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FOREWORD

THE present document is based on four lectures given for Master of Space and
Application in University of Science and Technology of Hanoi on january and

february 2013.
So, it consists of four parts. The first one is devoted to filters, while the second

one deals with DC/DC converter, the third one discusses the phase locked loop and
the last the modulation. For convenience of the readers the work is organized so
that each part is self-contained and can be read independently. These four elec-
tronic systems are chosen because they are representative of critical elements en-
countered in spacecraft; wether for power supply or for data transmission.

In any case, this is also the opportunity to work on electronic systems requir-
ing calculations of impedances, transfer functions or stability criteria. They are also
good examples of uses of resistor, capacitor, inductor, transistor, logic gate ... as well
as operational amplifiers or mixers.

Example isn’t another way to teach, it is the only way to teach
Albert Einstein

Acknowledgements : Damien Prêle was teaching assistants in Paris-6 University
for 4 years with professor Michel REDON. Topics of this lecture are inspired from M.
Redon’s lectures that were given at Paris-6 University for electronic masters. There-
fore, this lecture is dedicated to the memory of professor Michel REDON who gave
to the author his understanding of the electronic and helped him to start teaching
it. Moreover, the author would like to express his gratitude to Miss Nguyen Phuong
Mai and Mr. Pham Ngoc Dong for their help during the practical work which has
follow this lecture in Hanoi.
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CHAPTER 1
FILTERS

1.1 Introduction

A filter performs a frequency-dependent signal processing. A filter is generally
used to select a useful frequency band out from a wide band signal (example :

to isolate station in radio receiver). It is also used to remove unwanted parasitic
frequency band (example : rejection of the 50-60 Hz line frequency or DC blocking).
Analogue to digital converter also require anti-aliasing low-pass filters.

The most common filters are low-pass, high-pass, band-pass and band-stop (or
notch if the rejection band is narrow) filters :

f

Low-pass

f

High-pass

f

Band-pass

f

Band-stop

Figure 1.1: Transfer function of ideal filter : Fixed gain in the pass band and zero
gain everywhere else ; transition at the cutoff frequency.

To do an electronic filter, devices which have frequency-dependent electric pa-
rameter as L and C impedances are necessary. The use of these reactive impedances*

into a voltage bridge is the most common method to do a filtering ; this is called pas-
sive filtering. Passive (R,L,C) filter is used at high frequencies due to the low L and
C values required. But, at frequency lower than 1 MHz, it is more common to use

*A reactive impedance is a purely imaginary impedance.
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1.2. FILTER PARAMETERS CHAPTER 1. FILTERS

active filters made by an operational amplifier in addition to R and C with reason-
able values. Furthermore, active filter parameters are less affected* by source and
load impedances than passive one.

1.2 Filter parameters

1.2.1 Voltage transfer function

Passive low-pass filter example : a first order low-pass filter is made by R-C or
L-R circuit as a voltage divider with frequency-dependent impedance. Capacitor
impedance (ZC = 1

jCω ) decrease at high frequency† while inductor impedance (ZL =
j Lω) increases. Capacitor is then put across output voltage and inductor between
input and output voltage (Fig. 1.2) to perform low pass filtering.

vi n

R

ii n

C
"iout "

vout vi n

L
R

vout vi n

L
C

vout

Figure 1.2: Passive low-pass filter : first order R-C, first order L-R and second order
L-C.

Generalization : whatever impedances Zx of the voltage bridge shown in figure
1.3, voltage transfer functions H are generalized as expression 1.1 by calculating the
divider’s voltage ratio using Kirchhoff’s voltage law‡.

vi n

Z1
Z2

vout = Z2
Z1+Z2

vi n

Figure 1.3: Impedance bridge voltage divider.

H(ω) = vout

vi n
= Z2

Z1 +Z2
(1.1)

*Active filter allows to separate the filter parameters with those matching impedance.
†angular frequency ω= 2π f
‡The sum of the voltage sources in a closed loop is equivalent to the sum of the potential drops in

that loop : vi n = Z1 ×
vout

Z2︸ ︷︷ ︸
ii n="iout "

+ vout
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1.2. FILTER PARAMETERS CHAPTER 1. FILTERS

Voltage transfer functions of filters given in figure 1.2 are then expressed as :

HRC = ZC

R +ZC
=

1
jCω

R + 1
jCω

=⇒ HRC = 1

1+ j RCω
(1.2)

HLR = R

R +ZL
= R

R + j Lω
=⇒ HLR = 1

1+ j L
Rω

(1.3)

HLC = ZC

ZL +ZC
=

1
jCω

j Lω+ 1
jCω

=⇒ HLC = 1

1−LCω2 (1.4)

+ A filter can also be used to convert a current to a voltage or a voltage to a
current in addition to a simple filtering *. Considering for example the first R-C low
pass filter in figure 1.2. We can define trans-impedance transfer function vout

ii n
and

the trans-admittance transfer function "iout "
vi n

:

vout

ii n
= vout

"iout "
= ZC = 1

jCω
−→ Integrator (1.5)

"iout "

vi n
= 1

R +ZC
= 1

R + 1
jCω

= jCω

1+ j RCω
−→ High-pass filter (1.6)

1.2.2 S plane (Laplace domain)

Due to the fact that L and C used in filter design has complex impedance, filter trans-
fer function H can be represented as a function of a complex number s :

s =σ+ jω (1.7)

Frequency response and stability information can be revealed by plotting in a
complex plane (s plane) roots values of H(s) numerator (zero) and denominator
(pole).

• Poles are values of s such that transfer function |H |→∞,

• Zeros are values of s such that transfer function |H | = 0.

Considering the band-pass filter of the figure 1.4, the transfer function HLC R =
vout
vi n

is given by equation 1.8.

HLC R (s) = R

R +Ls + 1
C s

= RC s

1+RC s +LC s2 (1.8)

The order of the filter (Fig. 1.4) is given by the degree of the denominator of the
expression 1.8. A zero corresponds the numerator equal to zero. A pole is given

*To filter a current, two impedances in parallel are require : current divider. In our example without

load impedance ii n = iout . Current transfer function "iout "
ii n

is then always equal to 1.
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1.2. FILTER PARAMETERS CHAPTER 1. FILTERS

vi n

L C R

vout

Figure 1.4: Passive band-pass LCR filter.

by the denominator equal to zero. Each pole provides a -20dB/decade slope of the
transfer function ; each zero a + 20 dB/decade *. Zero and pole can be real or com-
plex. When they are complex, they have a conjugate pair †.
Expression 1.8 is characterized by a zero at ω= 0 and two conjugate poles obtained
by nulling it’s denominator (1.9).

0 = 1+RC s +LC s2 −−−−−→
di scr i .

∆= (RC )2 −4LC −−−−→
r oot s

sp = −RC ±
√

(RC )2 −4LC

2LC
(1.9)

The two roots allow to obtain poles sp1 and sp2 given on 1.10.

sp = −R

2L
± j

√
1

LC
−

(
R

2L

)2

(1.10)

The natural angular frequency ω0 is the module of the pole :

ω0 = |sp1,2 | =
1p
LC

(1.11)

In a s plane, pole and zero allow to locate where the magnitude of the transfer
function is large (near pole), and where it is small (near zero). This provides us un-
derstanding of what the filter does at different frequencies and is used to study the
stability. Figure 1.5 shows pole (6) and zero (l) in a s plane.

A causal linear system is stable if real part of all poles is negative. On the s plane,
this corresponds to a pole localization at the left side (Fig. 1.6).

1.2.3 Bode plot (Fourier domain)

The most common way to represent the transfer function of a filter is the Bode plot.
Bode plot is usually a combination of the magnitude |H | and the phase φ of the
transfer function on a log frequency axis.

*H [dB ] = 20log H [l i n.] and a decade correspond to a variation by a factor of ten in frequency. A
times 10 ordinate increasing on a decade (times 10 abscissa increasing) correspond to a 20dB/decade
slope on a logarithmic scale or also 6dB/octave. A -20dB/decade then correspond to a transfer function
decreasing by a factor of 10 on a decade

†each conjugate pair has the same real part, but imaginary parts equal in magnitude and opposite in
signs

8 damien.prele@apc.univ-paris7.fr



1.2. FILTER PARAMETERS CHAPTER 1. FILTERS

σ

jω

1p
LC− R

2L
l

6
√

1
LC − ( R

2L

)2

6 −
√

1
LC − ( R

2L

)2

Figure 1.5: Pole (6) and zero (l) representation of the RLC filter (Fig. 1.4) into the s
plane.

σ

jω

6
stable

σ

jω

6
unstable

Figure 1.6: Stable if all poles are in the left hand s plane (i.e. have negative real
parts).

Using the LCR band-pass filter (figure 1.4 example), the magnitude* and the phase†

of the expression 1.8 (rewrite with unity numerator in 1.12) are respectively given by
expressions 1.13 and 1.14. To do this, Fourier transform is used (harmonic regime)
instead of Laplace transform : s is replaced by jω.

HLC R = j RCω

1+ j RCω−LCω2 = 1

1+ j
( Lω

R − 1
RCω

) (1.12)

|HLC R | = 1√
1+ ( Lω

R − 1
RCω

)2
(1.13)

φLC R = arg(HLC R ) =−arctan

(
Lω

R
− 1

RCω

)
(1.14)

Numerical Application : L = 1 mH, C = 100 nF and R = 100Ω

• The natural ‡ frequency f0 = 1
2π

p
LC

= 105

2π ≈ 16 kH z.

*Absolute value or module
†Argument
‡In the case of band-pass filter, natural frequency is also called resonance frequency or center fre-

quency. This is the frequency at which the impedance of the circuit is purely resistive.

9 damien.prele@apc.univ-paris7.fr



1.2. FILTER PARAMETERS CHAPTER 1. FILTERS

• The high pass-filter cutoff frequency fc1 = R
2πL = f0.

• The low pass-filter cutoff frequency fc2 = 1
2πRC = f0.

The Bode diagram of this band-pass filter is plotted on figure 1.7.

Figure 1.7: Bode plot of the LCR band-pass filter figure 1.4.

+ Whatever the numerical application, f0 = √
fc1 fc2 but f0, fc1 and fc2 are not neces-

sarily equal.

In this numerical application f0 = fc1 = fc2 (Fig 1.7). This correspond to a par-

ticular case where the quality factor Q = 1
R

√
L
C = 1

100

√
10−3
10−7 = 1. For other numerical

application (i.e. Q 6= 1), f0 is different than fc1 and fc2 (Fig 1.8).

Quality factor Q

Quality factor Q is a dimensionless parameter which indicates how much is the
sharpness of a multi-pole filter response around its cut-off (or center *) frequency. In
the case of a band-pass filter, its expression 1.15 is the ratio of the center frequency
to the -3 dB bandwidth (BW) and is given for series and parallel LCR circuit.

Q = f0

BW

∣∣∣
band-pass filter

= 1

R

√
L

C

∣∣∣
series LCR

= R

√
C

L

∣∣∣
parallel LCR

(1.15)

*for a band-pass filter

10 damien.prele@apc.univ-paris7.fr



1.2. FILTER PARAMETERS CHAPTER 1. FILTERS

Quality factor is directly proportional to the selectivity of a band-pass filter (Fig.
1.8) :

• Q < 1
2 → damped and wide band filter

• Q > 1
2 → resonant and narrow band filter

We can again rewrite expressions 1.12 by using now natural frequency f0 and
quality factor Q :

HLC R = j RCω

1+ j RCω−LCω2 =
j 1

Q
ω
ω0

1+ j 1
Q

ω
ω0

− ω2

ω2
0

=
j 1

Q
f
f0

1+ j 1
Q

f
f0
− f 2

f 2
0

= 1

1+ jQ
(

f
f0
− f0

f

)
(1.16)

with RC = 1
Q

1
ω0

, Q = 1
R

√
L
C , ω0 = 2π f0 = 1p

LC
and ω= 2π f .

Figure 1.8: Bode plot of a band-pass filter - Q = 0.01 ; 0.1 ; 0.25 ; 0.5 ; 1 ; 2 ; 4 ; 10 ; 100
(i.e. ζ = 50 ; 5 ; 2 ; 1 ; 0.5 ; 0.25 ; 0.125 ; 0.05 ; 0.005).

Damping factor ζ

Damping factor ζ is generally used in the case of low and hight-pass filter (Low Q)
when Q is used in the case of narrow band-pass filter, resonator and oscillator (High
Q).

