
HAL Id: cel-00863021
https://cel.hal.science/cel-00863021v3

Submitted on 3 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient C++ finite element computing with Rheolef :
volume 2: discontinuous Galerkin methods

Pierre Saramito

To cite this version:
Pierre Saramito. Efficient C++ finite element computing with Rheolef : volume 2: discontinuous
Galerkin methods. DEA. Grenoble, France, France. 2015, pp.56. �cel-00863021v3�

https://cel.hal.science/cel-00863021v3
https://hal.archives-ouvertes.fr

Efficient C++ finite element

computing with Rheolef

volume 2:

discontinuous Galerkin methods

Pierre Saramito

version 6.7 update 24 March 2016

0

0.5

1

0 0.5 1

h = 1/20

x

φ(x)
φh(x)

Re = 10 000

Copyright (c) 2003-2013 Pierre Saramito
Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation License".

Contents

Notations 2

I Getting started with simple problems 5

1 Scalar first-order problems 7
1.1 The transport equation . 7
1.2 Nonlinear scalar hyperbolic problems . 10
1.3 Example: the Burgers equation . 14

2 Scalar second-order problems 21
2.1 The Poisson problem with Dirichlet boundary conditions 21
2.2 The Helmholtz problem with Neumann boundary conditions 23
2.3 Nonlinear scalar hyperbolic problems with diffusion 25
2.4 Example: the Burgers equation with diffusion . 25

II Fluids and solids computations 31

3 The linear elasticity and the Stokes problems 33
3.1 The linear elasticity problem . 33
3.2 The Stokes problem . 35
3.3 The stationnary Navier-Stokes problem . 37

III Technical appendices 53

A GNU Free Documentation License 55

List of example files 62

List of commands 64

Index 64

1

2 Rheolef version 6.7 update 24 March 2016

Notations

Rheolef mathematics description

d d ∈ {1, 2, 3} dimension of the physical space

dot(u,v) u.v =

d−1∑

i=0

uivi vector scalar product

ddot(sigma,tau) σ : τ =

d−1∑

i,j=0

σi,jτi,j tensor scalar product

tr(sigma) tr(σ) =

d−1∑

i=0

σi,i trace of a tensor

trans(sigma) σT tensor transposition

sqr(phi)
norm2(phi) φ2 square of a scalar

norm2(u) |u|2 =

d−1∑

i=0

u2
i square of the vector norm

norm2(sigma) |σ|2 =

d−1∑

i,j=0

σ2
i,j square of the tensor norm

abs(phi)
norm(phi) |φ| absolute value of a scalar

norm(u) |u| =
(
d−1∑

i=0

u2
i

)1/2

vector norm

norm(sigma) |σ| =

d−1∑

i,j=0

σ2
i,j

1/2

tensor norm

grad(phi) ∇φ =

(
∂φ

∂xi

)

06i<d

gradient of a scalar field in Ω ⊂ Rd

grad(u) ∇u =

(
∂ui
∂xj

)

06i,j<d

gradient of a vector field

div(u) div(u) = tr(∇u) =

d−1∑

i=0

∂ui
∂xi

divergence of a vector field

D(u) D(u) =
(
∇u +∇uT

)
/2

symmetric part of
the gradient of a vector field

curl(u) curl(u) = ∇∧ u curl of a vector field, when d = 3

curl(phi) curl(φ) =

(
∂φ

∂x1
,− ∂φ

∂x0

)
curl of a scalar field, when d = 2

curl(u) curl(u) =
∂u1

∂x0
− ∂u0

∂x1
curl of a vector field, when d = 2

grad_s(phi)
∇sφ = P∇φ

where P = I − n⊗ n
tangential gradient of a scalar

Rheolef version 6.7 update 24 March 2016 3

Rheolef mathematics description

grad_s(u) ∇su = ∇uP tangential gradient of a vector

Ds(u) Ds(u) = PD(u)P symmetrized tangential gradient

div_s(u) divs(u) = tr(Ds(u)) tangential divergence

unit outward normal on Γ = ∂Ω
normal() n or on an oriented surface Ω

or on an internal oriented side S

jump(phi) [[φ]] = φ|K0
− φ|K1

jump accros inter-element side
S = ∂K0 ∩K1

average(phi) {{φ}} = (φ|K0
+ φ|K1

)/2 average accross S

inner(phi) φ|K0
inner trace on S

outer(phi) φ|K1
outer trace on S

h_local() hK = meas(K)1/d length scale on an element K

penalty() $s = max

(
meas(∂K0)

meas(K0)
,

meas(∂K1)

meas(K1)

)
penalty coefficient on S

grad_h(phi) (∇hφ)|K = ∇(φ|K),∀K ∈ Th broken gradient

div_h(u) (divhu)|K = div(u|K),∀K ∈ Th broken divergence of a vector field

Dh(u) (Dh(u))|K = D(u|K),∀K ∈ Th broken symmetric part of
the gradient of a vector field

sin(phi) sin(φ) standard mathematical functions
cos(phi) cos(φ) extended to scalar fields
tan(phi) tan(φ)

acos(phi) cos−1(φ)
asin(phi) sin−1(φ)
atan(phi) tan−1(φ)
cosh(phi) cosh(φ)
sinh(phi) sinh(φ)
tanh(phi) tanh(φ)
exp(phi) exp(φ)
log(phi) log(φ)

log10(phi) log 10(φ)
floor(phi) bφc largest integral not greater than φ
ceil(phi) dφe smallest integral not less than φ

min(phi,psi) min(φ, ψ)

4 Rheolef version 6.7 update 24 March 2016

Rheolef mathematics description
max(phi,psi) max(φ, ψ)
pow(phi,psi) φψ

atan2(phi,psi) tan−1(ψ/φ)
fmod(phi,psi) φ− bφ/ψ + 1/2cψ floating point remainder

compose(f,phi) f ◦ φ = f(φ) applies an unary function f

compose(f,phi1,...,phin) f(φ1, . . . , φn) applies a n-ary function f , n > 1

compose(phi,X) φ ◦X, X(x) = x+ d(x) composition with a characteristic

Part I

Getting started with simple
problems

5

Chapter 1

Scalar first-order problems

The aim of this chapter is to introduce to discontinuous Galerkin methods within the Rheolef
environment. For some recent presentations of discontinuous Galerkin methods, see [11] for theo-
retical aspects and [16] for algorithmic and implementation. The discontinuous Galerkin methods
are in active development in Rheolef, and new features will appear soon.

1.1 The transport equation

The steady scalar transport problem writes:
(P): find φ, defined in Ω, such that

u.∇φ+ σφ = f in Ω

φ = φΓ on ∂Ω−

where u, σ > 0, f and φΓ being known. Notice that this is the steady version of the unsteady
diffusion-convection problem previously introduced in section 6.2, page 86 and when the diffusion
coefficient ν vanishes. Here, the ∂Ω− notation is the upstream boundary part, defined by

∂Ω− = {x ∈ ∂Ω; u(x).n(x) < 0}

Let us suppose that u ∈W 1,∞(Ω)d and introduce the space:

X = {ϕ ∈ L2(Ω); (u.∇)ϕ ∈ L2(Ω)d}

and, for all φ, ϕ ∈ X

a(φ, ϕ) =

∫

Ω

(u.∇φϕ+ σ φϕ) dx +

∫

∂Ω

max (0,−u.n)φ ϕ ds

l(ϕ) =

∫

Ω

f ϕ dx +

∫

∂Ω

max (0,−u.n)φΓ ϕds

Then, the variational formulation writes:
(FV): find φ ∈ X such that

a(φ, ϕ) = l(ϕ), ∀ϕ ∈ X

Notice that the term max(0,−u.n) = (|u.n| − u.n)/2 is positive and vanishes everywhere except
on ∂Ω−. Thus, the boundary condition φ = φΓ is weakly imposed on ∂Ω− via the integrals on the
boundary. The discontinuous finite element space is defined by:

Xh = {ϕh ∈ L2(Ω);ϕh|K ∈ Pk, ∀K ∈ Th}

7

8 Rheolef version 6.7 update 24 March 2016

where k > 0 is the polynomial degree. Notice that Xh 6⊂ X and that the ∇φh term has no more
sense for discontinous functions φh ∈ Xh. Following [11, p. 14], we introduce the broken gradient
∇h as a convenient notation:

(∇hφh)|K = ∇(φh|K), ∀K ∈ Th

Thus
∫

Ω

u.∇hφh ϕh dx =
∑

K∈Th

∫

K

u.∇φh ϕh dx, ∀φh, ϕh ∈ Xh

This leads to a discrete version ah of the bilinear form a, defined for all φh, ϕh ∈ Xh by (see
e.g. [11, p. 57], eqn. (2.34)):

ah(φh, ϕh) =

∫

Ω

(u.∇hφh ϕh + σφh ϕh) dx+

∫

∂Ω

max (0,−u.n)φh ϕh ds

+
∑

S∈S
(i)
h

∫

S

(
− u.n [[φh]] {{ϕh}}+

α

2
|u.n| [[φh]] [[ϕh]]

)
ds

The last term involves a sum over S
(i)
h , the set of internal sides of the mesh Th. Each internal side

K+
S

K−

n = n− = −n+ on S

n−
n+

φ−
h

φ+
h

Figure 1.1: Discontinuous Galerkin method: an internal side, its two neighbor elements and their
opposite normals.

S ∈ S
(i)
h has two possible orientations: one is choosen definitively. In practice, this orientation

is defined in the ‘.geo’ file containing the mesh, where all sides are listed, together with their
orientation. Let n the normal to the oriented side S: as S is an internal side, there exists two
elements K− and K+ such that S = ∂K− ∩ ∂K+ and n is the outward unit normal of K− on
∂K− ∩ S and the inward unit normal of K+ on ∂K+ ∩ S, as shown on Fig. 1.1. For all φh ∈ Xh,
recall that φh is in general discontinuous accross the internal side S. We define on S the inner
value φ−h = φh|K− of φh as the restriction φh|K− of φh in K− along ∂K− ∩ S. Conversely, we
define the outer value φ+

h = φh|K+
. We also denote on S the jump [[φh]] = φ−h − φ+

h and the
average {{φh}} = (φ−h + φ+

h)/2. The last term in the definition of ah is ponderated by a coefficient
α > 0. Choosing α = 0 correspond to the so-called centered flux approximation, while α = 1 is
the upwinding flux approximation. The case α = 1 and k = 0 (piecewise constant approximation)
leads to the popular upwinding finite volume scheme. Finally, the discrete variational formulation
writes:

(FV)h: find φh ∈ Xh such that

ah(φh, ϕh) = l(ϕh), ∀ϕh ∈ Xh

The following code implement this problem in the Rheolef environment.

Rheolef version 6.7 update 24 March 2016 9

Example file 1.1: transport_dg.cc
1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 int main(int argc , char**argv) {
5 environment rheolef (argc , argv);
6 geo omega (argv [1]);
7 space Xh (omega , argv [2]);
8 Float alpha = (argc > 3) ? atof(argv [3]) : 1;
9 Float sigma = (argc > 4) ? atof(argv [4]) : 3;

10 point u (1,0,0);
11 trial phi (Xh); test psi (Xh);
12 form ah = integrate (dot(u,grad_h(phi))*psi + sigma*phi*psi)
13 + integrate ("boundary", max(0, -dot(u,normal ()))* phi*psi)
14 + integrate ("internal_sides",
15 - dot(u,normal ())* jump(phi)* average(psi)
16 + 0.5* alpha*abs(dot(u,normal ()))* jump(phi)*jump(psi));
17 field lh = integrate ("boundary", max(0, -dot(u,normal ()))* psi);
18 solver sah (ah.uu());
19 field phi_h(Xh);
20 phi_h.set_u() = sah.solve(lh.u());
21 dout << catchmark("sigma") << sigma << endl
22 << catchmark("phi") << phi_h;
23 }

Comments

The data are φγ = 1 and u = (1, 0, 0), and then the exact solution is known: φ(x) = exp(−σx0).
The numerical tests are running with σ = 3 by default. The one-dimensional case writes:

make transport_dg
mkgeo_grid -e 10 > line.geo
./transport_dg line P0 | field -
./transport_dg line P1d | field -
./transport_dg line P2d | field -

Observe the jumps accross elements: these jumps decreases with mesh refinement or when poly-
nomial approximation increases. The two-dimensional case writes:

mkgeo_grid -t 10 > square.geo
./transport_dg square P0 | field -elevation -
./transport_dg square P1d | field -elevation -
./transport_dg square P2d | field -elevation -

The elevation view shows details on inter-element jumps. Finaly, the three-dimensional case writes:

mkgeo_grid -T 5 > cube.geo
./transport_dg cube P0 | field -
./transport_dg cube P1d | field -
./transport_dg cube P2d | field -

Fig. 1.2 plots the solution when d = 1 and k = 0: observe that the boundary condition φ = 1 at
x0 = 0 is only weakly satified. It means that the approximation φh(0) tends to 1 when h tnds to
zero. Fig. 1.3 plots the error φ − φh in L2 and L∞ norms: these errors behave as O

(
hk+1

)
for

all k > 0, which is optimal. A theoretical O
(
hk+1/2

)
error bound was shown in [17]. The present

numerical results confirm that these theoretical error bounds can be improved for some families of
meshes, as pointed out by Richter [19], that showed a O

(
hk+1

)
optimal bound for the transport

problem. This result was recently extended by Cockburn et al. [6], while Peterson [18] showed
that the estimate O

(
hk+1/2

)
is sharp for general families of quasi-uniform meshes.

file://localhost/usr/share/doc/rheolef-doc/examples/transport_dg.cc

10 Rheolef version 6.7 update 24 March 2016

0

0.5

1

0 0.5 1

h = 1/20

x

φ(x)
φh(x)

0

0.5

1

0 0.5 1

h = 1/40

x

φ(x)
φh(x)

Figure 1.2: The discontinuous Galerkin method for the transport problem when k = 0 and d = 1.

10−15

10−10

10−5

1

10−2 10−1

‖φ− φh‖L2

1 = k + 1

5 = k + 1

h

k = 0
k = 1
k = 2
k = 3
k = 4

10−15

10−10

10−5

1

10−2 10−1

‖φ− φh‖L∞
1 = k + 1

5 = k + 1

h

k = 0
k = 1
k = 2
k = 3
k = 4

Figure 1.3: The discontinuous Galerkin method for the transport problem: convergence when
d = 2.

