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Abstract

I give a pedagogical introduction to Brownian motion, stochastic calculus in-
troduced by Ito in the fifties, following the elementary (at least not too technical)
approach by Föllmer [Föl81]. Based on this, I develop the connection with linear
and semi-linear parabolic PDEs. Then, I provide and analyze some Monte Carlo
methods to approximate the solution to these PDEs

This course is aimed at master students, PhD students and researchers interesting
in the connection of stochastic processes with PDEs and their numerical counterpart.
The reader is supposed to be familiar with basic concepts of probability (say first
chapters of the book Probability essentials by Jacod and Protter [JP03]), but no a
priori knowledge on martingales and stochastic processes is required.
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1 The Brownian motion and related processes

1.1 A brief history of Brownian motion

Historically, the Brownian motion (BM in short) is associated with the analysis of motions
which time evolution is so disordered that it seems difficult to forecast their evolution,
even in a very short time interval. It plays a central role in the theory of random processes,
because in many theoretical and applied problems, the Brownian motion (or the diffusion
processes that are built from BM) provides simple limit models on which many calculations
can be made.

Robert Brown (1773-1858)

In 1827, the English botanist Robert Brown (1773-1858) first described the erratic
motion of fine organic particles in suspension in a gas or a fluid. At the XIXth century,
after him, several physicists had admitted that this motion is very irregular and does not
seem to admit a tangent; thus one could not speak of his speed, nor apply the laws of
mechanics to him! In 1900 [Bac00], Louis Bachelier (1870-1946) introduced the Brownian
motion to model the dynamics of the stock prices, but his approach then is forgotten until
the sixties. . . His PhD thesis, Théorie de la spéculation, is the starting point of modern
finance.

But Physics is the field at the beginning of the XXth century which is at the origin of
great interest for this process. In 1905, Albert Einstein (1879-1955) built a probabilistic
model to describe the motion of a diffusive particle: he found that the law of the particle
position at the time t, given the initial state x, admits a density which satisfies to the heat
equation, and actually it is Gaussian. Its theory is then quickly confirmed by experimental
measurements of satisfactory diffusion constants. The same year as Einstein, a discrete



4 E. Gobet

version of the Brownian motion is proposed by the Polish physicist Smoluchowski using
random walks.

Norbert Wiener1 (1894-1964).

In 1923, Norbert Wiener (1894-1964) built rigorously the random function that is
called Brownian motion; he established in particular that the trajectories are continuous.
By 1930, while following an idea of Paul Langevin, Ornstein and Uhlenbeck studied the
Gaussian random function which bears their name and which seems to be the stationary
or mean-reverting equivalent model associated to the Brownian motion.

Paul Lévy (1886-1971)

It is the beginning of a very active theoretical research in Mathematics. Paul Lévy
(1886-1971) discovered then, with other mathematicians, many properties of the Brownian
motion [Lév39] and introduced a first form of the stochastic differential equations, which
study is later systematized by K. Itô (1915-2008). His work is gathered in a famous treaty
published in 1948 [Ito51] which is usually referred to as Itô stochastic calculus.

1The pictures of Wiener-Lévy-Itô are from archives of "Mathematisches Forschungsinstitut Oberwol-
fach".
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Kiyosi Itô (1915-2008)

But History knows sometimes incredible bounces. Indeed in 2000, the French Academy
of Science opened a manuscript remained sealed since 1940 pertaining to the young math-
ematician Doeblin (1915-2008), a French telegraphist died during the German offensive.
Doeblin was already known for his remarkable achievements in the theory of probability
due to his works on the stable laws and the Markov processes. This sealed manuscript
gathered in fact his recent research, written between November 1939 and February 1940:
is was actually related to his discovery (before Itô) of the stochastic differential equations
and their relations with the Kolmogorov partial differential equations. Perhaps the Itô
stochastic calculus could have been called Doeblin stochastic calculus. . .

1.2 The Brownian motion and its paths

In the following, we study the basic properties of the Brownian motion and its paths.

1.2.1 Definition and existence

The very erratic path which is a specific feature of the Brownian motion is in general
associated with the observation that the phenomenon, although very disordered, has a
certain time homogeneity, i.e. the origin date does not have importance to describe the
time evolution. These properties underly the next definition.

Definition 1.1 (of standard Brownian motion) A standard Brownian motion is a
random process {Wt; t ≥ 0} with continuous paths, such that

• W0 = 0;

• the time increment Wt −Ws with 0 ≤ s < t has the Gaussian law2, with zero mean
and variance equal (t− s);

2A Gaussian random variable X with mean µ and variance σ2 > 0 (often denoted by N (µ, σ2)) is the
r.v. with density

gµ,σ2(x) =
1

σ
√

2π
exp[− (x− µ)2

2σ2
], x ∈ R.

If σ2 = 0, X = µ with probability 1. Moreover, for any u ∈ R, E(euX) = euµ+ 1
2u

2σ2
.
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• for any 0 = t0 < t1 < t2..... < tn, the increments {Wti+1
−Wti ; 0 ≤ i ≤ n − 1} are

independent3 random variables.

There are important remarks following from the definition.

1. The state Wt of the system at time t is distributed as a Gaussian r.v. with mean 0
and variance t (increasing as time gets larger). Its probability density is

P(Wt ∈ [x, x+ dx]) = g(t, x)dx =
1√
2πt

exp(−x2/2t)dx. (1.1)

2. With probability 95%, we have |Wt| ≤ 1.96
√
t (see Figure 1.1) for a given time t.

However, it may occur that W goes out this confidence interval.
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Figure 1.1: Simulation of a BM with the 95%-confidence interval curves f±(t) = ±2
√
t.

3. The random variable Wt, as the sum of its increments, can be decomposed as a
sum of independent Gaussian r.v.: this property serves as a basis from the further
stochastic calculus.

Theorem 1.2 The Brownian motion exists!

Proof :
There are different constructive ways to prove the existence of BM. Here, we use a Fourier
based approach, showing thatW can be represented as a superposition of Gaussian signals.
Also, we use a equivalent characterization of BM as a Gaussian process4 with zero mean
and covariance function Cov(Wt,Ws) = min(s, t) = s ∧ t.

3Two random variables X1 and X2 are independent if and only if E(f(X1)g(X2)) = E(f(X1))E(g(X2))
for any bounded functions f and g. This extends similarly to a vector.

4(X1, . . . , Xn) is a Gaussian vector if and only if for any (λi)1≤i≤n ∈ Rn,
∑n
i=1 λiXi has a Gaussian

distribution. Independent Gaussian random variables form a Gaussian vector. A process (Xt)t is Gaus-
sian if (Xt1 , . . . , Xtn) is a Gaussian vector for any times (t1, . . . , tn) and any n. A Gaussian process is
characterized by its mean m(t) = E(Xt) and its covariance function K(s, t) = Cov(Xs, Xt).
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Let (Gm)m≥0 be a sequence of independent Gaussian r.v. with zero mean and unit variance
and set

Wt =
t√
π
G0 +

√
2
π

∑
m≥1

sin(mt)
m

Gm.

We now show that W is a BM on [0, π]; then it is enough to concatenate and sum up
such independent processes to get finally a BM defined on R+. We sketch the proof of our
statement on W . First, the series is a.s. 5 convergent since this is a Cauchy sequence in
L2: indeed, thanks to the independence of the Gaussian random variables, we have

‖
∑

m1≤m≤m2

sin(mt)
m

Gm‖2L2
=

∑
m1≤m≤m2

sin2(mt)
m2

≤
∑
m1≤m

1
m2

−→
m1→+∞

0.

The partial sum has a Gaussian distribution, thus the a.s. limit6 too. The same argument
gives that W is a Gaussian process. It has zero mean and its covariance is the limit of the
covariance of partial sums: thus

Cov(Wt,Ws) =
ts

π
+

2
π

∑
m≥1

sin(mt)
m

sin(ms)
m

.

The above series is equal to min(s, t) for (s, t) ∈ [0, π]2, by a standard computation of the
Fourier coefficients of the function t ∈ [−π, π] 7→ min(s, t) (for s fixed). �

In many applications, it is useful to consider non standard BM.

Definition 1.3 (of arithmetic Brownian motion) An arithmetic Brownian motion
is a random process {Xt; t ≥ 0} where Xt = x0 + bt+ σWt and

• W is a standard BM;

• x0 ∈ R is the starting value of X;

• b ∈ R is the drift parameter;

• σ ∈ R is the diffusion parameter.

Usually, σ can be taken non-negative due to the symmetry of BM (see Proposition 1.4).
X is still a Gaussian process, which position Xt at time t is distributed as N (x0 + bt, σ2t).

5We recall that "an event A occurs a.s. " (almost surely) if P(ω : ω ∈ A) = 1 or equivalently if
{w : w /∈ A} is a set of zero probability measure.

6Here, we use the following standard result: let (Xn)n≥1 be a sequence of random variables, each
having the Gaussian distribution with mean µn and variance σ2

n. If the distribution of Xn converges,
then (µn, σ2

n) converge to (µ, σ2), and the limit distribution is Gaussian with mean µ and variance σ2.
We recall that if Xn converges a.s. , then it also converges in distribution.
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Figure 1.2: Arithmetic BM with different drift parameters.

1.2.2 First easy properties of the Brownian path

Proposition 1.4 Let {Wt; t ∈ R+} a standard BM.

i) Symmetry property: {−Wt; t ∈ R+} is a standard BM.

ii) Scaling property: for any c > 0, {W c
t ; t ∈ R+} is a standard BM where

W c
t = c−1Wc2t. (1.2)

iii) Time reversal: for any fixed T , Ŵ T
t = WT −WT−t defines a standard BM on

[0, T ].

iv) Time inversion: {Ŵt = tW1/t, t > 0, Ŵ0 = 0} is a standard BM.

The scaling property is important and illustrates the fractal feature of BM path: ε times
Wt behaves like a BM at time ε2t.

Proof :
It is a direct verification of the BM definition, related to independent, stationary and
Gaussian increments. The continuity is also easy to verify, except for the case iv) at time
0. For this, we use that lim

t→0+
tW1/t = lim

s→+∞
Ws
s = 0, see Proposition 1.11. �

1.3 Time-shift invariance and Markov property

Previously, we have studied simple spatial transformation of BM. We now consider time-
shifts, by first considering deterministic shifts.

Proposition 1.5 (Invariance by a deterministic time-shift) The Brownian Motion
shifted by h ≥ 0, given by {W̄ h

t = Wt+h −Wh; t ∈ R+}, is another BM, independent of
the Brownian Motion stopped at h, {Ws; s ≤ h}.
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In other words, {Wt+h = Wh + W̄ h
t ; t ∈ R+} is a BM starting from Wh. The above

property is associated to the weak Markov property which states (possibly applicable to
other processes) that the distribution of W after h conditionally on the past up to time h
depends only on the present value Wh.

Proof :
The Gaussian property of W̄ h is clear.
The independent increments of W induce those of W̄ h.
It remains to show the independence w.r.t. the past up to h, i.e. the sigma-field gener-
ated by {Ws; s ≤ h}, or equivalently w.r.t. the sigma-field generated by {Ws1 , . . .WsN }
for any 0 ≤ s1 ≤ · · · ≤ sN ≤ h. The independence of increments of W ensures that
(W̄ h

t1 , W̄
h
t2 − W̄ h

t1 , · · · , W̄
h
tk
− W̄ h

tk−1
) = (Wt1+h − Wh, · · · ,Wtk+h − Wtk−1+h) is indepen-

dent of (Ws1 ,Ws2 −Ws1 , · · · ,Wsj −Wsj−1). Then (W̄ h
t1 , W̄

h
t2 , · · · , W̄

h
tk

) is independent of
{Ws; s ≤ h}. �

As a consequence, we can derive a nice symmetry result making the connection between
the maximum of BM monitored along a finite time grid t0 = 0 < t1 < · · · < tN = T and
that of WT only.

Proposition 1.6 For any y ≥ 0, we have

P[sup
i≤N

Wti ≥ y] ≤ 2P[WT ≥ y] = P[|WT | ≥ y]. (1.3)

Proof :
The equality at the r.h.s. comes from the symmetric distribution ofWT . Now we show the
inequality on the left. Denote by t∗y the first time tj when W reaches the level y. Notice
that {supi≤N Wti ≥ y} = {t∗y ≤ T} and {t∗y = tj} = {Wti < y,∀i < j,Wtj ≥ y}. For
each j < N , the symmetry of Brownian increments gives P[WT −Wtj ≥ 0] = 1

2 . Since the
shifted BM (W̄ tj

t = W̄tj+t −Wtj : t ∈ R+) is independent of (Ws : s ≤ tj), we have

1
2

P[sup
i≤N

Wti ≥ y] =
1
2

P[t∗y ≤ T ] =
1
2

N∑
j=0

P[t∗y = tj ]

=
1
2

P[Wti < y,∀i < N,WT ≥ y] +
N−1∑
j=0

P[Wti < y,∀i < j,Wtj ≥ y]P[WT −Wtj ≥ 0]

=
1
2

P[Wti < y,∀i < N,WT ≥ y] +
N−1∑
j=0

P[Wti < y,∀i < j,Wtj ≥ y,WT −Wtj ≥ 0]

≤ P[Wti < y,∀i < N,WT ≥ y] +
N−1∑
j=0

P[Wti < y,∀i < j,Wtj ≥ y,WT ≥ y]

= P[t∗y ≤ T,WT ≥ y] = P[WT ≥ y].

At the two last lines, we have used {Wtj ≥ y,WT −Wtj ≥ 0} ⊂ {Wtj ≥ y,WT ≥ y} and
{WT ≥ y} ⊂ {t∗y ≤ T}. �
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Taking a grid with time step T/N with N → +∞, we have supi≤N Wti ↑ sup0≤t≤T Wti .
Then, we can pass to the limit (up to some probabilistic convergence technicalities) in the
inequality (1.3) to get

P[ sup
0≤t≤T

Wt ≥ y] ≤ P[|WT | ≥ y]. (1.4)

Actually, the inequality (1.4) is an equality: it is proved later in Proposition 1.9.
Now, our aim is to extend Proposition 1.5 to the case of stochastic time-shifts h.

Without extra assumption on h, the result is false in general: a counter-example is the
last passage time of W at zero before the time 1 (L = sup{t ≤ 1 : Wt = 0}), which
does not satisfy the property. Indeed, since (Ws+L −Ws)s≥0 do not vanish a.s. at short
time (due to the definition of L), the marginal distribution can not be Gaussian and the
time-shifted process can not be a BM.

The right class for extension is the class of stopping times, defined as follows.

Definition 1.7 (Stopping time) A stopping time is non-negative random variable U
(taking possibly the value +∞), such that for any t ≥ 0, the event {U ≤ t} depends only
on the BM values {Ws; s ≤ t}.
The stopping time is discrete if it takes only a countable set of values (u1, · · · , un, · · · ).
In other words, it suffices to observe the BM until time t to know whether or not the event
{U ≤ t} occurs. Of course, deterministic times are stopping times. A more interesting
example is the first hitting time of a level y > 0

Ty = inf{t > 0;Wt ≥ y};
it is a stopping time, since {Ty ≤ t} = {∃s ≤ t,Ws = y} owing to the continuity of W .
Observe that the counter-example of last passage time L is not a stopping time.

Proposition 1.8 Let U be a stopping time. On the event {U < +∞}, the Brownian
motion shifted by U ≥ 0, i.e. {W̄U

t = Wt+U − WU ; t ∈ R+}, is a BM independent of
{Wt; t ≤ U}.
This result is usually referred to as the strong Markov property.
Proof :

We show that for any 0 ≤ t1 < · · · < tk, any 0 ≤ s1 < · · · < sl, any (x1, · · · , xk) and any
measurable sets (B1, · · · , Bl−1), we have

P(W̄U
t1 < x1, · · · , W̄U

tk
< xk,Ws1 ∈ B1, · · · ,Wsl−1

∈ Bl−1, sl ≤ U < +∞)

=P(W ′t1 < x1, · · · ,W ′tk < xk)P(Ws1 ∈ B1, · · · ,Wsl−1
∈ Bl−1, sl ≤ U < +∞), (1.5)

where W ′ is a BM independent of W . We begin with the easier case where U is a discrete
stopping time valued in (un)n≥1: then

P(W̄U
t1 < x1, · · · , W̄U

tk
< xk,Ws1 ∈ B1, · · · ,Wsl−1

∈ Bl−1, sl ≤ U < +∞)

=
∑
n

P(W̄U
t1 < x1, · · · , W̄U

tk
< xk,Ws1 ∈ B1, · · · ,Wsl−1

∈ Bl−1, sl ≤ U,U = un)

=
∑
n

P(W̄ un
t1

< x1, · · · , W̄ un
tk

< xk,Ws1 ∈ B1, · · · ,Wsl−1
∈ Bl−1, sl ≤ U,U = un)

=
∑
n

P(W ′t1 < x1, · · · ,W ′tk < xk)P(Ws1 ∈ B1, · · · ,Wsl−1
∈ Bl−1, sl ≤ U,U = un)

= P(W ′t1 < x1, · · · ,W ′tk < xk)P(Ws1 ∈ B1, · · · ,Wsl−1
∈ Bl−1, sl ≤ U < +∞)
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applying at the last equality but one the time-shift invariance with deterministic shift un.
For the general case for U , we apply the result to discrete stopping time Un = [nU ]+1

n , and
then pass to the limit using the continuity of W . �

1.4 Maximum, behavior at infinity, path regularity

We apply the strong Markov property to identify the law of the maximum of the BM.

Proposition 1.9 (Symmetry principle) For any y ≥ 0 and any x ≤ y, we have

P[sup
t≤T

Wt ≥ y;WT ≤ x] =P[WT ≥ 2y − x], (1.6)

P[sup
t≤T

Wt ≥ y] =P[|WT | ≥ y] = 2

∫ +∞

y√
T

e−
1
2
x2

√
2π

dx. (1.7)

Figure 1.3: Brownian motion (WTy+t = W̄
Ty
t + y : t ∈ R+) starting from y and its

symmetric path.