ζ= 1

2Q
(1.17)

The more damping the filter has, the flatter is its response and likewise, the less
damping the filter has, the sharper is its response :

• ζ < 1 → steep cutoff

11 damien.prele@apc.univ-paris7.fr
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• ζ = 1 → critical damping

• ζ > 1 → slow cutoff

Expression 1.12 may be rewritten using damping factor :

HLC R = j RCω

1+ j RCω−LCω2 =
j 2ζ ω

ω0

1+ j 2ζ ω
ω0

− ω2

ω2
0

(1.18)

1.3 Cascading filter stages

Circuit analysis by applying Kirchhoff’s laws (as before) is usually only used for first
and second order filter. For a higher order of filtering, network synthesis approach
may be used. A polynomial equation expresses the filtering requirement. Each first
and second order filter elements are then defined from continued-fraction expan-
sion of the polynomial expression. In practice, to avoid saturation, highest Q stage
is placed at the end of the network.

1st order
1st order

2nd order
2nd order

1st order 2nd order
3r d order

2nd order 2nd order
4th order

1st order 2nd order 2nd order
5th order

...

Figure 1.9: Cascading filter stages for higher-order filters.

It exists different type of polynomial equations from which the filter is mathe-
matically derived. These type of filters are Butterworth, Bessel, Chebyshev, inverse
Chebyshev, elliptic Cauer, Bessel, optimum Legendre, etc.

• Butterworth filter is known as the maximally-flat filter as regards to the flat-
ness in the pass-band. The attenuation is simply -3 dB at the cutoff frequency ;
above, the slope is -20dB/dec per order (n).

• Chebychev filter has a steeper rolloff* just after the cutoff frequency but ripple
in the pass-band. The cutoff frequency is defined as the frequency at which

*rolloff = transition from the pass band to the stop band.

12 damien.prele@apc.univ-paris7.fr
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the response falls below the ripple band *. For a given filter order, a steeper
cutoff can be achieved by allowing more ripple in the pass-band (Chebyshev
filter transient response shows overshoots).

• Bessel filter is characterized by linear phase response. A constant-group delay
is obtained at the expense of pass-band flatness and steep rolloff. The attenu-
ation is -3 dB at the cutoff frequency.

• elliptic Cauer (non-polynomials) filter has a very fast transition between the
passband and the stop-band. But it has ripple behavior in both the passband
and the stop-band (not studied after).

• inverse Chebychev - Type II filter is not as steeper rolloff than Chebychev but
it has no ripple in the passband but in the stop band (not studied after).

• optimum Legendre filter is a tradeoff between moderate rolloff of the Butter-
worth filter and ripple in the pass-band of the Chebyshev filter. Legendre filter
exhibits the maximum possible rolloff consistent with monotonic magnitude
response in the pass band.

1.3.1 Polynomial equations

Filters are syntheses by using a H0 DC gain and a polynomial equations Pn , with n
the order of the equation, and then, of the filter. The transfer function of a synthe-
sized low pass filter is H(s) = H0

Pn

(
s
ωc

) with ωc the cutoff angular frequency.

Butterworth polynomials

Butterworth polynomials are obtained by using expression 1.19 :

Pn(ω) = Bn(ω) =
√

1+
(
ω

ωc

)2n

(1.19)

The roots† of these polynomials occur on a circle of radius ωc at equally spaced
points in the s plane :

Poles of a H(s)H(−s) = H 2
0

1+
(
−s2

ω2
c

)n low pass filter transfer function module are spec-

ified by :

−s2
x

ω2
c

= (−1)
1
n = e j (2x−1)π

n with x = 1,2,3, . . . ,n (1.20)

The denominator of the transfer function may be factorized as :

*The cutoff frequency of a Tchebyshev filter is not necessarily defined at - 3dB. fc is the frequency
value at which the filter transfer function is equal to 1p

1+ε2
but continues to drop into the stop band. ε is

the ripple factor. Chebyshev filter is currently given for a given ε (20log
p

1+ε) in [dB].
†Roots of Bn are poles of the low-pass filter transfer function H(s).

13 damien.prele@apc.univ-paris7.fr
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σ

n = 1

jω

6 σ

n = 2

jω

6

6

σ

n = 3

jω

6

6

6

σ

n = 4

jω

6

6

6

6

σ

n = 5

jω

6
6

6

6
6

Figure 1.10: Pole locations of 1st , 2nd , 3r d , 4th and 5th order Butterworth filter.

H(s) = H0∏n
x=1

s−sx
ωc

(1.21)

The denominator of equation 1.21 is a Butterworth polynomial in s. Butterworth
polynomials are usually expressed with real coefficients by multiplying conjugate
poles *. The normalized† Butterworth polynomials has the form :

B0 = 1

B1 = s +1

Bn =
n
2∏

x=1

[
s2 −2s cos

(
2x +n −1

2n
π

)
+1

]
n is even

= (s +1)

n−1
2∏

x=1

[
s2 −2s cos

(
2x +n −1

2n
π

)
+1

]
n is odd

(1.22)

Chebyshev polynomials

Chebyshev polynomials are obtained by using expression 1.23 :

Pn = Tn =
{

cos(n arccos(ω)) |ω| ≤ 1

cosh(n arcosh(ω)) |ω| ≥ 1
(1.23)

where the hyperbolic cosine function cosh(x) = cos( j x) = ex+e−x

2 . From the two
first values T0 = 1 and T1 = ω, Chebyshev polynomials Tn(ω) could be recursively
obtained by using expression 1.24 :

*for example s1 and sn are complex conjugates
†normalized : ωc = 1 and H0 = 1

14 damien.prele@apc.univ-paris7.fr
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T0 = 1

T1 =ω

Tn = 2ωTn−1 −Tn−2


T2 = 2ω2 −1

T3 = 4ω3 −3ω

T4 = 8ω4 −8ω2 +1

. . .

(1.24)

Chebyshev low-pass filter frequency response is generally obtained by using a
slightly more complex expression than for a Butterworth one :

|H(s)| = H ′
0√

1+ε2T 2
n

(
ω
ωc

) (1.25)

where ε is the ripple factor *. Even if H ′
0 = 1, magnitude of a Chebyshev low-

pass filter is not necessarily equal to 1 at low frequency (ω = 0). Gain will alternate
between maxima at 1 and minima at 1p

1+ε2
.

Tn

(
ω

ωc
= 0

)
=

{
±1 n is even

0 n is odd
⇒ H

(
ω

ωc
= 0

)
=

{
1p

1+ε2
n is even

1 n is odd
(1.26)

At the cutoff angular frequency ωc , the gain is also equal to 1p
1+ε2

(but ∀n) and,

as the frequency increases, it drops into the stop band.

Tn

(
ω

ωc
= 1

)
=±1 ∀n ⇒ H

(
ω

ωc
= 1

)
=± 1p

1+ε2
∀n (1.27)

Finally, conjugate poles sx (equation 1.28 †) of expression 1.25 are obtained by
solving equation 0 = 1+ε2T 2

n :

sx = sin

(
2x −1

n

1

2π

)
sinh

(
1

n
arcsinh

1

ε

)
+ j cos

(
2x −1

n

1

2π

)
cosh

(
1

n
arcsinh

1

ε

)
(1.28)

Using poles, transfer function of a Chebyshev low-pass filter is rewritten as equa-
tion 1.25 :

H(s) =


1p

1+ε2∏n
x=1

s−sx
ωc

n is even

1∏n
x=1

s−sx
ωc

n is odd
(1.29)

*ε= 1 for the other polynomials filter and is then not represented
†Poles are located on a centered ellipse in s plane ; with real axis of length sinh

(
1
n arcsinh 1

ε

)
and

imaginary axis of length cosh
(

1
n arcsinh 1

ε

)
.
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Bessel polynomials

Bessel polynomials are obtained by using expression 1.30 :

Pn = θn =
n∑

x=0
sx (2n −x)!

2n−x x!(n −x)!


θ1 = s +1

θ2 = s2 +3s +3

θ3 = s3 +6s2 +15s +15

. . .

(1.30)

Bessel low-pass filter frequency response is given by expression 1.31 and is also
given for n = 2 (delay normalized second-order Bessel low-pass filter).

θn(0)

θn

(
s
ωc

) =⇒
n = 2

3(
s
ωc

)2 +3 s
ωc

+3
= 1

1
3

(
s
ωc

)2 + s
ωc

+1
(1.31)

However, Bessel polynomials θn have been normalized to unit delay at ω
ωc

= 0
(delay normalized) and are not directly usable for classical cutoff frequency at -3 dB
standard (frequency normalized).

To compare this polynomials to the other one, the table 1.1 gives BCF factors for
converting Bessel filter parameters to 3 dB attenuation at ω

ωc
= 1. These factors were

used in preparing the frequency normalized tables given on Appendix I.

n BCF
2 1.3616
3 1.7557
4 2.1139
5 2.4274
6 2.7034
7 2.9517
8 3.1796
9 3.3917

Table 1.1: Bessel conversion factor

By using BCF factor and for n = 2 we finally see in expression 1.32 the frequency
response of a second order Bessel low pass filter :

H2 = 1

BC F 2

3

(
s
ωc

)2 +BC F s
ωc

+1
≈ 1

0.618
(

s
ωc

)2 +1.3616 s
ωc

+1
(1.32)

Module and phase are deduced from the equation 1.32 :
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|H2| = 1√(
1−0.618ω

2

ω2
c

)2 +
(
1.3616 ω

ωc

)2

φ= arg(H2) =−arctan

 1.3616 ω
ωc

1−0.618ω
2

ω2
c

 (1.33)

Bessel filter is characterized by a linear phase response. Group delay could be
studied by calculating :

τg =−dφ

dω
(1.34)

Legendre polynomials

From the two first values P0(x) = 1 and P1(x) = x, (as for Chebyshev) Legendre poly-
nomials Pn(ω2) could be recursively obtained by using expression 1.35 :

P0(x) = 1

P1(x) = x

Pn+1(x) = (2n +1)xPn(x)−nPn−1(x)

n +1


P2(x) = 3x2

2 − 1
2

P3(x) = 5x3

2 − 3x
2

P4(x) = 35x4

8 − 30x2

8 + 3
8

. . .

(1.35)

From these polynomials, Legendre low-pass filter (expression 1.36) also called
optimal filter are not directly defined from Pn but from optimal polynomials Ln(ω2)
described on expressions 1.37.

H(ω) = 1√
1+Ln(ω2)

(1.36)

Ln(ω2) =
{∫ 2ω2−1

−1

(∑k
i=0 ai Pi (x)

)2
d x n = 2k +1 is odd∫ 2ω2−1

−1 (x +1)
(∑k

i=0 ai Pi (x)
)2

d x n = 2k +2 is even

with ai



n is odd ∀k a0 = a1
3 = a2

5 = ·· · = ai
2i+1 = 1p

2(k+1)

n is even


k is odd

{ a1
3 = a3

7 = a5
11 = ·· · = ai

2i+1 = 1p
2(k+1)(k+2)

a0 = a2 = a4 = ·· · = ai = 0

k is even

{
a0 = a2

5 = a4
9 = ·· · = ai

2i+1 = 1p
2(k+1)(k+2)

a1 = a3 = a5 = ·· · = ai−1 = 0

(1.37)

Finally, optimal polynomials could be calculated :
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L0(ω2) = 1

L1(ω2) =ω2

L2(ω2) =ω4

L3(ω2) =ω2 −3ω4 +3ω6

L4(ω2) = 3ω4 −8ω6 +6ω8

L5(ω2) =ω2 −8ω8 +28ω6 −40ω8 +20ω10

. . .

(1.38)

Factorization of the overall attenuation function*
√

1+Ln(ω2) is given on Ap-
pendix I.

However, it is not so important † to know how found Butterworth, Chebyshev,
Bessel or Legendre polynomials coefficients; but it is more useful to know how to use
them to design efficient filters. This is why it exists a lot of filter tables to simplify cir-
cuit design based on the idea of cascading lower order stages to realize higher-order
filters.

1.3.2 Filter Tables

Filter tables could give complex roots or normalized polynomials coefficients c0, c1,
. . . , cn with Pn = cn sn +cn−1sn−1+·· ·+c1s+c0. However, more currently filter tables
show factorized polynomials or directly normalized cutoff frequency (Scaling Factor
- SF) and quality factor (Q) of each of stages for the particular filter being designed.

Some tables are now given using a Butterworth low-pass filter example.

Roots table

Some filter tables give complex roots of polynomials. Table 1.2 shows roots of But-
terworth polynomials (they are obtained by using equation 1.22).

This table is also an indication of pole locations (in s plane) of low-pass filter
having Butterworth polynomials as a transfer function denominator.

Polynomials coefficients table

An other table, concerning polynomials, shows directly coefficients cx of polynomi-

als as shown in table 1.3 for Butterworth polynomials Pn = Bn =
n∑

x=0
cx sx = cn sn +

cn−1sn−1 +·· ·+c1s + c0.
However, polynomials are generally factored in terms of 1st and 2nd order poly-

nomials ; particularly to build cascading 1st and 2nd order filters.

