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Abstract. The objective of this course (ALGANT course, M2, Bordeaux,
January-April 2012) was originally to present various facets of the so-called

“tropical calculus”, as it appeared in various mathematical domains, includ-
ing theoretical as applied ones (algebraic geometry, optimization and control
theory, dynamical systems, etc., see [Gaub] for a wide panorama in such ap-
plied directions). The original idea was to address students starting with a

M1 background as perequisite ; a short appendix about distribution and cur-
rent theory needed then to be added since students were not familiar to such
concepts. Since it was of course necessary to make a choice (for this 30 hours
course !), it revealed necessary to focus on the interplay between tropical (hence

intrinsically ultrametric) mathematics and the recent theory of amœbas and
coamœbas in complex analytic geometry (toric varieties, current theory towards
intersection or complex dynamics, study of differential systems such as hyper-

geometric systems of the Horn or Gelfand-Krapanov-Zelevinsky type), hence
in the archimedean context. “Deformation” from complex to tropical became
then one of the main leitmotives of this course. These notes own indeed a lot
to all what I learned, as the naive non-specialist I was, from my friends and

collaborators Mikael Passare (who unfortunately disappeared so brutally last
September [Pas]) and August Tsikh. Both of them made me really enjoy such
fascinating aspects of mathematics. These notes come as a modest tribute
to Mikael’s memory. The course intended to be as self-contained as it could

be. Nevertheless, it also planned to focus on a wide range of open questions ;
which I indeed liked here was that most of them could be formulated in most
elementary terms, that is without too much preliminary background. Many of
the references I quoted here (as well as others) may often be found as preprints

on the site http://front.math.ucdavis.edu/
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CHAPTER 1

Tropical algebraic calculus

Tropical calculus (also called “max-plus” or “min-plus” calculus) was originally
introduced by computer scientists. The terminology “tropical” stands as a tribute
to the memory of the Brazilian computer scientist and logician Imre Simon (1943-
2009), who was one among the pioneers of such a theory. Tropical calculus then
developed extensively in applied mathematics (control theory, optimization, more
recently dynamical systems), in relation with convex analysis. In the past ten years,
such algebraic calculus also incarnated in a geometric setting, and tropical geometry
became quite an active field, in between complex or real algebraic theory (in general
quite hard to deal with, either from the geometric or even topological point of view)
and (much more simple) geometry and combinatorics on weighted graphs. In this
chapter, one introduces various approaches towards algebraic aspects of tropical
calculus. It will give us the opportunity to introduce the various frames in which
tropical geometry as degeneration of real or complex algebraic geometry will be
later on presented.

1.1. Various frames for tropical calculus

In this section, one introduces various frames within which tropical calculus can
be developed.

• The first frame (subsection 1.1.1) is the “historic” one. It leads to the con-
struction of a “classical” semiring structure on [−∞,∞[, that is achieved
as the final state (h = 0) in the so-called dequantization process of Litvinov-
Maslov, deforming (from h > 0) the (quantum) semiring structure associ-
ated to (R≥0,+,×), then transposing it to [−∞,∞[ via the logarithm map
log. It leads to the “classical” semiring structure of the tropical semiring
(Trop, ⊞ , ⊠ ) (note that Trop = [−∞,∞[ pointsetwise).
• The second frame (subsection 1.1.2), still in the real setting, is a modifi-
cation of the “classical” semiring structure on [−∞,∞[ introduced above,
in such a way that the operation of “substraction” (which does not make
sense there) can now be carried through. It is based on an idea introduced
by Z. Izhakian (see for example [Izh1]). It leads to the construction of the
supertropical semiring (Trop⋆, ⊞ , ⊠ ) (Trop⋆ is pointsetwise the disjoint
union of Trop = [−∞,∞[ with a “ghost” copy of R). Such a frame will
in fact lead, geometrically speaking, to an algebraically closed structure
(on the model (C = R + iR,+,×) fits for the realization of the integral
closure of (R,+,×)), where basic results from classical complex algebraic
geometry over C (such as Hilbert’s nullstellensatz) will later on be trans-
posed.

1



2 1. TROPICAL ALGEBRAIC CALCULUS

• The third frame (subsection 1.1.3), which stands also in the real setting, is
based on the construction on [−∞,∞[ ([0,∞[ transposed via the logarith-
mic map) of an hyperfield structure, that is, roughly, a field structure in

which the addition ⊞̃ is multivalued instead of being single valued. Such

a structure will be that of the tropical hyperfield (Trop, ⊞̃,⊠). Here again,
as in the first frame presented here, Trop = [−∞,∞[ pointsetwise.
• The two last frames introduced in subsection 1.1.4 (first in the complex
setting, then in the real one after restriction to the real line) are that

of the hyperfield of complex tropical numbers (TropC, ⊞̃C , ⊠C ) and of

the hyperfield of real tropical numbers (TropR, ⊞̃R, ⊠R ) ; here again, the

addition ⊞̃C or ⊞̃R is multivalued. They provide (in the complex setting)
tropical companions for the complex affine or projective schemes

Cn = Spec (C[X1, ..., Xn])

Tn = (C∗)n = Spec (C[X±1
1 , ..., X±1

n ])

Pn(C) = Spec (Proj(C[X0, ..., Xn])), ...,

which are the standard frames where to do complex algebraic geometry.
Such constructions are also based on a dequantization process, starting
from C or R equipped with their usual operations. They were introduced
by O. Viro (see [Vir]). In the complex setting (the hyperfield of complex

tropical numbers (TropC, ⊞̃C , ⊠C )), this approach stands for a straight-
forward “tropical degeneration” of the algebraically closed field (C,+,×) ;
it will be used later on to deform objects from classical complex algebraic
geometry (in Cn, Tn, Pn(C),...) into “degenerated” tropical objects (usu-
ally, as we will see, simpler to deal with) in (TropC)

n, (TropC \ {0})n,
etc.

1.1.1. The semiring (Trop, ⊞ , ⊠ ). On [−∞,∞[, let us define two internal
operations, namely the tropical addition and the tropical multiplication :

∀ a, b ∈ [−∞,∞[, a⊞ b := max(a, b)

∀ a, b ∈ [−∞,∞[, a⊠ b := a+ b.
(1.1)

The role of zero is now played by −∞ since a⊞ (−∞) = (−∞)⊞ a = a for any
a ∈ [−∞,∞[, while the role of unit element is played by 0 since

a⊠ 0 = 0⊠ a = a+ 0 = 0 + a = a ∀ a ∈ [−∞,∞[.

Tropical addition is idempotent, that is

(1.2) a⊞ a = max(a, a) = a ∀ a ∈ [−∞,∞[.

When a ∈ R, there cannot be then any b ∈ [−∞,∞[ such that a⊞ b = −∞,
which means that no element (besides −∞) admits an “inverse” respect to tropical
addition. It does not either make sense to speak about “tropical substraction” : the
idempotency relation (1.2) can be viewed as which replaces the lack of substraction.
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Nevertheless, note that one can define tropical division, namely a � b := a−b when
a ∈ [−∞,∞[ and b ∈ R. The tropical semiring1 thus constructed is denoted as
(Trop, ⊞ , ⊠ ).

The tropical semiring (Trop, ⊞ , ⊠ ) can be understood as the result of a continuous
deformation h→ Th of the semiring (R≥0,+,×). More precisely, for any h > 0, let
the operations ⊞h and ⊠h on R ∪ {−∞} = Troph be defined as

a ⊞h b := h log(ea/h + eb/h), a ⊠h b := a+ b.

This leads to the realization of the semi-ring (Troph,⊞h,⊠h), which is isomorphic
to (R≥0,+,×) through t ∈ R≥0 7→ h log t. When h > 0 tends to 0, such a semiring
(Troph, ⊞ h, ⊠ h) degenerates intro the tropical semiring (Trop, ⊞ , ⊠ ) : such a
degeneracy (in the reverse way) is known in physics as the Litvinov-Maslov quanti-
zation of the “classical” semi-ring (Trop, ⊞ , ⊠ ) (of which (Troph,⊞h,⊠h) for h > 0
sufficiently small is a quantum approximation2). The degeneracy process itself is
then known as the Litminov-Maslov dequantization process .

1.1.2. The supertropical semiring (Trop⋆, ⊞ , ⊠ ). The idempotency re-
lation (1.2) prevents indeed from defining a “substraction” in (Trop, ⊞ , ⊠ ). In
order to overcome such a difficulty (which will be important later on to define and
manipulate algebraic tropical sets), Z. Izhakian proposed in [Izh1] to “duplicate”
R∪{−∞} with a “ghost” copy R′∪{−∞}, the two copies R∪{−∞} and R′∪{−∞}
sharing the same element −∞. The union Trop⋆ of such two copies is equipped
with an order according to the following rules :

∀a ∈ Trop⋆, −∞ ≺ a
∀ a, b ∈ R, a ≤ b =⇒

(
a ≺ b, a ≺ b′, a′ ≺ b, a′ ≺ b′

)
∀ a ∈ R, a ≺ a′.

(1.3)

By convention, we extend a 7→ a′ to R′ setting (a′)′ = a′ for any a ∈ R. One defines
then the supertropical semiring

(Trop⋆, ⊞ , ⊠ )

as the set (R∪{−∞})∪(R′∪{−∞}) equipped with the “extended” tropical addition
and multiplication :

a⊞ b :=


max≺(a, b) if a ̸= b

a′ if a = b ̸= −∞
−∞ if a = b = −∞

∀ a, b ∈ Trop⋆

{
(−∞)⊠ a = a⊠ (−∞) ∀ a ∈ Trop⋆

a⊠ b := a+ b, a′ ⊠ b = a⊠ b′ = a′ ⊠ b′ := (a+ b)′ ∀ a, b ∈ R.

(1.4)

The key point is that the relation a⊞ a = a′ (for any a ∈ R) replaces now the
idempotency relation.

1One may say also sometimes “semifield” since any non-zero element a admits an inverse
(−a) for the tropical multiplication. Note anyway that 0 is different from the neutral element

(−∞) with respect to tropical addition ⊞ .
2We follow here the presentation by O.A. Viro in [Vir], section 1.3.
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Let also π : (Trop⋆, ⊞ , ⊠ ) → (Trop, ⊞ , ⊠ ) be the surjective homomorphism of
semirings defined by

(1.5) π(a) = π(a′) = a ∀ a ∈ R, π(−∞) = −∞.

In Trop⋆, one needs to make the distinction between two copies of R : the “visible”
or “tangible” one (it includes −∞) and the image of R by a 7→ a′ (the “ghost”
part of Trop⋆). The visible and ghost part realize a partition of Trop⋆ into two
disjoints subsets. Elements of the form a′ (for a ∈ R), which form the ghost copy,
have vocation to be those which will be “ignored”.

1.1.3. The tropical hyperfield (Trop, ⊞̃, ⊠ ). On R≥0, one can define an

addition ⊞̃ as a multivalued (instead of single valued) operation. This can be
done in two ways, in accordance with the triangle inequality formulated in R either
in the archimedean (|a − b| ≤ |a ± b| ≤ |a| + |b|), or in the ultrametric context
(|a+ b| ≤ max(|a|, |b|)). In the first case, one defines

t ⊞̃arch s :=
[
|t− s|, t+ s

]
.

In the second case, one defines

t ⊞̃ultra s :=

{
max(t, s) if t ̸= s

[0, t] if t = s.

Both multivalued additions ⊞̃arch and ⊞̃ultra are commutative. They also are asso-
ciative in the following sense :

(t ⊞̃ s1) ⊞̃ s2 :=
∪

τ∈t ⊞̃ s1

{τ ⊞̃ s2} =
∪

σ∈s1 ⊞̃ s2

{t ⊞̃σ} := t ⊞̃ (s1 ⊞̃ s2).

They both admit 0 as a neutral element, that is

0 ⊞̃ t = t ⊞̃ 0 = s ∀ t ∈ R≥0,

and both are such that, for any t ∈ R≥0, t is the unique element in R≥0 such that

0 ∈ t ⊞̃ t ∀ t ∈ R≥0.

Moreover, the multiplication × : (t, s) 7→ ts is commutative, in both cases dis-

tributive with respect to the addition ⊞̃. Moreover, in both cases (R>0,×) =

(R≥0 \ {0},×) is a multiplicative group. Such a structure (R≥0, ⊞̃,×) is called
an hyperfield structure3 . When transposed to [−∞,∞[ thanks to the logarithmic

map log, the structure (R≥0, ⊞̃ultra,×) becomes the tropical hyperfield structure

(Trop, ⊞̃,⊠) on [−∞,∞[. The price to pay to get an hyperfield structure (that is,
in some “weak” sense, to be able to handle a “substraction”) instead of the semiring
structure (Trop, ⊞ , ⊠ ) as in subsection 1.1.1, is that the tropical addition is now

multivalued instead of being single valued : when a = b, a ⊞̃ b = [−∞, a]. Note

that it remains a = max(a, a) = a⊞ a ∈ a ⊞̃ a = [−∞, a].

3The notions of hyperring and hyperfield were introduced around 1956 by Marc Krasner

[Kras]. One can find an up-to-date presentation in the abstract of course by A. Connes in Collège
de France, 2009-2010 [Connes].
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1.1.4. Hyperfields of tropical complex or real numbers. Tropical calcu-
lus cannot be straightfully transposed to the complex setting (C instead of [−∞,∞[)
since there is no order in C. Nevertheless, one can take into account the fact that
the complex plane is equipped with an orientation, therefore carries a notion of
positivity, in order to extend tropical calculus to the complex setting. The key new
concept we introduce here, following O. Viro [Vir], as we already did in subsec-
tion 1.1.3 above, is that of multivalued tropical addition and related “hypergroup”
structure : such will be the case for the tropical complex addition of two complex
numbers.

As for the Litminov-Maslov dequantization process, the idea is to transform (C,+,×)
into a degenerated structure. Namely, for any h > 0, denote the “addition” ⊞C,h
on C as

(z, w) 7→ z ⊞C,h w := S−1
h (Sh(z) + Sh(w)),

where Sh denotes the invertible map Sh : C↔ C defined as

Sh(z) =

{
|z|1/h z

|z| if z ̸= 0

0 if z = 0.

Keep the multiplication as z ⊠C,h w := z + w for any h > 0. When h > 0 tends to
0+ and |z| ̸= |w|, one chan check that limh→0+(z ⊞C,h w) = z when |z| > |w| or w
when |z| < |w| ; when |z| = |w| and z + w ̸= 0, then

lim
h→0+

(z ⊞C,h w) = |z| z + w

|z + w|
;

when z + w = 0, then limh→0+(z ⊞C,h w) = 0.

The limit addition

(z, w) 7→ z ⊞C,0 w := lim
h→0+

(z ⊞C,h w)

does not define a nice addition : it is not continuous (with respect to the usual
topology on C) and it is not associative : for example

((−1)⊞C,0 i)⊞C,0 1 = exp(3iπ/8) ̸= (−1)⊞C,0 (i⊞C,0 1) = exp(5iπ/8).

In order to overcome such a difficulty, one introduces again a concept of multivalued
addition. The idea is that the addition ⊠C,0 = ⊠C is multivalued and that its graph
Γ⊞C ⊂ C2 × C = C3 is achieved as the “limit set”:{

(z, w, u) ∈ C3 ; ∃(hk)k≥0, lim
k→+∞

hk = 0+ ,

∃(zk, wk, uk) ∈ Γ⊞C,hk
, lim

k→+∞
(zk, wk, uk) = (z, w, u)

}
.

(1.6)

In order to do so, one introduces the following definition.

Definition 1.1 (tropical multivalued addition of two complex numbers). Let

z and w be two complex numbers. If |z| ̸= |w|, the tropical sum z ⊞̃C w is defined
as z when |z| > |w| and w when |z| < |w|. When |z| = |w| = r and z + w ̸= 0, so
that z = reiα, w = reiβ , with |β − α| < π, one defines

(1.7) z ⊞̃C w :=
{
zeiθ ; θ ∈ [α, β]

}
.

Finally

(1.8) z ⊞̃C (−z) := D(0, |z|) ∀ z ∈ C.
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Tropical addition over the set of complex numbers thus defines a multivalued map

⊞̃C : C× C→ C
which is commutative, associative, i.e.

(z ⊞̃C w1)⊞w2 :=
∪

ξ∈z ⊞̃C w1

{ξ ⊞̃C w2} =
∪

η∈w1 ⊞̃C w2

{z ⊞̃C η} := z ⊞̃C (w1 ⊞̃C w2),

admits as neutral element 0, i.e.

0 ⊞̃C w = w ⊞̃C 0 = w ∀w ∈ C,
and is such that, for any z ∈ C, −z is the unique complex number such that

0 ∈
(
z ⊞̃C (−z)

)
= (−z) ⊞̃C z.

The most difficult point to prove is associativity, which is just technical, so that we
do not reproduce it here (see Lemma 2.B in [Vir]).

Such a multivalued operation confers to (TropC, ⊞̃C ) a structure of commutative
hypergroup (TropC = C pointsetwise). Note that this operation can be restricted to

the real line R and defines then a structure (TropR, ⊞̃R) of commutative hypergroup
(TropR = R pointsetwise).

Topologically speaking, the tropical addition ⊞̃C is made continuous thanks to the
choice of a topology on the set {0, 1}C = P(C) of all subsets of C. One chooses
here the upper Vietoris topology : a basis of open neighborhood of A ∈ P(C)
consists of all subsets {0, 1}W ≃ P(W ) ⊂ {0, 1}C ≃ P(C), W being any open
neighborhood of A in C. We leave here to the reader the proof of the continuity of

⊞̃C respect to choice of the usual topology on C2 and the upper Vietoris topology
on {0, 1}C ≃ P(C) (see Theorem 4.B in [Vir]). Similarly, the multivalued addition

⊞̃R is continuous with respect to the choice of the usual topology on R2 and the
upper Vietoris topology on {0, 1}R ≃ P(R).
The tropical multiplication ⊠C between complex numbers is the singlevalued op-
eration defined as

z ⊠C w := z + w.

It restricts to TropR = R as the tropical multiplication ⊠R . The tropical mul-
tiplication ⊠C (resp. ⊠R ) is commutative, associative, distributive with respect

to the tropical multivalued addition ⊞̃C (resp. ⊞̃R). Since the tropical multipli-
cation induces a group structure on (TropC \ {0}, ⊠C ) or (TropR \ {0}, ⊠R ), it

confers, together with the tropical addition ⊞̃C (resp. ⊞̃R), an hyperfield structure

(TropC, ⊞̃C , ⊠C ) (resp. (TropR, ⊞̃R, ⊠R )) on C = TropC (resp. on R = TropR).

The hyperfield (TropC, ⊞̃C , ⊠C ) is called hyperfield of tropical complex numbers,

while the hyperfield (TropR, ⊞̃R, ⊠R ) is called hyperfield of tropical real numbers.

The complex conjugaison z → z realizes an automorphism φ of hyperfields from

(TropC, ⊞̃C , ⊠C ) into itself (i.e. φ(z ⊠C w) ⊂ φ(z) ⊠C φ(w) and φ(z ⊠C w) =
φ(z) ⊠C φ(w)).

1.2. (Trop, ⊞ , ⊠ )-polynomial objects in n variables

1.2.1. (Trop, ⊞ , ⊠ )-polynomials and polynomial functions. One intro-
duces in this subsection polynomial objects within the (Trop, ⊞ , ⊠ ) frame intro-
duced in subsection 1.1.1. A (Trop, ⊞ , ⊠ )-polynomial function p in n real variables
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is (by definition) a sum of tropical monomial functions on Tropn, of the form
(1.9)

p : x = (x1, ..., xn) ∈ Tropn = [−∞,∞[n 7−→⊞α∈Nn

(
aα ⊠x⊠α1

1 ⊠ · · · ⊠x⊠αn

n

)
,

where the aα, α ∈ Nn are elements in Trop such that all aα, but a finite number of
them, equal −∞.

One should be careful here not to make a confusion between such a “functional”
notion and that of (Trop, ⊞ , ⊠ )-polynomial : a (Trop, ⊞ , ⊠ )-polynomial p in n
variables is a formal sum

(1.10) p :=⊞α∈Nn

(
aα ⊠x⊠α1

1 ⊠ · · · ⊠x⊠αn

n

)
,

where (aα)α∈Nn denotes a collection of elements in [−∞,∞[ such that all aα, but
a finite number, equal −∞. As we will see in subsection 1.2.3, the expression (1.9)
for a (Trop, ⊞ , ⊠ )-polynomial function in terms of the α ∈ Nn and aα ∈ [−∞,∞[
is not unique (which makes a crucial difference with the situation for polynomial
functions respect to the standard operations (+,×) on Rn), though there exists
(in some sense) some “maximal” choice (aα being maximal respect to the usual
order on [−∞,∞[ for each index α). Therefore, it is not possible to retrieve the
coefficients aα from the values of the (Trop, ⊞ , ⊠ )-polynomial function p. For
example, if n = 1 and a, b, c are three real numbers such that a ≤ (b + c)/2, then,
for any k ∈ N∗,

a+ kx ≤ 1

2

(
(b+ c+ (k − 1)x+ (k + 1)x

)
≤ max

(
b+ (k − 1)x, c+ (k + 1)x

)
,

so that, for any x ∈ R,
max

(
b+(k−1)x, a+kx, c+(k+1)x

)
= max

(
b+(k−1)x, (−∞)+kx, c+(k+1)x

)
,

which proves that the two (Trop, ⊞ , ⊠ )-polynomials

(b ⊠ x⊠ k−1

)⊞ ((−∞) ⊠ x⊠ k

)⊞ (c⊠x⊠ k+1

) & a⊠x⊠ k

are evaluated as the same (Trop, ⊞ , ⊠ )-polynomial function on (Trop, ⊞ , ⊠ ).
This indeed emphasizes the fact that the notions of (Trop, ⊞ , ⊠ )-polynomial func-
tion and (Trop, ⊞ , ⊠ )-polynomial are of different nature. The (Trop, ⊞ , ⊠ )-
polynomial function p in (1.9) appears as the “evaluation” of the (Trop, ⊞ , ⊠ )-
polynomial p in (1.10) on Tropn. The evaluation p (as in (1.9)) of the (Trop, ⊞ , ⊠ )-
polynomial (1.10) on Tropn does not provide enough information to be able to
retrieve from it the list of the coefficients aα, α ∈ Nn, of p, which is not really a
surprise : for example, the evaluation4 of p = X3 − 3X2 + 2X (considered as a
formal expression with real coefficients) on F3 gives zero, thus does not provide any
information on the whole list of coefficients [1 -3 2 0] of p.

If one expresses the tropical operations ⊞ and ⊠ in terms of their definitions
(1.1), one can see immediately that the (Trop, ⊞ , ⊠ )-polynomial function defined
as (1.9) is the convex function

(1.11) x = (x1, ..., xn) ∈ [−∞,∞[n 7−→ p(x) = max
α∈Nn

(
aα + ⟨α, x⟩

)
.

Such a representation allows to extend the notion of (Trop, ⊞ , ⊠ )-polynomial func-
tion to that of Laurent (Trop, ⊞ , ⊠ )-polynomial function, allowing the “multi-
exponents” α in (1.9) to belong to Zn instead of Nn. Of course, one needs now to

4I quoted such a illuminating example from the presentation of C. Kiselman in [Kis].
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restrict the evaluation to Rn = (Trop \ {−∞})n instead of Tropn. One will from
now on consider (Trop, ⊞ , ⊠ )-polynomial functions, when they are restricted to
(Trop \ {−∞})n = Rn, as Laurent (Trop, ⊞ , ⊠ )-polynomial functions

(1.12) x = (x1, ..., xn) ∈ (Trop \ {−∞})n = Rn 7−→ p(x) = max
α∈Zn

(
aα + ⟨α, x⟩

)
,

all aα, but a finite number, being equal to −∞. As for tropical polynomial functions
and tropical polynomials, one should be careful here to distinguish between Laurent
polynomial tropical functions and Laurent (Trop, ⊞ , ⊠ )-polynomials. A Laurent
(Trop, ⊞ , ⊠ )-polynomial is (by definition) a formal sum

(1.13) p :=⊞α∈Zn

(
aα ⊠x⊠α1

1 ⊠ · · · ⊠x⊠αn

n

)
,

where (aα)α∈Zn denotes a collection of elements in [−∞,∞[ such that all aα, but a fi-
nite number, equal −∞. Here again, the “evaluation” of the Laurent (Trop, ⊞ , ⊠ )-
polynomial p on (Trop \ {−∞})n = Rn does not allow in general the possibility to
retrieve the coefficients aα involved in the expression (1.13) of p.

1.2.2. Tropical hypersurface defined by a Laurent (Trop, ⊞ , ⊠ )-poly-
nomial. In complex algebraic geometry, the algebraic hypersurface defined by a
polynomial function P ∈ C[X1, ..., Xn] in the affine scheme

An := Spec (C[X1, ..., Xn])

is (from the pointset point of view) the zero set

P−1(0) = VC(P ) = {ζ ∈ Cn ; P (z) = 0} .

If P ∈ C[X±1
1 , ..., X±1

n ] is a Laurent polynomial (thus defining a Laurent polynomial
function on Tn = (C∗)n = Spec (C[X±1

1 , ..., X±1
n ])), the algebraic hypersurface

defined by P is the zero set VT(P ) = {ζ ∈ Tn ; P (z) = 0} in the affine scheme
C[X±1

1 , ..., X±1
n ].

Such a point of view cannot be carried to the tropical real setting (Trop, ⊞ , ⊠ ). Let
indeed p be a Laurent (Trop, ⊞ , ⊠ )-polynomial function on ((Trop\{−∞})n, ⊞ , ⊠ )
such as (1.12). There is no x ∈ Rn such that p(x) = −∞, except if all aα in (1.12)
equal −∞, in which case p ≡ −∞, thus Vtrop(p) := {p = −∞} = Rn. So, one needs
to propose an alternate definition for the tropical hypersurface Vtrop(p) ⊂ Rn =
(Trop \ {−∞})n defined by a Laurent (Trop, ⊞ , ⊠ )-polynomial function.

Definition 1.2 (tropical hypersurface attached to a Laurent tropical polyno-
mial function). Let p be a Laurent tropical polynomial function such as (1.12).
The tropical hypersurface Vtrop(p) defined by p is set of critical points (in Rn) of
the convex function x ∈ Rn 7→ p(x) in (1.12), that is the subset of points in Rn

where at least two different affine functions aα1 + ⟨α1, ·⟩ and aα2 + ⟨α2, ·⟩ involved
in the right-hand side of (1.12) (among those that are not identically equal to −∞)
coincide. The definition of Vtrop(p) does not of course depend on the representation
of p as (1.9). If p is a (Trop, ⊞ , ⊠ )-Laurent polynomial, one defines Vtrop(p) as
Vtrop(p), p being the evaluation of p on (Trop \ {−∞})n.

Remark 1.3. Note that, if p is the Laurent (Trop, ⊞ , ⊠ )-monomial function

x ∈ (Trop \ {−∞})n = Rn 7→ a+ ⟨α, x⟩,

then Vtrop(p) = ∅ (following definition 1.2). This can be viewed in accordance with
the fact that VT(P ) = {z ∈ Tn ;P (z) = 0} = ∅ when P is a Laurent monomial in
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a+x = c > b+y   

b+y = c > a+x 

a+x=b+y >c 

a+x=b+y=c 

0

Figure 1.1. Tropical lines in Trop2

X±1
1 , ..., X±n

n . A more pertinent justification for Definition 1.2 will be given later
on (Remark 1.13, section 1.3.2).

Example 1.4 (tropical lines in (Trop\{−∞})2). Let a, b, c three real numbers
(considered tropically, that is in Trop \ {−∞} = R) and la,b,c the (Trop, ⊞ , ⊠ )-
polynomial

la,b,c = (a⊠x)⊞ (b⊠ y)⊞ c

(considered here as a Laurent (Trop, ⊞ , ⊠ )-polynomial). One has

p(x, y) = max(a+ x, b+ y, c).

Therefore, one can figure Vtrop(la,b,c) as on figure 1.1. Note that two generic tropical

lines intersect at exactly one point in Trop2 (this is a particular case of the tropical
version of Bézout theorem that will be stated later in this course) ; the non generic
situation reduces to the generic one modulo a perturbation argument (move slightly
one of the two tropical lines in this case).

1.2.3. The Legendre-Fenchel transform : a “tropical” pendant of the
Fourier transform. Let f be an arbitrary function from Rn = (Trop \ {−∞})n
to [−∞,∞] ; its Legendre-Fenchel transform is the function defined in another copy
of Rn (a “dual” copy) as

ξ ∈ Rn 7−→ f̌(ξ) := sup
x∈Rn

(⟨ξ, x⟩ − f(x)) ∈ [−∞,∞].

When f ≤ g on Rn, one has f̌ ≥ ǧ, thus ˇ̌f ≤ ˇ̌g. If g is convex, lower semicontinuous5

and never takes the value −∞ (or is identically −∞), then ˇ̌g = g. This implies

that, for any function f from Rn to [−∞,∞], ˇ̌f ≤ f on Rn, the equality holding if
and only if f is convex, lower semicontinuous, never takes the value −∞ or equals

5i.e. the set {f > α} is open for any α.
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identically −∞. For basic facts related to the Legendre-Fenchel transform and
its application to optimization (e.g. Hamilton-Jacobi equations), see for example
[YW], pp. 253–258. It will play a very important role all through this course, as a
key companion to the concept of convexity, as well as an efficient tool towards an
“analytic” incarnation of duality (as the Fourier transform is also).

The Legendre-Fenchel transform plays an important role respect to the “maximal”
representation of a tropical polynomial. Namely, one has the following Proposition.

Proposition 1.1 (“maximal” representation of Laurent (Trop, ⊞ , ⊠ )-poly-
nomial functions). Let p : Rn 7→ R be a non identically −∞ Laurent (Trop, ⊞ , ⊠ )-
polynomial function, represented as (1.12). Then p admits also the representation

(1.14) p(x) = sup
α∈Zn

(
− p̌(α) + ⟨α, x⟩

)
.

Moreover, the representation (1.14) stands for the representation

p(x) = sup
α∈Zn

(
bα,max + ⟨α, x⟩

)
,

where, for each α0 ∈ Zn, bα0,max is maximal among all bα0 involved in any repre-
sentation

p(x) = sup
α∈Zn

(
bα + ⟨α, x⟩

)
of p in Rn as a Laurent (Trop, ⊞ , ⊠ )-polynomial function.

Remark 1.5. The representation formula (1.14) can be expressed in terms of
tropical operations ⊞ and ⊠ as

∀x ∈ Rn, p(x) =⊞α∈Zn(−p̌(α)) ⊠ x⊠α

,

where x 7→ x⊠α

stands for the linear map x 7→ ⟨α, x⟩. Thus −p̌(α), α ∈ Zn,

plays (respect to tropical operations) the role played by the Fourier coefficient f̂(α)

when f(θ) = P (eiθ1 , ..., eiθn) =
∑

α∈Zn f̂(α) ei⟨α,θ⟩, P being a Laurent polynomial

in C[X±1
1 , ..., X±1

n ]. Formula ˇ̌p = p (which is valid in this case since p is convex
and never takes the value −∞) stands thus for an analog of Fourier inversion
formula. The Legendre-Fenchel transform thus appears in the “tropical” world
(Trop \ {−∞})n as the tropical pendant of the Fourier transform in the “real”
worlds Rn or (better) Tn.

Proof. The proof we reproduce here was suggested by A. Rashkovskii and
presented in this form in [Kis]. Let

(1.15) p(x) = sup
α∈Zn

(
bα + ⟨α, x⟩

)
be a representation for p. Let f be the function from Rn to [−∞,∞] defined by

f(x) =

{
+∞ if x ∈ Rn \ Zn ,

−bx if x ∈ Zn

so that p is the Legendre-Fenchel transform of f thanks to the representation (1.15).
Since the third Legendre-Fenchel transform of an arbitrary function f from Rn to

[−∞,∞] always equal the first, one has p̌ = ˇ̌f and ˇ̌p = f̌ = p. One has also, for
any x ∈ Rn,

p(x) = sup
ξ∈Rn

(
⟨x, ξ⟩ − p̌(ξ)

)
= sup

α∈Zn

(
⟨x, α⟩ − p̌(α)

)
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(it is indeed enough to take the supremum over α ∈ Zn instead of α ∈ Rn since p
is a Laurent (Trop, ⊞ , ⊠ )-polynomial function), which implies that p admits the
representation formula (1.14). For any α0 ∈ Zn, one has

−p̌(α0) = − ˇ̌f(α0) ≥ −f(α0) = bα0 .

This concludes the proof of Proposition 1.1. □

1.3. Tropicalisation with respect to a valuation

The point of view which is presented in that section is that proposed by M. M.
Kapranov [Krap] in 2000 (see also [EKL] or [It1], [It2], section 5). It will give us
the opportunity (see Remark 1.13) to justify Definition 1.2.

Let K be an algebraically closed commutative field. A valuation6 on (K,+,×) (with
rank 1, which will be implicit all along this section) is a map

ν : K→ Trop

such that

∀x, y ∈ K, ν(x× y) = ν(x)⊠ ν(y), ν(x+ y) ≤ ν(x)⊞ ν(y)

ν(x) = −∞⇐⇒ x = 0.
(1.16)

Note that ν(1) = 2ν(−1) = 0, which implies ν(1) = ν(−1) = 0. The valuation
is said to be non trivial when the valuation group (or value group Γν := ν(K∗) is
a dense subgroup of R (such a subgroup is known to be either dense or discrete).
Thanks to a normalization, one assumes here that 1 ∈ Γν , so that there exists t ∈ K∗

with −ν(t) = 1 (t has “order” equal to one). One denotes −ν : K →]−∞,∞] as
the order. The local ring RK,−ν defined as

RK,−ν := {x ∈ K ; −ν(x) ≥ 0}

is called the valuation ring associated with the order −ν. Its maximal ideal is

MK,−ν := {x ∈ K ; −ν(x) > 0}

and the residue field k−ν = RK,−ν/MK,−ν is also algebraically closed. When we
speak about a valuation ν all over this section, it will always be assumed to be non
trivial.

Example 1.6 (ultrametric absolute value). If | |u is an ultrametric (or non-
archimedean) non trivial absolute value on K, then the map

x 7→ log |x|u ∈ [−∞,∞[= Trop

defines a (non trivial) valuation, since the absolute value obeys the two rules |xy|u =
|x|u × |y|u and |x+ y|u ≤ max(|x|u, |y|u). The example of K = Cp (the completion
of the integral closure of Qp with respect to the metric induced by the p-adic norm

|x|p := p−νp(x)) provides an illustration, the valuation being in this case −νp (note
the presence of the factor (−1), see also Example 1.7 below). In fact, there is a
bijective correspondence between the set of valuations on K and that of ultrametric
absolute values on K (to an ultrametric absolute value | |u, one associates the

6The definition one proposes here differs up to a sign from the usual one : −ν is a valuation
in the classical sense when ν is a valuation in our sense.
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valuation log | |u). Non trivial valuations correspond to non trivial ultrametric
absolute values. Note that, if | |u is an ultrametric absolute value on K, then

| |u : (K,+)→ (TropR, ⊞̃R)

defines an homomorphism of hypergroups, that is

|x+ y|u ∈ |x|u ⊞̃R|y|u ∀x, y ∈ K.

Example 1.7 (Puiseux theory, minus order valuation). Let t be a transcenden-

tal parameter over C and K := C((t)) be the algebraic closure of the quotient field
field C((t)) of the ring C[[t]] of formal power series in t with complex coefficients.
By Puiseux theory, any element x in K has a Puiseux expansion

x = c1(x)t
q1(x) + c2(x)t

q2(x) + · · · ,
where q1(x) < q2(x) < · · · are rational numbers and c1(x), c2(x), ... are complex
coefficients. The field of Puiseux series over C, which elements are formal sums∑

k>k0
ckt

k/p, p ∈ N∗, k0 ∈ Z, ck ∈ C, is the algebraic closure of C((t)) (see for
example Corollary 3.15 in [Eis]). The map

ν : x ∈ K→ −q1(x) ∈ Trop (ν(x) = −∞ ⇐⇒ x = 0)

satisfies ν(x × y) = ν(x)⊠ ν(y) and ν(x + y) ≤ max(ν(x), ν(y)) since one has
min(q1(x), q1(y)) ≤ q1(x + y) (taking q1(0) = +∞) for any x, y ∈ K. Such a map
ν defines a non trivial valuation on K, which is called the minus order map (its
opposite being called the order map).

Given such an algebraically commutative field K equipped with a (non trivial)

valuation (think about K = C(t) or K = C((t)) and ν equal minus the order map
as in example 1.7), one can tropicalise regular functions on Spec (K[X±1

1 , ..., X±1
n ])

(that is Laurent polynomials in n variables with coefficients in K) and therefore
attach to any closed algebraic subset in (K∗)n a “tropical” companion in (Trop \
{−∞})n. Such “tropicalisation” with respect to a given valuation is presented in
sections 1.3.1 to 1.3.3 below.

1.3.1. Tropicalisation of a Laurent polynomial with respect to a val-
uation.

Definition 1.8 (tropicalisation of a Laurent polynomial with respect to a
valuation). Consider an algebraically closed field (K,+,×) equipped with a non
trivial valuation ν and

(1.17) P =
∑

α∈Supp (P )

cαX
α ∈ K[X±1

1 , ..., X±1
n ].

The tropicalisation of the Laurent polynomial P with respect to the valuation ν is
the Laurent (T, ⊞ , ⊠ )-polynomial

p = tropν(P ) =⊞α∈Zn

(
aα(P )⊠x⊠α1

1 ⊠ · · · ⊠x⊠αn

n

)
,

where aα(P ) = −∞ when α does not belong to the support7 of the Laurent poly-
nomial P and aα(P ) = ν(cα) for any α ∈ Supp (P ). The tropicalisation of the
Laurent polynomial map P : (K∗)n → K with respect to the valuation ν is the

7The support of a Laurent polynomial
∑

α cαXα denotes the finite subset {α ∈ Zn ;, cα ̸= 0}
of the lattice Zn.
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 −ν (α ) 

0

2

3

5

1

−ν(α ) 
∆−

Figure 1.2. Newton-Puiseux diagram and symmetric (with re-

spect to the horizontal axis) of ∆̃ν(P ) (when n = 1).

Laurent (Trop, ⊞ , ⊠ )-polynomial function p corresponding to the “evaluation” of
p = tropν(P ) on (Trop \ {−∞})n.

Let P ∈ K[X±1
1 , ..., X±1

n ] as in (1.17). Two objects of combinatoric nature are
related, one to P , one to its tropicalisation p = tropν(P ) with respect to a given
valuation ν.

• The Newton polyedron ∆(P ) ⊂ Rn is the compact polyedron defined in
Rn as

(1.18) ∆(P ) := conv(Supp (P )) ⊂ Rn,

that is the closed convex enveloppe of the support of the Laurent polyno-
mial P . It is only related to the Laurent polynomial P itself.
• The roof of P (with respect to a valuation ν on K) is a closed unbounded
polyedron in Rn+1 related in fact to the tropicalisation p = tropν(P ) of P
with respect to the valuation ν. It is sometimes also called the extended
Newton polyedron of P with respect to the valuation ν and defined as :

(1.19) ∆̃ν(P ) := conv
{
(α, b) ; α ∈ Supp (P ), b ∈ R, b ≤ ν(cα)

}
⊂ Rn+1.

