PREFACE

These lecture notes are an extension of a course on weak dependence given at Orsay during the years 1994-1996 with Paul Doukhan. This course aims to treat the theory of summation of weakly dependent variables. The first eight chapters give extensions of the classical results for sums of independent random variables to strongly mixing or absolutely regular processes. Chapter 9 is devoted to applications to Markov chains. The potential reader is any researcher who is interested in sharp results for weakly dependent sequences.
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INTRODUCTION

These notes are essentially translated from the preprint "Théorèmes limites pour les suites de variables aléatoires faiblement dépendantes, Prépublication 97-81 de l'Université de Paris-Sud" which was published in 1997. They are devoted to inequalities and limit theorems for weakly dependent sequences. Our aim is to give performant technical tools to Mathematicians or Statisticians which are interested in weak dependence. We will essentially consider classical notions of weak dependence, called mixing conditions. Sometimes we will give more general results. Nevertheless, most of the results of these notes are based on the strong mixing coefficients introduced by [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF].

Here the strong mixing coefficient between two σ-fields A and B is defined by

α(A, B) = 2 sup{IP(A ∩ B) -IP(A)IP(B) : (A, B) ∈ A × B}.
This coefficient is equal to the strong mixing coefficient of [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], up to the multiplicative factor 2. This coefficient is a measure of the dependence between A and B. For example α(A, B) = 0 if and only if A and B are independent For a sequence (X i ) i∈Z Z of random variables in some Polish space X , let F k = σ(X i : i ≤ k) and G l = σ(X i : i ≥ l). The strong mixing coefficients (α n ) n≥0 of the sequence (X i ) i∈Z Z are defined by (I.0) α 0 = 1/2 and α n = sup k∈Z Z α(F k , G k+n ) for any n > 0.

The sequence (X i ) i∈Z Z is said to be strongly mixing in the sense of [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] if lim n↑∞ α n = 0. In the stationary case, this means that the σ-field G n of the future after time n is asymptotically independent of F 0 , which is the σ-field of the past before time 0. We refer to [START_REF] Bradley | Basic properties of strong mixing conditions[END_REF] for other coefficients of weak dependence and relations between the coefficients of weak dependence.

In these notes, we will mainly establish results for strongly mixing sequences or for absolutely regular sequences in the sense of [START_REF] Rozanov | Some limit theorems for random functions I[END_REF]. Indeed these notions of weak dependence are less restrictive than the notions of ρ-mixing and uniform mixing in the sense of [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF]. For example, in the case of autoregressive models with values in IR d defined by the recursive equation (I.1)

X n+1 = f (X n ) + ε n+1 ,
for some sequence of independent and identically distributed integrable innovations (ε n ) n with a positive continuous bounded density, the stationary sequence (X i ) i∈Z Z solution of (I.1) is uniformly mixing in the sense of Ibragimov only if the function f is uniformly bounded over IR d . This condition is too restrictive for the applications. By contrast the stationary solution of (I.1) is strongly mixing with a geometric rate of strong mixing as soon as there exists M > 0, s > 0 and ρ < 1 such that

(I.2) IE(|f (x) + ε 0 | s ) ≤ ρ|x| s pour x > M et sup |x|≤M IE(|f (x) + ε 0 | s ) < ∞.
We refer to [START_REF] Doukhan | Estimation de la transition de probabilité d'une chaîne de Markov Doeblin-récurrente. Étude du cas du processus autoégressif général d'ordre 1[END_REF] and to [START_REF] Mokkadem | Le modèle non linéaire AR(1) général. Ergocicité et ergodicité géométrique[END_REF] for more about the model (I.1), and to [START_REF] Doukhan | Mixing: properties and examples[END_REF] for other examples of Markov models satisfying mixing conditions. Although the notions of strong mixing or absolute regularity are less restrictive than the notions of ρ-mixing and uniform mixing, they are adequate for the applications. For example, [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] obtains optimal results for linear estimators of the density in the case of absolutely regular sequences.

We now analyze the contents of these lecture notes. Our main tools are covariance inequalities for random variables satisfying mixing conditions and coupling results which are similar to the coupling theorems of [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF] or [START_REF] Goldstein | Maximal coupling[END_REF]. Chapters 1-4 are devoted to covariance inequalities, moment inequalities and classical limit theorems. Chapters 5-8 mainly use coupling techniques. The coupling techniques are applied to the law of the iterated logarithm for partial sums in Chapter 6 and next to empirical processes in Chapters 7 and 8.

In Chapter 1, we give covariance inequalities for random variables satisfying a strong mixing condition or an absolute regularity condition. Let us recall [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF] covariance inequality for bounded random variables: if X and Y are uniformly bounded real-valued random variables, then

(I.3) | Cov(X, Y )| ≤ 2α(σ(X), σ(Y )) X ∞ Y ∞ ,
where σ(X) and σ(Y ) denote the σ-fields generated by X and Y respectively. We give extensions of (I.3) to unbounded random variables. We then apply these covariance inequalities to get estimates of the variance of partial sums. In the dependent case, the variance of the sum may be much larger than the sum of variances. We refer to [START_REF] Bradley | On quantiles and the central limit question for strongly mixing sequences[END_REF] for lower bounds for the variance of partial sums in the strong mixing case. Nevertheless adequate applications of the variance estimates still provide efficient results. For example, we give in Sections 1.5 and 1.6 some performant applications to density estimation. In Section 1.7* we give other covariance inequalities (* means that this subsection has been added).

Chapter 2 is devoted to the applications of covariance inequalities to moment inequalities for partial sums. In Subsections 2.2 and 2.3, we apply the covariance inequlities of Chapter 1 to Algebraic moments of sums. Our methods are similar to the methods proposed by [START_REF] Doukhan | Mixing: properties and examples[END_REF]Portal (1983, 1987). They lead to Rosenthal type inequalities. In Subsections 2.4 and 2.5, we prove Marcinkiewicz type moment inequalities for the absolute moments of order p > 2, and we give a way to derive exponential inequalities from these results. In Chapter 3 we give extensions of the maximal inequalities of Doob and Kolmogorov to dependent sequences. These maximal inequalities are then used to obtain Baum-Katz type laws of large numbers, and consequently rates of convergence in the strong law of large numbers. We also derive moment inequalities of order p for p in ]1, 2[ from these inequalities.

Chapter 4 is devoted to the classical central limit theorem for partial sums of random variables. In order to shorten the exposition, we consider strictly stationary sequences (cf. [START_REF] Rio | About the Lindeberg method for strongly mixing sequences[END_REF] for results in the non stationary case). We then apply projective criteria which are derived from Gordin's martingale approximation theorem (1969) to get the central limit theorem for partial sums of a strongly mixing sequence. Then we give a uniform functional central limit theorem in the sense of Donsker for the normalized partial sum process associated to a stationary and strongly mixing sequence. The proof of the tightness is based on the maximal inequalities of Chapter 3. At the end of the Chapter, we give a central limit theorem for triangular arrays.

In Chapter 5, we give coupling results for weakly dependent sequences, under assumptions of strong mixing or β-mixing. In particular we recall and we prove Berbee's coupling Lemma (1979), which characterizes the β-mixing coefficient between a σ-field A and the σ-field σ(X) generated by some random variable X with values in some Polish space. If (Ω, T , IP) contains an auxiliary atomless random variable independent of A ∨ σ(X), Then one can construct a random variable X * with the same law as X, independent of A and such that (I.4) IP(X = X * ) = 1 -β(A, σ(X)).

We give a constructive proof of (I.4) for random variables with values in [0,1]. This proof is more technical than the usual proof. Nevertheless the constructive proof is more informative than the usual proof. In particular using a comparison theorem between α-mixing coefficients and β-mixing coefficients for purely atomic σ-fields due to [START_REF] Bradley | Approximation theorems for strongly mixing random variables[END_REF], one can obtain (confer Exercise 1) the following upper bound for the so-constructed random variables:

(I.5) IE(|X -X * |) ≤ 4α(A, σ(X))
In Section 5.2, we give a direct proof of (I.5) with an improved constant. Our method of proof is based on the conditional quantile transformation.

Chapters 6, 7 and 8 are devoted to the applications of these coupling results. In Chapter 6, we prove that Inequality (I.5) yields efficient deviation inequalities for partial sums of real-valued random variables. In particular, we generalize the Fuk-Nagaev deviation inequalities (1973) to partial sums of strongly mixing sequences of real-valued random variables. For example for sums S k = X 1 + . . . + X k of real-valued and centered random variables X i satisfying X i ∞ ≤ 1, we prove that, for any λ > 0 and any r ≥ 1, (I.6) IP sup

k∈[1,n] |S k | ≥ 4λ ≤ 4 1 + λ 2 rs 2 n -r/2 + nα [λ/r] λ ,
with

s 2 n = n i=1 n j=1 | Cov(X i , X j )|.
This inequality is an extension of the Fuk-Nagaev inequality to weakly dependent sequences. Theorem 6.2 provides an extension in the general case of unbounded random variables. Choosing r = 2 log log n, we then apply (I.6) to the bounded law of the iterated logartihm. In Chapters 7 and 8, we apply (I.4), (I.5) and (I.6) to empirical processes associated to dependent observations. We refer the reader to [START_REF] Dudley | A course on empirical processes[END_REF] and to [START_REF] Pollard | Empirical processes : theory and applications[END_REF] for more about the theory of functional limit theorems for empirical processes. In Chapter 7, we give uniform functional central limit theorems for the normalized and centered empirical distribution function associated to real-valued random variables or to random variables with values in IR d . We prove that the uniform functional central limit theorem for the normalized and centered empirical distribution function holds true under the strong mixing condition α n = O(n -1-ε ) for any d > 1. The strong mixing condition does not depend on the dimension, contrary to the previous results. The proof is based on Inequality (I.6). This inequality does not provide uniform functional central limit theorems for empirical processes indexed by large classes of sets. For this reason, we give a more general result in Chapter 8, which extends Dudley's theorem (1978) for empirical processes indexed by classes of sets to β-mixing sequences. The proof of this result is based on the maximal coupling theorem of [START_REF] Goldstein | Maximal coupling[END_REF].

Chapter 9, which concludes these lecture notes, is devoted to the mixing properties of irreducible Markov and the links between ergodicity, return times, absolute regularity and strong mixing. We also prove on some example of Markov chain the optimality of some of the results of the previous chapters. The Annexes are devoted to convex analysis, exponential inequalities for sums of independent random variables, tools for empirical processes, upper bounds for the weighted moments introduced in Chapters 1 and 2, measurability questions and quantile transformations.

VARIANCE OF PARTIAL SUMS 1.Introduction

In order to study the deviation and the limiting distribution of a partial sum of realvalued random variables, one of the main steps is to study the variance of this sum. For independent random variables, the variance of the sum is the sum of individual variances. This assertion is generally wrong for dependent random variables, with the notable exception of martingale differences sequences. However, for stationary sequences, the so-called series of covariances provides asymptotic estimates of the variance of partial sums. Consequently, for dependent sequences, one needs to give conditions on the sequence implying the convergence of this series. Such conditions are given, for example, by the so-called mixing assumptions. In this chapter, we start by giving classical results on the variance of partial sums in the stationary case. Next we give bounds on the covariance between two random variables under a strong mixing condition on these random variables. These results are then applied to variance of partial sums of strongly mixing sequences. Next we give applications to integrated risks of kernel density estimators or linear estimators of the density, under mixing assumptions. The end of this section is devoted to the socalled β-mixing sequences, applications of this notion to density estimation and to an other covariance inequality in the strong mixing case.

Stationary processes

In this section we recall some basic results on partial sums of random variables in the stationary case. We start by recalling the definitions of strict stationarity, and stationarity at second order. Définition 1.1. Let T = Z Z or T = IN. The process (X t ) t∈T is said to be strictly stationary if, for any positive integer t and any finite subset S of T , (1.1) {X s+t : s ∈ S} has the same distribution as {X s : s ∈ S}.

For sequences (X t ) t∈T of real-valued and square-integrable random variables, (X t ) t∈T is said to be stationary at second order if, for any positive integer t and any (u, v) in T × T , (1.2) IE(X u ) = IE(X v ) and IE(X t+u X t+v ) = IE(X u X v ).

We now define the covariance between two real-valued integrable random variables X and Y such that XY is still integrable by (1.3) Cov(X, Y ) = IE(XY ) -IE(X)IE(Y ).

Throughout, we assume that the random variables X t take their values in IR. Assume now that (X t ) t∈T is stationary at second order. Let (1.4)

S n = X 1 + • • • + X n , V n = Var S n and v n = V n -V n-1 ,
with the conventions that S 0 = 0 and V 0 = 0. Clearly

V n = v 1 + • • • + v n .
We now estimate v k . From the bilinearity and the symmetry of the covariance

v k = Cov(S k , S k ) -Cov(S k-1 , S k-1 ) = Var X k + 2 k-1 i=1 Cov(X i , X k ).
Hence, for second order stationary sequences,

(1.5)

v k = Var X 0 + 2 k-1 i=1
Cov(X 0 , X i ) and

(1.6)

V n = n Var X 0 + 2 n i=1
(n -i) Cov(X 0 , X i ).

From (1.5) and (1.6) we get the elementary lemma below.

Lemma 1.1. Let (X i ) i∈IN be a sequence of real-valued random variables, stationary at second order. Assume that the so-called series of covariances

Var X 0 + 2 ∞ i=1
Cov(X 0 , X i )

converges. Then the sum v of this series is nonnegative, and n -1 Var S n converges to v.

Remark 1.1. Sometimes v = 0. For example, if there exists a stationary sequence (Y i ) i∈Z Z such that X i = Y i -Y i-1 , satisfying the condition lim n↑∞ Cov(Y 0 , Y n ) = 0, then v = 0. In this specific case, the sequence (S n ) n>0 is bounded in L 2 , and consequently in probability.

Proof of Lemma 1.1. Since V n /n = (v 1 + • • • + v n )/n, the convergence of v k to v implies that of (V n /n) to v via the Césaro mean theorem. Furthermore v ≥ 0 since (V n /n) ≥ 0 for any positive integer n

We now give a sufficient condition to ensure the convergence of the above series, which will be called throughout series of covariances of (X i ) i∈IN .

Lemma 1.2. Let (X i ) i∈IN be a sequence of real-valued random variables, stationary at second order. Assume that there exists a sequence of nonnegative reals (δ i ) i≥0 such that (i) Cov(X 0 , X i ) ≤ δ i for any i ≥ 0 and ∆ = δ 0 + 2 i>0 δ i < ∞.

Then Var X 0 + 2 ∞ i=1 Cov(X 0 , X i ) converge vers v élément de [0, ∆]. Furthermore

(1.7)

Var S n ≤ nδ 0 + 2 n i=1 (n -i)δ i ≤ n∆ and v k ≤ δ 0 + 2 k-1 i=1 δ i . Proof of Lemma 1.2. Write Cov(X 0 , X i ) = δ i -(δ i -Cov(X 0 , X i )).
The series i (δ i -Cov(X 0 , X i )) is a series of nonnegative reals and, consequently, converges in Ī R + . Hence the series of covariances converges to v in [-∞, ∆]. By the Césaro mean theorem, n -1 Var S n converges to v. It follows that v belongs to [0, ∆]. Now (1.7) holds due to the nonnegativity of the numbers δ i .

A covariance inequality under strong mixing

In this section, we give a covariance inequality for real-valued random variables satisfying a strong mixing condition. This inequality will be applied in Section 1.4 to get conditions on the strong mixing coefficients of stationary sequences ensuring the convergence of series of covariances.

We start by defining the strong mixing coefficient coefficient of [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] between two σ-fields A and B of (Ω, T , IP). We refer to [START_REF] Bradley | Basic properties of strong mixing conditions[END_REF][START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions. Update of, and a supplement to[END_REF] for more about strong mixing conditions and weak dependence coefficients and to [START_REF] Bradley | Introduction to strong mixing conditions[END_REF] for a much more extensive treatment. In order to get more general results, we will also give less restrictive coefficients associated to real-valued random variables.

For X and Y real-valued random variables, we set Note that α(X, Y ) = 0 means that X and Y are independent. Also α(A, Y ) = 0 if and only if Y is independent of A. The strong mixing coefficient between two σ-fields A and B is defined by

(1.8c) α(A, B) = sup B∈B α(A, 1I B ) = 2 sup{| Cov(1I A , 1I B ) : (A, B) ∈ A × B}.
This coefficient is the Rosenblatt strong mixing coefficient, up to the multiplicative factor 2. This coefficient vanishes if and only if the σ-fields are independent. Now, by the Cauchy-Schwarz inequality,

| Cov(1I A , 1I B )| ≤ Var 1I A Var 1I B ≤ 1/4.
It follows that

(1.9) 0 ≤ α(A, B) ≤ 1/2. Furthermore α(A, B) = 1/2 if and only if there exists some event A in A ∩ B with IP(A) = 1/2. In a similar way the coefficients defined in (1.8a) and (1.8b) are each bounded by 1/2.

Let us now give a slightly different formulation of these coefficients. Clearly In the same way, one can prove that

(1.10c) α(A, X) = sup x∈IR IE(|IP(X ≤ x | A) -IP(X ≤ x)|).
In order to state the covariance inequality, which takes into accounts the marginal distribution of the random variables, we now introduce more notations.

Notation 1.1. For any nonincreasing and càdlàg function f with domain the interval I, let f -1 denote the càdlàg inverse function of f , which is defined by

f -1 (u) = inf{x ∈ I : f (x) ≤ u}.
The basic property of f -1 is that :

x < f -1 (u) if and only if f (x) > u.

If f is a nondecreasing and càdlàg function, f -1 (u) will be infimum of the set of reals x in I such that f (x) ≥ u. In that case, the inverse is left continuous and x ≥ f -1 (u) if and only if f (x) ≥ u.

The distribution function F of a real-valued random variable X is defined by F (x) = IP(X ≤ x). This function is nondecreasing and right continuous. The quantile function of |X|, which is the inverse of the non increasing and right continuous tail function of |X|, H X (t) = IP(|X| > t) , is denoted by Q X . For any monotonous function f , we set f (x -0) = lim y x f (y) and f (x + 0) = lim y x f (y).

Theorem 1.1. Let X and Y be integrable real-valued random variables. Assume that XY is integrable and let α = α(X, Y ) be defined by (1.8a). Then

(a) | Cov(X, Y )| ≤ 2 α 0 Q X (u)Q Y (u)du ≤ 4 α/2 0 Q X (u)Q Y (u)du.
Conversely, for any symmetric distribution functions F and G and any α in [0, 1/2], one can construct random variables X and Y with respective distribution functions F and G such that α(σ(X), σ(Y )) ≤ α and

(b) Cov(X, Y ) ≥ α/2 0 Q X (u)Q Y (u)du, provided that Q X Q Y is integrable on [0, 1].
Remark 1.2. Theorem 1.1 is due to [START_REF] Rio | Covariance inequalities for strongly mixing processes[END_REF]. We refer to [START_REF] Dedecker | A new covariance inequality and applications[END_REF] for extensions of (a) and to [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF] for applications of (a) to Markov chains associated to intermittent maps (these chains fail to be strongly mixing in the sense of Rosenblatt). If α = 1/2 (no mixing constraint), Theorem 1.1(a) ensures that

(1.11a) | Cov(X, Y )| ≤ 2 1/2 0 Q X (u)Q Y (u)du.
Now, if (Z, T ) is a couple of random variables with the same marginal distributions as (X, Y ), then

(1.11b) IE(|ZT |) ≤ 1 0 Q X (u)Q Y (u)du;
If furthermore X and Y have symmetric distributions, then the upper bound in (1.11b) is reached for Z = εQ X (U ) and T = εQ Y (U ), where U is uniformly distributed in [0, 1] and ε is a symmetric sign, independent of U ; see [START_REF] Fréchet | Sur les tableaux de corrélation dont les marges sont données[END_REF][START_REF] Fréchet | Sur la distance de deux lois de probabilité[END_REF], [START_REF] Bass | Sur la compatibilité des fonctions de répartition[END_REF] or [START_REF] Bártfai | Über die Entfernung der Irrfahrtswege[END_REF]. Consequently, up to a constant factor, (a) cannot be improved.

Let us still give another byproduct of the covariance inequality. Let A be a σ-field of (Ω, T , IP) and X be a real-valued random variable. Let Y be a real-valued random variable with mean 0, and α = α(A, Y ). Let ε A be the random variable defined by

ε A = 1 si IE(Y | A) > 0 et ε A = -1 otherwise. Then, from Theorem 1.1(a), (1.11c) IE(|XIE(Y | A)|) = Cov(ε A X, Y ) ≤ 2 α 0 Q X (u)Q Y (u)du.
Note that, if U has the uniform law over [0, 1], Q X (U ) has the same law as |X|. Hence, if |X| and |Y | are almost surely bounded, then (a) implies that

(1.12a) | Cov(X, Y )| ≤ 2α X ∞ Y ∞ ,
which gives again the covariance inequality of [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF].

For unbounded random variables, the Hölder inequality applied to the upper bound in (a) proves that, if p, q and r are strictly positive reals such that p

-1 + q -1 + r -1 = 1, then (1.12b) | Cov(X, Y )| ≤ 2α 1/p X q Y r .
which provides a new constant in Inequality (2.2) of [START_REF] Davydov | Convergence of distributions generated by stationary stochastic processes[END_REF].

Under the weaker tail conditions IP(|X| > x) ≤ (Λ q (X)/x) q and IP(|Y | > y) ≤ (Λ r (Y )/y) r .

Theorem 1.1(a) gives:

(1.12c) | Cov(X, Y )| ≤ 2pα 1/p Λ q (X)Λ r (Y ).
Consequently one can obtain the same dependence in α as in (1.12b) under weaker conditions on the tails of the random variables. In the next section, we will prove that Theorem 1.1(a) provides more efficient upper bounds on the variance of partial sums than (1.12b).

Proof of Theorem 1.1. We first prove (a). Let X + = sup(0, X) and X -= sup(0, -X).

Clearly

(1.13) X = X + -X -= +∞ 0 (1I X>x -1I X<-x )dx.
Writing Y in the same manner and Applying Fubini's Theorem, we get that

(1.14) Cov(X, Y ) = ∞ 0 ∞ 0 Cov(1I X>x -1I X<-x , 1I Y >y -1I Y <-y )dxdy.
In order to bound up | Cov(X, Y )|, we now prove that:

(1.15) | Cov(1I X>x -1I X<-x , 1I Y >y -1I Y <-y )| ≤ 2 inf(α, IP(|X| > x), IP(|Y | > y) ).
Obviously the term on left hand is bounded up by 2α. Since X and Y play a symmetric role, it only remains to prove that the term on left hand is bounded up by 2IP(|X| > x).

From the elementary inequality

| Cov(S, T )| ≤ 2 S 1 T ∞ applied to S = 1I X>x -1I X<-x and T = 1I Y >y -1I Y <-y , we infer that | Cov(1I X>x -1I X<-x , 1I Y >y -1I Y <-y )| ≤ 2IP(|X| > x),
which completes the proof of (1.15). From (1.15) and (1.14), we have

(1.16) | Cov(X, Y )| ≤ 2 ∞ 0 ∞ 0 inf(α, IP(|X| > x), IP(|Y | > y))dxdy. Now inf(α, IP(|X| > x), IP(|Y | > y) ) = α 0 1I u<IP(|X|>x) 1I u<IP(|Y |>y) du.
Since (u < IP(|X| > x)) if and only if (x < Q X (u)), one can write (1.16) as follows

(1.17) | Cov(X, Y )| ≤ 2 ∞ 0 ∞ 0 α 0 1I x<Q X (u) 1I y<Q Y (u) du dxdy.
To complete the proof of (a), it is then enough to apply Fubini's Theorem.

To prove (b), we construct a couple (U, V ) of random variables with marginal distributions the uniform law over [0, 1], satisfying α(σ(U ), σ(V )) ≤ α and such that (b) holds true for (X,

Y ) = (F -1 (U ), G -1 (V )).
Let a be any real in in [0, 1], and (Z, T ) be a random variable with the uniform distribution over

[0, 1] × [a/2, 1 -a/2]. Set (1.18) (U, V ) = 1I Z∈[a/2,1-a/2] (Z, T ) + 1I (Z / ∈[a/2,1-a/2[ (Z, Z).
Then the random variables U and V are uniformly distributed over [0,1]. We now prove that

(1.19) α(σ(U ), σ(V )) ≤ 2a.
Let P U,V denote the law of (U, V ) and P U , P V denote the laws of U and V . Clearly

P U,V -P U ⊗ P V = 4a -2a 2
(here . denotes the total variation of the signed measure). Now, by (1.10b) and Remark 1.4 in Section 1.6, the total variation of P U,V -

P U ⊗ P V is greater than 2α. Hence (1.19) holds true. Next, let (X, Y ) = (F -1 (U ), G -1 (V )). Since X is a measurable function of U and Y a measurable function of V , α(σ(X), σ(Y )) ≤ α. Now XY = F -1 (Z)G -1 (Z)1I Z / ∈[a/2,1-a/2] + F -1 (Z)G -1 (T )1I Z∈[a/2,1-a/2] .
Taking the expectation in this formula (recall that Z and T are independent and that IE(G -1 (T )) = 0), we get that

IE(XY ) = a/2 0 F -1 (u)G -1 (u)du + 1 1-a/2 F -1 (u)G -1 (u)du.
Next, from the symmetry of F ,

F -1 (1 -u) = -F -1 (u) = Q X (2u) almost everywhere on [0, 1/2] (same equality for G). Hence Cov(X, Y ) ≥ 2 a/2 0 Q X (2u)Q Y (2u)du = a 0 Q X (u)Q Y (u)du,
which completes the proof of (b).

Variance of partial sums of a strongly mixing sequence

In this section, we apply Theorem 1.1 to get upper bounds on the variance of

S n = X 1 + • • • + X n ,
in the strong mixing case. In this section, the sequence of strong mixing coefficients (α n ) n≥0 of (X i ) i∈IN is defined by

(1.20) α 0 = 1/2 and α n = sup (i,j)∈I N 2 |i-j|≥n α(σ(X i ), σ(X j )) for n > 0.
By definition the so defined sequence is nonincreasing.

For x in IR, let α(x) = α [x]
, square brackets designing the integer part. Let

(1.21) α -1 (u) = inf{k ∈ IN : α k ≤ u} = i≥0 1I u<α i
(the second equality is due to the monotonicity properties of (α i ) i≥0 ). Starting from Theorem 1.1(a), we now get an upper bound on the variance of partial sums.

Corollary 1.1. Let (X i ) i∈IN be a sequence of real-valued random variables. Set

Q k = Q X k . Then (a) Var S n ≤ n i=1 n j=1 | Cov(X i , X j )| ≤ 4 n k=1 1 0 [α -1 (u) ∧ n]Q 2 k (u)du.
In particular, setting

M 2,α (Q) = 1 0 α -1 (u)Q 2 (u)du
for any nonnegative and nonincreasing function Q from [0, 1] into IR, we have:

(b) Var S n ≤ 4 n k=1 M 2,α (Q k ).
Proof. (b) is an immediate consequence of (a). To prove (a), notice that

α -1 (u) ∧ n = n-1 i=0 1I u<α i . Clearly (1.22) Var S n ≤ (i,j)∈[1,n] 2 | Cov(X i , X j )|. Now , by Theorem 1.1(a), | Cov(X i , X j )| ≤ 2 α |i-j| 0 Q i (u)Q j (u)du ≤ α |i-j| 0 (Q 2 i (u) + Q 2 j (u))du.
Hence

(i,j)∈[1,n] 2 | Cov(X i , X j )| ≤ 2 n i=1 1 0 n j=1 1I u<α |i-j| Q 2 i (u)du ≤ 4 n i=1 1 0 [α -1 (u) ∧ n]Q 2 i (u)du. (1.23)
Both (1.22) and (1.23) imply Corollary 1.1(a).

We now apply Theorem 1.1 and Corollary 1.1 to stationary sequences.

Corollary 1.2.

Let (X i ) i∈IN be a strictly stationary sequence of real-valued random variables. Then

(a) | Cov(X 0 , X i )| ≤ 2 α i 0 Q 2 0 (u)du.
Consequently the series of covariances Var X 0 + 2 i>0 Cov(X 0 , X i ) converges to a finite nonnegative real σ 2 as soon as

(DM R) M 2,α (Q 0 ) = 1 0 α -1 (u)Q 2 0 (u)du < +∞.
In that case

(b) Var S n ≤ 4nM 2,α (Q 0 ), lim n↑∞ n -1 Var S n = σ 2 and σ 2 ≤ 4M 2,α (Q 0 ).
Proof. Inequality (a) is an immediate consequence of Theorem 1.1. Now, starting from (a), we prove Corollary 1.2. Let δ i = 2

α i 0 Q 2 0 (u)du.
Clearly the sequence (δ i ) i satisfies condition (i) of Lemma 1.2, provided that (DMR) holds true. Corollary 1.2 follows then from Lemmas 1.1 and 1.2.