*Attenuation function = denominator of a low pass filter
†for a filter designer point of view
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order n σ jω

1 -1 0
2 -0.7071 ±0.7071
3 -0.5 ±0.866

-1 0
4 -0.3827 ±0.9239

-0.9239 ±0.3827
5 -0.309 ±0.951

-0.809 ±0.5878
-1 0

6 -0.2588 ±0.9659
-0.7071 ±0.7071
-0.9659 ±0.2588

7 -0.2225 ±0.9749
-0.6235 ±0.7818
-0.901 ±0.4339
-1 0

8 -0.1951 ±0.9808
-0.5556 ±0.8315
-0.8315 ±0.5556
-0.9808 ±0.1951

9 -0.1736 ±0.9848
-0.5 ±0.866
-0.766 ±0.6428
-0.9397 ±0.342
-1 0

Table 1.2: Butterworth polynomials complex roots.

Factored polynomials table

To cascade 1st and 2nd order filters (filter synthesis), a more usefull table give a fac-
tored representation of polynomials as the Butterworth quadratic factors in Table
1.4.

Cutoff frequencies and quality factor table

Finally, an other useful table for filter designer is table which give directly cutoff fre-
quency and quality factor of each 2nd order filter. Table 1.5 gives frequency scaling
factor and quality factor of Butterworth lowpass filter. A first order stage is just de-
fined by a normalized cutoff frequency (SF) without quality factor (Q). Scaling factor
is the ratio between the cutoff frequency of the considering stage and the cutoff fre-
quency of the overall cascaded filter. In the particular case of Butterworth filter, the
frequency scaling factor (SF) is always equal to one *.

1.3.3 The use of filter tables

To build, for example, a second order Butterworth low-pass filter we need to do the
transfer function H(s) = H0

Pn

(
s
ωc

) where Pn is a second order Butterwoth polynomials

i.e. Pn = B2.

Table 1.2 could be used to write B2 =
(

s
ωc

− r1

)(
s
ωc

− r∗
1

)
with r1 and r∗

1 the two

conjugate roots −0.7071± j 0.7071. The transfer function of the Butterworth lowpass
filter could be expressed as equation 1.39.

*each 1st and 2nd order filter have the same cutoff frequency than the Butterworth cascading filter
has at the end. This is not the case for other polynomials filter as Chebyshev for which SF is often different
than 1.
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n c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

1 1 1
2 1 1.41 1
3 1 2 2 1
4 1 2.61 3.41 2.61 1
5 1 3.24 5.24 5.24 3.24 1
6 1 3.86 7.46 9.14 7.46 3.86 1
7 1 4.49 10.1 14.59 14.59 10.1 4.49 1
8 1 5.13 13.14 21.85 25.69 21.85 13.14 5.13 1
9 1 5.76 16.58 31.16 41.99 41.99 31.16 16.58 5.76 1

10 1 6.39 20.43 42.8 64.88 74.23 64.88 42.8 20.43 6.39 1

Table 1.3: Butterworth polynomials coefficients cx . Pn = Bn =
n∑

x=0
cx sx = cn sn +

cn−1sn−1 +·· ·+c1s + c0.

n Pn = Bn

1 s +1
2 s2 +1.4142s +1
3 (s +1)(s2 + s +1)
4 (s2 +0.7654s +1)(s2 +1.8478s +1)
5 (s +1)(s2 +0.618s +1)(s2 +1.618s +1)
6 (s2 +0.5176s +1)(s2 +1.4142s +1)(s2 +1.9319s +1)
7 (s +1)(s2 +0.445s +1)(s2 +1.247s +1)(s2 +1.8019s +1)
8 (s2 +0.3902s +1)(s2 +1.1111s +1)(s2 +1.6629s +1)(s2 +1.9616s +1)
9 (s +1)(s2 +0.3473s +1)(s2 + s +1)(s2 +1.5321s +1)(s2 +1.8794s +1)

10 (s2 +0.3129s +1)(s2 +0.908s +1)(s2 +1.4142s +1)(s2 +1.782s +1)(s2 +1.9754s +1)

Table 1.4: Butterworth polynomials quadratic factors.

H(s) = H0

B2

(
s
ωc

) = H0(
s
ωc

+0.7071− j 0.7071
)(

s
ωc

+0.7071+ j 0.7071
) (1.39)

The denominator development of the expression 1.39 give a quadratic form (ex-
pression 1.40) which clearly shows Butterworth polynomial coefficients given on ta-
ble 1.3 and quadratic factors of table 1.4. It is also clear that expression 1.40 is similar
to a classical representation of a transfer function with quality factor where SF and
Q are finally what we can directly obtain from the table 1.5.
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order n 1st st ag e 2nd st ag e 3r d st ag e 4th st ag e 5th st ag e
SF Q SF Q SF Q SF Q SF Q

1 1
2 1 0.7071
3 1 1 1
4 1 0.5412 1 1.3065
5 1 0.618 1 1.6181 1
6 1 0.5177 1 0.7071 1 1.9320
7 1 0.5549 1 0.8019 1 2.2472 1
8 1 0.5098 1 0.6013 1 0.8999 1 2.5628
9 1 0.5321 1 0.6527 1 1 1 2.8802 1

10 1 0.5062 1 0.5612 1 0.7071 1 1.1013 1 3.1969

Table 1.5: Butterworth normalized cutoff frequency (Scaling Factor - SF) and quality
factor (Q) for each stages.

H(s) = H0(
s
ωc

)2 +1.41 s
ωc

+1
= H0

1+ j 1
Q

f
SF fc

− f 2

SF 2 f 2
c

with

{
SF = 1

Q = 1
1.41 = 0.7071

(1.40)
Bode diagram of this low pass filter could be expressed as equation 1.41 and plot-

ted as figure 1.11.

|H(ω)| = 1√[
1−

(
ω
ωc

)2
]2

+
(
1.41 ω

ωc

)2
with H0 = 1

φ(ω) = arg(H) =−arctan
1.41 ω

ωc

1−
(
ω
ωc

)2

(1.41)

1.3.4 Conversion from low-pass filter

Low-pass to high-pass filter Filter tables give polynomials for low and high-pass
filter. To obtain a high pass filter, a first order low pass filter transfer function H0

c0+c1s

becomes H∞s
c1+c0s ; and a second order low pass filter transfer function H0

c0+c1s+c2s2 be-

comes H∞s2

c2+c1s+c0s2 . Figure 1.12 shows low and high pass filter with H0 and H∞ *.

*in practice, there is always a frequency limitation which constitute a low pass filter, so that an ideal
high pass filter never exists and H∞ → 0. So, in the case of real high pass filter, H∞ signifies more the gain
just after the cut-off frequency than that at infinity.
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Figure 1.11: Bode plot of a second order Butterworth low pass filter.

HLP1 =
H0

c0 + c1s
⇒ HHP1 =

H∞
c0 + c1/s

HLP2 =
H0

c0 + c1s + c2s2 ⇒ HHP2 =
H∞

c0 + c1/s + c2/s2

(1.42)

Low to High pass filter conversion: s ⇒ s−1

Figure 1.12: H0 the low frequency gain of a low-pass filter and H∞ the high fre-
quency gain of a high-pass filter.

Band-pass filter For band-pass filter, it exists specific tables which give specific
coefficients given for different bandwidth (BW). However, a low pass filter transfer
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function could be converted in band-pass filter by replacing s by f0
BW

(
s + s−1

)
; where

f0
BW is equal to the quality factor Q.

Low to Band-pass filter conversion: s ⇒Q
(
s + s−1)

Band-reject filter A low pass filter transfer function is converted in band-reject fil-
ter by replacing s by 1

f0
BW (s+s−1)

.

Low to Band-reject filter conversion: s ⇒Q−1 (
s + s−1)−1

Transposition A synthesis of different transpositions ar reported in the table 1.6.

XXXXXXXXXXConv.
Filter type

Low-pass High-pass Band-pass Band-reject

Normalized
complex frequency

s s−1 Q
(
s + s−1

) 1
Q

1
s+s−1

First order transfert
function

1
C0+C1s

1
C0+C1/s

1
C0+C1Q(s+s−1)

1

C0+ C1
Q(s+s−1)

Second order
transfert function

1
C0+C1s+C2s2

1
C0+C1/s+C2/s2

Table 1.6: Filter normalized transposition.

The transfer function is obtained by using filter table after determination of type
and order. The next step is to determine a circuit to implement these filters.

1.4 Filter synthesys

It exists different topologies of filter available for filter synthesis. The most often
used topology for an active realization is Sallen-Key topology (Fig. 1.13).

1.4.1 Sallen-Key topology

Sallen-Key electronic circuit (Fig. 1.13) is used to implement second order active
filter.

From Kirchhoff laws, transfer function of the generic Sallen-Key topology could
be written as :

HSK = H0

1+
[

Z1+Z2
Z4

+ (1−H0) Z1
Z3

]
+ Z1 Z2

Z3 Z4

(1.43)
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vi n

Z1 Z2
Z4

H0

Z3

vout

Figure 1.13: Sallen-Key generic topology.

Sallen-Key low-pass filter

A low-pass filter is easily obtained from this circuit. Figure 1.14 show a Sallen-Key
low-pass filter.

vi n

R1 R2
C2

H0

C1

vout

Figure 1.14: Sallen-Key low-pass filter.

The transfer function of this Sallen-Key low-pass filter is given by equation 1.44.

HSKLP = H0

1+ [
(R1 +R2)C2 +R1C1(1−H0)

]
s +R1R2C1C2s2

= H0

c0 + c1s + c2s2

= H0

1+ j 1
Q

f
SF fc

− f 2

SF 2 f 2
c

with


SF fc = 1

2π
p

R1R2C1C2

Q =
p

R1R2C1C2
(R1+R2)C2+R1C1(1−H0)

(1.44)

This second order Sallen-Key filter can be used to realize one complex-pole pair
in the transfer function of a low-pass cascading filter. Values of the Sallen-Key cir-
cuit could be chosen to correspond to a polynomials coefficients (as Butterworth,
Chebyshev or Bessel).
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Sallen-Key high-pass filter

To transform a low-pass filter to a high-pass filter, all resistors are replaced by capac-
itor and capacitors by resistors :

vi n

C1 C2 R2

H0

R1

vout

Figure 1.15: Sallen-Key high-pass filter.

The transfer function of this Sallen-Key high-pass filter is given by equation 1.45.

HSKHP = H0
R1R2C1C2s2

1+ [
R1(C1 +C2)+R2C2(1−H0)

]
s +R1R2C1C2s2

= H0

c0 + c1
s + c2

s2

=
H0

c2
c0

s2

c0 + c1c2
c0

s + c2s2

=
H0

− f 2

SF 2 f 2
c

1+ j 1
Q

f
SF fc

− f 2

SF 2 f 2
c

with


SF fc = 1

2π
p

R1R2C1C2

Q =
p

R1R2C1C2
R1(C1+C2)+R2C2(1−H0)

(1.45)

Sallen-Key band-pass filter

Band-pass filter could be obtained by placing in series a high and a low pass filter as
illustrated in figure 1.16. Cut-off frequency of the low pass filter need to be higher
than the high-pass one ; unless you want to make a resonant filter.

Low-pass High-pass
Band-pass filter

Figure 1.16: Cascading low and high pass filter for band-pass filtering.

A possible arrangement of generic Sallen-Key topology in band-pass configura-
tion is given in figure 1.17.

But we can also found more complicated band-pass filter as figure 1.18 based
on voltage-controlled voltage-source (VCVS) filter topology which gives the transfer
function expressed in equation 1.46.
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vi n

R1 C2 R2

H0

C1

vout

Figure 1.17: Sallen-Key band-pass filter.

vi n

R1

C2 R2C1

H0

R3

vout

Figure 1.18: Voltage-controlled voltage-source (VCVS) filter topology band-pass fil-
ter.

HV CV SBP = H0

R2R3C2
R1+R3

s

1+ R1R3(C1+C2)+R2R3C2+R1R2C2(1−H0)
R1+R3

s + R1R2R3C1C2
R1+R3

s2

= H ′
0s

c0 + c1s + c2s2 with H ′
0 = H0

R2R3C2

R1 +R3

= H ′
0s

1+ j 1
Q

f
SF fc

− f 2

SF 2 f 2
c

with


SF fc = 1

2π

√
R1+R3

R1R2R3C1C2

Q =
p

(R1+R3)R1R2R3C1C2
R1R3(C1+C2)+R2R3C2−R1R2C2(1−H0)

(1.46)

Sallen-Key band-reject filter

Unlike the band-pass filter, a notch filter can not be obtained by a series connection
of low and high pass filters. But a summation of the output * of a low and a high pass
filter could be a band-reject filter if cut-off frequency of the low pass filter is lower
than the high-pass one. This correspond to paralleling high and low pass filter.

