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Advanced Electronic Systems

A reactive impedance is a purely imaginary impedance. † Active filter allows to separate the filter parameters with those matching impedance. + v out M1 Space & Applications -ST 11.7 2021-2022

* To filter a current, two impedances in parallel are require : current divider. In our example without load impedance i i n = i out .

Current transfer function "i out "

i i n is then always equal to 1.

Foreword

T HE present document is based on four lectures given for Master of Space and Aeronautics in Univer- sity of Science and Technology of Hanoi. It consists of four parts. The first one is devoted to filters, while the second one deals with DC/DC converter, the third one discusses the phase locked loop and the last the modulation. For convenience of the readers the work is organized so that each part is selfcontained and can be read independently. These four electronic systems are chosen because they are representative of critical elements encountered in spacecraft; wether for power supply or for data transmission. A filter performs a frequency-dependent signal processing. A filter is generally used to select a useful frequency band out from a wide band signal (example : to isolate station in radio receiver). It is also used to remove unwanted parasitic frequency band (example : rejection of the 50-60 Hz line frequency or DC blocking). Analogue to digital converter also require anti-aliasing low-pass filters. Figure 1.1 shows examples of space qualified filters made of lumped elements : To do an electronic filter, devices which have frequency-dependent electric parameter as L and C impedances are required. The use of these reactive impedances * into a voltage bridge is the most common method to do a filtering ; this is called passive filtering. Passive (R,L,C) filter is used at high frequencies due to the low L and C values required. But, at frequency lower than 1 MHz, it is more common to use active filters made by an operational amplifier in addition to R and C with reasonable values. Furthermore, active filter parameters are less affected † by load impedances than passive one.

Part

1.2. FILTER PARAMETERS 1. FILTERS

Filter parameters 1.2.1 Voltage transfer function

Passive low-pass filter example : a first order low-pass filter is made by R-C or L-R circuit as a voltage divider with frequency-dependent impedance. Capacitor impedance (Z C = 1 jC ω ) decreases at high frequency * while inductor impedance (Z L = j Lω) increases. Capacitor is then put across output voltage and inductor between input and output voltage (Fig. 1.3) to perform low pass filtering. Generalization : whatever impedances Z x of the voltage bridge shown in figure 1.4, voltage transfer functions H are generalized as expression 1.1 by calculating the divider's voltage ratio using Kirchhoff's voltage law † . 

v i n R i i n C "i out " v out v i n L R v out v i n L C v out
v i n Z 1 Z 2 v out = Z 2 Z 1 +Z 2 v i n
H (ω) = v out v i n = Z 2 Z 1 + Z 2 (1.1)
Voltage transfer functions of filters given in figure 1.3 are then expressed as :

* angular frequency ω = 2π f † The sum of the voltage sources in a closed loop is equivalent to the sum of the potential drops in that loop :

v i n = Z 1 × v out Z 2 i i n ="i out " 1. FILTERS 1.2. FILTER PARAMETERS H RC = Z C R + Z C = 1 jC ω R + 1 jC ω =⇒ H RC = 1 1 + j RC ω (1.2) cut-off frequency ≡ |H RC | = 1 2 → RC ω c = 1 → f c RC = 1 2πRC H LR = R R + Z L = R R + j Lω =⇒ H LR = 1 1 + j L R ω (1.3) f c LR = R 2πL H LC = Z C Z L + Z C = 1 jC ω j Lω + 1 jC ω =⇒ H LC = 1 1 -LC ω 2
(1.4)

f 0 LC = 1 2π LC
A filter can also be used to convert a current to a voltage or a voltage to a current in addition to a simple filtering * . Considering for example the first R-C low-pass filter in figure 1. 3. We can define trans-impedance transfer function v out i i n and also the trans-admittance transfer function "i out " v i n :

v out i i n = v out "i out " = Z C = 1 jC ω -→ Integrator (1.5) "i out " v i n = 1 R + Z C = 1 R + 1 jC ω = jC ω 1 + j RC ω -→
High-pass filter (1.6)

S plane (Laplace domain)

For transient analysis, filter transfer function H must be represented as a function of the complex number s :

s = σ + j ω (1.7)
Then, reactive impedances are expressed as function of this complex number :

Z L = Ls (1.8) Z C = 1 C s (1.9)
Frequency response and stability information can be revealed by plotting in a complex plane (s plane) roots values of H (s) numerator (zero) and denominator (pole). The order of the filter (Fig. 1.5) is given by the degree of the denominator of the expression 1.10. A zero corresponds the numerator equal to zero. A pole is given by the denominator equal to zero. Each pole provides a -20dB/decade slope of the transfer function ; each zero a + 20 dB/decade * . Zero and pole can be real or complex. When they are complex, they have a conjugate pair † .

Expression 1.10 is characterized by a zero at s = 0 and two conjugate poles obtained by nulling it's denominator (eq. 1.11) ‡ . 0 = 1 + RC s + LC s 2 -----→ The discriminant ∆ could be positive, null or negative as shown in figure 1.6. The boundary (∆ = 0) between negative and positive discriminant is given by the equation (RC ) 2 = 4LC and could be rewrite

1 2 = L/C R Q
which is the expression of a parameter called the quality factor Q.

Figure 1.6: Discriminant ∆ = (RC ) 2 -4LC value as function of (RC ) 2 and 4LC . For a given C, if R L is large → s p is real, if L R is large → s p is imaginary.

Nature (real or imaginary) of the roots is reported in the table 1.1. Roots are expressed as two complex conjugate roots § : the poles s p 1 and s p 2 given on 1.12.

s p 1,2 = -R 2L ± j 1 LC - R 2L 2
(1.12)

The natural angular frequency ω 0 is the module of the pole :

* H [d B ] = 20 log H [l i n.
] and a decade correspond to a variation by a factor of 10 in frequency. A times 10 ordinate increasing on a decade (times 10 abscissa increasing) correspond to a 20dB/decade slope on a logarithmic scale or also 6dB/octave. A -20dB/decade then correspond to a transfer function decreasing by a factor of 10 on a decade † each conjugate pair has the same real part, but imaginary parts equal in magnitude and opposite in sign ‡ The roots (zeros) of a polynomial of degree 2 (quadratic function) ax 2 + bx + c = 0 are x = -b± ∆ 2a where the discriminant is

∆ = b 2 -4ac § x| x<0 = i |x| 1. FILTERS 1.2. FILTER PARAMETERS ∆ = (RC ) 2 -4LC roots s p Q = L/C R > 0 2 real < 1/2 = 0 1 real double = 1/2 < 0 2 complex conjugates > 1/2
Table 1.1: Link between discriminant sign and nature of the roots. Conditions on the R, L and C device values are reported expressed as the quality factor Q.

ω 0 = |s p 1,2 | = 1 LC (1.13)
In a s plane, pole and zero allow to locate where the magnitude of the transfer function is large (near pole), and where it is small (near zero). This provides us understanding of what the filter does at different frequencies and is used to study the stability. Figure 1.7 shows pole () and zero (G) in a s plane. A causal linear system is stable if real part of all poles is negative. On the s plane, this corresponds to a pole localization at the left side (Fig. 1.8). Laplace notation s = σ + j ω is required to study stability condition and transient (time domain) analysis. However, for steady state signal (frequency domain) analysis, Fourier notation s = j ω is preferred to do harmonic analysis.

σ j ω 1 LC -R 2L G 1 LC -R 2L 2 -1 LC -R

Bode plot (Fourier domain)

The most common way to represent the transfer function of a filter is the Bode plot. Bode plot is usually a combination of the magnitude |H | and the phase φ of the transfer function on a log frequency axis.

Using the LCR band-pass filter (figure 1.5 example), the magnitude * and the phase † of the expression 1.2. FILTER PARAMETERS 1. FILTERS 1.10 (rewrite with unity numerator in 1.14) are respectively given by expressions 1.15 and 1.16. To do this, Fourier transform is used (harmonic regime) instead of Laplace transform : s is replaced by jω, only.

H LC R = j RC ω 1 + j RC ω -LC ω 2 = 1 1 + j Lω R -1 RC ω
(1.14)

|H LC R | = 1 1 + Lω R -1 RC ω 2
(1.15) The band-pass filter could be seen as a cascading high and a low-pass filter :

φ LC R = arg (H LC R ) = -arctan Lω R - 1 RC ω (1.
• The high pass-filter cutoff frequency f c1 = R 2πL

• The low pass-filter cutoff frequency

f c2 = 1 2πRC
The Bode diagram of this band-pass filter is plotted on figure 1.9. With this specific numerical application f 0 = f c1 = f c2 . f 0 , f c1 and f c2 are however not necessarily equal.

Nevertheless, whatever the numerical application, f 0 = f c1 f c2

In this numerical application f 0 = f c1 = f c2 (Fig 1.9). This correspond to a particular case where the

quality factor Q = 1 R L C = 1 100 10 -3
10 -7 = 1. For other numerical application (i.e. Q = 1), f 0 is different than f c1 and f c2 (Fig 1.10). * In the case of band-pass filter, natural frequency is also called resonance frequency or center frequency corresponding to LC ω 2 0 = 1. This is the frequency at which the impedance of the circuit is purely resistive.
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FILTER PARAMETERS

Quality factor Q

Quality factor Q is a dimensionless parameter which indicates how much is the sharpness of a multi-pole filter response around its cut-off (or center * ) frequency. In the case of a band-pass filter, its expression 1.17 is the ratio of the center frequency by the -3 dB bandwidth (BW ) † and is given for series and parallel LCR circuit.

Q = f 0 BW = f c2 f c1 band-pass filter = 1 R L C series LCR = R C L parallel LCR
(1.17)

Quality factor is directly proportional to the selectivity of a band-pass filter (Fig. 1.10) :

• Q < 1 2 → damped and wide band filter

• Q = 1 2 → critically damped • Q > 1 2
→ resonant and narrow band filter

We have already see that Q = 1/2 is related to the denominator roots of the transfer function, see table 1.1.

In practice, Q factor is proportional to the ratio of the maximum energy stored in the reactive devices and the energy losses in the resistor :

Q = ω 0
Max. Energy Stored Power loss (1.18)

The maximum stored energy is LI 2 L RM S or CV 2 C RM S ; the dissipated power is R I 2 R RM S or

V 2 R RM S R
and ω 0 = 2π f 0 = 1 LC . In series LCR, I L = I C = I R . In parallel LCR, V L = V C = V R . So, it is easy to link equations 1.17 and 1.18.

We can again rewrite expression 1.14 by using now natural frequency f 0 and quality factor Q :

H LC R = j RC ω 1 + j RC ω -LC ω 2 = j 1 Q ω ω 0 1 + j 1 Q ω ω 0 -ω 2 ω 2 0 = j 1 Q f f 0 1 + j 1 Q f f 0 - f 2 f 2 0 = 1 1 + jQ f f 0 - f 0 f (1.19) with RC = 1 Q 1 ω 0 , Q = 1 R L C , ω 0 = 2π f 0 = 1 LC and ω = 2π f .

Damping ratio ζ

Damping ratio ζ is generally used in the case of low and hight-pass filter (Low Q) when Q is used in the case of narrow band-pass filter, resonator and oscillator (High Q).

ζ = 1 2Q (1.20)
The more damping the filter, the flatter its response is and likewise, the less damping the filter, the sharper its response is :

• ζ < 1 → steep cutoff * for a band-pass filter † For resonant circuits, BW | @-3d B = f c2 -f c1 . Indeed, for Q = 1, f c2 = f c1 = f 0 , but BW = f 0 1.3. CASCADING FILTER STAGES 1. FILTERS Figure 1
.10: Bode plot of a band-pass filter -Q = 0.01 ; 0.1 ; 0.25 ; 0.5 ; 1 ; 2 ; 4 ; 10 ; 100 (i.e. ζ = 50 ; 5 ; 2 ; 1 ; 0.5 ; 0.25 ; 0.125 ; 0.05 ; 0.005).

• ζ = 1/ 2 = Q → -3dB attenuation at f c (as for 1 st order)

• ζ = 1 → critical damping • ζ > 1 → slow cutoff
Expression 1.14 may now be rewritten using damping factor :

H LC R = j RC ω 1 + j RC ω -LC ω 2 = j 2ζ ω ω 0 1 + j 2ζ ω ω 0 -ω 2 ω 2 0 (1.21)

Cascading filter stages

Circuit analysis by applying Kirchhoff's laws (as before) is usually used for first and second order filter. For a higher order filters, network synthesis approach may be used. A polynomial equation expresses the filtering requirement. Each first and second order filter elements are then defined from continuedfraction expansion of the polynomial expression. In practice, to avoid saturation, highest Q stage is placed at the end of the network.

1 st order 1 st order 2 nd order 2 nd order 1 st order 2 nd order 3 r d order 2 nd order 2 nd order 4 t h order 1 st order 2 nd order 2 nd order 5 t h order ... Figure 1.11: Cascading filter stages for higher-order filters.
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CASCADING FILTER STAGES

It exists different type of polynomial equations from which the filter is mathematically derived. These type of filters are Butterworth, Bessel, Chebyshev, inverse Chebyshev, elliptic Cauer, Bessel, optimum Legendre, etc.

• Butterworth filter is known as the maximally-flat filter as regards to the flatness in the pass-band.

The attenuation is simply -3 dB at the cutoff frequency ; above, the slope is -20dB/dec per order (n).

• Chebychev filter has a steeper rolloff * just after the cutoff frequency but ripple in the pass-band. The cutoff frequency is defined as the frequency at which the response falls below the ripple band † . For a given filter order, a steeper cutoff can be achieved by allowing more ripple in the pass-band (Chebyshev filter transient response shows overshoots).

• Bessel filter is characterized by linear phase response. A constant-group delay is obtained at the expense of pass-band flatness and steep rolloff. The attenuation is -3 dB at the cutoff frequency.

• elliptic Cauer (non-polynomials) filter has a very fast transition between the pass-band and the stop-band. But it has ripple behavior in both the passband and the stop-band (not studied after).

• inverse Chebychev -Type II filter is not as steeper rolloff than Chebychev but it has no ripple in the passband but in the stop band (not studied after).

• optimum Legendre filter is a tradeoff between moderate rolloff of the Butterworth filter and ripple in the pass-band of the Chebyshev filter. Legendre filter exhibits the maximum possible rolloff consistent with monotonic magnitude response in the pass-band.

Polynomial equations

Filters are syntheses by using a H 0 DC gain and a polynomial equations P n , with n the order of the equation, and so, of the filter. The transfer function of a synthesized low-pass filter is H (s) = H 0 .

Butterworth polynomials

Butterworth polynomials are obtained by using expression 1.22 :

P n (ω) = B n (ω) = 1 + ω ω c 2n (1.22)
The roots ‡ of these polynomials occur on a circle of radius ω c at equally spaced points in the s plane : 

σ n = 1 j ω σ n = 2 j ω σ n = 3 j ω σ n = 4 j ω σ n = 5 j ω
1.3. CASCADING FILTER STAGES 1. FILTERS Poles of a H (s)H (-s) = H 2 0 1+ -s 2 ω 2 c
n low pass filter transfer function module are specified by :

-s 2 x ω 2 c = (-1) 1 n = e j (2x-1)π n with x = 1, 2, 3, . . . , n (1.23)
The denominator of the transfer function may be factorized as :

H (s) = H 0 n x=1 s-s x ω c
(1.24)

The denominator of equation 1.24 is a Butterworth polynomial in s. Butterworth polynomials are usually expressed with real coefficients by multiplying conjugate poles * . The normalized † Butterworth polynomials has the form :

B 0 = 1 B 1 = s + 1 B n = n 2 x=1 s 2 -2s cos 2x + n -1 2n π + 1 n is even = (s + 1) n-1 2 x=1 s 2 -2s cos 2x + n -1 2n π + 1 n is odd (1.25)
Second order Butterworth filter correspond to the particular case where

Q = ζ = 1/ 2 ≈ 0.71.
Indeed, from equation 1.25 and expressing the Butterworth polynomial as the denominator of the equation 1.19, it is easy to determined for n = 2 that : 1

Q = 2cos     2 + 2 -1 2 × 2 π 3π/4     = 2 ≈ 1.41 with Q = 1 2ζ (Eq. 1.20).

