
HAL Id: cel-00842234
https://cel.hal.science/cel-00842234

Submitted on 10 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical modeling of transport problems using
freefem++ software – with examples in biology, CFD,

traffic flow and energy transfer
Florian de Vuyst

To cite this version:
Florian de Vuyst. Numerical modeling of transport problems using freefem++ software – with exam-
ples in biology, CFD, traffic flow and energy transfer. Master. Modélisation numérique des problèmes
de transport sur freefem++, ENS CACHAN, 2013, pp.162. �cel-00842234�

https://cel.hal.science/cel-00842234
https://hal.archives-ouvertes.fr

1

Numerical modeling of transport problems

using freefem++ software

with examples in biology, CFD, traffic flow and energy transfer

IsoValue
72.9873
90.3807
101.976
113.572
125.167
136.763
148.359
159.954
171.55
183.145
194.741
206.336
217.932
229.528
241.123
252.719
264.314
275.91
287.506
299.101
310.697
322.292
333.888
345.483
357.079
368.675
380.27
391.866
403.461
415.057
426.653
438.248
449.844
461.439
473.035
484.63
496.226
507.822
519.417
531.013
542.608
554.204
565.799
577.395
588.991
600.586
612.182
623.777
635.373
664.362

Florian De Vuyst

Department of Mathematics – ENS CACHAN

2

Contents

1 Transport equations 7

1.1 Pure transport equations . 7

1.1.1 Non homogeneous case . 8

1.1.2 Stationary case . 8

1.2 Conservative case . 9

1.3 Connections between transport and conservation equations. 11

2 Numerical analysis of Eulerian difference schemes 13

2.1 Framework . 13

2.2 Finite difference schemes . 14

2.3 Numerical stability . 15

2.3.1 ℓ∞ stability . 15

2.3.2 ℓ1 stability . 16

2.3.3 ℓ2 stability, von Neumann stability . 17

2.4 Consistency properties . 18

2.4.1 Lax-Wendroff scheme . 18

2.4.2 Von-Neumann stability of the Lax-Wendroff scheme 20

2.5 Lax-Friedrichs scheme . 20

2.5.1 Von Neumann stability analysis of the Lax-Friedrichs scheme 21

2.6 Hybrid interpolated fluxes . 22

2.6.1 Stability analysis of the hybrid interpolated scheme 22

2.7 Equivalent equation . 23

2.8 Numerical experiments . 23

2.8.1 Scilab source code . 23

2.8.2 Numerical results . 24

3 Introduction to freefem++ 29

3.1 Stationary elliptic problem . 29

3.1.1 Finite element method . 31

3.1.2 Practical implementation . 32

3.2 Heat problem . 32

3.2.1 Implementation in freefem++ . 34

3.3 A problem of thermal engineering . 34

3

4 CONTENTS

4 The Method of characteristics 41

4.1 Mathematical setting . 41

4.1.1 freefem++ source code of the pure transport problem 42

4.1.2 Numerical Results . 43

5 Stokes equations and Navier-Stokes equations 47

5.1 Setting of the equations . 47

5.2 Analysis of the stationary Stokes problem . 48

5.3 Numerical method for the Navier-Stokes equations 51

5.4 Numerical experiments . 51

5.4.1 freefem++ source code . 51

5.4.2 Numerical results . 53

6 Fractional step methods 57

6.1 Introduction . 57

6.2 Continuous analysis, case of a linear system . 58

6.3 Strang second-order symmetric splitting . 59

6.4 Discrete time advance schemes . 60

6.4.1 First order scheme . 60

6.4.2 Second order schemes . 61

6.5 Chorin-Temam fractional step method for the Navier-Stokes equations 62

6.5.1 Boundary conditions . 63

7 Case study. Population dynamics and migration flux analysis 65

7.1 Lokta-Volterra equations . 65

7.1.1 Analysis of some qualitative properties of the solutions 67

7.2 A fractional step approach to solve the Lokta-Volterra equations. 68

7.3 Introducing spatial effects, population diffusion phenomenon 70

7.4 Adding seasonal migration into the model . 73

8 Model of biological spatial pigment pattern formation 77

8.1 Cell chemotaxis model . 77

8.1.1 Dimensionless equations . 78

8.2 Zero-dimensional model . 79

8.3 Linear stability analysis of the complete model . 79

8.3.1 Continuous variation of a single parameter 81

8.4 Numerical discretization . 81

8.4.1 Fractional step method . 82

8.4.2 Full discretization . 83

8.4.3 freefem++ source code of the numerical scheme and numerical results . . 83

9 Vehicle traffic flow modeling 87

9.1 Setting of the problem . 87

9.2 Some mathematical aspects of nonlinear transport equations 88

9.2.1 Smooth autosimilar solutions . 89

9.2.2 Shock wave discontinuous solution . 90

9.3 Transport equation of a vehicle fraction . 92

CONTENTS 5

9.4 System of conservation laws . 92

9.5 Finite difference methods for nonlinear transport equations 93

9.5.1 Nonlinear extension of the Lax-Wendroff scheme 94

9.6 Nonlinear Lax-Friedrichs scheme, hybrid scheme 94

9.7 Numerical scheme for the transport equation of a vehicle fraction 95

9.8 Numerical experiment . 97

9.8.1 Scilab source code . 97

9.8.2 One-dimensional numerical results . 99

9.9 Pseudo two-dimensional model for lane connection modeling 99

9.9.1 freefem++ source code for the viscous two-dimensional model 100

9.9.2 Numerical results . 102

10 Biological cell migration and proliferation 105

10.1 Biological and mathematical requirements . 105

10.2 Guidelines for PDE modeling . 106

10.3 Numerical results . 107

10.3.1 freefem++ source code . 107

10.3.2 Numerical results . 108

11 Gas Dynamics 113

11.1 Perfect gas . 114

11.2 Discretization in time . 115

11.3 Full discretization . 115

11.4 Numerical experiments . 116

11.4.1 freefem++ source code of the supersonic flow problem around an ellipse . 116

11.4.2 Numerical results at infinite Mach number equal to 1.5 117

11.4.3 Numerical results at infinite Mach number equal to 4 117

12 Fluid Mechanics and heat transfer 123

12.1 Model assumptions . 123

12.1.1 Dimensionless equations . 124

12.1.2 Boundary conditions . 125

12.2 Mathematical problem . 125

12.3 Numerical discretization . 127

12.3.1 Time discretization . 127

12.3.2 Variational formulation . 127

12.4 Numerical experiments . 127

12.4.1 freefem++ source code of the heat transfer problem 127

12.4.2 Numerical results . 130

13 Stochastic diffusion processes, Fokker-Planck equations 133

13.1 Ordinary and Stochastic differential equations . 133

13.2 Fokker-Planck equations . 134

13.3 Computational approaches based on Stochastic Differential Equations 135

13.3.1 Monte-Carlo methods . 135

13.4 Numerical solution of the Fokker-Planck equations 135

6 CONTENTS

13.4.1 Boundary conditions . 136

13.5 Numerical example : metabolite reactions . 137

13.5.1 Scilab source code of the Monte Carlo approach 138

13.5.2 Numerical results of the Monte-Carlo method 139

13.5.3 freefem++ source of the Fokker-Planck solver 139

13.5.4 Numerical results with the Fokker-Planck model 141

14 Multiphase flows 145

14.1 Setting of the equations . 145

14.1.1 Transmission conditions, jump conditions 146

14.1.2 Final model . 148

14.2 Semi-discretization in time . 149

14.3 Front tracking by a level function . 149

14.4 Application. Liquid sloshing in a box. 150

14.4.1 freefem++ source code of the sloshing problem 150

14.4.2 Numerical results . 151

14.5 Application. Injection moulding problem . 151

14.5.1 freefem++ source code of the injection moulding problem 151

14.5.2 Numerical results . 155

Chapter 1

Transport equations

1.1 Pure transport equations

Let x(t; t0,x0) denotes the position of a material point with initial position x0 at time t0. If there is no

ambiguity, we will denote it in the simpler way x(t). If the particle x(t) moves at velocity u(x(t), t),
then the kinematic equation writes

dx

dt
= u(x(t), t). (1.1)

Now suppose that x(t) carries a quantity q which does not evolve during time:

q(x(t), t) = C. (1.2)

Of course we have
d

dt
[q(x(t), t)] = 0.

Using partial derivatives, we get

∂q

∂t
+
∂q

∂x

dx

dt
= 0.

Combining with (1.1), a standard transport equation is obtained

∂q

∂t
+∇xq · u = 0. (1.3)

The notation ∇x means that the gradient applies in the x-direction. Without ambiguity, we will only

denote it ∇ as usually.

In the literature, it is usual to find what is referred to as Lagrangian derivatives or particle derivative

D

Dt
=

∂

∂t
+ u · ∇x (1.4)

which is the time derivative of a quantity following particle trajectories. Of course, the transport

equation (1.3) is equivalent to

Dq

Dt
= 0. (1.5)

7

8 CHAPTER 1. TRANSPORT EQUATIONS

1.1.1 Non homogeneous case

In the non homogeneous case, we have an additional nonzero right-hand side in equation (1.5) that

expresses the gain or loss of the quantity q. Imagine for example a reacting chemical species that

would be convected by a working fluid. Then the equation becomes

Dq

Dt
= s(q, x, t) (1.6)

or equivalently
∂q

∂t
+ u · ∇xq = s(q, x, t). (1.7)

The notation s for the right hand side is often used to refer to as a source term.

1.1.2 Stationary case

Let us now consider the stationary case of the non-homogeneous transport equation. That means that

the field q does not depend on time directly. In particular, u = u(x) and s = s(q, x). Stationary flows

or steady states are of practical interest because they often occur as the limit case (large time) of an

unsteady process. Thus we have to solve the equation

u · ∇xq = s(q, x). (1.8)

Equation (1.8) alone does not define a mathematically well-posed problem. We need to add some

boundary conditions of conditions at infinity. Let now consider a bounded domain Ω of Rd as shown

in figure 3.1. We will denote ∂Ω the boundary of Ω, n(x) the exterior normal vector to the boundary

∂Ω at position x and ∂Ω+ (resp. ∂Ω−) the set

∂Ω± = {x ∈ ∂Ω / ± u(x) · n(x) > 0.} . (1.9)

The boundary ∂Ω− in the context of (1.9) is referred to as the inflow boundary because of the negative

Figure 1.1: Steady transport problem in a bounded domain Ω.

1.2. CONSERVATIVE CASE 9

sign of u · n. Then we must give some information on the inflow boundary, for example Dirichlet

boundary conditions

q = q− on ∂Ω− (1.10)

for a given function q− defined on ∂Ω−. From the Lagrangian description of equation (1.8), it is

possible to analytically solve problem (1.8)-(1.10). Let (x(α;x0))α≥0 be the parameterized trajectory

of a point at position x for parameter α with initial position x0 ∈ ∂Ω−. That means that x(α;x0)) is

solution of the differential problem







dx

dα
= u(x), α > 0,

x(s(α = 0)) = x0 ∈ ∂Ω−.
(1.11)

The solution of (1.11) is in integral form

x(α) = x0 +

∫ α

0
u(x(α′)) dα′. (1.12)

The Lagrangian form of equation (1.8) then reads

dq

dα
= s(q(α),x(α)). (1.13)

From the initial value q(α = 0) = q−, we get the analytical q solution in integral form too

q(α) = q− +

∫ α

0
s(q(α′),x(α′)) dα′. (1.14)

1.2 Conservative case

Let us consider a time-dependent bounded smooth domain Ωt = Ω(t) which is convected itself by a

velocity field u (imagine for example a bubble rising up into the water). The Reynolds theorem (see

the Continuum Mechanics literature, [6] for example) states that, for a convected quantity q = q(x, t)
into Ωt, we have

d

dt

∫

Ωt

q(x, t) dx =

∫

Ωt

{

∂q

∂t
+∇x · (u q)

}

dx. (1.15)

The Reynolds theorem formula can be rigorously derived using differential calculus and the Jacobian

of the transformation that maps the space-time variables (x, t) into the couple (x(t), t) where x(t) is

moving according to the velocity field u, i.e. ẋ(t) = u(x(t), t).

Let us focus on some corollaries of the Reynolds Theorem. First, consider q = 1. Denoting |Ωt|
the measure of the domain Ωt, expression (1.15) states that

d|Ωt|
dt

=

∫

Ωt

(∇ · u) dx. (1.16)

It is observed that if the velocity field is divergence-free, then any moving domain Ωt preserves its

volume. The flow generated by u is said to be incompressible. Otherwise Ωt increases or decreases

according to the sign of ∇ · u.

10 CHAPTER 1. TRANSPORT EQUATIONS

As a verification of the Reynolds Theorem, let us multiply equation (1.15) by |Ωt|−1. We succes-

sively have

1

|Ωt|

∫

Ωt

{

∂q

∂t
+∇x · (u q)

}

dx =
1

|Ωt|
d

dt

∫

Ωt

q(x, t) dx

=
d

dt

[

1

|Ωt|

∫

Ωt

q(x, t) dx

]

−
∫

Ωt

q(x, t) dx
d

dt

[

1

|Ωt|

]

=
d

dt

[

1

|Ωt|

∫

Ωt

q(x, t) dx

]

+

∫

Ωt

q(x, t) dx
1

|Ωt|2
d|Ωt|
dt

.

From equation (1.16), we get

1

|Ωt|

∫

Ωt

{

∂q

∂t
+∇x · (u q)

}

dx =
d

dt

[

1

|Ωt|

∫

Ωt

q(x, t) dx

]

+

(

1

|Ωt|

∫

Ωt

q(x, t) dx

)(

1

|Ωt|

∫

Ωt

(∇ · u) dx
)

.

Considering an infinitesimal volume, for |Ωt| → 0, we get

∂q

∂t
+∇x · (u q) = dq

dt
+ q∇x · u (1.17)

and then retrieve the particle derivative of q:

dq

dt
=
∂q

∂t
+ u · ∇xq.

The Reynolds Theorem is also at the origin of the conservation laws that governs many Physics in

the nature. Indeed, suppose that the production rate of q is s:

d

dt

∫

Ωt

q(x, t) dx =

∫

Ωt

s(x, t) dx. (1.18)

Again, dividing (1.18) by |Ωt|, applying the Reynolds Theorem formula (1.15) and considering an

infinitesimal volume Ωt leads to the following balance equation in conservation form

∂q

∂t
+∇ · (qu) = s(x, t). (1.19)

Conservation forms of equations are always sought if it is possible because they provide stability and

conversation properties on the solutions of the equations. For example, integrating equation (1.19)

over any fixed bounded domain ω and applying Green’s formula to the divergence term gives the

balance equation
d

dt

∫

ω
q(x, t) dx−

∫

∂ω
qu · nω dσ =

∫

ω
s(x, t) dx. (1.20)

By denoting for any quantity z

zω =

∫

ω
z(x, t) dx,

we get the balance law
dqω
dt

= sω +

∫

∂ω
qu · nω dσ. (1.21)

1.3. CONNECTIONS BETWEEN TRANSPORT AND CONSERVATION EQUATIONS. 11

The evolution of qω is governed by the production rate sω but also by the flux of q through the boundary

surface ∂ω. The flux Φ = qu · n defines a ’mass flux’ of quantity q at velocity u · n in the normal

direction. That’s the reason of why it is called a conservation form. For an adjacent neighboring

volume ω′, both volumes ω and ω′ exchange some ’mass’ q through a surface flux

∫

∂ω∩∂ω′

qu · nω dσ = −
∫

∂ω∩∂ω′

qu · nω′ dσ.

and in opposite sense.

1.3 Connections between transport and conservation equations.

Transport and conservation equations in their homogeneous form respectively are

∂tq + u · ∇q = 0 (1.22)

and

∂tq +∇ · (qu) = 0. (1.23)

For q smooth enough, we can of course rewrite equation (1.23) as

∂tq + u · ∇q + q∇ · u = 0.

If ∇ · u = 0, then both transport equation and convection equation are equivalent. Remember that

a divergence-free velocity field induces an incompressible flow. Consequently, there is no effect of

compressibility or dilatation and q is actually a conserved quantity.

The well-known continuity equation in Gas Dynamics expresses the conservation of the mass of

the gas from its density ρ [kg.m−3] (which is an intensive variable):

∂ρ

∂t
+∇ · (ρu) = 0. (1.24)

It is interesting to notice that if c is a convected quantity in the gas (for example the concentration of

a non-reacting chemical pollutant),
∂c

∂t
+ u · ∇c = 0 (1.25)

it is always possible to write a conservation equation, at least for smooth solutions of the equations.

By multiplying by ρ equation (1.25) and by c equation (1.24), summing up we get the conservation

law
∂(ρc)

∂t
+∇ · (ρcu) = 0. (1.26)

Quantity c is not conserved (only convected) but quantity ρc is conserved (but not convected in the

strict sense, except for incompressible flows).

12 CHAPTER 1. TRANSPORT EQUATIONS

Chapter 2

Numerical analysis of Eulerian difference

schemes

In this chapter, we shall consider computational methods to solve the transport equation

∂tq + u · ∇q = s. (2.1)

There are many methods like finite difference (FD) schemes but also finite volume (FV) scheme, finite

elements methods (FEM), method of characteristics, particle methods, etc. This chapter is aimed at

introducing important concepts of numerical analysis like numerical stability, consistency and order

of accuracy.

2.1 Framework

As a starting point, we first consider homogeneous one-dimensional transport equations. Suppose

also that the transport velocity is constant, let say a > 0. We here consider the infinite spatial domain

Ω = R. The linear transport equation is

∂tq + a∂xq = 0, , x ∈ R, t > 0. (2.2)

The initial data q0 is supposed to belong to all the Lp-spaces, p ≥ 1 and p = ∞. Of course, the

solution q of (2.2) is analytically known, namely

q(x, t) = q0(x− at) ∀t > 0. (2.3)

In particular we have

||q(., t)||Lp = ||q0||Lp , ∀t > 0, p ≥ 1, p = ∞. (2.4)

The solution for the continuous problem is stable in Lp-norm meaning that it does not blow up in time,

and even stays constant in time. This is a good framework to study the numerical stability of discrete

time advance schemes.

13

14 CHAPTER 2. NUMERICAL ANALYSIS OF EULERIAN DIFFERENCE SCHEMES

2.2 Finite difference schemes

We shall discretize the PDE problem (2.2),(2.3). Let us consider a uniform mesh step h > 0 and the

discretization points

xj = jh, j ∈ Z. (2.5)

We also consider a time discretization, not necessary uniform. By defining the initial discrete instant

t0 = 0, we build a sequences (tn)n∈N from a time step sequences (∆tn > 0)n∈N such that

tn+1 = tn +∆tn. (2.6)

At each discretization point, we consider qnj which is a discretization of the continuous solution q at

spatial point xj and instant tn, i.e.

qnj ≈ q(xj , t
n). (2.7)

As starting point, one can define the values (q0j)j∈Z from the continuous initial data q0 by exactly

taking

q0j = q0(xj), j ∈ Z. (2.8)

The time advance finite difference scheme consists in computing new values (qn+1
j)j∈Z from already

known values (qnj)j∈Z at the previous instant tn using a discrete version of (2.2).

They are many ways to discretize (2.2) in both space and time. A semi-discretization in time can

be
q(x, tn+1)− q(x, tn)

∆tn
+ a∂xq(x, t

n) = 0 (2.9)

using the backward Euler scheme formula, which defines a time-explicit scheme, or

q(x, tn+1)− q(x, tn)

∆tn
+ a∂xq(x, t

n+1) = 0 (2.10)

using the forward Euler scheme formula, which defines a time-implicit one and requires a linear

inversion process to get all the qn+1
j . Of course, one could also use time discrete schemes more

accurate than the first order Euler formula. Let us focus on the time discrete scheme (2.9). To get

a really computational scheme, we also discretize (2.9) in space. There are again many ways to

approximate ∂xq at point (xj , t
n). For example, the centered difference scheme

(∂xq)(xj , t
n) ≈

qnj+1 − qnj−1

2h
(2.11)

defines the centered scheme. The upwind discretization rule

(∂xq)(xj , t
n) ≈

qnj − qnj−1

h
(2.12)

defines the so-called explicit Euler upwind scheme whereas the downwind rule

(∂xq)(xj , t
n) ≈

qnj+1 − qnj
h

(2.13)

defines the explicit Euler downwind scheme. As a matter of fact, some of numerical presented above

are numerically stable whereas some of them are not.

2.3. NUMERICAL STABILITY 15

2.3 Numerical stability

For numerical stability purposes it is convenient to consider the ℓp norms of the sequences (qnj)j∈Z
defined by

||qn||p =





∑

j∈Z
|qnj |p





1/p

, p ∈ N, (2.14)

||qn||∞ = sup
j∈Z

|qnj |. (2.15)

Let us first consider the explicit upwind scheme with Euler time discretization (a > 0):

qn+1
j − qnj
∆tn

+ a
qnj − qnj−1

h
= 0. (2.16)

2.3.1 ℓ∞ stability

Generally, ℓ∞ analysis is used to get some information on the extrema of the sequences.

Is is easy to show that (2.16) is ℓ∞-stable under a condition of the time step ∆tn. This scheme can be

rewritten in incremental form

qn+1
j =

(

1− a
∆tn

h

)

qnj + a
∆tn

h
qnj−1. (2.17)

It is observed that qn+1
j is nothing else but a linear convex combination of qnj and qnj−1 provided that

∆tn is such that

a
∆tn

h
≤ 1. (2.18)

The condition (2.18) is referred to as the Courant-Friedrichs-Lewy condition or simply CFL condition.

It is usual to introduce the so-called local Courant number

νn = a
∆tn

h
. (2.19)

Because convex combinations are stable in ℓ∞ norm, the CFL condition (2.18) defines a sufficient

condition of ℓ∞ stability. Actually it is also a necessary condition. Consider the particular initial

sequences q0j = 1(j≤0)(j) with νn = ν > 1 for all n ∈ N. Then it is easy to check that q11 = ν,

q22 = ν2, . . ., qkk = νk ∀k ≥ 1 so that for any M > 0 there is always a rank n0 such that for all n ≥ 0,

we have ||qn||∞ > M.
Remark that the limit stability case vn = 1 (Courant number exactly equal to one) leads to the

numerical scheme

qn+1
j = qnj−1, (2.20)

which is compatible with the structure of the exact continuous solution

q(x, tn+1) = q(x− a∆tn, tn) = q(x− h, tn). (2.21)

To summarize, let us enunciate the following theorem

16 CHAPTER 2. NUMERICAL ANALYSIS OF EULERIAN DIFFERENCE SCHEMES

Theorem 1. The explicit upwind scheme (2.16) is conditionally ℓ∞-stable

||qn+1||∞ ≤ ||qn||∞ ∀n ∈ N. (2.22)

with the stability CFL condition (2.18) on the time step. For a Courant number ν = 1, the scheme

exactly propagates the discretized initial condition.

2.3.2 ℓ1 stability

The ℓ1-norms are practical to study the appearance of alternative oscillating discrete patterns in dis-

crete solutions.

Let start again from the Euler upwind scheme using the Courant number :

qn+1
j = (1− νn)qnj + νnqnj−1. (2.23)

Consider first a Courant number νn less than 1. Taking the absolute value of the expression and

applying the triangular inequality gives

|qn+1
j | ≤ (1− νn)|qnj |+ νn|qnj−1|. (2.24)

Suppose that ||qn||1 ≤ +∞. Summing up (2.24) over the j then gives

∑

j∈Z
|qn+1
j | ≤ (1− νn)

∑

j∈Z
|qnj |+ νn

∑

j∈Z
|qnj−1|.

and thus

||qn+1||1 ≤ ||qn||1. (2.25)

The ℓ1-norm is decreasing during time iterations so the numerical method is ℓ1-stable for Courant

numbers less than one. On the other hand it is easy to build a counterexample thats shows that the

condition νn = ν > 1 makes the numerical scheme unstable. Consider for example a discrete initial

condition (q0j) ∈ ℓ1(Z) such that

q0j .q
0
j+1 < 0 ∀j ∈ Z. (2.26)

(it is an alternate discrete function). Then for ν > 1, it is easy to check that the alternate property is

preserved during the iterations

qnj .q
n
j+1 < 0 ∀j ∈ Z, n ∈ N (2.27)

with also

qnj .q
n+1
j < 0 ∀j ∈ Z, n ∈ N. (2.28)

From the scheme (1.24), one can notice that

qn+1
j = sgn(qnj−1)|1− ν||qnj |+ νqnj−1

so that

|qn+1
j | > ν|qnj−1| ∀j ∈ Z

or again

||qn||1 > νn||q0||1 ∀n ∈ N (2.29)

making the numerical scheme unstable. We thus get the same stability results as in the previous ℓ∞
case.

2.3. NUMERICAL STABILITY 17

2.3.3 ℓ2 stability, von Neumann stability

The von Neumann ℓ2-stability gives information of the evolution of the energy of the solution and on

the frequency spectrum. For that we use the Fourier transform

F (f)(ξ) =
1√
2π

∫

R

f(x)e−ixξ dx (2.30)

for f ∈ L1(R) ∩ L2(R). it is known that the Fourier transform is an isometry: F (f) ∈ L2(R) and

||f ||L2 = ||F (f)||L2 . (2.31)

We will also make use of the common properties of the Fourier transforms like

F (Thf)(ξ) = eihξF (f)(ξ) (2.32)

where Thf(x) = f(x− h).
To simplify the stability analysis in the sense of von Neumann, it is more convenient to deal with

a semi-implicit version of the explicit Euler upwind scheme:

qn+1(x)− qn(x)

∆tn
+ a

qn(x)− qn(x− h)

h
= 0, ∀x ∈ R. (2.33)

The Fourier transform is a linear transform. Applying it on equation (2.33) and using (2.32) gives the

expression

F (qn+1)(ξ)− F (qn)(ξ) + νn
(

F (qn)(ξ)− eihξF (qn)(ξ)
)

= 0, ∀ξ ∈ R. (2.34)

or again

F (F)(qn+1)(ξ) =
[

1− νn(1− eihξ)
]

F (qn)(ξ). (2.35)

We have to check for which values of νn the modulus of the amplification factor a(hξ) = 1− νn(1−
eihξ) is less than one, for any frequency ξ. One finds

|a(hξ)|2 = [1− νn(1− eihξ)][1− νn(1− e−ihξ)]

= 1− 2νn(1− cos(hξ)) + (νn)2|1− eihξ|2

= 1− 4νn sin2(hξ/2) + 4(νn)2 sin2(hξ/2) ≤ 1.

That gives the condition

4 sin2(hξ/2)νn(νn − 1) ≤ 0 ∀ξ ∈ R

equivalent again to

νn ≤ 1. (2.36)

Under condition (2.36) and due to the isometry property of the Fourier transform, we have

||qn+1||L2 = ||F (qn+1)L2 || ≤ ||F (qn)||L2 = ||qn||L2. (2.37)

As exercise, we let the reader show that the explicit downwind Euler scheme as well as the centered

scheme with Euler time discrete formula are unconditionally unstable in the sense of von Neumann.

We summarize by the following theorem:

Theorem 2. The explicit upwind scheme is conditionally stable in the sense of von Neumann under

Courant numbers less than one. The explicit downwind scheme as well as the centered schemes are

unconditionally unstable.

18 CHAPTER 2. NUMERICAL ANALYSIS OF EULERIAN DIFFERENCE SCHEMES

2.4 Consistency properties

Another important feature of a discretization scheme is the consistency property and the order of

accuracy. Let us analyze the order of accuracy the the explicit upwind scheme. For the sake of

simplicity, we will restrict our analysis again to the one-dimensional case. Let us once again recall the

expression of the explicit upwind scheme:

qn+1
j − qnj
∆tn

+ a
qnj − qnj−1

h
= 0. (2.38)

The error of consistency consists in measuring the residual computed from the exact solution of the

continuous problem

Rnj (h,∆t
n) =

q(xj , t
n+1)− q(xj , t

n)

∆tn
+ a

q(xj , t
n)− q(xj−1, t

n)

h
. (2.39)

If it is possible to write Taylor expansions of the exact solution near points (xj , t
n) (this is possible

with enough regularity), there exists θn ∈ (tn, tn+1) such that

q(xj , t
n+1) = q(xj , t

n) + ∆tn∂tq(xj , t
n) +

1

2
(∆tn)2∂2tt(xj , θ

n)

and yj ∈ (xj−1, xj) such that

q(xj−1, t
n) = q(xj , t

n)− h ∂tq(xj , t
n) +

1

2
h2∂2xxq(yn, t

n)

Then we get the residual

Rnj (h,∆t
n) =

1

2
∆tn∂2tt(xj , θ

n)− 1

2
ah∂2xxq(yn, t

n). (2.40)

If both ∂2ttq and ∂2xx are bounded functions, then equation (2.40) shows that

Rnj (h,∆t
n) = O(∆tn) +O(h) ∀j ∈ Z, n ∈ N. (2.41)

The explicit upwind scheme is said to be first order accurate (in both space and time). It is possible to

build counterexamples to show that this cannot be better than (2.41).

There are some numerical schemes that provide a smaller rate or error of consistency or equiva-

lently a higher order of accuracy. Let us give the definition

Definition 1 (order of accuracy). A numerical scheme is said to be p-th order accurate in space and

q-th order accurate in time if its residual is in the form

Rnj (h,∆t
n) = O(hp) +O((∆tn)q) ∀j ∈ Z, n ∈ N. (2.42)

2.4.1 Lax-Wendroff scheme

It is of course of interest to define a methodology of construction of higher order accurate scheme.

We shall construct now a second-order accurate scheme in both space and time. The solutions of the

transport are supposed to be smooth enough to write high-order derivatives. Derivating

∂tq + a∂xq = 0,

2.4. CONSISTENCY PROPERTIES 19

with respect to t allows us to write:

∂2ttq = a2∂2xxq.

By writing a Taylor expansion in time up to the third order, we have

q(xj , t
n+1) = q(xj , t

n) + ∆tn∂tq(xj , t
n) +

1

2
(∆tn)2a2∂2xx(xj , t

n) +O(∆t3).

So it appears interesting to define a discrete time derivative in the form

∂tq(xj , t
n) ≈ q(xj , t

n+1)− q(xj , t
n)

∆tn
− 1

2
a2∆tn

−q(xj+1, t
n) + 2q(xj , t

n)− q(xj−1, t
n)

h2
. (2.43)

whose error of consistency is

O((∆tn)2) +O(h∆tn)

or again

O((∆tn)2) +O(h2)

(indeed ab ≤ 1
2(a

2 + b2)). For the spatial derivative, we simply use the centered finite difference

which is known to be second-order accurate:

(∂xq)(xj , t
n) ≈ q(xj+1, t

n)− q(xj−1, t
n)

2h
(2.44)

with consistency error

O(h2).

The two discretization schemes (2.43) and (2.44) lead to the so-called Lax-Wendroff scheme (exer-

cise):

Definition 2. The Lax-Wendroff scheme for the transport equation (1.2) is the following second order

accurate scheme:
qn+1
j − qnj
∆tn

+
ΦLWj+1/2 − ΦLWj−1/2

h
= 0 (2.45)

where the so-called Lax-Wendroff flux is

ΦLWj+1/2 =
aqnj + aqnj+1

2
− 1

2
νna(qnj+1 − qnj). (2.46)

still with Courant number

νn =
a∆tn

h
. (2.47)

The script (2.46),(2.47) is interesting because it show that the numerical scheme has the conserva-

tion form (2.46). The numerical flux (2.47) is made of a centered flux and an artificial spatial viscosity

term. The numerical flux if second-order consistent with

Φ = aq − 1

2
νnah∂xq

Remark 1. Remark that the upwind explicit scheme can also be written in conservation form

qn+1
j − qnj
∆tn

+
Φupj+1/2 − Φupj−1/2

h
= 0 (2.48)

with upwind numerical flux

Φupj+1/2 =
aqnj + aqnj+1

2
− 1

2
|a|(qnj+1 − qnj) (2.49)

(exercise).

20 CHAPTER 2. NUMERICAL ANALYSIS OF EULERIAN DIFFERENCE SCHEMES

2.4.2 Von-Neumann stability of the Lax-Wendroff scheme

We shall study the ℓ2-stability of the Lax-Wendroff scheme. For that, as mentioned above we consider

a continuous-in-space version of that numerical scheme:

qn+1(x)− qn(x) +
∆tn

h

(

ΦLW (x, x+ h)− ΦLW (x− h, x)
)

= 0 (2.50)

with

ΦLW (x, x+ h) =
aqn(x) + aqn(x+ h)

2
− 1

2
aνn(qn(x+ h)− qn(x)).

By taking the Fourier transform of this expression, we get

q̂n+1(ξ)− q̂n(ξ) + νn
{

1 + e−ihξ

2
− 1

2
νn(e−ihξ − 1)

}

q̂n(ξ)

− νn
{

1 + eihξ

2
− 1

2
νn(1− eihξ)

}

q̂n(ξ) = 0

that simplifies into

q̂n+1(ξ) = [1− νn{νn(1− cos(hξ))− i sin(hξ)}] q̂n(ξ), ∀ξ ∈ R. (2.51)

The amplification factor is

a(hξ) = 1− νn{νn(1− cos(hξ))− i sin(hξ)}.

To find the stability condition, the inequality

|a(hξ)|2 ≤ 1.

has to be solved. Using the identity sin2(hξ) = 1−cos2(hξ), it is found that the condition is equivalent

to

(1− cos2(hξ))2 (νn)2((νn)2 − 1) ≤ 0, ∀ξ ∈ R.

That shows that the Lax-Wendroff scheme is ℓ2-stable for Courant numbers less than one.

2.5 Lax-Friedrichs scheme

The Lax-Friedrichs scheme is another stable candidate based on the following approximation scheme:

∂xq(xj , t
n) ≈

qnj+1 − qnj−1

2h
(second order accurate),

∂tq(xj , t
n) ≈

qn+1
j − qnj−1

+qnj+1

2

∆tn
(first order accurate).

It is easy to check that the residual of the discrete time derivative can be written

q(xj , t
n+1)− q(xj−1,t

n)+q(xj+1,t
n)

2

∆tn
− ∂tq(xj , t

n) =
∆tn

2
∂2ttq(xj , θ

n) +
1

2

h2

∆tn
∂2xxq(ξ

−

j , t
n) + ∂2xxq(ξ

+
j , t

n)

2
(2.52)

2.5. LAX-FRIEDRICHS SCHEME 21

for θn ∈ (tn, tn+1), ξ−j ∈ (xj−1,xj) and ξ+j ∈ (xj , xj+1). Expression (2.52) shows that the approxi-

mation stays first order accurate provided that h and ∆tn are of the same order, or more exactly
∣

∣

∣

∣

h

∆tn

∣

∣

∣

∣

≤ C, (2.53)

where C is a constant which is independent from h and ∆tn. Remark that this could not be the case

for possibly restrictive stability conditions like for example

∆tn

h2
≤ C ′.

In the next subsection, we will do the von Neumann stability analysis of the Lax-Friedrichs scheme.

So the Lax-Friedrichs scheme is written as

qn+1
j − qnj−1

+qnj+1

2

∆tn
+ a

qnj+1 − qnj−1

2h
= 0. (2.54)

It is easy to check that is can written in conservation form

qn+1
j = qnj − ∆tn

h

(

ΦFLj+1/2 − ΦLFj−1/2

)

(2.55)

where the Lax-Friedrichs numerical flux is

ΦLFj+1/2 =
aqnj + aqnj+1

2
− 1

2νn
a(qnj+1 − qnj). (2.56)

We again recognize a centered flux plus an artificial viscosity term.

2.5.1 Von Neumann stability analysis of the Lax-Friedrichs scheme

We consider a continuous-in-space version of the Lax-Friedrichs scheme:

qn+1(x)− qn(x) +
∆tn

h

(

ΦLF (x, x+ h)− ΦLF (x− h, x)
)

= 0 (2.57)

with

ΦLF (x, x+ h) =
aqn(x) + aqn(x+ h)

2
− 1

2νn
a(qn(x+ h)− qn(x)).