Example 1.9 (Newton polyedron and roof in the one dimensional case). Let
P ∈ K[X,X−1] be a Laurent polynomial that is not a monomial, which can be
expressed as

P (X) =

m∑
k=0

cαk
Xαk = cα0X

α0

(
1 +

cα1

cα0

Xα1−α0 + · · ·+ cαm

cα0

Xαm−α0

)
,

where α0 < α1 < · · · < αm denotes some strictly increasing sequence of integers
(m ≥ 1). Then one has ∆(P ) = [α0, αm]. Let d = αm − α0. The symmetric of

∆̃ν(P ) with respect to the real axis is the Newton-Puiseux diagram of P . Its upper
bound is the Newton-Puiseux diagram of P (with respect to −ν : K→]−∞,∞],
which is a valuation in the usual sense), see figure 1.2. The slopes ρ1, ..., ρr of the
different segments in the Newton-Puiseux diagram correspond to the distinct values
of −ν(ξj), when {ξ1, ..., ξd} stands for the list of roots (counted with multiplicities)
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of P in K∗ ; for each k = 1, ..., r, the length of the interval of ∆(P ) = [α0, αm]
over which the slope of the Newton-Puiseux polygon equals ρk figures the number
of roots ξj such that −ν(ξj) = ρj . For a proof of such result (in the case where
−ν = νp is the p-adic valuation on K = Cp, which extends in a straightforward way
to the general case), see section 6, more precisely Theorem 6.4.7 in [Gouv]. The

slopes of the extended Newton polyedron ∆̃ν(P ) correspond thus to the distinct

values of ν(ξj), j = 1, ..., d. The extended Newton polyedron ∆̃ν(P ) is therefore
directly related (in the case n = 1) to the zero set VK∗(P ).

1.3.2. Tropicalisation of an algebraic hypersurface with respect to
a valuation. Let K be a commutative algebraically closed field. Geometrically
speaking, any Laurent polynomial P ∈ K[X±1

1 , ..., X±1
n ] defines an algebraic hyper-

surface VK∗(P ) = P−1(0) in (K∗)n. Such an object is relevant to complex algebraic
geometry in the algebraic affine scheme Spec(K[X±1

1 , ..., X±1
n ]). Of course, when

looking at VK∗(P ) as a geometric object, one forgets about any algebraic informa-
tion which is carried by the Laurent polynomial itself8 (here, multiplicities attached
to irreducible components), or better by the principal ideal (P ) ⊂ K[X±1

1 , ..., X±1
n ].

Nevertheless, when K is equipped with a (non trivial) valuation ν, then, following
Definition 1.2, one can derive from the complex geometric object VK∗(P ) a “geomet-
ric” object in the tropical world, namely the “tropicalisation” of the hypersurface

VK∗(P ) = {z ∈ (K∗)n ; P (z) = 0} = {z ∈ (K∗)n ; Q(z) = 0 ∀Q ∈ (P )}

with respect to the given valuation ν (think again about the case K = C(t) or

K = C((t)), ν being minus the order map as in (1.7)). Such an object (that will
be relevant to tropical, hence real, geometry), will of course be of much more sim-
ple nature than the original one VK∗(P ). Though its definition does not take into
account any algebraic information carried by the principal ideal (P ), such a tropi-
calisation will be called tropical variety of the principal ideal (P ) ⊂ K[X±1

1 , ..., X±1
n ]

with respect to the valuation ν.

Definition 1.10 (tropical variety of a principal ideal with respect to a valu-
ation on some algebraically closed field K). Let (K, ν) be an algebraically closed
commutative field equipped with a valuation, and P be a Laurent polynomial in
K[X±1

1 , ..., X±1
n ]. The tropical variety of the principal ideal (P ) ⊂ K[X±1

1 , ..., X±1
n ]

with respect to the valuation ν is the tropical hypersurface attached to the Lau-
rent tropical polynomial tropν(P ) introduced in Definition 1.8. It is denoted as
VTrop,ν

(
(P )
)
.

In order to extend (in the next subsection 1.3.3) such a definition to arbitrary ideals
in K[X±1

1 , ..., X±1
n ], we need to propose two re-interpretations of VTrop,ν

(
(P )
)
. In

order to settle them, let us start with the following definition.

Definition 1.11 (lobsided lists in Trop \ {−∞}). A finite list {a1, ..., ar} of
elements in Trop \ {−∞} = R (equipped with the tropical operations ⊞ and ⊠ )
is tropically lobsided (or lobsided in the ultrametric sense) if and only if one the aj ,
j = 1, ..., r, is strictly greater than the tropical sum of all the others, that is the
maximum (respect to the usual order on R) of all the others. This is equivalent to
say that there the maximum cannot be achieved twice among the list {a1, ..., ar}.

8On the other hand, when K = C, such an information is for example contained in the
integration current [V ] = ddc log |P |2, this Lelong-Poincaré formula being understood in the sense

of currents, ddc = (i/2π)∂∂. We will come back to those aspects in a forthcoming chapter.
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Remark 1.12 (lobsided lists of elements (R>0,+,×)). The notion of tropically
lobsided list introduced in Definition 1.11 should be compared to that of lobsided
list in the classical semi-ring (R>0,+,×) (that is, in the archimedean sense) : a list
of strictly positive numbers {ey1 , ..., eyr} is lobsided (in the archimedean sense) if
and only if one of the eyj , j = 1, ..., r, is strictly greater than the (ordinary) sum
of all others. It is then equivalent to say (thanks the the triangle inequality for the
usual archimedean absolute value on R>0) that the list {ey1 , ..., eyr} is not lobsided
(in the archimedean sense) if and only if there exist θ1, ..., θr in R such that

r∑
j=1

eθj+iyj = 0.

Let P ∈ K[X±1
1 , ..., X±1

n ] be a Laurent polynomial such as (1.17). For any multi-
exponent α ∈ Supp (P ) and any a = (a1, ..., an) ∈ (Trop \ {−∞})n = Rn, let

tropν(cαX
α)(a) := ν(cα)⊠ a⊠α1

1 ⊠ · · · ⊠ a⊠αn

n .

It follows immediately from the observation contained in Definition 1.11 about the
characterization of tropical lobsidedness that

VTrop,ν
(
(P )
)
=

=
{
a ∈ (Trop \ {−∞})n ;

{
tropν(cαX

α)(a)
}
α∈Supp (P )

is not trop. lobsided
}
.

(1.20)

This provides the first re-interpretation for VTrop,ν
(
(P )
)
we are looking for.

Consider now the map ν : (K∗)n → (Trop \ {−∞})n = Rn defined as

(1.21) ν(x1, ..., xn) = (ν(x1), ..., ν(xn)).

When ν corresponds to an ultrametric absolute value | |u on K, see Example 1.6,
this is the map

(1.22) Log | |u : (x1, ..., xn) ∈ (K∗)n 7−→ (log |x1|u, ..., log |xn|u).

One can state the following important proposition ([Krap]), that provides the
second interpretation for VTrop,ν(P ) we are looking for.

Proposition 1.2. Let K be an algebraically closed field equipped with a non
trivial valuation ν and P ∈ K[X±1

1 , ..., X±1
n ]. The tropical variety of the principal

ideal ((P )) with respect to the valuation ν can be re-interpreted as

(1.23) VTrop,ν
(
(P )
)
= ν(VK∗(P )) ⊂ Rn = (Trop \ {−∞})n.

Moreover, when ν(K∗) = R, then

(1.24) VTrop,ν
(
(P )
)
= ν(VK∗(P )) ⊂ Rn = (Trop \ {−∞})n.

Proof. See [EKL], theorem 2.1.1. Let us first prove the easiest part, which

is the inclusion ν(VK∗(P )) ⊂ VTrop,ν(P ). Let x ∈ (K∗)n, such that P (x) = 0. Let
a = ν(x). Let α0 ∈ Supp (P ) be such that tropν(cα0X

α0)(a) is maximal among all
real numbers involved in the list

{
tropν(cαX

α)(a)
}
α∈Supp (P )

. One has

(1.25) cα0x
α0 = −

∑
α∈Supp (P )

α ̸=α0

cαx
α
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since P (x) = 0. Taking the images by ν of both sides of (1.25), then using the rules
(1.16) to which a valuation such as ν obeys, it follows that

tropν(cα0X
α0)(a) ≤ max

α∈Supp (P )

α ̸=α0

(
tropν(cαX

α)(a)
)
.

As a consequence, the list
{
tropν(cαX

α)(a)
}
α∈Supp (P )

fails to be tropically lob-

sided, which implies (in view of (1.20)) that a ∈ VT,ν
(
(P )
)
. Since VTrop,ν

(
(P )
)
is

clearly closed in Rn, one has the first inclusion ν(VK∗(P )) ⊂ VTrop,ν
(
(P )
)
.

Proving the reverse inclusion amounts to prove that VTrop,ν(P ) ∩ Γn
ν ⊂ ν(VK∗(P ))

since the valuation ν is assumed to be non trivial, thus Γn
ν = Rn. Let a =

(a1, ..., an) ∈ VTrop,ν((P )) ∩ Γn
ν , so that aj = ν(ξa,j), ξa,j ∈ K∗, for any j = 1, ..., n.

If one performs the change of variables xj ←→ ξajxj in (K∗)n, proving that a

belongs to ν(VK∗(P )) amounts to prove

(1.26) (0, ..., 0) ∈ VTrop,ν
(
(P )
)
=⇒ (0, ..., 0) ∈ ν(VK∗(P )).

The hypothesis about (0, ..., 0) in (1.26) means that the extended Newton polye-

dron ∆̃ν(P ) has an horizontal face with positive dimension and maximal altitude
bmax ∈ R. Let F be the maximal face (with respect to the inclusion order) among
those that share such property, and k = (k1, ..., kn) ∈ Zn such that, whenever
[(a1, bmax), (a2, bmax)] is an edge of F , then ⟨k, a1− a2⟩ ̸= 0. Let Pk be the Laurent
polynomial in K[t, t−1] defined as

Pk(t) = P (tk1 , ..., tkn) =
∑

α∈Supp (P )

cαt
⟨k,α⟩.

The extended Newton polyedron ∆̃ν(Pk) (in R2) admits an horizontal edge with
maximal altitude bmax, which implies (see Example (1.9)) that Pk admits a root

with t0 such that ν(t0) = 0, therefore that P admits a root z0 = (tk1
0 , ..., t

kn
0 ) such

that ν(z0) = (0, ..., 0). □

Remark 1.13. If p is a Laurent (Trop, ⊞ , ⊠ )-polynomial such as (1.13), which
coefficients aα can be interpreted, when aα ̸= −∞, as aα = ν(cα), where ν is a
non trivial valuation on some algebraically closed commutative field K and coef-
ficients cα belong to K∗, then Vtrop(p) (in Definition 1.2) can be interpreted as

ν(VT(P )), where P is the Laurent polynomial in K[X±1
1 , ..., X±n

n ] obtained from P
just replacing the “tropical” coefficient aα by the coefficient cα ∈ K∗.

1.3.3. Tropicalisation of the algebraic variety of an ideal with respect
to a valuation. Proposition 1.2 suggests that Definition 1.10 can be extended to
the case of general ideals in K[X±1

1 , ..., X±1
n ]. Given a valuation ν on K, one can

associate to each such ideal I ⊂ K[X±1
1 , ..., X±1

n ] a tropical geometric object, the
tropical variety of the ideal I (with respect to the valuation ν).

Definition 1.14 (tropical variety of an ideal with respect to a valuation on
some algebraically closed field K). Let (K, ν) be an algebraically closed commuta-
tive field equipped with a valuation, and I be an ideal inK[X±1

1 , ..., X±1
n ]. The tropi-

cal variety of the ideal I ⊂ K[X±1
1 , ..., X±1

n ] is the closed set in Rn = (Trop\{−∞})n
defined as

(1.27) VTrop,ν
(
I
)
:= ν(VK∗(I)) ⊂ (Trop \ {−∞})n.
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It is also called the ultrametric amœba of I with respect to the (ultrametric) loga-
rithmic map

Logν | | : (x1, ..., xn) ∈ (K∗)n 7→ (log |x1|ν , ..., log |xn|ν) = ν(x).

Proposition 1.3. For any ideal I ⊂ K[X±1
1 , ..., X±1

n ], one has

(1.28) VTrop,ν(I) =
∩
P∈I

VTrop,ν
(
(P )
)
.

Thanks to (1.20), such a tropical variety VTrop,ν(I) is thus defined as the set of
a ∈ Rn such that, for any

P =
∑

α∈Supp (P )

cαX
α ∈ I,

the finite list {
tropν(cαX

α)(a)
}
α∈Supp (P )

is not tropically lobsided.

Proof. One has9

VK∗(I) =
∩
P∈I

VK∗
(
(P )
)
.

It follows from (1.23) that, for any x ∈ VK∗(I) =
∩

P∈I VK∗
(
(P )
)
, one has that

ν(x) ∈ VTrop,ν
(
(P )
)
for any P ∈ I, which implies the inclusion

VTrop,ν(I) ⊂
∩
P∈I

VTrop,ν
(
(P )
)
.

In order to prove the reverse inclusion (the argument here being quoted from [SpSt],
section 2), we need to use an auxiliary assertion, which arises from Gröbner basis
theory10. It follows from (1.20) that

a ∈
∩
P∈I

VK∗
(
(P )
)
⇐⇒(

∀P =
∑

α∈Supp (P )

cαX
α ∈ I,

{
tropν(cαX

α)(a)
}
α∈Supp (P )

is not trop. lobsided
)
.

(1.29)

Such condition (1.29) can be rephrased in different terms : for any monomial cαX
α

and every a ∈ Rn, one defines the (−ν, a)-weight of cαX
α as −ν(cα) + ⟨a, α⟩.

The initial form of a Laurent polynomial P =
∑

α cαX
α is then the element in

k−ν [X
±1
1 , ..., X±1

n ] defined as follows : let11

P̃a(X) := P (ta1X1, ..., t
anXn)

(remember t ∈ K∗ is an element with order 1, that is such that ν(t) = −1) and
−νP (a) be the smallest (−ν, a)-weight among those of all monomial involved in P
and init−ν,a(P ) be the image of tνP (a)Pa in k−ν [X1, ..., Xn]. The ideal init−ν,a(I)

9In fact, since K[X±1
1 , ..., X±1

n ] is nœtherian, there should be indeed a finite collection of

polynomials P1, ..., Pr in I such that VK∗ (I) = VK∗ ((P1)) ∩ · · · ∩ VK∗ ((Pr)). Unfortunately, as it
will appear in the proof, it does not seem to be possible to keep track only of that finite set of
Laurent polynomials {P1, ..., Pr} which are enough to describe VK∗ (I).

10See e.g. [CLO], chapter 2.
11This is somehow only formal since a1, ..., an are here real numbers ; nevertheless, such a

formal reasoning is sufficient here siince our objective is just to define the initial ideal int−ν,a(P ).
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is the ideal generated by all init−ν,a(P ) for all P ∈ I. One can then rephrase (1.29)
as

(1.30) a ∈
∩
P∈I

VK∗
(
(P )
)
⇐⇒

(
init−ν,−a(I) does not contain any monomial

)
.

Let a ∈
∩

P∈I VK∗
(
(P )
)
∩ ν((K∗)n). One has a = ν(xa), xa ∈ (K∗)n. In view of

the equivalence (1.30), in order to prove the inclusion∩
P∈I

VTrop,ν
(
(P )
)
∩ ν((K∗)n) ⊂ VTrop,ν(I),

it is enough, if one makes the change of variables xj ←→ xa,jxj , to prove that

(1.31)
(
init−ν,0(I) does not contain any monomial

)
=⇒ 0 ∈ VTrop,ν(I).

Suppose then that init−ν,0(I) does not contain any monomial. This implies (thanks

to Hilbert’s nullstellensatz) that the ideal init−ν,0(I) ⊂ k−ν [X
±1
1 , ..., X±1

n ] admits

a zero ξ in (k∗−ν)
n. The key point is to show that such a zero ξ can be “lifted” to

a zero ξ of I in (K∗)n, which is indeed a bit technical. Such a zero ξ corresponds
to a maximal ideal mξ = (X1 − ξ1, Xn − ξn) in k−ν [X

±1
1 , ..., X±1

n ]. Let Smξ
be the

multiplicative subset12 in RK,−ν [X
±1
1 , ..., X±1

n ] which consists of elements whose
reduction modulo MK,−ν does not belong to the maximal ideal mξ. One has that

Smξ
∩ I = ∅ since ξ is a zero of init−ν,0(I). Moreover, consider the map

φmξ
: RK,−ν 7−→

S−1
mξ
RK,−ν [X

±1
1 , ..., X±1

n ]

S−1
mξ
· (I ∩RK,−ν [X

±1
1 , ..., X±1

n ])
.

It is injective (easy to check13 ). Take then a minimal prime ideal

P ⊂
S−1
mξ
RK,−ν [X

±1
1 , ..., X±1

n ]

S−1
mξ

(I ∩RK,−ν [X
±1
1 , ..., X±1

n ]
.

such that P ⊗RK,−ν
K is a proper ideal in K[X±1

1 , ..., X±1
n ]/I ; such a proper ideal

is contained in a maximal ideal (X1 − ξ1, ..., Xn − ξn), ξ = (ξ1, ..., ξn) ∈ VK∗(I).
It remains to show that ν(ξ) = (0, ..., 0). Clearing denominators, one can rewrite
Xj − ξj ∈ I as αjXj − βj ∈ I ∩ RK,−ν [X

±1
1 , ..., X±1

n ], αj and βj not lying both

in MK,−ν (since ξ ∈ (k∗−ν)
n). If αj ∈ MK,−ν for some j, then init−ν,0(I) contains

int−ν,0(βj), which is a unit in K∗ ; this contradicts the fact that init−ν,0(I) does

not contain a monomial. If αj /∈ MK,−ν and −βj/αj ̸≡ ξj , then the reduction
modulo MK,−ν of αjXj − βj does not belong to mξ, which means that αjXj − βj
belongs to the multiplicative subset Smξ

and is a unit of S−1
m RK,−ν [X

±1
1 , ..., X±1

n ] ;

thus P is the unit ideal, which is not prime, which leads also to a contradiction.
Therefore −αj/βj ≡ ξj modulo MK,−ν , which means that ν(−αj/βj) = ν(ξj) = 0
for j = 1, ..., n, that is 0 ∈ ν(K∗)n). □

12A multiplicative subset in a commutative unitary ring is a subset which does not contain
0, contains 1, and is closed under multiplication.

13If x in RK,−ν is in the kernel of φm
ξ
, there exists an element s ∈ Sm

ξ
such that sx ∈ I,

therefore s ∈ I since x is invertible in K, which is indeed a contradiction because Sm
ξ
∩ I = ∅.



CHAPTER 2

Archimedean amœbas and coamœbas

The archimedean triangle inequality |a − b| ≤ |a ± b| ≤ |a| + |b|, is known to
be far more difficult to handle in geometric problems than the ultrametric triangle
inequality |a+ b| ≤ max(|a|, |b|). On the other hand, classical questions in complex
algebraic or analytic geometry arise in the archimedean context, not in the ultra-
metric one as in section 1.3. Therefore, it is important to extend Definitions 1.10
(completed by Proposition 1.2) or 1.14 to the archimedean context. We will also
profit in such a context from the fact that the logarithmic map Log | |arch is paired
with an “argument” multivalued map arg.

2.1. Amœba and coamœba in the codimension one algebraic case

2.1.1. Amœba of a Laurent polynomial. Let F ∈ C[X±1
1 , ..., X±1

n ] be
a true1 Laurent polynomial in n variables, that is a regular function on the affine
algebraic variety Spec (C[X±1

1 , ..., X±1
n ]). It is well known that developing the mero-

morphic function (in n variables) 1/F as a (absolutely) convergent Laurent power
series in z±1

1 , ..., z±1
n in the Reinhardt2 open subset

Tn \ {(z1eiθ1 , ..., zneiθn) ; z ∈ VT(F ), θ ∈ Rn},
that is as

(2.1)
1

F (z)
=

∞∑
k=0

akz
−νk , ak ∈ C, νk ∈ Zn,

or (if one adopts the discrete Fourier point of view and set xj = log |zj |, j = 1, ..., n)
(2.2)

1

F (ex1+iθ1 , ..., rnexn+iθn)
=

∞∑
k=0

ake
−⟨νk,x⟩e−i⟨νk,θ⟩, ak ∈ C, νk ∈ Zn, ∀ θ ∈ Rn,

is indeed an ambiguous question. For example, when n = 1, the moduli of the roots
α1, ..., αp of ζ ∈ C∗ 7→ F (ζ) determine a subdivision

r = 0 < r1 < · · · < rq < rq+1 = +∞
such that 1/F admits a convergent development such as (2.1) in each radial domain
{rj < |z| < rj+1}, j = 0, ..., q, all such developments being distincts. Note that the
development “at infinity”, that in in the domain {|z| > rq}, is the most exploited

1That is, the Newton polyedron ∆(F ) has a non-empty interior in Rn ; if it is not the case,
the situation reduces to that where F can be considered as a Laurent polynomial in strictly less
than n variables.

2A Reinhardt open set R in Tn is a connected open subset R in Tn such that, whenever z ∈ R,

(eiθ1z1, ..., eiθnzn) ∈ R for any θ ∈ Rn. It is called a Reinhardt domain when it is additionally
connected.

19
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in digital signal processing or information theory since one can associate to it the
action of a causal digital filter (see e.g. section II.2.2 in [YW], chapter 10).

In order to clarify such a question, let us forget for the moment the functional nature
of the problem (involving indeed a Laurent polynomial F ) and define, following
[GKZ], the geometric concept of amœba (which is attached only to the algebraic
hypersurface VT(F ) = {z ∈ Tn ; F (z) = 0}). Let us introduce, as in section 1.3
(but now in the Archimedean context instead of the ultrametric one, compare to
(1.22)) the archimedean logarithmic map Log | |arch = Log from Tn = (C∗)n in Rn

defined as:

(2.3) Log (z1, ..., zn) := (log |z1|, ..., log |zn|).
An important property of the logarithmic map on ]0,+∞[ is that | log t| = o(tk) for
any k ∈ N∗ when t tends to +∞ and | log t| = o(t−k) for any k ∈ N∗ when t tends
to 0+. It is a well known fact then that changing the usual scale on ]0,∞[ into the
logarithmic scale t ←→ u = log t allows to make closer to the “accessible” world
the description of objects in ]0,+∞[ when they escape toward +∞ (or toward 0+).

Definition 2.1 (amœba of an algebraic hypersurface in Tn). The (archimedean)
amœba of the algebraic hypersurface VT(F ) ⊂ Tn is the subset AVT(F ) ⊂ Rn defined
as

(2.4) AVT(F ) := Log (VT(F )).

It is also called (archimedean) amœba of the Laurent polynomial F (though it de-
pends only on VT(F )).

Remark 2.2 (closedness of the archimedean amœba). Since Log is a proper
continuous map from Tn to Rn, the archimedean amœba AVT(F ) is a closed subset

in Rn. Note also that the open set Log−1(Rn \ AVT(F )) (in Tn) coincides with the

open subset of Tn defined as Tn \ {(z1eiθ1 , ..., zneiθn) ; z ∈ VT(F ), θ ∈ Rn}.

Example 2.3 (amœba of a affine line in T2). Consider the affine line L0 :=
{z+w− 1 = 0} in T2. A point (z, w) in T2 belongs to L0 if and only if |z| ̸= 0 and
|w| ̸= 0 satisfy the three conditions:

(2.5) |z|+ |w| ≥ 1, |z|+ 1 ≥ |w|, |w|+ 1 ≥ |z|.
This is equivalent to say that the family {1, |z|, |w|} is not lobsided in the archime-
dean sense (see Remark 1.12). Such conditions (2.5) stand for the necessary and
sufficient conditions ensuring that the positive numbers 1, |z|, |w| can be interpreted
as the lengths of the 1-dimensional faces (facets) of a triangle. Then, the amœba
of the complex line {z + w = 1} is the image of the domain

{(u, v) ∈]0,∞[2 ; u+ v ≤ 1, u+ 1 ≤ v, v + 1 ≤ u}
by the map (u, v) 7→ (log u, log v) (see figure 2.1 below).

Example 2.3 reveals indeed some weak point inherent to the definition of amœba :
namely, such a definition does not preserve (in any kind of form) some important
information (for example of topological nature) that could be contained in the
geometric data V (F ). For example (see e.g. [Mir], Problem II.4, G), the genus3 (as

3The genus of a compact Riemann surface X is the number of “holes” in this surface, that is

the rank of the cohomology group H1(X ) (or, thanks to de Rham’s theorem, that of the homology
group H1(X ,Z)). The genus of any smooth projective curve with degree d equals (d−1)(d−2)/2.
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u+v=1

v=u−1

v=u+1

u

v

0

0 x

y

exp(y)= exp(x)+1

exp(y)=exp(x) −1

exp(x)+ exp(y)=1

Figure 2.1. Amœba of the line L0 : z + w − 1 = 0}

a Riemann surface) of the smooth Fermat curve {[z0 : z1 : z2] ∈ P2(C) ; zd1+zd2 = zd0}
equals (d − 1)(d − 2)/2, that is it varies with d ∈ N∗ (in particular, the Fermat
curve is an elliptic curve if and only if d = 3). On the other side, the amœba of
{(z, w) ∈ T2 ; zd + wd = 1} is nothing but just an homothetic of the amœba of
the tropical line L0, which shows that the topological information provided by the
genus is lost when taking archimedean amœbas.

Nevertheless, given a Laurent polynomial F ∈ C[X±1
1 , ..., X±1

n ], the geometric in-
formation carried by AVT(F ) answers the indeterminacy problem that occurs when
developing the meromorphic function 1/F : Tn → C as a convergent power series
such as (2.1). Namely, one has the important proposition.

Proposition 2.1 ([GKZ]). Let F ∈ C[X±1
1 , ..., X±1

n ] be a true Laurent poly-
nomial in n variables. There is a one-to-one correspondence between the connected
components C of Rn \AV (F ) and the maximal Reinhardt domains E of convergence
(in Tn \ VT(F )) for possible developments (2.1) of 1/F as a convergent Laurent
power series in z±1

1 , ..., z±1
n . Such a one-to-one correspondence associates to the

maximal Reinhardt domain of convergence E ⊂ Tn (for some Laurent development
of the form (2.1) for 1/F ) its image LogE ⊂ Rn. As a consequence, any connected
component C = LogE of Rn \ AV (F ) is an open convex subset in Rn.

Proof. Let C be a connected (open4) component of Rn \AV (F ) and zC be any

point in Log−1(C) ⊂ Tn. In a neighborhood of zC in Tn, there exists a (unique)
Laurent development DC for 1/F (of the form (2.1)). Such a development converges
in the Reinhardt domain Log−1(C), therefore (thanks to a well known result by

N. Abel5), also in Log−1(Ĉ), where Ĉ denotes the convex envelope of C in Rn.
Let EC be the maximal Reinhardt domain of convergence for the development DC

which is valid about zC . One has Log−1(Ĉ) ⊂ EC , therefore Ĉ ⊂ LogEC . Since
EC is a Reinhardt domain of convergence for 1/F , one has LogEC ⊂ Rn \ AVT(F ).

4The connected components of an open subset in Rn are open subsets in Rn.
5If a Laurent power series of the form (2.1) converges in a neighborhhood of two points ζ

and η in Tn, it converges normally on {(z1, ..., zn) ; |ζj | ≤ |zj | ≤ |ηj |}.
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Therefore, one has C = Ĉ = LogEC . The map which associates to any maximal
Reinhardt domain E of convergence for some Laurent development of the form
(2.1) its image by Log is therefore surjective. On the other hand, such a map is
injective since, for any connected component of Rn\AVT(F ), for any zC in Log−1(C),
there is a unique Laurent development of the form (2.1) for 1/F which is valid in a
neighborhood of zC . The map E 7→ C = LogE realizes thus a bijection between the
set of maximal Reinhardt domains of convergence for some Laurent development
of the form (2.1) and the set of connected components of Rn \ AVT(F ). □

Remark 2.4. Note that one may reconstruct the Laurent development DC

(or the form (2.1)) for 1/F that corresponds to a given connected component C
of Rn \ AVT(F ). Namely, take an arbitrary point xC in C and compute, for each
ν ∈ Zn, the Fourier coefficient

(2.6) γC,x,ν [1/F ] :=
1

(2iπ)n

∫
[0,2π]n

1

F (ex1+iθ1 , ..., exn+iθn)
ei⟨ν,θ⟩ dθ1 . . . dθn.

Keep only those ν such that γC,x,ν [1/F ] ̸= 0 and organize them as an ordered
sequence (νC,x,k)k≥0. Then, take

aC,x,k := γC,x,ν [1/F ]× e⟨νC,x,k,x⟩ ∀ k ∈ N.

Neither the νC,x,k nor the corresponding aC,x,k depend in fact on the arbitrary
choice of x in C. The coefficients aC,k and the νC,k are precisely those involved in
the Laurent development for 1/F of the form (2.1) which is valid in the maximal
domain of convergence EC which corresponds to C via the correspondence described
in Proposition 2.1.

2.1.2. Coamœba of a Laurent polynomial. As we pointed it out in the
introduction, the usual (archimedean) logarithmic map is paired with a multivalued
argument function arg. Given a true Laurent polynomial F ∈ C[X±1

1 , ..., X±1
n ], it

is therefore natural to introduce also, instead of the image of VT(F ) through the
logarithmic map Log, the image A′

VT(F ) of VT(F ) through the argument map arg :

Tn 7−→ (S1)n (S1 = R/(2πZ)). In the same vein than the description of Rn \AVT(F )

clarifies the ambiguity inherent to the development of 1/F as a Laurent power
series in z±1

1 , ..., z±1
n in Log−1(Rn \ AVT(F )) (see Proposition 2.1), the description

of (S1)n \ A′
VT(F ) will clarify (see Proposition 2.3 below) the ambiguity inherent to

the representation in the conic open set arg−1
(
(S1)n \ A′

VT(F )

)
of z 7→ 1/F (z) as

an (absolutely) convergent Mellin integral transform, namely

1

F (z)
=

∫
ξ∗+iRn

M(λ1, ..., λn)
( n∏
j=1

z
−λj

j

)
dλ1 . . . dλn

M∈ H
(
int(∆(F )) + iRn

)
, ξ∗ ∈ int (∆(F ))

(2.7)

(the representation (2.7) being independent on the choice of ξ∗ in the interior of
∆(F )), or (if one adopts the continuous Fourier point of view and set zj = exj+iθj

for j = 1, ..., n),

e⟨ξ
∗,x+iθ⟩

F (ex1+iθ1 , ..., exn+iθn)
=

∫
Rn

M(ξ∗ + iω) e⟨ω,θ⟩ e−i⟨ω,x⟩ dω,

g ∈ H
(
int(∆(F )) + iRn), ξ∗ ∈ int (∆(F )

)
.

(2.8)
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(π,π)

(π,0) 

(0,π)

(π,0) 

(0,π)

(0,0)

Figure 2.2. Coamœbas (represented here in ]−π, π]2) of the com-
plex lines {z + w + 1 = 0} and {z + w − 1 = 0} in T2

We therefore introduce the following companion definition to Definition 2.1.

Definition 2.5 (coamœba of an algebraic hypersurface in Tn). The coamœba
of the algebraic hypersurface VT(F ) := {z ∈ Tn ; F (z) = 0} is the subset A′

VT(F ) of

(S1)n = (R/2πZ)n defined as

(2.9) A′
VT(F ) := arg (VT(F )).

It is also called coamœba of the Laurent polynomial F (though it depends only on
VT(F )).

Example 2.6 (coamœba of a affine line in T2). Consider the complex line
{z+w+1 = 0} in T2. Let (θ1, θ2) ∈]− π, π]2. A necessary and sufficient condition
for the existence of r1 > 0 and r2 > 0 such that r1e

iθ1 + r2e
iθ2 + 1 = 0 is that

|θ1−θ2| > π or (θ1, θ2) = (π, 0), (0, π), (π, π). One can thus represent the coamœba
of the line {z+w+1 = 0} in ]−π, π]2 on figure 2.2 (left). Note that this coamœba,
when considered as a subset of (R/(2πZ))2 ≃ (S1)2, is not a closed subset. The
coamœba of the line {z + w − 1 = 0} in T2 is represented in ] − π, π]2 on figure
2.2 (right). Note that taking coamœbas makes a distinction between the two lines
{z + w + 1 = 0} and {z + w − 1 = 0}, while of course their amœbas are the same.
The same phenomenon occurs for the Fermat curve {zd+wd− 1 = 0} = VT(Ld−1),
d ∈ N∗ : one has θ ∈ A′

VT(Ld−1)
if and only if d× θ ∈ A′

VT(L0)
, which now makes a

significative difference between the coamœbas of the Fermat curves when d varies.

The first observation that occurs from Example 2.6 is that the coamœba A′
VT(F )

fails in general to be closed in (S1)n. Therefore, the interesting open subset to

study in (S1)n is (S1)n \ A′
VT(F ), which corresponds to the (2πZ)n-periodic open

subset of Rn denoted as Rn \ π−1(A′
VT(F )), where π : Rn → (R/(2πZ)n = (S1)n

denotes the canonical projection.

Let C be a connected component of the open set Rn \ π−1(A′
VT(F )) and E be the

conic domain in Tn defined as

(2.10) EC := {(r1eiθ1 , ..., rneiθn) ; θ ∈ C}
(note that EC = EC′ if C and C′ are translated modulo (2πZ)n). The relation

between the connected components of Rn \ π−1(A′
VT(F )) and the Mellin tranform

is given by the following Proposition ([NP], [Ant]). This is the pendant of the
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relation that exists between connected components of Rn \ AVT(F ) and the Fourier
transform (c.f. Proposition 2.1 and Remark 2.4).

Proposition 2.2 (directional Mellin Transform). Let F ∈ C[X±1
1 , ..., X±1

n ] be
a true Laurent polynomial in n variables and A′

VT(F ) be its coamœba in (S1)n. Let

C be a connected component of Rn \ π−1(A′
VT(F )). Then, for any s in the “tube”

domain int (∆(F )) + iRn, for any θ ∈ C, the poly-contour integral∫
]0,∞[×(eiθ1 ,...,eiθn )

1

F (ζ)

n∏
j=1

ζ
sj
j

n∧
j=1

dζj
ζj

=

∫
Rn

e⟨s,x+iθ⟩

F (ex+iθ)
dx1 . . . dxn

corresponds to an absolutely convergent integral (in the Lebesgue sense), and is
independent on the choice of θ ∈ C. Moreover, the map

(2.11) MC[1/F ] : s ∈ int (∆(F )) + iRn 7−→ 1

(2iπ)n

∫
Rn

e⟨s,x+iθ⟩

F (ex+iθ)
dx1 . . . dxn

is holomorphic in the tube domain int (∆(F )) + iRn. It is called the C-directional
Mellin transform of the rational function 1/F . Moreover, if u∗ denotes an arbitrary
interior point in ∆(F ), one has the Mellin inversion formula :

(2.12) ∀ z ∈ EC,
1

F (z)
=

∫
u∗+iRn

MC[1/F ](u
∗ + iω)

n∏
j=1

z
−u∗

j−iωj

j dω1 . . . dωn,

where the determination of the multi-argument of z which is chosen to express each

z
−u∗

j−iωj

j in the integrant of (2.12) is that which belongs precisely to C.

Let us postpone for the moment the proof of this technical proposition. As a
consequence of Proposition 2.2, one can state here the following companion to
Proposition 2.1 (see [NP], Theorem 4 or also [Ant]) :

Proposition 2.3. Let F ∈ C[X±1
1 , ..., X±1

n ] be a true Laurent polynomial in
n variables and A′

VT(F ) be its coamœba. The connected components C of the open

set Rn \ π−1(A′
VT(F )) are convex. Moreover, for each such component C, the conic

open subset EC defined as (2.10) is the maximal open subset of Tn in which the
Mellin integral representation formula (2.7) holds, where M = MC[1/F ] denotes
the C-directional Mellin transform of the rational function 1/F .

proof of Proposition 2.3. Let C be a connected component of the open
set Rn \ π−1(A′

VT(F )). Consider an arbitrary u in the interior of ∆(F ) and the

holomorphic maps defined in the tubular domain C+ iRn as

θ − ix 7−→ 1

F (ei(θ−ix))
=

1

F (ex+iθ)

θ − ix 7−→
∫
u∗+iRn

ME[1/F ](u
∗ + iω)

n∏
j=1

e−⟨x+iθ,u∗+iω⟩ dω1 . . . dωn.
(2.13)

It follows from Bochner’s tube theorem [Boch] (this theorem plays here the role
which is played by N. Abel’s result in the proof of Proposition 2.1) that both
holomorphic functions (2.13) in the tubular domain C+iRn extend holomorphically

to the wider tubular convex domain Ĉ+ iRn, where Ĉ denotes the convex hull of C
in Rn. It then follows from the analytic continuation principle (which implies here
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that equality (2.12) between these two functions in the tubular domain C + iRn

extends analytically to the wider one Ĉ + iRn) that one has necessarily C = Ĉ,
which proves that C is convex. The remaining assertions in Proposition 2.3 follow
from Proposition 2.2 as in Proposition 2.1. □

Remark 2.7 (digital versus analogic AR filters). The integral Mellin repre-
sentation formula (2.12) in EC can be interpreted as a continuous analog of the
developed expression (2.1) for 1/F in Log−1(C) (where C is now a connected com-
ponent of the complement of tha amœba AVT(F )). Such a representation formula
(2.12) (as well as the description of all of them, such as given by the correspondence
(EC,MC[1/F ]) ←→ C settled in Proposition 2.3) is an important tool in analogic
(instead of digital) signal processing. Note that the expression (2.11) for the direc-
tional Mellin transform with respect to C plays (in the analogic instead of digital
setting) the same role than that the set of relations (2.6) (see Remark 2.4), which
precisely allow to retrieve the Laurent development (2.1) (that is the digital AR
filter6 corresponding to 1/F ) from the rational function 1/F .

