Gaussian Beams

N. Fressengeas

Laboratoire Matériaux Optiques, Photonique et Systèmes Unité de Recherche commune à l'Université de Lorraine et à Supélec

Download this document from http://arche.univ-lorraine.fr

Further reading [KL66, GB94]

A. Gerrard and J.M. Burch.

Introduction to matrix methods in optics.

Dover, 1994.

H. KOGELNIK and T. LI.
Laser beams and resonators.

Appl. Opt., 5(10):1550–1567, Oct 1966.

Course Outline

- 1 Fundamentals of Gaussian beam propagation
 - Gaussian beams vs. plane waves
 - The fundamental mode
 - Higher order modes
- Matrix methods for geometrical and Gaussian optics
 - Linear algebra for geometrical optics
 - A few simple matrices
 - Matrix method for Gaussian beams

Plane waves do not exist

Waves carrying an infinite amount of energy cannot come into existence

Planes waves

- Plane wave have a homogeneous transversal electric field
- Ponting's vector norm, and power density, are also homogeneous
- Total carried power is infinite

Practical use of plane wave theory: usual unsaid approximation

- Plane waves of finite extent are often used
- Strictly speaking, they are not plane waves
- To what extent can we assume they are plane waves?

Gaussian beams vs. plane waves The fundamental mode Higher order modes

Plane waves, Gaussian beams...what else?

Solutions of the wave equations: one finds only those he was searching for

Solving the wave equation

$$\overrightarrow{\triangle E} = \frac{1}{c^2} \frac{\partial^2 \overrightarrow{E}}{\partial t^2}$$

- Vectorial Partial Derivatives Equations
- Solutions are numerous
- An ansatz¹ is needed to seek solutions

Gaussian beams as an ansatz

- We will find another family of solutions
- We never pretend to get them all

¹An ansatz is an *a priori* hypothesis on the form of the sought solution.

Gaussian ansatz

Plugging the ansatz into the wave equation builds the envelope equation

Introducing a space dependent envelope

- Plane wave: $\overrightarrow{E_0} \times e^{-i\overrightarrow{k}\cdot\overrightarrow{r}}$
- Gaussian ansatz : $u(x, y, z) \overrightarrow{e_x} \times e^{-ikz}$
 - u(x, y, z): complex beam envelope
 - $\overrightarrow{e_x}$ unit vector
- The envelope u(x, y, z) is our new unknown

Envelope equation

- Scalar harmonic wave equation: $\triangle E + k^2 E = 0$
- Envelope equation: $\triangle u 2ik\frac{\partial u}{\partial z} = 0$

The paraxial approximation

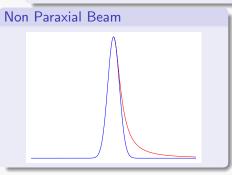
Also known as Gauss conditions, Slow Varying Envelope...

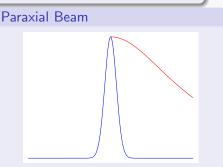


Paraxial approximation and partial derivatives

Assuming small angles is equivalent to neglecting z derivatives

Transversal variation vs. longitudinal variation





Transversal Laplacian

$$\frac{\partial^2}{\partial z^2} \ll \frac{\partial^2}{\partial x^2}$$

 $\triangle \approx \triangle_{\perp}$

A first solution to the paraxial wave equation

The simplest one, though probably the more important

Wave Propagation Equation

$$\triangle_{\perp} u - 2ik \frac{\partial u}{\partial z} = 0$$

Complex beam radius

q(z)

- Real part: phase variations
- Imaginary part: intensity variations
- Plugging ansatz: q' = 1
- Integration: q(z) = q(0) + z

A simple ansatz

$$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$$

Phase shift

P(z)

- Phase shift with respect to the plane wave
- qP' + i = 0

The complex beam radius

q(z)

A closer look to the signification on a complex parameter

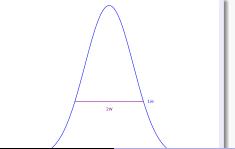
$$u=e^{-i\left(P(z)+\frac{k}{2q(z)}r^2\right)}$$

A complex parameter is linked to two real ones

$$\frac{1}{q} = \frac{1}{R} - i \frac{\lambda}{\pi W^2}$$

The ansatz re-written

$$u = e^{-i\left(P(z) + k\frac{r^2}{2R(z)}\right)} e^{-\frac{r^2}{W(z)^2}}$$



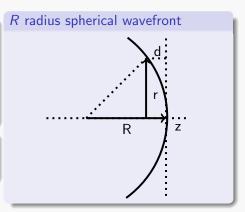
Spherical wavefront of radius R at abscissa z