Chebyshev polynomials

Chebyshev polynomials are obtained by using expression 1.26 :

P n = T n = cos(n arccos(ω)) |ω| ≤ 1 cosh(n arcosh(ω)) |ω| ≥ 1 (1.26)
where the hyperbolic cosine function cosh(x) = cos( j x) = e x +e -x

2

. From the two first values T 0 = 1 and T 1 = ω, Chebyshev polynomials T n (ω) could be recursively obtained by using expression 1.27 :

T 0 = 1 T 1 = ω T n = 2ωT n-1 -T n-2            T 2 = 2ω 2 -1 T 3 = 4ω 3 -3ω T 4 = 8ω 4 -8ω 2 + 1 . . . (1.27)
Chebyshev low-pass filter frequency response is generally obtained by using a slightly more complex expression than for a Butterworth one :

|H (s)| = H 0 1 + 2 T 2 n ω ω c
(1.28)
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where is the ripple factor ‡ . Even if H 0 = 1, magnitude of a Chebyshev low-pass filter is not necessarily equal to 1 at low frequency (ω = 0). Gain will alternate between maxima at 1 and minima at 1 1+ 2 .

T n ω ω c = 0 = ±1 n is even 0 n is odd ⇒ H ω ω c = 0 = 1 1+ 2 n is even 1 n is odd (1.29)
At the cutoff angular frequency ω c , the gain is also equal to 1 1+ 2 (but ∀n) and, as the frequency increases, it drops into the stop band.

T n ω ω c = 1 = ±1 ∀n ⇒ H ω ω c = 1 = ± 1 1 + 2 ∀n (1.30)
Finally, conjugate poles s x (equation 1.31 * ) of expression 1.28 are obtained by solving equation 0 = 1 + 2 T 2 n :

s x = sin 2x -1 n 1 2π sinh 1 n arcsinh 1 + j cos 2x -1 n 1 2π cosh 1 n arcsinh 1 (1.31)
Using poles, transfer function of a Chebyshev low-pass filter is rewritten as equation 1.28 :

H (s) =      1 1+ 2 n x=1 s-sx ωc n is even 1 n x=1 s-sx ωc n is odd (1.32)

Bessel polynomials

Bessel polynomials are obtained by using expression 1.33 :

P n = θ n = n x=0 s x (2n -x)! 2 n-x x!(n -x)!            θ 1 = s + 1 θ 2 = s 2 + 3s + 3 θ 3 = s 3 + 6s 2 + 15s + 15 . . . (1.33)
Bessel low-pass filter frequency response is given by expression 1.34 and is also given for n = 2 (delay normalized second-order Bessel low-pass filter).

θ n (0) θ n s ω c =⇒ n = 2 3 s ω c 2 + 3 s ω c + 3 = 1 1 3 s ω c 2 + s ω c + 1 (1.34)
However, Bessel polynomials θ n have been normalized to unit delay at ω ω c = 0 (delay normalized) and are not directly usable for classical cutoff frequency at -3 dB standard (frequency normalized).

To compare this polynomials to the other one, the table 1.2 gives BCF factors for converting Bessel filter parameters to 3 dB attenuation at ω ω c = 1. These factors were used in preparing the frequency normalized tables given on Appendix I.

By using BCF factor and for n = 2 we finally see in expression 1.35 the frequency response of a second order Bessel low pass filter :

H 2 = 1 BC F 2 3 s ω c 2 + BC F s ω c + 1 ≈ 1 0.618 s ω c 2 + 1.3616 s ω c + 1 (1.35)
Module and phase are deduced from the equation 1.35 : ‡ = 1 for the other polynomials filter and is then not represented * Poles are located on a centered ellipse in s plane ; with real axis of length sinh 1 n arcsinh 1 and imaginary axis of length cosh 1 n arcsinh 1 . 

|H 2 | = 1 1 -0.618 ω 2 ω 2 c 2 + 1.3616 ω ω c 2 φ = arg (H 2 ) = -arctan   1.3616 ω ω c 1 -0.618 ω 2 ω 2 c   (1.36)
Bessel filter is characterized by a linear phase response. Group delay could be studied by calculating :

τ g = - d φ d ω (1.37)

Legendre polynomials

From the two first values P 0 (x) = 1 and P 1 (x) = x, (as for Chebyshev) Legendre polynomials P n (ω 2 ) could be recursively obtained by using expression 1.38 :

P 0 (x) = 1 P 1 (x) = x P n+1 (x) = (2n + 1)xP n (x) -nP n-1 (x) n + 1            P 2 (x) = 3x 2 2 -1 2 P 3 (x) = 5x 3 2 -3x 2 P 4 (x) = 35x 4 8 -30x 2 8 + 3 8 . . . (1.38)
From these polynomials, Legendre low-pass filter (expression 1.39) also called optimal filter are not directly defined from P n but from optimal polynomials L n (ω 2 ) described on expressions 1.40.

H (ω) = 1 1 + L n (ω 2 ) (1.39) L n (ω 2 ) = 2ω 2 -1 -1 k i =0 a i P i (x) 2 d x n = 2k + 1 is odd 2ω 2 -1 -1 (x + 1) k i =0 a i P i (x) 2 d x n = 2k + 2 is even with a i                  n is odd ∀k a 0 = a 1 3 = a 2 5 = • • • = a i 2i +1 = 1 2(k+1) n is even              k is odd a 1 3 = a 3 7 = a 5 11 = • • • = a i 2i +1 = 1 2(k+1)(k+2) a 0 = a 2 = a 4 = • • • = a i = 0 k is even a 0 = a 2 5 = a 4 9 = • • • = a i 2i +1 = 1 2(k+1)(k+2) a 1 = a 3 = a 5 = • • • = a i -1 = 0 (1.40)
Finally, optimal polynomials could be calculated :

1. FILTERS 1.3. CASCADING FILTER STAGES L 0 (ω 2 ) = 1 L 1 (ω 2 ) = ω 2 L 2 (ω 2 ) = ω 4 L 3 (ω 2 ) = ω 2 -3ω 4 + 3ω 6 L 4 (ω 2 ) = 3ω 4 -8ω 6 + 6ω 8 L 5 (ω 2 ) = ω 2 -8ω 8 + 28ω 6 -40ω 8 + 20ω 10 . . . (1.41)
Factorization of the overall attenuation function * 1 + L n (ω 2 ) is given on Appendix I. However, it is not so important † to know how found Butterworth, Chebyshev, Bessel or Legendre polynomials coefficients; but it is more useful to know how to use them to design efficient filters. This is why it exists a lot of filter tables to simplify circuit design based on the idea of cascading lower order stages to realize higher-order filters.

Filter Tables

Filter tables could give complex roots or normalized polynomials coefficients c 0 , c 1 , . . . , c n with

P n = c n s n + c n-1 s n-1 + • • • + c 1 s + c 0 .
However, more currently filter tables show factorized polynomials or directly normalized cutoff frequency (Scaling Factor -SF) and quality factor (Q) of each of stages for the particular filter being designed. Some tables are now given using a Butterworth low-pass filter example.

Roots table

Some filter tables give complex roots of polynomials. 

= B n = n x=0 c x s x = c n s n + c n-1 s n-1 + • • • + c 1 s + c 0 . n c 0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10 1 1 1 2 1 1.
= B n = n x=0 c x s x = c n s n + c n-1 s n-1 + • • • + c 1 s + c 0 .
However, polynomials are generally factored in terms of 1 st and 2 nd order polynomials ; particularly to build cascading 1 st and 2 nd order filters.

Factored polynomials table

To cascade 1 st and 2 nd order filters (filter synthesis), a more useful table gives a factored representation of polynomials as the Butterworth quadratic factors in Table 1. [START_REF]SIMPLE MULTIPLICATION 4[END_REF].

n P n = B n 1 s + 1 2 s 2 + 1.4142s + 1 3 (s + 1)(s 2 + s + 1) 4
(s 2 + 0.7654s + 1)(s 2 + 1.8478s + 1) 5 (s + 1)(s 2 + 0.618s + 1)(s 2 + 1.618s + 1) 6 (s 2 + 0.5176s + 1)(s 2 + 1.4142s + 1)(s 2 + 1.9319s + 1) 7 (s + 1)(s 2 + 0.445s + 1)(s 2 + 1.247s + 1)(s 2 + 1.8019s + 1) 8 (s 2 + 0.3902s + 1)(s 2 + 1.1111s + 1)(s 2 + 1.6629s + 1)(s 2 + 1.9616s + 1) 9 (s + 1)(s 2 + 0.3473s + 1)(s 2 + s + 1)(s 2 + 1.5321s + 1)(s 2 + 1.8794s + 1) 10 (s 2 + 0.3129s + 1)(s 2 + 0.908s + 1)(s 2 + 1.4142s + 1)(s 2 + 1.782s + 1)(s 2 + 1.9754s + 1) Table 1.5: Butterworth polynomials quadratic factors.

Cutoff frequencies and quality factor table

Finally, an other useful table for filter designer is table which gives directly cutoff frequency and quality factor of each 2 nd order filter. Table 1.6 gives frequency scaling factor and quality factor of Butterworth low-pass filter. A first order stage is just defined by a normalized cutoff frequency (SF) without quality factor (Q). Scaling factor is the ratio between the cutoff frequency of the considering stage and the cutoff frequency of the overall cascaded filter. So, finally the polynomial is expressed as in equation 1.42.

2 nd order polynomial form 

→ P n = 1 + j 1 Q f SF f c - f SF f c 2 (1.42)

The use of filter tables

H (s) = H 0 s ω c 2 + 1.41 s ω c + 1 = H 0 1 + j 1 Q f SF f c - f 2 SF 2 f 2 c with SF = 1 Q ≈ 1 1.41 ≈ 0.7071 (1.44)
Bode diagram of this low pass filter could be expressed as equation 1.45 and plotted as figure 1.13.

|H (ω)| = 1 1 -ω ω c 2 2 + 1.41 ω ω c 2 with H 0 = 1 φ(ω) = arg(H ) = -arctan 1.41 ω ω c 1 -ω ω c 2 (1.45)
* each 1 st and 2 nd order filter have the same cutoff frequency than the Butterworth cascading filter has at the end. This is not the case for other polynomials filter as Chebyshev for which SF is often different than 1. 

Conversion from low-pass filter

Low-pass to high-pass filter Filter tables give polynomials for low and high-pass filter. To obtain a high pass filter, a first order low pass filter transfer function H 0 c 0 +c 1 s becomes H ∞ s c 1 +c 0 s ; and a second order low pass filter transfer function 1.14 shows low and high pass filter with H 0 and H ∞ * .

H 0 c 0 +c 1 s+c 2 s 2 becomes H ∞ s 2 c 2 +c 1 s+c 0 s 2 . Figure
H LP 1 = H 0 c 0 + c 1 s ⇒ H H P 1 = H ∞ c 0 + c 1 /s H LP 2 = H 0 c 0 + c 1 s + c 2 s 2 ⇒ H H P 2 = H ∞ c 0 + c 1 /s + c 2 /s 2 (1.46)
Low to high pass filter conversion: s ⇒ s -1 1. FILTERS 1.4. FILTER SYNTHESIS Band-pass filter For band-pass filter, it exists specific tables which give specific coefficients given for different bandwidth (BW). However, a low pass filter transfer function could be converted in band-pass filter by replacing s by f 0 BW s + s -1 ; where f 0 BW is equal to the quality factor Q.

Low to band-pass filter conversion:

s ⇒ Q s + s -1
Band-reject filter A low pass filter transfer function is converted in band-reject filter by replacing s by

1 f 0 BW (s+s -1 ) . Low to band-reject filter conversion: s ⇒ Q -1 s + s -1 -1 Transposition A synthesis of different transpositions are reported in the table 1.7. X X X X X X X X X X Conv.
Filter type Low-pass High-pass Band-pass Band-reject Normalized complex frequency

s s -1 Q s + s -1 1 Q 1 s+s -1
First order transfert function

1 C 0 +C 1 s 1 C 0 +C 1 /s 1 C 0 +C 1 Q(s+s -1 ) 1 C 0 + C 1 Q ( s+s -1 ) Second order transfert function 1 C 0 +C 1 s+C 2 s 2 1 C 0 +C 1 /s+C 2 /s 2 Table 1.7: Filter normalized transposition.
The transfer function is obtained by using filter table after determination of type and order. The next step is to determine a circuit to implement these filters.

Filter synthesis

It exists different topologies of filter available for filter synthesis. The most often used topology for an active realization is Sallen-Key topology (Fig. 1.15).

Sallen-Key topology

Sallen-Key electronic circuit (Fig. 1.15) is used to implement second order active filter. From Kirchhoff laws, transfer function of the generic Sallen-Key topology could be written as : 

v i n Z 1 Z 2 Z 4 H 0 Z 3 v out
H SK = H 0 1 + Z 1 +Z 2 Z 4 + (1 -H 0 ) Z 1 Z 3 + Z 1 Z 2 Z 3 Z 4 (1.

Sallen-Key low-pass filter

A low-pass filter is easily obtained from this circuit. Figure 1.16 shows a Sallen-Key low-pass filter. The transfer function of this Sallen-Key low-pass filter is given by equation 1.48.

v i n R 1 R 2 C 2 H 0 C 1 v out
H SK LP = H 0 1 + (R 1 + R 2 )C 2 + R 1 C 1 (1 -H 0 ) s + R 1 R 2 C 1 C 2 s 2 = H 0 c 0 + c 1 s + c 2 s 2 = H 0 1 + j 1 Q f SF f c - f 2 SF 2 f 2 c with        SF f c = 1 2π R 1 R 2 C 1 C 2 Q = R 1 R 2 C 1 C 2 (R 1 +R 2 )C 2 +R 1 C 1 (1-H 0 ) (1.48)
This second order Sallen-Key filter can be used to realize one complex-pole pair in the transfer function of a low-pass cascading filter. Values of the Sallen-Key circuit could be chosen to correspond to a polynomials coefficients (as Butterworth, Chebyshev or Bessel . . . ).

Sallen-Key high-pass filter

To transform a low-pass filter to a high-pass filter, all resistors are replaced by capacitors and capacitors by resistors :

v i n C 1 C 2 R 2 H 0 R 1 v out Figure 1
.17: Sallen-Key high-pass filter.

The transfer function of this Sallen-Key high-pass filter is given by equation 1.49. 

H SK H P = H 0 R 1 R 2 C 1 C 2 s 2 1 + R 1 (C 1 +C 2 ) + R 2 C 2 (1 -H 0 ) s + R 1 R 2 C 1 C 2 s 2 = H 0 c 0 + c 1 s + c 2 s 2 = H 0 c 2 c 0 s 2 c 0 + c 1 c 2 c 0 s + c 2 s 2 = H 0 -f 2 SF 2 f 2 c 1 + j 1 Q f SF f c - f 2 SF 2 f 2 c with        SF f c = 1 2π R 1 R 2 C 1 C 2 Q = R 1 R 2 C 1 C 2 R 1 (C 1 +C 2 )+R 2 C 2 (1-H 0 ) (1.

Sallen-Key band-pass filter

Band-pass filter could be obtained by placing in series a hight and a low pass filter as illustrated in figure 1.18. Cut-off frequency of the low-pass filter need to be higher than the high-pass one ; unless you want to make a resonant filter.

High-pass

Low-pass Band-pass filter Figure 1.18: Cascading high and low-pass filter for band-pass filtering.

A possible arrangement of generic Sallen-Key topology in band-pass configuration is given in figure 1.19. But we can also found more complicated band-pass filter as figure 1.20 based on voltage-controlled voltage-source (VCVS) filter topology which gives the transfer function expressed in equation 1.50. 

v i n R 1 C 2 R 2 H 0 C 1 v out
v i n R 1 C 2 R 2 C 1 H 0 R 3 v out
H V CV S B P = H 0 R 2 R 3 C 2 R 1 +R 3 s 1 + R 1 R 3 (C 1 +C 2 )+R 2 R 3 C 2 +R 1 R 2 C 2 (1-H 0 ) R 1 +R 3 s + R 1 R 2 R 3 C 1 C 2 R 1 +R 3 s 2 = H 0 s c 0 + c 1 s + c 2 s 2 with H 0 = H 0 R 2 R 3 C 2 R 1 + R 3 = H 0 s 1 + j 1 Q f SF f c - f 2 SF 2 f 2 c with        SF f c = 1 2π R 1 +R 3 R 1 R 2 R 3 C 1 C 2 Q = (R 1 +R 3 )R 1 R 2 R 3 C 1 C 2 R 1 R 3 (C 1 +C 2 )+R 2 R 3 C 2 -R 1 R 2 C 2 (1-H 0 )
(1.50)

Sallen-Key band-reject filter

Unlike the band-pass filter, a notch filter can not be obtained by a series connection of low and highpass filters. But a summation of the output * of a low and a high-pass filter could be a band-reject filter 1.4. FILTER SYNTHESIS 1. FILTERS if cut-off frequency of the low-pass filter is lower than the high-pass one. This correspond to paralleling high and low-pass filter.

