiphonon states. In particular, we will show how a harmonic approximation to
the excitation spectrum of the many fermion system can be variationally defined. Treating the residual interaction
between phonons will allow to predict anharmonicities. We will also discuss how the transition amplitudes can be
obtained and how they may exhibit non-linear features.

3.3.1 Quasi Boson Approximation

Let us first recall how the RPA approximation discussed in the previous sections is equivalent to the simple approxi-
mation that a fermion pair can be considered as a boson. Let us consider the Hamiltonian Hy of a fermionic system
{c.g. a nucleus) with a two-body interaction V' (c.f. Eq. (3.21)):

1
Hy= Z fqﬂj—ﬂ( + 1 Z Vij'ua}a}a,gak , (3.94)
5]

This Hamiltonian can be cxpressed in the particle-hole representation defined by the static Hartree-Fock solution
Risl].

The RPA equations can be obtained assuming that the fermion pair operators behave as bosons. Therefore we can
introduce boson degrees of freedom through the mapping:

aLah——rbLh . (3.95)

It can be seen that the Hamiltonian is expressed as a quadratic form in the boson field:

il

1
H, Eyr + E (An,n'b:‘,bf.' + ﬁ{Bu,arbLbL, + h.c.}) (3.96)
(€743

1 1 A B b
Bur 4 53 An + 2 (0 b)( 4 A)( m) . (3.97)

where we have used the label o instead of the pair indices (p, k). The coefficients A and B can be easily obtained
from the calculations of the commutators of b and H:

it

H!J

Aaar =< Ollba, [Hu bL1110 >=< HF|[a}a,, [Hy, o} ]| HF > (3.98)

~Buat =< 0llba, [Hy, bo )|0 >=< HF||aba,, [Hy, alap]|| HF > . (3.99)
Tiie Hamiltonian (3.96) is nothing but the Hamiltonian of coupled harmonic oscillators which can be diagonalized

as
Hy = Enpa + Zw,,OLOU , (3.100)

by introducing new bosons @, defined by the Bogoliubov transformation::

OL =" X5}~ ¥ba. (3.101)
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The coefficients of the transformation, X* and Y¥, and the energy, w,. are obtained by solving the RPA equations

{equivalent to Eq. (3.56)):
A B Xxv Xv
( Bt At ) ( }/u ) = why ( _YV ) ' (31[]2)

The above derivation of the RPA demonstrates that this approximation is deeply connected with a description of the
cousidered fermion system in terms of independent bosons. Therefore, it predicts a harmonic vibration spectrum with
regularly spaced multiphonon states. As stated in the previous sections, the study of anharmaonicities, non-linearities
and interactions between phonons implies going beyond the RPA, ie. beyond the quasi-boson approximation. In the
next section we will mainly discuss two different methods which have been followed in the literature to achieve this
goal. The first one is to extend the configuration space to two-particle two-hole excitations. This approach, called the
second-RPA, should in principle describe one- and two- phonon states. Indeed, it is equivalent to the diagonalization
of the total Hamiltonian in the subspace containing one and two phonon states. The second method is in principle
more general because it uses a mathematical correspondence between fermion and boson dynamics. Therefore, its
only limitation should be given by our ability to solve the eigenvalue problem in the boson space. However we will see
that in practical calculation one must face the problem of truncating the infinite boson expansion and of the resulting

possible contamination from spurious states, the boson states which does not pertain to the image of the fermion space
induced by its boson mapping.

3.3.2 Second RPA Equation

An interesting extension of the RPA formalism is to include more complicated states in the boson definition (3.101).

In particular one may consider the coupling with 2p-2h states.
Considering the 1p-1h and 2p-2h excitation as bosons and performing the Bogoliubov transformation

2 L t
Ol = th X;aha;a"l - /]::hahap (3 103)

+ X XY ental awan — Yo alal ae ’
pp h<h “pphh pap’ Qe B ;nha’h Lt U 1

yield the so- called second RPA equations [Su6l, Pr6i5, Sa62, La64, Ya83, Dr86, Spg1]:

" 15
(2 2)(3)~(5)
where the A" and Y are the vectors containing the 1p-1h and 2p-2h components while the A and B are generalization
of the A and B RPA matrices. These matrices couple 1p-1h and 2p-2h bosons. Their elements are obtained as the
expectation value of double commutators analogous to the definitions {3.98) and (3.98 ) extended to include also the
2p-2h bosons,

It is often assumed that the coupling with the 2p-2h states is weak so that 1p-1h phonons can be seen as doorway
states which decay into more complicated excitations. In this way the RPA (single) phonons get a spreading width
when they are computed in the second RPA scheme. This width can be obtained by projecting out the 2p-2h states
from the second-RPA equation (3.104). Since the B matrix does not couple to the 2p-2h bosons either to the 1p-1h or
to the 2p-2h ones, the only effect of the projection is that the RPA matrix A becomes a complex, energy-dependent,
matrix, Therefore, the RPA encrgies get an imaginary part, a spreading width. This width physically represents the
decay of the phonons into 2p-2l configurations,

Figure 14 presents an example of such second-RPA calculations. It can be seen that the main eflect of the

LM T T T T r
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M
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[ -] 20 22 0 A
Excitotion Energy (J (MeV)

