
HAL Id: cel-00825492
https://cel.hal.science/cel-00825492

Submitted on 23 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical methods for fully nonlinear free surface water
waves

Denys Dutykh, Claudio Viotti

To cite this version:
Denys Dutykh, Claudio Viotti. Numerical methods for fully nonlinear free surface water waves. Doc-
toral. Short Course on Modeling of Nonlinear ocean waves, Fields Institute, 2013. �cel-00825492�

https://cel.hal.science/cel-00825492
https://hal.archives-ouvertes.fr


NUMERICAL METHODS FOR FULLY NONLINEAR

FREE SURFACE WAVES

DENYS DUTYKH1 & CLAUDIO VIOTTI1

1University College Dublin
School of Mathematical Sciences

Belfield, Dublin 4, Ireland

Short Course on “Modeling of Nonlinear Ocean Waves”

http://www.denys-dutykh.com/


OUTLINE OF THE SHORT COURSE

1 LECTURE 1
Introduction (D.D.)
BIEM (C.V.)
Spectral CG-method (D.D.)

2 LECTURE 2
Higher-Order Spectral (HOS) methods (D.D.)
Dirichlet-to-Neumann (D2N) operator technique (D.D.)
Conformal mappings (C.V.)

REMARK:

Focus only on numerical methods for the full Euler equations

! No asymptotic models



WHAT WE WILL NOT COVER IN THIS COURSE:
SELF-LEARNING IS YOUR FRIEND!

! The first modern spectral method for water waves by
Rienecker & Fenton (1981-1982) [RF81, FR82]

! Methods based on eigenfunctions expansions
! Coupled-mode approach by Belibassakis & Athanassoulis

[AB99, BA06]
! Finite difference-based methods
! Any kind of meshless methods



PHYSICAL ASSUMPTIONS

MATHEMATICAL MODELING

PHYSICAL ASSUMPTIONS:

! Fluid is ideal (inviscid) (Re = ∞)

! Fluid is homogeneous (ρw = const)

! Flow is incompressible (∇ · u = 0)

! Flow is potential (u = ∇φ)

INTERFACE CONDITIONS:

! Interface is a graph: y = η(x, t)

! Air effect is neglected (ρa " ρw )

! Free surface is isobaric

BASIC MODEL:

! Incompressible Euler equations with free surface



EULER EQUATIONS

WITH FREE SURFACE

! Incompressibility:

∇ · u = ∇ · (∇φ) = ∇
2φ = 0

! Momentum conservation:

ut + (u ·∇)u +
∇p

ρ
= g

φt +
1

2
|∇φ|2 + gz +

p

ρ
= B(t)

BOUNDARY CONDITIONS:

ηt + u ·∇η = v , z = η(x, t)

p = 0, z = η(x, t)

vn = u · nb = 0, z = −d(x)



WATER WAVE PROBLEM

POTENTIAL FLOW FORMULATION

! Continuity equation

∇
2φ = 0, (x, y) ∈ Ω× [−d(x), η(x, t)],

! Kinematic bottom condition

∂ φ

∂y
+∇φ ·∇d = 0, y = −d ,

! Kinematic free surface condition

∂ η

∂t
+∇φ ·∇η =

∂ φ

∂y
, y = η(x, t), FIGURE: Laplace

! Dynamic free surface condition

∂ φ

∂t
+

1

2
|∇φ|2 + gη = 0, y = η(x, t).



HAMILTONIAN STRUCTURE

PETROV (1964) [PET64]; ZAKHAROV (1968) [ZAK68]; CRAIG & SULEM (1993) [CS93]

CANONICAL VARIABLES:

η(X, t): free surface elevation

ϕ(X, t): velocity potential at the free surface
ϕ(x, t) := φ(x, y = η(x, t), t)

! Evolution equations:

ρ
∂ η

∂t
=

δH

δϕ
, ρ

∂ ϕ

∂t
= −

δH

δη
,

! Hamiltonian:

H =

η
∫

−d

1

2
|∇φ|2 dy +

1

2
gη2

APPLICATION TO NUMERICS:

Used in D2N operator methods: [CS93, GN07, XG09]