Phase at abscissa z

- Constant phase on sphere
- Phase $\propto d$, $r \ll R$
- $d = R \sqrt{R^2 r^2}$
- $d \approx \frac{r^2}{2R}$

Gaussian ansatz

$$u = e^{-i\left(P(z) + k\frac{r^2}{2R(z)}\right)}e^{-\frac{r^2}{W(z)^2}}$$



Gaussian Beam Complex Amplitude

Where the Gaussian beam amplitude is derived from the ansatz and $q^\prime=1$

A quick summary

- Ansatz : $u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$
- Complex beam radius : $\frac{1}{q} = \frac{1}{R} i \frac{\lambda}{\pi W^2}$
- Beam radius equation : q' = 1 q(z) = q(0) + z

Assuming a plane wavefront for z = 0

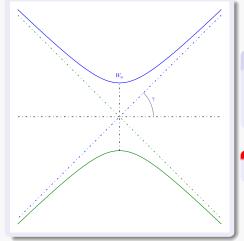
$$q(0) = i \frac{\pi W_0^2}{\lambda}$$

•
$$W^2(z) = W_0^2 \left[1 + \left(\frac{\lambda z}{\pi W_0^2} \right)^2 \right]$$

•
$$R(z) = z \left[1 + \left(\frac{\pi W_0^2}{\lambda z} \right)^2 \right]$$

Gaussian Beam Intensity

$$W^2(z) = W_0^2 \left[1 + \left(\frac{\lambda z}{\pi W_0^2} \right)^2 \right]$$



Asymptotes

•
$$\frac{\lambda z}{\pi W_0^2} \gg 1$$
 \Rightarrow $W(z) \approx \frac{\lambda z}{\pi W_0}$

•
$$\gamma = \frac{\lambda}{\pi W_0}$$

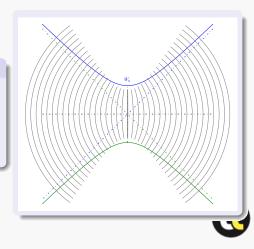
W₀: Beam Waist

Gaussian wavefront curvature

$$R(z) = z \left[1 + \left(\frac{\pi W_0^2}{\lambda z} \right)^2 \right]$$

Plane and spherical limits

- For small $z: R = \infty$ plane wavefront
- For high $z : R \approx z$ spherical wavefront



The Rayleigh length

A quantitative criterion to decide whether a Gaussian beam is plane or spherical

Plane for small z

$$\frac{\lambda z}{\pi W_0^2} \ll 1$$

- $W(z) \approx W_0$
- $\bullet \lim_{z\to 0} R(z) = \infty$

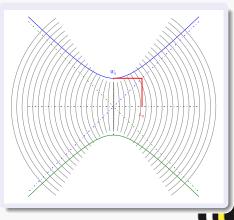
Spherical for high z

$$\frac{\lambda z}{\pi W_0^2} \gg 1$$

- $W(z) \approx \frac{\lambda z}{\pi W_0}$
- $R(z) \approx z$

The Rayleigh length is the limit

$$L_R = \frac{\pi W_0^2}{\lambda}$$



The homogeneous phase shift

$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$

Recall the equation

$$qP' + i = 0$$

$$\Leftrightarrow$$

$$P'(z) = -\frac{\imath}{z + iL_R}$$

Integrate it

$$P(z) = i \ln \left(\frac{W_0}{W(z)} \right) - \tan^{-1} \left(\frac{z}{L_R} \right)$$

Complex phase meaning

- Real part : Phase shift with respect to plane wave
- Imaginary part: $\frac{W_0}{W(z)}$ factor to ensure energy conservation

The fundamental Gaussian mode

General expression

$$E(r,z) = \frac{W_0}{W(z)} e^{-i[kz+P(z)]-r^2\left(\frac{1}{W(z)^2} + i\frac{k}{2R(z)}\right)}$$

With, in (nearly) the order of appearance on the screen

•
$$W^2(z) = W_0^2 \left[1 + \left(\frac{z}{L_R} \right)^2 \right]$$

•
$$R(z) = z \left[1 + \left(\frac{L_R}{z} \right)^2 \right]$$

•
$$P(z) = -\tan^{-1}\left(\frac{z}{L_R}\right)$$

• Rayleigh length
$$L_R = \frac{\pi W_0^2}{\lambda}$$

• Diffraction half angle:
$$\gamma \approx \frac{\lambda}{\pi W_0} = \frac{W_0}{L_R}$$

