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Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Course Outline

1 Fundamentals of Gaussian beam propagation
Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

2 Matrix methods for geometrical and Gaussian optics
Linear algebra for geometrical optics
A few simple matrices
Matrix method for Gaussian beams
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Plane waves do not exist
Waves carrying an infinite amount of energy cannot come into existence

Planes waves

Plane wave have a homogeneous transversal electric field

Ponting’s vector norm, and power density, are also
homogeneous

Total carried power is infinite

Practical use of plane wave theory: usual unsaid approximation

Plane waves of finite extent are often used

Strictly speaking, they are not plane waves

To what extent can we assume they are plane waves ?

N. Fressengeas Gaussian Beams, version 1.01, frame 4



Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Plane waves do not exist
Waves carrying an infinite amount of energy cannot come into existence

Planes waves

Plane wave have a homogeneous transversal electric field

Ponting’s vector norm, and power density, are also
homogeneous

Total carried power is infinite

Practical use of plane wave theory: usual unsaid approximation

Plane waves of finite extent are often used

Strictly speaking, they are not plane waves

To what extent can we assume they are plane waves ?

N. Fressengeas Gaussian Beams, version 1.01, frame 4



Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Plane waves do not exist
Waves carrying an infinite amount of energy cannot come into existence

Planes waves

Plane wave have a homogeneous transversal electric field

Ponting’s vector norm, and power density, are also
homogeneous

Total carried power is infinite

Practical use of plane wave theory: usual unsaid approximation

Plane waves of finite extent are often used

Strictly speaking, they are not plane waves

To what extent can we assume they are plane waves ?

N. Fressengeas Gaussian Beams, version 1.01, frame 4



Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Plane waves do not exist
Waves carrying an infinite amount of energy cannot come into existence

Planes waves

Plane wave have a homogeneous transversal electric field

Ponting’s vector norm, and power density, are also
homogeneous

Total carried power is infinite

Practical use of plane wave theory: usual unsaid approximation

Plane waves of finite extent are often used

Strictly speaking, they are not plane waves

To what extent can we assume they are plane waves ?

N. Fressengeas Gaussian Beams, version 1.01, frame 4



Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Plane waves do not exist
Waves carrying an infinite amount of energy cannot come into existence

Planes waves

Plane wave have a homogeneous transversal electric field

Ponting’s vector norm, and power density, are also
homogeneous

Total carried power is infinite

Practical use of plane wave theory: usual unsaid approximation

Plane waves of finite extent are often used

Strictly speaking, they are not plane waves

To what extent can we assume they are plane waves ?

N. Fressengeas Gaussian Beams, version 1.01, frame 4



Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Plane waves, Gaussian beams. . . what else ?
Solutions of the wave equations: one finds only those he was searching for

Solving the wave equation
−−→△E = 1

c2
∂2−→E
∂t2

Vectorial Partial Derivatives Equations

Solutions are numerous

An ansatz1is needed to seek solutions

Gaussian beams as an ansatz

We will find another family of solutions

We never pretend to get them all

1An ansatz is an a priori hypothesis on the form of the sought solution.
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Gaussian ansatz
Plugging the ansatz into the wave equation builds the envelope equation

Introducing a space dependent envelope

Plane wave:
−→
E0 × e−ı̇

−→
k ·

−→r

Gaussian ansatz : u (x , y , z)−→ex × e−ı̇kz

u (x , y , z) : complex beam envelope
−→ex unit vector

The envelope u (x , y , z) is our new unknown

Envelope equation

Wave equation:
−−→△E = 1

c2
∂2−→E
∂t2

Scalar harmonic wave equation: △E + E = 0

Envelope equation:
△
[

u (x , y , z) e−ı̇kz
]

+ k2u (x , y , z) e−ı̇kz = 0
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

The paraxial approximation
Also known as Gauss conditions, Slow Varying Envelope. . .