Band-reject filter could be obtained by placing in parallel a high and a low pass
filter as illustrated in figure 1.19.

*In practice it is not possible to connect two outputs each other without taking some precautions.
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High-pass

Band-reject filter

Low-pass

Figure 1.19: Paralleling low and high pass filter for band-pass filtering.

A band-reject filter is finally obtained by using circuit of figure 1.20.

vi n

R R

C C

R/2

H0

2C

vout

Figure 1.20: Sallen-Key band-reject filter.

Parameters of this simplified Sallen-Key band reject filter is given by expression
1.47.

SF fc = 1

2π
p

RC

Q = 1

4−2H0

(1.47)
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1.5 Amplitude responses

1.5.1 Filter specifications

The more common filter specification is the roll-off rate which increases with the
order *. It is 20dB/decade per pole for hight and low pass filter (per pair of poles
for band-pass filter). Ripples in pass-band and stop-band need to be also specified.
Around a cutoff frequency, these specifications could be also defined by 5 transfer
function requirements :

• maximum amplitude |H |max
†

• pass-band cut-off frequency fc

• maximum allowable attenuation in the band-pass Amax
‡

• frequency at which stop-band begins fs

• minimum allowable attenuation in the stop-band Ami n

Figure 1.21 lets appear these various parameters in the case of a low pass filter :

f

|H|

|H|max

|H|max − Amax

fp fs

|H|max − Ami n

Figure 1.21: Filter amplitude response limits.

1.5.2 Amplitude response curves

Cebyshev filter has a steeper rolloff near the cutoff frequency when compared to
Butterworth and Bessel filters. While, Bessel not exhibit a frequency dependance
phase shift as Butterworth and Chebyshev filter. Butterworth is a good compromise

*The order of the filter is linked to the number of elements (first and second order filter) used in the
network (Fig. 1.9).

†in the case of low-pass filter, |H |max = H0 the DC gain and H∞ in the case of high-pass filter |H |max ,
is generally equal to 1.

‡ Amax = 3dB in the case of Butterworth or Bessel filter and Amax = 1p
1+ε2

for Chebyshev filter.
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as regards to the rolloff, while having a maximaly-flat frequency response. Finally,
Legendre filter has the steeper rollof without ripple in the band pass. These kind of
comparison between Butterworth, Chebyshev, Bessel and Legendre filter is outlined
by figure 1.22 and tables 1.7 and 1.8.

Rolloff steepness

BESSEL - BUTTERWORTH - CHEBYSHEV

phase non-linearity

Figure 1.22: Steepness and phase linearity filter comparison.

XXXXXXXXXXFilter
Properties

Advantages Disadvantages

Butterworth Maximally flat magnitude
response in the pass-band

Overshoot and ringing in
step response

Chebyshev Better attenuation beyond
the pass-band

Ripple in pass-band. Even
more ringing in step

response
Bessel Excellent step response Even poorer attenuation

beyond the pass-band
Legendre Better rolloff without

ripple in pass-band
pass-band not so flat

Table 1.7: Butterworth, Chebyshev, Bessel and Legendre filter advan-
tages/disadvantages.

The response of Butterworth, Chebyshev, Bessel and Legendre low pass filter is
compared. To do this, polynomial tables given in Appendix A are directly used as
the low-pass filter denominator transfer function. Figure 1.23 shows for example
the 5th order of Butterworth, Chebyshev, Bessel and Legendre polynomials as a de-
nominator ; only the module (expression 1.48) is plotted.
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XXXXXXXXXXProperties
Filter

Butterworth Chebyshev Bessel Legendre

roll-off rate for a
given order

average good weak average

group delay good bad excellent average
flatness of the

frequency response
excellent ripple in the

pass-band
excellent good

transient response good average excellent good

Table 1.8: Butterworth, Chebyshev, Bessel and Legendre filter comparison.

P5Butterworth = (s +1)(s2 +0.618s +1)(s2 +1.618s +1)

P5Chebyshev3dB
= (5.6328s +1)(2.6525s2 +0.7619s +1)(1.0683s2 +0.1172s +1)

P5Bessel = (0.665s +1)(0.3245s2 +0.6215s +1)(0.4128s2 +1.1401s +1)

P5Legendre = (2.136s +1)(1.0406s2 +0.3196s +1)(2.0115s2 +1.5614s +1)

|P5| =
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(1.48)

It clearly appears on figure 1.23 differences concerning frequency response be-
tween Butterworth, Chebyshev, Bessel and Legendre filters. All these filters has been
plotted with a cuttof frequency referred to a -3dB attenuation. Thereby, despite the
same order, Chebyshev filter has the faster rolloff, then come Legendre, Butterworth
and the slower is the Bessel filter. Far after the cutoff frequency, the slope becomes

the same for all 5th order filters (∝ f −5) but not the attenuation for a given f
fc

.
The down side of a fast rollof is the increasing of the transit time in the case of

step response as it is show in figure 1.24. Time response of a Chebyshev filter clearly
shows oscillations which increase transient time.

Butterworth frequency response

Figure 1.25 illustrates the main properties of butterworth filters which is the flatness
in the pass-band ; particularly for high order.

Butterworth attenuation plot on the left side of figure 1.25 could be used to de-
termined the order of needed Butterworth filter for a given Ami n and fs (Fig. 1.21).
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Figure 1.23: Frequency response of a Butterworth, Chebyshev, Bessel and Legen-
dre 5th order low pass filter around cutoff frequency and far after it. Dashed line
represent a f −5 slope for comparison to 5th order filter rolloff.

Figure 1.24: Normalized ( f0 = 1) time response (step) of multipole (2 to 10) Butter-
worth, Chebyshev 1dB and Bessel filters.

Chebyshev frequency response

Figure 1.26 shows the ripple in the pass-band of a Chebyshev low pass filter (3dB)
for order from 2 to 5. It also appears that H0 (numerator) is different from 1 for
even order. For an even order Chebyshev filter with a ripple factor of 3 dB (which
correspond to ε= 1), the numerator is equal to 1p

1+ε2
≈ 0.71.

Figure 1.27 shows more precisely the difference in H0 between odd (n=5 → H0 =
1) and even (n=4 → H0 ≈ 0.707) order. It also illustrates of how it is possible to de-
termine the order of a Chebyshev filter by simply counting the ripple number on the
transfer function.

Amplitudes of the ripples in the pass-band is constrained by the |H |max − Amax

and fc (Fig. 1.21). Sometimes, ripple factor needs to be smaller than 3dB. It is easy
to find Chebyshev polynomials table with a ripple factor of 1 dB*, 0.5 dB or 0.1 dB.
In Figure 1.29, is plotted the transfer function of a Chebyshev low-pass filter with a

*Chebyshev polynomials table is given in Appendix A for a ripple factor of 3 and 1 dB
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Figure 1.25: Frequency response of a Butterworth low pass filter for n = 2 to 5.

ripple factor of 1 dB (ε= 0.5) and order going from 2 to 5. The H0 of even order is set
at 1p

1+0.52
≈ 0.894 as it is shown in figure 1.29.

Finally, a comparison between two Chebishev low pass filters with different rip-
ple factor is plotted in figure 1.30. Even if the cutoff frequency is referred to a differ-
ent level (-1 dB and -3 dB), it appears that the larger the ripple factor, the faster the
rolloff.

Bessel frequency response

Figure 1.31 show Bessel low pass filter transfer function from the 2nd to the 5th order.
The rolloff is much slower than for other filters. Indeed, Bessel filter maximizes the
flatness of the group delay curve in the passband (Fig. 1.32) but not the rolloff. So,
for a same attenuation in the stop band (Ami n), a higher order is required compared
to Butterworth, Chebyshev or Legendre filter.

Legendre frequency response

To complete this inventory, Legendre low-pass filter frequency response is plotted
in figure 1.33 for n = 2 to 5.

Legendre filter is characterized by the maximum possible rolloff consistent with
monotonic magnitude response in the pass band. But monotonic does not flat, as
we can see in figure 1.34.

As for Chebyshev filter, it is possible to count the number of "ripples" to find the
order from a plotted transfer function.

1.6 Switched capacitor filters

A switched capacitor electronic circuit works by moving charges into and out of ca-
pacitors when switches are opened and closed. Filters implemented with these ele-
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Figure 1.26: Frequency response of a Chebishev (ε= 1) low pass filter for n = 2 to 5.

Figure 1.27: Zoom in the passband of the frequency response of a Chebishev (ε= 1)
low pass filter for n = 4 and 5.

ments are termed "switched-capacitor filters".

1.6.1 Switched capacitor

Figure 1.35 give the circuit of a switched capacitor resistor, made of one capacitor
C and two switches S1 and S2 which connect the capacitor with a given frequency
alternately to Vi n and Vout . Each switching cycle transfers a charge from the input to
the output at the switching frequency. When S1 is closed while S2 is open, the charge
stored in the capacitor C is qi n = CVi n *, when S2 is closed, some of that charge is
transferred out of the capacitor, after which the charge that remains in capacitor C
is qout =CVout .

Thus, the charge moved out of the capacitor to the output is qT = qi n − qout =
C (Vi n −Vout ). Because this charge qT is transferred each TS

†, the rate of transfer of
charge per unit time ‡ is given by expression 1.49.

*q=CV, q the charge on a capacitor C with a voltage V between the plates.
†TS Periodicity of switch opening and closing
‡The rate of flow of electric charge is a current I[A].
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Figure 1.28: Frequency response of a Chebishev (ε= 0.5) low pass filter for n = 2 to 5
order filter rolloff.

Figure 1.29: Zoom in the passband of the frequency response of a Chebishev (ε =
0.5) low pass filter for n = 2 to 5.

I = qT

TS
= C (Vi n −Vout )

TS
(1.49)

Expression 1.49 give a link between V and I , and then the impedance * of the
switched capacitor which could be expressed as a resistor (expression 1.50).

R = Ts

C
(1.50)

Switching capacitor behaves like a lossless resistor whose value depends on ca-
pacitance C and switching frequency 1

TS
. This reduces energy consumption for em-

bedded applications (such as space mission).

*the impedance of the capacitor could be considered static for a frequency smaller than 1
TS
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Figure 1.30: Comparison between frequency response of two Chebishev low pass
filters of 5th order, one with a ripple factor of 1 dB, and the other with 3 dB.

1.6.2 Switched capacitor filters

Because switching capacitor act as a resistor, switched capacitors can be used in-
stead of resistors in the previous filter circuits (RC, RLC, Sallen-Key ...). A R = 10kΩ
can be replaced by a switched capacitor following the expression 1.50. Using a switch-
ing clock fs = 1

TS
= 50kH z, the capacitor is given by equation 1.51.

R = 10kΩ ≡ C = 1

10kΩ×50kH z
= 2nF (1.51)

A variation of the switching frequency leads to a variation of the equivalent resis-
tance R. If fs increases, R = 1

C× fs
decreases. This link between frequency and equiv-

alent resistance value could be used to modify a filter cutoff frequency by adjusting
the switching frequency.

The cutoff frequency of a RC switched capacitor filter (Fig. 1.36) is expressed by
equation 1.52.

fc = 1

2πRequi v.C2
= C1 × fs

2πC2
(1.52)

If the switching frequency fs increases, the cutoff frequency fc increases also.
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Figure 1.31: Frequency response of a Bessel low pass filter for n = 2 to 5.

Figure 1.32: Comparison of the delay time as a function of frequency ( f
fc

) between
a Bessel, a Butterworth and a Chebyshev low-pass filter (n=4).

Figure 1.33: Frequency response of a Legendre low pass filter for n = 2 to 5
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Figure 1.34: Zoom on the passband of the frequency response of a Legendre low
pass filter for n = 2 to 5.

Vi n

R
Vout≡

Vi n

S1 S2

Vout

Figure 1.35: Equivalence between Resistor and Switched Capacitor.

Vi n

R
Vout

C2

≡ Vi n

S1 S2

Vout

C2C1

Figure 1.36: Equivalence between RC filter and switched capacitor filter.

37 damien.prele@apc.univ-paris7.fr



CHAPTER 2
DC/DC CONVERTERS

2.1 Introduction

A DC/DC converter is an electronic circuit which converts a DC (Direct Current)
source from one voltage level to another. Power for a DC/DC converter can

come from any suitable DC sources, such as batteries, solar panels, rectifiers and
DC generators.

