solution non triviale. . . . . .

Introduction au transfert radiatif

Résumé

Une introduction à la théorie du transfert radiatif et à quelques unes de ses applications est présentée. Ce cours se veut simple, non exhaustif, et présente la théorie élémentaire, les domaines dans lesquels cette théorie est utile, et les méthodes les plus simples de résolution de l'équation du transfert radiatif (ETR). Ce rapide aperçu du permet de se faire une idée du sujet, et d'aborder de façon mieux équipée les publications spécialisées. Des sujets peu abordés par les astrophysciciens y sont traités (sphère intégrante, correction de Giovanelli...). Les calculs sont raisonnablement détaillés, et on utilise assez systématiquement des outils d'analyse fonctionnelle (δ de Dirac en particulier) qui permettent de court-circuiter les arguments vagues à la "on voit bien que...", en particulier pour établir l'équation de Giovanelli. Enfin, j'ai essayé de garder des conventions de signe cohérentes et décentes pour un physicien. Comme toujours, les misprints et erreurs de signes sont de moi. Ce cours correspond à l'enseignement de transfert radiatif du Master Physique Informatique de l'université de Montpellier 2.

1 Présentation du transfert radiatif.

1.1 Introduction.

La théorie du transfert radiatif permet de décrire la propagation de la lumière dans les milieux désordonnés où se produisent des phénomènes de diffusion et d'absorption multiples. Il s'agit d'une théorie phénoménologique : l'approche utilise une description de la lumière par flux énergétiques, sans passer par les équations de Maxwell. De plus, le milieu dans lequel se produit la diffusion et l'absorption est traité comme un milieu continu. Puisque on traite de la propagation des flux, on ne peut pas décrire d'effets interférentiels 1 .O nn e peut donc en principe pas l'utiliser lorsque la distance entre diffuseurs est plus petite que la distance de cohérence de la lumière, ce qui est rarement le cas en pratique. Cependant on constate souvent que cette description fonctionne très bien, même lorsqu'elle ne devrait pas, et que l'on peut appliquer la théorie du transfert radiatif dans des milieux très denses ! Cela est du au fait qu'un grand nombre de diffusion finit toujours par faire disparaitre les effets de cohérence.

Dans le même ordre d'idées, la diffusion individuelle de la lumière par les particules est ce que l'on appelle la diffusion de Mie. Dans le cas de sphères, la figure de diffraction est connue et assez complexe, présentant en particulier un grand nombre de pics de diffraction lorsque la longueur d'onde est comparable à la taille des sphères. Cette diffusion de Mie complexe n'est quasiment jamais observée en pratique : quelques diffusions suffisent à faire disparaitre les subtiles figures de la diffraction de Mie. On peut alors traiter le milieu comme un milieu effectif, où la diffusion se fait de façon quasi isotrope, avec des paramètres de diffusion effectifs empiriques, et que l'on ne relie jamais à la théorie de Mie : le calcul est bien trop compliqué 2 ! Une bonne illustration de ce passage est ce que l'on observe en pratique avec des pigments nacrés dans une peinture : déposés à très faible concentration sur un support transparent ou noir, on voit très nettement des irisations. Déposés en couches épaisses, ces nacres se comportent comme des pigments métalliques (dorés ou argentés) et les effets d'irisation disparaissent très rapidement. Ils apparaissent et on peut alors les décrire comme des pigments ordinaires.

En résumé, la théorie du transfert telle que nous allons la présenter est bien adaptée pour décrire des milieux présentant une diffusion multiple, avec des paramètres de diffusion qui seront souvent obtenus par un fit empirique des données observées, plutôt que par un calcul ab initio.

Il est par ailleurs clair que la théorie du transfert radiatif présente une parenté assez forte avec la théorie classique de la diffusion : dans le cas du transfert radiatif, on décrit la répartition angulaire détaillée des flux. Dans le cas de l'équation de la diffusion le flux est global, et la répartition angulaire n'est pas prise en compte. On comprend qualitativement que très à l'intérieur d'un milieu diffusant de façon efficace, le transfert radiatif dégénère en équation de la diffusion : le détail fin de la répartition angulaire des flux est "lavé" par la diffusion, et n'intervient plus dans la description de la propagation. Le classique "problème de Milne" consiste en particulier à recoller une solution de type diffusion à une solution de type transfert radiatif en surface du milieu.

Notons enfin qu'une approche totalement différente de ces phénomènes, et complémentaire de celle présentée ici, consiste à utiliser des méthodes de tracé de rayons avec des techniques Monte Carlo, pour simuler la propagation d'un grand nombre de "photons" dans un milieu aléatoire. Cela permet de résoudre des problèmes inabordables classiquement, au détriment de la compréhension détaillée de la physique du modèle ("what you get is what you see" !).

Bref historique et domaines d'applications.

La théorie du transfert radiatif a vu le jour à la fin du XIX ème siècle, avec le calcul par Rayleigh de la diffusion de la lumière par l'atmosphère et l'explication quantitative du ciel bleu. Au début du XX ème siècle, Schüster (1905) propose des équations très simples pour décrire la propagation de la lumière dans les nébuleuses interstellaires. La théorie voit son essor dans la communauté des astrophysiciens durant la première moitié de ce siècle, pour culminer avec les travaux classiques de Chandrasekhar sur l'équilibre radiatif des étoiles [START_REF] Chandrasekhar | Radiative Transfer[END_REF] [START_REF] Chandrasekhar | Radiative Transfer[END_REF][START_REF] Chandrasekhar | An Introduction to the Study of Stellar Structure[END_REF]). Elle est parallèlement utilisée dans des domaines appliqués très variés, en particulier la théorie des couches pigmentées (travaux de Kubelka-Munk-Saunderson [START_REF] Saunderson | Calculation of the Color of Pigmented Plastics[END_REF], puis de Marcus et Pierce [7]). Parmi ses nombreux domaines d'application citons (Cf. Van de Hulst-1980 [START_REF] Van De Hulst | Multiple light scattering, Tables, Formulas and Applications[END_REF]) : -l ap r o p a g a t i o nd el al u m i è r ed a n sl e sa t m o s p h è r e ss t e l l a i r e se tp l a n é t a i r e s .

-l ap r o p a g a t i o nd el al u m i è r ed a n sl e sm e r se to c é a n s( s o n d a g ee no c é a n o g r aphie). -D e s c r i p t i o n sd e sp e i n t u r e se tp i g m e n t s( f o r m u l a t i o nd e sm é l a n g e sp i g m e ntaires). -A p p l i c a t i o n sd a n sl ed o m a i n em é d i c a làl ap r o p a g a t i o nd el al u m i è r ed a n sl e s tissus (diagnostics). -A s p e c t sd e sn u a g e s ,d e sb r u m e se tb r o u i l l a r d s .

-R é fl e x i o nd el al u m i è r es u rl ac a n o p é e . . . Notons également que les idées du transfert radiatif ont été recyclées au cours des années 1940-50 dans la neutronique, décrivant le ralentissement et la thermalisation des neutrons dans un milieu absorbant et diffusant, éventuellement multiplicateur (pour une brève introduction voir par exemple L.C. Woods -1960 [5]).

Il est également amusant de constater des liens avec l'acoustique des salles (notion de champ diffus).

Ces quelques exemples montrent l'importance pratique de cette théorie. On peut en particulier affirmer que la compréhension de tout ce que l'on voit autour de soi passe par une compréhension plus ou moins poussée du transfert radiatif ! 1.3 quand ne pas utiliser la théorie du transfert radiatif ?

Ce qui précède donne quelques idées sur les cas où la théorie complète n'est pas nécessaire : à l'intérieur d'un milieu fortement diffusant, il suffit d'avoir une description de la propagation par l'équation de la diffusion, qui est beaucoup plus simple à traiter. C'est ce que l'on fait en pratique dans les études de neutronique, où on est principalement intéressé par ce qui se passe dans le bulk, et non pas en surface du milieu multiplicateur. A contrario, dès que l'on souhaite une description correcte au voisinage de la surface du milieu (quelques distances de diffusion), on doit utiliser le transfert radiatif, comme par exemple dans le problème classique de l'obscurcissement du disque solaire, ou la description des peintures à effet. C'est aussi l'outil indispensable des sondages (qu'y a t-il sous l'atmosphère de Vénus ?)

1.4 Voyage dans un verre de menthe à l'eau.

Une description qualitative des phénomènes mis en jeu, et la relation avec ce que l'on perçoit, est ici utile. Rajoutons alors quelques gouttes de sirop de menthe à notre breuvage. On continue à voir les images se former à travers le verre, mais colorées en vert. Ceci traduit la propagation de la lumière sans diffusion (pas de changement de direction), mais avec une absorption qui dépend de la longueur d'onde. On parle d'absorption sélective. C'est elle qui est responsable de la couleur : on perçoit la couleur complémentaire de celle qui a été absorbée. La théorie associée est la loi de Beer Lambert (Cf. section 5.2), qui permet de prédire la couleur en fonction de la dilution, de la forme du verre. . . Noter aussi qu'un verre de menthe très épais paraitra toujours noir : toute la lumière de rétroéclairage qui nous parvenait de derrière le verre a été absorbée.

Enfin, selon son goût, on rajoute quelques gouttes de lait ou de pastis à notre mélange : pour le transfert radiatif, l'effet est le même ! Immédiatement, le milieu se trouble, il devient turbide, les images ne se forment plus, bref, la lumière est diffusée, soit par les pelotes de caséine dans le cas du lait, soit par la précipitation de l'anéthol dans le cas du pastis. L'opacité est donc synonyme de diffusion. Elle se produit efficacement à 2 conditions : -D e sp a r t i c u l e sd et a i l l ev o i s i n e sd el al o n g u e u rd ' o n d ed o i v e n tê t r ep r é s e n t e s dans le milieu. Pour le visible, l'ordre de grandeur est le micromètre. -L ' i n d i c eo p t i q u ed ec e sp a r t i c u l e sd o i tê t r et r è sd i ff é r e n td ec e l u id um i l i e u environnant. Ce dernier résultat explique les changements de couleur du sable et du plâtre lorsqu'on les mouille : à sec, l'indice du milieu environnant est 1, mouillé il vaut 1.33, ce qui comparé au 1.5 de la silice conduit à une diffusion beaucoup moins efficace. On voit donc mieux la couleur de la roche ! On explique aussi de cette façon les belles couleurs évanescentes des galets mouillés. De façon similaire, du verre pilé de façon de plus en plus fine présente un aspect de plus en plus blanc, car la diffusion par les interfaces air-verre augmente. La lumière ressort du milieu avant d'avoir été absorbée dans les fragments de verre, sauf si on le mouille.