By taking the Fourier transform of this expression, we get

q̂n+1(ξ)− q̂n(ξ) + νn
{

1 + e−ihξ

2
− 1

2νn
(e−ihξ − 1)

}

q̂n(ξ)

− νn
{

1 + eihξ

2
− 1

2νn
(1− eihξ)

}

q̂n(ξ) = 0

that simplifies into

q̂n+1(ξ) = [cos(hξ)− iνn sin(hξ)}] q̂n(ξ), ∀ξ ∈ R. (2.58)

The amplification factor is

a(hξ) = cos(hξ))− iνn sin(hξ)}.
The stability condition inequality |a(hξ)|2 ≤ 1 writes

cos2(hξ) + (νn)2 sin2(hξ) ≤ 1, (2.59)

clearly showing that the Lax-Friedrichs is stable in the von Neumann sense for Courant numbers less

than one.

22 CHAPTER 2. NUMERICAL ANALYSIS OF EULERIAN DIFFERENCE SCHEMES

2.6 Hybrid interpolated fluxes

So far, we have seen three different stable schemes, namely the upwind (UP) scheme, the Lax-

Wendroff (LW) scheme and the Lax-Friedrichs (LF) scheme. All three can be written in conservation

form

qn+1
j = qnj − ∆tn

h

(

Φnj+1/2 − Φnj−1/2

)

, (2.60)

with different numerical flux Φnj+1/2 for each of them. Let us recall the three numerical fluxes written

for any a (can be positive or negative):

ΦUPj+1/2 = Φcj+1/2 −
1

2
|a|(qnj+1 − qnj), (2.61)

ΦLWj+1/2 = Φcj+1/2 −
1

2
νn|a|(qnj+1 − qnj), (2.62)

ΦLFj+1/2 = Φcj+1/2 −
1

2νn
|a|(qnj+1 − qnj), (2.63)

where

Φcj+1/2 =
aqnj + aqnj+1

2

is the second order centered flux. It is interesting so see that all three share the same structure and can

even be written under the generic form

Φnj+1/2(θ) = Φcj+1/2 −
1

2
(νn)θ|a|(qnj+1 − qnj) (2.64)

using a parameter θ ∈ [−1, 1]. The UP scheme corresponds to θ = 0 whereas θ = 1 gives the LW

scheme and θ = −1 gives the LF scheme. To implement the three numerical scheme, we only need

to implement the numerical method with the free parameter θ ∈ [−1, 1] and use it as a configuration

parameter. For parameters θ different from −1, 0, 1, the numerical method (2.60),(2.64) defines a

natural interpolation of the three common schemes.

2.6.1 Stability analysis of the hybrid interpolated scheme

For the hybrid interpolated scheme, the amplification relation then becomes

q̂n+1(ξ) =
[

1− νn
(

(νn)θ(1− cos(hξ))− i sin(hξ)
)]

q̂n(ξ). (2.65)

The stability condition

|a(hξ)|2 ≤ 1 ∀ξ ∈ R

reads (denoting ω = hξ and νn = ν for simplicity)

ν2 sin2 ω + ν2(1+θ)(1− cosω)2 − 2ν1+θ(1− cosω) ≤ 0.

By denoting y = cosω, this can be simplified into

ν2(1 + y) + ν2(1+θ)(1− y)− 2ν1+θ ≤ 0 ∀y ∈ [−1, 1) (2.66)

(the case y = 1 is automatically satisfied). The analysis can be finalized by a simple study of function

(as exercise).

2.7. EQUIVALENT EQUATION 23

2.7 Equivalent equation

It is of interest to exhibit what kind of equation a first order scheme solves at second order accuracy.

This is exactly the definition of the equivalent equation. Let us write the equivalent equation for the

hybrid interpolated scheme. Using Taylor expansion, it is an easy matter of fact to show that

qn+1
j − qnj
∆tn

≈ ∂tq(xj , t
n) +

∆tn

2
∂2ttq(qj , t

n) +O((∆tn)2)

and
Φnj+1/2 − Φnj−1/2

h
≈ a∂xq(xj , t

n)− h

2
(νn)θ|a|∂2xxq(xj , tn) +O(h2).

Consequently, truncating up to second order terms gives the equivalent equation

∂tq + a∂xq =
h

2
(νn)θ|a|∂2xxq −

∆tn

2
∂2ttq. (2.67)

From ∂2ttq = a2∂2xxq, one can also write the convection-diffusion-like equation

∂tq + a∂xq −
(

h

2
(νn)θ|a| − ∆tn

2
a2
)

∂2xxq = 0. (2.68)

In order to have a positive diffusion (necessary for stability at the continuous level), this requires

h

2
(νn)θ|a| ≥ ∆tn

2
a2

which can also be written

(νn)1−θ ≤ 1. (2.69)

and defines a necessary condition of stability. Notice that the second order term vanishes for θ = 1,

showing once again that the Lax-Wendroff scheme is second order accurate (in both space and time).

2.8 Numerical experiments

2.8.1 Scilab source code

1 // Advect. sce (Scilab)

2 // Numerical schemes for the pure advection equation

3 // Interpolation parameter theta in [−1,1];

4 // Courant number nu<=1;

5 theta = -1;

6 N = 1000;

7 h = 1 / N;

8 x = h/2 : h: 1-h/2;

9 key = 3;

10 // Initial condition

11 if (key==1) then

12 // Step solution

13 u = 0 + ((1/4-abs(x-1/2))>0);

14 //

24 CHAPTER 2. NUMERICAL ANALYSIS OF EULERIAN DIFFERENCE SCHEMES

15 elseif (key==2) then

16 // Pyramid−shaped function

17 u = max(0, 1-4*abs(x-1/2));

18 //

19 else

20 // Sine function

21 u = sin(2*%pi*x);

22 end;

23 plot(x, u, ’.-’); xgrid();

24 nu = 0.5;

25 a = 1;

26 time = 0;

27 lambda = nu / abs(a);

28 dt = h * lambda;

29 //

30 for it=1:2e3

31 time = time + dt;

32 Phi = 0.5*a*([u, u(1)] + [u(N), u]) ...

33 - 0.5*nu^theta*abs(a)*([u, u(1)] - [u(N), u]);

34 u = u - lambda * (Phi(2:N+1) - Phi(1:N));

35 //

36 // Comparison with exact solution

37 //

38 xmodulo = modulo(a*time,1);

39 if (key==1) then

40 // Step solution

41 uex = 0 + ((1/4-abs(x-xmodulo-1/2))>0) ...

42 + ((1/4-abs(x-xmodulo+1/2))>0);

43 elseif (key==2)

44 // Pyramid function

45 uex = max(0, 1-4*abs(x-xmodulo-1/2)) ...

46 + max(0, 1-4*abs(x-xmodulo+1/2));

47 else

48 // Sine function

49 uex = sin(2*%pi*(x-xmodulo)) ;

50 end;

51 if ~modulo(it, 50) then

52 drawlater();

53 clf();

54 subplot(1,2,1), plot(x, u, ’.-’, x, uex, ’-’); xgrid();

55 xtitle(’Discrete solution (uh)’);

56 subplot(1,2,2), plot(x, u-uex, ’.-’); xgrid();

57 xtitle(’Error (uh-u_ex)’);

58 drawnow();

59 end;

60 end;

2.8.2 Numerical results

2.8. NUMERICAL EXPERIMENTS 25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Error (uh−u_ex)

Figure 2.1: Numerical solution with the step function as initial condition. Respective discrete solutions

and errors for θ = 1, 1
2 , 0, −1

2 , −1 (νn = 1
2 is used here, final time is T = 1).

26 CHAPTER 2. NUMERICAL ANALYSIS OF EULERIAN DIFFERENCE SCHEMES

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.10

−0.05

0.00

0.05

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.15

−0.10

−0.05

0.00

0.05

0.10

Error (uh−u_ex)

Figure 2.2: Numerical solution with the pyramid-shaped function as initial condition. Respective

discrete solutions and errors for θ = 1, 1
2 , 0, −1

2 , −1 (νn = 1
2 is used here, final time is T = 1).

2.8. NUMERICAL EXPERIMENTS 27

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−4e−005

−3e−005

−2e−005

−1e−005

0e+000

1e−005

2e−005

3e−005

4e−005

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.005

−0.004

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

0.004

0.005

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Error (uh−u_ex)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Discrete solution (uh)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

Error (uh−u_ex)

Figure 2.3: Numerical solution with the sine function as initial condition. Respective discrete solutions

and errors for θ = 1, 1
2 , 0, −1

2 , −1 (νn = 1
2 is used here, final time is T = 1).

28 CHAPTER 2. NUMERICAL ANALYSIS OF EULERIAN DIFFERENCE SCHEMES

Chapter 3

Introduction to freefem++

freefem++ is a language and an integrated development environment with visualization facilities

for the Finite Element Method (FEM). It is dedicated to the simulation of two-dimensional or three-

dimensional, steady or unsteady, linear or nonlinear Partial Differential problems defined from their

variational formulation. freefem++ is written in C++ and the freefem++ language is a C++

idiom. The software can be downloaded at

http://www.freefem.org/ff++/.

The software is well-documented. The user will find the freefem++ manual and various examples

at

http://www.freefem.org/ff++/ftp/freefem++doc.pdf

3.1 Stationary elliptic problem

freefem++ is able to solve Laplace problems and general elliptic problems in only a few lines.

The problem has to be set from its discrete variational formulation. As example, consider the elliptic

problem with Robin boundary conditions (δ, ε > 0)

−∆u+ δu = 1 in Ω, (3.1)

∂u

∂n
+ εu = 0 on ∂Ω. (3.2)

To write the variational formulation of the problem, first multiply (3.1) by a smooth test function v
and then integrate it over the bounded domain Ω. Applying Green’s formula gives

∫

Ω
∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v dσ + δ

∫

Ω
uv dx =

∫

Ω
v dx (3.3)

Now, due to the boundary condition (3.2), it can be rewritten

∫

Ω
∇u · ∇v dx+ δ

∫

Ω
uv dx+ ε

∫

∂Ω
uv dσ =

∫

Ω
v dx (3.4)

or again written in the abstract form

a(u, v) = ℓ(v) (3.5)

29

http://www.freefem.org/ff++/
http://www.freefem.org/ff++/ftp/freefem++doc.pdf

30 CHAPTER 3. INTRODUCTION TO FREEFEM++

where

a(u, v) =

∫

Ω
∇u · ∇v dx+ δ

∫

Ω
uv dx+ ε

∫

∂Ω
uv dσ (3.6)

and

ℓ(v) =

∫

Ω
v dx. (3.7)

Of course, we would like to find a unique solution of (3.6),(3.7) if it is possible. The Lax-Milgram

Theorem (see for example [1]) guides us to find the proper space in which the solution u and the test

functions v must live for a well-posed problem. Let us recall the theorem:

Theorem 3 (Lax-Milgram). Let H be a Hilbert space with scalar product (., .) and associated norm

||.||. Let ℓ(.) be a linear form, continuous on H and a(., .) a bilinear form which is

• continuous on H×H: ∃c > 0 /

|a(u, v)| ≤ C ||u||.||v|| ∀u, v ∈ H2, (3.8)

• coercive (or H− elliptic): ∃a > 0 /

a(u, v) ≥ α ||u||2. (3.9)

Then there exist a unique u in H such that

a(u, v) = ℓ(v) ∀v ∈ H. (3.10)

In our example, the bilinear form a in (3.6) involves gradients of u and v. Thus we need to find a

Hilbert space for which gradients exist in some sense. The Sobolev space H1(Ω)

H1(Ω) = {v ∈ L2(Ω), ∂iv ∈ L2(Ω), i = 1, . . . , d} (3.11)

is proved to be a Hilbert space for the scalar product

(u, v)H1 =

∫

Ω
uv dx+

∫

Ω
∂iu∂iv dx (3.12)

= (u, v)L2 + (∇u,∇v)L2 . (3.13)

The H1-scalar defines the associated H1-norm

||u||H1 =
√

||u||2
L2 + ||∇u||2

L2 . (3.14)

Let us verify that all the assumptions of the Lax-Milgram Theorem are satisfied when H = H1(Ω). It

is clear that the form a is bilinear. It is also continuous thanks to the Cauchy-Schwarz inequality:

|a(u, v)| ≤ ||∇u||L2 .||∇v||L2 + (δ + ε) (||u||L2 .||v||L2)

≤ (1 + δ + ε) ||u||H1 .||v||H1 .

3.1. STATIONARY ELLIPTIC PROBLEM 31

It is clearly H1-elliptic:

a(u, u) =

∫

Ω
|∇u|2 dx+ δ

∫

Ω
u2 dx+

∫

∂Ω
u2dσ

≥ min(1, δ) (||∇u||2L2 + ||u||2L2)

= min(1, δ) ||u||2H1 .

Finally, the form ℓ is clearly linear and continuous in H1 thanks to Cauchy-Schwarz inequality:

|ℓ(v)| ≤
∫

Ω
1.|v| dx ≤ |Ω|||v||L2 ≤ |Ω|||v||H1 .

From the Lax-Milgram theorem , we have proved that the problem: find u ∈ H1(Ω) such that

∫

Ω
∇u · ∇v dx+ δ

∫

Ω
uv dx+ ε

∫

∂Ω
uv dσ =

∫

Ω
v dx ∀v ∈ H1(Ω) (3.15)

has a unique solution in H1(Ω). Actually, it defines what we call a weak solution of the initial PDE

problem (3.1),(3.2).

3.1.1 Finite element method

The freefem++ computational approach is based on (some convenient) discretization of the contin-

uous problem (3.15). For that, one can use a conformal discrete Finite Element space V h, meaning that

V h it embedded into the continuous space H1(Ω). freefem++ includes most of the common finite

elements (P1, P2, P1-bubble, etc.). Let us for example consider a continuous piecewise polynomial of

degree one P 1 Finite Element discretization on a triangulation T h of Ωh:

V h =
{

vh ∈ H1(Ωh), vh ∈ C
0(Ωh), vh|K ∈ P 1(K) ∀K ∈ Th

}

. (3.16)

It is easy to check that

V h ⊂ H1(Ωh).

The discrete Finite Element problem then becomes: find uh ∈ V h such that

∫

Ωh

∇uh · ∇vh dx+ δ

∫

Ωh

uhvh dx+ ε

∫

∂Ωh

uhvh dσ =

∫

Ωh

vh dx ∀vh ∈ V h. (3.17)

Because the continuous bilinear form in (3.17) has still the ellipticity property in H = V h provided

with the H1-scalar product, the Lax-Milgram theorem can be applied. This shows that the discrete

problem (3.17) has a unique solution uh ∈ V h. Practically, the FE method requires the building of a

large sparse matrix and the solution of a large sparse linear system. freefem++ includes a large set

of both direct and iterative solvers (LU, Choleski, UMFPACK, conjugate gradient, bicgstab, GMRES,

etc...). See the user manual about more details on these solvers and the way to call them.

32 CHAPTER 3. INTRODUCTION TO FREEFEM++

3.1.2 Practical implementation

freefem++ language is a high-level interpreted language dedicated to FEM. There are primitives for

geometry CAD definition, triangulation and mesh, finite element space definition, variable definition,

variational problem definition, linear system solution and visualization facilities.

The following program written in freefem++ language implements the standard Lagrangian P 1

FE and the variational formulation (3.17) on the unit disk. Important freefem++ commands are

border for border geometry definition, mesh for mesh generation, fespace for the definition of

the Finite element space, problem for defining a variational problem and solver for its solution,

and finally plot for visualization.

1 // Laplace.edp

2 // Laplace problem with robin boundary conditions

3 real epsilon = 1e-2;

4 border domega(t=0,2*pi){x=cos(t); y=sin(t);}

5 mesh Th = buildmesh (domega(100));

6 plot(Th, wait=1, ps="ThLaplace.eps");

7 fespace Vh(Th,P1);

8 Vh uh, vh;

9 func f=1;

10 real cpu=clock();

11 solve Poisson(uh, vh, solver=LU) = // defines the PDE

12 int2d(Th)(dx(uh)*dx(vh) + dy(uh)*dy(vh)) // bilinear part

13 + int1d(Th, domega)(epsilon*uh*vh)

14 - int2d(Th)(f*vh); // right hand side

15 cout << " CPU time = " << clock()-cpu << endl;

16 plot(uh, nbiso=50, fill=0, value=1, wait=1, ps="res.eps");

17 // Done !

3.2 Heat problem

freefem++ is able to solve time-dependent problems. As example, let us consider the following

heat problem. The boundary ∂Ω is partitioned into two boundaries Γ1 and Γ2:

∂u

∂t
−∇ · (κ∇u) = 0 in (0, T)× Ω,

u(., t = 0) = θ in Ω,

∂u

∂n
= −1 on (0, T)× Γ1,

u = θ on [0, T)× Γ2.

As first step, consider a time-discretization of the equation, let say by the backward implicit Euler

quadrature. The PDE in its semi-discrete form reads

un+1 − un

∆tn
−∇ · (κ∇un+1) = 0. (3.18)

3.2. HEAT PROBLEM 33

IsoValue
49.9775
49.9825
49.9875
49.9925
49.9975
50.0026
50.0076
50.0126
50.0176
50.0226
50.0276
50.0326
50.0376
50.0426
50.0476
50.0526
50.0576
50.0626
50.0676
50.0726
50.0776
50.0826
50.0876
50.0926
50.0977
50.1027
50.1077
50.1127
50.1177
50.1227
50.1277
50.1327
50.1377
50.1427
50.1477
50.1527
50.1577
50.1627
50.1677
50.1727
50.1777
50.1827
50.1877
50.1928
50.1978
50.2028
50.2078
50.2128
50.2178
50.2228

Figure 3.1: The problem (3.16) solved with freefem++ on the unit disk. Automatic meshing and

plot of the isocontours of the solution.

For spatial discretization, we shall use the Finite Element method. Multiplying (3.18) by a smooth test

function v, integrating over Ω and applying Green’s formula leads to

1

∆tn

∫

Ω
un+1v dx+

∫

Ω
κ∇un+1 · ∇v dx−

∫

∂Ω
κ
∂un+1

∂n
v dσ =

1

∆tn

∫

Ω
unv dx. (3.19)

The finite element space to consider for u here is the H1 Sobolev space made of functions with trace

equal to θ on Γ2. Defining for any g ∈ H1/2(Γ2)

Vg =
{

v ∈ H1(Ω), v = g on Γ2

}

, (3.20)

one considers a test function v ∈ V0 and the variational formulation

1

∆tn

∫

Ω
un+1v dx+

∫

Ω
κ∇un+1 · ∇v dx+

∫

Γ1

κv dσ =
1

∆tn

∫

Ω
unv dx. (3.21)

It is once again possible to apply the Lax-Milgram Theorem and show that the problem to find un+1 ∈
Vθ such that (3.21) holds for all v ∈ V0 has a unique solution.

The fully discretized problem is based on a discretization of the Sobolev spaces

V h =
{

vh ∈ H1(Ωh), vh ∈ C
0(Ωh), vh|K ∈ P 1(K) ∀K ∈ Th

}

, (3.22)

V h
g =

{

vh ∈ V h, vh = gh on Γh2

}

for gh ∈ H1/2(Γh2), (3.23)

and the variational formulation set into a finite dimensional linear space: find uh ∈ V h
θ such that

1

∆tn

∫

Ω
uh,n+1vh dx+

∫

Ω
κ∇uh,n+1 · ∇v dx+

∫

Γ1

κvh dσ =
1

∆tn

∫

Ω
uh,nvh dx ∀vh ∈ V h

0 .

(3.24)

34 CHAPTER 3. INTRODUCTION TO FREEFEM++

3.2.1 Implementation in freefem++

1 // Heat.edp (freefem++)

2 // Linear Heat problem with inhomogeneous Dirichlet boundary

3 // conditions and Neuman nonzero flux boundary conditions .

4 //

5 real theta = 20; // initial and boundary temperature

6 real kappa = 0.1; // thermal conductivity

7 real dt = 0.5; // time step size

8 //

9 border Gamma1(t=0,2*pi){x=cos(t); y=sin(t);}

10 border Gamma2(t=0, 1){x=-0.5+t; y=0.3;}

11 mesh Th = buildmesh (Gamma1(100)+Gamma2(60));

12 plot(Th, wait=1, ps="Th.eps");

13 //

14 fespace Vh(Th,P1);

15 Vh uh, uold, vh;

16 // Initialization

17 uh = theta; uold = uh;

18 problem heatstep(uh, vh, solver=LU) = // defines the problem

19 int2d(Th)(uh*vh/dt)

20 - int2d(Th)(uold*vh/dt)

21 + int2d(Th)(kappa*dx(uh)*dx(vh) + kappa*dy(uh)*dy(vh))

22 + int1d(Th, Gamma1)(kappa*vh)

23 + on(Gamma2, uh=theta); // Dirichlet BC

24 // Performs 6 time steps

25 for (int it=0;it<6;it++) {

26 // Update temperature field at previous time step

27 uold = uh;

28 // Then perform a time step

29 heatstep;

30 plot(uh, nbiso=50, fill=1, value=1, wait=1, ps="res"+it+".eps");

31

32 }

33 // Done !

3.3 A problem of thermal engineering

Let us here consider a more realistic problem of thermal engineering design. From two different mate-

rials - one is cheap, the other is expensive - we would like to build a composite material that provides

good thermal resistance properties. If V is a volume occupied by a wall made of that composite ma-

terial, Vc is the volume occupied by the cheap material and Ve = V − Vc the volume occupied by the

expensive one, the ratio

µ =
Ve
V

=
Ve

Vc + Ve
(3.25)

is fixed for economical purposes. We consider the geometry presented in figure 3.3. A rectangular

room Ωr has a size Lx × Ly. At the center of the left wall, we have a radiator that locally keeps the

temperature at Tr. We will denote that part of the wall Γr. The remainder of the left wall plus the upper

and lower walls will be denoted Γa. We will suppose zero thermal flux boundary conditions on Γa.

The domain Ωw of the wall of the right part of the room is modeled. It will be made of the composite

3.3. A PROBLEM OF THERMAL ENGINEERING 35

IsoValue
19.7397
19.7475
19.7527
19.7579
19.7631
19.7683
19.7735
19.7787
19.7839
19.7891
19.7943
19.7995
19.8047
19.81
19.8152
19.8204
19.8256
19.8308
19.836
19.8412
19.8464
19.8516
19.8568
19.862
19.8672
19.8724
19.8776
19.8828
19.8881
19.8933
19.8985
19.9037
19.9089
19.9141
19.9193
19.9245
19.9297
19.9349
19.9401
19.9453
19.9505
19.9557
19.9609
19.9662
19.9714
19.9766
19.9818
19.987
19.9922
20.0052

IsoValue
19.5912
19.6035
19.6117
19.6198
19.628
19.6362
19.6444
19.6525
19.6607
19.6689
19.6771
19.6852
19.6934
19.7016
19.7098
19.7179
19.7261
19.7343
19.7425
19.7506
19.7588
19.767
19.7752
19.7833
19.7915
19.7997
19.8079
19.816
19.8242
19.8324
19.8406
19.8487
19.8569
19.8651
19.8733
19.8815
19.8896
19.8978
19.906
19.9142
19.9223
19.9305
19.9387
19.9469
19.955
19.9632
19.9714
19.9796
19.9877
20.0082

IsoValue
19.4689
19.4848
19.4954
19.5061
19.5167
19.5273
19.5379
19.5486
19.5592
19.5698
19.5804
19.591
19.6017
19.6123
19.6229
19.6335
19.6442
19.6548
19.6654
19.676
19.6866
19.6973
19.7079
19.7185
19.7291
19.7398
19.7504
19.761
19.7716
19.7822
19.7929
19.8035
19.8141
19.8247
19.8354
19.846
19.8566
19.8672
19.8778
19.8885
19.8991
19.9097
19.9203
19.931
19.9416
19.9522
19.9628
19.9734
19.9841
20.0106

IsoValue
19.3594
19.3786
19.3914
19.4042
19.417
19.4299
19.4427
19.4555
19.4683
19.4811
19.4939
19.5067
19.5195
19.5324
19.5452
19.558
19.5708
19.5836
19.5964
19.6092
19.622
19.6349
19.6477
19.6605
19.6733
19.6861
19.6989
19.7117
19.7245
19.7374
19.7502
19.763
19.7758
19.7886
19.8014
19.8142
19.827
19.8398
19.8527
19.8655
19.8783
19.8911
19.9039
19.9167
19.9295
19.9423
19.9552
19.968
19.9808
20.0128

IsoValue
19.2584
19.2806
19.2954
19.3103
19.3251
19.3399
19.3548
19.3696
19.3844
19.3993
19.4141
19.4289
19.4438
19.4586
19.4734
19.4883
19.5031
19.5179
19.5328
19.5476
19.5624
19.5773
19.5921
19.6069
19.6218
19.6366
19.6514
19.6663
19.6811
19.6959
19.7108
19.7256
19.7404
19.7553
19.7701
19.7849
19.7998
19.8146
19.8294
19.8443
19.8591
19.8739
19.8888
19.9036
19.9184
19.9333
19.9481
19.9629
19.9778
20.0148

IsoValue
19.164
19.1891
19.2058
19.2225
19.2393
19.256
19.2727
19.2894
19.3061
19.3229
19.3396
19.3563
19.373
19.3897
19.4065
19.4232
19.4399
19.4566
19.4733
19.4901
19.5068
19.5235
19.5402
19.5569
19.5737
19.5904
19.6071
19.6238
19.6405
19.6572
19.674
19.6907
19.7074
19.7241
19.7408
19.7576
19.7743
19.791
19.8077
19.8244
19.8412
19.8579
19.8746
19.8913
19.908
19.9248
19.9415
19.9582
19.9749
20.0167

Figure 3.2: The problem (3.24) solved with freefem++ . The mesh and the fields at the six first

discrete time steps are plotted.

material. The width of the wall is named ℓx, so that V = ℓx Ly. The right part of the composite

wall denoted by Γext is in contact with the exterior. The will denote Text the exterior temperature and

will impose the Dirichlet boundary condition T = Text on Γext. Finally, we will respectively denote

by κa, κc and κe the thermal conductivity coefficients of the ambient air, the cheap material and the

expensive material. From the computation, we will extract performance indicators like:

36 CHAPTER 3. INTRODUCTION TO FREEFEM++

1. the mean room temperature

J1 = T̄ =
1

|Ωa|

∫

Ωa

T dx; (3.26)

2. the minimal temperature in the room

J2 = min
x∈Ωa

T (x); (3.27)

3. the standard deviation of temperature:

J3 =

√

1

Ωa

∫

Ωa

(

T (x)− T̄
)2
dx. (3.28)

Figure 3.3: A problem of thermal engineering design. The room domain Ωa, the wall domain Ωw
made of the expensive material domain Ωe and the cheap material domain Ωc.

Of course they are many ways to define the composite material: it can be organized by layers with one

or several layers of expensive material. It can be designed as inclusion of spherical expensive material

particulates, organized deterministically or randomly, etc. A complex engineering design would to be

optimize the placement of the expensive material marked by the domain Ωe, for example

min
Ωe

J3(Ωe) (3.29)

subject to

|Ωe|
|Ωw|

= µ. (3.30)

This problem belongs to the general mathematical problem of shape optimization.

Let us denote Ω the whole interior domain of figure 3.3. The stationary thermal problem to consider

3.3. A PROBLEM OF THERMAL ENGINEERING 37

is

−∇ · (κ(.)∇T) = 0 in Ω, (3.31)

∂T

∂n
= 0 on Γa = ∂Ω\(Γr ∪ Γext), (3.32)

T = Tr on Γr, (3.33)

T = Text on Γext (3.34)

where κ(.) is the piecewise constant thermal conductivity defined from κa, κc and κe:

κ(x) = κa 1x∈Ωa(x) + κc 1x∈Ωc(x) + κe 1x∈Ωe(x). (3.35)

1 // ThermalDesign.edp

2 // Thermal design engineeering problem

3 // Wall composite material made of two homogeneous materials,

4 // on is cheap, the other one is expensive .

5 real Lx = 4, Ly=5, lr=1, lx=0.3;

6 real Tr=20, Text = -5;

7 real hy = 0.1;

8 real hx = 0.1;

9 real mu = 0.2;

10 real kappaa = 10;

11 real kappac = 1;

12 real kappae = 0.008;

13 //

14 real V = lx*Ly;

15 real Ve = mu * V;

16 real xem = Lx + hx;

17 real deltaxe = Ve / (Ly-2*hy);

18 //

19 border c1(t=0,Lx){x=t; y=0;}

20 border c1w(t=Lx,Lx+lx){x=t; y=0;}

21 border cext(t=0,Ly){x=Lx+lx; y=t;}

22 border c3w(t=Lx+lx,Lx){x=t; y=Ly;}

23 border c3(t=Lx,0){x=t; y=Ly;}

24 border c4(t=Ly,Ly/2+lr/2){x=0; y=t;}

25 border cr(t=Ly/2+lr/2,Ly/2-lr/2){x=0; y=t;}

26 border c5(t=Ly/2-lr/2,0){x=0; y=t;}

27 border c0(t=0,Ly){x=Lx; y=t;}

28 //

29 border ce1(t=xem, xem+deltaxe){x=t; y=hy;}

30 border ce2(t=hy,Ly-hy){x=xem+deltaxe; y=t;}

31 border ce3(t=xem+deltaxe, xem){x=t; y=Ly-hy;}

32 border ce4(t=Ly-hy,hy){x=xem; y=t;}

33 //

34 mesh Th = buildmesh(c1(30)+c1w(10)+cext(100)

35 +c3w(10)+c3(30)+c4(15)+cr(15)+c5(15)+c0(100)

36 +ce1(15)+ce2(500)+ce3(15)+ce4(500));

37 plot(Th, ps="mesh.eps", wait=1);

38

38 CHAPTER 3. INTRODUCTION TO FREEFEM++

39 mesh Th2=buildmesh(c1(30)+c0(100)+c3(30)+c4(15)

40 +cr(15)+c5(15));

41 //

42 fespace Vh(Th, P1);

43 Vh kappa, th, vh;

44 real region1 = Th(Lx/2,Ly/2).region;

45 real region2 = Th(xem+deltaxe/2, Ly/2).region;

46 kappa = kappac + (kappaa-kappac)*(region==region1)

47 +(kappae-kappac)*(region==region2);

48 plot(kappa, nbiso=60, fill=1, value=1);

49 //

50 problem thermal(th, vh) =

51 int2d(Th)(kappa*dx(th)*dx(vh)+kappa*dy(th)*dy(vh))

52 +on(cext, th=Text)

53 +on(cr, th=Tr);

54 //

55 thermal;

56 real[int] colorhsv=[// color hsv model

57 4./6., 1 , 0.5, // dark blue

58 4./6., 1 , 1, // blue

59 5./6., 1 , 1, // magenta

60 1, 1. , 1, // red

61 1, 0.5 , 1 // light red

62];

63 real[int] viso(26);

64 for (int i=0; i<viso.n; i++)

65 viso[i] = -5+i;

66 plot(th,viso=viso(0:viso.n-1), value=1, fill=1,

67 ps="tfield.eps");

68 // Performance indicators

69 fespace Vh2(Th2, P1);

70 Vh2 th2 = th;

71 real J1, J2, J3;

72 // Mean value

73 J1 = int2d(Th2)(th2)/Th2.area;

74 J2 = th2[].min;

75 J3 = sqrt(int2d(Th2)((th2-J1)^2)/Th2.area);

76 // Min value

77 // Standard Deviation

78 cout << "Mean temperature = " << J1 << endl;

79 cout << "Min temperature = " << J2 << endl;

80 cout << "Standard deviation = " << J3 << endl;

81 cout << "Done." << endl;

3.3. A PROBLEM OF THERMAL ENGINEERING 39

Mean temperature = 16.9214

Min temperature = 13.5943

Standard deviation = 0.98602

Done.

times: compile 0.187s, execution 1.282s, mpirank:0

Figure 3.4: A snapshot of the standard output of the freefem++ program ThermalDesign.edp.

Figure 3.5: Mesh computed by ThermalDesign.edp for the thermal design problem. The com-

posite wall here is organized in layers. One can notice the strong variation of diameter of the triangles

due to the room/wall aspect ratio involving different spatial scales.

IsoValue
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure 3.6: Temperature field computed by the freefem++ program ThermalDesign.edp. Each

band of color represents a temperature range of 1 degree.

40 CHAPTER 3. INTRODUCTION TO FREEFEM++

Chapter 4

The Method of characteristics

4.1 Mathematical setting

In dimension d = 1, 2, 3 and for a domain Ω ⊂ R
d, the inhomogeneous convection equation is written

∂tq + u · ∇q = f on Ω× (0, T) (4.1)

where u(x, t) ∈ R
d. Recall that the equation (4.1) can be discretized as

Dq

Dt
= f

i.e.
dq

dt
(X(t), t) = f(X(t), t),

dX

dt
(t) = u(X(t), t)

where D is the particle derivative (also called the total derivative operator). So a good time discretiza-

tion scheme is one step of backward convection by the so-called method of Characteristics:

qn+1(x)− qn(Xn(x))

∆tn
= fn(x) (4.2)

where Xn(x) is an approximation of the solution at time tn (tn+1 = tn + ∆tn) of the ordinary

differential equation
dX

dt
(t) = un(X(t)), X(tn+1) = x

where un(x) = u(x, tn). Because, by Taylor’s expansion, we have

qn(X(tn)) = qn(X(tn+1))−∆tn
d
∑

i=1

∂q

∂xi
(X(tn+1))

∂Xi

∂t
(tn+1) + o(∆tn)

qn(x)−∆tn un(x) · ∇qn(x) + o(∆tn) (4.3)

where Xi(t) are the i-th components of X(t), qn(x) = q(x, tn) and x = X(tn+1). From (4.3), it

follows that

qn(Xn(x)) = qn(x)−∆tn un(x) · ∇qn(x) + o(∆tn). (4.4)

41

42 CHAPTER 4. THE METHOD OF CHARACTERISTICS

Also if we apply Taylor’s expansion for t 7→ qn(x− un(x)t), 0 ≤ t ≤ ∆tn, then

qn(x− un(x)∆tn) = qn(x)−∆tn un(x) · ∇qn(x) + o(∆tn).

Denoting the freefem++ function

convect(un,−∆tn, qn) ≈ qn(x− un∆tn)

we can get the approximation

qn(Xn(x)) ≈ convect(un,−∆tn, qn)

by

Xn ≈ x 7→ x−∆tnun(x).