Figure 14 Second-RPA GQR Strength Function : The B(E,)-strength distributions in 60 and °Ca nucle; obtained
solving the exact second-RPA equations (histograms) from ref. [Ho76] are compared with the RPA (dashed lines) and
uncorrelated 2p-2h second-RPA (Solid lines) calculations of ref [Dr86]. This figure is extracted from ref. [5p91].

introduction of the 2p-2h configurations is to shift the giant resonance peak and to introduce a width which is
comparable to the experimental spreading width.
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It should be noticed that the second-RPA can be still considered as a quasi-boson approximation and so the
eigenstates can be viewed as independent bosons. Therefore the multiple excitation strength is given by the same
equations (3.59) or (3.60) as in the RPA case [Ya85] . ‘

If a complete diagonalization of Eq. 3.104 is performed in the full Ip-1h and 2p-2h configuration space one can, in
principle, describe one and two phonon states. Unfortunately, no systematic study of this type has been performed yet.
However, one may worry about the fact that the above approach is implicitly built on a quasi-boson approximation
and may, therefore, lead to some violation of the Pauli principle. Moreover, in second-RPA approach the two phonon
states can be obtained in two different manners, either as a double excitation of a 1p-1h phonon or as a single excitation
of a 2p-2h vibration. This may also lead to double counting and to violations of the Pauli principle.

3.3.3 Boson Mapping

As just mentioned, the quasi-boson approaches give rise to several questions concerning the violation of the Pauli
principle and the residual interaction between phonons. These questions have found natural answers, at least in
principle, in the mathematical developments of exact mapping M between fermion and boson systems [Dy56, Us60,
Bei2, Ma64, Pr68, Ma7l, Ha72, Sc73, Ma74, Bo75, Ma76, BI78, Ma80, Ma80a, Ri81, 1487, Bo88, CaB9, Bed2, Cal4].

Indeed, using a boson mapping, the problem reduces to the diagonalization of a Hamiltonian of bosons which can
explicitly be achieved using a multiphonen basis. Moreover, the boson mapping approaches are supposed to correctly
treat the Pauli blocking effects and allows the derivation of a residual interaction between phonons.

The explicit construction of M can be done in many ways, either conserving the commutation properties of the
mapped observables {Beliaev.Zelevinsky type [Be62, MaTl, Ma74, Ma76, Ma80, Ma80a, Ri81]}, or mapping first the
states and then deriving the operators through the conservation of their matrix elements {Marumori type [Ma64,
Ma7l, Ma74, Ma76. Ot78. Ma80, Ma80a, Ri81]) or using the Generator Coordinate Method {Lambert type [Ha72,
Ri81, Bed2]).

Let us take the latter type as an example since the Generator Coordinate Method can be also used to discuss
multiphonon excitations and anharmonicitics. In the GCM method the wave functions of the fermionic system are
expanded on the basis of Slater determinants |$((Q) > associated with a value 2 of some generating coordinate:

W = / QA @IB(Q) > . (3.105)

Therefore, the many-fermion dynamics are wapped onto the evolution of the complex function f which is equivalent to
the Bargmann representation of a boson field problem{Ba62]. In ref. |Ha72j, this analogy is used to derive a mapping
of the p-h degrees of freedom:
A
ajap = (ahey)s = bon + (1= V3 ST 8Y bynby + ... (3.106)
PR

and
A t
Q:wapl (HITJaJ" )b = Zh b;lhbl"h

M t
(H.(ljl, I {aha;i')b = EP bph.bf-'""

{3.107)

We can see that the quasi-boson approximation corresponds to the first terms of theses expansions, namely, the first
term of eq. (3.107). The remaining terms in the infinite expansion (3.107) are due to the Pauli principle.
An example of the corresponding Hamiltonian in the boson space can be found in appendix 5.6. In the following
we will use the short hand notation®:
M t
He == Hy =3 o0 Hyvde o, 0

ay.

by b (3.108)

e
vt
"

‘These mappings connect the fermion Hilbert space to a boson space whicli can be huilt from its vacuum |@y = by
applving the bason creation operators so that any fermion state is associated with a boson state:

b g M, |, = . (3.109)

where the curved brackets represent states in the boson space. However it should be noted that, because of the
antisymmetrization principle of the fermion states, the fermion space is mapped onto a subspace of the boson space.
The image of the fermion world is called the physical space hecause all the computed quantities are meaningful only
inside this space, the remaining part of the boson space being spurious. The existence of these spurious states may
yield some difficulties and we refer the reader to the literature for a further discussion of this problem [Ma71, Ma74,
Ma76, Ma80, Ma80a, Ri81, Bo88, Bed2).