Non Paraxial Beam Paraxial Beam
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Paraxial approximation and partial derivatives
Assuming small angles is equivalent to neglecting z derivatives

Transversal variation vs. longitudinal variation

Non Paraxial Beam Paraxial Beam
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Paraxial approximation and partial derivatives
Assuming small angles is equivalent to neglecting z derivatives

Transversal variation vs. longitudinal variation

Non Paraxial Beam Paraxial Beam

Transversal Laplacian

∂2

∂z2
≪ ∂2

∂x2
△ ≈ △⊥
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Paraxial approximation and partial derivatives
Assuming small angles is equivalent to neglecting z derivatives

Transversal variation vs. longitudinal variation

Non Paraxial Beam Paraxial Beam

Paraxial wave equation

△⊥u − 2ı̇k
∂u

∂z
= 0
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

A first solution to the paraxial wave equation
The simplest one, though probably the more important

Wave Propagation Equation

△⊥u − 2ı̇k
∂u

∂z
= 0

A simple ansatz

u = e
−ı̇

(

P(z)+ k
2q(z)

r2
)

Complex beam radius q (z)

Real part: phase variations

Imaginary part: intensity
variations

Plugging ansatz: q′ = 1

Integration: q (z) = q (0) + z

Phase shift P (z)

Phase shift with respect to the
plane wave

qP ′ + ı̇ = 0
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

The complex beam radius q (z)

A closer look to the signification on a complex parameter u = e
−ı̇

(

P(z)+ k
2q(z)

r2
)

A complex parameter is linked to two real ones

1

q
=

1

R
− ı̇

λ

πW 2
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The complex beam radius q (z)

A closer look to the signification on a complex parameter u = e
−ı̇

(

P(z)+ k
2q(z)

r2
)

A complex parameter is linked to two real ones

1
q
= 1

R
− ı̇ λ

πW 2

The ansatz re-written

u = e
−ı̇

(

P(z)+k r2

2R(z)

)

e
−

r2

W (z)2

2W

1/e
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The complex beam radius q (z)

A closer look to the signification on a complex parameter u = e
−ı̇

(

P(z)+ k
2q(z)

r2
)

A complex parameter is linked to two real ones

1
q
= 1

R
− ı̇ λ

πW 2

The ansatz re-written

u = e
−ı̇

(

P(z)+k r2

2R(z)

)

e
−

r2

W (z)2

What is R ?
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Spherical wavefront of radius R at abscissa z

Phase at abscissa z

Constant phase on sphere

Phase ∝ d , r ≪ R

Gaussian ansatz

u = e
−ı̇

(

P(z)+k r2

2R(z)

)

e
−

r2

W (z)2

R radius spherical wavefront

R

r

d

z
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Constant phase on sphere

Phase ∝ d , r ≪ R
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√
R2 − r2

d = R

(

1−
√

1− r2

R2
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Gaussian Beam Complex Amplitude
Where the Gaussian beam amplitude is derived from the ansatz and q′ = 1

A quick summary

Ansatz : u = e
−ı̇

(

P(z)+ k
2q(z)

r2
)

Complex beam radius : 1
q
= 1

R
− ı̇ λ

πW 2

Beam radius equation : q′ = 1

Assuming a plane wavefront for z = 0

q (0) = ı̇
πW 2

0
λ

W 2 (z) = W 2
0

[

1 +
(

λz
πW 2

0

)2
]

R (z) = z

[

1 +
(

πW 2
0

λz

)2
]
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Gaussian Beam Intensity

W 2 (z) = W 2
0

[

1 +
(

λz

πW 2
0

)2
]

W0 2W

1/e
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Gaussian Beam Intensity

W 2 (z) = W 2
0

[

1 +
(

λz

πW 2
0

)2
]

W0

Asymptotes

λz
πW 2

0
≫ 1 ⇒ W (z) ≈ λz

πW0

γ = λ
πW0

W0 : Beam Waist
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Gaussian Beam Intensity

W 2 (z) = W 2
0

[
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λz

πW 2
0

)2
]

W0

γ
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Gaussian wavefront curvature