Band-reject filter could be obtained by placing in parallel a high and a low-pass filter as illustrated in figure 1.21.

High-pass

Band-reject filter Low-pass Figure 1.21: Paralleling low and high-pass filter for band-reject filtering.

A band-reject filter is usualy obtained by using circuit of figure 1.22. Parameters of this simplified Sallen-Key band reject filter is given by expression 1.51.

v i n R R C C R/2 H 0 2C v out
SF f c = 1 2π RC Q = 1 4 -2H 0 (1.51) 1. FILTERS 1.5. AMPLITUDE RESPONSES

Amplitude responses 1.5.1 Filter specifications

The more common filter specification is the roll-off rate which increases with the order * . It is 20dB/decade per pole for hight and low-pass filter ; per pair of poles/zeros for band-pass filter. Ripples in pass-band and stop-band need to be also specified. Around a cutoff frequency, these specifications could be also defined by 5 transfer function requirements : 

• maximum amplitude |H | max † • pass-band cut-off frequency f p ‡ • maximum
f |H| |H| max |H| max -A max f p f s |H| max -A mi n

Amplitude response curves

Cebyshev filter has a steeper rolloff near the cutoff frequency when compared to Butterworth and Bessel filters. While, Bessel not exhibit a frequency dependance phase shift as Butterworth and Chebyshev filter. Butterworth is a good compromise as regards to the rolloff, while having a maximaly-flat frequency response. Finally, Legendre filter has the steeper rollof without ripple in the band pass. These kind of comparison between Butterworth, Chebyshev, Bessel and Legendre filter is outlined by figure 1.24, tables 1.8 and 1.9. The response of Butterworth, Chebyshev, Bessel and Legendre low-pass filter is compared. To do this, polynomial tables given in Appendix A are directly used as the low-pass filter denominator transfer function. 

X X X X X X X X X X
P 5 Butterworth = (s + 1)(s 2 + 0.618s + 1)(s 2 + 1.618s + 1)
P 5 Chebyshev 3d B = (5.6328s + 1)(2.6525s 2 + 0.7619s + 1)(1.0683s 2 + 0.1172s + 1) P 5 Bessel = (0.665s + 1)(0.3245s 2 + 0.6215s + 1)(0.4128s 2 + 1.1401s + 1) P 5 Legendre = (2.136s + 1)(1.0406s 2 + 0.3196s + 1)(2.0115s 2 + 1.5614s + 1)

|P 5 | =                                f 2 f 2 c + 1 f 2 f 2 c + 1 2 + 0.618 2 f 2 f 2 c f 2 f 2 c + 1 2 + 1.618 2 f 2 f 2 c 5.6328 2 f 2 f 2 c + 1 2.6525 f 2 f 2 c + 1 2 + 0.7619 2 f 2 f 2 c 1.0683 f 2 f 2 c + 1 2 + 0.1172 2 f 2 f 2 c 0.665 2 f 2 f 2 c + 1 0.3245 f 2 f 2 c + 1 2 + 0.6215 2 f 2 f 2 c 0.4128 f 2 f 2 c + 1 2 + 1.1401 2 f 2 f 2 c 2.136 2 f 2 f 2 c + 1 1.0406 f 2 f 2 c + 1 2 + 0.3196 2 f 2 f 2 c 2.0115 f 2 f 2 c + 1 2 + 1.5614 2 f 2 f 2 c (1.52)
It clearly appears on figure 1.25 differences, concerning frequency response, between Butterworth, Chebyshev, Bessel and Legendre filters. All these filters have been plotted with a cutoff frequency referred to a -3dB attenuation. Thereby, despite the same order, Chebyshev filter has the faster rolloff, then come Legendre, Butterworth and the slower is the Bessel filter. Far after the cutoff frequency, the slope becomes the same for all 5 t h order filters (∝ f -5 ) but not the attenuation for a given 

1. FILTERS 1.5. AMPLITUDE RESPONSES X X X X X X X X X X

Butterworth frequency response

Figure 1.27 illustrates the main properties of Butterworth filters which is the flatness in the pass-band ; particularly for high order.

Butterworth attenuation plot on the right side of figure 1.27 could be used to determined the needed order for a given A mi n and f s (Fig. 1.23).

Chebyshev frequency response

Figure 1.28 shows the ripple in the pass-band of a Chebyshev low-pass filter (3dB) for order from 2 to 5. It also appears that H 0 (numerator) is different from 1 for even order. For an even order Chebyshev filter with a ripple factor of 3 dB (which correspond to = 1), the numerator is equal to 1 1+ 2 ≈ 0.71. Figure 1.29 shows more precisely the difference in H 0 between odd (n=5 → H 0 = 1) and even (n=4 → H 0 ≈ 0.707) order. It also illustrates of how it is possible to determine the order of a Chebyshev filter by simply counting the ripple number on the transfer function.

Amplitudes of the ripples in the pass-band is constrained by the |H | max -A max and f c (Fig. 1.23). Sometimes, ripple factor needs to be smaller than 3dB. It is easy to find Chebyshev polynomials table with a ripple factor of 1 dB * , 0.5 dB or 0.1 dB. In Figure 1.30, is plotted the transfer function of a Chebyshev low-pass filter with a ripple factor of 1 dB ( = 0.5) and order going from 2 to 5. The H 0 of even order is set at Finally, a comparison between two Chebishev low-pass filters with different ripple factor is plotted in figure 1.32. Even if the cutoff frequency is referred to a different level (-1 dB and -3 dB), it appears that the larger the ripple factor, the faster the rolloff.

Bessel frequency response

Figure 1.33 show Bessel low-pass filter transfer function from the 2 nd to the 5 t h order. The rolloff is much slower than for other filters. Indeed, Bessel filter maximizes the flatness of the group delay curve in the pass-band (Fig. 1.34) but not the rolloff. So, for a same attenuation in the stop-band (A mi n ), a higher order is required compared to Butterworth, Chebyshev or Legendre filter.

Legendre frequency response

To complete this inventory, Legendre low-pass filter frequency response is plotted in figure 1.35 for n = 2 to 5.

Legendre filter is characterized by the maximum possible rolloff consistent with monotonic magnitude response in the pass-band. But monotonic does not flat, as we can see in figure 1.36.

As for Chebyshev filter, it is possible to count the number of "ripples" to find the order from a plotted transfer function. 

Switched capacitor filters

A switched capacitor electronic circuit works by moving charges into and out of capacitors when switches are opened and closed. Filters implemented with these elements are termed "switched-capacitor filters".

Switched capacitor

Figure 1.37 give the circuit of a switched capacitor resistor, made of one capacitor C and two switches S 1 and S 2 which connect the capacitor with a given frequency alternately to V i n and V out . Each switching cycle transfers a charge from the input to the output at the switching frequency. When S 1 is closed while S 2 is open, the charge stored in the capacitor C is q i n = CV i n * , when S 2 is closed, some of that charge is transferred out of the capacitor, after which the charge that remains in capacitor C is q out = CV out .

Thus, the charge moved out of the capacitor to the output is q T = q i nq out = C (V i n -V out ). Because this charge q T is transferred each T S † , the rate of transfer of charge per unit time ‡ is given by expression 1.53. Expression 1.53 gives a link between V and I , and then the impedance * of the switched capacitor which could be expressed as a resistor (expression 1.54).

I = q T T S = C (V i n -V out ) T S (1.53)
R = T s C (1.54)
Switching capacitor behaves like a lossless resistor whose value depends on capacitance C and switching frequency 1 T S . This reduces energy consumption for embedded applications (such as space mission) and allows an adjustment of the resistance value.

Switched capacitor filters

Because switching capacitor act as a resistor, switched capacitors can be used instead of resistors in the previous filter circuits (RC, RLC, Sallen-Key ...). A R = 10kΩ can be replaced by a switched capacitor following the expression 1.54. Using a switching clock f s = 1 T S = 50k H z, the capacitor is given by equation 1.55. 1. Give the expression of the v out (ω) v i n (ω) transfer function.

R = 10kΩ ≡ C = 1 10kΩ × 50k H z = 2nF (1.
f c = 1 2πR equi v. C 2 = C 1 × f s 2πC 2 (1.
V i n R V out ≡ V i n S 1 S 2 V out
V i n R V out C 2 ≡ V i n S 1 S 2 V out C 2 C 1
2. Is it a low or a high-pass filter? R = 1kΩ and L = 1mH :

3. What is the cutoff frequency?

4. Give the module and the phase of this transfer function as a function of f . 5. Draw the Bode plots of the filter.

6. Same questions for the two following filters : R = 22kΩ and C = 33nF 

v i n C R v out v i n R C v out

Second order passive filter

Transfer function of the second order filter (Fig. 1.41). L = 1mH , R = 1Ω and C = 100nF :

1. Give the expression of the v out (ω) v i n (ω) transfer function highlighting the quality factor Q.

2. Compute the cutoff frequency and the Q 3. Express the module and the phase of this transfer function.

4. Draw the Bode plots of the filter.

5. Is it a low or a high-pass filter?

6. What is the values of R which satisfy Q = 0.71, 1 and 1?

7. Is the cutoff frequency changes with R values?

8. Draw the Bode plots of the filter with Q = 0.71, 1 and 1. 

v i n L R C v out

Active filter -Sallen-Key topology

Sallen-Key topology is given in Fig. 1.42. Find the transfer function of the Sallen-Key topology using Kirchhoff's current law :

v i n Z 1 Z 2 v + Z 4 H 0 Z 3 v x v out
1. Give the link between v + and v out .

2. Apply the Kirchhoff's current law to the v x node.

3. Apply the Kirchhoff's current law to the v + node.

4. Use 1) and 3) to give an expression of v x as a function of v out .

5. Use 2) and 4) to give an expression of v out as a function of v i n .

6. Rearrange equation from 5) to obtain v out v i n transfer function as in the Lecture.

1. FILTERS 1.10. 5 T H ORDER BUTTERWORTH LOW-PASS FILTER

5 t h order Butterworth low-pass filter

1. Give the transfer function of a 5 t h order Butterworth low-pass filter by using polynomials table from Appendix A.

2. What is the number of filter stages required, and the order of each. Give Q and SF f c for each second order.

3. Suggest a circuit, using cascading and Sallen-Key topology. Give the expression of each cutoff frequency and quality factor as a function of R and C values.

4 t h order Chebyshev (3dB) low-pass filter

• Same question as before, to build a 4 t h order Chebyshev low-pass filter.

1.12 6 t h order Bessel high-pass filter

• Same question as before, to build a 6 t h order Bessel high-pass filter.

Filter synthesis from template 1.13.1 Low pass-filter synthesis

We search to build a low pass filter to satisfy the following specifications : 

R 0 = 10kΩ, ω c = 1 R 0 C 1 C 2 , H 0 = 1 and Q = C 1 C 2 2C 2
3. Give the circuit (and the capacitor values, SF and Q) of the filters Butterworth n=4 using Sallen-Key topology (for 2 nd order filters) given in figure 1.44.

v i n R 0 R 0 C 2 H 0 C 1 v out Figure 1.44: Sallen-Key 2 nd order low-pass filter. R1 = R2 = R0
This circuit is now used to filter a 500 Hz square signal before a 10 kHz digitizer. The filter is needed to avoid aliasing but shall not add distortions.

Removing harmonics frequencies

Saturations and distortions generate unwanted harmonics that we search to suppress by filtering.

1. Consider the distorted signal as a square one (at frequency f i n ) and the number 3 harmonic † as the main distortion. Suggest filter specifications (in the same manner as figure 1.43) to have the harmonic 3 60 dB smaller than fundamental signal.

2. What is the minimum order required for each type of filter (Butterworth, Chebyshev, Bessel, Legendre)?

3. Choose filter which require the smaller order and give circuit from Sallen-Key topology (

f 0 = f i n = 1k H z and R 0 = 10kΩ)

Lab work

1.14 Passive filter 5. Same questions with circuit connected as figure 1.47.

v i n C R v out v i n R C v out
6. Place a voltage follower between the two stages for figure 1.46 and 1.47 circuits (Aop are TL081 biased under ±12 V ). Comment. 

v i n R C C R v out v i n C R R C v out

Low pass-filter synthesis

We search to build a low pass filter to satisfy the following specifications : 2. We are now considering the phase response. To do this, measure the delay and the phase of the fundamental and the 4 t h first hamonics * of a 500 Hz square signal. Use a sine wave of 1 V amplitude for each frequencies. i Use 2 probes to measure the delay. A DC/DC converter is an electronic circuit which converts a Direct Current (DC) source from one voltage level to another. For example, 12 V to 5 V or 12 V to -48 V. Power for a DC/DC converter can come from any suitable DC sources, such as batteries, solar panels, rectifiers and DC generators.

• maximum amplitude |H | max = 0 d B • pass-band cut-off frequency f c = 5 k H z • maximum
DC/DC converter is a class of switched-mode power supply containing at least two semiconductor switches (a diode and a transistor) and at least one energy storage element, a capacitor, inductor, or both (see for instance the figure 2.3). Filters made of capacitor in combination with inductor reduce output voltage ripple. It is an efficient technique to provide DC voltage as compare to "linear power supplies" presented in figure 2 

P l ost = (V out -V i n )I l oad .
The current provides by the transistor compensates the load variations, resulting in a constant output voltage (c st -or in fact following the reference voltage V Z ). A voltage reference as provide here by the zener diode is also needed. Regulator circuits as the well known TL7805 provide all need devices to do linear regulation in the same package (See Appendix).

Advantages/Disadvantages

Pros : DC/DC converters offer three main advantages compared to linear regulators :

1. Efficiency : Switching power supplies offer higher efficiency than traditional linear power supplies. Unlike a linear power supply, the pass transistor of a switching-mode supply, continually switches between low-dissipation, full-on and full-off * , states † , and spends very little time in transitions to minimize wasted energy. Ideally, a switched mode power supply dissipates no power. This higher efficiency is an important advantage of a switched mode power supply.

2. Size : Switched mode power supplies may also be substantially smaller and lighter than a linear supply due to the smaller transformer * size and weight; and due to the less thermal management required because less energy is lost in the transfer.

3. Output voltages can be greater than the input or negative : DC/DC converter can transform input voltage to output voltages that can be greater than the input (boost), negative (inverter), or can even be transferred through a transformer to provide electrical isolation with respect to the input. By contrast linear regulator can only generate a lower voltage value than input DC one.

Cons :

However, DC/DC converter are more complicated ; their switching currents can cause electrical noise and interference problems if not carefully suppressed † . Linear regulators provide lower noise ; their simplicity can sometimes offer a less expensive solution. Even if the most of low noise electronic circuits can tolerate some of the less-noisy DC/DC converters ; some sensitive analog circuits require a power supply with so little noise that it can only be provided by a linear regulator.

Applications

DC/DC converter is used in many domestic products to supply whatever voltages are needed in personal computers, mobile phone chargers, as well as in embedded instrument powered by battery and/or solar generator. This is typically used for DC distribution in satellite (see Fig. 2.2). Indeed, aerospace industry requires small, lightweight, and efficient power converters. 

DC/DC converters

We will discuss 4 different common topologies of DC/DC converter:

1. step-down voltage converter ⇒ buck converter.

step-up voltage converter

⇒ boost converter. 

Buck converters

Buck converter is a step-down DC/DC converter. It is composed of an inductor L and two switches (usually a transistor and a diode) that control the inductor charge and discharge (see figure 2.3). Indeed, switches alternate between connecting the inductor to source voltage (store energy in the inductor * ) and discharging the inductor into the load. It is useful to consider that components are perfect (Fig. 2.4) to simplify the analysis. So the switch and the diode have zero voltage drop when they conduct (i.e. ON) and zero current flow when they block (i.e. OFF). Moreover, the inductor L has zero series resistance. Further, it is assumed that the input and output voltages do not change over a switching cycle † . 

Load V i n T L C V out
V i n I on T L C V out D Load V i n T L I o f f C V out D Load

Continuous operation ≡ I L = 0 ∀t

We consider that the current through the inductor L never falls to zero (continuous mode) during the commutation cycle; this imply minimum switching frequency and capacitor value.

Charge phase T ON : When the transistor conducts (diode is reverse biased), because the inductor current not evolves quickly, the voltage across the inductor V L = V i n -V out is considered as a constant voltage to a first approximation. So the current through the inductor I L rises linearly with time following expression 2.1 with a V L L slope ‡ .

dI L = 1 L t =T ON V L dt (2.1)
During the charge phase T ON , I L increases by the value ∆I L ON following expression 2.2.

∆I L ON = V i n -V out L T ON (2.2)
* An inductor is a reactor, it reacts to current changes. A current flowing through it leads to a magnetic field in the coil which is equivalent to energy store. If the current changes, the stored magnetic flux opposed a voltage accross the inductor : v = Ld i /d t .