“In this equation the Hamiltonian is written in normal order with respect to the boson vacuum. However, all the discussed applications
can be easily generalized to handle expansions which are not normally ordered.
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3.3.4 A Nou-Linear RPA
The boson mapping methods were used by several authors to extend the RPA. Here, we will present one of these
approaches, which has been recently applied to the description of the multiple excitation of giant resonances. In ref.
[Ca89, Be92, Cad4], it is proposed to use a variational principle in order to determine a harmonic approximation of
H, . This harmenic approximation will define a natural basis of the boson Fock space on which it will be convenient,
to compute the excitation spectrum and to derive properties such as anharmonicities,

Let us first introduce a set of bosons O by means of the generalized Bogaliubov transformation defined by [Ris1):

ba N _ f XL YV 0, N ,
( b, ) - ( vy xy ) ( 0} )‘* ( Yo ) : (3.110

The vacuum |¢pn > belonging to the new bosons O (defined by Olgo == 0) can be related to the vacuum |¢y, > of
the & bosons by the Thouless theorem for bosons (see appendix E of ref. {Ri81] for more details):

ldo »=exp | Y 1z, + 3 2Zobtel | e . (3.111)

[+1 a<a’

By assuming that the vacuum |#c > minimizes the energy < @0l Hy|d = {with respect to the variational parameters 1 Z
and 2Z) and by considering small variations around this vacuum we can easily demonstrate [Be92] that the minimum
energy condition implies:

oHy =< 90| (00, Hy] [d0 »=0 (3.112)
GH™ = = < ol [Ou, |H1 O,0]) [0 =0 |, (3.113)

Moreover we can simultaneously impose:
1H =< 601 [0y, [Hi, OLT] 1do == wpbo . (3.114)

Equations (3.113-3.114) reduce to an RPA-like problem. Indecd, using the Bogoliubov transformation (3.110} these

equations become:
Ap. 5,7} Blo.x,v) XN X .
(B, Aoy )\ v )=l e ) (3.15)

where the matrices A and I are given by

Ale, &, Vaa = =< $ol[ba, [Hi bl ]]|d0 =

(3.116)

i

B(Q!'ia'y)nn’ - = ¢O”bu! [Hbl b(k’]“q:)() -

The A and B matrices can he expressed in terms of the mean field, -y, the normal boson density, ¢ and the anomalous
boson density, &, which are defined by:

Yo E<b] = (3.117)
Qoo =< TLT, »= > xuxy (3.118)
fiaat ==X T Ty 2= Y YU XY (3.119)

where 7,, is the boson operator To = by —yx,.
The extended RPA equation, (3.115) is non-linear and is associated with a subsidiary condition for determining
the shift -, namely:
Calo.s,v) == doi(H,bl]|60 ~=0 . (3.120)

Equation (3.120) corresponds to the minimization of the energy under the variations ofy: Calok,y) =0 < H =/ v =
0. Since v, == &l > is related through the mapping to the one-body density —« apay > in the fermion space Eq.
(3.120) can be interpreted as a Hartree-Fock approximation for fermions. Therefore Eqs. (3.115) and {3.120) corre-
spond to a non-linear RPA coupled to a self-consistent mean feld approximation for fermions. When + is non zero,
the solution of Eq. {3.120} corresponds to a redefinition of the HF basis and in particular of the particle or hiole states.
In this case a better approximation would be to consider the mapping of quasi-particle (fermion) excitations defined
within a Hartree-Fock-Bogoliubov ealculation (for fermions),

31t should be notice that the considered vacuum might contained a mixing of the physfcal and spurious states. Formally, since the boson
Hamiiltonian can be correctly projected on the physical subspace this is not a problem. Indeed, it is equivalent to consider a projected
vacuum. However, if the Hamiltonian is not correctly projected en the physical subspace as it might be, for instance, the case when
truncations of the infinite bosan expansions are introduced, pollutions coming from the spurious components of the vacuum might be
expected and must be controlled.
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Using the solution of Egs. (3.115)and (3.120) H, reads:

Hb == Hb - +Zwuolou + Hrc.s ) (3‘121)

where H,.; contains only terims of order higher than 3 in the bosons Q. The two first terms of Eq.{3.121) define the
Hamiltonian H, corresponding to a variationally-defined harmonic approximation” i.e. Hy == H, > + ¥ w, OO,
The Hamiltonian H,., can be interpreted as a residual anharmonic coupling between phonons. The interaction
between phonons originates in the terms of the fermionic force not included in the RPA treatment. It also contains
terms which allow, in principle, to preserve the Pauli exclusion principle. The harmonic part of the Hamiltonian
defines a multiphonon basis of the Fock space. This basis may be used to study the effects of the residual interaction
between phonons, as discussed in the following.

For example, the residual interaction in the two phonon space can be obtained from:

= ¢O|OV10U2 o ¢ P Olsol.kbo -
= Za:azaam %Hg;:f < $0l0.,0., TtLTtttnTaaTal : Olaolil¢o - (3.122)
+  (JH21%2% < ¢0]0,,0,, : T] T} T} To, : 01,08, |00 > +h.c) -~ '

. aytartas
+

The strength of this interaction can be obtained using the Wick theorem and the contractions:
~ ¢olT10} o =Yy | (3.123)
< ¢o|Ta0l|¢o »= XY . (3.124)
Eq.(3.122) can be used in realistic calculations to predict the anharmonicities in the two phonon space [Ca89).

3.3.5 Anharmonicities of two-phenon states

The above formahism has been used in realistic calculations to study the anharmonicities of the two phonon states in
49Cg [Ca89). The phonons were obtained solving the standard RPA equations. The caleulation was performed using
the Skyrme interaction SGII [Gi81]. The dominant RPA one-phonon states are given in table 3.3,

State | J°T | E(McV) ] REWSR
GD, || 1-1 | 16978 12
GDy Il 171 | 19.569 18
GD; || 171 | 23105 12
GQ, || 2F0 | 17438 59
GQ. || 2to | 18321 18
LEO |30 | 5.600 12
HEO | 370 | 34.251 13

Table 3.3 RPA Single Phonons : From ref. [Ca89], energies of the most collective dipole, quadrupole and octupole states in
*9Ca. In the last column the percentage of the energy-weighted sum rule is given.