R (z) = z

[

1 +
(

πW 2
0

λz

)2
]

Plane and spherical limits

For small z : R = ∞
plane wavefront

For high z : R ≈ z

spherical wavefront

W0
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The Rayleigh length
A quantitative criterion to decide whether a Gaussian beam is plane or spherical

Plane for small z λz
πW 2

0
≪ 1

W (z) ≈ W0

lim
z→0

R (z) = ∞

Spherical for high z λz
πW 2

0
≫ 1

W (z) ≈ λz

πW0

R (z) ≈ z

The Rayleigh length is the limit

LR =
πW 2

0

λ

W0
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The homogeneous phase shift P (z)

u = e
−ı̇

(

P(z)+ k
2q(z)

r2
)

Recall the equation

qP ′ + ı̇ = 0 ⇔ P ′ (z) = − ı̇

z + ı̇LR

Integrate it

ı̇P (z) = ln
(

1− ı̇ z
LR

)

Complex phase meaning

Real part : Phase shift with respect to plane wave

Imaginary part: W0
W (z) factor to ensure energy conservation
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The fundamental Gaussian mode

General expression

E (r , z) =
W0

W (z)
e
−ı̇[kz+P(z)]−r2

(

1

W (z)2
+ı̇ k

2R(z)

)

With, in (nearly) the order of appearance on the screen

W 2 (z) = W 2
0

[

1 +
(

z
LR

)2
]

R (z) = z

[

1 +
(

LR
z

)2
]

P (z) = −tan−1
(

z
LR

)

Rayleigh length LR =
πW 2

0
λ

Diffraction half angle: γ ≈ λ
πW0

= W0
LR
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1 Fundamentals of Gaussian beam propagation
Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

2 Matrix methods for geometrical and Gaussian optics
Linear algebra for geometrical optics
A few simple matrices
Matrix method for Gaussian beams
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High order Hermite-Gaussian modes
A Cartesian family of higher order modes

Ansatz

u(x , y , z) = g

(

x

W (z)

)

h

(

y

W (z)

)

e
−ı̇

(

P(z)+ k
2q(z)(x

2+y2)
)

Plugged into the wave equation

q′ = 1

∃m ∈ N,
∂g

∂x2
− 2x

∂g

x
+ 2mg = 0

∃n ∈ N,
∂h

∂y2
− 2y

∂h

y
+ 2nh = 0

qP ′ + (1 +m + n)j = 0
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Behavior of Hermite-Gaussian modes
Each mode is a mere space modulation of the fundamental

q′ = 1

Same equation for q as in the fundamental mode

W (z) and R (z) retain their meanings and properties

Rayleigh length and diffraction angle are unchanged

∂2g
∂x2

− 2x ∂g
x

+ 2mg = 0 ∂h
∂y2 − 2y ∂h

y
+ 2nh = 0

Solutions are, by definition, the orthogonal Hermite
polynomials

H0 = 1, H1 = x , H2 = 4x2 − 1, H3 = 8x3 − 12x . . .

Hn has degree n

g
(

x
W (z)

)

h
(

y
W (z)

)

= Hm

(√
2 x
W (z)

)

Hn

(√
2 y
W (z)

)
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Intensity profiles of Hermite Gaussian (HG) modes
The intensity if proportional to the squared envelope
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Gaussian beams vs. plane waves
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High order Laguerre-Gaussian modes
A cylindrical family of higher order modes

Ansatz

u(r , φ, z) = g

(

r

W (z)

)

e
−ı̇

(

P(z)+ k
2q(z)

r2+lφ
)

Plugged into the wave equation

q′ = 1

∃ (l , p) ∈ N
2, r

∂2g

∂r2
− (l + 1− x)

∂g

x
+ pg = 0

qP ′ + (1 + 2p + l)j = 0
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Higher order modes