Notons enfin l'effet amusant suivant : on mélange une peinture blanche (diffusant pur) à une peinture noire (absorbant à toutes les longueurs d'ondes). Le mélange obtenu est un gris légèrement bleu, quelle que soit la qualité et la pureté de la peinture utilisée ! Cet effet est bien connu des peintres, qui le neutralisent en ajoutant une pointe d'ocre pour obtenir un gris neutre. En fait la diffusion de la lumière bleue est plus efficace que celle du rouge (diffusion Rayleigh) et la lumière bleue sort donc du milieu plus souvent avant d'avoir été absorbé. (Question : pourquoi ne voit on pas l'effet avec du blanc pur, ou du noir pur ?) Dans le cas des peintures, des cosmétiques... le diffusant est soit du monoxyde de Zinc ZnO, soit du dioxyde de Titane Ti0 2 (PbO, le "blanc de céruse", qui ad o n n és o nn o màu n em a r q u ed ep e i n t u r e ,e s tm a i n t e n a n ti n t e r d i t ) .P o u rl e papier, ce sont les fibres de cellulose qui assurent la diffusion, et donnent l'aspect blanc. Pour les nuages et le brouillard ce sont des gouttes d'eau ou des cristaux de glace, ainsi que dans le cas de la neige, mais dans tous les cas, ou retrouvera des particules de taille micrométrique.

Tous ces exemples p ermettent de se faire une idée de la comp étition entre diffusion et absorption que nous voulons décrire à travers la théorie du transfert radiatif. C'est bien l'aspect des objets qui nous entourent qui est en jeu ici.

Le problème type.

Un problème type de transfert radiatif se décrit en pratique de la façon suivante : on donne les caractéristiques d'absorption et de diffusion des matériaux en présence et la géométrie du problème (nombre et répartition des couches). On indique comme conditions aux bord du problème les caractéristiques des flux de lumière incidents (flux diffus, collimaté, composition spectrale...), ainsi que les conditions aux interfaces (continuité des flux avec réfraction, réflexion spéculaire ou diffuse, absorption...). On veut alors déterminer la répartition du flux dans tout le matériau. On pourra ainsi calculer les flux sortant, et en déduire les réflectance et transmittance de ce milieu. On aura également souvent àf a i r ef a c ea up r o b l è m ei n v e r s e ,q u ic o n s i s t eàd é d u i r el e sc a r a c t é r i s t i q u e sd u milieu des réflectances et transmittances mesurés, et en particulier sa composition, mais aussi éventuellement les conditions au bord du problème (quelle est la couleur de vénus sous son atmosphère ?). Nous verrons par la suite quelques exemples de cette démarche. Remarquons enfin que l'observateur n'est pas toujours placé à l'extérieur de milieu : quand nous sommes sous une couche de nuages, nous sommes nous mêmes les petits démons observateurs plongés dans le matériau, et posés sur la couche du fond : le sol ! 2 Photométrie.

La photométrie est la science souvent mal aimée et maltraitée qui à trait à la mesure des quantités de lumière. D'une part c'est un domaine expérimental compliqué, car la lumière passe son temps à fuir par tous les trous mis à sa disposition, et des écarts de facteur 2 par rapport à ce qu'on devrait trouver sont très courants. D'autre part, on y croise une jungle de grandeurs répondants aux doux noms de luminances, candela, lux... et en général c'est un peu confus. Cela étant, c'est un savoir très utile, et qui livre une quantité d'applications pratiques à qui sait l'apprivoiser ! Voyons un peu ce qu'il en est.

Différentes photométries.

La première difficulté avec la photométrie, c'est qu'il en existe deux, élaborées de façon initialement indépendantes par les physiciens, et par les opticiens : la photométrie énergétique et la photométrie visuelle, ou lumineuse. Toutes les grandeurs sont donc dupliquées. Cela étant, la différence entre les deux est facile à comprendre : la photométrie énergétique s'intéresse à tous les types de rayonnements (X, UV, visible, IR ...). La photométrie visuelle s'intéresse à la partie visible du spectre électromagnétique. Pour la vision diurne, la relation entre les deux types de photométrie est donnée par la relation 

I v (λ)=K m V (λ) I e (λ) (1 
I eT = ˆIe (λ) dλ (2) 
sur le domaine spectral envisagé. I e (λ) est alors une densité spectrale énergétique, et s'exprime en unité énergétique par nanomètre.

On peut alors définir le coefficient d'efficacité moyen de l'oeil (ou d'un capteur) par la relation : I vT = K m VI eT ,c eq u ic o n d u i ti m m é d i a t e m e n tàl ar e l a t i o n

V = ´700 400 V (λ) I e (λ) dλ ´700 400 I e (λ) dλ (3) 
Pour la lumière blanche, ce coefficient moyen vaut environ 0.3 relativement à la partie visible. 

R = M e E e (6) 

Luminance.

Si on s'intéresse maintenant à la répartition angulaire de la lumière (ré)émise par une surface, le concept clé est celui de luminance : 

La luminance s'exprime en Watts/m 2 /Stéradian. Lorsque la surface est Lambertienne, la luminance est indépendante de la direction d'observation. A contrario, pour une surface non Lambertienne, une surface brillante par exemple, la luminance dépend de la direction de sortie, et cette dépendance dépend de la direction du flux entrant. Dans le cas d'une surface Lambertienne, on peut calculer facilement l'émittance,

M e = ˆcos θ ≥0 L e cos(θ ) dΩ" = L e ˆ2π 0 dϕ ˆπ/2 0 dθ cos(θ )sin(θ )=πL e (8)
et on en déduit une expression alternative de la réflectance :

R = πL e E e (9) 
Cette relation peut alors s'étendre au cas non Lambertien, et conduit à la définition de le BRDF (bidirectional reflexion density function) : la surface éclairée dans une direction d'incidence

- → Ω présente une luminance L e ( - → Ω ) dans la direc- tion de sortie - → Ω .L aB R D Fv a u ta l o r s R( -→ Ω , - → Ω) = πL e ( - → Ω ) E e ( - → Ω) (10) 
Pour un objet lambertien, la BRDF est constante et s'identifie à la réflectance.

Pour un diffuseur blanc idéal (dont le Spectralon TM donne une bonne idée), on aR =1 . 

On voit que la luminance donne directement la quantité de lumière enregistrée au niveau du capteur de façon très simple. Cette expression est tout à fait remarquable : pour un détecteur d'ouverture angulaire donnée (dΩ fixé) orienté vers l'objet à mesurer (cos(α)=1), l'éclairement ne dépend plus de la distance de l'objet, ni de son orientation ! On peut vérifier ce résultat en orientant un luxmètre vers un mur éclairé : l'éclairement obtenu ne dépend pas de la distance au mur, ni de l'orientation du luxmètre. En effet si on écarte le détecteur de la surface, chaque point source contribue en 1/r 2 suivant la loi de Bouguer, mais la surface qui contribue augmente comme r un aspect indéfini, sans relief. Dans le même ordre d'idée, le fait que le disque solaire semble plus sombre au bord qu'en son centre montre directement que l'émission du soleil n'est pas Lambertienne, ce qui pour un corps noir de cette taille semble assez perturbant ! (Problème de l'obscurcissement du disque solaire). Au passage, la pleine Lune présente aussi un disque non uniforme, mais ici, c'est l'éclairement non uniforme du au cos(θ) qui est en jeu, car la Lune est une réflecteur Lambertien, de réflectance (Albédo) R 7% 7 .

La photométrie lumineuse.

En multipliant toutes les densités spectrales énergétiques par [START_REF] Öziçik | Radiative Transfer & Interactions With Conduction & Convection[END_REF].

K m V (λ),
L(M )= R(M ) π ‹ P L(P ) cos(θ M ) cos(θ P ) MP 2 dS P (12) 
L(M )=L (0) (M )+ R(M ) π ‹ P L(P ) cos(θ M ) cos(θ P ) MP 2 dS P
dite équation de Fredholm de 2 ème espèce, présentant un terme de source L (0 (M ).

Remarquez qu'en multipliant tout par π/R(M ) ,o np e u to b t e n i ru n eé q u a t i o n équivalente pour l'éclairement (exercice : le vérifier)

E(M )=E (0) (M )+ 1 π ‹ P R(P ) E(P ) cos(θ M ) cos(θ P ) MP 2 dS P
où le terme de source représenterait ici un éclairement direct de la paroi par des sources externes, et où la réflectance apparait maintenant dans l'intégrale 9 .

L'itération de l'équation conduit à un résultat similaire d'unicité de la solution si R<1. C'est l'équation qui décrit l'équilibre du rayonnement dans un four à pain (corps noir). Nous allons la résoudre dans le cas simple ou L (0) et R sont constantes sur l'enceinte, ce qui est le cas dans un four à pain. Pour cela, on peut essayer de chercher une solution constante L.L ' i n t é g r a l es ec a l c u l ea l o r s toujours par la même technique, et on trouve (exercice : le montrer)

L = L (0) 1 -R
qui est la seule solution, en vertu de l'unicité. On voit le rôle amplificateur du coefficient de réflexion de l'enceinte. Plus celui ci est grand, plus ça chauffe. C'est précisément le rôle de la brique réfractaire dans le four à pain.

Regardons maintenant ce qui se passe pour une sphère. Dans ce cas, la géométrie est très simple, et si on note a le rayon de la sphère, on a pour tout couple de points M et P (exercice : le montrer) 

cos(θ M ) cos(θ P ) MP 2 = 1 4a 2 et l'équation devient E(M )=E (0) (M )+ 1 S ‹ P R ( 
L ech = R ech E ech π = R ech φ T πS R w (1 -R)
qui va donner directement l'éclairement du capteur par la formule [START_REF] Courant | Hilbert Methods of Mathematical Physics[END_REF]. Plusieurs caractéristiques du dispositif s'en déduisent :

-L ar é p o n s ed uc a p t e u rv ad é p e n d r ed ef a ç o nnon linéaire de R ech car R dépend de R ech . Cet effet est d'autant plus marqué que le port de mesure est grand, et traduit le fait que l'échantillon lui même modifie la sphère. Pour obtenir une réponse linéaire du capteur, on utilise un dispositif de double faisceau (voir ci-dessous). -L as p h è r ei n t é g r a n t ee s tu nd i s p o s i t i fp e ul u m i n e 3 Les grandeurs de la théorie du transfert. 3.2 La radiance. Nous allons voir l'équation du transfert radiatif (ETR), qui permet en principe de déterminer la radiance, mais avant cela, montrons comment la radiance donne accès à toutes les grandeurs photométriques vues précédemment.