The anharmonicities were computed by diagonalizing the residual interaction in a two-phonon subspace. Table 3.4
presents the results obtained for the positive parity states lying between 30 and 50 MeV of excitation energy.

From this study one can see that, as expected [Bo75), the giant resonances are good vibrators. The anharmonicities
are found to be of the order of less than 1 MeV while the splitting of the diffarent angular momenta never exceed 200
keV.

Il should be noticed that the presented calculation does not include the giant dipole resonance in the charge-
exchange channels. Indeed, as far as the isospin is a good quantum number, one expects to observe two multiplets
of isospin T=0,2 split in 2 different spins A = 0 or 2 and a (double) triplet of isospin and spin 1 as a result of the
caupling of two T=1 8=1 bosons®. The fact that charge-exchange phonons may contribute to the wave function in

the inelastic chanael is illustrated in Fig. 15. This possibility is now under study, the previous formalism being valid
for particles and holes of different charge [Ca94].
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Figure 15  Coupling of Isovector Dipole Phonons : Pictorial representation of the possible coupling of phanons of isespin 1
and spin 1 (such as the GDR) in an N=Z nucleus. The figure shows that these couplings result in the creation of various spin
and isospin multiplets.
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3.3.7

Summary and discussion .

In this section we have shown that the use of boson mapping methods allows a rather convenient description of
multiphonon excitations. In particular, it gives a systematic approach to study the properties of phonons built from
excitations of fermions. It provides a way to address general problems such as the effects of non-linear excitations or
the effects of the Pauli principle. From the practical point of view it allows to study the coupling of a large number of
collective vibrations. However, one must keep in mind that as soon as the infinite boson expansion is truncated there
is no guarantee about the possible effects of the spurious states. Therefore, any numerical results must be considered
with some caution and must be carefully checked. One possible check discussed in the literature is to compare the
approximate sotutions provided by the boson method with the exact solutions of solvable schematic models. It is shown
in ref. [Be92} that the boson method discussed above gives a good description of the one- and two- phonon states.
Another possibility is to estimate the corrections induced by the truncated terms of the bason expansion (introducing
for example the next order terms in the boson expansion) as discussed in ref. (Be92).

In this section, we have discussed the first applications of the boson method. It has been demonstrated that
multiple excitations of nuclear giant resonances are nearly harmonic. Anharmonicities and non-linearities are of the
order of a few per-cent. It should be noticed that the same methods have been recently applied to study the multiple
excitation of plasmons in metallic clusters. In that case the anharmonicities have been found to be strong, reaching
one hundred percent[Ca93).

As far as the nuclear multiphonons are concerned, many studies remain to be done, such as the coupling of the
double inelastic {Tz = 0) isovector degrees of freedom with the double charge exchange channels in order to understand
the various multiplets associated with the double excitation of the giant dipole resonance,
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State Eo(MeV)  J* AE AF(keV) GD:+«GD; 39.138 ot -9.0 130.0
GD,+GD,  33.956 0t —60.0 —16.0 2t 10.0 80.0
2t 1910 -175.0

LEO«HEO 39.911 o+ 37.0 38.0

GQ+GQy 34877 ot 4.0 74.0 1* 85.0 84.0
2+ 136.0 230.0 2t 76.0 75.0
4* 257.0 330.0 3t 96.0 96.0
+
GQi1«GQ; 35761 ot 268.0 518.0 ;* 132.3 1:2.3
1 170 1170 6% 2080 2080
2t 3150  569.0 ) '
3t 73.0 73.0 GD, «GD;  40.084 0t 790 -1790
4+ 351.0 570.0 17 —331.0 -231.0
-+
GD,+GD; 36547 0% -373.0 —382.0 FOo-a60 30
1+ —23040 -298.0 GD:;«GD;  42.674 0t —421.0 -496.0
2+ 2280 2210 1¥ —500.0 -506.0
+
CQ:+GQ: 36644  0F 4310 1140 27 380 4090
o+ 614.0 266.0 GD,+GD;  46.211 ot 710 -740
4t 649.0 358.0 Y 760 -~80.0

Table 3.4 Anharmonicity Calculations : From ref. [Ca89), for the positive parity two-phonon states between 30 and 50 MV,
the energy, in MeV and the anharmouicity in keV for all the possible total spin. The unperturbed (harmonic) energy, Fq,
is presented together with the perturbative estimate of the anharmonicity, Eg, and the full diagonalization of the truncated
residual interaction in the two phonon sub-space, E.

3.3.6 Non Linear Coupling

Another important feature of the boson mapping methods is the possibility to compute non-linearities in the excitation
or deexcitation processes. The physical idea is that the particle-particle or hole-hole component of the external one-
body perturbation will be mapped into the product of two boson cperators (c.f. eq. (3.107}). These non-linear
components in the external field may, for instance, induce direct transitions from the ground state to a two-phonon
state. However, it should be noticed that these transitions are possible only via the correlated part (related to the ¥
amplitude) of the RPA phonons.