It remains to sketch briefly the proof of the technical Proposition 2.2.

proof of Proposition 2.12. Let θ ∈ Rn \ π−1(A′
VT(F )). The first thing to

prove is that, for any s in the tube domain int (∆(F )) + iRn, the integral

(2.14)

∫
Rn

e⟨s,x+iθ⟩

F (ex+iθ)
dx1 . . . dxn

is absolutely convergent and independent of θ. For each face7 δ of ∆(F ), denote
as Fδ be the Laurent polynomial obtained from F just keeping the monomials
Xα1

1 . . . Xαn
n such that α = (α1, ..., αn) belongs to the face δ (note that F∆(F ) =

F ). It follows from Rouché’s theorem (see Theorem 3 in [NP]) that the condition

θ ∈ Rn \ π−1(A′
VT(F )) implies that, for any face δ of ∆(F ), Fδ has no zero on the

multidirectional half-line {z ∈ Tn ; arg(z) = π(θ)}. As a consequence, for any s in
the tubular domain int (∆(F ))+ iRn, the integral (2.14) is absolutely convergent as

a Lebesgue integral. Provided θ is been kept fixed in Rn \π−1(A′
VT(F )), the integral

(2.14) depends holomorphically on s when s ∈ int (∆(F )) + iRn. On the other
hand, it follows from the classical one variable residue formula applied to integrals
of holomorphic forms (in one complex variables) on paths such as pictured on figure
2.3 that, sor any s ∈ int (∆(F )) + iRn, the integral (2.14) does not depend in θ,

provided θ remains in a fixed connected component C of Rn \ π−1(A′
VT(F )). The

directional Mellin integralMC[1/F ] defined in (2.11) is thus well defined for each

connected component C of Rn \ π−1(A′
VT(F )) as an holomorphic function in the

tubular domain int (∆(F )) + iRn. Formula (2.12) (when z = (ex1+iθ1 , ..., exn+iθn)
belongs to the multi-conic sector EC) follows from Fourier inversion formula for

6“AR” stands here for “all recursive”, which is the terminology used in information theory.
7A “face” of a convex compact polyedron ∆ ⊂ Rn with non-empty interior in Rn (which is

the case here for ∆ = ∆(F ) since F is supposed to be a “true” Laurent polynomial in n variables)

is the intersection of ∆ with some affine subspace {x ; ⟨a, x⟩+ b = 0} for some a, b ∈ Rn. Faces of
∆ are also convex compact polyedrons with (relative) dimension between 0 (0-dimensional faces
beings “vertices”) and n (∆(F ) itself being the unique n-dimensional face, take a = b = 0). Faces

with dimension 1 are called “edges” of ∆(F ), faces with dimension n − 1 are called “facets” of
∆(F ).
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∆θ

R

0

Figure 2.3. The directional Mellin transform is independent on
the direction θ ∈ C.

elements in the space S (Rn) of smooth functions which are rapidly decreasing at
infinity as well as all their derivatives, namely

∀φ ∈ S (Rn), φ̂ ∈ S (Rn), and φ(x) =
1

(2iπ)n

∫
Rn

φ̂(ω)ei⟨ω,x⟩ dω ∀x ∈ Rn,

applied to the fonction x 7→ e⟨u
∗,x+iθ⟩/F (ex+iθ), θ ∈ C, u∗ ∈ int (∆(F )) + iRn. □

2.2. Archimedean amœba and coamœba of a an algebraic subset V ⊂ Tn

It is natural to extend Definitions 2.1 and 2.5 to the case where the algebraic
hypersurface V (F ) is any closed algebraic subset V in Tn = Spec (C[X±1

1 , ..., X±1
n ]),

that is the zero set of any proper ideal I ⊂ C[X±1
1 , ..., X±1

n ].

Definition 2.8. Let V = V (I) ⊂ Tn be the zero set of a proper polynomial
ideal I in C[X±1

1 , ..., X±1
n ]. The archimedean amœba of V is defined as

(2.15) AV := Log (V ) ⊂ Rn.

The archimedean coamœba of V is defined as

(2.16) A′
V := arg (V ) ⊂ (S1)n.

This definition 2.15 is just the pendant in the archimedean (instead of ultrametric)
context of that of VTrop,ν(I) (see (1.27)), I being an ideal in K[X±1

1 , ..., X±1
n ],

where K denotes some algebraically closed commutative field equipped with a non
trivial valuation ν. The possibility to profit from the intrinsic relation between
complex conjugaison and positivity in the (C,+,×) usual calculus8 makes indeed
quite easy to obtain in the archimedean context the analog of the first assertion
in Proposition 1.3. The same reasoning leads to an analog statement concerning
coamœbas. Namely, one has ([Purb], with respect to the assertion about amœbas):

Proposition 2.4. Let V be any closed algebraic subset in Tn and I be any
proper polynomial ideal in C[X±1

1 , ..., X±1
n ] such that

V = VT(I) = {z ∈ Tn ; F (z) = 0 ∀F ∈ I}.

8P (z)P (z) ≥ 0 for z ∈ Tn and any P ∈ C[X±1
1 , ..., X±1

n ].
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Then,

(2.17) AV =
∩
F∈I

AVT(F ), A′
V =

∩
F∈I

A′
VT(F ).

Remark 2.9. As a consequence of Proposition 2.4, one could call (as in [Purb])
AV (I) the archimedean amoeba of the polynomial ideal I ⊂ C[X±1

1 , ..., X±1
n ] (as

AVT(F ) is called the amœba of the Laurent polynomial F ). The same holds with
respect to coamœbas.

Proof. Since V = VT(I) ⊂ VT(F ) for any F ∈ I, one has the inclusions
AV ⊂ AVT(F ) and A′

V ⊂ A′
VT(F ) for any F ∈ I, that is AVT(I) ⊂

∩
F∈I AVT(F ) and

A′
VT(I)

⊂
∩

F∈I A′
VT(F ). Let now {F1, ..., FM} be a finite set of generators for the

ideal I and x ∈ Rn \ AVT(I). Consider the Laurent polynomial

Fx(X) :=

M∑
j=1

Fj(X)F j(e
2x1X−1

1 , ..., e2xnX−1
n ).

If z = (ex1+iθ1 , ..., exn+iθn) ∈ Log−1(x), one has

Fx(z) =
M∑
j=1

Fj(z)Fj(z) =
M∑
j=1

|Fj(z)|2 > 0.

Therefore, one has(
x ∈ Rn \ AVT(I)

)
=⇒

(
∃F = Fx ∈ I, x ∈ Rn \ AVT(F )

)
,

that is

Rn \ AVT(I) ⊂
∪
F∈I

(
Rn \ AVT(F )

)
.

Taking complements in Rn leads to
∩

F∈I AVT(F ) ⊂ AVT(I).

Let now θ ∈ (S1)n \ A′
VT(I)

. Consider this time the Laurent polynomial

Fθ(X) :=

M∑
j=1

Fj(X)F j(e
−2iθ1X1, ..., e

−2iθnXn).

If z = (ex1+iθ1 , ..., exn+iθn) ∈ arg−1(θ), one has

Fθ(z) =
M∑
j=1

Fj(z)Fj(z) =
M∑
j=1

|Fj(z)|2 > 0.

Therefore, one has(
θ ∈ (S1)n \ A′

VT(I)

)
=⇒

(
∃F = Fθ ∈ I, θ ∈ (S1)n \ A′

VT(F )

)
,

that is

(S1)n \ A′
VT
(I) ⊂

∪
F∈I

(
(S1)n \ A′

VT(F )

)
.

Taking complements in (S1)n leads to
∩

F∈I A′
VT(F ) ⊂ A

′
VT(I)

. □
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Recall (see Remark 1.12) that a list of strictly positive numbers {ey1 , ..., eyr} is
lobsided (in the archimedean sense) if and only if one of the eyj , j = 1, ..., r, is
strictly greater than the (ordinary) sum of all others. This is the exact pendant
in the archimedean setting of the notion of tropical lobsidedness in the ultrametric
setting (see Definition 1.11).

Wen c0, ..., cn are n+ 1 non zero complex numbers and

Lc(X) = c0 + c1X1 + · · ·+ cnXn,

it is equivalent to say (see Remark 1.12) that x belongs to AVT(Lc) or that the list
{|c0|, |c1|ex1 , ..., |cn|exn} is not lobsided in the archimedean sense. Unfortunately,
things are more involved when F is replaced by an arbitrary Laurent polynomial in
n variables and the companion archimedean assertion to (1.20) does not quite hold
for a general Laurent polynomial F . One needs to replace (1.20) by the following
lemma [Purb].

Lemma 2.10 (archimedean amœba of a Laurent polynomial and lobsidedness).
Let F ∈ C[X±1

1 , ..., X±1
n ] be a Laurent polynomial in n variables and, for k ∈ N∗,

(2.18) Fk(X) =
∏

(l1,...ln)∈Fn
k

F (e2iπl1/kX1, ..., e
2iπln/kXn), where Fk := Z/kZ.

Then, one has AVT(F ) = AVT(Fk). Moreover, for any x ∈ Rn \ AVT(F ), one can find
k(x) ∈ N∗ such that, if k ≥ k(x) and

Fk(X) =
∑

α∈Supp (Fk)

ck,αX
α,

the list
{
|ck,α| e⟨α,x⟩ ; α ∈ Supp (Fk)

}
is lobsided in the archimedean sense.

As a consequence of this Lemma 2.10 (let us postpone its proof for the monent),
combined with Proposition 2.4, the following archimedean companion to the second
assertion in Proposition 1.3 also holds [Purb], namely :

Proposition 2.5. Let V be any closed algebraic subset in Tn and I be any
proper polynomial ideal in C[X±1

1 , ..., X±1
n ] such that

V = VT(I) = {z ∈ Tn ; F (z) = 0 ∀F ∈ I}.

Then, the archimedean amœba AVT(I) coincides with the subset of x ∈ Rn such that,
for any

F =
∑

α∈Supp (F )

cαX
α ∈ I,

the finite list {
|cα| e⟨α,x⟩ ; α ∈ Supp (F )

}
is not tropically lobsided in the archimedean sense.

Proof. If x ∈ AVT(I), there exists θ ∈ Rn such that F (ex1+iθ1 , ..., exn+iθn) = 0

for any F ∈ I. For any such F , the list
{
|cα| e⟨α,x⟩ ; α ∈ Supp (F )

}
cannot then

be lobsided in the archimedean sense since this would contradicts the archimedean
triangle inequality. This proves one of the needed inclusions. In order to prove
the second one, one takes first complements in the equality AVT(I) =

∩
F∈I AVT(F ),

then uses Lemma 2.10 for each F ∈ I (note that Fk(x) ∈ I as well). □
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proof of Lemma 2.10. Assume that the Newton polyedron ∆(F ) ⊂ Rn
ξ1,...,ξn

has non empty interior in Rn (this is not restrictive, otherwise, one needs to consider
the Laurent polynomial F being truly in strictly less than n variables). Let

cF := max
1≤j≤n

(
max
∆(F )

ξj − min
∆(F )

ξj
)
> 0.

Let k ∈ N∗. For any (l1, ..., ln) ∈ Fn
k and any z ∈ Tn, both points z = (z1, ..., zn) and

(e2iπl1/kz1, ..., e
2iπln/kzn) are carried to the same point in Rn via the logarithmic

map Log. It follows that the amœbas AVT(F ) and AVT(Fk) do indeed coincide. Since

the Laurent polynomial Fk is invariant under the action of Fn
k on C[X±1

1 , ..., X±1
n ]

defined as as

(e2iπl1/k, ..., e2iπln/k) · (X1, ..., Xn) = (e2iπl1/kX1, ..., e
2iπln/kXn),

and its Newton polyedron equals ∆(Fk) = ∆(F ) + · · · + ∆(F ) (kn times), that is
∆(Fk) = kn∆(F ), Fk is of the form

Fk(X) =
∑

α∈ kZn ∩ kn∆(F )

ck,αX
α.

The cardinal of the support of Fk can be estimated in terms of the Ehrhart poly-
nomial of the Newton polyedron ∆(F ) : the Ehrhart polynomial E∆(F ) of ∆(F ) is
(see [Fult], section 4.4, or also [Beck]) the polynomial in t (with degree n) defined
as

card
(
t∆(F ) ∩ Zn

)
=
n! Voln(∆(F ))

n!
tn +

(n− 1)!Voln−1,norm(∂∆(F ))

2(n− 1)!
tn−1

+ (?) tn−2 + · · ·+ (?) t+ 1 ∀ t ∈ N ;

here Voln−1,norm(∂∆(F )) means the (n − 1)-dimensional volume on the facets of
∆(F ), normalized9 with respect to the lattice induced by Zn on the vectorial lin-
ear (n − 1)-dimensional subspace corresponding to each facet. Note also that the
Ehrhart polynomial E∆(F ) can also be interpreted as the restriction to N of the
Hilbert polynomial

t ∈ Z 7→ E∆(F )(t) = χ
(
X
(
Σ(∆(F ))

)
,O
(
t∆(F )

))
,

where X (Σ(∆(F ))) denotes the toric variety attached to the normal fan Σ(∆(F ))
of ∆(F ), ∆(F ) the line bundle corresponding to the Cartier ample divisor ∆(F ) on
X (∆(F )), χ being the Euler-Poincaré characteristic 10. One has also (see [Fult],
section 4.4)

(−1)nE∆(F )(−t) = card
(
int(t∆(F )) ∩ Zn

)
∀ t ∈ N∗,

which implies that

χ
(
∆(F ),O(∆(F ))

)
= 1− card

(
int(∆(F )

)
∩ Zn),

9As usual, “normalisation” means here that the (n− 1)-volume of the simplex built with the
the basis of the induced lattice on the linear subspace corresponding to the facet equals 1/(n−1)!.
The same normalisation holds also for the definition of Voln (this time with Zn as the lattice and

n instead of n− 1).
10We recall here that the Euler characteristic of an invertible sheaf F on a projective algebraic

variety X is defined as

χ(X ,F) = rank (H0(X ,F))− rank (H1(X ,F)) + rank (H2(X ,F))− · · ·
(all Čech cohomology groups involved here being finitely dimensional). For a line bundle, take as
invertible sheaf the sheaf of holomorphic sections.
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that is card (int(∆(F ))∩Zn) stands for the arithmetic genus the line bundle ∆(F ).
An estimate dF for supt∈N∗(E∆(F )(t)/t

n) is provided in [BtMc]. Since one has
∆(Fk) = kn∆(F ), one has

(2.19) card(Supp(Fk)) ≤ card
(
kn−1∆(F ) ∩ Zn

)
= E∆(F )(k

n−1) ≤ kn
2−n dF .

Suppose that x ∈ Rn \AVT(F ) = Rn \AVT(Fk) is such that its distance to the amœba
AVT(F ) = AVT(Fk) equals at least ϵ = ϵ(x) > 0. We claim that, provided

(2.20) k ≥ 1

ϵ(x)

(
(n2 − 1) log k + log

(16
3
cF dF

))
,

there exists at least one α = αk,x ∈ Supp(Fk), such that

|ck,α|e⟨α,x⟩ > dF k
n2−n|ck,α′ | e⟨α

′,x⟩ ∀α′ ∈ Supp (Fk) \ {α}.

Since card (Supp (Fk)) ≤ dF kn
2−n (see (2.19)), it will follow then that

(2.21) |ck,α| e⟨α,x⟩ >
∑

α′∈Supp (Fk)

α′ ̸=α

|ck,α′ | e⟨α
′,x⟩,

which means precisely that the finite list{
|ck,α| e⟨α,x⟩ ; α ∈ Supp (Fk)

}
is lobsided in the archimedean sense. It remains to prove such claim.

Fix x = (x1, ..., xn) as before, at least ϵ = ϵ(x)-distant from AVT(F ). For any
j = 1, ..., n, let Γx,j be the annulus in the complex plane

Γx,j = {ζ ∈ C ; xj − ϵ < log |ζ| < xj + ϵ}.

Let zx ∈ Log−1(x). For any k ∈ N∗, the Laurent polynomial in one variable

fzx,j,k := Fk(zx,1, ..., zx,j−1, Y, zx,j+1, ..., zx,n)

has no root within the annulus Γx,j (otherwise, this would contradict the fact that
the distance from x to the amœba AVT(Fk) = AVT(F ) is at least ϵ). The length of its
(1-dimensional) Newton polyedron is bounded by cF k

n and all points in its support
belong to kZ. A technical lemma11 in one variable shows (Lemma 2.1 and 2.2 in
[Purb]) that, if condition (2.20) is fulfilled, there is indeed one “distinguished”
monomial among those involved in fzx,j,k such that, when evaluated at exj , its

modulus is strictly bigger then 2 dF k
n2−n times the modulus of any other one.

Thanks to a connexity argument, this “distinguished” monomial remains the same
for all fzx,j,k, when j and k are kept fixed and zx varies in the connected set

Log−1(x). Moreover, it corresponds to some Xkνj -term, where νj = νj(k) ∈ Z

11In order to guess such an argument, take a polynomial f(Y ) =
∏d

j=1(Y − αj) in one

variable such that all roots are non zero and have distinct moduli |α1| > · · · > |αd| > 0. The

polynomial fk(Y ) =
∏d

j=1(Y
k − αk

j ) has as a “leading” expression

Y kd − αk
1Y

k(d−1) + (α1α2)
kY k(d−2) + · · ·+ (−1)d(α1 . . . αd)

k.

If ex belongs to the annulus |αl+1| < ex < |αl| (for 1 ≤ l ≤ d, with the convention that αd+1 = 0),

then, when k becomes large enough, the monomial term (α1 . . . αl)
kY n−l is, when evaluated at

Y = ex, the “leading” monomial (when taking its modulus) among those involved in fk and
evaluated at ex.
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remains independent of zx provided k fulfills (2.20). Let ν = (ν1, ..., νn). One can
decompose thus Fk as :

Fk(X) = ck,kν X
kν +

∑
α∈Supp (Fk)

α ̸=kν

ck,αX
α.

LetMk,x be the evaluation of the modulus of |ck,kν Xkν | at an arbitrary point zx in

Log−1(x) (it is of course independent on the point zx) and µk,x be the maximum of
all evaluations at zx of all |ck,αXα| for α ∈ Supp (Fk), α ̸= kν. The property that

is shared by all fzx,j,k when zx ∈ Log−1(x) (the evaluation of a the modulus of the

Y kνj term at exj is strictly bigger than 2 dF k
n2−n times the evaluation of moduli

of all other monomials), combined with the fact that card (Supp (Fk)) ≤ dF kn
2−n,

implies that

µk,x <
Mk,x + µk,x dF k

n2−n

2 dF kn
2−n

,

from which it follows that µk,x < dF k
n2−nMk,x, which concludes the proof of our

claim and thus the proof of Lemma 2.10. □
Remark 2.11. Let η ∈]0, 1[. Note that, refining the choice of k = k(ϵ), one

could as well ensure that, for any x at a distance at least equal to ϵ from the amœba
AVT(F ), for any k ≥ k(η, ϵ) >> 1, there exists at least one α = αk,x in Supp (Fk)
such that the inequality

(2.22)
∑

α′∈Supp (Fk)

α′ ̸=α

|ck,α′ | e⟨α,x⟩ < η |ck,α| e⟨α,x⟩

holds (instead of (2.21)). We will use this remark later on (in the proof of Propo-
sition 3.5).





CHAPTER 3

From complex algebraic geometry to real tropical
geometry

3.1. Deformation of the amœba of an algebraic hypersurface

We will show in this section how one can “deform” in a continuous way the
archimedean amœba AVT(F ) of a Laurent polynomial F ∈ C[X±1

1 , ..., X±1
n ] (better

considered now in the tropical world ((Trop\{−∞})n, ⊞ , ⊠ ) instead of (Rn,+,×))
into a tropical hypersurface in (Trop \ {−∞})n. Such a tropical hypersurface will
thus be “interpreted” in a natural way as the “spine” of the archimedean amœba
AVT(F ) (which will confort the parallel one could make with amœbas in biology,
besides the fact that such animals are known to be invertebrate !). In this section,
the algebraic hypersurface VT(F ) is considered in Tn (C being equipped here with its
usual operations + and ×). Later on, one will compare such a tropical deformation
of VT(F ) with the image by Log of the “zero set” of F , considered this time in the

hyperfield of tropical numbers, namely in ((TropC \{0})n, ⊞̃C , ⊠C ) (see subsection
1.1.4).

3.1.1. Multiplicities attached to F with respect to connected com-
ponents of Rn \ AVT(F ). Let F ∈ C[X±1

1 , ..., X±1
n ] be a Laurent polynomial and

AVT(F ) its archimedean amœba. Let C be a connected component of Rn \ AVT(F ),

x be a point in C, and zx be an arbitrary point in Log−1(x). Consider, for each
j = 1, ..., n, the continuous loop

(3.1) θj ∈ [0, 2π] 7−→ F (zx,1, ..., zx,j−1, e
xj+iθj , zx,j+1, ..., zn) ∈ C∗,

that is the image by F of the continuous loop

γzx,j : θj ∈ [0, 2π] 7−→ (zx,1, ..., zx,j−1, e
xj+iθj , zx,j+1, ..., zn) ∈ Log−1(x).

The degree νF,x,zx,j of the loop F ◦ γzx,j remains constant while x ∈ C and zx ∈
Log−1(x) since this integer valued degree varies continuously on the connected set{

(x, zx) ; x ∈ C, zx ∈ Log−1(x)
}
⊂ Rn × Tn.

Therefore, there exists (νF,C,1, ..., νF,C,n) ∈ Zn such that

∀x ∈ C, ∀ zx ∈ Log−1(x), ∀ j = 1, ..., n, νF,x,zx,j = νF,C,j .

Definition 3.1 (multiplicities attached to a Laurent polynomial with respect
to its amœba). Let F ∈ C[X±1

1 , ..., X±1
n ] be a Laurent polynomial in n vari-

ables and C be a connected component of Rn \ AVT(F ). The n-uplet νF,C :=
(νF,C,1, ..., νF,C,n) ∈ Zn is called the multiplicity attached to F with respect to the
connected component C of Rn \ AVT(F ).

33
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Remark 3.2. It is important to observe that such multiplicities depend indeed
on the Laurent polynomial F itself, before depending on its amœba. They therefore
carry some algebraic information, not only a geometric one (as the amœba only
does). For example, if F is replaced by a power F k or even some Fk, k ≥ 2,
as in Lemma 2.10, the amœba does not change, while of course multiplicities are
drastically modified. When F is replaced by F×Xα, whereXα denotes a monomial,
multiplicities νF,C are transformed into νF,C + α. Multiplicities depend indeed on

F , that is on the principal ideal (F ) ⊂ C[X±1
1 , ..., X±1

n ], not on the hypersurface
VT(F ) ⊂ Tn.

Example 3.3 (the one-dimensional case). Let f be a polynomial in one variable

f(X) = c0Y
d + c1Y

d−1 + · · ·+ cd,

with Newton polyedron [0, d], d ∈ N∗ (that is cd ̸= 0). Thanks to Lebesgue’s
theorem about continuity of integrals depending on a parameter x, the function

(3.2) Gf : x = x+ iy ∈ C = R+ iR 7−→ −
∫ 2π

0

log |f(ex+iθ)| dθ

(G stands here for “Green” since one will later on interpret such a function as a
Green function) is well defined and is continuous, despite the fact that log |f | admits
singularities at all points in VT(f) = {α ∈ T ; f = 0} = f−1(0) (such singularities
being in fact of logarithmic nature, thus integrable). If f has no zero in the open
annulus {ζ ∈ T ; γ < log |ζ| < γ′}, then Gf is C∞ in ]γ, γ′[. Moreover, since

dx
(
log |f(ex+iθ)|

)
= exRe

(f ′(ex+iθ)

f(ex+iθ)
eiθ
)
dx, ∀x ∈]γ, γ′[, ∀ θ ∈ [0, 2π],

one has

∀x ∈]γ, γ′[, G′
f (x) = −Re

( 1

2π

∫ 2π

0

(f ′(ex+iθ)

f(ex+iθ)

)
ex+iθdθ

)
= − 1

2iπ

∫
θ 7→ex+iθ

f ′(ζ)

f(ζ)
dζ = −card

(
f−1(0) ∩D(0, eγ)

)
.

If C is a connected component of R \ AVT(f), one has then

(3.3) νf,C = card
(
f−1(0) ∩D(0, einf C)

)
.

In particular, νf,C is an integer that belongs to the Newton polyedron (here [0, d])
of f . If the amœba of f is {a1, ..., ad′}, with a1 < a2 < · · · < ad′ (d′ ≤ d), then the
function Gf is the piecewise linear continuous function with slope νf,C (as in 3.3)
on each open interval C =]al, al+1[, l = 0, ..., d′ (with a0 = −∞ and ad′+1 = +∞).
This is just an alternative way to phrase the well known Jensen’s formula, see
e.g. [BG] or [Yac], Theorem 4.4. In particular, one has Gf (x) ≡ − log |c0| on
]−∞, a1[+iR and Gf (x) ≡ − log |cd| − dx on ]ad′ ,+∞[+iR. Note that, apart from
these two “extremal” cases, the constant coefficient τC such thatGf (x) ≡ −τC−νCx
on C+ iR cannot be recovered easily in terms of the log |cα|, where α ∈ Supp (f) (it
can be expressed inductively in terms of log |c0|, the al and the νf,]al,al+1[ thanks
to Jensen’s formula, see [BG] or [Yac], Theorem 4.4).
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It follows from the argument principle that one has, for each connected component
C of Rn \ AVT(F ), for any x ∈ C, for any j = 1, ..., n,

(3.4) νF,C,j =
1

(2iπ)n

∫
Log−1(x)

∂F

∂ζj
(ζ)

1

F (ζ)

n∧
j=1

dζj
ζj
,

where the n-cycle

Log−1(x) =
{
(ex1+iθ1 , ..., exn+iθn) ; θj ∈ [0, 2π], j = 1, ..., n

}
is oriented as in the multidimensional Cauchy representation formula.

As in example 3.3, one can introduce a distribution GF in Cn = Rn + iRn as
follows : consider the locally integrable function z = x+ iy 7−→ log |F (ex+iy)| as a
distribution1 in Cn that is (2π, ..., 2π)-periodic in y = Im z, that is as a distribution
on Rn + i(S1)n, then take GF such that :

(3.5) ⟨GF , φ⟩ := −
⟨
log |F (ex+iy)| ,

∫
(S1)n

φ(x+ iθ) dσ(S1)n(θ)
⟩
∀φ ∈ D(Cn),

where dσ(S1)n denotes the normalized Haar measure on the group (S1)n. This
distribution GF is of course the distribution-function represented by the function

(3.6) GF : z = x+ iy ∈ Rn + iRn 7−→ −
∫
(S1)n

log |F (ex+iθ))| dσ(S1)n(θ).

Nevertheless, since one will later transpose this construction to the case where the
Laurent polynomial F is replaced by an ideal I ⊂ C[X±1

1 , ..., X±1
n ], we prefered

to present the “distribution” point of view (3.5) (which is in accordance with the
presentation in [Rash]) instead of the “functional” presentation (3.6).

The computations which were done in example 3.3 can be repeated in the n-
dimensional case. One has then the following proposition.

Proposition 3.1 ([Ronk]). The function GF defined in (3.6) is C∞ in each
C + iRn, C being a connected component of Rn \ AVT(F ). Moreover

(3.7) dGF +
n∑

j=1

νF,C,j dxj ≡ 0 in C + iRn,

that is, the function GF is affine in C + iRn, of the form

(3.8) GF (x+ iy) + τF,C + ⟨νF,C , x⟩ = 0 ∀x ∈ C, ∀ y ∈ Rn.

for some real constant τF,C .

Definition 3.4 (Ronkin function). The function −GF has been introduced by
L. Ronkin in [Ronk] and is thus called the Ronkin function corresponding to the
Laurent polynomial F .

As in the one variable case, one has the following result about multiplicities.

Proposition 3.2 ([FPT]). Let F ∈ C[X±1
1 , ..., X±1

n ] and AVT(F ) its archime-
dean amœba. For each component C of Rn \AVT(F ), the multiplicity νF,C is a point
in Zn ∩ ∆(F ). Moreover, the map which assigns to each connected component C
of Rn \ AVT(F ) the multiplicity νF,C ∈ Zn ∩ ∆(F ) is injective. As a consequence,

1See Appendix A for a brief presentation of distribution theory.
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the number of connected components of Rn \ AV (T)(F ) is bounded from above by
card (∆(P ) ∩ Zn) = E∆(F )(1).

Proof. Let x ∈ C and a = (a1, ..., an) ∈ Zn \ {0}. Let zx ∈ Log−1(x). The
loop

γzx,a : θ ∈ [0, 2π] 7−→ (zx,1e
ia1θ, ..., zx,ne

ianθ) ∈ Log−1(x)

is homologous (in Log−1(x)) to the 1-cycle
n∑

j=1

aj

(
θj ∈ [0, 2π] 7−→ (zx,1, ..., zx,j−1, zx,je

iθj , zx,j+1, ..., zx,n

)
=

n∑
j=1

ajγzx,j .

Therefore, the number of zero-poles of the Laurent polynomial in one variable
fzx,a(Y ) = F (zx,1Y

a1 , ..., zx,nY
an) inside the unit disc can be expressed thanks to

the argument principle as

1

2iπ

∫
F◦γzx,a

dζ

ζ
=

1

2iπ

∫
γzx,a

dF

F
=

n∑
j=1

aj deg(F ◦ γzx,j) = ⟨a, νF,C⟩.

Since the top degree of the Laurent polynomial fzx,a is maxξ∗∈∆(F )⟨a, ξ∗⟩, one has

⟨a, νF,C⟩ ≤ max
ξ∗∈∆(F )

⟨a, ξ∗⟩ ∀ a ∈ Zn \ {0}.

This implies νF,C ∈ ∆(F ).

Consider now two points x ∈ C ∩Qn and x′ ∈ C ′ ∩Qn in two different connected
components of Rn \ AVT(F ). Then the segment [x, x′] necessarily hits AVT(F ). Let
x′ = x+ ta with t ∈ Q>0 and a ∈ Zn \ {0}. Let us prove that ⟨a, νF,C′⟩ > ⟨a, νF,C⟩,
interpreting (see above) these two numbers as the numbers of zero-poles respectively
of the Laurent polynomials (in one variable) fzx′ ,a and fzx,a when zx′ ∈ Log−1(x′)

and zx ∈ Log−1(x). Since |zx′,j |/|zx,j | = etaj for j = 1, ..., n, one may interpret
also ⟨νF,C′ , a⟩ as the number of zero-poles of fzx,a (pick up if necessary another

zx ∈ Log−1(x) and replace the old one) inside a disc with radius et instead of 1. It
is impossible for fzx,a to be zero-free in the annulus {ζ ∈ C ; 1 < |ζ| < et} ; if it
was the case, [x, x′] would not intersect AVT(F ), which means that x and x′ would
be in the same connected component of Rn \ AVT(F ). Thus νF,C′ certainly differs
from νF,C whenever C and C ′ are distinct. □
Let τ ≺ ∆(F ) be a face of the Newton polyedron ∆(F ). Let Γτ ⊂ Rn be the
((n − dim τ)-dimensional) polar cone of the face τ ≺ ∆(F ) with respect to the
Newton polyedron ∆(F ), that is

Γτ :=
{
a ∈ Rn ; {u ∈ ∆(F ) ; ⟨a, u⟩ = max

v∈∆(F )
⟨a, v⟩} = τ

}
.

(−Γτ is called the dual cone2 of the face τ ≺ ∆(F ) with respect to ∆(F )). Any point
ν in Zn ∩∆(F ) which is not a vertex of ∆(F ) belongs to the relative interior of a
unique face τ(ν) ≺ ∆(F ). One can therefore attach to such a point ν ∈ Zn ∩∆(F )
a polar cone Γν in Rn : Γν = Γτ(ν) if ν is not a vertex of ∆(F ), Γν = Γ{ν} if
ν = σ is a vertex of ∆(F ). Note that, if ν belongs to the relative interior of ∆(F ),

2When F is a true Laurent polynomial in n variables, that is the interior of ∆(F ) is not
empty, the closures of all dual cones corresponding to all faces of ∆(F ) are all strict cones in
Rn which form the fan Σ(∆(F )), from which one can construct the toric complete projective

variety X (Σ(∆(F ))), see subsection 4.2.1 in the next chapter for a short recap about complete
toric varieties.



3.1. DEFORMATION OF THE AMŒBA OF AN ALGEBRAIC HYPERSURFACE 37

Γν = Γ∆(F ) = (vec (∆(F ))⊥ ; in particular Γν = {0} for such ν in the relative
interior of ∆(F ) when F is a true Laurent polynomial in n variables (that is, the
interior of ∆(F ) in Rn is nonempty).

Proposition 3.3 (existence of recession cones, [FPT]). Each vertex σ of ∆(F )
corresponds to a unique open connected component Cσ of Rn \ AVT(F ). One has

(3.9) GF (x+ iy) + log |cσ|+ ⟨σ, x⟩ = 0 ∀x ∈ Cσ, ∀ y ∈ Rn.

If Cν is the unique open connected component of Rn \AVT(F ) corresponding to some
ν ∈ Zn ∩∆(F ), then

Cν + Γν ⊂ Cν

and no strictly larger open cone Γ ⊂ Rn than Σν fulfills Cν +Γ ⊂ Cν . The cone Γν

is thus called the recession cone of the open connected component Cν .

Proof. Let σ ∈ Zn be a vertex of ∆(F ). Clearly, one can find points z in Tn

such that

(3.10) |cσzσ| >
∑

α ̸=σ∈Supp (F )

|cα zα|,

that is points where the family {|cα| e⟨α,x⟩, α ∈ Supp (F )} (where x = Log z) is
lobsided in the archimedean sense, with leading term |cσ| e⟨σ,x⟩. In the connected
component Cσ containing such points, the multiplicity νF,Cσ equals σ since, for

x ∈ Cσ such that (3.10) holds for any zx ∈ Log−1(x), the loop (3.1) is clearly
homologous (in C∗) to the loop

θj ∈ [0, 2π] 7−→ cσz
σ1
x,1 . . . z

σj−1

j−1 eσj(xj+iθj) z
σj+1

x,j+1 . . . z
σn
x,n.

Any vertex σ of ∆(F ) stands for the multiplicity of a unique connected open com-
ponent Cσ of Rn \ AVT(F ). For any x in Cσ such that (3.10) holds for any point

z = zx ∈ Log−1(x), for any y ∈ Rn, one has

GF (x+ iy) =

= − 1

(2iπ)n

∫
[0,2π]n

(
log(|cσ| e⟨σ,x⟩) + log

∣∣∣1 +
∑

α ̸=σ∈Supp (F )

cαe
⟨α,x+iθ⟩

|cσ| eσ,x⟩
∣∣∣) dθ1 . . . dθn

= − 1

(2iπ)n

∫
[0,2π]n

log(|cσ| e⟨σ,x⟩) dθ1 . . . dθn

= − log |cσ| − ⟨σ, x⟩,

which proves (3.9).
It remains to prove the last assertion. One needs to prove that, given x ∈ Cν

(for some ν ∈ Zn ∩ ∆(F )) and a ∈ Rn \ {0}, the half-line x + R≥0 a remains
disjoint from AVT(F ) if and only if a ∈ Γν \ {0} (that is ⟨a, ν⟩ = maxv∈∆(F )⟨a, v⟩).
Is is even sufficient to prove this for a ∈ Zn \ {0} since Qn \ {0} is dense in
Rn \{0}. The fact that the half-line x+R≥0 a remains disjoint from AVT(F ) (which
means it remains in Cν) is equivalent to say (see the proof of Proposition 3.2
above) that ⟨a, ν⟩ represents the number of zero-poles of the one variable Laurent
polynomial fzx′ ,a := F (zx′,1Y

a1 , ..., zx′,nY
an), when zx′ ∈ Log−1(x′), x′ being any

point in x+R≥0 a. Since maxv∈∆(F )⟨a, v⟩ stands for the top degree of this Laurent
polynomial fzx′ ,a, the condition ⟨a, ν⟩ = maxv∈∆(F )⟨a, v⟩ is fulfilled. If it was not,
our interpretation of ⟨a, ν⟩ as the number of zeroes of the Laurent polynomial fzx′ ,a,
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when zx′ ∈ Log−1(x′), x′ being any point in x + R≥0 a, would fail. This proves
that Γν is indeed the largest open cone Γ ⊂ Rn such that Cν + Γν ⊂ Cν . The last
assertion is thus proved. □

3.1.2. The positive current [AF ], the Ronkin function RF and its
tropical deformation. We will take profit from this section to introduce basic
rudiments about the theory of currents (more specifically of positive currents) in
Cn. See first Appendix A for a brief overview of distribution theory. Since the
“currential” point of view plays today an important role in complex geometry (in-
tersection theory, potential theory, complex dynamics, etc.), it seems important to
take here the opportunity of presenting archimedean amœbas in order to sketch a
brief overview of such theory. For more details, we mention here basic references
such as [Lel], [De0], [YNiam] (Chapter 2) or [De1]. Let n ∈ N∗ and p, q be
positive integers less than n. A (p, q)-current (or a current with bidegree (p, q) or
bidimension (n − p, n − q)) in Cn is by definition an element of the dual of the
space Dn−p,n−q(Cn) of smooth (n− p, n− q)-forms differential forms with compact
support (so-called (n− p, n− q) test-forms) φ in Cn such as

(3.11) φ(z) =
∑

I={i1,...,in−p}⊂{1,...,n}, #I=n−p

K={k1,...,kn−q}⊂{1,...,n}, #K=n−q

φI,K(z) dzI∧dzK , φI,K ∈ D(Cn),

keeping here to the notations

dzI :=

n−p∧
ν=1

dziν , dzK :=

n−q∧
ν=1

dzkν .

Note that one takes here by convention 1 ≤ i1 < i2 < · · · < in−p ≤ n and
1 ≤ k1 < k2 < · · · < kn−q ≤ n. One can thus consider a (p, q) current as a
differential (p, q)-form in Cn with coefficients distributions, namely

(3.12) T (z) =
∑

J={j1,...,jp}⊂{1,...,n}, #J=p

L={l1,...,lq}⊂{1,...,n}, #L=q

T J,L(z) dzJ ∧ dzL, TJ,L ∈ D′(Cn),

still keeping here to the notations

dzJ :=

p∧
ν=1

dzjν , dzL :=

q∧
ν=1

dzlν .

Note that one takes here, as before, by convention 1 ≤ j1 < j2 < · · · < jp ≤ n and
1 ≤ l1 < l2 < · · · < lq ≤ n. The duality bracket between T (expressed as (3.12))
and φ (expressed as (3.11)) is therefore defined as

(3.13) ⟨T (z), φ(z)⟩ := (−2i)n
∑
I,K

ϵI,K⟨T I′,K′
, φI,K⟩

where I ′ := {1, ..., n} \ I, K ′ := {1, ..., n} \ K and ϵI,K = ±1 is chosen in such a
way that

indzI′ ∧ dzK′ ∧ dzI ∧ dzK = 2nϵI,K

n∧
j=1

(dxj ∧ dyj)

(zj = xj + iyj , j = 1, ..., n).
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The de Rham d-operator (acting on differential forms with distribution coefficients,
thanks to the differentiation of distributions) splits as d = ∂ + ∂, where ∂ differen-
tiates (p, q) currents into (p + 1, q) currents (0 when p = n), while ∂ differentiates
(p, q)-currents into (p, q + 1) currents (0 when q = n). The second-order operator
(i/π) ∂ ◦ ∂ (transforming (p, q)-currents into (p + 1, q + 1) currents, 0 when either
p or q equals n) is denoted3 as ddc.

A (m,m)-current T in Cn (0 ≤ m ≤ n) is said to be positive if and only if, for any
(1, 0) test-forms ψ1 =

∑n
1 ψ1,j(z) dzj , ..., ψm =

∑n
1 ψm,j(z) dzj , one has

(3.14)
⟨
T (z) ,

m∧
ν=1

(
iψν(z) ∧ ψν(z)

)⟩
≥ 0.