Proof :
Denote by Ty = inf{t > 0 : Wt ≥ y} and +∞ if the set is empty. Observe that Ty is a
stopping time and that {supt≤T Wt ≥ y;WT ≤ x} = {Ty ≤ T ;WT ≤ x}. By Proposition
1.8, on {Ty ≤ T}, (WTy+t = W̄

Ty
t + y : t ∈ R+) is a BM starting from y, independent

of (Ws : s ≤ Ty). By symmetry (see Figure 1.3), the events {Ty ≤ T,WT < x} and
{Ty ≤ T,WT > 2y − x} has the same probability. But for x ≤ y, we have {Ty ≤ T,WT >
2y − x} = {WT > 2y − x} and the first result is proved.
For the second result, take y = x and write P[supt≤T Wt ≥ y] = P[supt≤T Wt ≥ y,WT >
y] + P[supt≤T Wt ≥ y,WT ≤ y] = P[WT > y] + P[WT ≥ y] = 2P(WT ≥ y) = P(|WT | ≥ y).

�

As a consequence of the identification of the law of the maximum up to a fixed time, we
prove that the range of BM becomes R at time goes to infinity.
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Proposition 1.10 With probability 1, we have

lim sup
t→+∞

Wt = +∞, lim inf
t→+∞

Wt = −∞.

Proof :
For T ≥ 0, set MT = supt≤T Wt. As T ↑ +∞, it defines a sequence of increasing r.v., thus
converging a.s. to a limit r.v. M∞. Applying twice the monotone convergence theorem,
we obtain

P[M∞ = +∞] = lim
y↑+∞

P[M∞ > y] = lim
y↑+∞

(
lim
T↑+∞

P[MT > y]
)

= lim
y↑+∞

( lim
T↑+∞

P[|WT | ≥ y]
)

= 1

using (1.7). This proves that lim sup
t→+∞

Wt = +∞ a.s. and a symmetry argument gives the

liminf. �

However, the increasing rate of W is sublinear as time goes to infinity.

Proposition 1.11 With probability 1, we have

lim
t→+∞

Wt

t
= 0.

Proof :
The strong law of large numbers yields that Wn

n = 1
n

∑n
i=1(Wi −Wi−1) converges a.s. to

E(W1) = 0. The announced result is thus proved along the sequence of integers. To fill
the gaps between integers, set M̃n = supn<t≤n+1(Wt −Wn) and M̃ ′n = supn<t≤n+1(Wn −
Wt): due to Proposition 1.9, M̃n and M̃ ′n have the same distribution as |W1|. Then, the
Chebyshev inequality writes

P(|M̃n|+ |M̃ ′n| ≥ n3/4) ≤ 2
E(|M̃n|2) + E(|M̃ ′n|2)

n3/2
= 4n−3/2,

implying that
∑

n≥0 P(|M̃n| + |M̃n| ≥ n3/4) < +∞. Thus, by Borel-Cantelli’s lemma, we

obtain that with probability 1, for n large enough |M̃n| + |M̃ ′n| < n3/4, i.e. M̃n
n and M̃ ′n

n
both converge a.s. to 0. �

By time inversion, Ŵt = tW1/t is another BM: the Ŵ -growth in infinite time gives an
estimate on W at 0, which writes

+∞ = lim sup
t→+∞

|Ŵt| = lim sup
s→0+

|Ws −W0|
s

which shows that W is not differentiable at time 0. By time-shift invariance, this is also
true at any given time t. The careful reader may notice that the set of full probability
measure depends on t and it is unclear at this stage if a single full set is available for any
t, i.e. if

P(∃t0 such that t 7→ Wt is differentiable at t0) = 0.
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Actually, the above result holds true and it is due to Paley-Wiener-Zygmund (1933). The
following result is of comparable nature: we claim that a.s. there does not exist any
interval on which W is monotone.

Proposition 1.12 (Nowhere monotonicity) We have

P(t 7→ Wt is monotone on an interval) = 0.

Proof :
Define M↑s,t = {ω : u 7→ Wu(ω) is increasing on the interval]s, t[} and M↓s,t similarly. Ob-
serve that

M = {t 7→Wt is monotone on the interval} =
⋃

s,t∈Q,0≤s<t
(M↑s,t ∪M

↓
s,t),

and since this is a countable union, it is enough to show P(M↑s,t) = P(M↓s,t) = 0 to conclude
P(M) ≤

∑
s,t∈Q,0≤s<t[P(M↑s,t) + P(M↓s,t)] = 0. For fixed n, set ti = s+ i(t− s)/n, then

P(M↑s,t) ≤ P(Wti+1 −Wti ≥ 0, 0 ≤ i < n) =
n−1∏
i=0

P(Wti+1 −Wti ≥ 0) =
1
2n
,

leveraging the symmetric distribution of the increments. Taking now n large gives P(M↑s,t) =
0. We argue similarly for P(M↓s,t) = 0. �

In view of this lack of smoothness, it seems impossible to define differential calculus along
the paths of BM. However, as it will further developed, BM paths enjoy a nice property
of finite quadratic variations, which serves to build an appropriate stochastic calculus.

There are much more to tell about the properties of Brownian motion. We mention
few extra properties without proof:

• Holder regularity: for any ρ ∈ (0, 1
2
) and any deterministic T > 0, there exists

a a.s. finite r.v. Cρ,T such that

∀ 0 ≤ s, t ≤ T, |Wt −Ws| ≤ Cρ,T |t− s|ρ.

• Law of iterated logarithm: setting h(t) =
√

2t log log t−1, we have

lim sup
t↓0

Wt

h(t)
= 1 a.s. and lim inf

t↓0

Wt

h(t)
= −1 a.s.

• Zeros of Brownian motion: the set χ = {t ≥ 0 : Wt = 0} of the zeros of W is
closed, unbounded, with null Lebesgue measure and it has no isolated points.
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1.5 The random walk approximation

Another algorithmic way to build a Brownian motion consists in rescaling a random walk.
This is very simple and very useful for numerics: it leads to the so-called tree methods
and it has some connections with finite differences in PDEs.

Consider a sequence (Xi)i of independent random variables with Bernoulli type dis-
tribution: P(Xi = ±1) = 1

2
. Then

Sn =
n∑
i=1

Xi

defines a random walk on Z. Like BM, it is a process with stationary independent incre-
ments, but it is not Gaussian. Actually Sn has a binomial distribution:

P(Sn = −n+ 2k) = P(k rises) = 2−n
( n
k

)
.

A direct computation shows that E(Sn) = 0 and Var(Sn) = n. When we rescale the
walk and we let n go towards infinity, we observe however that due the Central Limit
Theorem, the distribution of Sn√

n
converges to the Gaussian law with zero mean and unit

variance. The fact that it is equal to the law of W1 is not a coincidence, since it can be
justified that the full trajectory of the suitably rescaled random walk converges towards
that of a Brownian motion, see Figure 1.4. This result is known as Donsker theorem, see
for instance [Bre92] for a proof.

Proposition 1.13 Define (Y n
t )t as the piecewise constant process

Y n
t =

1√
n

bntc∑
i=1

Xi. (1.8)

The distribution of the process (Y n
t )t converges to that of a Brownian motion (Wt)t as

n→ +∞, i.e. for any continuous functional

lim
n→∞

E(Φ(Y n
t : t ≤ 1)) = E(Φ(Wt : t ≤ 1)).

The last result gives a simple way to evaluate numerically expectations of functionals of
BM. It is the principle of the so-called binomial tree methods.

Link with Finite Difference scheme. The random walk can be interpreted as a
explicit FD scheme for the heat equation. We anticipate a bit on the following where the
connection between BM and heat equation will be more detailed.

For t = i
n
(i ∈ {0, . . . , n}) and x ∈ R, set

un(t, x) = E
(
f
(
x+ Y n

i
n

))
.
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Figure 1.4: The random walk rescaled in time and space. From left to right: the process
Y n for n = 50, 100, 200. The pieces of path with same color are built with the same Xi.

The independence of (Xi)i gives

un
( i
n
, x
)

= E
(
f(x+ Y n

i−1
n

+
Xi√
n

)
)

=
1

2
un
(i− 1

n
, x+

1√
n

)
+

1

2
un
(i− 1

n
, x− 1√

n

)
,

un
(
i
n
, x
)
− un

(
i−1
n
, x
)

1
n

=
1

2

un
(
i−1
n
, x+ 1√

n

)
− 2un

(
i−1
n
, x
)

+ 1
2
un
(
i−1
n
, x− 1√

n

)(
1√
n

)2 .

Thus, un related to the expectation of the random walk can be read as an explicit FD
scheme of the heat equation ∂tu(t, x) = 1

2
∂2
xxu(t, x) and u(0, x) = f(x), with time step 1

n

and space step 1√
n
.

1.6 Other stochastic processes

We present other one-dimensional processes, with continuous trajectories, which derive
from the Brownian motion.

1. Geometric Brownian motion: this model is popular in finance to model stocks and
other assets by a positive process.

2. Ornstein-Uhlenbeck process: it has important applications in physics, mechanics,
economy and finance to model stochastic phenomena exhibiting mean-reverting fea-
tures (like spring endowed with random forces, interest-rates or inflation, . . . ).

3. Stochastic differential equations: it gives the more general framework.

1.6.1 Geometric Brownian motion

Definition 1.14 A Geometric Brownian Motion (GBM in short) with deterministic ini-
tial value S0 > 0, drift coefficient µ and diffusion coefficient σ, is a process (St)t≥0 defined
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by
St = S0e

(µ− 1
2
σ2)t+σWt , (1.9)

where {Wt; t ≥ 0} is standard BM.

As the argument in the exponential has a Gaussian distribution, the random variable St
(with t fixed) is known as Lognormal.

This is a process with continuous trajectories, which takes strictly positive values. The
GBM is often used as a model of asset (see Samuelson [Sam65]): this choice is justified
on the one hand, by the positivity of S and on the other hand, by the simple Gaussian
properties of its returns:

• the returns log(St)− log(Ss) are Gaussian with mean (µ− 1
2
σ2)(t− s) and variance

σ2(t− s).

• For all 0 < t1 < t2..... < tn, the relative increments {Sti+1

Sti
; 0 ≤ i ≤ n − 1} are

independent.

The assumption of Gaussian returns is not valid in practice but this model still serves as
a proxy for more sophisticated model.

Naming µ the drift parameter may be surprising at first sight since it appears in the
deterministic component as (µ − 1

2
σ2)t. Actually, a computation of expectation gives

easily
E(St) = S0e

(µ− 1
2
σ2)tE(eσWt) = S0e

(µ− 1
2
σ2)te

1
2
σ2t = S0e

µt.

The above equality gives the interpretation to µ as a mean drift term: µ = 1
t

log[E(St)/S0].

1.6.2 Ornstein-Uhlenbeck process

Let us return to physics and to the Brownian motion by Einstein in 1905. In order to
propose a more adequate modeling of the phenomenon of particles diffusion, we introduce
the process of Ornstein-Uhlenbeck and its principal properties.
So far we have built the Brownian motion like a model for a microscopic particle in
suspension in a liquid subjected to thermal agitation. An important criticism made with
this modeling concerns the assumption that displacement increments are independent and
they do not take into account the effects of the particle speed due to particle inertia.

Let us denote bym the particle mass and by Ẋ(t) its speed. Owing to Newton’s second
law, the momentum change mẊ(t+ δ(t))−mẊ(t) is equal to the resistance −kẊ(t)δt of
the medium during time δt, plus the momentum change due to molecular shocks, that we
assume to be with stationary independent increments and thus associated with a BM. The
process thus modeled is called sometimes the physical Brownian motion. The equation
for the increments becomes

mδ[Ẋ(t)] = −kẊ(t)δt+mσδWt.

Trajectories of the Brownian motion being not differentiable, the equation has to be read
in an integral form

mẊ(t) = mẊ(0) +

∫ t

0

−kẊ(s)ds+mσWt.
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Ẋ(t) is thus solution of the linear stochastic differential equation (known as Langevin
equation)

Vt = v0 − a
∫ t

0

Vsds+ σWt

where a = k
m
. If a = 0, we recover an arithmetic BM and to avoid this reduction, we

assume a 6= 0 in the sequel. However, the existence of solution is not clear since W is
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Figure 1.5: Ornstein-Uhlenbeck paths with V0 = 1, a = 2 and σ = 0.1.

not differentiable. To overcome this difficulty, set Zt = Vt − σWt: that leads to the new
equation

Zt = v0 − a
∫ t

0

(Zs + σWs)ds,

which is now a linear ordinary differential equation that can be solved path by path.
The variation of parameter method gives the representation of the unique solution of this
equation like

Zt = v0e
−at − σ

∫ t

0

ae−a(t−s)Wsds.

The initial solution is thus

Vt = v0e
−at + σWt − σ

∫ t

0

ae−a(t−s)Wsds. (1.10)

Using stochastic calculus, we will derive later (see Subsection 3.3) another convenient
representation of V as follows:

Vt = v0e
−at + σ

∫ t

0

e−a(t−s)dWs (1.11)

using a stochastic integral not yet defined. From (1.10), assuming that v0 is deterministic,
we can show the following properties (see also Subsection 3.3).

• For a given t, Vt has a Gaussian distribution: indeed, as the limit of a Riemann
sum, it is the a.s. limit a Gaussian r.v, see footnote 6 page 7.
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• More generally, V is a Gaussian process.

• Its mean is v0e
−a t, its covariance function Cov(Vt, Vs) = e−a(t−s) σ2

2a
(1 − e−2at) for

t > s.

Observe that for a > 0, the Gaussian distribution parameters of Vt converges to N (0, σ
2

2a
)

as t→ +∞: it does not depend anymore on v0 and illustrates the mean-reverting feature
of this model, see Figure 1.5.

1.6.3 Stochastic differential equations and Euler approximations

The previous example gives the generic form of a Stochastic Differential Equation, that
generalizes the usual Ordinary Differential Equations x′t = b(xt) or in integral form xt =
x0 +

∫ t
0
b(xs)ds.

Definition 1.15 Let b, σ : x ∈ R 7→ R be two functions, respectively the drift and the
diffusion coefficient. A Stochastic Differential Equation (SDE in short) with parameter
(b, σ) and initial value x is a stochastic process (Xt)t≥0 solution of

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs, t ≥ 0,

where (Wt)t is a standard BM.

In this definition, we use a stochastic integral
∫ t

0
. . . dWs which has not yet been defined:

it will be explained in the next section. For the moment, the reader needs to know that in
the simplest case where σ is constant, we simply have

∫ t
0
σ(Xs)dWs = σWt. The previous

examples fit this setting:

• the arithmetic BM corresponds to b(t, x) = b et σ(t, x) = σ;

• the OU process corresponds to b(t, x) = −ax et σ(t, x) = σ.

Taking σ to be non constant allows for more general situations and more flexible models.
Instead of discussing now the important issues of existence and uniqueness to such SDE,
we rather consider natural approximations of them, namely the Euler scheme (which is
the direct extension of Euler scheme for ODEs).

Definition 1.16 Let (b, σ) be given drift and diffusion coefficients. The Euler scheme
associated to the SDE with coefficients (b, σ), initial value x and time step h, is defined
by{

Xh
0 = x,

Xh
t = Xh

ih + b(Xh
ih)(t− ih) + σ(Xh

ih)(Wt −Wih), i ≥ 0, t ∈ (ih, (i+ 1)h].
(1.12)

In other words, Xh is a piecewise arithmetic BM with coefficients on the interval (ih, (i+
1)h] computed according to the functions (b, σ) evaluated atXh

ih. In general, the law ofXh
t

is not known analytically: at most, we can give explicit representations using an induction
of the time-step. On the other hand, as it will be seen further, the random simulation ofXh

at time (ih)i≥0 is easily performed by simulating the independent Brownian increments
(W(i+1)h − Wih). The accuracy of the approximation of X by Xh is expected to get
improved as h goes to 0.
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Complementary references: see [Nel67], [KS91], [RY05].

2 Feynman-Kac representations of PDE solutions

Our purpose in this section is to make the connection between the expectations of function-
als of BM and the solution of second order linear parabolic partial differential equations
(PDE in short): this leads to the well-known Feynman-Kac representations. We extend
this point of view to other simple processes introduced before.

2.1 The heat equations

2.1.1 Heat equation in the whole space

Let us return to the law of x+Wt which Gaussian density is

g(t, x, y) := g(t, y − x) =
1√
2πt

exp(−(y − x)2/2t),

often called in this context the fundamental solution of the heat equation. One of the key
properties is the property of convolution

g(t+ s, x, y) =

∫
R
g(t, x, z)g(s, z, y)dz (2.1)

which says in an analytical language that x+Wt+s is the sum of the independent Gaussian
variables x + Wt and Wt+s − Wt. A direct calculation on the density shows that the
Gaussian density is solution to the heat equation w.r.t. the two variables x and y{

g′t(t, x, y) = 1
2
g′′yy(t, x, y),

g′t(t, x, y) = 1
2
g′′xx(t, x, y).

(2.2)

This property is extended to a large class of functions built from the Brownian motion.

Theorem 2.1 (Heat equation with Cauchy initial boundary condition) Let f be
a bounded7 measurable function. Consider the function

u(t, x, f) = E[f(x+Wt)] =

∫
R
g(t, x, y)f(y)dy :

the function u is infinitely continuously differentiable in space and time for t > 0 and
solves the heat equation

u′t(t, x, f) =
1

2
u′′xx(t, x, f), u(0, x, f) = f(x). (2.3)

7This growth condition can be relaxed into |f(x)| ≤ C exp
(
|x|2
2α

)
for any x, for some positive constants

C and α: in that case, the smoothness of the function u is satisfied for t < α only.
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Equation (2.3) is the heat equation with initial boundary condition (Cauchy problem, see
[Fri75]).

Proof :
Standard Gaussian estimates allow to differentiate u w.r.t. t or x by differentiating under
the integral sign: then, we have

u′t(t, x, f) =
∫

R
g′t(t, x, y)f(y)dy =

∫
R

1
2
g′′xx(t, x, y)f(y)dy =

1
2
u′′xx(t, x, f).