DC/DC converter is a class of switched-mode power supply containing at least
two semiconductor switches (a diode and a transistor) and at least one energy stor-
age element, a capacitor, inductor, or the two in combination. Filters made of capac-
itors (sometimes in combination with inductors) are normally added to the output
of the converter to reduce output voltage ripple.

2.1.1 Advantages/Disadvantages

Pros :

DC/DC converters offer three main advantages compared to linear regulators :

1. Efficiency : Switching power supplies offer higher efficiency than traditional
linear power supplies*. Unlike a linear power supply, the pass transistor of
a switching-mode supply continually switches between low-dissipation, full-
on and full-off states †, and spends very little time in transitions to minimize
wasted energy. Ideally, a switched mode power supply dissipates no power.
This higher efficiency is an important advantage of a switched mode power
supply.

*A linear power supply regulates the output voltage by continually dissipating power (Joule dissipa-
tion) in a pass transistor (made to act like a variable resistor). The lost power is Plost = (Vout −Vi n )Il oad .

†A switching regulator uses an active device that switches "on" and "off" to maintain an average
value of output.
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2. Size : Switched mode power supplies may also be substantially smaller and
lighter than a linear supply due to the smaller transformer size and weight;
and due to the less thermal management required because less energy is lost
in the transfer.

3. Output voltages can be greater than the input or negative : DC/DC converter
can transform input voltage to output voltages that can be greater than the
input (boost), negative (inverter), or can even be transferred through a trans-
former to provide electrical isolation with respect to the input. By contrast
linear regulator can only generate a lower voltage value than input one.

Cons :

However, DC/DC converter are more complicated ; their switching currents can
cause electrical noise problems if not carefully suppressed*. Linear regulators pro-
vide lower noise ; their simplicity can sometimes offer a less expensive solution.
Even if the most of low noise electronic circuits can tolerate some of the less-noisy
DC/DC converters, some sensitive analog circuits require a power supply with so
little noise that it can only be provided by a linear regulator.

2.1.2 Applications

DC/DC converter is used in many domestic products to supply whatever voltages
are needed in personal computers, mobile phone chargers, as well as in embedded
instrument powered by battery and/or solar generator. This is typically used for DC
distribution in satellite (see Fig. 2.1). Indeed, aerospace industry requires small,
lightweight, and efficient power converters.

Figure 2.1: DC/DC converter for space applications - CLYDE SPACE

2.2 DC/DC converters

We will discuss 4 different common topologies of DC/DC converter:

*DC/DC converters have switching noise at the switching frequency and its harmonics. Electrical
noise can be emitted from the supplying power lines as RF noise which should be prevented with proper
filtering.
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1. step-down voltage converter ⇒ buck converter.

2. step-up voltage converter ⇒ boost converter.

3. inverter voltage converter ⇒ inverting buck-boost converter.

4. isolated* voltage converter ⇒ flyback converter.

2.2.1 Buck converters

Buck converter is a step-down DC/DC converter. It is composed of an inductor L
and two switches (usually a transistor and a diode) that control the inductor (see
figure 2.2). They alternate between connecting the inductor to source voltage to
store energy in the inductor and discharging the inductor into the load.

Vi n T
L

C

Vout

Figure 2.2: Buck topology of a step-down DC/DC converter.

For the purposes of analysis it is useful to consider that components are perfect
(Fig. 2.3). Particularly, the switch and the diode have zero voltage drop when they
conduct (i.e. ON) and zero current flow when they block (i.e. OFF). Moreover, the
inductor L has zero series resistance. Further, it is assumed that the input and output
voltages do not change over the course of a cycle†.

Vi n
Ion

T L

C

Vout

D

Vi n

T L Io f f

C

Vout

D

Figure 2.3: Simplified Buck converter circuit for the two configurations : left when
the transistor T conducts (ON); right when it is OFF.

Continuous operation ≡ IL 6= 0 ∀t

We consider that the current through the inductor L never falls to zero during the
commutation cycle; this imply minimum switching frequency and capacitor value.

*ensure galvanic isolation between the input and the output
†this would imply the output capacitance C being large enough
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Charge phase TON : When the transistor conducts (diode is reverse biased), the
voltage across the inductor (VL =Vi n −Vout ) is considered as a constant voltage to a
first approximation. So the current through the inductor IL rises linearly with time
following expression 2.1 with a VL

L slope*.

dIL = 1

L

∫
t=TON

VLdt (2.1)

During the charge phase TON , IL increase by the value∆ILON given by expression
2.2.

∆ILON = Vi n −Vout

L
TON (2.2)

Discharge phase TOF F : When the transistor is no longer biased (i.e. OFF), diode
is forward biased and conducts. The voltage across the inductor becomes equal to
−Vout

† and IL flows to the load through the diode. IL decrease by the value ∆ILOF F

given by expression 2.3 due to the linear discharge of the inductor.

∆ILOF F = −Vout

L
TOF F (2.3)

Entire switching cycle : In a steady-state operation condition, IL at t = 0 is equal to
IL at t = T = TON +TOF F . So the increase of IL during TON is equal‡ to the decreasing
during TOF F .

∆ILON +∆ILOF F = 0 (2.4)

We can then establish the relationship 2.5 which allows to obtains the conversion
factor between Vi n and Vout as a function of the duty cycle D = TON

T . It appears that
Vout varies linearly with the duty cycle for a given Vi n .

(Vi n −Vout )TON −Vout TOF F = 0 −−−−−−−−−−→
D= TON

TON +TOF F

Vout = DVi n (2.5)

As the duty cycle D is equal to the ratio between TON and the period T, it cannot
be more than 1. Therefore, Vout ≤ Vi n . This is why this converter is named a step-
down converter.

Figure 2.4 shows the evolution of voltage and current of an ideal buck converter
during charge and discharge phases.

2.2.2 Boost converters

A boost converter (step-up converter) is a DC/DC converter with an output voltage
value greater than its input voltage value. The key principle that drives the boost

*We consider here the current charge of the inductor. The capacitor is assumed charge at a constant
voltage.

†Voltage drop across diode is neglected.
‡in absolute value, but not in sign.
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0 t

VD , VL and Vout

Vi n

DVi n

−DVi n

0 t

IL

∆IL

Transistor state

ON OFF ON

0 TON T

Figure 2.4: Voltages and current as a function of time for an ideal buck converter
operating in continuous mode.

Vi n

L

C

Vout

T

Figure 2.5: Boost topology of a step-up DC/DC converter.

converter is the tendency of an inductor to oppose current changes. A schematic of
a boost converter is shown in figure 2.5.

When the transistor conduct (i.e. ON), the current flows through the inductor
and energy is stored in it.

When the transistor block the current (i.e. OFF), the energy stored in the in-
ductor L is returned holding the current through it. To do this, the L voltage polarity
changes such that it is added to the input voltage. Thus, the voltage across the induc-
tor and the input voltage are in series and they charge together the output capacitor
to a voltage higher than the input voltage.

As for buck converter, conversion factor of a boost converter could be expressed
as a function of the duty cycle and is given in equation 2.6.

Vout = 1

1−D
Vi n (2.6)
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2.2.3 Buck-boost inverting converters

A Buck-boost converter is a DC/DC converter that has an output voltage magnitude
that is either greater than* or smaller than the input voltage magnitude. The Buck-
boost converter presented in figure 2.6 is also called inverting converter because its
output voltage is of the opposite polarity as the input.

Vi n T

C

Vout

L

Figure 2.6: Buck-boost Inverting topology of DC/DC converter. Vout is of the oppo-
site polarity as Vi n .

When the transistor conduct (i.e. ON), the input voltage source is directly con-
nected to the inductor. This results in accumulating energy in L. In this step, this is
the capacitor C which supplies energy to the output load.

When the transistor blocks (i.e. OFF), the inductor is connected to the capacitor,
so energy is transferred from L to C and therefore also to the output load.

Conversion factor is given in equation 2.7 as a function of the duty cycle D.

Vout =− D

1−D
Vi n (2.7)

Compared to the buck and boost converters†, buck-boost converter has an output
voltage opposite to that of the input and which can vary continuously from 0 to ∞.

2.2.4 Flyback converters

The flyback converter is used when it is needed to have a galvanic isolation between
the input and the outputs. The flyback converter is a buck-boost converter with the
inductor split to form a transformer, so that the voltage ratios are multiplied with
an additional isolation advantage.

The schematic of a flyback converter can be seen in figure 2.7. It is equivalent to
that of a buck-boost converter but with a transformer instead of inductor. Therefore
the operating principle of both converters is very similar :

When the transistor conducts, the primary of the transformer is directly con-
nected to the input voltage source. The primary current and magnetic flux in the
transformer increase, storing energy in the transformer. The voltage induced in the
secondary winding is negative, so the diode is reverse-biased (i.e. blocked). The
output capacitor supplies energy to the output load.

*in absolute magnitude.
†The output voltage ranges for a buck and a boost converter are respectively 0 to Vi n and Vi n to ∞.
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When the transistor is blocked, the primary current and magnetic flux drops.
The secondary voltage is positive, forward-biasing the diode, allowing current to
flow from the transformer. The energy from the transformer core recharges the ca-
pacitor and supplies the load.

Vi n

T
n1:n2

C Vout

Figure 2.7: Flyback topology of an isolated DC/DC converter.

Conversion factor is given by equation 2.8 as a function of the duty cycle D.

Vout = n2

n1

D

1−D
Vi n (2.8)

A DC/DC converter using a transformer as the flyback converter is unavoidable
if there is a large difference of voltage between Vi n and Vout . Indeed, using buck,
boost or buck-boost converter, an output voltage value 100 times larger (or smaller)
than the input require a duty cycle of the order of 0.99 or 0.01 which is not easy to
realized (considering that rise and fall time are not 0).

Numerical application : Vi n = 300V ,Vout = 5V : a buck converter require a 0.017
duty cycle (!) while with a flyback converter it is possible to stay with a duty cycle
close to 50 % by choosing a transformer with a ratio n2

n1
= Vout

Vi n
≈ 0.017.

2.3 Control

A voltage regulator is designed to automatically maintain a constant voltage level. It
include negative feedback control loops.

We have see that changing the duty cycle of the switching (i.e. Transistor ON/OFF)
controls the steady-state output with respect to the input voltage. Then, act on the
duty cycle of the transistor driver allow to regulate the output voltage around a con-
stant voltage* even if Vi n , loads or other parameters change.

*by using a proper filtering with a large capacitor.
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2.3.1 Feedback regulation

Feedback principle consist in subtracting* from the "input signal" a fraction of the
output one. However, in the case of a DC/DC converter, the "input signal" is more
the duty cycle D than Vi n (Fig. 2.8).

VoutVi n

D

DC/DC converter

Control

Figure 2.8: Principle of a DC/DC converter feedback voltage regulation. D is the
duty cycle of the switching transistor.

2.3.2 Voltage regulation

To do a voltage regulation with a DC/DC converter, a sample of the output voltage
is compared to a reference voltage to establish a small error signal Ver r . This error
signal is used to modulate the duty cycle D of the transistor driver (Fig. 2.9). This
modulation of the duty cycle is simply obtained by comparing the error signal with
a triangle signal (Fig. 2.10). Duty cycle modulation is also called Pulse Width Modu-
lation (PWM) because if the duty cycle changes, the pulse width also changes.

Vi n T
L

C

Vout

−

+Ver r Vr e f

PWM

Figure 2.9: Voltage regulation of a Buck DC/DC converter by using Pulse Width Mod-
ulation (PWM).

Regulation is finally obtained because feedback changes the duty cycle from Vout

then moves the Vout to reduce the error signal to zero, thus completing the control
loop. The higher the error voltage, the longer the transistor conducts†. Ver r is de-
rived in the feedback system from the error amplifier that amplifies the difference
between the output voltage and the reference voltage.

*Only negative feedback is considering here, because stable operation is required. Moreover, a fre-
quency compensation is needed.

†considering that the output voltage value is lower than what we want
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−

+

Ver r

Ver r

PW M

Figure 2.10: Pulse Width Modulation (PWM).

This type of voltage regulation of a DC/DC converter is classified as a voltage-
mode controller* because the feedback regulates the output voltage. For analysis we
can assume that if the loop gain is infinite, the output impedance for an ideal voltage
source is 0Ω.

*Another type of control is current-mode control. This method regulates the output current and,
with infinite loop gain, the output is a high-impedance source.
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CHAPTER 3
PHASE LOCKED LOOP

3.1 Introduction

THE Phase Locked Loop (PLL) plays an important role in modern electronic and
particularly for space communications. Indeed, PLL is a crucial part of modula-

tor, demodulator or synchronization systems. As example of space application (Fig.
3.1), PLL is particularly essential to estimate the instantaneous phase of a received
signal, such as carrier tracking from Global Positioning System (GPS) satellites.