Densité énergétique.

La densité énergétique spectrale en un point est reliée de façon simple à la radiance : les photons vont à la vitesse c et ont une énergie hν, donc la "densité de photons" allant dans la direction -→ Ω vaut I e /hνc,e tl ad e n s i t éé n e r g é t i q u eI e /c. Il suffit d'intégrer sur toutes les directions pour obtenir la densité énergétique spectrale

u e (ν, - → r )= 1 c ˆΩ=4π I e (ν, - → Ω , - → r )dΩ (13) 
3.2.3 Flux à travers une surface fixe.

Dans la définition de la radiance ci dessus, la surface dS était perpendiculaire à -→ Ω .L o r s q u el as u r f a c ee s tfi x e ,l efl u xé n e r g é t i q u ed a n sl ad i r e c t i o n -→ Ω àt r a v e r s dS vaut (exercice :e x p l i q u e rp o u r q u o i )

d 2 φ e = I e (Ω, - → r )( - → Ω • - → n)dSdΩ=I e (Ω, - → r ) cos(θ)dSdΩ (14) 
Figure 15 -flux à travers dS fixe.

On peut alors définir le vecteur densité de courant comme la moyenne

- → J e ( - → r )= ˆIe (Ω, - → r ) - → Ω dΩ (15) 
et le courant algébrique total à travers dS orienté par -→ n vaut J-→ n = -→ J e • -→ n = J + -J -,o uJ + et J -sont les courants orientés "vers le haut" et "vers le bas" :

J + = ˆ(-→ Ω • -→ n)>0 I e (Ω, - → r )( - → Ω • - → n) dΩ ,J -= ˆ(-→ Ω • -→ n)<0 I e (Ω, - → r ) - → Ω • - → n dΩ - →
J e correspond à la notion familière de densité de courant vue en électricité, en théorie de la diffusion...

Exemples.

Deux exemples très simples et très utiles en pratique :

1. Flux isotrope : I e est indépendant de la direction -→ Ω .D a n sc ec a s , -→ J e =0, mais le flux à travers dS vaut d 2 φ e = I e cos(θ)dSdΩ.O nv o i té m e r g e rl a loi de Lambert comme un comportement naturel pour une distribution isotrope du flux, et on comprend beaucoup mieux pourquoi on la retrouve si souvent : elle correspond à une distribution isotrope de la lumière dans le matériau. Dans ce cas, on obtient immédiatement J + = πI e ,r e l a t i o n que nous avons déjà rencontrée à plusieurs reprises (exercice : faire ce calcul).

Flux totalement collimaté dans une direction

-→ Ω 0 =(µ 0 ,ϕ 0 ) donnée : toute la lumière va dans la direction -→ Ω 0 et la radiance vaut

I e (µ, ϕ)=Fδ( - → Ω - - → Ω 0 )=Fδ(µ -µ 0 )δ(ϕ -ϕ 0 )
Dans ce cas, on a -→ J e = F -→ Ω 0 ,e tJ-→ n = F cos(θ 0 ) . En utilisant l'équation (14) pour calculer l'éclairement, et la relation entre radiance et luminance en surface, on obtient la relation fondamentale reliant les radiances entrantes et sortantes de la surface 11 :

dI e ( - → Ω )= 1 π R( - → Ω , - → Ω)I e (- - → Ω)cos(θ) dΩ (16) 
En pratique, on veut la plupart du temps calculer la radiance totale sortant de la surface, due à toutes les directions incidentes, ce qui est obtenu en sommant la formule précédente :

I e ( - → Ω )= 1 π ˆ(-→ Ω • -→ n)>0 R( - → Ω , - → Ω)I e (- - → Ω)( - → Ω • - → n) dΩ (17) 
Cette relation est fondamentale dans la théorie du transfert radiatif. Elle trouve de nombreuses applications. Par exemple, si la BRDF est connue, elle permet de calculer une distribution sortante pour une distribution entrante donnée. Elle est par conséquent à la base de tous les calculs de "rendering" (simulation réaliste du rendu des objets sous des éclairages complexes).

On peut définir l'analogue de la BRDF pour la transmission, avec exactement les mêmes idées : l'objet correspondant s'appelle la BTDF, et permet de relier la radiance en sortie d'un milieu à celle entrant de l'autre coté suivant : 

I e ( - → Ω )= 1 π ˆ(-→ Ω • -→ n)>0 T ( - → Ω , - → Ω)I e ( - → Ω)( - → Ω • - → n) dΩ ( 
- → Ω , - → Ω) = R( - → Ω , - → Ω ) et T ( - → Ω , - → Ω) = T ( - → Ω , - → Ω )
,r e l a t i o n st r è su t i l e se np r a t i q u e .

Réflectances et transmitances moyennées.

La plupart du temps, un spectrocolorimètre est équipé d'une sphère intégrante, soit en illumination, soit pour collecter la lumière diffusée par un échantillon. Dans ce cas, on obtient les valeurs moyennes de la BRDF et de la BTDF. Considérons le cas de la réflectance :

Dans un certain nombre de dispositifs, le flux incident sur la surface à mesurer est collimaté normal à l'échantillon 12 .L as p h è r ei n t é g r a n t eq u is u r m o n t e l'échantillon collecte l'ensemble du flux réémis J + .O nv o i td o n cq u ed a n sc e cas, on mesure en fait la valeur moyenne :

R 0/D = 1 π ˆ1 0 ˆ2π 0 R(µ ,ϕ ; µ 0 = 1) µ dµ dϕ
Lorsque la BRDF est indépendante de ϕ,e to no b t i e n t

R 0/D = ˆ1 0 R(µ , 1) 2µ dµ
Les sphères intégrantes sont également souvent utilisées comme un dispositif d'illumination diffus. Dans ce cas, le flux incident sur l'échantillon est isotrope, la radiance incidente I e est une constante, on mesure le flux réemis normal à l'échantillon, et on obtient

R D/0 = ˆ1 0 R(1,µ)2µdµ
12. Sur la plupart des spectrocolorimètres, l'angle prend la valeur standardisée de 8°pour pouvoir mesurer le spéculaire.

Le principe de retour inverse généralisé montre que ces deux valeurs sont en principe égales : R 0/D = R D/0 . Enfin, les dispositifs à double sphère, en illumination et en détection donnent la double moyenne 

R D/D = ˆ1 0 R(µ ,
µ r = µ i ϕ r = ϕ i + π n 2 (1 -µ 2 t )=(1-µ 2 i ) ϕ t = ϕ i (19) 
Ce qui donne pour les angles solides des pinceaux incidents et transmis n 2 dΩ t = dΩ i . Cette dernière relation exprime la concentration du faisceau lumineux produite par la réfraction (exercice :m o n t r e rc e t t er e l a t i o n ) .

Le coefficient de réflexion de Fresnel non polarisé vaut alors

r F (µ i )= 1 2 nµ t -µ i nµ t + µ i 2 + nµ i -µ t nµ i + µ t 2 (20) 
et le coefficient de transmission correspondant vaut t F (µ i )=1-r F (µ i ) .R emarquer au passage le "principe" du retour inverse : t 1→n (µ i )=t n→1 (µ t )13 .

Les expressions des réflectances et transmittances de Fresnel expriment les relations entre les flux entrant et sortant suivant les équations (17) et (18). Dans le cas qui nous concerne, on obtient (exercice :l em o n t r e r )

R F (µ ,ϕ';µ, ϕ)=r F (µ) δ(µ -µ) 2µ 2πδ(ϕ -ϕ -π) T Fe (µ ,ϕ ; µ, ϕ)=n 2 t F (µ) δ µ - 1 -n 2 (1 -µ 2 ) 2µ 2πδ(ϕ -ϕ) (21)
On voit bien dans ces expressions la différence entre un coefficient de transmission,quineconcernequelesfluxd'énergie(dφ t = r F dφ i ),etunetransmittance, qui concerne la répartition angulaire. Notez aussi le facteur n 2 qui traduit l'effet de concentration du à la réfraction, et se déduit de la relation entre les flux.

4 L'équation du transfert radiatif. 

κ T s'appelle le coefficient d'extinction total. Il dépend en général de la fréquence du rayonnement, de la position -→ r ,m a i sp a sd el ad i r e c t i o nd ur a y o n n e m e n t -→ Ω .D ' u n ef a ç o ng é n é r a l e ,κ T est proportionnel à la concentration de centres diffuseurs-absorbeurs dans le matériau. Par la suite, nous supposerons que le matériau est homogène par morceaux, c'est à dire que κ T est contant, mais cette hypothèse n'est pas indispensable.

Processus de diffusion.

D'une façon générale, une partie du flux incident sur un bloc de matériau va être diffusée dans une autre direction : On détermine alors la portion de rayonnement du faisceau incident qui a été diffusée :

dφ e ds - → Ω → - → Ω = κ T p -→ (Ω , - → Ω) 4π I e -→ ( 
dI e ds - → Ω →4π = κ T I e -→ (Ω) ˆΩ p -→ (Ω , - → Ω) dΩ 4π = ω 0 κ T I e -→ (Ω) (24) 
La quantité ω 0 ≡ ´Ω p -→ (Ω , -→ Ω) dΩ 4π s'appelle l'albédo du matériau, et représente la fraction totale de rayonnement diffusé. On peut donc définir les coefficients de diffusion et d'absorption suivant :

κ s = ω 0 κ T κ a =( 1 -ω 0 ) κ T ( 25 
)
Lorsque le matériau est isotrope, la fonction de phase dépend en fait de l'angle de diffusion cos

[Θ] = - → Ω • -→
Ω .E ne x p r i m a n tl e sa n g l e sd a n su ns y s t è m ed e coordonnées sphériques (Cf. figure (13)), on a

cos [Θ] = µµ + 1 -µ 2 1 -µ 2 cos(ϕ -ϕ ) 4.1.3 Equation du transfert.
En réunissant les deux termes traduisant l'absorption et la diffusion, on obtient l'équation du transfert radiatif :

dI e ( - → Ω , - → r ) ds = -κ T I e -→ (Ω, - → r )+κ T ˆΩ p -→ (Ω • -→ Ω ) I e -→ (Ω , - → r ) dΩ 4π (26) 
Il s'agit bien d'une équation linéaire, ce qui donne quelque espoir de pouvoir faire quelque chose avec ! Le milieu est ici décrit par la fonction de phase et le coefficient d'extinction, qui peuvent dépendre de la position -→ r .

Milieux stratifiés.