1.2 Nonlinear scalar hyperbolic problems

The aim of this paragraph is to study the discontinuous Galerkin discretization of scalar nonlinear
hyperbolic equations. This section presents the general framework and discretization tools while
the next section illustrates the method for the Burgers equation.

1.2.1 Problem setting

A time-dependent nonlinear hyperbolic problem writes in general form [11, p. 99]:
(P): find u, defined in]0, T [×Ω, such that

∂u

∂t
+ div f(u) = 0 in]0, T [×Ω (1.1a)

u(t=0) = u0 in Ω (1.1b)
f(u).n = Φ(n; u, g) on]0, T [×∂Ω (1.1c)

where T > 0, Ω ⊂ Rd, d = 1, 2, 3 and the initial condition u0 being known. As usual, n denotes the
outward unit normal on the boundary ∂Ω. The function f : R −→ Rd is also known and supposed

Rheolef version 6.7 update 24 March 2016 11

to be continuously differentiable. The initial data u0, defined in Ω, and the boundary one, g,
defined on ∂Ω are given. The function Φ, called the Godunov flux associated to f , is defined, for
all ν ∈ Rd and a, b ∈ R, by

Φ(ν; a, b) =

min
v∈[a,b]

f(v).ν when a 6 b

max
v∈[b,a]

f(v).ν otherwise (1.1d)

1.2.2 Space discretization

In this section, we consider first the semi-discretization with respect to space while the problem
remains continuous with respect to time. The semi-discrete problem writes in variational form [11,
p. 100]:

(P)h: find uh ∈ C1([0, T], Xh) such that
∫

Ω

∂uh
∂t

vh dx−
∫

Ω

f(uh).∇hvh dx+
∑

S∈S(i)
h

Φ(n; u−h , u
+
h)[[vh]] ds+

∫

∂Ω

Φ(n; uh, g)vh ds = 0, ∀vh ∈ Xh

uh(t=0) = πh(u0)

where πh denotes the Lagrange interpolation operator on Xh and others notations has been intro-
duced in the previous section.
For convenience, we introduce the discrete operator Gh, defined for all uh, vh ∈ Xh by
∫

Ω

Gh(uh)vh dx = −
∫

Ω

f(uh).∇hvh dx+
∑

S∈S(i)
h

∫

S

Φ(n; u−h , u
+
h)[[vh]] ds+

∫

∂Ω

Φ(n; uh, g)vh ds(1.2)

For a given uh ∈ Xh, we also define the linear form gh as

g(vh) =

∫

Ω

Gh(uh)vh dx

As the matrix M , representing the L2 scalar product in Xh, is block-diagonal, it can be easily
inverted at the element level, and for a given uh ∈ Xh, we have G(uh) = M−1gh. Then, the
problem writes equivalently as a set of coupled nonlinear ordinary differential equations.

(P)h: find uh ∈ C1([0, T], Xh) such that

∂uh
∂t

+Gh(uh) = 0

1.2.3 Time discretization

Let ∆t > 0 be the time step. The previous nonlinear ordinary differential equations are discretized
by using a specific explicit Runge-Kutta with intermediates states [13,14,22]. This specific variant
of the usual Runge-Kutta scheme, called strong stability preserving, is suitable for avoiding possible
spurious oscillations of the approximate solution when the exact solution has a poor regularity.
Let unh denotes the approximation of uh at time tn = n∆t, n > 0. Then un+1

h is defined by
recurrence:

un,0h = unh

un,ih =

i−1∑

j=0

αi,ju
n,j
h −∆t βi,jGh

(
un,jh

)
, 1 6 i 6 p

un+1
h = un,ph

12 Rheolef version 6.7 update 24 March 2016

where the coefficients satisfy αi,j > 0 and βi,j > 0 for all 1 6 i 6 p and 0 6 j 6 i − 1, and∑i−1
j=0 αi,j = 1 for all 1 6 i 6 p. Notice that when p = 1 this scheme coincides with the usual

explicit Euler scheme. For a general p > 1 order scheme, there are p− 1 intermediate states un,ih ,
i = 1 . . . p− 1. Computation of the coefficients αi,j and βi,j can be founded in [13,14,22] and are
grouped in file ‘runge_kutta_ssp.icc’ of the examples directory for convenience.

1.2.4 Slope limiters

Slope limiters are required when the solution develops discontinuities: this is a very classical
feature of most solutions of nonlinear hyperbolic equations. A preliminary version of the slope
limiter proposed by Cocburn et al. [5, p. 208] is implemented in Rheolef:Âăthis preliminary
version only supports the d = 1 dimension and k = 1 polynomial degree. Recall that the k = 0
case do not need any limiter. More general implementation will support the d = 2, 3 and k > 2
cases in the future. The details of the limiter implementation is presented in this section: the
impatient reader, who is interested by applications, can jump to the next section, devoted to the
Burgers equation.

K

K2

xK0

xS0

K1

K0

xK

xK1

xK2

J(0, 1) = 1

Figure 1.4: Limiter: the neighbors elements and the middle edge points.

Fig. 1.4 shows the d+1 neighbor elements Ki, i = 0 . . . d around an element d. Let Si = ∂K∩∂Ki,
i = 0 . . . d be the i-th side of K. We denote by xK , xKi ad xSi the barycenters of these elements
and sides, i = 0 . . . d. When d = 2, the barycenter xSi of the edge belongs to the interior of a
triangle (xK ,xKi

,xKJi,1
) for exactly one of the two possible Ji,1 6= i and 0 6 Ji,1 6 d. When d = 3,

the barycenter xSi
of the face belongs to the interior of a tetrahedron (xK ,xKi

,xKJi,1
,xKJi,2

)

for exactly one pair (Ji,1, Ji,2), up to a permutation, of the three possible pairs Ji,1, Ji,2 6= i and
0 6 Ji,1, Ji,2 6 d. Let us denote Ji,0 = i. Then, the vector −−−−→xKxSi

decompose on the basis
(−−−−−−→xKxKJi,k

)06k6d−1 as

−−−−→xKxSi
=

d−1∑

k=0

αi,k
−−−−−−→xKxKJi,k

(1.3)

where αi,k > 0, k = 0 . . . d − 1. Let us consider now the patch ωK composed of K and its d
neighbors:

ωK = K ∪K0 ∪ . . . ∪Kd

Rheolef version 6.7 update 24 March 2016 13

For any affine function ξ ∈ P1(ωK) over this patch, let us denote

δK,i(ξ) =

d−1∑

k=0

αi,k

(
ξ(xKJi,k

)− ξ(xK)
)
, i = 0 . . . d− 1

= ξ(xSi
)− ξ(xK) from (1.3)

In other terms, δK,i(ξ) represents the departure of the value of ξ at xSi
from its average ξ(xK on

the element K.
Let now (ϕi)06i6d−1 denote the Lagrangian basis inK associated to the set of nodes (xSi

)06i6d−1:

ϕi(xSj
) = δi,j , 0 6 i, j 6 d− 1

d−1∑

i=0

ϕi(x) = 1, ∀x ∈ K

The affine function ξ ∈ P1(ωK) expresses on this basis as

ξ(x) = ξ(xK) +

d−1∑

i=0

δK,i(ξ)ϕi(x), ∀x ∈ K

Let now uh ∈ P1d(Th). On any element K ∈ Th, let us introduce its average value:

ūK =
1

meas(K)

∫

K

uh(x) dx

and its departure from its average value:

ũK(x) = uh|K(x)− ūK , ∀x ∈ K

Notice that uh 6∈ P1(ωK). Let us extends δK,i to uh as

δK,i(uh) =

d−1∑

k=0

αi,k

(
ūKJi,k

− ūK
)
, i = 0 . . . d− 1

Since uh 6∈ P1(ωK), we have ũK(xKJi,k
) 6= δK,i(uh) in general. The idea is then to capture

oscillations by controlling the departure of the values ũK(xKJi,k
) from the values δK,i(uh). Thus,

associate to uh ∈ P1d(Th) the quantities

∆K,i(uh) = minmodTVB

(
ũK(xKJi,k

), θδK,i(uh)
)

for all i = 0 . . . d− 1 and where θ > 1 is a parameter of the limiter and

minmodTVB(a, b) =

{
a when |a| 6Mh2

minmod(a, b) otherwise

where M > 0 is a tunable parameter which can be evaluated from the curvature of the initial
datum at its extrema by setting

M = sup
x∈Ω,∇u0(x)=0

|∇ ⊗∇u0| (1.4)

Introduced in [21], the basic idea is to deactivate the limiter when space derivatives are of order h2.
This improves the limiter behavior near smooth local extrema. The minmod function is defined
by

minmod(a, b) =

{
sgn(a) min(|a|, |b|) when sgn(a) = sgn(b)
0 otherwise

14 Rheolef version 6.7 update 24 March 2016

Then, for all i = 0 . . . d− 1 we define

rK(uh) =

d−1∑

j=0

max(0,−∆K,j(uh))

d−1∑

j=0

max(0,∆K,j(uh))

> 0

∆̂K,i(uh) = min(1, rK(uh)) max(0,∆K,i(uh))

−min(1, 1/rK(uh)) max(0,−∆K,i(uh)), i = 0 . . . d− 1 when rK(uh) 6= 0

Finally, the limited function Λh(uh) is defined element by element for all element K ∈ Th for all
x ∈ K by

Λh(uh)|K(x) =

ūK +

d−1∑

i=1

∆K,i(uh) ϕi(x) when rK(uh) = 0

ūK +

d−1∑

i=1

∆̂K,i(uh) ϕi(x) otherwise

Notice that there are two types of computations involved in the limiter: one part is independent
of uh and depends only upon the mesh: Ji,k and αi,k on each element. It can be computed one
time for all. The other part depends upon the values of uh.
Notice that the limiter preserves the average value of uh on each element K and also the functions
that are globally affine on the patch ωK . Also we have, inside each element K and for all side
index i = 0 . . . d− 1:
∣∣Λh(uh)|K(xSi

)− ūK
∣∣ 6 max

(
|∆K,i(uh)|, |∆̂K,i(uh)|

)
6 |∆K,i(uh)| 6

∣∣uh|K(xSi
)− ūK

∣∣

It means that, inside each element, the gradient of the P1 limited function is no larger than that
of the original one.
The limiter on an element close to the boundary should takes into account the inflow condition.
In [7], the modifications are described.

1.3 Example: the Burgers equation

As an illustration, let us consider now the test with the one-dimensional (d = 1) Burgers equation
for a propagating slant step (see e.g. [3, p. 87]) in Ω =]0, 1[. We have f(u) = u2/2, for all u ∈ R.
In that case, the Godunov flux (1.1d), introduced page 11, can be computed explicitly for any
ν = (ν0) ∈ Rd and a, b ∈ R:

Φ(ν; a, b) =

{
ν0 min

(
a2, b2

)
/2 when ν0 > 0 and a 6 b or ν0 6 0 and a > b

ν0 max
(
a2, b2

)
/2 otherwise

Example file 1.2: burgers.icc
1 point f (const Float& u) { return point (sqr(u)/2); }

Example file 1.3: burgers_flux_godunov.icc
1 Float phi (const point& nu, Float a, Float b) {
2 if ((nu[0] >= 0 && a <= b) || (nu[0] <= 0 && a >= b))
3 return nu[0]* min(sqr(a),sqr(b))/2;
4 else
5 return nu[0]* max(sqr(a),sqr(b))/2;
6 }

file://localhost/usr/share/doc/rheolef-doc/examples/burgers.icc
file://localhost/usr/share/doc/rheolef-doc/examples/burgers_flux_godunov.icc

Rheolef version 6.7 update 24 March 2016 15

1.3.1 Computing an exact solution

An exact solution is useful for testing numerical methods. The computation of such an exact
solution for the one dimensional Burgers equation is described by Hartens et al. [15]. The authors
consider first the problem with a periodic boundary condition:

(P): find u :]0, T [×]− 1, 1[7−→ R such that

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 in]0, T [×]− 1, 1[

u(t=0, x) = α+ β sin(πx+ γ), a.e. x ∈]− 1, 1[

u(t, x=−1) = u(t, x=1) a.e. t ∈]0, T [

where α, β and γ are real parameters. Let us denote w the solution of the problem when β = 1
and α = γ = 0; i.e. with the initial condition w(t=0, x) = sin(πx), a.e. x ∈]− 1, 1[. For any
x ∈ [0, 1[and t > 0, the solution w̄ = w(t, x) satisfies the characteristic relation

w̄ = sin(π(x− w̄t))
This nonlinear relation can be solved by a Newton algorithm. Then, for x ∈]−1, 0[, the solution
is completed by symmetry: w(t, x) = −w(t,−x). Finally, the general solution for any α, β and
γ = 0 writes u(t, x) = α+ w(βt, x− αt+ γ). File ‘harten.icc’ implements this approach.

Example file 1.4: harten.icc
1 #include "harten0.icc"
2 struct harten {
3 Float operator () (const point& x) const {
4 Float x0 = x[0]-a*t+c;
5 Float shift = -2*floor((x0 +1)/2);
6 Float xs = x0 + shift;
7 check_macro (xs >= -1 && xs <= 1, "invalid xs="<<xs);
8 return a + b*h0 (point(xs));
9 }

10 harten (Float t1=0, Float a1=1, Float b1=0.5, Float c1=0):
11 h0(b1*t1), t(t1), a(a1), b(b1), c(c1) {}
12 Float M() const { constexpr Float pi = acos (-1.0); return sqr(pi)*b; }
13 Float min() const { return a-b; }
14 Float max() const { return a+b; }
15 protected:
16 harten0 h0;
17 Float t, a, b, c;
18 };
19 using u_init = harten;
20 using g = harten;

Example file 1.5: harten_show.cc
1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "harten.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh (omega , argv [2]);
9 size_t nmax = (argc > 3) ? atoi(argv [3]) : 1000;

10 Float tf = (argc > 4) ? atof(argv [4]) : 2.5;
11 Float a = (argc > 5) ? atof(argv [5]) : 1;
12 Float b = (argc > 6) ? atof(argv [6]) : 0.5;
13 Float c = (argc > 7) ? atof(argv [7]) : 0;
14 branch even("t","u");
15 for (size_t n = 0; n <= nmax; ++n) {
16 Float t = n*tf/nmax;
17 field pi_h_u = interpolate (Xh, harten(t,a,b,c));
18 dout << even(t,pi_h_u);
19 }
20 }

file://localhost/usr/share/doc/rheolef-doc/examples/harten.icc
file://localhost/usr/share/doc/rheolef-doc/examples/harten_show.cc

16 Rheolef version 6.7 update 24 March 2016

The included file ‘harten0.icc’ is not shown here by is available in the example directory.

