

Gaussian Beams

Nicolas Fressengeas

▶ To cite this version:

Nicolas Fressengeas. Gaussian Beams. DEA. Gaussian Beams, Université de Lorraine, 2012. cel-00670322v3

HAL Id: cel-00670322 https://cel.hal.science/cel-00670322v3

Submitted on 10 Dec2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Gaussian Beams

N. Fressengeas

Laboratoire Matériaux Optiques, Photonique et Systèmes Unité de Recherche commune à l'Université de Lorraine et à Supélec

> Download this document from http://arche.univ-lorraine.fr

Further reading [KL66, GB94]

A. Gerrard and J.M. Burch.

Introduction to matrix methods in optics. Dover, 1994.

Laser beams and resonators. *Appl. Opt.*, 5(10):1550–1567, Oct 1966.

Course Outline

Fundamentals of Gaussian beam propagation

- Gaussian beams vs. plane waves
- The fundamental mode
- Higher order modes

2 Matrix methods for geometrical and Gaussian optics

- Linear algebra for geometrical optics
- A few simple matrices
- Matrix method for Gaussian beams

< ロ > < 同 > < 回 > < 回 >

1 Fundamentals of Gaussian beam propagation

• Gaussian beams vs. plane waves

- The fundamental mode
- Higher order modes

2 Matrix methods for geometrical and Gaussian optics

- Linear algebra for geometrical optics
- A few simple matrices
- Matrix method for Gaussian beams

< ロ > < 同 > < 三 > < 三 >

Waves carrying an infinite amount of energy cannot come into existence

Planes waves

- Plane wave have a homogeneous transversal electric field
- Ponting's vector norm, and power density, are also homogeneous
- Total carried power is infinite

Practical use of plane wave theory: usual unsaid approximation

- Plane waves of finite extent are often used
- Strictly speaking, they are not plane waves

< ロ > < 同 > < 回 > < 回 >

Waves carrying an infinite amount of energy cannot come into existence

Planes waves

- Plane wave have a homogeneous transversal electric field
- Ponting's vector norm, and power density, are also homogeneous
- Total carried power is infinite

Practical use of plane wave theory: usual unsaid approximation

- Plane waves of finite extent are often used
- Strictly speaking, they are not plane waves
- To what extent can we assume they are plane waves?

Waves carrying an infinite amount of energy cannot come into existence

Planes waves

- Plane wave have a homogeneous transversal electric field
- Ponting's vector norm, and power density, are also homogeneous
- Total carried power is infinite

Practical use of plane wave theory: usual unsaid approximation

- Plane waves of finite extent are often used
- Strictly speaking, they are not plane waves
- To what extent can we assume they are plane waves ?

Waves carrying an infinite amount of energy cannot come into existence

Planes waves

- Plane wave have a homogeneous transversal electric field
- Ponting's vector norm, and power density, are also homogeneous
- Total carried power is infinite

Practical use of plane wave theory: usual unsaid approximation

- Plane waves of finite extent are often used
- Strictly speaking, they are not plane waves
- To what extent can we assume they are plane waves ?

Waves carrying an infinite amount of energy cannot come into existence

Planes waves

- Plane wave have a homogeneous transversal electric field
- Ponting's vector norm, and power density, are also homogeneous
- Total carried power is infinite

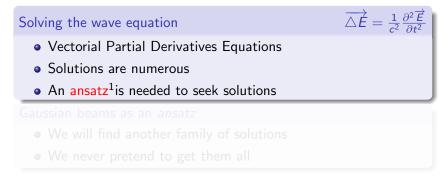
Practical use of plane wave theory: usual unsaid approximation

- Plane waves of finite extent are often used
- Strictly speaking, they are not plane waves
- To what extent can we assume they are plane waves ?

< ロ > < 同 > < 三 > < 三 >

Plane waves, Gaussian beams... what else ?

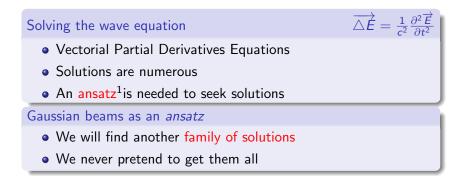
Solutions of the wave equations: one finds only those he was searching for



¹An ansatz is an *a priori* hypothesis on the form of the sought solution.

Plane waves, Gaussian beams... what else ?

Solutions of the wave equations: one finds only those he was searching for



¹An ansatz is an *a priori* hypothesis on the form of the sought solution.

Plugging the ansatz into the wave equation builds the envelope equation

Introducing a space dependent envelope

- Plane wave: $\vec{E}_0 \times e^{-i\vec{k}\cdot\vec{r}}$
- Gaussian ansatz : $u(x, y, z) \overrightarrow{e_x} \times e^{-ikz}$
 - u(x, y, z) : complex beam envelope
 - $\overrightarrow{e_x}$ unit vector
- The envelope u(x, y, z) is our new unknown

Envelope equation

- 0

Plugging the ansatz into the wave equation builds the envelope equation

Introducing a space dependent envelope

- Plane wave: $\overrightarrow{E_0} \times e^{-i\overrightarrow{k}\cdot\overrightarrow{r}}$
- Gaussian ansatz : $u(x, y, z) \overrightarrow{e_x} \times e^{-ikz}$
 - u(x, y, z) : complex beam envelope
 - $\overrightarrow{e_x}$ unit vector
 - The envelope u(x, y, z) is our new unknown

Envelope equation

- Wave equation: $\overline{\Delta E} = \frac{1}{2} \frac{\partial^2 \overline{E}}{\partial t^2}$
- Scalar harmonic wave equation: $\Delta E + E = 0$
- Envelope equation:
 - $e^{-ik_2} = 0$

э

・ロッ ・ 一 ・ ・ ヨッ

Plugging the ansatz into the wave equation builds the envelope equation

Introducing a space dependent envelope

- Plane wave: $\overrightarrow{E_0} \times e^{-i\overrightarrow{k}\cdot\overrightarrow{r}}$
- Gaussian ansatz : $u(x, y, z) \overrightarrow{e_x} \times e^{-ikz}$
 - u(x, y, z) : complex beam envelope
 - $\overrightarrow{e_x}$ unit vector
- The envelope u(x, y, z) is our new unknown

Envelope equation

- Wave equation: $\overline{\Delta E} = \frac{1}{2} \frac{\partial^2 E}{\partial t^2}$
- Scalar harmonic wave equation: $\triangle E + E = 0$
- Envelope equation:
 - $\Delta[u(x,y,z)e^{-ikz}] + k^2 u(x,y,z)e^{-ikz} = 0$

э

・ロッ ・ 一 ・ ・ ヨッ

Plugging the ansatz into the wave equation builds the envelope equation

Introducing a space dependent envelope

- Plane wave: $\overrightarrow{E_0} \times e^{-i\overrightarrow{k}\cdot\overrightarrow{r}}$
- Gaussian ansatz : $u(x, y, z) \overrightarrow{e_x} \times e^{-ikz}$
 - u(x, y, z) : complex beam envelope
 - $\overrightarrow{e_x}$ unit vector
- The envelope u(x, y, z) is our new unknown

Envelope equation

- Wave equation: $\overrightarrow{\triangle E} = \frac{1}{c^2} \frac{\partial^2 \overrightarrow{E}}{\partial t^2}$
- Scalar harmonic wave equation: $\triangle E + \frac{\omega^2}{c^2}E = 0$
- Envelope equation: $\Delta \left[u\left(x, y, z \right) e^{-ikz} \right] + k^2 u\left(x, y, z \right) e^{-ikz} = 0$

ヘロト ヘヨト ヘヨト

Plugging the ansatz into the wave equation builds the envelope equation

Introducing a space dependent envelope

- Plane wave: $\overrightarrow{E_0} \times e^{-i\overrightarrow{k}\cdot\overrightarrow{r}}$
- Gaussian ansatz : $u(x, y, z) \overrightarrow{e_x} \times e^{-ikz}$
 - u(x, y, z) : complex beam envelope
 - $\overrightarrow{e_x}$ unit vector
- The envelope u(x, y, z) is our new unknown

Envelope equation

- Wave equation: $\overrightarrow{\Delta E} = \frac{1}{c^2} \frac{\partial^2 \overrightarrow{E}}{\partial t^2}$
- Scalar harmonic wave equation: $\triangle E + k^2 E = 0$
- Envelope equation:

 $\Delta \left[u(x, y, z) e^{-ikz} \right] + k^2 u(x, y, z) e^{-ikz} = 0$

Plugging the ansatz into the wave equation builds the envelope equation

Introducing a space dependent envelope

- Plane wave: $\overrightarrow{E_0} \times e^{-i\overrightarrow{k}\cdot\overrightarrow{r}}$
- Gaussian ansatz : $u(x,y,z) \overrightarrow{e_x} \times e^{-ikz}$
 - u(x, y, z) : complex beam envelope
 - $\overrightarrow{e_x}$ unit vector
- The envelope u(x, y, z) is our new unknown

Envelope equation

- Scalar harmonic wave equation: $\triangle E + k^2 E = 0$
- Envelope equation: $\frac{\partial^2 \left(u e^{-ikz} \right)}{\partial z^2} + \Delta_{\perp} u e^{-ikz} + k^2 u e^{-ikz} = 0$