In some sense, in the strong mixing case the weighted moments M 2,α (Q k ) play the same role as the usual second moments in the independent case. In the section below, we give upper bounds for these weighted moments under various conditions on the tails of the random variables and on the strong mixing coefficients.

1.4.1. Upper bounds for the weighted moments M 2,α .

At first, note that, if U is a random variable with uniform law over [0, 1], then Q 2 k (U ) has the same law as

X 2 k . If the sequence (X i ) i∈IN is m-dependent, α -1 (u) = m i=0 1I u<α i ≤ m + 1, which entails that M 2,α (Q k ) ≤ (m + 1)IE(X 2 k ).
In that case condition (DMR) holds as soon as X 2 0 is integrable. If the random variables |X k | are uniformly bounded by some positive constant M , then

Q 2 k (u) ≤ M 2 and M 2,α (Q k ) ≤ M 2 1 0 α -1 (u)du ≤ M 2 ∞ 0 α(x)dx.
Then condition (DMR) holds if and only if

(1.24) i≥0 α i < ∞,
which is the classical condition of Ibragimov.

We now give a condition on the tail distribution of the random variables X k . Assume that, for some r > 2, IP(|X k | > x) ≤ (c/x) r for any positive x and any integer k . Then the quantile fuctions Q k are bounded up by cu -1/r , whence

M 2,α (Q k ) ≤ c 2 ∞ i=0 α i 0 u -2/r du ≤ c 2 r r -2 i≥0 α 1-2/r i .
Consequently condition (DMR) holds as soon as

(IBR) i≥0 α 1-2/r i < ∞.
In the stationary case, [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF] obtains the convergence of the series of covariances under (IBR) together with the more restrictive assumption of existence of the moment of order r for the random variables X i .

Assume now that, for some r > 2, the random variables X k belong to L r . Then, by the Hölder inequality,

M 2,α (Q k ) ≤ 1 0 [α -1 (u)] r/(r-2) du 1-2/r 1 0 Q r k (u)du 2/r
.

The second integral on right hand is equal to

X k 2 r , since Q k (U ) has the same distribution as |X k |. Now let [y] denote the integer part of y and set α(y) = α [y] . Since the inverse function of u → [α -1 (u)] r/(r-2) is x → α(x 1-2/r ), 1 0 [α -1 (u/2)] r/(r-2) du = ∞ 0 α(x 1-2/r )dx = i≥0 ((i + 1) r/(r-2) -i r/(r-2) )α i . Now (i + 1) r/(r-2) -i r/(r-2) ≤ r(r -2) -1 (i + 1) 2/(r-2) , which entails that 1 0 [α -1 (u)] r/(r-2) du ≤ r r -2 i≥0 (i + 1) 2/(r-2) α i . Hence (1.25a) M 2,α (Q k ) ≤ exp(2/r) i≥0 (i + 1) 2/(r-2) α i 1-2/r X k 2 r .
In particular, in the stationary case, condition (DMR) holds if

(1.25b)

i≥0 (i + 1) 2/(r-2) α i < ∞.
Under the same moment condition, [START_REF] Davydov | Convergence of distributions generated by stationary stochastic processes[END_REF] covariance inequality ensures the convergence of the series of covariances under the more restrictive condition (IBR). For example, if

α k = O(k -r/(r-2) (log k) -θ )
(note that r/(r -2) is the critical exponent), (1.25b) holds for θ > 1 and (IBR) needs the stronger condition θ > r/(r -2).

In oder to give conditions ensuring (DMR) under more general moment conditions on the random variables X k and on α -1 (U ), we now introduce the class of convex functions

(1.26) Φ = {φ : IR + → IR + : φ convex, nondecreasing, φ(0) = 0, lim +∞ φ(x) x = ∞}.
For any φ in Φ, the Young dual function φ * is defined by

φ * (y) = sup x>0 (xy -φ(x)).
We refer to Annex A, for some properties of this involutive transformation and to (A.5), annex A, for a definition of the Orlicz norms below. Inequality (A.8), Annex A, ensures that

M 2,α (Q k ) = IE(α -1 (U )Q 2 k (U )) ≤ 2 α -1 (U ) φ * X 2 k φ . Suppose there exists c > 0 such that φ(X 2 k /c ) is integrable. Then the above inequality shows that condition (DMR) is satisfied if (1.27) IE(φ * (α -1 (U )/c)) < +∞
for some positive constant c. Since U has the uniform law over [0, 1],

IP(α -1 (U ) > x) = IP(U < α(x)) = α(x).
Hence, by (A.3), Annex A, (1.28) where φ -1 denotes the left-continuous inverse of the derivative of φ. Since φ -1 is nondecreasing, condition (DMR) is satisfied if

cIE(φ * (α -1 (U )/c)) = ∞ 0 IP(α -1 (U ) > x)(φ * ) (x/c)dx = ∞ 0 α(x)φ -1 (x/c)dx,
(1.29) i≥0 α i φ -1 ((i + 1)/c) < ∞
for some positive constant c. [START_REF] Bulinskii | Inégalités de mélange fort utilisant des normes d'Orlicz[END_REF] generalized Davydov's covariance inequality (1968) to Orlicz spaces. For sequences of random variables with a finite φ-moment, they obtain the convergence of the series of covariances under the summability condition

(HER) i≥0 φ -1 (1/α i )α i < ∞,
which was introduced by [START_REF] Herrndorf | A functional central limit theorem for strongly mixing sequences of random variables[END_REF] for the central limit theorem. In [START_REF] Rio | Covariance inequalities for strongly mixing processes[END_REF] it is shown that this condition is more restrictive than (1.29), which we now detail for fast mixing rates.

Geometric and subgeometric rates of mixing. For b > 0, Consider the function

φ b (x) = x(log(1 + x)) b .
This function belongs to Φ and has derivative

(1.30) φ b (x) = (log(1 + x)) b + bx(1 + x) -1 (log(1 + x)) b-1 .
The inverse function of φ b is equivalent to x → exp(x 1/b ) as x tends to ∞. Consequently, if

(1.31) IE(X 2 0 (log(1 + |X 0 |)) b ) < ∞,
then, by (1.29), condition (DMR) holds true if there exists some positive τ such that (1.32)

α i = O(exp(-τ i 1/b )) as i → ∞.
In particular, if α i = O(a i ) for some a in ]0, 1[ (geometric mixing rate) (1.32) and (1.31) hold with b = 1, and (DMR) holds as soon as

(1.33) IE(X 2 0 log(1 + |X 0 |)) < ∞.
Let us compare (1.33) with condition (HER). Under (1.31), (HER) holds if and only the series i≥0 | log α i | -b converges. Condition (1.32) does not ensure the convergence of this series. For example, under (1.33), (HER) does not ensure the convergence of the series of covariances for geometric rates of convergence.

Numerical comparisons. We now compare the constants arising from our covariance inequality and Davydov's inequality in the following case: the sequence (X i ) i∈IN is strictly stationary, IE(X 4 0 ) < ∞ and α i ≤ 2 -1-i . Applying Davydov's covariance inequality with the constant in (1.12b), we get that

(1.34) | Var S n -n Var X 0 | ≤ 4n X 0 2 4 i>0 √ α i ≤ 2( √ 2 + 2)n X 0 2 4 .
This upper bound has to be multiplied by 2 √ 2 when using the initial constant of [START_REF] Davydov | Convergence of distributions generated by stationary stochastic processes[END_REF]. Now, by Theorem 1.1(a) together with the Schwarz inequality,

| Var S n -n Var X 0 | ≤ 4n α 1 0 (α -1 (u) -1)Q 2 0 (u)du ≤ 4n (α -1 (U ) -1) + 2 X 0 2 4 . Since the inverse function of u → (α -1 (u) -1) 2 + is x → α(1 + √ x), (α -1 (U ) -1) + 2 2 = ∞ 0 α(1 + √ x)dx,
and our bounds lead to

(1.35) | Var S n -n Var X 0 | ≤ 2 √ 6n X 0 2 4 .
The numerical value of the constant in (1.34) is 6.83 while the numerical value of the constant in (1.35) is 4.89.

Applications to density estimation

In this section, (X i ) i∈IN is a strictly stationary sequence of random variables with values in IR d . The marginal distribution P is assumed to be absolutely continuous with respect to the Lebesgue measure on IR d . We are interested in estimating the density f of P . In this section, the strong mixing coefficients of (X i ) i∈IN are defined by (1.20).

Kernel density estimators.

We start by defining kernel density estimators. Let K : IR d → IR be an integrable kernel, satisfying (H1)

IR d K(x)dx = 1 and IR d K 2 (x)dx < +∞.
Let then (h n ) n>0 be a sequence of positive reals converging to 0. The kernel density estimator f n at time n is defined by

(1.36) f n (x) = (nh d n ) -1 n k=1 K(h -1 n (x -X k )).
For stationary and strongly mixing sequences, [START_REF] Mokkadem | Critères de mélange pour des processus stationnaires. Estimation sous des hypothèses de mélange[END_REF] proves that the L 2 norm of f n -IE(f n ) has the same order of magnitude as in the independent case , under condition (1.24). He also obtains some related results for L p -norms. In this section, we recall Mokkadem's result in the case p = 2 and we give a proof of this result.

Theorem 1.2. Let (X i ) i∈IN be a strictly stationary sequence of observations with values in IR d . Let f n be the kernel density estimator as defined in (1.36). Assume that (H1) holds. Then

IR d Var f n (x)dx ≤ 8(nh d n ) -1 n-1 i=0 α i IR d K 2 (x)dx.
Proof. Set h n = h and K h (x) = K(x/h). Let P denote the common marginal distribution of the observations X k . Define the empirical measures P n and the normalized and centered empirical measure Z n by (1.37)

P n = n -1 n k=1 δ X k and Z n = √ n(P n -P ).
With these notations, Theorem 1.2 is equivalent to the inequality below:

(1.38)

IR d IE((Z n * K h (x)) 2 )dx ≤ 8 n-1 i=0 α i IR d K 2 h (x)dx.
Now, by the Parseval-Plancherel identity,

IR d (Z n * K h (x)) 2 dx = (2π) -d IR d | Ẑn (ξ) Kh (ξ)| 2 dξ,
and consequently

IR d IE((Z n * K h (x)) 2 )dx ≤ (2π) -d IR d IE(| Ẑn (ξ)| 2 )| Kh (ξ)| 2 dξ ≤ (2π) -d sup ξ∈IR d IE(| Ẑn (ξ)| 2 ) IR d | Kh (ξ)| 2 dξ ≤ sup ξ∈IR d IE(| Ẑn (ξ)| 2 ) IR d K 2 h (x)dx by the Parseval-Plancherel identity again. Next n| Ẑn (ξ)| 2 = n k=1 (cos(ξ.X k ) -IE(cos(ξ.X k ))) 2 + n k=1 (sin(ξ.X k ) -IE(sin(ξ.X k ))) 2 .
To finish the proof of (1.38), we start from the above equality and we apply Corollary 1.1 twice. Noting that the random variables cos(ξ.X k ) and sin(ξ.X k ) take their values in [-1, 1], we get that

IE(| Ẑn (ξ)| 2 ) ≤ 8 1 0 (α -1 (u) ∧ n)du,
which completes the proof of (1.38).

Projection estimators.

Let w : IR d → IR + be a nonnegative and locally square integrable function. The space IR d is equipped with the measure w(x)dx. Let (e j ) j>0 be complete orthonormal system in the Hilbert space L 2 (w(x)dx). Suppose that the observations X k have a common law P with density f (x) with respect to the Lebesgue measure on IR d . Assume furthermore that f belongs to the Hilbert space L 2 (w(x)dx). Let

a j = IR d f (x)e j (x)w(x)dx.
Then, by the Plancherel identity,

f (t) = j>0 a j e j (t).
Let Π m f denote the orthogonal projection of f on the vector space generated by e 1 , . . . , e m . Then

Π m f = m j=1 a j e j .
Furthermore Π m f converges to f in L 2 (w(x)dx) as m tends to infinity. Now define the estimators âj of the coefficients a j by âj = P n (we j ). Then IE(â j ) = a j and, under suitable condtions on w and f , âj converges to a j as n tends to infinity. Now, we set, for some nondecreasing sequence (m n ) n of positive integers going to infinity (to be choosen later),

(1.39) fn = m n j=1 âj e j = n -1 m n j=1 n k=1 w(X k )e j (X k )e j . Then (1.40) IE( fn ) = m n j=1 a j e j = Π m n f.
Hence IE( fn ) converges to f in L 2 (w(x)dx) as n tends to infinity. In order to get the convergence of fn to f in L 2 (w(x)dx), it is then enough to bound up the variance of fn . In Theorem 1.3 below, we give an upper bound which is efficient for unconditional orthonormal bases or Riesz bases. We refer to [START_REF] Leblanc | Estimation par ondelettes de la densité marginale d'un processus stochastique: temps discret, temps continu et discrétisation[END_REF] for wavelets estimators of the density and to [START_REF] Ango-Nzé | Critères d'ergodicité de modèles markoviens. Estimation non paramétrique sous des hypothèses de dépendance[END_REF] for general linear estimators of the density.

Theorem 1.3. Let (X i ) i∈IN be a strictly stationary sequence of observations with density f in the Hilbert space L 2 (w(x)dx). Then (a) n

IR d w(x) Var fn (x)dx ≤ 4 n-1 i=0 α i sup x∈IR d w(x) m n j=1 |e j (x)| 2 .
Let h be defined by h

(x) = (1 + x) log(1 + x) -x. Then (b) n IR d w(x) Var fn (x)dx ≤ 20 α -1 (U ) ∧ n h sup x∈IR d w 2 (x) m n j=1 e 2 j (x) .
Proof. For convenience, write m = m n . Since (e j ) j∈[1,m] is an orthonormal system, it is easy to check that (1.41) n

IR d w(x) Var fn (x)dx = m j=1
Var Z n (we j ).

Let ε 1 , . . . , ε m be a finite Rademacher sequence, that is, a sequence of symmetric and independent signs. Suppose furthermore that this sequence is independent of (X i ) i∈IN . Then

(1.42)

m j=1 Var Z n (we j ) = IE Z n m j=1 ε j we j 2 .
We now proceed conditionally on ε 1 , . . . , ε m . By Corollary 1.1,

IE Z n m j=1 ε j we j 2 | ε 1 , . . . , ε m ≤ 4 n-1 i=0 α i m j=1 ε j w(X 0 )e j (X 0 ) 2 ∞ . Noting that m j=1 ε j w(X 0 )e j (X 0 ) ∞ ≤ m j=1 w(X 0 )|e j (X 0 )| ∞ ,
we then get Theorem 1.3(a).

We now prove (b). Let

c = α -1 (U ) h and c = m j=1 ε j w(X 0 )e j (X 0 ) 2 h * . For (ε 1 , . . . , ε m ) in {-1, 1} m , let Q ε 1 ,.
..,ε m be the quantile function of the random variable m j=1 ε j w(X 0 )e j (X 0 ) . By Corollary 1.1 applied conditionally on (ε 1 , . . . , ε m ),

(1.43) IE Z n m j=1 ε j we j 2 ≤ 2 2-m (ε 1 ,...,ε m )∈{-1,1} m 1 0 [α -1 (u) ∧ n]Q 2 ε 1 ,...,ε m (u)du.
Next, by inequality (A.7) in Annnex A, applied with

x = [α -1 (u) ∧ n]/c and y = Q 2 ε 1 ,...,ε m (u)/c , we have (1.44) 1 cc IE Z n m j=1 ε j we j 2 ≤ 4 + 2 2-m (ε 1 ,...,ε m ) 1 0 h * (Q 2 ε 1 ,...,ε m (u)/c )du. Now Q 2 Z (U ) has the law of Z 2 . Hence 1 0 h * (Q 2 ε 1 ,...,ε m (u)/c )du = IE h * m j=1 ε j w(X 0 )e j (X 0 ) 2 ,
which, together with both (1.44) and inequalities (1.41) and (1.42) ensures that

n IR d w(x) Var fn (x)dx ≤ 8 α -1 (U ) ∧ n h m j=1 ε j w(X 0 )e j (X 0 ) 2 h * .
(1.45)

To complete the proof, it remains to show that

(1.46) m j=1 ε j w(X 0 )e j (X 0 ) 2 h * ≤ 5 2 sup x∈IR d w 2 (x) m j=1 e 2 j (x) .
Proof of (1.46). Let (Y 1 , . . . , Y m ) be a Gaussian random vector with independent and N (0, 1)-distributed components. For any reals p 1 , . . . , p m and any positive integer k,

IE((p 1 ε 1 + • • • p m ε m ) 2k ) ≤ IE((p 1 Y 1 + • • • p m Y m ) 2k ).
Consequently, for any positive s such that 2s(p

2 1 + • • • p 2 m ) < 1, IE(exp(s(p 1 ε 1 + • • • p m ε m ) 2 )) ≤ IE(exp(s(p 1 Y 1 + • • • p m Y m ) 2 )) ≤ (1 -2s(p 2 1 + • • • p 2 m )) -1/2 . (1.47) Let then ψ(x) = (1 -2x) -1/2 -1 -x. Since the Legendre transform h * of the function h is h * (x) = e x -1 -x (cf. Annex A), it follows from (1.47) that IE h * s m j=1 ε j w(X 0 )e j (X 0 ) 2 | X 0 = x ≤ ψ(sw 2 (x)(e 2 1 (x) + • • • + e 2 m (x))), (1.48) provided that sw 2 (x)(e 2 1 (x) + • • • + e 2 m (x)) < 1/2. Hence m j=1 ε j w(X 0 )e j (X 0 ) 2 h * ≤ 1 ψ -1 (1) sup x∈IR d w 2 (x) m j=1
e 2 j (x) .

(1.46) follows then from the fact that ψ(2/5) ≤ 1.

Application of Theorem 1.3(a) to unconditional bases. Suppose that (e 1 , . . . , e m ) is an unconditional basis, which means that there exists some positive constant K, independent of m, such that

(1.49) m j=1 c j we j ∞ ≤ K √ m sup j∈[1,m] |c j |.
Then Theorem 1.3 ensures that (1.50)

IR d w(x) Var fn (x)dx ≤ 4K 2 m n n-1 i=0 α i .
For example, suppose that w(x) = 1I ]0,1] and let us consider the histogram bases

(1.51) e j,m (x) = √ m1I ](j-1)/m,j/m] for j ∈ [1, m].
Then (1.49) holds with K = 1.

We now apply these facts to laws with density f with support in [0, 1]. Let δ be some real in ]0, 1]. We denote by F(δ, C) the class of densities with support included in [0, 1] such that

(1.52) |f (x) -f (y)| ≤ C|x -y| δ for any (x, y) ∈ [0, 1] 2 ,
Starting from (1.52), one can easily bound up the absolute value of the bias term IE(f n )-f . Together with Theorem 1.3(a), this yields the result below on the mean integrated square error.

Corollary 1.3. Let (X i ) i∈IN be strictly stationary sequence of real valued random variables. Assume that the random variable X 1 has a density f in the class F(δ, C), for some C ≥ 1. For the bases defined in (1.51), let

D 2 (F(δ, C)) = inf m>0 sup f ∈F (δ,C) 1 0 IE f (x) - m j=1
P n (e j,m )e j,m (x) 2 dx.

Then

D 2 (F(δ, C)) ≤ 8C 2 n -1 n-1 k=0 α k 2δ/(1+2δ)
.

Consequently, if k≥0 α k < ∞, then (a) D 2 (F(δ, C)) = O(n -2δ/(1+2δ) ) and, if α k = O(k -a ) for some a in ]0, 1[, then (b) D 2 (F(δ, C)) = O(n -2aδ/(1+2δ) ).
Remark 1.3. (a) gives an upper bound of the same order as in the independent case. By contrast (b) provides a slowler rate. It would be interesting to study the L p risks for p < 2 in that case.

Application of Theorem 1.3(b) to Riesz bases . Suppose that (e j ) j>0 satisfies the Riesz condition:

(1.53)

w 2 (e 2 1 + • • • + e 2 m ) ∞ ≤ K m
for some positive constant K . Then, by Theorem 1.3(b),

(1.54)

IR d w(x) Var fn (x)dx ≤ 20K m n α -1 (U ) ∧ n h .
Under the mixing condition

(1.55) i≥0 α i | log α i | < ∞,
(1.54) together with Theorem 1.3(b) yields

(1.56)

IR d w(x) Var fn (x)dx = O(m/n).
For example, if m = 2m + 1, w(x) = 1I [0,1] and e 1 , . . . , e m is the system of trigonometric polynoms of degree at most m , (1.53) holds with K = 1. In that case, if F is the ball of radius R of the Sobolev space H s (T ) on the torus T = [0, 1]/{0 = 1}, Theorem 1.3(b) yields the minimax bound

(1.57) inf m>0 sup f ∈F 1 0 IE f (x) - m j=1
P n (e j )e j (x) 2 dx = O(n -2s/(1+2s) ).

Note that, for β-mixing sequences, (1.57) holds under the condition k≥0 β k < ∞, as shown by [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF].

1.6. A covariance inequality under absolute regularity.

In this section, we state and we prove Delyon's covariance inequality (1990) for random variables verifying β-mixing type conditions. We start by the definition of the β-mixing coefficient between two σ-fields. These coefficient are also called absolute regularity coefficients.

Definition 1.2. Let A and B two σ-fields of (Ω, T , IP). Let the probability measure P A⊗B be defined on (Ω × Ω, A ⊗ B) as the image of IP by the canonical injection i from (Ω, T , IP) into (Ω × Ω, A ⊗ B) defined by i(ω) = (ω, ω). Then

P A⊗B (A × B) = IP(A ∩ B).
Now, let us denote by P A (resp. P B ) the restriction of P to A (resp.B). The β-mixing coefficient of Volkonskii and [START_REF] Rozanov | Some limit theorems for random functions I[END_REF] is defined by

β(A, B) = sup C∈A⊗B |P A⊗B (C) -P A ⊗ P B (C)|.
This coefficient is also called coefficient of absolute regularity.

Remark 1.4. Let C = (A × B) ∪ (A c × B c ). Then P A⊗B (C) -P A ⊗ P B (C) = 2(IP(A ∩ B) -IP(A)IP(B)).
This equality ensures that β(A, B) ≥ α(A, B).

We now introduce the stronger uniform mixing coefficient of [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF]. In order to compare β(A, B) and ϕ(A, B), we will use the following identity, whose proof is left to the reader:

(1.58) β(A, B) = 1 2 sup i∈I j∈J |IP(A i ∩ B j ) -IP(A i )IP(B j )| ,
the maximum being taken over all finite partitions (A i ) i∈I and (B j ) j∈J of Ω with the sets A i in A and the sets B j in B.

Now, starting from (1.58) we compare the two mixing coefficients. Fix i in I. Let J be the set of elements j of J such that

IP(A i ∩ B j ) ≥ IP(A i )IP(B j )
and let B be the union of the sets B j for j in J . Then

1 2 j∈J |IP(A i ∩ B j ) -IP(A i )IP(B j )| = IP(A i )(IP(B | A i ) -IP(B)) ≤ IP(A i )ϕ(A, B). (1.59)
Summing on I, we thus get that (1.60) β(A, B) ≤ ϕ(A, B). [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF] has given a suitable covariance inequality for real-valued random variables under a uniform mixing condition. It is important to note that this inequality cannot be deduced from Theorem 1.1(a). Nevertheless this covariance inequality is a corollary of a more powerfull covariance inequality involving the β-mixing coefficient, due to [START_REF] Delyon | Limit theorem for mixing processes[END_REF]. We now state and prove this inequality. We refer to [START_REF] Dedecker | Inégalités de covariance[END_REF] for an extension to a weaker notion of dependence.

Theorem 1.4. Let A and B be two σ-fields of (Ω, T , IP). Then there exist random variables d A and d B with values in [0, 1], respectively A and B-measurables, satisfying

IE(d A ) = IE(d B ) = β(A, B),
and such that, for any pair (p, q) of reals in [1, ∞] with (1/p) + (1/q) = 1 and any random vector

(X, Y ) in L p (A) × L q (B), (a) | Cov(X, Y )| ≤ 2IE 1/p (d A |X| p )IE 1/q (d B |Y | q ). Furthermore d A ∞ ≤ ϕ(A, B) and d B ∞ ≤ ϕ(B, A). Hence (b) | Cov(X, Y )| ≤ 2ϕ(A, B) 1/p ϕ(B, A) 1/q X p Y q .
Remark 1.5. (a) was proved by [START_REF] Delyon | Limit theorem for mixing processes[END_REF], (b) is due to [START_REF] Peligrad | A note on two measures of dependence and mixing sequences[END_REF] and implies Ibragimov's covariance inequality (cf. also [START_REF] Bradley | Multilinear forms and measures of dependence between random variables[END_REF], Theorem 1.1.).

Proof. Since (X, Y ) is A⊗B-measurable, by the polar decomposition of IP A⊗B -IP A ⊗IP B , we have:

| Cov(X, Y )| ≤ Ω×Ω |XY |d|IP A⊗B -IP A ⊗ IP B |. Let µ = |IP A⊗B -IP A ⊗ IP B |.
By the Hölder inequality,

(1.61) | Cov(X, Y )| ≤ Ω×Ω |X(ω)| p dµ(ω, ω ) 1/p Ω×Ω |Y (ω )| q dµ(ω, ω ) 1/q .
Let µ A denote the first margin of µ and µ B the second one. Then

Ω×Ω |X(ω)| p dµ(ω, ω ) = Ω |X| p dµ A and Ω×Ω |Y (ω )| q dµ(ω, ω ) = Ω |Y | q dµ B .
Hence, to prove Theorem 1.4(a), it is enough to prove that µ A = 2d A P A and µ B = 2d B P B , for random variables d A and d B with the prescribed properties.

Starting from (1.58), one can prove that

(1.62) µ A (A) = sup i∈I j∈J |IP(A i ∩ B j ) -IP(A i )IP(B j )| ,
the maximum being taken over all finite partitions (A i ) i∈I and (B j ) j∈J of Ω with the sets A i in A and the sets B j in B. Therefrom, for any A in A,

µ A (A) ≤ sup i∈I j∈J (IP(A i ∩ B j ) + IP(A i )IP(B j )) ≤ 2IP(A).
Consequently by the Radon-Nikodym theorem, µ A is absolutely continuous with respect to the restriction of IP to A, from which it follows that µ A = 2d A IP, for some nonnegative

A-mesurable random variable d A verifying d A ≤ 1. Finally IE(d A ) = Ω dµ A = 2β(A, B),
which completes the proof of (a).

To prove (b), it suffices to note that µ A (A) ≤ 2ϕ(A, B)IP(A) by (1.59). Consequently d A ≤ ϕ(A, B) a.s., which implies Theorem 1.4(b).

Starting from Delyon's covariance inequality, we now give new upper bounds on the variance of partial sums of functionals. These bounds are due to [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF].

Corollary 1.4. Let (X i ) i∈IN be a strictly stationary sequence of random variables with values in some Polish space X . Set β i = β(σ(X 0 ), σ(X i )). For any numerical function g, let

S n (g) = g(X 1 ) + • • • + g(X n ).
Denote by P the law of X 0 . Then there exists a sequence

(b i ) i∈Z Z of measurable functions from X into [0, 1], satisfying X b i dP = β i ,
and such that, for any function g in L 2 (P ),

(a) Var S n (g) ≤ n X (1 + 4b 1 + • • • + 4b n-1 )g 2 dP.
Consequently, if

B = 1 + 4 i>0 b i , then (b) Var S n (g) ≤ n X Bg 2 dP.
Remark 1.6. Starting from (b), one can obtain the bounds of Corollary 1.1 with the β-mixing coefficients instead of the α-mixing coefficients. Indeed, for any positive i,

X b i g 2 dP = X ×[0,1] 1I t≤b i (x) g 2 (x)P ⊗ λ(dx, dt),
where λ denotes the Lebesgue measure on [0, 1]. Let b(t, x) = 1I t≤b i (x) and h(t, x) = g 2 (x). By (1.11b) (confer Lemma 2.1, Chap. 2, for a proof of this fact),

X ×[0,1] 1I t≤b i (x) g 2 (x)P ⊗ λ(dx, dt) ≤ 1 0 Q b (u)Q h (u)du ≤ β i 0 Q 2 g(X 0 ) (u)du (recall that Q h = Q 2 g(X 0 ) ). It follows that (1.63) X Bg 2 dP ≤≤ 4 1 0 β -1 (u)Q 2 g (u)du.
Proof of Corollary 1.4. From the stationarity

Var S n (g) -n Var g(X 0 ) ≤ 2n n-1 i=1 | Cov(g(X 0 ), g(X i ))|.
We now apply Theorem 1.4(a) with p = q = 2. There exist random variables B 0,i and B i,0 with values in [0, 1] and with mean value β i , measurable respectively for σ(X 0 ) and σ(X i ), such that

| Cov(g(X 0 ), g(X i ))| ≤ 2 IE(B 0,i g 2 (X 0 ))IE(B i,0 g 2 (X i )) ≤ IE(B 0,i g 2 (X 0 )) + IE(B i,0 g 2 (X i )).
Now B 0,i = b 0,i (X 0 ) and B i,0 = b i,0 (X i ) and therefrom, since X 0 and X i have the common marginal law P ,

| Cov(g(X 0 ), g(X i ))| ≤ X (b i,0 + b 0,i )g 2 dP.
Setting b i = (b i,0 + b 0,i )/2, we then get (a). (b) follows immediately.