This implies indeed that all distribution coefficients T J,L involved in (3.12) are
measures, the “diagonal” coefficients T J,J (#J = m) being even positive measures
which sum

∑
#J=m T J,J is called (as usual in linear algebra) the trace measure

of such a positive (m,m)-current T . The trace measure governs in fact all other

(complex) measure coefficients (which are such that T J,L = TL,J for J, L, arbitrary
subsets of {1, ..., n} with cardinal m), see [De0] or also [YNiam], Chapter 2,
exercice 2.9).

Positive d-closed (m,m)-currents in Cn play an important role in complex geometry,
since the class they form includes integration currents on purely n−m dimensional
closed analytic subsets of Cn. As an example (when m = 1), consider a Lau-
rent polynomial F (X) =

∏q
ν=1 F

qν
ν ∈ C[X±1

1 , ..., X±1
n ], together with its primary

factorization (the Fν are here prime elements in C[X±1
1 , ..., X±1

n ]). The current

ddc[log |F (ex1+iy1 , ..., exn+iyn)|] = i

2π
∂∂ [log |F (ex1+iy1 , ..., exn+iyn)|2]

is the integration current on the hypersurface4 {z = x+ iy ∈ Cn ; F (exp(z)) = 0},
where

exp(z) := (ez1 , ..., ezn),

multiplicities being taken into account : it associates to any (n−1, n−1)-test form
φ in Cn the quantity

(3.15)
⟨
[(F ◦ exp)−1(0)], φ

⟩
:=

q∑
ν=1

qν

∫
Reg [(Fν◦exp)−1(0)]

φ .

Here Reg [(Fν ◦ exp)−1(0)] denotes the submanifold of non singular (i.e. smooth)
points of the closed analytic hypersurface defined as the zero set of the entire
function Fν ◦ exp ; integration of φ on such set makes sense since the set of singular
points of such an hypersurface is a closed analytic subset with dimension at most
n−2 (that is Lebesgue negligeable in the (n−1)-hypersurface on which integration

3Sometimes ddc denotes the operator (i/(2π)) ∂ ◦ ∂. We prefer here the convention that

ddc = (i/π) ∂ ◦ ∂, which occurs most frequently in russian terminology (as for example in [Ronk]
or [Rash]).

4This extends in higher dimension Lelong-Poincaré equation, see Examples A.7 and A.8 in
Appendix A.
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is performed), see [Lel]. Due to the 2iπZn periodicity of exp, one can write

[(F ◦ exp)−1(0)](z) =
n∑

j=1

n∑
l=1

T j,l(x+ iy) dzj ∧ dzl,

where all distributions (x, y) 7→ T j,l(x + iy) are (2π, ..., 2π) periodic in y, that is
can be considered as distributions on Rn× (S1)n. One defines then a (1, 1) d-closed
positive current [AF ] as

(3.16) [AF ](z) =

n∑
j=1

n∑
l=1

(∫
(S1)n

T j,l(x+ iθ) dσ(S1)n(θ)
)
dzj ∧ dzl,

where dσ(S1)n denotes the normalized Haar measure on the group (S1)n (averaging

distributions T j,l(x + iy) with respect to y ∈ (S1)n is naturally defined here by
duality). It is convenient therefore to note in short :

(3.17) [AF ] =

∫
(S1)n

[
(F ◦ u exp)−1(0)

]
dσ(S1)n(u),

where

u exp : z ∈ Cn 7−→ (u1e
z1 , ..., une

zn) for u = (u1, ..., un) ∈ (S1)n.

It is immediate to check that, in the sense of currents in Cn
x+iy,

(3.18) ddcRF (z) = [AF ],

where RF denotes the Ronkin function

(3.19) RF : z = x+ iy ∈ Cn 7−→
∫
(S1)n

log |F (exp(x+ iθ))| dσ(S1)n(θ)

introduced in Definition 3.4 as the opposite of the Green function GF defined in
(3.6).

Because of the construction of [AF ] by averaging of integration currents and of the
definition of the archimedean amœba AVT(F ), the support5 of the d-closed (1, 1)
positive current [AF ] is the closed tube AVT(F ) + iRn, which means that the con-
nected components of the complement of its support are the open tubes C + iRn,
where C denotes any open connected component of Rn \ AVT(F ). Unfortunately,
the Lelong number (i.e. local mass) of [AF ] at an arbitrary point z = x+ iy in its
support, which is defined as

νz([AF ]) := lim
r→0+

( 1

r2(n−1)

∫
∥ζ−z∥≤r

[AF ] ∧ (ddc∥ζ − z∥)n−1
)

(see e.g. [De0] or [YNiam], Chapter 2), equals 0, since the set of θ ∈ (S1)n such
that exp(x + iθ) belongs to VT(F ) has Lebesgue measure 0 in (S1)n. The current
[AF ] presents therefore local mass nowhere in Cn.

Nevertheless, geometrically speaking, d-closed (m,m)-currents are linked (precisely
through the geometry of the connected components of their supports) with a geo-
metric notion of (n−m)-(pluri)convexity in Cn. In order to settle this notion, let us

5The support of a (p, q) current in Cn is the complement of the largest open subset of Cn to
which the restriction of the current equals 0.
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Figure 3.1. A (m,n−m)-Hartogs’ figure ∆m,n−m
r′,r′′

recall what a (m,n−m) Hartogs’ figure (also called also “Hartogs’ marmit” when
m = 1) in the polydisc

∆n := {(z′, z′′) ∈ Cn = Cm × Cn−m ; max
1≤µ≤m

|z′µ| < 1, max
1≤ν≤n−m

|z′′ν | < 1}

is. Such a (m,n−m)-Hartogs’ figure in ∆n is an open subset of ∆n of the form

∆m,n−m
r′,r′′ := {(z′, z′′) ∈ ∆m

z′ ×∆n−m
z′′ ; max

1≤µ≤m
|z′µ| > r′ or max

1≤ν≤n−m
|z′′ν | < r′′}

for some r′, r′′ ∈]0, 1[. (see figure 3.1).

Definition 3.5 ((n−m)-pseudoconvexity). An open connected subset U ⊂ Cn

is said to be (n−m)-pseudoconvex if and only if, each time there exists an injective

holomorphic map h : ∆n → Cn such that h(∆m,n−m
r′,r′′ ) ⊂ U for some Hartogs’s

figure in ∆n, then h(∆n) ⊂ U . When m = 1, (n−1)-pseudoconvex open connected
subsets of Cn are called pseudoconvex.

Remark 3.6. When m = 1, note that the polydisc ∆n is the envelope of
holomorphy of any Hartogs’ figure ∆1,n−1

r′,r′′ . Pseudoconvex domains in Cn are exactly
domains of holomorphy in Cn. A domain of holomorphy in Cn is an open connected
subset U ⊂ Cn such that, for any compact set K ⊂⊂ U , the set

K̂U := {z ∈ U ; |h(z)| ≤ sup
K
|h| ∀h ∈ Hol(U)}

(the envelope of holomorphy of K in U) remains such that K̂ ⊂⊂ U . What makes
a significative difference between C and Cn (when n > 1) is that, when n > 1, not
all connected open subsets are domains of holomorphy, but only those which are
precisely pseudoconvex, namely i.e. (n− 1)-pseudoconvex.

The result that relates d-closed (m,m) positive currents with Cn with (pluri)convex
geometry is the following result (that one will admit in this course).

Theorem 3.7 (see [FS], Section 2, Corollary 2.6). The connected open com-
ponents of the complement of the support of any (m,m) d-closed positive current
in Cn are (n − m) pseudoconvex. In particular, the connected components of the
complement of the support of any (1, 1) d-closed positive current in Cn are domains
of holomorphy.
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As an application of Theorem 3.7, the open tubes C + iRn, when C is an open
connected component of Rn \ AVT(F ), are pseudoconvex open tubes in Cn, that
is domains of holomorphy. As a consequence, it follows from Bochner’s theorem
[Boch] that C is necessarily convex, which provides some way to recover the con-
vexity of open connected components of the complement of the archimedean amœba
AVT(F ). Theorem 3.7 will be later on invoked in order to derive a substitute for the
convexity property for the connected components of AVT(I), when I is an ideal in

C[X±1
1 , ..., X±1

n ] such that VT(I) is a (n −m)-purely dimensional algebraic subva-
riety of Tn, with m ∈ {2, ..., n− 1} instead of m = 1.

Since ddcRF = [AF ] is a positive current, the continuous Ronkin function RF

is plurisubharmonic in Cn, that is its restriction to each complex line in Cn is
subharmonic6 . Since RF depends only on the x coordinates and subharmonicity in
the one dimensional real setting corresponds to convexity (see e.g. [Yac], Chapter
4, section 4.1), x 7→ RF (x) is a convex continuous function in Rn. Let us introduce
its tropical deformation as follows : for any connected component C of Rn \AVT(F ),
it follows from Proposition 3.1 that

∀ z = x+ iy ∈ C + iRn, RF (z) = τF,C + ⟨νF,C , x⟩

for some real constant τF,C (that can be only easily computed in terms of the
coefficients of F when νF,C is a vertex σ of the Newton polyedron ∆(F ), since it
equals in this case log |cσ|). The convex function

(3.20) x ∈ Rn 7−→ max
C

(
τF,C + ⟨νF,C , x⟩

)
is dominated by the function x 7→ RF (x) everywhere in Rn since it is affine in each
C and equals x 7→ RF (x) there. Consider the tropical Laurent polynomial

(3.21) pRF :=⊞C
(τF,C ⊠x⊠ νF,C,1

1 ⊠ · · · ⊠x⊠ νF,C,n

n ).

The tropical polynomial pRF
defined in (3.21) will be naturally considered as the

tropical deformation of the Ronkin function z = x + iy 7→ RF (x). The tropical
hypersurface Vtrop(pRF

), defined in Rn as the set of critical points of the convex
fonction (3.20) (see Definition 1.2), lies in the archimedean amœba AVT(F ). We will
show in the next subsection that this tropical hypersurface can be interpreted as
the spine of AVT(F ), onto which the archimedean amœba AVT(F ) precisely retracts
continuously. A serious stumbling block in this approach remains the fact that the
real numbers τF,C (on which the construction of the tropical deformation pRF relies)
cannot be in general expressed in terms of the coefficients of F . In order to by-pass
such a difficulty, we will propose next a “uniform approximating procedure” due to
K. Purbhoo [Purb] (in (Trop \ {−∞})n equipped with the usual distance in Rn)
toward the spine Vtrop(pRF ), involving this time instead of the unknown τF,C real
numbers that are algebraically explicitely computable in terms of the coefficients
of the Laurent polynomials Fk, k >> 1, introduced in (2.18) (cf. Lemma 2.10).

3.1.3. The amœba AVT(F ) retracted on its tropical spine. Let

F ∈ C[X±1
1 , ..., X±1

n ]

6A typical example of a plurisubharmonic function in an open subset U ⊂ Cn is u =

log(|f1|2 + · · · + |fm|2), where f1, ..., fm are holomorphic in U : the current ddcu is indeed in
this case a positive d-closed (1, 1)-current.
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be a Laurent polynomial, AVT(F ) be its archimedean amœba, and

(3.22) pRF
:=⊞C

(τF,C ⊠x⊠ νF,C,1

1 ⊠ · · · ⊠x⊠ νF,C,n

n )

be the tropical deformation of its Ronkin function RF : Rn = (Trop\{−∞})n → R.
The Newton polyedron of the tropical polynomial pRF

(in (Rn)∗ ≃ Rn), as defined
in (1.18), coincides with the Newton polyedron ∆(F ) because of the first assertion
in Proposition 3.3.

Consider the corresponding Laurent tropical polynomial function :

pRF
: x ∈ (Trop \ {−∞})n = Rn 7−→ max

C

(
τF,C + ⟨νF,C , x⟩

)
∈ (Trop \ {−∞}) = R

and its Legendre-Fenchel transform p̌RF (see subsection 1.2.3), defined in the dual
copy (Rn)∗ ≃ Rn of Rn in which the Newton polyedron of pRF

(that is in fact
∆(F ), as noticed above) precisely lies. Remember (see Proposition 1.1) that the
“maximal representation” of the Laurent tropical function pRF

is indeed

(3.23) pRF
: x ∈ (Trop \ {−∞})n = Rn 7−→ max

C

(
− p̌RF

(νF,C) + ⟨νF,C , x⟩
)
,

which suggests that the real numbers −p̌RF (νF,C) are in some sense more “relevant”
(with respect to the evaluation of pRF

on (Trop \ {−∞})n) than the (somehow
mysterious) constant coefficients τF,C .

Consider, in Rn ×∆(F ) ⊂ Rn × (Rn)∗, the positive function

(x, ξ) ∈ Rn ×∆(F )

7−→ HF (ξ, x) := p̌RF
(ξ)−

(
⟨ξ, x⟩ − pRF

(x)
)
= pRF

(x) + p̌RF
(ξ)− ⟨ξ, x⟩.

For all ξ ∈ ∆(F ), the closed subset

Kξ := {x ∈ Rn ; HF (ξ, x) = 0} ⊂ Rn

is clearly convex since x 7→ HF (x, ξ) is a convex function. Since pRF is the evalu-
ation of a Laurent tropical polynomial function, Kξ is even a convex polytope for
any ξ ∈ ∆(F ). Moreover, the closed convex polytopes Kξ, ξ ∈ ∆(F ), are such that

(3.24)
∪

ξ∈∆(F )

Kξ = (Trop \ {−∞})n = Rn.

This comes from the fact that, for any x ∈ Rn, there exists always (see (3.23)) at
least one ξ = νF,C(x) ∈ ∆(F ) such that pRF

(x) = −p̌RF
(νF,C(x)) + ⟨νF,C(x), x⟩,

which implies that HF (νF,C(x), x) = 0, i.e. x ∈ KνF,C(x) . In fact, the collection of

all Kξ, ξ ∈ ∆(F ), defines a polytopal convex subdivision of Rn. That is7, besides the
fact that each Kξ is a closed convex polytope of Rn for any ξ ∈ ∆(F ) and (3.24) is
fulfilled, one has :

• whenever Kξ1 ∩Kξ2 is nonempty for some ξ1, ξ2 ∈ ∆(F ), the intersection
Kξ1 ∩Kξ2 equals Kξ for some ξ ∈ ∆(F ) ;
• whenever Kξ1 ⊂ Kξ2 for some ξ1, ξ2 ∈ ∆(F ), one has Kξ1 ≺ Kξ2 , i.e.
Kξ1 is a face of the closed convex subset Kξ2 , that is the intersection of
Kξ2 with the boundary of one of its supporting half-spaces ;

7A fundamental example of polytopal convex subdivision of Rn occurs in the construction
of complete algebraic toric varieties (see [Fult]) : a complete fan in N ⊗Z R, where N denotes

a lattice with rank n (e.g. Zn), is a polytopal convex subdivision of N ⊗Z R ≃ Rn. Cells of this
convex subdivision are in that case strict rational cones with respect to the lattice N .
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• any face τ ≺ Kξ for some ξ ∈ ∆(F ) is such that τ = Kξ′ for some
ξ′ ∈ ∆(F ).

The closed convex polytopes Kξ, ξ ∈ ∆(F ), are called cells of this polytopal convex
subdivision C (F ) of Rn. With respect to the first point, take ξ = (ξ1+ξ2)/2. With
respect to the second point, one can check that, if Kξ1 ⊂ Kξ2 , then necessarily

Kξ1 =
{
x ∈ Kξ2 ; ⟨ξ1 − ξ2, x⟩ = sup

x∈Kξ2

⟨ξ1 − ξ2, x⟩
}
≺ Kξ2 .

Finally, with respect to the third point (which is the most delicate), let ξ ∈ ∆(F )
and

(3.25) τ :=
{
x ∈ Kξ ; ⟨η, x⟩ = sup

x∈Kξ

⟨η, x⟩
}

for some η ∈ (Rn)∗ \ {0}. One notices that t 7→ HF (ξ + tη, x) is affine in [0, t0] for
t0 << 1 (depending on ξ and η, but not of x). To check this point, take x0 ∈ Kξ

such that ⟨η, x0⟩ is maximal and make the two following observations :

• on one hand,

(3.26) p̌RF
(ξ + tη) ≥ ⟨ξ + tη, x0⟩ − pRF

(x0) = p̌RF
(ξ) + t⟨η, x0⟩

since x0 ∈ Kξ ;
• on the other hand, if one separates the family of components C between
those (Cx0) such that τF,Cx0 + ⟨νF,Cx0 , x0⟩ = pRF

(x0) and the others, one
has

pRF
≥ max

Cx0
(τF,Cx0 + ⟨νF,Cx0 , ·⟩) := pRx0

F
,

therefore p̌RF ≤ p̌
x0

RF
, which implies (since the Legendre-Fenchel transform

reverses inequalities, see subsection 1.2.3)

p̌RF (ξ + tη) ≤ p̌x0

RF
(ξ + tη) = sup

x

(
⟨ξ, x⟩ − px0

RF
(x)
)
+ t⟨η, x0⟩

= sup
x

(
⟨ξ, x⟩ − pRF

(x)
)
+ t⟨η, x0⟩ = p̌RF

(x) + t⟨η, x0⟩
(3.27)

for 0 ≤ t ≤ t0 (for t0 > 0 small enough, depending on x0 and η, that is on
ξ and η) thanks to the choice of x0 ∈ Kξ so that to maximize x 7→ ⟨η, x⟩.

Combining (3.26) with (3.27), one gets the fact that t 7→ HF (ξ + tη, x) is affine for
t ∈ [0, t0] provided t0 = t0(ξ, η) is small enough. Taking ξ′ := ξ + t0η/2, one has,
for any x ∈ Rn,

HF (ξ
′, x) =

HF (ξ, x) +HF (ξ + t0η, x)

2
.

When x /∈ Kξ, HF (ξ
′, x) is then strictly positive since HF ≥ 0 and HF (ξ, x) > 0.

When x ∈ Kξ \ τ , one has HF (ξ + t0η, x) = t0⟨η, y − x⟩ for all y ∈ τ (since
HF (ξ, x) = HF (ξ, y) = 0 because both x, y belong to Kξ, and t 7→ HF (ξ + tη, ·) is
linear on [0, t0]), that is HF (ξ + t0η, x) > 0 since ⟨η, x − y⟩ > 0 when x ∈ Kξ \ τ
and y ∈ τ , therefore HF (ξ

′, x) > 0 for such x ∈ Kξ \ τ . Finally, if both x and y lie
in τ , then linearity of t→ HF (ξ + tη, ·) and the definition (3.25) of η imply that

HF (ξ
′, x)−HF (ξ

′, y) = HF (ξ, x)−HF (ξ, y)− (t0/2)⟨η, x− y⟩ = 0.

The function x 7→ HF (ξ
′, x) is therefore constant in τ . But we claim that there

is some x (necessarily in τ) such that HF (ξ
′, x) = 0. If our claim is true, one has

τ = Kξ′ . The claim follows from the following important lemma, that will be quite
useful also later on in this course (so we give here a detailed proof) :
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Lemma 3.8 (see [PaR], Lemma 1 (iv)). The set of ξ ∈ (Rn)∗ ≃ Rn where the
continuous convex function

(3.28) x ∈ Rn 7−→ pRF
(x)− ⟨ξ, x⟩

is bounded from below on Rn equals ∆(F ). Moreover, for any ξ ∈ ∆(F ), the
infimum of this function in Rn is achieved at some point xξ ∈ Rn.

Proof. Let us prove the first assertion. All functions

x ∈ Rn 7−→ pRF
(x)− ⟨σ, x⟩ ≥ τF,Cσ ,

where σ is a vertex of ∆(F ), are bounded from below in Rn, which implies, since
∆(F ) is the convex hull of the set of its vertices, that, for any ξ ∈ ∆(F ), the
function

(3.29) x ∈ Rn 7−→ pRF (x)− ⟨ξ, x⟩
is bounded from below in Rn. On the opposite, if ξ /∈ ∆(F ), there is a ∈ Rn \ {0},
together with a vertex σa of ∆(F ), such that

⟨ξ, a⟩ > sup
η∈∆(F )

⟨η, a⟩ = ⟨σa, a⟩.

If x ∈ Cσa
, one has also x + ta ∈ Cσa

for any t > 0 (since Cσa
+ Γσa

⊂ Cσa
, see

Proposition 3.3) ; therefore

pRF (x+ta)−⟨ξ, x+ta⟩ = pRF (x+ta)−⟨ξ, x+ta⟩ = τF,Cσa
−⟨ξ−σa, x+ta⟩ → −∞

when t tends to +∞. The function (3.29) is therefore not bounded from below in
that case.

Let us prove now the second assertion. If ξ lies in the relative interior of ∆(F ),
one can see that the function (3.29) (which is known to be bounded from below in
Rn thanks to the first assertion) tends to +∞ when ∥x∥ tends to +∞ ; therefore
it achieves its infimum at some xξ ∈ Rn. Take now ξ in the relative interior of the
face

δ :=
{
ξ ∈ ∆(F ) ; ⟨ξ, y⟩ = sup

η∈∆(F )

⟨η, y⟩
}
≺ ∆(F ),

where y ∈ Rn \ {0}, and
pRF ,δ : x ∈ Rn 7−→ sup

{C ; νF,C∈δ}

(
τF,C + ⟨νF,C , x⟩

)
the corresponding “δ-truncated” tropical Laurent polynomial function (one keeps
only tropical monomials with multi-exponents lying in the face δ). Clearly one has
pRF

≥ pRF ,δ in Rn. The function

x 7−→ pRF ,δ(x)− ⟨ξ, x⟩
is bounded from below in Rn and achieves its infimum at some point xδ ∈ Rn (see
the first case studied), thus at all points xδ + ty. There is at most a finite number
of νF,C /∈ δ such that τF,C + ⟨νF,C , xδ⟩ > pRF ,δ(xδ). On the other hand, for any C
such that νF,C /∈ δ, the function

t ∈ R≥0 7−→ pRF ,δ(xδ + ty)− ⟨νF,C , xδ + ty⟩
is an increasing function of t which tends to +∞ when t tends to +∞. One has
therefore, for t large enough, pRF

(xδ + ty) = pRF ,δ(xδ + ty). It follows that the
function

x 7−→ pRF (x)− ⟨ξ, x⟩ ≥ pFF ,δ(x)− ⟨ξ, x⟩
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(the two functions compared here being equal for x = xδ + ty when t is large)
achieves certainly its infimum at some x = xδ + ty for some t large enough. This
concludes the proof of the second assertion. □

The claim follows from the following fact : for any ξ ∈ ∆(F ), there is at least one
xξ ∈ Rn such that HF (ξ, xξ) = 0 : if ξ ∈ ∆(F ), Lemma 3.8 implies indeed the
existence of xξ ∈ Rn such that the function

x 7→ pRF
(x)− ⟨ξ, x⟩

achieves its infimum at xξ ; since ˇ̌pRF
= pRF

, one has p̌RF
(xξ) = ⟨ξ, xξ⟩− pRF

(xξ),
that is HF (ξ, xξ) = 0.

We are thus done with the justification that C (F ) was a polytopal convex sub-
division of Rn. Let us now transpose the construction of the polytopal convex
subdivision C (F ) in the “dual” setting. For all x ∈ Rn, the closed subset

K∗
x := {ξ ∈ ∆(F ) ; HF (ξ, x) = 0} ⊂ ∆(F )

is clearly a compact convex polytope since ξ 7→ HF (ξ, x) is again a convex function
and K∗

x (which is compact, since included in ∆(F )) may be defined as the intersec-
tion of only a finite number of closed half-spaces. Moreover, the compact convex
polytopes K∗

x, x ∈ Rn, are such that

(3.30)
∪

x∈Rn

K∗
x = ∆(F ).

(since, as seen before as a consequence of Lemma 3.8, for any ξ ∈ ∆(F ), there is
at least one xξ ∈ Rn such that HF (ξ, xξ) = 0). This proves (3.30). In fact, the
collection of all K∗

x, x ∈ Rn, defines also a polytopal convex subdivision, this time
of the convex polyedron ∆(F ) ⊂ (Rn)∗ ≃ Rn. That is, besides the fact that each
K∗

x is a compact convex polytope contained in ∆(F ) for any x ∈ Rn and (3.30) is
fulfilled, one has :

• whenever K∗
x1
∩K∗

x2
is nonempty for some x1, x2 ∈ Rn, the intersection

K∗
x1
∩K∗

x2
equals K∗

x for some x ∈ Rn ;
• whenever K∗

x1
⊂ K∗

x2
for some x1, x2 ∈ Rn, one has K∗

x1
≺ K∗

x2
;

• any face δ∗ ≺ K∗
x for some x ∈ Rn is such that δ∗ = K∗

x′ for some x′ ∈ Rn.

The compact convex polytopes K∗
x, x ∈ Rn, are called cells of this polytopal convex

subdivision C ∗(F ) of ∆(F ). The proof C ∗(F ) is a polytopal convex subdivision
of ∆(F ) is based on the same arguments than those used to prove that C (F ) is a
polytopal convex subdivision of Rn.

Let us indicate here a quite convenient way to “visualize” the polytopal convex
subdivision C ∗(F ). If

p :=⊞α∈Zn(aα ⊠x⊠α1

1 ⊠ · · · ⊠x⊠αn

n )

is a Laurent tropical polynomial (such as the tropical deformation pRF
of the Ronkin

function RF ), one may define its Newton polyedron ∆(p) as in (1.18) and its roof8

8In the same vein one introduced, in the ultrametric context, the roof of a polynomial in

K[X±1
1 , ..., X±1

n ], where K denotes an algebraically closed field equipped with a valuation, see

(1.19).
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as follows : take the evaluation p of p in (Trop \ {−∞})n and its “maximal”
representation

p(x) = max
α∈Supp (p)

(
− p̌(α) + ⟨α, x⟩

)
;

then set

(3.31) ∆̃(p) := conv
{
(α, b) ; α ∈ Supp (p), b ∈ R, b ≤ −p̌(α)

}
⊂ Rn+1.

Bounded faces of this unbounded convex polytope ∆̃(p) (called also the extended
Newton polyedron of the Laurent tropical polynomial p) are mapped via the pro-
jection (x, b) ∈ Rn+1 → x ∈ Rn on compact convex polyedra K∗ ⊂ ∆(p). All such
K∗ define a polytopal convex subdivision C ∗

p of ∆(p). When p = pRF
, this poly-

topal convex subdivision coincides with the polytopal convex subdivision C ∗(F )
(this presentation was originally developped in [PaR0], section 2). Consider for
example a cell K∗ of C ∗

pRF
with maximal dimension, i.e. dimK∗ = dim(∆(F )) :

such a cell K∗ corresponds to a bounded facet K̃∗ of ∆̃(pRF
) with normal vector

(xK∗ , 1) (for some xK∗ in Rn, even in fact in Qn since ∆̃(pRF
) is rational) ; suppose

that the vertices of K̃∗ are points (αj ,−p̌(αj)), j = 1, ..., k, where all αj are taken
among the νF,C . One has then

K∗ =
{
ξ ∈ ∆(F ) ;

− p̌RF
(αj)− ⟨ξ − αj , xK∗⟩ ≥ −p̌(νF,C) + ⟨νF,C − αj , xK∗⟩ ∀C , ∀ j

}
=
{
ξ ∈ ∆(F ) ; −p̌RF

(αj) + ⟨ξ, xK∗⟩ ≥ sup
C

(
⟨νF,C , xK∗⟩ − p̌RF

(νF,C)
)
∀ j
}

=
{
ξ ∈ ∆(F ) ; p̌RF

(αj) + pRF
(xK∗) ≤ ⟨ξ, xK∗⟩ ∀ j

}
=
{
ξ ∈ ∆(F ) ; p̌RF

(ξ) + pRF
(xK∗) ≤ ⟨ξ, xK∗⟩

}
= {ξ ∈ ∆(F ) ; HF (ξ, xK∗) = 0}.

Such an argument could be repeated for faces K∗ of C ∗
pRF

of lower dimension, in

order to conclude that C ∗
pRF

= C ∗(F ).

In fact, the two polytopal convex subdivisions C (F ) (of Rn) and C ∗(F ) (of the
Newton polyedron ∆(F ) ⊂ (Rn)∗ ≃ Rn) are dual to each other, which justifies the
notation.

Definition 3.9 (duality between convex subdivisions). Let C be a polytopal
convex subdivision of Rn and C ∗ be a polytopal convex subdivision of some convex
polyedron ∆ ⊂ (Rn)∗. The subdivision C ∗ is said to be dual of C if and only if
there is a bijective correspondence K ↔ K∗ between cells in C and cells in C ∗ such
that, for any cells K1 and K2 in C such that K1 ≺ K2 :

• one has K∗
2 ≺ K∗

1 in C ∗ ;
• the two cones

{t(x− y) ; x ∈ K2, y ∈ K1, t ≥ 0} ⊂ Rn

{t(η − ξ) ; ξ ∈ K∗
2 , η ∈ K∗

1 , t ≥ 0} ⊂ (Rn)∗

are polar9 to each other.

9The polar cone of a cone Γ ⊂ Rn is the cone
◦
Γ := {ξ ∈ (Rn)∗ ; ⟨ξ, x⟩ ≤ 0 ∀x ∈ Γ}. The

cone Γ̌ = −
◦
Γ is called the dual cone of Γ.
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Theorem 3.10 (duality between C (F ) and C ∗(F ), relation with the spine,
[PaR]). Let F be a Laurent polynomial in C[X±1

1 , ..., X±1
n ]. The two polytopal con-

vex subdivisions C (F ) (of Rn) and C ∗(F ) (of ∆(F ) ⊂ (Rn)∗), induced as described
above by the tropical deformation pRF of the Ronkin function RF , are dual to each
other through the correspondence

K∗ =
∩
x∈K

K∗
x ∀K ∈ C (F )

(K∗)∗ =
∩

ξ∈K∗

Kξ ∀K∗ ∈ C ∗(F ).
(3.32)

Moreover

• the spine Vtrop(pRF ) ⊂ AVT(F ) can be described as

(3.33) Vtrop(pRF
) =

∪
K∈C(F )

dimK<n

K

• one has

{K∗ ∈ C ∗(F ) ; dimK∗ = 0} =

=
{
νF,C ; C connected component of Rn \ AVT(F )

}
;

(3.34)

the correspondence K ↔ K∗ induces a bijection between the family of
connected components of Rn \ AVT(F ) and the set of n-dimensional cells
of C (F ) ; moreover, for any connected component C of Rn \ AVT(F ), the
n-dimensional dual cell ({νF,C})∗ of C (F ) is, among n-dimensional cells
of C (F ), the only one which contains the component C.

Remark 3.11. This proposition could have indeed interesting consequences
from the combinatorics point of view. Remember that the convex subdivision
C ∗(F ) can be “visualized” in terms of the roof of the tropical Laurent polyno-
mial pRF (which stands for the tropical deformation of the Ronkin function RF ).
Therefore, some combinatorial information about C (F ) can be deduced from the

description of such roof ∆̃(pRF
) : for example, for all k ∈ {0, ..., n},

#
{
K ∈ C (F ) ; dimK = k

}
= #

{
K∗ ∈ C ∗(F ) ; dimK∗ = n− k

}
= #

{
bounded faces of ∆̃(pRF

) with dimension n− k
}
.

(3.35)

In particular, the number of connected components of Rn \AVT(F ) equals the num-

ber of vertices of the extended Laurent polyedron ∆̃(pRF
). Deciding whether the

amœba is solid10 or not amounts to decide whether vertices of the extended New-
ton polyedron ∆̃(pRF

) are all above (or not) vertices of ∆(F ). Of course, the main
stumbling block (when one wants to really profit from this remark) is that the ex-
plicit computation of the coefficients τF,C , on which the construction of the tropical

deformation pRF
(therefore, of course, of its extended Newton polyedron ∆̃(pRF

))
depends, cannot be carried through easily11.

10That is the set of connected components of Rn \ AVT(F ) reduces to the set

{Cσ ; σ vertex of ∆(F )}. This leads to a quite natural conjecture : does Supp (F ) =
{vertices of ∆(F )} imply that the amœba AVT(F ) is solid ? (see [Niss]). Note that the con-

verse assertion is false, as we will see later on in the course.
11See the next subsection for approximations RF that will lead to approximation of the spine

of AVT(F ).
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Proof. If K1 ≺ K2 in C (F ), then K∗
1 and K∗

2 defined by (3.32) fulfill the
reverse inclusion K∗

2 ≺ K∗
1 . Since any ξ ∈ ∆(F ) is such that ξ ∈ (Kξ)∗ (since

ξ ∈ (Kξ)x for any x such that x ∈ Kξ), one has K ⊂ K∗∗ for any K ∈ C (F ).
Repeating this argument with C ∗(F ) instead of C (F ), one gets that K ↔ K∗

defined as (3.32) realizes a bijective correspondence reversing the order ≺.
If K1 ≺ K2, x ∈ K2, y ∈ K1, ξ ∈ K∗

2 , η ∈ K∗
1 , then

⟨x− y, η − ξ⟩ = HF (ξ, x)−HF (ξ, y)−HF (η, x) +HF (η, y) = −HF (η, x) ≤ 0.

This implies that the polar cone of {t(x− y) ; x ∈ K2, y ∈ K1, t ≥ 0} contains the
cone

{t(η − ξ) ; ξ ∈ K∗
2 , η ∈ K∗

1 , t ≥ 0}.
It remains to prove the other inclusion. Let K2 = Kξ and K1 ≺ K2. We need to
show that the polar cone of {t(x− y) ; x ∈ K2, y ∈ K1, t ≥ 0} is contained in the
cone

{t(η − ξ) ; ξ ∈ K∗
2 , η ∈ K∗

1 , t ≥ 0}.
Take u in the polar cone of {t(x − y) ; x ∈ K2, y ∈ K1, t ≥ 0}. Remember that
there exists 0 < t0 << 1 (independent of x, depending on ξ and η), such that
t 7→ HF (ξ + tu, x) remains affine on [0, t0] (for any x). As before12, one introduces
ξ + t0u/2 and claim that it belongs to K∗

1 ; thus u = (2/t0) × ((ξ + t0u/2) − ξ)
belongs to the cone {t(η − ξ) ; ξ ∈ K∗

2 , η ∈ K∗
1 , t ≥ 0} and we are done. To prove

the claim, proceed as follows : since t 7→ HF (ξ + tu, x) is linear, positive, then, for
x /∈ K2 = Kξ, one has HF (ξ + t0u/2, x) > 0. Since x 7→ HF (ξ + t0u/2, x) certainly
vanishes at some x = −p̌RF

(νF,C), such x necesseraly belongs to K2 = Kξ ; if one
takes y ∈ K1, then, since u is in the polar cone of {t(x−y) ; x ∈ K2, y ∈ K1, t ≥ 0},
one has

t0
2
⟨u, x− y⟩ = HF (ξ + t0u/2, y)−HF (ξ + t0u/2, x) = HF (ξ + t0u/2, y) ≤ 0,

that is HF (ξ + t0u/2, y) = 0 for any y ∈ K1, thus ξ + t0u/2 ∈ K∗
1 . This proves the

first assertion of the proposition, that is that the two polytopal convex subdivisions
C (F ) (of Rn and C ∗(F ) (of ∆(F )) are dual to each other.

The spine Vtrop(pRF
) of AVT(F ) is the union of the boundaries of the sets

(3.36) C̃ :=
{
x ∈ Rn ; pRF

(x) = τF,C + ⟨νF,C , x⟩
}
⊃ C.

Since
∪

C C = Rn \ AVT(F ), one has Vtrop(pRF
) ⊂ AVT(F ). In fact, the collection

of all C̃ form exactly the collection of all n-dimensional cells in C (F ) ; one has

(C̃)∗ = {νF,C}. This implies that the union of all cells of C (F ) with dimension

strictly less than n, that is the union of all faces of all cells C̃, coincides with the

union of boundaries of all C̃, that is with the spine Vtrop(pRF
) of the amœba AVT(F ).

This proves (3.33). Cells C̃ with dimension n in C (F ) correspond via K ↔ K∗ to

0-dimensional cells {νF,C} in C ∗(F ). That is ({νF,C})∗ = C̃ ⊃ C as claimed. □

In fact, one has the following more precise result :

Proposition 3.4 ([PaR]). For each connected component of Rn \ AVT(F ), let

xC some arbitrary point in C ⊂ C̃. The union, for all C, of all segments from xC
to the boundary of C̃ ⊃ C (defined by (3.36)) contains the amœba AVT(F ). This

12When proving the third item ensuring C (F ) was a polytopal convex subidision of Rn.
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means that the amœba retracts continuously to its spine just following retractions

of each C on the boundary of C̃ along such segments from xC to the boundary of

the n-dimensional cell C̃ of the polytopal convex subdivision C (F ) of Rn.

Proof. Let C be a connected component of Rn \ AVT(F ) and xC ∈ C. Let
v ∈ Rn \ {0}. Suppose that the half-line {xC + tv ; t ≥ 0} never hits the boundary

of the unique n-dimensional cell C̃ of the convex polytopal subdivision C (F ) that

contains C. This implies that, pour any t ≥ 0, xC + tv remains in C̃, which means
that :

⟨νF,C , xC + tv⟩ > ⟨νF,C′ , xC + tv⟩ ∀C ′, ∀ t ≥ 0.

Dividing by t when t > 0 and letting t go to +∞, it folllows that

∀C ′, ⟨νF,C , v⟩ ≥ ⟨νF,C′ , v⟩.

Since all vertices of ∆(F ) are among the νF,C′ (cf. Proposition 3.3), this implies
that

⟨νF,C , v⟩ ≥ max
ξ∈∆(F )

⟨ξ, v⟩.

We claim that this implies that the half-line {xC + tv ; t ≥ 0}, which by hypothesis

does not hit the boundary of C̃, does not hit the amœba AVT(F ) either. Let us now
prove this claim.

Let a ∈ Zn \ {0}, precisely such that

(3.37) ⟨νF,C , a⟩ ≥ max
ξ∈∆(F )

⟨ξ, a⟩.

Using the argument which was developed for the proof of Proposition 3.2, one
can see that, for any zxC

∈ Log−1(xC), the number of zero-poles of the Laurent
polynomial

fzxC
,−a(Y ) = F (zxC ,1Y

−a1 , ..., zxC ,nY
−an)

in the unit disk (this Laurent polynomial is zero-pole free on the unit circle since
xC ∈ C lies in the complement of the amœba AVT(F )) equals −⟨νF,C , a⟩, which
implies that the polynomial function ζ ∈ C → ζ⟨νF,C ,a⟩fzxC

,−a(ζ) (this is indeed

a polynomial function since condition (3.37) holds) restricts as an invertible holo-

morphic function to some open neighborhood of the closed unit disk D(0, 1) of the
complex plane. The maximum principle (applied to ζ 7→ ζ−⟨νF,C ,a⟩ [fzxC

,−a(ζ)]
−1

in D(0, 1)), implies that

1

min
|ζ|=1

(
e⟨νF,C ,ta⟩ |fzxC

,−a(ζe−t)|
) ≤ 1

min
|ζ|=1

|fzxC
,−a|

∀ t ≥ 0,

that is :

min
|ζ|=1

|fzxC
,−a(ζe

−t)| ≥ e⟨νF,C ,ta⟩ min
|ζ|=1

|fzxC
,−a| ∀ t ≥ 0.