�

When the function considered is regular, another formulation can be given to this relation,
which will play a significant role in the following.

Proposition 2.2 If f is of class C2
b (bounded and twice continuously differentiable with

bounded derivatives)8), we have

u′t(t, x, f) = u(t, x,
1

2
f ′′xx),

or equivalently using a probabilistic viewpoint

E[f(x+Wt)] = f(x) +

∫ t

0

E
[1
2
f ′′xx(x+Ws)

]
ds. (2.4)

Proof :
Write u(t, x, f) = E[f(x + Wt)] =

∫
R g(t, 0, y)f(x + y)dy =

∫
R g(t, x, z)f(z)dz and differ-

entiate under the integral sign: it gives

u′′xx(t, x, f) =
∫

R
g(t, 0, y)f ′′xx(t, x+ y)dy = u(t, x, f ′′xx) =

∫
R
g′′xx(t, x, z)f(z)dz,

u′t(t, x, f) =
∫

R
g′t(t, x, z)f(z)dz =

1
2

∫
R
g′′xx(t, x, z)f(z)dz =

1
2
u(t, x, f ′′xx),

using at the first equality two integration by parts and at the second equality the heat
equation satisfied by g. Then the probabilistic representation (2.4) easily follows:

E[f(x+Wt)]− f(x) = u(t, x, f)− u(0, x, f) =
∫ t

0
u′t(s, x, f)ds

=
∫ t

0
u(s, x,

1
2
f ′′xx)ds =

∫ t

0
E
[1
2
f ′′xx(x+Ws)

]
ds.

�

8Here again, the boundedness could be relaxed to some exponential growth.
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2.1.2 Heat equation in an interval

We now extend the previous results in two directions: first, we allow the function f to
also depend smoothly on time and second, the final time t is replaced by a stopping time
U . The first extension is straightforward and we state it without proof.

Proposition 2.3 Let f be a function of class C1,2
b (bounded, once continuously differen-

tiable in time, twice in space, with bounded derivatives): we have

E[f(t, x+Wt)] = f(0, x) +

∫ t

0

E[f ′t(s, x+Ws) +
1

2
f ′′xx(s, x+Ws)]ds

= f(0, x) + E
[∫ t

0

(f ′t(s, x+Ws) +
1

2
f ′′xx(s, x+Ws))ds

]
(2.5)

The second equality readily follows from Fubini’s theorem to invert E and time integral:
this second form is more suitable for an extension to stochastic times t.

Theorem 2.4 Let f be a function of class C1,2
b , we have

E[f(U, x+WU)] = f(0, x) + E
[∫ U

0

(f ′t(s, x+Ws) +
1

2
f ′′xx(s, x+Ws))ds

]
(2.6)

for any bounded9 stopping time U .

The above identity between expectations is far to be obvious to establish by hand since
the law of U is quite general and an analytical computation is out of reach. This level
of generality on U is quite interesting for applications: it provides a powerful tool to
determine the distribution of hitting times, to show how often multidimensional BM
visits a given point or a given set. Regarding this lecture, it gives a key tool to derive
probabilistic representations of heat equation with Dirichlet boundary conditions.

Proof :
Let us start by giving alternatives of the relation (2.5). We observe that it could have been
written with a random initial condition X0, like for instance

E[1A0f(t,X0 +Wt)] = E
[
1A0f(0, X0) + 1A0

∫ t

0
(f ′t(s,X0 +Ws) +

1
2
f ′′xx(s,X0 +Ws))ds

]
,

with W independent of X0 and where the event A0 depends on X0. Similarly, using the
time-shifted BM {W̄ u

t = Wt+u −Wu; t ∈ R+} that is independent of the initial condition
x+Wu (Proposition 1.5), it leads to

E[1Auf(t+ u, x+Wu + W̄ u
t )] = E

[
1Auf(u, x+Wu) +

1Au

∫ t

0
(f ′t(u+ s, x+Wu + W̄ u

s ) +
1
2
f ′′xx(u+ s, x+Wu + W̄ u

s ))ds
]

9meaning that for a deterministic positive constant C, P(U ≤ C) = 1
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for any event Au depending only of the values {Ws : s ≤ u}, or equivalently

E[1Auf(t+ u, x+Wt+u)] =E
[
1Auf(u, x+Wu)

+ 1Au

∫ t+u

u
(f ′t(s, x+Ws) +

1
2
f ′′xx(s, x+Ws))ds

]
.

Set Mt = f(t, x + Wt) − f(0, x) −
∫ t

0 (f ′t(s, x + Ws) + 1
2f
′′
xx(s, x + Ws))ds: our aim is to

prove E(MU ) = 0. Observe that the preliminary computation has shown that

E(1Au(Mt+u −Mu)) = 0 (2.7)

for t ≥ 0. In particular, taking Au = Ω we obtain that the expectation E(Mt) is constant10

w.r.t. t.
Now, consider first that U is a discrete stopping time valued in {0 = u0 < u1 < · · · < un =
T}: then

E(MU ) =
n−1∑
k=0

E(MU∧uk+1
−MU∧uk) =

n−1∑
k=0

E(1U>uk(Muk+1
−Muk)) = 0

by applying (2.7) since {U ≤ uk} does depend only of {Ws : s ≤ uk} (by definition of a
stopping time).
Second, for a general stopping time (bounded by T ), we take Un = [nU ]+1

n which is a stop-
ping time converging to U : since (Mt)0≤t≤T is bounded and continuous, the dominated
convergence theorem gives 0 = E(MUn) −→

n→∞
E(MU ). �

As a consequence, we now make explicit the solutions of the heat equation in an
interval and with initial condition: it is a partial generalization 11 of Theorem 2.1, which
characterized them in the whole space. The introduction of (non-homogeneous) boundary
conditions of Dirichlet type is connected to the passage time of the Brownian motion.

Corollary 2.5 (Heat equation with Cauchy-Dirichlet boundary condition) Consider
the PDE 

u′t(t, x) = 1
2
u′′xx(t, x), for t > 0 and x ∈]a, b[,

u(0, x) = f(0, x) for t = 0 and x ∈ [a, b],

u(t, x) = f(t, x) for x = a or b, with t ≥ 0.

If a solution u of class C1,2
b ([0, T ]× [a, b]) exists, then it is given by

u(t, x) = E[f(t− U, x+WU)]

where U = Ta ∧ Tb ∧ t (using the previous notation for the first passage time Ty at the
level y for the BM starting at x (i.e. (x+Wt)t≥0).

10actually, (2.7) proves that M is a martingale and the result to be proved is related to the optional
sampling theorem.

11indeed, the result gives uniqueness and not the existence.
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Proof :
First, extend smoothly the function u outside the interval [a, b] in order to apply previous
results. The way to extend is unimportant since u and its derivatives are only evaluated
inside [a, b]. Clearly U is a bounded (by t) stopping time. Apply now the equality (2.6)
to the function (s, y) 7→ u(t − s, y) = v(s, y) of class C1,2

b ([0, t] × R), satisfying v′s(s, y) +
1
2v
′′
yy(s, y) = 0 for (s, y) ∈ [0, t]× [a, b]. We obtain

E[v(U, x+WU )] = v(0, x) + E
[∫ U

0
(v′s(s, x+Ws) +

1
2
v′′yy(s, x+Ws))ds

]
= v(0, x),

since for s ≤ U , (s, x+Ws) ∈ [0, t]×[a, b]. To conclude, we easily check that v(0, x) = u(t, x)
and v(U, x+WU ) = f(t− U, x+WU ). �

2.1.3 A probabilistic algorithm to solve the heat equation

To illustrate our purpose, we consider a toy example regarding the numerical evaluation
of u(t, x) = E(f(x + Wt)) using random simulations, in order to discuss main ideas
underlying to Monte Carlo methods. Actually, the arguments below apply also to u(t, x) =
E[f(t−U, x+WU)] with U = Ta ∧ Tb ∧ t, although there are some extra significant issues
in the simulation of (U,WU).

For the notational simplicity, denote by X the random variable inside the expectation
to compute, that is X = f(x + Wt) in our toy example. As a difference with a PDE
method (based on finite differences of finite elements), a standard Monte Carlo method
provides an approximation of u(t, x) at a given point (t, x), without evaluating the values
at other points. Actually, this fact holds because the PDE u is linear; in Section 5 related
to non-linear PDEs, the situation is different.

The Monte Carlo method is able to provide a convergent, tractable approximation of
u(t, x), with a priori error bounds, under two conditions.

1. An arbitrary large number of independent realizations ofX can be generated (denote
them by (Xi)i≥1): in our toy example, this is straightforward since it requires only
the simulation of Wt which is distributed as a Gaussian r.v. N (0, t) and then we
have to compute X = f(x + Wt). The independence of simulations is achieved by
using a good generator of random numbers, like the Mersenne Twister12 generator.

2. Additionally, X which is already integrable (E|X| < +∞) is assumed to be square
integrable: Var(X) < +∞.

Then, by the law of large numbers, we have

XM =
1

M

M∑
i=1

Xi −→
M→+∞

E(X); (2.8)

hence the empirical mean of simulations of X provides a convergent approximation of the
expectation E(X). As a difference with PDE methods where some stability conditions may

12http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html


24 E. Gobet

be required (like the Courant-Friedrichs-Lewy condition), the above Monte Carlo method
does not require any extra condition to converge: it is unconditionally convergent. The
extra moment condition is used to define a priori error bounds on the statistical error :
the approximation error is controlled by means of the Central Limit Theorem

lim
M→+∞

P

(√
M

Var(X)

(
XM − E(X)

)
∈ [a, b]

)
= P(G ∈ [a, b]),

where G is a centered unit variance Gaussian r.v. Observe that the error bounds are
stochastic: we can not do better than arguing that with probability P(G ∈ [a, b]), the
unknown expectation (asymptotically as M → +∞) belongs to the interval[

XM − b
√

Var(X)

M
,XM − a

√
Var(X)

M

]
.

This is known as a confidence interval at level P(G ∈ [a, b]). The larger a and b, the larger
the confidence interval, the higher the confidence probability.
To obtain a fully explicit confidence interval, one may replace Var(X) by its evaluation
using the same simulations:

Var(X) = E(X2)− (E(X))2 ≈ M

M − 1

(
1

M

M∑
i=1

X2
i −X

2

M

)
:= σ2

M .

The factor M/(M − 1) plays the role of unbiasing13 the value Var(X), although it is not
a big deal for M large (M ≥ 100). Anyway, we can prove that the above conditional
intervals are asymptotically unchanged by taking the empirical variance σ2

M instead of
Var(X). Gathering these different results and seeking a symmetric confidence interval
−a = b = 1.96 and P(G ∈ [a, b]) ≈ 95%, we obtain the following: with probability 95%,
for M large enough, we have

E(X) ∈
[
XM − 1.96

σM√
M
,XM − 1.96

σM√
M

]
. (2.9)

The symmetric confidence interval at level 99% is given by −a = b = 2.58. Since a
Monte Carlo method provides random evaluations of E(X), different program runs will
give different results (as a difference with a deterministic method which systematically
has the same output) which seems uncomfortable: that is why it is important to produce
a confidence interval. This is also very powerful and useful to have at hand a numerical
method able to state that the error is at most of xxx with high probability.

The confidence interval depends on

• the confidence level P(G ∈ [a, b]), chosen by the user;

• the number of simulations: improving the accuracy by a factor 2 requires 4 times
more simulations;

13Indeed, we can show that E(σ2
M ) = Var(X).
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Figure 2.1: Monte Carlo computations of E(eG/10) = e
1
2

1
102 ≈ 1.005 on the left and

E(e2G) = e
1
2

22 ≈ 7.389 on the right, where G is a Gaussian r.v. with zero mean and unit
variance. The empirical mean and the symmetric 95%-confidence intervals are plotted
w.r.t. the number of simulations.

• the variance Var(X) or its numerical approximation σ2
M , which depends on the prob-

lem to handle (and not much onM as soon asM is large). This variance can be very
different from one problem to another: on Figure 2.1, see the width of confidence
intervals for two similar computations. There exist variance reduction techniques
able to significantly reduce this factor in order to provide thicker confidence intervals
while maintaining the same computational cost.

Another advantage of such a Monte Carlo algorithm is the simplicity of code, consisting
of one loop on the number of simulations; within this loop, the empirical variance should
be simultaneously computed. However, the simulation procedure of X can be delicate in
some situations, see Section 4.

At last, we focus our discussion on the impact of the dimension of the underlying
PDE, which has been equal to 1 so far. Consider now a state variable in Rd (d ≥ 1) and
a heat equation with Cauchy initial condition in dimension d; (2.3) becomes

u′t(t, x, f) =
1

2
∆u(t, x, f), u(0, x, f) = f(x), t > 0, x ∈ Rd, (2.10)

where ∆ =
∑d

i=1 ∂
2
xixi

stands for the Laplacian in Rd. Using similar arguments as in
dimension 1, we check that

u(t, x, f) =

∫
Rd

1

(2πt)d/2
exp(−|y − x|2/2t)f(y)dy = E[f(x+Wt)]

where W =

 W1
...
Wd

 is d-dimensional BM, i.e. each Wi is one-dimensional BM and the

d components are independent.

• The Monte Carlo computation of u(t, x) is then achieved using independent simula-
tions of X = f(x+Wt): the accuracy is then of order 1/

√
N and the computational

effort is N × d. Thus, the dimension has a very low effect on the complexity of the
algorithm.
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Figure 2.2: Brownian motion in dimension 2 and 3.

• As a comparison with a PDE discretization scheme, to achieve an accuracy of order
1/N , we essentially14 need N points in each spatial direction and it follows that
the resulting linear system to invert is of size Nd: thus, without going into full
details, it is clear that the computational cost to achieve a given accuracy depends
much on the dimension d. And the situation becomes less and less favourable as the
dimension increases. Also, the memory required to run a PDE algorithm increases
exponentially with the dimension, as a difference with a Monte Carlo approach.

It is commonly admitted that a PDE approach is more suitable and efficient in dimension
1 and 2, whereas a Monte Carlo procedure is more adapted for higher dimensions. On
the other hand, a PDE-based method computes a global approximation of u (at any
point (t, x)), while a Monte Carlo scheme gives a pointwise approximation only. The
probabilistic approach can be directly used for Parallel Computing, each processor being
in charge of a bunch of simulations at a given point (t, x).

2.2 PDE associated to other processes

We extend the Feynman-Kac representation for the BM to the Arithmetic Brownian
Motion and the Ornstein-Uhlenbeck process.

2.2.1 Arithmetic Brownian Motion

First consider the Arithmetic BM defined by {Xx
t = x+bt+σWt, t ≥ 0}. The distribution

of Xt is Gaussian with mean x + bt and variance σ2t: we assume in the following that
σ 6= 0 which ensures that its density exists and is given by

gb,σ2(t, x, y) =
1√

2πσ2t
exp−(y − x− bt)2

2σ2t
= g(σ2t, x+ bt, y) = g(σ2t, x, y − bt).

14In fact, it generally depends on the regularity of u.
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Denote by LABM
b,σ2 the second order operator

LABM
b,σ2 =

1

2
σ2∂2

xx + b∂x , (2.11)

also called infinitesimal generator 15 of X. A direct computation using the heat equation
for g(t, x, y) gives

∂tgb,σ2(t, x, y) =
1

2
σ2g′′xx(σ

2t, x+ bt, y) + bg′x(σ
2t, x+ bt, y) = LABM

b,σ2gb,σ2(t, x, y).

Hence, multiplying by f(y) and integrating over y ∈ R, we obtain the following represen-
tation that generalizes Theorem 2.1.

Theorem 2.6 Let f be a bounded mesurable function. The function

ub,σ2(t, x, f) = E[f(Xx
t )] =

∫
R
gb,σ2(t, x, y)f(y)dy (2.12)

solves {
u′t(t, x, f) = LABM

b,σ2u(t, x, f) = 1
2
σ2u′′xx(t, x, f) + bu′x(t, x, f),

u(0, x, f) = f(x).
(2.13)

The extension of Propositions 2.2 and 2.3 follows the arguments used for the BM case.

Proposition 2.7 If f ∈ C1,2
b and U is a bounded stopping time (including deterministic

time), then E[f(U,Xx
U)] = f(0, x) + E

[ ∫ U

0

[LABM
b,σ2f(s,Xx

s ) + f ′t(s,X
x
s )]ds

]
.

Theorem 2.6 gives the Feynman-Kac representation of the Cauchy problem written w.r.t.
the second order operator LABM

b,σ2 . When Dirichlet boundary conditions are added, Corollary
2.5 extends as follows, using Proposition 2.7.

Corollary 2.8 Assume the existence of a solution u of class C1,2
b ([0, T ] × [a, b]) to the

PDE 
u′t(t, x, f) = LABM

b,σ2u(t, x, f), for t > 0 and x ∈]a, b[,
u(0, x, f) = f(0, x) for t = 0 and x ∈ [a, b],

u(t, x, f) = f(t, x) for x = a or b, with t ≥ 0.

Then it is given by
u(t, x) = E[f(t− Ux, Xx

Ux)]

where Ux = inf{s > 0 : Xx
s /∈]a, b[} ∧ t is the exit time from the interval ]a, b[ by the

process Xx before t.

As for the standard heat equation, this representation naturally leads to a probabilistic
algorithm to compute the PDE solution, by empirical mean of independent simulation of
f(t− Ux, Xx

Ux).
15This labeling comes from the infinitesimal decomposition of E(f(Xt)) as time is small,

∂tE(f(Xt))|t=0 = LABM
b,σ2f(x), see Proposition 2.7.
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2.2.2 Ornstein-Uhlenbeck process

Now consider the process solution to V x
t = x − a

∫ t
0
V x
s ds + σWt: we emphasize in our

notation the dependence w.r.t. the initial value V0 = x. We define an appropriate second
order operator

LOU
a,σ2g(t, x) =

1

2
σ2g′′xx(t, x)− axg′x(t, x)

which plays the role of the infinitesimal generator for the OU process. We recall that the
Gaussian distribution of V x

t has mean xe−a t and variance σ2

2a
(1− e−2at), which density at

y (assuming σ 6= 0 for the existence) is

p(t, x, y) = g(vt, xe
−at, y).