LUKE’S VARIATIONAL PRINCIPLES

J.C. LUKE, JFM (1967) [LUK67]

! First improvement of the classical Lagrangian L := K − Π:

L =

t2
∫

t1

∫

Ω

ρL dx dt , L :=

η
∫

−d

(

φt +
1

2
|∇φ|2 + gy

)

dy

δφ: ∆φ = 0, (x, y) ∈ Ω× [−d , η],
δφ|y=−d : ∂ φ

∂y +∇φ ·∇d = 0, y = −d ,

δφ|y=η : ∂ η
∂t +∇φ ·∇η − ∂ φ

∂y = 0, y = η(x, t),

δη: ∂ φ
∂t + 1

2 |∇φ|2 + gη = 0, y = η(x, t).

! Water wave problem formulation is recovered from L

APPLICATION TO NUMERICS:

! Not fully explored. . .

! Coupled-mode technique by B. & A. (2006) [BA06]



WHY THIS PROBLEM IS DIFFICULT?
OUTLINE OF SOME NUMERICAL DIFFICULTIES

! Problem is highly nonlinear

! Computational domain is unknown
(y = η(x, t) to be determined)

! Formulation is stiff (Hamiltonian
structure)

! Taylor expansions involve very high
derivatives

! Physical and numerical instabilities

! No dissipation to stabilize computation

! Overturning surface. . .



To be continued by Claudio. . .
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Range of applicability

This numerical approach is probably the most general among those based
on potential flow theory...

2D & 3D

Overturning waves (up to wave breaking)

Arbitrary bathymetry

Arbitray boundary conditions (wave makers, absorbing beach, ....)

...of course, this comes at a cost

Complicated

Expensive

(UCD) Toronto, 2013 3 / 15



Governing equations and boundary conditions

On the free surface:

DR

Dt
= u = r�

D�
Dt

=
1

2
|r�|2 � gz� pa

⇢

where:
D�
Dt

⌘ @
@t

+ u ·r

On the other boundaries:

r� · n = 0 or r� · n = Vb

Inside the fluid volume ⌦:

r2� = 0

For time marching need to find r� from the knowledge of �.

(UCD) Toronto, 2013 4 / 15



Velocity potential

Laplace equation for the potential

r2�(x) = 0,

with boundary conditions

8
<

:

� = � on �f (t) (free surface)
@�
@n = 0 on �b (bottom)
@�
@n = Vi on �i , i = 1, 2, 3 (lateral boundaries).

(UCD) Toronto, 2013 5 / 15



Green’s function

Free space Green’s function

r2

G (x, x0) = �(x0), lim
|x|!1

G = 0

3D Green’s function

G (x, x0) = 1

4⇡r ,
@G
@n (x, x

0) = � 1

4⇡
r·n
r3 , r = x� x

0, r = |r|.

Combine with r2� = 0 to obtain r2�G � �r2

G = ���.
Integrate over ⌦:

Z

⌦

r2�(x0)G (x, x0)� �(x0)r2

G (x, x0)dx0 = �
Z

⌦

�(x0)�(x0)dx
Z

⌦

r ·
�
r�(x0)G (x, x0)� �(x0)rG (x, x0)

�
dx0 = �

Z

⌦

�(x0)�(x0)dx

Then apply Divergence Theorem:
Z

�

(r�G � �rG ) · nd� = ��

(UCD) Toronto, 2013 6 / 15



Boundary Integral Equation

↵(x)�(x) =

Z

�

@�

@n
(x0)G (x, x0)� �(x)

@G

@n
(x, x0)d�

=

Z

�s

@�

@n
(x0)G (x, x0)� �(x)

@G

@n
(x, x0)d�s

+

Z

�b

@�

@n
(x0)G (x, x0)� �(x)

@G

@n
(x, x0)d�b

+
X

i

Z

�b

@�

@n
(x0)G (x, x0)� �(x)

@G

@n
(x, x0)d�i

↵(x) =

8
>><

>>:

1 for x inside the domain
1/2 for x on a smooth part of the boundary
1/4 for x on a edge
1/8 for x on a corner

BIE is solved for the unknown variables on the boundary: @�
@n on the free

surface, and � on the other boundaries.
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Boundary Element Method (BEM) Discetization

N

�

collocation nodes (i.e., points where all variables are sampled)

M

�

finite elements (discrete portions of the boundary, where all
variables are reconstructed from neighboring nodal values)

k = 1, ...,M
�

: boundary element index

Nj(⇠, ⌘) : shape function associated with the j-th node.