<ロ> <同> <同> <同> < 同> < 同>

Plugging the ansatz into the wave equation builds the envelope equation

Introducing a space dependent envelope

• Plane wave:
$$\overrightarrow{E_0} \times e^{-i\overrightarrow{k}\cdot\overrightarrow{r}}$$

- Gaussian ansatz : $u(x,y,z) \overrightarrow{e_x} \times e^{-ikz}$
 - u(x, y, z) : complex beam envelope
 - $\overrightarrow{e_x}$ unit vector
- The envelope u(x, y, z) is our new unknown

Envelope equation

- Scalar harmonic wave equation: $\triangle E + k^2 E = 0$
- Envelope equation: $e^{-ikz} \left(\bigtriangleup u 2ik \frac{\partial u}{\partial z} \right) = 0$

<ロ> <同> <同> <同> < 同> < 同>

Plugging the ansatz into the wave equation builds the envelope equation

Introducing a space dependent envelope

• Plane wave:
$$\overrightarrow{E_0} \times e^{-i \overrightarrow{k} \cdot \overrightarrow{r}}$$

- Gaussian ansatz : $u(x,y,z) \overrightarrow{e_x} \times e^{-ikz}$
 - u(x, y, z) : complex beam envelope
 - $\overrightarrow{e_x}$ unit vector
- The envelope u(x, y, z) is our new unknown

Envelope equation

- Scalar harmonic wave equation: $\triangle E + k^2 E = 0$
- Envelope equation: $\triangle u 2ik\frac{\partial u}{\partial z} = 0$

< ロ > < 回 > < 回 > < 回 > < 回 >

Fundamentals of Gaussian beam propagation Matrix methods for geometrical and Gaussian optics

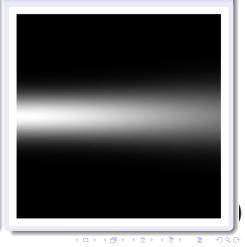
Gaussian beams vs. plane waves The fundamental mode Higher order modes

The paraxial approximation

Also known as Gauss conditions, Slow Varying Envelope...

Non Paraxial Beam

Paraxial Beam

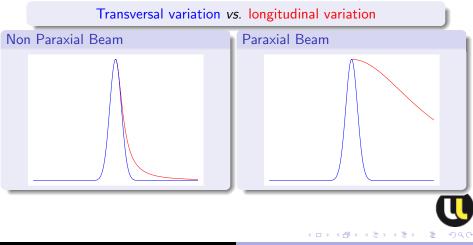


N. Fressengeas

Gaussian Beams, version 1.2, frame 7

Paraxial approximation and partial derivatives

Assuming small angles is equivalent to neglecting z derivatives

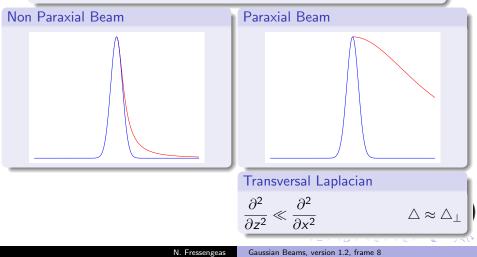


Fundamentals of Gaussian beam propagation Matrix methods for geometrical and Gaussian optics

Paraxial approximation and partial derivatives

Assuming small angles is equivalent to neglecting z derivatives

Transversal variation vs. longitudinal variation



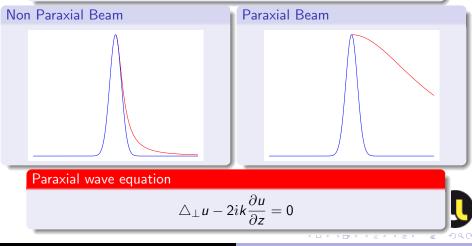
Fundamentals of Gaussian beam propagation Matrix methods for geometrical and Gaussian optics

Gaussian beams vs. plane waves The fundamental mode Higher order modes

Paraxial approximation and partial derivatives

Assuming small angles is equivalent to neglecting z derivatives

Transversal variation vs. longitudinal variation



N. Fressengeas Gaussian Beams, version 1.2, frame 8

1 Fundamentals of Gaussian beam propagation

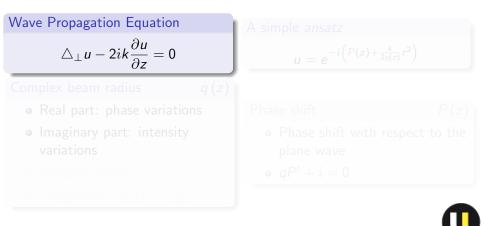
- Gaussian beams vs. plane waves
- The fundamental mode
- Higher order modes

2 Matrix methods for geometrical and Gaussian optics

- Linear algebra for geometrical optics
- A few simple matrices
- Matrix method for Gaussian beams

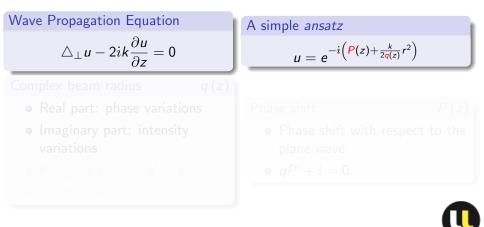
< ロ > < 回 > < 回 > < 回 > < 回 >

The simplest one, though probably the more important



< ロ > < 同 > < 回 > < 回 >

The simplest one, though probably the more important



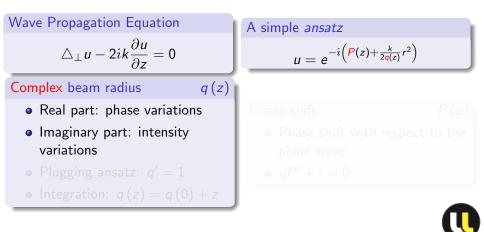
< ロ > < 同 > < 回 > < 回 >

Fundamentals of Gaussian beam propagation Matrix methods for geometrical and Gaussian optics

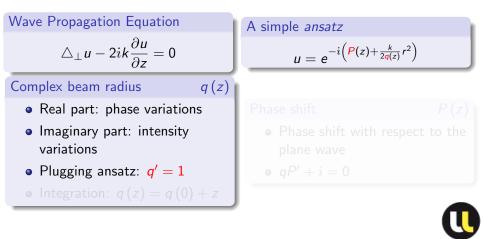
Gaussian beams vs. plane waves The fundamental mode Higher order modes

A first solution to the paraxial wave equation

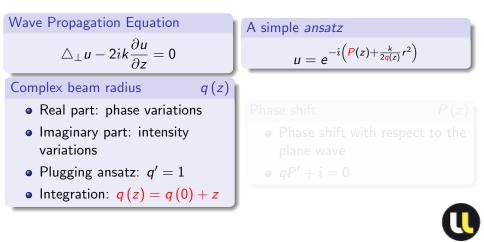
The simplest one, though probably the more important



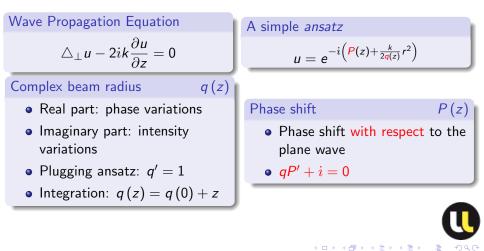
The simplest one, though probably the more important



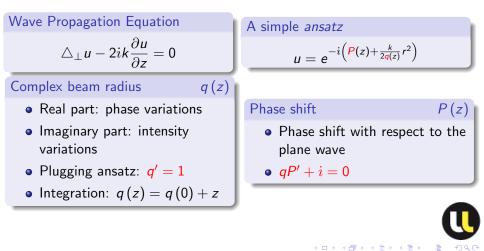
The simplest one, though probably the more important



The simplest one, though probably the more important



The simplest one, though probably the more important



Fundamentals of Gaussian beam propagation Matrix methods for geometrical and Gaussian optics

Gaussian beams vs. plane waves The fundamental mode Higher order modes

q(z)

 $\mu = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$

The complex beam radius

A closer look to the signification on a complex parameter

N. Fressengeas

$$\frac{1}{q} = \frac{1}{R} - i\frac{\lambda}{\pi W^2}$$

(ロ) (日) (日) (日) (日)

Fundamentals of Gaussian beam propagation Matrix methods for geometrical and Gaussian optics Gaussian beams vs. plane waves The fundamental mode Higher order modes

q(z)

 $\mu = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$

イロト イボト イヨト イヨト

The complex beam radius

A closer look to the signification on a complex parameter

A complex parameter is linked to two real ones

$$\frac{1}{q} = \frac{1}{R} - i\frac{\lambda}{\pi W^2}$$

The *ansatz* re-written

$$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$$

Fundamentals of Gaussian beam propagation Matrix methods for geometrical and Gaussian optics Gaussian beams vs. plane waves The fundamental mode Higher order modes

The complex beam radius

A closer look to the signification on a complex parameter

и

$$q(z)$$
$$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$$

イロト イボト イヨト イヨト

A complex parameter is linked to two real ones

$$\frac{1}{q} = \frac{1}{R} - i \frac{\lambda}{\pi W^2}$$

The *ansatz* re-written

$$= e^{-i\left(P(z)+k\frac{r^2}{2R(z)}-i\frac{k\lambda r^2}{2\pi W(z)^2}\right)}$$

Fundamentals of Gaussian beam propagation Matrix methods for geometrical and Gaussian optics