4.1.1 freefem++ source code of the pure transport problem

1 // Convection.edp (Freefem++)

2 real Lx = 6;

3 real Ly = 4;

4 real dt = 3;

5 real dtsnap=100, time=0, tsnap=dt;

6 int itmax=300;

7 //

8 real[int] A(2), B(2), C(2), D(2);

9 real[int] E(2), F(2), G(2), H(2);

10 real[int] I(2), J(2), K(2), L(2);

11 real[int] O(2), P(2), Q(2), R(2);

12 real[int] itplot(itmax), masse(itmax);

13 A = [0,0]; B=[Lx,0];

14 C= [Lx,Ly]; D=[0,Ly];

15 E=[Lx/2,Ly/4]; F=[Lx/2,3*Ly/4];

16 G=[Lx/6,Ly/4]; H=[5*Lx/6,Ly/4];

17 I=[Lx/6,3*Ly/4]; J=[5*Lx/6,3*Ly/4];

18 O=[0, Ly/2]; P=[Lx/3,Ly/2];

19 Q=[2*Lx/3, Ly/2]; R=[Lx,Ly/2];

20 border c1(t=0,1){x=(1-t)*A[0]+t*B[0]; y=(1-t)*A[1]+t*B[1];}

21 border c2(t=0,1){x=(1-t)*B[0]+t*C[0]; y=(1-t)*B[1]+t*C[1];}

22 border c3(t=0,1){x=(1-t)*C[0]+t*D[0]; y=(1-t)*C[1]+t*D[1];}

23 border c4(t=0,1){x=(1-t)*D[0]+t*A[0]; y=(1-t)*D[1]+t*A[1];}

24 border c5(t=0,1){x=(1-t)*E[0]+t*F[0]; y=(1-t)*E[1]+t*F[1];}

25 border c6(t=0,1){x=(1-t)*G[0]+t*H[0]; y=(1-t)*G[1]+t*H[1];}

26 border c7(t=0,1){x=(1-t)*I[0]+t*J[0]; y=(1-t)*I[1]+t*J[1];}

27 border c8(t=0,1){x=(1-t)*O[0]+t*P[0]; y=(1-t)*O[1]+t*P[1];}

28 border c9(t=0,1){x=(1-t)*Q[0]+t*R[0]; y=(1-t)*Q[1]+t*R[1];}

29 int nn=20;

30 mesh Th = buildmesh(c1(8*nn)+c2(6*nn)+c3(8*nn)+c4(6*nn)

31 +c5(4*nn)+c6(5*nn)+c7(5*nn)+c8(3*nn)+c9(3*nn));

32 plot (Th, ps="mesh.eps");

33 //

34 func fy=x-Lx/2;

4.1. MATHEMATICAL SETTING 43

35 fespace Uh(Th, P1b);

36 fespace Vh(Th, P1);

37 Uh u1, u2, u1h, u2h;

38 Vh p, ph, q;

39 //

40 problem Stokes([u1, u2, p],[u1h, u2h,ph]) =

41 int2d(Th)(dx(u1)*dx(u1h)+dy(u1)*dy(u1h))

42 +int2d(Th)(dx(u2)*dx(u2h)+dy(u2)*dy(u2h))

43 +int2d(Th)(dx(p)*u1h+dy(p)*u2h)

44 +int2d(Th)(dx(u1)*ph+dy(u2)*ph)

45 -int2d(Th)(fy*u2h)

46 +on(c1,c2,c3,c4,c5,c6,c7,c8,c9, u1=0, u2=0);

47 //

48 Stokes; plot([u1, u2], ps="velocity.eps");

49 //

50 q = (sqrt((x-Lx/2)^2+(y-Ly/8)^2)<0.2);

51 real masse0 = int2d(Th)(q);

52 //

53 plot(q, nbiso=40, fill=1);

54 //

55 for (int it=0; it<itmax; it++){

56 itplot[it] = it;

57 q = convect([u1,u2], -dt, q);

58 masse[it] = int2d(Th)(q);

59 time += dt;

60 plot(q, nbiso=40, fill=1);

61 cout << "Masse0 = " << masse0 << "Masse(t) = "

62 << masse[it] << endl;

63 if (time >= tsnap) {

64 tsnap += dtsnap;

65 plot(q, nbiso=60, fill=1, ps="q_time="+time+".eps");

66 }

67 }

68 plot([itplot, masse], ps="histomasse.eps", value=1);

69 ofstream of("histomasse.txt");

70 for (int it=0; it<itmax; it++) {

71 of << itplot[it] << " " << masse[it] << endl;

72 }

4.1.2 Numerical Results

44 CHAPTER 4. THE METHOD OF CHARACTERISTICS

Figure 4.1: Independent stationary velocity field computed with the Stokes equations

Figure 4.2: Numerical solution of the pure convection problem. Numerical solution at time t = 3.

Figure 4.3: Numerical solution of the pure convection problem. Numerical solution at time t = 105.

4.1. MATHEMATICAL SETTING 45

Figure 4.4: Numerical solution of the pure convection problem. Numerical solution at time t = 204.

Figure 4.5: Numerical solution of the pure convection problem. Numerical solution at time t = 405.

Figure 4.6: Numerical solution of the pure convection problem. Numerical solution at time t = 603.

46 CHAPTER 4. THE METHOD OF CHARACTERISTICS

Figure 4.7: Numerical solution of the pure convection problem. Numerical solution at time t = 804.

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 0 50 100 150 200 250 300

"histomasse.txt" using 1:2

Figure 4.8: History of the total mass of the solution t 7→ ||q(., t)||L1 . One can observe an increasing

error of mass conservation.

Chapter 5

Stokes equations and Navier-Stokes

equations

5.1 Setting of the equations

Let us consider a Newtonian fluid with density ρ and velocity u. For an incompressible fluid (constant

density), the continuity equation of mass conservation

∂tρ+∇ · (ρu) = 0 (5.1)

simply writes

∇ · u = 0. (5.2)

Let p be the pressure of the fluid, µ the dynamic viscosity and ρ a volume external force. The balance

equation of momentum

∂t(ρu) +∇ · (ρu⊗ u)−∇ · (µ∇u) +∇p = ρf (5.3)

also simplifies as

∂tu+ u · ∇u− ν∆u+∇p = f . (5.4)

where ν = µ/ρ denotes the static viscosity. The two equations (5.2) and (5.3) form the well-known

Navier-Stokes equations. Those equations are nonlinear because of the inertial term u · ∇u. The

existence and uniqueness of solutions of these equations in the 3D case in still an open problem. It is

known that the structure of the solutions can be quite complex especially for small viscosities ν where

turbulence occurs.

Dimensionless Navier-Stokes equations make appear the Reynolds number

Re =
U0 L0

ν
(5.5)

where U0 and L0 are respectively velocity and length characteristic scales. The dimensionless Navier-

Stokes equations then write

∇ · u = 0, ∂tu+ u · ∇u− 1

Re
∆u+∇p = f . (5.6)

47

48 CHAPTER 5. STOKES EQUATIONS AND NAVIER-STOKES EQUATIONS

Small Reynolds numbers lead to a laminar flow dominated by “Stokes effects" whereas large Reynolds

numbers lead to a turbulent flow. For intermediate Reynolds, the flow is said to be in transition

regime with appearance of unsteady instabilities. When the flow is dominated by viscous effects

(small Reynolds numbers), the initial term u · ∇u is rather small compred to the viscous term. Thus,

the Navier-Stokes equations can be approximated by the Stokes equations

∇ · u = 0, (5.7)

∂tu− 1

Re
∆u+∇p = f . (5.8)

When the flow is closed to a steady state, the unsteady Stokes equation can be approximated by so-

called stationary Stokes equations

∇ · u = 0, (5.9)

− 1

Re
∆u+∇p = f . (5.10)

5.2 Analysis of the stationary Stokes problem

Let us consider a smooth spatial domain Ω ∈ R
2. For reasons that will appear later, we shall consider

an approximate model of the Stokes equations, namely the pseudo-compressible approximation where

a pressure term is added to the continuity equation:

−ν∆u+∇p = f , (5.11)

∇ · u+ ε p = 0. (5.12)

As an example, let us consider a boundary ∂Ω splitted up into three borders ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 with

distinct boundary conditions. On Γ1, we will consider Dirichlet boundary condition for the velocity:

u = g on Γ1 (5.13)

(for example a given velocity profile for inlet flow). On Γ2, we will consider wall boundary no-slip

conditions:

u = 0 on Γ2. (5.14)

On Γ3, let us consider homogeneous Neumann conditions on velocity and a zero pressure condition

∂u

∂n
= 0, p = 0 on Γ3. (5.15)

(usual for outlet boundary conditions for example) Let us now write the variational formulation of the

problem. The first equation (5.11) also writes component-by-component

−ν∆uj + ∂jp = fj , j = 1, 2.

By multiplying by a smooth test function vj and integrating over Ω, we get

−ν
∫

Ω
∆ujvj dx+

∫

Ω
∂jp vj dx =

∫

Ω
fjvj dx.

5.2. ANALYSIS OF THE STATIONARY STOKES PROBLEM 49

Applying Green’s formula gives

−ν
∫

∂Ω

∂uj
∂n

vj dγ + ν

∫

Ω
∇uj · ∇vj dx+

∫

∂Ω
pnj vj dγ −

∫

Ω
p∂jvj dx =

∫

Ω
fjvj dx.

This can be written in vector form

− ν

∫

∂Ω

∂u

∂n
· v dγ + ν

∫

Ω
∇u · ∇v dx+

∫

∂Ω
pv · n dγ −

∫

Ω
p∇ · v dx =

∫

Ω
f · v dx (5.16)

with v = (v1, v2). We also multiply equation (5.12) by a smooth test function q and integrate over Ω:

∫

Ω
∇ · u q dx+ ε

∫

Ω
p q dx = 0. (5.17)

Now, we have to find the proper functional spaces for both the unknowns (u, p) and the test functions

(v, q) according to the boundary conditions (5.13)-(5.15). For any ϕ ∈ H1/2(Γ1), let us consider the

product space

Vϕ =
{

(v, q) ∈ [H1(Ω)]2 × L2(Ω), v = ϕ on Γ1, v = 0 on Γ2

}

. (5.18)

It is clear that V = V0 is a Hilbert space for the scalar product

((u, p), (v, q))V = (u,v)H1(Ω) + (p, q)L2(Ω) (5.19)

and the associated norm

||(u, p)||V =
(

||u||2H1(Ω) + ||p||2L2(Ω)

)1/2
.

By choosing functions (u, p) ∈ Vg and (v, q) ∈ V , all the terms in (5.18),(5.19) have a sense. From

boundary conditions (5.13)-(5.15), the variational formulation (5.16) reduces to

ν

∫

Ω
∇u · ∇v dx−

∫

Ω
p∇ · v dx =

∫

Ω
f · v dx. (5.20)

So the problem is to find a solution (u, p) ∈ Vg such that (5.20) and (5.17) hold for all (v, q) ∈ V .

This is also equivalent to find (u, p) ∈ Vg such that

ν

∫

Ω
∇u · ∇v dx−

∫

Ω
p∇ · v dx+

∫

Ω
q∇ · u dx+ ε

∫

Ω
p q dx =

∫

Ω
f · v dx (5.21)

for all (v, q) ∈ V . Equation (5.21) is in the form

a ((u, p), (v, q)) = ℓ (v, q) (5.22)

with

a ((u, p), (v, q)) = ν

∫

Ω
∇u · ∇v dx−

∫

Ω
p∇ · v dx+

∫

Ω
q∇ · u dx+ ε

∫

Ω
p q dx (5.23)

and

ℓ (v, q) =

∫

Ω
f · v dx. (5.24)

50 CHAPTER 5. STOKES EQUATIONS AND NAVIER-STOKES EQUATIONS

We are going to verify that the assumptions on the Lax-Milgram theorem are satisfied. First, remember

that V his a Hilbert space with scalar product (5.19). Clearly, a is a bilinear form in V × V and ℓ
is a linear form in V . Let us show the continuity property with respect to the V -norm. First by the

Cauchy-Schwarz inqequality we have

|ℓ(v, q)| ≤ ||f ||[L2(Ω)]2 ||v||[L2(Ω)]2

≤ ||f ||[L2(Ω)]2 ||v||[H1(Ω)]2

≤ ||f ||[L2(Ω)]2 ||(v, q)||V .

Secondly, we have also

|a ((u, p), (v, q)) | ≤ ν||u||H1(Ω) ||v||H1(Ω) + ||p||L2(Ω)||∇ · v||L2(Ω) + ||q||L2(Ω)||∇ · u||L2(Ω)

+ε ||p||L2(Ω) ||q||L2(Ω)

≤ (ν + 2 + ε) ||(u, p)||V ||(v, q)||V

so that a is a bilinear form, continuous in V × V . The last property to verify is the V -ellipticity of the

bilinear form a. From (5.23) we have

a ((u, p), (u, p)) =

∫

Ω
|∇u|2 dx+ ε

∫

Ω
p2 dx

= |u|2H1(Ω) + ε ||p||2L2(Ω)

≥ min(1, ε)||(u, p)||V .

This last inequality shows the V -ellipticity property as soon as ε > 0. Thus, the Lax-Milgram theorem

states that the solution (u, p) of the problem (5.22) exists and is unique. For a Finite Element method

which is conformal in V , we also have this result of existence and uniqueness, showing that the discrete

problem

a((uh, ph), (vh, qh)) = ℓ(vh, qh) ∀(vh, qh) ∈ V h ⊂ V (5.25)

is well-posed. Remark that the pseudo-compressibility assumption is important to get the V -ellipticity

property. Under the true incompressibility hypothesis (ε = 0), more theoretical developments and a

deeper analysis are required. The existence and uniqueness comes from a property of ellipticity called

the inf-sup condition or also referred to as LLB (Ladyzenskaya-Babuska-Brezzi) condition (see[1]).

From the discrete point of view, stable Finite Element method for the true incompressible Stokes

equations are method that satisfy a discrete version of the inf-sup condition (the so-called discrete inf-

sup condition). Discrete inf-sup conditions are proved for example for P1-bubble/P1 approximations

(P1-bubble in velocity and P1 in pressure) or P2/P1 approximation (P2 in velocity and P1 in pressure).

The P1/P1 approximation violates the discrete inf-sup condition. In that case, some parasite modes

appear in the discrete solution. This topic is beyond the scope of this course. The interested reader

can refer to the important literature on this topic (see[1, ?]).

5.3. NUMERICAL METHOD FOR THE NAVIER-STOKES EQUATIONS 51

5.3 Numerical method for the Navier-Stokes equations

Let us consider now the time-dependent Navier-Stokes equations with the pseudo compressibility

approximation:

∂tu+ u · ∇u− ν∆u+∇p = f , (5.26)

∇ · u+ ε p = 0. (5.27)

The system of equations becomes nonlinear due to the convection term. The simplest way to approx-

imate these equations is to use the methods of characteristics for the convection term and standard

Finite Elements for the other term. A semi-discrete time discretization of (5.26),(5.27) gives

un+1(x)− un ◦Xn(x)

∆t
− ν∆un+1(x) +∇pn+1(x) = f(x), (5.28)

∇ · un+1(x) + ε pn+1(x) = 0. (5.29)

For a given field un, considering (un+1, pn+1) as the unknowns, the system (5.28),(5.29) is seen as

the Stokes equations. Then we can apply the results obtained for the Stokes problem. Considering the

same boundary conditions as the previous section, the variational problem of (5.28),(5.29) is to find

(un+1, pn+1) ∈ Vg such that

∫

Ω

un+1 − un ◦Xn

∆t
· v dx+ ν

∫

Ω
∇un+1 · ∇v dx−

∫

Ω
pn+1∇ · v dx =

∫

Ω
f · v dx,(5.30)

∫

Ω
∇ · un+1 q dx+ ε

∫

Ω
pn+1 q dx = 0. (5.31)

for all (v, q) ∈ V . As exercise, we reader will show the continuity and ellipticity constants of the

underlying bilinear and linear forms.

5.4 Numerical experiments

5.4.1 freefem++ source code

1 //

2 real Re = 600.0;

3 real nu = 1.0/Re;

4 real Lx = 12;

5 real Ly = 5;

6 real dt = 0.5;

7 border c1(t=0,1){x=t*Lx; y=0;}

8 border c2(t=0,1){x=Lx; y=t*Ly;}

9 border c3(t=1,0){x=t*Lx; y=Ly;}

10 border c4(t=1,0){x=0; y=t*Ly;}

11 border c5(t=2*pi,0){x=4+0.2*cos(t); y=Ly/2+0.2*sin(t);}

12 border c6(t=0,1){x=5+Lx/2*t; y=Ly/2+0.4;}

13 border c7(t=0,1){x=5+Lx/2*t; y=Ly/2-0.4;}

14 //

52 CHAPTER 5. STOKES EQUATIONS AND NAVIER-STOKES EQUATIONS

15 mesh Th = buildmesh(c1(80)+c2(40)+c3(80)+c4(20)

16 +c5(60)+c6(100)+c7(100));

17 plot(Th);

18 //

19 fespace Uh(Th, P2);

20 fespace Vh(Th, P1);

21 Uh u, v, uh, vh, uold, vold;

22 Vh p, ph;

23 Vh uplot, vplot, vort;

24 //

25 // Velocity field is initialized by steady state solution

26 //

27 real eps = 1e-10;

28 problem steadystokes([u,v,p], [uh,vh,ph]) =

29 int2d(Th)(nu*dx(u)*dx(uh) + nu*dy(u)*dy(uh))

30 +int2d(Th)(nu*dx(v)*dx(vh) + nu*dy(v)*dy(vh))

31 -int2d(Th)(p*dx(uh))

32 -int2d(Th)(p*dy(vh))

33 -int1d(Th, c2)(nu*dx(u)*N.x*uh+nu*dy(u)*N.y*uh)

34 -int1d(Th, c2)(nu*dx(v)*N.x*vh+nu*dy(v)*N.y*vh)

35 +int2d(Th)(dx(u)*ph + dy(v)*ph)

36 +int2d(Th)(eps*p*ph)

37 +on(c1, c3, c5, u=0, v=0)

38 +on(c4, u=4.0 * y/Ly * (1-y/Ly), v=0);

39 //

40 steadystokes;

41 uplot = u;

42 vplot = v;

43 plot(Th, [uplot,vplot], nbiso=40, value=1);

44 uold = u;

45 vold = v;

46 //

47 // Now go for unsteady Navier−Stokes equations .

48 //

49 int it = 0;

50 problem navierstokes([u,v,p], [uh,vh,ph], init=it,

51 solver=sparsesolver) =

52 int2d(Th)(u*uh/dt)

53 -int2d(Th)(convect([uold,vold], -dt, uold)*uh/dt)

54 +int2d(Th)(v*vh/dt)

55 -int2d(Th)(convect([uold,vold], -dt, vold)*vh/dt)

56 +int2d(Th)(nu*dx(u)*dx(uh) + nu*dy(u)*dy(uh))

57 +int2d(Th)(nu*dx(v)*dx(vh) + nu*dy(v)*dy(vh))

58 -int2d(Th)(p*dx(uh))

59 -int2d(Th)(p*dy(vh))

60 -int1d(Th, c2)(nu*dx(u)*N.x*uh+nu*dy(u)*N.y*uh)

61 -int1d(Th, c2)(nu*dx(v)*N.x*vh+nu*dy(v)*N.y*vh)

62 +int2d(Th)(dx(u)*ph + dy(v)*ph)

63 +int2d(Th)(eps*p*ph)

64 +on(c1, c3, c5, u=0, v=0)

65 +on(c4, u=4.0 * y/Ly * (1-y/Ly), v=0);

66 //

5.4. NUMERICAL EXPERIMENTS 53

67 for (it=0; it<20; it++) {

68 for (int subit=0; subit<5; subit++) {

69 navierstokes;

70 // Th = adaptmesh(Th, [u,v]) ; u = u; v = v;

71 uold = u;

72 vold = v;

73 }

74 uplot = u;

75 vplot = v;

76 plot(Th, [uplot, vplot], nbiso=60, ps="u_ns_it="+it+".eps");

77 vort = dy(u)-dx(v);

78 plot(vort, nbiso=60, fill=0, ps="vort_ns_it="+it+".eps");

79 }

5.4.2 Numerical results

54 CHAPTER 5. STOKES EQUATIONS AND NAVIER-STOKES EQUATIONS

Figure 5.1: Vorticity contours during simulation.

5.4. NUMERICAL EXPERIMENTS 55

Figure 5.2: Vorticity contours during simulation. Von Karman instabilities develop.

56 CHAPTER 5. STOKES EQUATIONS AND NAVIER-STOKES EQUATIONS

Figure 5.3: Vorticity contours during simulation. Von Karman instabilities develop.

Chapter 6

Fractional step methods

Fractional step methods also known as operator splitting methods are time advance schemes where

partial differential equations are splitted up into different simpler (well-posed) partial differential

equations. The different PDE problems are solved sequentially. Those are interesting computational

approaches especially when the Physics is complex. When the whole Physics is a combination of

different effects (convection, diffusion, reaction, exchanges, etc.), fractional steps method solve each

physical effect independently and sequentially. Fractional step methods can also be seen as a way to

couple component codes where each code solves a particular Physics.

6.1 Introduction

Let us consider an ordinary differential system of equations

du

dt
= f1(u) + f2(u) (6.1)

where f1 and f2 both are continuously differentiable functions. With an initial data

u(0) = u0 ∈ R
p (6.2)

the problem has a unique maximal solution in a time interval I that includes 0. Let ∆t be a small time

step such that [0,∆t] ⊂ I . Then a Taylor expansion gives

u(∆t) = u0 +∆t
du

dt
(u0) + o(∆t)

= u0 +∆t
(

f1(u
0) + f2(u

0)
)

+ o(∆t). (6.3)

A fractional step method for (6.1),(6.2) can be the following one:

1. First solve the differential problem

du

dt
= f1(u), (6.4)

u(0) = u0 (6.5)

over a time step. Let û0 = u(∆t).

57

58 CHAPTER 6. FRACTIONAL STEP METHODS

2. Then solve the differential problem

dû

dt
= f2(û), (6.6)

û(0) = û0 (6.7)

over a time step ∆t.

Then it is easy to check that the solution û(∆t) is an approximation of order 1 in ∆t of the true

solution u(∆t) of (6.1),(6.2) at time ∆t. Indeed, from Taylor expansions we have

û(∆t) = û0 +∆t
dû

dt
(û0) + o(∆t)

= u0 +∆tf2(û
0) + o(∆t)

= u0 +∆tf1(u
0) + ∆tf2(u

0 +∆tf1(u
0) + o(∆t)) + o(∆t)

= u0 +∆t
(

f1(u
0) + f2(u

0)
)

+ o(∆t). (6.8)

Thus Taylor expansions (6.3) and (6.8) are identical and û(∆t) is a first order approximation in ∆t of

u(∆t).

As we will see, there are higher order fractional steps methods. We have also to check that the

splitting approach is stable in time.

6.2 Continuous analysis, case of a linear system

Consider now the linear problem

du

dt
= Au+Bu, (6.9)

u(0) = u0 (6.10)

for some square matrices A and B. The analytical solution of (6.9) and (6.10) is

u(t) = exp ((A+B)t) u0, t ≥ 0. (6.11)

Proceeding in two steps by splitting up the problem into

du

dt
= Au, (6.12)

u(0) = u0 (6.13)

whose solution is u(t) = exp(At)u0, and

dû

dt
= Bû, (6.14)

û(0) = û0 = exp(At)u0, (6.15)

6.3. STRANG SECOND-ORDER SYMMETRIC SPLITTING 59

the approximate solution is

û(t) = exp(Bt) exp(At)u0 (6.16)

which is in general different from (6.11). At a small instant t = ∆t, we have by from Taylor expan-

sions

u(∆t) = exp((A+B)∆t)u0

=

(

I +∆t(A+B) +
∆t2

2
(A+B)2

)

u0 + o(∆t2)

=

(

I +∆t(A+B) +
∆t2

2
(A2 +AB +BA+B2)

)

u0 + o(∆t2) (6.17)

on one side and

û(∆t) = exp(B∆t) exp(A∆t)u0

=

(

I +∆tB +
∆t2

2
B2

)(

I +∆tA+
∆t2

2
A2

)

u0 + o(∆t2)

=

(

I +∆t(A+B) +
∆t2

2
(A2 + 2BA+B2)

)

u0 + o(∆t2) (6.18)

on the other side. From (6.17) and (6.18), one can conclude that the fractional step method generally

leads to a first order approximate solution. In the particular case where matrices A and B commute,

i.e.

AB = BA, (6.19)

then the approximation is second order accurate.

6.3 Strang second-order symmetric splitting

We shall prove that the following symmetric three-step fractional step method provides second-order

accuracy. By denoting

P∆t
A u0 (6.20)

the solution of
du

dt
= Au, u(0) = u0, (6.21)

at time ∆t and

P∆t
B u0 (6.22)

the solution of
du

dt
= Bu, u(0) = u0, (6.23)

at time ∆t, the Strang second-order symmetric splitting consists in approximating the exact solu-

tion u(∆t) by

û(∆t) = P∆t/2
A P∆t

B P∆t/2
A u0. (6.24)

60 CHAPTER 6. FRACTIONAL STEP METHODS

Let us show that the approximation (6.24) is second order accurate in time. We have also

û(∆t) = exp(A
∆t

2
) exp(B∆t) exp(A

∆t

2
)u0. (6.25)

By a Taylor expansion of order in ∆t in (6.24), we get

û(∆t) =

(

I +
∆t

2
A+

∆t2

8
A2

)(

I +∆tB +
∆t2

2
B2

)(

I +
∆t

2
A+

∆t2

8
A2

)

u0 + o(∆t2)

=

(

I +∆tA+∆tB +
∆t

2
(A2 +AB +BA+B2)

)

u0 + o(∆t2)

= exp((A+B)∆t) + o(∆t2)

which proves the assertion.

6.4 Discrete time advance schemes

Let us now consider discrete times advances schemes combined with an operator splitting approach.

6.4.1 First order scheme

Consider again the nonlinear differential problem (6.1),(6.2). Let un be an approximation of order

1 of u(tn), ∆t a time step and tn+1 = tn + ∆t the next discrete time. Using for example forward

Euler schemes for the integration of each step, we get the following scheme corresponding to the time

iteration n:

1. Compute first

ûn+1 = un +∆tf1(u
n); (6.26)

2. Then compute

un+1 = ûn+1 +∆tf2(û
n+1). (6.27)

It is an easy matter of fact to show that the fractional step metho (6.26),(6.27) is first order accurate.

By using (6.26) into (6.27) we have

un+1 = un +∆tf1(u
n) + ∆tf2 (u

n +∆tf1(u
n)) . (6.28)

The consistency error of expression (6.28) is

εn =
u(tn+1)− u(tn)

∆t
− f1(u(t

n))− f2 (u(t
n) + ∆tf1(u(t

n)))

= f1(u(t
n)) + f2(u(t

n)) + o(1)− f1(u(t
n))− f2(u(t

n))−∆t
∂f2
∂u

(u(tn))f1(u(t
n)) + o(∆t)

= o(1).

6.4. DISCRETE TIME ADVANCE SCHEMES 61

6.4.2 Second order schemes

For many applications where dynamical effects or transient phases are important, first order schemes

are not sufficiently accurate to compute the dynamics. Therefore second order fractional step schemes

are needed. From the second order symmetric Strang splitting scheme, let us define a discrete time

advance scheme.

Each step of the operator splitting has to solved with a second order scheme too in order to get global

second order accuracy.

Recall first that the following two-step Runge-Kutta RK2 time-advance scheme (also known as the

Heun scheme) is second order accurate: for the solution of u̇ = f(u) between tn and tn+1, it is

written

ûn+1 = un +∆tf(un), (6.29)

un+1 = un +
∆t

2

(

f(un) + f(ûn+1)
)

. (6.30)

The consistency error is

εn =
u(tn+1)− u(tn)

∆t
− 1

2

[

f(u(tn)) + ∆t
∂f

∂u
f(u(tn))(u(tn)) + f(u(tn))

]

+ o(∆t)

= f(u(tn)) +
∆t

2

d2u

dt2
(u(tn))− 1

2

[

f(u(tn)) + ∆t
∂f

∂u
f(u(tn))(u(tn)) + f(u(tn))

]

+ o(∆t)

= o(∆t)

because
d2u

dt2
=

d

dt
f(u) =

∂f

∂u

du

dt
=
∂f

∂u
(u(t))f(u(t)).

Let us now define the discrete Strang fractional step scheme. For that, let us denote P∆t/2
1 the time

propagator operator over a time step ∆t
2 of the solution of the problem

du

dt
= f1(u(t)),

u(0) = u0

i.e.

P∆t/2
1 u0 = u(

∆t

2
) (6.31)

and P∆t
2 the time propagator operator over a time step ∆t of the solution of the problem

dv

dt
= f2(v(t)),

v(0) = u0

i.e.

P∆t
2 u0 = v(∆t). (6.32)

Then the discrete Strang splitting scheme using the Heun scheme as second time advance scheme is

defined by the three following steps:

62 CHAPTER 6. FRACTIONAL STEP METHODS

1. Approximation of the state P∆t/2
1 un:

û1,n+1 = un +
∆t

2
f1(u

n), (6.33)

u1,n+1 = un +
∆t

4

(

f1(u
n) + f1(û

1,n+1)
)

; (6.34)

2. Approximation of the state P∆t
2 u1,n+1:

û2,n+1 = u1,n+1 +∆tf2(u
1,n+1), (6.35)

u2,n+1 = u1,n+1 +
∆t

2

(

f2(u
1,n+1) + f2(û

2,n+1)
)

; (6.36)

3. Approximation of the state P∆t/2
1 u2,n+1:

ûn+1 = u2,n+1 +
∆t

2
f1(u

2,n+1), (6.37)

un+1 = u2,n+1 +
∆t

4

(

f1(u
2,n+1) + f1(û

n+1)
)

. (6.38)

As exercise, the proof of second order consistency is let to the reader.

6.5 Chorin-Temam fractional step method for the Navier-Stokes equa-

tions

In this section, we will consider true incompressible time-dependent Navier-Stokes equations.

With standard discretizations, both velocity u and pressure p variables are solved simultaneously. It

is said that the velocity and pressure are coupled in the solution. From the numerical point of view,

this leads of course to a large system to solve at each time step. In three dimensions for example,

considering P1 approximations and N degrees of freedom, the size of the system to solve is 4N .

Because the solution of 4 linear systems of size N has lower complexity than the solution of a linear

system of size 4N , techniques of variable decoupling have been investigated. The so-called Chorin-

Temam fractional step method is based on a splitting of the Navier-Stokes equation into two parts.

Each time step is made of two substeps:

1. Step 1. First solve the equation by “forgetting” the pressure term over a time interval ∆t:

u⋆(x)− un ◦Xn(x)

∆t
− ν∆un+1(x) = f(x). (6.39)

2. Step 2. Solve the remaining par of the system (pressure term) over a time interval ∆t:

un+1 − u⋆

∆t
+∇pn+1 = 0 (6.40)

6.5. CHORIN-TEMAM FRACTIONAL STEP METHOD FOR THE NAVIER-STOKES EQUATIONS63

in order to project the velocity un+1 on a divergence-free velocity field. We want ∇·un+1 = 0.

By taking the divergence of the equation (6.40), one gets the Poisson pressure equation

−∆pn+1 = −∇ · u⋆
∆t

. (6.41)

Once the Poisson equation is solve, the velocity field is updated according to the rule

un+1 = u⋆ −∆t∇pn+1. (6.42)

A remarkable property of Chorin-Temam’s method is that the solution un+1 at time tn+1 is consistent

with the Navier-Stokes solution with order of accuracy O(∆t).

By using this fractional step approach, the velocity and pressure fields are indeed weakly coupled.

During step 1, only the velocity is changed. More over, because the Laplacian is a “diagonal” oper-

ator, each component of the velocity can be solved independently. Step 1 requires the solution of d
independent convection-diffusion problems. In step 2, a Poisson problem on the pressure alone has to

be solved.

6.5.1 Boundary conditions

We have also to take care of the boundary conditions in this fractional step approach. For step 1, one

can use the prescribed boundary conditions on the velocity, i.e.

u⋆ = g on Γ1, u
⋆ = 0 on Γ2,

∂u⋆

∂n
= 0 on Γ3.

For the second step, it is a little more tricky because we have to add artificial boundary conditions on

for the unknown pressure to get a boundary value problem. Velocity boundary conditions are already

taken into account in the first step, so we would like that the velocity correction step does not affect

the boundary velocity too much. From (6.42), we have at any boundary

∂un+1

∂t
=
∂u⋆

∂n
−∆t

∂pn+1

∂n
= 0.

So the natural boundary condition for the Poisson problem is

∂pn+1

∂n
= 0 on ∂Ω. (6.43)

Unfortunately, there is no control on the tangential derivative of the pressure on the boundary. The

Chorin-Temam fractional step method is known to have a lack of accuracy near boundaries. The sec-

ond difficulty is that the solution of a Poisson problem with purely homogeneous Neumann boundary

conditions is not unique and defined up to a constant. A perturbed “regularized” Poisson problem

−∆p+ ε p = −∇ · u⋆
∆t

(6.44)

should be considered numerically in order to get the ellipticity property.

64 CHAPTER 6. FRACTIONAL STEP METHODS

Chapter 7

Case study. Population dynamics and

migration flux analysis

Population dynamics are typically convection-reaction-diffusion equations which model the migration

process of two kinds of population with interaction between both populations. Such models are able to

explain the migration dynamics of predators and preys ecosystems or for instance the human migration

flux into a large city.

7.1 Lokta-Volterra equations

Suppose that two animal species are living in the same territory, a family of predators (in number u in

the sequel) and a family of preys (in number v). To write a model, some assumptions are done. It is

supposed that preys without predators are proliferating, predators without preys vanish, and that preys

are kept by predators at a fixed rate. In this section, it is also assumed that the spatial distribution of

the populations is homogeneous, so that there is no spatial effect.

With these assumptions, the dynamical system is clearly

du

dt
= a uv − b u, (7.1)

dv

dt
= −c uv + d v, (7.2)

where the positive constant a corresponds to the growth rate of predators by prey capture and the

positive constant b is the natural death rate. Also, constants c and d respectively represent the loss rate

of preys by capture and their natural proliferation rate.

By a time scale change, it is possible to write the system (7.1),(7.2) by the normalized one

du

dt
= αu(v − 1), (7.3)

dv

dt
= v(1− u), (7.4)

for a constant α ≥ 0. To (7.3),(7.4), an initial condition is added

u(0) = u0, v(0) = v0. (7.5)

65

66CHAPTER 7. CASE STUDY. POPULATION DYNAMICS AND MIGRATION FLUX ANALYSIS

The following Scilab code below is able to plot different trajectory solutions for different initial

conditions. The figure 7.1 shows a graphical result of the Scilab code. One can observe that

solutions are periodical in time. They create a closed trajectory solution in the state space (u, v),
u, v ≥ 0.

1 // odelokta . sce (Scilab file) − florian de vuyst

2 //

3 // This file is a modification of the initial file

4 // "ode_lotka .dem.sce", part of the Scilab project .

5 //

6 // Sharks and sardins : Lotka−Volterra ODE

7 //

8

9

10 text = ["Lotka-Volterra:"; ..

11 "du/dt = u(v-1)/2"; ..

12 "dv/dt = v(1-u)"; ..

13 ""; ..

14 "A trajectory is plotted by clicking on the"; ..

15 " LEFT button of the mouse."; ..

16 " The trajectory is updated as you move the mouse."; ..

17 " To fix the trajectory, click again on the LEFT button."; ..

18 "You can start over by clicking on the LEFT button again"; ..

19 " or stop everything by clicking on the RIGHT button."];

20

21 x_message(text);

22 my_handle = scf(100001);

23 clf(my_handle,"reset");

24 demo_viewCode("odelokta.sce");

25

26 function yprim=f(t,y)

27 yprim=[alpha*y(1)*(y(2)-1) y(2)*(1-y(1))]

28 endfunction

29

30 alpha = 0.5;

31 xmin = 0; xmax = 4.0; ymin = 0; ymax = 6.0;

32 fx = xmin:0.5:xmax; fy = ymin:0.5:ymax;

33 fchamp(f,1,fx,fy);

34 xlabel(’u (normalized nb. of predators)’,’fontsize’,3)

35 ylabel(’v (normalized nb. of preys)’,’fontsize’,3)

36 a=gca();a.margins(3)=0.2;

37 title([_("Lokta-Volterra vector field")

38 "du/dt = u(v-1)/2";

39 "dv/dt = v(1-u)"],’fontsize’,3)

40

41 t0 = 0; tmax = 20;

42 t = t0:0.05:tmax;

43 oldx0 = 10*xmax; oldy0 = 10*ymax;

44 dx = 0.1; dy = 0.1;

45 rtol = 0.0001; atol = rtol;

46

47 while (%t)

7.1. LOKTA-VOLTERRA EQUATIONS 67

48 [b,x0,y0]=xclick();

49 if or(b==[2 5 -1000]) then break end;

50 if or(b==[0 3]) & xmin<x0 & x0<xmax & ymin<y0 & y0<ymax then

51 sol=ode([x0;y0],t0,t,rtol,atol,f);

52 xpoly(sol(1,:)’,sol(2,:)’);

53 p=gce();p.thickness=2;p.foreground=5;

54 rep=[x0,y0,-1];

55 while rep(3)==-1 then

56 rep=xgetmouse();

57 x0=rep(1); y0=rep(2);

58 if (xmin<x0 & x0<xmax & ymin<y0 & y0<ymax) & (abs(x0-oldx0)>=dx | abs

(y0-oldy0)>=dy) then

59 sol=ode([x0;y0],t0,t,rtol,atol,f);

60 p.data=[sol(1,:)’ sol(2,:)’];

61 oldx0=x0; oldy0=y0;

62 end

63 end

64 end

65 end

u (normalized nb. of predators)

4.54.03.53.02.52.01.51.00.50.0

7

6

5

4

3

2

1

0

v

(
n
o
r
m
a
l
i
z
e
d

n
b
.

o
f

p
r
e
y
s
)

dv/dt = v(1-u)

Lokta-Volterra vector field

du/dt = u(v-1)/2

Figure 7.1: The vector field and some trajectories (with different initial conditions) for the Lokta-

Volterra system (7.3),(7.4) with α1
2 in the state space (u, v). One can numerically observe a periodical

behaviour of the solutions.