(⇠, ⌘): local coordinates of the finite elements.

Represent geometry and field
variable within each element:

x(⇠, ⌘) = Nj(⇠, ⌘)x
k
j ,

q(⇠, ⌘) = Nj(⇠, ⌘)q
k
j ,

j =
1, ..,m (nodes of the k-th element)

(UCD) Toronto, 2013 8 / 15



Construction of shape functions N
j

(⇠, ⌘)

The (too) simple way: polynomial interpolation using the nodal values which
belong only to the current element

N3

j−1 j j+1

k k+1

N1 N2

Inconvenient: only C

0 continuity is obtained, this was seen to enhance numerical
instabilities (Grilli et al. 1989 )

The better way: use also nodal values outside the current element:
middle-interval-interpolation (MII)

k k+1

j+1jj−1

Smoother reconstruction, enforce C

n regularity.
(UCD) Toronto, 2013 9 / 15



3D-MII Elements

Example (Grilli, Guyenne & Dias 2001): 16-node cubic 3D-MII element

Nj(⇠, ⌘) = N

0
b(j)(µ(⇠, ⇠0))N

0
d(j)(µ(⌘, ⌘0)), b, d = 1, .., 4; j = 4(d�1)+b

N

0
1

(µ) = 1

16

(1� µ)(9µ2 � 1), N

0
2

(µ) = 9

16

(1� µ2)(1� 3µ),

N

0
3

(µ) = 9

16

(1� µ2)(1 + 3µ), N

0
4

(µ) = 1

16

(1 + µ)(9µ2 � 1),

(UCD) Toronto, 2013 10 / 15



Discretization of the Boundary Integral Equation

BIE is discretized by using shape-functions reconstructions of the geometry
and field variables, and summing the contributions from all finite elements:

(Remember: the Jacobian is obtained from x(⇠, ⌘) = Nj(⇠, ⌘)xkj , j = 1, ...,m )

This procedure yields the Dirichlet and Neumann N

�

⇥ N

�

matrices:

K

d , K

n.
(UCD) Toronto, 2013 11 / 15



Some technical remarks

Singular integrals. Integral’s kernel (Green’s function) is singular for
l = j in the previous formulae. Particular treatment must be applied
in this case: singularity extraction.

Edges and corners. Double-node scheme: nodes on the edges are
“counted twice”. The value of � is imposed to be the same, whereas
@�
@n has two values, one for each of the two local orientation of the
surface.

(UCD) Toronto, 2013 12 / 15



Global linear system

The discretization procedure yields the global linear system:

By moving nodal unknowns to the left-hand side and keeping known terms
on the right-hand side we obtain:

where l = 1, ...,N
�

; g = 1, ...,Ng refers to nodes with a Dirichlet condition
on the free surface, and p = 1, ...,Np refers to nodes with a Neumann
condition on the rest of the boundary. C is a diagonal matrix containitng
the coe�cients ↵l .

The linear system obtained is dense

Iterative methods are typically the choice (GMRES, with a suitable
preconditioner)

(UCD) Toronto, 2013 13 / 15



Time marching: 2nd Ord. Eulerian-Lagrangian formulation

The first order coe�cients are given by the b.c. on the free surface, and require
the solution of the BIE.

The second order coe�cients are given by Lagrangian time di↵erentiation of the
free surface b.c.,

D2

R

Dt2
=

Du

Dt
D2�
Dt2

= u · Du

Dt
� gw � 1

⇢
Dpa
Dt

and require the calculation of @�
@t of @2�

@t@n . This is done by solving an analogous
BIE for �t .

The two BIE’s share the same geometry, hence they share the same matrix
of the linear system, which then needs to be assembled once!