Taking into account such an inequality for any zxC ∈ Log−1(xC), it follows that

min
z∈Log−1(xC+ta)

|F (z)| ≥ e⟨νF,C ,ta⟩ min
z∈Log−1(xC)

|f(z)| ∀ t ≥ 0.

Such an inequality remains true for all a ∈ Qn such that (3.37) is fulfilled (since it
holds for any t ≥ 0). Since one may approach v by such a ∈ Qn, such an inequality
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remains valid (by continuity) for v, thus, one has

min
z∈Log−1(xC+tv)

|F (z)| ≥ e⟨νF,C ,tv⟩ min
z∈Log−1(xC)

|f(z)| > 0 ∀ t ≥ 0.

It follows that the half-line {xC + tv ; t ≥ 0} does not hit the amœba AVT(F ) as
claimed, which concludes the proof of Proposition 3.4. □

3.1.4. A digression about O. Viro’s direct approach. As seen in section

1.1.4, one can consider alternatively (Cn)∗ when C ≃ (TropC, ⊞̃ C, ⊠ C) is equipped
with its structure of hyperfield of tropical numbers (introduced by O. Viro in [Vir]
and presented precisely in section 1.1.4) . Let

P =
∑

α∈Supp (P )

aαX
α ∈ C[X1, ..., Xn]

be a polynomial in n variables with complex coefficients. Instead of considering
such a polynomial from the “classical” algebraic point of view, one can as well
adopt the point of view inherent to such an hyperfield structure on C ≃ TropC and
consider then the “tropical” polynomial (in n tropical complex variables) :

(3.38) PTropC := ⊞̃C,α∈supp (P )
aα ⊠C X ⊠C

α1

1 · · ·X ⊠C
αn

n .

One can associate to such a tropical polynomial (derived from P , keeping the same
monomials, together with the same coefficients, but now interpreted tropically in-
stead of classically) its tropical complex zero set, that is

(3.39) V (PTropC) :=
{
Z ∈ (TropC)

n ; 0 ∈ PTropC(Z)
}
.

Note that the particularity of such a polynomial PTropC is that, since there is no re-
dundancy in the exhaustive definition of the support Supp (P ) of P , all exponents
of monomials involved in the definition of PTropC are supposed to be distinct13.
The deformation result (Proposition 3.4) for complex archimedean amœbas of hy-
persurfaces should be compared to the following result by O. Viro ([Vir], Theorem
5.A).

Theorem 3.12 (amœbas of tropical complex polynomials versus amœbas of
tropical real polynomials). Let

P =
∑

α∈Supp (P )

aαX
α ∈ C[X1, ..., Xn]

be a polynomial in n variables, PTropC be the clean tropical complex polynomial
defined as P ’s tropical companion by (3.38) and V (PTropC) its “zero set” in TropnC
defined as (3.39). The image of V (PTropC)∩T

n by the logarithmic map Log (which
is called the amœba of the tropical complex polynomial PtropC) coincides with the
(real) tropical variety corresponding to the tropical polynomial

p =⊞α∈SuppP

(
log |aα|⊠x⊠α1

1 · · ·x⊠αn

n

)
.

The same result holds if one replaces PTropC by any cleanable tropical complex poly-
nomial.

13In the terminology adopted in [Vir], such a polynomial is said to be clean. A tropical

(complex) polynomial of the form ⊞̃C,α∈A
aα ⊠C X

⊠C
α1

1 · · ·X ⊠C
αn

n is said to be cleanable if

its (multivalued) evaluation on (TropC)
n coincides with that of a clean tropical polynomial.
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Remark 3.13. In this direct approach from the complex tropical world to
the real tropical one, the support of the Laurent polynomial (not only its Newton
polyedron ∆(P )) is preserved and the coefficients leading to the (real) tropical poly-
nomial defining as tropical zero set the amœba of the complex tropical polynomial
correspond exactly to the logarithms of the absolute values of the corresponding
coefficients of the original polynomial P . Nor the problem of the selection of multi-
plicities νP,C among points in ∆(P )∩Zn, neither difficulties inherent to the deter-
mination of the constant coefficients τP,C (such as in (3.8), see the next subsection)
are present in such a direct process.

Proof. At all points z in Tn that are not mapped on the real tropical hyper-
surface defined as the corner set of the tropical polynomial function

(x1, ..., xn) 7−→ max
α∈Supp (P )

(
log |aα|+ ⟨α, x⟩

)
,

the absolute value of one of the monomials in P (evaluated at z) is strictly greater
than the absolute value of all other monomials evaluated at the same point z.
Therefore, one cannot have 0 ∈ PTropC(Z) if Z is the point in (TropC)

n correspond-
ing to z.
On the other hand, let x belong to the real tropical hypersurface defined by p
and z ∈ Log−1(x) ; then there are at least two distinct monomials m1 and m2

in PTropC , necessarily with distinct exponents (among those which absolute values
are maximal, hence equal, when evaluated at the point Z corresponding to z in
(TropC)

n) such that their absolute values are equal when evaluated at Z. One can

check immediately that 0 ∈ m1(Z) ⊞̃ Cm2(Z) (taking into account the fact that

a ⊞̃ C (−a) = D(0, a) for any non zero tropical complex number a). The tropical
sum (in TropC) of all monomials mj(Z) involved in PTropC and evaluated at Z thus
contains 0, which shows that Z is indeed in the tropical complex zero set V (PTropC).
This proves the reverse inclusion and concludes the proof of the theorem. □

Example 3.14 (a tropical complex line (TropC)
2 in the sense of Viro and

its amœba). Let a, b, c, three non zero complex numbers and (u, v) a point in

(TropC)
2 such that la,b,c(u, v) := au ⊞̃ C bv ⊞̃ C c ∋ 0, i.e. au ⊞̃ C bv ∋ −c. One can

distinguish the four following cases, in order that such situation occurs :

• if |au| < c and bv = −c (or |bv| < c and au = −c, then au ⊞̃ C bv = {−c} ;
• if |au| > c and au+ bv = 0, then au ⊞̃ C bv = D(0, |au|) ∋ −c ;
• if au = c and bv = −c (or au = −c and bv = −c), then au ⊞̃ C bv =

D(0, |c|) ∋ −c ;
• if au = ceiθ and bv = ceiφ, with either 0 ≤ θ ≤ π ≤ φ ≤ θ + π or

θ − π ≤ φ ≤ π ≤ θ < 2π, then the arc au ⊞̃ C bv of the circle with center
0 and radius |c| contains −c.

One sees immediately that the image of such a tropical complex line by Log is the
tropical line defined as the tropical real variety of the polynomial ax ⊞ by ⊞ c (see
figure 1.1), in accordance with Theorem 3.12. As for the coamœba of this tropical
complex line, that is the image by the map Arg of such a tropical complex line, it is
obtained in (R/(2πZ))2 as the translate by (−arg a,−arg b) of the coamœba of the
Laurent polynomial X + Y + 1 (see figure 2.2, left, to visualize the representation
of this coamœba in ]−π, π]2). Topologically speaking, such a tropical complex line
L = La,b,c = V (la,b,c,TropC) is homeomorphic to a sphere with three points excluded.
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ax+by=0 

x=−c/a

y= −c/b 

(0,0) 

Re (La,b,c )

Figure 3.2. The tropical line ax+ by + c = 0, a > 0, b > 0, c > 0, in TropR

Preimages of the three open rays of the amœba are homeomorphic to real tori, the
union of these three real tori with the preimage of the node of the amœba being
homeomorphic to a sphere with three points excluded, that is to a pair of pants.
The real part of such a tropical complex line in the tropical world Trop2R looks like
a piecewise broken line as represented on figure 3.2 (in the particular case where
a, b, c are strictly positive real numbers).

3.1.5. About the approximation of the tropical coefficients τF,C . The
tropical coefficients τF,C that appear in the tropical deformation (3.21) of the
Ronkin function RF need to be clarified if one wants to take profit from the possi-
bility to deform the amœba by retraction in a continuous way onto its spine. The
knowledge of such τF,C governs indeed the construction of the spine Vtrop(pRF ),
since such coefficients presid (together to the corresponding multiplicities νF,C) to
the construction of the tropical deformation pRF itself.

Let C be a connected component of Rn \ AVT(F ). For x ∈ C, the integral

1

(2π)n

∫
[0,2π]n

log |F (exp(x+ iθ))| dθ1 . . . dθn

(which equals τF,C + ⟨νF,C , x⟩) can be computed as a limit of Riemann sums (since
the integrant is a smooth (2πZ)n-periodic function of θ). Namely, if

(3.40) Fk(X) =
∏

(l1,...ln)∈Fn
k

F (e2iπl1/kX1, ..., e
2iπln/kXn) (Fk := Z/kZ, k ∈ N∗),
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is the sequence of Laurent polynomials attached to F introduced in Lemma 2.10
(and all with the same archimedean amœba than F ), one has, approximating
(multi)-integrals of smooth functions by Riemann sums :

(3.41) ∀x ∈ C, RF (x) = lim
k→+∞

1

kn
RFk

(x).

Let x ∈ C. It follows from Lemma 2.10 that for k ≥ k(x) >> 1, one among the
strictly positive numbers

{
|ck,α| e⟨α,x⟩ ; α ∈ Supp (Fk)

}
(the ck,α denote here the

coefficients of Fk), depending of course on k and also on x ∈ C (namely on the
distance from x to the amœba AVT(F )), dominates strictly the sum of all others.
In fact, this result can be made more precise as follows, so that to tell which
monomial dominates among those of Fk, when absolute values of such monomials
are evaluated at zx ∈ Log−1(x) for x ∈ C :

Lemma 3.15 (Lemma 2.10 revisited). Let F ∈ C[X±1
1 , ..., X±1

n ] be a Laurent
polynomial and C be a connected component of the archimedean amœba AVT(F ), with
associated multiplicity νF,C ∈ ∆(F ). Then, for any x ∈ C, for any k >> k(x), one
has

(3.42) |ck,knνF,C | e⟨k
nνF,C ,x⟩ >

∑
α∈Supp (Fk)

α ̸=knνF,C

|ck,α| e⟨α,x⟩,

where

Fk(X) =
∑

α∈Supp (Fk)

ck,αX
α, k ∈ N∗.

Proof. Take x ∈ C and zx ∈ Log−1(x). As in the proof of Lemma 2.10, let
us introduce, for k ∈ N∗, the Laurent polynomial in one variable

fzx,j,k := Fk(zx,1, ..., zx,j−1, Y, zx,j+1, ..., zxn)

=
∏

(l1,...ln)∈Fn
k

F
(
zx,1e

2iπl1/k, ..., zx,j−1e
2iπlj−1/k, e2iπlj/kY, zx,j+1e

2iπlj+1/k, . . . , zx,ne
2iπln/k

)
.

(3.43)

The kn factors that appear in its expression are all of the form fz′
x,j

(ue−xjY ), where

fuz′
x,ej

= Fk(z
′
x,1, ..., z

′
x,j−1, z

′
x,jY, z

′
x,j+1, ..., z

′
x,n)

for some z′x ∈ Log−1(x) and u ∈ S1. As seen in Section 3.1.1, νF,C,j represents the

number of zero-poles in the disc D(0, 1) of such fz′
x,ej

, for any z′x ∈ Log−1(x) and

any u ∈ S1. So knνF,C,j represents the number of zero-poles of fzx,j,k in the disc
D(0, e−xj ). This number should be also equal to the exponent of the dominant term
kνj(x) (we use again the notations introduced at the end of the proof of Lemma
2.10). Then, one has, repeating from this point the final argument in the proof
of Lemma 2.10, that kν(x) = knνF,C . The exponent of the dominant monomial
among those of Fk for k ≥ k(x) >> 1 is therefore knνF,C , which concludes the
proof of Lemma 3.15. □
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Remark 3.16. The final argument used in the proof of Lemma 3.15 gives in
fact a bit more : it tells us also that whenever, for some x ∈ Rn and some k ∈ N∗,
the finite list {

|ck,α| e⟨α,x⟩ ; α ∈ Supp (Fk)
}

is lobsided (in the archimedean sense), then the exponent α involved in its dominant
term is necessarily of the form kn νF,C for some connected component C of the
complement of the amœba AVT(F ).

Lemma 3.15 provides an approximation result concerning the spine Vtrop(pRF ) of
the archimedean amœba AVT(F ), that is, indirectly, an approximation result, once
of course multiplicities νF,C are known, about the corresponding unknown constant
coefficients τF,C .

Proposition 3.5 (approximation of the spine of the amœba of a hypersurface
[Purb]). Let F ∈ C[X±1

1 , ..., X±1
n ] be a Laurent polynomial, RF be its Ronkin

function, and [C ∗(F )]0 be the collection of 0-dimensional cells14 in the polytopal
convex subdivision C ∗(F ) = C ∗

pRF
of ∆(F ) defined in terms of the roof of the

tropical polynomial pRF
as in subsection 3.1.3. Let, for any k ∈ N∗,

Fk(X) =
∏

(l1,...ln)∈Fn
k

F (e2iπl1/kX1, ..., e
2iπln/kXn) =

=
∑

{ν}∈[C∗(F )]0

τFk,knνX
knν +

∑
α∈Supp (Fk)

{α}/∈kn [C (F∗)]0

ck,αX
α.

(3.44)

and

(3.45) pRF ,k :=⊞ν∈[C∗(F )]0
(τFk,knν ⊠x⊠ knν1

1 ⊠ · · · ⊠x⊠ knνn

n ).

Then, one has

(3.46) lim
k→+∞

sup
a∈Vtrop(pRF

)

ak∈Vtrop(pRF ,k)

∥a− ak∥ = 0.

Proof. Let {ν} and {ν′} two distinct 0-dimensional cells in C ∗(F ). Consider
the hyperplane Hν,ν̃ in Rn defined as :

Hν,ν̃ =
{
x ∈ Rn ; τF,ν + ⟨ν, x⟩ = τF,ν̃ + ⟨ν̃, x⟩

}
and, for any k > 1, all parallel hyperplanes in Rn :

Hk,ν,ν̃ =
{
x ∈ Rn ; τFk,knν + kn⟨ν, x⟩ = τFk,knν̃ + kn⟨ν̃, x⟩

}
.

One has, by definition of tropical hypersurfaces as corner sets of the Laurent tropical
polynomial functions they arise from,

Vtrop(pRF ) =
∪

ν,ν̃∈[C∗(F )]0
ν ̸=ν̃

Hν,ν̃ and Vtrop(pRF ,k) =
∪

ν,ν̃∈[C∗(F )]0
ν ̸=ν̃

Hk,ν,ν̃ ∀ k > 1.

We know already that

Vtrop(pRF ,k) ⊂
{
x ∈ Rn ;

{
|ck,α| e⟨α,x⟩ ; α ∈ Supp (Fk)

}
is not lobsided

}
14Such cells correspond to the points νF,C , C being a connected component of the comple-

ment in Rn of the amœba AVT(F ), see Theorem 3.10.
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since we know from the proof of Lemma 3.15 (see Remark 3.16) that, if x is such
that, for some k ∈ N∗, the finite list{

|ck,α| e⟨α,x⟩ ; α ∈ Supp (Fk)
}

is lobsided (in the archimedean sense), than its dominant term needs necessarily to
be taken from the shorter list

{
|τFk,knν | e⟨k

nν,x⟩ ; {ν} ∈ [C ∗(F )]0
}
.

This observation can be made indeed more precise, which will lead to the assertion
(3.46). Let η ∈]0, 1[. Fix a pair ({ν}, {ν̃}) of 0-dimensional cells in [C ∗(F )]0,
corresponding to two distinct connected components Cν and Cν̃ of Rn \ AVT(F ).
Fix a point xν in Cν and a point xν̃ in Cν̃ . It follows from Lemma 2.10 (see in
fact also Remark 2.11), combined with the precision given by Lemma 3.15, that,
for k ≥ k(η), one has :

∀ zν ∈ Log−1(xν),
∑

α∈Supp (Fk)

α ̸=knν

|ck,α zαν | < η |τFk,knν z
knν
ν | ;

∀ zν̃ ∈ Log−1(xν̃),
∑

α∈Supp (Fk)

α ̸=knν̃

|ck,α zαν̃ | < η |τFk,knν̃ z
knν̃
ν̃ |.

Taking logarithms and averaging respectively over Log−1(xν) or Log
−1(xν̃), it fol-

lows that, for k ≥ k(η),
log |τFk,knν |

kn
+ ⟨ν, xν⟩+

log(1− η)
kn

≤ pRF
(xν) ≤

log |τFk,knν |
kn

+ ⟨ν, xν⟩+
log(1 + η)

kn

log |τFk,knν̃ |
kn

+ ⟨ν̃, xν̃⟩+
log(1− η)

kn
≤ pRF

(xν̃) ≤
log |τFk,knν̃ |

kn
+ ⟨ν̃, x⟩+ log(1 + η)

kn
.

Let ϵ arbitrary small. For k large enough (depending on some η = η(ϵ) sufficiently
small), both functions

x ∈ Cν 7−→
pRF,k

kn
(x)− pRF (x)

x ∈ Cν̃ 7−→
pRF,k

kn
(x)− pRF

(x)

are constant (respectively in Cν or Cν̃) and can be thus continued to the whole Rn

as constant functions, the value of these constants being less than ϵ/kn ≤ ϵ. This
implies that the distance between the two parallel hyperplanes Hν,ν̃ and Hk,ν,ν̃ is
bounded by Kν,ν̃ ϵ, where the constant Kν,ν̃ depends only on the position of the
distinct points ν and ν̃ in ∆(F ). The proof of the proposition follows. □

Remark 3.17 (Mahler measure). When P ∈ K[X1, ..., Xn], where K ⊂ C is
a number field, an important constant attached to P (toward arithmetic consid-
erations), besides its degree (which provides some geometric information), is its
Mahler measure :

(3.47) h(P ) :=
1

(2π)n

∫
[0,2π]n

log |P (exp(iθ))| dθ1 . . . dθn.

Almost nothing is known in general about properties of arithmetic nature car-
ried by such a number (see e.g. [CM] for a presentation of some technics in-
spired by analytic continuation). When P is in particular a homogeneous polyno-
mial in Z[X0, ..., Xn] (thus defining a codimension 1-arithmetic cycle in the scheme
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Proj
(
Z[X0, ..., Xn]

)
), the Mahler measure

h(P) :=
1

(2π)n+1

∫
[0,2π]n+1

log |P(eiθ0 , ..., eiθn)| dθ0 . . . dθn

plays a major role (in Arakelov theory) in terms of the contribution at archimedean
places to the projective height of the arithmetic cycle {P = 0} (see [PhSo], section
1.2, and also [Lel1], for the comparison with the averaging on the unit sphere Sn
instead of the real torus (S1)n+1). The Mahler measure of P ∈ K[X1, ..., Xn] is
defined as the value of the Ronkin function RP at x = 0, independently of the
fact that 0 lies or not in the amœba AVT(F ). When F is a Laurent polynomial

in Z[X±1
1 , ..., X±1

n ] (with Newton polyedron ∆(F ) such that dim(∆(F )) = n), the
volume of ∆(F ) (multiplied by n!) becomes a new candidate for the degree, and it
seems natural to conjecture that the list of all numbers τF,C , C being a component
of Rn \AVT(F ), will play (with respect to the logarithmic height) a similar role than
that played by the Mahler measure in the projective frame : that is, with respect
to the contribution at archimedean places to the toric height of the arithmetic
cycle div(F ), considered this time in the arithmetic toric scheme corresponding to
the complete toric variety attached to the fan in Rn which is dual to the Newton
polyedron ∆(F ) (see [Fult]). Here is a reason for which being able to approximate
the τF,C would indeed be quite important.

3.2. Ronkin functions and Monge-Ampère operators

Presentation of the results quoted in this section amounts essentially to M.
Passare and H. Rullg̊ard [PaR]. Some fundamental material about real Monge-
Ampère measures can be found in the seminal paper [RT]. I also took a lot of
profit, when writing this course, from the preprint [Rull] (H. Rullg̊ard’s part of the
thesis) and from the survey by G. Mikhalkin [Mik1].

3.2.1. The real Monge-Ampère measure of a convex function f :
Rn → R. Let f : Rn = (Trop \ {−∞})n → R be a convex (hence continuous)
function. When f is, in addition, smooth (i.e. at least C2), the measure

Hess [f ](x1, ..., xn) dx1 . . . dxn = det
[ ∂2f

∂xj∂xk

]
1≤j,k≤n

dx1 . . . dxn

defines a positive measure in Rn (which is absolutely continuous with the Lebesgue
measure dx = dx1 . . . dxn). Consider the map

∇f : x ∈ Rn 7−→ ξ = ∇f(x) ∈ (Rn)∗.

If ξ ∈ Im (∇f), the smooth convex function

x 7→ f(x)− ⟨ξ, x⟩

necessarily achieves its absolute minimum (that is its minimum in Rn) at some
point x0 ∈ Rn.

The above observation suggests a possible definition of∇f when f fails to be smooth
(apart of course from being continuous, since convex). In such case, the punctual
definition of ∇f does not make sense anymore. Nevertheless, one can define ∇f as
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a multivalued function, in the same vein than one defines the multivalued tropical
addition in various contexts (cf. Sections 1.1.3 and 1.1.4). Namely :
(3.48)
∇ f(x) :=

{
ξ ∈ (Rn)∗ ; x 7→ f(x)− ⟨ξ, x⟩ realizes its absolute minimum at ξ

}
.

We claim that the subset of points ξ in Rn such that ξ ∈ ∇f(x1) ∩ ∇f(x2) for at
least two distinct values x1, x2 in Rn is a Lebesgue negligeable set in (Rn)∗ : such
point would be indeed a critical point of the Legendre-Fenchel transform

f̌ : ξ ∈ (Rn)∗ 7−→ sup
Rn

(⟨ξ, x⟩ − f(x))

since the two affine functions ξ 7→ ⟨ξ, xj⟩ − f(xj) (with distinct slopes) would then
realize this sup at ξ ; since the Legendre-Fenchel transform (as a locally bounded
convex function) is almost everywhere differentiable in Rn, our claim follows15.

Let us come back to the case where f is smooth. The changing of variables formula
in Lebesgue integration theory (combined with the above observation that almost
any ξ ∈ (Rn)∗ cannot be achieved twice as some ∇f(x)) implies then that, for any
A ⊂ Rn,

∫
∇f(A)

dξ =

∫
A

Hess [f ](x) dx =

= voln
{
ξ ∈ (Rn)∗ ; x→ f(x)− ⟨ξ, x⟩ realizes its absolute minimum in A

}
.

(3.49)

When f : Rn 7→ R is convex (hence continuous), but not smooth any more, (3.49)
suggests the following definition :

Definition 3.18 (Monge-Ampère (real) measure attached to a convex function
f : Rn → R). The Monge-Ampère measure µ[f, ..., f ] attached to a convex function
f : Rn → R is the positive measure on (Rn,B(Rn)) defined as :

µ[f, ..., f ](A) =

∫
∇f(A)

dξ :

= voln
{
ξ ∈ (Rn)∗ ; x 7→ f(x)− ⟨ξ, x⟩ realizes its absolute minimum in A

}
.

(3.50)

Remark 3.19 (justification of the notation). What motivates the notation
µ[f, ..., f ] (instead of µ[f ]) is the multilinearity of the determinant that appear
when taking the Hessian in the right-hand side of (3.49). We will profit later on
from such an observation to polarize the operation : (f, ..., f) 7→ µ[f, ..., f ] (cf.
Definition 3.23 below).

Example 3.20 (the example of pRF
). Let F ∈ C[X±1

1 , ..., X±1
n ] be a Laurent

polynomial such that dim∆(F ) = n and pRF
be the Laurent tropical polynomial

function defined as the evaluation of the tropical deformation pRF
of the Ronkin

function RF (see (3.22)). It follows from Lemma 3.8 that

(3.51) µ[pRF
, ..., pRF

] (Rn) = voln (∆(F ))

since ∇pRF
(Rn) = ∆(F ) = ∆(pRF

) (see (3.50)). Consider now the dual polytopal
convex subdivisions (respectively of Rn and ∆(F )) C (F ) and C ∗(F ) introduced in

15See [RT], section 2, in particular Theorem 2.5, for a recap of such results due to A.D.
Aleksandrov (1955) and Rademacher (1918).
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Section 3.1.3 (cf. in particular Theorem 3.10). For any ξ ∈ ∆(F ), the subset of Rn

where
x 7→ pRF (x)− ⟨ξ, x⟩

achieves its absolute minimum (in Rn) coincides with the subset of Rn where the
positive function

x 7→ pRF (x) + p̌RF (ξ)− ⟨ξ, x⟩
achieves its absolute minimum (namely 0), that is the convex cell Kξ of the poly-
topal convex subdivision C (F ). The positive measure µ [pRF

, ..., pRF
] is supported

by the spine Vtrop(pRF
) of the archimedean amœba AVT(F ). Moreover, for any

borelian A ⊂ Vtrop(pRF
), one has

(3.52) µ[pRF
, ..., pRF

] (A) = voln
{
ξ ∈ ∆(F ) ; Kξ ∩A ̸= ∅

}
.

Suppose now that A = {a} ∈ [C (F )]0 is a 0-dimensional cell of the polytopal
convex subdivision C (F ) (whose union of cells with dimension strictly less than n
corresponds to the spine Vtrop(pRF ) of the amœba AVT(F ), cf. Theorem 3.10). Let
({a})∗ be its dual n-dimensional cell in C (F ∗).

{a} =
(
({a})∗

)∗
=

∩
ξ∈({a})∗

Kξ

(cf. (3.32)). One has then :

ξ ∈ ({a})∗ =⇒ a ∈ Kξ.

Therefore
({a})∗ ⊂

{
ξ ∈ ∆(F ) ; Kξ ∩ {a} ̸= ∅

}
.

It follows that, for any such 0-dimensional cell of C (F ), one has :

voln
(
({a})∗

)
≤ µ [pRF , ..., pRF ] ({a}).

Since ∑
{a}∈[C (F )]0

voln
(
({a})∗

)
= voln (∆(F )) = µ [pRF

, ..., pRF
] (Rn),

one has then the formula :

(3.53) µ[pRF , ..., pRF ] =
∑

{a}∈[C (F )]0

voln
(
({a})∗

)
δa,

where δa denotes the Dirac mass at the node a of VTrop(pRF
), that is at the node

a of the spine of the amœba AVT(F ). Note that the coefficients in (3.53) are such
that

(3.54) n! voln
(
({a})∗

)
∈ N∗ ∀ {a} ∈ [C (F )]0

since the volume of the standard simplex ∆[n] (with vertices the origin and the
extremities of the vectors from the canonical basis of Rn) equals 1/n!.

Example 3.21 (the example of RF ). Let F ∈ C[X±1
1 , ..., X±1

n ] be again a
Laurent polynomial such that dim∆(F ) = n and let RF : Rn → R be its Ronkin
function (considered here in Rn and not in the tube Rn + iRn as in Definition 3.4
or (3.19)). Since RF ≥ pRF

everywhere in Rn, the function

(3.55) x ∈ Rn 7−→ RF (x)− ⟨ξ, x⟩ ≥ pRF (x)− ⟨ξ, x⟩
is certainly bounded from below for any ξ ∈ ∆(F ) (thanks to assertion 1, first point,
in Lemma 3.8). Since RF ≡ pRF in any connected component C (in particular in
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C = Cσa as in the proof of assertion 1, second point, in Lemma 3.8) of Rn \AVT(F ),
exactly the same argument than that carried in the proof of assertion 1, second
point, in Lemma 3.8, shows indeed that the function (3.55) is bounded from below
in Rn if and only if ξ ∈ ∆(F ). The positive Monge-Ampère measure µ[RF , ..., RF ]
has this time support equal16 to the amœba. As in the previous Example 3.20 :

(3.56) µ[RF , ..., RF ] (Rn) = µ[pRF
, ..., pRF

] (Rn) = voln (∆(F ))

since ∇RF (Rn) = ∆(F ) = ∆(pRF
) (see again (3.50)). When RF is deformed

into the tropical Laurent polynomial function pRF (evaluation of the tropical Lau-
rent polynomial pRF

), it appears that the Monge-Ampère measure (with total
mass voln (∆(F )), which is initially spread over the whole amœba (as the current
[AF ] = ddcRF introduced in Section 3.1.2 is spread in the whole tube AVT(F )+ iRn

in Cn), concentrates during the deformation (from RF to pRF
) toward a posi-

tive atomic measure which charges only the 0-dimensional cells of the polytopal
subdivision C (F ), that is the nodes of the spine Vtrop(pF ) of the amœba AVT(F )

(see (3.53)). Such a remark will have indeed interesting geometric consequences.
The deformation from RF toward pRF

(from complex to tropical) in indeed mass
preserving with respect to the Monge-Ampère real measure, since the total mass
remains equal to voln(∆(F )) during the deformation (see (3.56)).

Remark 3.22 (about the euclidean volume of the archimedean amœba AVT(F )).
When n = 2, the euclidean area vol2(AVT(F )) of the archimedean amœba of a

Laurent polynomial F ∈ C[X±1
1 , X±2

2 ] is bounded, namely (see [PaR], Theorem 7
and Corollary 1) :

(3.57) vol2(AVT(F )) ≤ π2 vol2 (∆(F )).

Amœbas with maximal area (that is equality in (3.57)) correspond to Harnack
curves in the real plane (see [MRu]). On the other hand, as n ≥ 3, the euclidean
volume voln(AVT(F )) appears to be in the general case infinite.

3.2.2. Mixed Monge-Ampère real measure attached to n convex func-
tions on Rn. It will be important for us later to polarize the definition of the real
Monge-Ampère measure, following the observation made in Remark 3.19.

Definition 3.23 (mixed Monge-Ampère measure of n convex functions). The
mixed Monge-Ampère measure µ[f1, ..., fn] of n convex fonctions fj : Rn → R is
defined as the positive measure :

µ[f1, ..., fn] :=

=
1

n!

n∑
k=1

(−1)n−k
∑

1≤j1<···<jk≤n

µ
[ k∑

l=1

fjl , ...,
k∑

l=1

fjl

]
.

(3.58)

Proof. We need just to justify here the definition of µ[f1, ..., fn] and the posi-
tivity of this measure. Due to the multilinearity of the determinant, the polarization
formula (3.58) defines a positive measure (absolutely continuous with respect to the
Lebesgue measure dx on Rn) when f1, ..., fn are indeed C2 convex functions. Any
convex function f can be approached (for the topology of uniform convergence on all

16One has clearly the inclusion Supp (µ[RF , ..., RF ]) ⊂ AVT(F ). The reason for the equality

lies here in the fact that the amœba (on the opposite to its spine) has non empty interior. We

will justify the equality Supp (µ[RF , ..., RF ]) = AVT(F ) in the next section, relating precisely the

Monge-Ampère measure µ[RF , RF , ..., RF ] with the current [AF ].
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compact subsets of Rn) by smooth convex functions : take a smooth positive func-
tion φ in Rn, with integral over Rn equal to 1 and such that Supp (φ) ⊂ Bn(0, 1),
and let, for any ϵ > 0, the regularized convolved function :

f ∗ φϵ : x ∈ Rn 7−→ 1

ϵn

∫
Rn

f(x− y)φ(y/ϵ) dy ;

then

lim
ϵ→0+

f ∗ φϵ = f

as functions from Rn to R, for the topology of uniform convergence on all compact
subsets of Rn ; moreover, since φ is both positive and smooth, all such regularized
convolved functions f ∗φϵ, ϵ > 0, are convex and inherit the smooth character of φ.
Continuity of the operator f → µ[f, ..., f ] from the space of convex real functions
(equiped with the topology of uniform convergence on any compact subset of Rn),
into the space of positive Borel measures in Rn (equipped with the weak topology17)
imply that the limit, when ϵ tends to 0+, of µ[f1 ∗φϵ, ..., fn ∗φϵ] (considered here as
a positive Borel measure in Rn), exists and defines a positive measure in Rn, that
is precisely the measure µ[f1, ..., fn] obtained in (3.58). □

3.2.3. Real Monge Ampère versus complex Monge-Ampère operators.
When f is a smooth convex function in Rn = (Trop \ {−∞})n, one can compose it
with z ∈ Tn 7→ Log z ∈ Rn and consider the smooth function Hf = f ◦ Log from
Tn to R. An easy computation (see for example [Rash0], section 3) shows that

(3.59)
∂2Hf

∂zj∂z̄k
(z) =

1

4

1

zj z̄k

[ ∂2f

∂xj∂xk

]
x=Log(z)

,

which implies that, in terms of (n, n)-currents in Tn :

(ddc[Hf ])
∧n

=
n!

4nπn

1

|z1 . . . zn|2

[
det
[ ∂2f

∂xj∂xk

]
j,k

]
x=Log(z)

n∧
j=1

(i dzj ∧ dz̄j)

= n!

[
det
[ ∂2f

∂xj∂xk

]
j,k

]
x=Log(z)

n∧
j=1

( id[exj+iθj ] ∧ d[exj−iθj ]

4πe2xj

)

= n!

[
det
[ ∂2f

∂xj∂xk

]
j,k

]
x=Log(z)

n∧
j=1

(
dxj ∧

dθj
2π

)
.

(3.60)

The action of the (non-linear!) operator u 7→ (ddcu)∧
n

on plurisubharmonic func-
tions in a open subset of Cn is known as the complex Monge-Ampère operator. It
follows from (3.60) that, for any borelian set A ∈ B(Rn), one has

(3.61) µ[f, ..., f ] (A) =
1

n!

∫
Log−1(A)

(ddc[Hf ])
∧n

:=
1

n!

⟨
(ddc[Hf ])

∧n

, χLog−1(A)

⟩
,

where the right-hand side in (3.61) is understood as the positive (n, n)-current
(ddc[Hf ])

∧n

(with measure coefficients18) acting, which makes sense precisely since

17Real Borel measures on Rn being considered as continuous R-linear forms T of the vec-
tor space K(Rn,R) of real continuous functions in Rn with compact support, equipped with its
inductive limit topology. For a proof of the fact that f → µ[f, ..., f ] is continuous, see e.g [RT].

18See the introduction to positive currents and convexity in the complex sense in subsection
3.1.2 (refer also to appendix A).
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the coefficients of this current are Borel measures, on the positive measurable func-
tion χLog−1(A).

Such formula (3.61) extends immediately by polarization19 : namely, if f1, ..., fn
denote n smooth convex functions in Rn, then, for any borelian A ∈ B(Rn), one
has :

(3.62) µ[f1, ..., fn] (A) =
1

n!

∫
Log−1(A)

n∧
j=1

ddc[Hfj ] =
1

n!

⟨ n∧
j=1

ddcHfj , χLog−1(A)

⟩
.

Example 3.24 (the Ronkin function RF seen from a dual point of view [Rull]).
Let F ∈ C[X±1

1 , ..., X±1
n ] be a Laurent polynomial, f1, ..., fn−1 be (n − 1) smooth

convex functions in Rn. Let (for ϵ > 0) Rϵ
F be the smooth convex function defined

as :

Rϵ
F : x ∈ Rn 7−→ 1

(2π)n

∫
[0,2π]n

log
(√
|F (exp(x+ iθ))|2 + ϵ2

)
dθ1 . . . dθn

=

∫
(S1)n

log
(√
|F (exp(x+ iθ))|2 + ϵ2

)
dσ(S1)n(θ).

(3.63)

It follows from (3.62) and Fubini’s theorem that, for any borelian A ∈ B(Rn),

µ[f1, ..., fn−1, R
ϵ
F ] (A) =

=
1

n!

∫
Log−1(A)

[
n−1∧
j=1

ddc[Hfj ] ∧
(∫

(S1)n
ddc
[
log
(√
|F (uz)|2 + ϵ2

)]
dσ(S1)n(u)

)]

=
1

n!

∫
(S1)n

[∫
Log−1(A)

[( n−1∧
j=1

ddc[Hfj ]
)
∧ ddc

[
log
(√
|F (uz)|2 + ϵ2

)]]
dσ(S1)n(u)

=
1

n!

∫
Log−1(A)

( n−1∧
j=1

ddc[Hfj ]
)
∧ ddc

[
log
(√
|F (z)|2 + ϵ2

)]
.

(3.64)

When ϵ tends to 0, the left-hand side of (3.64) tends to µ[f1, ..., fn−1, RF ] because
of the continuity of the real Monge-Ampère operator acting from the space of con-
vex functions in Rn into the space of positive Borel measures (see the argument
justifying Definition 3.23). On the other hand, Lelong-Poincaré equation (see sub-
section 3.1.2 and Appendix A) implies that the right-hand side of (3.64) tends,
when ϵ tends to 0, toward :∫

Log−1(A)

( n−1∧
j=1

ddc[Hfj ]
)
∧ [F−1(0)],

the current [F−1(0)] being understood here as the integration current with muti-
plicities have been taken into account, namely [F−1(0)] := ddc log |F |. We may
summarize the results obtained here by introducing the averaged current [AF ] in-
troduced in subsection 3.1.2 (see (3.16) or (3.17)). One has then, for any smooth
convex functions fj : Rn → R, j = 1, ..., n − 1, trivially extended to the tube

19The right-hand side is easy to polarize since the operator u 7→ (ddc)∧
n
[u] is precisely

expressed here in its factorized form u 7→ ddcu ∧ · · · ∧ ddcu.
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Cn = Rn + iRn by setting fj(x+ iy) = fj(x) for all x, y ∈ Rn, for any borelian set
A ∈ B(Rn),

(3.65) µ[f1, ..., fn−1, RF ] (A) =
1

n!

⟨
[AF ] , χA+iRn

n−1∧
j=1

ddcfj

⟩
.

When f1, ..., fn−1 are convex (hence continuous) functions in Rn, considered as
extended as continuous functions Cn by fj(x + iy) = fj(x) for all x, y ∈ Rn, the
(n, n) positive current

[
(F ◦ exp)−1(0)

]
∧

n−1∧
j=1

ddcfj = ddc
[
log |F ◦ exp |

]
∧

n−1∧
j=1

ddcfj

in Cn = Rn+ iRn can be naturally constructed thanks to successive integrations by
parts performed on the closed analytic subset (F ◦ exp)−1(0) (where multiplicities
have been taken into account, as in (3.15)), as follows :

[
(F ◦ exp)−1(0)

]
∧

k+1∧
j=1

ddcfj = ddc
[
fk+1

([
(F ◦ exp)−1(0)

]
∧

k∧
j=1

ddcfj

)]
for k = 1, ..., n− 2. Then, for any convex functions fj : Rn → R extended trivially
to Cn setting fj(x + iy) = fj(x) for all (x, y) ∈ Rn, one can define the positive
(n, n)-current :

[AF ] ∧
n−1∧
j=1

ddcfj =
(∫

(S1)n

[
(F ◦ u exp)−1(0)

]
dσ(S1)n(u)

)
∧

n−1∧
j=1

ddcfj :

=

∫
(S1)n

([
(F ◦ u exp)−1(0)

]
∧

n−1∧
j=1

ddcfj

)
dσ(S1)n(u).

(3.66)

Formula (3.65) holds in fact when f1, ..., fn−1 are arbitrary convex functions in Rn,
and can be rewritten shortly as :

(3.67)
1

n!

(
[AF ] ∧

n−1∧
j=1

ddcfj

)
= dµ[f1, ..., fn−1, RF ](x)

n∧
j=1

dxj ∧ dyj .