Gaussian beams vs. plane waves The fundamental mode Higher order modes

The complex beam radius

A closer look to the signification on a complex parameter

$$q(z)$$
$$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$$

イロト イボト イヨト イヨト

A complex parameter is linked to two real ones

$$\frac{1}{q} = \frac{1}{R} - i \frac{\lambda}{\pi W^2}$$

The *ansatz* re-written

$$u = e^{-i\left(P(z) + k\frac{r^2}{2R(z)} - i\frac{r^2}{W(z)^2}\right)}$$

Gaussian beams vs. plane waves The fundamental mode Higher order modes

The complex beam radius

$$q(z)$$

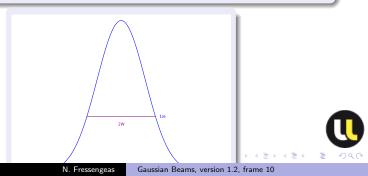
$$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$$

A closer look to the signification on a complex parameter A complex parameter is linked to two real ones

$$\frac{1}{\mathbf{q}} = \frac{1}{\mathbf{R}} - i\frac{\lambda}{\pi \mathbf{W}^2}$$

The *ansatz* re-written

$$u = e^{-i\left(P(z) + k\frac{r^2}{2R(z)}\right)} e^{-\frac{r^2}{W(z)^2}}$$



Gaussian beams vs. plane waves The fundamental mode Higher order modes

The complex beam radius

A closer look to the signification on a complex parameter

$$q(z)$$
$$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$$

< ロ > < 同 > < 回 > < 回 >

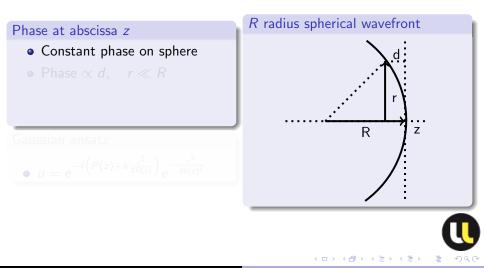
A complex parameter is linked to two real ones

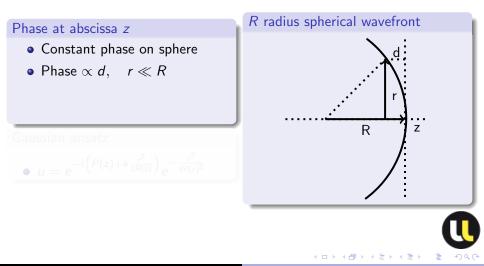
$$rac{1}{q} = rac{1}{R} - i rac{\lambda}{\pi W^2}$$

The ansatz re-written

$$u = e^{-i\left(P(z) + k\frac{r^2}{2R(z)}\right)} e^{-\frac{r^2}{W(z)^2}}$$

What is R ?





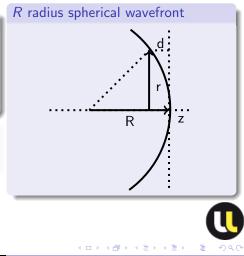
Phase at abscissa z

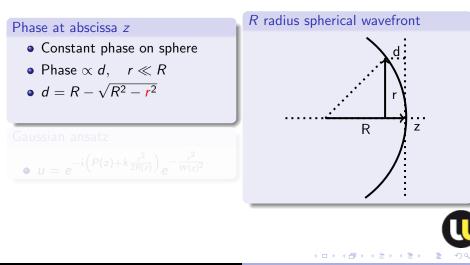
- Constant phase on sphere
- Phase $\propto d$, $r \ll R$

•
$$(R - d)^2 + r^2 = R^2$$

Gaussian ansatz

•
$$u = e^{-i\left(P(z) + k\frac{r^2}{2R(z)}\right)} e^{-\frac{r^2}{W(z)^2}}$$





N. Fressengeas

Phase at abscissa z

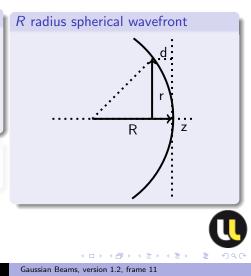
- Constant phase on sphere
- Phase $\propto d$, $r \ll R$

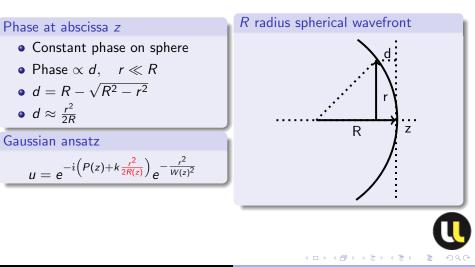
•
$$d = R - \sqrt{R^2 - r^2}$$

•
$$d = R\left(1 - \sqrt{1 - \frac{r^2}{R^2}}\right)$$

Gaussian ansatz

$$u = e^{-i\left(P(z) + k\frac{r^2}{2R(z)}\right)} e^{-\frac{r^2}{W(z)^2}}$$





Where the Gaussian beam amplitude is derived from the ansatz and $q^\prime=1$

A quick summary

• Ansatz :
$$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$$

- Complex beam radius : $\frac{1}{q} = \frac{1}{R} i \frac{\lambda}{\pi W^2}$
- Beam radius equation : q' = 1

Assuming a plane wavefront for z = 0

イロト イボト イヨト イヨト

э

Where the Gaussian beam amplitude is derived from the ansatz and $q^\prime=1$

A quick summary

• Ansatz :
$$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$$

- Complex beam radius : $\frac{1}{q} = \frac{1}{R} i \frac{\lambda}{\pi W^2}$
- Beam radius equation : q(z) = q(0) + z

Assuming a plane wavefront for z = 0

•
$$q(0) = i \frac{\pi W_0}{\lambda}$$

• $W^2(z) = W_0^2 \left[1 + \left(\frac{\lambda z}{\pi W_0^2} \right) \right]$

イロト イボト イヨト イヨト

Where the Gaussian beam amplitude is derived from the ansatz and $q^\prime=1$

A quick summary

• Ansatz :
$$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$$

- Complex beam radius : $\frac{1}{q} = \frac{1}{R} i \frac{\lambda}{\pi W^2}$
- Beam radius equation : q(z) = q(0) + z

Assuming a plane wavefront for z = 0

•
$$q(0) = i \frac{\pi W_0^2}{\lambda}$$

• $W^2(z) = W_0^2 \left[1 + \left(-\frac{1}{2} \right) \right]$

イロト イボト イヨト イヨト

Where the Gaussian beam amplitude is derived from the ansatz and $q^\prime=1$

A quick summary

• Ansatz :
$$u = e^{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)}$$

- Complex beam radius : $\frac{1}{q} = \frac{1}{R} i \frac{\lambda}{\pi W^2}$
- Beam radius equation : q(z) = q(0) + z

Assuming a plane wavefront for z = 0

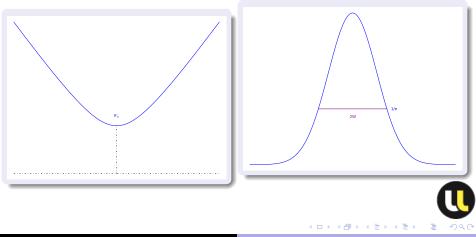
•
$$q(0) = i \frac{\pi W_0^2}{\lambda}$$

• $W^2(z) = W_0^2 \left[1 + \left(\frac{\lambda z}{\pi W_0^2} \right)^2 \right]$
• $R(z) = z \left[1 + \left(\frac{\pi W_0^2}{\lambda z} \right)^2 \right]$

イロト イポト イヨト イヨト

Gaussian beams vs. plane waves The fundamental mode Higher order modes

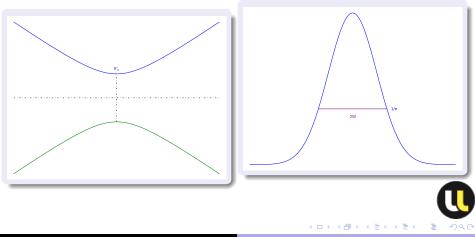
Gaussian Beam Intensity $W^{2}(z) = W_{0}^{2} \left[1 + \left(\frac{\lambda z}{\pi W_{0}^{2}} \right)^{2} \right]$



N. Fressengeas Gaussian Beams, version 1.2, frame 13

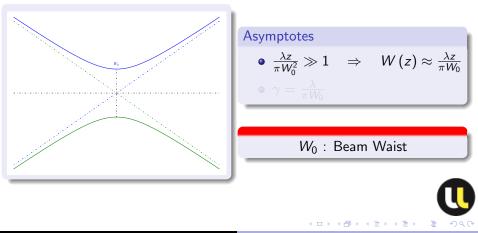
Gaussian beams vs. plane waves The fundamental mode Higher order modes

Gaussian Beam Intensity $W^{2}(z) = W_{0}^{2} \left[1 + \left(\frac{\lambda z}{\pi W_{0}^{2}} \right)^{2} \right]$



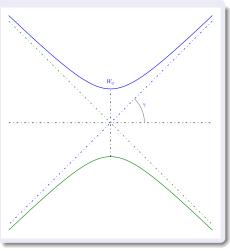
Gaussian beams vs. plane waves The fundamental mode Higher order modes

Gaussian Beam Intensity $W^{2}(z) = W_{0}^{2} \left[1 + \left(\frac{\lambda z}{\pi W_{0}^{2}} \right)^{2} \right]$