Corollary 1.4 yields better results for density estimation than Corollary 1.1. For example, we can relax the summability condition on the coefficients in Theorem 1.4(b), as shown by the result below, which is a particular case of the results of [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] on L p risks of linear estimators of the density. We refer to [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF] for extensions of this result to non absolutely regular sequences.

Corollary 1.5. Let(X i ) i∈IN be a strictly stationary sequence of random variables with values in IR d , satisfying the assumptions of Theorem 1.4. Then, for the projection estimator of the density defined by (1.39), (b) n

IR d w(x) Var fn (x)dx ≤ (1 + 4 n-1 i=1 β i ) sup x∈IR d w 2 (x) m j=1
e 2 j (x) .

Proof. By (1.41) and Corollary 1.4,

n IR d w(x) Var fn (x)dx ≤ m j=1 IR d 1 + 4 n-1 i=1 b i (x) f (x)w 2 (x)e 2 j (x)dx, with b i ≥ 0 and IR d b i (x)f (x)dx ≤ β i . Hence n IR d w(x) Var fn (x)dx ≤ sup x∈IR d w 2 (x) m j=1
e 2 j (x) (1.64) whcih completes the proof.

IR d 1 + 4 n-1 i=1 b i (x) f (x)dx,

Other covariance inequalities under strong mixing *

In this section, we give sharper bounds on the covariance under strong mixing conditions. Recall that Theorem 1.1 gives upper bounds involving the quantile function of |X|. In this section, in order to get sharper bounds, we will use an other approach. Let L α (F, G) denote the class of random vectors on IR 2 with given marginal distributions functions F and G, satisfying the mixing constraint α(X, Y ) ≤ α. In the case α = 1/2 (no mixing constraint), [START_REF] Fréchet | Sur les tableaux de corrélation dont les marges sont données[END_REF][START_REF] Fréchet | Sur la distance de deux lois de probabilité[END_REF] and [START_REF] Bass | Sur la compatibilité des fonctions de répartition[END_REF] proved that, for continuous distribution functions F and G,

(1.65) Cov(X, Y ) ≤ 1 0 F -1 (u)G -1 (u)du - 1 0 F -1 (u)du 1 0 G -1 (u)du,
and that the equality holds when F (X) = G(Y ) in the continuous case. In a similar way

(1.66) Cov(X, Y ) ≥ 1 0 F -1 (u)G -1 (1 -u)du - 1 0 F -1 (u)du 1 0 G -1 (u)du,
and the equality holds when 

F (X) = 1-G(Y )
F -1 (u)(G -1 (u) -G -1 (1 -u))du
Next, using the change of variables t = 1 -u in the integral on right hand, we get that

Cov(X, Y ) ≤ 1 0 F -1 (1 -u)(G -1 (1 -u) -G -1 (u))du. Define now the dispersion function D F of F by (1.67) D F (u) = F -1 (1 -u) -F -1 (u).
Using both the two above upper bounds on Cov(X, Y ), we then get that

(1.68) Cov(X, Y ) ≤ 1/2 0 D F (u)D G (u)du.
This upper bound is slightly suboptimal. Theorem 1.5 below gives an upper bound on the covariance involving D F D G with a multiplicative factor (1 -2u), providing a better upper bound in the case α = 1/2.

Theorem 1.5. Set

x α = (1 - √ 1 -2α )/2. Let (X, Y ) be an element of L α (F, G). Then (a) | Cov(X, Y )| ≤ x α 0 (1 -2u)D F (u)D G (u)du.
If (X i ) i∈Z Z is a strictly stationary sequence of random variables with distribution function F , then

(b) | Var S n -n Var X 0 | ≤ 2n 1/2 0 (α -1 (2u(1 -u)) -1) + D 2 F (u)du.
Remark 1.7. Exercise 8 at the end of this chapter is devoted to a comparison between Theorem 1.1(a) and Theorem 1.5(a).

Proof. The main step is the proof of (a). Without loss of generality we may assume that 0 is a median for the distributions of X and Y . For any real-valued random variable Z, let Z + = max(0, Z) and

Z -= max(0, -Z). Then Cov(X, Y ) = Cov(X + , Y + ) + Cov(X -, Y -) -Cov(X + , Y -) -Cov(X -, Y + ).
We now bound up the four terms on right hand. Let H X (x) = IP(X > x) and H Y (y) = IP(Y > y). From the Hoeffding identity we have:

Cov(X + , Y + ) = ∞ 0 ∞ 0 IP(X > x, Y > y) -H X (x)H Y (y) dxdy. Now IP(X > x, Y > y) -H X (x)H Y (y) ≤ inf(H X (x), H Y (y)) -H X (x)H Y (y).
Let R be the increasing function defined on [0, 1/2] by R(t) = t -t 2 . Applying the elementary fact that inf(a, b) -ab ≤ inf(R(a), R(b)) for any reals a and b in [0, 1/2] and the strong mixing condition, we get that

IP(X > x, Y > y) -H X (x)H Y (y) ≤ inf(R(H X (x)), R(H Y (y)), α/2)
for any positive x and y. It follows that

Cov(X + , Y + ) ≤ ∞ 0 ∞ 0 inf(R(H X (x)), R(H Y (y)), α/2)dxdy.
Let V be a random variable with uniform distribution over [0, 1]. Set

Z = F -1 (1 -R -1 (V ))1I V <α/2 and T = G -1 (1 -R -1 (V ))1I V <α/2 .
Then, for any positive reals x and y,

inf(R(H X (x)), R(H Y (y)), α/2) = IP(Z > x, T > y). Hence Cov(X + , Y + ) ≤ IE(ZT ) = α/2 0 F -1 (1 -R -1 (v))G -1 (1 -R -1 (v))dv.
In the same way

Cov(X -, Y -) ≤ α/2 0 F -1 (R -1 (v))G -1 (R -1 (v))dv. Now -Cov(X + , Y -) = ∞ 0 ∞ 0 (H X (x)G(-y) -IP(X > x, Y < -y))dxdy ≤ ∞ 0 ∞ 0 inf(H X (x)G(-y), α/2)dxdy ≤ 1 2 ∞ 0 ∞ 0 inf(H X (x), G(-y), α)dxdy.
Therefrom, proceeding as in the proof of Theorem 1.1(a),

-Cov(X + , Y -) ≤ 1 2 α 0 F -1 (1 -v)(-G -1 (v))dv = α/2 0 F -1 (1 -2v)(-G -1 (2v))dv. Now, from the convexity of R -1 on [0, 1/4], 2v ≥ R -1 (v). Since v → -F -1 (1 -v)G -1 (v)
is nonincreasing on [0, 1/2], we deduce from the above inequality that

-Cov(X + , Y -) ≤ - α/2 0 F -1 (1 -R -1 (v))G -1 (R -1 (v))dv.
Interverting X and Y , we get a similar upper bound for -Cov(X -, Y + ), and, collecting the four upper bounds above, we then get that

(1.69) Cov(X, Y ) ≤ α/2 0 D F (R -1 (v))D G (R -1 (v))dv.
Since the dispersion function associated to the distribution function of -X is also equal to D F almost everywhere, the above upper bound still holds true for Cov(-X, Y ). Now Theorem 1.5(a) follows via the change of variable u = R -1 (v).

We now prove (b). Assume that the random variables X i have the common marginal distribution function F . With the notations of Section 1.4, Inequality (1.69) yields

| Var S n -n Var X 0 | ≤ 2n α 1 /2 0 (α -1 (2v) -1)D 2 F (R -1 (v))dv.
Using again the change of variable u = R -1 (v) in the above integral, we then get Theorem 1.5(b).

EXERCISES 1) Let U be a random variable with uniform law over [0, 1] and F be the distribution function of some real-valued random variable. a) Prove that X = F -1 (U ) has the distribution function F . b) Prove that, if F is continuous everywhere, then F (X) has the uniform law over [0, 1] and F (X) = U almost surely. c) Let F be any distribution function (jumps ate allowed) and δ be a random variable with uniform law over [0, 1], independent of X. Prove that

V = F (X -0) + δ(F (X) -F (X -0))
has the uniform law over [0, 1], and that, almost surely F -1 (V ) = X. Hint: prove that X ≥ F -1 (V ), and next use the fact that X and F -1 (V ) have the same law.

2) Let µ be a law on IR 2 and let X be a random variable with distribution the first marginal law of µ. Let δ be a random variable with uniform law over [0, 1], independent of X. Construct a function f such that (X, f (X, δ)) has law µ. Hint: if Z = (T, W ) has law µ, consider the inverse of the distribution function of W conditionally to T .

3) Let F and G be distribution functions of nonnegative real-valued random variables, and (X, Y ) be a random vector with marginal distribution functions F and G.

a) Prove that

(1) IE(XY ) ≤

1 0 F -1 (u)G -1 (u)du.
Suppose now that the equality holds in (1) . Let U be a random variable with uniform distribution over [0,1]. Prove that (F -1 (U ), G -1 (U )) and (X, Y ) are equally distributed. Hint: consider the bivariate distribution function of (X, Y ). b) Let δ be a random variable with uniform law over [0, 1], independent of (X, Y ). Prove that, if the equality holds true in (1), then one can construct a random variable

V = f (X, Y, δ) with uniform law over [0, 1], such that (X, Y ) = (F -1 (V ), G -1 (V )) p.s.
4) Let X be a real-valued random variable and let Q be the quantile function of |X|. Let δ be a random variable with uniform law over [0, 1], independent of X, and let L(α) be the class of nonnegative integer random variables A on (Ω, T , IP), such that IP(A > x) = α(x). Prove that

(2)

1 0 α -1 (u)Q 2 (u)du = sup A∈L(α) IE(AX 2 ).
5) Throughout this exercise, the strong mixing coefficients α n are defined by par (1.20). Let (X i ) i∈Z Z be a strictly stationary sequence of real-valued random variables with law P and distribution function F . Let Z n be defined by (1.37). We are interested in the variance of Z n (I) for I interval. For any Borel set A, set 

I n (A) = sup k i=1 Var Z n (A i ) : {A 1 , ..., A k } finite partition of A .
∩ B = ∅, I n (A ∪ B) ≥ I n (A) + I n (B). c) Prove that (3) I n (A) ≤ sup f ∞ =1 Var Z n (f 1I A ). Deduce from (3) that I n (IR) ≤ 1 + 4 n-1 i=1 α i . d) Prove that there exists some distribution function G n such that (4) Var Z n (]s, t]) ≤ (G n (t) -G n (s))(1 + 4 n-1 i=1 α i ).
for any (s, t) with s ≤ t. Compare (4) with Corollary 1.1.

6)

Let F and G be distribution function of nonegative and integrable random variables and X and Y be random variables with respective distribution functions F and G. Let Φ be the set of convex functions defined in (1.26). a) Suppose that F and G are continuous one to one maps from IR + on [0, 1[. Prove that ( 5)

1 0 F -1 (u)G -1 (u)du = inf φ∈Φ IE(φ * (X) + φ(Y )).
Hint : define φ by φ (G -1 ) = F -1 . b) Does ( 5) hold in the general case? c) Let Z be a nonnegative random variable with distribution function H. Suppose that, for any φ in Φ, if φ(Y )) is integrable, then φ(Z) is integrable. Prove that under the assumption of (a),

1 0 F -1 (u)G -1 (u)du < ∞ =⇒ 1 0 F -1 (u)H -1 (u)du < ∞.
7) Let X and Y be complex-valued integrable random variables such that |XY | is integrable and let α = α(σ(X), σ(Y )). Let RX and IX denote respectively the real parts and the imaginary part of X.

a) Prove that Q RX ≤ Q |X| and Q IX ≤ Q |X| . b) Suppose that IE(XY ) -IE(X)IE(Y ) = ρ ≥ 0.
Apply Theorem 1.1 to the real parts and the imaginary parts of X and Y to prove that ( 6)

|IE(XY ) -IE(X)IE(Y )| ≤ 4 α 0 Q |X| (u)Q |Y | (u)du.
c) The general case. Suppose that IE(XY ) -IE(X)IE(Y ) = ρe iθ for some ρ > 0 and some θ in IR. Apply (b) to X and e -iθ Y to prove that Inequality (6) still holds true. 8) Let X and Y be two random variables, with respective distribution functions F and G, satisfying the assumptions of Theorem 1.1 or Theorem 1.5. a) Prove that, for any (x, y) in IR 2 ,

|IP(X > x, Y > y) -IP(X > x)IP(y > y)| ≤ inf(F (x), G(x), 1 -F (x), 1 -G(x), α/2).
b) With the notations of Theorem 1.5, infer from the above inequality that

(7) | Cov(X, Y )| ≤ α/2 0 D F (u)D G (u)du.
c) Noticing that the upper bound in (1.69) is equal to the upper bound in Theorem 1.5(a), prove that Theorem 1.5(a) is sharper than (7). Hint: prove that R -1 (v) ≥ v. d) Symmetric case. Assume here that X and Y have symmetric laws. Prove then that D F (u) = 2Q X (2u) and D G (u) = 2Q Y (2u) almost everywhere. Infer that

α/2 0 D F (u)D G (u)du = 2 α 0 Q X (u)Q Y (u)du.
e) General case. For a real-valued random variable Z, define Ψ Z by Ψ Z (x) = IP(Z > x) for x ≥ 0 and Ψ Z (x) = IP(Z < x) for x < 0. Go inside the paper of Rio (1993, pages 593-594) to prove that

2 α 0 Q X (u)Q Y (u)du ≥ IR 2 inf(Ψ X (x), Ψ Y (y), α/2)dxdy
Infer that (7) is sharper than Theorem 1.1(a) in the general case.

ALGEBRAIC MOMENTS, ELEMENTARY EXPONENTIAL INEQUALITIES

Introduction

In this chapter, we start by giving upper bounds for algebraic moments of partial sums from a strongly mixing sequence. These inequalities are similar to Rosenthal's inequalities (1970) concerning moments of sums of independent random variables. They may be applied to provide estimates of deviation probabilities of partial sums from their mean value, which are more efficient than the results derived from the Marcinkiewicz-Zygmund type moment inequalities given in [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF] or [START_REF] Billingsley | Convergence of probability measures[END_REF] for uniformly mixing sequences, or in [START_REF] Yokoyama | Moment bounds for stationary mixing sequences[END_REF] for strongly mixing sequences, in particular for partial sums with a small variance. For example, Rosenthal type inequalities may be used to get precise upper bounds for integrated L p -risks in of kernel density estimtors. They provide the exact rates of convergence, contrary to Marcinkiewicz-Zygmund type moment inequalities, as shown first by [START_REF] Bretagnolle | Estimation des densités: risque minimax[END_REF] in the independent case.

In Sections 2.2 and 2.3, we follow the approach of [START_REF] Doukhan | Moments de variables aléatoires mélangeantes[END_REF], for algebraic moments in the strong mixing case. In Section 2.4 we give a second method, which provides explicit constants in inequalities for the algebraic moments of order 2p. Applying then the Markov inequality to S 2p n , and minimizing the so obtained deviation bound with respect to p, we then get exponential Hoeffding's type exponential inequalities in the uniform mixing case. We also apply this method to get upper bounds for nonalgebraic moments in Section 2.5.

An upper bound for the fourth moment of sums

In this section, we adapt the method introduced in Billingsley (1968, section 22) to bound up the moment of order 4 of a sum of random variables satisfying an uniform mixing condition to the context of strongly mixing sequences. We start by introducing some notations that we shall use throughout the sequel.

Notation 2.1. Let (X i ) i∈Z Z be a sequence of real-valued random variables. Set F k = σ(X i : i ≤ k) and G l = σ(X i : i ≥ l). By convention, if the sequence (X i ) i∈T is defined on a subset T of Z Z, we set X i = 0 for i in Z Z \ T .
During Sections 2.2 and 2.3, the strong mixing coefficients (α n ) n≥0 of (X i ) i∈Z Z are defined, as in [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], by (2.1)

α 0 = 1/2 and α n = sup k∈Z Z α(F k , G k+n ) for any n > 0.
Starting from Theorem 1.1(a), we now give an upper bound for the fourth moment of the partial sums for nonstationary sequences.

Theorem 2.1 Let (X i ) i∈IN be a sequence of centered real-valued random variables with finite fourth moments. Let

Q k = Q |X k | and set M 4,α,n (Q k ) = n k=1 1 0 [α -1 (u) ∧ n] 3 Q 4 k (u)du.
Then

IE(S 4 n ) ≤ 3 n i=1 n j=1 |IE(X i X j )| 2 +48 n k=1 M 4,α,n (Q k ). Proof. For i / ∈ [1, n], let us replace the initial random variables X i by the null random variable. With this convention (2.2) S 4 n = 24 i<j<k<l X i X j X k X l +12 j<k i / ∈{j,k} X 2 i X j X k +6 i<j X 2 i X 2 j +4 i =j X 3 i X j + i X 4 i .
It follows that

(2.3) IE(S 4 n ) ≤ 3 i≤j≤k≤l |IE(X i X j X k X l )|(1 + 1I i<j )(1 + 1I j<k )(1 + 1I k<l ).
We now apply Theorem 1.1(a) to the product X i X j X k X l at the maximal spacing. So, let

m = sup(j -i, k -j, l -k). If m = k -j > 0, then Theorem 1.1(a) applied to X = X i X j and Y = X k X l yields (2.4) |IE(X i X j X k X l )| ≤ |IE(X i X j )IE(X k X l )| + 2 α m 0 Q X i X j (u)Q X k X l (u)du. If m = j -i and k -j < m, Theorem 1.1(a) applied to X = X i and Y = X j X k X l yields (2.5) |IE(X i X j X k X l )| ≤ 2 α m 0 Q X i (u)Q X j X k X l (u)du.
The case m = l -k and sup(k -j, j -i) < m can be treated in the same way and gives the same inequality. To complete the proof, we will need the technical lemma below, due to [START_REF] Bass | Sur la compatibilité des fonctions de répartition[END_REF] in the case p = 2.

Lemma 2.1. Let Z 1 , ... Z p be nonnegative random variables. Then

(a) IE(Z 1 ...Z p ) ≤ 1 0 Q Z 1 (u)...Q Z p (u)du. Furthermore (b) 1 0 Q Z 1 Z 2 (u)Q Z 3 (u)...Q Z p (u)du ≤ 1 0 Q Z 1 (u)Q Z 2 (u)...Q Z p (u)du and (c) 1 0 Q Z 1 +Z 2 (u)Q Z 3 (u)...Q Z p (u)du ≤ 1 0 (Q Z 1 (u) + Q Z 2 (u))Q Z 3 (u)...Q Z p (u)du.
Proof of Lemma 2.1. We first prove (a). By the Fubini Theorem, (2. 6)

IE(Z 1 ...Z p ) = IR p IP(Z 1 > z 1 , . . . , Z p > z p )dz 1 . . . dz p ≤ IR p inf i∈[1,p] IP(Z i > z i )dz 1 . . . dz p . Now (2.7) inf i∈[1,p] IP(Z i > z i ) = 1 0 1I z 1 <Q Z 1 (u) . . . 1I z p <Q Z p (u) du.
Plugging (2.7) in (2.6) and applying again the Fubini theorem, we then get (a).

Let us now prove (b). Let U be a random variable with the uniform distribution over [0, 1]. For any nonnegative random variable Z, Q Z (U ) has the distribution of Z. Now (cf. exercise 1, Chap. 1), if H(t) = IP(Z 1 Z 2 > t), then, for any random variable δ with uniform distribution over [0, 1] independent of (Z 1 , Z 2 ),

W = 1 -V = H(Z 1 Z 2 -0) + δ(H(Z 1 Z 2 ) -H(Z 1 Z 2 -0)) has the uniform law. Let (T 1 , T 2 , • • • , T p ) = (Z 1 , Z 2 , Q Z 3 (W ), . . . , Q Z p (W )). Then the random variable (T 1 T 2 , T 3 , . . . , T p ) has the same law as (Q Z 1 Z 2 (U ), Q Z 3 (U ), . . . , Q Z p (U )). Hence, by Lemma 2.1(a), 1 0 Q Z 1 Z 2 (u)Q Z 3 (u)...Q Z p (u)du ≤ 1 0 Q Z 1 (u)Q Z 2 (u)...Q Z p (u)du,
which completes the proof of (b). The proof of (c), being similar, is omitted. We now complete the proof of Theorem 2.1. Both inequalities (2.4) and(2.5) together with Lemma 2.1(b) applied repeatedly yield

|IE(X i X j X k X l )| ≤ 2 α m 0 Q i (u)Q j (u)Q k (u)Q l (u)du + |IE(X i X j )IE(X k X l )|1I k-j>max(j-i,l-k) , (2.8)
where m = max(j -i, k -j, l -k) > 0 is the maximal spacing. In the case m = 0, (2.8) still holds since

E(X 4 i ) = 1 0 Q 4 i (u)du ≤ 2 1/2 0 Q 4 i (u)du. Now i≤j<k≤l |IE(X i X j )IE(X k X l )|(1 + 1I i<j )(1 + 1I k<l ) ≤ (i,j)∈[1,n] 2 |IE(X i X j )| 2 .
Hence, by (2.3) and (2.8),

IE(S 4 n ) -3 n i=1 n j=1 |IE(X i X j )| 2 ≤ 12 i≤j≤k≤l α m 0 (Q 4 i (u) + Q 4 j (u) + Q 4 k (u) + Q 4 l (u))du ≤ 48 n-1 m=0 n k=1 α m α m+1 (m + 1) 3 Q 4 k (u)du, (2.9)
with the convention that α n = 0 in (2.9). Hence Theorem 2.1 holds Application of Theorem 2.1 to bounded random variables. Suppose that X i ∞ ≤ 1 for any i > 0. Then by Theorem 2.1 and Corollary 1.2,

IE(S 4 n ) ≤ 3 n i=1 n j=1 |IE(X i X j )| 2 + 144n n-1 m=0 (m + 1) 2 α m ≤ 48n 2 n-1 m=0 α m 2 + 144n n-1 m=0 (m + 1) 2 α m . (2.10)
Let us compare this result with Lemma 4, Section 20, in [START_REF] Billingsley | Convergence of probability measures[END_REF]. This lemma gives, in our setting (note that the proof of Billingsley can be adapted to strongly mixing sequences),

(2.11) IE(S 4 n ) ≤ 768n 2 n-1 m=0 √ α m 2 .
For any p > 0, set

(2.12) Λ p (α -1 ) = sup 0≤m<n (m + 1)(α m ) 1/p .
Applying (2.10), we get

(2.13) IE(S 4 n ) ≤ (8π 2 + 144)(nΛ 2 (α -1 )) 2 ≤ 223n 2 (Λ 2 (α -1 )) 2 . Since (α m ) m≥0 est nonincreasing, (2.14) Λ 2 (α -1 ) ≤ n-1 m=0 √ α m ,
which shows that (2.13) implies (2.11). Now, if the strong mixing coefficients α m satisfy α m = O(m -2 ), then (2.13) ensures that IE(S 4 n ) = O(n 2 ). In that case (2.11) leads to a logarithmic loss.

Even algebraic moments

In this section, we extend Theorem 2.1 to moments of order 2p with p > 2 integer. Our main result is the following.

Theorem 2.2. Let p > 0 be an integer and (X i ) i∈IN be a sequence of centered realvalued random variables with finite moments of order 2p. Set Q k = Q X k . Then there exist positive constants a p and b p such that

IE S 2p n ≤ a p 1 0 n k=1 [α -1 (u) ∧ n]Q 2 k (u)du p + b p n k=1 1 0 [α -1 (u) ∧ n] 2p-1 Q 2p k (u)du.
Remark 2.1. Recall that Q k (U ) and |X k | have the same law. The weighted moments on right hand in the above inequality play the same role as the usual moments in the independent case. We refer to Annex C for more comparisons between these quantities and the usual moments. [START_REF] Doukhan | Moments de variables aléatoires mélangeantes[END_REF] give recursive relations which allow to bound up a p and b p by induction on p. These upper bounds can be used to derive exponential inequalities for geometrically strongly mixing sequences or random fields (cf. [START_REF] Doukhan | Vitesse de convergence dans le théorème central limite pour des variables aléatoires mélangeantes à valeurs dans un espace de Hilbert[END_REF] or [START_REF] Doukhan | Mixing: properties and examples[END_REF]). For nonalgebraic moments, one can derive moments inequalities from the algebraic case via interpolation inequalities (see [START_REF] Utev | Inequalities and estimates of the convergence rate for the weakly dependent case[END_REF] or [START_REF] Doukhan | Mixing: properties and examples[END_REF]). Nevertheless, interpolation inequalities lead to suboptimal mixing conditions. In Chapter 6, we will give another way to prove moment inequalities, which leads to unimprovable mixing conditions.

Proof of Theorem 2.2. We follow the line of proof of [START_REF] Doukhan | Moments de variables aléatoires mélangeantes[END_REF]; cf. also [START_REF] Doukhan | Mixing: properties and examples[END_REF]. For any positive integer q, let (2.15)

A q (n) = 1≤i 1 ≤•••≤i q ≤n |IE(X i 1 . . . X i q )|. It is easy to check that (2.16) IE(S 2p n ) ≤ (2p)!A 2p (n).
Therefrom Theorem 2.2 follows from similar upper bounds on A q (n). We will bound up these quantities by induction on q via Lemma 2.2 below.

Lemma 2.2. Suppose that the random variables X 1 , . . . X n are centered and with finite absolute moments of order q. Then

A q (n) ≤ q-1 r=1 A r (n)A q-r (n) + 2 n k=1 1 0 [α -1 (u) ∧ n] q-1 Q q k (u)du.
Proof. As in the proof of Theorem 2.1, we may assume that α n = 0. Let

m(i 1 , . . . , i q ) = sup k∈[1,q[ (i k+1 -i k )
and

(2.17)

j = inf{k ∈ [1, q[ : i k+1 -i k = m(i 1 , . . . , i q )}.
Theorem 1.1(a) applied to X = X i 1 . . . X i j and Y = X i j+1 . . . X i q together with Lemma 2.1(b) ensures that (2.18)

|IE(X i 1 . . . X i q )| ≤ |IE(X i 1 . . . X i j )IE(X i j+1 . . . X i q )| + 2 α m(i 1 ,...,i q ) 0 Q i 1 (u) . . . Q i q (u)du.
Summing (2.18) on (i 1 , . . . , i q ) we infer that

(2.19) A q (n) ≤ q-1 r=1 A r (n)A q-r (n) + 2 i 1 ≤•••≤i q α m(i 1 ,...,i q ) 0 Q i 1 (u) . . . Q i q (u)du.
Now, starting from the elementary inequality

Q i 1 (u) . . . Q i q (u) ≤ q -1 (Q q i 1 (u) + • • • + Q i q (u)),
and interverting the sum and the integral, we get that

i 1 ≤•••≤i q α m(i 1 ,...,i q ) 0 Q i 1 (u) . . . Q i q (u)du ≤ 1 q q l=1 n i l =1 n-1 m=0 α m α m+1 χ(i l , m)Q q i l (u)du,
where χ(i l , m) is the cardinality of the set of (q -1)-uples (i 1 , .., i l-1 , i l+1 , .., i q ) such that

i 1 ≤ • • • ≤ i l-1 ≤ i l ≤ i l+1 ≤ • • • ≤ i q and sup k∈[1,q[ (i k+1 -i k ) ≤ m.
Noting that χ(i l , m) ≤ (m + 1) q-1 , we then get Lemma 2.2.

End of the proof of Theorem 2.2.