† this would imply the output capacitance C being large enough and the switching frequency fast enough too ‡ We consider here the current charge of the inductor. The capacitor is assumed charge at a constant voltage.

2.2. DC/DC CONVERTERS 2. DC/DC CONVERTERS Discharge phase T OF F : When the transistor is no longer biased (i.e. OFF), diode is forward biased and conducts. The voltage across the inductor becomes equal to -V out * and I L flows to the load through the diode. I L decreases by the value ∆I L OF F given by expression 2.3 due to the linear discharge of the inductor.

∆I L OF F = -V out L T OF F (2.3)
Entire switching cycle : In a steady-state operation condition, I L at t = 0 is equal to I L at t = T = T ON + T OF F . So the increase of I L during T ON is equal † to the decreasing during T OF F .

∆I L ON + ∆I L OF F = 0 (2.4)
We can then establish the relationship 2.5 which allows to obtain the conversion factor between V i n and V out as a function of the duty cycle D = T ON T . It appears that V out varies linearly with the duty cycle for a given V i n .

(V i n -V out ) L T ON - V out L T OF F = 0 ----------→ D= T ON T ON +T OF F V out = DV i n (2.5)
Because the duty cycle D is equal to the ratio between T ON and the period T, it cannot be more than 1. Therefore, V out ≤ V i n . This is why this converter is named a step-down converter.

Figure 2.5 shows the evolution of voltage and current of an ideal buck converter during charge and discharge phases.

D reversed biased D forward biased -V out V out 0 t V D , V L and V out V i n DV i n -DV i n V i n -V out 0 t I L ∆I L Transistor state ON OFF ON 0 T ON T Figure 2.5:
Voltages and current as a function of time for an ideal buck converter operating in continuous mode i.e. I L never falls to zero.. When the transistor conduct (i.e. ON), the current flows through the inductor and energy is stored in it.

Boost converters

When the transistor block the current (i.e. OFF), the energy stored in the inductor L is returned holding the current through it. To do this, the inductor L voltage polarity changes such that it is added to the input voltage. Thus, the voltage across the inductor and the input voltage are in series and they charge together the output capacitor to a voltage higher than the input voltage.

Figure 2.7 shows the evolution of voltage and current of an ideal boost converter during charge and discharge phases. As for buck converter we consider the current through the inductor I L during the "ON" and "OFF" states :

D reversed biased D forward biased 0 t V D , V L and V out V i n V i n /(1 -D) V i n -V out -V out 0 t I L ∆I L Transistor state ON OFF ON 0 T ON T
∆I L ON = 1 L t =T ON V i n dt = V i n L T ON ∆I L OF F = 1 L t =T OF F (V i n -V out )dt = V i n -V out L T OF F (2.6)
Over the all switching cycle, the equation 2.4 is again true. so : 

∆I L ON = -∆I L OF F ⇒ V i n L T ON = V out -V i n L T OF F ⇒ V out = V i n T ON + T OF F T OF F (2.7)
As for buck converter, conversion factor of a boost converter could be expressed as a function of the duty cycle D = T ON /(T ON + T OF F ) and is given in equation 2.8.

V out = 1 1 -D V i n (2.8)

Buck-boost inverting converters

A Buck-boost converter is a DC/DC converter that has an output voltage magnitude that is either greater than * or smaller than the input voltage magnitude. The Buck-boost converter presented in figure 2.8 is also called inverting converter because its output voltage is of the opposite polarity as the input.

V i n T C V out ∝ -V i n L Load Figure 2
.8: Buck-boost inverting topology of DC/DC converter. V out is of the opposite polarity as V i n .

When the transistor conduct (i.e. ON), the input voltage source is directly connected to the inductor. This results in accumulating energy in L. In this step, this is the capacitor C which supplies energy to the output load.

When the transistor blocks (i.e. OFF), the inductor is connected to the capacitor, so energy is transferred from L to C and therefore also to the output load.

Figure 2.9 shows the evolution of voltage and current of an ideal buck-boost converter during charge and discharge phases.

D reversed biased D forward biased V out 0 t V D , V L and V out V i n -V out -V i n D/(1 -D) V i n 0 t I L ∆I L Transistor state ON OFF ON 0 T ON T Figure 2
.9: Voltages and current as a function of time for an ideal buck converter operating in continuous mode i.e. I L never falls to zero..

DC/DC CONVERTERS

DC/DC CONVERTERS

Again, we consider the current I L during the "ON" and "OFF" states as expressed in equation 2.9.

∆I L ON = 1 L t =T ON V i n dt = V i n L T ON ∆I L OF F = 1 L t =T OF F V out dt = V out L T OF F
(2.9)

Assuming a continuous mode over the all switching cycle, we consider the increase of I L during T ON equal to the decreasing during T OF F leading to equalities 2.10 for the buck-boost converter.

∆I L ON = -∆I L OF F ⇒ - V i n L T ON = V out L T OF F ⇒ V out = -V i n T ON T OF F (2.10)
Conversion factor of the buck-boost converter is finally given by the equation 2.11 as a function of the duty cycle D.

V out = - D 1 -D V i n (2.11)
Compared to the buck and boost converters * , buck-boost converter has an output voltage opposite in signe and which can vary continuously from 0 to ∞.

Flyback converters

The flyback converter is used when it is needed to have a galvanic isolation between the input and the outputs. The flyback converter is a buck-boost converter with the inductor split to form a transformer, so that the conversion factor is multiplied by the transformer ratio (n 2 /n 1 ). Moreover, transformer provides an additional advantage : the galvanic isolation (no DC connections) between output and input voltage which allows to referred the output voltage to a desired common mode and sign.

The schematic of a flyback converter can be seen in figure 2.10. It is equivalent to that of a buckboost converter but with a transformer instead of inductor. Therefore the operating principle of both converters is very similar :

When the transistor conducts, the primary of the transformer is directly connected to the input voltage source. The primary current and magnetic flux in the transformer increase, storing energy in the transformer. The voltage induced in the secondary winding is negative, so the diode is reverse-biased (i.e. blocked). The output capacitor supplies energy to the output load.

When the transistor is blocked, the primary current and magnetic flux drops. The secondary voltage is positive, forward-biasing the diode, allowing current to flow from the transformer. The energy from the transformer core recharges the capacitor and supplies the load. Conversion factor is given by equation 2.12 as a function of the duty cycle D.

V i n T n 1 :n 2 C V out Load
V out = n 2 n 1 D 1 -D V i n (2.12) 2.3. CONTROL
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A DC/DC converter using a transformer as the flyback converter is unavoidable if there is a large difference of voltage between V i n and V out . Indeed, using buck, boost or buck-boost converter, an output voltage value 100 times smaller (or larger) than the input, require a duty cycle of the order of 0.01 or 0.99 which is not easy to realized (considering that rise and fall time are not 0).

Numerical application :

V i n = 300V,V out = 5V : a buck converter require a 0.017 duty cycle (!) while with a flyback converter it is possible to stay with a duty cycle close to 50 % by choosing a transformer with a ratio n 2 n 1 = V out V i n ≈ 0.017.

Disadvantage: A transformer, heavy and lossy, is needed.

Control

A voltage regulator is designed to automatically maintain a constant output voltage level even if V i n changes. It require negative feedback control loops.

We have see that changing the duty cycle of the switching (i.e. Transistor ON/OFF) controls the steady-state output with respect to the input voltage. Then, act on the duty cycle of the transistor driver allows to regulate the output voltage around a constant voltage * even if V i n , loads or other parameters change.

Feedback regulation

Feedback principle consist in subtracting † from the "input signal" a fraction of the output one. However, in the case of a DC/DC converter, the "input signal" is more the duty cycle D than V i n (Fig. 2.11). 

Voltage regulation

To do a voltage regulation with a DC/DC converter, a sample of the output voltage is compared to a reference voltage ‡ to establish a small error signal V er r . This error signal is used to modulate the duty cycle D (D ∝ 1/V er r ) of the transistor driver (Fig. 2.21). This modulation of the duty cycle is simply obtained by comparing the error signal with a triangle signal (Fig. 2.13). Duty cycle modulation is also called Pulse Width Modulation (PWM) because if the duty cycle changes, the pulse width also changes.

Regulation is finally obtained because feedback changes the duty cycle from V out then moves the V out to reduce the error signal to zero, thus completing the control loop. The higher the error voltage, the longer the transistor conducts § . V er r is derived in the feedback system from the error amplifier that amplifies the difference between the output voltage and the reference voltage :

if V out V er r D PW M D T V out (2.13)
This type of voltage regulation of a DC/DC converter is classified as a voltage-mode controller ¶ because the feedback regulates the output voltage. So, if the loop gain is 1, the output impedance of the * by using a proper filtering with a large capacitor. † Only negative feedback is considered here, because stable operation is required. Moreover, a frequency compensation is needed.

‡ The reference voltage could be obtained by using a zener diode D z biased by the V i n through a resistor R. § considering that the output voltage value is lower than what we want. ¶ Another type of control is current-mode control. This method regulates the output current and, with infinite loop gain, the output is a high-impedance source.
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V i n T L C V out - + V er r V r e f Load PWM D z R V i n

Tutorial

DC/DC converter and duty cycle

A solar panel provides to a satellite a 12V DC power supply refereed to the ground. 

Triangle wave oscillator for PWM

A square signal with a variable duty cycle is required to address transistor of a DC/DC converter. The simplified circuit of a Pulse Width Modulation (PWM) is given in figure 2.14.

- + V r e f V o PW M V r e f V o PW M t Figure 2.14: Simplified circuit of a Pulse Width Modulation (PWM).
Modulation of the duty cycle is obtain by comparing the V r e f reference voltage to a triangle signal. Consider the triangle oscillator given in figure 2.15 with operational amplifiers biased under ±V bi as . Due to the positive feedback of the Schmitt trigger: V + = V -and V out = V ot = + or -V bi as only.

- + R 2 R 1 - + C R V o t V o i
1. Assuming that saturation voltage of operational amplifier = V bi as , give a graphic representation (hysteresis curve with arrows) of V o t as a function of V o i of the Schmitt trigger alone (Fig. 2.16).

2. Give the wave-form of V o t and V o i of the triangle oscillator (Fig. 2.15) as a function of time.

3. Determine the oscillation frequency f 0 .

4. Show that f 0 is independent * to the bias while amplitude of the triangle varies with V bi as .

- 

+ R 2 R 1 V o i V o t

Preparation of the practical work 2.6.1 Triangle wave oscillator under a single V CC power supply

To bias the circuit of the figure 2.15 under a single V CC = +20V power supply, previous triangle oscillator is modified as figure 2.17 shows.

-

+ LM311 V CC R 0 R Z 1 V CC D Z 1 R 2 R 1 - + V CC C TL081 R D Z 2 R Z 2 V CC V o t V o i Figure 2
.17: Triangle wave generator biased under a single V CC power supply.

A dedicated comparator LM311 † is used instead of operational amplifier for the Schmitt trigger. Intermediate 5 V and 10 V voltage references are obtained by using Zener diodes (respectively D Z 1 and D Z 2 ). R 0 = 1kΩ. 1. Give the value of R Z 1 and R Z 2 of the two 5V and 10V Zener diodes to limit current at 10 mA in this two diodes.

2. Determine the value of R, C, R 1 and R 2 to have a 20 kHz oscillation frequency with a triangle amplitude of 5V pp . Current is limited to about 500 µA in R and R 2 .

3. Check that the slew rate of the TL081 operational amplifier is compatible with the triangle wave slope.

* independent common-mode frequency † The LM311 has an open collector → D Z 2 fix the maximum output voltage.

Comparator

Circuit of the comparator using the triangle signal (V o i ) is given in figure 2.18. A voltage divider bridge is proposed to test the operation of the comparator and of the PWM.

- 1. Give the value of R 3 and R 4 to have V pot which allows to describe the overall amplitude of the V o i signal, at the output of the potentiometer (at the slider).

+ LM311 V CC R 3 10kΩ R 4 V CC V o PW M (open collector) 1kΩ V o i 1kΩ V pot Pul lUp V CC
2. Give the link between the duty cycle of V o PW M and the slider voltage value V pot .

Switching transistor

Pulse Width Modulation signal is applied to a PNP transistor BDX54 as shown in figure 2.19.

LM311 V o PW M 500Ω PW M R b V CC V D BDX54 V CC buck converter L V out D C
Figure 2.19: Switch transistor for buck converter. V D is connected to the cathode of the diode of the buck converter.

1. Explain the operation of the transistor BDX54 if PWM signal is V CC and ground.

Consider the necessity of the R b resistor. Indeed, switching circuit can not operate well without this resistor because LM311 are "open" collector output (Emitter is connected to the ground ; see datasheet) which not fix by itself the output voltage * . Without R b , transistor conducts well (saturation region) for a 0V LM311 output, but does not block for a high impedance LM311 output (or only after a long time thanks to leakages). So, R b is crucial to avoid a permanent transistor saturation and for a good operation of the transistor on switching-mode with good control of the duty-cycle value. R b value is then chosen to be the smallest to allow a fast transition between saturation and cut-off mode of the transistor (see datasheet of the transistor BDX54).

* Low LM311 output voltage = 0V , but high "output level" correspond only to a high impedance state which not set the voltage value.

PREPARATION OF THE PRACTICAL WORK

2. DC/DC CONVERTERS 2. Give the minimum value of R b which still allows the transistor saturation.

DC/DC buck converter

Circuit of the DC/DC buck converter without control is given in figure 2.20.

V CC T PW M L I L C V out R LO AD I out V D Figure 2
.20: DC/DC Buck converter using the PWM as a driver of the transistor.

L = 1 mH and C = 1000 µF 1. Give a graphic representation of I L , V D , V out and V L = V D -V out in the continues case (i.e. I L is never null).

2. Give the expression of the average value of the output voltage V out as a function of V CC and the duty cycle D.

3. Deduce the expression of V out as a function of V CC and ∆V pot for a V pot which go from 2.5 V to 7.5 V. - 3. Give the transfer function

Voltage regulation

+ LM311 V CC 500Ω PW M R b V CC 1kΩ V o i 1kΩ V pot BDX54 V CC L I L C V out R LO AD I out V D V out R 5 R 6
V out V o i
if the loop is closed ?

4. Show that a proportional (P * ) control could increase static performances.

What is the drawback of this correction on the loop stability ?

An operational amplifier LM158, could be used to realized both comparator and proportional controller (Fig. 2.23).

- 7. What is the new performances of the system ? Is it stable ? 8. What kind of control (P, PI, PD) allows to increase static performance without instability ?

+ LM158 V CC V pot V out V D Z 1
We finally prefer the use of a PI control given in figure 2.25. 9. Give the small signal transfer function 2. Check that V pot give well a voltage from 2.5 V to 7.5 V. Give the V pot extreme values obtained.

V pot V out with V D Z 1 = DC .
3. Connect the triangle signal to the non-inverting input of the comparator, and V pot to the inverting one. Look the PWM signal and check that the duty-cycle D evolves well with V pot . Measure the V pot corresponding to D=0 and D=1.

Transistor driver

Connect the PWM signal to the base of the Darlington PNP transistor BDX54 (Fig. 2.27) loaded by a 30 Ω resistor. Be careful to this load resistance ; it can be VERY hot 2. What is the duty-cycle obtained with and without R b .

- + LM311 V CC 2 × 1.5kΩ ∥ PW M V CC 1.2kΩ 1.2kΩ BDX54 V CC 30Ω 22W V pot

Waveform signals in a buck converter

Build the DC/DC Buck step-down converter as figure 2.28 with L = 1 mH, C = 1000 µF and R LO AD = 30 Ω.

Set the potentiometer to have V out = 10V .

- 2. Compare ∆I L with V out L T OF F .

+ LM311 V CC PW M V CC 1.2kΩ 1.2kΩ BDX54 V CC V pot 1mH 1mF V out 30Ω 1N4002

Voltage regulation

We are now interested in the open loop

V out
V pot of a control feedback (Fig. 2.29). Choose R 5 = R 6 large as compared to R LO AD . Apply an offset (DC voltage ≈ 5V ) in addition to an input 1V sine wave instead of V pot so as to have V out = 10 V.

1. Measure the V out ripple amplitude as a function of the frequency. Give the transfer function V out /V pot . Compare with tutorial.

- 2. Use the control given in figure 2.30 to close the control loop. Slightly change the V CC voltage value around 20 V to check that the output voltage is well regulated at 10 V whatever V CC . . T HE Phase Locked Loop (PLL) plays an important role in modern electronic and particularly for space communications. Indeed, PLL is a crucial part of modulator, demodulator or synchronization systems. As example of space application (Fig. 3.1), PLL is particularly essential to estimate the instantaneous phase of a received signal, such as carrier tracking from Global Positioning System (GPS) satellites. PLL circuits can also be used to distribute clock signal, or set up as frequency multipliers or dividers for frequency synthesis.