Gaussian beams vs. plane waves The fundamental mode Higher order modes

Gaussian Beam Intensity $W^{2}(z) = W_{0}^{2} \left[1 + \left(\frac{\lambda z}{\pi W_{0}^{2}} \right)^{2} \right]$



Asymptotes

•
$$\frac{\lambda z}{\pi W_0^2} \gg 1 \quad \Rightarrow \quad W(z) \approx \frac{\lambda z}{\pi W_0}$$

• $\gamma = \frac{\lambda}{\pi W_0}$

 W_0 : Beam Waist

< ロ > < 回 > < 回 > < 回 > < 回 >

Gaussian beams vs. plane waves The fundamental mode Higher order modes

Gaussian wavefront curvature $R(z) = z \left[1 + \left(\frac{\pi W_0^2}{\lambda z} \right)^2 \right]$

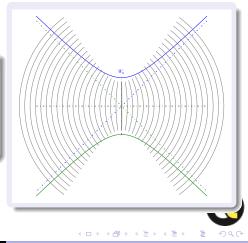
Plane and spherical limits

• For small $z : R = \infty$

plane wavefront

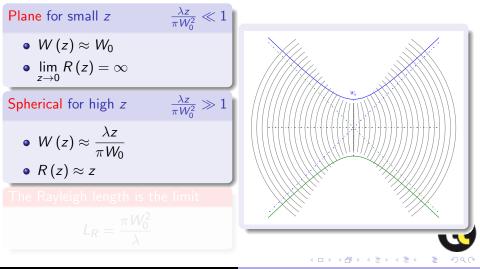
• For high $z : R \approx z$

spherical wavefront



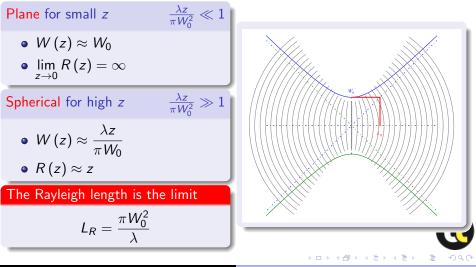
The Rayleigh length

A quantitative criterion to decide whether a Gaussian beam is plane or spherical



The Rayleigh length

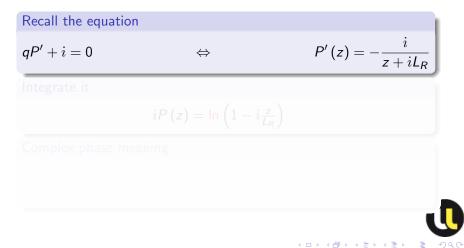
A quantitative criterion to decide whether a Gaussian beam is plane or spherical



Gaussian beams vs. plane waves The fundamental mode Higher order modes

P(z)

The homogeneous phase shift $u = e^{-i\left(\frac{P(z) + \frac{k}{2q(z)}r^2\right)}$



Gaussian beams vs. plane waves The fundamental mode Higher order modes

P(z)

イロト イボト イヨト イヨト

The homogeneous phase shift $u = e^{-i\left(\frac{P(z) + \frac{k}{2q(z)}r^2\right)}$

Recall the equation $P'(z) = -\frac{i}{z + iL_R}$ aP' + i = 0 \Leftrightarrow Integrate it $iP(z) = \ln\left(1 - i\frac{z}{L_R}\right)$

Gaussian beams vs. plane waves The fundamental mode Higher order modes

P(z)

イロト イボト イヨト イヨト

The homogeneous phase shift $u = e^{-i\left(\frac{P(z) + \frac{k}{2q(z)}r^2\right)}$

> Recall the equation $qP' + i = 0 \qquad \Leftrightarrow \qquad P'(z) = -\frac{i}{z + iL_R}$ Integrate it $iP(z) = \ln\left(\sqrt{1 + \frac{z^2}{L_R^2}}\right) - i\tan^{-1}\left(\frac{z}{L_R}\right)$

Gaussian beams vs. plane waves The fundamental mode Higher order modes

P(z)

イロト イボト イヨト イヨト

The homogeneous phase shift $u = e^{-i\left(\frac{P(z) + \frac{k}{2q(z)}r^2\right)}$

> Recall the equation $qP' + i = 0 \qquad \Leftrightarrow \qquad P'(z) = -\frac{i}{z + iL_R}$ Integrate it $iP(z) = \ln\left(\frac{W(z)}{W_0}\right) - i\tan^{-1}\left(\frac{z}{L_R}\right)$

Complex phase meaning

- Real part : Phase shift with respect to plane wave

Gaussian beams vs. plane waves The fundamental mode Higher order modes

P(z)

イロト イボト イヨト イヨト

The homogeneous phase shift $u = e^{-i\left(\frac{P(z) + \frac{k}{2q(z)}r^2\right)}$

> Recall the equation $qP' + i = 0 \qquad \Leftrightarrow \qquad P'(z) = -\frac{i}{z + iL_R}$ Integrate it $P(z) = i \ln \left(\frac{W_0}{W(z)}\right) - \tan^{-1} \left(\frac{z}{L_R}\right)$

Complex phase meaning

- Real part : Phase shift with respect to plane wave
- Imaginary part: W(z) factor to ensure energy conservation

Gaussian beams vs. plane waves The fundamental mode Higher order modes

P(z)

The homogeneous phase shift $u = e^{-i\left(\frac{P(z)}{2q(z)}r^2\right)}$

> Recall the equation $P'(z) = -\frac{i}{z + iL_P}$ aP'+i=0 \Leftrightarrow Integrate it $P(z) = i \ln \left(\frac{W_0}{W(z)} \right) - \tan^{-1} \left(\frac{z}{L_P} \right)$ Complex phase meaning Real part : Phase shift with respect to plane wave イロト イボト イヨト イヨト

Gaussian beams vs. plane waves The fundamental mode Higher order modes

P(z)

<ロ> <同> <同> <同> < 同> < 同>

The homogeneous phase shift $u = e^{-i\left(\frac{P(z) + \frac{k}{2q(z)}r^2\right)}$

> Recall the equation $qP' + i = 0 \qquad \Leftrightarrow \qquad P'(z) = -\frac{i}{z + iL_R}$ Integrate it

$$P(z) = i \ln \left(rac{W_0}{W(z)}
ight) - an^{-1} \left(rac{z}{L_R}
ight)$$

Complex phase meaning

- Real part : Phase shift with respect to plane wave
- Imaginary part: $\frac{W_0}{W(z)}$ factor to ensure energy conservation

The fundamental Gaussian mode

General expression

$$E(r,z) = \frac{W_0}{W(z)} e^{-i[kz+P(z)]-r^2\left(\frac{1}{W(z)^2} + i\frac{k}{2R(z)}\right)}$$

With, in (nearly) the order of appearance on the screen

•
$$W^2(z) = W_0^2 \left[1 + \left(\frac{z}{L_R}\right)^2 \right]$$

• $R(z) = z \left[1 + \left(\frac{L_R}{z}\right)^2 \right]$

•
$$P(z) = -\tan^{-1}\left(\frac{z}{L_R}\right)$$

- Rayleigh length $L_R = \frac{\pi W_0^2}{\lambda}$
- Diffraction half angle: $\gamma \approx \frac{\lambda}{\pi W_0} = \frac{W_0}{L_R}$

ヘロマ ヘロマ イロマ

< ⇒ >

1 Fundamentals of Gaussian beam propagation

- Gaussian beams vs. plane waves
- The fundamental mode
- Higher order modes

2 Matrix methods for geometrical and Gaussian optics

- Linear algebra for geometrical optics
- A few simple matrices
- Matrix method for Gaussian beams

<ロ> <問> <問> < 回> < 回>

A Cartesian family of higher order modes

Ansatz
$$u(x, y, z) = g\left(\frac{x}{W(z)}\right) h\left(\frac{y}{W(z)}\right) e^{-i\left(P(z) + \frac{k}{2q(z)}\left(x^2 + y^2\right)\right)}$$

Plugged into the wave equation

•
$$q' = 1$$

• $\exists m \in \mathbb{N}, \ \frac{\partial g}{\partial x^2} - 2x \frac{\partial g}{x} + 2mg = 0$
• $\exists n \in \mathbb{N}, \ \frac{\partial h}{\partial y^2} - 2y \frac{\partial h}{y} + 2nh = 0$

qP' + (1 + m + n)j = 0

イロト イボト イヨト イヨト

A Cartesian family of higher order modes

Ansatz

$$u(x, y, z) = g\left(\frac{x}{W(z)}\right) h\left(\frac{y}{W(z)}\right) e^{-i\left(P(z) + \frac{k}{2q(z)}\left(x^2 + y^2\right)\right)}$$

Plugged into the wave equation

•
$$q' = 1$$

• $\exists m \in \mathbb{N}, \ \frac{\partial g}{\partial x^2} - 2x^2$

$$\exists n \in \mathbb{N}, \ \frac{\partial h}{\partial y^2} - 2y\frac{\partial h}{y} + 2nh = 0$$
$$aP' + (1 + m + n)i = 0$$

< ロ > < 同 > < 回 > < 回 >

A Cartesian family of higher order modes

Ansatz

$$u(x, y, z) = g\left(\frac{x}{W(z)}\right) h\left(\frac{y}{W(z)}\right) e^{-i\left(P(z) + \frac{k}{2q(z)}\left(x^2 + y^2\right)\right)}$$