High order Hermite-Gaussian modes

A Cartesian family of higher order modes

Ansatz

$$u(x,y,z) = g\left(\frac{x}{W(z)}\right)h\left(\frac{y}{W(z)}\right)e^{-i\left(P(z) + \frac{k}{2q(z)}\left(x^2 + y^2\right)\right)}$$

Plugged into the wave equation

- q' = 1
- $\exists m \in \mathbb{N}, \ \frac{\partial g}{\partial x^2} 2x \frac{\partial g}{x} + 2mg = 0$
- $\exists n \in \mathbb{N}, \ \frac{\partial h}{\partial y^2} 2y \frac{\partial h}{y} + 2nh = 0$
- qP' + (1 + m + n)j = 0

Behavior of Hermite-Gaussian modes

Each mode is a mere space modulation of the fundamental

$$q'=1$$

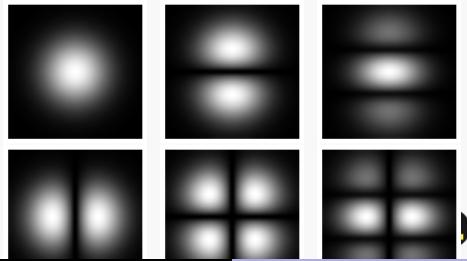
- ullet Same equation for q as in the fundamental mode
- W(z) and R(z) retain their meanings and properties
- Rayleigh length and diffraction angle are unchanged

$$\frac{\partial^2 g}{\partial x^2} - 2x \frac{\partial g}{x} + 2mg = 0 \qquad \qquad \frac{\partial h}{\partial y^2} - 2y \frac{\partial h}{y} + 2nh = 0$$

- Solutions are, by definition, the orthogonal Hermite polynomials
- $\mathcal{H}_0 = 1$, $\mathcal{H}_1 = x$, $\mathcal{H}_2 = 4x^2 1$, $\mathcal{H}_3 = 8x^3 12x \dots$
- \mathcal{H}_n has degree n
- $\bullet \ g\left(\frac{x}{W(z)}\right) h\left(\frac{y}{W(z)}\right) = \mathcal{H}_m\left(\sqrt{2}\frac{x}{W(z)}\right) \mathcal{H}_n\left(\sqrt{2}\frac{y}{W(z)}\right)$

Intensity profiles of Hermite Gaussian (HG) modes

The intensity if proportional to the squared envelope



High order Laguerre-Gaussian modes

A cylindrical family of higher order modes

Ansatz

$$u(r, \phi, z) = g\left(\frac{r}{W(z)}\right) e^{-i\left(P(z) + \frac{k}{2q(z)}r^2 + l\phi\right)}$$

Plugged into the wave equation

•
$$q' = 1$$

•
$$\exists (l, p) \in \mathbb{N}^2$$
, $r \frac{\partial^2 g}{\partial r^2} - (l+1-x) \frac{\partial g}{x} + pg = 0$

•
$$qP' + (1 + 2p + I)j = 0$$

Behavior of Laguerre-Gaussian modes

Each mode is a mere space modulation of the fundamental

$$q'=1$$

same as HG modes

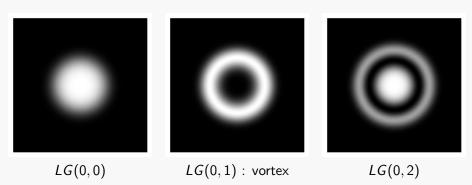
- ullet Same equation for q as in the fundamental mode
- W(z) and R(z) retain their meanings and properties
- Rayleigh length and diffraction angle are unchanged

$$r\frac{\partial^2 g}{\partial r^2} - (I + 1 - x)\frac{\partial g}{x} + pg = 0$$

- Solutions are, by definition, the orthogonal generalized Laguerre polynomials
- $\mathcal{L}_0^{(I)} = 1$, $\mathcal{L}_1^{(I)} = -x + I + 1$, $\mathcal{L}_2^{(I)} = \frac{x^2}{2} (I + 2)x + \frac{(I+1)(I+2)}{2}$
- $\mathcal{L}_{m}^{(I)}$ has degree m
- $g\left(\frac{r}{W(z)}\right) = \left(\sqrt{2}\frac{r}{W(z)}\right)^{l} \mathcal{L}_{p}^{(l)}\left(2\frac{r^{2}}{W^{2}(z)}\right)$