Let (2.20) M q,α,n = n k=1 1 0 [α -1 (u) ∧ n] q-1 Q q k (u)du.
We will prove by induction on q that

H(q) A q (n) ≤ a q M q/2 2,α,n + b q M q,α,n .
By Corollary 1.2, H(2) holds true with a 2 = 2 et b 2 = 0. Suppose now that H(r) holds for any r ≤ q -1 Then, from Lemma 2.2 we get that

A q (n) ≤ q-2 r=2 (a r M r/2 2,α,n + b r M r,α,n )(a q-r M (q-r)/2 2,α,n + b q-r M q-r,α,n ) + 2M q,α,n .
Hence H(q) will hold true if we prove that, for any r in [2, q -2],

(2.21

) (a r M r/2 2,α,n + b r M r,α,n )(a q-r M (q-r)/2 2,α,n + b q-r M q-r,α,n ) ≤ a q,r M q/2 2,α,n + b q,r M q,α,n .
To prove (2.21) we apply the Young inequality qxy ≤ rx q/r + (q -r)y q/(q-r) to the left hand side in (2.21). Noting that (v + w) s ≤ 2 s-1 (v s + w s ) for any s ≥ 1, we get that (2.21) will hold true if

(2.22) M q/r r,α,n ≤ c q,r (M q/2 2,α,n + M q,α,n ). Now, let M p,α,n (Q k ) = 1 0 [α -1 (u) ∧ n] p-1 Q p k (u)du.
By the Hölder inequality,

M r,α,n (Q k ) ≤ (M q,α,n (Q k )) (r-2)/(q-2) (M 2,α,n (Q k )) (q-r)/(q-2) . Therefrom M r,α,n = n k=1 M r,α,n (Q k ) ≤ n k=1 (M q,α,n (Q k )) (r-2)/(q-2) (M 2,α,n (Q k )) (q-r)/(q-2) .
Hence, by the Hölder inequality applied with exponents (q -2)/(r -2) and (q -2)/(q -r) together with the adequate Young inequality,

M r,α,n ≤ M (r-2)/(q-2) q,α,n M (q-r)/(q-2) 2,α,n ≤ c r,q (M r/q q,α,n + M r/2 2,α,n ),
which implies (2.22). Whence (2.21) holds, and Lemma 2.2 follows by induction on q. Both (2.16) and Lemma 2.2 then imply Theorem 2.2.

Application to bounded random variables. Suppose that X i ∞ ≤ 1 for any i > 0. Then

(2.23) IE(S 2p n ) ≤ (2a p + b p )n p (Λ p (α -1 )) p , Consequently, if the strong mixing coefficients (α m ) m≥0 satisfy α m = O(m -p ), then (2.23) implies the Marcinkiewicz-Zygmund type inequality IE(S 2p n ) = O(n p ).
In that case Yokoyama's inequalities (1980) are not efficient (cf. Annex C for more details).

Exponential inequalities

The constants a p and b p appearing in Theorem 2.2 can be bounded up by explicit constants. Nevertheless, in the case of geometrically mixing sequences, it seems that it is difficult to obtain the exact dependence in p of the constants (recall that one can derive exponential inequalities from moment inequalities with explicit constants). In this section, we give a different way to obtain moment inequalities, which is more suitable to derive exponential inequalities. Next we will derive exponential inequalities for geometrically strongly mixing inequalities from these new inequalities. We will also get the so called Collomb inequalities (1984) for uniformly mixing sequences via this method. We refer to [START_REF] Delyon | Exponential inequalities for dependent processes[END_REF] and [START_REF] Wintenberger | Deviation inequalities for sums of weakly dependent time series[END_REF] for additional results.

Notation 2.2. Let F i = σ(X j : j ≤ i). We set IE i (X k ) = IE(X k | F i ).
The fundamental tool of this section is the equality below.

Theorem 2.3. let (X i ) i∈Z Z be a sequence of real-valued random variables and ψ be a convex differentiable map from IR into IR + , with ψ(0) = 0, and such that the second derivative of ψ in the sense of distributions is absolutely continuous with respect to the Lebesgue measure on IR. Let ψ denote the density of the second derivative of ψ. Suppose that for any i in [1, n] and any k in

[i, n], (a) IE(|(ψ (S i ) -ψ (S i-1 ))X k |) < ∞.
Then

IE(ψ(S n )) = n i=1 1 0 IE ψ (S i-1 + tX i ) -tX 2 i + X i n k=i IE i (X k ) dt.
Proof. By the Taylor integral formula at order 2

ψ(S n ) = n i=1 (ψ(S i ) -ψ(S i-1 )) = n k=1 ψ (S k-1 )X k + n i=1 1 0 (1 -t)ψ (S i-1 + tX i )X 2 i dt. Now ψ (S k-1 ) = k-1 i=1 (ψ (S i ) -ψ (S i-1 )) = k-1 i=1 1 0 ψ (S i-1 + tX i )X i dt.
Plugging this equality in the Taylor formula, we get that

(2.24) ψ(S n ) = n i=1 1 0 ψ (S i-1 + tX i ) -tX 2 i + X i n k=i X k dt.
Now, taking the mean in the above equality, noticing that, under assumption (a), the random variables (1 -t)ψ (S i-1 + tX i )X 2 i and ψ (S i-1 + tX i )X i X k are integable with respect to the product measure λ ⊗ IP and applying the Fubini theorem, we get that

IE(ψ(S n )) = n i=1 1 0 IE ψ (S i-1 + tX i ) -tX 2 i + X i n k=i X k ) dt.
Theorem 2.3 follows then from this equality and the fact that

IE ψ (S i-1 + tX i )X i X k = IE ψ (S i-1 + tX i )X i IE i (X k ) .
We now derive an Hoeffding type inequality from Theorem 2.3 (cf. Theorem B.4, Annex B, for Hoeffding's inequality for bounded and independent random variables). This inequality is an extension of the Azuma inequality (1967) for martingales to dependent sequences.

Theorem 2.4. let (X i ) i∈Z Z be a sequence of real-valued bounded random variables. Let (m 1 , m 2 , . . . , m n ) be a n-uple of positive reals such that (a) sup j∈[i,n] X 2 i ∞ + 2 X i j k=i+1 IE i (X k ) ∞ ≤ m i for any i ∈ [1, n],
with the convention i k=i+1 IE i (X k ) = 0. Then, for any nonegative integer p,

(b) IE(S 2p n ) ≤ (2p)! 2 p p! n i=1 m i p .
Consequently, for any positive x,

(c) IP(|S n | ≥ x) ≤ √ e exp -x 2 /(2m 1 + • • • + 2m n ) .
Proof. Define the functions ψ p by ψ 0 (x) = 1 and

ψ p (x) = x 2p /(2p)! for p > 0. Set M i = X i 2 ∞ .
We prove (b) by induction on p. At range 0, (b) holds true for any sequence (X i ) i∈Z Z , since S 0 n = 1. If (b) holds at range p for any sequence (X i ) i∈Z Z , then, applying Theorem 2.3 to ψ = ψ p+1 and noting that ψ p+1 = ψ p , we get that

(2.25) 2IE(ψ p+1 (S n )) ≤ n i=1 1 0 IE(ψ p (S i-1 + tX i ))(m i + (1 -2t)M i )dt.
We now apply the induction hypothesis to the sequence (X l ) l∈Z Z defined by

X l = X l for any 1 ≤ l < i, X i = tX i and X l = 0 for l / ∈ [1, i]. For l < i and j < i, X l j m=l+1 IE l (X m ) = X l j m=l+1 IE l (X m ).
For l < i and j ≥ i,

X l j m=l+1 IE l (X m ) = tX l i m=l+1 IE l (X m ) + (1 -t)X l i-1 m=l+1 IE l (X m ).
Hence the sequence (X l ) l∈Z Z satisfies assumption (a) with the new sequence (m i ) i defined by m l = m l for l < i and m i = t 2 M i . Consequently, applying (b) to

S i = X 1 + • • • + X i , we get that 2 p p! IE(ψ p (S i-1 + tX i )) ≤ (m 1 + • • • + m i-1 + t 2 M i ) p . Now m i + (1 -2t)M i ≥ m i -M i ≥ 0. Hence 2 p+1 p! 1 0 IE(ψ p (S i-1 + tX i ))(m i + (1 -2t)M i )dt ≤ 1 0 (m 1 + • • • + m i-1 + t 2 M i ) p (m i + (1 -2t)M i )dt ≤ 1 0 (m 1 + • • • + m i-1 + tm i + t(1 -t)M i ) p (m i + (1 -2t)M i )dt, (2.26) since tm i + t(1 -t)M i ≥ t 2 M i . Now (p + 1) 1 0 (m 1 + • • • + m i-1 + tm i + t(1 -t)M i ) p (m i + (1 -2t)M i )dt = (m 1 + • • • + m i ) p+1 -(m 1 + • • • + m i-1 ) p+1 , (2.27) whence 2 p+1 (p + 1)! 1 0 IE(ψ p (S i-1 + tX i ))(m i + (1 -2t)M i )dt ≤ (m 1 + • • • + m i ) p+1 -(m 1 + • • • + m i-1 ) p+1 .
(2.28) Finally both (2.25) and (2.28) ensure that the induction hypothesis holds at range p + 1 for the sequence (X i ) i∈Z Z . Hence (b) holds true by induction on p.

In order to prove (c), we will apply the Markov inequality to S 2p n for some adequate p.

Set A = x 2 /(2m 1 + • • • + 2m n ) and p = [A + (1/2)],
square brackets designating the integer part. (c) holds trivially fo A ≤ 1/2. Hence we may assume that A ≥ 1/2. Then p > 0, and applying the Markov inequality to S 2p n , we get that

(2.29) IP(|S n | ≥ x) ≤ (4A) -p (2p)!/p!. If A belongs to [1/2, 3/2], (2.29) yields IP(|S n | ≥ x) ≤ (2A) -1 ≤ √ e exp(-A), since 2A ≥ exp(A -1/2) for A dans [1/2, 3/2]. Next, if A ≥ 3/2, using the fact that the sequence (2πn) -1/2 (e/n) n n! is nonincreasing, we get that (2p)! ≤ √ 2(4p/e) p p!, whence IP(|S n | ≥ x) ≤ √ 2 (eA) -p p p .
Now, taking the logarithm in this inequality, we obtain

A + log IP(|S n | ≥ x) ≤ log √ 2 + f p (A), with f p (A) = (A -p) -p log(A/p). Here p ≥ 2 and A belongs to [p -1/2, p + 1/2[. Since f p (A) = (A -p)/A and f p (A) = p/A 2 , the function f p is convex. Consequently the maximum of f p is reached at A = p -1/2 or A = p + 1/2. Since f p reaches his minimum at point p and f p is decreasing, the maximum de f p is reached for A = p -1/2. Hence A + log IP(|S n | ≥ x) ≤ log 2 -1 2 + p log 2p 2p -1 ≤ log 2 -1 2 + 2 log(4/3), since p ≥ 2. Thus we get that IP(|S n | ≥ x) ≤ 16 √ 2 9 √ e exp(-A) ≤ √ e exp(-A),
which completes the proof of Theorem 2.4(c)

We now apply Theorem 2.4 to uniformly mixing sequences, as defined below.

Definition 2.1. The uniform mixing coefficients of (X i ) i∈Z Z are defined by

ϕ 0 = 1 and ϕ n = sup k∈Z Z ϕ(F k , σ(X k+n )) for any n > 0.
The sequence (X i ) i∈Z Z is said to be uniformly mixing if ϕ n converges to 0 as n tends to ∞.

Corollary 2.1 below provides a Hoeffding type inequality for uniformly mixing sequences of bounded random variables.

Corollary 2.1. Let (X i ) i∈Z Z be a sequence of centered and real-valued bounded random variables. Set

θ n = 1 + 4(ϕ 1 + • • • + ϕ n-1 ) and M i = X i 2 ∞ . Then, for any positive integer p, (a) IE(S 2p n ) ≤ (2p)! p! θ n 2 p (M 1 + • • • + M n ) p .
Next, for any positive x,

(b) IP(|S n | ≥ x) ≤ √ e exp -x 2 /(2θ n M 1 + • • • + 2θ n M n ) .
Proof. Let us apply Theorem 2.4 to the sequence (X i ) i∈Z Z . Since the random variables X k are centered at expectation, by Theorem 1.4(b) and the Riesz-Fisher theorem,

IE i (X k ) ∞ ≤ 2ϕ k-i X k ∞ .
Hence we may apply Theorem 2.4 with

m i = M i + 4 n k=i+1 M i M k ϕ k-i .
Summing on i, we have:

m 1 + • • • + m n ≤ n i=1 M i + 4 1≤i<k≤n M i M k ϕ k-i ≤ n i=1 M i + 2 1≤i<k≤n (M i + M k )ϕ k-i ≤ θ n n i=1 M i .
Corollary 2.4 follows then from both Theorem 2.4 and the above upper bound.

New moment inequalities

In this section, we derive from Theorem 2.3 new moment inequalities for strongly mixing sequences. These inequalities are similar to the type Marcinkiewicz-Zygmund inequalities for independent random variables. Throughout the section, the strong mixing coefficients are defined in the following way:

(2.30)

α 0 = 1/2 and α n = sup k∈Z Z α(F k , X k+n ) for any n > 0.
Our main result is as follows.

Theorem 2.5. Let p be any real in ]1, ∞[. Let (X i ) i∈Z Z be a strictly stationary sequence of real-valued random variables with mean 0 and finite moment of order 2p.

Set Q = Q X 0 .
Then, with the notations of Section 2.4, for any positive n,

(a) IE(|S n | 2p ) ≤ (4np) p sup l∈[1,n] IE X 0 l-1 i=0 IE 0 (X i ) p . Consequently (b) IE(|S n | 2p ) ≤ (8np) p 1 0 [α -1 (u) ∧ n] p Q 2p (u)du.
Remark 2.2. Inequality (a) may be applied to some dynamical systems with hyperbolicity, as shown by [START_REF] Melbourne | Large deviations for nonuniformly hyperbolic systems[END_REF]. Inequality (b) can be improved if the strong mixing coefficients are defined by (2.1). We shall obtain Marcinkiewicz-Zygmund type inequalities under a weaker mixing condition in Chap. 6 (see Section 6.4 and (C.15) in Annex C).

Proof. We prove Theorem 2.5 by induction on n. Our induction hypothesis is the following. For any integer k ≤ n and any t in [0, 1],

IE(|S k-1 + tX k | 2p ) ≤ (4p) p (k -1 + t) p sup l∈[1,k] IE X 0 l-1 i=0 IE 0 (X i ) p .
First, for any integer k ≤ 4p,

S k-1 + tX k 2p ≤ (k -1 + t) X 0 2p ≤ 4p(k -1 + t) X 0 2p .
Hence the induction hypothesis holds for k ≤ [4p]. Now let n > 4p. If the induction hypothesis holds at range n -1, then, applying Theorem 2.3 with ψ(x) = |x| 2p , and setting

h n (t) = IE(|S n-1 + tX n | 2p ) and Γ n = sup l∈[1,n] X 0 l-1 i=0 IE 0 (X i ) p , we obtain that h n (t) 4p 2 ≤ n-1 i=1 1 0 IE |S i-1 + sX i | 2p-2 X i n k=i IE i (X k ) ds + t 0 IE(|S n-1 + sX n | 2p-2 X 2 n )ds.
We now apply the Hölder inequality with exponents p/(p -1) and p:

IE |S i-1 + sX i | 2p-2 X i n k=i IE i (X k ) ≤ (h i (s)) (p-1)/p X i n k=i IE i (X k ) p .
From the stationarity of (X i ) i∈Z Z ,

h n (t) ≤ 4p 2 Γ n n-1 i=1 1 0 (h i (s)) (p-1)/p ds + t 0 (h n (s)) (p-1)/p ds .

Now if the induction hypothesis holds at range

n -1, 1 0 (h i (s)) (p-1)/p ds ≤ (4pΓ n ) p-1 1 0 (i -1 + s) p-1 ds ≤ (4Γ n ) p-1 p p-2 (i p -(i -1) p ). Set then g n (s) = (4p(n -1 + s)Γ n ) p . The above inequalities ensure that h n (t) ≤ g n (0) + 4p 2 Γ n t 0 (h n (s)) (p-1)/p ds. Now, let H n (t) = t 0 (h n (s)) (p-1)/p ds.
The above differential inequality may be written as

H n (s)(g n (0) + 4p 2 Γ n H n (s)) -1+1/p ≤ 1.
Integrating this differential inequality between 0 and t yields

(h n (t)) 1/p -(g n (0)) 1/p ≤ 4ptΓ n ,
which implies that h n ≤ g n . Hence (a) holds true.

To prove (b), it is enough to prove that

Γ n ≤ (α -1 ∧ n)Q 2 p . Let q = p/(p -1). Clearly Γ n ≤ n-1 i=0 |IE 0 (X i )|X 0 p .
Hence, by the Riesz-Fisher theorem, there exists a random variable Y in L q (F 0 ) such that Y q = 1 and

Γ n ≤ IE(Y n-1 i=0 |X 0 IE 0 (X i )|) ≤ n-1 i=0 Y X 0 IE 0 (X i ) 1 .
Hence, by (1.11c),

Γ n ≤ 2 n-1 i=0 α i 0 Q Y X 0 (u)Q X i (u)du.
Finally, by Lemma 2.1(b)

Γ n ≤ 2 1 0 Q Y (u)[α -1 (u) ∧ n]Q 2 (u)du,
which implies (b) via the Hölder inequality on [0, 1] applied to the functions

Q Y and [α -1 ∧ n]Q 2 .
To conclude this section, we give a pseudo exponential inequality for geometrically strongly mixing sequences. Our result is similar to the results of Theorem 6 in [START_REF] Doukhan | Vitesse de convergence dans le théorème central limite pour des variables aléatoires mélangeantes à valeurs dans un espace de Hilbert[END_REF].

Corollary 2.2. Let (X i ) i∈Z Z be a sequence of centered real-valued random variables each bounded a.s. by 1, and (α n ) n≥0 be defined by (2.30). Suppose that, for some a < 1, lim sup n α 1/n n < a. Then there exists some positive x 0 such that, for any x ≥ x 0 and any positive integer n,

IP |S n | ≥ x n log(1/a) ≤ a x/2 . Proof. It is easy to check that lim sup p→∞ p -1 α -1 Q 2 p < (-e log a) -1 .
Hence there exists some p 0 > 1 such that, for any p ≥ p 0 ,

S n 2 2p ≤ 4np 2 (-e log a) -1 .
By the Markov inequality applied to S 2p n , we infer that

IP |S n | ≥ x n log(1/a) ≤ e -p -2p x log a 2p .
Set then p = -(x/2) log a. Then the above inequality yields Corollary 2.2 if p ≥ p 0 , which holds true as soon as x ≥ -(2p 0 / log a).

EXERCISES 1) Let (X i ) i∈Z Z be a sequence of centered real-valued random variables, with finite fourth moments, and let (α n ) n≥0 be defined by (2.1). a

) Let i ≤ j ≤ k ≤ l be natural integers. Prove that (1) |IE(X i X j X k X l )| ≤ 2 1 0 1I u<α j-i 1I u<α l-k Q i (u)Q j (u)Q k (u)Q l (u)du. b) Prove that IE(S 4 n ) ≤ 12 1≤i≤j≤k≤l≤n |IE(X i X j X k X l )|(1 + 1I j<k ). c) Prove that (2) IE(S 4 n ) ≤ 24 n j=1 n k=1 1 0 [α -1 (u) ∧ n] 2 Q 2 j (u)Q 2 k (u)du. d) Suppose now that X k ∞ ≤ 1 for any k in [1, n]. Derive from the above inequalities that (3) IE(S 4 n ) ≤ 24n 2 n-1 m=0 (2m + 1)α m .
Compare (3) with (2.13) and (2.11).

2) Let (S n ) n≥0 be a martingale sequence in L p for some p > 2 and X n = S n -S n-1 . Either use Inequality (2.3) in [START_REF] Pinelis | Optimum bounds for the distributions of martingales in Banach spaces[END_REF] or adapt the proof of Theorem 2.5 to prove the inequality (4) below, given in [START_REF] Rio | Moment inequalities for sums of dependent random variables under projective conditions[END_REF]:

(4) S n 2 p ≤ S 0 2 p + (p -1) n k=1 X k 2 p .

MAXIMAL INEQUALITIES AND STRONG LAWS

Introduction

In this chapter, we are interested in extensions of the classical maximal inequalities of Kolmogorov and Doob to weakly dependent sequences. Here we adapt previously known tools to the context of weakly dependent sequences. In Section 3.2, we give a maximal inequality for second order moments of the maximum of partial sums. From this maximal inequality we then obtain a criterion for the almost sure convergence of a series of dependent random variables in the style of Kolmogorov's criterion. Next, in Section 3.3, we give new maximal inequalities, which are more suitable for long range dependence. These inequalities allow us to get an extension of the results of [START_REF] Berbee | Convergence rates in the strong law for bounded mixing sequences[END_REF] on rates of convergence in the strong law of large numbers for β-mixing sequences to strongly mixing sequences.

An extension of the maximal inequality of Kolmogorov

All along this chapter, (X i ) i∈IN is a sequence of real-valued random variables. The strong mixing coefficients of (X i ) i∈IN are defined by (2.30). We set

(3.1) Q X i = Q i , S 0 = 0, S k = k i=1 (X i -IE(X i )) and S * n = sup k∈[0,n] S k .
In this section, we prove the maximal inequality below.

Theorem 3.1. Let (X i ) i∈IN be a sequence of centered real-valued random variables with finite variance and λ be any nonnegative real. Set

p k = IP(S * k > λ). Then IE((S * n -λ) 2 + ) ≤ 4 n i=1 p i 0 Q i (u) Q i (u) + 4 n k=i+1 Q k (u)1I u<α k-i du ≤ 16 n k=1 p k 0 [α -1 (u) ∧ n]Q 2 k (u)du, (a)
with x + = sup(x, 0). In the particular case λ = 0,

(b) IE(S * 2 n ) ≤ 16 n k=1 1 0 [α -1 (u) ∧ n]Q 2 k (u)du.
From Theorem 3.1(b), one can derive the following extension of Kolmogorov's result on the almost sure convergence of series of random variables. We refer to [START_REF] Cuny | Study of almost evrywhere convergence of series by means of martingale methods[END_REF] for more about series of dependent random variables.

Corollary 3.1. The series ∞ i=1 X i converges almost surely as soon as the condition below holds:

(a) ∞ i=1 1 0 α -1 (u)Q 2 i (u)du < +∞.
Application of Corollary 3.1. Suppose that the random variables X i are defined from a strictly stationary and strongly mixing sequence

(Z i ) i∈Z Z by X i = c i Z i . If Q Z 0 satisfies condition (DMR)
, then condition (a) of Corollary 3.1 holds true as soon as i>0 c 2 i < ∞.

Proof of Theorem 3.1. The proof is done by adapting a trick of [START_REF] Garsia | A simple proof of E. Hopf's maximal ergodic theorem[END_REF] to our context: write

(3.2) (S * n -λ) 2 + = n k=1 ((S * k -λ) 2 + -(S * k-1 -λ) 2 + ).
Since (S * k ) k≥0 is nondecreasing, the quantities on righ hand are nonnegative. Now

((S * k -λ) + -(S * k-1 -λ) + )((S * k -λ) + + (S * k-1 -λ) + ) > 0 if and only if S k > λ and S k > S * k-1 , and then S k = S * k . Consequently (3.3) (S * k -λ) 2 + -(S * k-1 -λ) 2 + ≤ 2(S k -λ)((S * k -λ) + -(S * k-1 -λ) + ), which implies that (S * n -λ) 2 + ≤ 2 n k=1 (S k -λ)(S * k -λ) + -2 n k=1 (S k -λ)(S * k-1 -λ) + ≤ 2(S n -λ) + (S * n -λ) + -2 n k=1 (S * k-1 -λ) + X k . (3.4) Since (S n -λ) + (S * n -λ) + ≤ 1 4 (S * n -λ) 2 + + (S n -λ) 2 + , it follows that (3.5) (S * n -λ) 2 + ≤ 4(S n -λ) 2 + -4 n k=1 (S * k-1 -λ) + X k .
Next we bound up (S n -λ) 2 + . Adapting the decomposition (3.2), we get:

(S n -λ) 2 + = n k=1 ((S k -λ) 2 + -(S k-1 -λ) 2 + ) = 2 n k=1 (S k-1 -λ) + X k + 2 n k=1 X 2 k 1 0 (1 -t)1I S k-1 +tX k >λ dt. (3.6) Noticing then that 1I S k-1 +tX k >λ ≤ 1I S * k >λ , we infer from (3.6) that (S n -λ) 2 + ≤ 2 n k=1 (S k-1 -λ) + X k + n k=1 X 2 k 1I S * k >λ .
From (3.5) and the above inequality we now obtain that

(3.7) (S * n -λ) 2 + ≤ 4 n k=1 (2(S k-1 -λ) + -(S * k-1 -λ) + )X k + 4 n k=1 X 2 k 1I S * k >λ . Set D 0 = 0 and D k = 2(S k -λ) + -(S * k -λ) + for any positive k. Clearly Cov(D k-1 , X k ) = k-1 i=1 Cov(D i -D i-1 , X k ). Now the random variables D i -D i-1 are measurable with respect to F i = σ(X j : j ≤ i). Hence (3.8) IE((S * n -λ) 2 + ) ≤ 4 n k=1 IE(X 2 k 1I S * k >λ ) + 4 n-1 i=1 IE (D i -D i-1 ) n k=i+1 IE i (X k ) .
In order to bound up

Q D i -D i-1 , we now bound up |D i -D i-1 |. If (S * i -λ) + = (S * i-1 -λ) + , then |D i -D i-1 | = 2|(S i -λ) + -(S i-1 -λ) + | ≤ 2|X i |1I S * i >λ , since D i -D i-1 = 0 if S i ≤ λ and S i-1 ≤ λ. In the opposite case S i = S * i > λ and S i-1 ≤ S * i-1 < S i . Therefrom D i -D i-1 = (S i -λ) + + (S * i-1 -λ) + -2(S i-1 -λ) + belongs to [0, 2|(S i -λ) + -(S i-1 -λ) + | ]. In each case |D i -D i-1 | ≤ 2|X i |1I S * i >λ , whence (3.9) IE((S * n -λ) 2 + ) ≤ 4 n k=1 IE(X 2 k 1I S * k >λ ) + 8 n-1 i=1 IE 1I S * i >λ X i n k=i+1 IE i (X k ) .
Next, by (1.11c) together with Lemma 2.1,

IE 1I S * i >λ |X i IE i (X k )| ≤ 2 α k-i 0 Q i (u)Q k (u)1I u<p i du ≤ α k-i 0 (Q 2 i (u)1I u<p i + Q 2 k (u)1I u<p k )du, (3.10)
(use the monotonicity of the sequence (p k ) k>0 ). Now, by Lemma 2.1(a), we also have

IE(X 2 k 1I S * k >λ ) ≤ p k 0 Q 2 k (u)du.
Theorem 3.1 follows then from (3.9), (3.10) and the above inequality.

Rates of convergence in the strong law of large numbers

Let r be be any real in ]1, 2[ and (X i ) i∈IN be a strictly stationary sequence. Theorem 3.1 applied to the sequence (X i ) i∈IN provides the almost sure convergence of n -1/r S n to 0 under the strong mixing condition

1 0 α -1 (u)Q r X 0 (u)du < ∞.
This condition needs the summability of the series of strong mixing coefficients, even for bounded random variables. By contrast, for strictly stationary and β-mixing sequences of bounded random variables, [START_REF] Berbee | Convergence rates in the strong law for bounded mixing sequences[END_REF] proved the almost sure convergence of n -1/r S n to 0 under the β-mixing condition (BER)

i≥0 (i + 1) r-2 β i < ∞.
which is clearly weaker than the summability of β-mixing coefficients. In the strong mixing case, [START_REF] Shao | Complete convergence for α-mixing sequences[END_REF] has given some rates in the strong law of large numbers under weaker conditions than the integral condition above. However, in the bounded case, he does not obtain the convergence of n -1/r S n to 0 under the strong mixing condition corresponding to Berbee's condition. In this section, we give a new maximal inequality, which minimizes the effects of long range dependence. This inequality is then applied to get rates of convergence in the strong law of large numbres under minimal assumptions on the mixing coefficients and the tails of the random variables, as in Rio (1995a).

Theorem 3.2. Let (X i ) i∈IN be a sequence of centered random variables with finite variances. Then, for any nonnegative integer p and any positive x,

IP(S * n ≥ 2x) ≤ 4 x 2 n k=1 1 0 [α -1 (u) ∧ p]Q 2 k (u)du + 4 x n k=1 α p 0 Q k (u)du.
Before proving Theorem 3.2, we give an application to the rates of convergence in the strong law. We refer to [START_REF] Dedecker | Convergence rates in the law of large numbers for Banach-valued dependent variables[END_REF] for extensions of the corollary below to other types of dependence and Banach-valued random variables.

Corollary 3.2. Let (X i ) i∈IN be a sequence of centered and integrable real-valued random variables

. Set Q = sup i>0 Q i . (i) Let r be any real in ]1, 2[. Suppose that (a) M r,α (Q) = 1 0 [α -1 (u)] r-1 Q r (u)du < +∞.
Then n -1/r S n converges to 0 almost surely. (ii) Suppose that Q satisfies the weaker condition

(b) 1 0 Q(u) log(1 + α -1 (u))du < ∞.
Then n -1 S n converges almost surely to 0.

Remark 3.1. Let X be a nonnegative random variable such that Q X = Q. For mdependent sequences conditions (a) and (b) are respectively equivalent to the usual integrability conditions IE(X r ) < ∞ and IE(X) < ∞. Note that, in the stationary and ergodic case, the strong law of large numbers holds as soon as the variables are integrable. This result does not hold for non-stationary strongly mixing sequences: condition (b) cannot be relaxed, as proved in Rio (1995a).

