N
N

N

HAL

open science

Algorithmic Aspects of WQO Theory
Sylvain Schmitz, Philippe Schnoebelen

» To cite this version:

Sylvain Schmitz, Philippe Schnoebelen. Algorithmic Aspects of WQO Theory. DEA. 2012.

00727025v1

HAL 1d: cel-00727025
https://cel.hal.science/cel-00727025v1
Submitted on 31 Aug 2012 (v1), last revised 15 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

cel-

https://cel.hal.science/cel-00727025v1
https://hal.archives-ouvertes.fr

ALGORITHMIC ASPECTS OF WQO THEORY

S. Schmitz and Ph. Schnoebelen
LSV, ENS Cachan & CNRS, France

Lecture Notes

% Work supported in part by ANR ReacHard.

http://www.lsv.ens-cachan.fr/Projects/anr-reachard

FOREWORD

Well-quasi-orderings (wqos) (Kruskal, 1972) are a fundamental tool in logic and
computer science. They provide termination arguments in a large number of de-
cidability (or finiteness, regularity, ...) results. In constraint solving, automated
deduction, program analysis, and many more fields, wqo’s usually appear under
the guise of specific tools, like Dickson’s Lemma (for tuples of integers),

emma (for words and their subwords), Kruskal’s Tree Theorem and its variants
(for finite trees with embeddings), and recently the Robertson-Seymour Theorem
(for graphs and their minors). What is not very well known is that wqo-based
proofs have an algorithmic content.

The purpose of these notes is to provide an introduction to the complexity-
theoretical aspects of wqos, to cover both upper bounds and lower bounds tech-
niques, and provide several applications in logics (e.g. data logics, relevance logic),
verification (prominently for well-structured transition systems), and rewriting.
Because wqos are in such wide use, we believe this topic to be of relevance to a
broad community with interests in complexity theory and decision procedures for
logical theories. Our presentation is largely based on recent works that simplify
previous results for upper bounds (Figueira et al), 2011; Schmitz and Schnoebe-
len), 2011) and lower bounds (Schnoebelen, 2010a; Haddad et al., 2012), but also
contains some original material.

These lecture notes originate from an advanced course taught at the 24th
European Summer School in Logic, Language and Information (ESSLLI 2012) on
August 6-10, 2012 in Opole, Poland, and also provide background material for
Course 2.9.1 on the mathematical foundations of infinite transition systems taught
at the Parisian Master of Research in Computer Science (MPRI). They follow their
own logic rather than the ordering of these courses, and focus on subproblems
that are treated in-depth:

. presents how wqos can be used in algorithms,

. proves complexity upper bounds for the use of Dickson’s Lemmg
—this chapter is adapted chiefly from (Schmitz and Schnoebelen, 2011)—,
and

. details how to derive Ackermannian lower bounds on decision
problems, drawing heavily on (Schnoebeler|, 2010a).

http://www.esslli2012.pl/
http://www.esslli2012.pl/
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-9-1
https://wikimpri.dptinfo.ens-cachan.fr/

iv

Additionally, Appendix [A| proves many results on subrecursive hierarchies, which
are typically skipped in papers and presentations, but needed for a working under-
standing of the results in chapters [and f§, and Appendix [B lists known problems
of enormous complexities.

CONTENTS

I Basics of WQOs and Applications

1.1 Well Quasi Orderingd
[1.1.1 Alternative Definitions
[1.1.2 Upward-closed Subsetsof wqod
[.1.3 Constructing waqod o o
1.2 Well-Structured Transition Systemd
[.2.1 Termination o v v v i
[.2.2 Coverabilityl
1.3 Examples of Applications
[1.3.1 Program Termination. v i
[.3.2 RelevanceLogid
[.3.3 Karp & Miller Trees o o v v v i i i
.......................................
Bibliographic Noted o
Complexity Upper Bounds
P.1 The Length of Controlled Bad Sequences
P.1.1 Controlled Sequences.
R.1.2 Polynomial NWQOS o v v i
R.1.3 Subrecursive Functions
P.1.4 Upper Bounds for Dickson’s Lemma
R.2 Applicationd
P.2.1 Termination Algorithml.
p.2.2 Coverability Algorithml
P.3 Bounding the Length Function}
P.3.1 Residual Nwoos and a Descent Equation
R.3.2 Reflecting NWQOY o o v i i
2.3.3 A Bounding Function
p.4 Classification in the Grzegorczyk Hierarchyl
P.4.1 Maximal Order Typed o o o i i i
R.4.2 The Cichon Hierarchy|
R.43 Monotonicity]
R.4.4 Wrapping Up
.......................................

Bibliographic Noted o o

O N N U1 G W N R

N = =
S N

vi

Contents

B Complexity Lower Bounds
B.1 Counter Machined o v o oo

B.1.1 _ Extended Counter Machineq

3.1.2 Operational Semanticy
3.1.3 Lossy Counter Machined
3.1.4 Behavioral Problems on Counter Machined

B.2 Hardy Computations o v v v v et
3.2.1 Encoding Hardy Computationd
3.2.2 Implementing Hardy Computations with Counter Machiney . . .
3.3 Minsky MachinesonaBudgetl
3.4 Ackermann-Hardness for Lossy Counter Machined
3.5 Handling Reset PetriNetd i
B.5.1 Replacing Zero-Tests with Resety
B.5.2 From Extended to Minsky Machined
3.6 Hardness for Termination o o v v v
FXEICISES . « o o v o o e e e
Bibliographic Noted o o

|A__Subrecursive Functiong

A.1 Ordinal Terma

A.2 Fundamental Sequences and Predecessorg.
A.3 Pointwise Orderiné and Lean Ordinala
A.4 Ordinal Indexed Functiona

A.5 Pointwise Ordering and Monotonicitj
A.6 Different Fundamental Seéuenceg
A7 Different Control FUNctions v v oot

A.8 Classes of Subrecursive Functions v

B_Problems of Enormous Complexity]

B.1 Fast-GrowinE ComElexitieg
B.2 F‘ -Comﬁlete Problema
B.3 F u-ComElete Problema
B.4 F .~-Complete Problema

References

51
52
52
52
53
54
54
56
56
57
59
61
61
62
64
65
66

67
67
68
69
72
75
76
77
79

83
83
88
90
93

95

101

BASICS OF WQOS AND APPLICATIONS

.1 Well Quasi Orderingsg
.2 Well-Structured Transition Systemg 4

1.3 Examples of Applicationg

1.1 WELL QUASTI ORDERINGS

A relation < over a set A is a quasi ordering (qo) iff it is reflexive and transitive. A
quasi-ordering is a partial ordering (po) iff it also antisymmetric (x < yandy < z
imply = 7). Any qo induces an equivalence relation = = < N>, and gives rise
to a canonical partial ordering between the equivalence classes, and to a strict
ordering < = < ~. > = < . = between non-equivalent comparable elements. A
qo is linear (aka total) iff any two elements are comparable (< U > = A2). The
main object of interest in this course is the following:

Definition 1.1 (wqo.1). A well quasi ordering (wqo) < over a set A is a qo such
that every infinite sequence xg, z1,x2,... over A contains an increasing pair:
i <jstoa <zj

A well partial ordering is an antisymmetric wqo. By extension, a set along
with an ordering (A, <) is a quasi order (also noted qo) if < is a quasi ordering
over A (and similarly with po, wqo, etc.).

Example 1.2 (Basic WQOs). The set of nonnegative integers (N, <) is a wqo.
Note that it is linear and partial. Given a set A, (A4, =) is always a po; it is a wqo
iff A is finite.

See for examples of qos and wqos.

1.1.1 ALTERNATIVE DEFINITIONS

Definition 1.1 will be our main working definition for wqos, or rather its conse-

quence that any sequence g, 1, . . . over A with z; £ x; forall ¢ < j is necessar-
ily finite. Nevertheless, wqos can be found under many guises, and enjoy several
equivalent characterizations, e.g.

quasi ordering

partial ordering

strict ordering

linear ordering
total ordering
well quasi ordering

increasing pair

well partial ordering

well-founded ordering

antichain

Ramsey Theorem

upward-closure

upward-closed
downward-closure

downward-closed

2 Chapter 1. Basics of WQOs and Applications

Definition 1.3 (wqo.2). A qo (A, <)isawqo iff every infinite sequence zg, z1, . . .
over A contains an infinite increasing subsequence: Jip < i3 < iz < --- s.t.
xil Sxil Sxiz S

Definition 1.4 (wqo.3). A qo (A4, <) is a wqo iff

1. there are no infinite strictly decreasing sequences xg > x1 > 2 > --- in
A—ie., (A, <) is well founded—, and

2. there are no infinite sets {zg, 1, Z2,...} of mutually incomparable ele-
ments in A—i.e., (A4, <) has no infinite antichains.

The equivalence between these characterizations is quite useful; see

and the following:

Example 1.5. The qos (Z, <) and (Q, <) are not well-founded. The set of positive
natural numbers N ordered by divisibility “|” has infinite antichains, e.g. the set
of primes. The set of finite sequences ¥* ordered lexicographically is not well-
founded. None of these examples is wqo.

Regarding the equivalence of (wqo.1), (wqo.d, and (wqo.d), it is clear that
(wqo.d) implies (wqo.1), which in turn implies (wqo.d). In order to prove that
(wqo.3) implies (wqo.2), we use the Infinite Ramsey Theorem. Assume (x;);cn is
an infinite sequence over (A, <), which is a wqo according to (wqo.3). We con-
sider the complete graph over N and color every edge {i,;} (where i < j) with
one of three colors. The edge is red when x; < x; (up), it is blue when z; > x;
(strictly down), and it is green when z; £ z; £ z; (incomparable). The Infinite
Ramsey Theorem shows that there exists an infinite subset I C N of indexes such
that every edge {i,j} over I has the same color. In effect, I yields an infinite
subsequence (x;)icr of (x;);en. If the subsequence has all its edges green, then
we have exhibited an infinite antichain. If it has all edges blues, then we have
exhibited an infinite strictly decreasing sequence. Since these are not allowed
by (wqo.3), the single color for the edges of I must be red. Hence the original

sequence has a infinite increasing subsequence: (A, <) satisfies (wqo.2).

1.1.2 UPWARD-CLOSED SUBSETS OF WQOS

Let (A, <) be a quasi-ordering. The upward-closure 1B of some B C A is defined
as {r € A |z > yforsomey € B}. When B = 1B, we say that B is upward-
closed; the downward-closure | B of B and the notion of downward-closed sets are
defined symmetrically.

Definition 1.6 (wqo.4). A qo (A4, <) is a wqo iff any increasing sequence Uy C
U; C Uz C --- of upward-closed subsets of A eventually stabilize, i.e., UieN U;
is Uy = Ugy1 = Ugyo = ... for some k.

http://en.wikipedia.org/wiki/Ramsey's_theorem

1.1. Well Quasi Orderings 3

This characterization is sometimes expressed by saying that upward-closed sets
satisfy the Ascending Chain Condition. See for the equivalence of
(wqo.4) with the other characterizations.

Upward- and downward-closed sets are important algorithmic tools: they are
subsets of A that can be finitely represented and handled. The simplest generic
representation is by minimal elements:

Lemma 1.7. Let (A, <) be a wqo. Any upward-closed U C A can be written under
the formU = T{z1,...,2,}.

(See for a proof.) One can see how, using this representation, the
comparisons of possibly infinite (but upward-closed) sets can be reduced to com-
paring finitely many elements.

The complement of a downward-closed set D is upward-closed. Hence down-
ward-closed subsets of a wqo can be characterized by so-called excluded minors.
That is, every downward-closed D is associated with a finite set {z1, . .., =, } such
thatz € Diffxy £ x A--- Az, £ x. Here the x;s are the excluded minors and
D is “everything that does not have one of them as a minor.”

1.1.3 CONSTRUCTING WQOS

There are several well-known ways of building new wqos out of simpler ones.
We already mention how the product [[,_ 1" (A;, <;) of finitely many wqos

is a wqo (see Exercise 1.9).

Lemma 1.8 (Dickson’s Lemma). Let (A,<4) and (B,<p) be two wqos. Then
(A x B,<axp) is a wqo.

There is a more general way of relating tuples of different lengths, which are
then better understood as finite sequences over A. These can be well-quasi-ordered
thanks to a fundamental result by G. Higman:

Lemma 1.9 (Higman’s Lemma). Let (A, <) be a wqo. Then (A*, <) is a wqo.
See for a proof; here the sequence extension A* is the set of all finite

sequences over A, and these sequences are ordered via the subword embedding:

A<y <ig <<, <m
aigbil/\---/\angbin.

(a1---apn) <« (by--bp) & { ot (1.1)

Example 1.10 (Subword ordering). We use ¢ to denote the empty sequence. Over
(X,=), where ¥ = {a, b, ¢} is a 3-letter alphabet and where different letters are
incomparable, the word abb is a subword of cabcab, as witnessed by the underlined
letters, and written abb <, cabcab. On the other hand bba £, cabcab. Over
(N, <), examples are ¢ <, 4-1-3 <, 1-5:0-3-3-0-0 and 4-1-3 £, 1-5-0-3-0-0. Over

(N?, <x), ome checks that (1)-(5)-(2) £ (5)-(2)- () ()-()-(2)- (0)-

ascending chain
condition|defpageidx

excluded minor

Dickson’s
Lemmaldefpageidx

Higman’s
Lemmaldefpageidx

sequence extension

subword embedding

http://en.wikipedia.org/wiki/Ascending_chain_condition
http://en.wikipedia.org/wiki/Graham_Higman

Kruskal’s Tree
Theorem|defpageidx

Graph Minor
Theorem|defpageidx

well-structured transition
system

transition system

compatibility

vector addition system with
states

4 Chapter 1. Basics of WQOs and Applications

It is also possible to order finite and infinite subsets of a wqo, see Exercise 1.9.

Higman’s original lemma was actually more general and handled homeomor-
phisms between finite trees with fixed arities, but this was extended by Kruskal
to finite trees with variadic labels:

Theorem 1.11 (Kruskal’s Tree Theorem). The setT'(A) of finite trees node-labeled
from a wqo (A, <) and partially ordered by homeomorphic embeddings is a wqo.

(See for the definition of homeomorphic embeddings and a proof of
Kruskal’s Theorem.)
Finally, a further generalization of Kruskal’s Tree Theoremn exists for graphs:

Theorem 1.12 (Robertson and Seymour’s Graph-Minor Theorem). The set of (fi-
nite undirected) graphs node-labeled from a wqo (A, <) and ordered by the graph-
minor relation is a wqo.

1.2 WELL-STRUCTURED TRANSITION SYSTEMS

In the field of algorithmic verification of program correctness, wqos figure promi-
nently in well-structured transition systems (WSTS). These are transition system
(S, —), where S is a set of states and — C S x S is a transition relation, further
endowed with a wqo < C § x S that satisfies a compatibility condition:

s—>sAs<t implies W >ttt (compatibility)

Put together, this defines a WSTS § = (S, —, <). In other words, the states
of S are well quasi ordered in a way such that “larger” states can simulate the
behaviour of “smaller” states.

Several variants of the basic WSTS notion exist (backward compatibility, strict
compatibility, ...) and we shall mention some of them in exercises to .13,

Example 1.13. A d-dimensional vector addition system with states (VASS) is a
finite-state system that manipulates d counters with only increment and decre-
ment operations. Formally, it is a tuple V = (Q, d, qo, Xo) where () is a finite set
of states, § C Q x Z% x (is a finite set of translations, ¢g in () is an initial state,
and x¢ in N describes the initial counter contents.

The semantics of a VASS define a transition system (Q x N¢, —) where a tran-
sition — holds between two configurations (¢, x) and (¢’, x’) if and only if there
exists a translation (g, a, ¢') in § with X’ = x+ a; note that this transition requires
X -+ a non negative.

We can check that this transition system is a WSTS for the product ordering
over Q x N% ie. for (¢,x) < (¢,x) iff ¢ = ¢’ and x(j) = x/(j) for all
1,...,d. Indeed, whenever (¢,x) — (¢’,x') and x < vy, then there exists

<
j =
(¢,a,¢')indst.xX’ =x+a,andy =y+a>x+a>0,thus(¢,y) = (¢,Y).

http://en.wikipedia.org/wiki/Robertson%E2%80%93Seymour_theorem

1.2. Well-Structured Transition Systems 5

1.2.1 TERMINATION

A transition system (S, —) terminates from some state s¢ in .5, if every transition
sequence s) — s; — --- is finite. This gives rise to the following, generally
undecidable, problem:

[Term] Termination

instance: A transition system (S, —) and a state s in S.
question: Does (S, —) terminate from s¢?

In a WSTS, non-termination can be witnessed by increasing pairs in a finite run:

Lemma 1.14. Let S = (S, —, <) be a WSTS and s¢ be a state in S. Then S has an
infinite run starting from so iff S has a run so — s1 — --- — s; with s; < s; for
some(0 <1 < j.

Proof. The direct implication follows from (wqo.1)) applied to the infinite run sq —

51 — ---. The converse implication follows from repeated applications of the

ompatibility| condition to build an infinite run: first there exists ;11 > s;41 s.t.
sj — sj4+1, and so on and so forth. O

There is therefore a simple procedure to decide [[Tern]], pending some effec-
tiveness conditions: in a transition system (S, —), define the successor set

Post(s) = {s' € S| s — s’} (1.2)

of any s in S. A transition system is image-finite if Post(s) is finite for all s in S.
It is Post-effective if these elements can effectively be computed from s.

Proposition 1.15 (Decidability of Termination for WSTSs). LetS = (S, —, <) be
a WSTS and sg be a state in S. If S is image-finite, Post-effective, and < is decidable,
then termination of S from sq is also decidable.

Proof. The algorithm consists of two semi-algorithms. The first one attempts to
prove termination and builds a reachability tree starting from sg; if S terminates
from s, then every branch of this tree will be finite, and since S is image-finite
this tree is also finitely branching, hence finite overall by Kénig’s Lemma. The
second one attempts to prove non-termination, and looks nondeterministically

for a finite witness matching Lemma 1.14. O

1.2.2 COVERABILITY

The second decision problem we consider on WSTSs is also of great importance,
as it encodes safety checking: can an error situation occur in the system?

[Cover] Coverability
instance: A transition system (S, —), a qo (.5, <), and two states s,¢ in S.
question: Is t coverable from s, i.e. is therearun s = sg — s; — - -+ — s, > t?

termination

successor set

image-finite

Post-effective

reachability tree

coverability|defpageidx

control-state
reachability|defpageidx

backward coverability

predecessor set

effective pred-basis

6 Chapter 1. Basics of WQOs and Applications

In the particular case of a WSTS over state space () x A for some finite set
of control states) and some wqo domain (A, <4), the Control-state Reachabil-
ity Problem asks whether some input state ¢ can be reached, regardless of the
associated data value. This immediately reduces to coverability of the finitely
many minimal elements of {¢} x A for the product ordering over @ X A, i.e.
(q,2) < (¢,2")iff ¢ =¢ and z <4 2.

The decidability of [Cover] for WSTS uses a set-saturation method, whose ter-
mination relies on (Wwqo.4). This particular algorithm is called the backward cover-
ability algorithm, because it essentially computes all the states s’ s.t. 8 —* ¢/ > t.
For a set of states I C .S, define its predecessor set

Pre(I) = {sc S|3s' €I, s—s}. (1.3)
The backward analysis computes the limit Pre*(I) of the sequence
I=1yCI C--- wherel, 1 = I, U Pre(I,) . (1.4)

There is no reason for (1.4) to converge in general, but for WSTSs, this can be
solved when [is upward-closed:

Lemma 1.16. If I C S is an upward-closed set of states, then Pre(l) is upward-
closed.

Proof. Assume s € Pre(I). Then s — t for some t € I. By of S, if

s’ > s,then s’ — t' for some ¢’ > t. Thust' € I and s’ € Pre([). O

A corollary is that sequence ([L.4) stabilizes to Pre*(I) after a finite amount of
time thanks to (wqo.4). The missing ingredient is an effectiveness one: a WSTS
has effective pred-basis if there exists an algorithm accepting any state s € S and
returning pb(s), a finite basis of TPre(T{s}).

Proposition 1.17 (Decidability of Coverability for WSTSs). Let S = (S, —, <)
be a WSTS and s,t be two states in S. If S has effective pred-basis and decidable <,
then coverability of t from s in S is also decidable.

Proof. Compute a finite basis B for Pre*(1{t}) using sequence ([1.4) and calls to
pb, and test whether s > b for some b in B. O

Exercises and present variants of this algorithm for different notions of
compatibility.

!"This definition is slightly more demanding than required, in order to accommodate for weaker
notions of compatibility.

1.3. Examples of Applications 7

SIMPLE (&, b)
c<+—1
whilea >0Ab >0
l:{a,b,c)+— (a—1,b,2c)
or
r:(a,b,c) «— (2c,b —1,1)
end

Figure 1.1: SIMPLE: A nondeterministic while program.

1.3 EXAMPLES OF APPLICATIONS

Let us present three applications of wqos in three different areas: one is quite

generic and is concerned with proving program termination (Section 1.3.1). The

other two are more specialized: we present applications to relevance logic (Sec]

) and vector addition systems (Section 1.3.3).

1.3.1 PrROGRAM TERMINATION

BAD SEQUENCES AND TERMINATION. Recall from that one of the
characterizations for (A, <) to be a wqo is that every infinite sequence ag, a, . . .
over A contains an increasing pair a;, < a;, for some i; < i3. We say that (finite
or infinite) sequences with an increasing pair a;, < a;, are good sequences, and
call bad a sequence where no such increasing pair can be found. Therefore every
infinite sequence over the wqo A is good, i.e., bad sequences over A are finite.

In order to see how bad sequences are related to termination, consider the
SIMPLE program presented in [Figure 2.1. We can check that every run of SIMPLE
terminates, this for any choice of initial values (ag, by) of a and b. Indeed, we can
consider any sequence

<a0,b0,co>,...,<aj,bj,cj>,... (1.5)

of successive configurations of SIMPLE, project away its third component, yielding
a sequence

<a0,b0>,...,<aj,bj>,... s (1.6)
and look at any factor (a;,, b;,), ..., (ai,, b;,) inside it:

« either only the first transition [is ever fired between steps ¢; and g, in
which case a;, < a;,,

« or the second transition r was fired at least once, in which case b;, < b;,.

Thus (a;,, b;,) £ (ai,, b;,), which means that ([L.6) is a bad sequence over (N?, <),
and is therefore a finite sequence. Consequently, ([.5) is also finite, which means
that siMPLE always terminates.

good sequence

bad sequence

8 Chapter 1. Basics of WQOs and Applications

RaNkING FuncTIONS. Program termination proofs essentially establish that the
well-founded relation ~ program’s transition relation R is well-founded (aka Noetherian), i.e. that there
Noetherian relation Joes not exist an infinite sequence of program configurations zg Rz; Rxo R - - -.
In the case of the integer program SIMPLE, this relation is included in Z3 x Z3 and

can be easily read from the program:

{a,b,c) R{a'V,c)iffa>0Ab>0A((d=a—-1AY =bAd =2c) (1.7)
Vd =2cAb =b—1A =1)).

The classical, “monolithic” way of proving well-foundedness is to exhibit a

ranking function ranking function p from the set of program configurations g, 21, . . . into a well-
founded order (O, <) such that
R C {(wi2;) | plas) > play)} (19)

Then R is well-founded, otherwise we could exhibit an infinite decreasing se-
quence in (O, <).

This is roughly what we did in ([L.6), by projecting away the third component
and using N? as codomain; this does not satisfy (L.g) for the product ordering
(N2, <), but it does satisfy it for the lexicographic ordering (N2, <j.,). Equiva-
lently, one could define p: Z® — w? by p(a,b,c) = w-b+ aif a,b > 0 and
p(a,b,c) = 0 otherwise.

However our argument with (L.6) was rather to use bad sequences: we rather
require p to have a wqo (A, <) as co-domain, and check that the transitive closure
R™ of R verifies

RT C{(wi,2)) | pla:) £ plx;)} (1.9)
instead of (1.§). Again, (.9) proves R to be well-founded, as otherwise we could
exhibit an infinite bad sequence in (A, <).

Proving termination with these methods is done in two steps: first find a rank-
ing function, then check that it yields termination through (1.§) for well-founded
orders or ([L.9) for wqos. As it turns out that finding an adequate ranking function
is often the hardest part, this second option might be preferable.

TRANSITION INVARIANTS. A generalization of these schemes with a simpler search

disunctiv terminaton for ranking functions is provided by disjunctive termination arguments: in order
to prove that R is well-founded, one rather exhibits a finite set of well-founded
relations 71, . . ., T}, and prove that

RT"CThuU---UT} . (1.10)

Each of the T3, 1 < j < k, is proved well-founded through a ranking function
p;j, but these functions might be considerably simpler than a single, monolithic
ranking function for R. In the case of siMPLE, choosing

Ty = {({a,b,c),{a",V/,c)) |a>0ANd < a} (1.11)
Ty = {({a,b,c),{a",V/,c)) | b>0AY < b} (1.12)

1.3. Examples of Applications 9

fits, their well-foundedness being immediate by projecting on the first (resp. sec-
ond) component.

Let us prove the well-foundedness of R when each of the T} is proven well-
founded thanks to a ranking function p; into some wqo (A;, <;) (see
for a generic proof that only requires each 7} to be well-founded). Then with a
sequence

o, L1, .. (1.13)

of program configurations one can associate the sequence of tuples

(p1(20), -, pr(xo)), (pr(z1), -, pr(1)), - .. (1.14)

in Ay x .-+ x Ay, the latter being a wqo for the product ordering by
Lemmd. Since for any indices i; < i9, (7, 2;,) € RT is in some T} for some
1 < j < k, we have p;(x;;) £; pj(xi,) by definition of a ranking function.
Therefore the sequence of tuples is bad for the product ordering and thus finite,
and the program terminates.

Different strategies can be used in practice to find a disjunctive termination
invariant of the form ([.1¢). One that works well in the example of SIMPLE is to
use the structure of the program relation R: if R can be decomposed as a union
R1U- - -URy, then applying rank function synthesis to each 1, thereby obtaining
a well-founded overapproximation wf(R;) 2 R;, provides an initial candidate
termination argument

wi(R1)U--- Uwf(Ryg) . (1.15)
Applying this idea to SIMPLE, we see that R in ([L.7) is the union of

Ry = {({a,b,c),{d",¥/,)) |a>0Ab>0Ad =a— 1AV =bAC =2c}
(1.16)

Re ={({a,b,¢),{d',b/,)) | a>0Ab>0Ad =2cAV =b—1A =1},
(1.17)

which can be overapproximated by 7} and 7% in (L.11) and (1.1).

It remains to check that ([L.10) holds. If it does not, we can iterate the previous
approximation technique, computing an overapproximation wf(wf(R;,) § R;,) of
the composition of Rj, with R;,, then wf(wf(wf(R;,) s Rj,)§ Rj,) etc. until their
union reaches a fixpoint or proves termination.

1.3.2 RELEVANCE Loacic

Relevance logics provide different semantics of implication, where a fact B is said
to follow from A, written “A D B”, only if A is actually relevant in the deduction
of B. This excludes for instance A O (B D A), (AN —-A) D B, etc.

We focus here on the implicative fragment R of relevance logic, which can
be defined through a substructural sequent calculus in Gentzen’s style. We use

10 Chapter 1. Basics of WQOs and Applications

upper-case letters A, B, C, ... for formule and «, 3,7, ... for possibly empty
sequences of formule; a sequent is an expression « = A. The rules for R+ are:

A BAFB

(A = B (Cut)
AFA af+ B

aABp+HC aAA+ B
—(E —(C

aBAa - C (Ex aAt+ B (Con)
aFA pBBFC aA+ B

O ——— =%)

af(ADB)FC aFADB

where () and (@) are the structural rules of lexchangd and [contraction. Note
that the weakening rule (W) of propositional calculus is missing: otherwise we
veakenns would have for instance the undesired derivation

ara s
_ABEA o
AFBDA o
FAD(BDA)

There are two important simplifications possible in this system: the first one
is to redefine o, 3, . . . to be multisets of formulee, which renders (EX) useless; thus
juxtaposition in (@—) should be interpreted as multiset union.

cut elimination The second one is cut elimination, i.e. any sequent derivable in R~ has a deriva-

tion that does not use (Cuf]). This can be seen by the usual arguments, where cuts
are progressively applied to “smaller” formulee, thanks to a case analysis. For
instance,

VAF B aFA BBFC

SFA5B ® TaBAsBFC ()
afykEC

can be rewritten into

YA+ B akF A :
ar F B & 5o
afyFC

subformula property A consequence of cut elimination is that R~ enjoys the subformula property:

Eud

Lemma 1.18 (Subformula Property). If o - A is a derivable sequent in R~, then
there is a cut-free derivation of o = A where every formula appearing in any sequent
is a subformula of some formula of a A.

1.3. Examples of Applications 11

THE DECISION PROBLEM we are interested in solving is whether a formula A is a
theorem of R+; it is readily generalized to whether a sequent « - A is derivable

using (A¥-DR).
[RI] Relevant Implication

instance: A formula A of R-.
question: Can the sequent - A be derived in R+?

A natural idea to pursue for deciding [R1] is to build a proof search tree with
nodes labeled by sequents, and reversing rule applications from the root - A until
only pxionds are found as leaves. An issue with this idea is that the tree grows to
an unbounded size, due in particular to fontractions. See for an
algorithm that builds on this idea.