Comments

Notice that the constant M , used by the limiter in (1.4), can be explicitly computed for this
solution: M = βπ2.
The animation of this exact solution is performed by the following commands:

make harten_show
mkgeo_grid -e 2000 -a -1 -b 1 > line2.geo
./harten_show line2 P1 1000 2.5 > line2-exact.branch
branch line2-exact -gnuplot

Fig. 1.5 shows the solution u for α = 1, β = 1/2 and γ = 0. It is regular until t = 2/π (Fig. 1.5.c)
and then develops a chock for t > 2/π (Fig. 1.5.d). After its apparition, this chock interacts with
the expansion wave in] − 1, 1[: this brings about a fast decay of the solution (Figs. 1.5.e and f).
Fig. 1.5 plots also a numerical solution: its computation is the aim of the next section.

1.3.2 Numerical resolution

When replacing the periodic boundary condition with a inflow one, associated with the boundary
data g, we choose g to be the value of the exact solution of the problem with periodic boundary
conditions: g(t, x) = α+ w(βt, x− αt) for x ∈ {−1, 1}.

Rheolef version 6.7 update 24 March 2016 17

Example file 1.6: burgers_dg.cc
1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "harten.icc"
5 #include "burgers.icc"
6 #include "burgers_flux_godunov.icc"
7 #include "runge_kutta_ssp.icc"
8 int main(int argc , char**argv) {
9 environment rheolef (argc , argv);

10 geo omega (argv [1]);
11 space Xh (omega , argv [2]);
12 Float cfl = 1;
13 limiter_option_type lopt;
14 size_t nmax = (argc > 3) ? atoi(argv [3]) : numeric_limits <size_t >:: max();
15 Float tf = (argc > 4) ? atof(argv [4]) : 2.5;
16 size_t p = (argc > 5) ? atoi(argv [5]) : pmax;
17 lopt.M = (argc > 6) ? atoi(argv [6]) : u_init ().M();
18 if (nmax == numeric_limits <size_t >:: max ()) {
19 nmax = floor (1+tf/(cfl*omega.hmin ()));
20 }
21 Float delta_t = tf/nmax;
22 form_option_type fopt;
23 fopt.invert = true;
24 trial u (Xh); test v (Xh);
25 form inv_m = integrate (u*v, fopt);
26 vector <field > uh(p+1, field(Xh ,0));
27 uh[0] = interpolate (Xh, u_init ());
28 branch even("t","u");
29 dout << catchmark("delta_t") << delta_t << endl
30 << even(0,uh [0]);
31 for (size_t n = 1; n <= nmax; ++n) {
32 for (size_t i = 1; i <= p; ++i) {
33 uh[i] = 0;
34 for (size_t j = 0; j < i; ++j) {
35 field lh =
36 - integrate (dot(compose(f,uh[j]),grad_h(v)))
37 + integrate ("internal_sides",
38 compose (phi , normal(), inner(uh[j]), outer(uh[j]))* jump(v))
39 + integrate ("boundary",
40 compose (phi , normal(), uh[j], g(n*delta_t))*v);
41 uh[i] += alpha[p][i][j]*uh[j] - delta_t*beta[p][i][j]*(inv_m*lh);
42 }
43 uh[i] = limiter(uh[i], g(n*delta_t)(point (-1)), lopt);
44 }
45 uh[0] = uh[p];
46 dout << even(n*delta_t ,uh[0]);
47 }
48 }

Comments

The Runge-Kutta time discretization combined with the discontinuous Galerkin space discretiza-
tion is implemented for this test case.
The P0 approximation is performed by the following commands:

make burgers_dg
mkgeo_grid -e 200 -a -1 -b 1 > line2-200.geo
./burgers_dg line2-200.geo P0 1000 2.5 > line2-200-P0.branch
branch line2-200-P0.branch -gnuplot

The two last commands compute the P0 approximation of the solution, as shown on Fig. 1.5.
Observe the robust behavior of the solution at the vicinity of the chock. By replacing P0 by P1d
in the previous commands, we obtain the P1-discontinuous approximation.

file://localhost/usr/share/doc/rheolef-doc/examples/burgers_dg.cc

18 Rheolef version 6.7 update 24 March 2016

./burgers_dg line2-200.geo P1d 1000 2.5 > line2-200-P1d.branch
branch line2-200-P1d.branch -gnuplot

Fig. 1.6 plots the error vs h for k = 0 and k = 1. Fig. 1.6.a plots in a time interval [0, T] with
T = 1/π, before the chock that occurs at t = 2/π. In that interval, the solution is regular and the
error approximation behaves as O(hk+1). The time interval has been chosen sufficiently small for
the error to depend only upon h. Fig. 1.6.b plots in a larger time interval [0, T] with T = 5/2,
that includes the chock. Observe that the error behaves as O(h) for both k = 0 and 1. This is
optimal when k = 0 but not when k = 1. This is due to the loss of regularity of the exact solution
that presents a discontinuity; A similar observation can be found in [26], table 4.1.

Rheolef version 6.7 update 24 March 2016 19

0.5

1

1.5

−1 0 1

u(t, x) (a) t = 0

x

0.5

1

1.5

−1 0 1

(b) t = 1/2

x

exact
P0

0.5

1

1.5

−1 0 1

(c) t = 2/π

x

exact
P0

0.5

1

1.5

−1 0 1

u(t, x) (d) t = 0, 75

x

exact
P0

0.5

1

1.5

−1 0 1

u(t, x) (e) t = 1

x

exact
P0

0.5

1

1.5

−1 0 1

u(t, x) (f) t = 1.75

x

exact
P0

Figure 1.5: Harten’s exact solution of the Burgers equation (α = 1, β = 1/2, γ = 0). Comparison
with the P0 appromation (h = 1/100, RK-SSP(3)).

20 Rheolef version 6.7 update 24 March 2016

10−5

10−4

10−3

10−2

10−1

10−3 10−2 10−1

‖u− uh‖L∞(0,T ;L1)

(a) T = 2/π

0.96

1.9

h

k = 0
k = 1

10−3

10−2

10−1

10−3 10−2 10−1

‖u− uh‖L∞(0,T ;L1)

(b) T = 5/2

0.85

1

h

k = 0
k = 1

Figure 1.6: Burgers equation: error between the P0 approximation and the exact solution of the
Harten’s problem (α = 1, β = 1/2, γ = 0): (a) before chock, with T = 1/pi; (b) after chock, with
T = 5/2.

Chapter 2

Scalar second-order problems

2.1 The Poisson problem with Dirichlet boundary conditions

The Poisson problem with non-homogeneous Dirichlet boundary conditions has been already in-
troduced in volume 1, section 2.1, page 27:

(P): find u, defined in Ω, such that

−∆u = f in Ω

u = g on ∂Ω

where f and g are given.
The discontinuous finite element space is defined by:

Xh = {vh ∈ L2(Ω); vh|K ∈ Pk, ∀K ∈ Th}

where k > 1 is the polynomial degree. As elements of Xh do not belongs to H1(Ω), due to
discontinuities at inter-elements, we introduce the broken Sobolev space:

H1(Th) = {v ∈ L2(Ω); v|K ∈ H1(K), ∀K ∈ Th}

such that Xh ⊂ H1(Th). We introduce the folowing bilinear form ah(., .) and linear for lh(.),
defined for all u, v ∈ H1(Th) by (see e.g. [11, p. 125 and 127], eqn. (4.12)):

ah(u, v) =

∫

Ω

∇hu.∇hv dx+
∑

S∈Sh

∫

S

(ηs [[u]] [[v]]− {{∇hu.n}} [[v]]− [[u]] {{∇hv.n}}) ds (2.1)

lh(v) =

∫

Ω

f u dx+

∫

∂Ω

(ηs g v − g∇hv.n) ds (2.2)

The last term involves a sum over Sh, the set of all sides of the mesh Th, i.e. the internal sides
and the boundary sides. By convenience, the definition of the jump and average are extended to
all boundary sides as [[u]] = {{u}} = u. Notice that, as for the previous transport problem, the
Dirichlet boundary condition u = g is weakly imposed on ∂Ω via the integrals on the boundary.
Finally, ηs > 0 is a stabilization parameter on a side S. The stabilization term associated to ηs is
present in order to achieve coercivity: it penalize interface and boundary jumps. A common choice
is ηs = β h−1

s where β > 0 is a constant and hs is a local length scale associated to the current side
S. One drawnback to this choice is that it requires the end user to specify the numerical constant
β. From one hand, if the value of this parameter is not sufficiently large, the form ah(., .) is not
coercive and the approximate solution develops instabilities an do not converge [12]. From other
hand, if the value of this parameter is too large, its affect the overall efficiency of the iterative
solver of the linear system: the spectral condition number of the matrix associated to ah(., .)

21

22 Rheolef version 6.7 update 24 March 2016

grows linearly with this paramater [4]. An explicit choice of penalty parameter is proposed in [20]:
ηs = β $s where β = (k + 1)(k + d)/d and

$s =

meas(∂K)

meas(K)
when S = K ∩ ∂Ω is a boundary side

max

(
meas(∂K0)

meas(K0)
,

meas(∂K1)

meas(K1)

)
when S = K0 ∩K1 is an internal side

Notice that $s scales as h−1
s . Now, the computation of the penalty parameter is fully automatic

and the convergence of the method is always guaranted to converge. Moreover, this choice has
been founded to be sharp and it preserves the optimal efficiency of the iterative solvers. Finally,
the discrete variational formulation writes:

(FV)h: find uh ∈ Xh such that

ah(uh, vh) = lh(vh), ∀vh ∈ Xh

The following code implement this problem in the Rheolef environment.

Example file 2.1: dirichlet_dg.cc
1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "cosinusprod_laplace.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh (omega , argv [2]);
9 size_t d = omega.dimension ();

10 size_t k = Xh.degree ();
11 Float beta = (k+1)*(k+d)/d;
12 trial u (Xh); test v (Xh);
13 form a = integrate (dot(grad_h(u),grad_h(v)))
14 + integrate ("sides", beta*penalty ()* jump(u)*jump(v)
15 - jump(u)* average(dot(grad_h(v),normal ()))
16 - jump(v)* average(dot(grad_h(u),normal ())));
17 field lh = integrate (f(d)*v)
18 + integrate ("boundary", beta*penalty ()*g(d)*v
19 - g(d)*dot(grad_h(v),normal ()));
20 solver sa (a.uu());
21 field uh(Xh);
22 uh.set_u () = sa.solve(lh.u());
23 dout << uh;
24 }

Comments

The penalty() pseudo-function implements the computation of $s in Rheolef. The right-hand
side f and g are given by (2.1), volume 1, page 28. In that case, the exact solution is known.
Running the one-dimensional case writes:

make dirichlet_dg
mkgeo_grid -e 10 > line.geo
./dirichlet_dg line P1d | field -
./dirichlet_dg line P2d | field -

Fig. 2.1 plots the one-dimensional solution when k = 1 for two meshes. Observe that the jumps at
inter-element nodes decreases very fast with mesh refinement and are no more perceptible on the
plots. Recall that the Dirichlet boundary conditions at x = 0 and x = 1 is only weakly imposed:
the corresponding jump at the boundary is also not perceptible.
The two-dimensional case writes:

file://localhost/usr/share/doc/rheolef-doc/examples/dirichlet_dg.cc

Rheolef version 6.7 update 24 March 2016 23

−1

0

1

0 0.5 1

h = 1/10

x

u(x)
uh(x)

−1

0

1

0 0.5 1

h = 1/20

x

u(x)
uh(x)

Figure 2.1: The discontinuous Galerkin method for the Poisson problem when k = 1 and d = 1.

mkgeo_grid -t 10 > square.geo
./dirichlet_dg square P1d | field -elevation -
./dirichlet_dg square P2d | field -elevation -

and the three-dimensional one

mkgeo_grid -T 10 > cube.geo
./dirichlet_dg cube P1d | field -
./dirichlet_dg cube P2d | field -

Error analysis

The space H1(Th) is equiped with the norm ‖.‖1,h, defined for all v ∈ H1(Th by [11, p. 128]:

‖v‖21,h = ‖∇hv‖20,Ω +
∑

S∈Sh

∫

S

h−1
s [[v]]2 ds

The code cosinusprod_error_dg.cc compute the error in these norms. This code it is not listed
here but is available in the Rheolef example directory. The computation of the error writes:

make cosinusprod_error_dg
./dirichlet_dg square P1d | cosinusprod_error_dg

Fig. 2.2 plots the error u − uh in L2, L∞ and the ‖.‖1,h norms. The L2 and L∞ error norms
behave as O

(
hk+1

)
for all k > 0, while the ‖.‖1,h one behaves as O

(
hk
)
, which is optimal.