Plugged into the wave equation

•
$$q' = 1$$

• $\exists m \in \mathbb{N}, \ \frac{\partial g}{\partial x^2} - 2x \frac{\partial g}{x} + 2mg = 0$
• $\exists n \in \mathbb{N}, \ \frac{\partial h}{\partial y^2} - 2y \frac{\partial h}{y} + 2nh = 0$
• $qP' + (1 + m + n)j = 0$

< ロ > < 同 > < 回 > < 回 >

A Cartesian family of higher order modes

Ansatz

$$u(x, y, z) = g\left(\frac{x}{W(z)}\right) h\left(\frac{y}{W(z)}\right) e^{-i\left(P(z) + \frac{k}{2q(z)}\left(x^2 + y^2\right)\right)}$$

Plugged into the wave equation

•
$$q' = 1$$

• $\exists m \in \mathbb{N}, \ \frac{\partial g}{\partial x^2} - 2x \frac{\partial g}{x} + 2mg = 0$
• $\exists n \in \mathbb{N}, \ \frac{\partial h}{\partial y^2} - 2y \frac{\partial h}{y} + 2nh = 0$
• $qP' + (1 + m + n)j = 0$

< ロ > < 同 > < 回 > < 回 >

Behavior of Hermite-Gaussian modes

Each mode is a mere space modulation of the fundamental

q' = 1

- Same equation for *q* as in the fundamental mode
- W(z) and R(z) retain their meanings and properties
- Rayleigh length and diffraction angle are unchanged

$\frac{\partial^2 g}{\partial x^2} - 2x \frac{\partial g}{x} + 2mg = 0$

- Solutions are, by definition, the orthogonal Hermite polynomials
- $\mathcal{H}_0 = 1$, $\mathcal{H}_1 = x$, $\mathcal{H}_2 = 4x^2 1$, $\mathcal{H}_3 = 8x^3 12x \dots$
- \mathcal{H}_n has degree n
- $g\left(\frac{x}{W(z)}\right)h\left(\frac{y}{W(z)}\right) = \mathcal{H}_m\left(\sqrt{2}\frac{x}{W(z)}\right)\mathcal{H}_n\left(\sqrt{2}\frac{y}{W(z)}\right)$

Behavior of Hermite-Gaussian modes

Each mode is a mere space modulation of the fundamental

q' = 1

- Same equation for *q* as in the fundamental mode
- W(z) and R(z) retain their meanings and properties
- Rayleigh length and diffraction angle are unchanged

$$\frac{\partial^2 g}{\partial x^2} - 2x \frac{\partial g}{\partial x} + 2mg = 0 \qquad \qquad \frac{\partial h}{\partial y^2} - 2y \frac{\partial h}{\partial y} + 2nh = 0$$

• Solutions are, by definition, the orthogonal Hermite polynomials

•
$$\mathcal{H}_0 = 1$$
, $\mathcal{H}_1 = x$, $\mathcal{H}_2 = 4x^2 - 1$, $\mathcal{H}_3 = 8x^3 - 12x \dots$

• \mathcal{H}_n has degree n

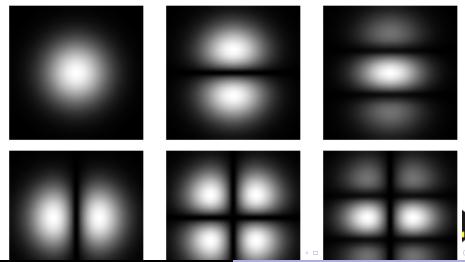
•
$$g\left(\frac{x}{W(z)}\right)h\left(\frac{y}{W(z)}\right) = \mathcal{H}_m\left(\sqrt{2}\frac{x}{W(z)}\right)\mathcal{H}_n\left(\sqrt{2}\frac{y}{W(z)}\right)$$

イロト イボト イヨト イヨト

Gaussian beams vs. plane waves The fundamental mode **Higher order modes**

Intensity profiles of Hermite Gaussian (HG) modes

The intensity if proportional to the squared envelope



N. Fressengeas

Gaussian Beams, version 1.2, frame 20

Gaussian beams vs. plane waves The fundamental mode Higher order modes

High order Laguerre-Gaussian modes

A cylindrical family of higher order modes

Ansatz $u(r, \phi, z) = g\left(\frac{r}{W(z)}\right) e^{-i\left(P(z) + \frac{k}{2q(z)}r^2 + I\phi\right)}$ Plugged into the wave equation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gaussian beams vs. plane waves The fundamental mode **Higher order modes**

High order Laguerre-Gaussian modes

A cylindrical family of higher order modes

Ansatz

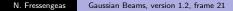
$$u(r,\phi,z) = g\left(\frac{r}{W(z)}\right) e^{-i\left(P(z) + \frac{k}{2q(z)}r^2 + I\phi\right)}$$

Plugged into the wave equation

•
$$q' = 1$$

•
$$\exists (l,p) \in \mathbb{N}^2, r \frac{\partial^2 g}{\partial r^2} - (l+1-x) \frac{\partial g}{\partial x} + pg = 0$$

• $qP' + (1+2p+l)j = 0$



イロト イボト イヨト イヨト

Gaussian beams vs. plane waves The fundamental mode **Higher order modes**

0

イロト イボト イヨト イヨト

High order Laguerre-Gaussian modes

A cylindrical family of higher order modes

Ansatz

$$u(r,\phi,z) = g\left(\frac{r}{W(z)}\right) e^{-i\left(P(z) + \frac{k}{2q(z)}r^2 + I\phi\right)}$$

Plugged into the wave equation

•
$$q' = 1$$

• $\exists (l, p) \in \mathbb{N}^2, r \frac{\partial^2 g}{\partial r^2} - (l+1-x) \frac{\partial g}{x} + pg =$
• $qP' + (1+2p+l)j = 0$

Gaussian beams vs. plane waves The fundamental mode **Higher order modes**

High order Laguerre-Gaussian modes

A cylindrical family of higher order modes

Ansatz

$$u(r,\phi,z) = g\left(\frac{r}{W(z)}\right) e^{-i\left(P(z) + \frac{k}{2q(z)}r^2 + I\phi\right)}$$

Plugged into the wave equation

•
$$q' = 1$$

•
$$\exists (l,p) \in \mathbb{N}^2, r \frac{\partial^2 g}{\partial r^2} - (l+1-x) \frac{\partial g}{x} + pg = 0$$

•
$$qP' + (1 + 2p + I)j = 0$$

イロト イボト イヨト イヨト

Behavior of Laguerre-Gaussian modes

Each mode is a mere space modulation of the fundamental

q' = 1

same as HG modes

・ロト ・四ト ・ヨト ・ヨト

- Same equation for *q* as in the fundamental mode
- W(z) and R(z) retain their meanings and properties
- Rayleigh length and diffraction angle are unchanged

$$r\frac{\partial^2 g}{\partial r^2} - (l+1-x)\frac{\partial g}{x} + pg = 0$$

• Solutions are, by definition, the orthogonal generalized Laguerre polynomials

•
$$\mathcal{L}_0^{(l)} = 1$$
, $\mathcal{L}_1^{(l)} = -x + l + 1$, $\mathcal{L}_2^{(l)} = \frac{x^2}{2} - (l+2)x + \frac{(l+1)(l+2)}{2}$

• $\mathcal{L}_m^{(l)}$ has degree m

•
$$g\left(\frac{r}{W(z)}\right) = \left(\sqrt{2}\frac{r}{W(z)}\right)^{l} \mathcal{L}_{p}^{\left(l\right)}\left(2\frac{r^{2}}{W^{2}(z)}\right)^{l}$$

Behavior of Laguerre-Gaussian modes

Each mode is a mere space modulation of the fundamental

q' = 1

same as HG modes

イロト イボト イヨト イヨト

- Same equation for q as in the fundamental mode
- W(z) and R(z) retain their meanings and properties
- Rayleigh length and diffraction angle are unchanged

$$r\frac{\partial^2 g}{\partial r^2} - (l+1-x)\frac{\partial g}{x} + pg = 0$$

 Solutions are, by definition, the orthogonal generalized Laguerre polynomials

•
$$\mathcal{L}_0^{(l)} = 1$$
, $\mathcal{L}_1^{(l)} = -x + l + 1$, $\mathcal{L}_2^{(l)} = \frac{x^2}{2} - (l+2)x + \frac{(l+1)(l+2)}{2}$

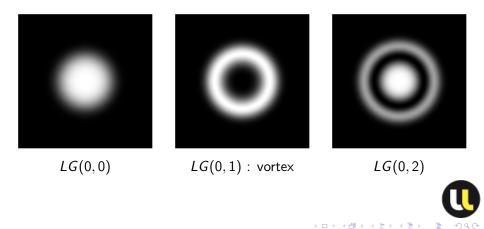
• $\mathcal{L}_m^{(l)}$ has degree m

•
$$g\left(\frac{r}{W(z)}\right) = \left(\sqrt{2}\frac{r}{W(z)}\right)^{l} \mathcal{L}_{p}^{\left(l\right)}\left(2\frac{r^{2}}{W^{2}(z)}\right)^{l}$$

Gaussian beams vs. plane waves The fundamental mode Higher order modes

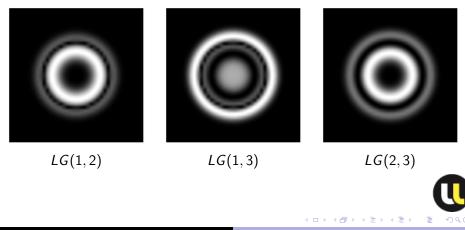
Intensity profiles of Laguerre Gaussian (LG) modes