Remark 3.2. We refer to Annex C for more about conditions (a) and (b). Notice that (a) and (b) are respectively equivalent to the condtion below with r in ]1, 2[ or r = 1:

(3.11) i≥0 (i + 1) r-2 α i 0 Q r (u)du < ∞.
For bounded sequences, (3.11) is equivalent to the strong mixing condition

i≥0 (i + 1) r-2 α i < ∞. Since α i ≤ β i , Corollary 3.2 includes Berbee's result.
Proof of Theorem 3.2. Dividing the random variables by x if necessary, we may assume that x = 1. Define the function g by g(y) = y -1 for y in [1, 2], g(y) = 0 for y ≤ 1 and g(y) = 1 for y ≥ 2. Then

IP(S * n ≥ 2) ≤ IE(g(S * n )) ≤ n k=1 IE(g(S * k ) -g(S * k-1 )).
Let f be the nonnegative and differentiable function defined by f (y) = y 2 for y dans [0, 1], f (y) = 2y -1 for y ≥ 1 and f (y) = 0 for any negative y. Since g is nondecreasing,

g(S * k ) -g(S * k-1 ) ≥ 0. If this quantity is strictly positive, then S k > S * k-1 and S k > 1. Hence g(S * k ) -g(S * k-1 ) ≤ (g(S * k ) -g(S * k-1 ))(2S k -1), which implies that IP(S * n ≥ 2) ≤ n k=1 IE (g(S * k ) -g(S * k-1 ))(2S k -1) ≤ IE((2S n -1)g(S * n )) -2 n k=1 Cov(g(S * k-1 ), X k ) ≤ IE(f (S n )g(S * n )) -2 n k=1 Cov(g(S * k-1 ), X k ) ≤ IE(f (S n )) -2 n k=1 Cov(g(S * k-1 ), X k ). (3.12) Now, since f is 2-Lipschitz, (3.13) IE(f (S n )) = n k=1 IE(f (S k ) -f (S k-1 )) ≤ n k=1 Var X k + n k=1 Cov(f (S k-1 ), X k ). Set then g k (X 1 , . . . X k-1 ) = 1 2 f (S k-1 ) -g(S * k-1
). From (3.12) and (3.13) we get that

(3.14) IP(S * n ≥ 2) ≤ n k=1 Var X k + 2 n k=1 Cov(g k (X 1 , . . . X k-1 ), X k ).
Recall that 1 2 f and g are 1-Lipschitz and coordinatewise nondecreasing. Therefrom the function g k is separately 1-Lipschitz with respect to each coordinate. Let then, for i ≤ k-1,

D i,k = g k (X 1 , . . . , X i , 0, . . . , 0) -g k (X 1 , . . . , X i-1 , 0, . . . , 0).
For any nonnegative integer p,

(3.15) g k (X 1 , . . . X k-1 ) = g k (X 1 , . . . , X (k-p) + , 0, . . . , 0) + k-1 i=(k-p) + +1 D i,k .
Now the first term on the right vanishes if p ≥ k. Since g k is with values in [-1, 1] and the first term on right hand in (3.15) is measurable with respect to σ(X i : i ≤ k -p), by Theorem 1.1(a),

| Cov(g k (X 1 , . . . , X (k-p) + , 0, . . . , 0), X k ) ≤ 2 α p 0 Q k (u)du. Next the random variables D i,k verify |D i,k | ≤ |X i-k | and are measurable with respect to σ(X i : i ≤ k -i), whence | Cov(D i,k , X k )| ≤ 2 α i 0 Q k-i (u)Q k (u)du ≤ α i 0 (Q 2 k-i (u) + Q 2 k (u))du.
Both (3.15) and the two above inequalities ensure that

(3.16) | Cov(g k (X 1 , . . . X k-1 ), X k )| ≤ p-1 i=1 α i 0 (Q 2 k-i (u) + Q 2 k (u))du + 2 α p 0 Q k (u)du.
Now, both (3.14), (3.16) and the elementary inequality Var X k ≤ 2

α 0 0 Q 2 k (u)du imply Theorem 3.2.
Proof of Corollary 3.2. The proof of Corollary 3.2 is a direct consequence of Proposition 3.1 below applied to the sequences (X i ) i∈IN and (-X i ) i∈IN via the Borel-Cantelli lemma: indeed the series in Proposition 3.1 are convergent if and only if for any positive ε,

N >0 IP(S * 2 N > ε2 N/r ) < ∞,
which implies the convergence of n -1/r S * n to 0, due to the monotonicity of S * n .

Proposition 3.1. With the same notations as in Theorem 3.2, under condition (a) of Corollary 3.2, for any positive ε,

(a) n>0 n -1 IP(S * n ≥ εn 1/r ) < ∞.
Under condition (b) of Corollary 3.2, for any positive ε,

(b) n>0 n -1 IP(S * n ≥ εn) < ∞.
Proof. For arbitrary v in [0, 1], let the sequences ( Xi ) i∈Z Z and ( Xi ) i∈Z Z be defined by

Xi = (X i ∧ Q(v)) ∨ (-Q(v)) and Xi = X i -Xi . Let U be uniformly distributed over [0, 1]. Since |X i | has the same distribution as Q i (U ), Q Xi (u) = Q i (u) ∧ Q(v) and Q Xi (u) = sup(Q i (u) -Q(v), 0). Now Q i ≤ Q, whence (3.17) |IE( Xi )| ≤ IE(| Xi |) ≤ v 0 (Q(u) -Q(v))du. Set Sk = k i=1 ( Xi -IE( Xi )) and S * n = sup k∈[0,n] Sk . Noting that S * n ≤ S * n + n i=1 (| Xi | + |IE( Xi )|),
we infer from (3.17) that

(3.18) n -1 IP(S * n ≥ 5x) ≤ n -1 IP( S * n ≥ 4x) + 2 x v 0 (Q(u) -Q(v))du.
Next, by Theorem 3.2 applied to the random variables Xi , we get that

(3.19) n -1 IP( S * n ≥ 4x) ≤ 1 x 2 1 0 [α -1 (u) ∧ p]Q 2 (v ∨ u)du + 2 x α p 0 Q(v ∨ u)du.
We now choose the parameters p and v in such a way that the terms on right hand lead to the same integral condition. Set

(3.20) R(u) = α -1 (u)Q(u).
In the strong mixing case, R plays the same role as the quantile function Q in the independent case. We will choose v in such a way that R(v) is of the order of n 1/r . Before choosing v, we choose p = α -1 (v), in order to get upper bounds of the same order of magnitude in (3.18) and (3.19). With this choice of p, α p ≤ v. Consequently

1 0 [α -1 (u) ∧ p]Q 2 (v ∨ u)du ≤ 1 0 R(v ∨ u)Q(u)du.
Therefrom, by (3.18) and(3.19),

(3.21) n -1 IP(S * n ≥ 5x) ≤ 2 x v 0 Q(u)du + 1 x 2 1 0 R(v ∨ u)Q(u)du. Let ε be any real in ]0, 1]. Set x = x n = εn 1/r and v = v n = R -1 (n 1/r ) in (3.21). Since R is right continuous and nonincreasing, (3.22) (R(u) ≤ n 1/r ) if and only if (u ≥ v n ), whence v n 0 R(v n )Q(u)du ≤ n 1/r v n 0 Q(u)du.
It follows that

(3.23) n -1 IP(S * n ≥ 5x n ) ≤ 3ε -2 n -1/r v n 0 Q(u)du + n -2/r 1 v n R(u)Q(u)du .
Let us prove (a). Set c ε = ε 2 /3. Summing on n the inequalities (3.23) , we get that

c ε n>0 1 n IP(S * n ≥ 5x n ) ≤ 1 0 Q(u) n>0 n -1/r 1I u<v n + n -2/r R(u)1I u≥v n du, with x n = εn 1/r . Now, applying (3.22), (3.24) n>0 c ε n IP(S * n ≥ 5x n ) ≤ 1 0 Q(u) n>0 n -1/r 1I n<R r (u) + n -2/r R(u)1I n≥R r (u) du.
Since r belongs to ]1, 2[, there exist constants c r and C r depending only on r such that

0<n<R r (u) n -1/r ≤ c r R r-1 (u) and n≥R r (u)∨1 n -2/r ≤ C r (R r-2 (u) ∧ 1).
Both the above inequalities and (3.24) ensure that

n>0 1 n IP(S * n ≥ 5εn 1/r ) ≤ C 1 0 R r-1 (u)Q r (u)du,
for some constant C depending only on r, which completes the proof of Proposition 3.1(a).

To prove Proposition 3.1(b), we need to truncate the random variables again. Let

Y i = (X i ∧ n) ∨ (-n), Ỹi = X i -Y i and T * n = sup k∈[0,n] k i=1 (Y i -IE(Y i )).
Since

Q Y i ≤ Q ∧ n for any i in [1, n], it follows from (3.23) that (3.25) n -1 IP(T * n ≥ 5εn) ≤ c -1 ε n -1 v n 0 (Q(u) ∧ n)du + n -2 1 v n R(u)Q(u)du . Now set Γ = n i=1 (X i = Y i ). For any ω / ∈ Γ, (3.26) S * n (ω) ≤ T * n (ω) + n i=1 IE(|Y i -X i |).
Let X be a nonnegative random variable such that

Q X = Q. Then IP(Γ) ≤ n i=1 IP(|X i | > n) ≤ nIP(X > n) and n i=1 IE(|Y i -X i |) = n i=1 ∞ n IP(|X i | > u)du ≤ nIE((X -n) + ).
Since IE((X -n) + ) ≤ ε for n large enough, there exists some positive integer n 0 such that, for any n ≥ n 0 ,

(3.27) c ε n IP(S * n ≥ 6εn) ≤ IP(X > n) + 1 n v n 0 (Q(u) ∧ n)du + 1 n 2 1 v n R(u)Q(u)du .
Set then

w n = Q -1 (n) = IP(X > n). Since w n ≤ u < v n if and only if Q(u) ≤ n < R(u), we get that n -1 v n 0 (Q(u) ∧ n)du = IP(X > n) + n -1 1 0 Q(u)1I Q(u)≤n<R(u) du.
Hence for n ≥ n 0 ,

(3.28) c ε n IP(S * n ≥ 6εn) ≤ IP(X > n) + 1 0 Q(u) 1 n 1I Q(u)≤n<R(u) + R(u) n 2 1I n≥R(u) du.
Finally, since

Q(u)∨1≤n<R(u) n -1 ≤ 1 + log(1 + α -1 (u)) and n≥R(u)∨1 n -2 ≤ 2(R(u) ∨ 1) -1 , (3.28) implies Proposition 3.1(b).
EXERCISES 1) Let (X i ) i∈IN be a sequence of real-valued and integrable centered random variables. Set Q = sup i>0 Q i and let R be defined by (3.20). a) Prove that, for any positive x > 0,

(1)

n -1 IP(S * n ≥ 5x) ≤ 3 x R -1 (x) 0 Q(u)du + 1 x 2 1 R -1 (x) R(u)Q(u)du. Hint : apply (3.21). b) Prove that, for any r in ]1, 2[, (2) IE(S * r n ) = r5 r ∞ 0 x r-1 IP(S * n ≥ 5x)dx. c) Infer from (2) that (3) IE(S * r n ) ≤ n5 r r(5 -2r) (r -1)(2 -r) 1 0 [α -1 (u)] r-1 Q r (u)du. Prove that (3) still holds if α -1 (u) is changed to α -1 (u) ∧ n.
2) Let (X i ) i∈IN be a sequence of real-valued and integrable centered random variables. Assume that IE(|X i | p ) < ∞ for any positive i, for some fixed p > 2. a) Let S be a nonnegative random variable. Prove that

(4) 2IE(S p ) = p(p -1)(p -2) ∞ 0 IE((S -λ) 2 + )λ p-3 dλ. b) Set H(λ) = IP(S * n > λ). Prove that (5) IE(S * p n ) ≤ 8p(p -1)(p -2) n k=1 ∞ 0 H(λ) 0 [α -1 (u) ∧ n]Q 2 k (u)du λ p-3 dλ.
c) Starting from ( 5), prove that ( 6)

IE(S * p n ) ≤ 8p(p -1) n k=1 1 0 [α -1 (u) ∧ n]Q 2 k (u)Q p-2 S * n (u)du.
Hint: apply the Fubini Theorem and note that the inverse function of

H is Q S * n . d) Prove that (7) IE(S * p n ) ≤ [8p(p -1)] p/2 n (p-2)/2 n k=1 1 0 [α -1 (u) ∧ n] p/2 Q p k (u)du.
Compare (7) with the inequalities of Chapter 2 and with Corollary 1 in [START_REF] Yokoyama | Moment bounds for stationary mixing sequences[END_REF].

3) A Marcinkiewicz-Zygmund inequality for martingales. Let (X i ) i∈IN be a sequence of real-valued and integrable centered random variables and let

F k = σ(X i : i ≤ k). Suppose that (S k ) k≥0 is a martingale with respect to F k . Let p > 2. Prove that, if IE(|X i | p ) < ∞ for any positive i, then (8) IE(S * p n ) ≤ [4p(p -1)] p/2 n (p-2)/2 n i=1 IE(|X i | p ).
Hint: apply (3.8) and use the ideas of Exercise 2.

4) A maximal inequality of Serfling. In this exercise, we prove an inequality of [START_REF] Serfling | Moment inequalities for the maximum cumulative sum[END_REF] in a particular case. Let p > 2 and (X i ) i∈IN be a sequence of real-valued random variables such that for any couple of natural integers (m, n) such that m < n,

(9) IE((S n -S m ) p + ) ≤ (n -m) p/2 .
The goal of the exercise is to prove that there exists some constant K(p) such that

(10) IE(S * p n ) ≤ K(p)n p/2 . a) Let ϕ(N ) = sup k≥0 sup i∈[0,2 N ] S k2 N +i -S k2 N p .
Prove that, for any positive integer N , ( 11)

ϕ(N ) ≤ sup k≥0 (S (k+1/2)2 N -S k2 N ) + p + 2 1/p ϕ(N -1). b) Infer that ϕ(N ) ≤ (2 1/2 -2 1/p ) -1 2 N/2 .
Next prove that (10) holds true with

K(p) = (1 -2 1 p -1 4. CENTRAL LIMIT THEOREMS 4.1. Introduction
In this chapter, we are interested in the convergence in distribution of suitably normalized partial sums of a strongly mixing and stationary sequence of real-valued random variables. In Section 4.2, we give the extension of Ibragimov's central limit theorem for partial sums of a strongly mixing sequence of bounded random variables to unbounded random variables, due to [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF]. We essentially follow the line of proof of [START_REF] Ibragimov | independent and stationary sequences of random variables[END_REF] and [START_REF] Hall | Martingale limit theory and its application[END_REF]. This approach is based on Gordin's theorem (1969) on martingale approximation. Next, in Section 4.3, we prove a functional central limit theorem for the normalized partial sum process under the same integrability condition on the tails of the random variables. In Section 4.4, we give a triangular version of the central limit theorem. This result is obtained by adapting the Lindeberg method to the dependent case.

A central limit theorem for strongly mixing and stationary sequences

In this section, we derive a central limit theorem for partial sums from the covariance inequalities of Chapter 1. Our proof is based on Theorem 5.2 in [START_REF] Hall | Martingale limit theory and its application[END_REF], which is a consequence of Gordin's results (1969Gordin's results ( , 1973) ) on approximation by martingales (see [START_REF] Volný | Approximating martingales and the central limit theorem for strictly stationary processes[END_REF] for a survey). We first recall Theorem 5.2 in Hall and Heyde.

Theorem 4.1. Let (X i ) i∈Z Z be a stationary and ergodic sequence of real-valued random variables.

S n = n i=1 (X i -IE(X i )) and F 0 = σ(X i : i ≤ 0).
Suppose that, for any nonnegative integer n,

(a) k>0 Cov(IE(X n | F 0 ), X k ) converges and (b) lim n→+∞ sup K>0 k≥K Cov(IE(X n | F 0 ), X k ) = 0,
Then n -1 Var S n converges to a nonnegative real σ 2 and n -1/2 S n converges in distribution to the normal law N (0, σ 2 ).

The proof of Theorem 4.1 can be found in [START_REF] Hall | Martingale limit theory and its application[END_REF]. Now we derive from Theorem 4.1 a central limit theorem for partial sums of a strongly mixing sequence.

Theorem 4.2. Let (X i ) i∈Z Z be a strictly stationary and ergodic sequence of real-valued random variables. satisfying condition (DMR) of Corollary 1.2, with the strong mixing coefficients defined by (2.30). Then n -1 Var S n converges to a nonnegative real σ 2 and n -1/2 S n converges in distriubtion to the normal law N (0, σ 2 ).

Remark 4.1. From Lemma 1.1, σ 2 is equal to the series of covariances defined in Lemma 1.1. It is worth noticing that Theorem 4.2 implies the uniform integrability of the sequence of random variables (n -1 S 2 n ) n>0 . This fact follows from Theorem 5.4 in [START_REF] Billingsley | Convergence of probability measures[END_REF]. We refer to [START_REF] Merlevède | The functional central limit theorem under the strong mixing condition[END_REF] for a central limit theorem under a weaker strong mixing condition.

If the strong mixing coefficients (α n ) n≥0 are defined by (2.1), then the convergence of α n to 0 implies the ergodicity of the sequence, and consequently the ergodicity assumption can be removed. If the strong mixing coefficients are defined by (2.30), the ergodicity assumption cannot be removed, as proved by the counterexample of Exercise 1, Chap. 4. In Section 9.7 of Chapter 9, we will prove the optimality of condition (DMR) for power type mixing rates. We mention that [START_REF] Bradley | On quantiles and the central limit question for strongly mixing sequences[END_REF] shows that condition (DMR) is optimal for arbitrary mixing rates.

Proof of Theorem 4.2. We have to prove that assumptions (a) and (b) of Theorem 4.1 holds true under condition (DMR), for an ergodic sequence. Clearly these conditions are implied by the absolute convergence of the series of covariance together with the condition (4.1) lim

n→+∞ k>0 | Cov(IE(X n | F 0 ), X k )| = 0.
To prove that (4.1) holds true, we now apply Theorem 1.1(a). Let (4.2)

X 0 n = IE(X n | F 0 ). Since the random variable X 0 n is F 0 -measurable, Theorem 1.1(a) yields (4.3) | Cov(IE(X n | F 0 ), X k )| ≤ 2 α k 0 Q X 0 n (u)Q X k (u)du.
Let δ be a random variable with uniform distribution over [0, 1], independent of (X i ) i∈Z Z . Then (see Exercise 1, Chap. 1) the random variable

U 0 n = H X 0 n (|X 0 n |) + δ(H X 0 n (|X 0 n | -0) -H X 0 n (|X 0 n |))
has the uniform distribtution over [0, 1] and

Q X 0 n (U 0 n ) = |X 0 n | almost surely. Let ε 0 n denote the sign of X 0 n . Then (4.4) α k 0 Q X 0 n (u)Q X k (u)du = IE(X 0 n ε 0 n Q X k (U 0 n )1I U 0 n ≤α k ).
Since δ is independent of(X i ) i∈Z Z ,

X 0 n = IE(X n | σ(δ) ∨ F 0 ), whence α k 0 Q X 0 n (u)Q X k (u)du = IE(X n ε 0 n Q X k (U 0 n )1I U 0 n ≤α k ).
It follows that (4.5)

α k 0 Q X 0 n (u)Q X k (u)du ≤ IE(|X n |Q X k (U 0 n )1I U 0 n ≤α k ).
Now, by (4.5) and Lemma 2.1(a), (4.6)

α k 0 Q X 0 n (u)Q X k (u)du ≤ α k 0 Q X n (u)Q X k (u)du.
Both (4.3) and (4.6) together with the stationarity of the sequence then ensure that

(4.7) | Cov(X 0 n , X k )| ≤ 2 α k 0 Q 2 X 0 (u)du. Now (4.8) Cov(X 0 n , X k ) = Cov(X 0 n , X 0 k ) = Cov(X 0 k , X n )
and therefrom, interverting k and n in (4.7), we get that

(4.9) | Cov(X 0 n , X k )| ≤ 2 α n 0 Q 2 X 0 (u)du. Consequently | Cov(X 0 n , X k )| ≤ 2 inf(α k ,α n ) 0 Q 2 X 0 (u)du,
which ensures the normal convergence of the series. Hence (4.1) holds true, which completes the proof of Theorem 4.2.

Starting from Theorem 4.2, we now derive a central limit theorem for stationary and strongly mixing sequences of random variables in the multivariate case.

Corollary 4.1. Let (X i ) i∈Z Z be a strictly stationary sequence of random variables with values in IR d . Let Q 0 be the generalized inverse function of H X 0 (t) = IP( X 0 > t). Assume that (X i ) i∈Z Z satisfies condition (DMR) of Corollary 1.2, with the strong mixing coefficients defined by (2.1). Then n -1 Cov(S n , S n ) converges to Γ = Var X 0 + 2 k>0 Cov(X 0 , X k ) and n -1/2 S n converges in distribution to the normal law N (0, Γ).

Proof. For a and b in IR d , denote by a.b the Euclidean scalar product of a and b. Now

a.S n = (a.X 1 -IE(a.X 1 )) + • • • + (a.X n -IE(a.X n ))
for any a in IR d . Consequently, by Theorem 4.2, n -1/2 a.S n converges in distribution to the normal law N (0, σ 2 (a)), with

σ 2 (a) = Var(a.X 0 ) + 2 k>0 Cov(a.X 0 , a.X k ) = a.Γa. Hence lim n→∞ IE(exp(ia.n -1/2 S n )) = exp(a.Γa/2).
Corollary 4.1 follows then from the Paul Lévy theorem.

A functional central limit theorem for the partial sum process

In this section, we give an extension of the functional central limit theorem of Donsker to strongly mixing and stationary sequences of real-valued random variables. We refer to Sections 9 and 10 in [START_REF] Billingsley | Convergence of probability measures[END_REF] for the definition of the functional central limit theorem and to Section 14 in [START_REF] Billingsley | Convergence of probability measures[END_REF] for the weak convergence in the Skorohod space D([0, 1]).

Theorem 4.3 below is the functional version of Theorem 4.2. This result improves the functional central limit theorems of [START_REF] Oodaira | Functional central limit theorems for strictly stationary processes satisfying the strong mixing condition[END_REF] and Herndorff (1985), which hold under conditions (IBR) and (HER) respectively. We refer to Merlevède, [START_REF] Merlevède | Recent advances in invariance principles for stationary sequences[END_REF] for a survey of functional central limit theorems for dependent random variables and to [START_REF] Gordin | On the functional central limit theorem via martingale approximation[END_REF] for functional central limit theorems via martingale approximation.

Theorem 4.3. Let W denote the usual Wiener measure on [0, 1] (ses [START_REF] Billingsley | Convergence of probability measures[END_REF] for a definition) and let (X i ) i∈Z Z be a stationary sequence of real-valued and centered random variables, satisfying condition (DMR) with the usual strong mixing coefficients, which are defined by (2.1). Let {Z n (t) : t ∈ [0, 1]} be the normalized partial sum process, defined by

Z n (t) = n -1/2 [nt]
i=1 X i , square brackets designating the integer part. Let σ be the nonnegative finite number defined by defined by σ 2 = lim n n -1 Var S n . Then Z n converges in distribution to σW in the Skorohod space D([0, 1]).

Proof.

Let Q denote the quantile function of |X 0 |. We start by proving the finite dimensional convergence of Z n to σW . Let t 0 < t 1 < . . . < t k be any increasing sequence of reals in [0, 1] such that t 0 = 0 and t k = 1. We have to prove that the random vector (Z n (t j )-Z n (t j-1 )) 1≤j≤k converges in distribution to (σW t j -σW t j-1 ) 1≤j≤k . Let ϕ n denote the characteristic function of (Z n (t j ) -Z n (t j-1 )) 1≤j≤k , which is defined by

ϕ n (x) = IE exp i k j=1 x j (Z n (t j ) -Z n (t j-1 )) for x = (x 1 , x 2 , . . . x k ).
Let ε > 0 be any positive real such that ε < inf 1≤j≤k (t j -t j-1 ). Let

ϕ n,ε (x) = IE exp i k j=1 x j (Z n (t j -ε) -Z n (t j-1 )) .
Since the function y → e iy is 1-Lipschitz, (4.10)

|ϕ n (x) -ϕ n,ε (x)| ≤ k j=1 x j (Z n (t j -ε) -Z n (t j )) 1 ≤ 4 x 1 √ εM 2,α (Q)
by Corollary 1.1(b). Now, by Inequality ( 6) of Exercise 7, Chap. 1 applied repeatedly k times,

ϕ n,ε (x) - k j=1 IE exp ix j (Z n (t j -ε) -Z n (t j-1 )) ≤ 4kα [nε]-1 ,
which ensures the asymptotic independence of the above increments. Together with Theorem 4.1, this inequality ensures that

(4.11) lim n→∞ ϕ n,ε (x) = exp σ 2 k j=1 (t j -t j-1 -ε)x 2 j ).
The finite dimensional convergence follows then from both (4.10) and (4.11).

It remains to prove the tightness property for the sequence of partial-sum processes (Z n ) n . According to [START_REF] Billingsley | Convergence of probability measures[END_REF], Section 8, Theorems 8.2 and 8.4, the tightness property holds in the stationary case if the sequence (n -1 S * 2 n ) n>0 is uniformly integrable. Hence Proposition 4.1 below completes the proof of Theorem 4.2.

Proposition 4.1. Let (X i ) i∈Z Z be a stritctly stationary sequence of centered real-valued random variables stisfying condition (DMR) of Corollary 1.2 for the mixing coefficients defined in (2.30). Set S * n = sup k∈[0,n] S k . Then the sequence (n -1 S * 2 n ) n>0 is uniformly integrable.

Proof of Proposition 4.1. Proposition 4.1 is implied by (4.12) lim

A→+∞ sup n>0 n -1 IE (S * n -A √ n) 2 + = 0.
Now, applying Theorem 3.1(a), we get that

n -1 IE (S * n -A √ n) 2 + ≤ 16 p n 0 α -1 (u)Q 2 (u)du, with p n = IP(S * n > A √ n)
. Now, by the Chebyshev inequality together with Theorem 3.1(b),

p n ≤ A -2 IE(S * 2 n /n) ≤ 16M 2,α (Q)A -2 .
Hence the two above inequalities imply (4.12), which completes the proof of Proposition 4.1.

A central limit theorem for strongly mixing triangular arrays *

In this section, we adapt the [START_REF] Lindeberg | Eine neue Herleitung des Exponentialgezetzes in der Wahrscheinlichkeitsrechnung[END_REF] method to strongly mixing sequences. The extensions to mixing sequences started with [START_REF] Bergström | On the convergence of sums of random variables in distribution under mixing condition. Collection of articles dedicated to the memory of Alfred Rényi[END_REF] in the stationary φmixing case (see [START_REF] Krieger | A new look at Bergström's theorem on convergence in distribution for sums of dependent random variables[END_REF] for remarks on Bergström's paper). [START_REF] Dehling | Limit theorems for sums of weakly dependent Banach space valued random variables[END_REF] extended the method to strong mixing conditions and random vectors.

Let (X in ) i∈[1,n] be a triangular array of independent random variables with mean zero and finite variance. Suppose that Var(X 1n + [START_REF] Lindeberg | Eine neue Herleitung des Exponentialgezetzes in der Wahrscheinlichkeitsrechnung[END_REF] 

• • • + X nn ) = 1. Let S nn = X 1n + • • • + X nn .
n i=1 IE X 2 in min(|X in |, 1) → 0 as n → ∞.
Let then U be a random variable with uniform law over [0, 1]. Since the random variable

Q X in (U ) as the same distribution as |X in |, (4.14) is equivalent to (4.15) n i=1 1 0 Q 2 X in (x) min(Q X in (x), 1)dx → 0 as n → ∞.
In this section, we obtain a generalization of the Lindeberg condition to strongly mixing sequences by replacing Q X in by α -1 Q X in and dx by dx/α -1 (x). Theorem 4.4 below is due to [START_REF] Rio | About the Lindeberg method for strongly mixing sequences[END_REF]. We refer to [START_REF] Neumann | A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics[END_REF], for a variant under other types of dependence, with applications to statistics.

Theorem 4.4. Let m be a positive integer and (X in ) n≥m,1≤i≤n be a double array of real-valued random variables with mean zero and finite variance. Let (α k,n ) k≥0 be the sequence of strong mixing coefficients in the sense of (2.1) of the sequence (X in ) i∈[1,n] and α -1 (n) be the inverse function of the associated mixing rate function. Let us define

S in = X 1n + • • • + X in and V i,n = Var S in . Suppose that (a)
V n,n = 1 and lim sup

n→∞ max i∈[1,n] V i,n < ∞. Let Q i,n = Q X in . Assume furthermore that (b) lim n→∞ n i=1 1 0 α -1 (n) (x)Q 2 i,n (x) min α -1 (n) (x)Q i,n (x), 1 dx = 0.
Then S nn converges in distribution to a standard normal law as n tends to ∞.