Behavior of Laguerre-Gaussian modes
Each mode is a mere space modulation of the fundamental

q′ = 1 same as HG modes

Same equation for q as in the fundamental mode

W (z) and R (z) retain their meanings and properties

Rayleigh length and diffraction angle are unchanged

r ∂
2g

∂r2
− (l + 1− x) ∂g

x
+ pg = 0

Solutions are, by definition, the orthogonal generalized
Laguerre polynomials

L(l)
0 = 1, L(l)

1 = −x+l+1, L(l)
2 = x2

2 −(l + 2) x+ (l+1)(l+2)
2

L(l)
m has degree m

g
(

r
W (z)

)

=
(√

2 r
W (z)

)l

L(l)
p

(

2 r2

W 2(z)

)
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Intensity profiles of Laguerre Gaussian (LG) modes
The intensity if proportional to the squared envelope

LG (0, 0) LG (0, 1) : vortex LG (0, 2)
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Intensity profiles of other Laguerre Gaussian (LG) modes
The intensity if proportional to the squared envelope

LG (1, 2) LG (1, 3) LG (2, 3)
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Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Homogeneous phase shift is different for high order modes
qP ′ + (1 +m + n)j = 0 qP ′ + (1 + 2p + l)j = 0

A small phase difference between modes around the beam waist

Slightly different optical paths for different orders

Slightly different oscillating frequencies in lasers

Usually forgotten
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N. Fressengeas Gaussian Beams, version 1.01, frame 25



Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

Homogeneous phase shift is different for high order modes
qP ′ + (1 +m + n)j = 0 qP ′ + (1 + 2p + l)j = 0

A small phase difference between modes around the beam waist

Slightly different optical paths for different orders

Slightly different oscillating frequencies in lasers

Usually forgotten. . . particularly in the next section

N. Fressengeas Gaussian Beams, version 1.01, frame 25



Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Linear algebra for geometrical optics
A few simple matrices
Matrix method for Gaussian beams

1 Fundamentals of Gaussian beam propagation
Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

2 Matrix methods for geometrical and Gaussian optics
Linear algebra for geometrical optics
A few simple matrices
Matrix method for Gaussian beams

N. Fressengeas Gaussian Beams, version 1.01, frame 26



Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Linear algebra for geometrical optics
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Geometrical optics framework
Where is is shown that rays are not so thin as you may think

Geometrical optics do not deal with thin rays

A thin ray has a thin waist: it should diffract γ = λ
πW0

Thin rays are seldom alone: their meaning is collective

A ray is a Poynting vector curve

A bunch of rays describes a wavefront

Do geometrical optics deal with plane and spherical waves ?

Parallel rays imply a plane wavefront

Converging or diverging rays imply a spherical wavefront

But neither of them has an infinite extension !
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Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Linear algebra for geometrical optics
A few simple matrices
Matrix method for Gaussian beams

Geometrical optic is Gaussian optics

Transversely limited plane waves Parallel rays

Gaussian Beams within their Rayleigh zone

Transversely limited spherical waves Con(Di)verging rays

Gaussian Beams far from their Rayleigh zone

Orders of magnitude

He-Ne laser: W0 ≈ 1mm, λ = 633nm, LR ≈ 5m

GSM Antenna: W0 ≈ 1m, λ ≈ 33cm, LR ≈ 10m
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Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Linear algebra for geometrical optics
A few simple matrices
Matrix method for Gaussian beams

Geometrical optics is linear
Geometrical optics stems entirely from Descartes law n1 sin (θ1) = n2 sin (θ2)

Descartes made paraxial

Paraxial approximation : θ ≪ 1 n1θ1 ≈ n2θ2

Geometrical optics is linear algebra

Paraxial Descartes is linear

Straight line propagation is linear

The behavior of a ray through any optical system can be
described linearly
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Fundamentals of Gaussian beam propagation
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Linear algebra for geometrical optics
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Matrix method for Gaussian beams

Matrix geometrical optics
A 2 dimensional linear algebra framework

The ray vector v =

(

y

θ

)

y : distance from the axis

θ : angle to the axis
y

θ

An optical system v ′ = Mv

M is a 2× 2 real matrix

It can describe any centered
paraxial optical system

v

v ′
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Matrix method for Gaussian beams