Using the heat equation satisfied by g, we easily derive that

p′t(t, x, y) =
1

2
σ2p′′xx(t, x, y)− axp′x(t, x, y) = LOU

a,σ2p(t, x, y),

from which we deduce the PDE satisfied by u(t, x, f) = E[f(V x
t )]. Incorporating Dirichlet

boundary conditions is similar to the previous cases. We state the related results without
extra details.

Theorem 2.9 Let f be a bounded mesurable function. The function

u(t, x, f) = E[f(V x
t )] =

∫
R
p(t, x, y)f(y)dy

solves {
u′t(t, x, f) = LOU

a,σ2u(t, x, f),

u(0, x, f) = f(x).

Proposition 2.10 If f ∈ C1,2
b and U is a bounded stopping time, then E[f(U, V x

U )] =

f(0, x) + E
[ ∫ U

0

[LOU
a,σ2f(s, V x

s ) + f ′t(s, V
x
s )]ds

]
.

Corollary 2.11 Assume the existence of a solution u of class C1,2
b ([0, T ] × [a, b]) to the

PDE 
u′t(t, x, f) = LOU

a,σ2u(t, x, f), for t > 0 and x ∈]a, b[,
u(0, x, f) = f(0, x) for t = 0 and x ∈ [a, b],

u(t, x, f) = f(t, x) for x = a or b, with t ≥ 0.

Then it is given by
u(t, x) = E[f(t− Ux, V x

Ux)]

where Ux = inf{s > 0 : V x
s /∈]a, b[} ∧ t.
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2.2.3 A natural conjecture for Stochastic Differential Equations

The previous examples serve as a preparation for more general results, relating the dynam-
ics of a process and its Feynman-Kac representation. Denote Xx the solution (whenever
it exists) to the Stochastic Differential Equation

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dWs, t ≥ 0.

In view of the results in simpler models, we announce the following facts.

1. Set LXb,σ2g = 1
2
σ2(x)g′′xx + b(x)g′x.

2. u(t, x) = E(f(Xx
t )) solves

u′t(t, x) = LXb,σ2u(t, x), u(0, x) = f(x).

3. If f ∈ C1,2
b and U is a bounded stopping time, then E[f(U,Xx

U)] = f(0, x) +

E
[ ∫ U

0

[LXb,σ2f(s,Xx
s ) + f ′t(s,X

x
s )]ds

]
.

4. If u of class C1,2
b ([0, T ]× [a, b]) solves the PDE

u′t(t, x) = LXb,σ2u(t, x), for t > 0 and x ∈]a, b[,
u(0, x) = f(0, x) for t = 0 and x ∈ [a, b],

u(t, x) = f(t, x) for x = a or b, with t ≥ 0,

then it is given by u(t, x) = E[f(t−Ux, Xx
Ux)] where Ux = inf{s > 0 : Xx

s /∈]a, b[}∧t.

The above result could be extended to PDE with a space variable in Rd (d ≥ 1) by
considering a Rd-valued SDE: it would be achieved by replacing W by a d-dimensional
standard Brownian motion, by having a drift coefficient b : Rd 7→ Rd and a diffusion
coefficient σ : Rd 7→ Rd ⊗ Rd, a reward function f : [0, T ] × Rd 7→ R, by replacing the
interval [a, b] by a domain D in Rd and defining Ux as the first exit time by Xx from that
domain. Then the operator L would be a linear parabolic second order operator of the
form

LXb,σσ⊥g =
1

2

d∑
i,j=1

[σσ⊥]i,j(x)∂2
xixj

g +
d∑
i=1

bi(x)∂xig.

We could also add a zero-order term in LX
b,σσ⊥ , by considering a discounting factor for f ;

we do not develop further this extension.
The next section provides stochastic calculus tools, that allow to show the valid-

ity of these Feynman-Kac type results, under some appropriate smoothness and growth
assumptions on b, σ, f . To allow non smooth f or Dirichlet boundary conditions, we
may additionally assume a non-degeneracy condition on LX

b,σσ⊥ (like ellipticity condition
|σσ>(x)| ≥ 1

c
for some c > 0.).
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Complementary references: see [Fri75], [Fri76], [Dur84], [Fre85], [KS91], [AP05].

3 The Itô formula

One achievement of Itô’s formula is to go from an infinitesimal time-decomposition in
expectation like

E[f(t, x+Wt)]− f(0, x) =

∫ t

0

E[f ′t(s, x+Ws) +
1

2
f ′′xx(s, x+Ws)]ds

(see (2.5)) to a pathwise infinitesimal time-decomposition of

f(t, x+Wt)− f(0, x).

Since BM paths are not differentiable, it is hopeless to apply standard differential calculus
based on usual first order Taylor formula. Instead of this, we go up to the second order,
taking advantage of the fact that W has a finite quadratic variation. The approach
presented below is taken from the nice paper Calcul d’Itô sans probabilité by Föllmer
[Föl81], which does not lead to the most general and deepest approach but it has the
advantage of light technicalities and straightforward arguments compared to the usual
heavy arguments using L2-spaces and isometry (see for instance [KS91] or [RY05] among
others).

3.1 Quadratic variation

3.1.1 Notations and definitions

Brownian increments in a small interval [t, t+h] are centered Gaussian r.v. with variance
h, which thus behave like

√
h. The total variation does not exist, because the trajectories

are not differentiable, but the quadratic variation has interesting properties.
To avoid convergence technicalities, we consider particular time subdivisions.

Definition 3.1 (Dyadic subdivision of order n) Let n be an integer. The subdivision
of R+ defined by Dn = {t0 < · · · < ti < · · · } where ti = i2−n is called the dyadic
subdivision of order n. The subdivision step is δn = 2−n.

Definition 3.2 (Quadratic variation) The quadratic variation of a Brownian motion
W associated with the dyadic subdivision of order n is defined, for t ≥ 0, by

V n
t =

∑
ti≤t

(Wti+1
−Wti)

2. (3.1)

3.1.2 Convergence

Then there is the following remarkable result.
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Proposition 3.3 (Pointwise convergence) With probability 1, we have

lim
n→∞

V n
t = t

for any t ∈ R+.

Had W been differentiable, the limit of V n would equal 0.

Proof :
First let us show the a.s. convergence for a fixed time t, and denote by n(t) the index
of the dyadic subdivision of order n such that tn(t) ≤ t < tn(t)+1. Then observe that
V n
t − t =

∑n(t)
j=0 Zj + (tn(t)+1 − t) where Zj = (Wtj+1 − Wtj )

2 − (tj+1 − tj). The term
tn(t)+1 − t converges to 0 as the subdivision step shrinks to 0. The random variables Zj
are independent, centered, square integrable (since the Gaussian law of Wtj+1 −Wtj has
finite fourth moments): additionally, the scaling property of Proposition 1.4 ensures that
E(Z2

j ) = C2(tj+1 − tj)2 for a positive constant C2. Thus

E

n(t)∑
j=0

Zj

2

=
n(t)∑
j=0

E
(
Z2
j

)
=

n(t)∑
j=0

C2(tj+1 − tj)2 ≤ C2(T + 1)δn.

This proves the L2-convergence of
∑n(t)

j=0 Zj towards 0.

Moreover we obtain
∑

n≥1 E
(∑n(t)

j=0 Zj

)2
< ∞, i.e. the random series

∑
n≥1

(∑n(t)
j=0 Zj

)2

has a finite expectation, thus is a.s. finite and consequently its general term converges a.s.
to 0. This shows that for any fixed t, V n

t → t except on a negligible set Nt.
We now extend the result to any time: first the set N = ∪t∈Q+Nt is still negligible because
the union of negligible sets is taken on a countable family. For an arbitrary t, take two
monotone sequences of rational numbers rp ↑ t and sp ↓ t as p → +∞. Since t 7→ V n

t is
increasing for fixed n, we deduce, for any ω /∈ N

rp = lim
n→∞

V n
rp(ω) ≤ lim inf

n→∞
V n
t (ω) ≤ lim sup

n→∞
V n
t (ω) ≤ lim

n→∞
V n
sp(ω) = sp.

Passing to the limit in p gives the result. �

As a consequence, we obtain the formula giving the infinitesimal decomposition ofW 2
t .

Proposition 3.4 (A first Itô formula) Let W be a standard BM. With probability 1,
we have for any t ≥ 0

W 2
t = 2

∫ t

0

WsdWs + t (3.2)

where the stochastic integral
∫ t

0
WsdWs is the a.s. limit of

∑
ti≤tWti(Wti+1

−Wti), along
the dyadic subdivision.

For usual C1-function f(t), we have f 2(t) − f 2(0) = 2
∫ t

0
f(s)df(s): the extra term t in

(3.2) is intrinsically related to BM paths.
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Proof :
Adopting once again the notation with n(t), we have

W 2
t = W 2

t −W 2
tn(t)+1

+
∑
ti≤t

(W 2
ti+1
−W 2

ti)

= W 2
t −W 2

tn(t)+1
+
∑
ti≤t

(Wti+1 −Wti)
2 + 2

∑
ti≤t

Wti(Wti+1 −Wti).

The first term at the r.h.s tends towards 0 by continuity of the Brownian paths. The
second term is equal to V n

t and converges towards t. Consequently, the third term at the
right-hand side must converge a.s. towards a term that we call stochastic integral and that
we denote by 2

∫ t
0 WsdWs. �

The random function V n
t , as a function of t, is increasing and can be associated to the

cumulative distribution function of the positive discrete measure∑
i≥0

(Wti+1
−Wti)

2δti(.) = µn(.)

satisfying µn(f) =
∑

i≥0 f(ti)(Wti+1
−Wti)

2.
The convergence of cumulative distribution function of µn(.) (Proposition 3.3) can

then be extended to integrals of continuous functions (possibly random as well). It is the
purpose of the following result which is of deterministic nature.

Proposition 3.5 (Convergence as a positive measure) For any continuous function
f , with probability 1 we have

lim
n→∞

∑
ti≤t

f(ti)(Wti+1
−Wti)

2 =

∫ t

0

f(s)ds

for any t ≥ 0.

The proof is standard: the result first holds for functions of the form f(s) = 1]r1,r2](s),
then for piecewise constant functions, at last for continuous functions by simple approxi-
mations.

3.2 The Itô formula for Brownian motion

Differential calculus extends to other functions that the function x → x2. To the usual
classical formula with functions that are smooth in time, a term should be added, due to
the non-zero quadratic variation.

Theorem 3.6 (Itô formula) Let f ∈ C1,2(R+×R,R). Then with probability 1, we have
t ≥ 0

f(t, x+Wt) =f(0, x) +

∫ t

0

f ′x(s, x+Ws) dWs +

∫ t

0

f ′t(s, x+Ws) ds

+
1

2

∫ t

0

f ′′xx(s, x+Ws) ds. (3.3)
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The term It(f) =
∫ t

0
f ′x(s, x + Ws)dWs is called the stochastic integral of f ′x(s, x + Ws)

w.r.t. W and it is the a.s. limit of

Int (f,W ) =
∑
ti≤t

f ′x(ti, x+Wti)(Wti+1
−Wti)

taken along the dyadic subdivision of order n.

The reader should compare the equality (3.3) with (2.5) to see that, under the extra as-
sumptions that f is bounded with bounded derivatives, we have proved that the stochastic
integral It(f) is centered:

E(

∫ t

0

f ′x(s, x+Ws) dWs) = 0. (3.4)

This explains how we can expect to go from (3.3) to (2.5):

1. apply Itô formula,

2. take expectation,

3. prove that the stochastic integral is centered.

This is an interesting alternative proof to the property satisfied by the Gaussian kernel,
which is difficult to extend to more general (non Gaussian) process.

Proof :
As before, let us introduce the index n(t) such that tn(t) ≤ t < tn(t)+1; then we can write

f(t, x+Wt) = f(0, x) + [f(t, x+Wt)− f(tn(t)+1, x+Wtn(t)+1
)]

+
∑
ti≤t

[f(ti+1, x+Wti+1)− f(ti, x+Wti+1)] +
∑
ti≤t

[f(ti, x+Wti+1)− f(ti, x+Wti)].

• The second term of the r.h.s. [f(t, x+Wt)− f(tn(t)+1, x+Wtn(t)+1
)] converges to 0

by continuity of f(t, x+Wt).

• The third term is analyzed by means of the first order Taylor formula:

f(ti+1, x+Wti+1)− f(ti, x+Wti+1) = f ′t(τi, x+Wti+1)(ti+1 − ti)

for τi ∈]ti, ti+1[. The uniform continuity of (Ws)0≤s≤t+1 ensures that supi |f ′t(τi, x+
Wti+1)−f ′t(ti, x+Wti)| → 0: thus limn→∞

∑
ti≤t f

′
t(τi, x+Wti+1)(ti+1− ti) equals to

lim
n→∞

∑
ti≤t

f ′t(ti, x+Wti)(ti+1 − ti) =
∫ t

0
f ′t(s, x+Ws)ds.

• A second order Taylor formula allows to write the fourth term: f(ti, x + Wti+1) −
f(ti, x+Wti) equals

f ′x(ti, x+Wti)(Wti+1 −Wti) +
1
2
f ′′xx(ti, x+ ξi)(Wti+1 −Wti)

2
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where ξi ∈ (Wti ,Wti+1). Similarly to before, supi |f ′′xx(ti, x+ ξi)− f ′′xx(ti, x+Wti)| =
εn → 0 and it leads to∣∣∣∑

ti≤t
(f ′′xx(ti, x+ ξi)− f ′′xx(ti, x+Wti))(Wti+1 −Wti)

2
∣∣∣ ≤ εnV n

t ,

lim
n→∞

∑
ti≤t

f ′′xx(ti, x+Wti)(Wti+1 −Wti)
2 =

∫ t

0
f ′′xx(s, x+Ws)ds,

by applying Proposition 3.5.

Observe that in spite of the non-differentiability of W ,
∑
ti≤t

f ′x(ti, x+Wti)(Wti+1 −Wti) is

necessarily convergent as a difference of convergent terms. �

Interestingly, we obtain a representation the random variable f(x+Wt) as a stochastic
integral, in terms of the derivatives of solution u to the heat equation

u′t(t, x) =
1

2
u′′xx(t, x), u(0, x) = f(x).

Corollary 3.7 Assume that u ∈ C1,2
b ([0, T ]× R). We have

f(x+WT ) = u(T, x) +

∫ T

0

u′x(T − s, x+Ws)dWs. (3.5)

Proof :
Apply the Itô formula to v(t, x) = u(T − t, x) (which satisfies v′t(t, x) + 1

2v
′′
xx(t, x) = 0) at

time T . This gives f(x+WT ) = u(0, x+WT ) = u(T, x) +
∫ T

0 u′x(T − s, x+Ws)dWs. �

This representation formula leads to important remarks.

• If the above stochastic integral has zero expectation (as for the examples presented
before), taking the expectation shows that

u(T, x) = E(f(x+WT )),

recovering the Feynman-Kac representation of Theorem 2.1.

• Then, the above representation writes, setting Ψ = f(x+WT ),

Ψ = E(Ψ) +

∫ T

0

hsdWs.

Actually, a similar representation theorem holds in a larger generality on the form of
Ψ, since any bounded16 functional of (Wt)0≤t≤T can be represented as its expectation
plus a stochastic integral: the process h is not tractable in general, whereas here it
is explicitly related to the derivative of u.

16Integrability is the right assumption.
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• Assume u ∈ C1,2
b ([0, T ]×R) imposes that f ∈ C2

b (R) which is too strong for applica-
tions: however, the assumptions on u can be relaxed to handle bounded measurable
function f , because the heat equation is immediately smoothing out the initial con-
dition. The proof of this extension involves extra stochastic calculus technicalities
that we do not develop.

3.3 Wiener integral

In general, it is not possible to make explicit the law of the stochastic integral
∫ t

0
f ′x(s, x+

Ws)dWs, except in a situation where f ′x(s, x) = h(s) is independent of x and square
integrable. In that case,

∫ t
0
h(s)dWs is distributed as a Gaussian r.v. The resulting

stochastic integral is called Wiener integral. We sum up its important properties.

Proposition 3.8 (Wiener integral and integration by parts) Let f : [0, T ] 7→ R be
a continuously differentiable function, with bounded derivatives on [0, T ].

1. With probability 1, for any t ∈ [0, T ] we have∫ t

0

f(s)dWs = f(t)Wt −
∫ t

0

Wsf
′(s)ds. (3.6)

2. The process {
∫ t

0
f(s)dWs ; t ∈ [0, T ]} is a continuous Gaussian process, with zero

mean and with a covariance function

Cov(

∫ t

0

f(u)dWu,

∫ s

0

f(u)dWu) =

∫ s∧t

0

f 2(u)du. (3.7)

3. For another function g satisfying the same assumptions, we have

Cov(

∫ t

0

f(u)dWu,

∫ s

0

g(u)dWu) =

∫ s∧t

0

f(u)g(u)du. (3.8)

Proof :
The first item is a direct application of Theorem 3.6 to the function (t, x) 7→ f(t)x.
For any coefficients (αi)1≤i≤N and times (Ti)1≤i≤N ,

∑N
i=1 αi

∫ Ti
0 f(u)dWu is a Gaussian

r.v. since it can written as a limit of Gaussian r.v. of the form
∑

j βj(Wtj+1 −Wtj ): thus,
{
∫ t

0 f(s)dWs ; t ∈ [0, T ]} is a Gaussian process. Its continuity is obvious in view of (3.6).
Its expectation is the limit of the expectation of

∑
ti≤t f(ti)[Wti+1 −Wti ], thus equal to 0.

The covariance is the limit of the covariance

Cov(
∑
ti≤t

f(ti)[Wti+1 −Wti ],
∑
ti≤s

f(ti)[Wti+1 −Wti ])

=
∑

ti≤t,tj≤s
f(ti)f(tj)Cov(Wti+1 −Wti ,Wti+1 −Wti)

=
∑

ti≤t,tj≤s
f(ti)f(tj)δi,j(ti+1 − ti) −→

n→+∞

∫ s∧t

0
f2(u)du.