7.1.1 Analysis of some qualitative properties of the solutions

It can be remarked that any solution of the system (7.3),(7.4) such that u 6= 1 and v 6= 0 at any time,

verifies the equation
du

dv
= α

u(v − 1)

v(1− u)
(7.6)

which can be easily integrated as

αv + u− log(vαu) = αv0 + u0 − log((v0)αu0).

68CHAPTER 7. CASE STUDY. POPULATION DYNAMICS AND MIGRATION FLUX ANALYSIS

From the study of the function f(u, v) = αv + u − log(vαu) in R
+
⋆ , one can prove the periodical

feature of the differential system.

Let us now consider the equilibrium states of the system (7.3),(7.4). The constants states solutions of

u̇ = v̇ = 0 are (u, v) = (0, 0) and (u, v) = (1, 1). Linearizing the system (7.3),(7.4) in the vicinity of

(0, 0) gives

du

dt
= −αu,

dv

dt
= v.

In particular v(t) = v0 et and thus (0, 0) is an unstable equilibrium. Let us now consider the second

equilibrium (u, v) = (1, 1). By considering the change of variable u = 1+w, v = 1+z, the linearized

system in variables (w, z) in the vicinity of (0, 0) gives

dw

dt
= αz,

dz

dt
= −w

in the form
d

dt
(w, z)T = A (w, z)T (7.7)

with

A =

(

0 α
−1 0

)

(7.8)

with solution (w, z)T (t) = exp(At)(w0, z0)T , t ≥ 0. The stability of the equilibrium depends of

the eigenstructure of A. By denoting λ1 and λ2 the two eigenvalues of A in C, we clearly have

tr(A) = 0 = λ1 + λ2 and det(A) = λ1λ2 = α > 0. This shows that λ1 = λ̄2 = i
√
α. Both

eigenvalues are pure imaginary complexes. This shows that the equilibrium (1, 1) is a center in the

theory of dynamical systems. In particular, solutions are periodical, oscillating toward the center with

a period 2π√
α

.

7.2 A fractional step approach to solve the Lokta-Volterra equations.

The Strang splitting presented in the previous chapter can be used here as a "numerical solver" of

the nonlinear Lokta-Volterra equations. Let ∆t be a small time step. A second-order fractional step

approach can be we following:

1. First solve the following problem over a time step ∆t
2 :

du

dt
= αu(v − 1), (7.9)

dv

dt
= 0, (7.10)

u(0) = u0, (7.11)

v(0) = v0. (7.12)

7.2. A FRACTIONAL STEP APPROACH TO SOLVE THE LOKTA-VOLTERRA EQUATIONS.69

The analytical solution of (7.9)-(7.12) at time ∆t/2 is

v⋆,1 = v0, u⋆,1 = u0 e
α(v0−1)∆t

2 . (7.13)

2. Second, solve the following problem over a time step ∆t:

du

dt
= 0, (7.14)

dv

dt
= v(1− u) (7.15)

u(0) = u⋆,1, (7.16)

v(0) = v⋆,1. (7.17)

The analytical solution of (7.14)-(7.17) at time ∆t is

u⋆,2 = u⋆,1, v⋆,2 = v⋆,1 e(1−u
⋆,1)∆t. (7.18)

3. Finaly solve the following problem over a time step ∆t
2 :

du

dt
= αu(v − 1), (7.19)

dv

dt
= 0, (7.20)

u(0) = u⋆,2, (7.21)

v(0) = v⋆,2. (7.22)

The analytical solution of (7.19)-(7.21) at time ∆t/2 is

v⋆,3 = v⋆,2, u⋆,3 = u⋆,2 e
α(v⋆,2−1)∆t

2 . (7.23)

To summarize, a second order approximation (u(∆t), v(∆t)) for the Lokta-Volterra equations at

time ∆t is

u⋆ = u0 e
α(v0−1)∆t

2 , (7.24)

v(∆t) = v0 e
(1−u⋆)∆t, (7.25)

u(∆t) = u⋆ eα(v(∆t)−1)∆t
2 . (7.26)

The following Scilab program implements the integration scheme (7.24)-(7.26) and solves the

Lokta-Volterra problem with (u0, v0) = (2, 4). Figure 7.2 is the graphical output the of Scilab

program loktastrang.sce.

1 // Loktastrang . sce (Scilab)

2 // Solution of the Lokta−Volterra equations

3 // using a second order Strang splitting as

4 // integration scheme

70CHAPTER 7. CASE STUDY. POPULATION DYNAMICS AND MIGRATION FLUX ANALYSIS

5 //

6 clear;

7 alpha = 0.5;

8 u(1,1) = 2;

9 v(1,1) = 4;

10 t(1,1) = 0;

11 dt = 0.1;

12 //

13 for n=1:400

14 ustar = u(n,1) *exp(alpha*(v(n,1)-1)*dt/2);

15 v(n+1,1) = v(n,1) * exp((1-ustar)*dt);

16 u(n+1,1) = ustar*exp(alpha*(v(n+1,1)-1)*dt/2);

17 t(n+1,1) = t(n,1) + dt;

18 end; // for n

19 //

20 clf();

21 subplot(1,2,1), plot(u, v, ’.-’);xlabel("u");ylabel("v");xgrid();

22 subplot(1,2,2), plot(t, u, ’x-’, t, v, ’+-’);

23 xlabel("Time t"); ylabel("u(t) and v(t)"); xgrid();

0.0 0.5 1.0

4.5

1.5 2.0 2.5 3.0

0.5

5.0

4.0

u

3.5

3.0

2.5

2.0

v

1.5

1.0

3.5

0.0

5 10 15 200 30 35 40

Time t

25 45

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

u
(
t
)

a
n
d

v
(
t
)

Figure 7.2: Numerical solution of the Lokta-Volterra solver (7.24)-(7.26) plotted in the spate space

first and secondly as a time series (for both u and v).

7.3 Introducing spatial effects, population diffusion phenomenon

Suppose now that the spatial distribution of predators and preys is no more homogeneous. The indi-

vidual random walk of both predators and preys introduces at the macroscopic scale a spatial diffusion

operator. Assuming that the diffusion is isotropic in any direction, the dynamic system then becomes

the PDE reaction-diffusion system

∂u

∂t
− ν∆u = αu(v − 1), (7.27)

∂v

∂t
− µ∆v = v(1− u) (7.28)

from some diffusion coefficients ν, µ > 0. The following Freefem++ program LoktaVolterra.edp

implements the Strang fractional step method with successive solutions of reactions and diffusion

7.3. INTRODUCING SPATIAL EFFECTS, POPULATION DIFFUSION PHENOMENON 71

problems, a spatial P2 Finite Element approximation is used. In this numerical example, ν = 10−3,

µ = 10−4 and the following initial data is used:

u0(x) = 0.1, v0(x) = 2 1(0<x,y< 1

2)
(x).

Zero-flux homogeneous Neumann boundary conditions are used.

1 // LoktaVolterra .edp (Freefem++)

2 // Solve the Rreaction−Diffusion equation

3 // of the Lokta−Volterra Prey−predator model

4 // by the Strang splitting fractional step method.

5 // The differential reaction system is itself solved

6 // by a Strang splitting . Square spatial domain

7 //

8 mesh Th = square(40, 40);

9 fespace Vh(Th, P2);

10 fespace Wh(Th, P1);

11 real alpha = 0.5;

12 real t = 0.0;

13 real dt = 0.2;

14 real nu = 0.001;

15 real mu = 0.0001;

16 real theta = 0.49;

17 int it=0;

18 //

19 Vh u, uh, uold;

20 Vh v, vh, vold;

21 Wh dxu, dyu, dxv, dyv;

22 //

23 problem heatu (u, uh, init=it) =

24 int2d(Th)(u*uh/dt)

25 -int2d(Th)(uold*uh/dt)

26 +int2d(Th)(nu*(1-theta)*dx(u)*dx(uh)

27 +nu*(1-theta)*dy(u)*dy(uh))

28 +int2d(Th)(nu*(theta)*dx(uold)*dx(uh)

29 +nu*(theta)*dy(uold)*dy(uh));

30 //

31 problem heatv (v, vh, init=it) =

32 int2d(Th)(v*vh/dt)

33 -int2d(Th)(vold*vh/dt)

34 +int2d(Th)(mu*(1-theta)*dx(v)*dx(vh)

35 +mu*(1-theta)*dy(v)*dy(vh))

36 +int2d(Th)(mu*(theta)*dx(vold)*dx(vh)

37 +mu*(theta)*dy(vold)*dy(vh));

38 //

39 // Initializing

40 u = 1 + 0.5*cos(3*pi*x)*sin(3*pi*y); uold = u;

41 v = 1 + 0.5*sin(3*pi*x)*cos(3*pi*x); vold = v;

42 //

43 // Big loop in time

44 for (it=0; it<200; it++) {

45 for (int subit=0; subit<1; subit++){

72CHAPTER 7. CASE STUDY. POPULATION DYNAMICS AND MIGRATION FLUX ANALYSIS

46 t = t + dt;

47 // Fractional step method

48 // Step a. Solve the reaction system on (dt /2)

49 u = u * exp(alpha*(v-1)*dt*0.25);

50 v = v * exp((1-u)*dt*0.5);

51 u = u * exp(alpha*(v-1)*dt*0.25);

52 uold = u; vold = v;

53 //

54 // Step b. Solve the diffusion system on (dt)

55 heatu; uold = u;

56 heatv; vold = v;

57 //

58 // Step c. Solve the reaction system on (dt /2)

59 u = u * exp(alpha*(v-1)*dt*0.25);

60 v = v * exp((1-u)*dt*0.5);

61 u = u * exp(alpha*(v-1)*dt*0.25);

62 uold = u; vold = v;

63 }

64 plot(u, nbiso=40, value=1, fill=0);//, ps="crd_u_it="+it+".eps");

65 plot(v, nbiso=40, value=1, fill=0);//, ps="crd_v_it="+it+".eps");

66 //

67 } // for it

IsoValue
0.0692282
0.134109
0.198989
0.26387
0.32875
0.393631
0.458511
0.523392
0.588272
0.653152
0.718033
0.782913
0.847794
0.912674
0.977555
1.04244
1.10732
1.1722
1.23708
1.30196
1.36684
1.43172
1.4966
1.56148
1.62636
1.69124
1.75612
1.821
1.88588
1.95076
2.01564
2.08052
2.1454
2.21028
2.27516
2.34004
2.40493
2.46981
2.53469
2.59957

IsoValue
0.0783405
0.240732
0.403123
0.565514
0.727905
0.890296
1.05269
1.21508
1.37747
1.53986
1.70225
1.86464
2.02703
2.18942
2.35182
2.51421
2.6766
2.83899
3.00138
3.16377
3.32616
3.48855
3.65094
3.81334
3.97573
4.13812
4.30051
4.4629
4.62529
4.78768
4.95007
5.11246
5.27485
5.43725
5.59964
5.76203
5.92442
6.08681
6.2492
6.41159

IsoValue
0.0422417
0.0996581
0.157075
0.214491
0.271907
0.329324
0.38674
0.444156
0.501573
0.558989
0.616406
0.673822
0.731238
0.788655
0.846071
0.903488
0.960904
1.01832
1.07574
1.13315
1.19057
1.24799
1.3054
1.36282
1.42024
1.47765
1.53507
1.59248
1.6499
1.70732
1.76473
1.82215
1.87957
1.93698
1.9944
2.05182
2.10923
2.16665
2.22406
2.28148

IsoValue
0.0183727
0.0551184
0.091864
0.12861
0.165355
0.202101
0.238846
0.275592
0.312338
0.349083
0.385829
0.422575
0.45932
0.496066
0.532811
0.569557
0.606303
0.643048
0.679794
0.716539
0.753285
0.790031
0.826776
0.863522
0.900268
0.937013
0.973759
1.0105
1.04725
1.084
1.12074
1.15749
1.19423
1.23098
1.26772
1.30447
1.34121
1.37796
1.41471
1.45145

Figure 7.3: Lokta-Volterra numerical solutions at some instants. Iso-contours of u (left) and v (right).

7.4. ADDING SEASONAL MIGRATION INTO THE MODEL 73

IsoValue
0.0115869
0.0310976
0.0506083
0.070119
0.0896297
0.10914
0.128651
0.148162
0.167672
0.187183
0.206694
0.226205
0.245715
0.265226
0.284737
0.304247
0.323758
0.343269
0.362779
0.38229
0.401801
0.421311
0.440822
0.460333
0.479844
0.499354
0.518865
0.538376
0.557886
0.577397
0.596908
0.616418
0.635929
0.65544
0.67495
0.694461
0.713972
0.733483
0.752993
0.772504

IsoValue
0.0369259
0.110778
0.18463
0.258481
0.332333
0.406185
0.480037
0.553889
0.627741
0.701592
0.775444
0.849296
0.923148
0.997
1.07085
1.1447
1.21856
1.29241
1.36626
1.44011
1.51396
1.58781
1.66167
1.73552
1.80937
1.88322
1.95707
2.03093
2.10478
2.17863
2.25248
2.32633
2.40018
2.47404
2.54789
2.62174
2.69559
2.76944
2.8433
2.91715

IsoValue
0.0233599
0.0695841
0.115808
0.162032
0.208256
0.254481
0.300705
0.346929
0.393153
0.439377
0.485601
0.531825
0.578049
0.624273
0.670498
0.716722
0.762946
0.80917
0.855394
0.901618
0.947842
0.994066
1.04029
1.08651
1.13274
1.17896
1.22519
1.27141
1.31764
1.36386
1.41008
1.45631
1.50253
1.54876
1.59498
1.6412
1.68743
1.73365
1.77988
1.8261

IsoValue
0.0236973
0.0710919
0.118487
0.165881
0.213276
0.26067
0.308065
0.35546
0.402854
0.450249
0.497643
0.545038
0.592433
0.639827
0.687222
0.734617
0.782011
0.829406
0.8768
0.924195
0.97159
1.01898
1.06638
1.11377
1.16117
1.20856
1.25596
1.30335
1.35075
1.39814
1.44554
1.49293
1.54033
1.58772
1.63511
1.68251
1.7299
1.7773
1.82469
1.87209

IsoValue
0.0374151
0.112178
0.186941
0.261704
0.336467
0.41123
0.485992
0.560755
0.635518
0.710281
0.785044
0.859807
0.93457
1.00933
1.0841
1.15886
1.23362
1.30838
1.38315
1.45791
1.53267
1.60744
1.6822
1.75696
1.83172
1.90649
1.98125
2.05601
2.13078
2.20554
2.2803
2.35506
2.42983
2.50459
2.57935
2.65412
2.72888
2.80364
2.8784
2.95317

IsoValue
0.0285637
0.085691
0.142818
0.199946
0.257073
0.3142
0.371328
0.428455
0.485583
0.54271
0.599837
0.656965
0.714092
0.771219
0.828347
0.885474
0.942601
0.999729
1.05686
1.11398
1.17111
1.22824
1.28537
1.34249
1.39962
1.45675
1.51388
1.571
1.62813
1.68526
1.74238
1.79951
1.85664
1.91377
1.97089
2.02802
2.08515
2.14228
2.1994
2.25653

Figure 7.4: Lokta-Volterra numerical solutions at some instants. Iso-contours of u (left) and v (right).

7.4 Adding seasonal migration into the model

Preys usually migrate in order to find better places for food. In a seasonal migration, animals are

moving from north to south and vice-versa. This can be coarsely modeled by an independent time-

dependent vertical and periodic vector field

a(x, t) = (0, σ sin(ωt)) .

Then the equations of evolution of predator and prey density are

∂u

∂t
− ν∆u = αu(v − 1), (7.29)

∂v

∂t
+ a · ∇v − µ∆v = v(1− u) (7.30)

74CHAPTER 7. CASE STUDY. POPULATION DYNAMICS AND MIGRATION FLUX ANALYSIS

In this case, the equation splitting can be on one side a transport-diffusion equation

∂u

∂t
− ν∆u = 0,

Dtv − µ∆v = 0,

with

Dt = ∂t + a · ∇,
and on the other side a (nonlinear) reaction equation

du

dt
= αu(v − 1),

dv

dt
= v(1− u).

The implementation is also the same as in a previous case. Here a Lagrangian derivative Dtv has to

be discretized in a stable way, for example using the method of characteristics. In Freefem++ the

convect function can be used for example. Numerical results are performed with the parameters

ν = 510−4, µ = 210−4, ∆t = 0.08, σ = 0.4, ω = π and α = 0.5. The initial condition considered

in this simulation is

u0(x) = 0.1, v0(x) = 1((x− 1

2
)2+(y− 1

2
)2≤ 1

32)
(x).

Periodic boundary conditions are used for the top and bottom borders while zero-flux boundary con-

ditions are used for both left and right borders.

From figures 7.5 to 7.6, isocontours of predator and prey densities at successive instants. One can ob-

serve the complex dynamics of the migration for both two populations, with moving regions of both

high and low density. Predators tend to "follow" preys during their seasonal migration.

7.4. ADDING SEASONAL MIGRATION INTO THE MODEL 75

IsoValue
0.101949
0.265466
0.428984
0.592502
0.75602
0.919538
1.08306
1.24657
1.41009
1.57361
1.73713
1.90065
2.06416
2.22768
2.3912
2.55472
2.71823
2.88175
3.04527
3.20879
3.37231
3.53582
3.69934
3.86286
4.02638
4.1899
4.35341
4.51693
4.68045
4.84397
5.00748
5.171
5.33452
5.49804
5.66156
5.82507
5.98859
6.15211
6.31563
6.47915

IsoValue
0.108786
0.327254
0.545722
0.764191
0.982659
1.20113
1.4196
1.63806
1.85653
2.075
2.29347
2.51194
2.7304
2.94887
3.16734
3.38581
3.60428
3.82275
4.04121
4.25968
4.47815
4.69662
4.91509
5.13355
5.35202
5.57049
5.78896
6.00743
6.2259
6.44436
6.66283
6.8813
7.09977
7.31824
7.53671
7.75517
7.97364
8.19211
8.41058
8.62905

IsoValue
0.0425492
0.119495
0.196441
0.273387
0.350333
0.427279
0.504225
0.581171
0.658117
0.735063
0.812009
0.888955
0.965901
1.04285
1.11979
1.19674
1.27368
1.35063
1.42758
1.50452
1.58147
1.65841
1.73536
1.81231
1.88925
1.9662
2.04314
2.12009
2.19704
2.27398
2.35093
2.42787
2.50482
2.58177
2.65871
2.73566
2.8126
2.88955
2.9665
3.04344

IsoValue
0.0485705
0.145835
0.2431
0.340365
0.43763
0.534895
0.632159
0.729424
0.826689
0.923954
1.02122
1.11848
1.21575
1.31301
1.41028
1.50754
1.60481
1.70207
1.79934
1.8966
1.99387
2.09113
2.1884
2.28566
2.38293
2.48019
2.57746
2.67472
2.77199
2.86925
2.96651
3.06378
3.16104
3.25831
3.35557
3.45284
3.5501
3.64737
3.74463
3.8419

IsoValue
0.0310887
0.0916202
0.152152
0.212683
0.273215
0.333746
0.394278
0.454809
0.515341
0.575872
0.636404
0.696935
0.757467
0.817998
0.87853
0.939061
0.999593
1.06012
1.12066
1.18119
1.24172
1.30225
1.36278
1.42331
1.48384
1.54438
1.60491
1.66544
1.72597
1.7865
1.84703
1.90757
1.9681
2.02863
2.08916
2.14969
2.21022
2.27075
2.33129
2.39182

IsoValue
0.0561102
0.168338
0.280567
0.392795
0.505023
0.617251
0.729479
0.841707
0.953935
1.06616
1.17839
1.29062
1.40285
1.51508
1.6273
1.73953
1.85176
1.96399
2.07622
2.18845
2.30067
2.4129
2.52513
2.63736
2.74959
2.86181
2.97404
3.08627
3.1985
3.31073
3.42295
3.53518
3.64741
3.75964
3.87187
3.9841
4.09632
4.20855
4.32078
4.43301

IsoValue
0.0927657
0.277964
0.463162
0.648361
0.833559
1.01876
1.20396
1.38915
1.57435
1.75955
1.94475
2.12995
2.31515
2.50035
2.68554
2.87074
3.05594
3.24114
3.42634
3.61154
3.79673
3.98193
4.16713
4.35233
4.53753
4.72273
4.90792
5.09312
5.27832
5.46352
5.64872
5.83392
6.01911
6.20431
6.38951
6.57471
6.75991
6.94511
7.13031
7.3155

IsoValue
0.159169
0.477394
0.79562
1.11385
1.43207
1.7503
2.06852
2.38675
2.70497
3.0232
3.34142
3.65965
3.97787
4.2961
4.61432
4.93255
5.25078
5.569
5.88723
6.20545
6.52368
6.8419
7.16013
7.47835
7.79658
8.1148
8.43303
8.75125
9.06948
9.38771
9.70593
10.0242
10.3424
10.6606
10.9788
11.2971
11.6153
11.9335
12.2517
12.57

Figure 7.5: Convection-Reaction-Diffusion prey-predator Lokta-Volterra numerical solutions at suc-

cessive instants. Iso-contours of predator density u (left) and prey density v (right).

76CHAPTER 7. CASE STUDY. POPULATION DYNAMICS AND MIGRATION FLUX ANALYSIS

IsoValue
0.0595854
0.178673
0.29776
0.416848
0.535935
0.655022
0.77411
0.893197
1.01228
1.13137
1.25046
1.36955
1.48863
1.60772
1.72681
1.8459
1.96498
2.08407
2.20316
2.32225
2.44133
2.56042
2.67951
2.7986
2.91768
3.03677
3.15586
3.27494
3.39403
3.51312
3.63221
3.75129
3.87038
3.98947
4.10856
4.22764
4.34673
4.46582
4.58491
4.70399

IsoValue
0.113418
0.332782
0.552146
0.771511
0.990875
1.21024
1.4296
1.64897
1.86833
2.0877
2.30706
2.52642
2.74579
2.96515
3.18452
3.40388
3.62325
3.84261
4.06197
4.28134
4.5007
4.72007
4.93943
5.15879
5.37816
5.59752
5.81689
6.03625
6.25562
6.47498
6.69434
6.91371
7.13307
7.35244
7.5718
7.79117
8.01053
8.22989
8.44926
8.66862

IsoValue
0.121182
0.205362
0.289543
0.373724
0.457905
0.542086
0.626267
0.710448
0.794629
0.87881
0.962991
1.04717
1.13135
1.21553
1.29971
1.3839
1.46808
1.55226
1.63644
1.72062
1.8048
1.88898
1.97316
2.05734
2.14152
2.2257
2.30989
2.39407
2.47825
2.56243
2.64661
2.73079
2.81497
2.89915
2.98333
3.06751
3.15169
3.23588
3.32006
3.40424

IsoValue
0.102171
0.29402
0.485869
0.677719
0.869568
1.06142
1.25327
1.44512
1.63696
1.82881
2.02066
2.21251
2.40436
2.59621
2.78806
2.97991
3.17176
3.36361
3.55546
3.74731
3.93916
4.131
4.32285
4.5147
4.70655
4.8984
5.09025
5.2821
5.47395
5.6658
5.85765
6.0495
6.24135
6.4332
6.62504
6.81689
7.00874
7.20059
7.39244
7.58429

IsoValue
0.0733245
0.116889
0.160453
0.204017
0.247582
0.291146
0.33471
0.378275
0.421839
0.465403
0.508968
0.552532
0.596096
0.639661
0.683225
0.726789
0.770354
0.813918
0.857482
0.901047
0.944611
0.988175
1.03174
1.0753
1.11887
1.16243
1.206
1.24956
1.29313
1.33669
1.38025
1.42382
1.46738
1.51095
1.55451
1.59808
1.64164
1.6852
1.72877
1.77233

IsoValue
0.0810052
0.181845
0.282684
0.383523
0.484363
0.585202
0.686041
0.786881
0.88772
0.98856
1.0894
1.19024
1.29108
1.39192
1.49276
1.5936
1.69444
1.79527
1.89611
1.99695
2.09779
2.19863
2.29947
2.40031
2.50115
2.60199
2.70283
2.80367
2.90451
3.00535
3.10619
3.20703
3.30787
3.4087
3.50954
3.61038
3.71122
3.81206
3.9129
4.01374

IsoValue
0.15004
0.297992
0.445945
0.593897
0.74185
0.889802
1.03775
1.18571
1.33366
1.48161
1.62956
1.77752
1.92547
2.07342
2.22137
2.36933
2.51728
2.66523
2.81318
2.96114
3.10909
3.25704
3.40499
3.55294
3.7009
3.84885
3.9968
4.14475
4.29271
4.44066
4.58861
4.73656
4.88452
5.03247
5.18042
5.32837
5.47633
5.62428
5.77223
5.92018

IsoValue
0.182873
0.424096
0.665318
0.90654
1.14776
1.38898
1.63021
1.87143
2.11265
2.35387
2.5951
2.83632
3.07754
3.31876
3.55998
3.80121
4.04243
4.28365
4.52487
4.7661
5.00732
5.24854
5.48976
5.73098
5.97221
6.21343
6.45465
6.69587
6.9371
7.17832
7.41954
7.66076
7.90198
8.14321
8.38443
8.62565
8.86687
9.1081
9.34932
9.59054

Figure 7.6: Convection-Reaction-Diffusion prey-predator Lokta-Volterra numerical solutions at suc-

cessive instants. Iso-contours of predator density u (left) and prey density v (right).

Chapter 8

Model of biological spatial pigment

pattern formation

During the development of an embryo, there is a rapid growth, not only in cell numbers, but also in

specialization and complex organization among cells. Cells in the vertebrate embryo divide, migrate,

differentiate and for the various organs of the body. Many of the structures have a regular pattern such

as the vertebrae in the spine, the pattern of feather, etc.

Pigment patterns are generated by chromatophore cells which lie in the dermal or epidermal layers

of the skin. There are several types of chromatophores each containing different pigments; the most

common are melanin-bearing cells and melanophores which contain black, brown or yellow pigments.

During development, pigment cell precursors - chromatoblasts - originate in the neural crest. These

cells spread over the skin at a roughly uniform density. Whether or not the skin develops a pigmented

patch depends on whether pigment cells produce pigment or remain quiescent. chromatophore inter-

actions may result in pigmented cells and unpigmented cells gathering in different regions to produce

stripes or spots.

The principle mathematical models for pigmentation to date have been mainly reaction-diffusion mod-

els, pioneered in the 1980s. These models hypothesize the existence of chemicals (morphogens) which

react and diffuse and, under appropriate conditions, generate spatially heterogeneous patterns. This

chemical landscape is viewed as a pre-pattern to which cells then respond in some genetically prede-

termined way and differentiate accordingly.

Oster and Murray (1989, []) proposed a simple cell-chemotaxis model for pattern formation which

takes account of cell motility and chemotaxis, the chemical process by which cells migrate up a chem-

ical gradient. Some of the developments of this chapter are pioneered by Maini et al. [] who have

established that a cell-chemotaxis model can produce a wide variety of observed patterns.

8.1 Cell chemotaxis model

The model mechanism involves the cell density, ρ(x, t) and chemo-attractant concentration c(x, t),
where x and t are the spatial coordinate and time respectively, and consists of equations which describe

their motion and net production. The general form of the cell equation is the conservative balance

77

78 CHAPTER 8. MODEL OF BIOLOGICAL SPATIAL PIGMENT PATTERN FORMATION

equation
∂ρ

∂t
+∇ · Jρ = R(ρ) (8.1)

where Jρ is the flux of cells and R(ρ) is the local net cell production. From biological considerations,

it is assumed that there is two contributions to the flux term, namely a random Fickian diffusion

process with diffusive flux

Jd = −Dρ∇ρ (8.2)

where Dρ is the diffusion coefficient, and chemotaxis with chemotactic flux

J c = αρ∇c (8.3)

where α is the chemotaxis coefficient. Remark that J c is a nonlinear term. We take the cell production

term to be adequately described by logistic growth of the form R(ρ) = rρ(ρ∞ − ρ) where rρ∞ is

the linear mitotic growth rate with r and ρ∞ both nonnegative constants. The logistic growth rate is

the simplest way to describe the characteristic sigmoidal growth exhibited by several cell types. As

summary, the equation for cell density is

∂ρ

∂t
+ α∇ · (ρ∇c)−Dρ∆ρ = rρ(ρ∞ − ρ). (8.4)

It is a nonlinear convection-reaction-diffusion equation. We assume that the cell secretes its own

chemoattractant according to a growth rate in the form

Sρ

β + ρ

It is also supposed to diffuse with diffusion coefficient Dc and to linearly degrade (apoptosis) at a rate

γc. The equation for chemotactic concentration c is then

∂c

∂t
−Dc∆c =

Sρ

β + ρ
− γc (8.5)

with positive constants S, β and γ. Equation (8.4) and (8.5) form a coupled system of nonlinear partial

differential equations.

8.1.1 Dimensionless equations

To reduce the number of parameters, it is usual to write the model in non-dimensional terms. For any

quantity q, let us denote by q0 a dimensional constant and the non-dimensional quantity q̄ defined as

q̄ =
q

q0
.

By denoting ∇̄ and ∆̄ respectively the gradient and the Laplace operator with respect to the non-

dimensional space variable x̄, the non-dimensional equations write

ρ0
t0

∂ρ̄

∂t̄
+
αρ0c0
(x0)2

α∇̄ · (ρ̄∇̄c̄)− Dρ

(x0)2
∆̄ρ̄ = r(ρ0)

2ρ̄(
ρ∞
ρ0

− ρ̄)

and
c0
t0

∂c̄

∂t̄
− c0

(x0)2
Dc∆̄c̄ =

Sρ0
β

ρ̄

1 + ρ0
β ρ̄

− γc0c̄.

8.2. ZERO-DIMENSIONAL MODEL 79

Introducing a scaling factor s, the following choice

x0 =

√

Dcs

γ
, t0 =

s

γ
, ρ0 = β, c0 =

S

γ
,

gives the non-dimensional equations become (omiting the bar symbols for the sake of simplicity)

∂ρ

∂t
+ α∇ · (ρ∇c)−D∆ρ = srρ(ρ∞ − ρ), (8.6)

∂c

∂t
−∆c = s

(

ρ

1 + ρ
− c

)

. (8.7)

For simplicity, the spatial domain Ω is supposed to be a rectangle of respective lengths Lx and Ly.

Moreover we consider zero flux boundary conditions, meaning that no cell or chemoattractant migrates

through the boundary:

∇ρ · n = ∇c · n = 0, x ∈ ∂Ω. (8.8)

8.2 Zero-dimensional model

Forgetting the spatial terms, the so-called 0-dimensional model is

dρ

dt
= srρ(ρ∞ − ρ), (8.9)

dc

dt
= s

(

ρ

1 + ρ
− c

)

. (8.10)

There are two equilibrium states (ρ, c) = (0, 0) and (ρ, c) = (ρ∞,
ρ∞

1+ρ∞
). To know wether those

equilibrium states are stable or unstable, one linearizes the dynamical system in the vicinity of the

equilibrium. For (ρ, c) small enough, the system is equivalent to

d

dt

(

ρ

c

)

=

(

srρ∞ 0
s −s

)

(

ρ

c

)

.

There are two real eigenvalues for the linearized system, one of them is positive so that the equilibrium

state is unstable. For the second equilibrium (ρ, c) = (ρ∞,
ρ∞

1+ρ∞
), using the new variables ρ′ =

ρ− ρ∞, c′ = c− ρ∞
1+ρ∞

, for (ρ′, c′) small enough, the system is equivalent to the linearized one

d

dt

(

ρ′

c′

)

=

(

−srρ∞ 0
s

(1+ρ∞)2
−s

)(

ρ′

c′

)

.

According to the sign of the two eigenvalues, the second equilibrium state is stable.

8.3 Linear stability analysis of the complete model

Now we carry out the analysis of the system (8.6),(8.7). It is easy to check that the constant steady-

states of (8.6),(8.7) are the equilibrium states of the dynamical system (8.9),(8.10). The steady-

state (0, 0) is always unstable by inspection so we only consider the non-zero steady state (ρ, c) =

80 CHAPTER 8. MODEL OF BIOLOGICAL SPATIAL PIGMENT PATTERN FORMATION

(ρ∞,
ρ∞

1+ρ∞
) here.

We set ρ = ρ∞ + u and c = ρ∞
1+ρ∞ + v where |u|, |v| are small, substitute into (8.6)-(8.8) and only

retain linear terms. This gives the PDE problem of linear partial differential equations which governs

the behaviour near the steady state:

∂tu−D∆u+ αρ∞∆v = −rsρ∞u in Ω, (8.11)

∂tv −∆v = s

(

u

(1 + ρ∞)2
− v

)

in Ω, (8.12)

n · ∇u = n · ∇v = 0 on ∂Ω. (8.13)

We look for planar wave solutions of (8.11)-(8.13) i.e. solutions in the form

(

u

v

)

=

(

u0

v0

)

exp(ik · x+ λt) (8.14)

where λ = λ(k) determines the temporal growth rate of the disturbance with wave vector k. Let us

denote k = |k|. Putting (8.14) into (8.11),(8.12) gives

λu+Dk2u+ αρ∞k
2v = −rρ∞su,

λv + k2v = s

(

u

(1 + ρ∞)2
− v

)

.

These inequalities have to be satisfied for x and any t. Then we have the compatibility linear system

(

Dk2 − rρ∞s αρ∞k2v
s

(1+ρ∞)2
k2 + s

)(

u0

v0

)

= −λ
(

u0

v0

)

This is an eigenvalue problem. Non-trivial solutions for u0 and v0 exist only if λ, the dispersion

relation satisfies the characteristic polynomial

λ2 + [(D + 1)k2 + rρ∞ + s]λ+

[

Dk4 +

{

rρ∞s+Ds− sρ∞α
(1 + ρ∞)2

}

k2 + rρ∞s
2

]

= 0. (8.15)

Moreover, the wave with wavenumber |k| must satisfy the boundary conditions (8.13). Denoting

k = (kx, ky), we get the compatibility conditions

kx =
mπ

Lx
, ky =

ℓπ

Ly
, m, ℓ ∈ N.

The linear spatial eigenmodes then are cosmπx/Lx cos ℓπy/Ly. In (8.15), λ = λ(k2) clearly depends

on k2. If λ(k2) < 0, then a disturbance of wavevector k will decay in time. If λ(k2) > 0 for some

k2 then the disturbance with wavenumbers will grow and the system will evolve to a nonuniform

spatially structured solution. On the rectangular domain [0, Lx] × [0, Ly], the values of k2 which

produce a pattern are those where λ(k2) > 0 with

k2 = k · k = π2
(

m2

L2
x

+
ℓ2

L2
y

)

. (8.16)

8.4. NUMERICAL DISCRETIZATION 81

The critical value occur when λ(k2) = 0, that is when k satisfies

Dk4 +

{

rρ∞s+Ds− sρ∞α
(1 + ρ∞)2

}

k2 + rρ∞s
2 = 0. (8.17)

In order to find at least one unstable mode, we require equation (8.17) to have only one double root

solution for k2, so we further impose the condition for equal roots, namely

[

rρ∞s+Ds− sρ∞α
(1 + ρ∞)2

]2

− 4Drρ∞s
2 = 0. (8.18)

Hence the modulus of the critical wave vector is given by

k2c =
2s
√
Drρ∞
2D

= s
(rρ∞
D

)1/2
. (8.19)

By choosingD, s, r andN appropriately, we can find a k2 from (8.16) which satisfies equation (8.19),

and then solve equation (8.18) for α (one can take the larger root for α so that k2c is positive). This

determines the point in (ρ∞, D, r, s, α) parameter space where the mode (8.19) is isolated.