The study of the non-linear effects has been recently performed for the electromagnetic decay from high-lying
two-phonon states in %Caq [Ca92]. The authors have found that the decay rate of the 1™ two- phonon states built
with the GQR, and the GDR is only 30 times smaller than the decay rate of the GDR itself (see table 3.5). Therefore,
it might be observed experimentally.

The presented calculation, however, does not include the coupling between the one- and two- phonon states which
may affect the results and therefore this investigation needs to be completed {Ca94].

Transitions Decay Transition rate
(71
dipole GDR — gs. 0.65 x 1018

GDR®GQR —+gs.  0.16 x 10'7

quadrupale GQR -+ gs. 0.60 x 108
GDR® GDR — g.s.  0.90 x 10'4
GQR®GQR —+ gs. (.26 x 10'%

Table 3.5  Transition Rates : From ref. §Ca92], dipole and quadrupole transition raies (in see™ ! ) from one- and two-phonon

states to Lhe ground state.
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Chapter 4  Conclusions and perspectives.

‘The properties of the nucleus cannet be reduced to the properties of its constituents: it is a complex system. The
fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation
of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances.
Therefore the study of these collective motions is a very good fool to understand the properties of the nucleus itself.
The purpose of this article was to stress some aspects of these collective vibrations.

In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations
which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of
the important subjects of actuality in the context of quantal systems in strong interaction. In particular the study
of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their
ground states.

Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot
giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden
disappearance is still a subject of controversy. 1t may be that the mean-field and the associated collective states are
playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted
the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation
to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic
nuclei one may expect new vibrations types.

All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such
as the nucleus but many open questions remain to be solved.
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Chapter 5 Appendix

5.1  Variational formulation of Shrédinger equation.

If we now want to address the problem of the evolution of the system we will rather introduce a variational formulation
of the Schridinger equation

Bley _ o,
Lr-Tee Wg) (5.1)
using an integral along a given trajectory | (t))
1 31 a
To o= [ telig Wiy | 52
io

completed with a boundary condition defining the states of the system at t=ty. The equivalence between the
Schrédinger equation (5.1 ) and the variational expression (5.2} can be easily demonstrated. Indeed, let me first
introduce a continuous or discrete basis of the Hilbert space: . Then {5.2) reads

t)
16,0 = [t (io = X Wy | e (5.3)
. to i i

Since the coefficientsg? are complex numbers we can either consider the variations of their real and imaginary parts
independently or we can rather use ¢* and ¢ as two independent variables, Therefore, the requirement that the action
is stationary when we add a small variation §¢* to ¢* leads to

31
81|, 9" =0= / > by [igi - D> Wy, | dt (5.4)
ta 3
If we apply no restriction on the wave functions this relation should hold for any variation &¢* this implies that

0=1dp — Wyy, (5:5)
i
which is nothing but the Schrédinger equation.

5.2 Variational Derivation of TDHF using density matrices

Among the many derivations of the TDHF equations, we will adopt the variational method presented in ref. [Ba84,
Ba85a, Ba88j. Let us introduce the generalized action

I(D, Al = TeA(L)Dity) — : dtTrA(t) (%QH[H,D@)]) , (5.6)

to

where the variational parameters are the time dependent operators D(t) and A(£), respectively akin to a density
operator and to an observable. The action (5.6) must be complemented with the boundary conditions: D{tg) = D(to)
and A(t1) = A where D(tg) is the known density matrix of the system at the initial time £y and where A is the
observable which one wants to-measure at the final time ¢;. When no restrictions are imposed on D(t) and A(t) the
stationarity condition yields exact quantum equations of motion, i.e. the usual Liouville-Von Neumann equation for
the density and the backward Heisenberg equation for the observable. Moreover, the stationary value of I corresponds
to the result of the observation at time #;:

fy=<A>|, =TrA(t,)D{) . (5.7)

If one restricts the trial sets to independent-particle density matrices

D) = exp | dt) + 3 dy(t)ala, | (5.8)

iz
and to one-body operators

Alt) = a(t) + Y A {tlala, | (5.9)

tlie TDHIE evilution [Ke76, Ri81, Ba8bal:
ip = [W(p),nl (5.10)
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Is provided as the stationarity condition of the action 7 with respect to the variations of A{t). Tu equation (5.10) the
mean-field Hamiltonian W is found to be: AE(p)

Wip) z_a'};{-i , (5.11)

where E is the total energy E(p) =< H >= TrHD. In equation (5.10 ) we have introduce p, the one-body density
matrix defined as
pij =< a}a, = TrDa}a, , (5.12)

where a, and a! are respectively annihilation and creation operaters associated with the single particle orbital ;
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5.3 the RPA and the Response of the System
In chapter 3.2.3 we have discussed the small amplitude motion around a given density p™® and we have derived the
RPA equation

AR of PALUES (5.13)

by expanding the TDHF equation (3.26) to the first order in p, p = p'® + pU £ ... This approach leads to the
definition of the RPA matrix

K=E+FL (5.14)
where the super matrices £, F, £ are defined by:
Elo» =  |WO,0]»
Fle®» = o9 g > . (5.15)
Laon = 8%, _ _&E

- Gag — BeLbpp
In the following we will also need to introduce the eigenmodes, X*, of the RPA matrix K:

KXY m=w X" > . (5.16)