Figure 3.1: PLLs used for space applications (Peregrine Semiconductor); GPS constella-
tion around the Earth.

PLL allows to extract signals from noisy transmission channels. Indeed, commu-
nications between satellites and ground stations are usually buried in atmospheric
noise or some type of interferences (frequency selective fading* or doppler shift†)
which one manage by a PLL.

PLL circuits can also be used to distribute clock signal, or set up as frequency
multipliers or dividers for frequency synthesis.

*Frequency selective fading : Radio signal arrives at the receiver by two different paths.
†Doppler shift : Shift in frequency for a receiver moving relative to the emitter
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3.2 Description

PLL is a feedback electronic circuit (control system) as shown in figure 3.2. It in-
cluds an oscillator which is constantly adjusted in order to match the instanta-
neous phase (therefore the frequency) of the PLL input signal. The oscillator is a
Voltage Controlled Oscillator (VCO)* whose frequency varies with an "error" signal
ε≈VV CO . This "quasi-DC" voltage come from a phase detector (φ comp.). It is pro-
portional to the phase difference between the input signal which varies in frequency
as fi n(t ) and VCO output frequency fout (t ). Noises are suppressed after phase com-
parison, by adding a filter before the VCO. Thus, PLL recovers, at the output, the
original signal from a noisy version of the received signal.

fi n(t )

φ comp.

Filterε
VCO fout (t )

feedback

VV CO

Figure 3.2: Block diagram of a PLL.

Phase comparison can also be made after a division of the VCO frequency, which
allows to have a PLL output signal with a larger frequency. This technique is used for
frequency synthesis.

+ A Phase Locked Loop is thus mainly composed by two key ingredients :

• Phase detector/comparator more or less associated to a filter

• Voltage Controlled Oscillator (VCO)

3.2.1 Phase detector/comparator

One key element of the PLL, is the phase comparator. A phase comparator is a fre-
quency mixer, analog multiplier or logic circuit that generates a voltage signal whose
mean value is proportional to the difference in phase between two input signals.

Analog phase detector

Mixing (or product) of two sine waves at similar frequencies as fi n and fout gives, in
spectrum, a signal at the sum and at the difference of the two input signal frequen-
cies†. The high frequency at fi n + fout is removed by filter. The low frequency (static
if fi n = fout ) could be expressed as a function of phase difference ∆φ (equation 3.1).

*A VCO is an electronic oscillator (output) designed to be controlled in oscillation frequency by a
voltage input. The frequency of oscillation is varied by the applied DC voltage.

†sin( fi n )sin( fout ) = cos( fi n− fout )−cos( fi n+ fout )
2
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sin
(
2π fi n t +φi n

)× sin
(
2π fout t +φout

)
∝ cos

(
∆φ

)︸ ︷︷ ︸
static

−cos
(
2π( fi n + fout )t +φi n +φout

)︸ ︷︷ ︸
filtered signal

(3.1)

So multiplication allows to detect phase difference between two sine waves. This
is why phase comparator is currently represented by the symbol

⊗
as in figure 3.2.

Digital phase detector

Phase locked loop device as the popular CD4046 integrated circuit include two kind
of digital phase comparators :

• Type I phase comparator is designed to be driven by analog signals or square-
wave digital signals and produces an output pulse at twice the input frequency.
It produces an output waveform, which must be filtered to drive the VCO.

• Type II phase comparator is sensitive only to the relative timing of the edges of
the inputs. In steady state (both signals are at the same frequency), it produces
a constant output voltage proportional to the phase difference. This output
will tend not to produce ripple in the control voltage of the VCO.

Type I phase detector : XOR The simplest phase comparator is the eXclusive
OR (XOR) gate. A XOR gate is a digital logic gate which compute the binary addition*

which is symbolized by
⊕

. XOR truth table is shown in figure 3.1.

A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

Table 3.1: XOR truth table.

Type I comparator will be appropriate for square waves (v1 and v2 in figure 3.3)
but could also be used with sine wave inputs. Its operation is highly dependent on
the duty cycle of the input signals and is not really usable for duty cycle too different
from 1

2 .
The phase difference between v1 and v2 could be expressed as a function of the

pulse width ∆t and the frequency as expression 3.2.

∆φ= 2π
∆t

T
= 2π f ∆t (3.2)

*Binary addition ≡ addition modulo 2.
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v1(t )

v2(t )
vout (t )

v1(t )

v2(t )

vout (t )

T

∆t
0V

Vdd

Figure 3.3: XOR phase comparator.

For a duty cycle = 1
2 , XOR produces pulse train with twice the frequency of v1 and

v2. This periodic square wave signal vout has a duty cycle Dvout given by expression
3.3, function of input phase difference ∆φ.

Dvout =
∆φ

π
(3.3)

Then, the output of the XOR gate can be expressed as a static value Vout and
harmonics at the 2

T frequency at least as a Fourier series (equation 3.4 with vn and

φn the amplitude and the phase of the nth harmonic at the frequency 2n
T ).

vout = Vout︸︷︷︸
st ati c

+
n→∞∑
n=1

vn sin

(
2π

2n

T
t −φn

)
︸ ︷︷ ︸

har moni cs

(3.4)

This pulse train is averaged* before the VCO to keep only the static signal.
The averaging value of the XOR output could be linked to the pulse width as

expressed on 3.5.

Vout = 2∆t

T
Vdd (3.5)

Finally, we could obtain the information about the phase difference∆φ from the
XOR output averaging value using the expression 3.6. This expression allows to show
the phase comparator gain Kp .

Vout = ∆φ
π

Vdd = Kp∆φ (3.6)

The characteristics of an XOR phase comparator is represented in figure 3.4. It is
periodic in ∆φ with period of 2π. The range 0 ≤ ∆φ ≤ π is the range where the PLL
can operate in the locked condition.

The transfer function of this phase comparator on a linear part is given by ex-
pression 3.7. Kp is called the gain of the phase detector.

Vout

∆φ
= Kp = Vdd

π

∣∣∣
0≤∆φ≤π [V/Rad] (3.7)

*The loop filter acts as a low pass filter, smoothing this full-swing logic-output signal.
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0

Vout

∆φ

π 2ππ
2

Vdd
2

Vdd
Kp

Figure 3.4: Periodic characteristic of an XOR phase comparator and a typical oper-
ating point. The slope Kp is the gain of the comparator.

When PLL is in lock with this type of comparator, the steady-state phase differ-
ence at the inputs is near π

2 .
So, this kind of phase comparator generate always an output "digital" signal in

the PLL loop. Therefore, despite low pass filter, it always remain residual ripples,
and consequent periodic phase variations.

Type II phase detector : charge pump By contrast to the type I comparator,
the type II phase detector generates output pulses only when there is a phase error
between the input and the VCO signal.

• If the two input are in phase : The phase detector looks like an open circuit
and the loop filter capacitor then acts as a voltage-storage device, holding the
voltage that gives the VCO frequency.

• If the input signal moves away in frequency : The phase detector generates
a train of short pulses*, charging the capacitor of the filter to the new voltage
needed to keep the VCO locked.

So, the output pulses disappear entirely when the two signals are in lock†. This
means that there is no ripple present at the output to generate periodic phase mod-
ulation in the loop, as there is with the type I phase detector.

3.2.2 Voltage Control Oscillator - VCO

The other key ingredient of the PLL, is the VCO. It exist two different types of con-
trolled oscillators :

• Resonant/Harmonic oscillators (> 50 MHz)

• Relaxation oscillators (< 50 MHz)

*The short pulses contain very little energy and are easy to filter out of the VCO control voltage. This
results in low VCO control line ripple and therefore low frequency modulation on the VCO.

†A charge pump phase detector must always have a "dead frequency band" where the phases of in-
puts are close enough that the comparator detects no phase error. So, charge pump introduce necessarily
a significant peak-to-peak jitter, because of drift within the dead frequency band.
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For microwave applications, resonant oscillators implemented with devices as
LC tank circuit is used. C value is adjusted (tuning) thanks to a varactor diode.

Howevere, we will concentrate on non-microwave applications, and thus on the
relaxation oscillators more easily implementable on integrated circuit. This is typi-
cally the VCO that we can find in the CD4046 PLL integrated circuit. VV CO controls
the charging and discharging currents through an external* capacitor C , and there-
fore determines the time needed to charge and discharge the capacitor to a pre-
determined threshold level. As a result, the frequency fV CO changes as a function of
VV CO .

If VV CO evolves, a linear VCO transfer function can be expressed as equation 3.8.

fmax − fmi n

Vmax −Vmi n
= K0 [Hz/V] (3.8)

In practice Vmax is limited by VDD and Vmi n by 0V (or VSS ). Assuming a linear
response as in figure 3.5, fmax and fmi n are adjusted and therefore fix the gain K0.

0

VV CO

0
fV CO

fmi n fmaxf0

1
K0

Vdd

Vdd
2

Figure 3.5: VCO characteristic : VV CO as a function of fV CO .

The VCO transfer function can also be expressed using the angular frequency
ωV CO (eq. 3.9).

ωV CO

VV CO
= 2πK0 = Kv [rad/V.s] (3.9)

The VCO gain is generally expressed as a radian frequency per voltage; so its units
are rad/V.s even if the "rad" is often omitted.

However, for a PLL, the phase instead of frequency is interesting. It is then more
useful to express the phase output of the VCO :∫

ωV CO(t )dt =φV CO(t ) → ωV CO(s)

s
=φV CO(s) (3.10)

Then the transfer function between the phase and the input voltage of the VCO
is given by expression 3.11

φV CO(s)

VV CO(s)
= Kv

s
(3.11)

*not implemented on the CD4046 to allow tuning of the fV CO0 center frequency.
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3.3 Frequency range

Operating frequency range of a PLL is graphically represented in figure 3.6. Two
main frequency ranges appear :

• Lock range

• Capture range

fi n
f0f0 −∆ fCf0 −∆ fL ≈ fmi n f0 +∆ fC f0 +∆ fL ≈ fmax

Lock range / hold range

Pull-inPull-in Operating range

Capture range

Dynamically unstable Unconditionally unstableConditionally stable

Figure 3.6: Scope of the 2 main frequency ranges of a PLL : Lock (or Hold) range and
Capture range (more or less defines due to pull-in effect).

3.3.1 Lock range

The Lock range (also called Hold range) is the frequency range in which a PLL is able
to stay locked. It correspond to a "static stable frequency range"; this means that
the PLL remains locked if the input signal is a fixed frequency signal comprised in
this range.

The Lock range is mainly defined by the VCO range.
Figure 3.4 shows that when the phase comparator is used on a PLL, the phase

difference ∆φ need to be small enough to stay on a linear regime. So, VCO is used
to operate around a center frequency fV CO0 = f0 and around VV CO0 = Vdd

2
* as it is

represented in figure 3.5. Then, ∆φmax = π around this operating point (eq. 3.12
and Fig. 3.4).

0 ≤∆φ≤π (3.12)

Knowing that ∆φ must be included in [0;π] range, we can expressed the maxi-
mum range in frequency at the output of the VCO as equation 3.13 (from Fig. 3.5 →
fmax − fmi n = K0Vdd and Fig. 3.4 → Vdd =πKp ).

fmax − fmi n =πK0Kp = Kv Kp

2
(3.13)

From this expression, lock range 2∆ fL = fmax − fmi n is defined as equation 3.14.

*In this operating point, the two compared signals are in quadrature.
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2∆ fL = Kv Kp

2
(3.14)

If fi n exceeds fmax (or if fi n becomes smaller than fmi n), the PLL fails to keep
fV CO = fi n , and the PLL becomes unlocked. When the PLL is unlocked, the VCO
generally oscillates at the frequency f0 (the "free-running" of the VCO). The lock can
be established again if the incoming signal frequency fi n gets close enough to f0 i.e.
as close as the Capture range.

The VCO output frequency fV CO can be plotted (Fig. 3.7) as a function of the
input PLL frequency fi n .

fi n
f0f0 −∆ fCf0 −∆ fL f0 +∆ fC f0 +∆ fL

Capture range

Lock range

fV CO

f0

fmax

f0 +∆ fC

f0 −∆ fC

fmi n

Locked condition

Figure 3.7: Hysteretic PLL characteristic.

This characteristic simply shows that fV CO = fi n in the locked condition, and
that fV CO = f0 when the PLL is unlocked. A hysteresis is observed because the Lock
range is larger than the Capture range.