Optical system composition
Optical system composition reduced to matrix product

Optical System Composition

v

v ′ v ′′

M1 M2

Matrix Composition

v ′ = M1 · v
v ′′ = M2 · v ′

v ′′ = M2M1 · v

Complex systems

Compose simple systems
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1 Fundamentals of Gaussian beam propagation
Gaussian beams vs. plane waves
The fundamental mode
Higher order modes

2 Matrix methods for geometrical and Gaussian optics
Linear algebra for geometrical optics
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Matrix method for Gaussian beams
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Propagation in a homogeneous medium
(

y ′

θ
′

)

= Md

(

y

θ

)

Light propagates in straight line

No direction change: θ′ = θ

y ′ = y + d sin (θ)

Md
(

y ′

θ′

)

=

[

1 d

0 1

](

y

θ

)

θ′ = θy

y ′

d
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Passing through a plane interface
(

y ′

θ
′

)

= Mp

(

y

θ

)

Descartes

No propagation: y ′ = y

n sin (θ) = n′ sin (θ′)

θ′ ≈ n
n′
θ

Mp
(

y ′

θ′

)

=

[

1 0
0 n

n′

](

y

θ

)

θ′
θ

n n′
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Passing through a thin lens
(

y ′

θ
′

)

= Ml

(

y

θ

)

Two characteristic rays

No propagation: y ′ = y

Blue ray: y = 0 ⇒ θ′ = θ

Red ray: θ = 0 ⇒ θ′ = −1
f
y

Ml
(

y ′

θ′

)

=

[

1 0
−1

f
1

](

y

θ

)
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No propagation: y ′ = y
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Passing through a (thin) spherical interface
(

y ′

θ
′

)

= Ms

(

y

θ

)

Descartes

Thin interface

No propagation: y ′ = y

Blue ray: y ≈ Rθ ⇒ θ′ = θ

Red ray: y = 0 ⇒ θ′ ≈ n
n′
θ

n n’
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Passing through a (thin) spherical interface
(

y ′

θ
′

)

= Ms

(

y

θ

)

Descartes

Thin interface

No propagation: y ′ = y

Blue ray: y ≈ Rθ ⇒ θ′ = θ

Red ray: y = 0 ⇒ θ′ ≈ n
n′
θ

θ′ = ay + bθ

Solve for (a, b) using

(y , θ′) = (Rθ, θ)

(y , θ′) =
(

0, n
n′
θ
)

n n’
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Passing through a (thin) spherical interface
(

y ′

θ
′

)
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(

y

θ

)

Descartes

Thin interface

No propagation: y ′ = y

Blue ray: y ≈ Rθ ⇒ θ′ = θ

Red ray: y = 0 ⇒ θ′ ≈ n
n′
θ

Ms
(

y ′

θ′

)

=

[

1 0
n′−n
n′R

n
n′

](

y

θ

)

n n’
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Mirrors
Unfolding the light

Plane mirrors as if they did not exist
(

y ′

θ′

)

=

[

1 0
0 1

](

y

θ

)

Spherical Mirrors are thin lenses
(

y ′

θ′

)

=

[

1 0
− 2

R
1

](

y

θ

)
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Matrix property
A determinant property stemming from all the simple matrices determinants

n: start index n′: stop index

∀M, det (M) =
n

n′
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1 Fundamentals of Gaussian beam propagation
Gaussian beams vs. plane waves
The fundamental mode
Higher order modes
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Gaussian modes, propagation and lenses
A Gaussian mode does not change upon propagation of by passing through thin interfaces
or lenses

g
(

x
W (z)

)

h
(

y
W (z)

)

e
−ı̇

(

P(z)+ k
2q(z)(x

2+y2)
)

z independent modulation of the fundamental mode

Free space q′ = 1 common property

Thin lens does not change mode profile

Common R (z) and W (z) behavior

All the modes share the same laws on q (z), R (z) and W (z)
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Gaussian beam propagation: the ABCD law
The transformation of the complex radius q for simple optical systems