Linear Response

If we are now interested in the response of the system to an external perturbation described by a one-body field
F we must solve a new linearized TDHF equation which reads:

15 = Kllp"" > +FIF > . (5.17)
If we now specify a given frequency w for the external field we can formally invert equation (5.17) into
1" = GrpaliF > (5.18)
where we have introduced the finite-teniperature RPA Green’s function defined by:

1
- _F . 3.19
Grpalw) Py — (5.19)
Using the definitions {3.33) and introducing the unperturbed HF Green's function,

F
Gur(w) = gy (5.20)

we can easily demonstrate that the so-called linearized Bethe-Salpeter relation holds:

Grea =Gur +Gur £ Grpa . {5.21)

Introducing the eigenmodes of the RPA, we realize that the RPA Green's function contains poles at the RPA energies
and that the residues are the eigenmodes

JAY e A

W~ — i

Crralw) = Z sgn(w,.)

1

(5.22)

Response Function

The result of the measurement of the perturbation induced by the external feld F is given by the response function

Re(w) = uwFp'Y =« Filp't) =< FllGrpalw)|F > . (5.23)
Using the relation 1/(w - in) = P(1/w) + iné(w), the imaginary part of Rp(w) is the RPA strength function:

S{w) = %%m Rp(w) = ngﬂ(w,,)l & XUUF 3 2w —w,) . {5.24)

1

Therefore, w” must be interpreted as an eigenenergy while < F[x" 3 can be related to a transition amplitude.

Strength Function
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However to get the exact interpretation of these quantities we must study a physical process. For example, we
can compute the excitation of a hot system induced by the operator F at a frequency w. In the finite temperature
T = 1/8 formalism the absorption probability is given by a statistical average over the initial states |7 > and a sum
over the final states |m > of the elementary transition probability | < miFin > |?:

Subs(w) = % Emﬂ e~ Alwn _“N")| < m|F|n > |26{wm,, —-w) . (5.25)

I this equation indices m and n label the eigenstates of the many-body Hamiltonian H. This strength can be related
to the exact two-body Green's function [Ab63, Fe71, Ch90] defined by :

gt).kf(w] =

Slrin) gl - vimn}® Sima)
S P OO N i s S T ¢ : (5.26)
zZ mn €

W =y W=ty

where wom = Wy ~ w,, and (fl.(jm"] =< m]aja,ln > are, respectively, the transition energics and densities, In terms of
the Green's function the absorption strength reads :
1 1

Sabs (w) = -

7 m <& F”S\FTTJ Q(w)HF B, (527)

The factor 1/{1 - exp(—Aw)) is easily understood since G does not contain only the absorption mechanism but also
the spontaneous emission which is equal to exp(-fw) times the absorption.
Since Grp 4 is supposed to be a good approximation of G we get

1

Scns(w) = T—epi—da)

S{w) . {5.28)
Therefore, the RPA probability, |« FlX” |*, can be identifierd with the absorption probability, e ~8lww—#Nu|

m|F|n > |2/Z, times a factor (1—exp(—pw)), while w” can be identify with the energy spacing between the two states
|m > and [ n >.

Continuum RPA

The RPA Green’s function can be directly computed from equation (5.21). For finite-range nuclear forees, this
method presents enormous numerical difficulties. However, the problems become much simpler for zero-range effective
interactions such as Skyrme forces [BeT3, Sh75, Be75, Li76a, Ts78) because one can solve the Bethe-Salpeter equation
(5.21) directly in coordinate space.

Indeed, using the definition of the super matrices F and £ together with the 1 representation defined by the
projection on the one-body operators irire = jry >< ra| the unperturbed Green's function (5.20) reads :

Gurl{w, rirg, Tiey) =€ minl|Gyplriry > | (5.29)

I{1)p"™2) = (1) I(2)
w—tn+ HW(2) - W(l) [{2)

where I represents the identity operator. Introducing the single particle Green's function

ng(w,rlrz, I‘]frgf) =< I‘]l’grl Il‘[rl‘z = {530)

virs) w(re)

o n_
GHw, rr') =< | Wio. ) ,

- >=2m
w—in-W I

where o and r- denote the greater and the lesser of » and 7' and v and w are two solutions, one regular and the
other irregular of (W — w)r = 0}, W( v, w) being their Wronskian, one gets

Gurlw rirg, Tyre) = Zﬂi¢i(r:)¢:(1‘1')00(€i =W, T2, T2) + (1) e+ L ){ryr = 1) . (6.32)

In this equation ¢; represents the single-particle orbital at the energy e, occupied by n, nucleons. For a pure & foree
the Bethe-Salpeter equation {5.21) becomes, for the local Tesponse r) =ta =7, rp =1 =97

Grralw, T, v} = Gup(w,r,1) +/dr"gnr(w,r,r”)E(l‘")QRPA(w,r”,l"J - (5.33)

These Green’s functions can be easily computed on a lattice using expressions (5.31) and (5.32) and give directly
access to the strength function (3.58).
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5.4 Adiabatic TDHF Approximation
The basic idea of ATDHF is to introduce a velocity field and a set of collective coordinates, Since the coordinates
are usually time reversal invariant quantities, Baranger and Vénéroni [Ba78] proposed to decompose the density using
two time-even Hermitian matrices, a density p'%(t) and a velocity field x(¢) :

plt) = eXpO(g)ext0) (5.34)

They also proposed the adiabatic approximation assuming that p(t) is very close to p%(t), i.e. that the velocity field is

small enough to be treated perturbatively. Therefore expanding the exponential operators in Eq. (5.34) , the density
can be written as

PR (U B ) B BT (5.35)
wliere
P =iy, p®) (i [0 = iFlix > ) (5.36)
and
P = —% [x, [x,p“”]] : (5.37)

The collective Hamiltonian can be deduced from the energy of the system in a manner very similar to the
illustration presented in section 2.2.1.2 where the classical collective Lagrangian was derived from the projection of
the quantum action on a family of trial function {the so-called ”collective path”).