+ LM311 V CC PW M V CC 1.2kΩ 1.2kΩ BDX54 V CC V pot 1mH 1mF V out 30Ω 1N4002 V out 3.3kΩ 3.3kΩ
- + LM158 V CC V pot 150nF 10kΩ 10kΩ V D Z 1 - + LM158 V out

Description

PLL is a feedback electronic circuit (control system) as shown in figure 3.2. It includs an oscillator which is constantly adjusted in order to match the instantaneous phase (therefore the frequency) of the PLL input signal. The oscillator is a Voltage Controlled Oscillator (VCO) ‡ whose frequency varies with an "error" signal ≈ V V CO . This "quasi-DC" voltage come from a phase detector (φ comp.). It is proportional to the phase difference between the input signal which varies in frequency as f i n (t ) and * Frequency selective fading : Radio signal arrives at the receiver by two different paths. † Doppler shift : Shift in frequency for a receiver moving relative to the emitter ‡ A VCO is an electronic oscillator (output) designed to be controlled in oscillation frequency by a voltage input. The frequency of oscillation is varied by the applied DC voltage.

VCO output frequency f out (t ). Frequency noises (jitter * ) are suppressed after phase comparison, by adding a filter before the VCO. Thus, PLL recovers, at the output, the original signal from a noisy version of the received signal. Phase comparison can also be made after a division of the VCO frequency, which allows to have a PLL output signal with a larger frequency. This technique is used for frequency synthesis.

f i n (t ) φ comp.
A Phase Locked Loop is thus mainly composed by two key ingredients :

• Phase detector/comparator more or less associated to a filter

• Voltage Controlled Oscillator (VCO)

Phase detector/comparator

One key element of the PLL, is the phase comparator. A phase comparator is a frequency mixer, analog multiplier or logic circuit that generates a voltage signal whose mean value is proportional to the difference in phase between two input signals.

Analog phase detector

Mixing (or product) of two sine waves at similar frequencies as f i n and f out gives, in frequency domain, a signal at the sum and at the difference of the two input signal frequencies † . The high frequency at f i n + f out is removed by filtering ‡ . The low frequency (static if f i n = f out ) could be expressed as a function of phase difference ∆φ (equation 3.1).

sin 2π f i n t + φ i n × sin 2π f out t + φ out ∝ cos ∆φ static -cos 2π( f i n + f out )t + φ i n + φ out filtered signal (3.1)
So multiplication allows to detect phase difference between two sine waves. This is why phase comparator is currently represented by the symbol as in figure 3.2.

A circuit diagram of an analog multiplier (mixer) is given in figure 3.3. This is a simple analog circuit playing the role of phase detector § using a "diode ring" and transformers having middle point of the secondary winding.

Digital phase detector

Phase locked loop device as the popular CD4046 integrated circuit (see Datasheet in Appendix J) includes two kind of digital phase comparators : • Type II phase comparator is sensitive only to the relative timing of the edges of the inputs. In steady state (both signals are at the same frequency), it produces a constant output voltage proportional to the phase difference. This output will tend not to produce ripple in the control voltage of the VCO.

Type I phase detector : XOR The simplest phase comparator is the eXclusive OR (XOR) gate. A XOR gate is a digital logic gate which compute the binary addition * which is symbolized by . XOR truth table is shown in figure 3.1.

A B A ⊕ B 0 0 0 0 1 1 1 0 1 1 1 0 Table 3.1: XOR truth table.
Type I comparator will be appropriate for square waves (v 1 and v 2 in figure 3.4) but could also be used with sine wave inputs. Its operation is highly dependent on the duty cycle of the input signals and is not really usable for duty cycle too different from 1 2 . The phase difference between v 1 and v 2 could be expressed as a function of the pulse width ∆t and the frequency f as expression 3.2.

v 1 (t ) v 2 (t ) v out (t ) v 1 (t ) v 2 (t ) v out (t ) T ∆t T /2 0V V d d
∆φ = 2π ∆t T = 2π f ∆t (3.2)
For a duty cycle = 1 2 , XOR provides pulse train with twice the frequency of v 1 and v 2 . This periodic square wave signal v out has a duty cycle (D v out = ∆t T /2 = 2 f ∆t ) given by expression 3.3, function of input phase difference ∆φ.
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D v out = ∆φ π (3.3)
Then, the output of the XOR gate can be expressed as a static value V out and harmonics ( 2 T frequency at least) as a Fourier series : see the equation 3.4 with v n and φ n the amplitude and the phase of the n t h harmonic at the frequency 2n T .

v out = V out st at i c + n→∞ n=1 v n sin 2π 2n T t -φ n har moni c s (filtered) (3.4)
This pulse train is averaged * before the VCO to keep only the static signal.

The averaging value of the XOR output could be linked to the pulse width as expressed on 3.5.

V out = D v out V d d = 2∆t T V d d (3.5)
Finally, we could obtain the information about the phase difference ∆φ from the XOR output averaging value using the expression 3.6. This expression allows to show the phase comparator gain K p .

V out = ∆φ π V d d = K p ∆φ (3.6)
The characteristics of an XOR phase comparator is represented in figure 3.5. It is periodic in ∆φ with period of 2π. The range 0 ≤ ∆φ ≤ π is the range where the PLL can operate in the locked condition (linear regime). 0 The transfer function of this phase comparator on this linear part is given by expression 3.7. K p is called the gain of the phase detector.

V out ∆φ π 2π π 2 V d d 2 V d d K p
V out ∆φ = K p = V d d π 0≤∆φ≤π [V/Rad] (3.7)
When PLL is in lock condition with this type of comparator, the steady-state phase difference at the inputs is usually near π 2 (depend on the VCO) -often in the middle of the phase comparator (linear regime).

So, this kind of phase comparator generates always an output "digital" signal in the PLL loop. Therefore, despite low-pass filter, it always remain residual ripples, and consequent periodic phase variations at two times the frequency signals. Type II phase detector : charge pump A scheme of a type II phase comparator is given in figure 3. [START_REF]FILTERS M1 Space & Applications -ST 11[END_REF].

By contrast to the type I comparator, the type II phase detector generates output pulses only when there is a phase error between the input and the VCO signal and follow the characteristic illustrated on figure 3 So, the output pulses disappear entirely when the two signals are in lock † . This means that there is no ripple in the output as compared to type I phase detector.

Voltage Control Oscillator -VCO

The other key ingredient of the PLL, is the VCO. It exist two different types of controlled oscillators :

• Resonant/Harmonic oscillators ( 50 MHz)

• Relaxation oscillators ( 50 MHz) For microwave applications, resonant oscillators implemented with devices as LC tank circuit is used. C value is adjusted (tuning) thanks to a varactor diode.

However, we will concentrate on non-microwave applications, and thus on the relaxation oscillators more easily implementable on integrated circuit (similar to the triangle oscillator of the DC/DC part). This is typically the VCO that we can find in the CD4046 PLL integrated circuit (see data sheet). V V CO
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controls the charging and discharging currents through an external * capacitor C , and therefore determines the time needed to charge and discharge the capacitor to a pre-determined threshold level. As a result, the frequency f V CO changes as a function of V V CO .

If V V CO evolves, a linear VCO transfer function can be expressed as equation 3.8.

f max -f mi n V max -V mi n = K 0 [Hz/V] = d f V CO dV V CO = f V CO V d d /2 if no "offset" ie f mi n = 0 and V mi n = 0 (3.8)
In practice V max is limited by V DD and V mi n by 0V (or V SS ). Assuming a linear response as in figure 3.8, f max and f mi n are adjusted and therefore fix the gain K 0 . 0

V V CO 0 f V CO f mi n f max f 0 1 K 0 V d d V d d 2 Figure 3.8: VCO characteristic : V V CO as a function of f V CO .
The VCO transfer function can also be expressed using the angular frequency ω V CO as eq. 3.9.

ω V CO V V CO = 2πK 0 = K v [Rad/(V.s)] (3.9)
The VCO gain is usually expressed as a radian frequency per voltage; so its units are rad/(V.s) even if the "rad" is often omitted.

However, for a PLL, this is the phase instead of the frequency which is interesting. It is then more useful to express the phase output of the VCO :

ω V CO (t )dt = φ V CO (t ) → ω V CO (s) s = φ V CO (s) (3.10) 
Then the transfer function between the phase and the input voltage of the VCO is finally given by expression 3.11

φ V CO (s) V V CO (s) = K v s [Rad /V ] (3.11)

Frequency range

Operating frequency range of a PLL is graphically represented in figure 3.9. Two main frequency ranges appear :

• Lock range • Capture range * not implemented on the CD4046 to allow tuning of the f V CO 0 center frequency.

f i n f 0 f 0 -∆ f C f 0 -∆ f L ≈ f mi n f 0 + ∆ f C f 0 + ∆ f L ≈ f max Lock range / hold range Pull-in Pull-in
Operating range

Capture range

Dynamically unstable Unconditionally unstable Conditionally stable Figure 3.9: Scope of the 2 main frequency ranges of a PLL : Lock (or Hold) range and Capture range (more or less defines because of "pull-in" effect). f 0 correspond to the VCO center frequency.

Lock range 2∆ f L

The Lock range (also called Hold range) is the frequency range in which a PLL is able to stay locked. It correspond to a "static stable frequency range"; this means that the PLL remains locked if the input signal is a fixed frequency signal comprised in this range.

The Lock range is mainly defined by the VCO range. Figure 3.5 shows that when the phase comparator is used on a PLL, the phase difference ∆φ need to be small enough to stay on a linear regime. So, VCO is used to operate around a center frequency

f V CO 0 = f 0 and around V V CO 0 = V d d 2
* as it is represented in figure 3.8. Thus, ∆φ max = π around this operating point (eq. 3.12 and Fig. 3

.5). 0 ≤ ∆φ ≤ π (3.12)
Knowing that ∆φ must be included in [0; π] range, we can expressed the maximum range in frequency at the output of the VCO as equation 3.13 (from Fig. 3.8 → f maxf mi n = K 0 V d d and Fig. 3

.5 → V d d = πK p ). f max -f mi n Lock range = πK 0 K p = K v K p 2 (3.13)
From this expression, lock range 2∆ f L = f maxf mi n is defined as equation 3.14.

2∆ f L = K v K p 2 (3.14) 
If f i n exceeds f max (or if f i n becomes smaller than f mi n ), the PLL fails to keep f V CO = f i n , and the PLL becomes unlocked. When the PLL is unlocked, the VCO generally oscillates at the frequency f 0 (the "free-running" of the VCO). The lock can be established again if the incoming signal frequency f i n gets close enough to f 0 i.e. as close as the Capture range.

The VCO output frequency f V CO can be plotted (Fig. 3.10) as a function of the input PLL frequency

f i n .
This characteristic simply shows that f V CO = f i n in the locked condition, and that f V CO = f 0 when the PLL is unlocked. A hysteresis is observed if the Lock range is larger than the Capture range.

Capture range 2∆ f C

The capture range is the frequency range where the PLL is able to "quickly" lock-in, starting from unlocked condition. Indeed, in most practical applications, it is desirable that the locked state is obtained within a short time period. So, the capture range point out that the PLL can become locked within "one single-beat". This is called a lock-in process. Beyond this frequency range, a pull-in process also allows the PLL to lock, but slowly. There is obviously a blurred boundary (Fig. 3.9) between Capture range and pull-in range, but we can notice that: • Lock-in process is much faster than pull-in process

3.4. FREQUENCY RESPONSE 3. PHASE LOCKED LOOP Free-running f i n f 0 f 0 -∆ f C f 0 -∆ f L f 0 + ∆ f C f 0 + ∆ f L Capture range Lock range Pull-in f V CO f 0 f max f 0 + ∆ f C f 0 -∆ f C f mi n
• Capture range is smaller than pull-in range Capture range refers to the dynamic behavior of the PLL loop. So 2∆ f C depends on the loop bandwidth. In the case of a single pole filter and a Q < 1, the Capture range is simply equal to the Lock range:

2∆ f C = 2∆ f L .
Capture range is not necessarily centered on f 0 .

Frequency response

For a small phase difference (sin φ ≈ φ) between PLL input signal and VCO output, PLL can be accurately described by a linear model expressed as regard to the phase instead of frequency. Block diagram of this linear model is given in figure 3.11. K v s is the gain of the VCO (small signal analysis) expressed as equation 3.11 as regard to the phase. The loop filter plays a crucial role in the frequency response of the PLL. Its transfer function is called H f i l t er (s), or more simply H (s). The PLL response can be written as 3.15.

φ i n φ comp. H filter (s) K v s φ out feedback V V CO (s) - +
φ out φ i n = forward gain 1 + loop gain = K p K v s H (s) 1 + K p K v s H (s) (3.15) M1 Space & Applications -ST 11.7 2021-2022
The transfer function H (s) of the filter averages the output of the phase comparator and suppresses noise of the input signal.

One pole loop filter

For a simple first order RC filter (Fig. 3.12), the H(s) transfer function is given by expression 3.16

V i n R V out C Figure 3
.12: One pole filter used as PLL loop filter.

H (s) = V out V i n = 1 1 + RC s (3.16)
Using this one pole filter, the PLL response is expressed as 3.17.

φ out φ i n = 1 1 + 1 K p K v s + RC K p K v s 2 (3.17) 
Denominator could be rewritten as expression 3.18 to show the natural angular frequency ω n = 2π f n and the quality factor Q (damping factor ζ = 1 2Q ) of the PLL response.

1 + 1 Q s ω n + s 2 ω 2 n ω n = K p K v RC Q = K p K v RC (3.18)
The natural frequency of the PLL gives information about the response time of the locked system. Moreover, the quality factor inform us to overshoot and ringing. Ideally, the natural frequency should be high and the quality factor should be near unity (critical damping). But, with a single pole filter, it is not possible to control the loop frequency and quality factor independently.

Assuming a critical damping (Q = 0.5 i.e. ζ = 1) for stable PLL operation :

RC = 1 4K p K v → ω n = 2K p K v .
In other words, the ability of the PLL to filter the input "frequency noise" is limited by the stable condition of the loop.

One pole -one zero loop filter (like PID)

A One pole -one zero filter allows to adjust independently the bandwidth of the PLL response and the damping factor. It is composed of two resistors and one capacitor (Fig. 3.13). The transfer function of this filter is given in expression 3.19 and plot in figure 3.14. It is characterized by two time constants : τ 1 and τ 2 . 

V i n R 1 V out R 2 C
H (s) = V out V i n = 1 + τ 2 s 1 + τ 1 s τ 1 = (R 1 + R 2 )C τ 2 = R 2 C (3.19)
Using this one pole -one zero filter, the PLL response is now expressed as 3.20.

φ out φ i n = K p K v s 1+τ 2 s 1+τ 1 s 1 + K p K v s 1+τ 2 s 1+τ 1 s = 1 1 + s K p K v 1+τ 1 s 1+τ 2 s = 1 + τ 2 s 1 + 1+K p K v τ 2 K p K v s + τ 1 K p K v s 2 (3.20)
Denominator could be rewrite as expression 3.21.

1 + 1 Q s ω n + s 2 ω 2 n ω n = K p K v τ 1 Q -1 = 1 ω n τ 1 + ω n τ 2 (3.21)
The loop filter time constantes (equation 3.22) can now be calculated independently for a given natural frequency f n and damping factor ζ.

   τ 1 = K p K v ω 2 n τ 2 = 1 Qω n -1 K p K v (3.22)

Tutorial

Frequency Shift Keying (FSK) demodulation

We will studie the use of a PLL in the case of FSK demodulation. Frequency-shift keying is used for data transfer in space communications. It is a frequency modulation scheme in which digital information is transmitted through two different frequencies : mark frequency the "1" (binary ones) and space frequency the "0" (binary zeros). The time domain of a FSK modulation is illustrated in the figures 3.15.

Digital information

≡ 300 bauds "1" "0" "1" "0" "0"

t F SK T = 1 150H z f mar k f space f mar k f space f space 0 t 1 t 2 t 3 t 4 t 5
Figure 3.15: Digital information FSK modulated.