3.3.2 Capture range

The capture range is the frequency range where the PLL is able to quickly lock-in,
starting from unlocked condition. Indeed, in most practical applications, it is de-
sirable that the locked state is obtained within a short time period. So, the capture
range point out that the PLL can become locked within "one single-beat". This is
called a lock-in process. Beyond this frequency range, a pull-in process also allows
the PLL to lock, but slowly. There is obviously a blurred boundary between Capture
range and pull-in range, but we can notice that :

• Lock-in process is much faster than pull-in process
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• Capture range is smaller than pull-in range

Capture range refers to the dynamic behavior of the PLL loop. So 2∆ fL depends
on the loop bandwidth. In the case of a single pole filter and a ζ > 0.5, the Capture
range is simply equal to the Lock range.

+Capture range is not necessarily centered on f0.

3.4 Frequency response

For a small phase difference (sinφ ≈ φ) between PLL input signal and VCO output,
PLL can be accurately described by a linear model expressed as regard to the phase
instead of frequency. Block diagram of this linear model is given in figure 3.8. Kv

s
the gain of the VCO is expressed as equation 3.11 as regard to the phase. The loop
filter plays a crucial role in the frequency response of the PLL. Its transfer function
is called H f i l ter (s), or more simply H(s).

φi n
+
φ comp.

H f i l ter (s) Kv
s

φout

feedback

VV CO(s)

-

Figure 3.8: Block diagram of PLL on phase domain.

The PLL response can be written as 3.15.

φout

φi n
= forward gain

1+ loop gain
= Kp

Kv
s H(s)

1+Kp
Kv
s H(s)

(3.15)

The transfer function H(s) of the filter averages the output of the phase com-
parator and suppresses noise of the input signal.

3.4.1 One pole loop filter

For a simple first order RC filter (Fig. 3.9), the H(s) transfer function is given by ex-
pression 3.16

Vi n

R
Vout

C

Figure 3.9: One pole filter used as PLL loop filter.
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H(s) = Vout

Vi n
= 1

1+RC s
(3.16)

Using this one pole filter, the PLL response is expressed as 3.17.

φout

φi n
= 1

1+ 1
Kp Kv

s + RC
Kp Kv

s2
(3.17)

Denominator could be rewritten as expression 3.18 to show the natural angular
frequency ωn = 2π fn and the damping factor ζ of the PLL response.

1+2ζ
s

ωn
+ s2

ω2
n

 ωn =
√

Kp Kv

RC

ζ = 1
2
p

Kp Kv RC

(3.18)

The natural frequency of the PLL is a measure of the response time of the locked
system. The damping factor is a measure of overshoot and ringing. Ideally, the nat-
ural frequency should be high and the damping factor should be near unity (critical
damping). With a single pole filter, it is not possible to control the loop frequency
and damping factor independently.

Assuming a critical damping (i.e. ζ= 1) : RC = 1
4Kp Kv

and ωn = 2Kp Kv .

+ In other words, the ability of the PLL to filter the input "frequency noise" is
limited by the stable condition of the loop.

3.4.2 One pole - one zero loop filter

A One pole - one zero filter allows to adjust independently the band width of the PLL
response and the damping factor. It is composed of two resistors and one capacitor
(Fig. 3.10). The transfer function of this filter is given in expression 3.19 and plot in
figure 3.11. It is characterized by two time constants : τ1 and τ2.

Vi n

R1
Vout

R2

C

Figure 3.10: One pole - one zero filter used as PLL loop filter.

H(s) = Vout

Vi n
= 1+τ2s

1+τ1s

{
τ1 = (R1 +R2)C

τ2 = R2C
(3.19)

Using this one pole - one zero filter, the PLL response is now expressed as 3.20.
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Figure 3.11: Amplitude Bode plot of a one pole (RC =t0) and a one pole - one zero
((R1 +R2)C =t1 and R2C =t2) filter .

φout

φi n
= 1

1+ s
Kp Kv

1+τ1s
1+τ2s

= 1+τ2s

1+ 1+Kp Kvτ2

Kp Kv
s + τ1

Kp Kv
s2

(3.20)

Denominator could be rewrite as expression 3.21.

1+2ζ
s

ωn
+ s2

ω2
n

 ωn =
√

Kp Kv

τ1

ζ = 1
2

(
1

ωnτ1
+ωnτ2

) (3.21)

The loop filter components (equation 3.22) can now be calculated independently
for a given natural frequency fn and damping factor ζ. τ1 = Kp Kv

ω2
n

τ2 = 2ζ
ωn

− 1
Kp Kv

(3.22)
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CHAPTER 4
MODULATION

4.1 Introduction

MODULATION is a technique used in electronic communication for transmitting
information by using a higher frequency carrier such as a radio wave. This

frequency transposition (Fig. 4.1) of the information signal (baseband signal) to a
higher frequency band (radio frequency) allows to transmit it, through an electro-
magnetic medium. So, the carrier can be physically transmitted.

Base Band
Modulation

Radio Frequency
Demodulation

Figure 4.1: Modulation as a transposition frequency from baseband to radio fre-
quency.

For communication between satellites and ground station, a carrier higher than
some 10 MHz is required due to ionospheric opacity (figure 4.2). In radio commu-
nications or switched telephone network for instance, electrical signals can only be
transferred over a limited passband frequency spectrum, with specific lower and up-
per cutoff frequencies (channel).

Modulation could have other application than electromagnetic transmission, for
example for frequency division multiplexing*. There is also somme cases where the
modulation is used to down convert (at lower frequency) a use-full high frequency
signal. This down conversion facilitates data-processing as sampling, filtering, de-

*Frequency division multiplexing is a technique by which the total bandwidth available in a com-
munication medium is divided into a series of non-overlapping frequency sub-bands (channels), each of
which is used to carry a separate signal.
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Figure 4.2: Radio atmospheric windows - from wikipedia

tection (lock-in amplifier*) or amplification (parametric amplifier† ; mixer‡).
Lots of parameters can be varied to perform a modulation. In the case of simple

sine wave (or square wave) carrier, there are three obvious parameters than can be
varied :

• Amplitude ⇒ Amplitude modulation (or Amplitude-Shift Keying for digital
modulation) - the amplitude of the carrier signal is varied in accordance to
the instantaneous amplitude of the modulating signal.

– Double-SideBand (DSB)

* DSB modulation with carrier - used on the AM radio broadcasting
band

* DSB modulation with Suppressed-Carrier (DSB-SC) - used to reduce
the power consumption

– Single-SideBand (SSB)

* SSB modulation with carrier - one sideband suppressed to reduce
occupied channel bandwidth

* SSB modulation with Suppressed-Carrier (SSB-SC) - to reduce both
power and bandwidth

*A lock-in amplifier is a type of amplifier that can extract a signal with a known carrier wave from an
extremely noisy environment. It uses mixing, through a frequency mixer, to transpose the input signal to
low-frequency.

†Parametric amplifier is a highly sensitive ultra-high-frequency or microwave amplifier having as its
basic element a device whose reactance can be varied periodically by an alternating-current voltage at a
pumping frequency.

‡A frequency mixer is a nonlinear electrical circuit that creates new frequency signals at the sum and
difference of the original frequencies (as a multiplier).
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• Phase ⇒ Phase modulation (or Phase-Shift Keying) - the phase shift of the
carrier signal is varied in accordance to the instantaneous amplitude of the
modulating signal.

• Frequency ⇒ Frequency modulation (or Frequency-Shift Keying) - the fre-
quency of the carrier signal is varied in accordance to the instantaneous am-
plitude of the modulating signal.

4.2 Amplitude modulation

A continuous wave radio-frequency signal (a sinusoidal carrier wave) has its ampli-
tude modulated by the input waveform before transmission. Input waveform modi-
fies the amplitude of the carrier wave and determines the envelope of the waveform.
A simple form of amplitude modulation, often used for digital communications, is
on-off keying*. This is used by radio amateurs to transmit Morse code.

Without transmission of the carrier, this modulation is obtained by simple mul-
tiplication of an input signal by carrier signal. Figure 4.3 shows wave form and spec-
trum of a multiplication of a sine wave input signal ( fs ) by a sine wave carrier ( f0).

Figure 4.3: Time waveform and spectrum of a double side band amplitude modula-
tion without (SxC ) and with (SxC +C ) transmission of the carrier.

Indeed, multiplication transposes the input signal S at either side of the C carrier
frequency (frequency domain). Each sideband is equal in bandwidth to that of the

*a type of amplitude-shift keying in which binary data is represented by the presence or absence of
a carrier.
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modulating signal, and is a mirror image of the other. Moreover, for demodulation
consideration, the carrier is generally added (see figure 4.4 and equation 4.1 with k
a factor corresponding to the proportion of carrier added) to form a full amplitude
modulation AM , with carrier transmission, as waveform illustrated at the end of the
figure 4.3.

AM ≡ S ×C

AM with carrier suppressed ≡ S ×C + C

k

(4.1)

S
C ×

÷k
+ AM

Figure 4.4: Scheme of amplitude modulator.

Most of the time, the carrier signal C is only a sine wave as expressed in equation
4.2.

C =C0 sin
(
2π f0t

)
(4.2)

Input signal could also be expressed (Eq. 4.3) as a single tone signal for a simple
example (Figures 4.3 and 4.5).

S = S0 sin
(
2π fS t

)
(4.3)

In these conditions, amplitude modulation is given by equation 4.4.

AM ≡ S0 sin
(
2π fS t

)×C0 sin
(
2π f0t

)+ C0

k
sin

(
2π f0t

)
≡ S0C0

2

[
cos

(
2π( f0 − fS )t

)−cos
(
2π( f0 + fS )t

)]
︸ ︷︷ ︸

SideBands

+ C0

k
sin

(
2π f0t

)
︸ ︷︷ ︸

Carrier

(4.4)

Using trigonometric functions*, equation 4.4 clearly show that amplitude modu-
lation produces, in addition to the adjacent sidebands f0− fS and f0+ fS , a signal with
power concentrated at the carrier frequency f0. Amplitude modulation resulting in
two sidebands and a carrier is called double side band amplitude modulation. This
simplest kind of amplitude modulation is inefficient because of the large fraction of
wasted power for transmission of the carrier and in the redundancy of information
signal in the two sideband.

*sin(a)sin(b) = cos(a−b)−cos(a+b)
2
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Increasing the efficiency : The carrier and/or one sideband may be suppressed at
the expense of increased transmitter and receiver complexity. For reception, sup-
pression of the carrier imply to restore it by the use of a local oscillator generated
by a phase locked loop for example. Whereas in the case of carrier transmission, a
simple rectifier diode could be used for demodulation (detection).

Suppressing both the carrier and one of the sidebands also improves bandwidth
efficiency. This is single-sideband modulation, widely used in amateur radio and
other low consumption communication applications.

4.2.1 Modulation index

The modulation index (also called "modulation depth") quantify the evolution of
the carrier signal around its unmodulated level. It is defined differently in each
modulation scheme. In the case of amplitude modulation, modulation index m is
the ratio between the input signal amplitude S0 and the unmodulated transmitted
carrier amplitude C0

k (defined as expression 4.5).

m = kS0

C0
(4.5)

So if carrier amplitude varies by 50% above and below its unmodulated level, the
modulation index is equal to 0.5. k = m in the case of unity amplitude (C0 = S0 = 1).
Figure 4.5 shows in time domain and frequency domain, the waveform of amplitude
modulation for different modulation index.

Figure 4.5: Different modulation index, from 50% (m = 0.5) to 200% (m = 2) and
without carrier (m = ∞) in time domain and frequency domain.

On the spectrum representation, amplitude at each frequency can be easily ob-
tained by using the equation 4.4. Techniques to graphically estimate the modulation
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index are also reported on these two figures for m ≤ 1.
Graphic estimation of the modulation index given by expression 4.6 is easy to

use for m ≤ 1. However, if m > 1, it could be more complicated to estimate Vmax ,
Vmi n , and therefore m. In practice, the modulation index is generally comprised
between 0 and 1.

m = Vmax −Vmi n

Vmax +Vmi n

{
with S0 = Vmax−Vmi n

2

and C0
k = Vmax+Vmi n

2

(4.6)

Indeed, if the modulation index is larger than 100 %, the input signal is distorted
and could not be demodulated correctly. But a too small modulation index gives
a large fraction of the power of the transmitted signal to the useless carrier signal
alone.

4.3 Amplitude demodulation

Demodulation is used to recover the information content (S) from the modulated
carrier wave. Demodulation is traditionally used in connection with radio receivers,
but many other systems need demodulators.

There are two methods used to demodulate AM signals :

• Envelope detection

• Multiplication

4.3.1 Envelope demodulation

An amplitude modulated signal can be rectified without requiring a coherent* de-
modulator. For example, the signal can be passed through an envelope detector : a
rectifier diode D and a low-pass RC filter as shown on figure 4.6. The output S′ will
follow the same curve as the input baseband signal S (Fig. 4.7). Only a DC offset
(inversely proportional to the modulation index) remains and is easily removed by
using a high pass filter (as a coupling capacitor). Note that the polarity of the diode
does not matter.