L'équation précédente est encore trop compliquée pour être utilisable. On utilise des hypothèses de symétrie plane ou sphérique pour la résoudre. Dans ce cours, nous supposerons le milieu constitué de couches horizontales, suivant le schéma : 

+ κ T ˆΩ p [µµ + √ 1-µ 2 √ 1-µ 2 cos(ϕ-ϕ )] I e (z,
(µ 0 > 0,ϕ 0 = 0) ,d o n n ép a r I e (τ =0,µ > 0,ϕ)=Fδ(µ -µ 0 )δ(ϕ)
La BRDF est alors obtenue par le flux diffus sortant14 ,s u i v a n t( exercice :l e monter)

R(-µ, ϕ; µ 0 )= πI e (τ =0,µ < 0,ϕ) µ 0 F (28)
Pour incorporer ces conditions aux limites de manière simple dans l'ETR, on pose

I e (τ, µ, ϕ)=Fδ(µ -µ 0 )δ(ϕ) e -τ/µ0 + I diff (τ, µ, ϕ) (29) 
et I diff vérifie l'équation (exercice :l em o n t e r ):

µ dI diff (τ, µ, ϕ) dτ = -I diff (τ, µ, ϕ)+ ˆΩ p [cos(Θ)] I diff (τ, µ ,ϕ ) dµ dϕ 4π + F 4π p(µ, ϕ; -µ 0 ) e -τ/µ0 (30) 
avec les conditions aux limites I diff (τ =0 ,µ > 0,ϕ)=0,q u it r a d u i s e n tl ' a bsence de flux diffus incident. On voit que dans l'équation ci dessus, le terme collimaté incident apparait maintenant sous la forme d'un terme de source dans l'ETR, et que le terme en Dirac, impossible à traiter numériquement, est évacué de l'équation.

At i t r ed ' e x e r c i c e ,o nr e f e r al et r a i t e m e n tp o u rl at r a n s m i t t a n c e ,e to nv é r i fi e r a qu'elle peut se calculer comme

T (µ, ϕ; µ 0 )=e -L/µ0 δ(µ -µ 0 ) 2µ 0 2πδ(ϕ)+ πI e (τ = L, µ > 0,ϕ) µ 0 F (31)
pour µ 0 et µ>0 ,a v e cL l'épaisseur optique de la couche traversée.

Invariances.

Nous avons déjà utilisé l'invariance azimutale15 en choisissant la direction d'incidence à ϕ 0 =0.E ni n t é g r a n tl ' é q u a t i o nd ut r a n s f e r ts u rl ' a n g l eϕ,o no b t i e n t une équation sans dépendance azimutale

µ dI(τ, µ) dτ = -I(τ, µ)+ 1 2 ˆ1 -1 p(µ, µ ) I(τ, µ ) dµ + F 4π p(µ; -µ 0 ) e -τ/µ0
où on a défini les moyennes

p(µ, µ )= 1 2π ˆ2π 0 p [µµ + √ 1-µ 2 √ 1-µ 2 cos(ϕ)] dϕ I(τ, µ)= 1 2π ˆ2π 0 I(τ, µ, ϕ) dϕ
Dans un milieu fortement diffusant, le flux est invariant suivant ϕ en profondeur16 ,e tl ' é q u a t i o nc i -d e s s u sd o n n ed i r e c t e m e n tl ar a d i a n c e .

Dans le cas ou la fonction de phase est isotrope p = ω 0 ,l ' é q u a t i o n( 3 0 )n e dépend pas de ϕ,l e sc o n d i t i o n sa u xl i m i t e ss u rl efl u xd i ff u sn o np l u s ,e tl a partie diffuse du flux est indépendante de ϕ,a l o r sq u el efl u xi n c i d e n ta v a i tu n e direction privilégiée ϕ 0 =0! On aboutit ici à la forme très simple de l'ETR : -M a l g r és as i m p l i c i t é ,e l l eau ni n t é r ê tp h y s i q u e:àb a s s eé n e r g i e ,l ad i ff u s i o ns e fait en onde s, et est donc isotrope. Même dans les cas ou la diffusion n'est pas isotrope, un grand nombre de diffusions produit un résultat équivalent. On pourra donc toujours décrire un milieu fortement diffusant par cette équation.

µ dI(τ, µ) dτ = -I(τ, µ)+ ω 0 2 ˆ1 -1 I(τ, µ ) dµ + F 4π ω 0 e -τ/µ0 (32) 
Nous allons voir plus loin des solutions exactes et approchées de cette équation.

Pour l'instant, on va s'intéresser à des "poor man's ETR versions", modèles simplifiés qui permettent de comprendre la physique de l'ETR en restant à un niveau de calcul élémentaire.

5 Loi de Beer-Lambert et théorie de Kubelka-Munk

Introduction

Si on considère l'ETR sans sources :

µ dI(τ, µ) dτ = -I(τ, µ)+ ω 0 2 ˆ1 -1 I(τ, µ ) dµ (33) 
une approche de résolution brutale qui vient à l'esprit consiste à discrétiser l'intégrale sur µ (méthode des rectangles, méthode de Gauss...). On voit que dans ce cas, on obtient un système différentiel couplé linéaire du premier ordre pour les flux I i (τ ) ≡ I(τ, µ i ),cequidonneaccèsàtoutunensembledeméthodes de résolution. On parle de méthode à N flux, et c'est une des approches utilisées pour la résolution numérique de l'ETR. Cette approche a ses lettres de noblesse : c'est en suivant cette voie que Chandrasekhar a résolu l'équation ci dessus, moyennant un passage à la limite N →∞,l'in troductiondefonctionsspéciales, et une bonne dose de virtuosité calculatoire.

Dans ce contexte, il est intéressant de contempler les méthodes à 1 flux (Beer-Lambert) et 2 flux (Kubelka-Munk)17 ,q u ip e r m e t t e n td ' a v o i ru n eb o n n ec o mpréhension de la physique de l'ETR. Notons aussi que le modèle de Kubelka et Munk reste très utilisé dans le monde de la peinture en raison de sa simplicité et de sa robustesse, en dépit de critiques très légitimes sur sa précision (Cf. Van de Hulst -1980 [START_REF] Van De Hulst | Multiple light scattering, Tables, Formulas and Applications[END_REF]).

Loi de Beer-Lambert

La loi de Beer Lambert, observée empiriquement dans les solutions diluées absorbantes, mais non diffusantes, s'énonce "l'absorbance est proportionnelle à la concentration et à l'épaisseur de la solution traversée", soit en termes de chimistes A(λ)=ε(λ)CL ,o ùε(λ) s'appelle le coefficient d'absorption molaire, et caractérise l'absorbant. Pour un mélange idéal, on somme les absorbances des constituants. Nous allons "démontrer" cette loi.

Pour cela, adoptons un modèle simple de confettis, petits disques opaques de surface σ a arrêtant la lumière de façon géométrique, et disposés aléatoirement dans le milieu, avec un nombre moyen de confettis par unité de volume C.

Considérons une épaisseur dx suffisamment faible18 de matériau absorbant. Celui-ci contient des confettis qui arrêtent la lumière. Le flux en entrée de cette 

ε(λ)= 1000 ln 10 N A σ a (λ)
Remarquons que cette "démonstration " de la loi de Beer Lambert n'en est bien entendu pas une. On a passé un certain nombre de difficultés sous le tapis. En particulier, on peut se demander comment un processus par nature discret se transforme en absorption continue du flux. La réponse est bien sûr cachée dans le fait de prendre un nombre fixe d'absorbeurs dans dx,e td et r a i t e rI(x) comme une variable continue. En réalité, le nombre de confettis rencontrés suit une loi de Poisson, et le flux décroit de manière discrète, en moyenne de façon exponentielle, mais avec des fluctuations. C'est la même description que la désintégration radioactive, ou le "bruit de grenaille" en électronique.

Noter aussi que la quantité K = σ a C ,i n v e r s ed ' u n el o n g u e u r ,s ' a p p e l l el a "section efficace macroscopique" en physique nucléaire, et donne la profondeur de pénétration dans le milieu suivant l =1/K.

Enfin, il est très facile de reprendre la démonstration avec plusieurs sortes de confettis, dont les populations sont supposées indépendantes (un rouge ne se colle pas systématiquement sous un vert !). Dans ce cas, il est facile d'établir que 

K = σ 1 C 1 +σ 2 C 2 = K 1 +K 2 , c
dI(x) dx = -KI(x)+SJ(x) -SI(x) -dJ(x) dx = -KJ(x)+SI(x) -SJ(x) (34) 
Quelques remarques nous aiderons à mieux comprendre le modèle :

-K représente la section macroscopique d'absorption du matériau. Comme précédemment, il est raisonnable de penser qu'elle varie proportionnellement à la concentration. -D em ê m eSr e p r é s e n t ee ng r o sl as e c t i o nm a c r o s c o p i q u ed ed i ff u s i o n .

-L e st e r m e se nSd é c r i v e n tl ec o u p l a g ed e sfl u xe n t r a n te ts o r t a n tp a rl ad i ff usion. Si S =0on retrouve Beer Lambert. -N o t e rl ap a r f a i t es y m é t r i ex ↔-x , I ↔ J des équations, qui doit se retrouver dans les solutions, et traduit l'invariance droite- 

Résolution du modèle.

La solution générale du système différentiel linéaire d'ordre 1 à coefficients constants ci dessus est très classique. On cherche une base de 2 solutions exponentielles de la forme I(x) J(x) = e αx I 0 J 0 ce qui conduit à un système de valeurs propres (les valeurs de α)e td ev e c t e u r s propres. A un niveau élémentaire, on utilise la symétrie pour diagonaliser le système en prenant la somme et la différence des 2 lignes de (34). On trouve facilement la solution générale

   I(x)= A 1 - K K+2S e αx + B 1+ K K+2S e -αx J(x)= A 1+ K K+2S e αx + B 1 - K K+2S
e -αx où les valeurs propres ±α sont données par α = K(K +2S),e tAe tBs o n t des constantes arbitraires. On note encore à ce stade la symétrie x ↔x de la solution. La valeur propre α donne la longueur d'atténuation dans le milieu suivant l =1 /α.S ii ln ' yap a sd ed i ff u s i o n ,S =0et on retrouve le résultat de Beer Lambert. Le cas sans absorption est plus subtil, et pourra être traité en exercice. Dans ce cas, la solution varie de façon linéaire en x (exercice : le montrer.V o i ra u s s ia n n a l e0 3 -2 0 1 2e na p p e n d i c e ) .

Conditions aux limites.