8.3.1 Continuous variation of a single parameter

From equations (8.17)-(8.19), it is clear that by making appropriately vary any of the five parameters

r, ρ∞, s, D or α, the uniform steady state can evolve to a non-uniform steady-state. The chemotaxis

parameter α is a key parameter so one can fix the others and make vary α to locate bifurcations in α
and follow the corresponding solutions.

8.4 Numerical discretization

The problem is hard to solve because of strongly nonlinear terms and important convective effects.

Recall the equation of cell density

∂tρ+∇ · (αρ∇c)−D∆ρ = srρ(ρ∞ − ρ). (8.20)

First, let us emphasize the convection term. By denoting

u = α∇c, (8.21)

the cell density equation can be rewritten

Dtρ+ αρ∆c−D∆ρ = srρ(ρ∞ − ρ) (8.22)

where Dt denotes the particle derivative

Dt = ∂t + u · ∇. (8.23)

82 CHAPTER 8. MODEL OF BIOLOGICAL SPATIAL PIGMENT PATTERN FORMATION

8.4.1 Fractional step method

The term αρδc is not easy to treat because of its nonconservative form and nonlinear nature. Thus

it is appropriate to consider here a fractional step method. A fractional step method allows us to

successively deal with each term of an operator in an ODE or a PDE. Consequently, a time step is a

multi-step process made of several steps that “solve” each part of the equation treated separately. For

equation (8.20), it is convenient first to solve

Dtρ−D∆ρ = srρ(ρ∞ − ρ) (8.24)

which only depends on c by means of Dt, then solve the system

∂rρ+ αρ∆c = 0, (8.25)

∂tc−∆c = s

(

ρ

1 + ρ
− c

)

. (8.26)

Remark that equation (8.25) can be rewritten in conservation form

∂tσ + α∆c = 0 (8.27)

with σ = log(ρ). A semi-discretization in time gives the following scheme:

1. Solve the semi-implicit linear scheme in ρ⋆:

ρ⋆ − ρn ◦Xn

∆tn
−D∆ρ⋆ = srρn(ρ∞ − ρ⋆) (8.28)

with boundary conditions
∂ρ⋆

∂n
= 0. (8.29)

The function ρ⋆ will serve as “initial data” of cell density for the next step:

2. Solve the following linear problem (σ⋆ = log(ρ⋆)):

σn+1 − σ⋆

∆tn
+ α∆cn+1 = 0 in Ω, (8.30)

∂σn+1

∂n
= 0 on ∂Ω, (8.31)

cn+1 − cn

∆tn
−∆cn+1 = s

(

ρ⋆

1 + ρ⋆
− cn+1

)

in Ω, (8.32)

∂cn+1

∂n
= 0 on ∂Ω, (8.33)

then compute

ρn+1 = exp(σn+1) (8.34)

to end the time iteration tn → tn+1.

Of course, the global time advance scheme is not fully implicit and thus may not be unconditionally

stable.

8.4. NUMERICAL DISCRETIZATION 83

8.4.2 Full discretization

The full discretization of the problem will correspond to Finite Element space discretization of the

semi-discretized scheme (8.28)-(8.33).

1. The variational formulation of (8.28),(8.29) leads to

∫

Ωh

ρ⋆ − ρn ◦Xn

∆tn
vh dx+

∫

Ωh

D∇ρ⋆ · ∇vh dx = sr

∫

Ωh

ρn(ρ∞ − ρ⋆) vh dx ∀vh ∈ V h.

(8.35)

Once ρ⋆ ∈ V h is computed by (8.35) then compute

σ⋆ = PW
h

(log(ρ⋆)) (8.36)

as the projection on the σ-Finite Element space of the field log(ρ⋆).

2. The variational formulation of (8.30)-(8.33) leads to

∫

Ωh

σn+1 − σ⋆

∆tn
σh dx−

∫

Ωh

α∇cn+1 · ∇σh dx

+

∫

Ωh

cn+1 − cn

∆tn
ch dx+

∫

Ωh

∇cn+1 · ∇ch dx− s

∫

Ωh

(

ρ⋆

1 + ρ⋆
− cn+1

)

ch dx = 0

∀σh ∈W h, ch ∈ Xh. (8.37)

To finish, let compute

ρn+1 = P V
h

(exp(σn+1)) (8.38)

as the projection on V h of the field exp(σn+1).

To completely define the numerical method, we have to choose some convenient Finite Element

spaces. The classical P 1 is convenient for both ρ and σ. However, for c the P 2 Finite Element

space is preferable because we need to compute the convective vector field

u = α∇c

from c. If c is piecewise P 2 in a triangle, then ∇c will be piecewise P 1.

8.4.3 freefem++ source code of the numerical scheme and numerical results

1 // Chemotaxis.edp (freefem++)

2 // Chemotaxis model for biological pattern generation

3 //

4 // Parameter definition

5 real r = 38.05;

6 real alpha = 285;

7 real rhoinf =1;

8 real D = 0.25;

9 real s = 1;

10 real Lx = 3.5;

11 real Ly = 4;

84 CHAPTER 8. MODEL OF BIOLOGICAL SPATIAL PIGMENT PATTERN FORMATION

12 real dt = 0.05;

13 //

14 mesh Th=square(40, 40, [Lx*x, Ly*y]);

15 plot(Th, wait=0);

16 fespace Vh(Th, P1);

17 Vh rho, rhoold, rhotest, u1, u2, output;

18 Vh sigma, sigmaold, sigmatest;

19 fespace Wh(Th, P2);

20 Wh c, cold, ctest;

21 // Starting from the (unstable) constant state

22 rho = rhoinf;

23 rhoold=rho;

24 c = rhoinf/(1+rhoinf);

25 cold=c;

26 u1 = alpha * dx(c);

27 u2 = alpha * dy(c);

28 // Then go to the PDE problem

29 problem step1(rho, rhotest) =

30 int2d(Th)(rho*rhotest /dt)

31 -int2d(Th)(convect([u1,u2], -dt, rhoold)*rhotest /dt)

32 +int2d(Th)(D*dx(rho)*dx(rhotest)+D*dy(rho)*dy(rhotest))

33 -int2d(Th)(r*s*rhoold*rhoinf*rhotest)

34 +int2d(Th)(r*s*rhoold*rho*rhotest);

35

36 problem step2([sigma, c], [sigmatest, ctest]) =

37 int2d(Th)(sigma*sigmatest /dt)

38 -int2d(Th)(sigmaold*sigmatest /dt)

39 -int2d(Th)(alpha*dx(c)*dx(sigmatest)+alpha*dy(c)*dy(sigmatest))

40 +int2d(Th)(c*ctest /dt)

41 - int2d(Th)(cold*ctest /dt)

42 +int2d(Th)(dx(c)*dx(ctest) + dy(c)*dy(ctest))

43 -int2d(Th)(s*rho/(1+rho)*ctest)

44 +int2d(Th)(s*c*ctest);

45

46 for (int it=0; it<200; it++) {

47 cout << "it = " << it << endl;

48 // Step 1

49 step1;

50 rhoold = rho;

51 sigmaold = log(rhoold);

52 //

53 step2;

54 u1 = alpha * dx(c);

55 u2 = alpha * dy(c);

56 rho = exp(sigma);

57 rhoold = rho;

58 cold = c;

59 //

60 // plot (c , nbiso=60, value=1, wait=0);

61 plot(rho , nbiso=40, grey=1, fill=1, value=1, wait=0);

62 }

63 cout << "cmin = " << c[].min << " cmax = " << c[].max << endl;

8.4. NUMERICAL DISCRETIZATION 85

64 cout << "rhomin = " << rho[].min << " rhomax = " << rho[].max << endl;

65 //

66 plot(rho, nbiso=60, grey=1, fill=1, value=0, wait=0, ps="rho.eps");

67 plot(c , nbiso=60, grey=1, fill=1, value=0, wait=0, ps="c.eps");

Figure 8.1: Isocontours of cell density (left) and chemoattractant concentration (right) in grey colors.

The parameter alpha used here is α = 285. Stable steady state starting from the constant unstable

steady state.

Figure 8.2: Isocontours of cell density (left) and chemoattractant concentration (right) in grey colors.

The parameter alpha used here is α = 305. Stable steady state starting from the constant unstable

steady state.

86 CHAPTER 8. MODEL OF BIOLOGICAL SPATIAL PIGMENT PATTERN FORMATION

Chapter 9

Vehicle traffic flow modeling

9.1 Setting of the problem

Although vehicle traffic flow is intrinsically a discrete dynamical process, it is possible to model it

continuously at a certain level of description. If we are looking at a highway quite war from it, the

flow can seen as a continuous flow with respect to macroscopic quantities like density ρ and flow rate

q. Let us denote S = [x−, x+] a bounded road section. Then the evolution of the quantity of vehicle

on that section is governed by the gain-loss equation

dS

dt
= q(x−, t)− q(x+, t). (9.1)

By introducing a vehicle density ρ = ρ(x, t) and assuming a continuously varying flow rate, then (9.58)

can write
d

dt

∫

S
ρ(x, t) dx+

∫

S

∂q

∂s
= 0. (9.2)

This balance equation holds for any road section S. Then for an infinitesimal road section S with

|S| → 0, one gets almost everywhere the conservation equation

∂tρ+ ∂xq = 0. (9.3)

The class of partial differential equation (9.3) was introduced in the 1930s by Whitham. Today, the

so-called Whitham first-order models are still used in transportation engineering, especially for traffic

forecast and travel time estimation.

A closure is required for equation (9.3), in order to link density and flow rate. First, due to the

dimension of q, it is natural to consider a flow rate as a vehicle mean velocity times the vehicle

density:

q = ρu. (9.4)

Now the closure is then transfered onto the speed u. For a free highway with only few vehicles, it is

natural to consider that the vehicle speed is the free speed uf fixed by speed limitation. On the other

hand, a car is “stopped” in a fully jammed lane of maximum critical density ρc, so its velocity can be

considered as zero. For intermediate velocities, one can consider as first approximation a linear law

u = u(ρ) = uf

(

1− ρ

ρc

)

. (9.5)

87

88 CHAPTER 9. VEHICLE TRAFFIC FLOW MODELING

The equation (9.5) is referred to as the fundamental diagram in the traffic theory. It appears that the

fundamental law (9.5) is a rather good approximation of the reality. Statistics performed on real traffic

measurements show that real data plotted in the density-velocity or density-occupancy state space

can be linearly regressed as in (9.5). Remark that the function ρ 7→ q(ρ) = ρu(ρ) is parabolic (see

figure 9.8) with maximum flow rate

qM =
1

4
ρcuf (9.6)

at density ρ = ρc/2. We fall into a nonlinear partial differential equation in the form

Figure 9.1: Fundamental diagram of traffic

∂tρ+ ∂x(ρ u(ρ)) = 0 (9.7)

with u(ρ) given by (9.5).

9.2 Some mathematical aspects of nonlinear transport equations

Although (9.5) has a rather simple script, its mathematical analysis is not so easy and requires atten-

tion. In particular, we are going to see that solutions of equations (9.7) can develop discontinuities

(also name shocks) during time, even if the initial data is smooth. When discontinuities exists, equa-

tion (9.7) is read in a weak sense, i.e. in the sense of distributions.

For smooth solutions, equation (9.7) can be written in nonconservative form. Denoting a(ρ) =
q′(ρ), it is equivalent to the nonlinear transport equation

∂tρ+ a(ρ)∂xρ = 0 (9.8)

where the characteristic velocity a(ρ) depends itself on ρ. In the case of (9.5), we have

a(ρ) = uf

(

1− 2
ρ

ρc

)

which is different from the vehicle velocity. It is important to understand the difference between

the vehicle velocity and the characteristic velocity. If we have a Lagrangian description of the flow,

meaning there are (vehicle) particles flowing with differential equation for the vehicle position

dx

dt
= u(ρ(x(t), t)).

9.2. SOME MATHEMATICAL ASPECTS OF NONLINEAR TRANSPORT EQUATIONS 89

Now consider the characteristic velocity a(ρ) = q′(ρ). Suppose a density solution in the form

ρ(x, t) = ρ0 + ερ1(x, t) (9.9)

for a constant ρ0 and a small parameter 0 < ε ≪ 1, meaning that the density is almost constant up to

a perturbation ερ1(x, t). Introducing expression (9.9) into (9.8) gives

∂t(ρ0 + ερ1) +

(

a(ρ0) + ε
da

dρ
(ρ0)ρ1

)

∂x(ρ0 + ερ1) = 0.

Then, homogeneous terms of degree 1 in ε give the linearized equation

∂tρ1 + a(ρ0)∂xρ1 = 0. (9.10)

Equation (9.10) shows that the fluctuations of the solutions are propagating at characteristic veloc-

ity a(ρ0) but not u(ρ0). The characteristic velocity is the speed of propagation of the information

whereas the vehicle velocity is the material velocity.

9.2.1 Smooth autosimilar solutions

In this section, we are looking for continuous solutions of the variable ξ = x/t, i.e.

ρ(x, t) = φ(
x

t
). (9.11)

Putting (9.11) into (9.8) gives the differential equation

− x

t2
φ′(

x

t
) + a(φ(

x

t
))
1

t
φ′(

x

t
) = 0

or again

(a(φ(ξ)− ξ)) φ′(ξ) = 0, ξ =
x

t
. (9.12)

To (9.12), we will add the “initial condition”

ρ = ρL at point ξ = ξL (9.13)

(Lmeans “left” for reasons that will appear later). There are different kinds of solutions for (9.12),(9.13).

Either φ′(ξ) = 0 and thus Φ(ξ) is locally constant. Or Φ′(ξ) 6= 0 and we have the solution

ξ = a(φ(ξ)). (9.14)

In the case of (9.5), we have

a(ρ) = uf

(

1− 2
ρ

ρc

)

(9.15)

and thus from (9.14)

φ(ξ) =
ρc
2

(

1− ξ

uf

)

. (9.16)

This gives the compatibility condition between ρL and ξL:

ρL =
ρc
2

(

1− ξL
uf

)

.

90 CHAPTER 9. VEHICLE TRAFFIC FLOW MODELING

For example, the function in figure 9.9 in the (x, t) half plane plotted with characteristics is solution

of the equation (9.12). The ξ-varying part of the solution is delimited by two constant states ρL and

ρR. Such a solution is called a rarefaction wave or a rarefaction fan. Because of

φ(ξR)− φ(ξL) =

∫ ξR

ξL

φ′(ξ) dξ,

we have the compatibility condition

ρR − ρL = − ρc
2uf

(ξR − ξL). (9.17)

For ξR > ξL, we have ρR < ρL. The flow indeed tends to rarefy with accelerating vehicles within the

fan.

Figure 9.2: A rarefaction fan, autosimilar solution of the traffic equation.

9.2.2 Shock wave discontinuous solution

We are now looking for solutions in the form

ρ(x, t) = φ(x− σt). (9.18)

The quantity σ is a wave propagation velocity. Putting the expression (9.18) into (9.7) gives

− σφ′(ξ) +
d

dξ
[q(φ(ξ))] = 0, ξ = x− σt. (9.19)

In order to consider discontinuous functions φ, we write a weak formulation of (9.19). Let ξ 7→ v(ξ)
a compactly supported smooth function. Then, using an integration by parts, we can write for any

ξ ∈ R,

0 = −σ
∫ ξ

−∞
v(s)φ′(s) ds+

∫ ξ

−∞
v(s)

d

dξ
[q(φ(s))] ds

= −[σv(s)φ(s)]ξ∞ + σ

∫ ξ

−∞
v′(s)φ(s) ds+ [v(s)q(φ(s))]ξ−∞ −

∫ ξ

−∞
v′(s)q(φ(s)) ds

= v(ξ) (−σφ(ξ) + q(φ(ξ))) + σ

∫ ξ

−∞
v′(s)φ(s) ds−

∫ ξ

−∞
v′(s)q(φ(s)) ds. (9.20)

9.2. SOME MATHEMATICAL ASPECTS OF NONLINEAR TRANSPORT EQUATIONS 91

Now consider a discontinuous weak solution in the form

Φ(ξ) = ρL + (ρR − ρL)H(ξ) (9.21)

where ρL and ρR and two constant states and H(x) = 1(x≥0)(x) denotes the Heaviside function. Let

v be a compactly supported function whose support includes the origin. From the weak formulation

we get

v(0)
(

−σφ(0−) + q(φ(0−))
)

+ σ

∫ 0

−∞
v′(s)φ(s) ds−

∫ 0

−∞
v′(s)q(φ(s)) ds = 0. (9.22)

In a similar way, integrating from ξ = 0 to +∞ gives

− v(0)
(

−σφ(0+) + q(φ(0+))
)

+ σ

∫ ∞

0
v′(s)φ(s) ds−

∫ ∞

0
v′(s)q(φ(s)) ds = 0. (9.23)

Because we have also

− σ

∫

R

v′(s)φ(s) ds+
∫

R

v′(s)q(φ(s)) ds = 0, (9.24)

summing up (9.22), (9.23) and (9.24) gives the relations

v(0)
{

−σ(φ(0+)− φ(0−)) + q(φ(0+))− q(φ(0−))
}

= 0 ∀v ∈ D(R).

One obtains the well-known Rankine-Hugoniot jump compatibility conditions

σ(ρR − ρL) = q(ρR)− q(ρL) (9.25)

often written

σ |[ρ]| = |[q(ρ)]|. (9.26)

Remark that due to the parabolic form of q, one can have q(ρL) = q(ρR) for ρL 6= ρR. In that case,

Figure 9.3: A discontinuous shock wave solution. Through the discontinuity, we must satisfy the

Rankine-Hugoniot jump compatibility conditions.

the Rankine-Hugoniot relations give σ = 0. In other words, stationary shock waves do exist.

92 CHAPTER 9. VEHICLE TRAFFIC FLOW MODELING

9.3 Transport equation of a vehicle fraction

There are different kinds of vehicles on a road: car, trucks, motobikes. It can be interesting to track

a particular category to known the behavior among all the vehicles. Sometimes, vehicles are forming

some platoons and one can be interested in knowing and following the concentration of the platoons.

If c denotes the concentration of vehicle of interest, the quantity (ρc) refers to the partial density of

vehicles of interest. If there is no distinction of velocity between all the kinds of vehicles, we have of

course the conservation law

∂t(ρc) + ∂x(ρc u(ρ)) = 0. (9.27)

For solutions of class C 1, equation (9.27) can be expanded as

ρ {∂tc+ u(ρ)∂c}+ c {∂tρ+ ∂x(ρu(ρ))} = 0.

Thus we get the transport equation on the concentration c:

∂tc+ u(ρ) ∂xc = 0. (9.28)

9.4 System of conservation laws

The continuity equation (9.8) combined with the conservation law (9.27) form a system of conserva-

tion laws

∂tU + ∂xF (U) = 0 (9.29)

with vector state U = (ρ, ρc) and vector flux F (U) = (ρ u(ρ), ρc u(ρ)). For smooth solution, it can

be written in nonconservation form

∂tU +A(U)∂xU = 0 (9.30)

where A(U) = DUF (U) is the Jacobian matrix of the flux. It is easy to check that

∂ρcu(ρ)

∂ρ
= ρc u′(ρ),

∂(ρcu(ρ))

∂(ρc)
= u(ρ).

Thus A(U) is equal to

A(U) =

(

a(ρ) 0

ρc u′(ρ) u(ρ)

)

(9.31)

where a(ρ) = q′(ρ) = u(ρ) + ρu′(ρ). If u′(ρ) = 0, then A(U) is in diagonal form and u(ρ) is an

eigenvalue of multiplicity 2. Otherwise if u′(ρ) 6= 0, then A(U) has two distinct eigenvalues a(ρ) and

u(ρ) so that A(U) is diagonalizable in R. A system in the form (9.29) such that the Jacobian matrix

is diagonalizable in R is called a hyperbolic system of conservation laws. The eigenvalues of the

Jacobian matrix define the characteristic velocities of the system. Here, we have λ1(U) = a(ρ) and

λ2(U) = u(ρ). The first eigenvector is equal to r1(U) = (1, c) and the second one is r2(U) = (0, 1).

Denoting by R(U) the eigenvector matrix, i.e. R(U) = col(r1(U), r2(U)) and

Λ(U) = diag(λ1(U), λ2(U)),

we have

A(U) = R(U)Λ(U)R−1(U). (9.32)

9.5. FINITE DIFFERENCE METHODS FOR NONLINEAR TRANSPORT EQUATIONS 93

9.5 Finite difference methods for nonlinear transport equations

Here, we need to design both robust and stable numerical methods, able to converge to (possibly) dis-

continuous weak solutions. In Chapter 2, we have introduced the upwind scheme for linear transport

equations. A good candidate here would be extend the upwind conservative schemes to the case of

nonlinear transport equations.

For that, we are going to locally linearize the traffic equation at each computational cell inter-

face. Let consider a uniform spatial discretization with nodes xj = jh, j ∈ Z and cells Ij =
(xj−1/2, xj+1/2), xj+1/2 = (j + 1/2)h. If on the interval (xj , xj+1), between instants tn and tn+1

the traffic equation is linearized into

∂tρ+ anj+1/2 ∂xρ = 0, x ∈ (xj , xj+1), t ∈ (tn, tn+1), (9.33)

for some mean propagation velocity, then the upwind scheme naturally writes

ρn+1
j = ρnj −

∆tn

h

(

(anj−1/2)
+(ρnj − ρnj−1) + (anj+1/2)

−(ρnj+1 − ρnj)
)

(9.34)

with the notation x+ = max(x, 0) and x− = min(x, 0). Unfortunately, the nonlinear upwind

scheme (9.34) is not in conservation form, making its irrelevant in most cases for discontinuous solu-

tions with incapability to correctly predict the shock propagation velocity at the discrete level. There

is only a particular choice where the upwind scheme (9.34) can be written in conservation form. The

following theorem enlightens the right choice of averages:

Theorem 4. If the average anj+1/2 is chosen such that

anj+1/2 =











a(ρnj) if ρnj = ρnj+1,

q(ρnj+1)− q(ρnj)

ρnj+1 − ρnj
otherwise.

(9.35)

then the upwind scheme (9.34) has the conservative form

ρn+1
j = ρnj −

∆tn

h

(

Φnj+1/2 − Φnj−1/2

)

(9.36)

with consistent numerical flux

Φnj+1/2 =
q(ρnj) + q(ρnj+1)

2
− 1

2
|anj+1/2| (ρnj+1 − ρnj). (9.37)

The average in (9.35) is called a Roe average and the numerical scheme (9.37) is called the Roe

scheme. The Roe scheme has ℓ1, ℓ2 and ℓ∞ stability properties under the Courant-Friedrichs-Lewy

condition (CFL condition)
∆tn

h
sup
j∈Z

|anj+1/2| ≤ 1. (9.38)

The proof is let to the reader as exercise. Remark that the Roe average formula can be put in mirror

with the Rankine-Hugoniot jump conditions. Indeed from (9.35) we have

anj+1/2 (ρ
n
j+1 − ρnj) = q(ρnj+1)− q(ρnj).

All happens as if the linearized problem were adapt its local propagation velocity to a shock wave

velocity and as if all the waves were replaced by shock waves in the linearized problem.

94 CHAPTER 9. VEHICLE TRAFFIC FLOW MODELING

9.5.1 Nonlinear extension of the Lax-Wendroff scheme

As in the linear case, it appears that the Roe scheme is only first order accurate. It is natural to look for

a second order accurate conservative scheme. To reach second order accuracy in time, we start from

the Taylor expansion

ρ(xj , t
n+1) = ρ(xj , t

n) + ∆tn∂tρ(xj , t
n) +

(∆tn)2

2
∂2ttρ(xj , t

n) +O((∆tn)3), (9.39)

Time partial derivatives are then replaced by spatial derivatives:

∂tρ = −∂xq(ρ), ∂2ttρ = −∂2xtq(ρ) = −∂x (a(ρ)∂tρ) = ∂x
(

a2(ρ)∂xρ
)

Thus,

ρ(xj , t
n+1)− ρ(xj , t

n)

∆tn
− ∆tn

2
∂x
(

a2(ρ)∂xρ
)

(xj , t
n) = ∂tρ(xj , t

n) +O((∆tn)2). (9.40)

The following spatial discretization for the second term still preserves the second order accuracy

ρn+1
j − ρnj
∆tn

− ∆tn

2

(anj+1/2)
2(ρnj+1 − ρnj)− (anj−1/2)

2(ρnj − ρnj−1)

h2
≈ ∂tρ(xj , t

n) (9.41)

where anj+1/2 is a second order accurate approximation of a(xj+1/2, t
n). For spatial derivatives, a

centered formula is simply used:

(∂xq(ρ))(xj , t
n) ≈

q(ρnj+1)− q(ρnj−1)

2h
. (9.42)

The use of the formulae (9.41),(9.42) gives the nonlinear Lax-Wendroff scheme. It can be written in

conservation form (exercise)

ρn+1
j = ρnj − λn

(

Φnj+1/2 − Φnj−1/2

)

(9.43)

with the Lax-Wendroff numerical flux

Φnj+1/2 =
q(ρnj) + q(ρnj+1)

2
− 1

2
λn(anj+1/2)

2(ρnj+1 − ρnj) (9.44)

with λn = ∆tn/h.

9.6 Nonlinear Lax-Friedrichs scheme, hybrid scheme

With similar arguments, it can be shown that the nonlinear extension of the Lax-Friedrichs scheme is

a conservative scheme with numerical flux

Φnj+1/2 =
q(ρnj) + q(ρnj+1)

2
− 1

2λn
(ρnj+1 − ρnj). (9.45)

The Roe scheme, the Lax-Wendroff scheme and the Lax-Friedrichs scheme have a common structure.

All three can be written

Φnj+1/2 =
q(ρnj) + q(ρnj+1)

2
− 1

2

(

λn|anj+1/2|
)θ

|anj+1/2|(ρnj+1 − ρnj) (9.46)

9.7. NUMERICAL SCHEME FOR THE TRANSPORT EQUATION OF A VEHICLE FRACTION95

with θ = −1 for the Lax-Friedrichs scheme, θ = 0 for the upwind Roe scheme and θ = 1 for the

Lax-Wendroff scheme. For any θ ∈ [−1, 1], expression (9.46) defines a hybrid interpolated numerical

flux.

Of course, there are many other ways to interpolate these three schemes. For example, one could have

used

Φnj+1/2 =
q(ρnj) + q(ρnj+1)

2
− 1

2λn

(

(λn|anj+1/2|)1+θ
+ − θ−(1− λn|anj+1/2|))

)

(ρnj+1−ρnj) (9.47)

with notations θ+ = max(θ, 0) and θ− = min(θ, 0). Actually, the numerical flux (9.47) is preferred

to (9.46) because it is Lipschitz continuous. On the other hand the numerical flux (9.46) has an infinite

derivative when a → 0 for θ ∈ (−1, 0], what can lead to numerical instabilities for low moving

characteristics. Another deeper reason to prefer expression (9.47) is that the numerical method has a

discrete entropy property for θ ∈ [−1, 0) which is not the case for (9.46). This topic is beyond the

goal of this course and is not much more detailed.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

y
=

 |a
|θ

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

y
=

 |a
|1+

θ+ −θ
− (1

−
|a

|)

Figure 9.4: Comparison of the interpolation functions in expressions (9.46) and (9.47).

9.7 Numerical scheme for the transport equation of a vehicle fraction

Formerly, we have talk about the transport equation of the fraction of a given class of vehicles:

∂tc+ u(ρ)∂xc = 0. (9.48)

Actually, it is preferable to work on a conservative form of (9.48) which is equivalent to (9.48) for

smooth solutions, as already seen:

∂t(ρc) + ∂x(ρcu(ρ)) = 0. (9.49)

96 CHAPTER 9. VEHICLE TRAFFIC FLOW MODELING

In particular, one can write Rankine-Hugoniot jump conditions on (9.49) whereas it is impossible on

the nonconservative equation (9.48).

The quantity (ρc) is the partial density of vehicles of the class. Because equation (9.49) is in con-

servation form (the number of vehicle of the class of interest is conserved), it is natural to look for

conservative schemes for numerical discretization to keep the conservation property at the discrete

level. The numerical scheme has to respect some expected properties like the fact that the fraction

variable c is a quantity evolving within the interval [0, 1]. We have to build a numerical scheme which

has a discrete local monotonicity property or a discrete maximum principle property. These properties

are sufficient conditions in order to ensure the discrete sequences (cnj)j∈Z to stay into [0, 1] if the initial

sequences (c0j)j∈Z has values into [0, 1].

From the previous numerical time-advance scheme for ρ:

ρn+1
j = ρnj − λn

(

Φnj+1/2 − Φnj−1/2

)

(9.50)

with Φnj+1/2 given for example by (9.47), we look for a conservative discretization of equation (9.49)

in the form

(ρc)n+1
j = (ρc)nj − λn

(

Ψn
j+1/2 −Ψn

j−1/2

)

. (9.51)

Once (ρcj)
n+1 is computed, one can compute cn+1

j as

cn+1
j =

(ρc)n+1
j

ρn+1
j

. (9.52)

The difficulty is to find a convenient numerical flux which guarantees c so stay in [0, 1] at the discrete

level. The numerical flux Ψn
j+1/2 must be consistent with the physical flux Ψ = ρcu(ρ). For stability

purpose, we decide to upwind the numerical flux Ψn
j+1/2 according to the sign of the total mass flux

Φnj+1/2. This means

Ψn
j+1/2 =

{

cnj Φ
n
j+1/2 if Φnj+1/2 ≥ 0,

cnj+1Φ
n
j+1/2 if Φnj−1/2 < 0.

(9.53)

Remark that expression (9.53) can be written in condensed form

Ψn
j+1/2 = cnj max(0,Φnj+1/2) + cnj+1 min(0,Φnj+1/2) (9.54)

or again

Ψn
j+1/2 =

cnj + cnj+1

2
Φnj+1/2 −

1

2
|Φnj+1/2|(cnj+1 − cnj). (9.55)

Because Φnj+1/2is consistent with the physical flux q(ρ) = ρ u(ρ), it is clear that Ψn
j+1/2 is consistent

with the flux Ψ = ρcu(ρ).

Let us show that the leading scheme has the expected properties under some conditions. Develop-

9.8. NUMERICAL EXPERIMENT 97

ing (9.51) with (9.55) gives

cn+1
j ρn+1

j = ρnj c
n
j − λn

(

Φnj+1/2

cnj + cj+1

2
− 1

2
|Φnj+1/2|(cnj+1 − cnj)

−Φnj−1/2

cnj−1 + cnj
2

+
1

2
|Φnj−1/2|(cnj − cnj−1)

)

= cnj

{

ρnj − λn(Φnj+1/2 − Φnj−1/2)
}

−λ
n

2
(|Φnj+1/2| − Φnj+1/2 + |Φnj−1/2|+Φnj−1/2) c

n
j

+
λn

2
(|Φnj+1/2| − Φnj+1/2) c

n
j+1

+
λn

2
|Φnj−1/2|+Φnj−1/2) c

n
j−1

= ρn+1
j cnj −

λn

2
(|Φnj+1/2| − Φnj+1/2 + |Φnj−1/2|+Φnj−1/2) c

n
j

+
λn

2
(|Φnj+1/2| − Φnj+1/2) c

n
j+1

+
λn

2
|Φnj−1/2|+Φnj−1/2) c

n
j−1.

Thus we see that the numerical scheme can be written in incremental form

cn+1
j = (1− αnj − βnj)c

n
j + αnj c

n
j−1 + βnj c

n
j+1 (9.56)

where αnj et βnj can be easily extracted from the previous development. In order to get the dis-

crete maximum principle property, we need to ensure that the coefficients αnj and βnj belong to [0, 1].
Assuming that the numerical time-advance scheme for ρ has the positivity property (meaning that

ρnj > 0 ∀j, n), we directly have αnj , β
n
j ≥ 0. The other bound is satisfied according to the new

CFL-like condition

λn sup
j∈Z

|Φnj+1/2|
ρn+1
j

≤ 1

2
. (9.57)

A drawback of the CFL condition (9.57) is that the expression is not completely explicit (λn is needed

to compute both ρn+1
j and Φnj+1/2). In practice, it is observed that a standard CFL condition less than

1/2 gives the expected numerical properties.

Let us emphasize that the construction above is important numerically speaking. Without taking care

of the discrete maximum principle property, some commonly used numerical schemes can create

overshoots or undershoots with violation of the admissible interval [0, 1].

9.8 Numerical experiment

9.8.1 Scilab source code

98 CHAPTER 9. VEHICLE TRAFFIC FLOW MODELING

1 // Traffic . sce (Scilab)

2 // Whitham first order model of traffic flow

3 // Periodic boundary conditions

4 //

5 function q = qrho(rho)

6 // Traffic parameters

7 ufree = 110;

8 rhoc = 400;

9 q = ufree * rho .* (1-rho/rhoc);

10 endfunction;

11 //

12 ufree = 110;

13 rhoc = 400;

14 N = 200;

15 cfl = 0.5;

16 theta = -0.1; // Hybridation parameter

17 h = 1 / N;

18 x = h/2 : h: 1-h/2;

19 rho = zeros(1,N);

20 phi = zeros(1,N+1);

21 aroe = zeros(1,N+1);

22 //

23 // Initial data

24 rho = 0.4*rhoc * (1 + 0.4*sin(6*%pi*x));

25 clf(); plot(x, rho, ’.-’);

26 //

27 for it=1:100

28 q = qrho(rho);

29 drho = [rho,rho(1)] - [rho(N),rho];

30 dq = [q,q(1)] - [q(N),q];

31 K = find(abs(drho)>=1e-5);

32 L = find(abs(drho)<1e-5);

33 aroe(K) = dq(K) ./ drho(K);

34 aroe(L) = ufree*(1-2*rho(L)/rhoc);

35 rl = cfl / max(abs(aroe));

36 phi = 0.5*([q,q(1)]+[q(N),q]) ...

37 - 0.5*((rl*abs(aroe)+1e-5).^theta) .* abs(aroe) .* drho;

38 rho = rho - rl * (phi(2:N+1) - phi(1:N));

39 drawlater();

40 clf();

41 u = ufree * (1-rho/rhoc);

42 subplot(3,1,1), plot(x, rho, ’.-’);

43 xgrid(); xtitle("Vehicle density [Nb/km]");

44 subplot(3,1,2), plot(x, u , ’.-’);

45 xgrid(); xtitle("Vehicle speed [km/h]");

46 subplot(3,1,3), plot(x, rho .* u , ’.-’);

47 xgrid(); xtitle("Vehicle flow rate [Nb/h]");

48 drawnow();

49 end;

9.9. PSEUDO TWO-DIMENSIONAL MODEL FOR LANE CONNECTION MODELING 99

80

240

220

200

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

180

160

140

120

100

1.0

Vehicle density [Nb/km]

80

85

45
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

70

65

60

55

50

75

Vehicle speed [km/h]

0.0

10500

11000

0.1 0.2

10000

0.4

9500

0.5 0.6 0.7

9000

0.8

8500

0.9 1.00.3
8000

Vehicle flow rate [Nb/h]

Figure 9.5: Numerical solution using a CFL number equal to 0.5 and θ = −0.1, after one time

iterations.

80

240

220

200

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

180

160

140

120

100

1.0

Vehicle density [Nb/km]

80

85

45
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

70

65

60

55

50

75

Vehicle speed [km/h]

0.0

10500

11000

0.1 0.2

10000

0.4

9500

0.5 0.6 0.7

9000

0.8

8500

0.9 1.00.3
8000

Vehicle flow rate [Nb/h]

Figure 9.6: Numerical solution using a CFL number equal to 0.5 and θ = −0.1, after 20 time itera-

tions.