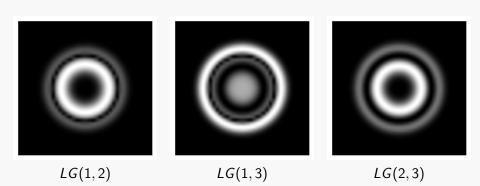
Intensity profiles of Laguerre Gaussian (LG) modes

The intensity if proportional to the squared envelope



Intensity profiles of other Laguerre Gaussian (LG) modes

The intensity if proportional to the squared envelope



Homogeneous phase shift is different for high order modes aP' + (1 + m + n)i = 0 aP' + (1 + 2p + l)i = 0

A small phase difference between modes around the beam waist

- Slightly different optical paths for different orders
- Slightly different oscillating frequencies in lasers
- Usually forgotten

Geometrical optics framework

Where is is shown that rays are not so thin as you may think

Geometrical optics do not deal with thin rays

- $\gamma = \frac{\lambda}{\pi M_0}$ A thin ray has a thin waist: it should diffract
- Thin rays are seldom alone: their meaning is collective
- A ray is a Poynting vector curve
- A bunch of rays describes a wavefront

Do geometrical optics deal with plane and spherical waves?

- Parallel rays imply a plane wavefront
- Converging or diverging rays imply a spherical wavefront
- But neither of them has an infinite extension!

Geometrical optic is Gaussian optics

Transversely limited plane waves

Parallel rays

Gaussian Beams within their Rayleigh zone

Transversely limited spherical waves

Con(Di)verging rays

Gaussian Beams far from their Rayleigh zone

Orders of magnitude

- He-Ne laser: $W_0 \approx 1 \text{mm}, \lambda = 633 \text{nm}, L_R \approx 5 \text{m}$
- GSM Antenna: $W_0 \approx 1 \text{m}, \lambda \approx 33 \text{cm}, L_R \approx 10 \text{m}$

Geometrical optics is linear

Geometrical optics stems entirely from Descartes law

$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$

Descartes made paraxial

Paraxial approximation : $\theta \ll 1$

 $n_1\theta_1 \approx n_2\theta_2$

Geometrical optics is linear algebra

- Paraxial Descartes is linear
- Straight line propagation is linear
- The behavior of a ray through any optical system can be described linearly

Matrix geometrical optics

A 2 dimensional linear algebra framework

The ray vector

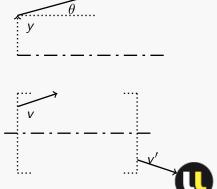
$$v = \begin{pmatrix} y \\ \theta \end{pmatrix}$$

- y : distance from the axis
- \bullet θ : angle to the axis

An optical system

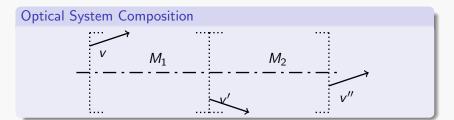
$$v' = Mv$$

- M is a 2×2 real matrix
- It can describe any centered paraxial optical system



Optical system composition

Optical system composition reduced to matrix product



Matrix Composition

$$\bullet \ v' = M_1 \cdot v$$

•
$$v'' = M_2 \cdot v'$$

•
$$v'' = M_2 M_1 \cdot v$$

Complex systems

Compose simple systems

Propagation in a homogeneous medium

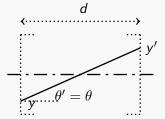
$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = M_d \begin{pmatrix} y \\ \theta \end{pmatrix}$$

Light propagates in straight line

- No direction change: $\theta' = \theta$
- $y' = y + d \sin(\theta)$

 M_d

$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \begin{pmatrix} y \\ \theta \end{pmatrix}$$



Passing through a plane interface

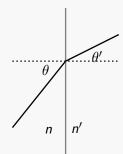
$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = M_p \begin{pmatrix} y \\ \theta \end{pmatrix}$$

Descartes

- No propagation: y' = y
- $n \sin(\theta) = n' \sin(\theta')$
- $\theta' \approx \frac{n}{n'}\theta$

 M_p

$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{n}{n'} \end{bmatrix} \begin{pmatrix} y \\ \theta \end{pmatrix}$$