2.2 The Helmholtz problem with Neumann boundary condi-
tions

The Poisson problem with non-homogeneous Neumann boundary conditions has been already
introduced in volume 1, section 2.2, page 35:

(P): find u, defined in Ω, such that

u−∆u = f in Ω

∂u

∂n
= g on ∂Ω

24 Rheolef version 6.7 update 24 March 2016

10−15

10−10

10−5

1

10−2 10−1

‖u− uh‖0,Ω

2 = k + 1

5 = k + 1

h

k = 1
k = 2
k = 3
k = 4

10−15

10−10

10−5

1

10−2 10−1

‖u− uh‖∞,Ω

2 = k + 1

5 = k + 1

h

k = 1
k = 2
k = 3
k = 4

10−10

10−5

1

10−2 10−1

‖u− uh‖1,h
1 = k

4 = k

h

k = 1
k = 2
k = 3
k = 4

Figure 2.2: The discontinuous Galerkin method for the Poisson problem: convergence when d = 2.

where f and g are given. We introduce the folowing bilinear form ah(., .) and linear for lh(.),
defined for all u, v ∈ H1(Th) by (see e.g. [11, p. 127], eqn. (4.16)):

ah(u, v) =

∫

Ω

(u v +∇hu.∇hv) dx (2.3)

+
∑

S∈S
(i)
h

∫

S

(β$s [[u]] [[v]]− {{∇hu.n}} [[v]]− [[u]] {{∇hv.n}}) ds (2.4)

lh(v) =

∫

Ω

f u dx+

∫

∂Ω

g v ds (2.5)

Let us comment the changes between these forms and those used for the Poisson problem with
Dirichlet boundary conditions. The Poisson operator −∆ has been replaced by the Helmholtz one
I −∆ in order to have an unique solution. Remark also that the sum is performed in (2.1) for all
internal sides in S

(i)
h , while, in (2.1), for Dirichlet boundary conditions, it was for all sides in Sh,

i.e. for both boundary and internal sides. Also, the right-hand-side linear form lh(.). do no more
involves any sum over sides.
Finally, the discrete variational formulation writes:

(FV)h: find uh ∈ Xh such that

ah(uh, vh) = lh(vh), ∀vh ∈ Xh

The following code implement this problem in the Rheolef environment.

Rheolef version 6.7 update 24 March 2016 25

Example file 2.2: neumann_dg.cc
1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "sinusprod_helmholtz.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh (omega , argv [2]);
9 size_t d = omega.dimension ();

10 size_t k = Xh.degree ();
11 Float beta = (k+1)*(k+d)/d;
12 trial u (Xh); test v (Xh);
13 form a = integrate (u*v + dot(grad_h(u),grad_h(v)))
14 + integrate ("internal_sides",
15 beta*penalty ()* jump(u)*jump(v)
16 - jump(u)* average(dot(grad_h(v),normal ()))
17 - jump(v)* average(dot(grad_h(u),normal ())));
18 field lh = integrate (f(d)*v) + integrate ("boundary", g(d)*v);
19 solver sa (a.uu());
20 field uh(Xh);
21 uh.set_u () = sa.solve(lh.u());
22 dout << uh;
23 }

Comments

The right-hand side f and g are given by (2.2), volume 1, page 28. In that case, the exact solution
is known. Running the program is obtained from the non-homogeneous Dirichlet case, by replacing
dirichlet_dg by neumann_dg.

2.3 Nonlinear scalar hyperbolic problems with diffusion

A time-dependent nonlinear second order problem with nonlinear first order dominated terms
problem writes:

(P): find u, defined in]0, T [×Ω, such that

∂u

∂t
+ div f(u)− ε∆u = 0 in]0, T [×Ω (2.6a)

u(t=0) = u0 in Ω (2.6b)
u = g on]0, T [×∂Ω (2.6c)

where ε > 0, T > 0, Ω ⊂ Rd, d = 1, 2, 3 and the initial condition u0 being known. The function
f : R −→ Rd is also known and supposed to be continuously differentiable. The initial data u0,
defined in Ω, and the boundary one, g, defined on ∂Ω are given.
Comparing (2.6a)-(2.6c) with the non-diffusive case (1.1a)-(1.1c) page 10, the second order term
has been added in (2.6a) and the upstrem boundary condition has been replaced by a Dirichlet
one (2.6c).

2.4 Example: the Burgers equation with diffusion

2.4.1 Problem statement and its exact solution

Our model problem in this chapter is the one-dimensional Burgers equation. It was introduced in
section 1.3, page 14 with the choice f(u) = u2/2, for all u ∈ R. Equation (2.6a) admits an exact

file://localhost/usr/share/doc/rheolef-doc/examples/neumann_dg.cc

26 Rheolef version 6.7 update 24 March 2016

0

1

2

−1 0 1

u(t, x)

x

t = 0
t = 1

Figure 2.3: An exact solution for the Burgers equation with diffusion (ε = 10−1, x0 = −1/2).

solution

u(t, x) = 1− tanh

(
x− x0 − t

2ε

)
(2.7)

Example file 2.3: burgers_diffusion_exact.icc
1 struct u_exact {
2 Float operator () (const point& x) const {
3 return 1 - tanh((x[0]-x0-t)/(2* epsilon)); }
4 u_exact (Float e1 , Float t1=0) : epsilon(e1), t(t1), x0(-0.5) {}
5 Float M() const { return 0; }
6 Float epsilon , t, x0;
7 };
8 using u_init = u_exact;
9 using g = u_exact;

The solution is represente on Fig. 2.3. Here x0 represent the position of the front at t = 0 and ε
is a characteristic width of the front. The initial and boundary condition are choosen such that
u(t, x) is the solution of (2.6a)-(2.6c).
Fig. 2.4.a plots the error versus ∆t for the semi-implicit scheme when k = 1 and 2, and for
h = 2/50. The time step for which the error becomes independent upon ∆t and depends only
upon h is of about ∆t = 10−3 when k = 1 and of about 10−5 when k = 2. This approach is clearly
inefficient for hight order polynomial k and a hiher order time scheme is required.
Fig. 2.4.b plots the error versus ∆t for the Runge-Kutta semi-implicit scheme with p = 3, k = 1
and h = 2/200. The scheme is clearly only first-order, which is still unexpected. More work is
required...

2.4.2 Space discretization

The discontinuous finite element space is defined by:

Xh = {vh ∈ L2(Ω); vh|K ∈ Pk, ∀K ∈ Th}

where k > 1 is the polynomial degree. As elements of Xh do not belongs to H1(Ω), due to
discontinuities at inter-elements, we introduce the broken Sobolev space:

H1(Th) = {v ∈ L2(Ω); v|K ∈ H1(K), ∀K ∈ Th}

file://localhost/usr/share/doc/rheolef-doc/examples/burgers_diffusion_exact.icc

Rheolef version 6.7 update 24 March 2016 27

10−5

10−4

10−3

10−2

10−1

10−6 10−5 10−4 10−3 10−2 10−1

‖u− uh‖L∞(0,T ;L2)

(a) k = 1, h = 2/50

1

∆t

k = 1
k = 2

10−5

10−4

10−3

10−2

10−1

10−5 10−4 10−3 10−2 10−1

‖u− uh‖L∞(0,T ;L2)

(b) k = 1, h = 2/400

1

2

3

∆t

p = 1
p = 2
p = 3

Figure 2.4: Convergence of the first order semi-implicit scheme for the Burgers equation with
diffusion (ε = 0.1, T = 1). (a) first order semi-implicit scheme ; (b) Runge-Kutta semi-implicit
scheme with p = 3.

such that Xh ⊂ H1(Th). As for the Dirichlet problem, introduce the folowing bilinear form ah(., .)
and linear for lh(.), defined for all u, v ∈ H1(Th) by (see e.g. [11, p. 125 and 127], eqn. (4.12)):

ah(u, v) =

∫

Ω

∇hu.∇hv dx+
∑

S∈Sh

∫

S

(ηs [[u]] [[v]]− {{∇hu.n}} [[v]]− [[u]] {{∇hv.n}}) ds (2.8)

`h(v) =

∫

∂Ω

(ηs g v − g∇hv.n) ds (2.9)

The semi-discrete problem writes in variational form [11, p. 100]:
(P)h: find uh ∈ C1([0, T], Xh) such that

∫

Ω

∂uh
∂t

vh dx

∫

Ω

Gh(uh) vh dx+ ε ah(uh, vh) = ε `h(vh), ∀vh ∈ Xh

uh(t=0) = πh(u0)

where Gh has been introduced in (1.2), page 11.

2.4.3 Time discretization

Explicit Runge-Kutta scheme is possible for this problem but it leads to an excessive Courant-
Friedrichs-Levy condition for the time step ∆t, that is required to be lower than an upper bound
that varies in O(h2). The idea here is to continue to explicit the first order nonlinearr terms and
implicit the linear second order terms. Semi-implicit second order Runge-Kutta scheme was first
introduced in 1997 by Ascher, Ruuth and Spiteri [1] and then extended in 2001 to third and fourth
order by Calvo, de Frutos and Novo [2]. In 2015, Wang, Shu and Zhang [24, 25] applied it in the
context of the discontinuous Galerkin method. The finite dimensional problem can be rewritten
as

(P)h: find uh ∈ C1([0, T], Xh) such that

∂uh
∂t

+Gh(t, uh) +Ah(t, uh) = 0, ∀t ∈]0, T [

uh(t=0) = πh(u0)

28 Rheolef version 6.7 update 24 March 2016

where Gh has been introduced in (1.2), page 11 and Ah denotes the diffusive term. The semi-
implicit Runge-Kutta scheme with p > 0 intermediate steps writes at time step tn:

un,0h = unh (2.10a)

un,ih = unh −∆t

i∑

j=1

αi,jAh

(
tn,j , u

n,j
h

)
−∆t

i−1∑

j=0

α̃i,jGh

(
tn,j , u

n,j
h

)
, i = 1, . . . , p(2.10b)

un+1
h = unh −∆t

p∑

i=1

βiAh

(
tn,i, u

n,i
h

)
−∆t

p∑

i=0

β̃iGh

(
tn,i, u

n,i
h

)
(2.10c)

where
(
un,ih

)
16i6p

are the p > 1 intermediate states, tn,i = tn + γi∆t, γi =
∑i
j=1 αi,j =

∑i−1
j=0 α̃i,j ,

and (αi,j)06i,j6p, (α̃i,j)06i,j6p, (βi)06i6p and (β̃i)06i6p are the coefficients of the scheme [1,2,25].
At each time step, have to solve p linear systems. From (2.10b) we get for all i = 1, . . . , p:

(I + ∆t αi,iAh (tn,i))u
n,i
h = unh −∆t

i−1∑

j=1

αi,jAh

(
tn,j , u

n,j
h

)
−∆t

i−1∑

j=0

α̃i,jGh

(
tn,j , u

n,j
h

)

Notice that when the matrix coefficients of Ah(t, .) are indepencdent of t, the matrix involved on
the right-hand-side of the previous equation can be factored one time for all.

Rheolef version 6.7 update 24 March 2016 29

Example file 2.4: burgers_diffusion_dg.cc
1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "burgers.icc"
5 #include "burgers_flux_godunov.icc"
6 #include "runge_kutta_semiimplicit.icc"
7 #include "burgers_diffusion_exact.icc"
8 #undef NEUMANN
9 #include "burgers_diffusion_operators.icc"

10 int main(int argc , char**argv) {
11 environment rheolef (argc , argv);
12 geo omega (argv [1]);
13 space Xh (omega , argv [2]);
14 size_t k = Xh.degree ();
15 Float epsilon = (argc > 3) ? atof(argv [3]) : 0.1;
16 size_t nmax = (argc > 4) ? atoi(argv [4]) : 500;
17 Float tf = (argc > 5) ? atof(argv [5]) : 1;
18 size_t p = (argc > 6) ? atoi(argv [6]) : min(k+1,rk::pmax);
19 Float delta_t = tf/nmax;
20 size_t d = omega.dimension ();
21 Float beta = (k+1)*(k+d)/d;
22 trial u (Xh); test v (Xh);
23 form m = integrate (u*v);
24 form_option_type fopt;
25 fopt.invert = true;
26 form inv_m = integrate (u*v, fopt);
27 form a = epsilon *(
28 integrate (dot(grad_h(u),grad_h(v)))
29 #ifdef NEUMANN
30 + integrate ("internal_sides",
31 #else // NEUMANN
32 + integrate ("sides",
33 #endif // NEUMANN
34 beta*penalty ()* jump(u)*jump(v)
35 - jump(u)* average(dot(grad_h(v),normal ()))
36 - jump(v)* average(dot(grad_h(u),normal ()))));
37 vector <solver > sc (p+1);
38 for (size_t i = 1; i <= p; ++i) {
39 form ci = m + delta_t*rk:: alpha[p][i][i]*a;
40 sc[i] = solver(ci.uu());
41 }
42 vector <field > uh(p+1, field(Xh ,0));
43 uh[0] = interpolate (Xh, u_init(epsilon));
44 branch even("t","u");
45 dout << catchmark("epsilon") << epsilon << endl
46 << even(0,uh [0]);
47 for (size_t n = 0; n < nmax; ++n) {
48 Float tn = n*delta_t;
49 Float t = tn + delta_t;
50 field uh_next = uh[0] - delta_t*rk:: tilde_beta[p][0]*(inv_m*gh(epsilon , tn , uh[0], v));
51 for (size_t i = 1; i <= p; ++i) {
52 Float ti = tn + rk:: gamma[p][i]* delta_t;
53 field rhs = m*uh[0] - delta_t*rk:: tilde_alpha[p][i][0]*gh(epsilon , tn, uh[0], v);
54 for (size_t j = 1; j <= i-1; ++j) {
55 Float tj = tn + rk:: gamma[p][j]* delta_t;
56 rhs -= delta_t *(rk::alpha[p][i][j]*(a*uh[j] - lh(epsilon ,tj,v))
57 + rk:: tilde_alpha[p][i][j]*gh(epsilon , tj , uh[j], v));
58 }
59 rhs += delta_t*rk:: alpha[p][i][i]*lh (epsilon , ti, v);
60 uh[i].set_u () = sc[i].solve (rhs.u());
61 uh_next -= delta_t *(inv_m *(rk::beta[p][i]*(a*uh[i] - lh(epsilon ,ti ,v))
62 + rk:: tilde_beta[p][i]*gh(epsilon , ti, uh[i], v)));
63 }
64 uh_next = limiter(uh_next);
65 dout << even(tn+delta_t ,uh_next);
66 uh[0] = uh_next;
67 }
68 }

file://localhost/usr/share/doc/rheolef-doc/examples/burgers_diffusion_dg.cc

30 Rheolef version 6.7 update 24 March 2016

Example file 2.5: burgers_diffusion_operators.icc
1 field lh (Float epsilon , Float t, const test& v) {
2 #ifdef NEUMANN
3 return field (v.get_vf_space (), 0);
4 #else // NEUMANN
5 size_t d = v.get_vf_space (). get_geo (). dimension ();
6 size_t k = v.get_vf_space (). degree ();
7 Float beta = (k+1)*(k+d)/d;
8 return epsilon*integrate ("boundary",
9 beta*penalty ()*g(epsilon ,t)*v

10 - g(epsilon ,t)*dot(grad_h(v),normal ()));
11 #endif // NEUMANN
12 }
13 field gh (Float epsilon , Float t, const field& uh , const test& v) {
14 return - integrate (dot(compose(f,uh),grad_h(v)))
15 + integrate ("internal_sides",
16 compose (phi , normal(), inner(uh), outer(uh))* jump(v))
17 + integrate ("boundary",
18 compose (phi , normal(), uh, g(epsilon ,t))*v);
19 }

Running the program

0

1

2

−1 0 1

u(t, x)

x

t = 0
t = 1

0

1

2

−1 0 1

u(t, x)

x

t = 0
t = 1

Figure 2.5: Burgers equation with a small diffusion (ε = 10−3). Third order in time semi-implicit
scheme with P1d element. (left) without limiter ; (right) with limiter.