(UCD) Toronto, 2013 14 / 15



Advanced numerical implementations

Fast Multipole Method (Fochesato & Dias 2006 [3])

Adaptive regridding

(UCD) Toronto, 2013 15 / 15
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WHAT WE WILL NOT COVER IN THIS COURSE:
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! Methods based on eigenfunctions expansions
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PHYSICAL ASSUMPTIONS

MATHEMATICAL MODELING

PHYSICAL ASSUMPTIONS:

! Fluid is ideal (inviscid) (Re = ∞)

! Fluid is homogeneous (ρw = const)

! Flow is incompressible (∇ · u = 0)

! Flow is potential (u = ∇φ)

INTERFACE CONDITIONS:

! Interface is a graph: y = η(x, t)

! Air effect is neglected (ρa " ρw )

! Free surface is isobaric

BASIC MODEL:

! Incompressible Euler equations with free surface



EULER EQUATIONS

WITH FREE SURFACE

! Incompressibility:

∇ · u = ∇ · (∇φ) = ∇
2φ = 0

! Momentum conservation:

ut + (u ·∇)u +
∇p

ρ
= g

φt +
1

2
|∇φ|2 + gz +

p

ρ
= B(t)

BOUNDARY CONDITIONS:

ηt + u ·∇η = v , z = η(x, t)

p = 0, z = η(x, t)

vn = u · nb = 0, z = −d(x)



WATER WAVE PROBLEM

POTENTIAL FLOW FORMULATION

! Continuity equation

∇
2φ = 0, (x, y) ∈ Ω× [−d(x), η(x, t)],

! Kinematic bottom condition

∂ φ

∂y
+∇φ ·∇d = 0, y = −d ,

! Kinematic free surface condition

∂ η

∂t
+∇φ ·∇η =

∂ φ

∂y
, y = η(x, t), FIGURE: Laplace

! Dynamic free surface condition

∂ φ

∂t
+

1

2
|∇φ|2 + gη = 0, y = η(x, t).



HAMILTONIAN STRUCTURE

PETROV (1964) [PET64]; ZAKHAROV (1968) [ZAK68]; CRAIG & SULEM (1993) [CS93]

CANONICAL VARIABLES:

η(X, t): free surface elevation

ϕ(X, t): velocity potential at the free surface
ϕ(x, t) := φ(x, y = η(x, t), t)

! Evolution equations:

ρ
∂ η

∂t
=

δH

δϕ
, ρ

∂ ϕ

∂t
= −

δH

δη
,

! Hamiltonian:

H =

η
∫

−d

1

2
|∇φ|2 dy +

1

2
gη2

APPLICATION TO NUMERICS:

Used in D2N operator methods: [CS93, GN07, XG09]



LUKE’S VARIATIONAL PRINCIPLES

J.C. LUKE, JFM (1967) [LUK67]

! First improvement of the classical Lagrangian L := K − Π:

L =

t2
∫

t1

∫

Ω

ρL dx dt , L :=

η
∫

−d

(

φt +
1

2
|∇φ|2 + gy

)

dy

δφ: ∆φ = 0, (x, y) ∈ Ω× [−d , η],
δφ|y=−d : ∂ φ

∂y +∇φ ·∇d = 0, y = −d ,

δφ|y=η : ∂ η
∂t +∇φ ·∇η − ∂ φ

∂y = 0, y = η(x, t),

δη: ∂ φ
∂t + 1

2 |∇φ|2 + gη = 0, y = η(x, t).

! Water wave problem formulation is recovered from L

APPLICATION TO NUMERICS:

! Not fully explored. . .

! Coupled-mode technique by B. & A. (2006) [BA06]



WHY THIS PROBLEM IS DIFFICULT?
OUTLINE OF SOME NUMERICAL DIFFICULTIES

! Problem is highly nonlinear

! Computational domain is unknown
(y = η(x, t) to be determined)

! Formulation is stiff (Hamiltonian
structure)

! Taylor expansions involve very high
derivatives

! Physical and numerical instabilities

! No dissipation to stabilize computation

! Overturning surface. . .
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