Le modèle ci dessus permet de faire plein de physique rigolote en choisissant des conditions aux limites adaptées aux problèmes que l'on veut décrire : ). -D a n sc e sm é t h o d e so p a q u e s ,l ' é c h e l l ed e ss e c t i o n sm a c r o s c o p i q u e se s tr e l a t i v e: on pose arbitrairement S w =1pour un matériau de référence, en général le blanc diffusant de la peinture. Toutes les valeurs de K et de S sont exprimées relativement à cette échelle (cela revient en fait à choisir une unité de longueur égale à 1/S w ) . Il n'y a ici en effet aucun moyen de déterminer une épaisseur ou une concentration absolue, puisque la couche est opaque. Nous allons voir comment on arrive à une détermination absolue de K et S avec les méthodes dites translucides. 6.1 Une première solution non triviale.

B A = e 2αL 1 -R F R ∞ R F -R ∞ et R = (R F -R ∞ )+e 2αL R ∞ (1 -R F R ∞ ) R ∞ (R F -R ∞ )+e 2αL (1 -R F R ∞ ) (35 
Appliquons à l'équation (33) une technique standard de résolution des équations linéaires : la méthode de séparation des variables. On cherche donc une solution du type I(τ, µ)=h(τ )f (µ) .E nr e po r t a n td a n sl ' é q u a t i o n ,o na r r i v eàl af o r m e séparée

α = - h (τ ) h(τ ) = 1 µ - ω 0 2µf (µ) ˆ1 -1 f (µ )dµ
On voit donc que c'est une solution variant exponentiellement avec la profondeur h(τ )=exp(-ατ ) .L ad é p e n d a n c ea n g u l a i r ee s tf a c i l eàd é t e r m i n e r ,c a r l'équation intégrale pour f est très simple lorsque la diffusion est isotrope : on a

C = ω 0 2 ˆ1 -1 f (µ)dµ et f (µ)= C 1 -αµ α doit donc vérifier l'équation caractéristique 2 ω 0 = ˆ1 -1 dµ 1 -αµ soit ln 1+α 1 -α = 2α ω 0
Pour 0 <ω 0 < 1 il existe une solution réelle unique 0 <α<1 et sa symétrique -α que nous sommes contents de retrouver (il n'y a pas de direction privilégiée haut-bas). On peut aussi montrer que cette solution a la plus petite partie réelle, et correspond au plus faible amortissement dans le milieu. C'est le mode fondamental de transfert, qui est le seul qui subsiste en profondeur dans le milieu, d'où son intérêt. On verra plus bas qu'il correspond à une diffusion simple Montrons maintenant que la solution ainsi trouvée est solution de l'équation de la diffusion, et déterminons le coefficient de diffusion D.Ondéfinitlesmoments de la distribution I(µ) 

E(τ )= ˆ1 -1 I(τ, µ)dµ J(τ )= ˆ1 -1 I(τ, µ)2µdµ K(τ )= ˆ1 -1 I(τ, µ)µ 2 dµ ...

Solution du problème de Milne.

En cerise sur le gateau, voici la solution du problème de Milne, qui donne en substance la réponse au problème de l'obscurcissement du disque solaire. Rappelons qu'il s'agit d'obtenir la luminance d'une surface dans laquelle règne en 6.7.2 Applications BRDF d'une couche diffusante sur un fond Lambertien Ce premier exemple est très utile, et correspond au cas que nous avons envisagé dans le paragraphe Kubelka Munk translucide : une couche diffusante d'épaisseur optique L sur un fond Lambertien. Dans ce cas la couche (1) est décrite par une BRDF R 1 (µ, µ 0 ) et une BTDF :e -L/µ0 δ(µ-µ0) 2µ0 + T 1 (µ, µ 0 ) ,o uo nae x p l i c i t e m e n ts éparé la partie colimatée. La couche (2) est décrite par une BRDF constante R F (une matrice remplie de R F ). Les intégrales sont très faciles à calculer, puisque R F ne dépend pas des angles d'intégrations, et on trouve, après avoir sommé la série : R(µ, µ 0 )=R 1 (µ, µ 0 )+ (e -L/µ + t 1 (µ))

R F 1 -r 1 R F (e -L/µ0 + t 1 (µ 0 )) (42) 
où les transmitances µ-diffus et les réflectances diffus-diffus sont données par les intégrales :

t 1 (µ)= ˆ1 0 T 1 (µ, µ )2µ dµ r 1 = ˆ1 0 ˆ1 0 R 1 (µ, µ )2µdµ 2µ dµ
Cette formule s'explique bien par des considérations physiques : la réflectance totale est celle de la couche (1) plus celle de la couche du fond à travers la couche (1), avec des reflexions multiples (le dénominateur), les transmissions collimatées et diffuses, et le fait que la couche du fond redistribue tous les flux reçus de façon Lambertienne, quelle que soit leur origine (exercice : faire ce calcul, et son interprétation).

Les expressions ci dessus peuvent être appliquées comme les expressions correspondantes de Kubelka-Munk (35) pour résoudre des problèmes de sondage : "quelle est le sol sous cette atmosphère ?" ou bien "quelle est l'atmosphère sur ce sol ?" ce que l'on peut facilement transposer dans le domaine de la peinture.

Equation de Giovanelli. D'après le physicien australien (sic !) du même nom. Dans ce cas, la couche (1) est constituée d'une interface de Fresnel, la couche (2) etant décrite par une BRDF R 2 (µ ,µ) . Ce cas est un peu plus complexe à traiter, car l'interface de Fresnel n'est pas symétrique "haut-bas", comme nous l'avons déjà mentionné. La figure ci dessous précise les notations des angles : les indices "e" et "i" sont pour externe et interne.

Les réflectances et transmittances de Fresnel s'écrivent ici, en ommettant la dépendance en angle azimutal qui est triviale :
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 1 Figure 1-A b s o r p t i o ne td i ff u s i o nd a n su nm i l i e u .N o t e rq u el ar é fl e x i o nréfraction de surface se produit également pour les flux diffus. Observons la lumière se propager dans un verre d'eau. Tout étudiant sait que la propagation se fait sans absorption et en ligne droite, avec des phénomènes de réflexion et de réfraction à la surface de l'eau. La réflexion observée, due à la discontinuité entre milieux, est dite réflexion spéculaire (du latin spéculum : miroir), et suit les lois de Descartes. En dehors de la déformation des images due à la réfraction, et au faible reflet du à la réflexion spéculaire, l'eau n'altère
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 2 Figure 2-L ep r o b l è m ed ut r a n s f e r tr a d i a t i f:q u ' e s tc eq u is o r t?

  ) où I e (λ) est une grandeur photométrique énergétique, par exemple une intensité, et I v (λ) est la grandeur visuelle correspondante. V (λ) est le coefficient d'efficacité relatif de l'oeil, qui traduit la sensibilité de notre capteur favori : V (λ) est non nul dans le domaine du visible, entre 400 et 700 nm, et son maximum se situe dans le vert-jaune, à λ = 555 nm ,c o m m eo nl ev o i tfi g u r e( 3 )c i -d e s s o u s .
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 3 Figure 3 -Coefficient d'efficacité relative de l'oeil
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 45256 Figure 4-U n es i t u a t i o np h o t o m é t r i q u eg é n é r a l e
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 7 Figure 7-E m i t t a n c e
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 8 Figure 8-L o id eL a m b e r te tL u m i n a n c e Cette grandeur est reliée à la loi de Lambert : une grande classe de matériaux diffusants, dits lambertiens, ont une répartition angulaire de flux émis qui varie comme cos(θ ).D up o i n td ev u ep r a t i q u e ,c e so bj e t ss o n tm a t s ,s a n sa s p e c td e brillant 4 .O nd é fi n i ta l o r sl al u m i n a n c ep a r d 2 φ e = L e cos(θ ) dS dΩ"(7)

Figure 9 - 5 dΩ" = σ cos α r 2 Figure 10 - 2 6

 952102 Figure 9-D é fi n i t i o nd el aB R D F Ici -→ Ω et -→ Ω et -→ n sont des vecteurs unitaires repérant les directions d'entrée et de sortie de la lumière, ainsi que la normale à la surface. Tous ces vecteurs sont orientés vers l'extérieur du milieu.

  2 ,e tl e sd e u xe ff e t ss ec o m p e n s e n t . L'effet est similaire pour l'inclinaison : chaque point de la source contribue comme cos(θ ) (loi de Lambert), mais la surface qui contribue augmente comme 1/ cos(θ ) .O nn ep e u td o n cp a sd é t e r m i n e rl ag é o m é t r i ed ' u no b j e tL a m b e rtien d'après son aspect, et c'est ce qui fait que les braises d'un feu présentent 5. attention à ne pas confondre les deux angles tête-bêche dΩ et dΩ" ! 6. Les connaisseurs auront reconnu l'étendue géométrique du faisceau cos(θ )c o s ( α) σdS r 2

  o no btient un copier-collé du paragraphe précédent en photométrie visuelle, et toutes les relations géométriques entre grandeurs restent valables : -L efl u xl u m i n e u xs ' e x p r i m ee nL u m e n .O r d r ed eg r a n d e u rp o u ru n ea m p o u l e: 100 Lm. -L'intensité s'exprime en Candela (unité de base du SI) : une bougie a une intensité de l'ordre de 1 Cd. -L ' é c l a i r e m e n ts ' e x p r i m ee nL u x .U né c l a i r e m e n td et r a v a i lc o r r e c tc o r r e s p o n d àenviron150Lux.Enpleinsoleil,onobtientdesvaleursdel'ordrede10 5 Lux. La nuit de pleine lune correspond à environ 1 Lux. Le seuil absolu de l'oeil se situe vers 10 -5 Lux. En dessous de cet éclairement, c'est le noir ! -Enfin les luminances s'expriment en nits, ou Cd/m 2 .P o u rd o n n e ru n ei d é e , la luminance de l'écran d'un Macbook Pro environ 100 Cd/m 2 . Bien entendu, vous êtes invités à calculer les ordres de grandeurs de chaines photométriques simples, pour vous familiariser avec ces notions. C'est très utile en pratique, et très amusant.

2. 4

 4 Figure 11 -enceinte fermée

  P ) E(P ) dS P qui est cette fois facilement soluble pour toutes fonctions E (0) (M ) et R(M ). C'est ce qu'on appelle la théorie de la sphère intégrante d'Ulbricht. Il suffit en 9. Ce genre de transformation fait partie des techniques usuelles pour les équations intégrales. effet de remarquer que l'intégrale est une constante K ne dépendant par de la position M .O nd o i ta l o r sr é s o u d r el es y s t è m e K = ‹ P R(P ) E(P ) dS P E(M )=E (0) (M )+ 1 S K Dont la solution est immédiatement (exercice : le montrer) E(M )=E (0) (M )+ 1 S ' P R(P ) E (0) (P ) dS P 1 -R avec la réflectance moyenne de la sphère définie par R = 1 S ' P R(P ) dS P .V oyons comment cela s'applique dans le cas d'une sphère intégrante.