Remark 4.2. Theorem 4.2 in the case σ > 0 follows from Theorem 4.4 applied to

X in = (Var S n ) -1/2 X i via Lebesgue's dominated convergence theorem.
Proof of Theorem 4.4. The main step of the proof is the proposition below, which gives quantitative estimates of the accuracy of the characteristic function of a sum to the characteristic function of a normal law. In order to state this result, we need some additional notations.

Definition 4.1. For any nonnegative quantile function Q and any positive t, let

M 3,α (Q, t) = 1 0 α -1 (x)Q 2 (x)(tα -1 (x)Q(x) ∧ 1)dx.
The proposition below provides an estimate with an error term depending on the above truncated moments.

Proposition 4.2. Let (X i ) i∈IN be a strongly mixing sequence of real-valued random variables with finite variance and mean zero. For any positive k, let

S k = X 1 + • • • + X k and ϕ k (t) = IE(exp(itS k )). Set V k = Var S k and V * n = sup k∈[1,n] V k . Let Q k = Q X k .
For any positive integer n and any real t,

| exp(V n t 2 /2)ϕ n (t) -1| ≤ 16t 2 exp(V * n t 2 /2) n k=1 M 3,α (Q k , |t|).
Before proving Proposition 4.2, we complete the proof of Theorem 4.4. Since Proof of Proposition 4.2. Considering the random variables -X i if t < 0, we may assume that t > 0. Let V 0 = 0, S 0 = 0 and ϕ 0 be the characteristic function of S 0 . Set

M 3,α (Q, |t|) ≤ max(|t|, 1)M 3,α (Q, 1), Proposition 4.2 ensures that |e t 2 /2 ϕ n (t) -1| ≤ 16t 2 (|t| ∨ 1)e V * n t 2 /2 n i=1 1 0 α -1 (n) (x)Q 2 i,n (x) α -1 (n) (x)Q i,n (x) ∧ 1 dx, with V * n = max i∈[1,n] V i,
v k = V k -V k-1 and let (4.16) ∆ k = ϕ k (t) -e -v k t 2 /2 ϕ k-1 (t).
Then (4.17)

|e t 2 /2 ϕ n (t) -1| ≤ n k=1 e V k t 2 /2 |∆ k |.
Let then

(4.18) ∆ k,1 = ϕ k (t) -(1 -v k t 2 /2)ϕ k-1 (t) and ∆ k,2 = (1 -v k t 2 /2 -e -v k t 2 /2 )ϕ k-1 (t).
Clearly ∆ k = ∆ k,1 + ∆ k,2 . From (4.17) and the fact that

|ϕ k-1 (t)| ≤ 1, (4.19) |e V n t 2 /2 ϕ n (t) -1| ≤ e V * n t 2 /2 n k=1 |∆ k,1 | + g(v k t 2 /2) , with g(u) = min(1, e u )|1 -u -e -u |. Now, it is easy to check that g(u) ≤ ψ(u), with (4.20) ψ(u) = u 2 /2 for u ∈ [-1, 1] and ψ(u) = |u| -(1/2) for u / ∈ [-1, 1]. Hence (4.21) |e V n t 2 /2 ϕ n (t) -1| ≤ e V * n t 2 /2 n k=1 |∆ k,1 | + n k=1 ψ(v k t 2 /2) .
Consequently Proposition 4.2 follows from the upper bounds below via (4.21).

Proposition 4.3. For any positive t, (a)

n k=1 |∆ k,1 | ≤ 38 3 t 2 n k=1 M 3,α (Q k , t)
and

(b) n k=1 ψ(v k t 2 /2) ≤ 10 3 t 2 n k=1 M 3,α (Q k , t).
Proof of Proposition 4.3(b). By definition,

v k = Var X k + 2 k-1 j=1 Cov(X j , X k ).
Hence, by Theorem 1.1(a) applied to the random variables X j and X k ,

(4.22) |v k | ≤ 4 1 0 Q k (x)M k (x)dx with M k (x) = k j=1 Q j (x)1I x<α k-j .
We now introduce some notations.

Definition 4.2. Let R k = α -1 Q k and let H k denote the generalized inverse function of R k . Set u k = H k (1/t), x k = u k 0 Q k (x)M k (x)dx and y k = 1 u k Q k (x)M k (x)dx.
From (4.22) together with the elementary inequality (4.23) ψ(x + y) ≤ x + (y 2 /2) applied to x = 2x k t 2 and y = 2y k t 2 , we get that (4.24)

n k=1 ψ(v k t 2 /2) ≤ 2t 2 n k=1 x k + 2t 4 n k=1 y 2 k .
Hence Proposition 4.3(b) follows from the lemma below. 

(x k + t 2 y 2 k ) ≤ 5 3 n k=1 M 3,α (Q k , t). Proof of Lemma 4.1. By definition of H k , tR k (x) ≥ 1 for any x in ]0, u k [. Hence (4.25) x k ≤ k j=1 u k ∧α k-j 0 Q j (x)Q k (x)(tR k (x) ∧ 1)dx.
Now, from Lemma G.1(a) applied to a = tR j (x) and c = tR k (x), (4.26)

Q j (x)Q k (x)(tR k (x) ∧ 1) ≤ 2 3 Q 2 k (x)(tR k (x) ∧ 1) + 1 2 Q 2 j (x)(tR j (x) ∧ 1),
which ensures that (4.27)

x k ≤ k j=1 α k-j ∧u k 0 2 3 Q 2 k (x)(tR k (x) ∧ 1) + Q 2 j (x)(tR j (x) ∧ 1) dx.
Next, by the Schwarz inequality

y 2 k ≤ 1 u k Q 2 k (x)M 2 k (x)dx = k j= k l=1 1 u k Q 2 k (x)Q j (x)Q l (x)1I x<α k-j ∧α k-l dx. Now, applying the elementary inequality 2Q j (x)Q l (x) ≤ Q 2 j (x) + Q 2 l (x) and noting that k-1 m=0 1I x<α m ≤ α -1 (x) we obtain that (ty k ) 2 ≤ k j=1 1 u k t 2 α -1 (x)Q 2 k (x)Q 2 j (x)1I x<α k-j dx. Now, α -1 (x) ≤ (α -1 (x)) 2 and, for x > u k , tR k (x) ≤ 1. It follows that t 2 α -1 (x)Q 2 k (x) ≤ (tR k (x)) 2 ≤ tR k (x) ∧ 1 for any x > u k . Hence (ty k ) 2 ≤ k j=1 1 u k (tR k (x) ∧ 1)Q 2 j (x)1I x<α k-j dx.
By Lemma G.1(b) applied to a = tR j (x) and c = tR k (x), proceeding as in the proof of (4.26), we get that

(4.28) (tR k (x) ∧ 1)Q 2 j (x) ≤ 1 3 Q 2 k (x)(tR k (x) ∧ 1) + Q 2 j (x)(tR j (x) ∧ 1), which ensures that (4.29) (ty k ) 2 ≤ k j=1 α k-j α k-j ∧u k 2 3 Q 2 k (x)(tR k (x) ∧ 1) + Q 2 j (x)(tR j (x) ∧ 1) dx.
Adding (4.27) and (4.29) and summing on k, we then get Lemma 4.1, , which completes the proof of Proposition 4.3(b).

Proof of Proposition 4.3(a).

Let us give another expression for ∆ 1,k . Define the function χ t by χ t (x) = exp(itx). Then χ t = -t 2 χ t . Hence

(4.30) ∆ 1,k = IE χ t (S k )) -χ t (S k-1 ) -1 2 v k χ t (S k-1 ) .
Let us now define the class F(1, t) of regular functions as follows.

Definition 4.3. Let F(1, t) be the class of real-valued two times differentiable functions f such that f ∞ ≤ 1 and f is t-Lipschitz, that is |f (x) -f (y)| ≤ t|x -y| for any reals x and y.

Define then (4.31)

D k = sup f ∈F (1,t) IE f (S k-1 + X k ) -f (S k-1 ) -1 2 v k f (S k-1 ) .
We start by comparing ∆ 1,k and D k .

Lemma 4.2. For any positive real t,

|∆ 1,k | ≤ t 2 D k .
Proof of Lemma 4.2. From the polar decomposition of a complex number, there exists some real

θ such that |∆ 1,k | = ∆ 1,k e -iθ . It follows that |∆ 1,k | = IE e i(tS k -θ) -e i(tS k-1 -θ) (1 -1 2 v k t 2 ) = IE cos(tS k -θ)) -(1 -1 2 v k t 2 ) cos(tS k-1 -θ) . (4.32)
For any real θ, the function g θ defined by g θ (x) = t -2 cos(tx -θ) belongs to F(1, t). Furthermore g θ = -t 2 g θ . Hence Lemma 4.2 follows from (4.32).

From Lemma 4.2, Proposition 4.3(a) follows from the more general upper bound below.

Proposition 4.4. Under the assumptions of Proposition 4.2,

n k=1 D k ≤ 38 3 n k=1 M 3,α (Q k , t).
Proof of Proposition 4.4. Throughout the proof, we make the convention that X i = S i = 0 for any i ≤ 0. The main step of the proof is the following upper bound for D k .

Lemma 4.3.

Let u be any real in [0, 1/2] Set Qk (x) = min(Q k (x), Q k (u)) and p = α -1 (u). Then D k ≤4 u 0 M k (x)Q k (x)dx + 2t p-1 j=0 j+p-1 l=0 α j ∧α (l-j) + 0 (1 + 1I l∈[j,2j-1] )Q k-l (x)Q k-j (x) Qk (x)dx.
Proof of Lemma 4.3. Throughout the proof, we make the convention that S i = 0 for any i ≤ 0. We set

(4.33) M k (x, u) = p-1 j=0 Q k-j (x)1I x<α j and Xk = (X k ∧ Q k (u)) ∨ (-Q k (u)).
Let Qk denote the quantile function of | Xk |. From the definition of Xk , (4.34)

Q Xk (u) = Qk (x) and Q X k -Xk (x) = (Q k (x) -Q k (u)) + .
Let f be any element of F(1, t). By the Taylor integral formula,

f (S k ) -f (S k-1 ) -f (S k-1 )X k = X k 1 0 (f (S k-1 + vX k ) -f (S k-1 ))dv = X k 1 0 (f (S k-1 + vX k ) -f (S k-1 + v Xk ))dv + X k Xk 1 0 1 0 vf (S k-1 + vv Xk )dvdv . (4.35)
The first term on right hand is bounded up by

|X k (X k -Xk )|/2. Moreover 1 0 1 0 vf (S k-1 + vv Xk )dvdv - 1 2 f (S k-1 ) ≤ t 6 | Xk |,
which ensures that the second term is bounded up by |X k X2 k /6|. Now, from (4.34)

(4.36) IE|X k (X k -Xk )| = u 0 Q k (x)(Q k (x) -Q k (u))dx and (4.37) IE|X k X2 k | = 1 0 Q k (x) Q2 k (x)dx ≤ 2 1/2 0 Q k (x) Q2 k (x)dx. Hence IE f (S k ) -f (S k-1 ) -f (S k-1 )X k - 1 2 f (S k-1 )X k Xk ≤ 1 2 u 0 Q k (x)(Q k (x) -Q k (u))dx + t 3 1/2 0 Q k (x) Q2 k (x)dx. (4.38)
We now control the second order term

(4.39) D k,2 (f ) = IE f (S k-1 )X k Xk -IE(f (S k-1 ))IE(X k Xk ). Let Γ k,j = f (S k-j ) -f (S k-j-1 ). Clearly (4.40) f (S k-1 )X k Xk = p-1 j=1 Γ k,j X k Xk + f (S k-p )X k Xk . Since |Γ k,j | ≤ t|X k-j |, applying Theorem 1.1(a) applied to X = Γ k,i and Y = X k Xk , we get that (4.41) | Cov(Γ k,j , X k Xk )| ≤ 2t α j 0 Q k-j (x)Q k (x) Qk (x)dx.
Noting that α p ≤ u, we also get that

(4.42) | Cov(f (S k-p ), X k Xk )| ≤ 2 u 0 Q k (x) Qk (x)dx.
The two above inequalities and the decomposition (4.40) together then yield

(4.43) D k,2 (f ) ≤ 2 1/2 0 t(M k (x, u) -Q k (x)) + 1I x<u Q k (x) Qk (x)dx.
Next, by (4.36)

(4.44) IE(f (S k-1 ))IE(X k ( Xk -X k )) ≤ f ∞ u 0 Q k (x)(Q k (x) -Q k (u))dx.
Combining (4.38), (4.43) and (4.44) we then get that

IE f (S k ) -f (S k-1 ) -f (S k-1 )X k - 1 2 f (S k-1 )IE(X 2 k ) ≤ u 0 Q 2 k (x)dx + t 1/2 0 M k (x, u)Q k (x) Qk (x)dx. (4.45) It remains to estimate the first order term IE(f (S k-1 )X k ). Let (4.46) D k,1 (f ) = IE(f (S k-1 )X k ) - k-1 j=1 IE(f (S k-1 ))IE(X k-j X k ).
In order to bound up D k,1 (f ) we introduce the decomposition below

D k,1 (f ) = k-1 j=1 D j k,1 (f )
, where

D j k,1 (f ) = Cov(f (S k-j ) -f (S k-j-1 ), X k ) -IE(f (S k-1 ))IE(X k-j X k ). (4.47) We now consider two cases. If j ≥ p, then α j ≤ u. Since (4.48) |f (S k-j ) -f (S k-j-1 )| ≤ |X k-j |, it follows from Theorem 1.1(a) that (4.49) Cov(f (S k-j ) -f (S k-j-1 ), X k ) ≤ 2 α j 0 Q k-j (x)Q k (x)dx. Now, by Theorem 1.1(a) applied to X = X k-j and Y = X k , (4.50) |IE(f (S k-1 ))IE(X k-j X k )| ≤ 2 f ∞ α j 0 Q k-j (x)Q k (x)dx. Hence (4.51) j≥p D j k,1 (f ) ≤ 4 j≥p α j 0 Q k-j (x)Q k (x)dx.
If j < p, we write (4.52a)

D j k,1 (f ) = Dj k,1 (f ) + Dj k,1 (f ), with (4.52b) Dj k,1 (f ) = Cov(f (S k-j ) -f (S k-j-1 ), Xk ) -IE(f (S k-1 ))IE(X k-j Xk ).
From the definition of Dj k,1 (f ) and the fact that

|f | ≤ 1, Dj k,1 (f ) ≤ | Cov(f (S k-j ) -f (S k-j-1 ), X k -Xk )| + IE|X k-j (X k -Xk )| ≤ 2 u∧α j 0 Q k-j (x)(Q k (x) -Qk (x))dx + u 0 Q k-j (x)(Q k (x) -Qk (x))dx
by Theorem 1.1(a) together with (4.48) and Lemma 2.1(a). Since u ∧ α j ≤ u, we get that

(4.53) Dj k,1 (f ) ≤ 3 u 0 Q k-j (x)(Q k (x) -Qk (x))dx. We now bound up Dj k,1 (f ). Let (4.54) R k,j = f (S k-j ) -f (S k-j-1 ) -f (S k-j-1 )X k-j .
By the Taylor formula at order two, |R k,j | ≤ tX 2 k-j /2. Consequently, applying Theorem 1.1(a),

(4.55) Cov(R k,j , Xk ) ≤ t α j 0 Q 2 k-j (x) Qk (x)dx.
We now estimate

(4.56) Dj,1 k,1 (f ) := Dj k,1 (f ) -Cov(R k,j , Xk ).
Here we introduce the decomposition below

(4.57) f (S k-j-1 ) = f (S k-2j ) + j-1 l=1 Γ k,j+l . Now, recall that |Γ k,j+l | ≤ t|X k-j-l |.
Hence, by Theorem 1.1(a) applied to X = Γ j,k+l X k-j and Y = Xk and Lemma 2.1(b),

(4.58) Cov(Γ k,j+l X k-j , Xk ) ≤ 2t α j 0 Q k-j-l (x)Q k-j (x) Qk (x)dx.
We now bound up the remainder term

(4.59) Dj,2 k,1 (f ) := Cov(f (S k-2j )X k-j , Xk ) -IE(f (S k-1 ))IE(X k-j Xk ).
Here we use the decomposition

Dj,2 k,1 (f ) = Cov(f (S k-2j ), X k-j Xk ) + IE(f (S k-2j )X k-j )IE(X k -Xk ) + IE(f (S k-2j ) -f (S k-1 ))IE(X k-j Xk ). (4.60)
Using Lemma 2.1(a) and noticing that α j ≥ u for j < p, we get that (4.61)

|IE(f (S k-2j )X k-j )IE(X k -Xk )| ≤ u 0 Q k-j (x)1I x<α j (Q k (x) -Qk (x))dx. Next (4.62) |f (S k-2j ) -f (S k-1 )| ≤ t 2j-1 l=1 |X k-l |
and, by Theorem 1.1(a) applied to X = X k-j and Y = Xk ,

(4.63) |IE(X k-j Xk )| ≤ α j 0 Q k-j (x) Qk (x)dx, whence (4.64) IE(f (S k-2j ) -f (S k-1 ))IE(X k-j Xk ) ≤ 2t 2j-1 l=1 α j 0 Q k-l (x)Q k-j (x) Qk (x)dx. It remains to bound up Cov(f (S k-2j ), X k-j Xk ). Clearly (4.65) f (S k-2j ) = p-1 l=j Γ k,l+j + f (S k-j-p ).
Now, by Theorem 1.1(a) applied to X = Γ k,l+j and Y = X k-j Xk and Lemma 2.1(b), (4.66)

p-1 l=j Cov(Γ k,l+j , X k-j Xk ) ≤ 2t p-1 l=j α j ∧α l 0 Q k-j-l (x)Q k-j (x) Qk (x)dx.
Noting that α p ≤ u ≤ α j , and applying Theorem 1.1(a) with X = f (S k-i-p ) and Y = X k-i Xk together with Lemma 2.1(b), we also get that

(4.67) Cov(f (S k-j-p ), X k-j Xk ) ≤ 2 u 0 1I x<α j Q k-j (x) Qk (x)dx.
Using the decomposition (4.60), and adding the inequalities (4.61), (4.64), (4.66) and (4.67), we then get that

Dj,2 k,1 (f ) ≤ u 0 Q k-j (x)1I x<α j (Q k (x) + Qk (x))dx + 2t j+p-1 l=1 α j ∧α (l-j) + 0 Q k-l (x)Q k-j (x) Qk (x)dx.
Next, from (4.53), (4.55), (4.58) and the decomposition (4.52), for any j in [1, p -1],

D j k,1 (f ) ≤ u 0 Q k-j (x)1I x<α j (4Q k (x) -2 Qk (x))dx + 2t j+p-1 l=1 α j ∧α (l-j) + 0 (1 + 1I l∈[j,2j-1] )Q k-l (x)Q k-j (x) Qk (x)dx, (4.68)
Now, summing (4.68) on j for j in [1, p -1] and adding (4.51), we get that

D k,1 (f ) ≤4 u 0 (M k (x) -Q k (x))Q k (x)dx + 2t p-1 j=1 j+p-1 l=1 α j ∧α (l-j) + 0 (1 + 1I l∈[j,2j-1] )Q k-l (x)Q k-j (x) Qk (x)dx. (4.69)
Adding (4.45), we then obtain Lemma 4.3.

End of the proof of Proposition 4.4. Replacing the random variables X k by tX k if necessary, we may assume that t = 1. Let then

u k = H k (1), p k = α -1 (u k ) and Qk (x) = min(Q k (x), Q k (u k )). Applying Lemma 4.3 with u = u k , we get that (4.70a) n k=1 D k ≤ 4 n k=1 u k 0 M k (x)Q k (x)dx + n k=1 I k with (4.70b) I k = p k -1 j=0 j+p k -1 l=0 α j ∧α (l-j) + 0 (1 + 1I l∈[j,2j-1] )2Q k-l (x)Q k-j (x) Qk (x)dx.
We now bound the first term on right hand in (4.70a). By definition of u k , R k (x) ≥ 1 for x < u k . It follows that (4.71)

u k 0 M k (x)Q k (x)dx ≤ k j=1 α k-j 0 R j (x)R k (x)(R k (x) ∧ 1)(α -1 (x)) -2 dx. Now, by Lemma G.1(a), R j (x)R k (x)(R k (x) ∧ 1) ≤ 1 2 R 2 j (x)(R j (x) ∧ 1) + 2 3 R 2 k (x)(R k (x) ∧ 1).
Putting this inequality in the right hand side of (4.71) and summing on k, we obtain that (4.72)

n k=1 u k 0 M k (x)Q k (x)dx ≤ 7 6 n k=1 M 3,α (Q k , 1).
We now bound up

I k . From the inequality 2Q k-l (x)Q k-j (x) ≤ Q 2 k-l (x) + Q 2 k-j (x), I k ≤ I (1) 
k + I

(2) k with I

(1)

k = p k -1 j=0 j+p k -1 l=0 α j ∧α (l-j) + 0 (1 + 1I l∈[j,2j-1] )Q 2 k-j (x) Qk (x)dx
and I

(2)

k = p k -1 j=0 j+p k -1 l=0 α j ∧α (l-j) + 0 (1 + 1I l∈[j,2j-1] )Q 2 k-l (x) Qk (x)dx. (4.73)
In order to manage I

(1) k , we write

I (1) k = p k -1 j=0 1 0 n j (x)Q 2 k-j (x) Qk (x)dx with n j (x) = j+p k -1 l=0 (1 + 1I l∈[j,2j-1] )1I x<α (l-j) + ∧α j . Next (4.74) n j (x) = (3j + 1)1I x<α j + p k -1 m=j+1 1I x<α m ≤ 3(α -1 (x) ∧ p k )1I x<α j . Since (α -1 (x) ∧ p k ) Qk (x) ≤ (R k (x) ∧ 1), it follows that (4.75) I (1) k ≤ 3 k-1 j=0 α j 0 Q 2 k-j (x)(R k (x) ∧ 1)dx.
In a similar way 

I (2) k ≤ 2p k -2 l=0 1 0 N l (x)Q 2 k-l (x) Qk (x)dx with N l (x) = p k -1 j=0 (1 + 1I l∈[j,2j-1] )1I x<α (l-j) + ∧α j . Now min(α (l-j) + , α j ) ≤ min(α l-[l/2] , α j ). Consequently N l (x) ≤ 1I x<α l-[l/2] p k -1 j=0 1I x<α j + j∈]l/2,l] j<p k 1I x<α j . If l < p k , then j∈]l/2,l] j<p k 1I x<α j ≤ 1 2 j∈]l/2,l] 1I x<α j + 1I x<α l-j ≤ 1 2 p k -1 m=0 1I x<α m . Otherwise l ≥ p k and j∈]l/2,l] j<p k 1I x<α j ≤ j∈]p k /2,p k [ 1I x<α j ≤ 1 2 p k -1 m=0 1I x<α m again. From the above inequalities N l (x) ≤ 3 2 α -1 (x) ∧ p k 1I x<α l-[l/2] , whence (4.76) I (2) k ≤ 3 2 k-1 l=0 α l-[l/2] 0 Q 2 k-l (x)(R k (x) ∧ 1)
I k ≤ 2 n m=1 n-1 l=0 α l-[l/2] 0 Q 2 m (x)(R m (x) ∧ 1)dx + 2 n-1 j=0 α j 0 Q 2 m (x)(R m (x) ∧ 1)dx . Since n-1 l=0 1I x<α l-[l/2] ≤ 2 n-1 j=0 1I x<α j ≤ 2α -1 (x)
, the above inequality implies that (4.76)

n k=1 I k ≤ 8 n m=1 M 3,α (Q m , 1).
Proposition 4.4 follows then from (4.70), (4.72) and (4.77).

EXERCISES 1) A non Gaussian limit law. Let (ε i ) i∈Z Z be a sequence of Gaussian random variables with common distribution N (0, 1) and V = (a, b) be a random variable with values in the unit circle, independent of the sequence (ε i ) i∈Z Z . We set X i = aε i-1 + bε i . a) Prove that the coefficients (α k ) k≥0 defined by (2.30) satisfy α k = 0 for any k ≥ 2.

b) Prove that n -1/2 S n converges in distribution to (a + b)Y , where Y is a N (0, 1)distributed random variable, independent of V = (a, b). Give a necessary and sufficient condition on V ensuring that the limit law is a Gaussian one.

Problem. -Agrégation de mathématiques 1994 -Our aim in this problem is to provide a second proof of the central limit theorem for stationary and strongly mixing sequences. We follow the approach of Bolthausen (1982a), which is based on the Stein method (1972). Throughout the problem, (X i ) i∈Z Z is a strictly stationary sequence of centered real-valued random variables satisfying condition (DMR) for the strong mixing coefficients (α n ) n≥0 defined by (2.1). Furthermore we assume that

σ 2 = i∈Z Z Cov(X 0 , X i ) > 0.
A Let (ν n ) n>0 be a sequence of probability measures on IR such that (0)

K := sup n>0 IR x 2 dν n (x) < ∞.
Suppose furthermore that, for any real λ,

(1) lim n→∞ IR

(iλ -x) exp(iλx)dν n (x) = 0.

1) Prove that, if (ν n ) n>0 converges weakly to a probability measure ν, then ν is the standard normal law.

2) Deduce from 1) and from (0) that (ν n ) n>0 converges in distribution to the standard normal law.

B

Throughout part B, we assume that X 0 ∞ = M < ∞. Let (m n ) n>0 be a nondecreasing sequence of positive integers converging to ∞ and such that m n ≤ n/2 for any n > 0. For j in [1, n], we set

D n = {(l, j) ∈ [1, n] 2 : |j -l| ≤ m n } and D n (j) = {l ∈ [1, n] : |j -l| ≤ m n } Let V n = (l,j)∈D n Cov(X j , X l ).
1) Prove that (V n /n) n>0 converges to σ 2 as n tends to ∞.

Throughout the rest of Part B, we assume that n is large enough to ensure that V n > 0. We set, for l in Z Z,

Y l,n = V -1/2 n X l , T n (j) = l∈D n (j) Y l,n and T n = n l=1 Y l,n .
Here λ is any real.

2) Prove that

IE((iλ -T n ) exp(iλT n )) = iλIE(exp(iλT n )A n ) -IE(exp(iλT n )B n ) -IE(C n ) with A n = 1 - n j=1 T n (j)Y j,n , B n = n j=1 Y j,n (1 -exp(-iλT n (j)) -iλT n (j))
and

C n = n j=1 Y j,n exp(iλT n -iλT n (j)).
3a) Apply the Taylor integral formula to show that

| exp(iλx) -iλx -1| ≤ (λx) 2 /2.
3b) Prove that there exists some positive constant K 1 such that

IE(|B n |) ≤ K 1 n -1/2 m n
for n large enough. 3c) Prove that there exists some positive constant K 2 such that

|IE(C n )| ≤ K 2 n 1/2 α m n
for n large enough. 4) Let m be a nonnegative integer and (j, l, j , l ) be an element of Z Z

4 such that |j -l| ≤ m and |j -l | ≤ m. a) If |j -j | ≥ 2m, prove that | Cov(X j X l , X j X l )| ≤ 2M 4 α |j-j |-2m . b) If k = min(|j -j |, |j -l|, |j -l |), prove that | Cov(X j X l , X j X l )| ≤ 4M 4 α k .
5) Prove that IE(A n ) = 0. Next, prove that there exists some positive constant

K 3 such that IE(A 2 n ) ≤ K 3 n -1 m 2 n
for n large enough. 6a) Prove that the sequence (mα m ) m>0 converges to 0, Find a sequence (m n ) n>0 of positive integers with the above prescribed properties such that lim n→∞ n 1/2 α m n = lim n→∞ n -1/2 m n = 0. 6b) Prove then that n -1/2 S n converges in distribution to the law N (0, σ 2 ).

C

Let M be any positive real. We set

f M (x) = x1I |x|≤M .
We denote by H the tail function defined by H(x) = IP(|X 0 | > x) and by Q the cadlag inverse of H. Let

Z n = n -1/2 n j=1 X j , Zn,M = n -1/2 n j=1 (f M (X j ) -IE(f M (X j ))
and

Zn,M = Z n -Zn,M .

1) Prove that IE( Z2 n,M ) ≤ 4 H(M ) 0 α -1 (u)Q 2 (u)du. 2a) Prove that the series k∈Z Z Cov(f M (X 0 ), f M (X k )).
is abolutely convergent. 2b) Let σ 2 (M ) be the sum of the above series. Prove that σ 2 (M ) converges to σ 2 as M tends to ∞.

2c) Prove that the central limit theorem holds under condition (DMR).

2) A central limit theorem for β-mixing sequences.

Let (X i ) i∈Z Z be a strictly stationary sequence of random variables with values in some Polish space X , with common law P . We assume that the sequence of strong mixing coefficients defined in (2.1) is summable and that the sequence of β-mixing coefficients (β i ) i≥0 defined in Corollary 1.4 is summable. Let B be defined as in Corollary 1.4 and Q = BP . a) Prove that, for any g in L 2 (Q), the series Cov(g(X 0 ), g(X t ))

is absolutely convergent. Bound up the sum σ 2 (g) of this series. b) Proceed as in part C of the problem to prove that

Z n (g) = n -1/2 (S n (g) -IE(S n (g)) )
converges in distribution to the law N (0, σ 2 (g)).