Running the program writes with h = 2/400 and ε = 10−2 writes:

make burgers_diffusion_dg
mkgeo_grid -e 400 -a -1 -b 1 > line.geo
./burgers_diffusion_dg line P1d 0.01 1000 1 3 > line.branch
branch -gnuplot line.branch -umin -0.1 -umax 2.1

Decreasing ε = 10−3 leads to a sharper solution:

./burgers_diffusion_dg line P1d 0.001 1000 1 3 > line.branch
branch -gnuplot line.branch -umin -0.1 -umax 2.1

As mentioned in [25], the time step should be chosen smaller when ε decreases. The result is
shown on Fig. 2.5.left. Observe the oscillations near the smoothed shock when there is no limiter
while the value goes outside [0, 2]. Conversely, with a limiter (see Fig. 2.5.right) the approximate
solution is decreasing and there is no more oscilattions: the values remains in the range [0 : 2].

file://localhost/usr/share/doc/rheolef-doc/examples/burgers_diffusion_operators.icc

Part II

Fluids and solids computations

31

Chapter 3

The linear elasticity and the Stokes
problems

3.1 The linear elasticity problem

The elasticity problem (4.2) has been introduced in volume 1, section 4.1, page 51.
(P): find u such that

−div (λdiv(u).I + 2D(u)) = f in Ω

u = g on ∂Ω

where λ > −1 is a constant and f ,g given. This problem is a natural extension to vector-valued
field of the Poisson problem with Dirichlet boundary conditions.
The variational formulation writes:

(FV)h: find u ∈ V(g) such that

a(u,v) = lh(v), ∀v ∈ V(0)

where

V(g) = {v ∈ H1(Ω)d; v = g on ∂Ω}

a(u,v) =

∫

Ω

(λ div(u) div(v) + 2D(u) :D(v)) dx

l(v) =

∫

Ω

f .v dx

The discrete variational formulation writes:
(FV)h: find uh ∈ Xh such that

ah(uh, vh) = lh(vh), ∀vh ∈ Xh

where

Xh = {vh ∈ L2(Ω)d;vh|K ∈ P dk , ∀K ∈ Th}

ah(u,v) =

∫

Ω

(λ divh(u) divh(v) + 2Dh(u) :Dh(v)) dx

+
∑

S∈Sh

∫

S

(β$s[[u]].[[v]]− [[u]].{{λdivh(v)n + 2Dh(v)n}} − [[v]].{{λdivh(u)n + 2Dh(u)n}}) ds

lh(v) =

∫

Ω

f .v dx+

∫

∂Ω

g. (β$sv − λdivh(v)n− 2Dh(v)n) ds

33

34 Rheolef version 6.7 update 24 March 2016

where k > 1 is the polynomial degree in Xh.

Example file 3.1: elasticity_taylor_dg.cc
1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "taylor.icc"
5 int main(int argc , char**argv) {
6 environment rheolef (argc , argv);
7 geo omega (argv [1]);
8 space Xh (omega , argv[2], "vector");
9 Float lambda = (argc > 3) ? atof(argv [3]) : 1;

10 size_t d = omega.dimension ();
11 size_t k = Xh.degree ();
12 Float beta = (k+1)*(k+d)/d;
13 trial u (Xh); test v (Xh);
14 form a = integrate (lambda*div_h(u)*div_h(v) + 2*ddot(Dh(u),Dh(v)))
15 + integrate (omega.sides(),
16 beta*penalty ()*dot(jump(u),jump(v))
17 - lambda*dot(jump(u),average(div_h(v)* normal ()))
18 - lambda*dot(jump(v),average(div_h(u)* normal ()))
19 - 2*dot(jump(u),average(Dh(v)* normal ()))
20 - 2*dot(jump(v),average(Dh(u)* normal ())));
21 field lh = integrate (dot(f(),v))
22 + integrate (omega.boundary(),
23 beta*penalty ()*dot(g(),jump(v))
24 - lambda*dot(g(),average(div_h(v)* normal ()))
25 - 2*dot(g(),average(Dh(v)* normal ())));
26 solver sa (a.uu());
27 field uh(Xh);
28 uh.set_u () = sa.solve(lh.u());
29 dout << uh;
30 }

Comments

The data are given when d = 2 by:

g(x) =

(
− cos(πx0) sin(πx1)

sin(πx0) cos(πx1)

)
and f = 2π2g (3.1)

This choice is convenient since the exact solution is known u = g. This benmark solution was
proposed in 1923 by Taylor [23] in the context of the Stokes problem. Notice that the solution is
independent of λ since div(u) = 0.

Example file 3.2: taylor.icc
1 struct g {
2 point operator () (const point& x) const {
3 return point(-cos(pi*x[0])* sin(pi*x[1]),
4 sin(pi*x[0])* cos(pi*x[1])); }
5 g() : pi(acos(Float (-1.0))) {}
6 const Float pi;
7 };
8 struct f {
9 point operator () (const point& x) const { return 2*sqr(pi)*_g(x); }

10 f() : pi(acos(Float (-1.0))), _g() {}
11 const Float pi; g _g;
12 };

As the exact solution is known, the error can be computed. The code code
elasticity_taylor_error_dg.cc compute the error in L2, L∞ and energy norms. This code
it is not listed here but is available in the Rheolef example directory. The computation writes:

make elasticity_taylor_dg elasticity_taylor_error_dg

file://localhost/usr/share/doc/rheolef-doc/examples/elasticity_taylor_dg.cc
file://localhost/usr/share/doc/rheolef-doc/examples/taylor.icc

Rheolef version 6.7 update 24 March 2016 35

mkgeo_grid -t 10 > square.geo
./elasticity_taylor_dg square P1d | ./elasticity_taylor_error_dg
./elasticity_taylor_dg square P2d | ./elasticity_taylor_error_dg

3.2 The Stokes problem

Let us consider the Stokes problem for the driven cavity in Ω =]0, 1[d, d = 2, 3. The problem has
been introduced in volume 1, section 4.4, page 62.

(P): find u and p, defined in Ω, such that

− div(2D(u)) + ∇p = f in Ω,
− divu = 0 in Ω,

u = g on ∂Ω

where f and g are given. This problem is the extension to divergence free vector fields of the
elasticity problem. The variational formulation writes:

(V F)h find u ∈ V(g) and p ∈ L2(Ω) such that:

a(u,v) + b(v, p) = l(v), ∀v ∈ V(0),
b(u, q) = 0, ∀q ∈ L2(Ω)

(3.2)

where

V(g) = {v ∈ H1(Ω)d; v = g on ∂Ω}

a(u,v) =

∫

Ω

2D(u) :D(v) dx

b(u, q) = −
∫

Ω

div(u) q dx

l(v) =

∫

Ω

f .v dx

The discrete variational formulation writes:
(V F)h find uh ∈ Xh and ph ∈ Qh such that:

ah(uh,vh) + bh(vh, ph) = lh(vh), ∀vh ∈ Xh,
bh(uh, qh) − ch(ph, qh) = kh(q), ∀qh ∈ Qh. (3.3)

The discontinuous finite element spaces are defined by:

Xh = {vh ∈ L2(Ω)d;vh|K ∈ P dk , ∀K ∈ Th}
Qh = {qh ∈ L2(Ω)d; qh|K ∈ P dk , ∀K ∈ Th}

where k > 1 is the polynomial degree. Notice that velocity and presure are approximated by the
same polynomial order. This method was introduced by [9] and some recent theoretical results
can be founded in [10]. The forms are defined for all u, v ∈ H1(Th)d and q ∈ L2(Ω) by (see

36 Rheolef version 6.7 update 24 March 2016

e.g. [11, p. 249]):

ah(u,v) =

∫

Ω

2Dh(u) :Dh(v) dx

+
∑

S∈Sh

∫

S

(β$s[[u]].[[v]]− [[u]].{{2Dh(v)n}} − [[v]].{{2Dh(u)n}}) ds

bh(u, q) =

∫

Ω

u.∇hq dx−
∑

S∈S
(i)
h

∫

S

{{u}}.n [[q]] ds

ch(p, q) =
∑

S∈S
(i)
h

∫

S

hs [[p]] [[q]] ds

lh(v) =

∫

Ω

f .v ds+

∫

∂Ω

g. (β$s v − 2Dh(v)n) ds

kh(q) =

∫

∂Ω

g.n q ds

The stabilization form ch controls the pressure jump accross internal sides. This stabilization
term is necessary when using equal order polynomial approximation for velocity and pressure.
The definition of the forms is grouped in a subroutine: it will be reused later for the Navier-Stokes
problem.

Example file 3.3: stokes_dirichlet_dg.icc
1 void stokes_dirichlet_dg (const space& Xh, const space& Qh,
2 form& a, form& b, form& c, form& mp, field& lh, field& kh ,
3 quadrature_option_type qopt = quadrature_option_type ())
4 {
5 size_t k = Xh.degree ();
6 size_t d = Xh.get_geo (). dimension ();
7 Float beta = (k+1)*(k+d)/d;
8 trial u (Xh), p (Qh);
9 test v (Xh), q (Qh);

10 a = integrate (2* ddot(Dh(u),Dh(v)), qopt)
11 + integrate ("sides", beta*penalty ()* dot(jump(u),jump(v))
12 - 2*dot(jump(u),average(Dh(v)* normal ()))
13 - 2*dot(jump(v),average(Dh(u)* normal ())), qopt);
14 lh = integrate (dot(f(),v), qopt)
15 + integrate ("boundary", beta*penalty ()*dot(g(),v)
16 - 2*dot(g(),Dh(v)* normal ()), qopt);
17 b = integrate (dot(u,grad_h(q)), qopt)
18 + integrate ("internal_sides", - dot(average(u),normal ())* jump(q), qopt);
19 kh = integrate ("boundary", dot(g(),normal ())*q, qopt);
20 c = integrate ("internal_sides", h_local ()* jump(p)*jump(q), qopt);
21 mp = integrate (p*q, qopt);
22 }

A simple test program writes:

file://localhost/usr/share/doc/rheolef-doc/examples/stokes_dirichlet_dg.icc

Rheolef version 6.7 update 24 March 2016 37

Example file 3.4: stokes_taylor_dg.cc
1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "taylor.icc"
5 #include "stokes_dirichlet_dg.icc"
6 int main(int argc , char**argv) {
7 environment rheolef (argc , argv);
8 geo omega (argv [1]);
9 space Xh (omega , argv[2], "vector");

10 space Qh (omega , argv [2]);
11 form a, b, c, mp;
12 field lh , kh;
13 stokes_dirichlet_dg (Xh , Qh, a, b, c, mp, lh, kh);
14 field uh (Xh, 0), ph (Qh, 0);
15 solver_abtb stokes (a.uu(), b.uu(), c.uu(), mp.uu());
16 stokes.solve (lh.u(), kh.u(), uh.set_u(), ph.set_u ());
17 dout << catchmark("u") << uh
18 << catchmark("p") << ph;
19 }

Comments

The data are given when d = 2 by (3.1). This choice is convenient since the exact solution is
known u = g and p = 0. The code stokes_taylor_error_dg.cc compute the error in L2, L∞
and energy norms. This code it is not listed here but is available in theRheolef example directory.
The computation writes:

make stokes_taylor_dg stokes_taylor_error_dg
mkgeo_grid -t 10 > square.geo
./stokes_taylor_dg square P1d | ./stokes_taylor_error_dg
./stokes_taylor_dg square P2d | ./stokes_taylor_error_dg

3.3 The stationnary Navier-Stokes problem

3.3.1 Problem statemment

The Navier-Stokes problem has been already introduced in volume 1, section 3.3 page 37. Here
we consider the stationnary version of this problem. Let Re > 0 be the Reynolds number. The
problem writes:

(P): find u and p, defined in Ω, such that

Re (u.∇)u − div(2D(u)) + ∇p = f in Ω,
− divu = 0 in Ω,

u = g on ∂Ω

Notice that, when Re > 0, the problem is nonlinear, due to the inertia term u.∇u. When Re = 0
the problem reduces to the linear Stokes problem, presented in the previous section/
The variationnal formulation of this nonlinear problem writes:

(FV): find u ∈ V(g) and p ∈ L2(Ω) such that

Re t(u; u, v) + a(u,v) + b(v, p) = l(v), ∀v ∈ V(0),
b(u, q) = 0, ∀q ∈ L2(Ω)

where the space V(g) and forms a, b and l are given as in the previous section 3.2 for the Stokes
problem and the trilinear form t(.; ., .) is given by:

t(w; u, v) =

∫

Ω

((w.∇)u).v dx

file://localhost/usr/share/doc/rheolef-doc/examples/stokes_taylor_dg.cc

38 Rheolef version 6.7 update 24 March 2016

3.3.2 The discrete problem

Let

t(w; u, u) =

∫

Ω

(w.∇u).u dx

Observe that, for all u, w ∈ H1(Ω)d we have

∫

Ω

(w.∇u).u dx =

d−1∑

i,j=0

∫

Ω

ui wj ∂j(ui) dx

=

d−1∑

i,j=0

−
∫

Ω

ui ∂j(ui wj) dx+

∫

∂Ω

u2
i wj nj dx

=

d−1∑

i,j=0

−
∫

Ω

ui ∂j(ui)wj dx−
∫

Ω

u2
i ∂j(wj) dx+

∫

∂Ω

u2
i wj nj dx

= −
∫

Ω

(w.∇u).udx−
∫

Ω

div(w) |u|2 dx+

∫

∂Ω

w.n |u|2 ds (3.4)