Using the density (5.35) the Hartree-Fock energy can be expanded as :

IE

E(p) = E(p") + a—pp‘z’ + gV (5.38)

Using the RPA notation, this energy, (Eq. (5.38)), can be recast as
1

E(p) = E(p™) + 5 < M7 x > (5.39)
where we have introduced the mass tensor defined as
M=(KRT . (5.40)

The first term in equation {5.39) can be interpreted as a potential energy V(p(m) whereas the second one corresponds
to a kinetic energy term Ty, p(0)). The encrgy E plays the role of a classical Hamiltonian for which p'® and y
appear as conjugate variables. Therefore, the dynamical equations for o) and ¥ can be derived from the Hamiltonian
equations: |4 = |E/3x" 3 and —~||¥ 3= |0E/859" >, which lead to the equations

PO = MLy (5.41)
and 5 .
1 M=
—v = W — - R
x =W+ <x FRGE Ix = . (5.42)

These equations together with the definition (5.39) of the collective Hamilionian form the most general formulation of
the ATDHF approximation. However, they arc often too difficult to solve without further approximations. In fact this
approach is really useful if we can assume that the density p{®(t) is driven by an ensemble of collective coordinates

Qt)

1P90) == 1" Q(1)) = . (5.43)
In such a case, we can directly express the velocity as
, . 9p®
W) =0 E— 5 | 5.44
160) = Q55 > (5.44)

Using the ATDHF equation (5.41),

x = M||p!® 3we can write the kinetic cnergy as

1. .
T'=35QMQ , (5.45)
where the mass tensor is defined hy!
pt0 apl®)
My = —IM|—=—>» . (5.46)
He BQ“ ” BQV
! (ne can recognize in the Mass Tensor Ay {5.46) the polarizability tensor M,, = & apw]/GQ;.]l (iF '} Grpalw =

o) (iF ) |}6p[°} /8Q.. >» which corresponds to the static deformation induced by the operator i}'—‘ap(")/aQ., and measured according to
the operator iF 1 8o%) /8Q,. It showld be noticed that if we are considering the dynamics of Slater determinants, p2 = p these operators
reduce to ip'?, 8p(® /a2 ,.|. and i[p'Y, 8p/6Q..}.
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Therefore, if we define the momentum P = MQ, equation (5.39} yields the collective Hamiltonian

E{p)= H(P,Q) = %PMPJr V@) . (5.47)

where the potential is the mean value of the energy associated with P V(Q) = E(p'M).

Therefore, the ATDHF
approximation leads to a classical Hamiltonian similar to the one of the macros

copic approaches.
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5.5 Periodic Orbits of TDHF

Iterative Construction of Periodic Orbits

The method proposed in ref. [Ch86) is an iterative method based on the existence of a distance in the Liouville
space constructed from the scalar product (3.28)

too)=<p—olp—e>» . (5.1)

Thercfore, if one starts with an arbitrary solution p(0), one can first find the period T for which this distance,
é{p(0), o(T'}), is minimum. One can thus look for the small variation 5p(0) which will reduce the distance £{p(0), p{T}).
The evolution of 6p(t) is given by the RPA equation (3.30) which can be integrated formally as

Mty > =T (4 /ﬂt dt.'lC(t’)) 16000} > = U(E) |6p(0) > | (5.2)
where 7 is the time-ordering symbaol. So the variation of distances ¢ is given at the first order in &p :
50=2 < p(0) — ATl L —U(T) [I6p(0) > . (5.3)
Therefore, the idea is to choose §p(0) to be
160(0) > = ¢ P ~U") IAT) = p(0) > (5.4)

where ¢ is a real positive number small enough to ensure the validity of the linear response theory. In equation (5.4),
P is a projector which ensures the conservation of the particle number and, if required, of the constraint: p? = p. In
this case, the distance will always be reduced and will eventually converge to 0.

We know that the lincar evolution preserves the simplectic form F (see discussion of eq. (3.35)). This property
implies that I is a simplectic operator, as in classical mechanics [Ar74,

UYT) = F7HO) U~N(T) F(T) . (5.5)
Therefore, one may use this relation to construct the variation [|60(0) »
160(0) 3 = € ||p(T) — p(0) > +¢ F1(0) UHT) F(T) [|o(T) — p(0} > . (5.6)

The second term is constructed by propagating backward the perturbation

62(T) > = ¢ F(T) |p(T) — p(0) > = ¢ |{[p(T), p(0)] > and by taking F~1(0)]|60(0} > at the time 0. If only
Slater determinants are considered, this reduces to [80(0), p(0)] . If we want to keep the constraint p* = p, we can
project &p(0) on the particle hole space. Iterating this method eventually yields a periodic orbit since the distance €
is reduced after each iteration.