Specification of the FSK modulation studied in this tutorial

• f mar k = 2200 Hz ≡ "1"

• f space = 2000 Hz ≡ "0"

• bit rate = 300 bit/s * demodulation To do the FSK demodulation, a specific voltage value is associated to each frequency in order to recovery bit digital data. This is performed by using a PLL (Fig. 3.16) characterized by following specifications :

* In telecommunications the symbol-rate is also named baud [Bd]; for binary code 1 Bd = 1 bit/s. In the case of the figure 3.15, the bit rate is equal to 1

t 1 = 1 t 2 -t 1 = 1 t 3 -t 2 . . . • PLL continuously locked • Capture range * ∆2 f C ≥ 2( f mar k -f space )
• feedback slightly underdamped : ζ = 0.5 † F SK mod ul at i on φ comp.

Low-pass filter

F SK d emod ul at i on • Give the shape of the V V CO of the figure 3.16 for a F SK mod ul at i on signal folowing the FSK signal of the Figure 3.15.

V CO OU T VCO V V CO

VCO setting

VCO of the PLL must provides at its output a square signal whose frequency varies between f mi n = 1900 Hz and f max = 2300 Hz in order to be sure to cover mark and space frequencies. See data sheet to understand the operation of the CD4046 and to determine R 1 , R 2 and C 1 to obtained a VCO frequency which can go from 1900 Hz to 2300 Hz (

f max -f mi n = 2∆ f L = 400H z).
The circuit of the CD4046 used as a VCO is given in figure 3.17.

Use the data sheet of the CD4046 to choose R 1 , R 2 and C 1 :

1. Knowing f max and f mi n , what is the ratio R 2 R 1 ? Give the value of R 1 for R 2 = 10kΩ.

2. Knowing Vdd = 10V (+5V --5V), f mi n =1900 Hz and R 2 = 10kΩ, give the C 1 value.

How can we adjust the central frequency ?

4. What happens if we decrease R 1 ?

CD4046 1 2 3 4 V CO out 5 -5 V 6 C 1 7 8 -5 V 16 + 5 V 15 14 13 12 R 2 11 R 1 -5 V 10 9 V CO i n Figure 3
.17: CD4046 used as a VCO.

Loop filter and PLL response

We will first use the XOR phase comparator (type I) of the CD4046 associated to a one pole filter (Fig.

3.18).

* Capture range : frequency range where the PLL is able to lock-in, starting from unlocked condition. † ζ is the damping factor of the locked PLL response.

3. PHASE LOCKED LOOP 3.6. PLL AS A FREQUENCY MULTIPLIER 1. Give the value of the product of phase detector gain K p [V/Rad] and the VCO gain K v [Rad/V.s] :

CD4046 1 2 φ comp. I out R f C f V CO i n 3 V CO out
K = K p × K v .
2. Give the value of R f for a 100 nF C f capacitor of the loop filter knowing that Q = 0.5.

3. Give the theoretical value of the frequency lock range 2∆ f L * 4. Where must be the mark and space frequencies relatively to the locked range ?

5. What is the natural frequency f n of the loop in the case of a one pole RC filter ?

PLL as a frequency multiplier

To recover a clock signal from transmitted digital data, it could be interesting to use a PLL as a frequency multiplier. The scheme of a frequency multiplier is given in figure 3.19. 

f i n φ comp. Filter VCO f out f f b Frequency divider V V CO

PLL with one pole -one zero loop filter

We start with the circuit of a simple PLL with a type I phase comparator and a one pole filter.

1. Give the value of R for a capacitor C 1 = 2nF to have a f 0 = 20 kHz.

Express the loop gain of the PLL with one pole filter as in figure 3.20 with R f = 15kΩ and C f = 100nF . 

Compute the value of

K = K v K p .
φcomp.I R f V CO i n R f C f

Loop with multiplication

Now we want to synthesize a frequency of 20 kHz from a reference frequency F r e f submultiple of F out . The circuit of the multiplier (by N) is given on figure 3.22. A divider by N is placed between the output of the VCO (pin 4) and the input of the phase comparator (pin 3) as in the figure 3.19. By doing this, we force the VCO to provide a frequency N times larger than the reference one (Eq. 3.23).

The loop with the type I comparator has the disadvantage to ring on harmonics of the input signal. To avoid this problem, it is preferable to use a loop with a type II phase comparator. 

Frequency synthesizes

To synthesize a frequency, which is not necessarily a submultiple frequency of a reference frequency F r e f , a second frequency divider (by M) is required. Then, the synthesize frequency could be express as equation 3.24.

F out = N M × F r e f (3.24)
The multiplication by N has been previously studied. To build the divider by M, an other CD4018 could be used, at the input of the PLL ( 2. Measure the VCO frequency for -5V, -2.5V, 0V, 2.5V and 5V input V CO i n .

3. Use a ramp signal going from -5V to +5V to see the evolution of the frequency in V CO out . 

Frequency Shift Keying (FSK) signal using the function generator

Use the "CH1" of the function generator as a square signal ±5V (V CO i n centered in 0V) at 2 kHz. Switch to the modulation function "MOD" (type "FSK") :

• "Fsk Rate" = 150 Hz (use 0.1 Hz to measure f mar k and f space with multimeter.)

• "Hop Freq" = 2.2 kHz So, FSK modulation is emulated by the function generator.

• Check the good operation of the modulation by seting the "Fsk Rate" at 0.1H z. During the 5s of each half period, f mar k and f space are measured using the frequency meter.

After f mar k and f space setting, increase the "Fsk Rate" to 150H z to simulate a digital rate information of 300bi t /s.

A function generator is used here to emulate a frequency modulation. Note that a VCO can also do the job ! Figure 3.24: PLL locked using the type I comparator associated to a 1 st order filter.

PLL with type I comparator

2. Measure the lock range (2∆ f L ) and the capture range (2∆ f C ) of the loop. To do this, apply a ±5V square signal instead of the FSK modulated signal. Varying the frequency of this signal and check the two input of the comparator simultaneously. Check that f mar k and f space are in the capture range.

3. Mesure the shape of the output of the comparator in correspondence with the input signal and the VCO output for frequency going from f mi n to f max .

4. Connect the FSK modulation to the input of the PLL. Measure the overshoots on the F SK d emod ul at i on for a low frequency bit rate. Deduce if the damping factor of the loop is large or small as compared to 1.

5.

Increase progressively the bit rate up to 300 bit/s (150 Hz). See the output signal. Conclude.

6. What is the maximum bit rate achievable?

7. We want to increase the band-width of the loop. To do this, we reduce the resistance R f to achieve effectively a 300 bit/s. What happen ? 

Frequency synthesizes

To synthesize a frequency, which is not necessarily a submultiple frequency of a reference frequency F r e f , a second frequency divider (by M) is required. then, the synthesize frequency could be expressed as equation 3.25.

F out = N M × F r e f (3.25)
The multiplication by N is realized by the previous circuit. To do the divider by M, an other CD4018 is used between F r e f and the input of the PLL (

F r e f M ).

• Considering a goal synthesis frequency of M ODULATION is a technique used in electronic communications for transmitting informations by using a higher frequency carrier such as a radio wave. This frequency transposition (Fig. 4.1) of the information signal (baseband signal) to a higher frequency band (radio frequency) allows to transmit it, through an electromagnetic medium. So, the carrier can be physically transmitted. For communication between satellites and ground station, a carrier higher than some 10 MHz is required due to ionospheric opacity (figure 4.2). In radio communications or switched telephone network for instance, electrical signals can only be transferred over a limited pass-band frequency spectrum, with specific lower and upper cutoff frequencies (channel). Modulation could have other application than electromagnetic transmission, for example for fre-quency division multiplexing * . There is also somme cases where the modulation is used to down convert (at lower frequency) a use-full high frequency signal. This down conversion facilitates dataprocessing as sampling, filtering, detection (lock-in amplifier † ) or amplification (parametric amplifier ‡ ; mixer § ).

Base Band

Many parameters can be modulated. In the case of simple sine wave (or square wave) carrier, there are three obvious parameters than can be varied :

• Frequency modulation (or Frequency-Shift Keying) -the frequency of the carrier signal is varied in accordance to the instantaneous amplitude of the modulating signal. A VCO could be used to do a frequency modulation and a PLL to do the demodulation as we have seen in the last practical work for the FSK demodulation.

• Phase modulation (or Phase-Shift Keying) -the phase shift of the carrier signal is varied in accordance to the instantaneous amplitude of the modulating signal.

• Amplitude modulation (or Amplitude-Shift Keying for digital modulation) -the amplitude of the carrier signal is varied in accordance to the instantaneous amplitude of the modulating signal. 

Amplitude modulation

A continuous wave radio-frequency signal (a sinusoidal carrier wave) has its amplitude modulated by the input waveform before transmission. Input waveform changes the amplitude of the carrier wave and creates the envelope of the waveform. A simple form of amplitude modulation, often used for digital communications, is on-off keying ¶ . For instance, this is used by radio amateurs to transmit Morse code. Without transmission of the carrier, this modulation is obtained by simple multiplication of an input signal by carrier signal. Figure 4.3 shows waveform and spectrum of a multiplication of a sine-wave input signal ( f s ) by a sine-wave carrier ( f 0 ). Indeed, multiplication transposes the input signal S at each side of the C carrier frequency (frequency domain). Each sideband is equal in bandwidth, and is a mirror image of the other. Moreover, for demodulation consideration, the carrier is generally added (see figure 4.4 and equation 4.1 with 1/k a factor corresponding to the proportion of carrier added) forming a full amplitude modulation AM , with carrier transmission, as waveform illustrated at the end of the figure 4.3.

AM ≡ S ×C + C k (DSB with carrier) (4.1)
Most of the time, the carrier signal C is only a sine wave as expressed in equation 4.2.

C = C 0 sin 2π f 0 t (4.2)
* Frequency division multiplexing is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency sub-bands (channels), each of which is used to carry a separate signal.

† A lock-in amplifier is a type of amplifier that can extract a signal with a known carrier wave from an extremely noisy environment. It uses mixing, through a frequency mixer, to transpose the input signal to low-frequency. ‡ Parametric amplifier is a highly sensitive ultra-high-frequency or microwave amplifier having as its basic element a device whose reactance can be varied periodically following a pumping frequency. In these conditions, amplitude modulation is given by equation 4.4.

AM ≡ S 0 sin 2π f S t ×C 0 sin 2π f 0 t + C 0 k sin 2π f 0 t ≡ S 0 C 0 2 cos 2π( f 0 -f S )t -cos 2π( f 0 + f S )t SideBands + C 0 k sin 2π f 0 t Carrier (4.4)
Using trigonometric functions * , equation 4.4 clearly shows that amplitude modulation produces, in addition to the adjacent sidebands f 0f S and f 0 + f S , a signal with power concentrated at the carrier frequency f 0 . Amplitude modulation resulting in two sidebands and a carrier is called double side band amplitude modulation (DSB). This simplest kind of amplitude modulation is inefficient because of the large fraction of wasted power for transmission of the carrier and in the redundancy of information signal in the two sidebands.

AMPLITUDE MODULATION

MODULATION

Increasing the efficiency : The carrier and/or one sideband may be suppressed at the expense of increased transmitter and receiver complexity. For reception, suppression of the carrier imply to restore it by the use of a local oscillator generated by a phase locked loop for example. Whereas in the case of carrier transmission, a simple rectifier diode could be used for demodulation (detection).

Suppressing both the carrier and one of the sidebands also reduces bandwidth occupancy. This is single-sideband modulation (SSB), widely used in amateur radio and other low consumption communication applications. This could be obtained by using a IQ modulator * .

Modulation index

The modulation index (also called "modulation depth") quantify the evolution of the carrier signal around its unmodulated level. It is defined differently in frequency and amplitude modulation.

In the case of amplitude modulation, modulation index m is the ratio between the "envelope" amplitude S 0 C 0 and the unmodulated transmitted carrier amplitude C 0 k (defined as expression 4.5).

m = S 0 C 0 C 0 /k = kS 0 (4.5)
Indeed, modulation index referred to a normalized comparison between modulation amplitude and carrier amplitude. So, the expression 4.4 could be rewrite by factoring C which is common to the envelope amplitude and to the carrier (eq. 4.6). Finally, a normalization of the carrier amplitude added, leads to highlight m :

AM ≡ C 0 sin 2π f 0 t 1 k + S 0 sin 2π f S t = C k   1 + kS 0 m sin 2π f S t   (4.6)
So if carrier amplitude varies by 50% above and below its "unmodulated level", the modulation index is equal to 0.5. m = S 0 in the case of full adding of the carrier i .e. k = 1. , the amplitude at each frequency can be easily obtained by using the equation 4.4. Techniques to graphically estimate the modulation index are also reported on this figure for m ≤ 1 (usual case).

Graphic estimation of the modulation index given by expression 4.7 is easy to use for m ≤ 1. However, if m > 1, it could be more complicated to estimate V max , V mi n , and therefore m. In practice, the modulation index is usually < 1 to avoid distortions and noise.

m = V max -V mi n V max + V mi n with S 0 C 0 = V max -V mi n 2 and C 0 k = V max +V mi n 2 (4.7)
Indeed, if the modulation index is larger than 100%, the input signal is distorted and could not be demodulated correctly. But a too small modulation index leads to a large fraction of the transmitted power put in the useless carrier signal alone. So, a good tradeoff could correspond to a modulation index between 1 and 0.1. in the case of AM without carrier (1/k = 0), the modulation index is ∞.

Amplitude demodulation

Demodulation is used to recover the information content (S) from the modulated carrier wave. Demodulation is traditionally used in connection with radio receivers, but many other systems need demodulators.

There are two main methods used to demodulate AM signals :

1. Envelope detection 2. Multiplication

Envelope demodulation

An amplitude modulated signal can be rectified without requiring a coherent * demodulator. For example, the signal can be passed through an envelope detector : a rectifier diode D (or a diodes bridge) and a low-pass RC filter as shown on figure 4.6. The output S follows the same shape as the input baseband signal S (Fig. 4.7). Only a DC offset (inversely proportional to the modulation index) remains and is easily removed by using a high pass filter (as a coupling capacitor). Note that the polarity of the diode does not matter in the presented case of single-phase rectifiers. • The rectifier may be in the form of a single diode D, or anything that will pass current in one direction only * .

AM

• The filter is usually a RC low-pass filter when the difference in frequency between the signal and the carrier is very large † . Furthermore, the filter function can sometimes be achieved by the limited frequency response of the rectifier itself or of other part of the readout.

However, only amplitude modulation with a modulation index smaller than 100% can be demodulated by envelope detection. Indeed, for a modulation index larger than 100%, or downright without carrier, envelope detection introduces necessarily large distortions. Figure 4.8 shows, for example, a rectifying detection of an amplitude modulation without carrier (S×C). In this extreme case where m = ∞, the demodulated signal is roughly a sine wave, but at twice (!) the frequency of the input signal.

To avoid this kind of distortions, a coherent demodulation is required.

Product demodulation

The product detector, illustrated by figure 4.9, multiplies the incoming modulated signal AM by the signal of a local oscillator C . C need to have the same frequency as the carrier C of the incoming signal.The original S signal is finally recover after low pass filtering (LPF) and suppression of the DC offset (eq. 4.9).

LP F S ×C +

C k ×C ∝ S + c st (4.9)

Using the same example as for modulation equation 4.4 and for C = C , a product detection before the filtering could be expressed as equation 4.10. Using trigonometric functions ‡ , this expression shows that the information content S is restored in the base-band f S , while the carrier and harmonics are pushed around 2 f 0 and are therefore easily filtered. * Many natural substances exhibit rectifiyng behavior, which is why envelope demodulation was the earliest demodulation technique used in radio.

C × S ×C + C k = C 0 sin 2π f 0 t S 0 C 0 2 cos 2π( f 0 -f S )t -cos 2π( f 0 + f S )t + C 0 k sin 2π f 0 t = S 0 C 2 0 2 sin 2π f 0 t cos 2π( f 0 -f S )t -sin 2π f 0 t cos 2π( f 0 + f S )t + C 2 0 k sin 2 2π f 0 t = S 0 C 2 0 4 sin 2π(2 f 0 -f S )t + sin 2π f S t -sin 2π(2 f 0 + f S )t + sin 2π f S t + C 2 0 2k 1 -cos 2π2 f 0 t = S 0 C 2 0 4 2 sin (2πf S t) baseband + sin 2π(2 f 0 -f S )t -sin 2π(2 f 0 + f S )t + C 2 0 2k 1 -cos 2π2 f 0 t radio frequency + DC → filtered
† In the case of AM radio broadcast, a carrier from few 100 kHz to few MHz is used for 10 kHz signal bandwidth (audio.).