We reduce here [R]] to a WSTS coverability problem. Given A, we want to
construct a WSTS § = (S, —, <), a target state ¢ of S, and an initial state s in S
s.t. t can be covered in S from s if and only if A is a theorem of R+.

Write Sub(A) for its finite set of subformulze. Then, by the Subformula Prop|
Ertyl, any sequent o - B that derives A in a cut-free proof can be seen as an
element of Seq(A) = NS(4) x Sub(A); we let

S = Ps(Seq(A)) (1.18)

be the set of finite subsets of Seq(A).
Given a finite set s’ of sequents, we say that

s = s u{at B} (1.19)

if some rule among (@—) ((Cut) excepted) can employ some premise(s) in s’
to derive the sequent a - B.

For a multiset «, define its multiset support () as its underlying set of ele-
ments o(«) = {B | a(B) > 0}. We define the contraction qo < over sequents by
ab B< o b Biffat B canbe obtained from o/ + B’ by some finite, possibly
null, number of ontractiorls. Over Seq(A), this is equivalent to having o < o/
(for the product ordering over N®®*(4)) (o) = o(c/), and B = B’: < over
Seq(A) is thus defined as a product ordering between the three wqos (NS®(4)| <),
(P(Sub(A)),=), and (Sub(A), =), and therefore by Dickson’s Lemma:

Lemma 1.19 (Kripke’s Lemma). The qo (Seq(A), <) is a wqo.

Then, by Exercise 1.9, the qo (S, <), where < is Hoare’s ordering applied to
<, is a wqo, and we easily see that S = (S, —, <) is a WSTS with effective pred-

basis and a decidable ordering (see Exercise 1.17), thus the coverability problem
for

s={BF B|BcSub(A)} t= {- A} (1.20)
is decidable by [Proposition 1.17.

relevant
implication|defpageidx

multiset support

contraction ordering

vector addition
system|defpageidx

covering

12 Chapter 1. Basics of WQOs and Applications

It remains to check that coverability of (S, s, t) is indeed equivalent to deriv-
ability of - A. Clearly, if s = so — s1 — -+ — sy, then any sequent appearing
in any s; along this run is derivable in R, and if ¢ < s,,—which is equivalent to
the existence of a sequent o - B in s, s.t. - A < « F B, which by definition
of < is equivalent to o(a) = f and A = B, i.e. to - A being in s,—, then A is
indeed a theorem of R—. Conversely, if - A is derivable by a cut-free proof in R+,
then we can reconstruct a run in S by a breadth-first visit starting from the leaves
of the proof tree, which starts from the set s9 C s of leaves of the proof tree,
applies — along the rules (@—) of the proof tree, and ends at the root of the
proof tree with a set s’ of sequents that includes - A. Finally, by of
S, since sg < s, there existsarun s — -+ — s” such thatt = {F A} C ¢’ < §”,
proving that ¢ is indeed coverable from s in S.

1.3.3 KARP & MILLER TREES

VECTOR ADDITION SYSTEMS (VAS) are systems where d counters evolve by non-
deterministically applying d-dimensional translations from a fixed set, i.e. they
are single-state VASSs. They can be seen as an abstract presentation of Petri nets,
and are thus widely used to model concurrent systems, reactive systems with re-
sources, etc. They also provide an example of systems for which WSTS algorithms
work especially well.

Formally, a d-dimensional VAS is a pair V = (xo,A) where x is an initial
configuration in N and A is a finite set of translations in Z¢. A translation a in A
can be applied to a configuration x in N if X’ = x + a is in N, i.e. non-negative.
The resulting configuration is then x/, and we write x <>y, x’. A d-dimensional
VAS V clearly defines a WSTS (N¢, —, <) where — = |J,c5 —»v and < is the
product ordering over N%. A configuration x is reachable, denoted x € Reach(V)),
if there exists a sequence

xogxlg)qg---ﬂxn:x. (1.21)

That reachability is decidable for VASs is a major result of computer science but
we are concerned here with computing a covering of the reachability set.

CoVERINGs. In order to define what is a “covering”, we consider the completion
N, £ NU{w} of N and equip it with the obvious ordering. Tuples y € NZ, called
w-markings, are ordered with the product ordering. Note that N, is a wqo, and
thus Nfﬁ as well by Dickson’s Lemma,

While w-markings are not proper configurations, it is convenient to extend the
notion of steps and write y % y’ wheny’ = y +a (assuming n +w = w+n = w

for all n).

Definition 1.20 (Covering). Let V be a d-dimensional VAS. A set C C NZ of
w-markings is a covering for V if

1.3. Examples of Applications 13

(1,0,1)

VAN

(1,w,1) (2,0,0) (1,w,1)

7 b a b

(2,w,0) (0,w,2) (2,w,0) (0,w,2)

Figure 1.2: A Karp & Miller tree constructed for the VAS ({a, b, c}, (1,0, 1)) with
translations a = (1,1, —1), b = (—1,0,1), and ¢ = (0, —1,0).

1. for any x € Reach(V), C contains some y with x <y, and

2. any y € C'is in the adherence of the reachability set, i.e. y = lim;—1 2 . x;
for some infinite sequence of configurations x1, X, . . . in Reach(V).

Hence a covering is a rather precise approximation of the reachability set (pre-
cisely, the adherence of its downward-closure). A fundamental result is that finite
coverings always exist and are computable. This entails several decidability re-
sults, e.g. whether a counter value remains bounded throughout all the possible
runs.

THE KARP & MILLER TREE constructs a particular covering of V. Formally, this
tree has nodes labeled with w-markings in N¢ and edges labeled with translations
in A. The root s is labeled with x(and the tree is grown in the following way:
Assume a node s of the tree is labeled with some y and let y,,y;,...,y, be
the sequence of labels on the path from the root sg to s, withxy = y,andy, =y.
For any translation a € A such that there is a step y = y’, we consider whether
to grow the tree by adding a child node s’ to s with a a-labeled edge from s to s':

1. Ify’ <'y, for one of the y,’s on the path from s to s, we do not add s’ (the
branch ends).

2. Otherwise, if y’ > y, for some i = 0,...,n, we build y” from y’ by setting,
forallj=1,...,d,

V) 2 {w iy (j) > vi(j) (122)

y'(j) otherwise.

Formally, y” can be thought as “y, +w - (y' —y,)” We add ', the edge from
sto s, and we label s" with y”.

3. Otherwise, y’ is not comparable with any y,: we simply add the edge and
label s’ with y’.

Karp & Miller tree

prefix ordering

lexicographic ordering

Smyth’s ordering

monomial

14 Chapter 1. Basics of WQOs and Applications

See for an example of tree constructed by this procedure.

Theorem 1.21. The above algorithm terminates and the set of labels in the Karp &
Miller tree is a covering for V.

Proof of termination. First observe that the tree is finitely branching (a node has
at most |A| children), thus by K6nig’s Lemma the tree can only be infinite by
having an infinite branch. Assume, for the sake of contradiction, that there is
such an infinite branch labeled by some y,,y, . .. By (wqo.d) applied to NZ, we
can exhibit an infinite subsequence y; <'vy; < --- withig < i3 <---. Any
successive pairy; <vy; requiresy; . to be inserted at step J] of the algorithm,
hence \ has more w-components than y, . Finally, since an w-marking has
at most d w-components, this extracted sequence is of length at most d + 1 and
cannot be infinite. O

We leave the second part of the proof as Exercise 1.2(.

EXERCISES

Exercise 1.1 (Examples of qos). Among the following quasi orders, which ones are partial
orders? Are they total? Well-founded? Wqo?

s>

(1) the natural numbers (N, <), the integers (Z, <), the positive reals (R, <);
(2) the natural numbers (N, |) where a | b means that a divides b;

(3) given a linearly ordered finite alphabet 3, the set of finite sequences ¥X* with prefix
ordering <,ref or lexicographic ordering <je;

(4) (P(N), C) the subsets of N ordered with inclusion;

def

(5) (P(N), Cs) where we use Smyth’s ordering: U Cg V. & Ym eV, Ine U, n < m;
(6) (P#(N),C) and (P¢(N), Cs) where we restrict to finite subsets.

Exercise 1.2 (Generalized Dickson’s Lemma). If (A;, <;);=1,....m are m quasi-orderings,
their product is [[(4;, <;) = (A, <x) givenby A = Ay x --- X A,,, and

(T1,. oy m) <x (@h,...,20) B <2l A Ay <

(1) Show that [, (4;, <;) is well-founded when each (4;, <;) is.
(2) Show that [(4;, <;) is a wqo when each (4;, <;) is.
(3) Show that the set of monomials 7" - x5? - - - 3 over the set of variables {1, ..., z4}

where the a;’s are natural numbers is well quasi ordered by the divisibility ordering.

Exercise 1.3 (Ascending Chain Condition). Show that (wqo.4) is equivalent with the
other definition(s) of wqos.

Exercises 15

Exercise 1.4 (Finite Basis Property).

(1) Prove Lemma 1.7: any upward-closed subset U of a wqo (A, <) can be written under
the form U = Mz1,..., 2.}

(2) (wqo.5) Prove that a qo (A, <) is a wqo iff every non-empty subset U of A contains
at least one, and at most finitely many (up to equivalence), minimal elements.

Exercise 1.5 (Linear WQOs).

(1) Prove that a linear ordering is a wqo iff it is well-founded.

(2) (wqo.6) Prove that a qo is a wqo iff all its linearizations are well-founded, where a
linearization of (A, <) is any linear qo (A, <) with same support and such that z <y linearization
implies x =< .

Exercise 1.6 (Z*, Zsparse)- We consider the sparser-than ordering. Assumea = (a1, ...,a)) sparser-than ordering
and b = (by,...,by) are two tuples in Z*, then

a<guse b & Vi, je{l,....k}: (a; < a;iffb; <b;)and (Ja; — a;| < [b; — b;]) .

Show that (Z*, <sparse) 1S @ Wqo.

Exercise 1.7 (Higman’s Lemma). Recall that for a qo (A4, <), the set A* of finite sequences %
(“words”) over A can be ordered by the subword embedding <, defined with ([L.1). We
shall prove Higman’s Lemma: (A*, <,) is wqo iff (A, <) is.

(1) Show that (A*, <,) is well-founded if (A4, <) is.

(2) Assume, by way of contradiction, that (A, <) is wqo but (A*, <,) is not. Then there
exist some infinite bad sequences over A*, i.e., sequences of the form wq, wy, wo, . ..
where w; £, w; forall4,j € Nsit. ¢ < j.

Consider all words that can start such an infinite bad sequence, pick a shortest one
among them, and call it vy. Consider now all infinite bad sequences that start with v
and, among all words that can appear after the initial vy, pick a shortest one and call
it v1. Repeat the process and at stage k pick vy as one among the shortest words that
can appear after vp, ..., vi_1 inside an infinite bad sequence. Show that this process
can be continued forever and that is generates an infinite sequence S = vg, vy, . . .

(3) Show that S itself is a bad sequence.

(4) We now write every v; under the form v; = a;u; where a; € A is the first “let-
ter” of v; and w; is the first strict suffix (this is possible since an infinite bad sequence
cannot contain the empty word). We now pick an infinite increasing sequence ag, <
ak, < ap, < --- from (a;);en (possible since A is wqo) and we write S’ for the se-
quence U, Uk, , - - - of corresponding suffixes. Show that if S’ is good—i.e., contains
an increasing pair—, then S is good too.

(5) We deduce that S” must be an infinite bad sequence over A*. Use this to derive a
contradiction (hint: recall the definition of v;,).

Hoare ordering

Egli-Milner ordering

16 Chapter 1. Basics of WQOs and Applications

At this point we conclude that our assumption “A is wqo but A* is not” was contradictory,

proving Higman’s Lemma.

Exercise 1.8 (Higman’s Lemma for w-sequences?). Let (A, <) be a wqo. For two infinite
words v = (x;);eny and w = (y;)ien in A%, we let

def there are some indexes ng < n; < ng < - - -
V<, W & .
st. x; <yp, foralli e N.

Show that (A, <,,) is a wqo when (4, <) is a linear wqo

Exercise 1.9 (Ordering Powersets). Recall from the definition of Smyth’s or-
dering on the powerset P(A): if (A,<)isaqoand U,V C A we let:

def

ULV & VmeV,InelU n<m. (%)
There also exists the (more natural) Hoare ordering (also called Egli-Milner ordering):

UChV & VnelU ImeV,n<m. 0]
(1) What are the equivalences generated by Cg and by Cy?

(2) Express Cs in terms of Ty (and reciprocally), using set-theoretic operations like
upward-closure, intersection, etc.

(3) Prove the following characterization of wqo’s:
A qo (A, <) is wqo if, and only if, (P(A), Cy) is well-founded. (wqo.7)

(4) Further show that (Py(A), Cn) is wqo iff (A4, <) is wqo—recall that P;(A) only con-
tains the finite subsets of A.

Exercise 1.10 (Kruskal’s Tree Theorem). For a qo (A, <), we write T'(A) for the set of
finite trees node-labeled by A. Formally, T(A) = {¢,u,v,...} is the smallest set such
thatifa € A, m € Nand ty,...,t, € T(A) then the tree with root labeled by a and
subtrees t1,...,tm, denoted a(ty,...,tn,), is in T(A). We order T'(A) with <7, the
homeomorphic embedding that extends <. The definition of u <7 ¢ is by induction on
the structure of ¢, with

e [a<band (u1,...,Un) <7 (t1,...,tk)
auy, ... um) S bty te) < {orzli e{l,....k}:a(ur,...,un) <rt;. @

Here <7 . denotes the sequence extension of <.

(1) We now assume that (A, <) is a wqo and prove that (T (A), <r) is a wqo too. For
this we assume, by way of contradiction, that (T'(A), <r) is not wqo. We proceed as
in the proof of Higman’s Lemma (Exercise [1.7) and construct a “minimal infinite bad

*This does not extend to arbitrary wqos, see (Radd, [1954) or (Janéar, 1999) for a characterization
of the qos A with (A%, <,,) wqo.

Exercises 17

sequence” S = tg,t1,%o,... where ty is a smallest tree that can be used to start an
infinite bad sequence, and at stage k, ¢y, is a smallest tree that can continue an infinite
bad sequence starting with g, ..., tx—1. By construction S is infinite and is bad.

Let us now write every ¢; in S under the form ¢; = a;(u; 1, ..., %;m,;) and collect all
the immediate subtrees in U = {t;; | i € NA1 < j < m;}. Show that (U, <r) is
wqo.

(2) Derive a contradiction (hint: use Higman’s Lemma on U).

At this point we conclude that our assumptions “A is wqo but T'(A4) is not” was contra-
dictory, proving Kruskal’s Theorem.

WELL STRUCTURED TRANSITION SYSTEMS

Exercise 1.11 (Transitive Compatibility). We relax in this exercise (compatibility]) to a
weaker notion of compatibility, but show that [[Tern]] remains decidable in this setting.
Consider the following replacement for (compatibility)):

s—=s As>timpliess >tV It <s,t =1t (tc)

where —7 is the transitive closure of —.

Show that, if S = (S, —, <) is a WSTS for (B) which is image-finite and Post-
effective and has decidable <, then one can decide whether S terminates from some state
So in S.

Exercise 1.12 (Reflexive Transitive Compatibility). Let us relax (compatibility]) to:
s— s As>timpliess’ >tV It <5, t—="t, (rtc)

where —* is the reflexive transitive closure of —. We assume throughout this exercise
that S = (S, —, <) is a WSTS under (td).

(1) Show that, if T is upward-closed, then Pre* (1) is also upward-closed. Does
still hold?

(2) Let K be a finite basis of /. Lift pb to operate on finite sets. The sequence
Ky C K, C--- where K, .1 = K, U pb(K,) %)

converges by (wqo.4) after finitely many steps to some finite set K. Show that 1K =
TUien Ki-
(3) Show that 1K = Pre*(I).

(4) Conclude that [] is decidable for WSTS with (), effective pred-basis, and de-
cidable <.

Exercise 1.13 (Downward WSTSs). Let (S, —) be a transition system and (S, <) be a
wqo. The definition of is also known as “upward-compatibility”, by contrast
with its dual reflexive downward compatibility :

transitive compatibility

reflexive transitive
compatibility

reflexive downward
compatibility

downward WSTS

18 Chapter 1. Basics of WQOs and Applications

s— s As>timpliess >tVIt <, t—t. (rdc)

that defines a downward WSTS S = (S, —, <).
Show that the following problem is decidable for image-finite, Post-effective down-
ward WSTSs with decidable <:

[SCover] Sub-Coverability
instance: A transition system (S, —), a qo (5, <), and two states s, ¢ in S.
question: Istherearuns=sg — s3] = -+ —= 5, < t?

PrROGRAM TERMINATION

Exercise 1.14. Show that the weaker condition
RCTiU---UT, (1

with each T} is well-founded does not imply R well-founded.

Exercise 1.15 (Disjunctive Termination Arguments). Assume that a binary relation R
verifies ([L.1) on page B, where each T} is well-founded. Prove using the [nfinite Ramsey
Theorem that R is well-founded.

RELEVANCE LoGIc
Exercise 1.16 (Cut Elimination & Subformula Property). Prove Lemma 1.18.

Exercise 1.17 (A WSTS for Relevant Implication). Prove that S defined by equations (fL.18)
and ([L.19) is a WSTS with effective pred-basis and decidable ordering.

Exercise 1.18 (Proof Search for Relevant Implication). The purpose of this exercise is to
find an alternative algorithm for [RI]. The key idea in this algorithm is to remove (Corl)
from R+ and apply contractions only when needed, i.e. modify the rules (D) and (OF)
to contract their conclusion, but only inassomuch as could not be obtained by first con-
tracting their premises. Doing so we define an alternative proof system R’ that includes

the unmodified (AX) and (DR), and a modified version of (&)

aFA BBEC
yEC

=)
where v F C < af(A D B) + C is such that, for all formule D, v(D) > «a(D) +
AD) — 1.

(1) Show how any derivation of a sequent a - B in R5 URY can be transformed into a
derivation in RY of no larger height.

(2) Deduce that R, and R+ derive the same sequents.

(3) Deduce that, if « F B < o' F B’ and o’ b B’ has a derivation of height n in R,
then a - B has a derivation of height at most n in RS,.

http://en.wikipedia.org/wiki/Ramsey's_theorem
http://en.wikipedia.org/wiki/Ramsey's_theorem

Exercises 19

(4) We work now in the modified calculus R',. We say that a derivation in R’ is irre-
dundant if, by following any branch starting from the root to the leaves, we never first
meet a - B and later o/ - B’ with o - B < o/ F B’. Show that [RI] is decidable by

proof search using Kénig’s Lemma and Kripke’s Lemma.

KARP & MILLER TREES

Exercise 1.19. Show that N, is a wqo.

Exercise 1.20 (Covering). The aim of this exercise is to complete the proof of
and show that the set of labels C C N? of the Karp & Miller tree 7" forms a
covering according to Definition 1.2d.

(1) Let neg(a) be the vector in N¢ defined by

mgwu>{‘“” ifa(j) <0 0

0 otherwise

for ain Z¢ and j in {1,...,d}. The threshold ©(u) of a transition sequence u in A*
is the minimal configuration x in N9 s.t. u is enabled from x, ie. there exists x’ s.t.

x %, x'. Show how to compute O (u). Show that O(uv) < ©(u) + O(v) for all u, v
in A

(2) In order to prove that C satisfies Definition 1.20fl, we will prove a stronger statement.

For an w-marking y in N, first define
Qy) ={i=1....d|y(j) = w})

the set of w-components of y, and

Qy) = {1,....d} \ Q(y) (1)

its set of finite components. We introduce for this question a variant of the construction
found in the main text, which results in a Karp & Miller graph G instead of a tree: in
step [| we rather add an edge s 2 s;. Observe that this does not change C' nor the
termination of the algorithm.

Show that, if xq im x for some translation sequence u in A*, then there exists a node

s in G labeled by y such that x(j) = y(j) for all j in Q(y) and sy ¢ s is a path in
the graph.

(3) Let us prove that C satisfies Definition 1.20.F. The idea is that we can find reachable
configurations of V that agree with y on its finite components, and that can be made
arbitrarily high on its w-components. For this, we focus on the graph nodes where new
w values are introduced by step B, which we call w-nodes.

Prove that, if so 7 s labeled y for some u in A* in the tree and z in N*(Y) is a partial
configuration on the components of {)(y), then there are

e ninN,

threshold

Karp & Miller graph

w-node

better quasi order

20 Chapter 1. Basics of WQOs and Applications

« a decomposition © = wujus - Up+1 with each u; in A* where the nodes s;
reached by sg L, s, for i < n are w-nodes,

+ sequences Wi, ..., Wy, in A+,

« numbers k1, ..., k, in N,

ul'wlfl u2~~~unwl‘;” Up 41
such that xg

z(j) for all j in Q(y). Conclude.

v x with x(j) = y(j) for all j in Q(y) and x(j) >

BiBrLioGrRAPHIC NOTES

WELL Quast ORDERS are “a frequently discovered concept”, to quote the title of a survey
by Kruskal (1972). Nevertheless, much of the theory appears in Higman ({1952), although
Dickson’s Lemmag already appeared (in a rather different form) in (Dicksor, 1913). The
reader will find more information in the survey of Milner (1985), which also covers bet-

ter quasi orders (bqo), which allow to handle the problematic powerset constructions of
Exercise 1.9—see (Marconé, 1994) for a good reference, and (Radd, [1954) or (Janca, 1999)
for a characterization of the wqos for which (P(A), Cs) and/or (A, <,,) is also a wqo.
See Lovasz (2004) for an exposition of Robertson and Seymour’s Graph-Minor Theorem,
its underlying ideas, and its consequences in graph theory.

WELL STRUCTURED TRANSITION SYSTEMS have been developed in different directions by
Finkel (1987, 1990) and Abdulla et al! (1996), before a unifying theory finally emerged in
the works of Abdulla et al| (2000) and Finkel and Schnoebelen (2001)—the latter being our
main source for this chapter and exercises to . More recent developments are
concerned with the algorithmics of downward-closed sets (Finkel and Goubault-Larrecq,
2009, 2012) and of games (Abdulla et al, 2008; Bertrand and Schnoebelen, 2012).

ProGRAM TERMINATION. Proving termination thanks to a ranking function into a well-
founded ordering can be traced back at least to [Turing (1949). The presentation in these
notes rather follows Cook et al. (2011) and emphasizes the interest of transition invariants;
see Podelski and Rybalchenkq (2004) and the discussion of related work by Blass and
Gurevich (2008).

ReLEVANCE Logic. The reader will find a good general exposition on relevance logic in the
chapter of Dunn and Restall (2002), and in particular a discussion of decidability issues
in their Section 4, from which is taken (credited to Kripke, [1959). Both the
approach in the exercise and that of the main text scale to larger fragments like the con-
junctive implicative fragment R+ A, but Urquhart (1984) proved the undecidability of the
full relevance logic R and its variants the entailment logic E and ticket logic T. This is still
an active area of research: although Urquhart (1999) proved R . to be Ackermannian
(see [CRI] on page BY), the complexity of [RI] is still unknown; similarily the decidabil-
ity of implicative ticket logic T was only recently proven by Padovani (2012), and its
complexity is also unknown.

Bibliographic Notes 21

Karp & MILLER TREES and vector addition systems were first defined by Karp and Miller
(1969). Coverability trees are used in a large number of algorithms and decision pro-
cedures on VAS, although their worst-case size can be Ackermannian in the size of the
input VAS (Cardoza et all, 1976). Quite a few of these problems, including termination
and coverability, can actually be solved in ExpSPACE instead (Rackoff, [1978; Blockelet and
Schmitz, 2011), but finite equivalences are an exception (Mayr and Meyer, 1981; Jancar,
2001); see [FCH] on page B§. The notion of covering can be generalized to complete WSTS,
but they are in general not finite as in the VAS case (Finkel and Goubault-Larrecq, 2012).

22

Chapter 1. Basics of WQOs and Applications

2

COMPLEXITY UPPER BOUNDS

2.1 The Length of Controlled Bad Sequences 25
p.2 Applications 30
2.3 Bounding the Length Function| 31
p.4 Classification in the Grzegorczyk Hierarchy| 38

As seen in [Chapter 1, many algorithms rely on well quasi orderings to prove the
termination. Although it is true that the classical proofs of Dickson’s Lemma, Hig|
Iman’s Lemmd, and other wqos, are infinistic in nature, the way they are typically
applied in algorithms lends itself to constructive proofs, from which complexity
upper bounds can be extracted and applied to evaluate algorithmic complexities.

We present in this chapter how one can derive complexity upper bounds for
these algorithms as a side-product of the use of Dickson’s Lemma over tuples
of integers. The techniques are however quite generic and also apply to more
complex wqos; see the Bibliographic Noted at the end of the chapter.

BAD SEQUENCES AND TERMINATION. Recall from that one of the
characterizations for (A, <) to be a wqo is that every infinite sequence ag, a1, . . .
over A contains an increasing pair a;, < a;, for some i; < i3. We say that (finite
or infinite) sequences with an increasing pair a;, < a;, are good sequences, and
call bad a sequence where no such increasing pair can be found. Therefore every
infinite sequence over the wqo A is good, i.e., bad sequences over A are finite.

SIMPLE (&, b)
c+—1
whilea >0ADb >0
[:(a,b,c)+— (a—1,b,2c)
or
r:(a,b,c) «— (2¢,b —1,1)
end

Figure 2.1: SIMPLE: A simple while program, repeated from Figure 1.1.

Recall the siMPLE program from on page [}, repeated here in
re 2.1. We argued on page [] that, in any run, the sequence of values taken by a

24 Chapter 2. Complexity Upper Bounds

ar \
Uk‘/k X

(primitive-recursive)

T

(elementary)

T = A

(linear)

Figure 2.2: The Grzegorczyk hierarchy of primitive-recursive functions.

and b

<a0,b0),...,<aj,bj>,... , (2.1)
is a bad sequence over (N2, <), and by Dickson’s Lemma, it is finite, which means
that stMPLE always terminates.

In this chapter, we are going to see that the very fact that we applied
yields more that just the termination of sIMPLE: it also yields an upper
bound on the number of times its main loop can be unrolled as a function of its
initial input (ag, bo), i.e. a bound on the length of the bad sequence (2.1). Better,
the upper bounds we will prove are highly generic, in that we only need to find
out the complexity of the operations (i.e. only linear operations in SIMPLE) and the

dimension we are working with (i.e. in dimension 2 in (2.1)), to provide an upper
bound.

A Lower BouNp. Before we investigate these upper bounds, let us have a look at
how long SIMPLE can run: for instance, for (ag, bp) = (2, 3), we find the following
run

2
2 2
l2 717,, 12 717“

2
(2,3,20 L (1,320 5 (22,2,20 L0 92" 1 1) BT 0,1,227),
of length
2422 422" (2.2)

which is non-elementary in the size of the initial values. This is instructive: linear
operations and dimension 2 constitute the simplest case we care about, and the
complexities we find are already beyond the elementary hierarchies, where the
distinctions time vs. space resources, or deterministic vs. nondeterministic com-
putations, become irrelevant. Hierarchies for non-elementary complexities are
maybe not so well-known, so we will introduce one such hierarchy, the Grzegor-
czyk hierarchy (%) ren of classes of functions (see Figure 2.9).

As we will see, in the case of SIMPLE, we can show there exists a function
bounding the length of all runs and residing in .%3, which is the lowest level to

2.1. The Length of Controlled Bad Sequences 25

contain non-elementary functions. will be devoted to further matching

complexity lower bounds for decision problems on monotonic counter systems.

OUuTLINE. The upcoming surveys all the notions (controlled sequences,
polynomial normed wqos, and the Grzegorczyk hierarchy) needed in order to
state the Length Function Theorem|, and later apply it to several algorithms in
Section 2.7. The proof of the theorem is delayed until Section 2.3, which ends with
the definition of a bounding function M on the length of controlled bad sequences,
and that classifies this function inside the Grzegorczyk hierarchy:.

2.1 THE LENGTH OF CONTROLLED BAD SEQUENCES

As seen with the example of SIMPLE, wqo-based termination arguments rely on
the finiteness of bad sequences. In order to further provide a complexity analysis,
our goal is thus to bound the length of bad sequences.

2.1.1 CONTROLLED SEQUENCES

Our first issue with our program is that one can construct arbitrarily long bad
sequences, even when starting from a fixed first element. Consider N? and fix
xo = (0, 1). Then the following

(0,1), (L,0), (L — 1,0, (L — 2,0, ..., (2,0), (1,0) (2.3)

is a bad sequence of length L + 1. What makes such examples possible is the
“uncontrolled” jump from an element like xq to an arbitrarily large next element,
here x; = (L,0). Indeed, when one only considers bad sequences displaying
some controlled behaviour (in essence, bad sequences of bounded complexity, as
with the linear operations of SiMPLE), upper bounds on their lengths certainly
exist.

Norms AND CONTROLS. In order to control the growth of the values in a sequence
ap,ai, az, . ..over some wqo (A, <), we introduce two main ingredients:

1. the first is a norm |.|4: A — N on the elements to represent their size. We
always assume A, = {a € A | |a|a < n} to be finite for every n; we call
the resulting structure (A, <,|.|4) a normed wqo (nwqo). For instance, for
N? we will use the infinite norm |(m,n)|y2 = max(m,n);

2. the second is a control function g:N — N used to bound the growth of
elements as we iterate through the sequence. We always assume g to be
strictly increasing: g(x 4+ 1) > 1 + g(x) for all x.

normed wqo

control function

controlled sequence

length function

nwqo isomorphism

26 Chapter 2. Complexity Upper Bounds

Mixing these together, we say that a sequence ag,ay,as,... over A is (g,n)-
controlled for some initial normn ¢ N &
% times
. i w
Vi=0,1,2,...: |ala < g'(n) = g(g(---g(n))). (2.4)

In particular, |ag|4 < n, hence the name “initial norm” for n. For instance, the
bad sequence (2.1) over N? extracted from the runs of SIMPLE is (g, n)-controlled
for g(z) = 2x and n = max(ag,by) + 1. Observe that the empty sequence is
always a controlled sequence.