Thus

t(w; u, u) =

∫

Ω

(w.∇u).udx = −1

2

∫

Ω

div(w) |u|2 dx+
1

2

∫

∂Ω

w.n |u|2 ds

When div(w) = 0, the trilinear form t(.; ., .) reduces to a boundary term: it is formaly skew-
symmetric. The skew-symmetry of t is an important property: let (v, q) = (u, p) as test functions
in (FV). We obtain:

a(u,u) = l(u)

In other words, we obtain the same energy balance as for the Stokes flow and inertia do not
contribute to the energy balance. This is an important property and we aim at obtaining the
same one at the discrete level. As the discrete solution uh is not exactly divergence free, following
Temam, we introduce the following modified trilinear form:

t∗(w; u, v) =

∫

Ω

(
(w.∇u) .v +

1

2
div(w)u.v

)
dx− 1

2

∫

∂Ω

(w.n)u.v ds, ∀u,v,w ∈ H1(Ω)d

This form integrates the non-vanishing terms and we have:

t∗(w; u, u) = 0, ∀u,w ∈ H1(Ω)d

When the discrete solution is not exactly divergence free, it is better to use t∗ than t.
The discontinuous finite element spaces Xh and Qh and forms ah, bh, ch, lh and kh are defined as
in the previous section. Let us introduce t∗h, the following discrete trilinear form, defined for all
uh,vh,wh ∈ Xh:

t∗h(wh; uh, vh) =

∫

Ω

(
(wh.∇huh) .vh +

1

2
divh(wh)uh.vh

)
dx− 1

2

∫

∂Ω

(wh.n)uh.vh ds

Notice that t∗h is similar to t∗: the gradient and divergence has been replaced by their broken
counterpart in the first term. As Xh 6⊂ H1(Ω)d, the skew-symmetry property is not expected to
be true at the discrete level. Then

t∗h(wh; uh, uh) =
∑

K∈Th

∫

K

(
(wh.∇uh) .uh +

1

2
div(wh) |uh|2

)
dx− 1

2

∫

∂Ω

(wh.n) |uh|2 ds

Rheolef version 6.7 update 24 March 2016 39

As the restriction of uh and wh to each K ∈ Th belongs to H1(K)d, we have, using a similar
integration by part:

∫

K

(wh.∇uh).uh dx = −1

2

∫

K

div(wh) |uh|2 dx+
1

2

∫

∂K

(wh.n) |uh|2 ds

Thus

t∗h(wh; uh, uh) =
1

2

∑

K∈Th

∫

∂K

(wh.n) |uh|2 ds− 1

2

∫

∂Ω

(wh.n) |uh|2 ds

The terms on boundary sides vanish while those on internal sides can be grouped:

t∗h(wh; uh, uh) =
1

2

∑

S∈S
(i)
h

∫

S

[[|uh|2wh]].nds

The jump term [[(uh.vh)wh]].n is not easily manageable and could be developed. A short compu-
tation shows that, for all scalar fields φ, ϕ we have on any internal side:

[[φϕ]] = [[φ]]{{ϕ}}+ {{φ}}[[ϕ]] (3.5)

{{φϕ}} = {{φ}}{{ϕ}}+
1

4
[[φ]][[ϕ]] (3.6)

Then

t∗h(wh; uh, uh) =
1

2

∑

S∈S
(i)
h

∫

S

(
{{wh}}.n [[|uh|2]] + [[wh]].n {{|uh|2}}

)
ds

=
∑

S∈S
(i)
h

∫

S

(
{{wh}}.n ([[uh]].{{uh}}) +

1

2
[[wh]].n {{|uh|2}}

)
ds

Thus, as expected, the skew-symmetry property is no more satisfied at the discrete level, due to
the jumps of the fields at the inter-element boundaries. Following the previous idea, we introduce
the following modified discrete trilinear form:

th(wh; uh, vh) = t∗h(wh; uh, vh)−
∑

S∈S
(i)
h

∫

S

(
{{wh}}.n ([[uh]].{{vh}}) +

1

2
[[wh]].n {{uh.vh}}

)
ds

=

∫

Ω

(
(wh.∇huh) .vh +

1

2
divh(wh)uh.vh

)
dx− 1

2

∫

∂Ω

(wh.n)uh.vh ds

−
∑

S∈S
(i)
h

∫

S

(
{{wh}}.n ([[uh]].{{vh}}) +

1

2
[[wh]].n {{uh.vh}}

)
ds (3.7)

This expression has been proposed by Pietro and Ern [10, p. 22], eqn (72) (see also [11, p. 272],
eqn (6.57)). The boundary term introduced in th may be compensated in the right-hand side:

l∗h(v) := lh(v)− Re

2

∫

∂Ω

(g.n)g.vh ds

Notice that the boundary term introduced in th is compensated in the right-hand side l∗h.

40 Rheolef version 6.7 update 24 March 2016

Example file 3.5: inertia.icc
1 template <class W, class U, class V>
2 form inertia (W w, U u, V v,
3 quadrature_option_type qopt = quadrature_option_type ())
4 {
5 return
6 integrate (dot(grad_h(u)*w,v) + 0.5* div_h(w)*dot(u,v), qopt)
7 + integrate ("boundary", - 0.5* dot(w,normal ())* dot(u,v), qopt)
8 + integrate ("internal_sides",
9 - dot(average(w),normal ())* dot(jump(u),average(v))

10 - 0.5* dot(jump(w),normal ())
11 *(dot(average(u),average(v)) + 0.25* dot(jump(u),jump(v))), qopt);
12 }
13 field inertia_fix_rhs (test v,
14 quadrature_option_type qopt = quadrature_option_type ())
15 {
16 return integrate("boundary", - 0.5* dot(g(),normal ())* dot(g(),v), qopt);
17 }

The discrete problem is
(FV)h: find uh ∈ Xh and p ∈ Qh such that

Re th(uh; uh, vh) + ah(uh,vh) + bh(vh, ph) = l∗h(vh), ∀vh ∈ Xh,
bh(uh, qh) − ch(ph, qh) = kh(q), ∀qh ∈ Qh (3.8)

The simplest approach for solving the discrete problem is to consider a fixed-point algorithm. The
sequence

(
u

(k)
h

)
k>0

is defined by reccurence as:

• k = 0: let u(0)
h ∈ Xh being known.

• k > 0: let u(k−1)
h ∈ Xh given. Find u

(k)
h ∈ Xh and p(k)

h ∈ Qh such that

Re th

(
u

(k−1)
h ; u

(k)
h , vh

)
+ ah

(
u

(k)
h ,vh

)
+ bh

(
vh, p

(k)
h

)
= l∗h(vh), ∀vh ∈ Xh,

bh

(
u

(k)
h , qh

)
− ch

(
p

(k)
h , qh

)
= kh(q), ∀qh ∈ Qh.

At each step k > 0, this algorithm involves a linear subproblem of Stokes-type.

file://localhost/usr/share/doc/rheolef-doc/examples/inertia.icc

Rheolef version 6.7 update 24 March 2016 41

Example file 3.6: navier_stokes_taylor_dg.cc
1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "taylor.icc"
5 #include "stokes_dirichlet_dg.icc"
6 #include "inertia.icc"
7 int main(int argc , char**argv) {
8 environment rheolef (argc , argv);
9 geo omega (argv [1]);

10 space Xh (omega , argv[2], "vector");
11 space Qh (omega , argv [2]);
12 Float Re = (argc > 3) ? atof(argv [3]) : 1;
13 size_t max_iter = (argc > 4) ? atoi(argv [4]) : 1;
14 form a, b, c, mp;
15 field lh , kh;
16 stokes_dirichlet_dg (Xh , Qh, a, b, c, mp, lh, kh);
17 field uh (Xh, 0), ph (Qh, 0);
18 solver_abtb stokes (a.uu(), b.uu(), c.uu(), mp.uu());
19 stokes.solve (lh.u(), kh.u(), uh.set_u(), ph.set_u ());
20 trial u (Xh); test v (Xh);
21 form a1 = a + Re*inertia (uh , u, v);
22 lh += Re*inertia_fix_rhs (v);
23 derr << "#k r as" << endl;
24 for (size_t k = 0; k < max_iter; ++k) {
25 solver_abtb stokes (a1.uu(), b.uu(), c.uu(), mp.uu());
26 stokes.solve (lh.u(), kh.u(), uh.set_u(), ph.set_u ());
27 form th = inertia (uh, u, v);
28 a1 = a + Re*th;
29 field rh = a1*uh + b.trans_mult(ph) - lh;
30 derr << k << " " << rh.max_abs () << " " << th(uh,uh) << endl;
31 }
32 dout << catchmark("Re") << Re << endl
33 << catchmark("u") << uh
34 << catchmark("p") << ph;
35 }

Comments

The data are given when d = 2 by (3.1). This choice is convenient since the exact solution is known
u = g and p = −(Re/4)(cos(2πx0)+cos(2πx1)). The code navier_stokes_taylor_error_dg.cc
compute the error in L2, L∞ and energy norms. This code it is not listed here but is available in
the Rheolef example directory. The computation writes:

make navier_stokes_taylor_dg navier_stokes_taylor_error_dg
./navier_stokes_taylor_dg square P1d 10 10 | ./navier_stokes_taylor_error_dg
./navier_stokes_taylor_dg square P2d 10 10 | ./navier_stokes_taylor_error_dg

3.3.3 A conservative variant

Remark the identity

div(u⊗ u) = (u.∇)u + div(u)u

The momentum conservation can be rewritten in conservative form and the problem writes:
(P̃): find u and p, defined in Ω, such that

div(Reu⊗ u− 2D(u)) + ∇p = f in Ω,
− divu = 0 in Ω,

u = g on ∂Ω

file://localhost/usr/share/doc/rheolef-doc/examples/navier_stokes_taylor_dg.cc

42 Rheolef version 6.7 update 24 March 2016

Notice the Green formulae (see volume 1, appendix A.2, page 147):
∫

Ω

div(u⊗ u).v dx = −
∫

Ω

(u⊗ u) :∇v dx+

∫

∂Ω

(u.n) (u.v) ds

The variationnal formulation is:
(F̃ V): find u ∈ V(g) and p ∈ L2(Ω) such that

Re t̃(u; u, v) + a(u,v) + b(v, p) = l̃(v), ∀v ∈ V(0),
b(u, q) = 0, ∀q ∈ L2(Ω)

where the forms t̃ and l̃h are given by:

t̃(w; u, v) = −
∫

Ω

(w ⊗ u) :∇v dx

l̃(v) = l(v)−Re
∫

∂Ω

(g.n) (g.v) ds

Notice that the right-hand side l̃ contains an additional term that compensates those comming
from the integration by parts. Then, with v = u:

t̃(w; u, u) = −
∫

Ω

(w ⊗ u) :∇udx

=

∫

Ω

div(w ⊗ u).u dx−
∫

∂Ω

(w ⊗ u) : (u⊗ n) dx

=

∫

Ω

(((u.∇)w).u + div(u) (u.w)) dx−
∫

∂Ω

(u.n) (u.w) dx

From an integration by part similar to (3.4):
∫

Ω

(u.∇w).u dx = −
∫

Ω

(u.∇u).w dx−
∫

Ω

div(u) (u.w) dx+

∫

∂Ω

(u.n) (u.w) ds

The term (u.∇w).u do not reapper after the integration by parts: instead, it appears (u.∇u).w.
Thus, the structure of the t̃ trilinear form do not permit a general skew-symmetry property as it
was the case for t. It requires the three arguments to be the same:

t̃(u; u, u) =

∫

Ω

(
((u.∇)u).u + div(u) |u|2

)
dx−

∫

∂Ω

(u.n) |u|2 dx

Using (3.4) with w = u leads to:
∫

Ω

((u.∇)u).udx = −1

2

∫

Ω

div(u) |u|2 dx+
1

2

∫

∂Ω

(u.n) |u|2 ds (3.9)

Then

t̃(u; u, u) =
1

2

∫

Ω

div(u) |u|2 dx− 1

2

∫

∂Ω

(u.n) |u|2 ds

When working with velocities that are not divergence-free, a possible modification of the trilinear
form t̃ is to consider

t̃∗(w; u, v) = t̃(w; u, v)− 1

2

∫

Ω

div(v) (u.w) dx+
1

2

∫

∂Ω

(v.n) (u.w) ds

= −
∫

Ω

(
(w ⊗ u) :D(v) +

1

2
div(v) (u.w)

)
dx+

1

2

∫

∂Ω

(v.n) (u.w) ds

Rheolef version 6.7 update 24 March 2016 43

Then we have

t̃∗(u; u, u) = 0, ∀u ∈ H1(Ω)d

The new variationnal formulation is:
(F̃ V)∗: find u ∈ V(g) and p̃ ∈ L2(Ω) such that

Re t̃∗(u; u, v) + a(u,v) + b(v, p̃) = l̃(v), ∀v ∈ V(0),
b(u, q) = 0, ∀q ∈ L2(Ω)

One can easily check that when (u, p̃) is a solution of (F̃ V)∗, then (u, p) is a solution of (F̃ V)
with p = p̃+Re|u|/2. The apparition of the kinetic energy term Re|u|/2 in the modified pressure
field p̃ is due to the introduction of the div(v) (u.w) term in the trilinear form t̃∗.
At the discrete level, let us define for all uh,vh,wh ∈ Xh:

t̃∗h(wh; uh, vh) = −
∫

Ω

(
(wh ⊗ uh) :∇hvh +

1

2
divh(vh) (uh.wh)

)
dx

+
1

2

∫

∂Ω

(vh.n) (uh.wh) ds

Notice that t̃∗h is similar to t̃∗: the gradient and divergence has been replaced by their broken
counterpart in the first term. As Xh 6⊂ H1(Ω)d, the skew-symmetry property is not expected to
be true at the discrete level. Then

t̃∗h(uh; uh, uh) = −
∫

Ω

(
(uh ⊗ uh) :∇huh +

1

2
divh(uh) |uh|2

)
dx+

1

2

∫

∂Ω

(uh.n) |uh|2 ds

Next, using (3.9) in each K, and then developing thanks to (3.5)-(3.6), we get

t̃∗h(uh; uh, uh) =
1

2

∫

∂Ω

(uh.n) |uh|2 ds− 1

2

∑

K∈Th

∫

∂K

(uh.n) |uh|2 ds

= −1

2

∑

S∈S
(i)
h

∫

S

[[(uh.n) |uh|2]] ds

= −1

2

∑

S∈S
(i)
h

∫

S

(
({{uh}}.n) [[|uh|2]] + ([[uh]].n) {{|uh|2}}

)
ds

= −
∑

S∈S
(i)
h

∫

S

(
({{uh}}.n) ({{uh}}.[[uh]]) +

1

2
([[uh]].n) {{|uh|2}}

)
ds

The idea is to integrate this term in the definition of a discrete t̃h. One of the possibilities is

t̃h(wh; uh, vh) = t̃∗h(wh; uh, vh) +
∑

S∈S
(i)
h

∫

S

(
({{uh}}.n) ({{wh}}.[[vh]]) +

1

2
{{uh.wh}} ([[vh]].n)

)
ds

= −
∫

Ω

(
(wh ⊗ uh) :∇hvh +

1

2
divh(vh) (uh.wh)

)
dx

+
1

2

∫

∂Ω

(vh.n) (uh.wh) ds

+
∑

S∈S
(i)
h

∫

S

(
({{uh}}.n) ({{wh}}.[[vh]]) +

1

2
{{uh.wh}} ([[vh]].n)

)
ds (3.10)

This expression was proposed by [10, p. 21], eqn (73) (see also [11, p. 282]) folling and original
idea introduced in [8].