Regarding satellite communications, frequency carrier is of the order of several GHz; far away the signal bandwidth. For these kind of applications of the modulation, a simple first order low-pass filter is generally enough to attenuate residuals carrier harmonics. The difference between envelope and product detection results on the lower number of harmonics introduced by coherent technique as compared to rectifier. Spectrum frequencies higher than 2 f 0 are shown in figure 4.11 for the two demodulation techniques. This comparison of the demodulated signal before filtering highlights harmonics at 4 f 0 introduced by rectifying.

But high frequency part of the spectrum can be easily filtered. Then the main difference between envelope and product detection is that the second technique can demodulate both amplitude modulation with or with-out carrier. So modulation without or with reduced carrier, i.e. with m > 100%, requires necessarily (to avoid distortion as shown on figure 4.8) this kind of coherent demodulation. Figure 4.12 shows demodulation of a modulated signal without carrier (S ×C ).

This product detection of a modulated signal without carrier can be expressed as equation 4.12. We see in this expression, the baseband demodulated signal and the radio frequency signal that we need to filter. Finally, it appears that there is no DC on this demodulated signal. This is due to the absence of carrier. . With this product detection, there is no distortion, even if the carrier is not transmitted. Moreover, due to the fact that there is no carrier, there is no DC signal (offset) associated to the demodulated signal S .

Tutorial

We plan to transmit an information content (S) from 0-30k H z baseband frequencies to a radio channel (C) centered around 200k H z.

Double Side Bande Amplitude Modulation

Considering S and C, two sine waves at f S = 30 k H z and f 0 = 200 k H z respectively :

• S = S 0 cos 2π f S t

• C = C 0 cos 2π f 0 t

Modulation without carrier transmission

Starting by a simple multiplication AM 1 = S ×C as figure 4.13.

S C

× AM 1 1. Give the expression of S ×C while revealing frequencies which form the modulated signal.

2. Plot the spectrum of AM 1 .

3. What is the value of the modulation index ?

4. What happens if the carrier C is a square signal ? Plot the AM 1 spectrum in this case.

5. Now, plot the AM 1 spectrum in the case of a sin-wave carrier C , but with a non monochromatic input signal. Consider the spectrum of S given on figure 4.14.

6. What happens if the frequency carrier f 0 is lower than 30 kHz ? Plot the AM 1 spectrum in the case of a sine-wave carrier C at f 0 = 20 kHz. What can we expect from such a modulation ? 

The use of an AD633 as multiplier

The AD633 device, is an analog multiplier including a summing input Z useful to add carrier for a complete amplitude modulation. The expression of the output pin W of the AD633 as a function of inputs is given on equation 4.13.

W = (X 1 -X 2 ) × (Y 1 -Y 2 ) 10V + Z (4.13)
Figure 4.15 gives the pin configuration of the AD633 and connections to build a simple multiplication S ×C . Inverting input X 2 and Y 2 are not used and connected to ground. 

Product detection

1. Propose a scheme using another AD633 to realize the demodulation of AM 1 .

2. Plot the spectrum of the output of the second multiplier before filtering.

3. What is the cut-off frequency needed to restore S? Give numerical value of filter elements * needed to achieved a complete demodulation.

4. Plot the spectrum after filtering.

Modulation with carrier transmission using an AD633

A modulation with transmission of the carrier could be expressed as AM 2 = C ×S 10V +C .

1. Propose a simple modification of the scheme of the figure 4.15 to obtain AM 2 , using a unique AD633 device. 

Modulation index adjustment

Now, we want to change the modulation index of this amplitude modulation. To do that we used an operational amplifier (TL081) to adjust the amplitude of the carrier added to the product S ×C . 1. Give the expression of the gain G obtained using the operational amplifier (10 kΩ potentiometer = R 1 ; 4.7 kΩ = R 2 ).

2. Give the expected range of modulation index m using the potentiometer from 0 Ω to 10kΩ. 

Enveloppe detection

Consider the rectifier of the figure 4.17 :

V i n D V out 1kΩ
Figure 4.17: Scheme of a half wave rectifier.

1. Give the output voltage of the rectifier for a sine wave input signal (assuming that the diode is ideal i.e. without threshold).

2. Give the output voltage in the case of a 0.6 V threshold voltage for a sine wave input signal of 0.5V, 1V and 6V amplitude. Check that the output of the AD633 correspond well to the multiplication of the two inputs. Use the FFT function of your oscilloscope (Math function → FFT) to watch the spectrum of this modulation.

1. Measure and plot the waveform and the spectrum of the obtained modulation.

2. Use a square signal on the C H 1 (carrier) instead of sine wave. Measure and plot the waveform and the spectrum of the modulation.

3. Restore the sine wave on C H 1 , and change C H 2 (signal) from sine to square. Measure and plot the waveform and the spectrum of the modulation.

4. Finally, choose two square signals as for carrier and for signal. Comment.

Product detection

1. Build a second multiplier AD633 (as for modulation Fig. 4.19) to demodulate AM 1 (first part of the figure 4.20).

2. Measure and plot the waveform and the spectrum of the demodulated signal. 

Modulation with adding carrier

A modulation with transmission of the carrier, and a unity modulation index, could be built using the scheme of the figure 4.21.

AD633 X 1 C H 2 X 2 0V Y 1 C H 1 Y 2 0V +12V W AM 2 Z -12V
Figure 4.21: Pin configuration of an AD633 for amplitude modulation with carrier.

Build the modulator and check that the output of the AD633 correspond well to an amplitude modulation with carrier.

1. Measure and plot the waveform and the spectrum of the obtained modulation.

Measure the modulation index m.

To adjust the index factor, a variable gain G between the signal from the C H 1 and the summing input Z is required. Build this variable gain amplifier, by using a TL081 biased under ±12V , following the scheme given in figure 4 1. Check the operation of the rectifier, using a 6V pp sine-wave. Plot the waveform of the output signal V out .

2. Place a capacitor in parallel with the resistor (Fig. 4.24) to obtain f C = 40k H z. Measure this cutoff frequency.

3. Connect the modulated signal to the input of the rectifier. Measure and plot output waveform and spectrum of the rectifier with and without the capacitor. Repeat this measurement for a modulation index from 0.5, 1 to 2. 
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 1112 Figure 1.1: Example of space qualified lumped element filters -APITech

Figure 1 . 3 :

 13 Figure 1.3: Passive low-pass filter : first order R-C, first order L-R and second order L-C.

Figure 1 . 4 :

 14 Figure 1.4: Impedance bridge voltage divider.

•Figure 1 . 5 :

 15 Figure 1.5: Passive band-pass LCR filter.

  d i scr i . ∆ = (RC ) 2 -4LC ----→ r oot s s p = -RC ± (RC ) 2 -4LC 2LC (1.11)

2L 2 Figure 1

 21 Figure 1.7: Pole () and zero (G) representation of the RLC filter (Fig. 1.5) into the s plane.

Figure 1 . 8 :

 18 Figure 1.8: Stable if all poles are in the left hand s plane (i.e. have negative real parts).

16 )

 16 Numerical Application : L = 1 mH, C = 100 nF and R = 100 Ω • The natural * frequency f 0 = 1 2π LC = 10 5 2π ≈ 16 k H z

Figure 1 . 9 :

 19 Figure 1.9: Bode plot of the LCR band-pass filter figure 1.5.

  cutoff angular frequency and s = j ω Fourier domain = σ + j ω Laplace domain

Figure 1 .

 1 Figure1.12: Pole locations of 1 st , 2 nd , 3 r d , 4 t h and 5 t h order Butterworth filter.

1. 3 .

 3 Figure 1.13: Bode plot of a second order Butterworth low-pass filter.
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 1 Figure 1.14: H 0 the low frequency gain of a low-pass filter and H ∞ the high frequency gain of a high-pass filter.

Figure 1 .

 1 Figure 1.15: Sallen-Key generic topology.

Figure 1 . 16 :

 116 Figure 1.16: Sallen-Key low-pass filter.
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 1 Figure 1.19: Sallen-Key band-pass filter.

Figure 1 .

 1 Figure 1.20: Voltage-controlled voltage-source (VCVS) filter topology band-pass filter.

Figure 1 .

 1 Figure 1.22: Sallen-Key band-reject filter.

  Figure 1.23 lets appear these various parameters in the case of a low pass filter :

Figure 1 .

 1 Figure 1.23: Filter amplitude response limits.

  Figure 1.24: Steepness and phase linearity filter comparison.

  The drawback of a fast rolloff is the increasing of the transit time to step response as shown in figure1.26. Filter step response is the time evolution of the output following a Heaviside step * functions at the input.Step response of a Chebyshev and Butterworth filters clearly shows ringings which increase the settling time † .

Figure 1 .

 1 Figure 1.25: Frequency response of a Butterworth, Chebyshev, Bessel and Legendre 5 t h order low-pass filter around cutoff frequency and far after it. Dashed line represent a f -5 slope for comparison to 5 t h order filter rolloff.

11+0. 5 2

 5 Figure 1.26: Illustration in time domain of a typical step response for a high order Butterworth or Chebyshev filter, showing an output response with overshoot and ringing leading to settling time for a given error. Normalized ( f c = 1) step response (step) of multipole (2 to 10) Butterworth, Chebyshev 1dB and Bessel low-pass filters.
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 1 Figure 1.27: Frequency response of a Butterworth low-pass filter for n = 2 to 5.

  Figure 1.28: Frequency response of a Chebishev ( = 1) low pass filter for n = 2 to 5.

Figure 1 .

 1 Figure 1.29: Zoom in the passband of the frequency response of a Chebishev ( = 1) low-pass filter for n = 4 and 5.

1. 6 .

 6 Figure 1.30: Frequency response of a Chebishev ( = 0.5) low-pass filter for n = 2 to 5 order filter rolloff.

Figure 1 .

 1 Figure 1.31: Zoom in the pass-band of the frequency response of a Chebishev ( = 0.5) low-pass filter for n = 2 to 5.

  Figure 1.32: Comparison between frequency response of two Chebishev low-pass filters of 5 t h order, one with a ripple factor of 1 dB, and the other with 3 dB.

  Figure 1.33: Frequency response of a Bessel low-pass filter for n = 2 to 5.
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 1 Figure 1.34: Comparison of the delay time as a function of frequency f f c between a Bessel, a Butterworth and a Chebyshev low-pass filter (n=4).
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 1 Figure 1.35: Frequency response of a Legendre low-pass filter for n = 2 to 5
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 1 Figure 1.37: Equivalence between Resistor and Switched Capacitor.
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 1 Figure 1.38: Equivalence between RC filter and switched capacitor filter.
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 1 Figure 1.39: First order LR filter.
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 1 Figure 1.40: 2 other First order filters.
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 1 Figure 1.41: Second order LRC filter.
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 1 Figure 1.42: Sallen-Key generic topology.

•

  Figure 1.43: Low pass filter specifications.

Figure 1 .

 1 Figure 1.45: First order filters.
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 111 Figure 1.46: First order filters in series.
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 1 Figure 1.49: Sallen-Key 4 t h order Butterworth low-pass filter.

3 .Figure 1

 31 Figure 1.50: Sallen-Key 4 t h order Chebyshev low-pass filter.

  Figure2.1: Linear power supplies topology. A linear power supply regulates the output voltage by continually dissipating power (Joule dissipation) in a pass transistor. The lost power isP l ost = (V out -V i n )I l oad .The current provides by the transistor compensates the load variations, resulting in a constant output voltage (c st -or in fact following the reference voltage V Z ). A voltage reference as provide here by the zener diode is also needed. Regulator circuits as the well known TL7805 provide all need devices to do linear regulation in the same package (See Appendix).

Figure 2

 2 Figure 2.2: DC/DC converter for space application examples -APG & CLYDE SPACE & MICROCHIP

3 .

 3 inverter voltage converter ⇒ inverting buck-boost converter. 4. isolated ‡ voltage converter ⇒ flyback converter. * many linear power supplies use large transformer to changes AC amplitude before rectifier diode. † DC/DC converters have switching noise at the switching frequency and its harmonics. Electrical noise can be emitted from the supplying power lines as RF noise which should be prevented with proper filtering. ‡ ensure galvanic isolation between the input and the output, ie no DC link 2. DC/DC CONVERTERS 2.2. DC/DC CONVERTERS

Figure 2 . 3 :

 23 Figure 2.3: Buck topology of a step-down DC/DC converter.

Figure 2 . 4 :

 24 Figure 2.4: Simplified Buck converter circuit for the two configurations : left when the transistor T conducts (ON); right when it is OFF.

AFigure 2 . 6 :

 26 Figure 2.6: Boost topology of a step-up DC/DC converter.

Figure 2 . 7 :

 27 Figure 2.7: Voltages and current as a function of time for an ideal boost converter operating in continuous mode i.e. I L never falls to zero.
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 210 Figure 2.10: Flyback topology of an isolated DC/DC converter.

  Figure 2.11: Principle of a DC/DC converter feedback voltage regulation. D is the duty cycle of the switching transistor.

Figure 2 .

 2 Figure 2.12: Voltage regulation of a Buck DC/DC converter by using a Pulse Width Modulator (PWM).

1.

  What types of DC/DC converter allows to generate 5 V? What is the switching duty cycle required? 2. What types of DC/DC converter allows to generate 48 V? Duty cycle? 3. What types of DC/DC converter allows to generate a range of [-5 V : -48 V]? Duty cycles?

Figure 2 .

 2 Figure 2.15: Circuit of a triangle wave generator (Schmitt trigger and integrator in a loop).

Figure 2 . 16 :

 216 Figure 2.16: Schmitt trigger.

Figure 2 .

 2 Figure 2.18: Pulse Width Modulation generator using triangle signal and adjustable reference voltage.

Figure 2 .

 2 Figure 2.21 shows a part of the regulation circuit, for an open loop studies.

Figure 2 .

 2 Figure 2.21: Open loop regulation of a DC/DC Buck converter.

Figure 2 .

 2 Figure 2.22: Transfer function of the open loop gain of V out V pot .

Figure 2 .

 2 Figure 2.23: Comparator proportional with a LM158.

Figure 2

 2 Figure 2.25: Comparateur proportional/integrator with a LM158.

Figure 2 .

 2 Figure 2.27: Transistor driver and loading.

Figure 2 .

 2 Figure 2.28: DC/DC Buck converter with transistor driver.

Figure 2 .

 2 Figure 2.29: DC/DC Buck converter with open loop control feedback.

Figure 2 .

 2 Figure 2.30: Proportional/integrator comparator with a LM158.

Figure 3 .

 3 Figure 3.1: PLLs used for space applications (Peregrine Semiconductor); GPS constellation around the Earth.

Figure 3 . 2 :

 32 Figure 3.2: Block diagram of a PLL.

•Figure 3 . 3 :

 33 Figure 3.3: Diode ring (double balanced) multiplier used as an analog phase detector. LO and RF can be used as inputs of the phase comparator. IF provides a voltage following the phase difference of the two inputs.

Figure 3 .

 3 Figure 3.4: XOR phase comparator.

Figure 3 . 5 :

 35 Figure 3.5: Periodic characteristic of an XOR phase comparator and a typical operating point. The slope K p is the gain of the comparator.

Figure 3 . 6 :

 36 Figure 3.6: Dual D-Type phase detector : a type II phase detector.

Figure 3 . 7 :•

 37 Figure 3.7: Periodic characteristic of a Type II charge pump detector.

L o c k e d c o n d i t i o nFigure 3 .

 3 Figure 3.10: Hysteretic PLL characteristic.

Figure 3 .

 3 Figure 3.11: Block diagram of PLL on phase domain.

Figure 3 .

 3 Figure 3.13: One pole -one zero filter used as PLL loop filter.

Figure 3 .

 3 Figure 3.14: Amplitude Bode plot of a one pole (RC =t0) and a one pole -one zero ((R 1 + R 2 )C =t1 and R 2 C =t2) filter .

Figure 3 . 16 :

 316 Figure 3.16: FSK demodulation using PLL.

Figure 3 .

 3 Figure 3.18: PLL locked using the type I comparator associated to a 1 st order filter.

Figure 3 .

 3 Figure 3.19: Frequency multiplier.

3 .Figure 3 .

 33 Figure 3.20: PLL locked using the type I comparator associated to a 1 st order R f and C f filter.

Figure 3 .

 3 Figure 3.21: Filter 1 pole 1 zero.

Figure 3 .

 3 Figure 3.22: PLL as a frequency multiplier.

3. PHASE LOCKED LOOP 3 . 6 .

 36 PLL AS A FREQUENCY MULTIPLIER F out = F V CO = N .F r e f (3.23) Considering N values : 1, 2, 4, 6, 8 and 10. A CMOS divide by N counter CD4018 will be used. 1. Compare the expression of the transfer function of the PLL multiplier given in figure 3.22 with those without divider. 2. What is the value of the damping factor if we keep the previous R f , R f , C values of the loop filter? 3. Give the value of the lock range for each cases : • N = 1 and F r e f = 20k H z • N = 2 and F r e f = 10k H z • N = 4 and F r e f = 5k H z • N = 6 and F r e f = 3.3k H z • N = 8 and F r e f = 2.5k H z • N = 10 and F r e f = 2k H z 4. See the data sheet of the CD4018 and suggest a diagram using this device to perform the division by N.