Definition 2.1 (Basic nwqos). We note [k] the nwqo ({0,...,k — 1}, <, [.|jx))
defined over the initial segment of the natural numbers, where || £ j for all
0 < j < k, and I';, the generic k-elements nwqo ({ao, . ..,ax—1},=,|.Ir,) where

def

laj|r, =0forall0 < j < k.

LencTH FuncTioN. The outcome of these definitions is that, unlike in the un-
controlled case, there is a longest (g, n)-controlled bad sequence over any nwqo
(A, <4,]|.|a): indeed, we can organize such sequences in a tree by sharing com-
mon prefixes; this tree has

« finite branching degree, bounded by the cardinal of A_ (. for a node at
depth ¢, and

« finite depth thanks to the wqo property.

By Kénig’s Lemma, this tree of bad sequences is therefore finite, of some height
Ly n, A representing the length of the maximal (g, n)-controlled bad sequence(s)
over A. In the following, since we are mostly interested in this length as a function
of the initial norm, we will see this as a length function Ly a(n); our purpose will
then be to obtain complexity bounds on L 4.

Remark 2.2 (Monotonicity of L). It is easy to see that Ly 4(n) is monotone in
the initial norm n (because g is increasing), but also in the choice of the control
function: if h(z) > g(z) for all z, then a (g, n)-controlled bad sequence is also an
(h,n)-controlled one, thus Ly 4(n) < Lj a(n).

2.1.2 POLYNOMIAL NWQOS

Before we go any further in our investigation of the length function, let us first
restrict the scope of our analysis.

IsomorpHIMS. For one thing, we will work up to isomorphism: we write A =
B when the two nwqo’s A and B are isomorphic structures. For all practical
purposes, isomorphic nwqos can be identified. Let us stress that, in particular,
norm functions must be preserved by nwqo isomorphisms. Obviously, the length
functions Ly 4 and L, p are the same for isomorphic nwqos.

2.1. The Length of Controlled Bad Sequences 27

Example 2.3 (Isomorphisms). On the positive side, [0] = I'g and also [1] = I';
since |ag|r, = 0 = [0](y.

However, [2] # T's: not only these two have non-isomorphic orderings, but
they also have different norm functions. This can be witnessed by their associated
length functions: one can see for instance that “a1,a(” is a (g, 1)-controlled bad
sequence over I'y, but that the longest (g, 1)-controlled bad sequence over [2] is
the sequence “0” of length 1.

PorynoMIAL NwQos. We are now ready to define the class of normed wqos we
are interested in. We will need the empty nwqo Ty = (), and a singleton nwqo
I'; containing a single element with norm 0, and using equality as ordering as
in Example 2.3. The exact element found in this singleton is usually irrelevant; it
could be for instance a letter in an alphabet, or a state in a finite state set.

The disjoint sum of two nwqos (Aj, <a,,|-|4,) and (A2, <4,,|.|a,) is the
nwqo (A1 + A2, <A,+4,,]|-|4,+4,) defined by

Ay + Ay = {{i,a) | i€ {1,2} anda € A;}, (2.5)
(i,a) <a,4a, (J,0) & i=janda <y b, (2.6)
(i, @) | A+ 4, = ala, - (2.7)

k times

——~
We write A-k for A + - - - + A; then, any finite nwqo I'y, can be defined as a k-ary
disjoint sum T'y, = T'; - k.
The cartesian product of two nwqos (A1, <a,,|.|a,) and (A2, <a,,]|.|4,) is
the nwqo (A1 X A2, <4, x4,,|-]4,x4,) defined by

Al XA2§{<CL1,CL2> |Cl1 €A1,6L2€A2}, (2.8)

(a1, a2) <a,xa, (b1,02) & a1 <a, by and ag <4, b, (2.9)
def

ai,a = max |a;|4, - 2.10

(a1, a2)] 4, x4, i€{172}| il A, (2.10)

The fact that A; x As is indeed a wqo is known as Dickson’s Lemma. We note the
d-fold cartesian product of a nwqo A with itself A2 = A x --- x A; in particular
—_——

d times
A® =T} is a singleton set containing only the empty tuple, of size 0 by (2.10).
Last, as we will be working on natural numbers, we also need the naturals
nwgo N along with its usual ordering and the norm |k|y = k for all k in N,

Definition 2.4. The set of polynomial nwqos is the smallest set of nwqos contain-
ing I'g, I'1, and N and closed under the 4 and x operations.

Example 2.5 (VASS Configurations). One can see that the set of configurations
Confof a d-dimensional VASS over a set of states) with |Q| = p, along with its
ordering, is isomorphic to the polynomial nwqo N% x T',,.

Remark 2.6 (nwqo Semiring). Observe that the definitions are such that all the
expected identities of + and X hold: the class of all nwgos when considered up

empty nwqo

singleton nwqo

disjoint sum

cartesian product

naturals nwqo

polynomial nwqo

polynomial normal form

fast-growing function

28 Chapter 2. Complexity Upper Bounds

to isomorphism forms a commutative semiring: I'¢ is neutral for + and absorbing
for x:

Tog+A=A+Ty=A FgxA=AxTg=Ty, (2.11)
I'; is neutral for x:
I'xA=AxIh=A, (2.12)
+ is associative and commutative:
A+(B+C)=(A+B)+C A+B=B+ A, (2.13)
X is associative and commutative:
Ax(BxC)=(AxB)xC AxB=BxA, (2.14)
and X distributes over +:
(A+B)xC=(AxC)+(BxC). (2.15)

Remark 2.7 (Normal Form for Polynomial nwqos). An easy consequence of the
identities from for polynomial nwqos is that any polynomial nwqo A

can be put in a polynomial normal form (PNF)
A=N1 4 ... 4 Nm (2.16)

for m,dy,--- ,d,, > 0. In particular, we denote the PNF of I'y by “0” In
and later sections we will deal exclusively with nwqos in PNF; since
A = A implies Ly 4 = Ly 4 this will be at no loss of generality.

2.1.3 SUBRECURSIVE FUNCTIONS

We already witnessed with siMPLE that the complexity of some programs imple-
mentable as monotone counter systems can be quite high—more than a tower of

2
exponentials 22~ o s for stMPLE(2, b) in Equation (R.4) on page R4, which is a
non-elementary function of b. However there is a vast space of functions that
are non-elementary but recursive—and even primitive recursive, which will be
enough for our considerations.

THE GRZEGORCZYK HIERARCHY (.%%;)<, is a hierarchy of classes of primitive-
recursive functions f with argument(s) and images in N. Their union is exactly
the set of primitive-recursive functions:

|J % =FPR. (2.17)

k<w

The lower levels correspond to reasonable classes, % = % being the class of
linear functions, and .% that of elementary functions. Starting at level 1, the
hierarchy is strict in that .%, C %1 for k > 0 (see on page p4).

At the heart of each .%; lies the kth fast-growing function Fy: N — N, which

2.1. The Length of Controlled Bad Sequences 29

is defined for finite &k by

def def /_xgn&\
Fo(z) =z +1, Fry1(z) = Fi/ () = Fi(Fi(- - - Fi(2))) . (2.18)
This hierarchy of functions continues with ordinal indices, e.g.
F(x) = Fy(z). (2.19)
Observe that
Fi(x) =2z, Fy(x) = 2%z, (2.20)
F3(z) > 22'“2}“’““ etc. (2.21)

For k > 2, each level of the Grzegorczyk hierarchy can be characterized as
%, = {f | 3i, f is computed in time/space < F}} (2.22)

the choice between deterministic and nondeterministic or between time-bounded
and space-bounded computations being irrelevant because F5 is already a func-
tion of exponential growth.

On the one hand, because the fast-growing functions are honest, i.e. can be
computed in time elementary in their result, Fj, € .%; for all k. On the other hand,
every function f in .%, is eventually bounded by F}, 1, i.e. there exists a rank z ¢
s.t. for all zq,..., 2y, if max;z; > xy, then f(z1,...,2,) < Fipi(max; ;).
However, for all k > 0,

Fri1 € % . (2.23)

In particular, F,, is (akin to) the diagonal Ackermann function: it is not primitive-
recursive and eventually bounds every primitive recursive function.

We delay more formal details on (%) until on page Bg and
on page 4§ and turn instead to the main theorem of the chapter.

2.1.4 UprpPER BOUNDS FOR DICKSON’S LEMMA

Theorem 2.8 (Length Function Theorem). Let g be a control function bounded by
some function in %, for some~y > 1 andd,p > 0. Then L na,p, is bounded by a
function in %, 4.

The Length Function Theorem is especially tailored to give upper bounds for
VASS configurations (recall on page R7), but can also be used for VASS
extensions. For instance, the runs of SIMPLE can be described by bad sequences
in N2, of form described by Equation (2.1) on page R4. As these sequences are
controlled by the linear function g(x) = 2z in .%, the Length Function Theorem
with p = v = 1 entails the existence of a bounding function in .73 on the length
of any run of siMPLE, which matches the non-elementary length of the example
run we provided in (.2).

honest function

Ackermann function

Length Function Theorem

30 Chapter 2. Complexity Upper Bounds

2.2 APPLICATIONS

Besides providing complexity upper bounds for various problems, the results pre-
sented in this chapter also yield new “combinatorial” algorithms: we can now
employ an algorithm that looks for a witness of bounded size. We apply this tech-
nique in this section to the two WSTS algorithms presented in Section 1.7,
investigates the application of the Length Function Theorem to
the program termination proofs of Section 1.3.1,, and Exercise 2.14 to the Karp &
Miller trees of Section 1.3.3. These applications remain quite generic, thus to make
matters more concrete beforehand, let us mention that, in the case of vector addi-
tion systems with states (Example 1.13), lossy counter machines (Section 3.1), re-
set machines (Section 3.9), or other examples of well-structured counter machines
with transitions controlled by g(x) = x + b for some b—which is a function in
F1—, with d counters, and with p states, the Length Function Theoren] yields an
upper bound in .%;. 1 on the length of controlled bad sequences. This is improved

to .%; by [Corollary 2.39 on page §5. When b or p is part of the input, this rises

to %411, and when d is part of the input, to F,,, which asymptotically dominates

every primitive-recursive function.

2.2.1 TERMINATION ALGORITHM

Let us consider the Termination problem of Section 1.2.1. Let S = (S, —, <)

be a WSTS over a normed wqo (5, <, |.|) where the norm |.| is also the size for
a concrete representation of elements in S, let sg be an initial state in .S with
n = |so| + 1, and let g(|s|) be an upper bound on the space required to compute
some s’ from s verifying s — s’. We can reasonably expect g to be increasing
and honest, and use it as a control over sequences of states: we compute an upper

bound
f(n) > Lgs(n) . (2.24)

As the Length Function Theorenj and all the related results allow to derive honest
upper bounds, this value can be computed in space elementary-recursive in f.

Because any run of S of length £ = f(n) 4 1 is necessarily good, we can

replace the algorithm in the proof of by an algorithm that looks

for a finite witness of non-termination of form
Sog—S1—> - —Sp. (2.25)

This algorithm requires space at most ¢*(n) at any point i to compute some s, 1,
which yields a nondeterministic algorithm working in space elementary in g*(n).

This falls in the same class as f(n) itself in our setting—see for an

analysis of g*.

2.3. Bounding the Length Function 31

2.2.2 COVERABILITY ALGORITHM

Recall that the algorithm of for WSTS coverability of ¢ from s, relied
on the saturation of a sequence ({L.4) on page f of subsets of S. In order to derive an
upper complexity bound on this problem, we look instead at how long we might
have to wait until this sequence proves coverability, i.e. consider the length of

Nt} =1L C---C Iy,wheres € [ybuts ¢ I; foranyi < {. (2.26)

Foreacht =1,... ¢, let s; be a minimal element in the non-empty set I; \ I;_1;
then there must be one such sy < s that does not appear in any of the I; for i < /,
and we consider a particular sequence

81,82,...,80 < 8. (2.27)

Note that s; # s; for j > i, since s; ¢ I; and the sequence s, S, ... in [£.27) is
bad—this also proves the termination of the (I;); sequence in (2.26).

We now need to know how the sequence in (2.27) is controlled. Note that in
general s; / s;y1, thus we really need to consider the sets of minimal elements
in (2.2d) and bound more generally the length of any sequence of s;’s where each
s; is a minimal element of I; \ ;_;. Assume again that S = (S5, —, <) isa WSTS
over a normed wqo (5, <,|.|) where the norm |.| is also the size for a concrete
representation of states in S. Also assume that s’ < s can be tested in space
elementary in |s’| + |s|, and that elements of pb(s) can be computed in space
g(|s|) for a honest increasing g: then ¢ < Ly g(|t| + 1).

There is therefore a sequence

t=50,81,...,8 =S¢ < s where sj; € pb(s;) (2.28)

of minimal elements in ([;); that eventually yields s, < s. We derive again a non-
deterministic algorithm that looks for a witness (2.28) of bounded length. Further-
more, each s/ verifies |s| < g*(|t| + 1), which means that this algorithm works
in nondeterministic space elementary in g*(|t| 4+ 1) + |s].

2.3 BoUNDING THE LENGTH FUNCTION

This section and the next together provide a proof for the Length Function The{
bren]. The first part of this proof investigates the properties of bad controlled
sequences and derives by induction over polynomial nwqos a bounding function
Mgy A(n) on the length of (g, n)-controlled bad sequences over A (see
on page B§). The second part, detailed in Section 2.4, studies the prop-
erties of the M, 4 functions, culminating with their classification in the Grzegor-
czyk hierarchy.

residual nwqo

32 Chapter 2. Complexity Upper Bounds

2.3.1 RESIDUAL NWQOS AND A DESCENT EQUATION

Returning to the length function, let us consider a very simple case, namely the
case of sequences over N: one can easily see that

Lyn(n) =n (2.29)
because the longest (g, n)-controlled bad sequence over N is simply
n—1,n—-2,...,1,0 (2.30)

of length n.

Formally, (2.30) proves that Lyn(n) > n; an argument for the converse in-
equality could use roughly the following lines: in any (g, n)-controlled bad se-
quence of natural integers k, [, m, ... over N, once the first element k£ < n has
been fixed, the remaining elements [, m, ... have to be chosen inside a finite set
{0,...,k — 1} of cardinal k—or the sequence would be good. Thus this suffix,
which itself has to be bad, is of length at most

0 ifn=0
L n) = 2.31
o1 (1) {k otherwise @31)

by the pigeonhole principle. Choosing k = n — 1 maximizes the length of the bad
sequence in (2.31), which shows that Lyn(n) < n.

This argument is still a bit blurry (and will soon be cleared out), but it already
contains an important insight: in a (g, n)-controlled bad sequence ag, a1, as, ...
over some nwqo A, we can distinguish between the first element ag, which verifies
lap| 4 < m, and the suffix sequence a1, as, ..., which

1. verifies ag £ a; for alli > 0,

2. is itself a bad sequence—otherwise the full sequence ag, a1, az,... would
be good,
3. is controlled by (g, g(n))—otherwise the full sequence ag, a1, ag, ... would

not be (g, n)-controlled.
Item [motivates the following definition:

Definition 2.9 (Residuals). For a nwqo A and an element a € A, the residual
nwqo A/a is the substructure (a nwqo) induced by the subset A/a = {a’ € A |
a £ a'} of elements that are not above a.

Example 2.10 (Residuals). Foralll < kand i € {1,...,k}:

N/l =[]/l =[], T)./a; = Tys . (2.32)

2.3. Bounding the Length Function 33

The conditions [I-f on the suffix sequence a1, az, . . . show thatitisa (g, g(n))-
controlled bad sequence over A/ag. Thus by choosing an af, € A, that maxi-
mizes Ly 4/ (¢(n)) through some suffix sequence a’, ay, . . ., we can construct a
(g, m)-controlled bad sequence ag, aj, aj, . .. of length 1+ Ly 44/ (9(n)), which
shows

Lg.a(n) > max {1+ Ly as(g(n)}. (2.33)

The converse inequality is easy to check: consider a maximal (g, n)-controlled
bad sequence qag, af, ... over A, thus of length L, 4(n). If this sequence is not
empty, ie. if Ly 4(n) > 0, then afj € A<y, and its suffix af,af, ... is of length
Ly a/ay(9(n))—or we could substitute a longer suffix. Hence:

Proposition 2.11 (Descent Equation).
Ly a(n) = max {1 + LgvA/a(g(n))} . (2.34)
a€A<n

This reduces the L, 4 function to a finite combination of L, 4,’s where the
A;’s are residuals of A, hence “smaller” sets. Residuation is well-founded for
nwqos: a sequence of successive residuals A 2 A/ag 2 Alag/a; 2 --- is
necessarily finite since ag, ai, . . . must be a bad sequence. Hence the recursion in
the Descent Equation is well-founded and can be used to evaluate Ly a(n). This
is our starting point for analyzing the behaviour of length functions.

Example 2.12. Let us consider the case of L, (n) for & < n: by induction on
k, we can see that

ng[k](n) =k. (2.35)

Indeed, this holds trivially for [0] = (), and for the induction step, it also holds for
k+1 < nsince [k 4 1]_, = [k + 1] and thus by the Descent Equation

[ax}{l + L pot11(9(n) }

Ly krn(n) = le[kt1

= 1+ L
lerr[}ﬁi(”{ + Ly y(9(n)}

= 1+
e {1+ 1}

=1+k
using (2.32) and the induction hypothesis on I < k < n < g(n).

Example 2.13. Let us consider again the case of L, : by the Descent Equation,
Lyn(n) = max {1+ Lyn/k(g(n))}
keN<n

= klé}\?fn{l + Ly 5 (9(n))}

= 1+k
i

=n

Descent Equation

nwqo reflection

34 Chapter 2. Complexity Upper Bounds

thanks to (2.39) and (2.33) on k < n.

2.3.2 REFLECTING NWQOS

The reader might have noticed that does not quite follow the rea-
soning that led to (2.29) on page BZ: although we started by decomposing bad
sequences into a first element and a suffix as in the Descent Equation, we rather
used (.31)) to treat the suffix by seeing it as a bad sequence over I',,_; and deduce
Ly n(n). However, as already mentioned in on page R4, I',_1 #
[n — 1] in general.

We can reconcile the analyses made for (.29) on page B2 and in
by noticing that bad sequences are never shorter in I',,_; than in [n — 1]. We
will prove this formally using reflections, which let us simplify instances of the
Descent Equation by replacing all A/a for a € A, by a single (or a few) A’ that
is larger than any of the considered A/a’s—but still reasonably small compared
to A, so that a well-founded inductive reasoning remains possible.

Definition 2.14. A nwqo reflection is a mapping h: A — B between two nwqos
that satisfies the two following properties:

Va,a' € A: h(a) <p h(d') implies a <4 a’, (2.36)
Va e A: |h(a)lp <lala . (2.37)

In other words, anwqo reflection is an order reflection that is also norm-decreasing
(not necessarily strictly).

We write h: A — B when h is a nwqo reflection and say that B reflects A.
This induces a relation between nwqos, written A — B.

Reflection is transitive since h: A < Band h': B < Centails h'oh: A — C.
It is also reflexive, hence reflection is a quasi-ordering. Any nwqo reflects its
induced substructures since Id: X < A when X is a substructure of A. Thus
['g < Afor any A, and I'; — A for any non-empty A.

Example 2.15 (Reflections). Among the basic nwqos from Example 2.3, we note
the following relations (or absences thereof). For any k € N, [k] — T', while
I'y ¥ [k] when k > 2. The reflection of induced substructures yields [k] — N
and T'y, < T'j41. Obviously, N <& [k] and T’y 1 < T'.

Reflections preserve controlled bad sequences. Let h: A — B, consider a
sequence § = ag, a1, - .. over A, and write h(s) for h(ag),h(a1),..., a sequence
over B. Then by (R.36), h(s) is bad when s is, and by (.37), it is (g, n)-controlled
when s is. Hence we can complete the picture of the monotonicity properties of

L started in on page pé:

Proposition 2.16 (Monotonicity of L in A).

A — B implies Ly a(n) < Lg g(n) forall g,n . (2.38)

2.3. Bounding the Length Function 35

(N/3) x N

(3,2)

®)
O o

N x (N/2)

o0~

Figure 2.3: The elements of the bad sequence (2.47) and the two regions for the
decomposition of N2/(3, 2).

This is the last missing piece for deducing (.29) from (.31): since [k] < T},
Lyx(n) < Ly, (n) by Proposition 2.1—the converse inequality holds for k <
n, as seen with (2.31) and (2.35), but not for & > n > 1 as seen in Example 2.3,

Remark 2.17 (Reflection is a Preconguence). Reflections are compatible with prod-
uct and sum:

A< A'and B~ B imply A+ B— A'+ B 'and Ax B— A" x B".
(2.39)

INDUCTIVE RESIDUAL COMPUTATIONS. We may now tackle our first main problem:
computing residuals A/a. The Descent Equation, though it offers a powerful way
of computing the length function, can very quickly lead to complex expressions, as
the nwqos A/ag/ai/ -+ /a, become “unstructured”, i.e. have no nice definition
in terms of + and x. Residuation allows us to approximate these sets s.t. the
computation can be carried out without leaving the realm of polynomial nwqos,
leading to an inductive computation of A/a over the structure of the polynomial
nwqo A.

The base cases of this induction were already provided as (2.39) for finite sets
I'y, and

N/k < T, (2.40)

for the naturals N—because N/k = [k] by (£.32), and then [k] < T'y, as seen in

hmple 2.19—, which was implicit in the computation of Ly in [£.29). Regarding
disjoint sums A + B, it is plain that

(A+ B)/(l,a) = (A/a) + B, (A+ B)/(2,b) = A+ (B/b), (2.41)

and reflections are not required.
The case of cartesian products A x B is different: Let g(x) = 2z and consider
the following (g, 4)-controlled bad sequence over N2

(3,2), (5,1), (0,4), (17,0), (1,1), (16,0), (0,3) . (2.42)

Our purpose is to reflect N?/(3,2) into a simpler polynomial nwqo. The main
intuition is that, for each tuple (a,b) in the suffix, (3,2) £ (a,b) entails that

nwqo derivation

36 Chapter 2. Complexity Upper Bounds

3 L aor2 £ b. Thus we can partition the elements of this suffix into two groups:
the pairs where the first coordinate is in N/3, and the pairs where the second
coordinate is in N/2—an element might fulfill both conditions, in which case we
choose an arbitrary group for it. Thus the elements of the suffix can be either from
(N/3) x N or from N x (N/2), and the whole suffix can be reflected into their
disjoint sum (N/3) x N4+ N x (N/2).

For our example (2.44), we obtain the decomposition (see also Figure 2.3)

5.1), . AT,00.(11,(16,0), . €Nx (N/2)
<3’2>’{ (0,4), 0,3 e/ xn @)

We could have put (1,1) in either N x (N/2) or (N/3) x N but we had no
choice for the other elements of the suffix. Observe that the two subsequences
(0,4)(0,3) and (5,1),(17,0),(1,1), (16,0) are indeed bad, but not necessarily
(g,9(4))-controlled: [(17,0)| = 17 > 16 = g(g(4)). However, we do not see
them as independent sequences but consider their disjoint sum instead, so that
their elements inherit their positions from the original sequence, and indeed the

suffix sequence in (2.43) is (g, g(4))-controlled.
By a straightforward generalization of the argument:

(A x B)/{a,b) = ((A/a) x B) + (A x (B/b)) . (2.44)

Since it provides reflections instead of isomorphisms, (.44) is not meant to sup-
port exact computations of A/a by induction over the structure of A (see
kise 2.5). More to the point, it yields over-approximations that are sufficiently
precise for our purposes while bringing important simplifications when we have
to reflect the A/a foralla € Aoy,

2.3.3 A BounbinG FuncTiON

It is time to wrap up our analysis of L. We first combine the inductive residuation
and reflection operations into derivation relations 0y,: intuitively, the relation A 0,
A’ is included in the relation “A/a — A’ for some a € A.,,” (see
for the formal statement). More to the point, the derivation relation captures
a particular way of reflecting residuals, which enjoys some good properties: for

every n, given A anwqo in polynomial normal form (recall on page R8),
On A is a finite set of polynomial nwqos also in PNF, defined inductively by

O0n0 & 0 , (2.45)
0,N0 = [0}, (2.46)
9pN? £ (N1 (p —1)d}, (2.47)

(A + B) = ((0,A) + B) U (A+ (0,B)) , (2.48)

2.3. Bounding the Length Function 37

for d > 0 and A, B in PNF; in these definitions the + operations are lifted to act
upon nwqo sets Sby A+ S = {A+ A’ | A’ € S} and symmetrically. Note that
(2.4d) can be seen as a particular case of (2.47) if we ignore the undefined N0—!
and focus on its coefficient 0.

An important fact that will become apparent in the next section is

Fact 2.18 (Well-Foundedness). The relation 3 = |, 0y, is well-founded.
The definition of 9,, verifies:

Lemma 2.19. Let A be a polynomial nwqo in PNF and a € A, for somen. Then
there exists A’ in 0, A s.t. Aja — A’

Proof. Let A = N% 4+ ... 4+ N9 in PNF and let a € A, for some n; note that
the existence of a rules out the case of m = 0 (i.e. A = I'y), thus (2.45) vacuously
verifies the lemma.

We proceed by induction on m > 0: the base case is m = 1, i.e. A = N% and
perform a nested induction on d: if d = 0, then A = I'y, thus A/a = I'g by (.32):
this is in accordance with (), and the lemma holds. If d = 1, i.e. A = N, then

AJa — T', by (.40), and then T, — T',,_; = N°- (n— 1) as seen in Example 2.15
since a < n, thus (2.47) verifies the lemma. For the induction step on d > 1,
A=N/=NxN"!
and thus a = (k, b) for some k € N.,, and b € N4, 1. By (2.44),
Afa — (N/k) x NT71) 4 (N x (N*1 /b)) .
Using the ind. hyp. on N/k along with Remark 2.17,
< (N”- (n—1)) x N*1) + (N x (N~ /b))
= (N1 (n—1)) + (N x (N*71/b)).
Using the ind. hyp. on N?~! /b along with Remark 2.17,
— (N1 (n—1))+ (N x (N2 (d - 1)(n - 1)))
=NLodin—1),

in accordance with (2.47).
For the induction step on m > 1, i.e.if A = B 4 C, then wlog. a = (1,b) for

some b € B.,, and thus by (2.41) A/a = (B/b) + C. By ind. hyp., there exists
B' € 9,B st. B/b — B, thus A/a = B’ + C by Remark 2.17, the latter nwqo
being in 9, A according to (2.48). O

The computation of derivatives can be simplified by replacing (2.45) and (2.48)
by a single equation (see Exercise 2.6):

oA ={B+,N' | A=B+N%d>0}. (2.49)

bounding function

order type

maximal order type

38 Chapter 2. Complexity Upper Bounds

THE BounbpING FuncTioN M, 4 for A a polynomial nwqo in PNF is defined by
M, = L+ My : 2.50
g.a(n) = max {1+ Mg a(g(n))} (2.50)

This function M is well-defined as a consequence of and of the finiteness
of 0, A for all n and A; its main property is

Proposition 2.20. For any polynomial nwqo A in PNF, any control function g, and
any initial control n,

Lg7A(n) < Mg,A(n) . (2.51)

Proof. Either A, is empty and then L, 4(n) = 0 < M, (n), or there exists
some a € A, that maximizes L, 4/,(g(n)) in the Descent Equation, i.e.

Lg,A(n) =1+ Lg,A/a(g(n)) .

By there exists A’ € 9, A s.t. A/a — A’, thus by
Lga(n) <1+ Ly a(g(n))-

By well-founded induction on A" € 0,4, Ly a/(g(n)) < My ar(g(n)), thus
Lga(n) <1+ Mg a(g(n)) < Mg.a(n)

by definition of M. O

2.4 * CLASSIFICATION IN THE GRZEGORCZYK HIERARCHY

Now equipped with a suitable bound M, 4(n) on the length of (g, n)-controlled
bad sequences over A, the only remaining issue is its classification inside the Grze-
gorczyk hierarchy. We first exhibit a very nice isomorphism between polynomial
nwqos (seen up to isomorphism) and their maximal order types, which are ordinals
below w.

2.4.1 MaAxXIMAL ORDER TYPES

Consider a wqo (A, <): it defines an associated strict ordering < = {(a,a’) €
A% | a < d and @’ £ a}. There are many possible linearizations < of <, i.e. linear
orders with < C <, obtained by equating equivalent elements and “orienting” the
pairs of incomparable elements (a, a’) of (A4, <). Each of these linearizations is
a well-ordering and is thus isomorphic to some ordinal, called its order type, that
intuitively captures its “length.” The maximal order type of (A, <) is then defined
as the maximal such order type over all the possible linearizations; it provides a
measure of the complexity of the (n)wqo.

Example 2.21 (Maximal Order Types). In a finite set I'y, the strict ordering is
empty and the k! different linear orders over 'y, are all of order type k. In an initial

2.4. Classification in the Grzegorczyk Hierarchy 39

segment of the naturals [k] (respectively in the naturals N), the only linearization
is the natural ordering < itself, which is of order type £ (respectively w):

o(Ty) = o([k]) =k, o(N) =w. (2.52)

Remark 2.22. By definition of the maximal order type of a nwqo A, if A = A’
then o(A) = o(A").