44 Rheolef version 6.7 update 24 March 2016

Example file 3.7: inertia_cks.icc
1 form inertia (field w, trial u, test v,
2 quadrature_option_type qopt = quadrature_option_type ())
3 {
4 return
5 integrate (- dot(trans(grad_h(v))*w,u) - 0.5* div_h(v)*dot(u,w), qopt)
6 + integrate ("internal_sides",
7 dot(average(u),normal ())* dot(jump(v),average(w))
8 + 0.5* dot(jump(v),normal ())
9 *(dot(average(u),average(w)) + 0.25* dot(jump(u),jump(w))), qopt)

10 + integrate ("boundary", 0.5* dot(v,normal ())* dot(u,w), qopt);
11 }
12 field inertia_fix_rhs (test v,
13 quadrature_option_type qopt = quadrature_option_type ())
14 {
15 return integrate("boundary", -dot(g(),normal ())* dot(g(),v), qopt);
16 }

The discrete problem is
(F̃ V)h: find uh ∈ Xh and p̃ ∈ Qh such that

Re t̃h(uh; uh, vh) + ah(uh,vh) + bh(vh, p̃h) = l̃∗h(vh), ∀vh ∈ Xh,
bh(uh, qh) − ch(ph, qh) = kh(q), ∀qh ∈ Qh

A simple test program is obtained by replacing in navier_stokes_taylor_dg.cc the include
inertia.icc by inertia_cks.icc. The compilation and run are similar.

3.3.4 A Newton solver

The discrete problems (FV)h can be put in a compact form:

F (uh, ph) = 0

where F is defined in variationnal form:

〈F (uh, ph), (vh, qh)〉 =

(
Re th(uh; uh, vh) + ah(uh,vh) + bh(vh, ph) − l∗h(vh)

bh(uh, qh) − ch(ph, qh) − kh(q)

)

for all (vh, qh) ∈ Xh × Qh. Notices that, after some minor modifications in the definition of
F , this method could also applies for the locally conservative formulation (F̃ V)h. The previous
formulation is simply the variationnal expression of F (uh, ph) = 0. The Newton method defines
the sequence

(
u

(k)
h

)
k>0

by reccurence as:

• k = 0: let u(0)
h ∈ Xh being known.

• k > 0: let u(k−1)
h ∈ Xh given. Find δuh ∈ Xh and δph ∈ Qh such that

F ′
(
u

(k−1)
h , p

(k−1)
h

)
.(δuh, δph) = −F

(
u

(k−1)
h , p

(k−1)
h

)

and then defines
u

(k)
h = u

(k−1)
h + δuh and p

(k)
h = p

(k−1)
h + δph

At each step k > 0, this algorithm involves a linear subproblem involving the jacobian F ′ that is
definied by its variationnal form:

〈F ′
(
u

(k−1)
h , p

(k−1)
h

)
.(δuh, δph), (vh, qh)〉

=

(
Re (th(δuh; uh, vh) + th(uh; δuh, vh)) + ah(δuh,vh) + bh(vh, δph)

bh(δuh, qh) − ch(δph, qh)

)

file://localhost/usr/share/doc/rheolef-doc/examples/inertia_cks.icc

Rheolef version 6.7 update 24 March 2016 45

Example file 3.8: navier_stokes_taylor_newton_dg.cc
1 #include "rheolef.h"
2 using namespace rheolef;
3 using namespace std;
4 #include "taylor.icc"
5 #include "stokes_dirichlet_dg.icc"
6 #include "inertia.icc"
7 #include "navier_stokes_dg.h"
8 int main(int argc , char**argv) {
9 environment rheolef (argc , argv);

10 Float eps = numeric_limits <Float >:: epsilon ();
11 geo omega (argv [1]);
12 string approx = (argc > 2) ? argv [2] : "P1d";
13 Float Re = (argc > 3) ? atof(argv [3]) : 100;
14 Float tol = (argc > 4) ? atof(argv [4]) : eps;
15 size_t max_iter = (argc > 5) ? atoi(argv [5]) : 100;
16 string restart = (argc > 6) ? argv [6] : "";
17 navier_stokes_dg F (Re, omega , approx);
18 navier_stokes_dg :: value_type xh = F.initial (restart);
19 int status = damped_newton (F, xh , tol , max_iter , &derr);
20 dout << catchmark("Re") << Re << endl
21 << catchmark("u") << xh[0]
22 << catchmark("p") << xh[1];
23 return status;
24 }

Comments

The implementation of the Newton method follows the generic approach introduced in volume 1,
section 8.3, page 132. For that purpose we define a class navier_stokes_dg.

Example file 3.9: navier_stokes_dg.h
1 struct navier_stokes_dg {
2 typedef valarray <field > value_type;
3 typedef Float float_type;
4 navier_stokes_dg (Float Re, const geo& omega , string approx);
5 value_type initial (string restart) const;
6 value_type residue (const value_type& uh) const;
7 void update_derivative (const value_type& uh) const;
8 value_type derivative_solve (const value_type& mrh) const;
9 value_type derivative_trans_mult (const value_type& mrh) const;

10 Float space_norm (const value_type& uh) const;
11 Float dual_space_norm (const value_type& mrh) const;
12 Float Re;
13 space Xh , Qh;
14 quadrature_option_type qopt;
15 form a0 , b, c, mu, mp;
16 field lh0 , lh, kh;
17 solver smu , smp;
18 mutable form a1;
19 mutable solver_abtb stokes1;
20 };
21 #include "navier_stokes_dg1.icc"
22 #include "navier_stokes_dg2.icc"

The member functions of the class are defined in two separate files.

file://localhost/usr/share/doc/rheolef-doc/examples/navier_stokes_taylor_newton_dg.cc
file://localhost/usr/share/doc/rheolef-doc/examples/navier_stokes_dg.h

46 Rheolef version 6.7 update 24 March 2016

Example file 3.10: navier_stokes_dg1.icc
1 navier_stokes_dg :: navier_stokes_dg (
2 Float Re1 , const geo& omega , string approx)
3 : Re(Re1), Xh(), Qh(), qopt(), a0(), b(), c(), mu(), mp(), lh0(), lh(), kh(),
4 smu(), smp(), a1(), stokes1 ()
5 {
6 Xh = space (omega , approx , "vector");
7 Qh = space (omega , approx);
8 qopt.set_family(quadrature_option_type :: gauss);
9 qopt.set_order (2*Xh.degree ()+1);

10 stokes_dirichlet_dg (Xh , Qh, a0, b, c, mp, lh0 , kh , qopt);
11 trial u (Xh); test v (Xh);
12 lh = lh0 + Re*inertia_fix_rhs (v, qopt);
13 mu = integrate (dot(u,v), qopt);
14 smu = solver(mu.uu());
15 smp = solver(mp.uu());
16 }
17 navier_stokes_dg :: value_type
18 navier_stokes_dg :: initial (string restart) const {
19 value_type xh(2);
20 xh[0] = field (Xh, 0);
21 xh[1] = field (Qh, 0);
22 Float Re0 = 0;
23 if (restart == "") {
24 solver_abtb stokes0 (a0.uu(), b.uu(), c.uu(), mp.uu());
25 stokes0.solve (lh0.u(), kh.u(), xh[0]. set_u(), xh[1]. set_u ());
26 } else {
27 idiststream in (restart);
28 in >> catchmark("Re") >> Re0
29 >> catchmark("u") >> xh[0]
30 >> catchmark("p") >> xh[1];
31 check_macro (xh[1]. get_space () == Qh, "unexpected " << xh[0]. get_space (). stamp()
32 << " approximation in file \"" << restart << "\" (" << Xh.stamp () << " expected)");
33 }
34 derr << "# continuation: from Re=" << Re0 << " to " << Re << endl;
35 return xh;
36 }
37 navier_stokes_dg :: value_type
38 navier_stokes_dg :: residue (const value_type& xh) const {
39 trial u (Xh); test v (Xh);
40 form a = a0 + Re*inertia(xh[0], u, v, qopt);
41 value_type mrh (2);
42 mrh [0] = a*xh[0] + b.trans_mult(xh[1]) - lh;
43 mrh [1] = b*xh[0] - c*xh[1] - kh;
44 return mrh;
45 }
46 void navier_stokes_dg :: update_derivative (const value_type& xh) const {
47 trial u (Xh); test v (Xh);
48 a1 = a0 + Re*(inertia(xh[0], u, v, qopt) + inertia(u, xh[0], v, qopt));
49 stokes1 = solver_abtb (a1.uu(), b.uu(), c.uu(), mp.uu());
50 }
51 navier_stokes_dg :: value_type
52 navier_stokes_dg :: derivative_solve (const value_type& mrh) const {
53 value_type delta_xh (2);
54 delta_xh [0] = field (Xh , 0);
55 delta_xh [1] = field (Qh , 0);
56 stokes1.solve (mrh [0].u(), mrh [1].u(),
57 delta_xh [0]. set_u(), delta_xh [1]. set_u ());
58 return delta_xh;
59 }
60 navier_stokes_dg :: value_type
61 navier_stokes_dg :: derivative_trans_mult (const value_type& mrh) const {
62 value_type rh(2);
63 rh[0] = field (Xh);
64 rh[1] = field (Qh);
65 rh[0]. set_u() = smu.solve(mrh [0].u());
66 rh[1]. set_u() = smp.solve(mrh [1].u());
67 value_type mgh (2);
68 mgh [0] = a1.trans_mult(rh[0]) + b.trans_mult(rh[1]);
69 mgh [1] = b*rh[0] - c*rh[1];
70 return mgh;
71 }

file://localhost/usr/share/doc/rheolef-doc/examples/navier_stokes_dg1.icc

Rheolef version 6.7 update 24 March 2016 47

Example file 3.11: navier_stokes_dg2.icc
1 Float navier_stokes_dg :: space_norm (const value_type& xh) const {
2 return sqrt (mu(xh[0],xh[0]) + mp(xh[1],xh [1]));
3 }
4 Float navier_stokes_dg :: dual_space_norm (const value_type& mrh) const {
5 value_type rh(2);
6 rh[0] = field (Xh ,0);
7 rh[1] = field (Qh ,0);
8 rh[0]. set_u () = smu.solve(mrh [0].u());
9 rh[1]. set_u () = smp.solve(mrh [1].u());

10 return sqrt (dual(rh[0],mrh [0]) + dual(rh[1],mrh [1]));
11 }

make navier_stokes_taylor_newton_dg navier_stokes_taylor_error_dg
./navier_stokes_taylor_newton_dg square P2d 1000 | ./navier_stokes_taylor_error_dg

3.3.5 Application to the driven cavity benchmark

Example file 3.12: cavity_dg.icc
1 struct g {
2 point operator () (const point& x) const {
3 return point((abs(1-x[1]) < 1e-7) ? 1 : 0, 0, 0); }
4 };
5 struct f {
6 point operator () (const point& x) const { return point (0,0,0); }
7 };

The program navier_stokes_cavity_newton_dg.cc is obtained by replacing in
navier_stokes_taylor_newton_dg.cc the include taylor.icc by cavity_dg.icc that
defines the boundary conditions. The compilation and run are similar.

make navier_stokes_cavity_newton_dg streamf_cavity
./navier_stokes_cavity_newton_dg square P1d 500 > square.field
field -proj square.field -field | ./streamf_cavity | \

field -bw -n-iso-negative 10 -

10−10

10−5

100

0 5 10 15 20 25

∥∥∥r(n)h

∥∥∥
L∞

h = 1/40, k = 1

n

Re = 100
500
1000

Figure 3.1: The discontinuous Galerkin method for the Navier-Stokes problem on the driven cavity
benchmark when k = 1 and d = 2: convergence of the damped Newton algorithm.

file://localhost/usr/share/doc/rheolef-doc/examples/navier_stokes_dg2.icc
file://localhost/usr/share/doc/rheolef-doc/examples/cavity_dg.icc

48 Rheolef version 6.7 update 24 March 2016

3.3.6 Upwinding

The skew symmetry property is generalized to the requirement that th be non-dissipative (see [11,
p. 282], eqn (6.68)):

th(wh; uh, uh) > 0, ∀wh, uh ∈ Xh

A way to satisfy this property is to add an upwinding term in th:

t̆h(wh; uh, vh) := th(wh; uh, vh) + sh(wh; uh, vh)

with

sh(wh; uh, vh) =
1

2

∑

S∈S
(i)
h

∫

S

|{{wh}}.n| ([[uh]].[[vh]]) ds

We aim at using a Newton method. We replace th by its extension t̆h containing the upwind
terms in the definition of F , and then we compute its jacobian F ′. As the absolute value is
not differentiable, the functions sh, t̆h and then F are also not differentiable with respect to
wh. Nevertheless, the absolute value is convex and we can use some concets of the sudifferential
calculus. Let us introduce the multi-valued sign function:

sgn(x) =

{1} when x > 0
[−1, 1] when x = 0
{−1} when x < 0

Then, the subdifferential of the absolute value function is sgn(x) and for all δwh,wh, uh,vh ∈ Xh,
we define a generalization of the partial derivative as