It is important to point out that one could choose as “test functions” the evaluations
laj of tropical Laurent polynomials with Newton polyedron the simplex ∆n, such
as

laj = aj0 ⊞ (aj1 ⊠x1)⊞ . . . ⊞ (ajn ⊠xn),

the ajk, j = 1, ..., n − 1, k = 0, ..., n, being generic in Trop \ {−∞}. The “test” of
the Ronkin function would be then the positive measure-valued function

(a1, ..., an−1) 7−→ µ[la1 , ..., lan−1 , Rf ]

defined in a suitable Grassmanian.

3.2.4. An application of formula (3.62) to the proof of D. Bernstein’s
theorem. When P1 ∈ C[X1, ..., Xn],..., Pn ∈ C[X1, ..., Xn] are polynomials with
generic coefficients such that their Newton polyedrons are respectively :

∆(Pj) = Dj ∆
[n], j = 1, ..., n,
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where Dj = degPj ∈ N∗ and ∆[n] denotes the standard simplex in Rn (with
vertices the origin and the extremities of the canonical basis), then the homogeneous

polynomials hPj(X0, ..., Xn) = X
Dj

0 Pj(X1/X0, ..., Xn/X0) ∈ C[X0, ..., Xn], j =

1, ..., n, define effective Weil divisors div (Pj) = div (hPj) on the complete algebraic
variety Pn(C). The supports of these Weil divisors intersect all together in Pn(C)
only at isolated points, which all lie in the torus Tn ⊂ Cn ⊂ Pn(C) (in particular,
they do not intersect all together in Pn(C) \ Tn, that is “at infinity” in the toric
compactification Pn(C) of the complex torus Tn). Moreover, thanks to Bézout
theorem in Pn(C) (see e.g. [CLO] or [Eis]), one has :

(3.68) deg
[
div (P1) • · · · • div (Pn)

]
=

n∏
j=1

deg [ div (Pj) ] = D1 · · ·Dn

(the notation • stands here for the intersection product, see [Eis] or also [Fult]).
Note that D1 · · ·Dn equals n!× voln[D1∆

[n], ..., Dn∆
[n]], where

(∆1, ...,∆n) 7−→ voln(∆1, ...,∆n)

denotes the polarization of the map :

(∆, ...,∆) 7−→ voln[∆, ...,∆] := voln(∆)

(defined on the additive semi-group of convex polyedra with vertices in Zn equipped
with the Minkovski addition) ; namely :

(3.69) voln(∆1, ...,∆n) =
1

n!

n∑
k=1

(−1)n−k
∑

1≤j1<···<jk≤n

voln(∆j1 + · · ·+∆jk).

Therefore, one has :
(3.70)

#{z ∈ Tn ; P1(z) = · · · = Pn(z) = 0} = D1 . . . Dn = n!× voln[D1∆
[n], ..., Dn∆

[n]]

(points being here counted with their multiplicities).

A similar result holds when F1, ..., Fn are Laurent polynomials in C[X±1
1 , ..., X±1

n ],
with respective Newton polyedra20 ∆1,..., ∆n, such that :

(3.71) dim
(
∆1 + · · ·+∆n

)
= n.

Let then ∆ = ∆1 + · · · + ∆n, Σ(∆) be the dual fan of this convex polyedron
(see [Fult]) and X (Σ(∆)) ⊃ Tn be the complete n-dimensional toric variety (see
[Fult]), which is associated to this rational fan (and realizes a compactification of
Tn equipped with a group action of Tn on it). When the coefficients c1,α,..., ck,α
of all the

Fj =
∑

α∈∆j∩Zn

cj,αX
α

are generic, that is when they do not satisfy some algebraic equation

(3.72) Φ∆1,...,∆n

(
{c1,α ; α ∈ ∆1 ∩ Zn}, ... , {cn,α ; α ∈ ∆n ∩ Zn}

)
= 0,

where the polynomial Φ depends only on ∆1, ...,∆n, then the supports of the Weil
divisors div (Fj) that are induced by the Laurent polynomials Fj on the toric variety
X (Σ(∆)) intersect all together only at isolated points (hence in finite number),
which all lie in the torus Tn ⊂ X (Σ(∆)) (in particular, they do not intersect all

20In fact, for each j, the polyedron ∆j = ∆(Fj) figures here the “toric degree” of Fj .
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together in X (Σ(∆))\Tn, that is “at infinity” in the toric compactification X (Σ(∆))
of the complex torus Tn). This can be rephrased in terms of the Log map as follows :

(3.73) lim inf
∥x∥→+∞
x∈Rn

(
inf

zx∈Log−1(x)

n∑
j=1

|Fj(zx)|
exp

(
supξ∈∆j

⟨ξ, x⟩
)) > 0

(see for example [VY], Proposition 2.2). Moreover, the function

(3.74) (F̃1, ..., F̃n) 7−→ #
{
z ∈ Tn ; F̃1(z) = · · · = F̃n(z) = 0

}
(the zeroes being here counted with multiplicities) remains locally constant, hence
constant (since it is an integer-valued function) when the coefficients of the Laurent

polynomials F̃j (with respective Newton polyedra ∆j) vary in the complement of
the algebraic hypersurface defined by (3.72). Moreover, one has the following result
(due to David Bernstein), in the same vein than the classical projective Bézout
formula (3.68) in Pn(C) quoted above. The approach we describe here was proposed
in [PaR].

Theorem 3.25 (toric Bézout theorem [Bern]). Let F1, ..., Fn be n Laurent poly-
nomials with respective Newton polyedra ∆1,... ∆n such that (3.71) holds. Suppose
that the coefficients of F1, ..., Fn are generic, that is (more precisely), lie outside
the algebraic hypersurface defined by (3.72). Then, one has :

(3.75) #
{
z ∈ Tn ; F1(z) = · · · = Fn(z) = 0

}
= n!× voln (∆1, ...,∆n)

(common zeroes being counted here taking into account their mutiplicities).

Proof. Take fj = RFj , j = 1, ..., n, in formula (3.62), where the Fj have
generic coefficients, that is coefficients which lie outside the algebraic hypersurface
(3.72) attached to ∆1,...,∆n. One can observe, following the same computations
than those leading to formula (3.67) in Example 3.24, that stating (3.62) for any
borelian A ∈ B(Rn) in such case (fj = RFj , j = 1, ..., n) is equivalent to formulate
the following equality between positive (n, n)-currents in the tube domain Cn =
Rn

x + iRn
y :

(3.76)
1

n!

(
[AF1 ] ∧ · · · ∧ [AFn ]

)
= dµ[RF1 , ..., RFn ](x)

n∧
j=1

dxj ∧ dyj .

The integration of these two equal currents over the whole tube domain Rn
x + iRn

y ,
using the right-hand side in (3.76), gives :

(3.77) µ[RF1 , ..., RFn ] (Rn) = µ[pRF1
, ..., pRFn

] (Rn) = voln (∆1, ...,∆n).

Using now the left-hand side of (3.76), the integration over the whole tube Rn
x+iRn

y

gives :
(3.78)

1

n!

∫
(S1)n

. . .

∫
(S1)n

(∫
Tn

[
F−1
1 (u1(·))(0)

]
∧ · · · ∧

[
F−1
n (un(·))(0)

]) n⊗
j=1

dσ(S1)n(uj),

where the integration currents involved here do take into account multiplicities,
namely :

[F−1
j (uj(·))(0)

]
:= ddc[log |Fj(ujz)|] ∀uj ∈ (S1)n ∀ j = 1, ..., n.
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Since the Fj are taken with generic coefficients, then, for (u1, ..., un) generic in
(S1)n × · · · × (S1)n, the integral :∫

Tn

[
F−1
1 (u1(·))(0)

]
∧ · · · ∧

[
F−1
n (un(·))(0)

]
equals the generically constant value of the map (3.74). Formula (3.75) then follows
from the comparison of the two different computations for the total mass of the
positive current which was defined in (3.78) in the tube Rn

x + iRn
y . □

Remark 3.26. The interest of such proof of D. Bernstein’s theorem is that
it provides a proof of a result in complex projective geometry, based on tools
which are relevant to convexity ideas in the real setting Rn. The mixed volume
voln(∆1, ...,∆n) in the right-hand side of (3.75) is here understood as the mass of
the mixed (real) Monge-Ampère measure µ[RF1 , ..., RFn ] attached to the Ronkin
functions RFj . During the mass-preserving deformation that retracts the amœba
onto its spine (Proposition 3.4), this Monge-Ampère mass concentrates on the zero-
dimensional cells of the subdivision C (F ), that is the nodes of the spine Vtrop(pF )
(see Examples 3.20 and 3.21). Such a proof could be understood as an indication
that results holding within the frame of tropical (real) geometry could be trans-
posed (thanks precisely to “inverse” retracting deformation) to complex algebraic
geometry in the affine complex scheme Tn. We will present in the next chapter
other results in this direction (within the frame n = 2).

3.2.5. Miscellaneous remarks about the higher codimension case. In
this subsection, one considers, instead of a principal ideal (F ) as before, an ideal
(F1, ..., Fm) in C[X±1

1 , ..., X±1
n ] such that the sequence (F1, ..., Fm) is quasi-regular,

that is

VT(F1, ..., Fm) = {z ∈ Tn ; F1(z) = · · · = Fm(z) = 0}

has pure codimension equal to m, or, equivalently, the Fj ’s, j = 1, ...,m, define a
complete intersection in the affine algebraic variety Tn.

Let, for any u0 ∈ (S1)n,
[
(F ◦u0 exp)−1(0)

]
be the integration current (multiplicities

being taken into account) attached to the (n−m)-cycle in Cn defined as the (proper)
intersection of the principal divisors div (Fj ◦ u0 exp), j = 1, ...,m. One has (see
e.g. [De1]), for any u0 ∈ (S1)n, the Monge-Ampère equation :

(3.79)
[
(F ◦ u0 exp)−1(0)

]
=
(
ddc[log |F ◦ u0 exp |]

)∧m

,

that is, more precisely :[
(F ◦ u0 exp)−1(0)

]
= lim

ϵ→0+

(
ddc
[
log(|F ◦ u0 exp |+ ϵ)

])∧m

= lim
(ϵ1,...,ϵm)→0

ϵj>0, j=1,...,m

( m∧
j=1

ddc
[
log |F ◦ u0 exp |2 + ϵj

])
,

(3.80)

the limit being in both cases understood with respect to the topology of the space
′Dm,m(Cn) of (m,m)-currents in Cn.
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Let RF be the convex function in Rn defined as

x ∈ Rn 7→ RF (x) :=
1

(2π)n

∫
[0,2π]n

log |F (ex1+iθ1 , ..., exn+iθn)| dθ1 . . . dθn

=

∫
(S1)n

log |(F ◦ u exp)(x)| dσ(S1)n .
(3.81)

The argument used in the proof of Proposition 2.4 indeed motivates the definition
of the Ronkin function RF in such terms.

Thanks to the continuity of the real Monge-Ampère operator acting from the space
of convex functions in Rn into the space of positive Borel measures (see again the
argument justifying Definition 3.23), one has, for any real convex (hence continuous)
functions f1, ..., fn−m in Rn :

µ
[
f1, ..., fn−m, RF , ..., RF

]
(x)

n∧
j=1

dxj ∧ dyj =

=
1

n!
lim

(ϵ1,...,ϵm)→0

ϵj>0, j=1,...,m

( m∧
j=1

[Aϵj
F ] ∧

n−m∧
j=1

ddcfj

)
,

(3.82)

where [Aϵj
F ], j = 1, ...,m, denotes the positive current

[Aϵj
F ] :=

∫
(S1)n

ddc
[
log(|F ◦ u exp |+ ϵj)

]
dσ(S1)n(u)

(the limit in the right-hand side of (3.82) being understood in the sense of a limit
of currents in the weak sense). Formula (3.82) thus appears as a generalization of
formula (3.67) (when m > 1 instead of m = 1).

Besides the Ronkin function RF , one can introduce the Ronkin current RF defined
as the (m− 1,m− 1)-current :

(3.83) RF :=

∫
(S1)n

log |F ◦ u exp |
(
ddc[log |F ◦ u exp |]

)∧m−1

dσ(S1)n(u)

(for a justification of the multiplicative operation between positive currents, see
e.g. [De0], Theorème 4.5 (corollary 4.11)). Since the action of the ddc operator
commutes with the averaging process over (S1)n, it follows from (3.79) that :

ddcRF =

∫
(S1)n

(
ddc[log |F ◦ u exp |]

)∧m

dσ(S1)n(u)

=

∫
(S1)n

[
(F ◦ u exp)−1(0)

]
dσ(S1)n(u).

(3.84)

The (m,m) current [AF ] = ddcRF is a closed positive (m,m)-current such that :

(3.85) Supp
([
AF

])
= AVT(F1,...,Fm) + iRn.

As a consequence of Theorem 3.7, the connected components (in Cn) of the com-
plement of the tubular domain AVT(F1,...,Fm) + iRn are (n−m)-pseudoconvex (see
Definition 3.5), as noticed in [Rash] (see also [Henr] and [Mik1]). This geomet-
ric property reflects in some geometric property of the connected components of
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Rn \ AVT(F1,...,Fm) : namely any such connected component has no supporting m-

cap21. Note that, when m > 1, there is no hope to get convexity of the connected
components of Rn \AVT(F1,...,Fm) : for example, when n = 3 and m = 2, the amœba
looks essentially (at least a tentacle of it) as some “Eiffel tower”. Such a property
of (n−m)-pseudoconvexity seems to be the geometric property that is revealed by
this currential approach.

The current RF constructed above provides an example of a (m − 1,m − 1)-
current which ddc (namely here the current [AF ]) is a d-closed positive current
with support precisely the tubular domain AVT(F1,...,Fm) + iRn. A most accurate
candidate for a positive d-closed current with support exactly the tubular domain
AVT(F1,...,Fm)+iRn (in order to respect the correspondence between the real Monge-
Ampère measure in Rn and the complex Monge-Ampère measure in Cn = Rn+ iRn

that is materialized through the “multiplicative” formula (3.82)) would be the cur-
rent [AF1 ] • · · · • [AFm ] defined (formally) at follows :

[AF1 ] • · · · • [AFm ] :=

=

∫
. . .

∫
(S1)n×···×(S1)n

(
1(F◦u1 exp)−1(0) · ddc

[
log |F ◦ u1 exp |

])
∧

∧
m∧
j=2

(
1Cn\(F◦uj exp)−1(0) · ddc

[
log |F ◦ uj exp |

])
dσ(S1)n(u1) · · · dσ(S1)n(um).

(3.86)

The notation T = 1Z · T + 1Cn\Z · T (when T is a d-closed positive (1, 1)-current
in Cn and Z ⊂ Cn a closed analytic subset) stands here with the splitting of a
d-closed positive current as a sum of two closed positive currents provided by El
Mir’s theorem [ElM] (see also [De0], chapter III, section 2). Analytic continuation
methods (see e.g. [ASWY]), when combined with the use of Bernstein-Sato type
algebraic functional equations for polynomials in expX (see e.g. [BeY]), provide
a justification for the formal definition of [AF1 ] • · · · • [AFm ] such as proposed in
(3.86), namely :

[AF1 ] • · · · • [AFm ] :=

=

[[ ∫
. . .

∫
(S1)n×···×(S1)n

∂
[
|F ◦ u1 exp |µ

]
∧
∂
[
|F ◦ u1 exp |2

]
|F ◦ u1 exp |2

∧

∧
( m∧

j=2

|F ◦ uj exp |λddc
[
log |F ◦ uj exp |

])
dσ(S1)n(u1) · · · dσ(S1)n(um)

]
λ=0

]
µ=0

=

[∫
. . .

∫
(S1)n×···×(S1)n

∂
[
|F ◦ u1 exp |λ

]
∧
∂
[
|F ◦ u1 exp |2

]
|F ◦ u1 exp |2

∧

∧
( m∧

j=2

|F ◦ uj exp |λ
2

ddc
[
log |F ◦ uj exp |

])
dσ(S1)n(u1) · · · dσ(S1)n(um)

]
λ=0

.

(3.87)

21An open k-dimensional closed ball B in a k-real plane in Rn is called a supporting k-cap for
an open subset C ⊂ Rn if B ∩ C is non-empty and compact, and there exists v ∈ Rn, such that,

for ϵ > 0 small enough, (B+ ϵv)∩C = ∅. This notion is connected with the notion of k-convexity,
that we will introduce later on in this section.
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Such a current is (as ddcRF ) a d-closed positive current with support the tube
AVT(F1,...,Fm) + iRn. Its fits better than ddcRF = [AF ] with the “multiplicative”
formula (3.82). Such a remark could provide some hint toward the deformation
the archimedean amœba AVT(F1,...,Fm) on a codimension m-tropical variety in the
tropical world (Trop\{−∞}) ≃ Rn (which is still an open question, see e.g. [Rull],
section 8, for various comments and suggestions).

Remark 3.27 (a promizing alternative point of view). The approach devel-
opped within this course (separating real coordinates (x1, ..., xn) corresponding to
the world where archimedean amœbas, together with their tropical deformations,
live, from argument coordinates θ on which averaging is performed) can also be un-
derstood from a strictly “real” point of view, introducing superforms in Rn (where
one has at his disposal only n real variables22), in order precisely to recover the
strength of multivariate complex analysis that the rich interplay beween holomor-
phic and antiholomorphic coordinates provides (in particular with respect to the
key notion of positivity). The differential operator dd♯ will play the role of the
Lelong operator ddc, and a theory of Monge-Ampère operators (Lelong-Poincaré
equation, Monge-Ampère equation, etc.) can thus be carried through in such an
ultrametric context. Such a point of view has been developped recently in [Lag1]
(see in particular Remark 1.7 there) and carried through towards intersection the-
ory in the ultrametric context, i.e. for example on Berkovich analytic spaces (see
[CLD]).

Another stumbling block when dealing with archimedean amœbas in the higher
codimensional case concerns the definition of entities that could play the role of
multiplicities νF,C such as defined in Definition 3.1 in the codimension one case.

When F1, ..., Fm are m Laurent polynomials in C[X±1
1 , ..., X±1

n ] defining a complete

intersection in Tn, the pendant of the rational differential form dF/F (which is ∂-
closed in Tn \ VT(F )) is the so-called Bochner-Martinelli form :

Ω(F1, ..., Fm) :=

=
(−1)(m(m−1)/2 (m− 1)!

(2iπ)m

m∑
j=1

(−1)j−1F̄jdF̄1 ∧ · · · ∧ d̂F̄j ∧ · · · ∧ dF̄m

|F |2m
∧

∧ dF1 ∧ · · · ∧ dFm =

= d
[
log |F | ∧

(
ddc log |F |

)m−1
]

(3.88)

(the hat over dF̄j means that this (0, 1)-differential form is deleted in the wedge

product). Such a (m,m− 1)-form is ∂-closed in Tn \ VT(F ).

A basis for the homology group Hm((S1)n,Z) is provided by the
(
n
m

)
m-cycles :

γJ : (θ1, ..., θm) ∈ [0, 2π]m 7−→
(
1, ..., 1,

j1︷︸︸︷
eiθ1 , 1, ..., 1,

jm︷︸︸︷
eiθm , 1, ..., 1

)
,

J := {j1, ..., jm}, 1 ≤ j1 < · · · < jm ≤ n.

22Instead of the n complex variables z1, ..., zn, together with their “ghosts”, namely the n
“neutral” (with respect to the ∂-operator) antiholomorphic variables z̄1, ..., z̄n.
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Let C be a connected component of the complement Rn \ AVT(F1,...,Fm). For each
J = {i1, ..., im} with 1 ≤ i1 < · · · < im ≤ n, for each γ ∈ Hm−1(C,Z), the cycle
log∗[γ(x)×γJ(θ)] defines an element in H2m−1(Log

−1(C),Z). Moreover, the map :

ν(F1,...,Fm),C : γ ∈ Hm−1(C,Z) 7−→

7−→

(∫
log∗[γ(x)×γJ (θ)]

Ω(F1, ..., Fm)

)
1≤j1<···<jm≤m

∈ Z(
n
m)(3.89)

stands for an element of the dual cohomology groupHm−1(C,Hm((S1)n,Z)). In the
particular case wherem = 1, for a given connected component C of Rn\AVT(F ), this
map coincides with the map k ∈ H0(C,Z) ≃ Z 7−→ k νF,C ∈ Zn. For such reason,
the morphism (3.89) (depending on the component C of Rn \AVT(F1,...,Fm)) plays a

role which is similar to that played by k ∈ H0(C,Z) 7→ kνF,C ∈ Zn ≃ H1((S1)n,Z)
in the case m = 1.



CHAPTER 4

Amœbas from the topological point of view

In this chapter, we will focus on various tools which revealed to be of signi-
ficative importance towards applications of the concept of archimedean amœba in
real algebraic geometry (see e.g. [Mik3]). The notion of contour ([PT1], [PST],
[Mik1], [Mik3]), its analysis through the study of the logarithmic Gauß map,
the compactification of amœbas of hypersurfaces thanks to the so-called algebraic
moment map of the toric variety X (Σ(∆(F ))) (as define in [GKZ], chapter 6),
more generally the (topological as well as geometric) description of the amœba
AVT(F ) with respect to the behavior “at infinity” of the hypersurface VT(F ) in the
“adjusted” toric compactification X (Σ(∆(F ))), will be among the major points
presented here. Basic notions about toric geometry (fans, construction of toric
varieties, homogeneous coordinates and realisation as geometric quotient in the
simplicial case, various notions of moment maps) used in this chapter are recalled
allthrough this chapter when needed.

4.1. Contour of archimedean amœbas and logarithmic Gauß map

Let I ⊂ C[X±1
1 , ..., X±1

n ] be an ideal and AVT(I) ⊂ Rn be its archimedean
amœba. Assume here that VT(I) is a purely dimensional algebraic subset of Tn,
with codimension k = 1, ..., n− 1 (such as for example in the case where I = (F ) is
a principal ideal in C[X±1

1 , ..., X±1
n ]).

Consider the restriction Log|VT(I) of the Log map to VT(I). Critical values of

Log|VT(I) are defined as the images of points z ∈ VT(I) where :

• either z belongs to (VT(I))
sing ;

• either z belongs to the complex manifold (VT(I))
reg and the smooth map

Log|(VT(I))reg is such that

rank (dz[Log|(VT(I))reg ]) < nI := dim (Span (AVT(I))) ,

where Span (AVT(I)) denotes the R-vector subspace generated by the amœba
AVT(F ) in Rn.

Note that, if 2(n−k) < nI , i.e. 2k > 2n−nI , all points in AVT(I) are critical values

of Log|VT(I) (for example, when n = 3 and VT(I) is an algebraic curve in T3).

Definition 4.1 (contour of an archimedean amœba [PT1]). The contour (de-
noted as cont (AVT(I))) of the archimedean amœba AVT(I) is the subset of AVT(I)

defined as the set of critical values of Log|VT(I).

Remark 4.2. One has of course always the inclusion :

Log
(
(VT(I))

sing
)
⊂ cont (AVT(I))

71
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since images of singular points in VT(I) are automatically critical values of Log|VT(I).
All points in the boundary ∂AVT(I) also belong to the contour, that is :

∂
(
AVT(I)

)
⊂ cont (AVT(I)).

When I = (F ) is principal (F being reduced, i.e. without multiple factors), a
convenient way to describe the contour of the amœba AVT(F ) is to introduce the
logarithmic Gauß map. Let us consider first a point z0 ∈ (VT(F ))

reg ; in a neighbor-
hood of such point, the algebraic hypersurface VT(F ) can be parametrized thanks
to n− 1 complex parameters t1, ..., tn−1 close to 0, with z(0, ..., 0) = z0. Choose an
arbitrary determination of z 7→ log z = (log z1, ..., log zn) in a neighborhood W (z0)
of z0 and consider the restriction log|VT(F ) of this map about z0 (in VT(F )) :

(t1, ..., tn−1) 7→ (log(z1(t), ..., log(zn(t)).

The complex tangent space Tlog(z0)(log|VT(F )) is generated by the n− 1 vectors :( 1

z01

∂z1
∂tj

(0, ..., 0), ...,
1

z0n

∂zn
∂tj

(0, ..., 0)
)
, j = 1, ..., n− 1.

The complex normal to this complex tangent space corresponds therefore to the
point [

z01
∂F

∂z1
(z0) : · · · : z0n

∂F

∂zn
(0)
]
∈ Pn−1(C)

(we use here the fact that F is taken as reduced) and does not depend on the choice
of the determination for log about the point z0.

Definition 4.3 (logarithmic Gauß map [Krap0]). Let F ∈ C[X±1
1 , ..., X±1

n ]
be a reduced Laurent polynomial (i.e. without multiple factors). The rational map
from VT(F ) to Pn−1(C) defined by

(4.1) ∀ z ∈ (VT(F ))
reg, γF (z) :=

[
z1
∂F

∂z1
(z) : · · · : zn

∂F

∂zn
(z)
]
∈ Pn−1(C)

is called the logarithmic Gauß map γF attached with the Laurent polynomial F .

The logarithmic Gauß map provides a description of the contour of the archime-
dean amœba AVT(F ) of a principal ideal (F ) in C[X±1

1 , ..., X±1
n ]. Namely one has

the following :

Proposition 4.1 (logarithmic Gauß map and contour, for the amœba of a
principal ideal (F ) [Mik3] (see also [MaP])). Let F ∈ C[X±1

1 , ..., X±1
n ] be a reduced

Laurent polynomial in n variables. One has :

(4.2) cont (AVT(F )) = Log
(
(γF )

−1
|(V (F ))reg(Pn−1(R))

)
= Log

(
γ−1
F (Pn−1(R))

)
.

Proof. The proof we give here is quoted from [MaP]. Since the map Log :
VT(F ) → Rn is continuous, the contour of the amœba AVT(F ) is the closure (in
Rn) of the image by Log of the set of points z0 ∈ (VT(F ))

reg which are critical
points for Log|(VT(F ))reg . Let z0 ∈ (VT(F ))

reg be such a point. Take some arbitrary

determination for log in a neighborhood W (z0) of z0 in Tn. Then the normal
direction to the (n− 1)-dimensional complex tangent plane

Tlog(z0)

[
log
(
(VT(F ))

reg
)]
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can be represented by some vector γ̃F (z0) in Cn \ {(0, ...0)}. Therefore the fiber
Tlog z0

[
log(VT(F )∩W (z0))

]
of the complex tangent bundle T

[
log(VT(F )∩W (z0))

]
is the complex hyperplane :

Tlog z0

[
log(VT(F ) ∩W (z0))

]
=
{
x+ iθ ∈ Cn = Rn

x + iRn
θ ; ⟨γ̃F (z0), x+ iθ⟩ = 0

}
.

If γ̃F (z0) can be chosen in Rn\{(0, ..., 0)}, the projection of this complex hyperplane
on the space Rn

x is indeed not surjective, which implies that z0 is a critical point
for the map Log|(VT(F ))reg (which is the composition of log|(VT(F ))reg∩Wz0

with the

projection x+ iθ ∈ Rn
x + iRn

θ 7→ x ∈ Rn
x). If γ̃F (z0) = ã+ ib̃, with ã and b̃ linearly

independent in Rn, one can find, whenever x ∈ Rn is fixed, some θ ∈ Rn such that

⟨γ̃F (z0) , x+ iθ⟩ = 0⇐⇒

{
⟨a, θ⟩ = −⟨b, x⟩
⟨b, θ⟩ = ⟨a, x⟩

(the rank of the linear system of two equations in n unknown θj in the right-hand
side being equal to 2). This concludes the proof of the first equality in (4.2).
The second equality follows from the reasoning above, combined with the fact that
(VT(F ))

sing (i.e. the algebraic variety defined by F and its partial dervitatives)
equals exactly the polar set of γF . □

As a consequence, one can observe the following :

Corollary 1 (the case of Laurent polynomials with real coefficients). Let
F ∈ R[X±1

1 , ..., X±1
n ] be a reduced Laurent polynomial with real coefficients. Then

one has

Log (VT(F ) ∩ (R∗)n) ⊂ cont
(
AVT(F )

)
.

Proof. Any point in (VT(F ))
reg ∩ (R∗)n is carried by the logarithmic Gauß

map (4.1) to a point that belongs to Pn−1(R), which proves that it is a critical point
for Log|(VT(F ))reg (see Proposition 4.1). Its image by Log lies then in the contour

of tha amœba AVT(F ). The same is true for any point in (VT(F ))
sing ∩ (R∗)n, since

such a point is considered among critical points of LogVT(F ). □

4.2. Generic degree of the logarithmic Gauß map

4.2.1. Toric compactifications adjusted to a given Laurent polyno-
mial. Let F ∈ C[X±1

1 , ..., X±1
n ] be a reduced Laurent polynomial. We assume here

dim(∆(F )) = n. In order to associate (if possible) to the Gauß logarithmic rational
map :

γF : VT(F )→ Pn−1(C)
a topological degree, one needs first to extend it as a rational map from a compact
algebraic variety into Pn−1(C). In order to proceed to such an extension, one
will introduce the most “suitable1” compactification of Tn, in accordance with the
Newton polyedron ∆(F ) of F . Our main objective is indeed to “stick” as much
as possible to the geometric configuration of such ∆(F ) (which is, as we have
seen already, intimately related to the geometric and topologic configuration of the
amœba AVT(F ) and its spine).

1In a sense that will be precised later on.
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In order to achieve our goal, we appeal here again to the concept of complete toric n-
dimensional algebraic variety, which was already briefly introduced in order to state
D. Bernstein’s theorem (cf. subsection 3.2.4 above) : a complete n-dimensional
toric algebraic variety is a n-dimensional algebraic variety (in the sense of algebraic
geometry2), which is complete3 and, moreover :

• is normal ;
• contains Tn as a dense subset ;
• (most important, this justifies the terminology “toric”) is equipped with
a group action of Tn, such that this action coincides with pointwise mul-
tiplication on the dense open orbit Tn.

Consider the dual fan Σ(∆(F )) attached to ∆(F ). This fan is the convex subdivision
of Rn which cells are the dual cones4 to the faces of the Newton polyedron ∆(F ).
Since ∆(F ) is assumed here to be n-dimensional, all such cones are strict (that is
do not contain any linear subspace). Among the cones in this fan, the cones with
dimension one (dual to the facets of ∆(F )) are of particular interest : denote them
as ξ1, ..., ξn+r (note that r ∈ N∗ since ∆(F ) is n-dimensional).

In general the fan Σ(∆(F )) is not simplicial, which would mean that the 1-dimen-
sional faces of each cone τ ̸= {0} in the fan are generated by linear independent
vectors5. But it is possible, without adding extra rays, to refine such a fan (i.e.
introduce some extra subdivisions of its conic cells) in order to obtain a refined fan

Σ̃(∆(F )), which is now a simplicial one. One can do even better : introducing this

time extra rays, one can construct a new refinement Σ̃(∆(F )) of Σ̃(∆(F )), that is

of Σ(∆(F )), such that the new refined fan Σ̃(∆(F )) is primitive or simple, which
means that the 1-dimensional faces of each n-dimensional cone τ of it are directed
by respective vectors η⃗τ,1, ..., η⃗τ,n, each with integer coprime coordinates, such that
determinant det(η⃗τ,1, ..., η⃗τ,n) = ±1. All such refinement processes can be done
algorithmically, but of course not in a canonical way ; we refer for example to [Fult]
(sequence of exercices pp. 47-48) for a description of such an algorithmic process.

Moreover, given any such refinement Σ̃(∆(F ))) of the fan Σ(∆(F ))), there is a

proper birational surjective morphism from the toric variety X (Σ̃(∆(F )))) to the
toric variety X (Σ(∆(F )))) (see [Fult], section 2.6). Though the complete algebraic
toric variety X (Σ(∆(F ))) is in general not projective, it is always birational to a
projective variety.

Each rational cone τ in the fan X(Σ(∆(F ))) with dimension k (which is thus dual
to some (n− k)-dimensional face γ of ∆(F )) has a dual cone :

τ̌ = {u ∈ (Rn)∗ ; ⟨u, x⟩ ≥ 0 ∀x ∈ τ},

(which is always n-dimensional since τ is strict), to which it is possible to associate
the affine normal n-dimensional algebraic variety :

Xτ := Spec (C[Xα ; α ∈ σ̌ ∩ (Zn)∗]).

2If one wants to keep more close to the pointsetwise point of view, one could think of it as a
complex analytic space.

3Topologically speaking, from the pointset point of view, this means compact.
4Remember that the opposite cones are called polar cones and that some among them are

recession cones for the connected components of Rn \ AVT(F ) (see Proposition 3.3).
5Think for example at the case where ∆(F ) is a pyramid in R3, in which one vertex is the

intersection point of 4 (> dimR3) edges.
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Each Xτ is in fact a normal variety, in which one can embbed all Xτ ′ for τ ′ ≺ τ ,
in particular X{0} = Spec (C[X±1

1 , ..., X±1
n ]) = Tn. Moreover, there is an action of

Tn on Xτ , which coincides with the pointwise multiplication on Tn ⊂ Xτ (which
thus becomes a dense open orbit for this action, in fact the only open one). So
Xτ itself inherits a structure of algebraic n-dimensional toric variety. All such Xτ ,
τ ∈ Σ(∆(F )), can be glued together in accordance with the action of Tn (see [Fult])
in order to realize a complete algebraic toric variety, called X (Σ(∆(F ))).

Geometrically speaking, this toric algebraic variety X (Σ(∆(F ))) can only be under-
stood as a (singular) compact normal algebraic variety containing the torus Tn, and
equipped with an action of the torus which coincides with pointwise multiplication
on Tn. It stands then as a (non smooth) algebraic compactification of Tn. Such an
algebraic variety is in fact birational to any other one which could be constructed
along the same lines, but starting from a refinement either simplicial or primitive

(Σ̃(∆(F )) or Σ̃(∆(F ))) of the dual fan Σ(∆(F )). The rays ξ1,...,ξn+r of the fan
correspond to toric hypersurfaces Y1, ..., Yn+r, which are Tn-invariant, and which
union is such that, geometrically speaking,

X (Σ(∆(F ))) = Tn ⊔
n+r∪
j=1

Yj .

The union of the toric hypersurfaces Yj , j = 1, ..., n + r, can thus be under-
stood as the world “at infinity” in the (in general singular) toric compactification
X (Σ(∆(F ))) of the complex torus Tn. Each toric hypersurface Yj , j = 1, ..., n+ r,
is obtained glueing together all the Xτ such that ξj ≺ τ . The orbit corresponding
to the ray ξj is the topological relative interior of Yj . A convenient way to visualize
the correspondence between faces γ of ∆(F ) and closures of orbits in X (Σ(∆(F )))
under the action of Tn (corresponding to dual cones τ = γ∗ in the fan Σ(∆(F ))) is
to use the following continuous algebraic moment map6:

(4.3) z ∈ Tn 7→

∑
α∈∆(F )∩Zn

α |zα|∑
α∈∆(F )∩Zn

|zα|
∈ ∆(F )

(see [Fult], chapter 4). Such a map can be continued as a continuous map µF from
the toric variety X (Σ(∆(F ))) into the Newton polyedron ∆(F ) (we denote this
moment map as µF , but of course it depends only on the Newton polyedron ∆(F )).
The algebraic moment map thus obtained is a surjective map from the compact
algebraic variety X (Σ(∆(F ))) into the Newton polyedron ∆(F ). More precisely :
for any proper face γ of ∆(F ), µ−1

F (γ) equals the closure of the orbit associated with
the dual cone τ = γ∗ in the fan Σ(∆(F )). Moreover, if one considers the action of
the real torus (S1)n on X (Σ(∆(F ))) (induced by that of the complex torus Tn on
this toric variety), then, for any point u belonging to some k-dimensional face γ of
∆(F ) (0 ≤ k ≤ n−1) µ−1

F (u) is an orbit (under the action of (S1)n on X (Σ(∆(F ))))

6The moment map is the continuation to X (Σ(∆(F ))) of the continuous map :

z ∈ Tn 7−→

∑
α∈∆(F )∩∈Zn

α |zα|2∑
α∈∆(F )∩Zn

|zα|2
∈ ∆(F )
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which is isomorphic to (S1)k. For any u in the interior of ∆(F ), µ−1
F (u) correspond

to the orbit under the action of (S1)n of a point z in the complex torus Tn.

The situation is particular nice when one starts with a primitive refinement Σ̃(∆(F )).

In such case, the toric algebraic variety X (Σ̃(∆(F ))) is realized (see e.g. [Dan]
or [Ehl0]) as a n-dimensional compact toric complex manifold by glueing together
copies of Cn thanks to monomial changes of coordinates from one copy into another
one (exactly on the model leading to the classical construction of the projective
space Pn(C)).
The situation remains also rather nice (while more complicated) when the refine-

ment Σ̃(∆(F )) is just simplicial (but not primitive). In this case, the algebraic

toric variety X(Σ̃(∆(F ))) (still birational to X (Σ(∆(F ))))) is realized (see [Co1],
[CLO1]) as the geometric quotient :
(4.4)

X(Σ̃(∆(F ))) =
Cn+r −

{
Z ∈ Cn+r ;

∏
ξj ̸≺τ Zj = 0 ∀τ ∈ Σ̃(∆(F )), dim τ = n

}
G

,

where G stands for the group action of the multiplicative group

G :=
{
(t1, ..., tn+r) ∈ Cn+r ;

n+r∏
j=1

t
ξjk
j = 1, k = 1, ..., n

}
,

and ξ⃗j := (ξj1, ..., ξjn) denotes, for j = 1, ..., n+ r, the vector with integer coprime
coordinates which generate the ray ξj . The equations {Zj = 0}, j = 1, ...n + r,
provide respectively (modulo the group action in (4.4)) equations for the hypersur-

faces Ỹj , j = 1, ..., n+r, corresponding to the rays ξ1, ..., ξn+r of the refined fan (the
same than those of the original fan Σ(∆(F ))). The “coordinates” Z1, ..., Zn+r can
be considered as homogeneous coordinates (see [Co1]). The homogenization of the
Laurent polynomial F =

∑
α∈SuppF cαX

α is given as the polynomial in Z1, ..., Zn+r

that appear in the numerator of the expression :

(4.5) F(Z1, ..., Zd) :=
∑

α∈Supp (F )

cα

n+r∏
j=1

Z
⟨α,ξ⃗j⟩
j ,

after reducing it to a common denominator. The zero set of this numerator
hF (Z1, ..., Zn+r) ∈ C[Z1, ..., Zn+r] defines then (modulo the group action in (4.4))

the equation of the algebraic hypersurface VT(F )
∼
(the Zariski closure of the alge-

braic hypersurface VT(F ) ⊂ Tn in X (Σ̃(∆(F )))), expressed in such homogeneous
coordinates.