The second item is proved. The last item is proved similarly. �
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As a consequence, going back to the Ornstein-Uhlenbeck process (Paragraph 1.6.2), we
can complete the proof of its representation (1.11) using a stochastic integral, starting
from (1.10). For this apply the result below to the function f(s) = e−a(t−s) (t fixed): it
gives

∫ t
0
e−a(t−s)dWs = Wt − a

∫ t
0
e−a(t−s)Wsds. It leads to

Vt = v0e
−at + σ

∫ t

0

e−a(t−s)dWs. (3.9)

Then the Gaussian property from Proposition 3.8 gives that the variance of Vt is equal to
σ2
∫ t

0
e−2a(t−s)ds = σ2

2a
(1− e−2at).

3.4 Itô formula for other processes

The reader should have noticed that the central property for the proof of Theorem 3.6
is that the BM has a finite quadratic variation. Thus, the Itô formula can directly be
extended to processes X which enjoy the same property.

3.4.1 The one-dimensional case

In this paragraph, we first consider scalar processes. The multidimensional extension is
made afterwards.

Definition 3.9 (Quadratic variation of a process) A continuous process X has a fi-
nite quadratic variation if for any t ≥ 0, the limit

V n
t =

∑
ti≤t

(Xti+1
−Xti)

2 (3.10)

along the dyadic subdivision of order n, exists a.s. and is finite. We denote this limit by
〈X〉t et it is usually called the bracket of X at time t.

If X = W is a BM, we have 〈X〉t = t. More generally, it is easy to check that 〈X〉
is increasing and continuous. We associate to it a positive measure and this extends
Proposition 3.5 to X.

Proposition 3.10 For any continuous function f , with probability 1 for any t ≥ 0 we
have

lim
n→∞

∑
ti≤t

f(ti)(Xti+1
−Xti)

2 =

∫ t

0

f(s)d〈X〉s.

Theorem 3.6 becomes

Theorem 3.11 (Itô formula for X) Let f ∈ C1,2(R+ × R,R) and X be with finite
quadratic variation. With probability 1, for any t ≥ 0 we have

f(t,Xt) = f(0, X0) +

∫ t

0

f ′x(s,Xs) dXs +

∫ t

0

f ′t(s,Xs) ds+
1

2

∫ t

0

f ′′xx(s,Xs) d〈X〉s,

(3.11)

where
∫ t

0
f ′x(s,Xs)dXs is the stochastic integral of f ′x(s,Xs) w.r.t. X and it is the a.s.

limit of
∑
ti≤t

f ′x(ti, Xti)(Xti+1
−Xti) along dyadic subdivision of order n.
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Often, the Itô formula is written formally under a differential form

df(t,Xt) = f ′x(t,Xt) dXt + f ′t(t,Xt) dt+
1

2
f ′′xx(t,Xt) d〈X〉t.

We now provide hand-made tools to compute the bracket of X in practice.

Proposition 3.12 (Computation of the bracket) Let A and M two continuous pro-
cesses such that A has a finite variation 17 and M has a finite quadratic variation:

1. 〈A〉t = 0;

2. if Xt = x+Mt, then 〈X〉t = 〈M〉t;

3. if Xt = λMt, then 〈X〉t = λ2〈M〉t;

4. if Xt = Mt + At, then 〈X〉t = 〈M〉t;

5. if Xt = f(At,Mt) with f ∈ C1, then 〈X〉t =
∫ t

0
[f ′m(As,Ms)]

2d〈M〉s.
The proof is easy and it uses deterministic arguments based on the definition of 〈X〉, we
skip it. Item 5) shows that the class of processes with finite quadratic variation is stable
by smooth composition. The following examples are important.

Examples 3.13

• Arithmetic Brownian Motion (Xt = x+ bt+ σWt): we have

〈X〉t = 〈σW 〉t = σ2〈W 〉t = σ2t.

Itô’s formula becomes

df(t,Xt) = (f ′t(t,Xt) + f ′x(t,Xt)b+
1

2
f ′′xx(t,Xt)σ

2)dt+ f ′x(t,Xt)σdWt

:= (f ′t(t,Xt) + LABM
b,σ2f(t,Xt))dt+ f ′x(t,Xt)σdWt. (3.12)

An important example is associated to f(x) = exp(x):

d[exp(Xt)] = exp(Xt)(b+
1

2
σ2)dt+ exp(Xt)σdWt. (3.13)

• Geometric Brownian Motion (St = S0e
(µ− 1

2
σ2)t+σWt): we have

〈S〉t =

∫ t

0

σ2S2
sds.

From (3.13), we obtain a linear equation for the dynamics of S:

dSt = Stµdt+ StσdWt

also written dSt
St

= µdt + σdWt putting an emphasize of the financial interpretation
as returns. The Itô formula writes

df(t, St) = (f ′t(t, St) + f ′x(t, St)Stµ+
1

2
f ′′xx(t, St)S

2
t σ

2)dt+ f ′x(t, St)σStdWt

:= (f ′t(t, St) + LGBM
µ,σ2f(t, St))dt+ f ′x(t, St)σStdWt. (3.14)

17i.e. the sum of
∑
ti≤t |Ati+1 −Ati | exists and is finite, for instance A ∈ C1.
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• Ornstein-Uhlenbeck process (Vt = v0 − a
∫ t

0
Vsds+ σWt): we have

〈V 〉t = σ2t.

The Itô formula follows

df(t, Vt) = (f ′t(t, Vt)− af ′x(t, Vt)Vt +
1

2
σ2f ′′xx(t, Vt))dt+ f ′x(t, Vt)σdWt

:= (f ′t(t, Vt) + LOU
a,σ2f(t, Vt))dt+ f ′x(t, Vt)σdWt. (3.15)

• Euler scheme defined in (1.12) (Xh
t = Xh

ih+b(Xh
ih)(t−ih)+σ(Xh

ih)(Wt−Wih) for
i ≥ 0, t ∈ (ih, (i+1)h]). Since Xh is an arithmetic BM on each interval (ih, (i+1)h],
we easily obtain

〈Xh〉t =

∫ t

0

σ2(ϕ(s), Xh
ϕ(s))ds

where ϕ(t) = ih for t ∈ (ih, (i+ 1)h]. The Itô formula writes

df(t,Xh
t ) = (f ′t(t,X

h
t ) + b(Xh

ϕ(t))f
′
x(t,X

h
t ) +

1

2
σ2(Xh

ϕ(t))f
′′
xx(t,X

h
t ))dt

+ f ′x(t,X
h
t )σ(Xh

ϕ(t))dWt. (3.16)

3.4.2 The multidimensional case

We briefly expose the situation when X = (X1, . . . , Xd) takes values in Rd. The main
novelty consists in considering the cross quadratic variation defined by the limit (assuming
its existence, along dyadic subdivision) of

〈Xk, Xl〉nt =
∑
ti≤t

(Xk,ti+1
−Xk,ti)(Xl,ti+1

−Xl,ti) −→
n→+∞

〈Xk, Xl〉t. (3.17)

We list basic properties.

Properties 3.14

1. Symmetry: 〈Xk, Xl〉t = 〈Xl, Xk〉t.

2. Usual bracket: 〈Xk, Xk〉t = 〈Xk〉t.

3. Polarization: 〈Xk, Xl〉t = 1
4

(〈Xk +Xl〉t − 〈Xk −Xl〉t) .

4. 〈·, ·〉t is bilinear.

5. For any continuous function f , we have

lim
n→∞

∑
ti≤t

f(ti)(Xk,ti+1
−Xk,ti)(Xl,ti+1

−Xl,ti) =

∫ t

0

f(s)d〈Xk, Xl〉s.
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6. Let X1,t = f(A1,t,M1,t) and X2,t = g(A2,t,M2,t), where the variation (resp. quadratic
variation) of A = (A1, A2) (resp. M = (M1,M2)) is finite, and let f and g be two
C1-functions: we have

〈X1, X2〉t =

∫ t

0

f ′m(A1,s,M1,s)g
′
m(A2,s,M2,s)d〈M1,M2〉s.

In particular, 〈A1 +M1, A2 +M2〉t = 〈M1,M2〉t.

7. Let W1 and W2 be two independent Brownian motions: then

〈W1,W2〉t = 0.

Proof :
The statements 1)-6) are easy to check from the definition or using previous arguments.
The statement 7) is important and we give details: use the polarization identity

〈W1,W2〉t =
1
4

(〈W1 +W2〉t − 〈W1 −W2〉t) .

We observe that both 1√
2
(W1 + W2) and 1√

2
(W1 − W2) are Brownian motions, since

each one is a continuous Gaussian process with the right covariance function. Thus,
〈 1√

2
(W1 +W2)〉t = 〈 1√

2
(W1 −W2)〉t = t and the result follows. �

The Itô formula naturally extends to this setting.

Theorem 3.15 (Multidimensional Itô formula) Let f ∈ C1,2(R+ ×Rd,R) and X be
a continuous d-dimensional process with finite quadratic variation. Then, with probability
1, for any t ≥ 0 we have

f(t,Xt) = f(0, X0)+
d∑

k=1

∫ t

0

f ′xk(s,Xs) dXk,s +

∫ t

0

f ′t(s,Xs) ds

+
1

2

d∑
k,l=1

∫ t

0

f ′′xk,xl(s,Xs) d〈Xk, Xl〉s

where the sum of stochastic integrals are defined as before.

In particular, the integration by parts formula writes

X1,tX2,t = X1,0X2,0 +

∫ t

0

X1,sdX2,s +

∫ t

0

X2,sdX1,s + 〈X1, X2〉t.

For two independent Brownian motions, we recover the usual deterministic formula (be-
cause 〈W1,W2〉t = 0), but in general, formulas are different because of the quadratic
variation.
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3.5 More properties on stochastic integrals

So far, we have defined some specific stochastic integrals, those appearing in deriving a
Itô formula and which have the form∫ t

0

f ′x(s,Xs)dXs = lim
n→+∞

∑
ti≤t

f ′x(ti, Xti)(Xti+1
−Xti), (3.18)

the limit being taken along dyadic subdivision. Also, we have proved that if f has bounded
derivatives and X = W is a Brownian motion, the above stochastic integral must have
zero-expectation (see equality (3.4)). Moreover, we also have established that in the case
of deterministic integrand (Wiener integral), the second moment of the stochastic integral
is explicit and given by

E(

∫ t

0

hsdWs)
2 =

∫ t

0

h2
sds.

The aim of this paragraph is to provide extension of the above properties on the two first
moments to more general integrands, under some suitable boundedness or integrability
conditions.

3.5.1 Heuristic arguments

In view of the previous construction, there is a natural candidate to be the stochastic
integral

∫ t
0
hsdWs. When h is piececewise constant process (called simple process), that

is hs = hti if s ∈ [ti, ti+1] for a given deterministic time grid (ti)i, we set∫ t

0

hsdWs =
∑
ti≤t

hti(Wt∧ti+1
−Wti), (3.19)

Without extra assumptions on the stochasticity of h, it is not clear why its expectation
equals 0. This property should come from the centered Brownian incrementsWt∧ti+1

−Wti

and their independence to hti so that

E(

∫ t

0

hsdWs) =
∑
ti≤t

E(hti)E(Wt∧ti+1
−Wti) = 0.

To validate this computation, we shall assume that ht depends only the Brownian Motion
W before t and it is integrable. To go to the second moment, assume additionally that h
is square integrable: then

E|
∫ t

0

hsdWs|2

= 2
∑

ti<tj≤t

E(htihtj(Wt∧ti+1
−Wti))E(Wt∧tj+1

−Wtj) +
∑
ti≤t

E(h2
ti

)E|Wt∧ti+1
−Wti |2

=
∑
ti≤t

E(h2
ti

)(t ∧ ti+1 − ti) = E(

∫ t

0

h2
sds). (3.20)
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This equality should be read as an isometry property (usually referred to as Itô isometry),
on which we can rely an extension of the stochastic integral of simple process to more
general process. At this point, we should need to enter into measurability considerations
to describe what "ht depends only the Brownian Motion W before t" means at the most
general level. It goes far beyond this introductory lecture: for the exposure of the general
theory, see for instance [KS91] or [RY05].

For most of the examples considered in these lectures, we can restrict to very good
integrands, in the sense that a integrand h is very good if

1. (ht)t is continuous or piecewise continuous (as for simple processes);

2. for a given t, ht is a continuous functional of (Ws : s ≤ t);

3. it is square integrable in time and ω: E(
∫ t

0
h2
sds) < +∞ for any t.

This setting ensures that we can define stochastic integrals for very good integrands as the
L2-limit of stochastic integrals for simple integrands: indeed, a Cauchy sequence (hn)n in
L2(dt⊗ dP) gives a Cauchy sequence (

∫ t
0
hn,sdWs)n in L2(P) due to the isometry (3.20).

3.5.2 General results

We collect here all the stochastic integration results needed in these lectures.

Theorem 3.16 Let h be a very good integrand. Then the stochastic integral
∫ t

0
hsdWs is

such that

1. it is the L2 limit of
∑

ti≤t hti(Wt∧ti+1
−Wti) along time subdivision which time step

goes to 0;

2. it is centered: E(
∫ t

0
hsdWs) = 0;

3. it is square integrable: E|
∫ t

0
hsdWs|2 = E(

∫ t
0
h2
sds),

4. for two very good integrands h1 and h2, we have

E
[
(

∫ t

0

h1,sdWs)(

∫ t

0

h2,sdWs)
]

= E(

∫ t

0

h1,sh2,sds).

Beyond the t-by-t construction, actually the full theory gives a construction for any t
simultaneously, proving additionally time continuity property, general centering property
(martingale property), tight Lp-estimates on the value at time t and the extrema until
time t (Burkholder-Davis-Gundy inequalities) and so one. . . For multidimensional W and
h, the construction should be understood component wise. Another fruitful extension is
to allow t to be a bounded stopping time, similarly to the discussion we have made in the
proof of Theorem 2.4.

Another interesting part in the theory is devoted to the existence and uniqueness of
solution to Stochastic Differential Equations (also known as diffusion processes). The
easiest setting is to assume globally Lipschitz coefficients: it is similar to the ODE frame-
work, and the proof is also based on the Picard fixed-point argument. We state the results
without proof.
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Theorem 3.17 Let W be a d-dimensional standard Brownian motion.
Assume that the functions b : Rd 7→ Rd and σ : Rd 7→ Rd⊗Rd are globally Lipschitz. Then,
for any initial condition x ∈ Rd, there exists a unique18 continuous solution (Xx

t )t≥0 valued
in Rd which satisfies

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dWs, (3.21)

with sup0≤t≤T E|Xx
t |2 < +∞ for any given T ∈ R+.

The continuous process Xx has a finite quadratic variation given by

〈Xx
k , X

x
l 〉t =

∫ t

0

[σσ⊥]k,l(X
x
s )ds, 1 ≤ k, l ≤ d. (3.22)

Observe that this general result includes all the model considered before, such as Arith-
metic and Geometric Brownian Motion, Ornstein-Uhlenbeck processes, here stated in a
possibly multidimensional framework.

Complementary references: see [KS91] and [RY05].

4 Monte Carlo resolutions of linear PDEs related to
SDEs

The use of probabilistic methods to solve PDEs have become very popular during the two
last decades. They are usually not competitive compared to deterministic methods in low
dimension, but for higher dimension they provide very good alternative schemes. In the
sequel, we give a brief introduction to the topics, relying on the material presented in the
previous sections. We start with linear parabolic PDEs, with Cauchy-Dirichlet boundary
conditions. Next section is devoted to semi-linear PDEs.

4.1 Second order linear parabolic PDEs with Cauchy initial con-
dition

4.1.1 Feynman-Kac formulas

We start with a verification Theorem generalizing Theorems 2.1, 2.6, 2.9 to the case of
general SDEs. We incorporate a source term g.

Theorem 4.1 Under the assumptions of Theorem 3.17, let Xx be the solution (3.21)
starting from x ∈ Rd and set

LXb,σσ⊥ =
1

2

d∑
i,j=1

[σσ⊥]i,j(x)∂2
xixj

+
d∑
i=1

bi(x)∂xi .

18up to a set of zero probability measure
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Assume there is a solution u ∈ C1,2
b (R+ × Rd,R) to the PDE{

u′t(t, x) = LX
b,σσ⊥u(t, x) + g(x),

u(0, x) = f(x).
(4.1)

for two given functions f, g : Rd → R. Then u is given by

u(t, x) = E[f(Xx
t ) +

∫ t

0

g(Xx
s )ds]. (4.2)

Proof :
Let t be fixed. We apply the general Itô formula (Theorem 3.15) to the process Xx and
to the function v : (s, y) 7→ u(t− s, y): it gives

dv(s,Xx
s ) =

[
v′s(s,X

x
s ) + LXb,σσ⊥v(s,Xx

s )
]
ds+Dv(s,Xx

s )σ(Xx
s )dWs (4.3)

= −g(Xx
s )ds+Dv(s,Xx

s )σ(Xx
s )dWs. (4.4)

Observe that the integrand hs = Dv(s,Xx
s )σ(Xx

s ) is very good, since v has bounded
derivatives, σ has a linear growth, and Xs has bounded second moments, locally uniformly
in s: thus, the stochastic integral

∫ t
0 Dv(s,Xx

s )σ(Xx
s )dWs has zero expectation. Hence,

applying the above decomposition between s = 0 and s = t and taking the expectation, it
gives

E(f(Xx
t )) = E(v(t,Xx

t )) = v(0, x)− E(
∫ t

0
g(Xx

s )ds) = u(t, x)− E(
∫ t

0
g(Xx

s )ds).

We are done. �

Smoothness assumptions on u are satisfied in f, g are smooth enough. If not, and a
uniform ellipticity condition is met on σσ⊥, the fundamental solution of the PDE is
smoothing the data and the result can be extended. However, the derivatives blow up
as time goes to 0, and more technicalities are necessary to justify the same stochastic
calculus computations. The fundamental solution p(t, x, y) has a simple probabilistic
interpretation: it is the density of Xx

t at y. Indeed, identify E[f(Xx
t ) +

∫ t
0
g(Xx

s )ds] with

u(t, x) =

∫
Rd
p(t, x, y)f(y)dy +

∫ t

0

∫
Rd
p(s, x, y)g(y)dy ds.