Free space q′ = 1

q1 = q0 + d

Md =

(

1 d

0 1

)
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Gaussian beam propagation: the ABCD law
The transformation of the complex radius q for simple optical systems

Free space q′ = 1

q1 = q0 + d

Md =

(

1 d

0 1

)

Plane interface n0/n1 = R0/R1

q1
q0

= n1
n0

⇒ q1 =
1×q0

n

n′

Mp =

(

1 0
0 n0

n1

)
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Gaussian beam propagation: the ABCD law
The transformation of the complex radius q for simple optical systems

Thin lens 1
R1

= 1
R0

− 1
f

1
q1

= 1
q0

− 1
f
⇒ q1 =

1
−

1
f
q0+1

Ml =

(

1 0
−1

f
1

)
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Gaussian beam propagation: the ABCD law
The transformation of the complex radius q for simple optical systems

Free space q′ = 1

q1 = q0 + d

Md =

(

1 d

0 1

)

Plane interface n0/n1 = R0/R1

q1
q0

= n1
n0

⇒ q1 =
1×q0

n

n′

Mp =

(

1 0
0 n0

n1

)

Thin lens 1
R1

= 1
R0

− 1
f

1
q1

= 1
q0

− 1
f
⇒ q1 =

1
−

1
f
q0+1

Ml =

(

1 0
−1

f
1

)

Kogelnik’s ABCD law

M =

(

A B

C D

)

⇒ q1 =
Aq0 + B

Cq0 + D
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Gaussian beam propagation: the ABCD law
The transformation of the complex radius q for simple optical systems

Free space q′ = 1
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(

1 d

0 1

)

Plane interface n0/n1 = R0/R1

q1
q0

= n1
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1×q0

n

n′

Mp =

(

1 0
0 n0

n1

)

Thin lens 1
R1

= 1
R0

− 1
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1
q1

= 1
q0

− 1
f
⇒ q1 =

1
−

1
f
q0+1

Ml =

(

1 0
−1

f
1

)

Kogelnik’s ABCD law

M =

(

A B

C D

)

⇒ q1 =
Aq0 + B

Cq0 + D

Geometrical and Gaussian optics are linked through paraxial approx.

Gaussian beam propagation can be evaluated, for any mode, using
simple matrix geometrical optics
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Focal lens example
Using the ABCD law to verify that parallel rays do converge on the focal plane

Parallel input beam

Input plane : just before lens

Output plane : after length d

Input beam at waist:

q0 = ı̇
πW 2

0
λ

d

N. Fressengeas Gaussian Beams, version 1.01, frame 39



Fundamentals of Gaussian beam propagation
Matrix methods for geometrical and Gaussian optics

Linear algebra for geometrical optics
A few simple matrices
Matrix method for Gaussian beams

Focal lens example
Using the ABCD law to verify that parallel rays do converge on the focal plane

Parallel input beam

Input plane : just before lens

Output plane : after length d

Input beam at waist: q0 = ı̇LR0

Propagation matrix

lens: Mf =

(

1 0
−1

f
1

)

distance d : Md =

(

1 d

0 1

)

d
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Focal lens example
Using the ABCD law to verify that parallel rays do converge on the focal plane

Parallel input beam

Input plane : just before lens

Output plane : after length d

Input beam at waist: q0 = ı̇LR0

Propagation matrix

Md ·Mf =

(

−d
f
+ 1 d

−1
f

1

)

d
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Output plane : after length d
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Propagation matrix
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(
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f
+ 1 d

−1
f

1

)

ABCD law

q1 =
df + ı̇(f − d)LR0

f − ı̇LR0

d
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Output plane : after length d
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Propagation matrix
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(

−d
f
+ 1 d
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1
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ABCD law

q1 =
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d

d for plane wavefront: imaginary q1

d =
f

1 +
(

f
LR0

)2
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