As seen with our example, the maximal order type of a polynomial nwqo is not
necessarily finite, which prompts us to recall a few elements of ordinal notations.

OrDINAL TERMS. Let £g be the smallest solution of the equation w”* = z. It is well-
known that ordinals below £(can be written down in a canonical way as ordinal
terms in Cantor Normal Form (CNF), i.e. sums

m
a=wh 4P :Zwﬁi (2.53)
i=1

with 81 > -+ > B, > 0 and each j; itself a term in CNF. We write 1 for w®

n times

and o - n for oo 4 - - - + a. Recall that the direct sum operator + is associative
(a+B8)+v =a+ (B8+ 7)) and idempotent (0« + 0 = o« = 0 + «) but not
commutative (e.g. 1 + w = w # w + 1). An ordinal term « of form v + 1 is called
a successor ordinal. Otherwise, if not 0, it is a limit ordinal, usually denoted \. We
write CNF(«) for the set of ordinal terms o/ < « in CNF (which is in bijection
with the ordinal «, and we use ordinal terms in CNF and set-theoretic ordinals
interchangeably).

When working with terms in CNF, the ordinal ordering <, which is a well
ordering over ordinals, has a syntactic characterization akin to a lexicographic
ordering:

m n .

. / m<nandV1l <i<m,B; =/, or
D W< Whe ol srsm A ot
i—1 i1 J1 <j <min(m,n), B; < B and V1 <i < j,3; = B;.

(2.54)
Also recall the definitions of the natural sum a® o/ and natural product a® o/
of two terms in CNF:

m n m—+n m n m n
Suted W EY wn Yuted wh DO, @sy
i=1 J=1 k=1 =1 7=1 i=1 j=1

where v1 > -+ > 4 is a reordering of S, ..., Bm, 81, - - -, Bl

Cantor Normal Form

successor ordinal

limit ordinal

ordinal ordering

natural sum

natural product

40 Chapter 2. Complexity Upper Bounds

MaximMAL ORDER Types. We map polynomial nwqos (A, <, |.|4) to ordinals in w*
using the maximal order type o(A) of the underlying wqo (A, <). Formally, o(A)
can be computed inductively using (2.57) and the following characterization:

Fact 2.23. For any wqos A and B
o(A+ B) =0(A)®o(B), 0(Ax B)=0(A)®o(B) . (2.56)

Example 2.24. Given a polynomial nwqo in PNF A = """, N | its associated
maximal order type is 0o(A) = @, w?, which is in w*. It turns out that o is a

bijection between polynomial nwqos and w* (see Exercise 2.7).

It is more convenient to reason with ordinal arithmetic rather than with poly-
nomial nwqos, and we lift the definitions of @ and M to ordinals in w*. Define
for all @ in w®” and all d,n in N

0 ifd=0
O = 2.57
{wdl -(d(n —1)) otherwise (257)

O = {v& ol a=va wd} (2.58)
Mya(n) = max {1+ My (g(n))} . (2.59)

restates () and () using maximal order types, while ()
and (2.59) mirror respectively (.49) and (2.50) but work in w*; one easily obtains
the following slight variation of Proposition 2.2(:

Corollary 2.25. For any polynomial nwqo A, any control function g, and any initial
control n,
Lg,A(n) S Mg,o(A) (n) . (2.60)

A benefit of ordinal notations is that the well-foundedness of 0 announced in
is now an immediate consequence of < being a well ordering: one can
check that for any n, o/ € 9, implies o’ < « (see Exercise 2.8).

Example 2.26. One can check that

Mgy (n) =k Mg (n)=n. (2.61)
(Note that if n > 0 this matches Ly 1, (n) exactly by (.31)). This follows from
if k=0
k1" . , (2.62)
{k —1} otherwise.

2.4.2 Tue CicHON HIERARCHY

A second benefit of working with ordinal indices is that we can exercise a richer
theory of subrecursive hierarchies, for which many results are known. Let us first
introduce the basic concepts.

2.4. Classification in the Grzegorczyk Hierarchy 41

FUNDAMENTAL SEQUENCES. Subrecursive hierarchies are defined through assign-
ments of fundamental sequences (\;) <. for limit ordinal terms A, verifying A\, <
A for all z and A = sup,, \,. The usual way to obtain families of fundamental se-
quences is to fix a particular sequence w, for w and to define on ordinal terms in
CNF

(v +w5“)x =y +wP- Wy, (v+ w’\)x =y + W, (2.63)

We always assume the standard assignment w, = 2 in the remainder of the chap-
ter.

PREDECESSORS. Given an assignment of fundamental sequences, one defines the
(z-indexed) predecessor P,(c) < « of an ordinal @ # 0 as

Pla+1)=a, P.(\) = Po(\s) (2.64)

Thus in all cases P(a) < a since Ay < A. One can check that for all & > 0 and

x (see Exercise 2.9)

Py(v+a) =v+ Py(a) . (2.65)
Observe that predecessors of ordinals in w® are very similar to our derivatives:
for d = 0, P, (w?) = 0 and otherwise P, (w?) = w? - (n—1)+ P,(w?"!), which
is somewhat similar to (2.57), and more generally (2.69) is reminiscent of (2.58) but

chooses a particular strategy: always derive the w? summand with the smallest d.

The relationship will be made more precise in on the following page.

THE CicHON HIERARCHY. Fix a unary function h: N — N. We define the Cichoni
hierarchy (ha)ace, by

ho(z) 20, hoy1(z) =1+ ha(h(z), ha(z) = hy,(z). (2.66)

In the initial segment w®, this hierarchy is closely related to (M o)acw~: indeed,
we already noted the similarities between P, («) and 0, «, and furthermore

Lemma 2.27. Forall o > 0 ineg and x,
ha(z) =1+ hp () (h(z)) . (2.67)

Proof. By transfinite induction over o« > 0. For a successor ordinal o/ + 1,
hor+1(x) = 14+hor (h(x)) = 14+ hp, (a11) (h(2)). For a limit ordinal X, hy(2) =
hy, (z) is equal to 1+ hp, 5,y (h(z)) by ind. hyp. since A, < A, which is the same
as 1+ hp, () (h(x)) by definition of Py()). O

Example 2.28 (Cichon Hierarchy). First note that hy(z) = k for all k < w, z,
and h. This can be shown by induction on k: it holds for the base case k = 0 by
definition, and also for the induction step as hg1(z) = 1+ hg(h(z)) = 1+ k by

fundamental sequence

ordinal predecessor

Cichon hierarchy

structural ordering

42 Chapter 2. Complexity Upper Bounds

induction hypothesis. Therefore h,,(x) = hy(x) = = regardless of the choice of
h.
For ordinals greater than w, the choice of h becomes significant. Setting

H(x) = x + 1, we obtain a particular hierarchy (H,),, that verifies for instance

Hw-2(x) = Hw-l—x(x) = Hw(2$) +z =3z, (2.68)
Hp(x) =2z —x. (2.69)

The functions in the Cichon hierarchy enjoy many more properties, of which
we will use the following two:

Fact 2.29 (Argument Monotonicity). If h is monotone, then each h,, function is
also monotone in its argument: if v < x’ then hy () < ho(2').

Fact 2.30 (Classification in the Grzegorczyk Hierarchy). Let 0 < v < w. Ifh is
bounded by a function in ., and o < w1, then h,, is bounded by a function in
Zra

2.43 MONOTONICITY

One obstacle subsists before we can finally prove the Length Function Theorem:
the functions M, ,, and h,, are not monotone in the parameter «. Indeed, o/ < o
does not imply M, o(n) < My o(n) for all n: witness the case « = w and o/ =
n+1: My, (n) = 1+My,-1(g(n)) = nbut My ,+1(n) = n+1by Example 2.24.
Similarly with h,, as seen with Example 2.2, h,y1(z) = 2 + 1 > 2 = h,(z),
although z + 1 < w.

In our case a rather simple ordering is sufficient: we define a structural order-
ing T for ordinals in w* by

wd1+---+wdmgwd3+---+wd% & m<nandV1l <i<m, digdg
(2.70)

for ordinal terms in CNF(w“), ie.w > dy > -+ > dy, > Oandw > d} >
- > d), > 0. A useful observation is that C is a precongruence for & (see

Exercise 2.10):
aCad andyC v implya®yC o @y . (2.71)

The structural ordering rules out the previous examples, as + 1 [Z w for
all z. This refined ordering yields the desired monotonicity property for M —see

next (it can also be proven for h; see Exercise 2.11)—but let us first

introduce some notation: we write &' = 9y ,aif v =y @ wand o =@ 9w

Then (2.59) can be rewritten as

Mg o(n) = max . {1 + Mg o, 0 (g(n))} . (2.72)

a=yDw

2.4. Classification in the Grzegorczyk Hierarchy 43

Lemma 2.31 (Structural Monotonicity). Let o, o’ be inw® andz > 0. Ifa C o/,
then My o(x) < My o ().

Proof. Let us proceed by induction. If & = 0, then M () = 0 and the lemma
holds vacuously. Otherwise, for the induction step, write o = 2111 w¥ and
o = Z;;l w% ; there is some maximizing index 1 <4 < m < n such that

Mg,oz(x) =1+ Mg,adi,za (g(aj)) :

Asi < nand d; < d, observe that 9y, ;o C 9y ./, and by Fact 2.18, we can
apply the induction hypothesis:

Mg,oc(x) <1+ Mg,ad(,za’ (g(l’))
< Mg,a’(x) .]

An important consequence of is that there is a maximizing strat-
egy for M, which is to always derive along the smallest term:

Lemma 2.32 (Maximizing Strategy). If oo = v 4 w? for some d > 0, then
Mga(n) =1+ Mg 15,00 (9(n)). (2.73)
Proof. Leta =~ & w? @ w?. We claim that if d < ' and n < n’, then
Odn'Odr nt & Ot 1 Og v . (2.74)

The lemma follows immediately from the claim, Lemma 2.31], and the fact that g
is increasing.

The claim itself is easy to check using (2.71): abusing notations for the cases
ofd=0ord =0,

OanOne =7 @ (w1 (d(n - 1))+ (dn ~ 1))
Gd/,nlad,na =v®d (wd/_l . (d'(n' — 1)) + wd_1 . (d(n — 1))) .

Observe that d'(n — 1) +d(n’ — 1) < d'(n’ — 1) + d(n — 1), i.e. that the second
line has at least as many terms as the first line, and thus fulfills the first condition
of the structural ordering in (2.70). Furthermore, it has at least as many w® !
terms, thus fulfilling the second condition of (2.70). O

Let us conclude with a comparison between derivatives and predecessors: de-
fine for d > 0 the function

faolx) S de—d+1, (2.75)

then we have the following relationship:

44 Chapter 2. Complexity Upper Bounds

Corollary 2.33. If0 < a < w®!, then My o(n) <1+ Mg.p, (@) (g(n)).

Proof. Since 0 < a < w1 it can be written in CNF as o = v+ w? for some

v < aandd <d. BylLemma233 Myo(n) =1+ M, 5 . (9(n)). Ifd =0,
ie.a =+ 1, then
Y+ 0l = Ppyny(@) =7

and the statement holds. Otherwise, by (2.71)

Y4 Ot =y +w? Tt d(n—1)
Cvy+ wd_l : d(n - 1) + Pfd(n) (wd_l)
= Pfd(n)(a))

from which we deduce the result by Lemma 2.31 O

2.44 WRraPPING Up

We have now all the required ingredients for a proof of the Length Function The
bren]. Let us start with a uniform upper bound on M, g0

Theorem 2.34 (Uniform Upper Bound). Let d > 0, g be a control function and
select a monotone function h such that h(f4(x)) > fai(g(z)) forall z. Ifa < w1,
then

My,a(n) < ha(fa(n)) . (2.76)

Proof. We proceed by induction on «: if & = 0, then My o(n) = 0 < ho(fa(n))
for all n. Otherwise, by [Corollary 2.33,

Mg,a(n) S 1 =+ Mgvpfd(n)(a) (g(.’IJ)) .

Because Py, () () < a, we can apply the induction hypothesis:

Mya(n) S1+hp, () (fal9(n))
< 1+hp @ ((fa(n))

since h(f4(n)) > fi(g(n)) and hpfd(n)(a) is monotone by [Fact 2.29. Finally, by
Lemma 2.27 |

Mg a(n) < ha(fa(n)) . -

2.4. Classification in the Grzegorczyk Hierarchy 45

For instance, for & = w (and thus fy(z) = z), yields that
Mgy (n) < hy(n) =n, (2.77)

which is optimal (recall examples and .28). Other examples are g(z) = 2z,
g(z) = 22, g(x) = 27, where setting h(z) = g(x) fits:

If g(z) is 22, 27, or 2%, then My o(n) < go(fa(n)) . (2.78)

In a d-dimensional VASS with p states, sequences of configurations are con-

trolled by g(z) = 2+0b for some maximal increment b > 0, and then h(x) = z+db
is also a suitable choice, which verifies

Lg,NdXFP (n) < Mg,wd~p(n) < hwd-p(fd(n)) < Fjbp(fd(n» - fd(n)) (2-79)
the latter being a function in .%; when d, b, p are fixed:

Corollary 2.35. Let g(x) = x+b for someb > 0, and fixd, p > 0. Then Ly na 1,
is bounded by a function in .%.

Finally, we can choose a generic h(z) = d(g(z+d)—2)+1, as in the following
proof of the Length Function Theorem:

Theorem 2.8 (Length Function Theorem). Let g be a control function bounded by
some function in %, for some~y > 1 and d,p > 0. Then Ly nayr, is bounded by a
function in 7, 4.

Proof. Let A = N? x T'). The case of d = 0 is handled through (2.31), which

shows that L, 4 is a constant function in .%,.

For d > 0 we first use Corollary 2.25:

Lga(n) < Mg ,a(n). (2.80)
Observe that o(A) < we*!, thus by [Theorem 2.34,
Lga(n) < hoeay(fa(n)) , (2.81)

where h(z) = d - (g(z + d) — 2) + 1 verifies h(fy(x)) = h(d(z — 1) + 1) =
d(g(de4+1)—2)4+1>d(g(dx)—1)+1 > d(g(x)—1)+1 = fy(g(x)) since g is
strictly monotone and d > 0. Because h is defined from g using linear operations,
for all v > 1, g is bounded in .%, if and only if h is bounded in .%,, and thus by

Fact 2.30, L, 4 is bounded in Fytd- O

Remark 2.36. Note that the proof of carries more generally for func-
tions f with f(z) > fa(x): if A(f(z) > f(g(z)), then Myo(n) < half(n).
Because proving h(fq(z)) > fi(g(x)) can be problematic, a simpler choice for f
can ease the analysis.

One such example is f(z) = dx + 1: then, h(z) = g(x) fits if g is super-
homogeneous, i.e.if it verifies g(dz) > d-g(z) foralld, x > 1, and thus g(dz+1) >
g(dr) +1>d- g(z)+ 1 since g is assumed to be strictly increasing:

If g is super-homogeneous, then M o(n) < go(dn+1) . (2.82)

super-homogeneous
function

*

Grzegorczyk hierarchy
zero function

one function

sum function

projection function

substitution

limited primitive recursion

primitive recursion

46 Chapter 2. Complexity Upper Bounds

How good are these upper bounds? We already noted that they were optimal
for N in (2.77), and the sequence (2.1)) extracted from the successive configura-
tions of SIMPLE was an example of a bad sequence with length function in .%;.
generalizes SIMPLE to arbitrary dimensions d and control functions
g and shows that a length g,q(n) can be reached using the lexicographic order-
ing; this is very close to the upper bounds found for instance in equations (2.77),
(2.78), and (£.87). The next chapter will be devoted to complexity lower bounds,
showing that for many decision problems, the enormous generic upper bounds
we proved here are actually unavoidable.

EXERCISES

Exercise 2.1 (Disjoint Sums). Let (41, <4,) and (Asg, <a,) be two nwqos. Prove that
(Al + A27 §A1+A2) isa nwqo (see (@_@))

Exercise 2.2 (Fast-Growing Functions).

(1) Show that Fy(2) = 2z and Fy(z) = 2%z (stated in (2.20)). What are the values of
F}(0) depending on k?

(2) Show that each fast-growing function is strictly expansive, i.e. that Fj,(x) > « for all
kand z > 0.

(3) Show that each fast-growing function is strictly monotone in its argument, i.e. that
for all k and 2’ > z, Fy.(z') > Fy(x).

(4) Show that the fast-growing functions are monotone in the parameter k, more pre-
cisely that Fj,1(z) > Fi(z) for all k and z > 0.

Exercise 2.3 (Grzegorczyk Hierarchy). Each class .7 of the Grzegorczyk hierarchy is
formally defined as the closure of the constant zero function 0 and one function 1, the sum
function +: x1, X2 — x1 + X2, the projections 7j*: x1, ..., 2z, — 2, forall 0 < ¢ < n, and
the fast-growing function F},, under two basic operations:

substitution: if ho, h1, ..., hy, belong to the class, then so does f if
flx1,. . zn) = ho(hi(z1, ..o xn), - hp(T1, -, 20))
limited primitive recursion: if h1, he, and hg belong to the class, then so does f if

fO 21, 20) = ha(z1,. ., 20) ,
f(y+]-,$1a"'axn) :hQ(yvmlv"wmn;f(y,mla"'axn))7
f(y7x1,---,$n) h3(y7x17"'7x7l) .

IN

Observe that primitive recursion is defined by ignoring the last limitedness condition in
the previous definition.

Exercises 47

(1) Define cut-off subtraction x ~ y as x — y if x > y and 0 otherwise. Show that the
following functions are in %:
predecessor : x — x ~ 1,
cut-off subtraction : x,y — T ~ v,
odd: © — x mod 2.

(2) Show that F; € % forall j < k.
(3) Show that, if a function f(x1,...,z,) is linear, then it belongs to .%. Deduce that
Fo = A.

(4) Show that if a function f(x1,...,z,) belongs to .%; for k > 0, then there exists a
constant ¢ in N s.t. for all z1,...,2,, f(21,...,2,) < F¢(max; z; + 1). Why does
that fail for £ = 0?

(5) Deduce that Fj1 does not belong to .%;, for k > 0.

Exercise 2.4 (Complexity of while Programs). Consider a program like SIMPLE that con-
sists of a loop with variables ranging over Z and updates of linear complexity. Assume
we obtain a k-ary disjunctive termination argument like ([.1d) on page B, where we syn-
thetized linear ranking functions p; into N for each T}.

What can be told on the complexity of the program itself?

Exercise 2.5 (Residuals of Cartesian Products). For a nwqo A and an element a € A,

define the nwqo 14 @ (a substructure of A) by 14 a = {a/ € A] a < a'}. Thus
AJa = AN (Ta a). Prove the following:

Ax B/{a,b) % (AJa+ 15 b) + (Afa x B/b) + (14 a x B/b) (+)
Ax B/{a,b) # (AJa x B) + (A x B/b).)

Exercise 2.6 (Derivatives). Prove Equation (2.49): 9,4 = {B + 9,N? | A = B + N},

Exercise 2.7 (Maximal Order Types). The mapping from nwqos to their maximal order

types is in general not a bijection (recall o(T'y) = o([k]) = k in Example 2.21)). Prove that,
if we restrict our attention to polynomial nwqos, then o is a bijection from polynomial
nwqos (up to isomorphism) to CNF(w®).

Exercise 2.8 (Well Foundedness of d). Prove Fact 2.18: The relation & = | J , On is well-
founded.

Exercise 2.9 (Predecessors). Prove Equation (2.65): Foralla > 0, P, (y+a) = v+ Py (a).

Exercise 2.10 (Structural Ordering). Prove Equation (2.71): C is a precongruence for &.

Exercise 2.11 (Structural Monotonicity). Let a, o’ be in w*, h be a strictly monotone
unary function, and = > 0. Prove that, if « C o/, then hq () < ho(2).

cut-off subtraction

*

r-good sequence

r-bad sequence

*k

lexicographic ordering

48 Chapter 2. Complexity Upper Bounds

Exercise 2.12 (r-Bad Sequences). We consider in this exercise a generalization of good
sequences: a sequence ag,aj, ... over a qo (A, <) is r-good if we can extract an in-
creasing subsequence of length » + 1, i.e. if there exist r 4+ 1 indices ¢9 < -+ < %, s.t.
a;, < -+ < a;. Asequence is r-bad if it is not r-good. Thus “good” and “bad” stand for
“1-good” and “1-bad” respectively.

By (stated on page [), 7-bad sequences over a wqo A are always finite, and
using the same arguments as in Bection 2.1.1, r-bad (g, n)-controlled sequences over a
nwqo A have a maximal length L, , 4(n). Our purpose is to show that questions about
the length of r-bad sequences reduce to questions about bad sequences:

Lgra(n) = Lg axr. (n) . ®
(1) Show that such a maximal (g, n)-controlled r-bad sequence is (r — 1)-good.

(2) Given a sequence ag, a1, ...,ap over anwqo (A, <a,|.|4), an index ¢ is p-good if it
starts an increasing subsequence of length p 4 1, i.e. if there exist indices ¢ = iy <
< <pstoag < --- < a;,. The goodness (i) of an index i is the largest p s.t. 7 is
p-good. Show that Ly, 4(n) < Ly axr,(n).

(3) Show the converse, i.e. that Ly, a(n) > Ly axr, (1)

Exercise 2.13 (Hardy Hierarchy). A well-known variant of the Cichon hierarchy is the
Hardy hierarchy (h*),, defined using a unary function 2: N — N by

ho(x) o T, ha+1(x) Y e (h(x)) , hA(x) Y pra ().

Observe that h® is intuitively the ath (transfinite) iterate of the function h. As with the
def

Cichon hierarchy, one case is of particular interest: that of (H%),, for H(xz) = x+ 1. The
Hardy hierarchy will be used in the following exercises and, quite crucially, in Chapter 3.

(1) Show that H,(z) = H*(z) — « for all o, . What about h,(z) and h*(z) — z if
h(z) > z?

(2) Show that h7™*(z) = h? (h*(z)) for all h,~, , # with v + o in CNF.

def def

(3) Extend the fast-growing hierarchy to (Fy)a by Fui1(x) = F¥=(z) and F)(z) =
F, (z). Show that H*" (z) = F,(x) for all o, .

(4) Show that hyo(z) = hy(h*(z)) + ha(z) for all h, v, a, z with v + a in CNF.

(5) Show that h,, measures the finite length of the iteration in h?, ie. that h*(z) =
hPe(®)(z) for all h, ar, z—which explains why the Cichon hierarchy is also called the
length hierarchy.

Exercise 2.14 (Finite Values in Coverability Trees). Consider the Karp & Miller coverabil-
ity tree of a d-dimensional VAS (A, x() with maximal increment b = maxa € Ala|, and
maximal initial counter value n = |x¢|. Show using that the finite values in
this tree are bounded by hwd'd(fd(n)) for h(z) = = + db.

Exercise 2.15 (Bad Lexicographic Sequences). We consider in this exercise bad sequences
over N for the lexicographic ordering <, (with most significant element last) defined by

Bibliographic Notes 49

X <jex ¥ & x(d) < y(d) or (x(d) = y(d)
and (x(1),...,x(d — 1)) <iex (y(1),...,y(d—1))).

This is a linearization of the product ordering over N%; writing N{_ for the associated
nwqo (N%, <j.y, |.|), we see that

Lg,Nd (n) < Lg,Nd (n)

lex
for all control functions g and initial norms n.
Since <) is linear, there is a unique maximal (g, n)-controlled bad sequence over
N¢_, which will be easy to measure. Our purpose is to prove that for all n,
Lg Ne (1) = gpa(n) . ®)

2" lex
(1) Set g(x) = x + 2. Show that Ly 2 (2) = 8 = g,2(2).
(2) Show that L, n2(2) > 8 with the same g(z) = x + 2.

(3) Let n > 0, and write a program LEX4(g,n) with d counters x(1),...,x(d) whose
configurations encode the d coordinates of the maximal (g, n)-controlled bad sequence
over N¢ | along with an additional counter ¢ holding the current value of the control.
The run of LEx;(g,n) should be a sequence (x1,c1), (X2,C2), ..., (X¢, Cy) of pairs
(x;, c;) composed of a vector x; in N? and of a counter c;. For instance, with g(x) =
x + 2, the run of LEX2(g, 2) should be

((1,1),4), ({0, 1),6), ((5,0),8), ((4,0), 10), ({3,0), 12), ((2, 0), 14), (1, 0), 16), ({0, 0), 18) .

(4) Let (x1,¢1), (X2,C2), ..., (X¢, c¢) be the unique run of LEx (g, n) for n > 0. Define
ax) =wit x(d) + -+ W - x(1) C))

for any vector x in N¢. Show that, for each i > 0,
gt (n) =i+ gagx) (ci) - (h

(5) Deduce ().

(6) Show that, if (x1, c1), (x2,C2),. .., (x¢, Cp) is the run of LEx4(g,n) for n > 0, then
d
ce=g“ (n).

BiBrioGrAaPHIC NOTES

This chapter is based mostly on (Figueira et all, 2011; Schmitz and Schnoebelen, 2011).
The reader will find earlier analyses of in the works of McAloon (1984)
and Clote (1986), who employ large intervals in a sequence and their associated Ramsey
theory (Ketonen and Solovay, 1981), showing that large enough intervals would result
in good sequences. Different combinatorial arguments are provided by Friedmar (2001,
Theorem 6.2) for bad sequences over N¢, and Howell et al| (1986) for sequences of VASS
configurations—where even tighter upper bounds are obtained for Exercise 2.14.
Complexity upper bounds have also been obtained for wqos beyond Dickson’s Lemma:
Schmitz and Schnoebelen (2011), from which the general framework of normed wqos and

50 Chapter 2. Complexity Upper Bounds

derivations is borrowed, tackle Higman’s Lemma, and so do Cichort and Tahhan Bittay
(1998) and Weiermann (1994); furthermore the latter provides upper bounds for the more
general Tree Theorem of Kruskal.

The hierarchy (%)r>2 described as the Grzegorczyk hierarchy in and
is actually due to Léb and Wainet (1970); its relationship with the original
Grzegorczyk hierarchy (& k)k (GrzegorczyK, [1953) is that %, = &%t forall k > 2. There
are actually some difference between our definition of (F}) and that of
(1970), but it only impacts low indices k < 2, and our definition follows contemporary
presentations. Maximal order types were defined by de Jongh and Parikh (1977), where
the reader will find a proof of Fact 2.23. The Cichon hierarchy was first published in
(Cichon and Tahhan Bittar, 1998), where it was called the length hierarchy. More material
on subrecursive hierarchies can be found in textbooks (Rose, 1984; Fairtlough and Wainex,
1998; Odifreddi, 1999) and in Appendix [A. is proven there as Equation (A.25),
and Fact 2.3 is a consequence of lemmas [A.d, [A.9, and [A.16.

3

COMPLEXITY LOWER BOUNDS

B.1 Counter Machines 52
B.2 Hardy Computations 54
B.3 Minsky Machines on a Budget 57
B.4 Ackermann-Hardness for Lossy Counter Machineg 59
B.5 Handling Reset Petri Nets 61
B.6 Hardness for Termination 64

The previous chapter has established some very high complexity upper bounds
on algorithms that rely on Dickson’s Lemmd over d-tuples of natural numbers
for termination. The Length Function Theorem shows that these bounds can be
found in every level of the Grzegorczyk hierarchy when d varies, which means
that these bounds are Ackermannian when d is part of the input.

Given how large these bounds are, one should wonder whether they are useful
at all, i.e. whether there exist natural decision problems that require Ackerman-
nian resources for their resolution. It turns out that such Ackermann complexities
pop up regularly with counter systems and Dickson’s Lemma—see Section B.2 for
more examples. We consider in this chapter the case of lossy counter machines.

Lossy counter machines and Reset Petri nets are two computational models
that can be seen as weakened versions of Minsky counter machines. This weak-
ness explains why some problems (e.g. termination) are decidable for these two
models, while they are undecidable for the Turing-powerful Minsky machines.

While these positive results have been used in the literature, there also ex-
ists a negative side that has had much more impact. Indeed, decidable verifica-
tion problems for lossy counter machines are Ackermann-hard and hence cannot
be answered in primitive-recursive time or space. The construction can also be
adapted to Reset Petri nets, incrementing counter machines, etc.

Theorem 3.1 (Hardness Theorem). Reachability, termination and coverability for
lossy counter machines are Ackermann-hard.
Termination and coverability for Reset Petri nets are Ackermann-hard.

These hardness results turn out to be relevant in several other areas; see the
Bibliographic Noted at the end of the chapter.

Hardness
Theorem|defpageidx

counter machine

Minky machine

52 Chapter 3. Complexity Lower Bounds

OUTLINE. defines counter machines, both reliable and lossy.
builds counter machines that compute Ackermann’s function. puts

Minsky machines on a budget, a gadget that is essential in where the
main reduction is given and the hardness of reachability and coverability for lossy
counter machines is proved. We then show how to deal with reset nets in

ion 3.5 and how to prove hardness of termination in Section 3.6.

3.1 COUNTER MACHINES

Counter machines are a model of computation where a finite-state control acts
upon a finite number of counters, i.e. storage locations that hold a natural num-
ber. The computation steps are usually restricted to simple tests and updates.
For Minsky machines, the tests are zero-tests and the updates are increments and
decrements.

For our purposes, it will be convenient to use a slightly extended model that
allows more concise constructions, and that will let us handle reset nets smoothly.