9.8.2 One-dimensional numerical results

9.9 Pseudo two-dimensional model for lane connection modeling

The heuristic multidimensional extension of the traffic flow equation with a diffusion term writes

∂tρ+∇ · (ρ u(ρ)n)− ν∆ρ = 0. (9.58)

100 CHAPTER 9. VEHICLE TRAFFIC FLOW MODELING

110

210

190

180

170

0.0 0.1 0.2

160

0.3

150

0.4 0.5 0.6

140

0.8 0.9

130

1.0

120

200

0.7

Vehicle density [Nb/km]

0.10.0

80

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

75

70

65

60

55

0.2
50

Vehicle speed [km/h]

11000

10800

9000

10600

10400

10200

10000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1.0

9800

9600

9400

9200

0.8

Vehicle flow rate [Nb/h]

Figure 9.7: Numerical solution using a CFL number equal to 0.5 and θ = −0.1, after 100 time

iterations. Several shock waves appear. The numerical scheme is able to capture the discontinuities.

9.9.1 freefem++ source code for the viscous two-dimensional model

1 // Traffic .edp (Freefem++)rho

2 // Peudo one−dimension vehicle trafic flow with road branching

3 // Model \ partial_t \rho+\nabla(rho V(rho) n)−\nu\Delta\rho=0.

4 // V(rho) = q(rho) /rho with q(rho) = rho ∗ Vfree∗(1−rho/rhoc)

5 //

6 real [int] A(2), B(2), C(2), D(2), E(2);

7 real [int] F(2), G(2), H(2), I(2), J(2);

8 real [int] K(2), L(2), M(2), Ng(2);

9 A = [0,0]; B = [9, 1.5]; C = [12, 1.5]; D = [21,0];

10 E = [6, 2]; F = [15, 2]; G = [0, 4]; H = [9, 2.5];

11 I = [12, 2.5]; J = [21, 4]; K = [0, 1]; L = [0, 3];

12 M = [21, 1]; Ng = [21, 3];

13 border c1(t=0,1){x=(1-t)*A[0]+t*B[0]; y=(1-t)*A[1]+t*B[1];}

14 border c2(t=0,1){x=(1-t)*B[0]+t*C[0]; y=(1-t)*B[1]+t*C[1];}

15 border c3(t=0,1){x=(1-t)*C[0]+t*D[0]; y=(1-t)*C[1]+t*D[1];}

16 border c4(t=0,1){x=(1-t)*G[0]+t*L[0]; y=(1-t)*G[1]+t*L[1];}

17 border c5(t=0,1){x=(1-t)*L[0]+t*E[0]; y=(1-t)*L[1]+t*E[1];}

18 border c6(t=0,1){x=(1-t)*E[0]+t*K[0]; y=(1-t)*E[1]+t*K[1];}

19 border c7(t=0,1){x=(1-t)*K[0]+t*A[0]; y=(1-t)*K[1]+t*A[1];}

20 border c8(t=0,1){x=(1-t)*D[0]+t*M[0]; y=(1-t)*D[1]+t*M[1];}

21 border c9(t=0,1){x=(1-t)*M[0]+t*F[0]; y=(1-t)*M[1]+t*F[1];}

22 border c10(t=0,1){x=(1-t)*F[0]+t*Ng[0]; y=(1-t)*F[1]+t*Ng[1];}

23 border c11(t=0,1){x=(1-t)*Ng[0]+t*J[0]; y=(1-t)*Ng[1]+t*J[1];}

24 border c12(t=0,1){x=(1-t)*J[0]+t*I[0]; y=(1-t)*J[1]+t*I[1];}

25 border c13(t=0,1){x=(1-t)*I[0]+t*H[0]; y=(1-t)*I[1]+t*H[1];}

26 border c14(t=0,1){x=(1-t)*H[0]+t*G[0]; y=(1-t)*H[1]+t*G[1];}

27 //

9.9. PSEUDO TWO-DIMENSIONAL MODEL FOR LANE CONNECTION MODELING 101

28 mesh Th = buildmesh(c1(60)+c2(30)+c3(60)

29 +c4(6)+c5(50)+c6(50)+c7(6)

30 +c8(6)+c9(50)+c10(50)+c11(6)

31 +c12(60)+c13(30)+c14(60));

32 plot(Th, ps = "mesh.eps");

33 //

34 fespace Vh(Th, P1);

35 Vh rho, rhoold, sigma, sigmaold, rhoh, sigmah, p, ph;

36 Vh n1, n2, u1, u2, u1visu, u2visu, vrho;

37 fespace Wh(Th, P2);

38 Wh phi, phih;

39 //

40 real rho0 = 25; // [nb cars / km]

41 real rhoc = 300; // critical density

42 real vfree = 110; // [km / h]

43 real nu = 10; // viscosity

44 real dt = 0.004; // time step

45 real t = 0; // current time

46 // Initial field

47 rho = rho0;

48 rhoold = rho0;

49

50 // Step 0. Define a velocity unit vector by solving an

51 // independent Laplace problem, then get the unit

52 // vector of the gradient of the solution

53 //

54 problem Laplace(phi, phih) =

55 int2d(Th)(dx(phi)*dx(phih) + dy(phi)*dy(phih))

56 +int1d(Th, c4)(phih) + int1d(Th, c7)(phih)

57 +on(c8, c11, phi=0);

58 Laplace;

59 n1 = dx(phi)/sqrt(dx(phi)^2+dy(phi)^2);

60 n2 = dy(phi)/sqrt(dx(phi)^2+dy(phi)^2);

61 vrho = vfree * (1-rho / rhoc);

62 //

63 u1 = vrho*n1;

64 u2 = vrho*n2;

65 //

66 problem step1(rho, rhoh) =

67 int2d(Th)(rho*rhoh/dt)

68 -int2d(Th)(convect([u1,u2], -dt, rhoold)*rhoh/dt)

69 +int2d(Th)(nu*dx(rho)*dx(rhoh) + nu*dy(rho)*dy(rhoh))

70 +int2d(Th)(rho*dx(u1)*rhoh+rho*dy(u2)*rhoh)

71 +on(c4, rho=rho0)

72 +on(c7, rho=rhoc);

73

74 for (int it=0 ; it<200 ; it++) {

75 t += dt;

76 step1;

77 rhoold = rho;

78 vrho = vfree * (1 - rho / rhoc);

79 u1 = vrho * n1;

102 CHAPTER 9. VEHICLE TRAFFIC FLOW MODELING

80 u2 = vrho * n2;

81 plot(rho, nbiso=50, fill=1, value=1, wait=0);

82 }

83 cout << "Final time = " << t << endl;

84 plot(rho, nbiso=40, fill=1, value=1, ps="rho.eps");

85 u1visu = u1/vfree;

86 u2visu = u2/vfree;

87 plot([u1visu, u2visu], value=1, ps="speed.eps");

9.9.2 Numerical results

Figure 9.8: Computational mesh

9.9. PSEUDO TWO-DIMENSIONAL MODEL FOR LANE CONNECTION MODELING 103

IsoValue
17.9487
28.5256
35.5769
42.6282
49.6795
56.7308
63.7821
70.8333
77.8846
84.9359
91.9872
99.0385
106.09
113.141
120.192
127.244
134.295
141.346
148.397
155.449
162.5
169.551
176.603
183.654
190.705
197.756
204.808
211.859
218.91
225.962
233.013
240.064
247.115
254.167
261.218
268.269
275.321
282.372
289.423
307.051

Vec Value
0
0.0482482
0.0964963
0.144744
0.192993
0.241241
0.289489
0.337737
0.385985
0.434233
0.482482
0.53073
0.578978
0.627226
0.675474
0.723722
0.77197
0.820219
0.868467
0.916715

Figure 9.9: Density contour levels and velocity field at a given instant. One can observe a backward

propagating traveling wave at the top left lane, revealing the downstream bottleneck.

104 CHAPTER 9. VEHICLE TRAFFIC FLOW MODELING

Chapter 10

Biological cell migration and

proliferation

Modeling of biological cell migration and proliferation is of importance for the understanding of

diseases like cancer (tumour growth, metastases migration, tissue invasion, etc.). When the cell density

is large enough, the continuous medium assumption is a good approximation and partial differential

equations can be written.

10.1 Biological and mathematical requirements

Biological expectations and some expected mathematical properties lead to the following require-

ments. In what follows, we are going to derive the “simplest” mathematical model able to fulfill these

requirements.

1. Without proliferation and apoptosis (cell death), the number of cell has to be conserved. So

migration phenomenon should be modeled by a conservation law.

2. Travelling waves and sharp cell fronts are observed in biological experiments. Thus this be-

haviour must be reproduced by the model.

3. Sometimes cell fronts reach a steady state. That means that the cell fronts slow down and stop in

finite time, revealing a cell region with a boundary (think about animal skin marks and patterns

for example). This behaviour also has to be reproduced by the model.

4. Known biochemical factors like chemoattractant and chemorepellent agents are able to attract

or repel biological cells.

5. Cell motility is the ability for a cell to freely move, generally with a brownian motion. From the

macroscopic point of view, this is a diffusive phenomenon. If the diffusion is isotropic, then the

diffusion operator is the Laplace operator.

6. There are biological regulation factors that limit the cell density up to a certain threshold.

105

106 CHAPTER 10. BIOLOGICAL CELL MIGRATION AND PROLIFERATION

10.2 Guidelines for PDE modeling

As already seen in a previous chapter, the Keller-Segel model already takes into account cell motility

(diffusion), proliferation (source terms) and propagation due to the presence of a chemoattractant c.
Moreover, the Keller-Segel system is in conservation form.

But he Keller-Segel cannot reproduce traveling waves or sharp cell moving fronts. So a modification

of these equations or the adding of a new modeling term is necessary.

In traffic flow modeling we have seen that a nonlinear flux term in the equation can create unsteady or

steady discontinuities (shock waves). So the idea is the replace the Keller-Segel convection term

∇ · (αρ∇c)
by

∇ · (q(ρ)∇c) (10.1)

for a nonlinear concave function q : [0,+∞) → R. Thus, we are looking for a mathematical model

in the form

∂tρ− ν∆ρ+∇ · (q(ρ)∇c) = rρ(ρ∞ − ρ), (10.2)

∂tc−∆c = s(
ρ

ρ∞
− c) (10.3)

where ν > 0 is the diffusion rate, r > 0 is a proliferation rate and ρ∞ > 0 is the threshold cell density.

The quantity c is the concentration of chemoattractant (or chemorepellent according to the sign of

q(ρ)). The parameter s > 0 is a reaction rate for c. The convective flux for the cells is

J = q(ρ)∇c. (10.4)

Next step, we need a closure for q(ρ). The first constraint is q(0) = 0 (no flux is there is no cell). In

the direction n = ∇c
||∇c|| , there is a flux

j = J · n = q(ρ) ||∇c||.
The flux can be designed in order to attract cells located in low density regions toward denser regions

(clustering) and to repel cells located in dense regions in order to colonize free regions (migration).

One can consider for example a strictly concave function q(ρ) such that q(0) = 0 and q(ρc) = 0 for

some ρc ∈ (0, ρ∞]. One can consider for example a polynomial of degree 2 crossing the two points:

q(ρ) = αρ

(

1− ρ

ρc

)

(10.5)

with some constant α > 0. Practically, the constants α, ρc and ρ∞ should be chosen according

to some biological considerations and by identification from measurements. Figure 10.1 shows a

candidate function q(ρ). The characteristic velocity for the convective term is

v = q′(ρ)∇c. (10.6)

In the case of (10.5), one gets

v = α

(

1− 2
ρ

ρc

)

∇c. (10.7)

There is two ways to get a null characteristic velocity leading in that case to a locally stationary wave.

Either ∇c = 0 or q′(ρ) = 0.

10.3. NUMERICAL RESULTS 107

Figure 10.1: Function ρ 7→ q(rho). For ρ ∈ [0, ρc], the flux is positive and the chemical species acts

as a chemoattractant [region(a)]. For ρ ∈ [ρc, ρ∞], the flux is negative and the chemical species with

acts as a chemorepellent [region (b)].

10.3 Numerical results

10.3.1 freefem++ source code

1 //

2 // MigrationNN.edp (Freefem++)

3 // Migration/ Proliferation model − florian de vuyst

4 //

5 real Lx = 3;

6 real Ly = 2;

7 real dt = 0.05;

8 real uf = 1;

9 real rhoc = 100;

10 mesh Th = square(60, 40, [x*Lx,y*Ly]);

11 fespace Uh(Th, P2, periodic=[[3,x],[1,x]]);

12 fespace Vh(Th, P1, periodic=[[3,x],[1,x]]);

13 Uh rho, lrho, rhoold, rhoh, c, ch, cold;

14 Vh u1, u2, u, n1, n2, v1, v2, rhop1, cp1;

15 rho = rhoc*exp(-40*(x-Lx/4)^2 - 40*(y-Ly/2)^2)

16 + rhoc*exp(-40*(x-3*Lx/4)^2 - 40*(y-Ly/2)^2)

17 + rhoc*exp(-40*(x-0.55*Lx)^2 - 40*(y-Ly/2)^2);

18 Th = adaptmesh(Th, rho, periodic=[[3,x],[1,x]]);

19 plot(Th);

20 rho = rho;

21 c = rho/rhoc;

22 rhoold = rho;

23 cold = c;

24 // plot (rho, nbiso=50, wait=1);

25 //

26 problem migr([rho, c], [rhoh, ch]) =

27 int2d(Th)(rho*rhoh/dt)

28 -int2d(Th)(convect([v1,v2], -dt,rhoold)*rhoh/dt)

29 +int2d(Th)(dx(v1)*rho*rhoh+dy(v2)*rho*rhoh)

30 +int2d(Th)(0.01*dx(rho)*dx(rhoh)+0.01*dy(rho)*dy(rhoh))

31 -int2d(Th)(0.01*rho*(rhoc-rhoold)*rhoh)

108 CHAPTER 10. BIOLOGICAL CELL MIGRATION AND PROLIFERATION

32 +int2d(Th)(c*ch/dt)

33 -int2d(Th)(cold*ch/dt)

34 +int2d(Th)(dx(c)*dx(ch)+dy(c)*dy(ch))

35 -int2d(Th)(10*(rho/rhoc-c)*ch);

36 //

37 for (int it=0; it<20; it++) {

38 for (int substep=0; substep<2; substep++){

39 u1 = -dx(cold);

40 u2 = -dy(cold);

41 v1 = 0.5 * u1 * rhoold/rhoc;

42 v2 = 0.5 * u2 * rhoold/rhoc;

43 migr;

44 Th = adaptmesh(Th, rho, periodic=[[3,x],[1,x]]);

45 rho=rho;

46 c=c;

47 rhoold = rho;

48 cold = c;

49 }

50 // Visu

51 rhop1 = rho; cp1 = c;

52 plot(Th, rhop1, nbiso=50, fill=0, value=1,

53 ps="migr_it="+it+".eps");

54 }

55 cout << "Done.\n";

10.3.2 Numerical results

10.3. NUMERICAL RESULTS 109

IsoValue
1.01785
3.05508
5.09232
7.12955
9.16678
11.204
13.2412
15.2785
17.3157
19.353
21.3902
23.4274
25.4647
27.5019
29.5391
31.5764
33.6136
35.6508
37.6881
39.7253
41.7625
43.7998
45.837
47.8742
49.9115
51.9487
53.9859
56.0232
58.0604
60.0976
62.1349
64.1721
66.2093
68.2466
70.2838
72.321
74.3583
76.3955
78.4327
80.47
82.5072
84.5444
86.5817
88.6189
90.6561
92.6934
94.7306
96.7678
98.8051
100.842

IsoValue
0.584089
1.75379
2.92349
4.09319
5.26289
6.43259
7.60229
8.77199
9.94169
11.1114
12.2811
13.4508
14.6205
15.7902
16.9599
18.1296
19.2993
20.469
21.6387
22.8084
23.9781
25.1478
26.3175
27.4872
28.6569
29.8266
30.9963
32.166
33.3357
34.5054
35.6751
36.8448
38.0145
39.1842
40.3539
41.5236
42.6933
43.863
45.0327
46.2024
47.3721
48.5418
49.7115
50.8812
52.0509
53.2206
54.3903
55.56
56.7297
57.8994

IsoValue
0.506198
1.51998
2.53376
3.54754
4.56132
5.5751
6.58888
7.60266
8.61644
9.63022
10.644
11.6578
12.6716
13.6853
14.6991
15.7129
16.7267
17.7405
18.7542
19.768
20.7818
21.7956
22.8094
23.8231
24.8369
25.8507
26.8645
27.8783
28.892
29.9058
30.9196
31.9334
32.9472
33.961
34.9747
35.9885
37.0023
38.0161
39.0299
40.0436
41.0574
42.0712
43.085
44.0988
45.1125
46.1263
47.1401
48.1539
49.1677
50.1814

Figure 10.2: Cell density contour levels at different instants. Initially there are three cell sites. During

migration and proliferation, the sites are growing and merging. One can see the sharp cell front moving

in the medium.

110 CHAPTER 10. BIOLOGICAL CELL MIGRATION AND PROLIFERATION

IsoValue
0.4902
1.47219
2.45417
3.43616
4.41815
5.40013
6.38212
7.36411
8.34609
9.32808
10.3101
11.2921
12.274
13.256
14.238
15.22
16.202
17.184
18.166
19.1479
20.1299
21.1119
22.0939
23.0759
24.0579
25.0399
26.0219
27.0038
27.9858
28.9678
29.9498
30.9318
31.9138
32.8958
33.8777
34.8597
35.8417
36.8237
37.8057
38.7877
39.7697
40.7517
41.7336
42.7156
43.6976
44.6796
45.6616
46.6436
47.6256
48.6075

IsoValue
0.488583
1.46804
2.4475
3.42696
4.40642
5.38588
6.36534
7.3448
8.32426
9.30372
10.2832
11.2626
12.2421
13.2216
14.201
15.1805
16.1599
17.1394
18.1189
19.0983
20.0778
21.0572
22.0367
23.0161
23.9956
24.9751
25.9545
26.934
27.9134
28.8929
29.8724
30.8518
31.8313
32.8107
33.7902
34.7697
35.7491
36.7286
37.708
38.6875
39.667
40.6464
41.6259
42.6053
43.5848
44.5643
45.5437
46.5232
47.5026
48.4821

IsoValue
0.493843
1.48235
2.47086
3.45937
4.44788
5.43639
6.4249
7.41341
8.40192
9.39043
10.3789
11.3674
12.356
13.3445
14.333
15.3215
16.31
17.2985
18.287
19.2755
20.264
21.2525
22.241
23.2296
24.2181
25.2066
26.1951
27.1836
28.1721
29.1606
30.1491
31.1376
32.1261
33.1146
34.1032
35.0917
36.0802
37.0687
38.0572
39.0457
40.0342
41.0227
42.0112
42.9997
43.9883
44.9768
45.9653
46.9538
47.9423
48.9308

Figure 10.3: Cell density contour levels at different instants. Initially there are three cell sites. During

migration and proliferation, the sites are growing and merging. One can see the sharp cell front moving

in the medium.

10.3. NUMERICAL RESULTS 111

IsoValue
0.501963
1.50563
2.50929
3.51296
4.51662
5.52029
6.52395
7.52762
8.53128
9.53495
10.5386
11.5423
12.5459
13.5496
14.5533
15.5569
16.5606
17.5643
18.5679
19.5716
20.5753
21.5789
22.5826
23.5863
24.5899
25.5936
26.5972
27.6009
28.6046
29.6082
30.6119
31.6156
32.6192
33.6229
34.6266
35.6302
36.6339
37.6376
38.6412
39.6449
40.6486
41.6522
42.6559
43.6596
44.6632
45.6669
46.6705
47.6742
48.6779
49.6815

IsoValue
0.512442
1.53643
2.56042
3.58441
4.6084
5.63239
6.65638
7.68037
8.70436
9.72835
10.7523
11.7763
12.8003
13.8243
14.8483
15.8723
16.8963
17.9203
18.9442
19.9682
20.9922
22.0162
23.0402
24.0642
25.0882
26.1122
27.1362
28.1602
29.1841
30.2081
31.2321
32.2561
33.2801
34.3041
35.3281
36.3521
37.3761
38.4
39.424
40.448
41.472
42.496
43.52
44.544
45.568
46.592
47.616
48.6399
49.6639
50.6879

IsoValue
0.539463
1.61496
2.69046
3.76595
4.84145
5.91695
6.99245
8.06794
9.14344
10.2189
11.2944
12.3699
13.4454
14.5209
15.5964
16.6719
17.7474
18.8229
19.8984
20.9739
22.0494
23.1249
24.2004
25.2759
26.3514
27.4269
28.5024
29.5779
30.6534
31.7289
32.8044
33.8799
34.9554
36.0309
37.1064
38.1819
39.2574
40.3329
41.4084
42.4839
43.5594
44.6349
45.7104
46.7859
47.8613
48.9368
50.0123
51.0878
52.1633
53.2388

Figure 10.4: Cell density contour levels at different instants. Initially there are three cell sites. During

migration and proliferation, the sites are growing and merging. One can see the sharp cell front moving

in the medium.

112 CHAPTER 10. BIOLOGICAL CELL MIGRATION AND PROLIFERATION

Chapter 11

Gas Dynamics

When a fluid is considered incompressible and inviscid and is not subjected to the effect of external

forces, the governing equations are the so-called compressible Euler equations. They are made of the

continuity equation that expresses the conservation of the mass

∂tρ+∇ · (ρu) = 0, (11.1)

(ρ is the fluid density, u is the velocity), the equation of conservation of the momentum

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0 (11.2)

(p is the pressure of the fluid) and the equation of the conservation of the energy

∂t(ρE) +∇ · ((ρE + p)u) = 0 (11.3)

where E is the specific total energy made of the kinetic energy u2/2 (u = ||u||) and the internal

energy e:

E =
u2

2
+ e (11.4)

The Euler system (11.1)-(11.3) is a rather complex system. It is known that solutions can develop

discontinuity (shock waves) even if the initial data is of arbitrary regularity. This possible loss of regu-

larity has strong implications on theoretical numerical analysis and the proper way to discretize those

equations. Best numerical methods for the Euler equations are conservative upwind Finite Volume

methods.

Despite we here adopt the method of Characteristics + FE strategy. For numerical experiments, we

will focus on a supersonic flow around an elliptic body. We will see that the numerical solutions are

not so bad and anyway give a rather good information on the features of the supersonic flow (separated

shock, compression shock, etc.). So the freefem++ environment is a good candidate a have a first

sight on those king of solutions before going further in more sophisticated conservative numerical

methods. In order to implement a FE-like program for the Euler equations, we need to prepare the

equations in a suited form. For the continuity equation, remember that using the total derivative, for

sufficiently smooth solutions one can write

Dtρ+ ρ∇ · u = 0 (11.5)

or equivalently

Dtaρ +∇ · u = 0 (11.6)

113

114 CHAPTER 11. GAS DYNAMICS

using the new variable aρ = log(ρ). Equation (11.6) is interesting because it is linear with respect to

the variables aρ and u. Now, let us consider the momentum equation. Using the standard Einstein’s

mute indexes, it can be rewritten

∂t(ρui) + (ρuiuj),j + p,i = 0, i = 1, . . . , d.

From the continuity equation, ∂tρ = −(ρuj),j , it is easy to obtain

∂tui + ujui,j +
1

ρ
p,i = 0

or in vector form

∂tu+ u · ∇u+
1

ρ
∇p = 0 (11.7)

or again

Dtu+
1

ρ
∇p = 0. (11.8)

By the same approach, one can obtain the equation on E

DtE +
1

ρ
∇ · (pu) = 0. (11.9)

One can also successively obtain from (11.4) and (11.8)

0 = Dte+
1

2
Dt(u

2) +
1

ρ
∇ · (pu)

= Dte+ u ·Dtu+
1

ρ
∇ · (pu)

= Dte−
1

ρ
u · ∇p+ 1

ρ
∇ · (pu)

= Dte+
p

ρ
∇ · u (11.10)

which gives an equation on for the internal energy.

11.1 Perfect gas

The perfect gas closure is usually

e =
1

γ − 1

p

ρ
(11.11)

where γ is the ratio of the (constant here) specific heats cp and cv. The ratio γ is equal to

γ = 1.4 (11.12)

for a diatomic gas. Let us write an equation for the pressure. From equations (11.5) and (11.10), one

has

Dt(ρe) + (ρe+ p)∇ · u = 0, (11.13)

11.2. DISCRETIZATION IN TIME 115

then

Dtp+ γp∇ · u = 0. (11.14)

from (11.11). It appears again interesting to introduced the new variable ap = log(p) to get the linear

equation

Dtap + γ∇ · u = 0. (11.15)

So far we have written the original system (11.1)-(11.3) in the equivalent form (for smooth solutions)

Dtaρ +∇ · u = 0, (11.16)

Dtu+
1

ρ
∇p = 0, (11.17)

Dtap + γ∇ · u = 0. (11.18)

A nonlinear term remains in the equation, namely 1
ρ∇p. For practical reasons appearing in the numer-

ical approach, we will rather the following equivalent script of equation (11.17):

1

T
Dtu+∇ap = 0 (11.19)

where T = p/ρ is a temperature.

11.2 Discretization in time

Let ∆t be a time step. The total derivatives are discretized according to the method of characteristics:

an+1
ρ − anρ ◦Xn

∆t
+∇ · un+1 = 0, (11.20)

1

Tn
un+1 − un ◦Xn

∆t
+∇an+1

ρ = 0, (11.21)

an+1
p − anp ◦Xn

∆t
+ γ∇ · un+1 = 0. (11.22)

Some comments are necessary: first remark that for stability purposes, the numerical scheme is made

implicit. The divergence and gradient terms are systematically taken as implicit. In this way, the three

equations are fully coupled. One can notice that the term 1/T is taken explicit in order to keep a linear

system. The time discretization is said to be semi-implicit. In this way, the problem (11.20)-(11.22)

of unknowns (an+1
ρ ,un+1, an+1

p) becomes linear.

11.3 Full discretization

To complete the discretization, we use the Finite Element formalism for spatial discretization. Due to

the fact that we have a system of PDEs, we need a test function for each equation (four in two space

dimensions).

116 CHAPTER 11. GAS DYNAMICS

Let us denote v the test function for the aρ-equation, v1 and v2 the test functions for each compo-

nent of the velocity and w the test function for the ap-equation. The variational formulation reads

∫

Ω

an+1
ρ − anρ ◦Xn

∆t
v dx+

∫

Ω
∇ · un+1v dx

+

∫

Ω

1

Tn
un+1 − un ◦Xn

∆t
· (v1, v2) dx+

∫

Ω
∇an+1

ρ · (v1, v2) dx

+

∫

Ω

an+1
p − anp ◦Xn

∆t
w dx+ γ

∫

Ω
∇ · un+1w dx = 0 ∀v, v1, v2, w ∈ V h. (11.23)

11.4 Numerical experiments

11.4.1 freefem++ source code of the supersonic flow problem around an ellipse

1 // Program schockellipse .edp (freefem++)

2 // Supersonic perfect gas flow around an ellipse

3 // Be careful : nonconservative formulation of the

4 // compressible Euler equations .

5 // A conservative Finite Volume method should be used

6 // Author : florian .de−vuyst@ecp.fr

7 //

8 real gamma = 1.4;

9 real pinf = 1e2;

10 real rhoinf = 0.3;

11 real cinf = sqrt(gamma*pinf/rhoinf); // speed of sound

12 real uinf = 1.5 * cinf; // infinite flow Mach number is 2

13 real radius = 10; // Radius of the infinite flow boundary

14 real alpha = 0.3; // Attack angle (radian)

15 real x0 = -4; // x−translation of the body

16 real ra = 2, rb = 0.3; // Features of the body ellipse

17 real dt = 0.01; // Time step

18 //

19 // External infinite boundary is a circle

20 border binf(t=0,2*pi){x=radius*cos(t); y=radius*sin(t);}

21 // Body is an ellipse

22 border wall(t=0,2*pi){x=x0+cos(alpha)*ra*cos(t)+sin(alpha)*rb*sin(t);

23 y=-sin(alpha)*ra*cos(t)+cos(alpha)*rb*sin(t);}

24 mesh Th = buildmesh(binf(100)+wall(-80));

25 plot(Th, wait=0, ps="Th.eps");

26 //

27 fespace Vh(Th, P1); // FE space

28 Vh rho, p, arho, ap, T, u1, u2; // unknowns

29 Vh rhoold, pold, Told, arhoold, apold, u1old, u2old;

30 // fields at former instant

31 Vh v, v1, v2, w; // test functions

32 //

33 // Field initialization

34 rho = rhoinf; p = pinf;

35 u1 = uinf; u2 = 0;

11.4. NUMERICAL EXPERIMENTS 117

36 arho = log(rho); ap = log(p);

37 T = p/rho; // temperature−like

38 plot(T, nbiso=50, fill=1, value=1, wait=0);

39 // Go for the partial differential problem

40 problem euler([arho, u1, u2, ap], [v, v1, v2, w]) =

41 int2d(Th)(arho*v/dt)

42 -int2d(Th)(convect([u1old,u2old], -dt, arhoold)*v/dt)

43 +int1d(Th, binf)((uinf*N.x)*v)

44 -int2d(Th)(u1*dx(v)+u2*dy(v))

45 +int2d(Th)(u1*v1/Told/dt)

46 -int2d(Th)(convect([u1old,u2old], -dt, u1old)*v1/Told/dt)

47 +int2d(Th)(u2*v2/Told/dt)

48 -int2d(Th)(convect([u1old,u2old], -dt, u2old)*v2/Told/dt)

49 +int2d(Th)(dx(ap)*v1+dy(ap)*v2)

50 +int2d(Th)(ap*w/dt)

51 -int2d(Th)(convect([u1old,u2old], -dt, apold)*w/dt)

52 +int1d(Th, binf)(gamma*(uinf*N.x)*w)

53 -int2d(Th)(gamma*u1*dx(w)+gamma*u2*dy(w));

54

55 for (int it=0; it<80; it++) {

56 u1old = u1; u2old = u2;

57 arhoold = arho;

58 apold = ap;

59 Told = T;

60 euler;

61 if (it>70){

62 Th = adaptmesh(Th,ap);

63 u1=u1; u2=u2; arho=arho; ap=ap;

64 }

65 rho = exp(arho);

66 p = exp(ap);

67 T = p/rho;

68 plot(rho, nbiso=50, fill=0, value=1);

69 if (it<20) {

70 plot(rho, nbiso=50, fill=1, value=1, ps="rho_mach1.5_it"+it+".eps");

71 }

72 }

73 plot(T, nbiso=50, fill=1, value=1, ps="T.eps");

74 plot(T, nbiso=50, fill=0, value=1, ps="Tiso.eps");

75 plot(p, nbiso=50, fill=1, value=1, ps="p.eps");

76 plot(rho, nbiso=50, fill=1, value=1, ps="rho.eps");

77 plot([u1,u2], ps="velocity.eps");

78 plot(Th, ps="finalmesh.eps");

11.4.2 Numerical results at infinite Mach number equal to 1.5

11.4.3 Numerical results at infinite Mach number equal to 4

118 CHAPTER 11. GAS DYNAMICS

IsoValue
0.133132
0.148082
0.158048
0.168015
0.177981
0.187948
0.197914
0.20788
0.217847
0.227813
0.23778
0.247746
0.257713
0.267679
0.277646
0.287612
0.297579
0.307545
0.317512
0.327478
0.337445
0.347411
0.357378
0.367344
0.37731
0.387277
0.397243
0.40721
0.417176
0.427143
0.437109
0.447076
0.457042
0.467009
0.476975
0.486942
0.496908
0.506875
0.516841
0.526808
0.536774
0.54674
0.556707
0.566673
0.57664
0.586606
0.596573
0.606539
0.616506
0.641422

IsoValue
0.136519
0.150791
0.160306
0.169821
0.179336
0.18885
0.198365
0.20788
0.217395
0.22691
0.236424
0.245939
0.255454
0.264969
0.274484
0.283998
0.293513
0.303028
0.312543
0.322058
0.331572
0.341087
0.350602
0.360117
0.369632
0.379146
0.388661
0.398176
0.407691
0.417206
0.42672
0.436235
0.44575
0.455265
0.46478
0.474294
0.483809
0.493324
0.502839
0.512354
0.521868
0.531383
0.540898
0.550413
0.559928
0.569442
0.578957
0.588472
0.597987
0.621774

IsoValue
0.13627
0.150715
0.160346
0.169976
0.179606
0.189236
0.198866
0.208496
0.218126
0.227756
0.237386
0.247016
0.256646
0.266276
0.275907
0.285537
0.295167
0.304797
0.314427
0.324057
0.333687
0.343317
0.352947
0.362577
0.372207
0.381838
0.391468
0.401098
0.410728
0.420358
0.429988
0.439618
0.449248
0.458878
0.468508
0.478138
0.487768
0.497399
0.507029
0.516659
0.526289
0.535919
0.545549
0.555179
0.564809
0.574439
0.584069
0.593699
0.60333
0.627405

IsoValue
0.134192
0.14863
0.158256
0.167882
0.177508
0.187134
0.196759
0.206385
0.216011
0.225637
0.235263
0.244888
0.254514
0.26414
0.273766
0.283392
0.293017
0.302643
0.312269
0.321895
0.331521
0.341146
0.350772
0.360398
0.370024
0.37965
0.389275
0.398901
0.408527
0.418153
0.427779
0.437404
0.44703
0.456656
0.466282
0.475908
0.485533
0.495159
0.504785
0.514411
0.524036
0.533662
0.543288
0.552914
0.56254
0.572165
0.581791
0.591417
0.601043
0.625107

IsoValue
0.13285
0.147377
0.157062
0.166747
0.176431
0.186116
0.195801
0.205486
0.21517
0.224855
0.23454
0.244225
0.25391
0.263594
0.273279
0.282964
0.292649
0.302333
0.312018
0.321703
0.331388
0.341073
0.350757
0.360442
0.370127
0.379812
0.389496
0.399181
0.408866
0.418551
0.428236
0.43792
0.447605
0.45729
0.466975
0.476659
0.486344
0.496029
0.505714
0.515399
0.525083
0.534768
0.544453
0.554138
0.563822
0.573507
0.583192
0.592877
0.602562
0.626774

IsoValue
0.132106
0.146725
0.156472
0.166219
0.175965
0.185712
0.195458
0.205205
0.214952
0.224698
0.234445
0.244191
0.253938
0.263685
0.273431
0.283178
0.292924
0.302671
0.312418
0.322164
0.331911
0.341657
0.351404
0.361151
0.370897
0.380644
0.39039
0.400137
0.409883
0.41963
0.429377
0.439123
0.44887
0.458616
0.468363
0.47811
0.487856
0.497603
0.507349
0.517096
0.526843
0.536589
0.546336
0.556082
0.565829
0.575576
0.585322
0.595069
0.604815
0.629182

IsoValue
0.132171
0.146813
0.156575
0.166337
0.176099
0.18586
0.195622
0.205384
0.215146
0.224907
0.234669
0.244431
0.254193
0.263955
0.273716
0.283478
0.29324
0.303002
0.312763
0.322525
0.332287
0.342049
0.351811
0.361572
0.371334
0.381096
0.390858
0.400619
0.410381
0.420143
0.429905
0.439667
0.449428
0.45919
0.468952
0.478714
0.488475
0.498237
0.507999
0.517761
0.527523
0.537284
0.547046
0.556808
0.56657
0.576331
0.586093
0.595855
0.605617
0.630021

IsoValue
0.130712
0.145536
0.155419
0.165301
0.175183
0.185066
0.194948
0.204831
0.214713
0.224596
0.234478
0.244361
0.254243
0.264126
0.274008
0.283891
0.293773
0.303656
0.313538
0.323421
0.333303
0.343186
0.353068
0.362951
0.372833
0.382716
0.392598
0.40248
0.412363
0.422245
0.432128
0.44201
0.451893
0.461775
0.471658
0.48154
0.491423
0.501305
0.511188
0.52107
0.530953
0.540835
0.550718
0.5606
0.570483
0.580365
0.590248
0.60013
0.610013
0.634719