The intensity if proportional to the squared envelope



Gaussian beams vs. plane waves The fundamental mode Higher order modes

Intensity profiles of other Laguerre Gaussian (LG) modes The intensity if proportional to the squared envelope



Homogeneous phase shift is different for high order modes qP' + (1 + m + n)j = 0 qP' + (1 + 2p + l)j = 0

A small phase difference between modes around the beam waist

- Slightly different optical paths for different orders
- Slightly different oscillating frequencies in lasers
- Usually forgotten

Homogeneous phase shift is different for high order modes qP' + (1 + m + n)j = 0 qP' + (1 + 2p + l)j = 0

A small phase difference between modes around the beam waist

- Slightly different optical paths for different orders
- Slightly different oscillating frequencies in lasers
- Usually forgotten

Homogeneous phase shift is different for high order modes qP' + (1 + m + n)j = 0 qP' + (1 + 2p + l)j = 0

A small phase difference between modes around the beam waist

- Slightly different optical paths for different orders
- Slightly different oscillating frequencies in lasers
- Usually forgotten...particularly in the next section

1 Fundamentals of Gaussian beam propagation

- Gaussian beams vs. plane waves
- The fundamental mode
- Higher order modes

2 Matrix methods for geometrical and Gaussian optics

- Linear algebra for geometrical optics
- A few simple matrices
- Matrix method for Gaussian beams

Geometrical optics framework

Where is is shown that rays are not so thin as you may think

Geometrical optics do not deal with thin rays

• A thin ray has a thin waist: it should diffract

$$\gamma = \frac{\lambda}{\pi W_0}$$

- Thin rays are seldom alone: their meaning is collective
- A ray is a Poynting vector curve
- A bunch of rays describes a wavefront

Do geometrical optics deal with plane and spherical waves ?

Geometrical optics framework

Where is is shown that rays are not so thin as you may think

Geometrical optics do not deal with thin rays

• A thin ray has a thin waist: it should diffract

$$\gamma = \frac{\lambda}{\pi W_0}$$

- Thin rays are seldom alone: their meaning is collective
- A ray is a Poynting vector curve
- A bunch of rays describes a wavefront

Do geometrical optics deal with plane and spherical waves ?

Geometrical optics framework

Where is is shown that rays are not so thin as you may think

Geometrical optics do not deal with thin rays

• A thin ray has a thin waist: it should diffract

$$\gamma = \frac{\lambda}{\pi W_0}$$

- Thin rays are seldom alone: their meaning is collective
- A ray is a Poynting vector curve
- A bunch of rays describes a wavefront

Do geometrical optics deal with plane and spherical waves ?

- Parallel rays imply a plane wavefront
- Converging or diverging rays imply a spherical wavefront:
- But neither of them has an infinite extension

Geometrical optics framework

Where is is shown that rays are not so thin as you may think

Geometrical optics do not deal with thin rays

• A thin ray has a thin waist: it should diffract

$$\gamma = \frac{\lambda}{\pi W_0}$$

- Thin rays are seldom alone: their meaning is collective
- A ray is a Poynting vector curve
- A bunch of rays describes a wavefront

Do geometrical optics deal with plane and spherical waves ?

- Parallel rays imply a plane wavefront.
- Converging or diverging rays imply a spherical wavefront.
- · But neither of them has an infinite extension 4

<ロト < 同ト < 回ト < 三 ト < 三)

Geometrical optics framework

Where is is shown that rays are not so thin as you may think

Geometrical optics do not deal with thin rays

• A thin ray has a thin waist: it should diffract

$$\gamma = \frac{\lambda}{\pi W_0}$$

- Thin rays are seldom alone: their meaning is collective
- A ray is a Poynting vector curve
- A bunch of rays describes a wavefront

Do geometrical optics deal with plane and spherical waves ?

- Parallel rays imply a plane wavefront
- Converging or diverging rays imply a spherical wavefront
- But neither of them has an infinite extension !

イロト イボト イヨト イヨト

Geometrical optics framework

Where is is shown that rays are not so thin as you may think

Geometrical optics do not deal with thin rays

• A thin ray has a thin waist: it should diffract

$$\gamma = \frac{\lambda}{\pi W_0}$$

- Thin rays are seldom alone: their meaning is collective
- A ray is a Poynting vector curve
- A bunch of rays describes a wavefront

Do geometrical optics deal with plane and spherical waves ?

- Parallel rays imply a plane wavefront
- Converging or diverging rays imply a spherical wavefront

• But neither of them has an infinite extension

Geometrical optics framework

Where is is shown that rays are not so thin as you may think

Geometrical optics do not deal with thin rays

• A thin ray has a thin waist: it should diffract

- $\gamma = \frac{\lambda}{\pi W_0}$
- Thin rays are seldom alone: their meaning is collective
- A ray is a Poynting vector curve
- A bunch of rays describes a wavefront

Do geometrical optics deal with plane and spherical waves ?

- Parallel rays imply a plane wavefront
- Converging or diverging rays imply a spherical wavefront
- But neither of them has an infinite extension !

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Geometrical optic is Gaussian optics

Transversely limited plane waves

Parallel rays

Gaussian Beams within their Rayleigh zone

Transversely limited spherical waves

Con(Di)verging rays

イロト イボト イヨト イヨト

Gaussian Beams far from their Rayleigh zone

Orders of magnitude

- He-Ne laser: $W_0 \approx 1 \text{mm}, \lambda = 633 \text{nm}, L_R \approx 5 \text{m}$
- GSM Antenna: $W_0 \approx 1 \mathrm{m}, \lambda \approx 33 \mathrm{cm}, L_R \approx 10 \mathrm{m}$

Geometrical optic is Gaussian optics

Transversely limited plane waves

Parallel rays

Gaussian Beams within their Rayleigh zone

Transversely limited spherical waves

Con(Di)verging rays

イロト イボト イヨト イヨト

Gaussian Beams far from their Rayleigh zone

Orders of magnitude

- He-Ne laser: $W_0 \approx 1 \mathrm{mm}, \lambda = 633 \mathrm{nm}, L_R \approx 5 \mathrm{m}$
- GSM Antenna: $W_0 \approx 1 \mathrm{m}, \lambda \approx 33 \mathrm{cm}, L_R \approx 10 \mathrm{m}$

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Geometrical optics is linear

Geometrical optics stems entirely from Descartes law

$$n_1\sin\left(\theta_1\right)=n_2\sin\left(\theta_2\right)$$

イロト イボト イヨト イヨト

 $n_1 heta_1 pprox n_2 heta_2$

Descartes made paraxial

Paraxial approximation : $\theta \ll 1$

Geometrical optics is linear algebra

- Paraxial Descartes is linear
- Straight line propagation is linear
- The behavior of a ray through any optical system can be described linearly

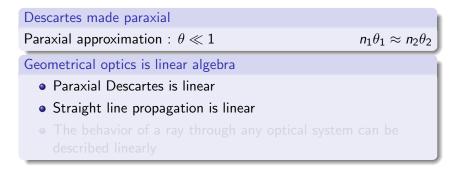
Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Geometrical optics is linear

Geometrical optics stems entirely from Descartes law

$$n_1\sin\left(\theta_1\right)=n_2\sin\left(\theta_2\right)$$

イロト イボト イヨト イヨト



Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Geometrical optics is linear

Geometrical optics stems entirely from Descartes law

$$n_1\sin\left(\theta_1\right)=n_2\sin\left(\theta_2\right)$$

< ロ > < 同 > < 回 > < 回 >

 $n_1\theta_1 \approx n_2\theta_2$

Descartes made paraxial Paraxial approximation : $\theta \ll 1$

- Paraxial Descartes is linear
- Straight line propagation is linear
- The behavior of a ray through any optical system can be described linearly

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

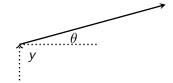
Matrix geometrical optics

A 2 dimensional linear algebra framework

The ray vector
$$v = \begin{pmatrix} y \\ \theta \end{pmatrix}$$

• y : distance from the axis

 $\bullet~\theta$: angle to the axis



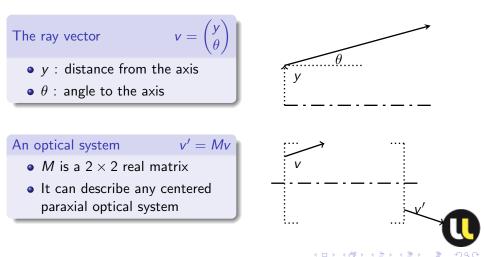
An optical system

- M is a 2 \times 2 real matrix
- It can describe any centered paraxial optical system

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Matrix geometrical optics

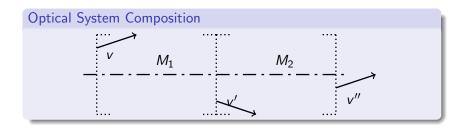
A 2 dimensional linear algebra framework



Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Optical system composition

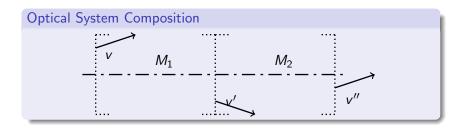
Optical system composition reduced to matrix product



Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Optical system composition

Optical system composition reduced to matrix product



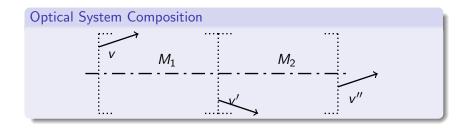
Matrix Composition • $v' = M_1 \cdot v$ • $v'' = M_2 \cdot v'$ • $v'' = M_2 M_1 \cdot v$ Complex systems Compose simple systems

イロト イボト イヨト イヨト

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Optical system composition

Optical system composition reduced to matrix product



Matrix Composition

- $v' = M_1 \cdot v$
- $v'' = M_2 \cdot v'$
- $v'' = M_2 M_1 \cdot v$

Complex systems

Compose simple systems

<ロ> <同> <同> <同> < 同> < 同>

1 Fundamentals of Gaussian beam propagation

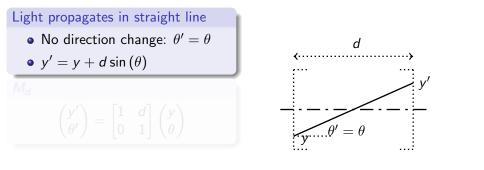
- Gaussian beams vs. plane waves
- The fundamental mode
- Higher order modes

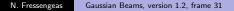
2 Matrix methods for geometrical and Gaussian optics

- Linear algebra for geometrical optics
- A few simple matrices
- Matrix method for Gaussian beams

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

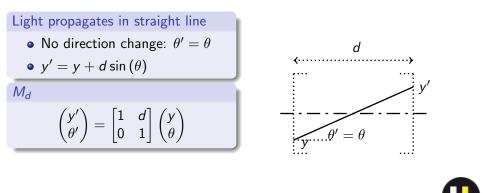
Propagation in a homogeneous medium $\begin{pmatrix} y' \\ \theta' \end{pmatrix} = M_d \begin{pmatrix} y \\ \theta \end{pmatrix}$





Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

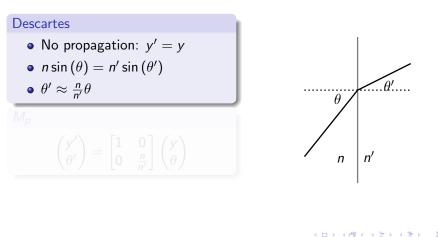
Propagation in a homogeneous medium $\begin{pmatrix} y' \\ \theta' \end{pmatrix} = M_d \begin{pmatrix} y \\ \theta \end{pmatrix}$



< ロ > < 回 > < 回 > < 回 > < 回 >

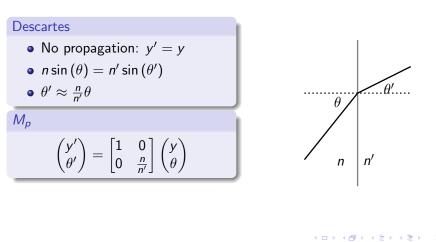
Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Passing through a plane interface $\begin{pmatrix} y' \\ \theta' \end{pmatrix} = M_p \begin{pmatrix} y \\ \theta \end{pmatrix}$



Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Passing through a plane interface $\begin{pmatrix} y' \\ \theta' \end{pmatrix} = M_p \begin{pmatrix} y \\ \theta \end{pmatrix}$



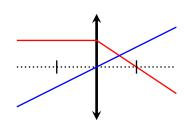
Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Passing through a thin lens

$$\begin{pmatrix} \mathbf{y}'\\ \mathbf{\theta}' \end{pmatrix} = M_l \begin{pmatrix} \mathbf{y}\\ \mathbf{\theta} \end{pmatrix}$$

Two characteristic rays

- No propagation: y' = y
- Blue ray: $y = 0 \Rightarrow \theta' = \theta$
- Red ray: $\theta = 0 \Rightarrow \theta' = -\frac{1}{f}y$



イロト イボト イヨト イヨト

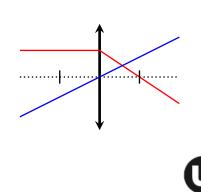
Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Passing through a thin lens

$$\begin{pmatrix} \mathbf{y}'\\ \mathbf{\theta}' \end{pmatrix} = M_l \begin{pmatrix} \mathbf{y}\\ \mathbf{\theta} \end{pmatrix}$$

Two characteristic rays • No propagation: y' = y• Blue ray: $y = 0 \Rightarrow \theta' = \theta$ • Red ray: $\theta = 0 \Rightarrow \theta' = -\frac{1}{\xi}y$

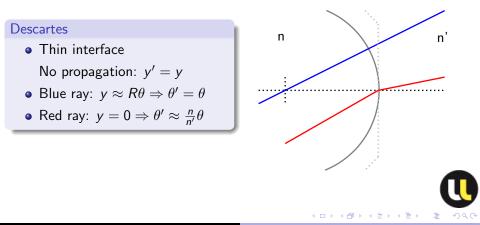
$$egin{aligned} y' \ heta' \end{pmatrix} &= egin{bmatrix} 1 & 0 \ -rac{1}{f} & 1 \end{bmatrix} egin{matrix} y \ heta \end{pmatrix} \end{aligned}$$



イロト イボト イヨト イヨト

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Passing through a (thin) spherical interface $\begin{pmatrix} y' \\ \theta' \end{pmatrix} = M_s \begin{pmatrix} y \\ \theta \end{pmatrix}$



Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Passing through a (thin) spherical interface $\begin{pmatrix} y'\\ \theta' \end{pmatrix} = M_s \begin{pmatrix} y\\ \theta \end{pmatrix}$

Thin interface

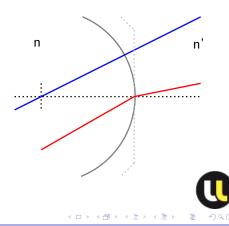
No propagation: y' = y

- Blue ray: $y \approx R\theta \Rightarrow \theta' = \theta$
- Red ray: $y = 0 \Rightarrow \theta' \approx \frac{n}{n'}\theta$

 $\theta' = ay + b\theta$

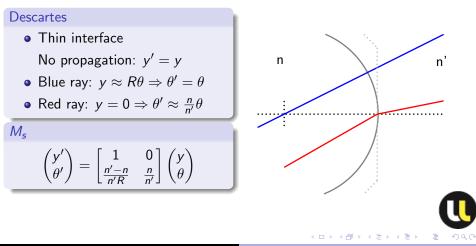
Solve for (a, b) using • $(y, \theta') = (R\theta, \theta)$

•
$$(y, \theta') = (0, \frac{n}{n'}\theta)$$



Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Passing through a (thin) spherical interface $\begin{pmatrix} y'\\ \theta' \end{pmatrix} = M_s \begin{pmatrix} y\\ \theta \end{pmatrix}$

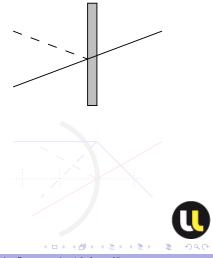


Mirrors Unfolding the light

Plane mirrors as if they did not exist
$$\begin{pmatrix} y'\\ \theta' \end{pmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{pmatrix} y\\ \theta \end{pmatrix}$$

Spherical Mirrors are thin lenses
$$\begin{pmatrix} y'\\ \theta' \end{pmatrix} = \begin{bmatrix} 1 & 0\\ -\frac{2}{R} & 1 \end{bmatrix} \begin{pmatrix} y\\ \theta \end{pmatrix}$$

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams



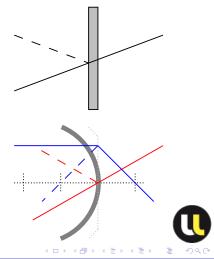
Mirrors Unfolding the light

Plane mirrors as if they did not exist
$$\begin{pmatrix} y'\\ \theta' \end{pmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{pmatrix} y\\ \theta \end{pmatrix}$$

Spherical Mirrors are thin lenses

$$\begin{pmatrix} y' \\ \theta' \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{2}{R} & 1 \end{bmatrix} \begin{pmatrix} y \\ \theta \end{pmatrix}$$

Linear algebra for geometrical optics. A few simple matrices Matrix method for Gaussian beams



Matrix property

A determinant property stemming from all the simple matrices determinants

$$n: \text{ start index} \qquad n': \text{ stop index} \\ \forall M, \det(M) = \frac{n}{n'}$$

1 Fundamentals of Gaussian beam propagation

- Gaussian beams vs. plane waves
- The fundamental mode
- Higher order modes

2 Matrix methods for geometrical and Gaussian optics

- Linear algebra for geometrical optics
- A few simple matrices
- Matrix method for Gaussian beams

イロト イボト イヨト イヨト

Gaussian modes, propagation and lenses

A Gaussian mode does not change upon propagation of by passing through thin interfaces or lenses

$$g\left(\frac{x}{W(z)}\right)h\left(\frac{y}{W(z)}\right)e^{-i\left(P(z)+\frac{k}{2q(z)}\left(x^{2}+y^{2}\right)\right)}$$

• *z* independent modulation of the fundamental mode

- Free space q' = 1 common property
- Thin lens does not change mode profile

Common R(z) and W(z) behavior All the modes share the same laws on q(z), R(z) and W(z)

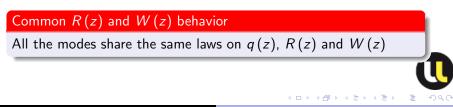
Gaussian modes, propagation and lenses

A Gaussian mode does not change upon propagation of by passing through thin interfaces or lenses

$$g\left(\frac{x}{W(z)}\right)h\left(\frac{y}{W(z)}\right)e^{-i\left(P(z)+\frac{k}{2q(z)}\left(x^{2}+y^{2}\right)\right)}$$