Figure 12 -

 12 Figure 12 -Sphère intégrante de spectrocolorimètre. Celle ci est en général constituée d'une surface Lambertienne blanche de surface S w et de réflectance R w ,d ' u n eé c h a n t i l l o nàm e s u r e rd es u r f a c eS ech et de réflectance R ech ,etd'uncertainnombresdetrousdesurfaceS h et de réflectance 0. R vaut alors R = R w k w + R ech k ech ,o ùk w = S w /S et k ech = S ech /S sont les fractions surfaciques du diffuseur de l'échantillon. L'échantillon n'étant pas éclairé directement par la source, la luminance de la surface de l'échantillon vaut (exercice : le montrer)

  u x:l efl u xi n c i d e n tt o t a ld e la lampe φ T est divisé par la surface de la sphère S. C'est d'ailleurs son rôle : répartir le flux uniformément. -O nv o i tt o u j o u r sl er ô l ea m p l i fi c a t e u rd el as p h è r e( t e r m e1/(1 -R) ), qui compense un peu l'effet précédent. -L ed o u b l ef a i s c e a uc o r r e s p o n dàu np o r tq u im e s u r el as u r f a c eb l a n c h ed el a sphère par un système de miroirs. Ce port donne un résultat proportionnel à L ref = R w φ T πS Rw (1-R) .L er a p p o r td ec es i g n a le td us i g n a ld em e s u r eL ech permet d'éliminer le terme non linéaire, et d'obtenir un résultat de mesure proportionnel à R ech directement : L ech /L ref = R ech /R w . At i t r ed ' e x e r c i c e ,o nr e g a r d e r ac o m m e n ts o n tm o d i fi é sc e sr é s u l t a t ss il ' é c h a ntillon n'est pas Lambertien. On pourra également établir et résoudre l'équation correspondant à un angle de mur Lambertien éclairé uniformément.

3. 1

 1 Notations.

Figure 13 -

 13 Figure 13 -Conventions et notations Quelques remarques sur les conventions utilisées 10 : -→ Ω est un vecteur unitaire repérant la direction de la lumière. Un système de coordonnées cartésiennes (0xyz) est défini pour la situation qui nous intéresse. Associé à ce système, on utilise des coordonnées sphériques (θ, ϕ),e to np o s eµ ≡ cos(θ)= -→ Ω • -→ e z .O na donc 0 <µ<1 pour un flux montant, et -1 <µ<0 un flux descendant. L'élément différentiel d'angle solide s'écrit alors dΩ=dµ dϕ.N o t e rq u ' e ns u r f a c e , la convention est souvent différente : on utilise µ>0 pour les flux entrant et sortant ! Pour couronner le tout, Chandrasekhar prend souvent une orientation de 0z vers le bas, ce qui est logique pour étudier un flux entrant dans le milieu... prudence, donc, et bien définir ses conventions.

3. 2 . 1

 21 Définition.La radiance (specific intensity en anglais) est la grandeur fondamentale de la théorie du transfert radiatif. Elle est l'analogue de la densité de particules dans l'espace des phases n( -→ r, -→ v,t) pour la théorie cinétique, ou le flux de neutrons en neutronique. Elle représente le flux dans la direction -→ Ω àu n ep o s i t i o n -→ r quelconque dans le milieu. Plus précisément d 2 φ e = I e (ν, -→ Ω , -→ r,t) dνdSdΩ représente le flux énergétique à travers une surface dS et dans l'intervalle spectral dν,d a n sl ad i r e c t i o n -→ Ω ,àl ap o s i t i o n -→ r et à l'instant t.N o t o n sq u ei c i l'élément de surface dS est pris perpendiculaire à -→ Ω .

Figure 14 -

 14 Figure 14 -Définition de la radiance. Comme la plupart du temps les problèmes sont stationnaire, on ne considérera pas ici la dépendance en t.D em ê m e ,d a n sl e sp r o b l è m e sq u en o u sc o n s i d é r o n s , il n'y a pas de changement de fréquence de la lumière, et ν joue le rôle de paramètre : il faut résoudre le problème à chaque fréquence, mais ces équations ne sont pas couplées entre elles. On n'indiquera donc pas la dépendance en ν. Le problème du transfert radiatif peut donc se formuler comme "déterminer la radiance I e ( -→ Ω , -→ r ) connaissant les sources et les caractéristiques du milieu".

Figure

  Figure 16 -flux collimaté Ces exemples nous seront utiles par la suite.

3. 3 J

 3 Relation avec les quantités photométriques. Si maintenant l'élément de surface dS correspond à la surface du matériau, et -→ n la normale orientée vers l'extérieur, On voit que d'après nos définitions, I e ( -→ Ω) s'identifie à la luminance L e ( -correspond à l'éclairement, et J + àl'émittance.Lesquantitésphotométriques jouent donc le rôle de condition au bord pour l'ETR. Voyons maintenant comment apparait la BRDF dans ce contexte. D'après la définition vue plus haut, celle ci est donnée par le rapport entre la luminance dans une direction -→ Ω divisée par l'éclairement dans la direction --→ Ω .

Figure 17 -

 17 Figure 17 -La BRDF et la radiance.

Figure

  Figure 18 -BTDF.

  18)Quelques remarques :-r e m a r q u e zl ac o n v e n t i o n" m a t r i c i e l l e "p o u rl e sd i r e c t i o n sd a n sl e se x p r e s s i o n s ci dessus : la physique s'écrit de droite à gauche.-L aB R D Fe s tu no b j e t" l o u r d "d up o i n td ev u en u m é r i q u e:E l l ed é p e n dd e s4 variables angulaires (θ ,ϕ ,θ,ϕ)etde la longueur d'onde. Si on veut un point tous les 5 degrés en sortie cela représente 1650 points sur la demi-sphère, multiplié par 20 angles d'incidence, multiplié par 32 longueurs d'ondes, c.a.d. 1m i l l i o nd ev a l e u r sp o u ru n er é s o l u t i o nc o r r e c t e! -En stricte rigueur, la BRDF (et la BTDF) dépend aussi des position d'entrée et de sortie des pinceaux lumineux. On parle alors de BSSRDF. Cela traduit le fait qu'un photon rentre dans le matériau, diffuse, et ressort un peu plus loin. En pratique cela n'a d'utilité que au voisinage des changements de textures, lorsqu'on veut un rendu réaliste un peu diffus, comme à la séparation lèvresvisage par exemple. -Pour la BTDF, le milieu peut avoir une épaisseur, contrairement à ce que montre le schéma. -E nr a i s o nd ' u np r i n c i p ed er e t o u ri n v e r s eg é n é r a l i s éd el al u m i è r e( v o i rc o mmentaire page 50) la BRDF et la BTDF sont symétriques : R(

L

  'équation du transfert radiatif (ETR) est une équation bilan de type équation de Boltzmann. Elle est cependant beaucoup plus simple que cette dernière : les particules n'interagissent pas entre elles, mais avec des diffuseurs-absorbeurs fixes. De plus, les flux et les diffuseurs sont traités dans l'approximation continue. Il en résulte une équation intégro-différentielle linéaire,b e a u c o u pp l u ss i m p l eà étudier que l'équation de Boltzmann.4.1 Dérivation de l'équation du transfert (ETR).

4. 1 . 1

 11 Processus d'absorption.

Figure 19 -

 19 Figure 19 -processus d'absorption On considère un flux de radiance I e se propageant dans la direction -→ Ω . Celui ci décroit, en raison des processus d'absorption et de diffusion. Si on note s = -→ Ω • -→ r l'abscisse dans la direction du flux, on a dI e ds = -κ T I e -→ (Ω, -→ r ) (22)

  Figure 20 -processus de diffusion

Figure 21 -

 21 Figure 21 -Milieu stratifié Attention aux conventions d'orientations, qui sont différentes de celles adoptées par Chandrasekhar : dans le milieu, l'axe 0z est orienté vers l'intérieur du milieu, et les angles sont repérés par rapport à une normale intérieure au milieu. Dans ces conventions, on a ds = dz/µ,e tl ' é q u a t i o ns ' é c r i t

  Cette équation simplifiée présente plusieurs propriétés intéressantes :-E l l ee s te x a c t e m e n ts o l u b l e ,m o y e n n a n tl ' i n t r o d u c t i o nd eq u e l q u e sf o n c t i o n s spéciales introduites par Chandrasekhar. -E l l ec o n s t i t u ed o n cu nb e n c h m a r kp o u rt o u t e sl e sm é t h o d e sn u m é r i q u e s .

Figure 22 -

 22 Figure 22 -Modèle d'absorption

  'est à dire que les absorbances se somment. Cette loi est à la base de la formulation des solutions colorées absorbantes non diffusantes (verres colorés, sirops, teintures...), dits mélanges soustractifs simples. Elle donne la couleur d'une solution en fonction des concentrations de ses constituants (Cf. Geniet -2012[START_REF] Geniet | Approche de la Couleur[END_REF]).

5. 3

 3 Modèle de Kubelka et Munk 5.3.1 Présentation.

Figure 23 -

 23 Figure 23 -Modèle à 2 flux Le modèle de Kubelka et Munk, du à l'origine à Schüster (1905), est l'extension la plus simple de ce qui précède. L'idée est de décrire la diffusion par le couplage de deux flux diffus, l'un entrant et l'autre sortant. Ces flux décrivent en fait une situation très complexe, et on ne s'intéresse pas à leur répartition angulaire que l'on suppose en gros isotrope. Il est alors facile d'écrire un modèle qui couple les deux flux, suivant :

  gauche. -N o t e ra u s s il es i g n e-devant la 2 ème équation : le sens de propagation est inverse. -O np e u tf a c i l e m e n tm o n t r e rq u es io ns u p p o s eq u el e sd e u xd i s t r i b u t i o n sd e flux vers la droite et vers la gauche sont hémi-isotrope, c.a.d. constantes dans un demi-hémisphère, l'ETR (33) produit le système ci dessus (exercice : le montrer, et relier K et S à κ a et κ s , Cf. équation (25) ).