IsoValue
0.128756
0.143704
0.153669
0.163634
0.1736
0.183565
0.19353
0.203496
0.213461
0.223426
0.233392
0.243357
0.253322
0.263288
0.273253
0.283218
0.293184
0.303149
0.313114
0.32308
0.333045
0.34301
0.352976
0.362941
0.372906
0.382871
0.392837
0.402802
0.412767
0.422733
0.432698
0.442663
0.452629
0.462594
0.472559
0.482525
0.49249
0.502455
0.512421
0.522386
0.532351
0.542317
0.552282
0.562247
0.572213
0.582178
0.592143
0.602108
0.612074
0.636987

IsoValue
0.124064
0.139231
0.149343
0.159454
0.169566
0.179677
0.189788
0.1999
0.210011
0.220123
0.230234
0.240346
0.250457
0.260568
0.27068
0.280791
0.290903
0.301014
0.311125
0.321237
0.331348
0.34146
0.351571
0.361682
0.371794
0.381905
0.392017
0.402128
0.41224
0.422351
0.432462
0.442574
0.452685
0.462797
0.472908
0.483019
0.493131
0.503242
0.513354
0.523465
0.533576
0.543688
0.553799
0.563911
0.574022
0.584134
0.594245
0.604356
0.614468
0.639746

IsoValue
0.120151
0.135487
0.145711
0.155935
0.16616
0.176384
0.186608
0.196833
0.207057
0.217281
0.227505
0.23773
0.247954
0.258178
0.268402
0.278627
0.288851
0.299075
0.309299
0.319524
0.329748
0.339972
0.350196
0.360421
0.370645
0.380869
0.391093
0.401318
0.411542
0.421766
0.43199
0.442215
0.452439
0.462663
0.472887
0.483112
0.493336
0.50356
0.513784
0.524009
0.534233
0.544457
0.554681
0.564906
0.57513
0.585354
0.595578
0.605803
0.616027
0.641588

IsoValue
0.116213
0.131737
0.142086
0.152435
0.162783
0.173132
0.183481
0.19383
0.204179
0.214528
0.224877
0.235226
0.245575
0.255924
0.266273
0.276622
0.286971
0.297319
0.307668
0.318017
0.328366
0.338715
0.349064
0.359413
0.369762
0.380111
0.39046
0.400809
0.411158
0.421507
0.431856
0.442204
0.452553
0.462902
0.473251
0.4836
0.493949
0.504298
0.514647
0.524996
0.535345
0.545694
0.556043
0.566392
0.57674
0.587089
0.597438
0.607787
0.618136
0.644008

IsoValue
0.116316
0.131899
0.142287
0.152676
0.163064
0.173453
0.183841
0.194229
0.204618
0.215006
0.225395
0.235783
0.246172
0.25656
0.266949
0.277337
0.287726
0.298114
0.308502
0.318891
0.329279
0.339668
0.350056
0.360445
0.370833
0.381222
0.39161
0.401999
0.412387
0.422775
0.433164
0.443552
0.453941
0.464329
0.474718
0.485106
0.495495
0.505883
0.516272
0.52666
0.537048
0.547437
0.557825
0.568214
0.578602
0.588991
0.599379
0.609768
0.620156
0.646127

IsoValue
0.112577
0.12834
0.138849
0.149358
0.159867
0.170375
0.180884
0.191393
0.201902
0.212411
0.22292
0.233429
0.243938
0.254446
0.264955
0.275464
0.285973
0.296482
0.306991
0.3175
0.328008
0.338517
0.349026
0.359535
0.370044
0.380553
0.391062
0.401571
0.412079
0.422588
0.433097
0.443606
0.454115
0.464624
0.475133
0.485642
0.49615
0.506659
0.517168
0.527677
0.538186
0.548695
0.559204
0.569713
0.580221
0.59073
0.601239
0.611748
0.622257
0.648529

IsoValue
0.108025
0.123994
0.13464
0.145286
0.155932
0.166578
0.177224
0.18787
0.198516
0.209162
0.219808
0.230454
0.2411
0.251745
0.262391
0.273037
0.283683
0.294329
0.304975
0.315621
0.326267
0.336913
0.347559
0.358205
0.368851
0.379497
0.390143
0.400789
0.411435
0.422081
0.432727
0.443373
0.454019
0.464665
0.475311
0.485957
0.496603
0.507248
0.517894
0.52854
0.539186
0.549832
0.560478
0.571124
0.58177
0.592416
0.603062
0.613708
0.624354
0.650969

IsoValue
0.104931
0.121058
0.131809
0.14256
0.153312
0.164063
0.174815
0.185566
0.196317
0.207069
0.21782
0.228571
0.239323
0.250074
0.260826
0.271577
0.282328
0.29308
0.303831
0.314582
0.325334
0.336085
0.346837
0.357588
0.368339
0.379091
0.389842
0.400593
0.411345
0.422096
0.432848
0.443599
0.45435
0.465102
0.475853
0.486605
0.497356
0.508107
0.518859
0.52961
0.540361
0.551113
0.561864
0.572616
0.583367
0.594118
0.60487
0.615621
0.626372
0.653251

IsoValue
0.100457
0.116779
0.127661
0.138542
0.149424
0.160305
0.171186
0.182068
0.192949
0.20383
0.214712
0.225593
0.236475
0.247356
0.258237
0.269119
0.28
0.290882
0.301763
0.312644
0.323526
0.334407
0.345289
0.35617
0.367051
0.377933
0.388814
0.399696
0.410577
0.421458
0.43234
0.443221
0.454102
0.464984
0.475865
0.486747
0.497628
0.508509
0.519391
0.530272
0.541154
0.552035
0.562916
0.573798
0.584679
0.595561
0.606442
0.617323
0.628205
0.655408

IsoValue
0.0986249
0.115063
0.126022
0.13698
0.147939
0.158898
0.169857
0.180815
0.191774
0.202733
0.213692
0.22465
0.235609
0.246568
0.257526
0.268485
0.279444
0.290403
0.301361
0.31232
0.323279
0.334237
0.345196
0.356155
0.367114
0.378072
0.389031
0.39999
0.410949
0.421907
0.432866
0.443825
0.454783
0.465742
0.476701
0.48766
0.498618
0.509577
0.520536
0.531494
0.542453
0.553412
0.564371
0.575329
0.586288
0.597247
0.608205
0.619164
0.630123
0.65752

Figure 11.1: Transient phase of the flow from the initial uniform flow. Isocontours of density for the

18 first time iterations.

11.4. NUMERICAL EXPERIMENTS 119

IsoValue
0.107896
0.124807
0.13608
0.147354
0.158628
0.169902
0.181175
0.192449
0.203723
0.214996
0.22627
0.237544
0.248818
0.260091
0.271365
0.282639
0.293912
0.305186
0.31646
0.327733
0.339007
0.350281
0.361555
0.372828
0.384102
0.395376
0.406649
0.417923
0.429197
0.440471
0.451744
0.463018
0.474292
0.485565
0.496839
0.508113
0.519387
0.53066
0.541934
0.553208
0.564481
0.575755
0.587029
0.598303
0.609576
0.62085
0.632124
0.643397
0.654671
0.682855

IsoValue
21.7117
30.3306
36.0765
41.8224
47.5683
53.3142
59.0601
64.806
70.552
76.2979
82.0438
87.7897
93.5356
99.2815
105.027
110.773
116.519
122.265
128.011
133.757
139.503
145.249
150.995
156.741
162.487
168.232
173.978
179.724
185.47
191.216
196.962
202.708
208.454
214.2
219.946
225.692
231.437
237.183
242.929
248.675
254.421
260.167
265.913
271.659
277.405
283.151
288.897
294.642
300.388
314.753

Figure 11.2: Isocontours of density and pressure for the steady state solution.

IsoValue
225.72
232.752
237.44
242.128
246.816
251.503
256.191
260.879
265.567
270.255
274.943
279.631
284.319
289.007
293.695
298.383
303.071
307.759
312.447
317.135
321.823
326.511
331.199
335.887
340.575
345.263
349.951
354.639
359.327
364.015
368.703
373.391
378.079
382.767
387.455
392.143
396.831
401.519
406.207
410.895
415.583
420.271
424.959
429.647
434.335
439.023
443.711
448.399
453.087
464.807

IsoValue
232.705
237.299
241.893
246.487
251.082
255.676
260.27
264.864
269.458
274.053
278.647
283.241
287.835
292.43
297.024
301.618
306.212
310.806
315.401
319.995
324.589
329.183
333.778
338.372
342.966
347.56
352.154
356.749
361.343
365.937
370.531
375.126
379.72
384.314
388.908
393.502
398.097
402.691
407.285
411.879
416.473
421.068
425.662
430.256
434.85
439.445
444.039
448.633
453.227
457.821

Figure 11.3: Isocontours of the temperature for the steady state solution.

120 CHAPTER 11. GAS DYNAMICS

Figure 11.4: Velocity field for the steady state.

Figure 11.5: Triangular initial and final mesh at the end of computation. The freefem++ command

adaptmesh was used for mesh refinement.

11.4. NUMERICAL EXPERIMENTS 121

IsoValue
-0.0229276
0.0260594
0.0587174
0.0913755
0.124033
0.156692
0.18935
0.222008
0.254666
0.287324
0.319982
0.35264
0.385298
0.417956
0.450614
0.483272
0.51593
0.548588
0.581246
0.613904
0.646562
0.67922
0.711878
0.744536
0.777194
0.809852
0.84251
0.875168
0.907826
0.940484
0.973142
1.0058
1.03846
1.07112
1.10377
1.13643
1.16909
1.20175
1.23441
1.26706
1.29972
1.33238
1.36504
1.3977
1.43035
1.46301
1.49567
1.52833
1.56099
1.64263

IsoValue
-20.6079
11.5385
32.9694
54.4003
75.8311
97.262
118.693
140.124
161.555
182.986
204.416
225.847
247.278
268.709
290.14
311.571
333.002
354.433
375.864
397.295
418.725
440.156
461.587
483.018
504.449
525.88
547.311
568.742
590.173
611.603
633.034
654.465
675.896
697.327
718.758
740.189
761.62
783.051
804.481
825.912
847.343
868.774
890.205
911.636
933.067
954.498
975.929
997.359
1018.79
1072.37

Figure 11.6: Isocontours of density and pressure for the steady state solution with infinite Mach num-

ber equal to 4.

IsoValue
72.9873
90.3807
101.976
113.572
125.167
136.763
148.359
159.954
171.55
183.145
194.741
206.336
217.932
229.528
241.123
252.719
264.314
275.91
287.506
299.101
310.697
322.292
333.888
345.483
357.079
368.675
380.27
391.866
403.461
415.057
426.653
438.248
449.844
461.439
473.035
484.63
496.226
507.822
519.417
531.013
542.608
554.204
565.799
577.395
588.991
600.586
612.182
623.777
635.373
664.362

IsoValue
90.2647
101.628
112.992
124.356
135.719
147.083
158.447
169.81
181.174
192.538
203.901
215.265
226.629
237.992
249.356
260.72
272.083
283.447
294.811
306.174
317.538
328.902
340.265
351.629
362.993
374.356
385.72
397.084
408.447
419.811
431.175
442.538
453.902
465.266
476.629
487.993
499.357
510.72
522.084
533.448
544.811
556.175
567.539
578.903
590.266
601.63
612.994
624.357
635.721
647.085

Figure 11.7: Isocontours of the temperature for the steady state solution with infinite Mach number

equal to 4.

122 CHAPTER 11. GAS DYNAMICS

Figure 11.8: Velocity field for the steady state with infinite Mach number equal to 4.

Chapter 12

Fluid Mechanics and heat transfer

Fluid Mechanics and Heat Transfer are of fundamental interest for the engineering of energy conver-

sion systems. Main of the energy conversion system use a working fluid that transports the heat. This

is the case the nuclear power system for refrigerators, cooling devices, air conditioning, etc.

As an example, we will consider here a compressible fluid that flows in a heating pipe. We will

suppose the fluid as weakly compressible with a density that depends on the temperature ρ = ρ(θ)
with

∂ρ

∂θ
< 0 (12.1)

meaning that the fluid is lighter when is it heated. Then we will take into account the gravity. Due

to Archimedes’ buoyancy principle, the lighter heated fluid will tend to go upward with appearance

of Rayleigh-Taylor instabilities at the bottom thermal layer. That’s we want to investigate by the

numerical simulation.

12.1 Model assumptions

Because the fluid is assumed to be weakly compressible, we keep the zero-divergence assumption on

the velocity field, i.e.

∇ · u = 0. (12.2)

The fluid is supposed to be Newtonian, the momentum equation then gives the standard Navier-Stokes

equations with gravity as external volume force:

∂tu+ u · ∇u− ν∆u+
1

ρ(θ)
∇p = g (12.3)

where ν is the kinematic viscosity of the fluid. The fluid is supposed to be thermally conductive with

constant coefficient κ. The balance equation of energy can be written as an equation of evolution of

the temperature. It can be reasonably approximated as a convection-diffusion equation

ρ cp∂tθ + ρcpu · ∇θ −∇ · (κ∇θ) = 0 (12.4)

where cp is the specific heat at constant pressure. For low compressible fluids, the density in (12.5) is

approximated by a constant ρ0.

ρ0 cp∂tθ + ρ0cpu · ∇θ −∇ · (κ∇θ) = 0 (12.5)

123

124 CHAPTER 12. FLUID MECHANICS AND HEAT TRANSFER

On the other hand, we keep the dependency of ρ on θ in (12.3) even if density variations are small in

order to evidence the buoyant force due to lighter heated fluid. So we need a closure for θ 7→ ρ(θ).
We will use the linearized law on the specific volume τ = 1/ρ:

τ = τ0 + β(θ − θ0) (12.6)

for some constants τ0, θ0 and β > 0. Using (12.6), for β > 0, the inequality (1.1) is satisfied.

12.1.1 Dimensionless equations

It is always interesting to derive dimensionless equations for parameter analysis and systematic study

of all kind of solutions. From the engineering point of view, dimensionless numbers are of main

importance for system design. We will consider the symbol ⋆ for dimensionless variables and 0 index

for dimensioning constants. Considering,

t =
t⋆

T0
, x =

x⋆

L0
, u =

u⋆

U0
, ν =

ν⋆

ν0
, ρ =

ρ⋆

ρ0
, g =

g⋆

g0
, κ =

κ⋆

κ0
,

from (12.2),(12.3) and (12.4) we respectively get

U0

L0
∇⋆ · u⋆ = 0,

U0

T0
∂t⋆u

⋆ +
U0

L2
0

u⋆ · ∇⋆u⋆ − ν0U0

L2
0

∆⋆u⋆ +
1

ρ0 ρ⋆
p0
L0

∇⋆p⋆ = g0 g
⋆,

ρ0cp
θ0
T0
∂t⋆θ

⋆ + ρ0cp
U0θ0
L0

u⋆ · ∇⋆θ⋆ − κ0θ0
L2
0

∇⋆ · (κ⋆∇⋆θ⋆) = 0.

If both time and pressure scales are chosen such that

T0 =
L0

U0
, p0 = ρ0U

2
0 , (12.7)

then we get the following equations (forgetting the ⋆ symbol for brevity’s sake)

∇ · u = 0,

∂tu+ u · ∇u− ν0U0

L0
∆u+

1

ρ
∇p = L0g0

U2
0

g,

∂tθ + u · ∇θ − κ0
ρ0U0cpL0

∇ · (κ∇θ) = 0.

There are three dimensionless numbers. The Reynolds number

Re =
L0

ν0U0
(12.8)

involves the spatial scale, the fluid velocity and the kinematic viscosity. The Prandtl number

Pr =
ρ0ν0cp
κ0

(12.9)

12.2. MATHEMATICAL PROBLEM 125

shows the importance of thermal conductivity with respect to the other effects. Finally the ratio

L0g0
U0

(12.10)

gives the importance of the source term scale with respect to the spatial scale and the velocity scale.

In what follows, we will consider g0 = U2
0 /L0 so that the dimensionless equations are written

∇ · u = 0, (12.11)

∂tu+ u · ∇u− 1

Re
∆u+

1

ρ(θ)
∇p = g, (12.12)

∂tθ + u · ∇θ − 1

Re

1

Pr
∇ · (κ∇θ) = 0 (12.13)

or in Lagrangian form

∇ · u = 0, (12.14)

Du

Dt
− 1

Re
∆u+

1

ρ(θ)
∇p = g, (12.15)

Dθ

Dt
− 1

Re

1

Pr
∇ · (κ∇θ) = 0 (12.16)

12.1.2 Boundary conditions

We are interested in a fluid flowing into a duct with a heating wall. We consider a two dimensional

geometry as plotted in figure 12.1. The computational domain is a rectangle Ω of respective lengths

Lx and Ly. Left and right borders correspond to the inlet and the outlet. The four edges Γin, ΓT , ΓB
and Γout respectively represent the inflow border, the top wall boundary, the bottom wall boundary

and the outflow boundary. At the inlet, a constant temperature θin is imposed. We also consider a

steady state Poiseuille flow with parabolic velocity profile uin. Let us recall that the Poiseuille flow is

the stationary laminar flow between two infinite plates for which one can derive an analytical solution

of the Navier-Stokes equations with parabolic velocity profile.

At the outlet Γout, homogeneous Neumann boundary conditions are imposed for both velocity and

temperature. At the top wall boundary ΓT , a no slip boundary condition with zero velocity is imposed

for the fluid. A zero heat flux is also consider (adiabatic wall). At the bottom boundary ΓB , a no slip

boundary condition is imposed for velocity and a constant nonzero heat flux provides the heat to the

fluid:

κ
∂θ

∂n
= Φ on ΓB. (12.17)

12.2 Mathematical problem

For initial conditions, the fluid is supposed to flow according to the laminar Poiseuille steady flow. For

compatibility between initial condition and inflow we consider the initial condition in velocity

u = uin in Ω. (12.18)

126 CHAPTER 12. FLUID MECHANICS AND HEAT TRANSFER

Figure 12.1: Schematic of the spatial domain Ω with boundary conditions

The initial temperature field will be assumed constant, equal to the inflow temperature:

θ = θin in Ω. (12.19)

We summarize here the whole mathematical time-dependent initial boundary value problem:

∇ · u = 0 in Ω× (0, T), (12.20)

Dtu− 1

Re
∆u+

1

ρ(θ)
∇p = g in Ω× (0, T), (12.21)

Dtθ −
1

Re

1

Pr
∇ · (κ∇θ) = 0 in Ω× (0, T), (12.22)

u(., t = 0) = uin in Ω, (12.23)

θ(., t = 0) = θin in Ω, (12.24)

u = 0 on (ΓT ∪ ΓB)× (0, T), (12.25)

u = uin on Γin × [0, T) (12.26)

θ = θin on Γin × [0, T) (12.27)

∂u

∂n
= 0 on Γout × [0, T), (12.28)

∂θ

∂n
= 0 on (ΓT ∪ Γout)× [0, T), (12.29)

κ
∂θ

∂n
= Φ on ΓB × [0, T). (12.30)

12.3. NUMERICAL DISCRETIZATION 127

12.3 Numerical discretization

12.3.1 Time discretization

First the partial differential equations are semi-discretized in time. As discussed in previous chap-

ters, total derivatives are discretized thanks to the method of characteristics. The nonlinear term is

discretized using a semi-implicit formula whereas the other linear terms are discretized implicitely:

∇ · un+1 = 0 in Ω, (12.31)

un+1(x)− un ◦Xn(x)

∆t
− 1

Re
∆un+1 +

1

ρ(θn)
∇pn+1 = g in Ω, (12.32)

θn+1(x)− θn ◦Xn(x)

∆t
− 1

Re

1

Pr
∇ ·
(

κ∇θn+1
)

= 0 in Ω, (12.33)

for n ∈ N and

u0(x) = uin(x), θ
0(x) = θin, x ∈ Ω. (12.34)

With such a time discretization, it appears in (12.32) and (12.33) that there is separation of the un-

known variables un+1(x) and θn+1(x). Consequently, between two time steps tn and tn+1, the

Navier-Stokes problem and the thermal problem can be solved separately.

12.3.2 Variational formulation

We are looking for a variational formulation of the problem with equations (12.31)-(12.34) and bound-

ary conditions (12.25) to (12.30). For the equation on temperature, there is no particular difficulty.

Considering the functional space

Vg =
{

v ∈ H1(Ω), v = g on Γin
}

, (12.35)

the problem is to find a temperature θn+1 ∈ Vθin such that, for all v ∈ V0,

∫

Ω

θn+1(x)− θn ◦Xn(x)

∆t
v dx+

1

Re

1

Pr

∫

Ω
κ∇θn+1 ·∇v,dx− 1

Re

1

Pr

∫

ΓB

Φv dx = 0. (12.36)

12.4 Numerical experiments

12.4.1 freefem++ source code of the heat transfer problem

1 // ThermalConvection.edp (Freefem++)

2 // Forced + Natural heat convection in a pipe

3 // Navier−Stokes equations + convection−diffusion on themperature

4 //

5 real lx = 0.25;

6 real Lx = 3;

7 real Ly = 1;

8 real gravity = 9.81;

9 real thetain = 20;

10 real pout = 1;

11 real Cst = 1;

128 CHAPTER 12. FLUID MECHANICS AND HEAT TRANSFER

12 real uin0 = 0.2;

13 func uin = uin0 * 4*(y/Ly)*(1-y/Ly);

14 real HeatFlux = 100;

15 real dt = 0.1;

16 real nu = 0.001;

17 real kappa=0.001;

18 real t = 0, dtsnap = 0.5, ttosnap = 2;

19 //

20 border c1(t=0, lx){x=t; y=0;}

21 border c2(t=lx, Lx-lx){x=t;y=0;}

22 border c3(t=Lx-lx,Lx){x=t;y=0;}

23 border c4(t=0,Ly){x=Lx;y=t;}

24 border c5(t=Lx,0){x=t; y=Ly;}

25 border c6(t=Ly,0){x=0;y=t;}

26 //

27 mesh Th = buildmesh(c1(10)+c2(200)+c3(10)+c4(30)

28 +c5(100)+c6(30));

29 plot(Th, wait=0, ps="Mesh.eps");

30 //

31 fespace Uh(Th, P1b);

32 Uh u, v, uold, vold, uh, vh; // Velocity fields

33 fespace Xh(Th, P1);

34 Xh p, ph, theta, thetaold, thetah; // Temperate and pressure fields

35 Xh tau; // = 1/rho (specific volume);

36 //

37 // Field initialization

38 u = uin;

39 v = 0;

40 theta = thetain;

41 uold = u; vold = v; thetaold = theta;

42 // Heat problem

43 problem HeatStep(theta, thetah) =

44 int2d(Th) (theta*thetah/dt)

45 -int2d(Th)(convect([u,v], -dt, thetaold)*thetah/dt)

46 +int2d(Th)(kappa*dx(theta)*dx(thetah)

47 +kappa*dy(theta)*dy(thetah))

48 -int1d(Th, c2)(kappa*HeatFlux*thetah)

49 +on(c6, theta=thetain);

50 //

51 problem NavierStokesStep([u, v, p], [uh, vh, ph]) =

52 int2d(Th)(u*uh/dt)

53 - int2d(Th)(convect([uold, vold], -dt, uold)*uh/dt)

54 + int2d(Th)(nu*dx(u)*dx(uh)+nu*dy(u)*dy(uh))

55 + int2d(Th) (tau * dx(p)*uh)

56 + int2d(Th)(v*vh/dt)

57 - int2d(Th)(convect([uold, vold], -dt, vold)*vh/dt)

58 + int2d(Th)(nu*dx(v)*dx(vh)+nu*dy(v)*dy(vh))

59 + int2d(Th)(tau * dy(p)*vh)

60 + int2d(Th)(gravity*vh)

61 + int2d(Th)(dx(u)*ph + dy(v)*ph)

62 + on(c6, u=uin, v=0)

63 + on(c1, c2, c3, c5, u=0, v=0);

12.4. NUMERICAL EXPERIMENTS 129

64 // Time steps

65 for (int it=0; it<150; it++) {

66 t = t + dt;

67 HeatStep;

68 thetaold = theta;

69 tau = Cst * theta;

70 NavierStokesStep;

71 uold = u; vold = v;

72 // plot ([u, v]) ;

73 // Th = adaptmesh(Th);

74 // u = u; v = v; uold = uold; vold = vold;

75 // theta = theta ; thetaold = thetaold ;

76 plot([u,v], theta, nbiso = 80, value=0);

77 if (t>=ttosnap) {

78 ttosnap = ttosnap + dtsnap;

79 plot([u,v], theta, nbiso = 80, value=0,

80 ps="field_t="+t+".eps");

81 }

82 }

130 CHAPTER 12. FLUID MECHANICS AND HEAT TRANSFER

12.4.2 Numerical results

Figure 12.2: Snapshots of the velocity field (arrows) and temperature field (isocontours) at successive

instants t = 2 s, t = 4s, t = 5.1s and t = 5.6s.

12.4. NUMERICAL EXPERIMENTS 131

Figure 12.3: Snapshots of the velocity field (arrows) and temperature field (isocontours) at successive

instants t = 6.1 s, t = 6.6s, t = 7.1s and t = 7.6s.

132 CHAPTER 12. FLUID MECHANICS AND HEAT TRANSFER

Figure 12.4: Snapshots of the velocity field (arrows) and temperature field (iso-contours) at successive

instants t = 8.1 s, t = 8.6s, t = 9.1s and t = 9.6s.

Chapter 13

Stochastic diffusion processes,

Fokker-Planck equations

This chapter is a short introduction to the stochastic problems. Some physical systems intrinsically

include stochastic effects due to the inherent noise. Moreover, for real applications it is usual to have

inexact knowledge of initial conditions or boundary conditions. Thus, an initial state can be seen as a

random variable. Each integral path can evolve in a different way because of random fluctuations in

the system. In the theory of stochastic differential system and Markov diffusion processes, it is shown

that the probability density function of the stochastic process is solution of a partial differential equa-

tion, namely the Fokker-Planck equation which is a (possibly high-dimensional) convection-diffusion

equation. The scope of this chapter is only limited to the computational aspects of the numerical

solution of either stochastic differential equations or Fokker-Planck equations. The reader who is in-

terested in the theoretical derivation of the Fokker-Planck equation can refer to the important literature

on this subject like [], [] or [].

13.1 Ordinary and Stochastic differential equations

A deterministic dynamical system is written

dx

dt
= u(x), (13.1)

where x(t) ∈ R
d and u : Rd → R

d is a vector field (here supposed not depend on time itself). For

well-posedness, we add to (13.1) an initial condition

x(t = 0) = x0 ∈ R
d (13.2)

and suppose that u is Lipschitz-continuous: there exists a Lipschitz constant L > 0 such that

||u(x)− u(x′)|| ≤ ||x− x′|| ∀x,x′ ∈ R
d. (13.3)

In the case of a “non completely” known dynamical system, we have to model the uncertainty in some

sense. For example the initial state x0 if replaced by a random variable X . This random variable is

completely defined by its density probability function (or PDF) p(X). Of course this needs a closure

133

134 CHAPTER 13. STOCHASTIC DIFFUSION PROCESSES, FOKKER-PLANCK EQUATIONS

subject to some constraints. For example one can expect that

E(X) =

∫

Rd

x p(x) dx = x0 (13.4)

where the expectation value x0 is known and the covariance matrix C with elements

Cij(X) = E [(xi − E(xi))(xj − E(xj))] (13.5)

is also known.

Now, when the system is subject to some random fluctuations during time, the way to rigorously

write the governing equation is a stochastic differential equation in the form

dX(t) = u(X(t)) dt+ σ(X(t)) dB(t) (13.6)

where (X(t), t ≥ 0) now denotes a stochastic diffusion process with drift u, B in (13.5) maps R
d

to Md×p and B(t) denotes p-dimensional brownian motion. The matrix-valued function σ is also

supposed to be Lipschitz continuous. Below we will denote p(x, t) the probability density function at

state x and time t.

13.2 Fokker-Planck equations

The theory (see for example []) states that p is solution of a partial differential equation:

Theorem 5 (Fokker-Planck equations). Let us denote by p0(x) the probability density function of the

random variable X . If the probability density function p(x, t) of the stochastic process (X(t), t ≥ 0)
has sufficient regularity, then it is solution of the Fokker-Planck problem

∂p

∂t
+

d
∑

j=1

∂

∂xj
(uj(x)p)−

1

2

d
∑

i,j=1

∂2

∂xi∂xj
(aij(x) p) = 0 ∀x ∈ R

n, t ≥ 0, (13.7)

p(x, t = 0) = p0(x) almost surely in x, (13.8)

where

aij(x) =

p
∑

k=1

σik(x)σjk(x). (13.9)

What is remarkable here is that the “space” variable x is in with a dimension d that can be of

course big. Fokker-Planck equations naturally are high-dimensional PDEs. This feature makes their

numerical solution especially hard once d is greater than four.

Let us show that the Fokker-Planck equation is actually a standard convection-diffusion equation.

First denote A(x) = σ(x)σ(x)T ∈ Md×d. We have (using Einstein’s index summation)

∂i(∂j(aij(x) p)) = ∂i [aij,j(x) p+ aij(x) p,j]

= ∇x · (A(x)∇p) + ∂i (aij,j(x) p) .

Therefore, denoting by v(x) the vector field defined by

vi(x) = ui(x)−
1

2

d
∑

j=1

∂aij
∂xj

(x), (13.10)

13.3. COMPUTATIONAL APPROACHES BASED ON STOCHASTIC DIFFERENTIAL EQUATIONS135

the Fokker-Planck equation is written

∂p

∂t
+∇x · (v(x) p)−

1

2
∇x · (A(x)∇p) = 0, (13.11)

this is a linear high-dimensional convection-diffusion equation with symmetric positive variable coef-

ficient diffusion tensor A(x).

In the next sections, we are going to see how to solve these problem numerically.

13.3 Computational approaches based on Stochastic Differential Equa-

tions

For high-dimensional problems, it more convenient to integrate the SDE. The stochastic extension of

the Euler integration scheme is named the Euler-Maruyama approximation ([]): from a time instant

tn, a random variable Xn at time tn, ∆t a time step, one computes the stochastic discrete process

(Xn, n ∈ N)

Xn+1 = Xn +∆tu(Xn) +
√
∆tσ(Xn) (Bn+1 −Bn), n ∈ N, (13.12)

with initial random variable

X0 = X. (13.13)

In (13.12), the random variables Bn are p-dimensional independent variables with componentsBn
1 , B

n
2 ,

. . . , Bn
p which are N (0, 1) independent normally distributed random variables.

13.3.1 Monte-Carlo methods

The expressions (13.12),(13.13) are still theoretical. In order to have practical computations, some

realizations of these random variables are needed. Particle Monte-Carlo methods [] consist of the di-

rect numerical simulation of a certain number M of sample paths (also referred to as particles) using

M realizations of the initial random variable X and M discrete realization of the stochastic process

(Xn, n ∈ N), also involving M realizations of the p-dimensional Gaussian variables Bn, n ∈ N.

Monte-Carlo methods clearly are independent of the dimension of the problem what makes particu-

larly attractive for high-dimensional problems. Unfortunately, it is known that these methods suffer

from a lack of accuracy and anyway require a large number of realizations to get statistically accurate

results.

13.4 Numerical solution of the Fokker-Planck equations

For d = 1, 2 or 3, the Fokker-Planck equation (13.11) can be discretized using standard Finite element

or Finite Volume methods. This kind of discretization leads to much more accurate methods than

Monte-Carlo. Introducing the total derivative

D

Dt
=

∂

∂t
+ v(x) · ∇x, (13.14)

136 CHAPTER 13. STOCHASTIC DIFFUSION PROCESSES, FOKKER-PLANCK EQUATIONS

equation (13.11) can be written

Dp

Dt
+ p (∇ · v)− 1

2
∇ · (A(x)∇p) = 0. (13.15)

A semi-discretization of this equation gives, as already discussed in previous chapters

pn+1(x)− pn ◦Xn(x)

∆tn
+ pn+1(x)(∇ · v)(x)− 1

2
∇ · (A(x)∇pn+1(x)) = 0 ∀x ∈ R

d. (13.16)

For spatial discretization, we need to restrict the state space Rd to a bounded domain. What is generally

chosen is a truncation rectangular domain with boundaries far enough such that the probability density

is close to zero on the artificial boundary, for all time t ≥ 0.

13.4.1 Boundary conditions

Equation (13.11) is clearly a conservation equation because of the form

∂p

∂t
+∇x · J = 0 (13.17)

with a probability flux J composed of a convective flux

J c(x) = v(x) p (13.18)

and a diffusive flux

Jd(x) = −1

2
A(x)∇p. (13.19)

This conservation principle is necessary to guarantee the “mass” is conserved, i.e.

d

dt

∫

Rd

p(x, t) dx = 0. (13.20)

Now, if the computational domain is restricted to bounded domain Ω, we need to satisfy the same

equation (13.19). By integrating equation (13.17) over Ω and applying Green’s formula, we get

d

dt

∫

Rd

p(x, t) dx+

∫

∂Ω
J · n dγ = 0, (13.21)

where n is the standard exterior unit vector to Ω. So a natural boundary condition is zero flux condition

J · n = 0 to ensure mass conservation, i.e.

(v · n) p− 1

2
(A(.)∇p) · n = 0 on ∂Ω (13.22)

which is a generalized Robin boundary condition. To summarize, now we have to solve by Finite

Elements the spatial problem

pn+1 − pn ◦Xn

∆tn
+ pn+1(∇ · v)− 1

2
∇ · (A∇pn+1) = 0 in Ω, (13.23)

(v · n) pn+1 − 1

2

(

A∇pn+1
)

· n = 0 on ∂Ω. (13.24)

13.5. NUMERICAL EXAMPLE : METABOLITE REACTIONS 137

Therefore, a variational problem in the H1(Ω) Sobolev space is formulated as follows: find pn+1 ∈
H1(Ω) such that, for all q ∈ H1(Ω),

∫

Ω

pn+1 − pn ◦Xn

∆tn
q dx+

∫

Ω
(∇ · v) pn+1 q dx−

∫

∂Ω
(v · n) pn+1 q dγ

+
1

2

∫

Ω
A∇pn+1 · ∇q dx = 0. (13.25)

Using conformal finite elements with a finite element discrete space V h ⊂ H1(Ω), the discrete prob-

lem to solve is to find ph,n+1 ∈ V h such that

∫

Ωh

ph,n+1 − ph,n ◦Xn

∆tn
qh dx+

∫

Ωh

(∇ · v) ph,n+1 qh dx−
∫

∂Ωh

(v · n) ph,n+1 qh dγ

+
1

2

∫

Ωh

A∇ph,n+1 · ∇qh dx = 0 ∀qh ∈ V h. (13.26)

13.5 Numerical example : metabolite reactions

Consider the following five reactions for the molecular species X and Y modeling the creation of two

metabolites controled by two enzymes, a reaction and their destruction:

∅ kX−→ X ∅ kY−→ Y

X + Y
k2xy−→ ∅

X
µx−→ ∅ µy−→ ∅.

Without stochastic effects, according to the reaction rates, the deterministic system if differential equa-

tions that governs the molecular system is

dx

dt
= kX − µx− k2xy, (13.27)

dy

dt
= kY − µy − k2xy (13.28)

with x, y > 0. It is easy to check that this system has a unique stable equilibrium state in (R+)2.

For a biomolecular system, it is often not reasonable to assume that the biomolecular system evolve

continuous as a continuous medium because molecules like enzymes or metabolites are in too low

number and molecular collision arise with some noise. Here, because there are five reactions, there

are five independent noises that represent the uncertainty of molecular collision for each reaction.