3.1.1 ExTENDED COUNTER MACHINES

Formally, an extended counter machine with n counters, often just called a counter
machine (CM), is a tuple M = (Loc, C, A) where Loc = {{1,...,£p} is a finite
set of locations, C = {ci,...,Cy} is a finite set of counters, and A C Loc x
OP(C') x Locis a finite set of transition rules. The transition rules are depicted as
directed edges (see figs. B.1 to B.3 below) between control locations labeled with an
instruction op € OP(C) that is either a guard (a condition on the current contents
of the counters for the rule to be firable), or an update (a method that modifies the
contents of the counters), or both. For CMs, the instruction set OP(C') is given by
the following abstract grammar:

OP(C) 3 op::= ¢c=0? /* zero test */ |c:=0 /* reset */
| c>0? c-- /*decrement */ | c=c’? /* equality test */
| c++ /* increment */ |c:=c’ /* copy */

where c, ¢’ are any two counters in C. (We also allow a no_op instruction that
does not test or modify the counters.)

A Minsky machine is a CM that only uses instructions among zero tests, decre-
ments and increments (the first three types). Petri nets and Vector Addition Sys-
tems with States (VASS) can be seen as counter machines that only use decrements
and increments (i.e. Minsky machines without zero-tests).

3.1.2 OPERATIONAL SEMANTICS

The operational semantics of a CM M = (Loc, C, A) is given under the form of
transitions between its configurations. Formally, a configuration (written o, 6, . . .)

3.1. Counter Machines 53

of M is atuple (¢,a) with £ € Locrepresenting the “current” control location, and
a € N%, a C-indexed vector of natural numbers representing the current contents
of the counters. If C is some {cy, ..., Cy}, we often write (¢,a) under the form
(¢,a1,...,ay). Also, we sometimes use labels in vectors of values to make them
more readable, writing e.g.a = (0,...,0,cx:1,0,...,0).

Regarding the behavior induced by the rules from A, there is a transition
(also called a step) o gstd o' if, and only if, o is some (¢, aq,...,a,), o’ is some
(0, a,....al), A> 6= ({ op ') and either:

op is c=07? (zero test): ar, =0, and a] = a; foralli =1,...,n,or

op is c;>0? ci-- (decrement): aj, = aj, — 1, and a} = q; for all i # k, or
op is Cp++ (increment): a) = aj + 1, and a = q; for all i # k, or

op is ci: =0 (reset): a), = 0, and a; = a; for all i # k, or

op is cp=Cp? (equality test): aj, = ap, and a} = q; foralli =1,...,n, or
op is Ci: =Cp (copy): aj, = ap, and a) = a; for all 7 # k.

(The steps carry a “std” subscript to emphasize that we are considering the usual,
standard, operational semantics of counter machines, where the behavior is reli-

able.)

As usual, we write o gstd o', or just 0 —gq o/, when o gstd o' for some
0 € A. Chains 0y —gq 01 —>ad -+ —>std Om Of consecutive steps, also called
runs, are denoted o9 —3,4 o, and also g —>:{d om when m > 0. Steps may also
be written more precisely under the form M o —4q o’ when several counter
machines are at hand and we want to be explicit about where the steps take place.

Foravectora = (a1, ...,ay,), oraconfigurationo = (¢,a), welet |a| = |o| =
Z?:l a; denote its size. For N € N, we say thatarunog — 01 — -+ — o, is
N-bounded if |o;| < N foralli =0,...,n.

3.1.3 Lossy COUNTER MACHINES

Lossy counter machines (LCM) are counter machines where the contents of the
counters can decrease non-deterministically (the machine can “leak”, or “lose
data”).

Technically, it is more convenient to see lossy machines as counter machines
with a different operational semantics (and not as a special class of machines):
thus it is possible to use simultaneously the two semantics and relate them. Incre-
menting errors too are handled by introducing a different operational semantics,

see Exercise 3.3.

lossy counter machine

Hardy hierarchy

54 Chapter 3. Complexity Lower Bounds

Formally, this is defined via the introduction of a partial ordering between the
configurations of M:

/ def

(l,a1,...;a,) < (0 ay,...a) & =0 Nay<d\A-Na, <a,. (3.1)

»

o < ¢’ can be read as “o is o’ after some losses (possibly none)

Now “lossy” steps, denoted M + o inossy o', are given by the following
definition:

0 Sy 0 & 30,0, (0>0 A0S0 A6 > (3.2)
Note that reliable steps are a special case of lossy steps:

M F o —gq o implies M - o —lossy o' (3.3)

3.1.4 BEHAVIORAL PROBLEMS ON COUNTER MACHINES

We consider the following decision problems:

Reachability: given a CM M and two configurations oini and ogoql, is there a run
M F oy —=* Ugoal?

Coverability: given a CM M and two configurations ojn; and 0gea1, is there a run
M & oy —* o for some configuration o > 04 that covers ggpq?

(Non-)Termination: given a CM M and a configuration ojy;, is there an infinite
run M - oy 01—+ =0 — -7

These problems are parameterized by the class of counter machines we consider
and, more importantly, by the operational semantics that is assumed. Reacha-
bility and termination are decidable for lossy counter machines, i.e. counter ma-
chines assuming lossy steps, because they are well-structured. Observe that, for
lossy machines, reachability and coverability coincide (except for runs of length
0). Coverability is often used to check whether a control location is reachable
from some ojpi. For the standard semantics, the same problems are undecidable
for Minsky machines but become decidable for VASS and, except for reachability,

for Reset nets (see Section 3.5).

3.2 HarpY COMPUTATIONS

The Hardy hierarchy (H*:N — N),«¢, is a hierarchy of ordinal-indexed func-
tions, much like the Cichori hierarchy introduced in Section 2.4.4. Its definition
and properties are the object of on page |48, but let us recall the

following:

H(n)=n, H'(n) = H*(n+1), Hn)=HM(n). (3.4

3.2. Hardy Computations 55

Observe that H' is the successor function, and more generally H® is the ath
iterate of the successor function, using diagonalisation to treat limit ordinals. Its
relation with the fast growing hierarchy (Fy,)a<e, is that

H“"(n) = Fa(n) (3.5)
while its relation with the Cichon hierarchy (Hg)q<¢, is that
H%(n) = Hy(n) +n. (3.6)

Thus H*(n) = H™(n) = 2n, H**(n) = 2"n is exponential, H*’ non-elementary,
and H*" Ackermannian; in fact we set in this chapter

Ack(n) £ F,(n) = H*" (n) = H*" (n). (3.7)

Two facts that we will need later can be deduced from (B.6) and the corre-
sponding properties for the functions in the Cichon hierarchy: Hardy functions
are monotone in their argument:

Fact 3.2 (see Fact 2.29). Ifn < n' then H*(n) < H®(n/) for all a < «.

They are also monotone in their parameter relatively to the structural ordering

defined in on page 2:
Fact 3.3 (see Exercise 2.11). Ifo C o, then H*(n) < H (n) for alln.

The (F,,)q hierarchy provides a more abstract packaging of the main stops of
the (extended) Grzegorczyk hierarchy and requires lighter notation than the Hardy
hierarchy (H®),. However, with its tail-recursive definition, the Hardy hierarchy
is easier to implement as a while-program or as a counter machine. Below we
weakly implement Hardy computations with CMs. Formally, a (forward) Hardy
computation is a sequence

Qp;Ng — Q13N — Q23N —> -+ —> Qi Ny (3.8)

of evaluation steps implementing the equations in (3.4) seen as left-to-right rewrite
rules. It guarantees ap > a1 > ag > --- andng < n; < ng < --- and keeps
H%i(n;) invariant. We say it is complete when oy = 0 and then ny = H*(ng)
(we also consider incomplete computations). A backward Hardy computation is
obtained by using (B.4) as right-to-left rules. For instance,

m—1

wsm—wthm — w m;m (3.9)

constitute the first three steps of the forward Hardy computation starting from
w*;mif m > 0.

Hardy computation

56 Chapter 3. Complexity Lower Bounds

3.2.1 EnNcopiNG HARDY COMPUTATIONS

Ordinals below w™*! are easily encoded as vectors in N™*1: given a vector a =
(@m, - - -, a0) € N™FL we define its associated ordinal in w™*! as
def M m—1 0
a(@d) =w™ - am tw -1+t w cag. (3.10)

Observe that ordinals below w™*! and vectors in N”**! are in bijection through
a.

+1

We can then express Hardy computations for ordinals below w™ " as a rewrite

H . .
system — over pairs (a; n) of vectors in N™! and natural numbers:

(Qmy .. yag + 15n) = (amy ... a0;n + 1), (D1)
k>0 zeroes k—1 zeroes
(A oyar+1,0,...,05n) = (am,...,a5,n,0,...,0;n) . (D2)

The two rules (D) and (DJ) correspond to the successor and limit case of (B.4),
respectively. Computations with these rules keep H*(?) (n) invariant.

A key property of this encoding is that it is robust in presence of “losses.” In-
deed, ifa < a’, then a(a) C «(a’) and Fact 3.3 shows that H*®) (n) < H*@)(p).
More generally, adding to the mix,

Lemma 3.4 (Robustness). Ifa < a’ andn < n' then H*® (n) < H*@)(n/).

Now, 2 terminates since (a;m) KN (a’;n') implies a(a) > «(a’). Further-
more, if a # 0, one of the rules among (D{) and (DJ) can be applied to (a;n).
Hence for all a and n there exists some n’ such that (a;n) 4 *(0;n'), and then
n' = H*®)(n). The reverse relation 5 —1 terminates as well since, in a step

H _ . . .
(a’;n’) = ~{a;n), either n’ is decreased, or it stays constant and the number of
zeroes in a’ is increased.

3.2.2 IMPLEMENTING HARDY COMPUTATIONS WITH COUNTER MACHINES

Being tail-recursive, Hardy computations can be evaluated via a simple while-loop

that implements the LN rewriting. Fix a level m € N: we need m + 2 counters,
one for the n argument, and m + 1 for the a € N™*! argument.

We define a counter machine My(m) = (Locy, C, Ag), or My for short, with
C = {ag, a1, ...,am,n}. Its rules are defined pictorially in Figure 3.1: they im-

plement B oasa loop around a central location ¢g, as captured by the following

lemma, which relies crucially on Lemma 3.4:

Lemma 3.5 (Behavior of Mp). Foralla,a’ € N"t! andn,n’ € N:

1 If{(a;n) 4 (a’;n') then My & (Cy,a,n) =%, ((g,a’,n’).

3.3. Minsky Machines on a Budget 57

a1>0?ag- -
n
ap>0? ap- - = ao
al
am

Figure 3.1: Mpy(m), a counter machine that implements 4.

2 If My & (bg,a,n) =%, (ba,a’,n') then H® (n) = H*®)(n/),
3. If Myt (Uw,a,n) =g, (€, a’,n') then H@)(n) > H*@)(p/).

The rules (D]-DJ) can also be used from right to left. Used this way, they
implement backward Hardy computations, i.e. they invert H. This is implemented
by another counter machine, My-1(m) = (Locy-1,C, Agy-1), or My-1 for short,

defined pictorially in Figure 3.3,

. H _ .
M1 implements — ~! as a loop around a central location /-1, as captured

by Lemma 3.4. Note that My-1 may deadlock if it makes the wrong guess as
whether a; contains n + 1, but this is not a problem with the construction.

Lemma 3.6 (Behavior of My 1). Foralla,a’ € N™*1 andn,n’ € N:

1 If{(a;n) 4 (@’;n') then My-1 = (by1,a’,n') =%, (by-1,2a,n).
2 If My b (byr,a,n) =%, (by1,a’,n') then H*® (n) = H*@)(n/),
3. If My F (by-1,a,n) =, (Cy-1,’,n) then HY@) (n) > H@) (/).

3.3 MINSKY MACHINES ON A BUDGET

With a Minsky machine M = (Loc, C, A) we associate a Minsky machine M? =
(Locy, Cp, Ap). (Note that we are only considering Minsky machines here, and
not the extended counter machines from earlier sections.)

M? is obtained by adding to M an extra “budget” counter B and by adapting
the rules of A so that any increment (resp. decrement) in the original counters is
balanced by a corresponding decrement (resp. increment) on the new counter B,

58

Chapter 3.

y

Complexity Lower Bounds

ap

a1

am

Figure 3.2: Mpy-1(m), a counter machine that implements — ~".

M

[

@_.

C3:0?

@

cptt

A

2

N\

c2>0? cp- -

1

[\ (=on budget)

:)
L, o el
B>0?B- - 3 E
cqtt+ ?
kZZ c2>0? cp- - ® B++ @J

Figure 3.3: From M to M? (schematically).

so that the sum of the counters remains constant. This is a classic idea in Petri
nets. The construction is described on a schematic example (Figure 3.3) that is
clearer than a formal definition. Observe that extra intermediary locations (in
gray) are used, and that a rule in M that increments some c; will be forbidden in
M? when the budget is exhausted.

We now collect the properties of this construction that will be used later. The
fact that M? faithfully simulates M is stated in lemmas B.§ and B.9. There and at
other places, the restriction to “/, ¢’ € Loc” ensures that we only relate behavior
anchored at the original locations in M (locations that also exist in M?) and not
at one of the new intermediary locations introduced in M?.

First, the sum of the counters in M? is a numerical invariant (that is only
temporarily disrupted while in the new intermediary locations).

Lemma 3.7. If M° - (¢, B,a) =%, (¢',B',a’) and (,{' € Loc, then B + |a| =

B’ +a/|.

3.4. Ackermann-Hardness for Lossy Counter Machines 59

Observe that M can only do what M would do:

Lemma 3.8. If M® + (¢,B,a) —%, (¢,B',a’) and {,¢' € Loc then M
(¢,a) =%, (¢,a).

Reciprocally, everything done by M can be mirrored by M? provided that a
large enough budget is allowed. More precisely:

Lemma 3.9. If M + (¢,a) —%, (¢,a") is an N-bounded run of M, then M®°
has an N-bounded run M® + (¢, B,a) —%, (¢,B',a') for B = N — |a| and
B'£ N — |a/|.

Now, the point of the construction is that M? can distinguish between lossy
and non-lossy runs in ways that M cannot. More precisely:

Lemma 3.10. Let M? - (¢, B, a) —ossy (s B',a") with £,£" € Loc. Then M+
(¢,B,a) =%, (¢',B',a") if, and only if, B + |a| = B’ + |a/|.

Proof Idea. The “(<=)” direction is an immediate consequence of (B.3).

For the “(=)” direction, we consider the hypothesized run M’ I (¢, B,a) =
00 —*lossy 01 —*lossy *** —*lossy On = (£, B',a’). Coming back to (B.2), these lossy
steps require, for ¢ = 1,...,n, some reliable steps 6;_1 —>gq 0} with o1 > 6,1
and 0, > oy, and hence |0}| > |6;| for i < n. Combining with |6,_1| = |0}| (by
Lemma 3.7), and |0y = |0,| (from the assumption that B + |a| = B’ + |a'|),
proves that all these configurations have same size. Hence ¢, = 0; = 0; and the
lossy steps are also reliable steps. O

Corollary 3.11. Assume M" - (¢, B,0) —ossy (£, B',a) with £, € Loc. Then:

1. B> B’ +|a|, and

2. M & (¢,0) =%, (¢,a) if, and only if, B = B’ + |a|. Furthermore, this
reliable run of M is B-bounded.

3.4 ACKERMANN-HARDNESS FOR Lossy COUNTER MACHINES

We now collect the ingredients that have been developed in the previous sections.
Let M be a Minsky machine with two fixed “initial” and “final” locations fiy;
and fp,. With M and a level m € N we associate a counter machine M (m)
obtained by stringing together Mpy(m), M®, and My 1(m) and fusing the ex-
tra budget counter B from M? with the accumulator n of My(m) and My-1(m)
(these two share their counters). The construction is depicted in Figure 3.4.

Proposition 3.12. The following are equivalent:

1. M(m) has a lossy run ({y, ap:1,0,n:m,0) =7, 0 for some 6 no smaller
than ({y-1,1,0,m,0).

60 Chapter 3. Complexity Lower Bounds

no_op
-

Mo L s o D

wo |] e |
> < al‘z’ ECZ Mb(:onbudge)
M- e : : ,.

B [[J
— J

no_op

Figure 3.4: Constructing M (m) from M, My and My 1.

2. M?" has a lossy run (£, B:Ack(m), 0) —lossy (Lin, Ack(m), 0).
3. M?" has a reliable run ({iy;, Ack(m),0) =%, (bin, Ack(m), 0).
4. M(m) has a reliable run (¢, 1,0,m,0) =%, ({g-1,1,0,m,0).

5. M has a reliable run ({ini, 0) =%, (Ygin, 0) that is Ack(m)-bounded.
Proof Sketch.

« For “1 = 2’, and because coverability implies reachability by (3.4), we may
assume that M (m) has arun (g, 1,0,m,0) = ({4-1,1,0,m,0). This
run must go through M? and be in three parts of the following form:

(y,1,0,m,0) _Pglossy (ly,a,n:z,0) (starts in Mp)
—lossy (Lini - - - ,0) lossy (bgn, ..., B’ ¢) (goes through M®)
—ossy (Lp-1,a’,2',..) —>lossy (by-1,1,0,m,0). (endsin My-1)

The first part yields H*(19) (m) > H*®)(z) (by Lemma 3.5), the third part
H*@) (z") > H*19 (1) (by Lemma 3.6.B), and the middle part B > B +
|c| (by Corollary 3.11[fl). Lossiness further implies z > B, B’ > 2’ and a >
a’. Now, the only way to reconcile H*® (z) < H*10(m) = Ack(m) <
H*@)(z/), a’ < a, 2/ < x, and the monotonicity of F' (Lemma 3.4) is by
concluding x = B = B’ = 2’/ = Ack(m) and ¢ = 0. Then the middle part
of the run witnesses M? = (£in;, Ack(m), 0) —lossy (Lein, Ack(m), 0).

. “2= 5" is[Corollary 3.11§.
. “5= 3" is given by Lemma 3.9.

« “3 = 4’ is obtained by stringing together reliable runs of the components,
relying on lemmas B.5[and B.4[ll for the reliable runs of My and M;,-1.

3.5. Handling Reset Petri Nets 61

« Finally “3 = 2” and “4 = I” are immediate from (B.3). O]

With Proposition 3.12, we have a proof of the Hardness Theorem for reacha-

bility and coverability in lossy counter machines: Recall that, for a Minsky ma-
chine M, the existence of a run between two given configurations is undecidable,
and the existence of a run bounded by Ack(m) is decidable but not primitive-
recursive when m is part of the input. Therefore, Proposition 3.12, and in par-
ticular the equivalence between its points 1 and 5, states that our construction
reduces a nonprimitive-recursive problem to the reachability problem for lossy
counter machines.

3.5 HANDLING RESET PETRI NETS

Reset nets are Petri nets extended with special reset arcs that empty a place when
a transition is fired. They can equally be seen as special counter machines, called
reset machines, where actions are restricted to decrements, increments, and re-
sets—note that zero-tests are not allowed in reset machines.

It is known that termination and coverability are decidable for reset machines
while other properties like reachability of a given configuration, finiteness of the
reachability set, or recurrent reachability, are undecidable.

Our purpose is to prove the Ackermann-hardness of termination and cover-
ability for reset machines. We start with coverability and refer to for

termination.

3.5.1 REPLACING ZERO-TESTS WITH RESETS

For a counter machine M, we let R(M) be the counter machine obtained by re-
placing every zero-test instruction c=0? with a corresponding reset c : =0. Note
that R(M) is a reset machine when M is a Minsky machine.

Clearly, the behavior of M and R(M) are related in the following way:

Lemma 3.13.
1. Mbo—gyy0 implies R(IM) ‘o —gq0'.
2. R(M) o —gq0 implies M = 0 =45y 0.

In other words, the reliable behavior of R(M) contains the reliable behavior of
M and is contained in the lossy behavior of M.

We now consider the counter machine M (m) defined in and build
R(M(m)).

Proposition 3.14. The following are equivalent:

1. R(M(m)) has a reliable run ({g, ap,:1,0,n:m,0) =%, ({g-1,1,0,m,0).

reset machine

62 Chapter 3. Complexity Lower Bounds

2. R(M(m)) has a reliable run (¢y,1,0,m,0) =%, 60 > ({y-1,1,0,m,0).
3. M has a reliable run ({ini, 0) —%,; (Ygin, 0) that is Ack(m)-bounded.

Proof. For 1 = 3: The reliable run in R(M(m)) gives a lossy run in M (m)
(Lemma 3.13[)), and we conclude using “1=-5” in Proposition 3.14.
For 3 = 2 We obtain a reliable run in M (m) (“5=4” in Proposition 3.12)

which gives a reliable run in R(M (m)) (Lemma 3.13fl), which in particular wit-
nesses coverability.

For 2 = 1: The covering run in R(M(m)) gives a lossy covering run in
(Lemma 3.13f), hence also a lossy run in M (m) that reaches exactly
(Lg-1,1,0,m,0) (e.g. by losing whatever is required at the last step). From there
we obtain a reliable run in M (m) (“1=4” in Proposition 3.17) and then a reliable

run in R(M (m)) (-E]). O

We have thus reduced an Ackermann-hard problem (point 3 above) to a cov-
erability question (point 2 above).

This almost proves the Hardness Theorem for coverability in reset machines,
except for one small ingredient: R(M (m)) is not a reset machine properly be-
cause M (m) is an extended counter machine, not a Minsky machine. ILe., we
proved hardness for “extended” reset machines. Before tackling this issue, we
want to point out that something as easy as the proof of Proposition 3.14 will
prove Ackermann-hardness of reset machines by reusing the hardness of lossy
counter machines.

In order to conclude the proof of the Hardness Theorend for reset machines,
we only need to provide versions of My and M1 in the form of Minsky ma-
chines (M and M? already are Minsky machines) and plug these in

and Proposition 3.12,

3.5.2 FroM EXTENDED TO MINSKY MACHINES

There are two reasons why we did not provide My and M1 directly under the
form of Minsky machines in Section 3.4. Firstly, this would have made the con-
struction cumbersome: is already bordering on the inelegant. Secondly,
and more importantly, this would have made the proof of lemmas B.5 and .6 more
painful than necessary.

Rather than designing new versions of My and M1, we rely on a generic
way of transforming extended counter machines into Minsky machines that pre-
serves both the reliable behavior and the lossy behavior in a sense that is compat-

ible with the proof of Proposition 3.12,.

Formally, we associate with any extended counter machine M = (Loc, C, A)
a new machine M’ = (Lo, C’, A’) such that:

1. Lod is Loc plus some extra “auxiliary” locations,

3.5. Handling Reset Petri Nets 63

M) ()
[(Jc ™ M’
=
‘ =e? . K@ op\Uemg7 © c’=0? Vau? @/
~— 5\

Figure 3.5: From M to M’: eliminating equality tests.

2. C" = C + {aux} is C extended with one extra counter,

3. M’ only uses zero-tests, increments and decrements, hence it is a Minsky
machine,

4. For any ¢, ¢ € Loc and vectors ¢, ¢’ € N, the following holds:

M (£,€) =k (€,&)if M/ F (£,¢,0) =% (,¢,0), (3.11)
M+ (£> C) _>Tossy (ﬁla C/) iff M’ - (67) 0) _>l*ossy (Zlv c/’ O)' (3‘12)

The construction of M’ from M contains no surprise. We replace equality
tests, resets and copies by gadgets simulating them and only using the restricted
instruction set of Minsky machines. One auxiliary counter aux is used for tem-
porary storage, and several additional locations are introduced each time one ex-
tended instruction is replaced.

We show here how to eliminate equality tests and leave the elimination of
resets and copies as Exercise 3.1. Figure 3.5 shows, on a schematic example, how
the transformation is defined.

It is clear (and completely classic) that this transformation satisfies (B.11)). The
trickier half is the “<” direction. Its proof is done with the help of the following
observations:

« c — ¢’ is a numerical invariant in {, and also in /',
« C + aux is a numerical invariant in /, and also in [,

« when M’ moves from ¢, to [, aux contains 0; when it moves from [to !’,
both ¢ and ¢’ contain 0; when it moves from !’ to ¢, aux contains 0.

64 Chapter 3. Complexity Lower Bounds

. mtimes - b
O = ©[o] [o]e | 7~ M

n-- am>0? 5, E E o add “T>0?T--"to
am-- . each simulation

. : _ ofastepoiM
M- (- ' ; ,‘.;
[H K]][] 2 J

no_op

Figure 3.6: Hardness for termination: A new version of M (m).

Then we also need the less standard notion of correctness from (B.19) for this
transformation. The “<” direction is proved with the help of the following ob-
servations:

« ¢ — ¢’ can only decrease during successive visits of /, and also of /',
« C + aux can only decrease during successive visits of /, and also of //,

« when M’ moves from ¢, to [, aux contains 0; when it moves from [to ',
both ¢ and ¢’ contain 0; when it moves from !’ to ¢, aux contains 0.

Gathering these observations, we can conclude thatarun M’ = ({y, ¢, ¢, 0) —{
(¢1,d,d’,0) implies d,d’ < min(c,). In such a case, M obviously has a lossy
step M F ({o, ¢, ') =ossy (£1,d,d").

3.6 HARDNESS FOR TERMINATION

We can prove hardness for termination by a minor adaptation of the proof for
coverability. This adaptation, sketched in Figure 3.6, applies to both lossy counter
machines and reset machines.

Basically, M® now uses two copies of the initial budget. One copy in B works
as before: its purpose is to ensure that losses will be detected by a budget imbalance
as in Lemma 3.10. The other copy, in a new counter T, is a time limit that is
initialized with n and is decremented with every simulated step of M its purpose
is to ensure that the new M? always terminates. Since My and M1 cannot run

H H _ . :
forever (because — and — ~! terminate, see Section 3.4), we now have a new
M (m) that always terminate when started in ¢y and that satisfies the following

variant of propositions and B.14:

Proposition 3.15. The following are equivalent:

Exercises 65

1. M(m) has a lossy run (¢g,1,0,n:m, 0) —ossy 0 = (ly-1,1,0,m,0).
2. R(M(m)) has a lossy run (¢m, 1,0,n:m,0) =7 0 > (£y-1,1,0,m,0).
3. M has a reliable run (lisi, 0) =%, (Ysin, 0) of length at most Ack(m).

Finally, we add a series of m + 1 transitions that leave from ¢;;-1, and check
that ogoal = (Ly-1,1,0,m,0) is covered, i.e., that a,, contains at least 1 and n
at least m. If this succeeds, one reaches a new location ¢, the only place where
infinite looping is allowed unconditionally. This yields a machine M (m) that has
an infinite lossy run if, and only if, it can reach a configuration that covers oggal,
i.e, if, and only if, M has a reliable run of length at most Ack(m), which is an
Ackermann-hard problem.

EXERCISES

Exercise 3.1 (From Extended to Minsky Machines). Complete the translation from ex-
tended counter machines to Minsky machines given in Section 3.5.%: provide gadgets for

equality tests and resets.

Exercise 3.2 (Transfer Machines). Transfer machines are extended counter machines with
instruction set reduced to increments, decrements, and transfers

Ci14+=Cy;Cq:=0. /* transfer co to ¢y */
Show that transfer machines can simulate reset machines as far as coverability and

termination are concerned. Deduce that the Hardness Theoren also applies to transfer
machines.

Exercise 3.3 (Incrementing Counter Machines). Incrementing counter machines are Min-
sky machines with incrementation errors: rather than leaking, the counters may increase
nondeterministically, by arbitrary large amounts. This is captured by introducing a new
operations semantics for counter machines, with steps denoted M + o —,. o/, and

defined by:

def

oo & 30,0, 0<O0 A0S0 A0 <) (+)

Incrementation errors are thus the symmetrical mirror of losses.
Show that, for a Minksy machine M, one can construct another Minsky machine
M~ with

MbF oy —gq o0 it M 09 —gq 01 ©)

What does it entail for lossy runs of M and incrementing runs of M ~1? Conclude that
reachability for incrementing counter machines is Ackermannian.

transfer machine

incrementing counter
machine

66 Chapter 3. Complexity Lower Bounds

BiBLiOGRAPHIC NOTES

This chapter is a slight revision of (Schnoebelen, 2010a), with some changes to use Hardy
computations instead of fast-growing ones. Previous proofs of Ackermann-hardness for
lossy counter machines or related models were published independently by Urquhart
(1999) and Schnoebelen| (2002).

We refer the reader to (Mayr, 2000; Schnoebelen, 2010b) for decidability issues for
lossy counter machines. Reset nets (Araki and Kasami, 1976; Ciardo, 1994) are Petri nets
extended with reset arcs that empty a place when the relevant transition is fired. Transfer
nets (Ciardd, 1994) are instead extended with transfer arcs that move all the tokens from
a place to another upon transition firing. Decidability issues for Transfer nets and Reset
nets are investigated by Dufourd et al| (1999); interestingly, some problems are harder for
Reset nets than for Transfer nets, although there exists an easy reduction from one to the
others as far as the Hardness Theoren] is concerned (see Exercise 3.7).

Using lossy counter machines, hardness results relying on the first half of the
have been derived for a variety of logics and automata dealing with data
words or data trees (Demri, 2006; Demri and Lazid, 2009; Jurdzinski and Lazid, 2007;
Figueira and Segoufin, 2009; [Tan, 2010). Actually, these used reductions from counter
machines with incrementation errors (see Exercise 3.3); although reachability for incre-
menting counter machines is Ackermann-hard, this does not hold for termination (Bouyer
et all, 2012).