  Cas Opaque : l'exemple le plus simple consiste à considérer une couche opaque, c'est à dire dont l'épaisseur L 1/α.D a n sc ec a s ,l efl u xs ' é t e i n ta v a n td ' a r r i v e ra uf o n d , ce qui revient à supposer le milieu infini avec I(x),J(x) ----→ x→∞ 0 ,c . a . d .A =0. On obtient alors immédiatement la réflectance ré-écrit encore K S = (1-R∞) 2 2R∞ . Cette dernière expression est la formule de Kubelka Munk opaque, parangon du savoir du coloriste moyen. Plusieurs remarques sont utiles : -Il y a bien sûr une dépendance en longueur d'onde : la réflectance dépend de λ (c ' e s tl ac o u l e u rd el ' o b j e t!),c a rl e ss e c t i o n sK et S en dépendent. Les résultats présentés sont valables à chaque longueur d'onde indépendamment. -O nv é r i fi eq u el af o r m u l ec id e s s u sd o n n eb i e nl e sl i m i t e sa t t e n d u e sR =0 pour S =0(milieu absorbant, noir, décrit par Beer Lambert) et R =1pour K =0(matériau non absorbant, blanc idéal). -O ns es o u v i e n tq u eK et S sont proportionnels à la concentration C.O nv o i t alors immédiatement que la réflectance est indépendante de C ! Cela semble totalement idiot, sauf si on réalise que la couche est opaque, par hypothèse : on ne sait pas si il faut 1 µmo u1k mp o u ra s s u r e rc e t t eo p a c i t é . -E nc a sd em é l a n g e ,K et S sont les sommes des sections macroscopiques des constituants : K = K 1 + K 2 + K 3 et S = S 1 + S 2 + S 3 .O no b t i e n td o n cl a réflectance d'un mélange, qui cette fois dépend du rapport des concentrations, de façon non-linéaire à travers la formule de Kubelka Munk. C'est donc une théorie de la couleur d'un mélange, à la base des méthodes de formulation des peintures opaques (Cf. Geniet -2012 [10]
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 24 Figure 24 -Milieu translucide.

  ) réflectance d'une couche d'épaisseur L sur un fond R F .At i t r ed ' e x e r c i c e s ,o n vérifiera que l'on retrouve les résultats attendus : -p o u ru n ec o u c h eo p a q u eL →∞. -p o u ru n ec o u c h ed ' é p a i s s e u rn u l l eL =0. -p o u ru n ec o u c h ep a r f a i t e m e n td i ff u s a n t eK =0. -p o u ru n ec o u c h en o nd i ff u s a n t eS =0(réfléchir au résultat obtenu, pour se persuader qu'il est correct). -O np o u r r aa u s s ic o n t e m p l e rl e sr é s u l t a t so b t e n u sp o u ru n ec o u c h ed ef o n d noire R F =0ou blanche R F =1.

Figure 25 -

 25 Figure 25 -profils de flux pour S =0.9, K =0.4 , R F =0.2, L =1

Figure 27 -

 27 Figure 27 -Correction de Saunderson

  21 .L as o l u t i o na i n s io b t e n u es ' é c r i td o n cfi n a l e m e n tI ↓ (τ, µ)=C exp(-ατ ) 1αµOn reconnait un profil angulaire elliptique (rappel : µ = cos(θ)), d'excentricité α, dont le grand lobe est orienté vers le bas, ce qui correspond à une solution descendant dans le milieu en s'amortissant de façon exponentielle. La solution montante est obtenue par le changement α ↔-α .

Figure 28 -

 28 Figure 28 -Profil de diffusion

2 .

 2 correspondant respectivement à la densité d'énergie rayonnante cu et au courant, les moments d'ordre supérieur n'ayant pas de nom spécial. En prenant les moments de l'ETR ´µn dµ → ETR on obtient une chaine d'équations différentielles couplées dont les premiers termes s'écriventdJ dτ = -(1ω 0 )E(τ )Dans le cas général, cette chaine infinie équivaut à l'ETR. La première équation correspond clairement à une équation de conservation : l'absorption est responsable de la disparition du flux. Pour la solution vue plus haut, K et E sont proportionnels, et la seconde équation s'écritJ(τ )=-D dE(τ ) dτOn reconnait la loi de Fick, avec un coefficient de diffusion D = 1-ω0 α P o u r un milieu non absorbant ω 0 → 1,e to nt r o u v ea l o r sD =1 /3 ce qui constitue l'approximation de Eddington. (exercice : montrer ces résultats). Nous verrons plus bas la solution du problème de Milne,q u ipe r m e td er e c o l l e rc e t t es o l u t i o n àu n ec o n d i t i o na ub o r d ,e td é t e r m i n e rl efl u xr a d i a t i fs o r t a n t . At i t r ed ec o m p l é m e n t ,r e g a r d e rc o m m e n tc e sc a l c u l ss o n tm o d i fi é sp o u ru n e diffusion non isotrope, avec une fonction de phase p(µ ,µ) .

6. 2

 2 Equation intégrale du transfert.

Figure 29 -

 29 Figure 29 -Géométrie "slab" Considérons une couche d'épaisseur τ = L soumise à un flux incident collimaté dans la direction µ 0 .L as i t u a t i o ne s td é c r i t ep a rl ' é q u a t i o n( 3 2 ) ,a v e cl e sc o n d itions au bord I(τ =0 ,µ > 0) = 0 et I(τ = L, µ < 0) = 0 (pas de flux diffus entrant, ni par le haut ni par le bas).

  'interface entre deux couches d'indice différents offre un bon exemple de BRDF et BTDF. Cela nous permettra de bien comprendre la différence entre réflectance et coefficient de réflexion. En outre, c'est un résultat qui nous sera très utile par la suite, pour combiner les réflectances de différentes couches par exemple.

	µ)2µ dµ 2µdµ
	3.5 La réflexion et la transmission de Fresnel-Descartes.

L

Les lois de Descartes pour la réflexion et la réfraction à l'interface entre un milieu d'indice 1 et un milieu d'indice n peuvent s'écrire :

  , ce que nous allons faire maintenant. L'autre intérêt de cette présentation des méthodes élémentaires est qu'elle permettent d'obtenir une bonne intuition des phénomènes en jeu, sans être noyé dans la complexité des équations, ce qui est toujours appréciable. Cela dit, il est clair que les astrophysiciens n'utilisent plus cette approche depuis belle lurette. Voyons donc maintenant quelques outils de résolution propres au transfert radiatif.Il existe un très grand nombre d'approches pour résoudre l'ETR dans des contextes très variés. Les méthodes numériques sont en particuliers très utilisées de nos jours, car elles permettent de résoudre des situations très complexes de diffusion non-isotrope dans des milieux non homogènes. Nous présenterons ici des méthodes analytiques, dont l'intérêt est de fournir une bonne compréhension de la nature des solutions attendues, ainsi que des benchmarks pour les méthodes numériques. Je ne prétends pas non plus donner toutes les méthodes de résolution, mais seulement celles qui me sont familières. Enfin, dans cette introduction au sujet, je me limiterai à l'équation du transfert simple avec symétrie azimutale, et une diffusion isotrope, équation (33) avec ou sans terme de source. Pour plus de méthodes, une référence s'impose : Van de Hulst -1980[START_REF] Van De Hulst | Multiple light scattering, Tables, Formulas and Applications[END_REF].

5.4 Conclusion

Les quelques calculs esquissés ici peuvent évidemment être adaptés à un grand nombre de situations variés de façon très simple, ce qui en fait le couteau Suisse du transfert radiatif. Il est cependant clair qu'il ne faut par forcément en attendre trop, surtout si on souhaite s'intéresser à la géométrie angulaire des flux

2.2 La photométrie énergétique.La situation type est schématisé sur la figure suivante, que nous allons suivre de la source au détecteur :2.2.1 Flux.La grandeur de base est bien sur le flux énergétique φ e , mesuré en watt. Il permet de mesurer le débit énergétique d'une source, d'un pinceau de lumière... En régime stationnaire, une ampoule à incandescence de 75 Watts débite un flux de 75 Watts, mais bien entendu, principalement dans l'infra rouge. Dans la pratique les flux sont souvent de l'ordre du Watt pour les sources usuelles, mais pour le soleil par exemple, c'est un peu plus ! 3. Pour une ampoule à filament de tungstène, le rendement vaut environ 10 lm/watt. Pour les diodes, on atteint actuellement environ 100 lm/watt.

On observe aussi la loi de Lambert en émission : un corps noir est parfaitement Lambertien. Voir la suite de ce cours pour comprendre d'où provient ce comportement.

Remarquez que chaque auteur adopte ses propres conventions d'orientation, et en change parfois en cours de route (je ne fais pas exception). Attention donc aux erreurs de signe !

Attention aux conventions de signe : La BRDF utilise la plupart du temps des normales extérieures, mais le flux incident est vers le bas !

Notez aussi la forme très symétrique de ce coefficient : il est invariant si on échange µ i et µt et aussi n → 1/n.

Notez que pour la BRDF, les arguments µ sont pris positifs.

la fonction de phase ne dépend que de (ϕϕ 0 )

Sous une couche nuageuse épaisse, on est incapable de dire de quelle direction provient la lumière, par contre on peut estimer la hauteur du soleil à la luminosité : le flux ne dépend pas de ϕ 0 ,m a i si ld é p e n dd eµ 0 ! C'est particulièrement flagrant quand il neige, comme aujourd'hui ! !

Une variante à 4 flux est parfois utilisée, mais elle présente plus d'inconvénients que d'avantages, et nous n'en parlerons pas.

i.e. ne comportant en moyenne pas de confettis "se faisant de l'ombre"

cette relation provient du principe du retour inverse, et de la concentration des flux à l'interface, Cf. §(3.5) 

Méthodes de résolution de l'ETR.

les autres modes, amortis plus rapidement, présentent une distribution angulaire plus compliquée, et on peut les obtenir systématiquement par une analyse en ondes partielles, ce dont nous ne parlerons pas ici.

profil typique, obtenu pour les valeurs S =0.9, K =0.4 , R F =0.2 .Onobtien t R ∞ 0.4 ,e tR 0.37 pour une épaisseur L =1.

L'expression (35) est à la base d'une foule de méthodes de sondages,parexemple -e na s t r o p h y s i q u e:" j ec o n n a i sl ' a t m o s p h è r ed eV é n u s ,d i ff u s a n t ee ta b s o r b a n t e , je mesure R depuis la Terre, que vaut la réflectance du sol R F ?" -e no c é a n o g r a p h i e ," j ec o n n a i sl an a t u r ed uf o n dR F ,j em e s u r eR depuis un satellite, quel renseignement en tirer sur l'état de la mer (turbidité S,absorption K)?