4.1.2 Monte Carlo schemes

Since u(t, x) is represented as an expectation, it allows the use of a Monte Carlo method
to numerically compute the solution. The difficulty is that in general, X can not simu-
lated perfectly accurately, only an approximation on a finite time-grid can be simply and
efficiently produced. Namely we use the Euler scheme with time step h = t/N :{

Xx,h
0 = x,

Xx,h
s = Xx,h

ih + b(Xx,h
ih )(s− ih) + σ(Xx,h

ih )(Ws −Wih), i ≥ 0, s ∈ (ih, (i+ 1)h].

(4.5)
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Observe that to get Xx,h
t , we do not need to sample the continuous path of Xx,h (as

difficult as having a continuous path of a BM): in fact, we only need to compute Xx,h
ih

iteratively for i = 0 to i = N . Each time iteration requires to sample d new independent
Gaussian increments Wk,(i+1)h − Wk,ih, centered with variance h: it is straightforward.
The computational cost is essentially equal to C(d)N where the constant depends on the
dimension (coming from d-dimensional vector and matrix computations).

As an approximation of the expectation of E(f, g,Xx) = f(Xx
t ) +

∫ t
0
g(Xx

s )ds, we take
the expectation

E(f, g,Xx,h) = f(Xx,h
Nh) +

N−1∑
i=0

g(Xx,h
ih )h, (4.6)

a random variable of which we sample M independent copies, that are denoted by
{E(f, g,Xx,h,m) : 1 ≤ m ≤ M}. Then, the Monte Carlo approximation, based on this
sample of M Euler schemes with time step h, is

1

M

M∑
m=1

E(f, g,Xx,h,m) = u(t, x) +
1

M

M∑
m=1

E(f, g,Xx,h,m)− E(E(f, g,Xx,h))︸ ︷︷ ︸
statistical error Err.stat.(h,M)

+ E(E(f, g,Xx,h))− u(t, x)︸ ︷︷ ︸
discretization error Err.disc.(h)

. (4.7)

The first error contribution is due to the sample of finite size: the larger M , the better
the accuracy. As mentioned in Paragraph 2.1.3, once renormalized by

√
M , this error is

still random and its distribution is closed to the Gaussian distribution with zero mean
and variance Var(E(f, g,Xx,h)): the latter still depends on h but very little, since it is
expected to be close to Var(E(f, g,Xx)).

The second error contribution is related to the time discretization effect: the smaller
the time h, the better the accuracy. In the sequel (Paragraph 4.1.3), we theoretically
estimate this error in terms of h, and proves that it is of order h (even equivalent to)
under some reasonable and fairly general assumptions.

What is the optimal tuning of h→ 0 and M → +∞? An easy complexity analysis
shows that the computational effort is Ce = C(d)Mh−1. Observe that it does not depend
on the dimension d, as a difference with a PDE method, but on the other hand, the
solution is computed only at single point (t, x). The squared quadratic error is equal to

[Err2(h,M)]2 := E
[ 1

M

M∑
m=1

E(f, g,Xx,h,m)− u(t, x)
]2

=
Var(E(f, g,Xx,h))

M
+
[
E(E(f, g,Xx,h))− u(t, x)

]2

.

Only the first factor Var(E(f, g,Xx,h)) can be estimated with the same sample, for M
large, and it depends little of h. Say that the second term is equivalent to (Ch)2 as h→ 0,
with C 6= 0. Then, three asymptotic situations occur:
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1. If M � h−2, the statistical error becomes negligible and 1
M

∑M
m=1 E(f, g,Xx,h,m)−

u(t, x) ∼ Ch. The computational effort is Ce � h−3 and thus Err2(h,M) � C−1/3
e .

Deriving a confidence interval as in Paragraph 2.1.3 is meaningless, we face with the
discretization error only.

2. If M � h−2, the discretization error becomes negligible and the distribution of√
M
(

1
M

∑M
m=1 E(f, g,Xx,h,m)− u(t, x)

)
converges to that a Gaussian r.v. centered

with variance Var(E(f, g,Xx)) (that can be asymptotically computed using the
M - sample). Thus, we can derive confidence intervals: setting σ2

h,M the empirical
variance of E(f, g,Xx,h), with probability 95% we have

u(t, x) ∈
[ 1

M

M∑
m=1

E(f, g,Xx,h,m)− 1.96
σh,M√
M
,

1

M

M∑
m=1

E(f, g,Xx,h,m) + 1.96
σh,M√
M

]
.

Regarding the computational effort, we have Ce � M3/2 and thus Err2(h,M) �
C−1/3
e .

3. If M ∼ ch−2, both statistical and discretization errors have the same magnitude
and one can still derive a asymptotic confidence interval, but it is no more centered
(as in M � h−2) and unfortunately, the bias is not easily estimated on the fly. The
problem is that the bias is of same magnitude as the size of the confidence interval,
thus it reduces the interest of having such a priori statistical error estimate. Here,
Err2(h,M) = O(C−1/3

e ).

Summing up by considering the ability of having or not on-line error estimates and by
optimizing the final accuracy w.r.t. the computational effort, the second case M = h−2+ε

(for a small ε > 0) may be the most attractive since it achieves (almost) the best accuracy
w.r.t. the computational effort and gives a centered confidence interval (and therefore
tractable and meaningful error bounds).

4.1.3 Convergence of the Euler scheme

An important issue is to analyze the impact of time discretization of SDE. This dates back
to the end of eighties, see [TL90] among others. The result below gives a mathematical
justification of the use of the Euler scheme as an approximation for the distribution of
the SDE.

Theorem 4.2 Assume that b and σ are C2
b , let Xx be the solution (3.21) starting from

x ∈ Rd and let Xh,x be its Euler scheme defined in (4.5). Assume that u(t, x) = E[f(Xx
t )+∫ t

0
g(Xx

s )ds] is a C2,4
b ([0, T ]×Rd,R)-function solution of the PDE of Theorem 4.1. Then,

E
[
f(Xx,h

Nh) +
N−1∑
i=0

g(Xx,h
ih )h

]
− E

[
f(Xx

t ) +

∫ t

0

g(Xx
s )ds

]
= O(h).

Proof :
Denote by Err.disc.(h) the above discretization error. As in Theorem 4.1, we use the
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function v : (s, y) 7→ u(t − s, y) (for a fixed t) and we apply the Itô formula to Xh,x

(Theorem 3.15): it gives

dv(s,Xh,x
s ) =

[
v′s(s,X

h,x
s ) +

1
2

d∑
i,j=1

[σσ⊥]i,j(X
h,x
ϕ(s))∂

2
xixjv(s,Xh,x

s )

+
d∑
i=1

bi(X
h,x
ϕ(s))∂xiv(s,Xh,x

s )
]
ds+Dv(s,Xh,x

s )σ(Xh,x
ϕ(s))dWs.

=
[1

2

d∑
i,j=1

(
[σσ⊥]i,j(X

h,x
ϕ(s))− [σσ⊥]i,j(Xh,x

s )
)
∂2
xixjv(s,Xh,x

s )

+
d∑
i=1

(
bi(X

h,x
ϕ(s))− bi(X

h,x
s )

)
∂xiv(s,Xh,x

s )− g(Xh,x
s )

]
ds

+Dv(s,Xh,x
s )σ(Xh,x

ϕ(s))dWs.

where at the second equality, we have used the PDE solved by v at (s,Xx
s ). Then, by

taking the expectation (it removes the stochastic integral term because the integrand is
very good), we obtain

Err.disc.(h) = E
[
v(Nh,Xx,h

Nh) +
N∑
i=1

hg(Xx,h
ih )

]
− v(0, x)

= E
(∫ t

0

[1
2

d∑
i,j=1

(
[σσ⊥]i,j(X

h,x
ϕ(s)

)
− [σσ⊥]i,j(Xh,x

s )
)
∂2
xixjv(s,Xh,x

s )
]
ds
)

+ E
(∫ t

0

[ d∑
i=1

(
bi(X

h,x
ϕ(s))− bi(X

h,x
s )

)
∂xiv(s,Xh,x

s )
]
ds
)

+ E
(∫ t

0

[
g(Xh,x

ϕ(s))− g(Xh,x
s )

]
ds
)
.

The global error is represented as a summation of local errors. For instance, let us estimate
the first term related to σσ⊥: apply once again the Itô formula on the interval [kh, s] ⊂
[kh, (k + 1)h] and to the function (s, y) 7→

(
[σσ⊥]i,j(X

h,x
ϕ(s)

)
− [σσ⊥]i,j(y)

)
∂2
xixjv(s, y). It

gives raise to a time integral between kh = ϕ(s) and s and a stochastic integral that
vanishes in expectation. Proceed similarly for the other contributions with b and g. Finally
we obtain a representation formula of the form

Err.disc.(h) =
∑

α:0≤|α|≤4

E
(∫ t

0

∫ s

ϕ(s)
∂|α|x v(r,Xh,x

r )lα
(
Xh,x
ϕ(r), X

h,x
r

)
drds

)
where the summation is made on differentiation multi-indices of length smaller than 4,
where lα are functions depending on b, σ, g and their derivatives up to order 2, and where
lα has at most a linear growth w.r.t its two variables. Taking advantage of the boundedness
of the derivatives of v, we easily complete the proof.

Observe that, by strengthening the assumptions and by going a bit further in the analysis,
we could establish an expansion w.r.t. h. �
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The previous assumption on u implies that f ∈ C4
b and g ∈ C2

b , which is too strong in
practice. The extension to non smooth f is much more difficult and we have to take
advantage of the smoothness coming from the non-degenerate distribution of X or Xh.
We may follow the same types of computations, mixing PDE techniques and stochastic
arguments, see [BT96]. But this is a pure stochastic analysis approach (Malliavin calculus)
which provides the extension under the minimal non-degeneracy assumption (i.e. only
stated at the initial point x), see [GM05c]. We state the result without proofs.

Theorem 4.3 Assume that b and σ are C∞b , let Xx be the solution (3.21) starting from
x ∈ Rd and let Xh,x be its Euler scheme defined in (4.5). Assume additionally that σσ⊥(x)
is invertible. Then, for any bounded measurable function f , we have

E
[
f(Xx,h

t )
]
− E

[
f(Xx

t )
]

= O(h).

In the same reference [GM05c], the result is also proved for hypoelliptic system, where
the hypoellipticity holds only at the starting point x. On the other hand, without such
a degeneracy condition and for non smooth h (like Heaviside function), the convergence
may fail.

The case of coefficients b and σ with low regularity or exploding behavior is still an
active fields of research.

4.1.4 Sensitivities

If in addition we are interested by computing derivatives of u(t, x) w.r.t. x or other model
parameters, this is still possible using Monte Carlo simulations. For the sake of simplicity,
in our discussion we focus on the gradient of u w.r.t. x. Essentially, two approaches are
known.

Resimulation method. The derivative is approximated using the finite difference
method

∂xiu(t, x) ≈ u(t, x+ εei)− u(t, x− εei)
2ε

where ei = (0, . . . , 0, 1
ith
, 0, . . . ), and ε is small. Then, each value function is approximated

by its Monte Carlo approximation given in (4.7). However, we have to be careful in
generating the Euler scheme starting from x + εei and x − εei: its sampling should use
the same Brownian motion increments, that is

∂xiu(t, x) ≈ 1

M

M∑
m=1

E(f, g,Xx+εei,h,m)− E(f, g,Xx−εei,h,m)

2ε
. (4.8)

Indeed, for an infinite sample (M = +∞), it does not have any impact on the statistical
error whether or not we use the same driving noise, but for finite M , this trick likely
maintains a smaller statistical error. Furthemore, the optimal choice of h, M and ε is an
important issue, but here results are different according to the regularity of f and g, we
do not go into details.
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Likelihood method. To avoid the latter problems of selecting the appropriate value
of the finite difference parameter ε, we may prefer another Monte Carlo estimator of
∂xiu(t, x), which consists in appropriately weighting the output. When g equals 0, it
takes the following form

∂xiu(t, x) ≈ 1

M

M∑
m=1

f(Xx,h,m
t )Hx,h,m

t (4.9)

where Hx,h,m
t is simultaneously generated with the Euler scheme and does not depend

on f . The advantage of this approach is to avoid the possibly delicate choice of the
perturbation parameter ε and it is valid for any function f : thus, it may reduce much the
computational time, if many sensitivities are required for the same model. On the other
hand, the confidence interval may be larger than that of the resimulation method.

We now provide the formula for the weight H (known as Bismut-Elworthy-Li formula).
It uses the tangent process, which is the (well-defined, see [Kun84]) derivative of x 7→ Xx

t

w.r.t. x and which solves

DXx
t := Y x

t = Id +

∫ t

0

Db(Xx
s ) Y x

s ds+
d∑
j=1

∫ t

0

Dσj(X
x
s ) Y x

s dWj,s (4.10)

where σj is the j-th column of the matrix σ.

Theorem 4.4 Assume that b and σ are C2
b -functions, that u ∈ C1,2([0, T ]×Rd,R) solves

the PDE (4.1), and that σ is invertible with a uniformly bounded inverse σ−1. We have

Du(t, x) = E

(
f(Xx

t )

t

[∫ t

0

[σ−1(Xx
s )Y x

s ]⊥dWs

]⊥)
.

Proof :
First, we recall the decomposition (4.4) obtained from Itô formula, using v(s, y) = u(t −
s, y): {

v(r,Xx
r ) = v(0, x) +

∫ r
0 Dv(s,Xx

s )σ(Xx
s )dWs, ∀0 ≤ r ≤ t,

f(Xx
t ) = v(t,Xx

t ).
(4.11)

Second, taking expectation, it gives v(0, x) = u(t, x) = E(v(r,Xx
r )) for any r ∈ [0, T ]. By

differentiating w.r.t. x, we obtain a nice relation letting the expectation constant in time
(actually deeply related to martingale property):

Dv(0, x) = E(Dv(r,Xx
r )Y x

r ), ∀0 ≤ r ≤ t.
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Thus, we deduce

Du(t, x) = Dv(0, x) = E
(

1
t

∫ t

0
Dv(s,Xx

s )Y x
s ds

)
= E

(
1
t

[∫ t

0
Dv(s,Xx

s )σ(Xx
s )dWs

] [∫ t

0
[σ−1(Xx

s )Y x
s ]⊥dWs

]⊥)

= E

(
v(t,Xx

t )− v(0, x)
t

[∫ t

0
[σ−1(Xx

s )Y x
s ]⊥dWs

]⊥)

= E

(
f(Xx

t )
t

[∫ t

0
[σ−1(Xx

s )Y x
s ]⊥dWs

]⊥)
using Theorem 3.16 at the second and fourth equality, (4.11) at the third one. �

In view of the above assumptions of u, implicitly the function f is smooth. However,
under the current ellipticity condition, u is still smooth even f is not; since the formula
does depend on f and not on its derivatives, it is standard to extend the formula to any
bounded function f (without any regularity assumption).

The Monte Carlo evaluation of Du(t, x) easily follows by independently sampling
f(Xx

t )

t

[∫ t
0
[σ−1(Xx

s )Y x
s ]⊥dWs

]⊥
and taking the empirical mean. The exact simulation is

not possible and once again, we may use an Euler-type scheme, with time step h:

• the dimension-augmented Stochastic Differential Equations (Xx, Y x) is approxi-
mated using the Euler scheme;

• we use a simple-approximation of the stochastic integral∫ t

0

[σ−1(Xx
s )Y x

s ]⊥dWs =
N−1∑
i=0

[σ−1(Xx,h
ih )Y x,h

ih ]⊥(W(i+1)h −Wih).

The analysis of discretization error is more intricate than for E(f(Xx,h
t )− f(Xx

t )): never-
theless, the error is still of magnitude h (the convergence order is 1 w.r.t. h, as proved in
[GM05c]).

Theorem 4.5 Under the setting of Theorem 4.3, for any bounded measurable function
f , we have

E

(
f(Xx,h

t )

t

N−1∑
i=0

[
[σ−1(Xx,h

ih )Y x,h
ih ]⊥(W(i+1)h −Wih)

]⊥)
−Du(t, x) = O(h).

4.1.5 Other theoretical estimates in small time

The representation formula of Theorem 4.4 is the starting point for getting accurate
probabilistic estimates on the derivatives of the underlying PDE as time is small, in
terms of the fractional smoothness of f(Xx

t ) which is related to the decay of

‖f(Xx
t )− E(f(Xy

t−s))|y=Xx
s
‖L2 as s→ t.
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The derivatives are measured in weighted L2-norms and surprisingly, the above results
are equivalence results [GM10a]; we are not aware of such results using PDE arguments.

Theorem 4.6 Under the setting19 of Theorem 4.3, let t be fixed, for 0 < θ ≤ 1 and a
bounded f , the following assertions are equivalent:

i) for some c ≥ 0, E|f(Xx
t )− E(f(Xy

t−s))|y=Xx
s
|2 ≤ c(t− s)θ for 0 ≤ s ≤ t;

ii) for some c ≥ 0, E|Du(t− s,Xx
s )|2 ≤ c

(t−s)1−θ for 0 ≤ s < t;

iii) for some c ≥ 0,
∫ s

0
E|D2u(t− r,Xx

r )|2dr ≤ c
(t−s)1−θ for 0 ≤ s < t.

If 0 < θ < 1, it is also equivalent to

iv) for some c ≥ 0, E|D2u(t− s,Xx
s )|2 ≤ c

(t−s)2−θ for 0 ≤ s < t.

Theorem 4.7 Under the setting of Theorem 4.3, let t be fixed, for 0 < θ < 1 and a
bounded f , the following assertions are equivalent:

i)
∫ t

0
(t− s)−θ−1E|f(Xx

t )− E(f(Xy
t−s))|y=Xx

s
|2ds < +∞,

ii)
∫ t

0
(t− s)−θE|Du(t− s,Xx

s )|2ds < +∞,

iii)
∫ t

0
(t− s)1−θE|D2u(t− s,Xx

s )|2ds < +∞.