Ackermann-hardness has also been shown by reductions from Reset and Transfer
nets, relying on the second half of the Hardness Theoremn (e.g. Amadio and Meyssonnier,
2002; Bresolin et al), 2012).

The techniques presented in this chapter have been extended to considerably higher
complexities for lossy channel systems (Chambart and Schnoebeler, 2008b) and enriched
nets (Haddad et all, 2012).

APPENDIX

SUBRECURSIVE FUNCTIONS

IA.1 Ordinal Terms 67
|A.2 Fundamental Sequences and Predecessors 68
A.3 Pointwise Ordering and Lean Ordinals 69
IA.4 Ordinal Indexed Functions 72
IA.5 Pointwise Ordering and Monotonicity| 75
IA.6 Different Fundamental Sequences 76
|A.7 Different Control Functions 77
IA.8 Classes of Subrecursive Functions 79

Although the interested reader can easily find comprehensive accounts on subre-
cursive hierarchies (Rose, 1984; Fairtlough and Wainer, 1998; Odifreddi, 1999), we
found it convenient to gather in this self-contained appendix many simple proofs
and technical results, many too trivial to warrant being published in full, but still
useful in the day-to-day work with hierarchies. We also include some results of
Cichon and Wainer (1983) and Cichoni and Tahhan Bittar (1998), which are harder
to find in the literature, and the definition of lean ordinal terms.

The main thrust behind subrecursive functions is to obtain hierarchies of com-
putable functions that lie strictly within the class of all recursive functions. An
instance is the extended Grzegorczyk hierarchy (%,). Such hierarchies are typ-
ically defined by generator functions and closure operators (e.g. primitive recur-
sion, and more generally ordinal recursion), and used to draw connections with
proof theory, computability, speed of growth, etc.

Our interest however lies mostly in the properties of particular functions in
this theory, like the fast-growing functions (Fy,), or the Hardy functions (H®),,
which we use as tools for the study of the length of bad sequences.

A.1 ORDINAL TERMS

The reader is certainly familiar with the notion of Cantor normal form (CNF) for
ordinals below g, which allows to write any ordinal as an ordinal term o following
the abstract syntax

ax=0|w|a+a.

68 Appendix A. Subrecursive Functions

We take here a reversed viewpoint: our interest lies not in the “set-theoretic” or-
dinals, but in the set) of all ordinal terms. Each ordinal term « is a syntactic
object, and denotes a unique ordinal ord(«) by interpretation into ordinal arith-
metic, with + denoting direct sum. Using this interpretation, we can define a
well-founded ordering on terms by o/ < «aif ord(a’) < ord(a). Note that the
mapping of terms to ordinals is not injective, so the ordering on terms is not an-
tisymmetric.
In this reversed viewpoint, ordinal terms might be in CNF, i.e. sums

Oé:Wﬁl—i-—i—WBm
with o > 81 > --- > B, > 0 with each §; in CNF itself. We also use at times
the strict form
o= e+ WP,
wherea > 5y > -+ > B, > 0andw > c¢1,...,¢yn > 0 and each §; in strict
form—we call the ¢;’s coefficients. Terms « in CNF are in bijection with their

denoted ordinals ord(«). We write CNF(«) for the set of ordinal terms o < «
in CNF; thus CNF(gy) is a subset of €2 in our view. Having a richer set {2 will be

useful later in .

. /_/% . PR
We write 1 for w” and a - n for o + - - - + a. We work modulo associativity
(a4 pB)+~v=a+ (8 + 7)) and idempotence (¢« + 0 = a« = 0 + «) of +. An
ordinal term « of form v + 1 is called a successor ordinal term. Otherwise, if not
0, it is a limit ordinal term, usually denoted \. Note that a ord(0) = 0, ord(av + 1)
is a successor ordinal, and ord(\) is a limit ordinal if A is a limit ordinal term.

n times

A.2 FUNDAMENTAL SEQUENCES AND PREDECESSORS

FUNDAMENTAL SEQUENCES. Subrecursive functions are defined through assign-
ments of fundamental sequences (\;),<., for limit ordinal terms \ in €, verify-
ing \; < Aforall zin N and A = sup_ A\, i.e. we are interested in a particular
sequence of terms of which A is a limit.

A standard way of obtaining fundamental sequences with good properties for
every limit ordinal term A is to fix a particular sequence (wy)z<, for w and to

define
(Y +w ™M), Zy 4+ 0P - w,, (v +uw)e Ey+wte. (A.1)

We assume w,, to be the value in = of some monotone and expansive function s,
typically s(z) = x—which we will hold as the standard one—or s(z) = = + 1.
We will see in how different choices for w, influence the hierarchies

of functions built from them, in a simple case.

'Richer ordinal notations can be designed, notably the structured ordinals of Dennis-Jones and
Wainer (1984); Fairtlough and Wainer (1992) below €, and of course richer notations are required
in order to go beyond €.

A.3. Pointwise Ordering and Lean Ordinals 69

PREDECESSORS. Given an assignment of fundamental sequences and x in N, one
defines the (z-indexed) predecessor Py(a) < « of an ordinal o # 0 in 2 as

Pyla+1) =a, Pr(A) = Po(Aa) - (a2)
Lemma A.1. Assume o > 0 in (). Then for allx in N

Px(’Y"_a):’Y"i_Px(a)v (A3)
ifwy > 0 then Pp(w®) = w(@ . (w, — 1) + Pp(w() . (A.4)

Proof of (A.3). By induction over o. For the successor case o = 3 + 1, this goes

A2 A2
Py +B8+1) s P11,

For the limit case o =), this goes
A2 Al ih A2
Pely+) E Pel(r 4+ 00) E Py 4 20) 27+ Po() &y + Po() .0
Proof of (A.4). By induction over o. For the successor case o = 3 + 1, this goes

a2 a1 A3 g

Px((wﬁﬂ)r) Px(wﬂ cwy) = W (wp — 1) + Px(wﬁ)

Px(wﬁ—l—l)

For the limit case a =), this goes

A2 PO - (wy — 1) + Py(wWV) | O

A.3 PoOINTWISE ORDERING AND LEAN ORDINALS

POINTWISE ORDERING. An issue with ordinal-indexed hierarchies is that they are
typically not monotonic in their ordinal index. A way to circumvent this problem
is to refine the ordinal ordering; an especially useful refinement is <, defined for
2 € N as the smallest transitive relation satisfying (see Dennis-Jones and Wainer
(1984); Fairtlough and Wainer (1992); Cichori and Tahhan Bittar (1998)):

a<za+1, Ap <z A (A.5)
In particular, using induction on «, one immediately sees that

0<e (A.6)
Py () <4 . (A7)

The inductive definition of <, implies

a = 3+ 1is a successor and o’ <, 3, or

A.
o = Aisalimit and o <, A\, (A.8)

o/<xaiff{

70

Appendix A. Subrecursive Functions

Obviously < is a restriction of <, the strict linear quasi-ordering over ordinal

terms. For example, w, <, w but w, + 1 4, w, although ord(w, + 1) is by
definition a finite ordinal, smaller than ord(w).

w
The < relations are linearly ordered themselves

<0C - C <z C<g41 S
and, over terms in CNF, < can be recovered by

(A.9)
(U ﬁ) =<.

zeN

(A.10)
We will soon prove these results in [Corollary A.4 and Lemma A.53, but we need
first some basic properties of <.

Lemma A.2. Foralla, o/, inQ and all x in N

o <, aimpliesy + o’ <, v+, (A.11)
we > 0anda’ <, a imply w® < w® . (A.12)
Proof. All proofs are by induction over « (NB: the case & = 0 is impossible).
(A.11): For the successor case o = 3 + 1, this goes through

o' <, B+ 1implies o <,

(by (B.8))
o / (A5) .
impliesy+ o <, v+ B8 <o vy +B8+1. (by ind. hyp.)
For the limit case o = A, this goes through
o <, Ximplies o <z Az

(by (A.8))
o / (A1) (A5) .
impliesy+a <z 7+ A = (Y+ Az <z v+ A. (byind hyp.)
(A.19): For the successor case o = 3 + 1, we go through
o' <, B+ 1implies o <, 8

(by (A.8))
implies w® < W =wl +0

(by ind. hyp.)
implies w® < w® + w” - (wy — 1)

(A5)

(by equations (Ag) and (A.11))
implies W <, WP w, = (w’BH)z < WPt
For the limit case o =), this goes through

o <4 A\ implies o < Ap

!
implies w® <, w

(by (A.9))
Ao (4D ()2 (gi) W

(by ind. hyp.)

O]

A.3. Pointwise Ordering and Lean Ordinals 71

shows that <, is left congruent for 4+ and congruent for w-exponen-
tiation. One can observe that it is not right congruent for +; consider for instance
the terms w, 4+ 1 and w + 1: one can see that w, + 1 4, w+ 1. Indeed, fromw + 1
the only way of descending through >, isw + 1 >, w >, wy, but wy ¥p wy +1
since <, C < for terms in CNF(gp).

Lemma A.3. Let A be a limit ordinal in Q2 and x < y in N. Then \; <y Ay, and if
furthermore w, > 0, then Ay <z A\y.

Proof. By induction over \. Write w, = w, + 2 for some z > 0 by monotonicity
of s (recall that w, and w, are in N) and A = v + w® with 0 < a.

If « = 8 + 1is a successor, then A, :’y—i-wﬂ-wx <y7+w5-wx+wﬁ-z
by (A.11) since 0 <, w” - 2. We conclude by noting that A, = v + w” - (w; + 2);
the same arguments also show A\, <z Ay.

If o is a limit ordinal, then o, <y oy by ind. hyp., hence \; = v + w* <,
v+ w = A\, by (A.19) (applicable since wy >y > > 0)and (A1), ifw, >0,

then the same arguments show A\, <; Ay.]

Now, using (A.g) together with Lemma A.3, we see
Corollary A.4. Leta, S inQandx,y inN. Ifx < y then o <, 8 implies v <y, 3.

In other words, <; C <;41 € <442 € --- as claimed in (@).

If s is strictly increasing, i.e. if wy; < wg41 for all x, then the statement of
can be strengthened to A\, <, Ay and A\, <, Ay whenw, > 0, and this
hierarchy becomes strict at every level z: indeed, wy 1 <z41 w but Wy <z w
would imply wz4+1 <z wg, contradicting <, C <.

LEAN ORDINALS. Let & be in N. We say that an ordinal o in CNF(eg) is k-lean if it
only uses coefficients < k, or, more formally, when it is written under the strict
forma =wbl ¢+ +wPm - ¢, with ¢; < k and, inductively, with k-lean §;,
this for all 7 = 1, ..., m. Observe that only 0 is O-lean, and that any term in CNF
is k-lean for some k.

A value k of particular importance for lean ordinal terms is £ = w, — 1: ob-
serve that this is the coefficient value introduced when we compute a predecessor
ordinal at z. Stated differently, (w, — 1)-leanness is an invariant of predecessor
computations: if «v is (w, — 1)-lean, then P, («) is also (w, — 1)-lean.

Leanness also provides a very useful characterization of the <, relation in
terms of the ordinal ordering over terms in CNF:

Lemma A.5. Let x be in N, and @ in CNF(g) be (wy — 1)-lean. Then:

a<7yiffa <z viffa < Pu(y) iffa < Pu(y) . (A.13)

72 Appendix A. Subrecursive Functions

One sees (|J,c <z) = < over terms in CNF(zy) as a result of Lemma A.5.

The proof relies on the syntactic characterization of the ordinal ordering over
terms in CNF(g¢) by
a=0anda’ # 0, or
a<d & B < f,or (A.14)
f=p"andy <.
Since o < Py (7) directly entails all the other statements of Lemma A.3, it is
enough to prove:

Claim A.5.1. Let o,y in CNF(gp) and z in N. If v is (wy — 1)-lean, then

a:w5+y,a’:w5/+fy’and{

a < v implies a <5 Pr(7) -

Proof. If « = 0, we are done so we assume « > 0 and hence w, > 1, thus
a=>ym", wP . ¢; with m > 0. Working with terms in CNF allows us to employ
the syntactic characterization of < given in (A.14).
We prove the claim by induction on ~, considering two cases:
.) yq N / th a2
1. if v = 4" 4 1 is a successor then a < v implies @ < ', hence o <, 7' =
Po (7).

ih
2. if yisalimit, we claim that &« < ~,, from which we deduce o <, Py.(7z) 42

P, (7). We consider three subcases for the claim:

(a) if v = w? with \ a limit, then o = Sy Wl ¢; < 7 implies B < A,

7
hence 31 %hgc Py(\) = Pr(Az) < Ay, since (1 is (w; — 1)-lean. Thus
a < wh = (W) =7,

(b) if v = wP*! then a < ~ implies f; < B + 1, hence 51 < (. Now
c1 < w; — 1 since « is (w; — 1)-lean, hence a < wh . (c1+1) <
W wy < WP wy = (W), = ..

() if v = 7/ + w” with 0 < 7/, 3, then either a < 7/, hence o < v +
(w?)z = e, or @ > v/, and then « can be written as & = 7/ + o/ with

ih
o < wP. In that case o/ <, Pp(w®) (22 P.((w®):) < (wP)s, hence
/ , A4 gy AL 8
a=°+d < Y+ W) = (V+w)e = 0

A.4 ORDINAL INDEXED FUNCTIONS

Let us recall several classical hierarchies from (Cichon and Wainer, 1983; Cichon
and Tahhan Bittar, 1998). All the functions we define are over natural numbers.
We introduce “relativized” versions of the hierarchies, which employ a unary con-
trol function h : N — N; the “standard” hierarchies then correspond to the special
case where the successor function h(z) = = + 1 is picked. We will see later in
how hierarchies with different control functions can be related.

A.4. Ordinal Indexed Functions 73

Harpy Funcrions. We define the functions (h%),cq, each h*: N — N, by inner
iteration:

RO (x) =z, RO (x) = h¥(h(z)), P (z) £ b (). (A.15)

An example of inner iteration hierarchy is the Hardy hierarchy (H®),cq obtained
from ([A.19) in the special case of h(z) = z + 1:

H(z) =z, HY Y (z) = HY(z + 1), H*(z) = H* (). (A.16)

CicHoN FuNcTIONS. Again for a unary h, we can define a variant (h)qcq of the
Hardy functions called the length hierarchy by Cichon and Tahhan Bittay (1998)
and defined by inner and outer iteration:

ho(z) £ 0, hat1(2) = 1+ ho(h(z)), ha(z) = hy,(z). (A7)
As before, in the case where h(x) = = + 1 is the successor function, this yields
Ho(x) £0, Hp1(z) =1+ Ho(z+1), Hy(z) = Hy(z). (A18)

Those hierarchies are the most closely related to the hierarchies of functions we
define for the length of bad sequences.

FastT GROWING FUuNcCTIONS. Last of all, the fast growing functions (f,)acq are de-
fined through

fg(l‘) = h($)7 fa+1(33) = fgjx ($)> I = fAz($)7 (A.19)
while its standard version (for h(xz) = x + 1) is defined by
Fo) £a+1, Fapl) 2 Fe(2), R EFP@). (A0

Several properties of these functions can be proved by rather simple induction
arguments.

Lemma A.5. Forallaa > 0inQ andz in N,

ha(x) =1+ hPx(a)(h(l'))) (A.21)
h(z) = W= @ (h(z)) = K@+ () | (A.22)
fa(@) = [Pl 0)(@) = Fr(a)+1(2) - (A.23)

Proof. We only prove (A.21); (A.29) and (A.23) can be proven similarly.

By transfinite induction over a. For a successor ordinal o + 1, hqy1(z) =
L+ ha(h(z)) = 1+ hp,(at1)(h(x)). For a limit ordinal A, hy(x) = hy,(z) h
L+ hp,(r,) (h(z)) @9 4 hp,») (h(x)), where the ind. hyp. can applied since

Az < A O

74 Appendix A. Subrecursive Functions

Lemma A.6. Let h(x) > x for all x. Then for all « in 2 and x in N,
ho(z) < h%(z) —x .

Proof. By induction over . For o = 0, hg(z) = 0 = # — 2 = h°(z) — z. For
a >0,

hae) = 1+ o) (h(z) (by Eemma &9
<1+ hP@) (h(x)) — h(x) (by ind. hyp. since P,(«) <)
< W@ (h(z)) — 2 (since h(z) > x)
=h%(z)—=. (by (A-23)

O
Using the same argument, one can check that in particular for h(x) = = + 1,
Hy(x)=H%(z)—x . (A.24)
Lemma A.7. Forall a,~y in (), and x,
R (x) = Y (h*(z)) .

Proof. By transfinite induction on a. For a = 0, K +0(x) = h¥(z) = 7 (h°(x)).
For a successor ordinal a + 1, YTt (z) = pr+e(h(x)) = K (h*(h(x)))
hY(he*tL(x)). For a limit ordinal A\, W *A(z) = hOFN=(z) = p1+A=(z)
K (R (z)) = Y (hM(z)).

O I= 1

Remark A.8. Some care should be taken with Lemma A.7: ~+ « is not necessarily
a term in CNF. See on page [7§ for a related discussion.

Lemma A.9. Forall 5 in), andr,x in N,
wBr r
he (@) = fa(w) -

Proof. In view of and Y = f¥ = Idy, it is enough to prove he’ = f3s

i.e., the = 1 case. We proceed by induction over /3.

For the base case. h*" () = h'(z) (19 fo(z).

For a successor 3 + 1. hw’8+1(a;) (A19) h(w‘”l)z(x) — pwfws () ih E’w(x) (A.19)
fo1().

For a limit ». b () “2Y 1 (2) 2 £, (2) 2 £y (a). O

A.5. Pointwise Ordering and Monotonicity 75

A.5 PoOINTWISE ORDERING AND MONOTONICITY

We set to prove in this section the main monotonicity and expansiveness proper-
ties of our various hierarchies.

Lemma A.10 (Cichon and Tahhan Bittar, 1998). Let h be an expansive monotone
function. Then, for all a, o/ in Q and x,y in N,

x <y implies ho(z) < ha(y) , (A.25)
h .

o < a implies hy (7) < ho(x) (A.26)

Proof. Let us first deal with o/ = 0 for (A.2d). Then ho(z) = 0 < ho(z) for all
and z.

Assuming o’ > 0, the proof now proceeds by simultaneous transfinite induc-
tion over a.

For0. Then ho(xz) = 0 = ho(y) and (A.26) holds vacuously since o/ <, « is
impossible.

ih(A.25)
For a successor a + 1. For (A.25), hat1(x) = 1+ha(h(z)) < 1+ho(h(y)) =
ha+1(y) where the ind. hyp. on ([A.25) can be applied since h is monotone.

ih(A.26) ih(A.25)
For (A.26), we have o <, @ <, @+ 1, hence hy/(z) < ho(z) <
ha(h(x)) (A1) he+1(z) where the ind. hyp. on (A.25) can be applied since

h(zx) > .

ih(A.25) ih(A.26)
For a limit X. For (A.25), hy(z) = hy,(z) < ha(y) < ha,(y) = ma(y)

where the ind. hyp. on ([A.26) can be applied since), <y Ay by Lemma A.3.

ih(A.26)
For (A.2d), we have o/ <, Ay <z A with hys(z) < hy, (2) = hy(x).

O]

Essentially the same proof can be carried out to prove the same monotonicity
properties for h* and f,. As the monotonicity properties of f, will be handy in
the remainder of the section, we prove them now:

Lemma A.11 (L6b and Wainer, 1970). Let h be a function with h(x) > x. Then,
foralla, o/ inQ, x,y in N withw, > 0,

fol#) > h(z) > . (A27)
o <y aimplies for(2) < folx), (A.28)
x < y and h monotone imply fo(z) < fo(y) . (A.29)

76 Appendix A. Subrecursive Functions

Proof of (A.27). By transfinite induction on . For the base case, fo(z) = h(z) >
x by hypothesis. For the successor case, assuming f,(x) > h(x), then by induc-
tiononn > 0, f2(x) > h(x): for n = 1itholds since f,(z) > h(z), and for n+1
since f7H(z) = fo(f?(x)) > fa(x) by ind. hyp. on n. Therefore fo,1(z) =

fe=(x) > x since w, > 0. Finally, for the limit case, f)(z) = fy,(z) > z by ind.
hyp. O

Proof of (A.28). Let us first deal with o/ = 0. Then fo(z) = h(x) < fu(z) for all
x> 0 and all a by (A.27).

Assuming o > 0, the proof proceeds by transfinite induction over «. The

case « = 0 is impossible. For the successor case, @’ <, a <, a + 1 with
(A27) ih

for1(x) = fo U o) > falo) ZZ for(z). For the limit case, we have
ih

o <Xz Ap < Awith fr(z) < fo,(2) = fo(2). O

Proof of (A.29). By transfinite induction over . For the base case, fo(z) = h(z) <

(A27)
h(y) = fo(y) since h is monotone. For the successor case, fo+1(z) = f&=(z) <

Wy Wy

h
o’ () < o’ (y) = fa+1(y) using w, < wy. For the limit case, fy(z) =

ih (A.28)
(@) £ f@) S fa,) = faly), where (RZB) can be applied thanks to
Lemma [A.3. O

A.6 DIFFERENT FUNDAMENTAL SEQUENCES

The way we employ ordinal-indexed hierarchies is as standard ways of classifying
the growth of functions, allowing to derive meaningful complexity bounds for
algorithms relying on wqos for termination. It is therefore quite important to use
a standard assignment of fundamental sequences in order to be able to compare
results from different sources. The definition provided in ([A.1) is standard, and
the two choices w, = = and w, = x + 1 can be deemed as “equally standard” in
the literature. We employed w,, = x in the rest of the notes, but the reader might
desire to compare this to bounds using e.g. w, = x + 1—as seen in Lemma A.13,
this is possible for strictly increasing h.

A bit of extra notation is needed: we want to compare the Cichon hierarchies
(hs,a)acq for different choices of s. Recall that s is assumed to be monotone and
expansive, which is true of the identity function id.

LemmaA.12. Letain§). Ifs(h(z)) < h(s(x)) forallz, thenhg o(x) < higa(s(x))
for all z.

Proof. By induction on «. For 0, hso(z) = 0 = hjzo(s(x)). For a successor

ih (A.25)
ordinal & + 1, hgot1(x) = 1+ hea(h(z)) < 1+ higa(s(h(z))) < 14+
higo(h(s(x))) = higa+1(s(x)) since s(h(x)) < h(s(x)). For a limit ordinal

A.7. Different Control Functions 77

ih (A.26)
/\, hs)\(az) = hs,,\z(a:) S hid’Am(s(az)) S hid)\s(,c)(s(x)) = hid,A(s(x)) where
s(z) > x implies Ay <4(z) As(z) bY and allows to apply (A.2d). O

A simple corollary of for s(z) = = + 1 is that, if h is strictly
monotone, then h(xz + 1) > 1 + h(z), and thus hy o(z) < hjgo(x + 1), ie. the
Cichon functions for the two classical assignments of fundamental sequences are
tightly related and will always fall in the same classes of subrecursive functions.
This also justifies not giving too much importance to the choice of s—within rea-
sonable limits.

A.7 Di1rreRENT CONTROL FUNCTIONS

As in Section A.6, if we are to obtain bounds in terms of a standard hierarchy of
functions, we ought to provide bounds for h(xz) = x + 1 as control. We are now
in position to prove a statement of Cichon and Wainer (1983):

Lemma A.13. For ally and o in §Q, if h is monotone eventually dominated by F.,,
then f, is eventually dominated by F .

Proof. By hypothesis, there exists xg (which we can assume wlog. verifies xg >
0) s.t. for all x > 0, h(xz) < F,(z). We keep this x¢ constant and show by
transfinite induction on « that for all z > zg, fo(z) < Fy4o(z), which proves

the lemma. Note that w, > x > 2¢ > 0 and thus that we can apply Lemma A.11]

For the base case 0: for all z > xg, fo(x) = h(x) < F,(x) by hypothesis.

For a successor ordinal o + 1: we first prove that for all n and all z > x,,

fa(z) < Fly () . (A.30)
Indeed, by induction on n, for all x > x,
folx) =z =F) (x)
[N @) = foa(f3()
< fo(FYo()) (by (A.29) on f,, and the ind. hyp. on n)

< Fyta (Fwyfl-&-a(x))
(since by (A.27) Fyio(x) > 2 > 20 and by ind. hyp. on «)

_).
Therefore
fat1(z) = f3(z)
< P70 (2) (by (B30) for n =)

= Fyiar1(@) -

78 Appendix A. Subrecursive Functions

ih
For a limit ordinal \: forallz > o, fA(2) = fia,(z) < Fyi, (z) = Fyqn), (2) =
F’Y+/\(x)' L]

Remark A.14. Observe that the statement of is one of the few in-
stances in this appendix where ordinal term notations matter. Indeed, nothing
forces v + « to be an ordinal term in CNF. Note that, with the exception of
Lemma A.5, all the definitions and proofs given in this appendix are compati-
ble with arbitrary ordinal terms in {2, and not just terms in CNF, so this is not a
formal issue.

The issue lies in the intuitive understanding the reader might have of a term
“y + «”, by interpreting + as the direct sum in ordinal arithmetic. This would
be a mistake: in a situation where two different terms « and o/ denote the same
ordinal ord(a)) = ord(c’), we do not necessarily have F,(z) = F,/(z): for
instance, @ = w*’ and o/ = w® + w*" denote the same ordinal w, but F,(2) =
Fy(2) = 22-2 = 28 and Fy(2) = F3(2) = 22°2.22.2 = 21 Therefore,
the results on ordinal-indexed hierarchies in this appendix should be understood
syntactically on ordinal terms, and not semantically on their ordinal denotations.

The natural question at this point is: how do these new fast growing functions
compare to the functions indexed by terms in CNF? Indeed, we should check that
e.g. I\ » with v < w® is multiply-recursive if our results are to be of any use.
The most interesting case is the one where 7 is finite but « infinite (which will be

used in the proof of Lemma A.16):

Lemma A.15. Let o« > w and 0 < 7y < w be in CNF(gy), and w, = 1. Then, for
allz, Fyyo(z) < Fo(z + 7).

Proof. We first show by induction on o > w that
Claim A.15.1. Let s(x) = x + 7. Then for all z, Fij10(z) < Fy o(7).

base case for w: Figyyo(v) = Figyta(2) = Fs (),

successor case o + 1: with o > w, an induction on n shows that Fj; L) <
F,(x) for all n and z using the ind. hyp. on «, thus Fijat1(z) =
(A.27)

Fifl,’y-i—a(l') < F;fi;’—yl—a(x) < F;(—L_’y(x) = Fs,a+1 (x)’

ih 28)
limit case A > w: Figyia () = Figya, () < Fox (@) < Foyppy() =

F \(x) where (/A.28) can be applied since A; <z Az+ by (ap-
plicable since s(z) = = + v > 0).

Returning to the main proof, note that s(x + 1) = z + 1+ v = s(z) + 1,

A.8. Classes of Subrecursive Functions 79

allowing to apply Lemma A.17, thus for all z,

Fignta(z) < Fo o) (by the previous claim)
= HY (x) (by Lemma A.9)

o (s(x)) (by Lemma A.13 and (A:24))

id a(s(ﬂf)) (by Lemma A.9)

[

A.8 CLASSES OF SUBRECURSIVE FUNCTIONS

We finally consider how some natural classes of recursive functions can be char-
acterized by closure operations on subrecursive hierarchies. The best-known of
these classes is the extended Grzegorczyk hierarchy (Zu)accng(e,) defined by Lob
and Wainer (1970) on top of the fast-growing hierarchy (F)aecng(e,) for we =

Let us first provide some background on the definition and properties of .%,.
The class of functions .%, is the closure of the constant, addition, projection (in-
cluding identity), and Fy, functions, under the operations of

substitution: if hg, hy, ..., h, belong to the class, then so does the function f de-
fined by

flxi, ... xn) = ho(hi(z1, ... xn), .o hp(T1, ..y 2p))

limited primitive recursion: if hy, ho, and h3 belong to the class, then so does the
function f defined by

fO,z1,...,2y) = hi(x1,...,20),
f(y+17$17"'7xn) :h2(y7xlv"-)xnaf(ya$17"'7:671))7
fly,xr, oo xn) < hs(y, z1,...,2y) .

The hierarchy is strict for a > 0,i.e. %, C %, if o’ < «, because in particular
Fy ¢ Z,. For small finite values of «, the hierarchy characterizes some well-
known classes of functions:

« FH = F contains all the linear functions, like Axz.x + 3 or Az.2z, along
with many simple ones like cut-off subtraction: Axy.x—y, which yields z—y
ifz>yand0 otherwise,E or simple predicates like odd: Az.xz mod 2,E

« % is exactly the set of elementary functions, like Az.22",

?By limited primitive recursion; first define Az.z —~ 1by 0 =1 =0and (y + 1) = 1 = y; then
z=-0=zandz = (y+1)=(z~y)~ 1L
*By limited primitive recursion: 0 mod 2 = 0and (y + 1) mod 2 =1+ (y mod 2).

80 Appendix A. Subrecursive Functions

.2
« Z3 contains all the tetration functions, like A\x. 22 etc.
<~

x times

The union J,, ., Z is the set of primitive-recursive functions, while F, is an
Ackermann-like non primitive-recursive function. Similarly, J,, .. % is the set
of multiply-recursive functions with £~ a non multiply-recursive function.

The following properties (resp. Theorem 2.10 and Theorem 2.11 in (L6b and
Wainer, 1970)) are useful: for all o, unary f in .%,, and z,

a > 0 implies Ip, f(z) < FP(x +1), (A.31)
Also note that by (A.31), if a unary function g is dominated by some function g’

in %, with a > 0, then there exists p s.t. for all z, g(z) < ¢'(x) < Fi(z + 1).