• *z* independent modulation of the fundamental mode

- Free space q' = 1 common property
- Thin lens does not change mode profile



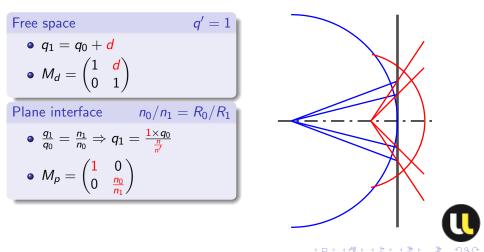
Gaussian beam propagation: the ABCD law

The transformation of the complex radius q for simple optical systems

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Gaussian beam propagation: the ABCD law

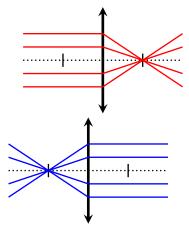
The transformation of the complex radius q for simple optical systems



Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Gaussian beam propagation: the ABCD law

The transformation of the complex radius q for simple optical systems



Thin lens	$\frac{1}{R_1} = \frac{1}{R_0} - \frac{1}{f}$
• $\frac{1}{q_1} = \frac{1}{q_0} - \frac{1}{f} \Rightarrow q$	$q_1 = rac{1}{-rac{1}{f}q_0+1}$
• $M_l = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$	

イロト イボト イヨト イヨト

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Gaussian beam propagation: the ABCD law

The transformation of the complex radius q for simple optical systems

Free space $q' =$	1 Thin lens $\frac{1}{R_1} = \frac{1}{R_0} - \frac{1}{f}$
• $q_1 = q_0 + d$ • $M_d = \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix}$	• $\frac{1}{q_1} = \frac{1}{q_0} - \frac{1}{f} \Rightarrow q_1 = \frac{1}{-\frac{1}{f}q_0+1}$ • $M_I = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$
Plane interface $n_0/n_1 = R_0/R_0$	R1
• $\frac{q_1}{q_0} = \frac{n_1}{n_0} \Rightarrow q_1 = \frac{1 \times q_0}{\frac{n}{r}}$	Kogelnik's ABCD law
• $M_p = \begin{pmatrix} 1 & 0 \\ 0 & \frac{n_0}{n_1} \end{pmatrix}$	$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \Rightarrow q_1 = \frac{Aq_0 + B}{Cq_0 + D}$
	_

イロト イボト イヨト イヨト

Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Gaussian beam propagation: the ABCD law

The transformation of the complex radius q for simple optical systems

Free space $q'=1$	Thin lens $\frac{1}{R_1} = \frac{1}{R_0} - \frac{1}{f}$
• $q_1 = q_0 + d$ • $M_d = \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix}$	• $\frac{1}{q_1} = \frac{1}{q_0} - \frac{1}{f} \Rightarrow q_1 = \frac{1}{-\frac{1}{f}q_0+1}$ • $M_l = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$
Plane interface $n_0/n_1 = R_0/R_1$	
• $\frac{q_1}{q_0} = \frac{n_1}{n_0} \Rightarrow q_1 = \frac{1 \times q_0}{\frac{n}{T}}$	Kogelnik's ABCD law
• $M_p = \begin{pmatrix} 1 & 0 \\ 0 & \frac{n_0}{n_1} \end{pmatrix}$	$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \Rightarrow q_1 = \frac{Aq_0 + B}{Cq_0 + D}$

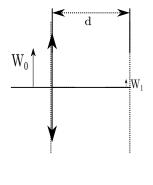
Geometrical and Gaussian optics are linked through paraxial approx. Gaussian beam propagation can be evaluated, for any mode, using simple matrix geometrical optics

N. Fressengeas

Gaussian Beams, version 1.2, frame 38

Using the ABCD law to verify that parallel rays do converge on the focal plane

Parallel input beam Input plane : just before lens Output plane : after length d Input beam at waist: q₀ = i πW₀²/_λ



< ロ > < 同 > < 三 > < 三 >

Using the ABCD law to verify that parallel rays do converge on the focal plane

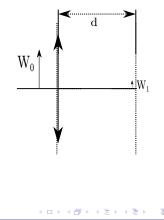
Parallel input beam

- Input plane : just before lens
- Output plane : after length d
- Input beam at waist: $q_0 = i L_{R_0}$

Propagation matrix

• lens:
$$M_f = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$$

• distance d : $M_d = \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix}$



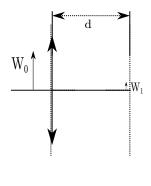
Using the ABCD law to verify that parallel rays do converge on the focal plane

Parallel input beam

- Input plane : just before lens
- Output plane : after length d
- Input beam at waist: $q_0 = i L_{R_0}$

Propagation matrix

$$M_d \cdot M_f = egin{pmatrix} -rac{d}{f}+1 & d \ -rac{1}{f} & 1 \end{pmatrix}$$



< ロ > < 同 > < 回 > < 回 >

Using the ABCD law to verify that parallel rays do converge on the focal plane

Parallel input beam

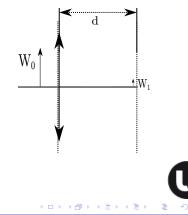
- Input plane : just before lens
- Output plane : after length d
- Input beam at waist: $q_0 = i L_{R_0}$

Propagation matrix

$$M_d \cdot M_f = \begin{pmatrix} -rac{d}{f} + 1 & d \ -rac{1}{f} & 1 \end{pmatrix}$$

ABCD law

$$q_1 = \frac{df + i(f-d)L_{R_0}}{f - iL_{R_0}}$$



Using the ABCD law to verify that parallel rays do converge on the focal plane

Parallel input beam

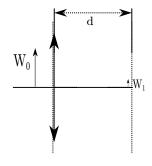
- Input plane : just before lens
- Output plane : after length d
- Input beam at waist: $q_0 = i L_{R_0}$

Propagation matrix

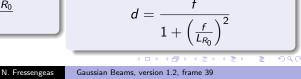
$$M_d \cdot M_f = \begin{pmatrix} -\frac{d}{f} + 1 & d \\ -\frac{1}{f} & 1 \end{pmatrix}$$

ABCD law

$$q_1 = \frac{df + i(f-d)L_{R_0}}{f - iL_{R_0}}$$



d for plane wavefront: imaginary q_1



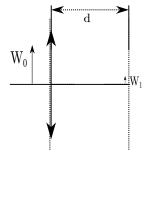
Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Transformation of a parallel beam by a lens

The basics of geometrical optics

As we just saw
$$L_{R_0} \ll d$$

 $q_1 = \frac{df + i(f - d)L_{R_0}}{f - iL_{R_0}}$ & $d \approx f$
Identifying W_1 in q_1 $L_{R_0} \ll d$
 $W_1 = \frac{\lambda |f|}{\pi W_0}$



(ロ) (日) (日) (日) (日)

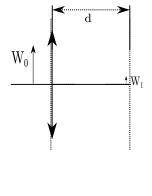
Linear algebra for geometrical optics A few simple matrices Matrix method for Gaussian beams

Transformation of a parallel beam by a lens

The basics of geometrical optics

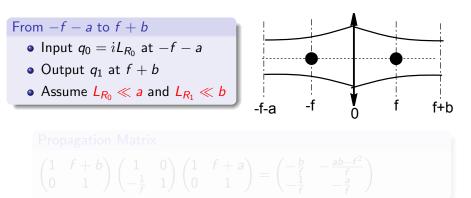
As we just saw
$$L_{R_0} \ll d$$

 $q_1 = \frac{df + i(f - d)L_{R_0}}{f - iL_{R_0}} \& d \approx f$
Identifying W_1 in q_1 $L_{R_0} \ll d$
 $W_1 = \frac{\lambda |f|}{\pi W_0}$



イロト イボト イヨト イヨト

Transformation of a diffracting Gaussian beam by a lens



From waist to waist

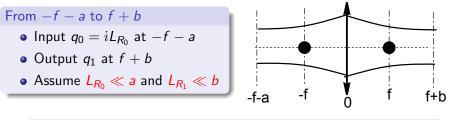
assuming q_1 imaginary

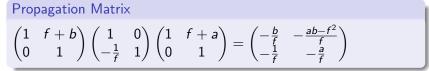
ヘロマ ヘビマ ヘビマ

2

$$ab = f^2$$

Transformation of a diffracting Gaussian beam by a lens





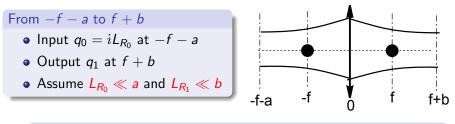
From waist to waist

 $ab = f^2$

・ロ と ・ (口 と ・ (口 と ・ (口 と

2

Transformation of a diffracting Gaussian beam by a lens



Propagation Matrix $\begin{pmatrix} 1 & f+b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & f+a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{b}{f} & -\frac{ab-f^2}{f} \\ -\frac{1}{f} & -\frac{a}{f} \end{pmatrix}$

From waist to waist

 $ab = f^2$

assuming q_1 imaginary

イロト 人間ト イヨト イヨト

 $\left(\frac{W_1}{W_0}\right)^2 = \frac{b}{a}$