4.2 The case of Dirichlet boundary conditions and stopped pro-
cesses

4.2.1 Feynman-Kac formula

In view of Corollary 2.5, the natural extension of Theorem 4.1 in the case of Dirichlet
boundary condition is the following. We state the result without source term to simplify.
The proof is similar and we skip it.

Theorem 4.8 Let D be a bounded domain of Rd. Under the setting of Theorem 4.1,
assume there is a solution u ∈ C1,2

b ([0, T ]×D,R) to the PDE
u′t(t, x) = LX

b,σσ⊥u(t, x), for (t, x) ∈]0,+∞[×D,
u(0, x) = f(0, x), for x ∈ D,
u(t, x) = f(t, x), for (t, x) ∈ R+ × ∂D,

(4.12)

for a given function f : R+ ×D → R. Then u is given by

u(t, x) = E[f(t− τx ∧ t,Xx
τx∧t)] (4.13)

for x ∈ D, where τx = inf{s > 0 : Xx
s /∈ D} is the first exit time from D by X.

19to simplify the exposure
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4.2.2 Monte Carlo simulations

Performing a Monte Carlo algorithm in this context is less easy since we have to addi-
tionally simulate the exit time of X. A simple approach consists in discretizing X using
the Euler scheme with time step h, and then take for the exit time

τx,h = inf{ih > 0 : Xx,h
ih /∈ D}.

It does not require any further computations than those needed to generate (Xx,h
ih , 0 ≤

i ≤ N). But, the discretization error worsens much since it becomes of magnitude
√
h.

Actually, even if the values of (Xx,h
ih , 0 ≤ i ≤ N) are generated without error (like in

BM case or other simple process), the convergence order is still 1
2
w.r.t. h [Gob00].

The deterioration of the discretization error really comes from the high irregularity of
BM paths (and SDE paths): even if two successive points Xx,h

ih and Xx,h
(i+1)h are close to

the boundary but inside the domain, a discrete monitoring scheme does not detect the
exit while a continuous BM-like path would likely exit from the domain between ih and
(i+ 1)h. Moreover, it gives a systematic (in mean) underestimation of the true exit time.
To overcome this lack of accuracy, there are several improved schemes.

• The Brownian bridge technique consists in simulating the exit time of local arith-
metic BM (corresponding to the local dynamics of Euler scheme, see 1.12). For
simple domain like half-space, the procedure is explicit and tractable, this is re-
lated the explicit knowledge of the distribution of the Brownian maximum, see
Proposition 1.9. For smooth domain, we can approximate locally the domain by
half-spaces. This improvement allows to recover the order 1 for the convergence, see
[Gob00] and [Gob01]. For non smooth domains (including corners for instance) and
general SDEs, providing an accurate scheme and performing its error analysis is still
an open issue; for heuristics and numerical experiments, see [Gob09] for instance.

• The boundary shifting method consists in shrinking the domain to compensate the
systematic bias in the simulation of the discrete exit time. Very remarkably, there
is an universal elementary rule to make the domain smaller:

locally at a point y close to the boundary, move the boundary
inwards by a quantity proportional to c0

√
h times

the norm of the diffusion coefficient in the normal direction.

The constant c0 is equal to the mean of the asymptotic overshoot of the Gaussian
random walk as the ladder height goes to infinity: it can be expressed using the
zeta function

c0 = −
ζ(1

2
)

√
2π

= 0.5826 . . . .

This procedure strictly improves the order 1
2
of the discrete procedure, but it is still

an open question whether the convergence order is 1, although numerical experi-
ments corroborates this fact.

The result is stated as follows, see [GM10b].
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Theorem 4.9 Assume that the domain D is bounded and has a C3-boundary, that b, σ
are C2

b and f ∈ C1,2
b . Let n(y) be the unit inward normal vector to the boundary ∂D at the

closest20 point to y on the boundary. Set

τ̂x,h = inf
{
ih > 0 : Xx,h

ih /∈ D or d(Xx,h
ih , ∂D) ≤ c0

√
h
∣∣n⊥σ∣∣(Xx,h

ih )
}
.

Then, we have

E[f(t− τ̂x,h ∧ t,Xxbτx,h∧t)]− E[f(t− τx ∧ t,Xx
τx∧t)] = o(

√
h).

Observe that this improvement is very cheap regarding the computational cost. It can be
extended (regarding to the numerical scheme and its mathematical analysis) to a source
term, to time-dependent domain and to stationary problems (elliptic PDE).

Complementary references: see [CDL+89], [Sab91], [KP95], [LPS98], [Gla03], [AG07]
for general references. For reflected processes and Neumann boundary conditions, see
[Gob01] and [BGT04]. For variance reduction techniques, see [New94], [GM05a] and
[JL09]. For domain decomposition, see [PT03] and [GM05b]. This list is not exhaustive.

5 Backward stochastic differential equations and semi-
linear PDEs

The link between PDEs and stochastic processes have been developed since several decades
and more recently, say in the last twenty years, researchers have paid attention to the
probabilistic interpretation of non-linear PDEs, and in particular semi-linear PDEs. These
PDEs are connected to non-linear processes, called Backward Stochastic Differential Equa-
tions (BSDE in short). In this section, we define these equations, firstly introduced by
Pardoux and Peng [PP90], and give their connection with PDEs. Finally, we present a
Monte Carlo algorithm to simulate them, using empirical regressions: it has the advantage
to suit well the case of multidimensional problems, with a great generality on the type of
semi-linearity.

These equations have many fruitful applications in stochastic control theory and math-
ematical finance, where they usually provide elegant proofs to characterize the solution
to optimal decision problems for instance. For the applications, we refer to reader to
[EPQ97] and [EHM08] for instance.

5.1 Existence of BSDE and Feynman-Kac formula

5.1.1 Heuristics

As a difference with a Stochastic Differential Equation defined by (3.21) where the initial
condition is given and the dynamics is imposed, a Backward SDE is defined through a

20uniquely defined if y is close to the boundary
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random terminal condition ξ at a fixed terminal T and a dynamics imposed by a driver
g. It takes the form

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdWs (5.1)

where we write the integrals between t and T to emphasize on the backward point of view:
ξ should be thought as a stochastic target to reach at time T . A solution to (5.1) is the
couple (Y, Z): without extra conditions, the problem has an infinite number of solutions
and thus is ill-posed. For instance, if g ≡ 0 and ξ = f(WT ): taking c ∈ R, a solution
is Zt = c and Yt = ξ + c(WT −Wt), thus uniqueness fails. In addition to integrability
properties (appropriate L2-spaces) that we do not detail, an important condition is that
the solution does not anticipate the future of BM, i.e. the solution Yt depends on the
Brownian Motion W up to t, and similarly to Z: we informally say that the solution is
adapted to W . In a stochastic control problem, this adaptedness constraint is natural
since it states that the value function or the decision can not be made in advance to the
flow of information given by W . Observe that in the uniqueness counter-example, Y is
not adapted to W since Yt depends on the BM on [0, T ] and not only on [0, t].

Taking the conditional expectation in (5.1) gives

Yt = E
(
ξ +

∫ T

t

g(s, Ys, Zs)ds
∣∣Ws : s ≤ t

)
, (5.2)

because the stochastic integral (built with Brownian increments after t) is centered con-
ditionally on the BM up to time t. Of course, this rule is fully justified by the stochastic
calculus theory. Since Yt in (5.2) is adapted to W , it should be the right solution (if
unique); then, Z serves as a control to make the equation (5.1) valid (with Y adapted).

5.1.2 Feynman-Kac formula

The connection with PDE is possible when the terminal condition is a function of a
(forward) SDE: this case is called Markovian BSDE. Additionally, the driver may depend
also on this SDE as g(s,Xs, Ys, Zs) for a deterministic function g. We now state by
a verification theorem. To allow a more natural presentation as backward system, we
choose to write the semi-linear PDE with a terminal condition at time T instead of an
initial condition at time 0.

Theorem 5.1 Let T > 0 be given. Under the assumptions of Theorem 3.17, let Xx be
the solution (3.21) starting from x ∈ Rd, assume there is a solution v ∈ C1,2

b ([0, T ]×Rd,R)
to the semi-linear PDE{

v′t(t, x) + LX
b,σσ⊥v(t, x) + g(t, x, v(t, x), Dv(t, (x)σ(x)) = 0,

v(T, x) = f(x),
(5.3)

for two given functions f : Rd → R and g : [0, T ] × Rd × R × (R ⊗ Rd) → R. Then,
Y x
t = v(t,Xx

t ) and Zx
t = [Dv σ](t,Xx

t ) solves the BSDE

Y x
t = f(Xx

T ) +

∫ T

t

g(s,Xx
s , Y

x
s , Z

x
s )ds−

∫ T

t

Zx
s dWs. (5.4)
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Proof :
The Itô formula (4.3) applied to v and the Xx gives

dv(s,Xx
s ) =

[
v′s(s,X

x
s ) + LXb,σσ⊥v(s,Xx

s )
]
ds+Dv(s,Xx

s )σ(Xx
s )dWs

= −g(s,Xx
s , v(s,Xx

s ), [Dv σ](s,Xx
s ))ds+Dv(s,Xx

s )σ(Xx
s )dWs,

which writes between s = t and s = T :

v(T,Xx
T ) = v(t,Xx

t )−
∫ T

t
g(s,Xx

s , v(s,Xx
s ), [Dv σ](s,Xx

s ))ds+
∫ T

t
Dv(s,Xx

s )σ(Xx
s )dWs.

Since v(T, .) = f(.), we complete the proof by identification. �

In particular, at time 0 where Xx
0 = x, we obtain Y x

0 = v(0, x) and in view of (5.2), it
gives a Feynman-Kac representation to v:

v(0, x) = E
(
f(Xx

T ) +

∫ T

t

g(s,Xx
s , Y

x
s , Z

x
s )ds

)
. (5.5)

As in case of linear PDEs, the assumption of uniform smoothness on v up to T is too
strong to include the case of non-smooth terminal function f . But with an extra ellipticity
condition, as for the heat equation, the solution becomes smooth immediately away from
T (see [Fri64]) and a similar verification could be checked under milder conditions.

The above Backward SDE (5.4) is coupled to a Forward SDE, but the latter is not
coupled to the BSDE. Another interesting extension is to allow the coupling in both
directions by having the coefficients of X dependent on v, i.e. b(x) and σ(x) become
functions of x, v(t, x), Dv(t, (x). The resulting process is called a Forward Backward
Stochastic Differential Equations and is related to Quasi-Linear PDEs, where the operator
LX
b,σσ⊥ also depends on v and Dv, see [MY99].

5.1.3 Other existence results without PDE framework

So far, only Markovian BSDEs are presented but from the probabilistic point of view,
the Markovian structure is not required to define a solution: what is really crucial is the
ability to represent a random variable built from (Ws : s ≤ T ) as a stochastic integral
w.r.t. the Brownian motion. This point has been discussed in Corollary 3.7. Then, in
the simple case where g is Lipschitz w.r.t. y, z, (Y, Z) are built by means of a usual fixed
point procedure in suitable L2-norms and of this stochastic integral representation. We
now state a more general existence and uniqueness result for BSDE, which is valid without
any underlying (finite-dimensional) semi-linear PDE, we omit the proof.

Theorem 5.2 Let T > 0 be fixed and assume the assumptions of Theorem 3.17 for the
existence of X and that

• the terminal condition ξ = f(Xs : s ≤ T ) is a square integrable functional of the
SDE (Xs : s ≤ T );
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• the measurable function g : [0, T ] × Rd × R × (R ⊗ Rd) is uniformly Lipschitz in
(y, z):

|g(t, x, y1, z1)− g(t, x, y2, z2)| ≤ Cg(|y1 − y2|+ |z1 − z2|),

uniformly in (t, x);

• the driver is square integrable at (y, z) = (0, 0): E(
∫ T

0
g2(t,Xt, 0, 0)dt) < +∞.

Then, there exists a unique solution (Y, Z), adapted and in L2-spaces, to

Yt = f(Xs : s ≤ T ) +

∫ T

t

g(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs.

Many works have been done in the last decade to go beyond the case of Lipschitz driver,
which may be too stringent for some applications. In particular, having g with quadratic
growth in Z is particularly interesting in exponential utility maximization problem (the
non-linear PDE term is quadratic in |Dv|) . This leads to quadratic BSDEs (see for
instance [Kob00]). A simple example of such BSDEs can be cooked up from heat equation
and Brownian motion. Namely from Corollary 3.7, for a smooth function f with compact
support, set u(t, x) = E(exp(f(x+Wt)) and v(t, y) = u(1− t, y), so that

exp(f(W1)) = u(1, 0) +

∫ 1

0

u′x(1− s,Ws)dWs,

u(1− t,Wt) = u(1, 0) +

∫ t

0

u′x(1− s,Ws)dWs,

v(t,Wt) = exp(f(W1))−
∫ 1

t

v′x(s,Ws)dWs,

and by setting Yt = log(v(t,Wt)) and Zt = v′x(t,Wt)/Yt, we obtain

Yt = f(W1) +

∫ 1

t

1

2
Z2
sds−

∫ 1

t

ZsdWs,

which is the simplest quadratic BSDE.

5.2 Time discretization and dynamic programming equation

5.2.1 Explicit and implicit schemes

To perform the simulation, a first stage may be the derivation of a discretization scheme,
written backwardly in time (backward dynamic programming equation). For the further
analysis, assume that the terminal condition is of the form ξ = f(XT ) where X is standard
(forward) SDE.

Consider a time grid with N time steps π = {0 = t0 < · · · < ti < · · · < tN = T}, with
possibly non uniform time step, and set |π| = maxi(ti+1 − ti). We will suppose later that
|π| → 0.
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We write ∆i = ti+1 − ti and ∆Wi = Wti+1
−Wti . Writing the equation (5.4) between

times ti and ti+1, we have

Yti = Yti+1
+

∫ ti+1

ti

g(s,Xs, Ys, Zs)ds−
∫ ti+1

ti

ZsdWs.

Then, by applying simple approximations for ds and dWs integrals and by replacing X by
a Euler scheme computed along the grid π (and denoted Xπ), we may define the discrete
BSDE as

(Y π
ti
, Zπ

ti
) = arg min

(Y,Z)∈L2(Fπti )
E(Y π

ti+1
+ ∆ig(ti, X

π
ti
, Y, Z)− Y − Z∆Wi)

2

with the initialization Y π
T = f(Xπ

T ) at i = N , where L2(Fπti) stands for the set of random
variables (with appropriate dimension) that are square integrable and depend on the
Brownian motion increments (∆Wj : j ≤ i− 1). The latter property is the measurability
w.r.t. the sigma fields Fπti generated by (∆Wj : j ≤ i− 1).

Then, a direct computation using the properties of Brownian increments gives
Y π
T = f(Xπ

T ),

Zπ
ti

=
1

∆i

E(Y π
ti+1

∆W⊥
i |Fπti), i < N

Y π
ti

= E(Y π
ti+1

+ ∆ig(ti, X
π
ti
, Y π

ti
, Zπ

ti
)|Fπti), i < N.

(5.6)

This is the implicit scheme since the arguments of the function at the r.h.s. depend on
the quantity Y π

ti
to compute on the l.h.s. Nevertheless, since g is uniformly Lipschitz in y,

it is not difficult to show that the Dynamic Programming Equation (DPE in short) (5.6)
is well-defined for |π| small enough and that Y π

ti
can be computed using a Picard iteration

procedure.
It is easy to turn the previous scheme into an explicit scheme and therefore, to avoid

this extra Picard procedure. It writes
Y π
T = f(Xπ

T ),

Zπ
ti

=
1

∆i

E(Y π
ti+1

∆W⊥
i |Fπti), i < N

Y π
ti

= E(Y π
ti+1

+ ∆ig(ti, X
π
ti
, Y π

ti+1
, Zπ

ti
)|Fπti), i < N.

(5.7)

In our personal experience on numerics, we have not observed a significant outperformance
of one scheme on another. Moreover, from the theoretical point of view, both schemes
exhibit the same rates of convergence w.r.t. |π|, at least when the driver is Lipschitz.

The explicit scheme is the simplest one, and this is the one that we recommend in
practice.

5.2.2 Time discretization error

Define the measure of the quadratic error

E(Y π − Y, Zπ − Z) = max
0≤i≤N

E|Y π
ti
− Yti |2 +

N−1∑
i=0

∫ ti+1

ti

E|Zπ
ti
− Zt|2dt.
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Although not explicitly mentioned in the previous existence results on BSDE, this type
of norm is appropriate to perform the fixed point argument in the proof of Theorem 5.2.
We now state an error estimate [GL06], in order to show the convergence of the DPE to
the BSDE.

Theorem 5.3 For a Lipschitz driver w.r.t. (x, y, z) and 1
2
-Hölder w.r.t. t, there is a

constant C independent on π such that we have

E(Y π − Y, Zπ − Z) ≤ C
(
|π|+ sup

i≤N
E|Xπ

ti
−Xti |2 + E|f(Xπ

T )− f(XT )|2

+
N−1∑
i=0

1

∆i

∫ ti+1

ti

∫ ti+1

ti

E|Zt − Zs|2ds dt
)
.

Let us discuss on the nature and the magnitude of different error contributions.

• First, we face the strong approximation error of the forward SDE by its Euler
scheme. Here we rather focus on convergence of paths (in L2-norms), whereas in
Paragraph 4.1.3, we have studied the convergence of expectations of function of Xπ

T

towards those of XT . Anyway, the problem is now well-understood: under Lipschitz
condition on b and σ, we can prove supi≤N E|Xπ

ti
−Xti |2 = O(|π|).

• Second, we should ensure a good strong approximation of the terminal conditions:
if f is Lipschitz continuous, it readily follows from the previous term and E|f(Xπ

T )−
f(XT )|2 = O(|π|). For non Lipschitz f , there are partial answers, see [Avi09].