Voyons une telle application dans le domaine des p eintures : la métho de de Kubelka et Munk translucide :

Un peut d'algèbre permet de re-écrire (35) suivant (exercice : le montrer )

Si on mesure les 2 réflectances (R 1 ,R 2 ) de la couche sur 2 fonds différents (R F 1 ,R F 2 ) ,o no b t i e n tu ns y s t è m el i n é a i r ee nψ et x,d o n tl ar é s o l u t i o nd o n n e finalement K et S de façon explicite. Cela explique la popularité de la méthode dans le domaine des peinture : elle donne toujours une solution. Dans un contexte plus ambitieux, elle permet de disposer d'une première approximation aux sections efficaces, déterminées ensuite par des modèles plus sophistiqués basés sur l'ETR.

Exercice : montrer que la transmittance d'une couche translucide d'épaisseur L en l'absence de fond vaut :

Nous abordons ici un sujet subtil, qui sera envisagé sous plusieurs aspects dans ce cours : la correction de surface de Giovanelli-Saunderson. Les calculs ci dessus sont valables en l'absence de discontinuité de surface, comme c'est par exemple le cas pour une atmosphère, un brouillard... Si le milieu est dense, il se produit une réflexion de Fresnel à l'interface Cf. section (3.5). La réflectance mesurée R ext est donc différente de celle que nous avons calculée juste à l'intérieur du milieu, R int .L ac o r r e c t i o nd eS a u n d e r s o nr e l i ec e sd e u xr é fl e c t a n c e s 19 .H i s t oriquement, cette correction a été introduite afin de mettre en accord les calculs de formulation de peinture par Kubelka et Munk opaque avec les résultats (J.L. Saunderson -1942 [6]). Voyons comment l'établir simplement :

19. La correction de Giovanelli fait de même dans le contexte de l'ETR.

avec le noyau donné par une exponentielle intégrale

(Exercice : le montrer ).

En résolvant numériquement cette équation, on peut alors retrouver les radiances par (39). Le noyau présente une singularité logarithmique en 0, mais ce n'est pas trop méchant à traiter, et la théorie des équations de Fredholm est bien connue (Cf. par exemple Hilbert & Courant -1953 [11]). Cependant, je ne connais pas de moyen d'étendre cette solution au cas non isotrope contrairement àl as u i v a n t e .

6.4 Développement en série de Born.

La résolution du système d'équations (38,39) peut se faire par un développement de la solution en puissance de ω 0 .Al ' o r d r e1l et e r m es o u r c ee s tj u s t ed o n n é par le terme collimaté S(τ )= F 4π ω 0 e -τ/µ0 ,etonpeutcalculerlesfluxsortan t:

Comme nous sommes exactement dans la situation envisagée à la section (4.3), on peut utiliser les relations (28) et (31) pour calculer la BRDF et la BTDF diffuse, ce qui donne finalement : 

où les fonctions spéciales X et Y (qui dépendent de ω 0 et de L)v é r i fi e n td e s équations intégrales non linéaires très simples à résoudre de façon numérique.

Enfin remarquons que la BRDF et la BTDF ainsi obtenues sont symétriques par échange (µ ↔ µ 0 ) ,c . a . d .v é r i fi e n tu np r i n c i p eg é n é r a l i s éd er e t o u ri n v e r s e de la lumière. On ne peut pas invoquer pour cela la simple réversibilité de la propagation en optique, car il est clair que la diffusion est un processus non symétrique par renversement du temps ! Je n'ai jamais bien compris les arguments qui permettent de généraliser le principe du retour inverse avec des lois statistiques, mais le fait est que le résultat est symétrique ce qui est très utile en pratique, et fonctionne aussi raisonnablement du point de vue expérimental. C'est ce qui justifie finalement l'équivalence des géométries de mesure 0°/45°et 45°/0°sur les colorimètres, et D/8°et 8°/D sur les spectromètres à sphère.

Voyons maintenant la solution exacte de Chandrasekhar dans le cas d'une tranche opaque (L →∞),p o u rl a q u e l l eY → 0 .

Solution de Chandrasekhar.

Nous allons dériver cette solution par la méthode d'Ambartsumian, beaucoup plus simple que la version originale. De plus nous considérons ici le cas le plus "facile" d'un milieu opaque. Dans ce cas, la BRDF à la surface est la même que si on "écrète" la couche à une profondeur τ .

En considérant un flux incident Fδ(µµ 0 ) ,o np e u té c r i r eàl ap r o f o n d e u rτ et pour µ>0 l'équation d'Ambartsumian : 

On va maintenant utiliser l'ETR (32) écrite en τ =0,e ns é p a r a n tl e sc a sµ>0 et µ<0,e te nr e m a r q u a n tq u eI(τ =0 ,µ > 0) = 0 et

En reportant ces dérivées dans l'équation ci dessus, on obtient après quelques réarrangements

que l'on peut finalement réécrire sous la forme

profondeur un flux de type diffusion montante (Cf. § 6.1). La radiance globale s'écrit donc I(τ, µ)=δI((τ, µ)+C exp(ατ ) 1+αµ I(τ =0,µ > 0) = 0 la deuxième équation traduisant l'absence de flux diffus entrant dans le milieu. On veut calculer le flux sortant I(τ =0,µ < 0).L af o n c t i o nδI est, comme I et comme la solution diffusive, une solution de l'ETR (linéarité). Elle vérifie par définition les conditions aux limites :

c'est à dire une situation de couche opaque, avec un flux incident donné. On sait donc résoudre ce problème de réflexion classique au moyen de la BRDF du milieu que l'on a calculé au paragraphe précédent : Sur la figure ci dessus, on a tracé la radiance en fonction de l'angle de sortie, pour une valeur ω 0 =0 .99 , α 0.172511 .O nv o i tb i e nl ' e ff e td ' o b s c u r c i s s e m e n t , et la résolution du paradoxe apparent : "comment un diffuseur isotrope peut il avoir un comportement non Lambertien ?". La réponse est en fait assez simple : c'est la solution diffusive profonde qui introduit l'anisotropie dans la solution de l'ETR.

Méthode de "Adding-Doubling".

La méthode de "Adding-Doubling" a été introduite pour étendre les résultats obtenus pour une couche mince (Cf. §(6.4) ci dessus) au cas d'une couche plus épaisse. Le principe est simple : on empile les couches, d'où le nom de la méthode. On va voir qu'il s'agit en fait de la méthode classique de la "matrice de transfert", conséquence directe de la linéarité de l'ETR. Cette méthode présente une autre utilité : elle permet de superposer des couches de nature différentes. Nous en verrons quelques exemples dans les sections suivantes : couche diffusante sur un fond Lambertien, et couche diffusante surmontée d'une interface de Fresnel (discontinuité d'indice).

Dérivation de la méthode

Considérons la situation schématisée sur le schéma suivant : 

Quelques remarques sur ces équations :

-L an o t a t i o nc o m p a c t ed e so p é r a t e u r se s tu t i l i s é e:RI ≡ ´1 0 R(µ, µ )I(µ )2µ dµ .L'algèbrequienrésulteestlamêmequecelledesmatrices,etenparticulier, les produits ne commutent pas. -O nae x p l i c i t e m e n ts u p o s éq u el e sc o u c h e sn ' o n tp a sl em ê m ec o m p o r t e m e n t dans un sens et dans l'autre. C'est le cas pour une interface de Fresnel par exemple, dont la forme opératorielle n'est pas symétrique. -O nad é j àv ud e sr e l a t i o n sd ec es t y l ee né t a b l i s s a n tl ac o r r e c t i o nd eS a u n d e rson. C'est la même idée, en fait. Les relations d'adding-doubling sont obtenues en éliminant les flux intermédiaires I 1 et J 1 du système précédent. Par exemple, on multiplie la ligne 4 à gauche par R - 1 et on somme à la 1, ce qui élimine J 1 ,p u i so nm u l t i p l i el a1à gauche par R + 2 et on ajoute à la 4 ce qui élimine I 1 .O nr e p o r t ea l o r sI 1 et J 1 dans les 2 et 3, ce qui donne :

et par identification, on lit les réflectances et transmittance de la couche composée :

qui forment les équations de adding-doubling, ou de la matrice de transfert composée. Notez la symétrie "haut-bas" (1 ↔ 2) et (+ ↔-) obtenue en mettant la tête en bas. On peut aussi interpréter ces relations de manière analogue à celle que nous avons vue à la figure (27), en tenant compte des réflexions multiples entre les couches (exercice : le faire,e ns er a p p e l a n tq u el ap h y s i q u es el i td e droite à gauche dans les relations opératorielles).

Voyons maintenant des exemples d'applications de ces équations.

Figure 34 -relations de passage de Fresnel

la dernière ligne se déduit de la précédente par le remplacement de n → 1/n et on a utilisé t i (µ )=t e (µ s ).Larelationdepassages'écriticiR

Le premier terme de cette équation correspond à la réflexion spéculaire de l'interface. Les termes en T assurent les relations de passage à l'interface suivant :

l'intégrale sur µ est triviale, mais celle sur µ nécessite le changement de variable µ → µ e avec n 2 µdµ → µ e dµ e ,q uido nnefina lem en tl erésulta tpresqueattendu 57 (attention au facteur 1/n 2 !):

On voit dans cette expression apparaitre les facteurs de transmission attendus, le changement d'angle du à la réfraction, et un facteur 1/n 2 du à la concentration des faisceaux par l'interface, et qu'il n'est pas facile de deviner correctement ! Le calcul de K conduit à l'équation de Giovanelli proprement dite : on a par définition de K

qui s'écrit de façon développée :

K(µ, µ 0 )=R 2 (µ, µ 0 )+ ˆ1 0 R 2 (µ, µ )r i (µ )K(µ ,µ 0 )2µ dµ avec r i (µ) le coefficient de réflexion de Fresnel interne. Cette dernière équation est l'équation de Giovanelli, qui permet de déterminer la réflexion externe K (à des préfacteurs près) à partir de la réflexion interne R 2 .O nv o i tq u ec ' e s t encore une équation intégrale de type Fredholm 2ème espèce. R F 1r i R F où r i = ´1 0 r i (µ )2µ dµ 0.59 est le coefficient de réflexion interne moyen, déja vu au paragraphe (5.3.4). La relation ci dessus constitue une généralisation intéressante de la correction de Saunderson, avec une dépendance angulaire correcte. Montrer de plus que si on s'intéresse à la réflectance direct-diffus R(D, µ e = 1) = ´R(µ s , 1)µ s dµ s on retrouve exactement la correction de Saunderson, vue précédemment.

Equations de Preisendorfer et Mobley

Ces équation permettent d'écrire des équations "à la Schüster-Kubelka-Munk" rigoureuses, à partir de l'ETR. En chantier...