F•

  Which of the two solutions is the preferred one to be used for F r e f = 1k H z, 10k H z and 30k H z ? M1 Space & Applications -ST 11.7 2021-2022Lab work3.7 Frequency Shift Keying (FSK) demodulation3.7.1 FSK demodulation using a CD4046 PLLNow, we will study the FSK demodulation by using a CD4046 PLL integrated circuit.VCO of the CD4046 supply a signal frequency from 1900H z to 2300H z which includes f mar k and f space .• f mi n = 1900H z • f max = 2300H zVCO setting1. Start to build the VCO as in figure3.23 with C 1 = 90nF and R 2 = 10kΩ and R 1 = 27kΩ. To do the VCO setting, apply successively -5V and +5V to the VCO input and measure the output with the frequency meter. Adjust the R and C values to cover f mi n and f max range.

Figure 3 .

 3 Figure 3.23: VCO part of the CD4046

Figure 3 .

 3 Figure 3.24 shows the PLL connected with a type I comparator and a one pole loop filter. R f = 3.3kΩ and C f = 100nF . From the previous figure (3.23) remove the -5V of the pi n14 and add a 10kΩ resistor to applied the FSK signal to the comparator, and thus to the PLL.

Disassemble 3 Figure 3 .Figure 3 .

 333 Figure 3.25: VCO.

3.8. 2 Figure 3 .

 23 Figure 3.27: PLL as a frequency multiplier.

5F r e f 3 ,

 3 fixe N=10 and M=6. Disassemble and clean M1 Space & Applications -ST 11.7 2021-2022 Modulation 4.1 Introduction

  Figure 4.1: Modulation as a transposition frequency from baseband to radio frequency.

Figure 4

 4 Figure 4.2: Radio atmospheric windowsfrom wikipedia

-

  Double-SideBand (DSB) * DSB modulation with carrier -used for the AM radio broadcasting band * DSB modulation with Suppressed-Carrier (DSB-SC) -to reduce the transmitted power -Single-SideBand (SSB) * SSB modulation with carrier -one sideband suppressed to reduce occupied channel bandwidth * SSB modulation with Suppressed-Carrier (SSB-SC) -to reduce both power and bandwidth

  § A frequency mixer is a nonlinear electrical circuit that creates new frequency signals at the sum and difference of the original frequencies (as a multiplier).¶ A type of amplitude-shift keying in which binary data is represented by the presence or absence of a carrier.

Figure 4 . 3 :Figure 4 . 4 :

 4344 Figure 4.3: Time waveform and spectrum of a double side band (DSB) amplitude modulation without (S ×C ; k = ∞) and with (S ×C +C ; k = 1) transmission of the carrier.

  Figure 4.5 shows in time domain and frequency domain, the waveform of amplitude modulation for different modulation index.

Figure 4 . 5 :

 45 Figure 4.5: Different modulation index, from 50% (m = 0.5) to 200% (m = 2) and without carrier (m = ∞) in time domain and frequency domain. Amplitude of the unmodulated transmitted carrier amplitude C 0 /k is clearly visible in the center frequency f 0 . Amplitude of the side bands S 0 C 0 are divided by two for each side band ; due to sin(a) sin(b) = 1 2 (cos(ab)cos(a + b)).

  Given in the frequency domain(Fig 4.5)

Figure 4 . 6 :

 46 Figure 4.6: Scheme of a simple envelope demodulator. Single phase (left) and full-wave (right) rectifiers.

Figure 4 .

 4 Figure 4.10 gives the waveform to illustrate this product detection in the particular case where k = C 0 = S 0 = 1. In this case, equation 4.10 can be simplified as equation 4.11. This last equation highlights the different spectral lines of the demodulated signal before filtering (DC, f S , 2 f 0f S , 2 f 0 and 2 f 0 + f S ).

Figure 4 . 9 :

 49 Figure 4.8: Waveform of an envelope detection of an amplitude modulation without transmission of the carrier : Signal S, AM without carrier S×C, Rectifying as an absolute value |S×C| and low pass filtering LPF |S×C| . This figure clearly shows distortions introduced by envelope detection in the case of modulation index larger than 100%. Signal resulting from envelope detection is at twice the frequency of the input signal. We also can see other harmonics 4 f S , 6 f S , . . . in the spectrum.

C+

  Figure 4.10: Waveform of a product detection : Signal S, Carrier C, AM signal S×C+C, demodulation C×(S×C+C) and low pass filtering LPF[C×(S×C+C)].

Figure 4 . 11 :

 411 Figure 4.11: Rectified vs Multiplied AM demodulated signal. Rectifying introduce higher frequency harmonics. The difference is also visible on the lower part of the time frames.

Figure 4 . 12 :

 412 Figure 4.12: Waveform of a product detection of an amplitude modulation without transmission of the carrier : Signal S, AM without carrier S×C, Demodulation by product S×S×C and low pass filtering LPF(S×S×C). With this product detection, there is no distortion, even if the carrier is not transmitted. Moreover, due to the fact that there is no carrier, there is no DC signal (offset) associated to the demodulated signal S .

Figure 4 .

 4 Figure 4.13: Modulation by simple multiplication.

Figure 4

 4 Figure 4.14: Spectrum of the information content S.

Figure 4

 4 Figure 4.15: Pin configuration of an AD633 -Top view.

Figure 4 . 16 :

 416 Figure 4.16: Scheme of amplitude modulator with adjustable modulation index.

3 .

 3 Taking into account the 50 Ω output impedance of the generator which supply C, what is the range of m ? 4. Using a TL081 as a variable gain amplifier; what is the cutoff frequency? 5. Plot the spectrum of AM 3 for an index modulation of 2, 1 and 0.5.

3 . 6 .Figure 4

 364 Figure 4.18: Envelope detector.

3 .Figure 4

 34 Figure 4.20: Product demodulator.

  Figure 4.22: Scheme of variable gain amplifier.

5 .Figure 4

 54 Figure 4.23: Scheme of a half wave rectifier.

4.

  Figure 4.24: Envelope detector.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1

 1 

	.3 shows roots of Butterworth polynomials

This table is also an indication of pole locations (in s plane) of low-pass filter having Butterworth polynomials as a transfer function denominator. Notice that σ is always negative (stability condition).

Polynomials coefficients table An

  other table, concerning polynomials, shows directly coefficients c x of polynomials as shown in table 1.4 for Butterworth polynomials P n

  In the particular case of Butterworth filter, the frequency scaling factor (SF) is always equal to one * .

	1. FILTERS								1.3. CASCADING FILTER STAGES
	order n	1 st st ag e	2 nd st ag e	3 r d st ag e	4 t h st ag e	5 t h st ag e
		SF	Q	SF	Q	SF	Q	SF	Q	SF	Q
	1	1									
	2	1	0.7071								
	3	1	1	1							
	4	1	0.5412	1	1.3065						
	5	1	0.618	1	1.6181	1					
	6	1	0.5177	1	0.7071	1	1.9320				
	7	1	0.5549	1	0.8019	1	2.2472	1			
	8	1	0.5098	1	0.6013	1	0.8999	1	2.5628		
	9	1	0.5321	1	0.6527	1	1	1	2.8802	1	
	10	1	0.5062	1	0.5612	1	0.7071	1	1.1013	1	3.1969
	Table 1.6: Butterworth normalized cutoff frequency (Scaling Factor -SF) and quality factor (Q) for each
	stages.										
	M1 Space & Applications -ST 11.7 2021-2022									

second order Butterworth low-pass filter we

  

	To build, for example, a need to do the transfer function
	H (s) = H 0 ωc P n s	where P n is a second order Butterwoth polynomials i.e. P n = B 2 .
	Table 1.3 could be used to write B 2 = s ω c -r 1	s ω c -r * 1 with r 1 and r * 1 the two conjugate roots
	-0.7071 ± j 0.7071. The transfer function of the Butterworth low-pass filter could be expressed as equa-
	tion 1.43.				
		H (s) =	H 0 B 2 s ω c	=	H 0 ω c + 0.7071 -j 0.7071 s s ω c + 0.7071 + j 0.7071	(1.43)
	The denominator development of the expression 1.43 gives a quadratic form (expression 1.44) which
	clearly shows Butterworth			

polynomial coefficients given on table 1.4 and quadratic factors of table 1.5. It is also clear that expression 1.44 is similar to a classical representation of a transfer function with quality factor where SF and Q are finally what we can directly obtain from the table 1.6.

  

Table 1

 1 

	Properties	Filter Butterworth	Chebyshev	Bessel	Legendre
	roll-off rate for a	average	good	weak	average
	given order			
	group delay	good	bad	excellent	average
	flatness of the	excellent	ripple in the	excellent	good
	frequency response		pass-band	
	transient response	good	average	excellent	good

.9: Butterworth, Chebyshev, Bessel and Legendre filter comparison.

  What is the minimum filter order needed to satisfy previous constraints. Consider, Butterworth and Chebyshev 1 dB filters. Use plots given in Appendix B to graphically estimate attenuation of different filters. 2. From these 2 filters, what is the one which exhibit a 10% settling time * smaller than 330µs. Use step responses given in Lecture to estimate settling time. For Chebyshev, consider the 1dB response time.

	1.13. FILTER SYNTHESIS FROM TEMPLATE	1. FILTERS
	1.	

  What is the numerical expression of the AM 2 (t ) modulated signal showing the modulation index? What is the modulation index value ? 3. Plot the spectrum of AM 2 .

	4. MODULATION	4.4. DOUBLE SIDE BANDE AMPLITUDE MODULATION
	2.	

damien.prele@u-paris.fr

M1 Space & Applications -ST 11.7 2021-2022

* in absolute magnitude. M1 Space & Applications -ST 11.7 2021-2022

* The output voltage ranges for a buck and a boost converter are respectively 0 to V i n and V i n to ∞. M1 Space & Applications -ST 11.7 2021-2022

DC/DC CONVERTERS M1 Space & Applications -ST 11.7 2021-2022

2.6. PREPARATION OF THE PRACTICAL WORK

damien.prele@u-paris.fr 2.10. VOLTAGE REGULATION 2. DC/DC CONVERTERS M1 Space & Applications -ST 11.7 2021-2022

* The jitter is an undesired deviation from time periodicty of an assumed periodic signal. PLL is a jitter suppressor. † 2 sin a sin b = cos(ab)cos(a+ b) ⇒ 2 sin(∝ f i n ) sin(∝ f out ) = cos[∝ ( f i nf out )]cos[∝ ( f i n + f out )] ‡ This iswhy the phase comparator is systematically associated to a filter/integrator. § The IF (Intermediate Frequency) varies as the cosine of the phase different between the RF (Radio-Frequency) and LO (Local Oscillator) inputs. 0 V correspond to a phase difference = 0; min and max voltages are therefore linked to a phase = π; at multiples of 2π. M1 Space & Applications -ST 11.7 2021-2022

* Binary addition ≡ addition modulo 2. M1 Space & Applications -ST 11.7 2021-2022
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Lab work

The purpose of this practical work is to build a DC/DC buck step-down converter, 20 V to 10 V on a 30 Ω load resistor and with voltage regulation.

Preliminary settings

Set the current limitation of the 20 V power supply at a maximum current of 600 mA (O.C.P = 600 mA ; O.V.P = 21 V).

Pulse Width Modulation (PWM)

Build on the solder-less breadboard the three parts of the Pulse Width Modulation given in figure 2.26. 

Part IV

Modulation

A

Polynomials filter tables

Butterworth, Chebyshev (3 dB and 1 dB), Bessel and Legendre polynomials tables needed for filter synthesis : n Butterworth polynomials s 2 + 1.4142s + 1 (s + 1)(s 2 + s + 1) (s 2 + 0.7654s + 1)(s 2 + 1.8478s + 1) (s + 1)(s 2 + 0.618s + 1)(s 2 + 1.618s + 1) (s 2 + 0.5176s + 1)(s 2 + 1.4142s + 1)(s 2 + 1.9319s + 1) (s + 1)(s 2 + 0.445s + 1)(s 2 + 1.247s + 1)(s 2 + 1.8019s + 1) (s 2 + 0.3902s + 1)(s 2 + 1.1111s + 1)(s 2 + 1.6629s + 1)(s 2 + 1.9616s + 1) (s + 1)(s 2 + 0.3473s + 1)(s 2 + s + 1)(s 2 + 1.5321s + 1)(s 2 + 1.8794s + 1)

n Chebyshev polynomials (ripple 3dB ≡ = 1 → H 0 even n = 2 -0.5 ≈ 0, 707) 1.4125s 2 + 0.9109s + 1 (3.3487s + 1)(1.1916s 2 + 0.3559s + 1) (5.1026s 2 + 2.0984s + 1)(1.1073s 2 + 0.1886s + 1) (5.6328s + 1)(2.6525s 2 + 0.7619s + 1)(1.0683s 2 + 0.1172s + 1) (11.2607s 2 + 3.2132s + 1)(1.9164s 2 + 0.4003s + 1)(1.0473s 2 + 0.0801s + 1) (7.9061s + 1)(4.8959s 2 + 1.1159s + 1)(1.5942s 2 + 0.2515s

n Chebyshev polynomials (ripple 1dB ≡ = 0.5 → H 0 even n = 1 1+0.5 2 ≈ 0, 894) 0.907s 2 + 0.9956s + 1 (2.023s + 1)(1.0058s 2 + 0.497s + 1) (3.5791s 2 + 2.4113s + 1)(1.0136s 2 + 0.2828s + 1) (3.454s + 1)(1.0118s 2 + 0.181s + 1)(2.3293s 2 + 1.0911s + 1) (1.793s 2 + 0.6092s + 1)(1.0093s 2 + 0.1255s + 1)(8.0188s 2 + 3.7217s + 1) (4.868s+1)(1.0073s 2 +0.092s+1)(1.5303s 2 +0.3919s+1)(4.3393s 2 +1.6061s+1) (1.0058s 2 + 0.0704s + 1)(2.9337s 2 + 0.8754s + 1)(1.382s 2 + 0.2755s + 1)(14.2326s 2 + 5.0098s + 1) (6.276s+1)(1.2896s 2 +0.2054s+1)(1.0047s 2 +0.0556s+1)(2.2801s 2 +0.5566s+ 1)(7.0242s 2 + 2.1033s + 1) n Bessel polynomials (normalised to 3dB attenuation at ω/ω c = 1 → Cf lecture) 0.618s 2 + 1.3616s + 1 (0.756s + 1)(0.4771s 2 + 0.9996s + 1) (0.4889s 2 + 1.3396s + 1)(0.3889s 2 + 0.7742s + 1) (0.665s + 1)(0.3245s 2 + 0.6215s + 1)(0.4128s 2 + 1.1401s + 1) (0.2756s 2 + 0.513s + 1)(0.3504s 2 + 0.9686s + 1)(0.3887s 2 + 1.2217s + 1) (0.593s +1)(0.238s 2 +0.4332s +1)(0.301s 2 +0.8303s +1)(0.3394s 2 +1.0944s +1) (0.2087s 2 + 0.3727s + 1)(0.2621s 2 + 0.7202s + 1)(0.2979s 2 + 0.9753s + 1)(0.3161s 2 + 1.1112s + 1) (0.538s +1)(0.231s 2 +0.6319s +1)(0.1854s 2 +0.3257s +1)(0.2635s 2 +0.8710s + 1)(0.2834s 2 + 1.0243s + 1) n Legendre polynomials s 2 + 1.4142s + 1 (1.612s + 1)(1.0744s 2 + 0.7417s + 1) (1.0552s 2 + 0.4889s + 1)(2.3213s 2 + 2.5522s + 1) (2.136s + 1)(1.0406s 2 + 0.3196s + 1)(2.0115s 2 + 1.5614s + 1) (1.7155s 2 + 1.06s + 1)(1.0313s 2 + 0.2376s + 1)(3.9963s 2 + 3.508s + 1) (2.617s+1)(1.0241s 2 +0.1765s+1)(1.5102s 2 +0.7171s+1)(3.2679s 2 +2.2825s+ 1) (1.3927s 2 + 0.5411s + 1)(1.0195s 2 + 0.1405s + 1)(5.9688s 2 + 4.3832s + 1)(2.6116s 2 + 1. 

C

Angles, sin and cos transformation formulas

Sum and Difference of Angles :