One needs to mention here two important facts about the position of the Zariski
closure VT(F ) of VT(F ) in the toric variety X (Σ(∆(F ))), with respect to the toric
hypersurfaces Yj , j = 1, ..., n+ r, corresponding to the rays ξ1, ..., ξn+r of the dual
fan. In order to check these two facts, one can for example use (as described above)

a simplicial refinement Σ̃(∆(F ))) and related homogeneous coordinates. These
two key fact both emphazise the fact that the toric compactification X (Σ(∆(F )))
indeed respects the information carried by the Newton polyedron ∆(F ) (as the
amœba AVT(F ) also does) :

(1) on one hand, the algebraic hypersurface VT(F ) ⊂ X (Σ̃(∆(F ))) avoids all
points µ−1

F (σ) corresponding to the vertices σ of ∆(F ) ;
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(2) on the other hand, the algebraic hypersurface VT(F ) ⊂ X (Σ̃(∆(F ))) in-
tersects any of the algebraic toric curves Lγ = µ−1

F (γ), where γ is an edge
of ∆ (corresponding to some (n− 1)-dimensional cone in the dual fan).

Example 4.4 (the particular case n = 2). In that case VT(F ) ⊂ X(Σ(∆(F ))) is
an algebraic curve that intersect at discrete points each of the toric curves at infinity
Yj , j = 1, ..., n + r, which correspond in that case to the orthogonal directions
ξ1, ..., ξn+r to the edges γ1,...,γn+r of the Newton polyedron ∆(F ).

The moment map µF provides also an important notion, that of compactified
amœba.

Definition 4.5 (compactified amœba of an algebraic hypersurface in Tn). Let
F ∈ C[X±1

1 , ..., X±1
n ] be a Laurent polynomial such that dim(∆(F )) = n, X∆ the

complete n-dimensional algebraic toric variety attached to the dual fan of ∆(F ),
µF its algebraic moment map. The compactified amœba of the Laurent polynomial
F is

(4.6) Ac
VT(F ) := µF (VT(F )).

Using a simplicial refinement of the fan Σ(∆(F ))) and homogenisation of the Lau-
rent polynomial F as before, one can point out the following result.

Proposition 4.2. Let F as in Définition (4.5) and γ be a k-dimensional face
(0 < k ≤ n− 1) of the Newton polyedron ∆(F ). Let Fγ be the Laurent polynomial
obtained as

Fγ(X) =
∑

α∈SuppF∩γ

cαX
α,

where F (X) =
∑

α∈Supp (F ) cαX
α. Then the intersection Ac

VT(F )∩γ is the compact-

ified amœba of the Laurent polynomial Fγ (considered as a Laurent polynomial in
k variables with support in the lattice induced by Zn on the face γ), the compacti-
fication being done with respect to the toric k-dimensional variety µ−1

F (γ).

4.2.2. The generic degree of the Gauß logarithmic map. We are now
able, once the configuration needed for compactification fixed, to derive some in-
formation about the topological degree of the logarithmic Gauß map, since it can
be continued up to the compactification of VT(F ) as a dominant rational map.

Proposition 4.3 (the degree of the Gauß map in the smooth and tranversal
case, [Mik3]). Let F ∈ C[X±1

1 , ..., X±1
n ] be a reduced Laurent polynomial such

that dim∆(F ) = n and the origin is not a vertex of ∆(F ). Assume that for
some primitive refinement of the fan Σ(∆(F )) (with rays ξ1, ..., ξn+r̃, including
the rays ξ1, ..., ξn+r of the fan Σ(∆(F )), corresponding to homogeneous coordinates

Z1, ..., Zn+r̃ on the n-dimensional toric manifold X (Σ̃(∆(F )))), the (n+1) polyno-
mials

(4.7) hF (Z1, ..., Zn+r̃),
h
[
z1
∂F

∂z1

]
(Z1, ..., Zn+r̃), . . . ,

h
[
zn
∂F

∂zn

]
(Z1, ..., Zn+r̃)

(note that the zj∂F/∂zj share ∆(F ) as Newton polyedron since the origin is not a
vertex) have no common zero in

Cn+r̃ −
{
Z ∈ Cn+r̃ ;

∏
ξj ̸≺τ

Zj = 0 ∀τ ∈ Σ̃(∆(F )), dim τ = n
}
.
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The same property then holds for any simplicial refinement of the fan Σ(∆(F )) and
is equivalent to say that the Zariski closure of VT(F ) in any toric n-dimensional

manifold X (Σ̃(∆(F ))) (for any primitive refinement of the fan Σ(∆(F ))) is a com-

plex submanifold which intersects transversally in X (Σ̃(∆(F ))) all closed orbits at

infinity (corresponding to all cones of Σ̃(∆(F ))) with dimension between 1 and
n − 1). That is, such a property depends only of F and its Newton polyedron, not
on the refinement of the fan Σ(∆(F )). The logarithmic Gauß map then extends to
a dominant rational map γ̄F between the Zariski closure of VT(F ) in X (Σ(∆(F )))
and Pn−1(C). The degree of this dominant rational map equals

(4.8) deg γ̄F = n! voln(∆).

Proof. Let Σ̃(∆(F )) be a primitive refinement of the fan Σ(∆(F )) for which

the conditions hold and VT(F )
∼

the Zariski closure of VT(F ) in the n-dimensional

compact toric complex manifold X (Σ̃(∆(F ))). It is immediate to check that the

hypothesis imply that VT(F )
∼

is a complex submanifold of X (Σ̃(∆(F ))), which
is even transverse to all closed orbits at infinity (corresponding to cones with di-

mension between 1 and n− 1 in the primitive refined fan Σ̃(∆(F ))). Any Laurent
polynomial zj∂F/∂zj , j = 1, ..., n, considered as a rational function in Tn, extends

as a rational function on the n-dimensional toric manifold X (Σ̃(∆(F ))) : just ex-
press it for example in homogeneous coordinates, then in affine coordinates in the
different copies of Cn which are glued together via monoidal maps in order to re-

alize the toric manifold X (Σ̃(∆(F ))). Then the logarithmic Gauß map extends as

a rational map from the (n − 1)-dimensional compact algebraic manifold VT(F )
∼

into the (n − 1)-compact algebraic manifold Pn−1(C). Since there is a birational
map fι̃,ι between the toric variety X (Σ(∆(F ))) and its resolution of singularities

X (Σ̃(∆(F ))), one obtains then a rational map γ̄F between the Zariski closure of
VT(F ) in X (Σ(∆(F ))), considered here as a (n − 1)-dimensional algebraic subva-
riety of this n-dimensional (in general singular) toric variety, and Pn−1(C). The
hypothesis which is made on the polynomials (4.7) also implies that :

(4.9) lim inf
∥x∥→+∞
x∈Rn

(
inf

zx∈Log−1(x)

|F (zx)|+
n∑

j=1

∣∣zx,j(∂F/∂zj)(zx)∣∣
exp

(
supξ∈∆⟨ξ, x⟩

) )
> 0.

As noticed in (3.73) above (see [VY], Proposition 2.2), the analytic condition (4.9)
(which appears here as a particular case) is equivalent to say that the Laurent
polynomials (F,X1F

′
X1
, ..., XnF

′
Xn

) (all sharing the same Newton polyedron ∆(F ))
fulfill the generic hypothesis needed for D. Bernstein’s theorem (Theorem 3.25) to
hold). Therefore, for generic λ = (λ0, ..., λn−1) ∈ Cn \ {(0, ..., 0)}, the n Laurent
polynomials

(4.10) F (X), λjX1
∂F

∂X1
− λ1Xj

∂F

∂Xj
, j = 2, ..., n

also fullfil the hypothesis of D. Bernstein’s theorem. The supports of the corre-
sponding effective Weil divisors in X (Σ(∆(F ))) share exactly n! voln(∆(F )) isolated
zeroes (counted with multiplicities), all such common zeroes lying in the dense orbit
Tn. One has then :

#
(
γ̄−1
F ([λ0 : · · · : λn−1])

)
= n! voln(∆(F ))
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for [λ0 : · · · : · · ·λn−1] generic in Pn−1(C), which proves that γ̄F is dominant, with
degree equal to n! voln (∆(F )). □

Remark 4.6. Note that, provided the hypothesis in Proposition 4.3 is fulfilled,
the continuation of γF as a rational map from the Zariski closure VT(F ) of VT(F )

(in any simplicial n-dimensional toric variety X (Σ̃(∆(F )))), into Pn−1(C), remains
of course a dominant rational map with degree n! voln (∆(F )) : one need just to use
that the morphisms fι̃,ι are birational. For the sake of simplicity, we will keep the

notation γ̄F for such rational continuation to VT(F ) (independently of the simplicial
refinement of Σ(∆(F )) which is used).

Remark 4.7 (What about the singular case ?). Consider a reduced Laurent
polynomial in C[X±1

1 , ..., X±1
n ] such that dim(∆(F )) = n and the origin is not a ver-

tex of this polyedron. If the Zariski closure VT(F )
∼
of VT(F ) in some n-dimensional

toric complex manifold X (Σ̃(∆(F )) (corresponding to a primitive refinement of the

dual fan Σ(∆(F ))) happens to be singular at some point at infinity in X (Σ̃(∆(F )),

that is in X (Σ̃(∆(F )) \ Tn 7, then, whatever how (λ0, ..., λn−1) is taken generic in
Rn \ {(0, ...0)}, the n Laurent polynomials (4.10) will never fulfill the conditions
that are needed for D. Bernstein’s theorem to hold. If by chance γF can still be
continued as a dominant rational map γ̄F to X (Σ(∆(F ))), it is clear in that case
that the degree of this map will be strictly less than n! voln (∆(F )). We will carac-
terize in the next subsection the situation where such degree could be indeed equal
to one.

4.3. Discriminants and amœbas

Given an algebraic hypersurface

VT(F ) ⊂ Tn

(defined as the zero set of a reduced Laurent polynomial F in n variables), a nat-
ural question one could ask is whether (and when ?) the logarithmic Gauß map
γF : VT(F )→ Pn−1(C) defined in (4.3) can be extended as a dominant rational map

γ̄F from some (n− 1)-dimensional compact algebraic variety VT(F ) into Pn−1(C),
with the smallest possible degree, that is deg γ̄F = 1 (which would mean that γ̄F
realizes a birational map between Pn−1(C) and the algebraic variety VT(F )). If it

is the case8, then the inverse γ̄−1
F : Pn−1(R) → VT(F ) of such rational map, once

composed with Log, will indeed provide a parametrization of the contour of AVT(F )

(thanks to Proposition 4.1). In fact, a complete answer to such a bunch of questions
was almost already settled by J. Horn in 1889 [Horn], in his study of convergence
of hypergeometric series [Horn], then revisited in [GKZ], [Krap0], [PST] and
[PT1]. It lies deeply on the theory of sparse elimination, more particularly on
the various notions of A -discriminantial varieties and A -discriminants or deter-
minants (ordinary, reduced, or principal). In fact, the theory of sparse elimination
(as developped in [GKZ]) was a motivation for the “resurgence” of the concept of
archimedean amœba (which probably goes back to Newton and, later on, Puiseux).

7This of course automatically happens as soon as dim (VT(F )
∼
)sing > 0, since Liouville’s the-

orem prevents any algebraic subset of X (Σ̃(∆(F )) with strictly positive dimension from remaining

in Tn.
8We will see moreover that F ∈ R[X±1

1 , ..., X±1
n ] in such case.
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4.3.1. A -discriminants (ordinary and reduced) ; Horn-Krapanov the-
orem (statement). In order to state the first result (formalized in [Krap0], see
also [PT1]), we need to recall the concepts of A -discriminant variety and A -
discriminant (ordinary or reduced). Let N ≥ 1. We will consider here a finite
subset A ⊂ ZN with cardinal N + n+ 1 such A affinely generates the lattice ZN

over Z. Note that this condition requires this time n ≥ 1 and implies of course also
that dim∆A = N .

Definition 4.8 (A -discriminantial variety, A -discriminant [GKZ]). Let A
be a finite set in ZN satisfying the conditions required above. The (ordinary)
A -discriminantial variety ∇A is the affine algebraic irreducible9 variety which is
defined as the Zariski closure (in the affine scheme CA , which could as well be
considered as the affine scheme of Laurent polynomials in N variables with support
contained in A ) of the set :

(4.11)
{
(cα)α∈A ∈ CA ; ∃z ∈ TN ,

∑
α∈A

cαz
α = 0, dz

[ ∑
α∈A

cαz
α
]
= 0
}
.

In case such an algebraic variety is an hypersurface, a (irreducible) equation for it
is called a (ordinary) A -discriminant. If not, the A -discriminant is taken to be
equal to 1.

Example 4.9 (classical discriminants (N = 1)). Consider, when N = 1 and
n ≥ 1, the set A = {0, α1, α2, ..., αn, d}, where 1 ≤ αn < · · · < α1 < d are
strictly positive coprime integers. The convex hull ∆A equals [0, d] and the 2+n =
1+n+1 elements of A affinely generate Z over Z. In this case, the A -discriminant
(evaluated on cd = 1) coincides with the resultant of the two polynomials :

Xd +

n∑
j=1

zjX
αj − 1, dXd−1 +

n∑
j=1

αjzjX
αj−1.

For the polynomials X2 + z1X − 1 (d = 2) and X3 + z1X
2 + z2X − 1 (d = 3), one

gets respectively :

∆2(z1) = z21 + 4, ∆3(z1, z2) = 27 + 4z31 − 4z32 + 18z1z2 − z21z22 .

Note also that any equation (in w) of the form

wd +

m∑
j=1

zjw
mj + z0 = 0

reduces (after replacing w by αw) to an equation of the form :

wd +

n∑
j=1

z̃jw
mj − 1 = 0,

so that the example presented here covers the case of ordinary discriminants.

9The reason for irreductibility lies in the fact that the variety (4.11) inherits a structure of

CA -vectorial bundle over the irreducible affine variety TN . Note also that the A -discriminantial

variety is defined over Q : it remains indeed invariant after conjugaison on the variables, when
they are taken in a number field K.
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The above Definition 4.8 of the A -discriminant variety does not take into account
affine dependance that indeed exists between elements in A . In order to introduce
a refined version of such a A -discriminantial variety (taking into account such
affine dependance), one needs to proceed as follows. Such affine dependance is
materialized by the (N + n + 1) − N − 1 = n-lattice of affine relations between
elements in A , that is :

(4.12) MA =
{
ν ∈ ZA ;

∑
α∈A
α ̸=α1

να(α− α1) = 0
}
,

for which one can pick up a Z-basis {b} = {b0, ..., bn−1}, where :
(4.13)
bk = (bk,α)α∈A = (bk,α1 , ..., bk,αN+n+1) = (bk,1, ..., bk,N+n+1), k = 0, ..., n− 1.

Note that

(4.14)

N+n+1∑
j=1

bk,j =
∑
α∈A

bk,α = 0 ,

since each bk lies in the lattice of affine relations (4.12) between elements of A .
Observe that the A -discriminantial variety ∇A remains invariant if the Laurent
polynomial F (X) =

∑
α∈A cαX

α is replaced by t • F := t0F (t1X, ..., tNX), where

(t0, ..., tN ) ∈ TN+1. If CA is now considered as the affine scheme of Laurent
polynomials in N + n + 1 variables with support included in A , we define thus
an action of TN on CA under which ∇A remains invariant, which arises from the
following homomorphism of tori :

φ : (t0, t
′) ∈ TN+1 = Spec

(
C[X±1

0 , ..., X±1
n ]
)

7−→
(
t0(t

′)α
)
α∈A

∈ TA = Spec
(
[C[T±1

α ; α ∈ A ]
)(4.15)

The kernel of φ∗ : ZA → ZN is precisely the n-lattice MA . Consider the affine
n-dimensional affine toric manifold :

XA = Spec
(
C[T ν ; ν ∈MA ]

)
= SpecC[T±b0 , ..., T±bn−1 ] =

Spec
(
[C[T±1

α ; α ∈ A ]
)

Imφ
.

Note that the choice of the basis {b} makes precise an identification between
Tn = Spec

(
C[X±1

1 , ..., X±1
n ]
)
and XA = SpecC[T±b0 , ..., T±bn−1 ]. Let π be the

projection :

π : TA = Spec
(
[C[T±1

α ; α ∈ A ]
)
→ XA .

Because of the invariance of ∇A (hence of ∇A ∩ TA ) under the action of the
homomorphism of tori φ defined as (4.15), one can write

∇A ∩ TA = π−1[∇red
A ],

where ∇red
A is a well defined algebraic subvariety of the toric n-dimensional manifold

XA , with the same codimension than that of ∇A in CA .

Definition 4.10 (A -reduced discriminantial variety, discriminant [Krap0]).
The algebraic subvariety ∇red

A of XA which is uniquely defined by

(4.16) ∇A ∩ TA = π−1[∇red
A ]

is called the reduced A -discriminantial subvariety. When it is an hypersurface (that
is when ∇A is an hypersurface in CA ), a (reduced) equation for it in Tn (using the
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identification Tn ≃ XA which is conditionned to the choice of a basis {b0, ..., bn−1}
for the lattice MA ) is called a A -reduced discriminant.

Remark 4.11 (A -discriminant versus reduced A -discriminant). When ∇A is
an hypersurface, it is easy to deduce an expression for the reduced A -discriminant
from that of the A determinant (modulo the identification of Tn with the affine
toric variety XA which is conditionned to the choice of a basis {b0, ..., bn−1} for the
Z-lattice MA ). Choose a non zero (n, n) minor of the matrix : b0,α1 , ... .... b0,αN+n+1

...
...

...
...

bn−1,α1 , ... .... bn−1,αN+n+1

 ,

which corresponds to n columns labelled with αι, ι ∈ I ⊂ {1, ..., N + n + 1}. In
the expression of the A -discriminant (in (cα)α∈A ), just substitute 1 instead of the
N + 1 = N + 1 + n− n = N + 1 undeterminate coefficients cαι , ι /∈ I, thus killing
the N + 1 quasi homogeneities. The new expression one obtains is a polynomial in
n variables which stands for an expression of the reduced A -discriminant (up to
the identification between Tn and the affine toric variety XA ).

Example 4.12 (Classical determinants (N = 1) revisited). Consider n + 1
strictly positive integers d > m1 > m2 > · · · > mn = 1. Using Remark 4.11 above,
one can specialize cd = 1 and c0 = −1 in the expression of the A -discriminant
∇A corresponding to A = {d,m1,m2, ...,mn, 0} in order to recover the reduced
A -discriminant ∇red

A . The polynomial ∇red
A corresponds to the resultant of the two

polynomials :

Xd +
n−1∑
j=1

zjX
mj +X − 1, dXd−1 +

n−1∑
j=1

mjzjX
mj−1 + 1,

that is to the usual discriminant (see Example 4.9 above).

Given a fixed choice of a basis b = {b0, ..., bn−1} of vectors in ZA as (4.13) for the

lattice MA (bj = (bj1, ..., b
j
N+n+1) for j = 0, ..., n− 1), let us pair with it a rational

map from Pn−1(C) into Tn defined as follows:
(4.17)

Ψ{b}([λ0 : · · · : λn−1]) =

(
N+n+1∏
k=1

( n−1∑
j=0

bjkλk

)b0k
, . . . ,

N+n−1∏
k=1

( n−1∑
j=0

bjkλk

)bn−1
k

)
.

Note that, since
∑N+n+1

k=1 bjk = 0 for any j = 0, ..., n−1 (see (4.14)), each component

of Ψ{b} is homogeneous with degree 0.

Definition 4.13 (Horn uniformisation map, or Gale transform of A ). Let A
be a collection of N+n+1 > N+1 points in ZN such that A affinely generates ZN

over Z (note that this implies necessarily dim∆A = N). Let {b} = {b0, ..., bn−1}
be a basis of the lattice MA (see (4.12)) of affine relations between elements of A .
The rational map Ψ{b} from Pn−1(C) into Pn(C) defined as (4.17) is known as the
Horn uniformisation map (or the Gale transform) of the set A , with respect to the
choice of the Z-basis {b} for the n-lattice MA .
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One can now state what could be seen as a modern presentation of Horn’s theory
in our context of archimedean amœbas :

Theorem 4.14 (toric hypersurfaces with birational logarithmic Gauß map
[Krap0]). Let n ∈ N∗ and VT(F ) be an algebraic hypersurface in Tn defined by
a reduced Laurent polynomial F ∈ C[X±1

1 , ..., X±1
n ]. The logarithmic Gauß map

γF extends to a birational map γ̄F between some (n− 1)-complete algebraic variety

VT(F ) and Pn−1(C) if and only if there exists N ≥ 1 and a finite set A ⊂ ZN with
cardinal N + n+ 1, such that :

• the finite set A affinely generates ZN over Z ;
• the algebraic hypersurface VT(F ) coincides (up to the identification be-
tween Tn and XA which the choice of {b} induces) with the reduced A -
discriminantial variety ∇red

A , which in that case is an algebraic hypersur-
face ; thus F coincides (up to multiplication by a monomial) with the
reduced A -discriminant (which belongs to Z[X1, ..., Zn]).

Moreover, for a given basis {b} of the n-lattice MA , the inverse map γ̄−1
F coincides

with the Gale transform Ψ{b} defined in (4.17) and the map :

[λ0 : · · · : λn−1] ∈ Pn−1(R) 7−→ Log
(
Ψ{b}([λ0 : · · · : λn−1])

)
provides (thanks to Proposition 4.1) a parametrisation of the contour of the archime-
dean amœba AVT(∇red

A ).

4.3.2. Mixed sparse resultants, principal A -determinants. Due to lack
of time, we will not give in this course the proof of Theorem 4.14. We refer instead
the reader to the presentation which is given in [Krap0] as well as in [GKZ],
Chapter 9, 3-C (page 288 and followings). Nevertheless, in order to explore later
on the relation between Horn’s theory of hypergeometric functions and the theory
of complex amœbas (which is the guideline of this course, in between complex
and tropical geometry through the concept of “deformation”), let us pursue here
the catalog of various definitions in relation with sparse elimination that will be
needed later on in the discriminant context. The most important one is that of
(A0, ...,AN )-mixed resultant (see [GKZ], chapter 8).

Definition 4.15 (mixed sparse resultant). Let A0,...,AN , be N +1 finite sub-
sets in ZN such that :

• each set Ak, k = 0, ..., N affinely generates RN over R ;
• the union of all the Ak, k = 0, ..., N , affinely generates the lattice ZN over
Z.

The algebraic variety in CA0 × · · · × CAN obtained as the Zariski closure (in this
product of affine varieties) of the (non closed) subvariety defined as

(4.18)
{
(c(0), ..., c(N)) ∈

N∏
j=0

CAj ; ∃ z ∈ TN ,
∑
α∈Aj

c(j)αj
zα = 0, j = 0, ..., N

}
.

is an irreducible hypersurface defined over Q. It admits an irreducible defining
equation with integer coprime coefficients, denoted (up to sign) as :

RA0,...,AN
,

and called the (A0, ...,AN )-mixed resultant.
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Remark 4.16. The reason for the irreductibility of the hypersurface thus de-
fined lies, as in Definition 4.8, in the fact that the subvariety (4.18) inherits a
structure of vectorial bundle over the irreducible affine variety TN . The fact that
the (A0, ...,AN )-mixed resultant has integral coefficients follows also from Galois
theory. In fact, one knows more : the GCD of the coefficients can be chosen equal
to 1. The new point here (compare to Definition 4.8) is that the geometric condi-
tions imposed on the Ak, k = 0, ..., N , force the closure of the subvariety defined as

(4.18) to be an hypersurface in
∏N

k=0 CAk . We refer to [GKZ], Chapter 3, Proposi-
tion 3.1, for more details. The (A0, ...,AN )-mixed resultant is homogeneous is each

block of coordinates and its degree in the block c
(k)
αk equals :

N !× volN
(
∆A0 , ..., ∆̂Ak

, ...,∆AN

)
.

Given a finite subset A of ZN that affinely generates the lattice ZN over Z, one
may naturally propose the following definition, this time intimely connected (much
more than that of A -discriminant) with the logarithmic Gauß map.

Definition 4.17 (principal A -determinant, [GKZ], chapter 10). Let A be a
finite subset A of ZN that affinely generates the lattice ZN over Z. The principal
A -determinant EA is defined as the following polynomial map on CA by :

∀ c = (cα)α∈A ∈ CA ,

EA (c) = RA ,...,A

( ∑
α∈A

cαX
α, X1

∂

∂X1

( ∑
α∈A

cαX
α
)
, ..., Xn

∂

∂Xn

( ∑
α∈A

cαX
α
))

.

(4.19)

Remark 4.18 (factorization of A -principal determinants). Thanks to Defini-
tion 4.17, any principal A -determinant (A ⊂ ZN being a finite subset that affinely
generates the lattice ZN over Z) factorizes as a product of powers of lower order
A σ-discriminants (see Definition 4.8), A σ being the intersection of the lattice ZN

with some face σ of the N -dimensional Newton polyedron ∆A (the lattice ZN being
now replaced by the induced lattice on the affine subspace of RN generated by the
face σ).

4.3.3. “Solidity” of amœbas and singularities of non-confluent hyper-
geometries : a statement. Instead of proving Theorem 4.14, the related result
we would like to state here and prove in the next subsections (as the achievement
of this last chapter) is the following :

Theorem 4.19 (“solidity” of amœbas of principal A -determinant [PST]).
The archimedean amœba of any principal A -determinant EA (hence of any A -
discriminant δ thanks to Remark 4.18 above) in n variables is solid (that is its
complement in Rn has exactly as many connected components than there are ver-
tices for the Newton polyedron ∆[δ]).

This result will be reformulated as Theorem 4.27 (and thus proved) in subsection
4.3.6. As we mentionned it earlier (the proof one could read in [Krap0] or [GKZ],
chapter 9, indeed confirms it), its companion Theorem 4.14 appears as a byprod-
uct of the theory of hypergeometric series (as developped in [Horn] and [GKZ]).
Theorem 4.19 in fact also (essentially in the same vein, may be even more in the
spirit of this course) : it appears as a consequence of the fact that singularities of
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non-confluent hypergeometric functions (in the Horn sense) lie precisely (in good
cases) on the so-called resultant locus of the related Horn system (see Definition
4.21 below). Examples of such resultant loci are precisely provided by zero sets
of principal A -determinants, as it follows from the intimate relation (that we will
suggest here) between hypergeometric functions derived in the Horn sense and solu-
tions of A -hypergeometric systems such as introduced in [GGR], [GKZ0] (see also
[GKZ]). The solidity of the amœba of a principal A -determinant EA (hence of a
A -discriminant, which can be viewed as a factor of some EA , see Remark 4.18) will
then follow from the fact that the singular set of a non confluent hypergeometric
Horn system has a solid amœba. We theefore will need to study the singular locus
of hypergeometric functions which are recovered by means of analytic continuatu-
ion from Horn hypergeometric Puiseux series solutions of the corresponding Horn
system. As for Laurent series, the notion of support of a hypergeometric series,
together with Abel’s lemma10 (in its two-sided version, cf. Lemma 4.28 below),
will play here a fundamental role.

4.3.4. Puiseux hypergeometric series : the Horn’s approach. We recall
in this subsection basic material about Horn’s approach [Horn] to the study of
hypergeometric series (in the Horn’s sense). See for example [Sad] for a detailed
introduction (used to prepare the notes of this course). In the next subsection,
we will present (and relate it to the Horn’s point of view) the notion of Gelfand-
Krapanov-Zelevinsky (in short “GKZ”) A -hypergeometric system (A being a finite
subset in ZN which affinely spans ZN over Z, as in Definition 4.13), see [GKZ],
[Krap] (or also [Cat]) for a presentation of that companion concept.

Let us start first with a presentation of the Horn’s point of view [Horn].

Definition 4.20 (Puiseux formal hypergeometric Horn series in n variables).
A Puiseux formal hypergeometric series (in the Horn’s sense) in n complex variables
is a formal power series centered at the origin in Cn, of the form :

(4.20) F (z) = zγ
∑
k∈Zn

akz
k,

where γ = (γ1, ..., γn) ∈ Cn, Re γj ∈ [0, 1[ for any j = 1, ..., n, and the coefficients ak
are such that, for any j = 1, ..., n, there exists a rational function Rj ∈ C(X1, ..., Xn)
such that

(4.21) ak+ej = ak Rj(γ + k) ∀ k ∈ Zn

(here (e1, ..., en) denotes the canonical basis of Zn).

Letting

(4.22) Rj(X) =
Pj(X)

Qj(X + ej)
, j = 1, ..., n,

one can check that such a formal power series (4.20) (with the ak governed by the
inductive relations (4.21)) satisfies :

(4.23)
[
zjPj(z1∂/∂z1, ..., zn∂/∂zn)−Qj(z1∂/∂z1, ..., zn∂/∂zn)

]
(F ) ≡ 0.

10Note that Abel’s lemma was precisely invoked in order to justify the convexity of the con-
nected complements of the archimedean amœba of an algebraic hypersurface (each such component

being the image by Log of a maximal domain of convergence of a Laurent series, see Proposition
2.1).
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Moreover, if one looks for the formal solutions F of the differential system (4.23)
that have a formal Puiseux expansion such as (4.20) (centered at the origin), one
recovers Puiseux formal hypergeometric series for which the sequence of coefficients
(ak)k∈Zn in (4.20) is precisely governed by the relations (4.21). This leads naturally
to the following definition.

Definition 4.21 (Horn system, non-confluency). Let

P1(θ), ..., Pn(θ), Q1(θ), ..., Qn(θ),

be 2n differential operators with constant coefficients in θ = (θ1, ..., θn), where θj =
Xj∂/∂Xj , j = 1, ..., n. Assume that Pj and Qj are coprime for any j = 1, ..., n. The
left ideal in the Weyl algebra C⟨X, ∂/∂X⟩ generated by the n differential operators
involved in the differential system (4.23) is called the Horn system attached to the
set of polynomials P1, ..., Pn, Q1, ..., Qn. Non-confluency of this system means that
Pj and Qj have the same degree for any j = 1, ..., n.

The fact that the Horn system (4.23) admits at least one non trivial formal solution
which can de developped as a formal hypergeometric Puiseux series in z of the form
(4.20) (centered at the origin in Cn), where the coefficients ak are governed by the
relations (4.21), requires indeed comptatibility conditions, namely that the rational
expressions Rj defined in (4.22) fulfill the so called solvability conditions :

(4.24) Ri(X + ej)Rj(X) = Rj(X + ei)Ri(X), 1 ≤ i, j ≤ n.
Such solvability conditions will be from now on imposed.

Other constraints on the Rj do indeed exist. It follows from Ore-Sato’s theorem
(see [GGR], I, sections 2 and 3) that any formal Puiseux hypergeometric series
of form (4.20), where the ak are ruled by rational fractions such as in (4.21), has
necessarily its coefficients ak of the form

(4.25) ak =
( n∏
j=1

t
kj

j

)
× U(k)×

p∏
l=1

Γ
(
⟨Al, k + γ⟩+ cl

)
∀ k ∈ Z,

where t1, ..., tn are arbitrary non zero complex numbers, U is an arbitrary element
in C(X1, ..., Xn), A1, ..., Ap are p ≥ 1 arbitrary elements in Zn, and c1, ..., cp are p
arbitrary complex numbers11. The expression of the Rj , j = 1, ..., n, which govern
in that case the Puiseux development (4.20), is thus given by

Rj(X + γ) = tj
U(Y + ej)

U(Y )
×

p∏
l=1

Γ
(
⟨Al, X + ej + γ⟩+ cl

)
Γ
(
⟨Al, X + γ⟩+ cl

) , j = 1, ..., n.

In case U ≡ 1, the condition of non-confluency for the related Horn system therefore
reflects in the condition

(4.26)

p∑
l=1

Al = 0.

Note that, in such case, the polynomials Pj and Qj involved in the related Horn
system are all necessarily representable as product of affine forms ⟨A,X⟩+c, A ∈ Zn,
c ∈ C.

11Note that, because of the well known reflection formula Γ(s)Γ(1 − s) = π/ sin(πs), it

is indifferent to take the Γ factors in the numerator (such as in (4.25)) or, as it is done more
classically, speaking about hypergeometric series, in the denominator (as for example in [GGR]).
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Example 4.22 (Horn system attached to a lattice MA in ZN+n+1, Horn uni-
formization revisited, cf. Definition 4.13, see e.g. [GKZ], [Krap0], section 2, or
also [DMS], section 2, for the presentation which is followed here). Consider a
(N + 1, N + n + 1) matrix A ∈ MN+1,N+n+1(Z) with integer coefficients (N + 1
rows labelled from 0 to N , N + n + 1 columns labelled from 1 to N + n + 1),
with as first row the line a0 := ones(1,N+n+1), with rank(A) = N + 1, together
with a matrix B ∈ MN+n+1,n(Z) such that A · B = 0 (lines of B are labelled
from 1 to N + n + 1, while columns of B are labelled from 0 to n − 1). For each
k = 1, ..., N + n+1, let bk ∈ Zn be the row of B with label k. Consider the lattice
MA = B · Zn ⊂ ZN+n+1, which is a lattice with rank n in RN+n+1. A Z-basis for
this lattice is provided by the n columns b0,...,bn−1 of the matrix B. Notations
used here are in accordance with the notations used previously in Definition 4.13.
The different column vectors aj = (ajk)k=1,...,N , j = 1, ..., N +n+1 (below the first
row a0) stand here for a collection A of N + n + 1 points in ZN which affinely
generate ZN over Z (as in Definition 4.13). The lattice MA corresponds (see Def-
inition 4.13) to the matrix of affine relations between elements in A . The column
vectors b0, ...,bn−1 of B provide in fact a basis for this lattice MA . Fix a vector
c = (c1, ...., cN+n+1) ∈ CN+n+1. Consider the 2n polynomials (all representable as
products of affine forms with integer coefficients) in the n variables X0, ..., Xn−1 :

Pj(X0, ..., Xn−1) =
∏
bjk<0

|bjk|−1∏
l=0

(
⟨bk, X⟩+ ck − l

)
, j = 0, ..., n− 1

Qj(X0, ..., Xn−1) =
∏
bjk>0

bjk−1∏
l=0

(
⟨bk, X⟩+ ck − l

)
, j = 0, ..., n− 1.

(4.27)

The differential operators

XjPj(θ0, ..., θn−1)−Qj(θ0, ..., θn−1), j = 0, ..., n− 1,

(θj = Xj∂/∂Xj , j = 0, ..., n − 1) are called the Horn operators attached to the
n-rank lattice MA ⊂ ZN+n+1. Note that

(4.28)
∑
bjk>0

bjk +
∑
bjk<0

bjk = 0 ∀ j = 0, ..., n− 1

since A · B = 0 and a0 = ones(1,N+n+1). The corresponding Horn system (de-
noted as H (MA , c)) is here non-confluent because of (4.28). Such a Horn system
H (MA , c) (considered here on Tn

z0,...,zn−1
) can be pulled back into a differential

system (that we will still consider as being of the Horn type) in the coordinates
(Z1, ..., ZN+n+1) via the monomial map
(4.29)

ZB : Z = (Z1, ..., ZN+n+1) ∈ TN+n+1 −→
(N+n+1∏

k=1

Z
b0k
k , . . . ,

N+n+1∏
k=1

Z
bn−1
k

k

)
∈ Tn.

Consider for that in the Weyl algebra C⟨Y1, ..., YN+n+1, ∂/∂Y1, ..., ∂/YN+n+1⟩ the
n differential operators

∂
(bj)+

Y − ∂(b
j)−

Y :=
N+n+1∏
k=1

∂
max(bjk,0)

Yk
−

N+n+1∏
k=1

∂
−min(bjk,0)

Yk
, j = 0, ..., n− 1,
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and the N + 1 Euler operators :

(4.30) EulAk :=
N+n+1∑

j=1

ajk Yj∂/∂Yj , k = 0, ..., N,

corresponding to the N + 1 rows of A. Then, given a point Z0 ∈ TN+n+1
Z1,...,ZN+n+1

,

it is equivalent to say that a function F is a formal solution of the Horn system
H (MA , c) about ZB

0 and that Zc(ZB)∗[F ] is a formal solution about Z0 of the
differential system corresponding to the ideal
(4.31)

HMA (c) :=
⟨
∂
(bj)+

Y − ∂(b
j)−

Y , j = 0, ..., n− 1
⟩
+
⟨
EulAk − (A · c)k , k = 0, ..., N

⟩
(see detailed computations in [DMS], proof of Lemma 5.1).

The expression (4.23) of a Horn system thus involves n differential operators :

Dj := XjPj(X1∂/∂X1, ..., Xn∂/∂Xn)−Qj(X1∂/∂X1, ..., Xn∂/∂Xn), j = 1, ..., n

(or N + n+1 operators such as those obtained via a monomial change of variables
from TN+n+1 into Tn as for example HMA (c) in (4.31)). Such differential operators
with polynomial coefficients lie in the Weyl algebra C⟨X1, .., Xn, ∂/∂X1, ..., ∂/∂Xn⟩.
Let

σ (Dj) : (z, ξ) 7−→
∑

|α|=mj

cα(z) ξ
α

be the principal symbol of the differential operator

Dj =
∑

|α|=mj

cα(X) ∂α +
∑

|β|<mj

cβ(X) ∂β .

The theory of D-modules (see [Bj1], chapter 5) shows that the singularities of
hypergeometric functions F (defined by means of analytic continuation of Horn
hypergeometric Puiseux series (4.20), the ak being governed by the relations (4.21)),
lie in the strong support of the C⟨X1, ..., Xn, ∂/∂X1, ..., ∂/∂Xn⟩-module

MD =
C⟨X, ∂/∂X⟩∑n

j=1 Dj C⟨X, ∂/∂X⟩
,

namely the algebraic subset U (MD) ⊂ Cn defined as the image through the
projection Cn × Pn−1(C)→ Cn of the so-called characteristic variety

charact (MD) :=
{
(z, ξ) ∈ C2n ; σ(P )(z, ξ) = 0 ∀P ∈

n∑
j=1

Dj C⟨X, ∂/∂X⟩
}

ofMD , that is :

U (MD) :=
{
z ∈ Cn ; ∃ξ ∈ Cn \ {0}, σ(P )(z, ξ) = 0 ∀P ∈

n∑
j=1

Dj C⟨X, ∂/∂X⟩
}

(since the stalk at z ∈ Cn \U (MD) of the C⟨X, ∂/∂X⟩ moduleMD is isomorphic

to O⊕r(z)

z for some integer r(z) ∈ N∗, see Theorem 7.1 in [Bj1]).

We assume here that U (MD) is a proper algebraic subset of Cn. This indeed
implies that the C⟨X, ∂/∂X⟩-module MD is holonomic, i.e. the dimension of its
characteristic variety charact (MD) equals exactly n (see [Bj1], chapter 3). More-
over, the space of analytic solutions of the Horn system (4.23) about each non
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singular point z ∈ Cn \U (MD) is finitely dimensional, with dimension r(z) = r,
equal to the dimension over C(z1, ..., zn) of MD (considered now as a quotient
C(z1, ..., zn)-vectorial space).
By Hartogs theorem, singularities of eventual (holomorphic) solutions F of the
Horn system (4.23) (that is functions defined by means of analytic continuation of
Horn hypergeometric Puiseux series (4.20), the ak being governed by the relations
(4.21)) then lie necessarily on the union of codimension one irreducible components
of the proper algebraic subset U (MD). Such union of codimension one irreducible
components is called the singular set of the Horn system . Let σj , j = 1, ..., n, be
the principal symbol of the operator Dj . In case the polynomial

Resξ [σ1(X, ξ), ..., σn(X, ξ)]

(the resultant being here understood in the sense of the classical Macaulay resultant
of n homogeneous polynomials in n variables with prescribed degrees m1, ...,mn,
see e.g. [Lang0], chapter IX), considered as a polynomial in z, is not identically
zero, its zero set

{z ∈ Cn ; Resξ[σ1(z, ξ), ..., σn(z, ξ)] = 0}
contains the singular set of the Horn system, thus the singular set of any hyperge-
ometric function F which is solution of this system.