MIXING AND COUPLING

Introduction

One of the most popular techniques to get limit theorems for dependent processes is to replace the initial sequence by a sequence with finite range dependence. In this direction, the coupling lemmas allow one to replace the initial sequence after time 0 by a new sequence independent of the past before time 0. In this chapter, we give coupling theorems for mixing sequences. The cost of the coupling will depend on the mixing condition involved. Here we will give coupling results for strongly mixing or absolutely regular sequences.

For sequences of random variables satisfying a β-mixing condition, the new sequence is equal to the initial sequence after time n with high probability. This result was obtained independently by [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF] and [START_REF] Goldstein | Maximal coupling[END_REF]. This result fails in the strong mixing case. Nevertheless one can still obtain weaker results, which are efficient for realvalued random variables. These results are stated and proved in Section 5.2 in the case of bounded random variables. Next, in Section 5.3, we will state and prove coupling lemmas for random variables satisfying a β-mixing condition. In Section 5.4 we compare the results of Section 5.2 to previous results on the same subject. In Section 5.5, we give the strong version of Berbee's or Goldstein's Lemma, called maximal coupling. Section 5.6 is devoted to an extension of the results of Section 5.2 to unbounded random variables.

A coupling lemma for real-valued random variables

We first state the coupling lemma of [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF] for random variables satisfying a β-mixing condition. This lemma will be proved in Section 5.3. Lemma 5.1. Let A be a σ-field in (Ω, T , IP) and X be a random variable with values in some Poilsh space. Let δ be a random variable with uniform distribution over [0, 1], independent of the σ-field generated by X and A. Then there exists a random variable X * , with the same law as X, independent of A, such that IP(X = X * ) = β(A, σ(X)). Furthermore X * is measurable with respect to the σ-field generated by A and (X, δ). In this section we will prove that (5.1) is still true if one replaces the β-mixing coefficient by the strong mixing coefficient, and more generally, by the dependence coefficient defined in (1.8b).

Lemma 5.2. Let A be a σ-field in (Ω, T , IP) and X be a real-valued random variable with values in [a, b]. Let δ be a random variable with uniform distribution over [0, 1], independent of the σ-field generated by X and A. Then there exists a random variable X * , with the same law as X, independent of A, such that

IE(|X -X * |) ≤ (b -a)α(A, X).
Furthermore X * is measurable with respect to the σ-field generated by A and (X, δ).

Proof.

We will define X * from X via the conditional quantile transformation. The main interest of the quantile transformation, is that this transformation minimizes the L 1distance between X and X * . We refer to [START_REF] Major | On the invariance principle for sums of identically distributed random variables[END_REF] for the properties of the quantile transformations.

Let F be the distribution function of X, and F A by the conditional distribution function of X given A, which is defined by F A (t) = IP(X ≤ t | A). Since δ is independent of A∨σ(X) and has the uniform distribution over [0, 1], the random variable

(5.2) V = F A (X -0) + δ(F A (X) -F A (X -0))
has the uniform distribution over [0, 1], conditionally to A (see Annex F). Hence V is independent of A and has the uniform distribution over [0, 1]. Therefrom (5.3)

X * = F -1 (V )
is independent of A and has the same distribution function as X. Furthermore (see Exercise 1, Chap. 1),

(5.4)

X = F -1 A (V ) a.s., whence (5.5) IE(|X -X * |) = IE 1 0 |F -1 A (v) -F -1 (v)|dv . Since X takes its values in [a, b], 1 0 |F -1 A (v) -F -1 (v)|dv = b a |F A (t) -F (t)|dt.
Interverting the integral and the mean, we infer that

(5.6) IE(|X -X * |) = b a IE(|F A (t) -F (t)|)dt.
Now, by (1.10c), for any real t,

(5.7) IE(|F A (t) -F (t)|) ≤ α(A, X),
which, together with (5.6) implies Lemma 5.2.

A coupling lemma for β-mixing random variables

In this section, we give a constructive proof of Lemma 5.1. In Section 5.4 we will study connections between coupling for β-mixing random variables and coupling for strongly mixing random variables.

Proof of Lemma 5.1. Let X * be a random variable, independent of A and with the same distribution as X. For any pair (A i ) i∈I and (B j ) j∈J of finite partitions of Ω and X , with A i in A and B j Borelian of X ,

i∈I j∈J | Cov(1I A i , 1I X∈B j )| = i∈I j∈J |IP(A i ∩ (X ∈ B j )) -IP(A i ∩ (X * ∈ B j ))| ≤ i∈I IE(1I A i j∈J |1I X∈B j -1I X * ∈B j |). Now j∈J |1I X∈B j -1I X * ∈B j | ≤ 21I X =X * , and consequently (5.8) 1 2 i∈I j∈J | Cov(1I A i , 1I X∈B j )| ≤ IP(X = X * ).
Therefrom, by (1.58), IP(X = X * ) ≥ β(A, σ(X)).

Let us now prove the converse inequality. From Lemma E.1 in Annex E, is is enough to prove Lemma 5.1 for random variables X with values in ([0, 1], B) where B denotes the σ-field of Borel sets of [0, 1]. We start by the construction of the random variables in

(Ω × [0, 1] × [0, 1], A ⊗ B ⊗ B).
Here, we use the notations introduced in the proof of Lemma 5.2. We have to construct a probability measure on the above product space in such a way that, if Y denotes the second canonical projection and Y * denotes the third canonical projection, then

(5.9) IP(Y ≤ t | A) = F A (t), IP(Y * ≤ t | A) = F (t) and IP(Y = Y * ) ≤ β.
On the first component we consider the probability induced on A by IP. In order to define the law on the product space, it is enough to define the conditional law ν A of (Y, Y * ) conditionally to ω.

Notations 5.1. For L nonnegative integer, let I L,1 = [0, 2 -L ] and

I L,i =](i -1)2 -L , i2 -L ] for i in [2, 2 L ],
. Let B L be the Boole algebra generated by the sets I L,i .

We now define a coherent sequence (ν L,A ) L of conditional probabilities on the algebras B L ⊗B L . The conditional probability ν A will be defined from these conditional probabilities via some extension theorem.

Assume that a coherent sequence (ν L,A ) L≤N of conditional laws on the Boole algebras B L ⊗ B L has been constructed in such a way that these laws are measrurable with respect to A and satisfy the condition H(L) below: if p L i,j = ν L,A (I L,i × I L,j ), then, for any L in [0, N ] and any i in [1, 2 L ],

p L i,i = IP(X ∈ I L,i | A) ∧ IP(X ∈ I L,i ), 2 L j=1 p L i,j = IP(X ∈ I L,i | A), 2 L i=1 p L i,j = IP(X ∈ I L,i )
(note that H(0) is satisfied anyway). We have to construct an extension ν N +1,A of ν N,A to the Boole algebra B N +1 ⊗ B N +1 in such a way that H(N + 1) still holds true.

For any pair (i, j) of integers in [1, 2 N ], the extension ν N +1,A has to satisfy the constraints

C(N + 1) p N i,j = 1 ε=0 1 η=0 p N +1 2i-ε,2j-η .
Furthermore we need to construct ν N +1,A in such a way that H(N + 1) holds true. Set (5.10)

a i ε = IP(X ∈ I N +1,2i-ε | A), b j ε = IP(X ∈ I N +1,2j-ε ) and q ij εη = p N +1 2i-ε,2j-η .
We start by defining the diagonal terms. In order to fulfill H(N + 1), we set (5.11)

q ii εε = IP(X ∈ I N +1,2i-ε | A) ∧ IP(X ∈ I N +1,2i-ε ).
Now we have to fulfill both constraint C(N + 1) for j = i and (5.11). With the notations introduced in (5.10), it means that (5.12) q ii 00 = a i 0 ∧b i 0 , q ii 11 = a i 1 ∧b i 1 and q ii 01 +q ii 10 = inf(a i

0 +a i 1 , b i 0 +b i 1 )-(a i 0 ∧b i 0 )-(a i 1 ∧b i 1 ). If a i 0 + a i 1 ≤ b i 0 + b i 1 ,
then the constraint on the first marginal at range N , which may be written j p N i,j = a i 0 + a i 1 , implies that p N i,j = 0 for j = i, whence q ij εη = 0 for j = i.

checked in a similar way). Under (i) this constraint holds immediately since p N ij = 0 for j = i. Under (ii), we have to prove that (5.15)

2 N j=1 1 η=0 p 2i,2j-η = a i 0 ,
Now, separating j = i and j = i in this sum and using (ii), we get that (5.15) holds true if and only if r i0 j =i p N i,j = (a i 0 -q ii 00 -q ii 01 ). Now the constraint at range N on the line i for ν N,A may be written as j =i p N i,j = (a i 0 + a i 1 -b i 0 -b i 1 ), so that (5.15) holds true by definition of r i0 . Consequently there exists a sequence (ν N,A ) N of conditional probabilities with the prescribed properties. Define then the probability measure ν N on A⊗B N ⊗B N by ν N (A×B N ) = IE(ν N,A (B N )1I A ). The so defined sequence (ν N ) N of probability measures is coherent. Hence, by the Kolmogorov extension theorem, there exists a unique probability measure ν on A ⊗ B ⊗ B such that (5.16)

ν(A × B N ) = ν N (A × B N ) = IE(1I A ν N,A (B N ))
for any A in A, any positive integer N and any B N in B N ⊗ B N . Let then ν A be defined by (5.17)

ν(A × B) = IE(1I A ν A (B)) for A ∈ A and B ∈ B ⊗ B.
The restriction of ν A to B N ⊗ B N is equal to ν N,A . Hence, for any dyadic number x,

(5.18) ν A ([0, x] × [0, 1]) = F A (x) et ν A ([0, 1] × [0, x]) = F (x).
Since the dyadic numbers are dense in [0, 1], it follows that (5.18) holds for any real x in [0, 1]. Let then Y denote the second canonical projection and Y * the third canonical projection. From (5.18) the random variable Y * is independent of A (here A denotes the σ-field induced by the first projection) and has the same law as X. From (5.18) again the conditional law of Y given A is equal to the conditional law of X given A. Furthermore

(5.19) IP(Y = Y * ) = lim N →∞ IE ν N,A 2 N i=1 I N,i × I N,i = lim N →∞ 2 N i=1 IE(p N i,i ). Now 2 N i=1 IE(p N i,i ) = 1 2 2 N i=1 IE(|IP(X ∈ I N,i | A) -IP(X ∈ I L,i )|) ≥ 1 -β(A, σ(X)), which ensures that IP(Y = Y * ) ≤ β(A, σ(X)). Hence IP(Y = Y * ) = β(A, σ(X)).
Let then Ω = Ω×[0, 1]×[0, 1]×[0, 1] be quipped with ν ⊗λ. By Lemma E.2, there exists a random variable V with uniform law over [0, 1] independent of the σ-field G induced by the first two projections and a measurable function g such that Y * = g(ω, Y, V ) almost surely. Setting X * = g(ω, X, δ), we then get Lemma 5.1.

Comparison of α-mixing and β-mixing coefficients for finite σ-fields

In this section, we are interested in a converse inequality for β-mixing and strong mixing coefficients, in the case ot σ-fields with a finite number of atoms. Below we give a result of [START_REF] Bradley | Approximation theorems for strongly mixing random variables[END_REF] which was used to obtain approximation theorems by [START_REF] Bradley | Approximation theorems for strongly mixing random variables[END_REF] in the case of real-valued random variables. At the end of this section we will compare this lemma with Lemma 5.1. Lemma 5.3. Let A be a σ-field of (Ω, T , IP) and B be a Boole algebra included in T , having exactly K atoms. Then β(A, B) ≤ (2K) 1/2 α(A, B).

Remark 5.1. The above lemma is optimal up to some multiplicative constant, as proved by [START_REF] Bradley | Approximation theorems for strongly mixing random variables[END_REF]. This fact will be proved in Exercise 2.

Proof of Lemma 5.3. We may assume that the probability space is large enough to contain a finite sequence (ε 1 , . . . , ε K ) de of independent and symmetric signs, independent of A ∨ B. Let B 1 , . . . , B K denote the atoms of B. Set

Y = K k=1 ε i (1I B k -IP(B k )).
We now proceed conditionally to (ε 1 , . . . , ε K ) : the random variable Y is conditionally centered, so that we may apply (1.11c) with X = 1 conditionally to the values of the signs. Since Y belongs to [-1, 1], integrating with respect to the signs, we get that (5.20)

IE K k=1 ε i (IP(B k | A) -IP(B k )) ≤ 2α(A, B).
Now, by the lower bound of [START_REF] Szarek | On the best constants in the Khinchin inequality[END_REF] in Khinchin's inequality, for any finite sequence a 1 , . . . , a K of reals,

IE(|a 1 ε 1 + • • • + a K ε K |) ≥ 2 -1/2 (a 2 1 + • • • + a 2 K ) ≥ (2K) -1/2 (|a 1 | + • • • + |a K |) (5.21) by the Cauchy-Schwarz inequality. Taking a k = IP(B k | A) -IP(B k ) in (5.21), we get that 2α(A, B) ≥ (2K) -1/2 K i=1 IE(|IP(B k | A) -IP(B k )|) = (2/K) 1/2 β(A, B),
which completes the proof of Lemma 5.3.

We now explain the method of [START_REF] Bradley | Approximation theorems for strongly mixing random variables[END_REF] for strongly mixing sequences. Divide [a, b] into K intervals , H 1 , H 2 , . . . H k of the same length. For X random variable with values in [a, b], consider the Boole algebra B generated by the atoms B k = (X ∈ H k ). Applying Lemma 5.1 together with Lemma 5.3, one can construct a random variable X * (which depends on the number K of intervals) with the same distribution as X, independent of A and such that

(5.22) IP (X, X * ) ∈ K k=1 H k × H k ≥ 1 -(2K) 1/2 α(A, σ(X)). Now, if (X, X * ) belongs to H k × H k for some k in [1, K], then|X -X * | ≤ (b -a)/K. Consequently (5.23) IP(|X -X * | > K -1 (b -a)) ≤ (2K) 1/2 α(A, σ(X)). Now, for any λ in [0, b -a], applying (5.23) with K = 1 + [(b -a)/λ], we get that (5.24) IP(|X -X * | > λ) ≤ 2((b -a)/λ) 1/2 α(A, σ(X))
(see [START_REF] Bradley | Approximation theorems for strongly mixing random variables[END_REF], Theorem 3). The main default of (5.24) is that X * depends on λ: therefore this inequality cannot be integrated with respect to λ, which leads to a loss for IE(|X -X * |). From (5.24),

IE(|X -X * |) ≤ λ + (b -a)IP(|X -X * | > λ) ≤ λ + 2α(A, σ(X))(b -a) 3/2 λ -1/2 .
For the optimal choice λ = (b -a)(α(A, σ(X))) 2/3 , the above inequality gives

(5.25) IE(|X -X * |) ≤ 3(b -a) 1/3 (α(A, σ(X))) 2/3 .
For the pair (X, X * ) constructed in the proof of Lemma 5.1, this upper bound can be improved. We refer to Exercise 1 for an upper bound on IE(|X -X * |) for the pair (X, X * ) constructed in the proof of Lemma 5.1 similar to the upper bound of Lemma 5.2.

Maximal coupling and absolutely regular sequences

In this section, we give a relation between maximal coupling and absolutely regular sequences. Theorem 5.1 below, which can be found in [START_REF] Goldstein | Maximal coupling[END_REF] and [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF], generalizes a result of [START_REF] Griffeath | A maximal coupling for Markov chains[END_REF] for Markov chains. Let (ξ i ) i∈Z Z be a sequence of random variables with values in some Polish space X . Assume that (Ω, T , IP) is rich enough to contain a random variables U with uniform distribution over [0, 1], independent of (ξ i ) i∈Z Z . Let F 0 = σ(ξ i : i ≤ 0) and G n = σ(ξ i : i ≥ n). Then one can construct a sequence (ξ * i ) i∈Z Z with the same joint distribution as the initial sequence (ξ i ) i∈Z Z , independent of F 0 and measurable with respect to the σ-field generated by U and (ξ i ) i∈Z Z , in such a way that, for any positive integer n,

(a) IP(ξ k = ξ * k for some k ≥ n | F 0 ) = ess sup {|IP(B | F 0 ) -IP(B)| : B ∈ G n }.
In particular

(b) IP(ξ k = ξ * k for some k ≥ n) = β(F 0 , G n ).
Remark 5.2. The β-mixing coefficients of the sequence (ξ i ) i∈Z Z are determined uniquely by property (b). Hence Theorem 5.1 contains all the information needed to explore the properties of β-mixing sequences. In Chapter 8 we will apply this result to uniform limit theorems for empirical processes.

An extension of Lemma 5.2 to unbounded random variables *

In this section, we give an extension of Lemma 5.2 to unbounded real-valued random variables. The result below is due to [START_REF] Peligrad | Some remarks on coupling of dependent random variables[END_REF].

Lemma 5.4. Let A be a σ-field in (Ω, T , IP) and X be a real-valued and integrable random. Let δ be a random variable with uniform distribution over [0, 1], independent of the σ-field generated by X and A. Then there exists a random variable X * , with the same law as X, independent of A, such that

IE(|X -X * |) ≤ 2 α(A,X) 0 Q X (u)du.
Furthermore X * is measurable with respect to the σ-field generated by A and (X, δ).

Proof. As in Lemma 5.2, the random variable X * is defined from X by ( 5.2) and ( 5.3). For the so-defined random variable X * , (5.5) still holds true. Proceeding exactly as in the proof of (5.6), we then get that (5.26)

X -X * 1 = IR IE(|F A (t) -F (t)|)dt. Since |F A (t) -F (t)| = |IP(X > t | A) -IP(X > t)|, ∞ 0 IE(|F A (t) -F (t)|)dt = ∞ 0 IE(|IP(X > t | A) -IP(X > t)|)dt. 97 Next 0 -∞ IE(|F A (t) -F (t)|)dt = 0 -∞ IE(|IP(X < t | A) -IP(X < t)|)dt, whence (5.27) X -X * 1 = ∞ 0 IE(|IP(X > t | A) -IP(X > t)| + |IP(-X > t | A) -IP(-X > t)|)dt. Now, by (1.10c), IE(|IP(X > t | A) -IP(X > t)| + |IP(-X > t | A) -IP(-X > t)|) ≤ 2α(A, X). Furthermore |IP(X > t | A)-IP(X > t)|+|IP(-X > t | A)-IP(-X > t)| ≤ IP(|X| > t)+IP(|X| > t | A), whence IE(|IP(X > t | A) -IP(X > t)| + |IP(-X > t | A) -IP(-X > t)|) ≤ 2IP(|X| > t).
Combining (5.27) with the two above upper bounds, we get that

X -X * 1 ≤ 2 ∞ 0 inf(α(A, X), IP(|X| > t))dt. Since ∞ 0 inf(α(A, X), IP(|X| > t))dt = α(A,X) 0 Q X (u)du,
Lemma 5.4 follows.

EXERCISES 1) Let A be a σ-field of (Ω, T , IP) and X be a random variable with values [0, 1]. Set α = α(A, σ(X)) and let X * be the random variable constructed in the proof of Lemma 5.2. a) Prove that, for any positive integer N ,

IP( there exists i ∈ [1, 2 N ] such that(X, X * ) ∈ I N,i × I N,i ) ≥ 1 -2 (N +1)/2 α.
Infer that, for any positive λ,

IP(|X -X * | > λ) ≤ 2λ -1/2 α. b) Prove that IE(|X -X * |) ≤ 4α.
We now assume that the random variable X takes its values in [0, 1] d equipped with the distance d ∞ . c) Prove that there exists a bijective and bimeasurable transformation from [0, 1] dans [0, 1] d such that, for any positive integer N , the images of the dyadic intervals I N,i are dyadic boxes with diameter bounded up by 2 - [N/d] . d) Construct a random variable X * independent of A and with the same law as X in such a way that IP

(d ∞ (X, X * ) > 4λ 1/d ) ≤ (2/λ) 1/2 α.
From the above upper bound, deduce an upper bound on IE(d ∞ (X, X * )). Compare this upper bound with the upper bound which can be deduced from Lemma 5.1 in the β-mixing case.

2) On the optimality of Lemma 5.3. -Bradley (1983) -Recall that the correlation between two square-integrable random variables X and Y is defined by

Corr(X, Y ) = (Var X Var Y ) -1/2 Cov(X, Y ).
If A and B are two σ-fields in some probability space, we set

ρ(A, B) = sup{Corr(X, Y ) : X ∈ L 2 (A), Y ∈ L 2 (B)}.
Let N be an even natural integer. Let Ω 1 = [0, 1] equipped with its Borel field, which is noted here F 1 , and P 1 be the Lebesgue measure on F 1 . Let Ω 2 = {1, . . . , N } equipped with F 2 = P(Ω 2 ). On Ω 2 we consider the uniform distribution, which is noted P 2 .

Set m = N/2. Let h 1 , h 2 , . . . be the Rademacher functions given by h j (x) = (-1) [x2 j ] . On Ω = Ω 1 × Ω 2 equipped with F 1 ⊗ F 2 , we define the probability measure P as follows: the density with respect to the Lebesgue measure of the conditional law of ω 1 conditionally to (ω 2 = j) is equal to 1 -h j (x) for j in [1, m] and to 1 -h j-m (x) for j in [m + 1, N ].

Let then

A = {F 1 × Ω 2 : F 1 ∈ F 1 } and B = {Ω 1 × F 2 : F 2 ∈ F 2 }. a) Prove that β(A, B) = 1/2.
b) Prove that any numerical function g on {1, 2, . . . , N } has the decomposition g = g 1 + g 2 with g 1 (j + m) = -g 1 (j + m) and g 2 (j + m) = g 2 (m) for any j in [1, m]. Prove that this decomposition is unique. Next, prove that, under the law P 2 , Var g ≥ Var g 1 . c) Let f be a square integrable Borelian function on [0, 1], with mean 0. Prove that

Cov(f, g) = Cov(f, g 1 ). Infer that | Corr(f, g)| ≤ | Corr(f, g 1 )|. d) Let c j = g 1 (j). Prove that Cov(f, g 1 ) = 2 N 1 0 m j=1 c j h j (x)f (x)dx.
Infer that ρ(A, B) ≤ (2/N ) 1/2 . e) Prove that ρ(A, B) ≥ 2α(A, B). Conclude that α(A, B)(N/2) 1/2 ≤ β(A, B).

FUK-NAGAEV INEQUALITIES, APPLICATIONS

Introduction

In this chapter, we generalize the classical exponential inequalities for sums of independent random variables (we refer to Annex B for these inequalities) to sums of strongly mixing random variables. Our approach is based on coupling, as in [START_REF] Bradley | Approximation theorems for strongly mixing random variables[END_REF] and [START_REF] Bosq | Bernstein's type large deviation inequalities for partial sums of strong mixing process[END_REF]. We improve their results by using Lemma 5.2, which provides a more efficient coupling for strongly mixing random variables. Starting from the initial sequence and applying this coupling lemma, we will replace the initial sequence by a q-dependent sequence of random variables. The cost of this coupling depends on q. We refer to Theorem 2 in [START_REF] Berkes | Approximation theorems for independent and weakly dependent random vectors[END_REF] for a similar method in the φ-mixing case. Next, applying the usual exponential inequalities for sums of independent random variables to this new sequence, we obtain inequalities with two parts in the upper bound: an exponential term and a term depending mainly on the mixing coefficient α q . For power-type rates of mixing the second term does not decrease exponentially. This is the reason why our inequalities are similar to the inequalities of [START_REF] Fuk | Probability inequalities for sums of independent random variables[END_REF] for sums of unbounded random variables. In Section 6.3, we derive a Fuk-Nagaev type inequality for unbounded random variables from the inequalities of Section 6.2. Next, in Section 6.4, we apply this inequlity to get moment inequalities in the style of [START_REF] Rosenthal | On the subspaces of L p (p > 2), spanned by sequences of independent random variables[END_REF] and Marcinkiewicz-Zygmund type inequalities. Our method is similar to the method used in [START_REF] Petrov | Some inequalities for moments of sums of independent random variables[END_REF]. In Section 6.5 we give an application of our Fuk-Nagaev type inequality to the bounded law of the iterated logarithm.

Exponential inequalities for partial sums

In this section, we apply Lemma 5.2 together with the Bennett inequality for sums of independent random variables to get a new maximal inequality for partial sums of bounded random variables in the strong mixing case. Theorem 6.1. Let (X i ) i>0 be a sequence of real-valued random variables such that X i ∞ ≤ M for any positive i, and (α n ) n≥0 be the sequence of strong mixing coefficients defined by (2.1). Set X i = 0 for any i > n. Let S k = k i=1 (X i -IE(X i )). Let q be any positive integer, and v q be any positive real such that

v q ≥ i>0 IE((X iq-q+1 + • • • + X iq ) 2 ). Set M (n) = n i=1 X i ∞ and let h(x) = (1 + x) log(1 + x) -x. Then, for any λ ≥ qM , IP sup k∈[1,n] |S k | ≥ (1I q>1 + 5/2)λ ≤ 4 exp - v q (qM ) 2 h λqM v q + 4M (n) α q+1 λ ≤ 4 exp - λ 2qM log 1 + λqM v q + 4M (n) α q+1 λ .
Proof. Set U i = S iq -S iq-q . Since X i = 0 for any i > n, the random variables U i are almost surely equal to 0 for i large enough. Now, for any integer j, d(j, qZ

Z) ≤ [q/2]. It follows that sup k∈[1,n] |S k | ≤ 2[q/2]M + sup j>0 | j i=1 U i |.
Hence Theorem 6.1 is a byproduct of the inequality below:

(6.1) IP sup j>0 | j i=1 U i | ≥ 5λ/2 ≤ 4 exp - v q (qM ) 2 h(λqM/v q ) + 4M (n) α q+1 λ .
The inequality in Theorem 6.1 follows immediately from both (6.1) and the lower bound

h(x) ≥ x 1 0 log(1 + tx)dt ≥ x log(1 + x) 1 0 tdt ≥ x log(1 + x)/2.
Proof of Inequality (6.1). Let (δ j ) j>0 be a sequence of independent random variables with uniform law over [0, 1], independent of the sequence (U i ) i>0 . Applying Lemma 5.2 recursively, we obtain that, for any integer i ≥ 3, there exists a measurable function F i such that the random variable

U * i = F i (U 1 , ..., U i-2 , U i , δ i ) satisfies the conclusions of Lemma 5.2 with A = σ(U l : l < i -1). Set then U * i = U i for i = 1 and i = 2.
The so constructed sequence (U * i ) i>0 has the properties below: 1. for any positive i, the random variable U * i has the same distribution as U i . 2. the random variables (U * 2i ) i>0 are independent and the random variables (U * 2i-1 ) i>0 are independent.

For any integer

i ≥ 3, IE(|U i -U * i |) ≤ 2α q+1 iq k=iq-q+1 X k ∞ .
Replacing the initial random variables U i by the random variables U * i , we get that

(6.2) sup j>0 | j i=1 U i | ≤ i≥3 |U i -U * i | + sup j>0 | j i=1 U * 2i | + sup j>0 | j i=1 U * 2i-1 |.
By property 3 together with the Markov inequality, (6.3)

IP i>0 |U i -U * i | ≥ λ/2 ≤ 4M (n)α q+1 λ -1 .
To complete the proof of Inequality ( 6.1), it then suffices to apply twice Theorem B.1(b) in Annex B with K = M q and v = v q to the random variables (U * 2i ) i>0 and the random variables (U * 2i-1 ) i>0 .

Fuk-Nagaev inequalities for partial sums

In this section, we give an extension of the Fuk-Nagaev inequality for sequences of independent random variables to strongly mixing sequences of random variables. However, in order to get an efficient inequality, we have to assume that the tails of the random variables are uniformly bounded. We refer to [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF] for an extension of this inequality to a weaker notion of dependence and to [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF] for more efficient inequalities in the case of exponential or semi-exponential rates of mixing. Theorem 6.2. Let (X i ) i>0 be a sequence of real-valued and centered random variables with finite variances. Let (α n ) n≥0 denote the sequence of strong mixing coefficients defined in (2.1). Set Q = sup i>0 Q i and (6.4)

s 2 n = n i=1 n j=1 | Cov(X i , X j )|.
Let then R(u) = α -1 (u)Q(u) and let H(u) = R -1 (u) denote the generalized inverse function of R. Then, for any positive λ and any r ≥ 1, (6.5) IP sup

k∈[1,n] |S k | ≥ 4λ ≤ 4 1 + λ 2 rs 2 n -r/2 + 4nλ -1 H(λ/r) 0 Q(u)du.
Remark 6.1. As in Theorem 6.1, we may assume that X i = 0 for i > n. Consequently (6.5) remains true if α -1 (u) is replaced by α -1 (u) ∧ n.