Statistics theory states that the standard deviation on reaction rates is proportional to the square root

of the mean reaction rates. Thus, the stochastic differential system is written

dX = (kX − µX − k2XY) dt+
√

kX dB1(t) +
√

µX dB3(t) +
√

k2XY dB5(t),(13.29)

dY = (kY − µY − k2XY) dt+
√

kY dB2(t) +
√

µY dB4(t) +
√

k2XY dB5(t).(13.30)

138 CHAPTER 13. STOCHASTIC DIFFUSION PROCESSES, FOKKER-PLANCK EQUATIONS

Notice that the system (13.29),(13.30) is in the form (13.6) with

σ(t) = N W 1/2, (13.31)

where W = diag (kX , kY , µx, µy, k2xy) and N is the stoichiometric coefiicient matrix

N =

(

1 0 1 0 1
0 1 0 1 1

)

, (13.32)

That gives the following diffusion tensor A

A(x) =

(

kX + µx+ k2xy k2xy
k2xy kY + µy + k2xy

)

. (13.33)

For numerical experiments, we will use the following coefficients: kX = kY = 0.6, µ = k2 = 0.001.

The truncated state domain Ω = {0 ≤ x, y ≤ 200} will be used.

13.5.1 Scilab source code of the Monte Carlo approach

1 // Metobilte . sce (Scilab)

2 // Simple stochastic metabolite reaction model

3 //

4 // Numerical solution using the Maruyama−Euler scheme.

5 // Monte−Carlo approach.

6 clear;

7 kx = 0.6; ky=kx;

8 mu = 0.001;

9 k2 = 0.001;

10 N = 5000;

11 Deltat = 0.05;

12 sqdt = sqrt(Deltat);

13 X = zeros(2,N);

14 //

15 // Initial cloud (N realisation of the

16 // initial random state)

17 X(1,:) = 140 + 5*rand(1,N, "normal");

18 X(2,:) = 160 + 5*rand(1,N, "normal");

19 clf(); plot(X(1,:), X(2,:), ’o’);

20 plot([0, 200], [0,200], ’.w’); xgrid();

21 xtitle("Initial Probability Density Function");

22 xlabel("X");ylabel("Y"); drawnow();

23 // stop ;

24 //

25 // Time loop

26 //

27 Bnold = sqdt*rand(5,N, "normal");

28 //

29 for it=1:2000

30 Bn = sqdt*rand(5,N, "normal");

31 // Euler

32 dX = (kx-mu*X(1,:)-k2*X(1,:).*X(2,:))*Deltat + ...

13.5. NUMERICAL EXAMPLE : METABOLITE REACTIONS 139

33 sqrt(kx).*(Bn(1,:)-Bnold(1,:)) ...

34 +sqrt(mu*X(1,:)) .*(Bn(3,:)-Bnold(3,:)) ...

35 +sqrt(k2*X(1,:).*X(2,:)) .*(Bn(5,:)-Bnold(5,:)) ;

36 //

37 dY = (ky-mu*X(2,:)-k2*X(1,:).*X(2,:))*Deltat + ...

38 sqrt(ky).*(Bn(2,:)-Bnold(2,:)) ...

39 +sqrt(mu*X(2,:)) .*(Bn(4,:)-Bnold(4,:)) ...

40 +sqrt(k2*X(1,:).*X(2,:)) .*(Bn(5,:)-Bnold(5,:)) ;

41 Bnold = Bn;

42 X = X + [dX; dY];

43 if ~modulo(it,100)

44 drawlater();

45 clf(); plot(X(1,:), X(2,:), ’o’);xgrid();

46 plot([0, 200], [0,200], ’.w’);

47 xtitle("Probability Density Function");

48 xlabel("X");ylabel("Y"); drawnow();

49 drawnow();

50 end;

51 end; // for it

13.5.2 Numerical results of the Monte-Carlo method

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Initial Probability Density Function

X

Y

Figure 13.1: Monte-Carlo approach. N = 20000 realizations of the initial random variable are com-

puted.

13.5.3 freefem++ source of the Fokker-Planck solver

1 // Fokker.edp (Freefem++)

2 // Fokker−Planck equations,

3 // Simple stochastic metabolite reaction model

4 //

140 CHAPTER 13. STOCHASTIC DIFFUSION PROCESSES, FOKKER-PLANCK EQUATIONS

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Probability Density Function

X

Y

Figure 13.2: Monte-Carlo approach. Monte-Carlo particles in the state space during the transient

transport phase.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Probability Density Function

X

Y

Figure 13.3: Monte-Carlo approach. Monte-Carlo particles in the state space at the statistically steady

state.

5 real kx = 0.6;

6 real ky = kx;

7 real mu = 0.001;

8 real k2 = 0.001;

9 real dt = 0.1;

13.5. NUMERICAL EXAMPLE : METABOLITE REACTIONS 141

10 //

11 real Lx = 200, Ly = 200;

12 mesh Th = square(60, 60, [x*Lx, y*Ly]);

13 fespace Vh(Th, P2); fespace Wh(Th,P1);

14 Vh p, qh, pold;

15 Wh v1h, v2h;

16 func a11 = kx + mu*x+k2 * x*y;

17 func a12 = k2*x*y;

18 func a21 = k2*x*y;

19 func a22 = ky+mu*y+k2 * x*y;

20 func v1 = (kx-mu*x-k2*x*y) - 0.5 * (mu+k2*y +k2*x);

21 func v2 = (ky-mu*y-k2*x*y) - 0.5 * (k2*y +mu+k2*x);

22 func dxv1 = - mu - k2*y - 0.5 * k2;

23 func dyv2 = - mu - k2*x -0.5 * k2;

24 //

25 v1h=v1; v2h=v2; plot([v1h, v2h], ps="Velocity.eps");

26 // Initializing the initial PDF

27 real sigma = 5, sigma2=sigma^2;

28 p = exp(-0.5*(x-140)^2/sigma2)*exp(-0.5*(y-160)^2/sigma2);

29 Th = adaptmesh(Th, p); p =p;

30 real massp = int2d(Th)(p); p = p / massp;

31 pold = p;

32 plot(p, nbiso=60, ps="initial.eps");

33 plot(p, Th, nbiso=60, ps="initialmesh.eps");

34 //

35 problem fokker(p, qh) =

36 int2d(Th)(p*qh/dt)

37 - int2d(Th)(convect([v1, v2], -dt, pold)*qh/dt)

38 +int2d(Th)(0.5*a11*dx(p)*dx(qh)+0.5*a22*dy(p)*dy(qh))

39 +int2d(Th)(0.5*a12*dy(p)*dx(qh)+0.5*a21*dx(p)*dy(qh))

40 - int1d(Th, 1,2,3,4)((v1*N.x+v2*N.y)*p*qh)

41 +int2d(Th)((dxv1+dyv2)*p*qh);

42 //

43 int it;

44 for (it=0; it<200; it++) {

45 fokker; massp = int2d(Th)(p); p = p /massp; pold = p;

46 fokker; massp = int2d(Th)(p); p = p /massp; pold = p;

47 fokker; massp = int2d(Th)(p); p = p /massp; pold = p;

48 fokker; massp = int2d(Th)(p); p = p /massp; pold = p;

49 fokker; massp = int2d(Th)(p); p = p /massp; pold = p;

50 Th = adaptmesh(Th, p);

51 massp = int2d(Th)(p); p = p /massp; pold = p;

52 plot(p, Th, nbiso=60);

53 cout << "*** Mass = " << int2d(Th)(p) << endl;

54 }

55 plot(p, nbiso=40, ps="transient"+it+".eps");

56 plot(p, Th, nbiso=40, ps="transientmesh"+it+".eps");

13.5.4 Numerical results with the Fokker-Planck model

142 CHAPTER 13. STOCHASTIC DIFFUSION PROCESSES, FOKKER-PLANCK EQUATIONS

Figure 13.4: Velocity field in the state space.

Figure 13.5: Initial probability density function. The mesh was adapted according to the initial data.

13.5. NUMERICAL EXAMPLE : METABOLITE REACTIONS 143

Figure 13.6: Probability density function during the transient regime. Mesh adaptation is performed

during simulation.

Figure 13.7: Discrete probability density function at steady state.

144 CHAPTER 13. STOCHASTIC DIFFUSION PROCESSES, FOKKER-PLANCK EQUATIONS

Chapter 14

Multiphase flows

Multiphase flows are probably the flows of most interest in Fluid Engineering. Multiphase arise in

almost all fluid-based engineering process: petroleum pipe flows, plastics molding industry, pollutant

treatment, gas transportation in giant gas burner, power generators, engines, propulsion, etc.

As a matter of fact, theses kinds of flows are particularly hard to numerically model because of

some features: complex Physics but also free boundaries, phase change, big density ratios, etc.

Free boundary is an important feature. There are many ways to track free boundaries at the nu-

merical point of view : level set methods, volume of fluid methods, meshless particle methods, etc.

As an introduction, we will consider in this chapter a simple method which ...

As examples, we will consider two applications. The first one is a liquid sloshing in a closed box.

Of course, the simplicity of the front tracking method presented here is compensated by numer-

ous drawbacks and numerical artefacts: loss of material mass, diffuse boundary, inaccuracy on free

boundary position. To improve the front tracking, we should use advanced computational method like

high-order accuracy level sets method or conservative volume of fluid methods. But this is largely

beyond the scope and goal of this course of this course.

14.1 Setting of the equations

Let us consider two Newtonian viscous incompressible immiscible fluids k = 1, 2 with respective

(constant) density ρk, k = 1, 2 and constant dynamic viscosity µk, k = 1, 2. Let us consider a spatial

bounded domain Ω ⊂ R
d filled up by the two fluids. Although each fluid is incompressible with

constant density. The whole density function defined on the whole domain Ω can be seen as a function

of space and time

ρ(x, t) = ρ1 1(x∈Ωt
1)
(x) + ρ2 1(x∈Ωt

2)
(x) (14.1)

where Ωtk, k = 1, 2 is the volume occupied by the fluid k at time t in Ω. In the same way, we have for

the dynamic viscosity

µ(x, t) = µ1 1(x∈Ωt
1)
(x) + µ2 1(x∈Ωt

2)
(x). (14.2)

By also defining a velocity u and a pressure p on the whole domain Ω, under gravity g the flow is

governed by the Navier-Stokes equations

∂tρ+∇ · (ρu) = 0, (14.3)

∂t(ρu) +∇ · (ρu⊗ u)−∇ · (µ∇u)) +∇p = ρg. (14.4)

145

146 CHAPTER 14. MULTIPHASE FLOWS

The Navier-Stokes equations are in conservation form, i.e. in the form

∂tU +∇ · F = S, (14.5)

with U = (ρ,u), F , F = (ρu, ρu⊗ u− µ∇u+ p I) and S = (0, ρg).

14.1.1 Transmission conditions, jump conditions

We have to understand if the equations intrinsically include the necessary transmission condition be-

tween the two fluids. The surface tension forces at fluid interface is neglected in this study.

Suppose that U is a piecewise C 1 function solution of (14.5). Let p = 1 + d and ϕ ∈ D(Ω). By

applying the Green formula, we have for any spatio-temporal domain D ∈ Ω× (0, T)

∫

D







U · ∂ϕ
∂t

+
d
∑

j=1

Fj ·
∂ϕ

∂xj
− S · ϕ







dx dt = 0. (14.6)

Now let Σ be the fluid interface between the two immiscible fluids, M be a point of Σ and D be a

small ball centered at M in the (x, t)-plane. We denote by D− and D+ the two open components of

D on each side of Σ (see figure 14.1. From (14.6), we also have

Figure 14.1: Jump transmission condition at fluid interface ((x, t)-plane).

∫

D−

{U · ∂ϕ
∂t

+
d
∑

j=1

Fj ·
∂ϕ

∂xj
−S ·ϕ} dx dt+

∫

D+

{U · ∂ϕ
∂t

+
d
∑

j=1

Fj ·
∂ϕ

∂xj
−S ·ϕ} dx dt = 0. (14.7)

Suppose for instance that the normal vector n to the surface Σ points in D+. Then, applying Green’s

formula in D+ and D− gives

0 = −
∫

D+

{∂U
∂t

+

d
∑

j=1

∂F j

∂xj
− S} · ϕdx dt−

∫

Σ∩D
{ntU+ +

d
∑

j=1

nxjF
+
j } · ϕds

−
∫

D−

{∂U
∂t

+

d
∑

j=1

∂F j

∂xj
− S} · ϕdx dt+

∫

Σ∩D
{ntU− +

d
∑

j=1

nxjF
−
j } · ϕds.

14.1. SETTING OF THE EQUATIONS 147

Since U is a classical solution of (14.5), we obtain

∫

Σ∩D
{−nt(U+ −U−)−

d
∑

j=1

(

F+
j − F−

j

)

· ϕds} = 0.

Since ϕ is arbitrary, we obtain the jump relation at the point M

− nt(U
+ −U−)−

d
∑

j=1

(

F+
j − F−

j

)

= 0. (14.8)

The jump relation (14.8) is known the Rankine-Hugoniot condition, generalized here to any space

dimension. If we denote by

|[U]| = U+ −U−

the jump of U and similarly by

|[Fj |] = F+
j − F−

j

the jump of Fj , j = 1, . . . , d, the jump condition may be written

nt |[U |] +
d
∑

j=1

nxj |[Fj |] = 0. (14.9)

If (nx1 , . . . , nxd) 6= 0, let us set

n = (−σ,ν)
where σ ∈ R and ν = (ν1, . . . , νd) is a unit vector of Rd. Thené(14.9) can be equivalently written in

the form

σ|[U |] =
d
∑

j=1

νj |[Fj]|. (14.10)

If Σ is oriented and n

|n| is the outward unit normal vector to σ, then ν and σ may be interpreted

respectively as the direction and the speed of propagation of the discontinuity Σ. Using the definition

of U and F , we get component by component

σ|[ρ]| = |[ρu · ν]| (14.11)

and

σ|[ρu]| = |[ρuu · ν + pν − µ
∂u

∂ν
]|. (14.12)

Let us define Φ = ρ(u · ν − σ) the mass flux through the interface Σ. Because the two fluids are

supposed to be immiscible, there is no mass transfer between the two fluids. Thus Φ = 0 and we have

u+ · ν = u− · ν = σ.

and in particular

|[u · ν]| = 0. (14.13)

The transmission condition (14.13) is referred to as the kinematic jump condition. The second com-

patibility condition (14.12) can be rewritten

|[Φu+ pν − µ
∂u

∂ν
]| = 0. (14.14)

148 CHAPTER 14. MULTIPHASE FLOWS

But because Φ = 0 at the fluid interface, we have the second jump condition

|[−µ∂u
∂ν

+ pν]| = 0. (14.15)

Equation (14.15) is referred to as the dynamic jump condition.

14.1.2 Final model

Because each of the two fluids are incompressible, one may look for a simpler system of equations.

Because ∇ · u = 0, the continuity equation is actually a transport equation which can be written

Dtρ = 0 (14.16)

using the Lagrangian derivative. This is also true for the dynamic viscosity

Dtµ = 0. (14.17)

Still because ∇ · u = 0, the momentum equation can write

Dt(ρu)−∇ · (µ∇u) +∇p = ρg. (14.18)

Finally, because Dtρ = 0, we have also

ρDtu−∇ · (µ∇u) +∇p = ρg. (14.19)

The system is closed with the zero-divergence velocity condition:

∇ · u = 0. (14.20)

One gets the standard Navier-Stokes equations (14.19),(14.20) coupled with the two transport equa-

tions (14.17),(14.18). It is a simple matter to show that equations (14.19) and (14.20) respect both

kinematic and dynamic jump conditions. For example, multiplying once again equation (14.20) by a

function ϕ ∈ D(Ω), integrating over the open D and applying Green’s formula, one gets

∫

D+

u · ∇ϕdx dt+
∫

D−

u · ∇ϕdx dt = 0.

Suppose for instance that the normal vector n the the surface Σ points in D+. Then applying once

again Green’s formula in D+ and D− gives

0 = −
∫

D+

∇ · uϕdx dt−
∫

Σ∩D
{u+ · ν}ϕds−

∫

D−

∇ · uϕdx dt+
∫

Σ∩D
{−u− · ν}ϕds.

Since ∇ · u = 0 in D− and ∇ · u = 0 in D+, we obtain

∫

Σ∩D
|[u · ν]|ϕds = 0

for any arbitray ϕ ∈ D(Ω) so that the kinematic condition is satisfied..

14.2. SEMI-DISCRETIZATION IN TIME 149

14.2 Semi-discretization in time

As already seen, the total derivatives are discretized according to be characteristic method. For nu-

merical stability purposes, the other terms are made implicit. From a time step ∆, the following

discrete-in-time equations are written

ρn+1 − ρn ◦Xn

∆t
= 0, (14.21)

µn+1 − µn ◦Xn

∆t
= 0, (14.22)

∇ · un+1 = 0, (14.23)

ρn+1 u
n+1 − un ◦Xn

∆t
−∇ · (µn+1∇un+1) +∇pn+1 = ρn+1 g, (14.24)

One can observe that, due to the features of the characteristic method, to the first equations can be

solved separately before the Navier-Stokes equations numerical solution. Once ρn+1 and µn+1 are

computed, one has to solve a standard Navier-Stokes problem, but with spatially varying density and

dynamic viscosity.

For a full discretization, one can use a standard Finite Element method suited for the Navier-Stokes

equations.

14.3 Front tracking by a level function

Actually, one of the drawbacks of the actual numerical scheme (14.21)-(14.24) is that the transport

equations Dtρ = 0 and Dtµ = 0 are solved by an approximation scheme. Thus, inherent numerical

diffusion tends to create a discrete profile for density and viscosity near the fluid interface. Although

it is expected that the density of the continuous solution is either ρ1 or ρ2 according to the fluid

being present, the discrete density solved by the characteristic method can have unphysical values of

density, especially in the interval [min(ρ1, ρ2),max(ρ1, ρ2)]. This is also true for the viscosity. A

way to proceed is to consider a levelset variable ψ such that ψ < 0 in Ωt1, ψ > 0 in Ωt2 and the level

ψ = 0 exactly tracks the fluid interface σ. Because of the kinematic jump condition, a natural partial

differential equation for ψ is

Dtψ = 0. (14.25)

Suppose the function Ψ known. Then both density and viscosity are computed as

ρ(x, t) = ρ1 1(ψ(x,t)<0)(x) + ρ2 1(ψ(x,t)>0)(x). (14.26)

µ(x, t) = µ1 1(ψ(x,t)<0)(x) + µ2 1(ψ(x,t)>0)(x). (14.27)

By construction this computational approach leads to sharp density and viscosity profiles. This ac-

curacy is sometimes paid by stability problems, especially for large density ratios between the two

fluids.

150 CHAPTER 14. MULTIPHASE FLOWS

14.4 Application. Liquid sloshing in a box.

14.4.1 freefem++ source code of the sloshing problem

1 // Twofluid .edp (Freefem++)

2 // Two−fluid flow (incompressible fluids)

3 // Equations :

4 // div u = 0 in Omega

5 // D_t rho = 0 in Omega

6 // D_t(rho u) + div(mu grad u) + grad p = rho g.

7 //

8 real Lx = 2;

9 real Ly = 1;

10 real gravity = 9.81;

11 real rhom = 1.0, rhop = 10.0;

12 real num = 0.05, nup = 0.01;

13 real dt = 0.2;

14 real myratio=1.1;

15 mesh Th = square(120, 60, [x*Lx, y*Ly]);

16 mesh Thcoarse = square(40, 30, [x*Lx, y*Ly]);

17 fespace Uh(Th, P1b);

18 fespace Uhcoarse(Thcoarse, P1);

19 fespace Vh(Th, P1);

20 fespace Wh(Th, P2);

21 Uh u1, u2, u1old, u2old, u1h, u2h, pvisu;

22 Uhcoarse u1coarse, u2coarse;

23 Vh p, ph;

24 Wh phi, phih, phiold;

25 Wh rho, rhoold, mu;

26 //

27 // Initialisation

28 phi = 0.75*Ly/Lx*x -y; phiold=phi;

29 u1 = 0.0; u1old = u1;

30 u2 = 0.0; u2old = u2;

31 //

32 problem ConvectLevel(phi, phih) =

33 int2d(Th)(phi*phih/dt)

34 - int2d(Th)(convect([u1old,u2old], -dt, phiold)*phih/dt)

35 +int2d(Th)(0.001*dx(phi)*dx(phih)+0.001*dy(phi)*dy(phih));

36 //

37 problem NavierStokes([u1, u2, p], [u1h, u2h, ph]) =

38 int2d(Th)(rho*u1*u1h / dt)

39 - int2d(Th)(rho*convect([u1old,u2old], -dt, u1old)*u1h/dt)

40 +int2d(Th)(mu*dx(u1)*dx(u1h)+mu*dy(u1)*dy(u1h))

41 -int2d(Th)(p*dx(u1h))

42 + int2d(Th)(rho*u2*u2h/dt)

43 - int2d(Th)(rho*convect([u1old,u2old], -dt, u2old)*u2h/dt)

44 +int2d(Th)(mu*dx(u2)*dx(u2h)+mu*dy(u2)*dy(u2h))

45 -int2d(Th)(p*dy(u2h))

46 +int2d(Th)(rho*gravity*u2h)

47 +int2d(Th)((dx(u1)+dy(u2))*ph+0.000001*p*ph)

48 +on(1,2,3,4, u1=0, u2=0);

14.5. APPLICATION. INJECTION MOULDING PROBLEM 151

49 //

50 for (int it=0; it<30; it++) {

51 // First , convect density

52 for (int innerloop=0; innerloop<1;innerloop++){

53 rhoold = rho;

54 phiold = phi;

55 ConvectLevel;

56 rho = rhom*(phi<=0)+rhop*(phi>0);

57 mu = rhom*num*(phi<=0)+rhop*nup*(phi>0);

58 NavierStokes;

59 u1old = u1; u2old = u2;

60 }

61 u1coarse = u1;

62 u2coarse = u2;

63 // Th = adaptmesh(Th, rho, u1, u2); rho = rho; mu = mu; u1=u1; u2=u2;

64 // plot (rho, nbiso=60, fill =1, ps="rho_it="+it+".eps");

65 pvisu = p;

66 plot(rho, nbiso=40, fill=1, value=1,

67 ps="TwoFluidLevel_it"+it+".eps");

68 cout << "pmin, pmax = " << p[].min << " " << p[].max << endl;

69 }

70 cout << "\n\nTwofluid.edp: Done ! \n\n\n";

14.4.2 Numerical results

Figure 14.2: Simulation of liquid sloshing in a closed tank. Discrete free boundary and velocity field.

14.5 Application. Injection moulding problem

14.5.1 freefem++ source code of the injection moulding problem

1 // Moulding.edp (Freefem++)

2 //

3 real[int] PA(2); PA = [0, 0];

4 real[int] PB(2); PB = [9, 0];

5 real[int] PC(2); PC = [9, 9];

6 real[int] PD(2); PD = [8, 9];

7 real[int] PE(2); PE = [0, 9];

152 CHAPTER 14. MULTIPHASE FLOWS

Figure 14.3: Simulation of liquid sloshing in a closed tank. Discrete free boundary and velocity field.

Figure 14.4: Simulation of liquid sloshing in a closed tank. Discrete free boundary and velocity field.

8 real[int] PF(2); PF = [0, 6];

9 real[int] PG(2); PG = [0,4];

10 real[int] PH(2); PH = [1, 1];

11 real[int] PK(2); PK = [1,8];

12 real[int] PL(2); PL = [8,8];

13 real[int] PM(2); PM = [8,5];

14 real[int] PO(2); PO = [5,5];

15 real[int] PP(2); PP = [5,4];

16 real[int] PQ(2); PQ = [8,4];

17 real[int] PR(2); PR = [8,1];

18 border c1(t=0,1){x=(1-t)*PA[0]+t*PB[0]; y=(1-t)*PA[1]+t*PB[1];}

19 border c2(t=0,1){x=(1-t)*PB[0]+t*PC[0]; y=(1-t)*PB[1]+t*PC[1];}

20 border c3(t=0,1){x=(1-t)*PC[0]+t*PD[0]; y=(1-t)*PC[1]+t*PD[1];}

21 border c4(t=0,1){x=(1-t)*PD[0]+t*PE[0]; y=(1-t)*PD[1]+t*PE[1];}

22 border c5(t=0,1){x=(1-t)*PE[0]+t*PF[0]; y=(1-t)*PE[1]+t*PF[1];}

23 border c6(t=0,1){x=(1-t)*PF[0]+t*PG[0]; y=(1-t)*PF[1]+t*PG[1];}

14.5. APPLICATION. INJECTION MOULDING PROBLEM 153

Figure 14.5: Simulation of liquid sloshing in a closed tank. Discrete free boundary and velocity field.

Figure 14.6: Simulation of liquid sloshing in a closed tank. Discrete free boundary and velocity field.

24 border c7(t=0,1){x=(1-t)*PG[0]+t*PA[0]; y=(1-t)*PG[1]+t*PA[1];}

25 //

26 border c8(t=0,1){x=(1-t)*PH[0]+t*PK[0]; y=(1-t)*PH[1]+t*PK[1];}

27 border c9(t=0,1){x=(1-t)*PK[0]+t*PL[0]; y=(1-t)*PK[1]+t*PL[1];}

28 border c10(t=0,1){x=(1-t)*PL[0]+t*PM[0]; y=(1-t)*PL[1]+t*PM[1];}

29 border c11(t=0,1){x=(1-t)*PM[0]+t*PO[0]; y=(1-t)*PM[1]+t*PO[1];}

30 border c12(t=0,1){x=(1-t)*PO[0]+t*PP[0]; y=(1-t)*PO[1]+t*PP[1];}

31 border c13(t=0,1){x=(1-t)*PP[0]+t*PQ[0]; y=(1-t)*PP[1]+t*PQ[1];}

32 border c14(t=0,1){x=(1-t)*PQ[0]+t*PR[0]; y=(1-t)*PQ[1]+t*PR[1];}

154 CHAPTER 14. MULTIPHASE FLOWS

Figure 14.7: Simulation of liquid sloshing in a closed tank. Discrete free boundary and velocity field.

33 border c15(t=0,1){x=(1-t)*PR[0]+t*PH[0]; y=(1-t)*PR[1]+t*PH[1];}

34 //

35 int m=2;

36 mesh Th=buildmesh(c1(80*m)+c2(50*m)+c3(10*m)+c4(40*m)

37 +c5(30*m)+c6(10*m)+c7(30*m)

38 +c8(80*m)+c9(40*m)+c10(25*m)+c11(20*m)

39 +c12(5*m)+c13(20*m)+c14(25*m)+c15(30*m));

40 plot(Th);

41 //

42 real gravity = 9.81;

43 real rhom = 1.0, rhop = 20.0;

44 real num = 0.1, nup = 10;

45 real dt = 1;

46 fespace Uh(Th, P1b);

47 fespace Vh(Th, P1);

48 fespace Wh(Th, P1b);

49 Uh u1, u2, u1old, u2old, u1h, u2h;

50 Vh p, ph;

51 Wh u1view, u2view;

52 Wh rho, rhoold, rho2, mu, muold;

53 //

54 // Initialisation

55 rho =rhom;

56 mu = rhom*num;

57 rho = rho + (rhop-rhom)*((x<0.2)*(y>PG[1])*(y<PF[1]));

58 mu = mu + (rhop*nup-rhom*num)*((x<0.2)*(y>PG[1])*(y<PF[1]));

59 u1 = 0.0; u1old = u1;

60 u2 = 0.0; u2old = u2;

61 //

62 plot(rho, nbiso = 60, fill=1);

14.5. APPLICATION. INJECTION MOULDING PROBLEM 155

63 int it = 0;

64 problem NavierStokes([u1, u2, p], [u1h, u2h, ph]) =

65 int2d(Th)(rho*u1*u1h/dt)

66 - int2d(Th)(rhoold*convect([u1old,u2old], -dt, u1old)*u1h/dt)

67 +int2d(Th)(mu*dx(u1)*dx(u1h)+mu*dy(u1)*dy(u1h))

68 +int2d(Th)(dx(p)*u1h)

69 + int2d(Th)(rho*u2*u2h/dt)

70 - int2d(Th)(rhoold*convect([u1old,u2old], -dt, u2old)*u2h/dt)

71 +int2d(Th)(mu*dx(u2)*dx(u2h)+mu*dy(u2)*dy(u2h))

72 +int2d(Th)(dy(p)*u2h)

73 +int2d(Th)(rho*gravity*u2h)

74 +int2d(Th)((dx(u1)+dy(u2))*ph+0.000001*p*ph)

75 +on(c6, u1=0.3, u2=0)

76 +on(c1,c2,c4,c5,c7,c8,c9,c10,c11,c12,c13,c14,c15, u1=0, u2=0);

77 //

78 real[int] viso(1); viso = [5, 10, 15];

79 for (it=0; it<40; it++) {

80 // First , convect density

81 for (int sit=0; sit<5; sit++) {

82 NavierStokes;

83 u1old = u1; u2old = u2;

84 rhoold = rho; muold = mu;

85 rho = convect([u1old,u2old], -dt, rho);

86 mu = convect([u1old,u2old], -dt, mu);

87 }

88 // Th = adaptmesh(Th, rho, u1, u2); rho = rho; mu = mu; u1=u1; u2=u2;

89 rho2 = rhop - rho;

90 plot(rho, fill=1, nbiso=3, viso=viso, value=1, ps="Moulding_rho_it"+it+"

.eps");

91 // plot (rho2, nbiso=60, fill =1, grey=1, bw=1, ps="Moulding_rho_it"+it+".eps");

92 }

93 //

94 cout << "\n\n\nDone.\n\n\n";

14.5.2 Numerical results

IsoValue
5
10
15

Figure 14.8: Simulation of injection molding. Material front just after the beginning of injection.

156 CHAPTER 14. MULTIPHASE FLOWS

IsoValue
5
10
15

IsoValue
5
10
15

Figure 14.9: Simulation of injection molding. Material front profile during injection.

IsoValue
5
10
15

IsoValue
5
10
15

Figure 14.10: Simulation of injection molding. Material front profile during injection.

IsoValue
5
10
15

IsoValue
5
10
15

Figure 14.11: Simulation of injection molding. Material front profile during injection.

14.5. APPLICATION. INJECTION MOULDING PROBLEM 157

IsoValue
5
10
15

IsoValue
5
10
15

Figure 14.12: Simulation of injection molding. Material front profile during injection.

Index

accuracy, 18, 94

adaptmesh (freefem++), 120

amplification factor, 20

artificial viscosity, 23

autosimilar solution, 89

bifurcation, 81

bilinear form, 30

biomolecular system, 137

boundary condition, 79

boundary conditions, 9

buoyancy, 123

Cauchy-Schwarz inequality, 30

CFL condition, 15, 93

chemotaxis, 77

coercive form, 30

compressible flow, 113

conservation form, 10

conservative equation, 9

conservative form, 87

conservative scheme, 93

consistency, 18

continuity equation, 113

convect (freefem++), 42

convection problem, 44

convection-diffusion, 123

convection-reaction-diffusion, 78

convective flux, 136

cost function, 36

Courant number, 16

diffusion process, 134

diffusive flux, 78, 136

dimensionless equation, 78, 124

discontinuity, 88

dispersion relation, 80

dynamic jump condition, 148

eigenvalue problem, 80

elliptic problem, 29

energy equation, 113

equilibrium, 79

equivalent equation, 23

Euler scheme, 14

Euler-Maruyama scheme, 135

finite difference, 13, 14

finite element, 31

finite volume, 13

Fokker-Planck equation, 134

Fourier transform, 17

fractional step method, 82

freefem++, 29

freeway, 102

front tracking, 149

functional, 36

fundamental diagram, 88

gas dynamics, 11

Green’s formula, 10, 29, 136

heat problem, 32

heat transfer, 123

Heun scheme, 61

Hilbert space, 30

hybrid scheme, 22

incompressible, 9, 11

inf-sup condition, 50

jump condition, 147

jump conditions, 91

kinematic condition, 147

kinematic equation, 7

kinematic viscosity, 123

Lagrangian, 9

158

INDEX 159

Lagrangian derivative, 7

lagrangian derivative, 41

Laplace problem, 29

Lax-Friedrichs scheme, 20, 94

Lax-Milgram Theorem, 30, 33

Lax-Wendroff scheme, 18, 94

LBB condition, 50

linear stability, 79

Lokta-Volterra equations, 65

Mach number, 117

metabolite reactions, 137

method of characteristics, 41

momentum equation, 113

Monte-Carlo method, 135

Navier-Stokes equations, 123

nonconservative form, 115

numerical flux, 19, 21, 93

optimization, 36

order of accuracy, 18

ordinary differential equation, 133

particle derivative, 7, 41

planar wave, 80

Poiseuille flow, 125

Prandtl number, 124

probability density function, 134

Rankine-Hugoniot condition, 147

Rankine-Hugoniot relations, 91

rarefaction wave, 90

Rayleigh-Taylor instabilities, 123

Reynolds number, 124

Reynolds theorem, 10

RK2, 61

Robin boundary condition, 136

Roe scheme, 93

scilab, 23

semi-discrete form, 32

semi-discretization, 82

semi-implicit, 82

shape optimization, 36

shock wave, 90

Sobolev space, 30, 33, 137

stability, 15, 79

stable equilibrium, 79

steady state, 79

stochastic, 133, 137

stochastic differential equation, 135

thermal conductivity, 37, 125

thermal engineering, 34

total derivative, 41, 115

trace function, 33

transport equation, 7, 11

uncertainty, 137

unstable equilibrium, 79

upwind scheme, 19

variational formulation, 33, 116

vehicle traffic flow, 87

von Neumann stability, 17

weak solution, 91

working fluid, 123

zero flux boundary condition, 79, 136

160 INDEX

Bibliography

[1] P.A. Raviart, J.M. Thomas, Introduction à l’Analyse numérique des équations aux dérivées par-

tielles, Dunod (2004).

[2] I. Danaila, F. Hecht, O. Pironneau, Simulation numérique en C++ - Cours et exercices corrigés,

Dunod (2003).

[3] E. F. Toro, Godunov Methods: theory and applications, Kluwer Academic (2001).

[4] E. Godlewski, P.A. Raviart, Numerical approximation of hyperbolic systems of conservation

laws, Springer-Verlag (1996).

[5] H. Yamaguchi, Engineering Fluid Mechanics, Kluwer Academic Publishers (2008)

[6] R. Temam and A. Miranville, Modélisation Mathématique et Mécanique des milieux continus,

Springer (2002).

[7] R. Haberman, Mathematical models: mechanical vibrations, population dynamics and traffic

flow, Society for Industrial and Applied Mathematics, Classics in Applied Mathematics (1998).

[8] B. Lucquin, O. Pironneau, Introduction to Scientific Computing, John Wiley and Sons (1998).

[9] N. G. van Kampen, Stochastic processes in Physics and Chemistry, North-Holland (1992).

[10] J. Istas, Mathematical modeling for the life sciences, Springer-Verlag Berlin (2005).

[11] B. S. Kerner, The Physics of Traffic: empirical freeway pattern features, engineering applications

and Theory, Springer-Verlag Berlin and Heidelberg (2004).

[12] L. Edelstein-Keshet, Mathamtical Models in Biology, Society for Industrial and Applied Mathe-

matics, Classics in Applied Mathematics (2008).

[13] J. N. Reddy, The Finite Element Method in heat transfer and Fluid Dynamics, CRC Press Inc.

(2000).

[14] B. Oksendal, Stochastic Differential Equations: an introduction with applications, Springer-

Verlag (2003).

[15] P. Kotelenez, Stochastic ordinary and stochastic partial differential equations: transition from

microscopic to macroscopic equations, Springer-Verlag New-York Inc. (2008).

[16] Stochastic Integration and differential equations, Springer-Verlag Berlin (2003).

161

162 BIBLIOGRAPHY

[17] Freefem++ Open Source Software, http://www.freefem.org/.

[18] Scilab Open Source Software, http://www.scilab.org/.

[19] J.P. Chancelier, D. Delebecque, C. Gomez, M. Goursat, Introduction à Scilab, Springer Editions

(2007).

http://www.freefem.org/
http://www.scilab.org/