4.3.5. Hypergeometric series : the GKZ point of view. Let A ⊂ ZN be
a finite collection of N +n+1 points which affinely generate ZN as a lattice and is
such dim∆A = N . Form the matrix A ∈MN+1,N+n+1(Z) with first row a0 equal

to ones(1,N+n+1) and column vectors aj := (ajk)k=1,...,N+n+1, j = 1, ..., N +n+1,
below the first row, corresponding to the list of coordinates of the points of A in
ZN (as in Definition 4.13, see also Example 4.22 above). Let B ∈ MN+n+1,n(Z)
such that the columns b0, ...,bn−1 of B correspond to a basis over Z of the n-rank
lattice MA of affine relations between points in A .

Definition 4.23 (toric ideal corresponding to a a finite subset A ⊂ ZN ). Let
A = {aj , j = 1, ..., N + n + 1} be a finite subset of N + n + 1 points in Zn

which affinely generate ZN over Z. Let A ∈ MN,N+n+1(Z) be the matrix which

columns are the vectors (1,aj) = (1, aj1, ..., a
j
N ), j = 1, ..., N + n + 1. For any

u ∈ Ker(A) ∩ ZN+n+1, set u = u+ − u− = max(u, 0)−max(−u, 0) (coordinate by
coordinate). The toric ideal I(A ) attached to A is defined as the binomial ideal in

C[Y1, ..., YN+n+1] generated by the binomials Y u+ − Y u−
, for u ∈ KerA∩ZN+n+1

or12 the ideal generated by the differential operators ∂u
+

Y − ∂u−

Y , for any such u, in
C⟨∂/∂Y1, ..., ∂/∂YN+n+1⟩.

Remark 4.24 (toric ideal versus lattice ideal). Let A ⊂ ZN be a finite subset
with cardinal N+n+1 as in Definition 4.23. LetMA be the Z-module (with rank n)
of affine relations between the elements in A . When ZN+n+1/MA is a free abelian
group, the toric ideal I(A ) is prime and coincides then with the ideal J (MA )

generated by the Y v+ − Y v−
, where v ∈ MA (which is known as the lattice ideal

of the lattice of affine relations MA ). Computation of toric or lattice ideals can be
performed for example with Singular. If b0, ...,bn−1 denotes a basis of the lattice
MA (as the column vectors of B do within the picture presented above), the ideal

12Which amounts to be equivalent, but from the point of view of differential operators.
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generated by the n binomials Y (bj)+ − Y (bj)− (or the corresponding differential

operators ∂(b
j)+ − ∂(bj)−) is called a lattice basis ideal for the lattice MA .

A unifying foundation for the theory of multivariate hypergeometric series, in-
spired by the treatment of Gauß hypergeometric series, was proposed in [GGR]
and [GKZ0] (see also [GKZ]). It is based on the notions of GKZ-differential sys-
tems (either A -hypergeometric systems or hypergeometric systems attached to the
lattice MA of affine relations of a finite subset A ⊂ ZN ).

Definition 4.25 (A -hypergeometric systems, hypergeometric systems attached
to a lattice of affine relations MA ). Let A ⊂ ZN a collection of N + n + 1
elements as in Definition 4.23. The GKZ-A -hypergeometric system (with pa-
rameter d = (d0, ..., dN )) attached to A is the left ideal in the Weyl algebra
C⟨Y1, ..., YN+n+1, ∂/∂Y1, ..., ∂/∂YN+n+1⟩ defined as

(4.32) HA (d) =
⟨
∂u

+

Y − ∂u
−

Y ; u ∈ KerA∩ZN+n+1
⟩
+
⟨
EulAk − dk ; k = 0, ..., N

⟩
,

where the Euler operators EulAk , k = 0, ..., N , have been previously defined in
(4.30). The GKZ hypergeometric system (with parameter the same d) attached to
the lattice of relations MA is defined as

(4.33) HMA (d) =
⟨
∂v

+

Y − ∂v
−

Y ; v ∈MA

⟩
+
⟨
EulAk − dk ; k = 0, ..., N

⟩
.

Remark 4.26. In order to emphazise the intimate relation with hypergeometric
functions, let us make the two following observations :

• if c = (c1, ..., cN+n+1) is taken such that A · c = d (c being determined
modulo MA ⊗Z R), then the hypergeometric series defined as the formal
sum

Z = (Z1, ..., ZN+n+1) 7−→
∑

v∈MA

Zv+γ

Γ(v1 + c1 + 1) · · ·Γ(vN+n+1 + cN+n+1 + 1)

is a formal solution of the system HMA (d) ; this explains the terminology
“Γ-hypergeometric series” used in [GGR] to denote the solutions of such
GKZ systems HMA ;
• the definition of the Horn system HMA (c) (which is derived from the Horn
system H (MA , c), see Example 4.22) is closely related with that of GKZ
system HMA (A · c) ; one has clearly the inclusions

(4.34) HMA (c) ⊂ HMA (A · c) ⊂ HA (A · c)

for any choice of c ∈ CN+n+1.

The key property shared by these GKZ systems HMA (c), HA (A · c), HMA (A · c)
(which share the same characteristic variety13) is that they are holonomic whatever
the value of c is. Moreover, one has the following important result :

Proposition 4.4 (singular locus of GKZ A -systems and principal A -de-
terminant). Let A ⊂ ZN be a finite set with cardinal N + n + 1 such that A

13Torsion eventually present in the module ZN+n+1/MA will be responsible only for multi-
plicities or embedded components.
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affinely generates ZN over Z and dim∆A = N . For any d ∈ CN+1, the Zariski
closure (in CN+n+1) of the set

U (MHA (d)) :=

=
{
Z ∈ CN+n+1 ; ∃ ξ ∈ CN+n+1 \ {0}, σ(P )(z, ξ) = 0 ∀P ∈ HA (d)

}
,

hence the singular locus14 of the GKZ A -system HA (d), equals the zero set of the
principal A -determinant EA defined in Definition 4.17.

Proof. It follows precisely from the definition of the A -principal determinant.
We refer to [GKZ0] for more details (see also [Cat]). □

In order to prove Theorem 4.19, it is therefore enough to prove that the singular
locus of a Horn system has a solid amœba (see Theorem 4.27 below) Because of the
correspondence between solutions of the Horn systems H (A , c) and HMA (c) which
has been explicited in Example 4.22, and since a monomial change of coordinates
such as Z 7→ ZB in (4.29) does not affect the solidity of amœbas, that is the fact
its genus equals zero, and transforms A -hypergeometric series into Horn series, the
fact that the singular locus of the Horn system H (A , c) has a solid amœba will
imply that the same is indeed true for the amœba of the hypersurface defined by
the principal A -determinant EA .

4.3.6. Singular locus of Horn systems. The subsection is devoted to the
proof of the following result15:

Theorem 4.27 ([PST]). The singular locus S of any compatible non-confluent
Horn system in Cn, when it is a proper subset of Cn (the Pj and Qj being defined as
product of affine factors with integer slopes, in accordance with Ore-Sato theorem),
has a solid amœba, that is the recession cone for each connected component C of
Rn \ AS has a non-empty interior.

Proof. We will restrict ourselves here to the case where the Horn system is
given by polynomials P and Q that can be expressed (as in (4.27)) as products
of affine forms ⟨Ak, X⟩ + ck, where the coefficients ck are generic in the following
sense:

• the rank of the matrix generated by the row vectors A1, ..., Ap (which
add together as the null vector because of the non-confluency hypothesis)
involved in P1, ..., Pn and Q1, ..., Qn equals n16 ;
• for each I ⊂ {1, ..., p} such that rankAI = n, then, if γ = γI denotes the
solution of the Cramer system AI · γ + cI = 0, one has

{z ∈ Cn ; ⟨Aj , γI + z⟩+ cj = 0} ∩ (γI + Zn) = ∅ ∀ j /∈ I.

14That is (see the arguments developped in the presentation of Horn systems in subsection

4.3.4), the algebraic hypersurface in CN+n+1 along which are located the singularities of the
solutions of the GKZ system HA (d).

15Which implies, as we already observed in the previous section, Theorem 4.19.
16Otherwise, the corresponding hypergeometric series solutions of the Horn system could be

considered as hypergeometric series in strictly less than n variables, and the problem would reduce
to the case where Cn is replaced by Cn−1.
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Since we intend to deal with Horn systems of the form H (MA , c) and the resultant
locus of Horn systems such as HMA (c) does not depend on the choice of c (see
Proposition 4.4), such genericity conditions will indeed not be restrictive for our
purpose.

Let C be an open connected component of Rn \ AS , where S denotes the singular
locus of the Horn system (which coincides in this case with the zero set of its
resultant). Since C is convex, the fundamental group π1(Log

−1(C)) is the free
group isomorphic to the direct product of the fundamental groups of n or less
punctured discs Dzj (0, ϵj) \ {0}, ϵj << 1, each of then being generated by the
homotopy class of the loop ηj , j = 1, ..., n, about the origin in the Czj plane.

Let us prove first that any solution z 7→ y(z) of the Horn system H (MA , c) in
the domain Log−1(C) can be expressed a priori in such a domain as a polynomial
function in Puiseux monomials zα and logarithmic functions log z1, ..., log zn, with
single-valued coefficient functions hα,β as coefficients, hence can be represented in
the form of the finite sum

(4.35) y(z) =
∑
α,β

hα,β(z) z
α (log z)β ,

where the single-valued coefficient functions hα,β can be expanded in Log−1(C) as
Laurent series in the coordinates z1, ..., zn. This can be achieved thanks to an argu-
ment based on the use of monodromy. Consider for that purpose a basis {y1, ..., yr}
for the space of holomorphic solutions of the Horn system H (MA , c) on a simply
connected domain in Log−1(C). Inspired by the argument used for example in
the proof of Theorem 2.4.12 in [SST], one introduces differential operators with
rational coefficients that constitute a basis {1, ∂[1], ..., ∂[r−1]} for the C(z1, ..., zn)-
vector spaceMD realized as the r-dimensional quotient space of the Weyl algebra
C⟨X, ∂/∂X⟩ by the left ideal generated by the differential operators Dj attached
to polynomials P1, ..., Pn and Q1, ..., Qn of the form (4.27) involved in the Horn
system H (MA , c). Then

z ∈ Log−1(C) 7−→


y1(z) . . . . . . yr(z)

∂[1]y1(z) . . . . . . ∂[1]yr(z)
...

...
...

...
∂[r−1]y1(z) . . . . . . ∂[r−1]yr(z)


defines a (multi-valued) matricial holomorphic function in Log−1(C). Since the
family {y1, ..., yr} is a basis of solutions of the hypergeometric system in some simply
connected subset in Log−1(C), there exists, for each j = 1, ..., n, an invertible matrix
Vj = e2iπWj with complex coefficients (all matrices Vj being commuting since the

fundamental group of Log−1(C) is commutative), such that:

∀ z ∈ Log−1(C), η∗j [Φ](z) = Φ(z) · Vj

(as multi-valued matricial functions). Hence the matricial function

z ∈ Log−1(C) 7−→ Φ(z) · z−W1
1 · · · z−Wn

n

becomes single-valued (the monodromy being killed precisely by the monomial fac-
tors in z1, ..., zn). This leads to the expression (4.35) for a multi-valued solution
z 7→ y(z) of the Horn system in Log−1(C). In fact, provided the parameters c in
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the choice of the Horn system H (MA , c) are generic, one may assert that no log-
arithmic factor appears in the expression (4.35); this follows indeed from the fact
that no logarithmic factor appears in the expression of the solution of any ordinary
hypergeometric differential equation (in one variable) whose vector of coefficients
c is generic. Any (multi-valued) solution of the Horn system H (MA , c) (with c
generic) in Log−1(C) can thus be assumed to be represented in Log−1(C) as a finite
linear combination of Puiseux series17

yγ : z ∈ Log−1(C) 7−→ y(z) = zγ
∑

k∈Supp(yγ)−γ⊂Zn

akz
k

(also solution of the same system, since any Horn system has polynomial coeffi-
cients), where the subset

Supp (yγ) := γ + {k ∈ Zn ; ak ̸= 0}, γ ∈ Cn,

is called the support of the Puiseux hypergeometric series yγ (the union of the
supports of all such yγ , solutions of the same Horn system, involved in a linear
combination with complex coefficients y being then the support of y). Note that
the convex enveloppe (in Cn) of the support of a Puiseux hypergeometric series
yγ solution of the Horn system H (MA , c) (hence of a linear combination with
constant coefficients of such yγ all solutions of the same Horn system) is always
a polyedral set (see e.g. T. Sadykov’s dissertation thesis [Sad]). Moreover, when
the coefficients c of the Horn system H (MA , c) happen to be generic (and the
row vectors A1, ..., Ap define a matrix with rank n), the recession cone (in Rn) of
the support of such an hypergeometric series

∑
γ cγyγ (solution of H (MA , c) as a

multi-valued function in some Log−1(C)) is a strongly convex affine polyedral cone
in Rn, i.e. a cone in Rn that does not contain any line through the origin. We will
admit here this crucial fact from the geometry of convex polytopes (cf. for example
Proposition 1.12 in [Zieg]) and profit from it to derive a contradiction with the
fact that the recession cone of C has empty interior in Rn. We will for that need
to invoke the following (bilateral) Abel’s lemma.

Lemma 4.28 (two sided Abel’s lemma [PST]). Let z 7→ L(z) be a (non neces-
sarily pure) Puiseux series in n variables which satisfies the non-confluent Horn sys-
tem H (MA , c) (with c generic and the rank of the subspace generated by A1, ..., Ap

equal to n), with non empty domain of convergence Ω. Let σ(L) be the recession
cone (in Rn) of the convex hull of Supp (L). Then, for any z ∈ Ω and some cone-
nient z′ ∈ Tn \ Ω, one has

(4.36) Log(z)− (σ(L))̌ ⊂ Log(Ω) ⊂ Log(z′)− (σ(L))̌ .

Therefore the recession cone of Log (Ω) coincides with the polar cone of the recession
cone σ(L).

Proof of lemma 4.28. The first inclusion in (4.36) follows from the classical
Abel’s lemma (already a crucial ingredient in this course, for example when dealing
with Laurent series in the proof of Proposition 2.1). Most interesting here is the
second inclusion in (4.36). As mentioned earlier, the recession cone σ(L) of the
convex hull of Supp (L) is a strongly convex polyedral cone in Rn, let us say
generated by vectors u1, ..., uN in Rn. Pick up then ξ ∈ Rn such that ⟨uj , ξ⟩ > 0 for

17Such a Puiseux series solution to a given Horn system is called a pure solution of this
system.
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j = 1, ..., N (strong convexity of σ(L) allows it). For the sake of simplicity18, one
may even suppose here that the support of L lies in Rn and coincides with σ(L)∩Zn.
It follows from the theory of (non-confluent) generalized hypergeometric functions
in one variable (see e.g. section 1.1 in [GGR] ; note that we deal here with the case
labelled there as p = q + 1, since

∑p
k=1⟨Ak, u

j⟩ = 0 thanks to the non-confluency
hypothesis) that the domain of convergence of the restricted hypergeometric series

∞∑
l=0

alujzlu
j

lies in {z ∈ Tn ; |zuj | < rj} for some rj > 0, which implies that

Log Ω ⊂ {v ∈ Rn ; ⟨v, uj⟩ < log rj , j = 1, ..., N}.

Take then z′ ∈ Tn such that

log z′ = ξ max
1≤j≤N

log rj
⟨uj , ξ⟩

,

so that

∀ j = 1, ..., N, ⟨uj ,Log z′⟩ ≥ log rj .

Then, one has z′ ∈ Tn \ Ω and the second inclusion in (4.36) is fulfilled. □

Let us now come back to the proof of Theorem 4.27. Consider a sequence (x[k])k∈N
of points in ∂C suth that the recession cone Γ̃(x[k])k,C of the intersection∩

k∈N

Hx[k](C)

of all Hx[k](C) (where Hx[k](C) denotes the supporting halfspace of the convex
subset C at the point x[k] ∈ ∂C) coincides with the recession cone ΓC of C (which
is assumed for the moment to be of dimension strictly less than n, that is with
empty interior). It is clear that such a sequence exists thanks to the definition of
the recession cone ΓC (see Proposition 3.3).

Since all points x[k], k ∈ N, belong to the image by Log of the set of singularities
of the Horn system, there exists, for each k ∈ N, a germ of (multivalued) solution
y[k] of the hypergeometric system H (MA , c) that certainly cannot be continued

analytically through at least one point in Log−1(x[k]), the analytic continuation
L[k] of this germ having (as seen in the preliminary part of the proof devoted to

the description of solutions in Log−1(C) of the hypergeometric system H (MA , c))
a development as a Puiseux hypergeometric series (non necessarily pure) whose
domain of convergence contains Log−1(C). Choose complex coefficients λk, k ∈ N,
such that, for any K ∈ N, the Puiseux hypergeometric series L[K] :=

∑K
0 λkL[k]

(which is also solution in Log−1(C) of the hypergeometric system H (MA , c) as
well as all the L[k], k ∈ N, are) is not identically zero. Denote as Ω[K] ⊃ Log−1(C)

the domain of convergence of the Puiseux hypergeometric series L[K] (K ∈ N). For
any K ∈ N, the recession cone ΓLog (Ω[K]) of Log (Ω[K]) is, by construction, a subset

18Since the coefficients c in the Horn system H (MA , c) are generic, this is not really
restrictive.
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of the recession cone of the intersection of halfspaces
∩K

k=1Hx[k](C). It follows then
from Lemma 4.28 that

−(σ(L[K]))̌ = Log(Ω[K]) ⊂ recession cone of
K∩

k=0

Hx[k](C).

As a consequence, the cone
∞∪
k=0

σ(L[K])

fails to be strongly convex, since the recession cones of the
∩K

k=0Hx[k](C), K ∈ N,
approach (whenK goes to +∞) the recession cone ΓC of C, and ΓC is assumed here
to have empty interior. But each of the cones σ(L[K]), K ∈ N, has its boundary
lying in a subset of the union of the zero sets of the polynomials P1, ..., Pn, Q1, ..., Qn

involved in the differential operators Dj defining the Horn system. The union of all
these zero sets being an arrangment of hyperplanes, all cones σ(L[K]), K ∈ N, need
to be taken among a finite set of distinct strongly polyedral cones in Rn. Therefore,
one at least among these cones fails to be strongly convex if their (finite) union is
not, which is apparently the case. This leads indeed to a contradiction with the
strong convexity of all cones σ(L[K]) for any K ∈ N. □





APPENDIX A

A brief overview about the concept of distribution

A.1. Interpreting functions in a dual way : the concept of distribution

In order to motivate the concept of distribution in an open subset U ⊂ Rn, one
needs to have in mind that the numerical precise “evaluation” of a given function
f : U 7→ C at a specific point x0 ∈ U is indeed quite irrealist from the practical
point of view : think for example about the case U = R, x0 = π ; the number π is
numerically tractable only through its rational approximations (which are unknown
beyond some fixed barrier), so that f(π) cannot precisely be numerically evaluated.
When f is locally integrable1 in U , it is therefore more relevant (from the practical
point of view) to interpret f(x0) as

f(x0) ≃
∫
U

f(x)φϵ(x0 + x) dx =

∫
U

f(x− x0)φϵ(x) dx, 0 < ϵ << 1,

where dx stands for the Lebesgue measure in U and φϵ is test function, that is a
function φϵ : U → [0,∞[, C∞ in x, with compact support Kϵ ⊂ {∥x∥ < ϵ}, such
that

∫
U
φϵ(x) dx =

∫
Kϵ
φϵ(x) dx = 1. Then, f(x0) is interpreted as some “averaged

value” of f about the point x0, this averaging being more are more precise as ϵ
schrinks towards 0.

Following this point of view, a locally integrable function f : U → C is known
through all its “tests”

⟨T, φ⟩ :=
∫
U

f(x)φ(x) dx,

where φ belongs to the R-vector space D(U) defined as the R-vector space of C∞

functions φ : U → C with compact support lying in U . Note that the vector space
D(U,C) is indeed very rich : for any open subset V ⊂ U , for any K ⊂⊂ V ⊂ U ,
there is always a function φK,V : U → [0, 1], C∞, with compact support included
in V , such that φK,V ≡ 1 in a some open neighborhood of K in V (this is a
consequence of Urysohn’s lemma).

One can write D(U,C) as
∪

K⊂⊂U DK(U,C), where DK(U,C) denotes the R-vector
space of C∞ functions φ : U → C with support lying in the compact K. On
DK(U,C), one can define a topology (even defined by a metric dK), namely that of
uniform convergence on K of functions, together with all their derivatives. One may
then equip D(U,C) =

∪
K⊂⊂U DK(U,C) with the so called inductive limit topology

of the (metrizable) topologies on the DK(U,C), K ⊂⊂ U . Such an inductive limit
topology fails unfortunately to be metrizable (because of Baire’s theorem).

1It may even happen that f is not punctually defined, but just locally integrable, as for

example f : z 7→ log |h(z)|, where h denotes a meromorphic function in some open subset
U ⊂ Cn ≃ R2n.
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The R-vector space D′(U,C), which elements are called C-valued distributions in U ,
is defined as the topological R-dual space of D(U,C) (equipped precisely with this
non metrizable inductive limit topology). Though the topology of D(U,C) is not
metrizable, it remains enough, from the pratical point of view, just to know what
means the fact that a sequence (φk)k≥0 of elements in D(U,C) converges towards
some element φ ∈ D(U,C) : it just means that, for k large enough, all φk lie in
the same DK0(U,C) for some K0 ⊂⊂ U , and that the sequence (φk)k≥0 precisely
converges towards φ in DK0(U,C) (for the distance dK0 defining the topology of
uniform convergence on K0 for functions, together with all their derivatives). A
distribution T ∈ D′(U,C) is then a R-linear form T : D(U,C) → C, such that,
whenever a sequence (φk)k≥0 (of elements in D(U,C)) converges towards the null
function in D(U,C) (in the sense precised above), then lim

k→∞
⟨T, φk⟩ = 0.

As a dual space of a R-vectorial topological space, D′(U,C) (when U denotes an
open subset of Rn) can be equipped with a so called weak topology. Instead of defin-
ing this topology, it is enough for pratical applications just to retain the following
principle of convergence for sequences of distributions in D′(U,C) : A sequence
(Tk)k≥0 of elements in D′(U,C) converges (with respect to the weak topology on
D′(U,C)) towards some element T ∈ D′(U,C) if and only if, for all test function
φ ∈ D(U,C), on has limk→+∞⟨Tk, φ⟩ = ⟨T, φ⟩. An important point to have in
mind is the following, which is again a consequence of Baire’s theorem : whenever
a sequence (Tk)k≥0 of distributions in D′(U,C) is such that, for any φ ∈ D(U,C),
limk→+∞⟨Tk, φ⟩ exists in C, then T : φ ∈ D(U,C) 7−→ limk→+∞⟨Tk, φ⟩ defines
also a an element of D′(U,C), that is a distribution in U .

When T ∈ D′(U,C), its support Supp (T ) is the closed subset of U defined as the
complement (in U) of the largest open subset V ⊂ U such that T|V = 0, that is :

∀φ ∈ D(U,C), Suppφ ⊂⊂ V =⇒ ⟨T, φ⟩ = 0.

Its singular support SS (T ) is the closed subset of U defined as the complement (in
U) of the largest open subset V ⊂ U such that T|V can be defined by a C∞ function
fV in V , that is :

∀φ ∈ D(U,C), Suppφ ⊂⊂ V =⇒ ⟨T, φ⟩ =
∫
V

fV (x)φ(x) dx.

Of course, one has always SS(T ) ⊂ T , the inclusion being in general strict : for
example, if p is a Laurent tropical polynomial function in Rn (such as (1.12)), and
if one considers the distribution :

Tp : φ ∈ D(Rn,C) 7−→
∫
Rn

p(x)φ(x) dx,

one has Supp (Tp) = Rn and SS (Tp) = Vtrop(p) (cf. Definition 1.2).

A.2. Example of distributions

Let U ⊂ Rn be an open subset of Rn. A locally integrable function f : U → C
defines a distribution in U , namely the distribution :

f : φ ∈ D(U,C) 7−→
∫
U

f(x)φ(x) dx.

Example A.1. When f1, ..., fm are holomorphic functions in some open subset
U ⊂ Cn, then log(|f1|2 + · · ·+ |fm|2) defines a distribution in U .
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Recall that a complex Radon measure T in U ⊂ Rn denotes a continuous linear form
on the R-vector space C(U,C) of continuous functions with compact support in U ,
equipped with the (metrizable) topology of uniform convergence on any compact
subspace. There are then four unique positive borelian measures µ+, µ−,n u

+, ν−

on U (with fine mass on any compact subset), such that

∀φ ∈ C(U,C), ⟨T, φ⟩ =
∫
U

φ(x) dµ+(x)−
∫
U

φ(x) dµ−(x)

+ i
(∫

U

φ(x) dν+(x)−
∫
U

φ(x) dν−(x)
)
.

(A.1)

This is a consequence of F. Riesz’s theorem, that connects integration theory from
the pointset point of view with integration theory from the functional point of view.
Any such Radon measure T = µ+−µ−+i(ν+−ν−) defines a distribution in U since
D(U,C) embbeds continuously in C(U,C) : Take the action of T on a test-fonction
as (A.1). Any complex Radon measure T in U defines then a distribution.

Example A.2 (the Dirac mass at a point). When x0 ∈ U ⊂ Rn, the Dirac
mass

δx0 : φ ∈ D(U,C) 7−→ φ(x0)

defines a distribution in U .

Any distribution T ∈ D′(U,C) which is such that

∀φ ∈ D(U,R) ,
(
φ ≥ 0 in U

)
=⇒ ⟨T, φ⟩ ≥ 0

(T is then said to be a positive distribution in U) is in fact a positive measure in U ,
that is of the form

T : φ ∈ D(U,C) 7−→
∫
U

φ(x) dµ+(x),

where µ+ is a positive Borel measure in U with finite mass on any compact subset.

There are of course distributions in U ⊂ Rn which are neither locally integrable
functions nor measures.

Example A.3 (differential operators and distributions with punctual support).
Any differential operator with constant coefficients

P = P (D) ∈ C
[ ∂

∂x1
, ...

∂

∂xn

]
induces distributions in U : given x0 ∈ U ,

P (D)[δx0 ] : φ ∈ D(U,C) 7−→
(
P (−D)[φ]

)
x=x0

is a distribution2. Moreover, any distribution T in U such that Supp (T ) = {x0}
is of this form. That is, C-valued distributions with support a given point x0 in U
form a C-algebra which is isomorphic to C[X1, ..., Xn].

2One will justify in the next section why it is denoted as P (D)[δx0 ].
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Example A.4 (Principal Value distributions in U ⊂ Cn). A quite important
example of a distribution which is not a locally integrable function, nor a complex
Radon measure, nor of the form P (D)[δx0 ], occurs in the complex setting. Let U
be an open subset of Cn and h = f/g : U 7→ P1(C) be a meromorphic function in
U . Then, for any φ ∈ D(U,C), the limit, when ϵ tends to 0+, of

ϵ 7−→
∫
|g|≥ϵ

f(z)

g(z)
φ(z) dx1dy1 . . . dxndyn

exists, thus defines a distribution in U , called Principal Value of f/g, denoted as
VP [h]. When h−1(∞) ̸= ∅, VP[h] is neither a locally integrable function nor even
a complex Radon measure in U .

When U = Rn, a distribution T ∈ D′(Rn,C) is said to be temperate if, after lifted on
sphere Sn\{(0, ..., 0, 1)} via the inverse stereographic projection, it can be continued
as a distribution on the whole compact sphere Sn. Such temperate distributions on
Rn form the R-vector space S ′(Rn,C) (S stands here for “spherical”). This space
S ′(Rn,C) is the R-dual space of the Schwartz space S (Rn,C) of C∞ functions
that decrease at infinity in Rn (as well as all their derivatives) faster than any
polynomial function (the Gauß function x 7→ exp(−∥x∥2) being the prototype of
an element in such a class). The interest of S ′(Rn,C) ⊂ D′(Rn,C) lies in the fact
that the Fourier transform (which is a fundamental tool in mathematical analysis
or in physics) realises a R-isomorphism of S (Rn,C) onto itself, thus, thanks to
duality, induces also a R-isomorphism between S ′(Rn,C) onto itself.

A.3. Differentiating distributions

Let U be an open subset in Rn. When φ ∈ D(U,C) and f : U → C is a
C1 function, the formula of integration by parts (i.e. the so-called fundamental
theorem of analysis in dimension 1) ensures that :

(A.2)

∫
U

∂f

∂xj
φ(x) dx = −

∫
U

f(x)
∂φ

∂xj
dx, j = 1, ..., n.

This formula suggests the possibility of differentiating distributions T ∈ D′(U,C).
One needs just to observe that, when T ∈ D′(U,C) is a distribution in U , the
R-linear maps

(A.3)
∂T

∂xj
: φ ∈ D(U,C) 7−→ −

⟨
T ,

∂φ

∂xj

⟩
, j = 1, ..., n,

define distributions in U . Moreover the maps

T ∈ D′(U,C) 7−→ ∂T

∂xj
∈ D′(U,C), j = 1, ..., n,

are continuous (D′(U,C) being equipped with its weak topology).

Let us give here four fundamental examples. The two last ones (especially the
third one) will reveal to be capital in this “tropical” course (since it involves the
log function).

Example A.5 (derivative of the Heaviside function). Here is the “historical”
example, at the origin of the invention of distribution theory by Paul Dirac around
the beginning of the nineties. Let Y : R 7→ [0, 1] be the Heaviside function
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defined by Y (t) = 0 when t < 0 and Y (t) = 1 when t ≥ 0. Denote also as Y
the corresponding distribution :

φ ∈ D(R,C) 7−→
∫
R
Y (t)φ(t) dt =

∫
[0,∞]

φ(t) dt.

One has

∀φ ∈ D′(R,C), ⟨Y ′, φ⟩ = −⟨Y, φ′⟩ = −
∫
[0,∞]

φ′(t) dt = −
[
φ(t)

]∞
0

= φ(0).

One has thefore the formule Y ′ = δ0, where δ0 denotes the Dirac mass at the origin,
that is the positive measure :

φ ∈ C(U,C) 7−→ φ(0).

The formula Y ′ = δ0 is known as the jump formula.

Example A.6 (Cauchy-Riemann operator and Cauchy formula). Consider the
function z ∈ C∗ 7→ 1/z ∈ C. It is holomorphic in C∗, that is C∞ and solution of
the Cauchy-Riemann equation

∂

∂z

[1
z

]
:=

1

2

( ∂
∂x

+ i
∂

∂y

) [1
z

]
≡ 0 ∀ z ∈ C∗.

As a function which is locally integrable in C, it defines also a distribution :

1

z
: φ ∈ D(R2,C) 7−→

∫ ∫
R2

φ(ξ, η)

ξ + iη
dξdη.

We claim that, in the sense of distributions in C, one has the Cauchy formula

(A.4)
∂

∂z

[1
z

]
= π δ(0,0),

δ(0,0) being the Dirac mass at the origin (0, 0), that is

(A.5) ∀φ ∈ D(R2,C), φ(0) = − 1

π

∫ ∫
R2

∂φ

∂ζ
(ξ, η)

dξdη

ζ
.

Formula (A.5) results from the so-called Cauchy-Pompeiu formula, which is itself
an avatar of Green-Riemann’s formula : for any open disk D(z0, R) in C, for any
complex function φ defined and C1 in a neighborhood of D, one has :

(A.6) ∀ z ∈ D(z0, R), φ(z) =
1

2iπ

∫
γz0,R

φ(ζ)

ζ − z
dζ − 1

π

∫ ∫
D

∂φ

∂ζ
(ξ, η)

dξdη

ζ − z
,

where γz0,R : θ ∈ [0, 2π] 7−→ z0 + Reiθ. Note that, when φ is holomorphic in a

neighborhood of D, then the double integral in (A.6) disappears and one recovers
Cauchy representation formula for holomorphic functions. When φ ∈ D(R2,C), one
can take z0 = 0 and R large enough so that D(0, R) contains the support of φ ; the
contour integral in (A.6) then disappears and one gets (A.5), taking z = z0 = 0.

Example A.7 (Lelong-Poincaré équation, Weil divisors). Let U be a connected
open subset of C and let h : U → P1(C) be a meromorphic function in U which is
not identically zero in U . One can associate to h a (principal) Weil divisor defined
as

(A.7) div(h) =
∑

α∈h−1(0)

µα {α} −
∑

β∈h−1(∞)

νβ {β},
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where µα, for α ∈ h−1(0), denotes the multiplicity of α as a zero of h, and νβ , for
β ∈ h−1(∞), denotes the order of β as a pole of h. On the other hang, log |h| :
U → R (defined almost everywhere in U) defines a locally integrable function in U ,
that is a distribution :

log |h| : φ ∈ D(U,C) 7−→
∫ ∫

U

log |h(ξ + iη)|φ(ξ, η) dξdη.

One can check immediately, as a consequence of (A.4), that, in the sense of distri-
butions,

(A.8) ∆[log |h|] = 2π
( ∑

α∈h−1(0)

µα δα −
∑

β∈h−1(∞)

νβ δβ

)
.

Note that the right-hand side of (A.8) can interpreted as the “dual” of the right-
hand side of (A.7) : instead of considerating points such as {α} or {β} (that is
0-cycles in U), one considers in the right-hand side of (A.8) evaluation of test
functions at these points, that is action on test-fonctions of the Dirac masses δα or
δβ , which of course amounts to be the same (from the dual point of view). Formula
(A.8) is known as Lelong-Poincaré formula. What makes it interesting is that it
connects some analytic object (the distribution log |h| involved in the left-hand side)
with some geometric object (the principal Weil divisor involved in the right-hand
side).

Example A.8 (Lelong Poincaré formule, Cartier divisors). Consider an open
subset U of a Riemann surface and a Cartier divisor on U , that is a collection of
pairs (Uι, hι), where the open subsets Uι are such that

∪
ι Uι = U , and, for any

index ι, hι : Uι → P1(C) is a meromorphic function on Uι, such that, for any pair
(ι, ι′) such that Uι∩Uι′ ̸= ∅, hι/hι′ is an invertible holomorphic function in Uι∩Uι′ .
Consider, for each ι, a strictly positive C∞ function ρι : Uι → C, such that

(A.9) ∀ ι, ι′, Uι ∩ Uι′ ̸= ∅ =⇒
|hι|
ρι
≡ |hι

′ |
ρ′ι

in Uι ∩ Uι′ .

Such data (ρι)ι can be interpreted as choosing an hermitian metric | |ρ on the
holomorphic line bundle3 over U which corresponds to the Cartier divisor (Uι, hι)ι.
One defines globally (almost everywhere on U) a function log |h|ρ : U → R, setting:

∀ ι, ∀ z ∈ Uι, log |h(z)|ρ := log
|hι(z)|
ρι

.

Take the action of the operator ddc := (i/π) ∂∂, where ∂ transforms (p, q)-differential
forms (0 ≤ p + q ≤ 2) into (p + 1, q) forms, ∂ transforms (p, q)-differential forms

into (p, q + 1)-differential forms (d2 = ∂2 = ∂
2
= 0, ∂∂ = −∂∂). Then one has :

(A.10) ddc(log |h|ρ) + ddc(log ρ) =
∑

α∈h−1(0)

µα δα −
∑

β∈h−1(∞)

νβ δβ .

The smooth globally defined (1, 1)-form ddc(log ρ) (defined as ddc(log ρι) in each
Uι) is called the first Chern form c1(| |ρ) of the hermitian line bundle corresponding

3By a holomorphic line bundle over U , one means a collection of 1-dimension C-vectorial
spaces Lz , z ∈ U (called fibers) that depend “holomorphically” on z. Chosing a smooth hermitian

metric metric on this bundle (thus equipping it with a structure of hermitian holomorphic line
bundle over U) amounts to chose a metric | |ρ,z on each fiber, so that it depends in a smooth way

on z ∈ U .
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to the choice of the metric (ρι)ι on the holomorphic line bundle corresponding to
the Cartier divisor (Uι, hι)ι. Note that∑

α∈h−1(0)

µα {α} −
∑

β∈h−1(∞)

νβ {β}

represents the Weil divisor div (h) assoociated to the Cartier divisor (Uι, hι)ι. For-
mula (A.10) can thus be rewritten in some abridged was as

ddc(− log |h|ρ) + div (h) = c1(| |ρ),
and is known as the geometric Lelong-Poincaré equation. The function Gρ :=
− log |h|ρ, which is such that ddcGρ + div (h) is a smooth form, is called a Green
function with respect to the Cartier divisor (Uι, hι). Such a notion reveals to be
fundamental in Arakelov’s theory (see e.g. [Lang] for an introduction).

A.4. Fundamental solutions and hypoellipticity

For any partial differential operator with constant coefficients in n variables

P = P (D) ∈ C
[ ∂

∂x1
, ...

∂

∂xn

]
,

a fundamental theorem due to B. Malgrange and L. Ehrenpreis asserts that one
can always find a temperate distribution T ∈ S (Rn,C) such that P (D)[T ] = δ0.
Such a distribution is called a fundamental solution of P (D).

Example A.9. When n = 2, example A.6 shows that a fundamental solution
for the Cauchy-Riemann operator ∂/∂z = 1/2(∂/∂x + i∂/∂y) is the locally inte-
grable function z 7→ 1/π×1/z. Example A.7 shows that a fundamental solution for
the Laplace operator ∆ in R2 is the locally integrable function z 7→ (log |z|2)/(2π).
In Rn (n ≥ 3), a fundamental solution for the Laplace operator is −cn∥x∥2−n,
where cn = Γ(n/2)π−n/2/(2(n− 2)).

A differential operator that admits a fundamental solution T such that SS (T ) = {0}
is called hypoelliptic. Hypoelliptic operators do not propagate singulatities, that is,
one has

SS(T ) ⊂ SS (P (D)[T ]) ∀T ∈ D′(U,C)
when T ∈ D′(U,Rn), U being an open subset of Rn.

As a consequence, if a (k, 0)-differential form (0 ≤ k ≤ n) with distribution coeffi-
cients (i.e. a (k, 0)-current)

T =
∑
#I=k

TI dzI

on a complex n-dimensional manifold X satisfies ∂T = 0, than all distributions TI ,
#I = k, are holomorphic functions on X ; the differential form T is then called
an abelian form on X . This emphazises the central role of the Cauchy-Riemann
operator ∂ in complex geometry.
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(résumé), Paris, available on line at

http://www.college-de-france.fr/default/EN/all/ana geo/resumes.htm

[Dan] V. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978), pp. 97-154.
[De0] J. P. Demailly, Complex Analytic and Differential Geometry, available on line at

http://www-fourier.ujf-grenoble.fr/∼demailly/manuscripts/agbook.pdf
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