Similarly, (A.32) shows that for all z > p, g(x) < ¢'(2) < Fay1(z).
Let us conclude this appendix with the following lemma, which shows that

the difficulties raised by non-CNF ordinal terms (recall Remark A.14) are alleviated
when working with the (%,)q:

Lemma A.16. For ally > 0 and «, if h is monotone and eventually dominated by
a function in 7%, then

1 ifa < w, fo is dominated by a function in 7, and
2. ify <wanda > w, f, is dominated by a function in 7.
Proof of [I. We proceed by induction on o < w.

For the base case « = 0: we have fo = h dominated by a function in .%, by hy-
pothesis.

For the successor case « = k + 1: by ind. hyp. fi is dominated by a function in

Z.+ 1, thus by (A.31) there exists p s.t. f(z) < F,Iy’+k (z+1) = F$+koF0(:c).
By induction on n, we deduce

fi(@) < (PP 0 Fo)"(@) 5 (4.33)
Therefore,
frr1(z) = fi (@) (A.34)
(A33)
(FP,, 0 Fo)*(2) (A.35)
(A.29)
< F& V™ (p+ Dz + 1) (A.36)

k(P + Dz +1)

where the latter function x +— F,441((p + 1)z + 1) is defined by sub-
stitution from F 1, successor, and (p + 1)-fold addition, and therefore
belongs to % 1. O

A.8. Classes of Subrecursive Functions 81

Proof of }. By (A.32), there exists g s.t. for all x > zq, h(z) < F,i1(z). By

(A.29)
lemmas and A19, fu(2) < fa(z +x0) < Folz + 29+ + 1) for all z,
where the latter function = — F,(z + xo + v + 1) is in Z,. O

82

Appendix A. Subrecursive Functions

BESTIARY

PROBLEMS OF ENORMOUS COMPLEXITY

B.1 Fast-Growing Complexities 83
B.2 F_-Complete Problems 88
B.3 F_.-Complete Problemg 90
B.4 F_.--Complete Problems 93

Because their main interest lies in characterizing which problems are efficiently
solvable, most textbooks in complexity theory concentrate on the frontiers be-
tween tractability and intractability, with less interest for the “truly intractable”
problems found in ExpTIME and beyond. Unfortunately, many natural decision
problems are not that tame and require to explore the uncharted classes outside
the exponential hierarchy.

This appendix borrows its title from a survey by Friedman (1999), where the
reader will find many problems living outside ELEMENTARY. We are however not
interested in “creating” new problems of enormous complexity, but rather in clas-
sifying already known problems in some important stops related to the extended
Grzegorczyck hierarchy. Because we wanted this appendix to be reasonably self-
contained, we will recall several definitions found elsewhere in these notes.

B.1 FasT-GROWING COMPLEXITIES

ExPONENTIAL HIERARCHY. Let us start where most accounts on complexity stop:
define the class of exponential-time problems as

ExpTIME = U DTIME (2”c)

C

and the corresponding nondeterministic and space-bounded classes as

NExPTIME = U NTIME (2”8)

C

EXPSPACE = U SPACE (2”0))

C

84 Appendix B. Problems of Enormous Complexity

Problems complete for ExpTIME, like corridor tiling games (Chlebus, 1986) or
equivalence of regular tree languages (Seidl, 1990), are known not to be in PTIME,
hence the denomination “truly intractable” or “provably intractable” in the liter-
ature.

We can generalize these classes of problems to the exponential hierarchy

c

2"
k-ExpTIME = U DTmvME | 27 ,
c k times

with the nondeterministic and space-bounded variants defined accordingly. The
union of the classes in this hierarchy is the class of elementary problems:

2m
ELEMENTARY = U k-ExPTIME = U DTiMmE (2") .

k c ¢ times

Note that we could as easily define ELEMENTARY in terms of nondeterministic time
bounds, space bounds, alternation classes, etc. Our interest in this appendix lies
in the problems found outside this class, for which suitable hierarchies need to be
used.

THE EXTENDED GRZEGORCZYK HIERARCHY (%,)a<c, is an infinite hierarchy of
classes of functions f with argument(s) and images in N (Léb and Wainer, 1970).
At the heart of each .7, lies the ath fast-growing function F,:N — N, which is
defined by

x times
def def g _—
Fo(z) =z +1, Foqi(z) = F3(x) = Fo(Fa(- - Fa(2))) ,
Fa(z) = Fy, (),

where A; < Aisthe zth element of the fundamental sequence for the limit ordinal
A, defined by

def

(’y—i—wﬁﬂ)m Yyt (Y+wMe Ey+we .
For instance,
Fi(z) =2z, Fy(x) =2%x,
2
Fg(x) > 2 }Itimes ,

F, is an Ackermannian function,

Fw is a hyper-Ackermannian function, etc.

B.1. Fast-Growing Complexities 85

For o > 2, each level of the extended Grzegorczyk hierarchy can be charac-
terized as a class of functions computable with bounded resources

o = | JFDTmME (FS (1)) (B.1)

the choice between deterministic and nondeterministic or between time-bounded
and space-bounded computations being once more irrelevant because F; is al-
ready a function of exponential growth. In particular, F belongs to .%, for every
« and fixed c.

Every function f in .%, is honest, i.e. can be computed in time elementary in
itself (Wainer, 1970)—this is a variant of the time constructible or proper complexity
functions found in the literature, but better suited for the high complexities we are
considering. Every f is also eventually bounded by F,, if & < o/, i.e. there ex-
ists a rank ¢, s.t. for all q, ...z, if max; x; > 4, then f(z1,...,2,) <
F,/(max; z;). However, for all ' > a > 0, Fy € %, and the hierarchy
(Za) a<e, 1s strict for oo > 0.

IMPORTANT STOPS. Although some deep results have been obtained on the lower
classes,] we focus here on the non-elementary classes, i.e. on a > 2, where we
find for instance

Ty —
U7 =
k

U %, = FMULTIPLY-RECURSIVE ,

FELEMENTARY ,
FPRIMITIVE-RECURSIVE ,

%, = FORDINAL-RECURSIVE .

a<eq

We are dealing here with classes of functions, but writing .%_ for the restriction
of .7, to {0, 1}-valued functions, we obtain the classification of decision problems
displayed in Figure B.1.

Unfortunately, these classes are not quite satisfying for some interesting prob-
lems, which are non elementary (resp. non primitive-recursive, or non multiply-
recursive, ...), but only barely so. The issue is that complexity classes like e.g. .%5",
which is the first class that contains non-elementary problems, are very large: .%"
contains for instance problems that require space F;3°°, more than a hundred-fold
compositions of towers of exponentials. As a result, hardness for .73 cannot be
obtained for the classical examples of non-elementary problems.

!See Ritchie (1963) for a characterization of FLINSPACE, and for variants see e.g. Cobham (1965);
Bellantoni and CooK ([1992) for FPTIME, or the chapter by Clote (1999) for a survey of these tech-
niques.

86 Appendix B. Problems of Enormous Complexity

Fww“"

Us 7

MULTIPLY-RECURSIVE

ar*
Ur
PRIMITIVE-RECURSIVE

Ty =
ELEMENTARY

2-ExPTIME

co-NExp ExpTIME

Figure B.1: Some complexity classes.

B.1. Fast-Growing Complexities 87

We therefore introduce smaller classes:

F, =) DTmeE(Fa(p(n) . (B.2)
p€U5<a,g5

As previously, the choice of DTIME rather than NTIME or SPACE or ATIME is ir-
relevant for o > 3. This yields for instance a class F3 of non-elementary de-
cision problems closed under elementary reductions, a class F,, of Ackerman-
nian problems closed under primitive-recursive reductions, a class F .« of hgper-
Ackermannian problems closed under multiply-recursive reductions, etc# We
can name a few of these complexity classes:

F, = ACKERMANNIAN ,

F_~ = HYPER-ACKERMANNIAN .

Of course, we could replace in (B.2) the class of reductions Ug<a-%3 by amore
traditional one, like FLOGSPACE or FPTIME, or for o > w by primitive-recursive
reductions in | J, .%; as done by Chambart (2011). However this definition better
captures the intuition one can have of a problem being “complete for F,,”

A point worth making is that the extended Grzegorczyk hierarchy has multi-
ple natural characterizations: as 1oop programs for o« < w (Meyer and Ritchie,
1967), as ordinal-recursive functions with bounded growth (Wainer, 1970), as
functions computable with restricted resources as in (B.1)), as functions provably
total in fragments of Peano arithmetic (Fairtlough and Wainer, 1998), etc.—which
make the complexity classes we introduced here meaningful.

AN F3-ComPLETE EXAMPLE can be found in the seminal paper of Stockmeyer and
Meyer (1973), and is quite likely already known by many readers. Define a star-
free expression over some alphabet X as a term e with abstract syntax

ex=ale|0|e+elee]|—e

where a ranges over 3 and € denotes the empty string. Such expressions are
inductively interpreted as languages included in ¥* by:

[a] = {a} [e] = {e} [0] =
[er +eo] = [ea] Ulea] [erea] = [ea] - [ea] [-e] ==~ [e] -

2 An alternative class for o > 3 is

F, ¥ UDTIME (Fa(n+c¢) ,
c
which is often sufficient and already robust under changes in the model of computation, but not
robust under reductions.
Yet another alternative would be to consider the Wainer hierarchy (#%)g<e, of functions
(Wainer, 1972), which provides an infinite refinement of each %, as |J Bcwat 3, but its classes
lack both forms of robustness: any f in .4 is bounded by H” the Sth function of the Hardy

*

hierarchy. What we define here as F, seems closer to U5<wa,2 %pﬂ .

88 Appendix B. Problems of Enormous Complexity

The decision problem we are interested in is whether two such expressions
e1, e are equivalent, i.e. whether [e;] = [ez]. Stockmeyer and Meyer (1973)

-2
show that this problem is hard for 2- }Iog"ﬁmes space under FLOGSPACE reduc-
tions. Then, F3-hardness follows by an FELEMENTARY reduction from any Turing

machine working in space F3(p(n)) into a machine working in space 2° " Hiog m tmes,
That the problem is in F3 can be checked using an automaton-based algorithm:
construct automata recognizing [e;] and [ez2] respectively, using determinization
to handle each complement operator at the expense of an exponential blowup, and
check equivalence of the obtained automata in PSpAcE—the overall procedure is

L2
in space polynomial in 2 }"tﬂm, thus in Fs.

B.2 F_-CoMPLETE PROBLEMS

We gather here some decision problems that can be proven decidable in F,, thanks
to Dickson’s Lemmad over N? and to the combinatorial analyses of McAloor (1984);
Clote (1986); Figueira et al! (2011). We therefore focus on the references for lower
bounds.

VECTOR ADDITION SYSTEMS (VAS, and equivalently Petri nets), provided the first
known Ackermannian decision problem: [FCH].

A d-dimensional VAS is a pair (x,A) where xq is an initial configuration
in N? and A is a finite set of transitions in Z?. A transition a in A can be ap-
plied to a configuration x in N¢ if X' = x + a is in N%; the resulting configura-
tion is then x’. The complexity of decision problems for VAS usually varies from
ExpSpace-complete (Lipton, 1976; Rackoff, 1978; Blockelet and Schmitz, 2011) to
F,,-complete (Mayr and Meyer, 1981; Jancar, 2001) to undecidable (Hack, [197€;
Jancar, 1995), via a key problem, which is decidable but of unknown complexity:
VAS Reachability (Mayr, 1981; Kosaraju, 1982; Lambert, 1992; Leroux, 2011).

[FCP] Finite Containment Problem

instance: Two VAS V; and Vs, known to have finite sets Reach();) and Reach(Vs)
of reachable configurations.

question: Is Reach(V) included in Reach(V2)?

reference: Mayr and Meyer (1981), from an F,,,-bounded version of Hilbert’s Tenth
Problem. A simpler reduction is given by Jancarn (2001) from the halting
problem of Fi,-bounded Minsky machines.

comment: Testing whether the set of reachable configurations of a VAS is finite
is ExpSpAacE-complete (Lipton, 1976; Rackoff, 1978). [FCH] provided the ini-
tial motivation for the work of McAloon (1984); Clotd (1986). [FCH] has
been generalized by Jancary (2001) to a large range of behaviourial relations
between two VASs. Without the finiteness condition, these questions are
undecidable (Hack, 1976; Jancar, 1995, 2001).

B.2. F,-Complete Problems 89

Lossy COUNTER MACHINES. A lossy counter machine (LCM) is syntactically a Min-
sky machine, but its operational semantics are different: its counter values can
decrease nondeterministically at any moment during execution. See
for details.

[LCM] Lossy Counter Machines Reachability

instance: A lossy counter machine M and a configuration o.

question: Is o reachable in M with lossy semantics?

reference: Schnoebelen (2010a), by a direct reduction from F;,-bounded Minsky
machines. The first proofs were given independently by Urquhart (1999)
and Schnoebelen (2002).

comment: Hardness also holds for terminating LCMs, for coverability in Reset or
Transfer Petri nets, and for reachability in counter machines with incre-
menting errors.

[LCMT] Lossy Counter Machines Termination

instance: A lossy counter machine M.

question: Is every run of M finite?

reference: Schnoebelen (2010a), from [LCM].

comment: Hardness also holds for termination of Reset Petri nets.

ReLEVANCE Loacics provide different semantics of implication, where a fact B is
said to follow from A, written “A D B”, only if A is actually relevant in the de-
duction of B. This excludes for instance A D (B D A), (AN —A) D B, etc.—see
Dunn and Restall (2002) for more details. Although the full logic R is undecid-
able (Urquhart, 1984), its conjunctive-implicative fragment R A is decidable, and
Ackermannian:

[CRI] Conjunctive Relevant Implication

instance: A formula A of R5 .

question: Is A a theorem of R5 1?

reference: Urquhart (1999), from a variant of [LCM]: the emptiness problem of
alternating expansive counter systems, for which he proved F,-hardness di-
rectly from the halting problem in F;,-bounded Minsky machines.

comment: Hardness also holds for LR+ and any intermediate logic between R 5
and T A—which might include some undecidable fragments.

Data Logics & REGISTER AUTOMATA are concerned with structures like words or
trees with an additional equivalence relation over the elements. The motivation
for this stems in particular from XML processing, where the equivalence stands
for elements sharing the same datum from some infinite data domain D. Acker-
mannian complexities often arise in this context, both for automata models (es-
sentially register automata and their many variants) and for logics (which include
logics with freeze operators and XPath fragments)—the two views being tightly
interconnected.

90 Appendix B. Problems of Enormous Complexity

[ARA] Emptiness of Alternating 1-Register Automata

instance: An ARA A.

question: Is L(.A) empty?

reference: Demri and Lazid (200€)), from reachability in incrementing counter ma-
chines [LCM].

comment: There exist many variants of the ARA model, and hardness also holds
for the corresponding data logics (e.g. Jurdziniski and Lazig, 2007; Demri
and Lazid, 2009; Figueira and Segoufir, 2009; Tan, 2010; Figueira, 2012). See
[[ATA]] for the case of linearly ordered data.

INTERVAL TEMPORAL Logics provide a formal framework for reasoning about tem-
poral intervals. Halpern and Shohan (1991) define a logic with modalities ex-
pressing the basic relationships that can hold between two temporal intervals,
(B) for “begun by”, (E) for “ended by”, and their inverses (B) and (E). This
logic, and even small fragments of it, has an undecidable satisfiability problem,
thus prompting the search for decidable restrictions and variants. Montanari et al.
(2010) show that the logic with relations AABB—where (A) expresses that the
two intervals “meet”, i.e. share an endpoint—, has an F,-complete satisfiability
problem over finite linear orders:

[ITL] Finite Linear Satisfiability of AABB Interval Temporal Logic

instance: An AABB formula .

question: Does there exist an interval structure S over some finite linear order
and an interval 7 of S s.t. S, 1 ¢?

reference: Montanari et al| (2010), from [LCM].

comment: Hardness already holds for the fragments AB and AB (Bresolin et al,
2012).

B.3 F_.-COMPLETE PROBLEMS

The following problems have been proven decidable thanks to Higman’s Lemmd
over some finite alphabet. All the complexity upper bounds in F . stem from
the constructive proofs of Weiermann (1994); Cichon and Tahhan Bittar (1998);
Schmitz and Schnoebelen (2011). Again, we point to the relevant references for
lower bounds.

Lossy CHANNEL SysTEMS (LCS) are finite labeled transition systems (Q, M, , qo)
where transitions in § C @ x {?,!} x M x @ read and write on an unbounded
channel. This would lead to a Turing-complete model of computation, but the
operational semantics of LCS are “lossy”: the channel loses symbols in an uncon-
trolled manner. Formally, the configurations of an LCS are pairs (¢, z), where ¢ in
@ holds the current state and = in M™* holds the current contents of the channel.
A read (q,?m, q’) in 6 updates this configuration into (g, ') if there exists some

B.3. F,«-Complete Problems 91

2" st 2’ <, 2’ and maz” <, r—where <, denotes subword embedding—, while
a write transition (g, !m, ¢') updates it into (¢’,z’) with 2/ <, xm; the initial
configuration is (qo, €), with empty initial channel contents.

Due to the unboundedness of the channel, there might be infinitely many
configurations reachable through transitions. Nonetheless, many problems are
decidable (Abdulla and Jonsson, 1996; Cécé et all, 1996) using Higman’s Lemma
and what would later become the WSTS theory. LCS are also the primary source
of problems hard for F:

[LCS] LCS Reachability

instance: A LCS and a configuration (¢, z) in Q x M™*.

question: Is (g, x) reachable from the initial configuration?

reference: Chambart and Schnoebelen (2008b), by a direct reduction from F -
bounded Minsky machines.

comment: Hardness already holds for terminating systems, and for reachability
in faulty channel systems, where symbols are nondeterministically inserted
in the channel at arbitrary positions instead of being lost.

[LCST] LCS Termination
instance: A LCS.
question: Is every sequence of transitions from the initial configuration finite?

reference: Chambart and Schnoebelen| (2008b), from [LCY].

There are many interesting applications of these questions; let us mention one
in particular: |Atig et al) (2010) show how concurrent finite programs communi-
cating through weak shared memory—i.e. prone to reorderings of read or writes,
modeling the actual behaviour of microprocessors, their instruction pipelines and
cache levels—have an F,«-complete control-state reachability problem, through

reductions to and from [LCY].

EMBEDDING PROBLEMS have been introduced by Chambart and Schnoebelen (2007),
motivated by decidability problems in various classes of channel systems mixing
lossy and reliable channels. These problems are centered on the substring embed-
ding relation <, and called Post Embedding Problems. There is a wealth of vari-
ants and applications, see (Chambart and Schnoebelen, 2008a, 2010; Karandikar
and Schnoebelen, 2012).

We give here a slightly different viewpoint, taken from (Barcel? et al), 2012),
that uses regular relations (i.e. definable by synchronous finite transducers) and
rational relations (i.e. definable by finite transducers):

[RatEP] Rational Embedding Problem

instance: A rational relation R included in (X*)2.
question: Is R N <, non empty?

reference: Chambart and Schnoebelen (2007), from []

92 Appendix B. Problems of Enormous Complexity

comment: Chambart and Schnoebelen (2007) call this problem the Regular Post
Embedding Problem, but the name is misleading due to [RegEH]. An equiv-
alent presentation uses a rational language L included in ¥* and two ho-
momorphisms u,v: ¥* — ¥*, and asks whether there exists w in L s.t.
u(w) <, v(w).

[RegEP] Regular Embedding Problem

instance: A regular relation R included in (X*)2.
question: Is R N <, non empty?

reference: Barceld et al| (2012), from [RatER].

[GEP] Generalized Embedding Problem

instance: A regular relation R included in (X*)™ and a subset I of {1, ..., m}2

question: Does there exist (w1, ..., wy,) in R s.t. for all (4, j) in I, w; <, w;?

reference: Barceld et al| (2012), from [RegEH].

comment: [RegEH] is the case where m = 2and I = {(1,2)}. Barcel¢ et al/ (2012)
use [[GEH] to show the F.-completeness of querying graph databases using
particular extended conjunctive regular path queries.

MEeTrIC TEMPORAL LoGiC & TIMED AUTOMATA allow to reason on timed words
over 3 X R, where Y is a finite alphabet and the real values are non-decreasing
timestamps on events. A timed automaton (NTA, Alur and Dill, 1994) is a finite au-
tomaton extended with clocks that evolve synchronously through time, and can
be reset and compared against some time interval by the transitions of the au-
tomaton; the model can be extended with alternation (and is then called an ATA).

Metric temporal logic (MTL, Koymans, 1990) is an extension of linear tempo-
ral logic where temporal modalities are decorated with real intervals constraining
satisfaction; for instance, a timed word w satisfies the formula F3)¢ at position
i, written w, i [Fi3 o) ¢, only if ¢ holds at some position j > i of w with times-
tamp 7; — 7; > 3. Satisfiability problems for MTL reduce to emptiness problems
for timed automata.

Lasota and Walukiewicz (2008) and Ouaknine and Worrell (2007) prove using
WSTS techniques that, in the case of a single clock, emptiness of ATAs is decid-
able.

[ATA] Emptiness of Alternating 1-Clock Timed Automata

instance: An ATA A.

question: Is L(A) empty?

reference: Lasota and WalukiewicZ (2008), from faulty channel systems [LCS].

comment: Hardness already holds for universality of nondeterministic 1-clock
timed automata.

[fMTL] Finite Satisfiability of Metric Temporal Logic
instance: An MTL formula ¢.
question: Does there exist a finite timed word w s.t. w, 0 | ¢?

B.4. F .«-Complete Problems 93

reference: Ouaknine and Worrel] (2007), from faulty channel systems [LCY].

Note that recent work on data automata over linearly ordered domains has
uncovered some strong ties with timed automata (Figueira et all, 2010; Bojanczyk
et all, 2011; Figueira, 2012; Bojariczyk and Lasota, 2012).

B.4 F_.«-COMPLETE PROBLEMS

Currently, the known F .« -complete problems are all related to extensions of
Petri nets called enriched nets, which include timed-arc Petri nets (Abdulla and
Nylén, 2001), data nets and Petri data nets (Lazi¢ et al), 2008), and constrained
multiset rewriting systems (Abdulla and Delzannd, 2006). Reductions between
the different classes of enriched nets can be found in (Abdulla et all, 2011; Bonnet
et all, 2010). Defining these families of nets here would take too much space; see
the references for details.

[ENC] Enriched Net Coverability

instance: An enriched net A/ and a place p of the net.

question: Is there a reachable marking with a least one token in p?

reference: Haddad et al| (2012), by a direct reduction from the halting problem in
F, .« -bounded Minsky machines.

comment: Hardness already holds for bounded, terminating nets.

[ENT] Enriched Net Termination
instance: An enriched net V.
question: Are all the executions of the net finite?

reference: Haddad et all (2012), from [ENQ].

94

Appendix B. Problems of Enormous Complexity

REFERENCES

Abdulla, P.A. and Jonsson, B., 1996. Verifying programs with unreliable channels. Information and
Computation, 127(2):91-101. doi:10.1006/inc0.1996.0053. Cited on page P1.

Abdulla, P.A., Cerans, K., Jonsson, B., and Tsay, YK, 1996. General decidability theorems for
infinite-state systems. In LICS 96, pages 313-321. IEEE. d0i:10.1109/LICS.1996.561359. Cited on
page Rd.)

Abdulla, P.A., Cerans, K., Jonsson, B., and Tsay, YK., 2000. Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation, 160(1-2):109-127. doi:10.1006/
inco.1999.2843. Cited on page Bd.

Abdulla, P.A., Bouajjani, A., and d’Orso, J., 2008. Monotonic and downward closed games. Journal
of Logic and Computation, 18(1):153-169. doi:10.1093/logcom/exm062. Cited on page Bd.

Abdulla, P.A., Delzanno, G., and Van Begin, L., 2011. A classification of the expressive power of
well-structured transition systems. Information and Computation, 209(3):248-279. doi:10.1016/
j.ic.2010.11.003. Cited on page p3.

Abdulla, P.A. and Nylén, A., 2001. Timed Petri nets and BQOs. In Colom, J.M. and Koutny, M.,
editors, Petri Nets 2001, volume 2075 of Lecture Notes in Computer Science, pages 53-70. Springer.
doi:10.1007/3-540-45740-2_5. Cited on page p3.

Abdulla, P.A. and Delzanno, G., 2006. On the coverability problem for constrained multiset rewrit-
ing. In AVIS 2006. Cited on page p3.

Alur, R. and Dill, D.L., 1994. A theory of timed automata. Theoretical Computer Science, 126(2):
183-235. 0i:10.1016/0304-3975(94)90010-8. Cited on page p2.

Amadio, R. and Meyssonnier, Ch., 2002. On decidability of the control reachability problem in the
asynchronous 7-calculus. Nordic Journal of Computing, 9(2):70-101. Cited on page bd.

Araki, T. and Kasami, T., 1976. Some decision problems related to the reachability problem for Petri
nets. Theoretical Computer Science, 3(1):85-104. doi:10.1016/0304-3975(76)90067-0. Cited on
page bd.

Atig, M.F., Bouajjani, A., Burckhardt, S., and Musuvathi, M., 2010. On the verification problem for
weak memory models. In POPL 2010, pages 7-18. ACM Press. doi:10.1145/1706299.1706303.
Cited on page p1.

Barcelo, P, Figueira, D., and Libkin, L., 2012. Graph logics with rational relations and the generalized
intersection problem. In LICS 2012, pages 115-124. IEEE. doi:10.1109/LICS.2012.23. Cited on
pages p1, pd.

Bellantoni, S. and Cook, S., 1992. A new recursion-theoretic characterization of the polytime func-
tions. Computational Complexity, 2(2):97-110. doi:10.1007/BF01201998. Cited on page B3.

Bertrand, N. and Schnoebelen, Ph., 2012. Computable fixpoints in well-structured symbolic model
checking. Formal Methods in System Design. doi:10.1007/s10703-012-0168-y. To appear. Cited
on page pd.

Blass, A. and Gurevich, Y., 2008. Program termination and well partial orderings. ACM Transactions
on Computational Logic, 9(3):1-26. doi:10.1145/1352582.1352586. Cited on page Rd.

Blockelet, M. and Schmitz, S., 2011. Model-checking coverability graphs of vector addition systems.
In Murlak, F. and Sankowski, P., editors, MFCS 2011, volume 6907 of Lecture Notes in Computer

http://dx.doi.org/10.1006/inco.1996.0053
http://dx.doi.org/10.1109/LICS.1996.561359
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1093/logcom/exm062
http://dx.doi.org/10.1016/j.ic.2010.11.003
http://dx.doi.org/10.1016/j.ic.2010.11.003
http://dx.doi.org/10.1007/3-540-45740-2_5
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(76)90067-0
http://dx.doi.org/10.1145/1706299.1706303
http://dx.doi.org/10.1109/LICS.2012.23
http://dx.doi.org/10.1007/BF01201998
http://dx.doi.org/10.1007/s10703-012-0168-y
http://dx.doi.org/10.1145/1352582.1352586

96 B-C References

Science, pages 108-119. Springer. 40i:10.1007/978-3-642-22993-0_13. Cited on pages 1, Bg.

Bojanczyk, M., Klin, B., and Lasota, S., 2011. Automata with group actions. In LICS 2011, pages
355-364. d0i:10.1109/LICS.2011.48. Cited on page p3.

Bojanczyk, M. and Lasota, S., 2012. A machine-independent characterization of timed languages.
In Czumaj, A., Mehlhorn, K., Pitts, A., and Wattenhofer, R., editors, ICALP 2012, volume 7392 of
Lecture Notes in Computer Science, pages 92—103. Springer. do0i:10.1007/978-3-642-31585-5_12.
Cited on page p3.

Bonnet, R, Finkel, A., Haddad, S., and Rosa-Velardo, F., 2010. Comparing Petri Data Nets and Timed
Petri Nets. Research Report LSV-10-23, LSV, ENS Cachan. http://tinyurl.com/82vwcx{. Cited
on page p3.

Bouyer, P., Markey, N., Ouaknine, J., Schnoebelen, Ph., and Worrell, J., 2012. On termination
and invariance for faulty channel machines. Formal Aspects of Computing, 24(4):595-607.
d0i:10.1007/s00165-012-0234-7. Cited on page 4.

Bresolin, D., Della Monica, D., Montanari, A., Sala, P., and Sciavicco, G., 2012. Interval temporal
logics over finite linear orders: The complete picture. In ECAI 2012. To appear. Cited on pages b€,
bd.

Cardoza, E., Lipton, R., and Meyer, A R., 1976. Exponential space complete problems for Petri nets
and commutative subgroups. In STOC’76, pages 50-54. ACM Press. do0i:10.1145/800113.803630.
Cited on page R1.

Cécé, G., Finkel, A., and Purushothaman Iyer, S., 1996. Unreliable channels are easier to verify than
perfect channels. Information and Computation, 124(1):20-31. doi:10.1006/inco.1996.0003. Cited
on page p1.

Chambart, P. and Schnoebelen, Ph., 2010. Computing blocker sets for the Regular Post Embedding
Problem. In DLT 2010, volume 6224 of Lecture Notes in Computer Science, pages 136—147. Springer.
d0i:10.1007/978-3-642-14455-4_14. Cited on page p1.