AM
D

S′

R C

Figure 4.6: Scheme of a simple envelope demodulator.

*Coherence describes all properties of the correlation between physical quantities. In the case of
amplitude demodulation, it referred to the need of use a local oscillator C’ locked (synchronized) to the
carrier C. As opposed to envelope demodulation which doesn’t need local oscillator at all.
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Rectifying can be modelized by an absolute value function : "||" and Low Pass
Filtering is noted "LPF ". So, envelope detection can be expressed as equation 4.7.

LPF

[∣∣∣∣S ×C + C

k

∣∣∣∣]= S′+ cst (4.7)

• The rectifier may be in the form of a single diode D, or anything that will pass
current in one direction only*.

• The filter is usually a RC low-pass type when the difference in frequency be-
tween the signal and the carrier is very large†. Furthermore, the filter function
can sometimes be achieved by relying on the limited frequency response of
the circuitry following the rectifier.

However, only amplitude modulation with a modulation index smaller than
100% can be demodulated by envelope detection. Indeed, for a modulation index
larger than 100%, or downright without carrier, envelope detection introduces nec-
essarily large distortions. Figure 4.8 shows, for example, a rectifying detection of an
amplitude modulation without carrier (S×C). In this extreme cases where m = ∞,
the demodulated signal is roughly a sine waves, but at twice (!) the frequency of the
input signal.

+ To avoid this kind of distortions, a coherent demodulation is required.

4.3.2 Product demodulation

The product detector, illustrated by figure 4.9, multiplies the incoming modulated
signal AM by the signal of a local oscillator C ′. C ′ need to have the same frequency
and phase as the carrier C of the incoming signal‡. After low pass filtering (LPF) and
suppression of the DC offset, the original signal will result as S′ given by expression
4.8.

LPF

[(
S ×C + C

k

)
×C ′

]
= S′+ cst (4.8)

Using the same example as for modulation equation 4.4 and for C ′ =C , a product
detection before the filtering could be expressed as equation 4.9. Using trigonomet-
ric functions§, this expression shows that the information content S is restored in
the base-band fS , while the carrier and harmonics are pushed around 2 f0 and are
therefore easily filtered.

*Many natural substances exhibit rectifiyng behavior, which is why envelope demodulation was the
earliest demodulation technique used in radio.

†In the case of AM radio broadcast, a carrier from few 100 kHz to few MHz is used for 10 kHz signal
bandwidth (audio.). Regarding satellite communications, frequency carrier is of the order of several GHz;
far away the signal bandwidth. For these kind of applications of the modulation, a simple first order
low-pass filter is generally enough to attenuate residuals carrier harmonics.

‡If C ′ is in opposite-phase as compare to C, the demodulated signal is always = 0 !
§sin(a)cos(b) = sin(a+b)+sin(a−b)

2 ; sin2(a) = 1−cos(2a)
2 ; sin(−a) =−sin(a)
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Figure 4.7: Waveform of an envelope detection : Signal S, Carrier C, AM with a
unity modulation index S×C+C, Rectifying as an absolute value |S×C+C| and low
pass filtering LPF

(
|S×C+C|

)
for a complete reconstruction of the input signal S.
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Figure 4.8: Waveform of an envelope detection of an amplitude modulation with-
out transmission of the carrier : Signal S, AM without carrier S×C, Rectifying as
an absolute value |S×C| and low pass filtering LPF

(
|S×C|

)
. This figure clearly shows

distortions introduced by envelope detection in the case of modulation index larger
than 100%. Signal resulting from envelope detection is at twice the frequency of the
input signal. We also can see other harmonics 4 fS , 6 fS , . . . in the spectrum.
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AM
C ′ × R

S′

C

Figure 4.9: Simplified scheme of a product demodulator.

C ×
(
S ×C + C

k

)
=C0 sin

(
2π f0t

){S0C0

2

[
cos

(
2π( f0 − fS )t

)−cos
(
2π( f0 + fS )t

)]+ C0

k
sin

(
2π f0t

)}
= S0C 2

0

2

[
sin

(
2π f0t

)
cos

(
2π( f0 − fS )t

)−sin
(
2π f0t

)
cos

(
2π( f0 + fS )t

)]
+C 2

0

k
sin2 (

2π f0t
)

= S0C 2
0

4

[
sin

(
2π(2 f0 − fS )t

)+ sin
(
2π fS t

)−sin
(
2π(2 f0 + fS )t

)+ sin
(
2π fS t

)]
+C 2

0

2k

[
1−cos

(
2π2 f0t

)]
=

S0C 2
0

4

[
2 sin(2πfSt)︸ ︷︷ ︸

baseband

+sin
(
2π(2 f0 − fS )t

)− sin
(
2π(2 f0 + fS )t

)]+ C 2
0

2k

[
1−cos

(
2π2 f0t

)]
︸ ︷︷ ︸

radio frequency + DC → filtered

(4.9)
Figure 4.10 gives the waveform to illustrate this product detection in the partic-

ular case where m = k = C0 = S0 = 1. In this case, equation 4.9 can be simplified
as equation 4.10. This last equation highlights the different spectral lines of the de-
modulated signal before filtering (DC, fS , 2 f0 − fS , 2 f0 and 2 f0 + fS ).

C × (S ×C +C ) with C0 and S0 = 1

= 1

2︸︷︷︸
DC

+ 1

2
sin

(
2π fS t

)
︸ ︷︷ ︸

fS

+ 1

4
sin

(
2π(2 f0 − fS )t

)
︸ ︷︷ ︸

2 f0− fS

− 1

2
cos

(
2π2 f0t

)
︸ ︷︷ ︸

2 f0

− 1

4
sin

(
2π(2 f0 + fS )t

)
︸ ︷︷ ︸

2 f0+ fS

(4.10)
The difference between envelope and product detection results on the lower

number of harmonics introduced by coherent technique as compared to rectifying.
Spectrum frequencies higher than 2 f0 are shown in figure 4.11 for the two demodu-
lation techniques. This comparison of the demodulated signal before filtering high-
lights harmonics at 4 f0 introduced by rectifying.
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Figure 4.10: Waveform of a product detection : Signal S, Carrier C, AM signal
S×C+C, demodulation C×(S×C+C) and low pass filtering LPF[C×(S×C+C)].
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Figure 4.11: Rectified vs Multiplied AM signal. Rectifying introduce higher fre-
quency harmonics. The difference is also visible on the bottom of the time frames.

But hight frequency part of the spectrum can be easily filtered. Then the main
difference between envelope and product detection is that the second technique
can demodulate both amplitude modulation with or with-out carrier. So modula-
tion without or with reduced carrier, i.e. with m > 100%, requires necessarily (to
avoid distortion as shown on figure 4.8) this kind of coherent demodulation. Figure
4.12 shows demodulation of a modulated signal without carrier (S ×C ).

This product detection of a modulated signal without carrier can be expressed
as equation 4.11. We see in this expressions, the baseband demodulated signal as
the radio frequency signal that we need to filter. Finally, it appears that there is no
DC on this demodulated signal. This is due to the absence of carrier.

69 damien.prele@apc.univ-paris7.fr



4.3. AMPLITUDE DEMODULATION CHAPTER 4. MODULATION

Figure 4.12: Waveform of a product detection of an amplitude modulation with-
out transmission of the carrier : Signal S, AM without carrier S×C, Demodulation
by product S×S×C and low pass filtering LPF(S×S×C). With this product detection,
there is no distortion, even if the carrier is not transmitted. Moreover, due to the fact
that there is no carrier, there is no DC signal (offset) associated to the demodulated
signal S′.
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APPENDIX A
POLYNOMIALS FILTER TABLES

Butterworth, Chebyshev (3 dB and 1 dB), Bessel and Legendre polynomials tables
needed for filter synthesis :

n Butterworth polynomials
2 s2 +1.4142s +1
3 (s +1)(s2 + s +1)
4 (s2 +0.7654s +1)(s2 +1.8478s +1)
5 (s +1)(s2 +0.618s +1)(s2 +1.618s +1)
6 (s2 +0.5176s +1)(s2 +1.4142s +1)(s2 +1.9319s +1)
7 (s +1)(s2 +0.445s +1)(s2 +1.247s +1)(s2 +1.8019s +1)
8 (s2 +0.3902s +1)(s2 +1.1111s +1)(s2 +1.6629s +1)(s2 +1.9616s +1)
9 (s +1)(s2 +0.3473s +1)(s2 + s +1)(s2 +1.5321s +1)(s2 +1.8794s +1)

n Chebyshev polynomials (ripple 3dB ≡ ε = 1 → H0even n = 2−0.5 ≈ 0,707)
2 1.4125s2 +0.9109s +1
3 (3.3487s +1)(1.1916s2 +0.3559s +1)
4 (5.1026s2 +2.0984s +1)(1.1073s2 +0.1886s +1)
5 (5.6328s +1)(2.6525s2 +0.7619s +1)(1.0683s2 +0.1172s +1)
6 (11.2607s2 +3.2132s +1)(1.9164s2 +0.4003s +1)(1.0473s2 +0.0801s +1)
7 (7.9061s + 1)(4.8959s2 + 1.1159s + 1)(1.5942s2 + 0.2515s + 1)(1.0347s2 +

0.0582s +1)
8 (19.8831s2 + 4.3139s + 1)(3.1163s2 + 0.5732s + 1)(1.4213s2 + 0.1747s +

1)(1.0265s2 +0.0443s +1)
9 (10.1756s + 1)(7.8967s2 + 1.4585s + 1)(2.365s2 + 0.3561s + 1)(1.3164s2 +

0.1294s +1)(1.0209s2 +0.0348s +1)
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n Chebyshev polynomials (ripple 1dB ≡ ε = 0.5 → H0even n = 1p
1+0.52

≈ 0,894)

2 0.907s2 +0.9956s +1
3 (2.023s +1)(1.0058s2 +0.497s +1)
4 (3.5791s2 +2.4113s +1)(1.0136s2 +0.2828s +1)
5 (3.454s +1)(1.0118s2 +0.181s +1)(2.3293s2 +1.0911s +1)
6 (1.793s2 +0.6092s +1)(1.0093s2 +0.1255s +1)(8.0188s2 +3.7217s +1)
7 (4.868s+1)(1.0073s2+0.092s+1)(1.5303s2+0.3919s+1)(4.3393s2+1.6061s+1)
8 (1.0058s2 + 0.0704s + 1)(2.9337s2 + 0.8754s + 1)(1.382s2 + 0.2755s +

1)(14.2326s2 +5.0098s +1)
9 (6.276s+1)(1.2896s2+0.2054s+1)(1.0047s2+0.0556s+1)(2.2801s2+0.5566s+

1)(7.0242s2 +2.1033s +1)

n Bessel polynomials
2 0.618s2 +1.3616s +1
3 (0.756s +1)(0.4771s2 +0.9996s +1)
4 (0.4889s2 +1.3396s +1)(0.3889s2 +0.7742s +1)
5 (0.665s +1)(0.3245s2 +0.6215s +1)(0.4128s2 +1.1401s +1)
6 (0.2756s2 +0.513s +1)(0.3504s2 +0.9686s +1)(0.3887s2 +1.2217s +1)
7 (0.593s+1)(0.238s2+0.4332s+1)(0.301s2+0.8303s+1)(0.3394s2+1.0944s+1)
8 (0.2087s2 + 0.3727s + 1)(0.2621s2 + 0.7202s + 1)(0.2979s2 + 0.9753s +

1)(0.3161s2 +1.1112s +1)
9 (0.538s+1)(0.231s2+0.6319s+1)(0.1854s2+0.3257s+1)(0.2635s2+0.8710s+

1)(0.2834s2 +1.0243s +1)

n Legendre polynomials
2 s2 +1.4142s +1
3 (1.612s +1)(1.0744s2 +0.7417s +1)
4 (1.0552s2 +0.4889s +1)(2.3213s2 +2.5522s +1)
5 (2.136s +1)(1.0406s2 +0.3196s +1)(2.0115s2 +1.5614s +1)
6 (1.7155s2 +1.06s +1)(1.0313s2 +0.2376s +1)(3.9963s2 +3.508s +1)
7 (2.617s+1)(1.0241s2+0.1765s+1)(1.5102s2+0.7171s+1)(3.2679s2+2.2825s+

1)
8 (1.3927s2 + 0.5411s + 1)(1.0195s2 + 0.1405s + 1)(5.9688s2 + 4.3832s +

1)(2.6116s2 +1.5684s +1)
9 (3.07s+1)(1.3043s2+0.4103s+1)(2.1574s2+1.0724s+1)(1.0158s2+0.1119s+

1)(4.7851s2 +2.9606s +1)
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