Perturbative Construction of Periodic Orbits

The basic idea of this method is to expand the density in powers of a small number, the amplitude of the oscillations

€
_ 0 1y, wi 2 2y Wt 3oy Wt 57
) =P+ ep )+ T ) + A ) {6.7)
where the frequency is also expanded in a power serics of ¢ :
w= w4 e 4 20 Bt 4 (5.8)

The dynamical equations for pU*! ure obtained from the expansion of the TDHF equations {3.26) at the n’th order in

<

0 = Wip» (5.9)

ilfM s = K| {5.10)
i)

P> = K s WO M) s it 50 (5.11)

P = K P 4 {5.12)

whiere the mean-field W lias been expanded in series:

W= WO 4oyt 4 202 4 Syt L, {(5.13)
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In equations 5.9, we have explicitly introduced the RPA matrix £, It should be noticed that the equations {5.9) only
define the p.h. components of A7) the particle-particle or hole-hole components being defined by the relation Pt =p.
The equation for p'!) implies that &p is proportional to the RPA eigenstates

i) > = Zau( s e walt 4 e f"""-('m') . (5.14)

where the a, are {ree parameters. If we are looking for periodic solutions we can only mix commensurable frequencies,
The equation for p*) contains a source term propartianal to p'Hp1 | s it contains frequencies which are sums or
differences of the w, ’s. Therefore, in order to avoid a linearly increasing solution which is non-physical, one needs to
set wi!) = (. The situation is different in the next order, p, because equation (5.9) reads

AR (1) (2) @y _ @ A1) £
(Tc’i = K)p = (W R (@ (] ST {5.15)
or specifying only the p.h. components
a ) ) wi?h
(i5; = K)Pp'™ = Pot™ — i—m5pt {5.16)

with o) = i @) 4 (W2, 0P + K)1 - P)p'® and where P projects on the p.h. components. The com-
mutators on the right-hand side of equation (5.15 ) contain sums or differences of three frequencies w, and in
particular contain a resonant term wy. The terms coming from the modifications of w are there to cancel these
resonant terms which otherwise would yield non-physical solutions. This condition defines the frequency correc-
tion w'?! requiring that the projection on the eigenstates ||X* > does not contain the frequency w,, ie 0 =

2}

_IOT dt (<< X NF o® —i% & XY (|IF )0 ) 50 that

2 _ 0 fo dt tra®[p® o1
=w

t T
Jo dt trip [pt, p(1]]

{5.17)

This procedure can be iterated in order to find all the the frequencies w(™) requiring that no resonant terms appear
in the equation of evolution of p{"*+1) The last step is to apply the quantization rule which reads

T
.0
=% e, +/; dt < h{t)lim — WIh(t) >=7 {5.18)
h

where the &, are the Floquet-Lyapounov phase defined as the phase acquired by the orbital h after one period. In
ref. [AbO1, Ab92, Ab92a] the action I is approximated by

T
& 52/ dt trW D) L 52 = 2@ (5.19)
]

where £ is the second order correction to the energy B = EW + ¢2EW) 4+ AEB) 1 ... Using the expansion of the

period T = 1/2mw, we get for the n quantified states:

{0)
2 [
£, = "EE @ e {5.20)
and so the excitation energy reads :

E.=E,— E™ = nw, = n(w(0) + £2w(2)) . (5.21)

These equations give corrections to the one phonon state wy and also to the two phonon states ws.
In realistic calculations, one needs to introduce the angular momentum. This can be done by introducing the
quantum numbers A and y. g contains a sum over i and p and w'? can be expressed as

A 2
2)
P Z Z Péx,nf (5.22)
A=04=-2X
and
A 23
2
“’(2]=Z Z wgr\)’,u' . (5.23)
M=t =—2A

However, the equations (5.20) and (5.21) do not predict any splitting of the two phonon states. In refs. |AbY1, Ah92,
Ab92] the following ansatz is proposed in analogy with the idea of the projection onto a good angular momentum :
the splitting of the two phonon states is obtained replacing w(2! by w'? in equations {5.20) and (5.21).

CONTENTS
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5.6 Example of a Boson Mapping of the Hamiltonian of Fermions
With the transformation {3.107} , the fermion Hamiltonian is mapped onto:

Hy 2 H,

+ 4 4+

+
+

En + Spnlep — cadbyubon + Cppprie Vorrtar Opnbyne

ﬁ 2ppr e [ Viowr it bthL»h- + kel

‘2_\175 Eni:’hr:" [Vep' hpr b:,hb:,rh!bp" w +h.c)

RS AR

g Voo b O by by (5.24)
% X na e p Vgt g b;hb:’,h, b b e

iL

1—+3 ot i
=N st Vg ot (00 bl by + hic]
hhint

t t
th: et he bph’" bpr Bt bpf: bp'h'

On the right hand side of Eq.(5.24) the first four terms correspond to a harmonic Hamiltonian with particle-hole
interactions. Comparing this part with the quasi-boson Hamiltonian, we find that they are quite similar, differing
only by some numerical factors |Ri81]. In that sense, the RPA can be considered as an approximation where Hy is
truncated at second-order in boson operators [Ri81].
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