Passing through a thin lens

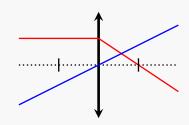
$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = M_I \begin{pmatrix} y \\ \theta \end{pmatrix}$$

Two characteristic rays

- No propagation: y' = y
- Blue ray: $y = 0 \Rightarrow \theta' = \theta$
- Red ray: $\theta = 0 \Rightarrow \theta' = -\frac{1}{f}y$

 M_I

$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} \begin{pmatrix} y \\ \theta \end{pmatrix}$$



Passing through a (thin) spherical interface

$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = M_s \begin{pmatrix} y \\ \theta \end{pmatrix}$$

Descartes

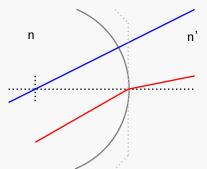
Thin interface

No propagation: y' = y

- Blue ray: $y \approx R\theta \Rightarrow \theta' = \theta$
- Red ray: $y = 0 \Rightarrow \theta' \approx \frac{n}{n'}\theta$

 M_s

$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{n'-n}{n'R} & \frac{n}{n'} \end{bmatrix} \begin{pmatrix} y \\ \theta \end{pmatrix}$$



Mirrors

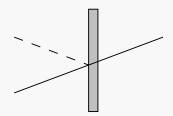
Unfolding the light

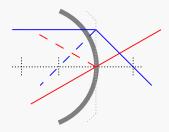
Plane mirrors as if they did not exist

$$\begin{pmatrix} \mathbf{y}' \\ \theta' \end{pmatrix} = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{pmatrix} \mathbf{y} \\ \theta \end{pmatrix}$$

Spherical Mirrors are thin lenses

$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{2}{B} & 1 \end{bmatrix} \begin{pmatrix} y \\ \theta \end{pmatrix}$$





Matrix property

A determinant property stemming from all the simple matrices determinants

$$n$$
: start index n' : stop index $\forall M$, det $(M) = \frac{n}{n'}$

Gaussian modes, propagation and lenses

A Gaussian mode does not change upon propagation of by passing through thin interfaces or lenses

$$g\left(\frac{x}{W(z)}\right)h\left(\frac{y}{W(z)}\right)e^{-i\left(P(z)+\frac{k}{2q(z)}\left(x^2+y^2\right)\right)}$$

- z independent modulation of the fundamental mode
- Free space q'=1 common property
- Thin lens does not change mode profile

Common R(z) and W(z) behavior

All the modes share the same laws on q(z), R(z) and W(z)

Gaussian beam propagation: the ABCD law

The transformation of the complex radius q for simple optical systems

Free space

$$q' =$$

•
$$q_1 = q_0 + d$$

•
$$M_d = \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix}$$

$$n_0/n_1=R_0/R_1$$

•
$$\frac{q_1}{q_0} = \frac{n_1}{n_0} \Rightarrow q_1 = \frac{1 \times q_0}{\frac{n}{n'}}$$

•
$$M_p = \begin{pmatrix} 1 & 0 \\ 0 & \frac{n_0}{n_1} \end{pmatrix}$$

q'=1 Thin lens

$$\frac{1}{R_1} = \frac{1}{R_0} - \frac{1}{f}$$

$$\bullet \ \frac{1}{q_1} = \frac{1}{q_0} - \frac{1}{f} \Rightarrow q_1 = \frac{1}{-\frac{1}{f}q_0 + 1}$$

$$\bullet \ M_I = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$$

Kogelnik's ABCD law

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \Rightarrow q_1 = \frac{Aq_0 + B}{Cq_0 + D}$$

Geometrical and Gaussian optics are linked through paraxial approx.

Gaussian beam propagation can be evaluated, for any mode, using simple matrix geometrical optics

Focal lens example

Using the ABCD law to verify that parallel rays do converge on the focal plane

Parallel input beam

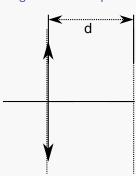
- Input plane : just before lens
- Output plane : after length d
- Input beam at waist: $q_0 = iL_{R_0}$

Propagation matrix

$$M_d \cdot M_f = \begin{pmatrix} -\frac{d}{f} + 1 & d \\ -\frac{1}{f} & 1 \end{pmatrix}$$

ABCD law

$$q_1 = \frac{df + i(f - d)L_{R_0}}{f - iL_{R_0}}$$



d for plane wavefront: imaginary q_1

$$d = \frac{f}{1 + \left(\frac{f}{L_{R_0}}\right)^2}$$