Chambart, P. and Schnoebelen, Ph., 2007. Post embedding problem is not primitive recursive,
with applications to channel systems. In Arvind, V. and Prasad, S., editors, FSTTCS 2007,
volume 4855 of Lecture Notes in Computer Science, pages 265-276. Springer. doi:10.1007/
978-3-540-77050-3_22. Cited on pages p1, p3.

Chambart, P. and Schnoebelen, Ph., 2008a. The w-regular Post embedding problem. In Amadio, R.,
editor, FoSSaCS 2008, volume 4962 of Lecture Notes in Computer Science, pages 97-111. Springer.
doi:10.1007/978-3-540-78499-9 &. Cited on page p1.

Chambart, P. and Schnoebelen, Ph., 2008b. The ordinal recursive complexity of lossy channel sys-
tems. In LICS 2008, pages 205-216. IEEE. doi:10.1109/LICS.2008.47. Cited on pages b6, p1.

Chambart, P., 2011. On Post’s Embedding Problem and the complexity of lossy channels. PhD thesis,
ENS Cachan. http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/chambart-these11.pdf. Cited
on page B7.

Chlebus, B.S., 1986. Domino-tiling games. Journal of Computer and System Sciences, 32(3):374-392.
doi:10.1016/0022-0000(86)90036-X. Cited on page B4.

Ciardo, G., 1994. Petri nets with marking-dependent arc cardinality: Properties and analysis. In
Valette, R., editor, Petri nets 94, volume 815 of Lecture Notes in Computer Science, pages 179-198.
Springer. doi:10.1007/3-540-58152-9 11. Cited on page b6,

Cichon, E.A. and Wainer, S.S., 1983. The slow-growing and the Grzecorczyk hierarchies. Journal of
Symbolic Logic, 48(2):399-408. Cited on pages b7, 2, F7.

Cichon, E.A. and Tahhan Bittar, E., 1998. Ordinal recursive bounds for Higman’s Theorem. Theoret-
ical Computer Science, 201(1-2):63-84. doi:10.1016/S0304-3975(97)00009-1. Cited on pages Ed,
k7. bd. (2. £33 bd.

Clote, P., 1999. Computation models and function algebras. In Griffor, E.R., editor, Handbook of
Computability Theory, volume 140 of Studies in Logic and the Foundations of Mathematics, chap-
ter 17, pages 589-681. Elsevier. d0i:10.1016/S0049-237X(99)80033-C. Cited on page B3.

Clote, P., 1986. On the finite containment problem for Petri nets. Theoretical Computer Science, 43:

http://dx.doi.org/10.1007/978-3-642-22993-0_13
http://dx.doi.org/10.1109/LICS.2011.48
http://dx.doi.org/10.1007/978-3-642-31585-5_12
http://tinyurl.com/82vwcxf
http://dx.doi.org/10.1007/s00165-012-0234-7
http://dx.doi.org/10.1145/800113.803630
http://dx.doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1007/978-3-642-14455-4_14
http://dx.doi.org/10.1007/978-3-540-77050-3_22
http://dx.doi.org/10.1007/978-3-540-77050-3_22
http://dx.doi.org/10.1007/978-3-540-78499-9_8
http://dx.doi.org/10.1109/LICS.2008.47
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/chambart-these11.pdf
http://dx.doi.org/10.1016/0022-0000(86)90036-X
http://dx.doi.org/10.1007/3-540-58152-9_11
http://dx.doi.org/10.1016/S0304-3975(97)00009-1
http://dx.doi.org/10.1016/S0049-237X(99)80033-0

References C-F 97

99-105. doi:10.1016/0304-3975(86)90169-6. Cited on pages g, Bg.

Cobham, A., 1965. The intrinsic computational difficulty of functions. In Bar-Hillel, Y., editor,
International Congress for Logic, Methodology and Philosophy of Science, volume 2, pages 24-30.
North-Holland. Cited on page B3.

Cook, B., Podelski, A., and Rybalchenko, A., 2011. Proving program termination. Communications
of the ACM, 54:88-98. 0i:10.1145/1941487.1941509. Cited on page Rd.

de Jongh, D.HJ. and Parikh, R., 1977. Well-partial orderings and hierarchies. Indagationes Mathe-
maticae, 39(3):195-207. doi:10.1016/1385-7258(77)90067-1. Cited on page Bd.

Demri, S., 2006. Linear-time temporal logics with Presburger constraints: An overview. Journal of
Applied Non-Classical Logics, 16(3-4):311-347. doi:10.3166/jancl.16.311-347. Cited on page bd.

Demri, S. and Lazi¢, R., 2006. LTL with the freeze quantifier and register automata. In LICS 2006,
pages 17-26. IEEE. doi:10.1109/LICS.2006.31. Cited on page pd.

Demri, S. and Lazi¢, R., 2009. LTL with the freeze quantifier and register automata. ACM Transac-
tions on Computational Logic, 10(3). d0i:10.1145/1507244.1507246. Cited on pages b6, pd.

Dennis-Jones, E. and Wainer, S., 1984. Subrecursive hierarchies via direct limits. In Borger, E.,
Oberschelp, W., Richter, M., Schinzel, B., and Thomas, W., editors, Computation and Proof Theory,
volume 1104 of Lecture Notes in Mathematics, pages 117-128. Springer. doi:10.1007/BFb0099482.
Cited on pages b8, b9.

Dickson, L.E., 1913. Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. American Journal of Mathematics, 35(4):413-422. doi:10.2307/2370405. Cited on
page Rd.

Dufourd, C., Janéar, P., and Schnoebelen, Ph., 1999. Boundedness of reset P/T nets. In ICALP’99,
volume 1644 of Lecture Notes in Computer Science, pages 301-310. Springer. doi:10.1007/
3-540-48523-6_27. Cited on page bé.

Dunn, J.M. and Restall, G., 2002. Relevance logic. In Gabbay, D.M. and Guenthner, F., editors,
Handbook of Philosophical Logic, volume 6, pages 1-128. Kluwer Academic Publishers. http:
//consequently.org/papers/rle.pdf. Cited on pages @ @

Fairtlough, MV.H. and Wainer, S.S., 1992. Ordinal complexity of recursive definitions. Information
and Computation, 99(2):123-153. 0i:10.1016/0890-5401(92)90027-D. Cited on pages b8, b9.
Fairtlough, M. and Wainer, S.S., 1998. Hierarchies of provably recursive functions. In Buss, S., editor,
Handbook of Proof Theory, volume 137 of Studies in Logic and the Foundations of Mathematics,
chapter III, pages 149-207. Elsevier. doi:10.1016/S0049-237X(98)80018-9. Cited on pages pd, b7,

Figueira, D. and Segoufin, L., 2009. Future-looking logics on data words and trees. In Kralovi¢, R.
and Niwinski, D., editors, MFCS 2009, volume 5734 of Lecture Notes in Computer Science, pages
331-343. Springer. doi:10.1007/978-3-642-03816-7 29. Cited on pages b4, pd.

Figueira, D., Hofman, P., and Lasota, S., 2010. Relating timed and register automata. In Froschle,
S. and Valencia, F., editors, EXPRESS 2010, volume 41 of EPTCS, pages 61-75. doi:10.4204/
EPTCS.41.5. Cited on page p3.

Figueira, D., Figueira, S., Schmitz, S., and Schnoebelen, Ph., 2011. Ackermannian and primitive-
recursive bounds with Dickson’s Lemma. In LICS 2011, pages 269-278. IEEE. doi:10.1109/
LICS.2011.39. Cited on pages i, id, Bg.

Figueira, D., 2012. Alternating register automata on finite words and trees. Logical Methods in
Computer Science, 8(1):22. doi:10.2168/LMCS-8(1:22)2012. Cited on pages pd, p3.

Finkel, A., 1987. A generalization of the procedure of Karp and Miller to well structured transition
systems. In ICALP’87, volume 267 of Lecture Notes in Computer Science, pages 499-508. Springer.
d0i:10.1007/3-540-18088-5 43. Cited on page RJ.

Finkel, A., 1990. Reduction and covering of infinite reachability trees. Information and Computation,
89(2):144-179. d0i:10.1016/0890-5401(90)90009-7. Cited on page @

Finkel, A. and Schnoebelen, Ph., 2001. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63-92. d0i:10.1016/S0304-3975(00)00102-X. Cited on page Rd.

http://dx.doi.org/10.1016/0304-3975(86)90169-6
http://dx.doi.org/10.1145/1941487.1941509
http://dx.doi.org/10.1016/1385-7258(77)90067-1
http://dx.doi.org/10.3166/jancl.16.311-347
http://dx.doi.org/10.1109/LICS.2006.31
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1007/BFb0099482
http://www.jstor.org/stable/2370405
http://dx.doi.org/10.1007/3-540-48523-6_27
http://dx.doi.org/10.1007/3-540-48523-6_27
http://consequently.org/papers/rle.pdf
http://consequently.org/papers/rle.pdf
http://dx.doi.org/10.1016/0890-5401(92)90027-D
http://dx.doi.org/10.1016/S0049-237X(98)80018-9
http://dx.doi.org/10.1007/978-3-642-03816-7_29
http://dx.doi.org/10.4204/EPTCS.41.5
http://dx.doi.org/10.4204/EPTCS.41.5
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.2168/LMCS-8(1:22)2012
http://dx.doi.org/10.1007/3-540-18088-5_43
http://dx.doi.org/10.1016/0890-5401(90)90009-7
http://dx.doi.org/10.1016/S0304-3975(00)00102-X

98 F-L References

Finkel, A. and Goubault-Larrecq, J., 2009. Forward analysis for WSTS, part I: Completions. In
STACS 2009, volume 3 of Leibniz International Proceedings in Informatics, pages 433-444. LZI.
doi:10.4230/LIPIcs.STACS.2009.1844. Cited on page d.

Finkel, A. and Goubault-Larrecq, J., 2012. Forward analysis for WSTS, part II: Complete WSTS.
Logical Methods in Computer Science. To appear. Cited on pages d, 1.

Friedman, H.M., 1999. Some decision problems of enormous complexity. In LICS 1999, pages 2-13.
IEEE. doi:10.1109/LICS.1999.782577. Cited on page B3.

Friedman, H.M., 2001. Long finite sequences. Journal of Combinatorial Theory, Series A, 95(1):
102-144. doi:10.1006/jcta.2000.3154. Cited on page i9.

Grzegorczyk, A., 1953. Some classes of recursive functions. Rozprawy Matematyczne, 4. http:
//matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf. Cited on page Bd.

Hack, M., 1976. The equality problem for vector addition systems is undecidable. Theoretical Com-
puter Science, 2(1):77-95. d01:10.1016/0304-3975(76)90008-6. Cited on page Bg.

Haddad, S., Schmitz, S., and Schnoebelen, Ph., 2012. The ordinal-recursive complexity of timed-
arc Petri nets, data nets, and other enriched nets. In LICS 2012, pages 355-364. IEEE. doi:
10.1109/LICS.2012.46. Cited on pages [il, b4, p3.

Halpern, J.Y. and Shoham, Y., 1991. A propositional modal logic of time intervals. Journal of the
ACM, 38(4):935-962. doi:10.1145/115234.115351. Cited on page @

Higman, G., 1952. Ordering by divisibility in abstract algebras. Proceedings of the London Mathe-
matical Society, 3(2):326-336. d0i:10.1112/plms/s3-2.1.326. Cited on page Bd.

Howell, RR., Rosier, L.E., Huynh, D.T., and Yen, H.C., 1986. Some complexity bounds for problems
concerning finite and 2-dimensional vector addition systems with states. Theoretical Computer
Science, 46:107-140. doi:10.1016/0304-3975(86)90026-5. Cited on page 9.

Jancar, P, 1999. A note on well quasi-orderings for powersets. Information Processing Letters, 72
(5-6):155-161. do0i:10.1016/S0020-0190(99)00149-0. Cited on pages @, @

Jancar, P., 1995. Undecidability of bisimilarity for Petri nets and some related problems. Theoretical
Computer Science, 148(2):281-301. doi:10.1016/0304-3975(95)00037-W. Cited on page Bg.

Jancar, P., 2001. Nonprimitive recursive complexity and undecidability for Petri net equivalences.
Theoretical Computer Science, 256(1-2):23-30. do0i:10.1016/S0304-3975(00)00100-6. Cited on
pages 1, Bg.

Jurdzinski, M. and Lazi¢, R., 2007. Alternation-free modal mu-calculus for data trees. In LICS 2007,
pages 131-140. [EEE. doi:10.1109/LICS.2007.11. Cited on pages b4, pd.

Karandikar, P. and Schnoebelen, Ph., 2012. Cutting through regular Post embedding problems.
In CSR 2012, volume 7353 of Lecture Notes in Computer Science, pages 229-240. Springer. doi;
10.1007/978-3-642-30642-6_22. Cited on page 1.

Karp, R M. and Miller, RE., 1969. Parallel program schemata. Journal of Computer and System
Sciences, 3(2):147-195. d0i:10.1016/S0022-0000(69)80011-5. Cited on page R1.

Ketonen, J. and Solovay, R., 1981. Rapidly growing Ramsey functions. Annals of Mathematics, 113
(2):27-314. 0i:10.2307/2006985. Cited on page i9.

Kosaraju, S.R., 1982. Decidability of reachability in vector addition systems. In STOC’82, pages
267-281. ACM Press. doi:10.1145/800070.802201. Cited on page Bg.

Koymans, R., 1990. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255-299. 0i:10.1007/BF01995674. Cited on page p2.

Kripke, S.A., 1959. The problem of entailment. In ASL 1959, volume 24(4) of Journal of Symbolic
Logic, page 324. http://www.jstor.org/stable/2963903. Abstract. Cited on page Rd.

Kruskal, J.B., 1972. The theory of well-quasi-ordering: A frequently discovered concept. Journal
of Combinatorial Theory, Series A, 13(3):297-305. d0i:10.1016/0097-3165(72)90063-5. Cited on
pages fif, pd.

Lambert, J.L., 1992. A structure to decide reachability in Petri nets. Theoretical Computer Science,
99(1):79-104. 0i:10.1016/0304-3975(92)90173-D. Cited on page Bg.

http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1844
http://dx.doi.org/10.1109/LICS.1999.782577
http://dx.doi.org/10.1006/jcta.2000.3154
http://matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf
http://matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf
http://dx.doi.org/10.1016/0304-3975(76)90008-6
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1145/115234.115351
http://dx.doi.org/10.1112/plms/s3-2.1.326
http://dx.doi.org/10.1016/0304-3975(86)90026-5
http://dx.doi.org/10.1016/S0020-0190(99)00149-0
http://dx.doi.org/10.1016/0304-3975(95)00037-W
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx.doi.org/10.1109/LICS.2007.11
http://dx.doi.org/10.1007/978-3-642-30642-6_22
http://dx.doi.org/10.1007/978-3-642-30642-6_22
http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.2307/2006985
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1007/BF01995674
http://www.jstor.org/stable/2963903
http://dx.doi.org/10.1016/0097-3165(72)90063-5
http://dx.doi.org/10.1016/0304-3975(92)90173-D

References L-S 99

Lasota, S. and Walukiewicz, L., 2008. Alternating timed automata. ACM Transactions on Computa-
tional Logic, 9(2):10. d0i:10.1145/1342991.1342994. Cited on page p3.

Lazi¢, R., Newcomb, T., Ouaknine,]J., Roscoe, A., and Worrell, J., 2008. Nets with tokens which carry
data. Fundamenta Informaticae, 88(3):251-274. Cited on page p3.

Leroux, J., 2011. Vector addition system reachability problem: a short self-contained proof. In POPL
2011, pages 307-316. ACM Press. doi:10.1145/1926385.1926421. Cited on page Bg.

Lipton, R.J., 1976. The reachability problem requires exponential space. Technical Report 62, De-
partment of Computer Science, Yale University. Cited on page Bg.

Lob, M. and Wainer, S., 1970. Hierarchies of number theoretic functions, I. Archiv fiir Mathematische
Logik und Grundlagenforschung, 13:39-51. doi:10.1007/BF01967649. Cited on pages Bd, 3, 9,
Bd. B4

Lovasz, L., 2006. Graph minor theory. Bulletin of the American Mathematical Society, 43(1):75-86.
doi:10.1090/S0273-0979-05-01088-8. Cited on page pd.

Marcone, A., 1994. Foundations of BQO theory. Transactions of the American Mathematical Society,
345(2):641-660. doi:10.1090/S0002-9947-1994-1219735-8. Cited on page E

Mayr, EW.,, 1981. An algorithm for the general Petri net reachability problem. In STOC’81, pages
238-246. ACM Press. doi:10.1145/800076.802477. Cited on page Bg.

Mayr, EW. and Meyer, AR, 1981. The complexity of the finite containment problem for Petri nets.
Journal of the ACM, 28(3):561-576. d0i:10.1145/322261.322271. Cited on pages p1, Bg.

Mayr, R., 2000. Undecidable problems in unreliable computations. In LATIN 2000, volume 1776 of
Lecture Notes in Computer Science, pages 377-386. Springer. do0i:10.1007/10719839_37. Cited on
page bd.

McAloon, K., 1984. Petri nets and large finite sets. Theoretical Computer Science, 32(1-2):173-183.
d0i:10.1016/0304-3975(84)90029-X. Cited on pages [, Bg.

Meyer, A.R. and Ritchie, D.M., 1967. The complexity of loop programs. In ACM ’67, pages 465-469.
doi:10.1145/800196.806014. Cited on page B7.

Milner, E.C., 1985. Basic WQO- and BQO-theory. In Rival, L, editor, Graphs and Order. The Role of
Graphs in the Theory of Ordered Sets and Its Applications, pages 487-502. D. Reidel Publishing.
Cited on page Rd.

Montanari, A., Puppis, G., and Sala, P., 2010. Maximal decidable fragments of Halpern and Shoham’s
modal logic of intervals. In Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
and Spirakis, P., editors, ICALP 2010, volume 6199 of Lecture Notes in Computer Science, pages
345-356. Springer. d0i:10.1007/978-3-642-14162-1 29. Cited on page pd.

Odifreddi, P.G., 1999. Classical Recursion Theory, vol. II, volume 143 of Studies in Logic and the
Foundations of Mathematics. Elsevier. doi:10.1016/S0049-237X(99)80040-8. Cited on pages [d,

Ouaknine, J.O. and Worrell,].B., 2007. On the decidability and complexity of Metric Temporal Logic
over finite words. Logical Methods in Computer Science, 3(1):8. doi:10.2168/LMCS-3(1:8)2007.
Cited on pages p2, p3.

Padovani, V., 2012. Ticket Entailment is decidable. Mathematical Structures in Computer Science.
arXiv:1106.1875. To appear. Cited on page Bd.

Podelski, A. and Rybalchenko, A., 2004. Transition invariants. In LICS 2004, pages 32—41. IEEE.
doi:10.1109/LICS.2004.1319598. Cited on page d.

Rackoft, C., 1978. The covering and boundedness problems for vector addition systems. Theoretical
Computer Science, 6(2):223-231. d0i:10.1016/0304-3975(78)90036-1. Cited on pages 1, Bg.

Rado, R., 1954. Partial well-ordering of sets of vectors. Mathematika, 1(2):89-95. doi:10.1112/
50025579300000565. Cited on pages [L6, Rd.

Ritchie, RW., 1963. Classes of predictably computable functions. Transactions of the American Math-
ematical Society, 106(1):139-173. d0i:10.1090/S0002-9947-1963-0158822-2. Cited on page B3.

Rose, H.EE., 1984. Subrecursion: Functions and Hierarchies, volume 9 of Oxford Logic Guides. Claren-

don Press. Cited on pages d, b7.

http://dx.doi.org/10.1145/1342991.1342994
http://dx.doi.org/10.1145/1926385.1926421
http://dx.doi.org/10.1007/BF01967649
http://dx.doi.org/10.1090/S0273-0979-05-01088-8
http://dx.doi.org/10.1090/S0002-9947-1994-1219735-8
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.1145/322261.322271
http://dx.doi.org/10.1007/10719839_37
http://dx.doi.org/10.1016/0304-3975(84)90029-X
http://dx.doi.org/10.1145/800196.806014
http://dx.doi.org/10.1007/978-3-642-14162-1_29
http://dx.doi.org/10.1016/S0049-237X(99)80040-8
http://dx.doi.org/10.2168/LMCS-3(1:8)2007
http://arxiv.org/abs/1106.1875
http://dx.doi.org/10.1109/LICS.2004.1319598
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1112/S0025579300000565
http://dx.doi.org/10.1112/S0025579300000565
http://dx.doi.org/10.1090/S0002-9947-1963-0158822-2

100 S-W References

Schmitz, S. and Schnoebelen, Ph., 2011. Multiply-recursive upper bounds with Higman’s Lemma.
In ICALP 2011, volume 6756 of Lecture Notes in Computer Science, pages 441-452. Springer. doi:
10.1007/978-3-642-22012-8 35. Cited on pages i, 9, pd.

Schnoebelen, Ph., 2002. Verifying lossy channel systems has nonprimitive recursive complexity.
Information Processing Letters, 83(5):251-261. do0i:10.1016/S0020-0190(01)00337-4. Cited on
pages bd, B9.

Schnoebelen, Ph., 2010a. Revisiting Ackermann-hardness for lossy counter machines and reset Petri
nets. In Hlinény, P. and Kucera, A., editors, MFCS 2010, volume 6281 of Lecture Notes in Computer
Science, pages 616-628. Springer. doi:10.1007/978-3-642-15155-2_54. Cited on pages i, bd, BJ.

Schnoebelen, Ph., 2010b. Lossy counter machines decidability cheat sheet. In Kucera, A. and
Potapov, I, editors, RP 2010, volume 6227 of Lecture Notes in Computer Science, pages 51-75.
Springer. doi:10.1007/978-3-642-15349-5_4. Cited on page b4.

Seidl, H., 1990. Deciding equivalence of finite tree automata. SIAM Journal on Computing, 19(3):
424-437. d0i:10.1137/0219027. Cited on page B4.

Stockmeyer, L.J. and Meyer, A.R., 1973. Word problems requiring exponential time. In STOC 73,
pages 1-9. ACM Press. doi:10.1145/800125.804029. Cited on pages B7, Bg.

Tan, T., 2010. On pebble automata for data languages with decidable emptiness problem. Journal of
Computer and System Sciences, 76(8):778-791. d0i:10.1016/].jcss.2010.03.004. Cited on pages b6,
00.

Turing, A., 1949. Checking a large routine. In Report of a Conference on High Speed Automatic
Calculating Machines. Republished in The early British computer conferences, pages 70-72, MIT
Press, 1989. Cited on page Rd.

Urquhart, A., 1984. The undecidability of entailment and relevant implication. Journal of Symbolic
Logic, 49(4):1059-1073. http://www.jstor.org/stable/2274261. Cited on pages d, B.

Urquhart, A., 1999. The complexity of decision procedures in relevance logic II. Journal of Symbolic
Logic, 64(4):1774-1802. d0i:10.2307/2586811. Cited on pages Bd, b4, BJ.

Wainer, S.S., 1970. A classification of the ordinal recursive functions. Archiv fiir Mathematische
Logik und Grundlagenforschung, 13(3):136-153. doi:10.1007/BF01973619. Cited on pages B3, B7.

Wainer, S.S., 1972. Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy.
Journal of Symbolic Logic, 37(2):281-292. http://www.jstor.org/stable/2272973. Cited on pageB7.

Weiermann, A., 1994. Complexity bounds for some finite forms of Kruskal’s Theorem. journal of
Symbolic Computation, 18(5):463-488. 0i:10.1006/jsc0.1994.1059. Cited on pages bd, Pd.

http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://dx.doi.org/10.1016/S0020-0190(01)00337-4
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1007/978-3-642-15349-5_4
http://dx.doi.org/10.1137/0219027
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1016/j.jcss.2010.03.004
http://www.jstor.org/stable/2274261
http://dx.doi.org/10.2307/2586811
http://dx.doi.org/10.1007/BF01973619
http://www.jstor.org/stable/2272973
http://dx.doi.org/10.1006/jsco.1994.1059

INDEX

Ackermann function, 7 compatibility, 17
antichain, [} WSTS, [i§

ascending chain condition, B))
effective pred-basis, i

backward coverability, [, Bg Egli-Milner ordering, [ig
better quasi orders, exchange rule, [

bounding function, excluded minors, f

Cantor Normal Form, B7 fast-growing hierarchy, 26, i
cartesian product, 5, B3 fundamental sequence, BY

Cichon hierarchy, E, @, @

i 7
compatibility, Graph Minor Theorem,

downward, E Grzegorczyk hierarchy, E @ E @
reflexive transitive, ﬂ Hardness Theorem, @’ E E E
transitive, E Hardy
contraction. computation, E
ordering, [i1 hierarchy, 4, 52
rule, E Higman’s Lemma, E, E
control Hoare ordering, [i§
control function, E honest function, @
controlled sequence, R4
control-state reachability, E image-finite, §
counter machine, increasing pair, , ﬂ, @
extended, bd incrementing counter machine, p3
incrementing, E)
lossy, F1 Karp & Miller
Minsky, bd graph, [19
reset, E tre’e, @
transfer, Q Kruskal’s Tree Theorem, E E
coverability, B, i1, bd, 4 b length function, E
covering, Theorem, E’ E

cut elimination, [id

lexicographic ordering, [14),
cut-off subtraction, 5 grap 544

linear ordering,

Descent Equation, B1 linearization, 13 @

Dickson’s Lemma, E’ E lossy counter machine, ﬂ

disjoint sum, E E Minsky machine, E

disjunctive termination argument, E monomial E

downward multiset support, fi]
closed, E

closure, E natural

102 N-z Index
product, B7 relevant implication, [L1
sum, reset machine, E

Noetherian relation, §

norm sequence

infinite norm, p3
W(qo, see nwqo
nwqo,
derivation, B4
empty, B3
isomorphism,
naturals, 5
polynomial, E
polynomial normal form, €, B4
reflection, B3
residual,
singleton, 3

w-node, E
one function, 4
order type,
maximal, , @
ordinal
limit, B7
ordering, B7
predecessor, Bg
structural ordering, iq
successor,

partial ordering,
pigeonhole principle,
Post-effective, §
predecessor set, E
prefix ordering, 14
primitive recursion, @
limited, @
projection function, 14

quasi ordering,

Ramsey Theorem, }, [i§

ranking function, §

reachability tree,

reflection, see nwqo reflection
reflexive transitive compatibility, L7

bad, i, B1
controlled, see control
extension, E
fundamental, see fundamental sequence
good, 7, 1
r-bad, @
r-good, iq
Smyth’s ordering, 14
sparser-than ordering, [1§
strict ordering,
subformula property, [iq]
substitution, 4
subword embedding, §
successor set, E
sum function, 4
super-homogeneous function, i3

termination, E @ @ E
threshold, E

total ordering,

transfer machine, b3
transition system,
transitive compatibility, i

upward
closed, E
closure, E

vector addition system, [i2
with states, E

weakening, [L]
well founded
ordering, B
relation, [§
well partial ordering,
well quasi ordering,
well-structured transition system,

zero function, 4

	1 Basics of WQOs and Applications
	1.1 Well Quasi Orderings
	1.1.1 Alternative Definitions
	1.1.2 Upward-closed Subsets of wqos
	1.1.3 Constructing wqos

	1.2 Well-Structured Transition Systems
	1.2.1 Termination
	1.2.2 Coverability

	1.3 Examples of Applications
	1.3.1 Program Termination
	1.3.2 Relevance Logic
	1.3.3 Karp & Miller Trees

	Exercises
	Bibliographic Notes

	2 Complexity Upper Bounds
	2.1 The Length of Controlled Bad Sequences
	2.1.1 Controlled Sequences
	2.1.2 Polynomial nwqos
	2.1.3 Subrecursive Functions
	2.1.4 Upper Bounds for Dickson's Lemma

	2.2 Applications
	2.2.1 Termination Algorithm
	2.2.2 Coverability Algorithm

	2.3 Bounding the Length Function
	2.3.1 Residual nwqos and a Descent Equation
	2.3.2 Reflecting nwqos
	2.3.3 A Bounding Function

	2.4 Classification in the Grzegorczyk Hierarchy
	2.4.1 Maximal Order Types
	2.4.2 The Cichoń Hierarchy
	2.4.3 Monotonicity
	2.4.4 Wrapping Up

	Exercises
	Bibliographic Notes

	3 Complexity Lower Bounds
	3.1 Counter Machines
	3.1.1 Extended Counter Machines
	3.1.2 Operational Semantics
	3.1.3 Lossy Counter Machines
	3.1.4 Behavioral Problems on Counter Machines

	3.2 Hardy Computations
	3.2.1 Encoding Hardy Computations
	3.2.2 Implementing Hardy Computations with Counter Machines

	3.3 Minsky Machines on a Budget
	3.4 Ackermann-Hardness for Lossy Counter Machines
	3.5 Handling Reset Petri Nets
	3.5.1 Replacing Zero-Tests with Resets
	3.5.2 From Extended to Minsky Machines

	3.6 Hardness for Termination
	Exercises
	Bibliographic Notes

	A Subrecursive Functions
	A.1 Ordinal Terms
	A.2 Fundamental Sequences and Predecessors
	A.3 Pointwise Ordering and Lean Ordinals
	A.4 Ordinal Indexed Functions
	A.5 Pointwise Ordering and Monotonicity
	A.6 Different Fundamental Sequences
	A.7 Different Control Functions
	A.8 Classes of Subrecursive Functions

	B Problems of Enormous Complexity
	B.1 Fast-Growing Complexities
	B.2 F-Complete Problems
	B.3 F-Complete Problems
	B.4 F-Complete Problems

	References
	Index