• Finally, the last contribution
∑N−1

i=0
1

∆i

∫ ti+1

ti

∫ ti+1

ti
E|Zt − Zs|2ds dt is related to the

L2-regularity of Z and is intrinsic to the BSDE-solution. For smooth data, Z has the
same regularity of Brownian paths and this error term is O(|π|). For non smooth f
(but under ellipticity condition on X), the L2-norm of Zt blows up as t→ T and the
rate |π| usually worsens: for instance for f(x) = 1x≥0, it becomes N−

1
2 for uniform

time-grid.
The analysis is very closely related to the frac-
tional smoothness of f(XT ) briefly discussed in
Paragraph 4.1.5, see also [GGG12]. Choosing an
appropriate grid of the form

tθ̄k = T − T (1− k/N)1/θ̄ (θ̄ ∈ (0, 1])

compensates this blow-up (for appropriate value
of θ̄) and enables to retrieve the rate N−1.

On the horizontal axis, uniform
grid. On the vertical axis, the
grid (tθ̄k : 0 ≤ k ≤ N). T = 1.

Actually in [GL07], it is shown that the upper bounds in Theorem 5.3 can be refined for
smooth data, to finally obtain that the main error comes from strong approximation error
on the forward component. This is an incentive to accurately approximate the SDE in
L2-sense.



58 E. Gobet

5.2.3 Towards the resolution of the Dynamic Programming Equation

The effective implementation of the explicit scheme (5.7) requires the iterative computa-
tions of conditional expectations: this is discussed in the next paragraphs.

Prior to this, we make some preliminary simplifications. Actually it can be easily
seen that it is enough to take the conditioning w.r.t. Xπ

ti
instead of Fπti , because of the

Markovian property of Xπ along the grid π and of the independent Brownian increments.
Thus, (5.7) becomes

Y π
T = f(Xπ

T ),

Zπ
ti

=
1

∆i

E(Y π
ti+1

∆W⊥
i |Xπ

ti
), i < N

Y π
ti

= E(Y π
ti+1

+ ∆ig(ti, X
π
ti
, Y π

ti+1
, Zπ

ti
)|Xπ

ti
), i < N.

(5.8)

The same arguments apply to assert that for some (measurable) deterministic functions
yπi and zπi we have

yπi (Xπ
ti

) = Y π
ti
, zπi (Xπ

ti
) = Zπ

ti
. (5.9)

Therefore, computing (Y π, Zπ) is equivalent to the computation of yπi and zπi , for any i.

5.3 Approximation of conditional expectations using least-squares
method

5.3.1 Empirical least-squares problem

We adopt the point of view of conditional expectation as a projection operator in L2. This
is not the only possible approach, but it has the advantage (as it will be seen later)

1. to be much flexible w.r.t. the knowledge on the model for X (or Xπ): only inde-
pendent simulations of Xπ are required (which is straightforward to perform);

2. to be little demanding on the assumptions on the underlying stochastic model: in
particular, no ellipticity nor degeneracy condition are required, it could also include
jumps (corresponding to PDE with a non-local Integro-Differential operator);

3. to provide robust theoretical error estimates, which allow to optimally tune the
convergence parameters;

4. to be possibly adaptive to the data (data-driven scheme).

We recall that if a scalar random variable R (called the response) is square integrable,
the conditional expectation of R given another possibly multidimensional r.v. O (called
the observation) is given by

E(R|O) = Arg min
m(O) s.t. m(.) is a meas. funct. with E|m(O)|2<+∞

E|R−m(O)|2.

This is a least-squares problem in infinite dimension, also called regression problem. Usu-
ally in this context of BSDE simulation, none of the distributions of O, R or (O,R) is
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known in analytical and tractable form: thus an exact computation of E(R|O) is hopeless.
The difficulty remains unchanged if we approximate the regression function

m(·) = E(R|O = ·)

on a finite dimensional functions basis. Alternatively, we can rely on independent simula-
tions of (O,R) to compute an empirical version of m. This is the approach subsequently
developed.

The functions basis are (φk(.))1≤k≤K and we assume that E|φk(O)|2 < +∞ for any k.
We emphasize that

we can not assume that (φk(O))1≤k≤K forms an orthonormal basis functions in L2,
since in our setting, the distribution of O is not explicit. Using this finite dimensional
approximation, we anticipate to unfortunately retrieve the curse of dimensionality: the
larger the dimension d of O, the larger the required K for a good accuracy of m, the
larger the complexity.

We compute the coefficients on the basis by solving a empirical least-squares problem

(αMk )k = arg min
α∈RK

1

M

M∑
i=1

(Ri −
K∑
k=1

αkφk(Oi))
2,

where (Ri, Oi)1≤i≤M are independent simulations of the couple (R,O). Then, for the
approximation of m, we set

m̃M(.) =
K∑
k=1

αMk φk(.).

To efficiently compute the coefficients (αMk )k, we might use a SVD decomposition to
account for instability issues, see [GL96].

5.3.2 Model-free error estimates

Without extra assumptions on the model, we can derive model-free error estimates, see
[GKKW02].

Theorem 5.4 Assume that

• R = m(O) + ε with E(ε|X) = 0;21

• (O1, R1), · · · , (OM , RM) are independent copies of (O,R);

• σ2 = supx Var(R|O = x) < +∞;

• Φ = Span(φ1, ...φK) is a linear vector space of dimension K.

Denote by µM the empirical measure associated to (O1, · · · , OM), µ the probability measure
of O and by |φ|2M = 1

M

∑M
i=1 φ

2(Oi) the empirical L2-measure of φ w.r.t. µM , and set

m̃M(.) = arg min
φ∈Φ

1

M

M∑
i=1

|φ(Oi)−Ri|2. (5.10)

21meaning that m(O) = E(R|O).
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Then
E(|m̃M −m|2M) ≤ σ2 K

M
+ min

φ∈Φ
|φ−m|2L2(µ).

The first term in the r.h.s. above is interpreted as a statistical error22 term (due to a finite
sample to compute the empirical coefficients), while the second term is an approximation
error of function class23 (due to finite-dimensional vector space). The first term converges
to 0 as M → +∞ but it blows up if K → +∞, while the second one converges to 0 as
K → +∞ (as least if Φ asymptotically spans all the functions in L2(µ)). This bias-
variance decomposition shows that there is a necessary trade-off between K and M to
ensure a convergent approximation. Without this right balance, the approximation (5.10)
may be not convergent. Furthermore, the parameter tuning can also be made optimally.

In the quoted reference [GKKW02], the space Φ could also depend on the simulations
(data-driven approximation spaces).

Proof :
Assume that

E
(
|m̃M −m|2M

∣∣O1, · · · , OM
)
≤ σ2 K

M
+ min

φ∈Φ
|φ−m|2M . (5.11)

Then, the announced result directly follows by taking expectations and observing that

E
(

min
φ∈Φ
|φ−m|2M ) ≤ min

φ∈Φ
E(|φ−m|2M ) = min

φ∈Φ
|φ−m|2L2(µ).

We now prove (5.11). As far as computations conditionally on O1, · · · , OM are concerned,
without loss of generality we can assume that (φ1, ...φKM ) is an orthonormal family in
L2(µM ), with possibly KM ≤ K: 1

M

∑M
i=1 φk(Oi)φl(Oi) = δk,l. Consequently, the solution

arg min
φ∈Φ

1
M

M∑
i=1

|φ(Oi)−Ri|2 is given by

m̃M (.) =
KM∑
j=1

αjφj(.) with αj =
1
M

M∑
i=1

φj(Oi)Ri.

Now, set E∗(.) = E(.|O1, · · · , OM ). Then, observe that E∗(m̃M (.)) is the least-squares
solution to min

φ∈Φ

1
M

∑M
i=1 |φ(Oi)−m(Oi)|2 = min

φ∈Φ
|φ−m|2M . Indeed,

• on the one hand, the above least-squares solution is given by
∑KM

j=1 α
∗
jφj(.) with

α∗j = 1
M

∑M
i=1 φj(Oi)m(Oi);

• on the other hand, E∗(m̃M (.)) =
∑KM

j=1 E∗(αj)φj(.) and E∗(αj) = 1
M

∑M
i=1 φj(Oi)E∗(Ri) =

1
M

∑M
i=1 φj(Oi)E(m(Oi) + εi|O1, · · · , OM ) = α∗j .

Thus, by the Pythagoras theorem, we obtain

|m̃M −m|2M = |m̃M − E∗(m̃M )|2M + |E∗(m̃M )−m|2M ,
E∗|m̃M −m|2M = E∗|m̃M − E∗(m̃M )|2M + |E∗(m̃M )−m|2M

= E∗|m̃M − E∗(m̃M )|2M + min
φ∈Φ
|φ−m|2M .

22also called variance term.
23squared bias term.
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Since (φj)j is orthonormal in L2(µM ), we have |m̃M −E∗(m̃M )|2M =
∑KM

j=1 |αj −E∗(αj)|2.
Since αj − E∗(αj) = 1

M

∑M
i=1 φj(Oi)(Ri −m(Oi)), we obtain

E∗|m̃M − E∗(m̃M )|2M =
KM∑
j=1

1
M2

E∗
M∑
i,l=1

φj(Oi)φj(Ol)(Ri −m(Oi))(Rl −m(Ol)

=
KM∑
j=1

1
M2

M∑
i=1

φ2
j (Oi)Var(Ri|Oi)

taking advantage that the (εi)i conditionally on (O1, · · ·OM ) are centered. This proves

E∗|m̃M − E∗(m̃M )|2M ≤ σ2
KM∑
j=1

1
M2

M∑
i=1

f2
j (Oi) = σ2KM

M
≤ σ2 K

M
.

The proof of (5.11) is complete. �

5.3.3 Least-Squares method for solving discrete BSDE

We now apply the previous empirical least-squares method to numerically solve the DPE
(5.8). To alleviate the presentation and to avoid some unimportant technicalities, we
directly assume that the terminal condition f(.) is Lipschitz bounded and the driver at
zero ((t, x) 7→ g(t, x, 0, 0)) as well. For simplicity of exposure, we consider here only
uniform time grids with N time steps.

Proposition 5.5 Under these assumptions, the functions yπi (.) and
√
Nzπi (.) defined in

(5.9) are Lipschitz continuous and bounded: their Lipschitz constants and upper bounds
are denoted by C?, which can be taken independent on N and i.

Actually, C? can be given explicitly in terms of the data.
For more important reasons, we consider a slightly variant of (5.8) where the Brownian

increments are truncated at level Rw

√
T/N where Rw > 0 is large enough: for this we

use the notation

[∆Wk]w =
(
−Rw

√
T

N
∨∆W1,k ∧Rw

T

N
, . . . ,−Rw

√
T

N
∨∆Wd,k ∧Rw

√
T

N

)
.

The DPE is now
Y π,Rw
T = f(Xπ

T ),

Zπ,Rw
ti =

1

∆i

E(Y π,Rw
ti+1

[∆Wi]
⊥
w |Xπ

ti
), i < N

Y π,Rw
ti = E(Y π,Rw

ti+1
+ ∆ig(ti, X

π
ti
, Y π,Rw

ti+1
, Zπ,Rw

ti )|Xπ
ti

), i < N.

(5.12)

The L2-error between (Y π, Zπ) and (Y π,Rw , Zπ,Rw) is exponentially small w.r.t. Rw, be-
cause of Gaussian type inequalities for the tails of ∆Wi: thus, a choice like Rw = c log(N)
for c large enough provides an extra error which can be neglected in comparison to the
discretization error. We will explain later in which sense this truncation is useful. This
truncation does not modify the statement of Proposition 5.5 for yπ,Rwi (.) and

√
Nzπ,Rwi (.),

for which the Lipschitz and boundedness properties are still valid with the same constant
C?.
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Algorithm for approximating of yπ,Rwk (·) and zπ,Rwk (·) At each time index 0 ≤ k ≤
N − 1, we consider basis functions p0,k(·) for the yπ,Rwk -component and pl,k(·) for the l-th
component of zπ,Rwk (1 ≤ l ≤ d). These basis functions are understood as vectors of
functions, with size K0,k and Kl,k respectively. The final approximation of yπ,Rwk (·) and
zπ,Rwk (·) have the form

yπ,Rw,Mk (·) = [αM0,k.p0,k(·)]y, zπ,Rw,Ml,k (·) = [αMl,k.pl,k(·)]z,

where [ψ]y = −C?∨ψ∧C? and [ψ]z = −C?N1/2∨ψ∧C?N1/2 truncate the solution at the
same threshold as the exact solution. The coefficients αMl,k (0 ≤ l ≤ d) are computed with
M independent simulations of (Xπ

tk
)k and (∆Wk)k, that are denoted by {(Xπ,m

tk
)k}1≤m≤M

and {(∆Wm
k )k}1≤m≤M : this single set of simulated paths are used to compute all the

coefficients at once. This is done as follows.

B Initialization : for k = N , take yπ,RwN (·) = f(·).

B Iteration : for k = N − 1, · · · , 0, solve the d least-squares problems

αMl,k = arg inf
α

1

M

M∑
m=1

|yπ,Rw,Mk+1 (Xπ,m
tk+1

)
[∆Wm

l,k]w

∆k

− α · pl,k(Xπ,m
tk

)|2

and set zπ,Rw,Ml,k (·) = [αMl,k · pl,k(·)]z.

Then compute αM0,k as the minimizer of

M∑
m=1

|yπ,Rw,Mk+1 (Xπ,m
tk+1

)+∆kg(tk, X
π,m
tk

, yπ,Rw,Mk+1 (Xπ,m
tk+1

), zπ,Rw,Mk (Xπ,m
tk+1

))−α ·p0,k(X
π,m
tk

)|2

and define yπ,Rw,Mk (·) = [αM0,k · p0,k(·)]y.

Error analysis. We now turn to the error estimates. The analysis combines the BSDE
techniques (a priori estimates using stochastic calculus), regression tools as those exposed
in Paragraph 5.3.2, but there is a slight difference which actually requires a significant
improvement in the arguments. Since we use a single set of independent paths, the
"responses" (yπ,Rw,Mk+1 (Xπ,m

tk+1
)[∆Wm

l,k]w)0≤m≤M are not independent, because of their depen-
dence through the function yπ,Rw,Mk+1 . To overcome this lack of independence in the proof,
we shall replace the random function yπ,Rw,Mk+1 by a deterministic neighbor: of course, there
is a complexity to recover the different function spaces to provide close neighbors, and
the covering numbers are well controlled using the Vapnik-Chervonenkis dimension, when
the function spaces are bounded. This is the technical reason why we have truncated the
Brownian increments. We now state a result regarding the global error, see [LGW06] for
full details.
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Theorem 5.6 Under the previous notations and assumptions, there is a constant C > 0
(independent on Rw and N) such that we have

max
0≤k≤N

E|Y π,Rw
tk

− yπ,Rw,Mk (Xπ
tk

)|2 + ∆k

N−1∑
k=0

E|Zπ,Rw
tk
− zπ,Rw,Mk (Xπ

tk
)|2

≤C C2
? log(M)

M

N−1∑
k=0

d∑
l=0

Kl,k︸ ︷︷ ︸
statistical error

+CN−1

+C
N−1∑
k=0

{
inf
α

E|yπ,Rwk (Xπ
tk

)− α · p0,k(X
π
tk

)|2 +
d∑
l=1

inf
α

E|
√

∆kz
π,Rw
l,k (Xπ

tk
)− α · pl,k(Xπ

tk
)|2︸ ︷︷ ︸

approximation error of function class

}

+CC2
?N

N−1∑
k=0

{
K0,k exp

(
− M

C C2
?K0,kN3

+ CK0,k+1 log(C C?(K0,k)
1
2N

3
2

))
+N−1Kl,k exp

(
− M

C C2
?R

2
wKl,kN2

+ CK0,k+1 log(C C?Rw(Kl,k)
1
2N)

)
+ exp

(
CK0,k log(C C?N

3
2 )− M

C C2
?N

3

)}
.

The last term between brackets is due to dependent regression problems. Those upper
bounds are available under very mild assumptions on the model, therefore it can easily
be applied to most of the usual applications.

Parameter tuning. We conclude this analysis by providing an example of how to
choose appropriately the parameters N , Kl,k and M . Our objective is to achieve a
global error of order ε = 1

N
for max0≤k≤N E|Y π,Rw

tk
− yπ,Rw,Mk (XN

tk
)|2 + ∆k

∑N−1
k=0 E|Zπ,Rw

tk
−

zπ,Rw,Mk (XN
tk

)|2.
For the vector spaces, we consider those generated by functions that are constant on

disjoint hypercubes of small edge. Since Xπ has exponential moments, it is easy to restrict
the partitioning to a compact set of Rd and analyze the induced error. If the edge of the
hypercube is like N−1, the vector spaces have dimension Kl,k ∼ N−d up to logarithmic
terms. Due to Proposition 5.5, the terms from approximation error of function class are
O(N−2) and they sum up to give a contribution O(N−1). A quick inspection of the upper
bounds shows that the highest constraint on M comes from the last term: we obtain
M ∼ cN3+2d for c large enough, up to logarithmic terms. The complexity of the scheme
is of order NM (still neglecting the log terms), because the computation of all regression
coefficients at a give date has a computational cost O(M log(N)) due to our specific choice
of function basis. Hence, the global complexity is

C ∼ ε−
1

4+2d

up to logarithmic terms.
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In practice, the algorithm has been performed on a computer up to dimension d = 10
with satisfactory results and rather short computational times (less than one minute).
There are several possible improvements to this basic version of the algorithm.

• Using local duplicating of paths reduces the last term in Theorem 5.6 and thus, it
improves the final complexity given the expected accuracy, see [GL06].

• We can use variance reduction techniques, see [BS12].

• Instead of writing the DPE between ti and ti+1, it can be written between ti and
T : it has the surprising effect (mathematically justified) to reduce the propagation
of errors in the DPE. This scheme is called MDP scheme (for Multi step forward
Dynamic Programming equation) and it is studied in [GT12].

Complementary references: for theoretical aspects, see [PP92], [EKP+97], [Par98],
[MY99]; for applications, see [EHM08] and [EPQ97]; for numerics, see [BP03], [Zha04],
[BT04], [GLW05], [LGW06], [BD07], [GL10], [CM10]. This list is not exhaustive.
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