∂sh
∂wh

(wh; uh, vh).(δwh) =
1

2

∑

S∈S
(i)
h

∫

S

sgn({{wh}}.n) ({{δwh}}.n) ([[uh]].[[vh]]) ds

Example file 3.13: inertia_upw.icc
1 #include "sgn.icc"
2 form inertia_upw (field w, trial u, test v,
3 quadrature_option_type qopt = quadrature_option_type ())
4 {
5 return integrate ("internal_sides",
6 0.5* abs(dot(average(w),normal ()))* dot(jump(u),jump(v)));
7 }
8 form d_inertia_upw (field w, trial dw, field u, test v,
9 quadrature_option_type qopt = quadrature_option_type ())

10 {
11 return integrate ("internal_sides",
12 0.5* compose (sgn , dot(average(w),normal ()))
13 *dot(average(dw),normal ())* dot(jump(u),jump(v)));
14 }

A multi-valued jacobian F ′ is then defined:

〈F ′
(
u

(k−1)
h , p

(k−1)
h

)
.(δuh, δph), (vh, qh)〉

= Re

th(δuh; uh, vh) + th(uh; δuh, vh) +
∂sh
∂wh

(uh; uh, vh).(δuh) + sh(uh; δuh, vh)

0

+

ah(δuh,vh) + bh(vh, δph)

bh(δuh, qh) − ch(δph, qh)

file://localhost/usr/share/doc/rheolef-doc/examples/inertia_upw.icc

Rheolef version 6.7 update 24 March 2016 49

We are abble to extend the Newton method to the F function that allows a multi-valued subdif-
ferential F ′. During iterations, we can choose any of the available directions in the subdifferential.
One the possibilities is then to replace the multi-valued sign function by a single-value one:

s̃gn(x) =

{
1 when x > 0
−1 when x < 0

Example file 3.14: sgn.icc
1 Float sgn (Float x) { return (x >= 0) ? 1 : -1; }

Example file 3.15: navier_stokes_upw_dg.h
1 #include "navier_stokes_dg.h"
2 struct navier_stokes_upw_dg: navier_stokes_dg {
3 typedef valarray <field > value_type;
4 typedef Float float_type;
5 navier_stokes_upw_dg (Float Re , const geo& omega , string approx);
6 value_type residue (const value_type& uh) const;
7 void update_derivative (const value_type& uh) const;
8 };
9 #include "navier_stokes_upw_dg.icc"

Example file 3.16: navier_stokes_upw_dg.icc
1 #include "inertia_upw.icc"
2 navier_stokes_upw_dg :: navier_stokes_upw_dg (
3 Float Re1 , const geo& omega , string approx)
4 : navier_stokes_dg (Re1 , omega , approx) {}
5

6 navier_stokes_upw_dg :: value_type
7 navier_stokes_upw_dg :: residue (const value_type& xh) const {
8 trial u (Xh); test v (Xh);
9 form a = a0 + Re*(inertia (xh[0], u, v, qopt)

10 + inertia_upw (xh[0], u, v, qopt));
11 value_type mrh (2);
12 mrh [0] = a*xh[0] + b.trans_mult(xh[1]) - lh;
13 mrh [1] = b*xh[0] - c*xh[1] - kh;
14 return mrh;
15 }
16 void navier_stokes_upw_dg :: update_derivative (const value_type& xh) const {
17 trial du (Xh); test v (Xh);
18 a1 = a0 + Re*(inertia (xh[0], du, v, qopt)
19 + inertia_upw (xh[0], du, v, qopt)
20 + inertia (du , xh[0], v, qopt)
21 + d_inertia_upw (xh[0], du, xh[0], v, qopt));
22 stokes1 = solver_abtb (a1.uu(), b.uu(), c.uu(), mp.uu());
23 }

The program navier_stokes_cavity_newton_upw_dg.cc is obtained by replacing in
navier_stokes_taylor_newton_dg.cc the string navier_stokes_dg by navier_stokes_upw_dg
(two occurences: in the includes and then in the definition of F). Also replace the include
taylor.icc by cavity_dg.icc that defines the boundary conditions. The compilation and run
are similar.

make navier_stokes_cavity_newton_upw_dg stream_cavity
mkgeo_grid -t 80 > square.geo
./navier_stokes_cavity_newton_upw_dg square P1d 500 1e-15 100 > square-500.field
field -proj square-500.field -field | ./streamf_cavity | \

field -bw -n-iso 30 -n-iso-negative 20 -

Computations for higher Renolds numbers are performed by continuation, starting from a previous
computation at lower Re:

./navier_stokes_cavity_newton_upw_dg square P1d 1000 1e-15 100 square-500.field > square-1000.field

file://localhost/usr/share/doc/rheolef-doc/examples/sgn.icc
file://localhost/usr/share/doc/rheolef-doc/examples/navier_stokes_upw_dg.h
file://localhost/usr/share/doc/rheolef-doc/examples/navier_stokes_upw_dg.icc

50 Rheolef version 6.7 update 24 March 2016

./navier_stokes_cavity_newton_upw_dg square P1d 1500 1e-15 100 square-1000.field > square-1500.field

Re = 0 Re = 400

Re = 1000 Re = 2000

Figure 3.2: The discontinuous Galerkin method for the Navier-Stokes problem on the driven cavity
benchmark when k = 1 (80× 80 grid): stream function isovalues for various Re.

Rheolef version 6.7 update 24 March 2016 51

Re = 3200 Re = 5000

Re = 7500 Re = 10000

Figure 3.3: The discontinuous Galerkin method for the Navier-Stokes problem on the driven cavity
benchmark when k = 1 (80× 80 grid): stream function isovalues for various Re (cont.).

52 Rheolef version 6.7 update 24 March 2016

Re = 15000 Re = 20000

Re = 25000

Figure 3.4: The discontinuous Galerkin method for the Navier-Stokes problem on the driven cavity
benchmark when k = 1 (80× 80 grid): stream function isovalues for various Re (cont.).

Part III

Technical appendices

53

Appendix A

GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

*

Preamble
The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary

55

56 Rheolef version 6.7 update 24 March 2016

Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup has been
designed to thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LATEX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML designed for human modification. Opaque formats include PostScript,
PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept com-
pensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

Rheolef version 6.7 update 24 March 2016 57

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

• Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

58 Rheolef version 6.7 update 24 March 2016

• In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

• Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version’s license notice. These titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties – for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.
In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled “Ac-
knowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled
“Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single

Rheolef version 6.7 update 24 March 2016 59

copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an “aggregate”, and this License does not apply to
the other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may
be placed on covers that surround only the Document within the aggregate. Otherwise they must
appear on covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License provided that you also include the original English version of this License.
In case of a disagreement between the translation and the original English version of this License,
the original English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft.
Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft

60 Rheolef version 6.7 update 24 March 2016

*

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.1 or any later version published by the Free Software Foundation; with the
Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Bibliography

[1] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit-explicit Runge-Kutta methods for
time-dependent partial differential equations. Appl. Numer. Math., 25(2):151–167, 1997. 27,
28

[2] M. P. Calvo, J. de Frutos, and J. Novo. Linearly implicit Runge-Kutta methods for advection-
reaction-diffusion equations. Appl. Numer. Math., 37(4):535–549, 2001. 27, 28

[3] G. F. Carey and B. Jianng. Least-squares finite elements for first-order hyperbolic systems.
Int. J. Numer. Meth. Eng., 26(1):81–93, 1988. 14

[4] P. Castillo. Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci.
Comput., 24(2):524–547, 2002. 22

[5] B. Cockburn. An introduction to the discontinuous Galerkin method for convection-dominated
problems, chapter 2, pages 151–268. Springer, 1998. 12

[6] B. Cockburn, B. Dong, J. Guzmán, and J. Qian. Optimal convergence of the original DG
method on special meshes for variable transport velocity. SIAM J. Numer. Anal., 48(1):133–
146, 2010. 9

[7] B. Cockburn, S. Hou, and C.-W. Shu. The Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws. IV. the multidimensional case. Math.
Comput., 54(190):545–581, 1990. 14

[8] B. Cockburn, G. Kanschat, and D. Schötzau. A locally conservative LDG method for the
incompressible Navier-Stokes equations. Math. Comput., 74(251):1067–1095, 2005. 43

[9] B. Cockburn, G. Kanschat, D. Schötzau, and C. Schwab. Local discontinuous Galerkin
methods for the Stokes system. SIAM J. Numer. Anal., 40(1):319–343, 2002. 35

[10] D. A. di Pietro and A. Ern. Discrete functional analysis tools for discontinuous Galerkin meth-
ods with application to the incompressible Navier-Stokes equations. Math. Comp., 79:1303–
1330, 2010. 35, 39, 43

[11] D. A. di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods. Springer,
2012. 7, 8, 10, 11, 21, 23, 24, 27, 36, 39, 43, 48

[12] Y. Epshteyn and B. Rivière. Estimation of penalty parameters for symmetric interior penalty
Galerkin methods. J. Comput. Appl. Math., 206(2):843–872, 2007. 21

[13] S. Gottlieb and C.-W. Shu. Total variation diminishing Runge-Kutta schemes. Math. Com-
put., 67(221):73–85, 1998. 11, 12

[14] S. Gottlieb, Chi-W. Shu, and E. Tadmor. Strong stability-preserving high-order time dis-
cretization methods. SIAM review, 43(1):89–112, 2001. 11, 12

[15] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high order accurate
essentially non-oscillatory schemes, III. J. Comput. Phys., 71(2):231–303, 1987. 15

61

62 Rheolef version 6.7 update 24 March 2016

[16] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods. Algorithms, anal-
ysis and applications. Springer, 2008. 7

[17] C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method for a scalar
hyperbolic equation. Math. Comp., 46(173):1–26, 1986. 9

[18] T. E. Peterson. A note on the convergence of the discontinuous Galerkin method for a scalar
hyperbolic equation. SIAM J. Numer. Anal., 28(1):133–140, 1991. 9

[19] G. R. Richter. An optimal-order error estimate for the discontinuous galerkin method. Math.
Comput., 50(181):75–88, 1988. 9

[20] K. Shahbazi. An explicit expression for the penalty parameter of the interior penalty method.
J. Comput. Phys., 205(2):401–407, 2005. 22

[21] C.-W. Shu. TVB boundary treatment for numerical solutions of conservation laws. Math.
Comput., 49(179):123–134, 1987. 13

[22] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J. Comput. Phys., 77(2):439–471, 1988. 11, 12

[23] G. I. Taylor. On the decay of vortices in a viscous fluid. Philos. Mag., 46:671–674, 1923. 34

[24] H. Wang, C.-W. Shu, and Q. Zhang. Stability analysis and error estimates of local discontinu-
ous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion
problems. Appl. Math. Comput., 2015. 27

[25] H. Wang, C.-W. Shu, and Q. Zhang. Stability and error estimates of local discontinu-
ous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems.
SIAM J. Numer. Anal., 53(1):206–227, 2015. 27, 28, 30

[26] X. Zhong and C.-W. Shu. A simple weighted essentially nonoscillatory limiter for Runge-
Kutta discontinuous galerkin methods. J. Comput. Phys., 232(1):397–415, 2013. 18

List of example files

burgers.icc, 14
burgers_dg.cc, 16
burgers_diffusion_dg.cc, 28
burgers_diffusion_exact.icc, 26
burgers_diffusion_operators.icc, 29
burgers_flux_godunov.icc, 14
cavity_dg.icc, 47
dirichlet_dg.cc, 22
elasticity_taylor_dg.cc, 34
harten.icc, 15
harten_show.cc, 15
inertia.icc, 39
inertia_cks.icc, 43
inertia_upw.icc, 48
navier_stokes_dg.h, 45
navier_stokes_dg1.icc, 45
navier_stokes_dg2.icc, 47
navier_stokes_taylor_dg.cc, 40
navier_stokes_taylor_newton_dg.cc, 45
navier_stokes_upw_dg.h, 49
navier_stokes_upw_dg.icc, 49
neumann_dg.cc, 24
sgn.icc, 49
stokes_dirichlet_dg.icc, 36
stokes_taylor_dg.cc, 36
taylor.icc, 34
transport_dg.cc, 9
cosinusprod_error_dg.cc, 23
elasticity_taylor_error_dg.cc, 34
harten0.icc, 15
navier_stokes_cavity_newton_dg.cc, 47
navier_stokes_cavity_newton_upw_dg.cc,

49
navier_stokes_taylor_error_dg.cc, 41
runge_kutta_ssp.icc, 12
stokes_taylor_error_dg.cc, 37
taylor.icc, 37, 41

63

Index

approximation
P0, 8
P1, 37
P2, 37
discontinuous, 7

benchmark
driven cavity flow, 35, 37
embankment, 33

boundary condition
Dirichlet, 21, 23, 35, 37

weakly imposed, 7, 21
broken Sobolev space H1(Th), 21, 26

convergence
error

versus mesh, 9, 23

form
[[u]]{{∇hv.n}}, 21, 24, 27
[[u]]{{v}}, 8
[[u]][[v]], 8, 21, 24, 27

internal sides of a mesh, 8

method
Euler explicit scheme, 12
Runge-Kutta scheme, 11, 27
upwind scheme, 48

operator
average, accross sides, 8, 21
jump, accross sides, 8, 21

penalty parameter, 22
problem

Navier-Stokes, 37
Poisson, 21, 23
Stokes, 35, 37
elasticity, 33
nonlinear, 37

upstream boundary, 7
upwinding, 8

64

	Notations
	I Getting started with simple problems
	Scalar first-order problems
	The transport equation
	Nonlinear scalar hyperbolic problems
	Example: the Burgers equation

	Scalar second-order problems
	The Poisson problem with Dirichlet boundary conditions
	The Helmholtz problem with Neumann boundary conditions
	Nonlinear scalar hyperbolic problems with diffusion
	Example: the Burgers equation with diffusion

	II Fluids and solids computations
	The linear elasticity and the Stokes problems
	The linear elasticity problem
	The Stokes problem
	The stationnary Navier-Stokes problem

	III Technical appendices
	GNU Free Documentation License
	List of example files
	List of commands
	Index