Proof. We may assume that X i = 0 for any i > n. Let q be any positive integer and let M be a positive real. Set (6.6) U i = S iq -S iq-q and Ūi = (U i ∧ qM ) ∨ (-qM ) for any i ∈ { 1, . . . , [n/q] }.

From the assumption X i = 0 for i > n, Ūi = 0 for i > [n/q]. Let then ϕ M (x) = (|x|-M ) + . We start by proving that (6.7) sup

k∈[1,n] |S k | ≤ sup j>0 | j i=1 Ūj | + qM + n k=1 ϕ M (X k ).
To prove (6.7), we notice that, if the maximum of the random variables |S k | is obtained for k 0 , then, for j 0 = [k 0 /q], (6.8) sup

k∈[1,n] |S k | ≤ | j 0 i=1 Ūi | + j 0 i=1 |U i -Ūi | + k 0 k=qj 0 +1 |X k |.
Now, by convexity of the function ϕ M , (6.9)

j 0 i=1 |U i -Ūi | ≤ qj 0 k=1 ϕ M (X k ).
Moreover (6.10)

k 0 k=qj 0 +1 |X k | ≤ (k 0 -qj 0 )M + k 0 k=qj 0 +1 ϕ M (X k ),
and combining the three above inequalities, we get (6.7).

In order to apply Theorem 6.1, we have to center the random variables Ūi . Since the random variables U i are centered, (6.11) by convexity of ϕ M . Hence (6.12) sup

sup j>0 j i=1 Ūi ≤ sup j>0 j i=1 ( Ūi -IE( Ūi )) + i>0 IE(|U i -Ūi |) ≤ sup j>0 j i=1 ( Ūi -IE( Ūi )) + n k=1 IE(ϕ M (X k )),
k∈[1,n] |S k | ≤ sup j>0 j i=1 ( Ūi -IE( Ūi )) + qM + n k=1 (IE(ϕ M (X k )) + ϕ M (X k )).
We now choose M and q. Let x = λ/r and v = H(x). If v = 1/2, then (6.13) 4nλ -1

H(λ/r) 0 Q(u)du ≥ 2nλ -1 1 0 Q(u)du ≥ 2λ -1 n i=1 IE(|X i |).
In that case, Inequality (6.5) follows immediately from the Markov inequality applied to the random variable

|X 1 | + • • • + |X n |. If v < 1/2, then α -1 (v) > 0.
In that case, we set (6.14)

q = α -1 (v) and M = Q(v).
With this choice of q and v,

(6.15) qM = R(v) = R(H(x)) ≤ x ≤ λ.
We now apply Theorem 6.1 to the random variables Ūi . Setting q = 1 and M = x in Theorem 6.1 and noticing that (6.16)

IE( Ū 2 i ) ≤ IE(U 2 i ) ≤ l,m∈]iq-q,iq] | Cov(X l , X m )|,
which ensures that Theorem 6.1 holds with v 1 = s 2 n , we get that (6.17) IP sup

j>0 j i=1 ( Ūj -IE( Ūi )) ≥ 5λ/2 ≤ 4 1 + λ 2 rs 2 n -r/2 + 4nM α q+1 λ -1 .
It remains to bound up the deviation of the second random variable on right hand in (6.12). ( 6.17). By the Markov inequality,

IP n k=1 (IE(ϕ M (X k )) + ϕ M (X k )) ≥ λ/2 ≤ 4 λ n k=1 1 0 (Q k (u) -Q(v) + du ≤ 4n λ v 0 (Q(u) -Q(v))du. (6.18))
Since q ≥ α -1 (v), one can prove that α q ≤ v and M α q+1 ≤ vQ(v). Putting together (6.13), (6.17), (6.18), and noting that M q ≤ λ, we then obtain Theorem 6.2.

An application to power-type rates of mixing. Let (X i ) i>0 be a strongly mixing sequence. Assume that the strong mixing coefficients α n satisfy α n ≤ cn -a for some constants c ≥ 1 et a > 1. Suppose furthermore that there exists some p > 2 such that IP(|X i | > t) ≤ t -p for any t > 0.

Then, setting b = ap/(a + p), an elementary calculation yields H(x) ≤ c b/a (2/x) b , whence a+p) . Consequently, by Theorem 6.2, for any r ≥ 1 and any positive λ, (6.19a) IP sup

4λ -1 H(λ/r) 0 Q(u)du ≤ 4Cr -1 (λ/r) -(a+1)p/(a+p) , with C = 2p(2p -1) -1 (2 a c) (p-1)/(
k∈[1,n] |S k | ≥ 4λ ≤ 4 1 + λ 2 rs 2 n -r/2 + 4Cnr -1 (r/λ) (a+1)p/(a+p) .
If X i ∞ ≤ 1 (which corresponds to p = ∞), Theorem 6.2 applied with Q = 1 yields (6.19b)

IP sup k∈[1,n] |S k | ≥ 4λ ≤ 4 1 + λ 2 rs 2 n -r/2
+ 2ncr -1 (2r/λ) a+1 .

Application to moment inequalities

In this section we adapt to the strong mixing case the method proposed by [START_REF] Petrov | Some inequalities for moments of sums of independent random variables[END_REF] in the independent case to derive moment inequalities in the style of [START_REF] Rosenthal | On the subspaces of L p (p > 2), spanned by sequences of independent random variables[END_REF] from the Fuk-Nagaev inequality. Our first result is an extension of Theorem 2.2 for algebraic moments to moments of any order p > 2. Theorem 6.3. Let (X i ) i>0 be a sequence of real-valued and centered random variables and (α n ) n≥0 be the sequence of strong mixing coefficients defined by (2.1). Suppose that, for some p > 2, IE(|X i | p ) < ∞ for any positive integer i. Then

IE sup k∈[1,n] |S k | p ≤ a p s p n + nb p 1 0 [α -1 (u) ∧ n] p-1 Q p (u)du, where Q = sup i>0 Q i , a p = p4 p+1 (p + 1) p/2 and b p = p p -1 4 p+1 (p + 1) p-1 .
Remark 6.2. We refer to Annex C for more about the quantities involved in these moment inequalities. Note that Q can be replaced by

Q (n) = sup i∈[1,n] Q i in Theorem 6.3.
Proof. As in the proof of Theorems 6.1 and 6.2 we may assume that X i = 0 for any i > n. under this assumption case α

-1 (u) ≤ n. First IE sup k∈[1,n] |S k | p = p4 p ∞ 0 λ p-1 IP sup k∈[1,n] |S k | ≥ 4λ dλ.
Now, applying Theorem 6.2 with r = p + 1, we get that

(6.20) IE sup k∈[1,n] |S k | p ≤ p4 p (4E 2 + 4nE 1 ), with E 2 = ∞ 0 1 + λ 2 rs 2 n -r/2 λ p-1 dλ and E 1 = ∞ 0 1 0 λ p-2 Q(u)1I u<H(λ/r) dλdu.
We now bound up E 2 . Since H is the right continuous inverse of R, (H(λ/r) > u) if and only if (λ < rR(u)). Hence, interverting the integrals, we obtain that (6.21)

E 1 ≤ 1 p -1 (p + 1) p-1 1 0 Q(u)R p-1 (u)du.
To bound E 2 , we introduce the change of variable x = λ/(s n √ r). Then

E 2 = (p + 1) p/2 s p n ∞ 0 x p-2 (1 + x 2 ) -(p+1)/2 xdx. Since x p-2 ≤ (1 + x 2 ) (p-2)/2 , it follows that E 2 ≤ (p + 1) p/2 s p/2 n ∞ 0 (1 + x 2 ) -3/2 xdx. Consequently E 2 ≤ (p + 1) p/2 s p/2 n .
Both (6.20), ( 6.21) and the above inequality then imply Theorem 6.3.

Let M p,α (Q) = 1 0 [α -1 (u)] p-1 Q p (u)du and M p,α,n (Q) = 1 0 [α -1 (u) ∧ n] p-1 Q p (u)du.
If M p,α (Q) < ∞, then Theorem 6.3 yields a Rosenthal type inequality. Since M p,α,n (Q) converges to M p,α (Q) as n tends to infinity, this is not the case if M p,α (Q) = ∞. Nevertheless, one can still obtain a Marcinkiewicz-Zygmund type inequality. In order to state this inequality, we need to introduce weak norms.

Definition 6.1. For any real r ≥ 1 and any real-valued random variable X, we set

Λ r (X) = sup t>0 t r IP(|X| > t) 1/r .
With this definition lim r→∞ Λ r (X) = X ∞ .

Corollary 6.1 below gives a moment inequality which improves on the results of Yokoyama (1980). Corollary 6.1. Let p > 2 and (X i ) i>0 be a sequence of real-valued and centered random variables and (α n ) n≥0 be the sequence of strong mixing coefficients defined by (2.1). Suppose that, for some r > p, Λ r (X k ) < ∞ for any positive integer k and that the strong mixing coefficients satisfy α n ≤ κ(n + 1) -pr/(2r-2p) for any n ≥ 0, for some positive κ.

Then there exists some positive constant C(κ, p) such that

IE sup k∈[1,n] |S k | p ≤ r r -p C(κ, p)κ -p/r n p/2 sup k>0 Λ r (X k )) p .
Remark 6.3. Corollary 6.1 still holds in the case r = ∞. In that case the mixing coefficients have to satisfy α n ≤ κ(n + 1) -p/2 and IE sup

k∈[1,n] |S k | p ≤ C(κ, p)n p/2 sup k>0 X k p ∞ .
Proof of Corollary 6.1. Let K = sup k>0 Λ r (X k ). By the Markov inequality,

IP(|X k | > t) ≤ (K/t) r for any positive t,
whence Q(u) ≤ Ku -1/r for any u in [0, 1]. Now both the above bound on Q and (C.10) ensure that

M p,α,n (Q) ≤ K p (p -1) n-1 i=0 (i + 1) p-2 α i 0 u -p/r du ≤ K p r r -p κ 1-p/r (p -1) n j=1 j -2+(p/2) . Now, for p ≤ 4, n j=1 j -2+(p/2) ≤ n 0 x -2+(p/2) dx = 2(p -2) -1 n -1+(p/2) ,
and, for p > 4,

n j=1 j -2+(p/2) ≤ n -2+(p/2) + n 1 x -2+(p/2) dx ≤ 2n -1+(p/2) .
It follows that

(6.22) nM p,α,n (Q) ≤ r r -p . 2(p -1) (p -2) ∧ 1 K p κ 1-p/r n p/2 .
We now bound up s p n . By Corollary 1.1 together with the fact that Q 2 (u) ≤ K 2 u -2/r , we have:

s 2 n ≤ 4nK 2 n-1 i=0 α i 0 u -2/r du ≤ 4nr r -2 K 2 κ 1-2/r n j=1 j -p(r-2)/(2r-2p) ≤ 4np p -2 K 2 κ 1-2/r
under the mixing assumption of Corollary 6.1. Now, both the above bound, (6.22) and Theorem 6.3 imply Corollary 6.1 with

C(κ, p) = 4p p -2 p/2 a p κ p/2 + 2(p -1) (p -2) ∧ 1 b p κ.

Application to the bounded law of the iterated logarithm

The first known results on the law of the iterated logarithm for strongly mixing seuqneces are due to Oodaira andYoshihara (1971a, 1971b). Later [START_REF] Rio | The functional law of the iterated logarithm for stationary strongly mixing sequences[END_REF] obtained the functional law of the iterated logarithm in the sense of [START_REF] Strassen | An invariance principle for the law of the iterated logarithm[END_REF] under condition (DMR) via the above Fuk-Nagev type inequality and the coupling lemma of Chapter 5. Since the proof is rather technical, we will prove here only a bounded law of the iterated logarithm.

Throughout this section we use the notations Lx = log(x ∨ e) and LLx = L(Lx).

Theorem 6.4. Let (X i ) i>0 be a strictly stationary sequence of real-valued and centered random variables, satisfying condition (DMR) for the sequence of strong mixing coefficients defined by (2.1). Then, with the same notations as in Theorem 6.2,

lim sup n→∞ |S n | s n √ log log n ≤ 8 almost surely.
Proof. We first notice that, from the stationarity assumption, (6.23)

lim n→∞ n -1 s 2 n = Var X 0 + 2 ∞ i=1 | Cov(X 0 , X i )| = V > 0.
To prove Theorem 6.4, it is enough to prove that (6.24)

n>0 n -1 IP sup k∈[1,n] |S k | ≥ 8s n √ LLn < ∞,
and next to apply the Borel-Cantelli lemma, as in Stout (1974, Chap. 5).

In order to prove (6.24), we now apply Theorem 6.2 with r = 2LLn and λ = λ n = 2s n √ LLn. Let x n = λ/r = s n (LLn) -1/2 . Summing on n, we get that (6.25)

n>0 n -1 IP sup k∈[1,n] |S k | ≥ 8s n √ LLn ≤ 4 n>0 n -1 3 -LLn + n>0 4 λ n H(x n ) 0 Q(u)du.
The series n>0 n -1 3 -LLn is clearly convergent. To bound up the second series on right hand, we intervert sum and integral: since (u < H(x n )) if and only if (R(u) > x n ), we thus obtain

n>0 4 λ n 1 0 Q(u)1I u<H(x n ) du = 4 1 0 Q(u) n>0 x n s 2 n 1I x n <R(u) du.
Now, by (6.23), the terms in the series are similar to (nV LLn) -1/2 . It follows that

n>0 x n s 2 n 1I x n <R(u) ≤ CR(u)
for some positive constant C. Consequently (6.26)

n>0 1 λ n H(x n ) 0 Q(u)du ≤ C 1 0 R(u)Q(u)du,
which implies (6.24). Hence Theorem 6.4 holds true.

EXERCISES 1) Let (X i ) i>0 be a sequence of real-valued and centered random variables and (α n ) n≥0 be the sequence of strong mixing coefficients defined by (2.1). We assume that s n ≥ 1. Prove that, if X i ∞ ≤ 1 for anny positive i, then, for any λ in [s n , s 2 n ],

(1)

IP sup k∈[1,n] |S k | ≥ 4λ ≤ 4 exp - λ 2 4s 2 n + 4nλ -1 α(s 2 n /λ).
Compare the terms on right hand in this inequality under the mixing assumption α n = O(a n ) for some a in ]0, 1[.

2) An inequality of Doukhan and Portal. In this exercise, we will give an improved version of the exponential inequality of Doukhan and Portal (1987). We assume that X i ∞ ≤ 1 for any positive i and that the strong mixing coefficients defined by (2.1) satisfy α q ≤ c exp(-aq) foa any q ≥ 0, for some positive constants a and c. Prove that, for any n ≥ 4 and any x ≥ log n,

(2) IP |S n | ≥ 5(s n ∨ 2 √ 5 ) √ x + 10 3a x 2 ≤ c exp(-x).
3) Kolmogorov's law of the iterated logarithm. Let (X i ) i>0 be a sequence of identically distributed and independent centered random variables, with variance 1. a) Prove that, for any ε > 0 small enough,

(3) 

n>0 n -1 IP(S * n ≥ (1 + ε) 2 √ 2nLLn ) < ∞.

EMPIRICAL DISTRIBUTION FUNCTIONS

Introduction

In this chapter we are interested in functional limit theorems for the empirical distribution function associated to a stationary and strongly mixing sequence of random variables with values in IR d . In the iid case, the functional central limit theorem for the suitably normalized and centered empirical distribution function is due to [START_REF] Donsker | Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov's theorems[END_REF]. Donsker proved in particular that the Lipschitzian functionals of a suitably normalized and centered version of the empirical distribution function converge in distribution to the distribution of the corresponding functionals associated to a Brownian bridge. For this reason, the normalized and centered version of the empirical distribution function is often called empirical bridge. [START_REF] Dudley | Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces[END_REF] extended the results of Donsker to the multivariate case, with a more rigourous approach. Following the approach of [START_REF] Dudley | Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces[END_REF], the proofs of these theorems generally include two steps. The first step consists in proving the finite dimensional convergence of the empirical bridge to a suitable Gaussian process. The second step consists in proving the asymptotic equicontinuity of the empirical bridge for the uniform metric.

We now give a brief review of existing results before year 2000 in the strong mixing case. [START_REF] Yoshihara | Note on an almost sure invariance principle for some empirical processes[END_REF] extended the uniform central limit theorem of [START_REF] Donsker | Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov's theorems[END_REF] for the empirical bridge to stationary and strongly mixing sequences of real-valued random variables satisfying the strong mixing condition α n = O(n -a ) for some a > 3. Next [START_REF] Dhompongsa | A note on the almost sure approximation of empirical process of weakly dependent random vectors[END_REF] generalized the result of Yoshihara to the multivariate case: he proved that, for random variables in IR d , the uniform central limit theorem of [START_REF] Dudley | Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces[END_REF] for the multivariate distribution function holds if α n = O(n -a ) for some a > d + 2. Next [START_REF] Shao | Weak convergence for weighted empirical processes of dependent sequences[END_REF] weakened the condition of [START_REF] Yoshihara | Note on an almost sure invariance principle for some empirical processes[END_REF]: they obtained Donsker's uniform central limit theorem under the strong mixing condition α n = O(n -a ) for some a > 1 + √ 2. In the β-mixing case, [START_REF] Arcones | Central limit theorems for empirical and Uprocesses of stationary mixing sequences[END_REF], [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF] and Rio (1998) obtained the uniform central limit theorem under slowler rates of mixing in a more general setting. In particular [START_REF] Rio | Processus empiriques absolument réguliers et entropie universelle[END_REF] proved that, for any d ≥ 1, the uniform central limit theorem of [START_REF] Dudley | Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces[END_REF] for the multivariate distribution function holds if n>0 β n < ∞. Since this condition is the minimal β-mixing condition implying the finite dimensional convergence, this result cannot be improved. In Section 8.3 of Chapter 8, we will give an other proof of this result. Nevertheless the proofs in the βmixing case involve coupling arguments and cannot be extended to the strong mixing case. In this section, we give less technical results in the strong mixing case, for the empirical distribution function. In particular we will prove in Sections 7.4 and 7.5 that the uniform central limit theorem of [START_REF] Dudley | Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces[END_REF] for the multivariate distribution function holds if α n = O(n -a ) for some a > 1. Before proving these theorems, we give in Section 7.2 an elementary L 2 -estimate for the maximum of the empirical bridge. Next, in Section 7.3, we recall some facts of the theory of functional limit theorems. For further work on empirical distribution functions and empirical processes for dependent data, we refer to Dehling, Mikosch and Sørensen (2002).

An elementary estimate

Let (X i ) i∈Z Z be a sequence of real-valued random variables with common distribution function F . We set (7.1)

F n (x) = 1 n n i=1 1I X i ≤x and ν n (x) = √ n(F n (x) -F (x)).
The centered empirical measures P n and Z n are defined by (1.37). In this section we will study the rate of uniform convergence of F n to F . Proposition 7.1 below provides an estimate of the L 2 -norm of the maximal deviation. If the series of strong mixing coefficients is convergent, this estimate is optimal up to a logarithmic factor.

Proposition 7.1. Let (X i ) i∈Z Z be a strictly stationary sequence of real-valued random variables and let (α k ) k≥0 denote the sequence of strong mixing coefficients defined by (1.20). Suppose that the common distribution function F of the random variables is continuous. Then

(7.2) IE(sup x∈IR |ν n (x)| 2 ) ≤ 1 + 4 n-1 k=0 α k 3 + log n 2 log 2 2 .
Proof. For any Borelian A, let I n (A) be defined as in Exercise 5, Chapter 1. Let (ε i ) i>0 be a sequence of independent and symmetric random variables with values in {-1, 1}. Then, for any finite partition A 1 , . . . , A k of A,

(7.3) k i=1 Var Z n (A i ) = IE Z 2 n k i=1 ε i 1I A i ,
which ensures that (7.4)

I n (A) ≤ sup{Var Z n (f 1I A ) : f ∞ ≤ 1}.
In order to prove Proposition 7.1, we now introduce a chaining argument. Let N be some positive integer, to be chosen later. For any real x such that F (x) = 0 and F (x) = 1, let us write F (x) into basis 2:

F (x) = N l=1 b l (x)2 -l + r N (x) with r N (x) ∈ [0, 2 -N [, with b l = 0 or b L = 1. For any L in [1, N ], set Π L (x) = L l=1 b l (x)2 -l and i L = Π L (x)2 L .
Let then the reals (x L ) L be chosen in such a way that F (x L ) = Π L (x). With these notations (7.5) ν

n (x) = ν n (Π 1 (x)) + N L=2 ν n (Π L (x)) -ν n (Π L-1 (x)) + ν n (x) -ν n (Π N (x)).
Let then the reals x L,i be defined by F (x L,i ) = i2 -L . From (7.5) we get that

(7.6a) sup x∈[0,1] |ν n (x)| ≤ N L=1 ∆ L + ∆ * N , with (7.6b) ∆ L = sup i∈[1,2 L ] |Z n (]x L,i-1 , x L,i )| and ∆ * N = sup x∈IR |Z n (]Π N (x), x])|.
Let us now bound up the L 2 -norm of the maximum of the empirical process. By the triangle inequality, (7.7) IE( sup

x∈[0,1] |ν n (x)| 2 ) 1/2 ≤ N L=1 ∆ L 2 + ∆ * N 2 . Since ∆ 2 L ≤ 2 L i=1 Z 2 n (](i -1)2 -L , i2 -L ]),
it follows from both (7.4) and Theorem 1.1 that

(7.8) IE(∆ 2 L ) ≤ 2 L i=1 Var Z n (](i -1)2 -L , i2 -L ]) ≤ 1 + 4 n-1 k=0 α k .
It remains to bound up ∆ * N . from the inequalities

- √ n2 -N ≤ Z n (]Π N (x), x]) ≤ Z n (]Π N (x), Π N (x) + 2 -N ]) + √ n2 -N ,
we get that

(7.9) ∆ * N ≤ ∆ N + √ n2 -N .
Both (7.7), (7.8) and (7.9) then ensure that (7.10) IE( sup

x∈[0,1] |ν n (x)| 2 ) 1/2 ≤ (1 + N + √ n 2 -N ) 1 + 4 n-1 k=0 α k 1/2
.

Taking N = 1 + [(2 log 2) -1 log n] and noticing that √ n2 -N ≤ 1 for this choice of N , we then get Proposition 7.1.

Functional central limit theorems

In Section 7.2, we proved that, under the strong mixing condition (1.24), the order of magnitude of the supremum of the empirical bridge is at most O(log n). Now, if the strong mixing coefficients are defined by (2.1), the mixing condition n α n < ∞ implies the finite dimensional convergence of the empirical bridges ν n to a Gaussian process G with covariance function (7.11) Cov(G(x), G(y)) = t∈Z Z

Cov(1I X 0 ≤x , 1I X t ≤y ).

Here we are interested in the uniform convergence with respect to x of ν n to G. Such a result will be called uniform central limit theorem or functional central limit theorem.

In this section we give a precise definition of the notion of uniform central limit theorem and sufficient conditions for the uniform central limit theorem to hold. Our exposition is derived from Pollard (1990, Section 10).

Let (T, ρ) be a metric or a pseudo-metric space. Denote by B(T ) the space of real-valued and bounded functions on T . On B(T ) we consider the uniform distance

d(x, y) = sup t∈T |x(t) -y(t)|.
Let {X n (ω, t) : t ∈ T } be a sequence of real-valued random processes on T . We are interested in the convergence in distribution of this sequence under the distance d. More precisely we have in view the functional convergence to a Gaussian process with trajectories in the space U ρ (T ) = {x ∈ B(T ) : x is uniformly continuous under ρ}.

Under the distance d, the space U ρ (T ) is countably generated if and only if (T, ρ) is totally bounded. In that case, a Borelian probability measure P on U ρ (T ) is uniquely determined by the finite dimensional projections

P (B | t 1 , . . . , t k ) = P {x ∈ U ρ (T ) : (x(t 1 ), . . . , x(t k )) ∈ B},
where {t 1 , . . . t k } ranges over the set of finite subsets of T and B is any Borelian of IR k . For example, in the case of random variables with uniform distribution over [0, 1], the space T = [0, 1] is equipped with the usual distance on IR. Then the Gaussian process G with covariance function defined by (7.11) is uniquely defined as soon as his law is concentrated on U ρ (T ).

We now recall the definition of the finite dimensional convergence (fidi convergence). The fidi convergence of (X n ( . , t)) holds true if and only if for any finite subset {t 1 , . . . t k } of T there exists a probability measure P such that (7.12) (X n ( . , t 1 ), . . . , (X n ( . , t k )) -→ P ( . | t 1 , . . . , t k ) in distribution.

We now give a criterion for the convergence in U ρ (T )

Theorem 7.1. -Theorem 10.2 in [START_REF] Pollard | Empirical processes : theory and applications[END_REF] -Let (T, ρ) be a totally bounded pseudometric space and let {X n (ω, t) : t ∈ T } be a sequence of random processes on T . Suppose that (i) The fidi convergence in the sense of (7.12) holds true.

(ii) For any positive ε and η, there exists a positive δ such that

lim sup n→∞ IP * sup (s,t)∈T ×T ρ(s,t)<δ |X n (ω, s) -X n (ω, t)| > η < ε.
Then there exists a Borelian probability measure P concentrated on U ρ (T ) witht finite dimensional margins given by (7.12). Furthermore X n converges in distribution to P in the space B(T ).

Conversely, if X n converges in distribution to a probability measure P concentrated on U ρ (T ), then conditions (i) and (ii) are fulfilled.

Condition (ii) is called stochastic equicontinuity. If the limiting process is a Gaussian process then (X n ) is said to satisfy the functional central limit theorem or the uniform central limit theorem. We refer to [START_REF] Pollard | Empirical processes : theory and applications[END_REF] for a proof of this result. Now, in Section 7.4 below we apply this result to the functional central limit theorem for the empirical bridge in the strong mixing case.

A functional central limit theorem for the empirical distribution function

In this section, we prove a functional central limit theorem for the empirical distribution function associated to a stationary strongly mixing sequence of real-valued random variables. In order to give elementary proofs, we will assume that the common distribution function of the random variables is continuous. Nevertheless this result can be extended to arbitrary distribution functions. Theorem 7.2 below improves previous results of [START_REF] Yoshihara | Note on an almost sure invariance principle for some empirical processes[END_REF] and [START_REF] Shao | Weak convergence for weighted empirical processes of dependent sequences[END_REF]. We refer to [START_REF] Doukhan | Functional central limit theorem for the empirical process of short memory linear processes[END_REF], [START_REF] Louhichi | Weak convergence for empirical processes of associated sequences[END_REF], [START_REF] Dehling | New techniques for empirical processes of dependent data[END_REF] and [START_REF] Dedecker | An empirical central limit theorem for intermittent maps[END_REF] for other types of dependence.

Theorem 7.2. Let (X i ) i∈Z Z be a strictly stationary sequence of real-valued random variables with common continuous distribution function F . Assume that the sequence (α n ) n≥0 of strong mixing coefficients defined by (2.1) satisfies

(i)
α n ≤ cn -a for some real a > 1 and some constant c ≥ 1.

Then there exists a Gaussian process G with uniformly continuous trajectories on IR equipped with the pseudo-metric d F given by d

F (x, y) = |F (x) -F (y)|, such that ν n converges in distribution to G in B(IR) as n tends to ∞.
Proof. Considering U i = F (X i ) it is sufficient to prove Theorem 7.2 for random variables with the uniform distribution over [0, 1]. Now, by Corollary 4.1, the fidi convergence to a Gaussian process G with covariance defined by (7.11) holds. According to Theorem 7.2 it remains to prove the stochastic equicontinuity property (ii). This property follows immediately from the proposition below.

Proposition 7.2. Let (X i ) i∈Z Z be a strictly stationary sequence of random variables with uniform distribution over [0, 1]. Assume that (X i ) i∈Z Z satisfies the strong mixing condition

(i) of Theorem 7.2. Let Π K (x) = 2 -K [2 K x]. Then lim K→∞ lim sup n→∞ IE * sup x∈[0,1] |ν n (x) -ν n (Π K (x))| = 0.
Proof of Proposition 7.2. Proceeding as in the proof of (7.6), we first obtain that sup

x∈[0,1] |ν n (x) -ν n (Π K (x))| ≤ N L=K+1 ∆ L + ∆ * N .
Now, applying (7.9), we have:

(7.13) sup x∈[0,1] |ν n (x) -ν n (Π K (x))| ≤ N L=K+1 ∆ L + ∆ N + √ n 2 -N := ∆.
By the triangle inequality,

(7.14) ∆ 1 ≤ √ n 2 -N + N -1 L=K+1 ∆ L 1 + 2 ∆ N 1 .
Let then N be the natural integer such that 2 N -1 < n ≤ 2 N . For this choice of N , by (7.14), (7.15)

∆ 1 ≤ n -1/2 + 2 N L=K+1 ∆ L 1 .
Hence Proposition 7.2 follows from the lemma below.

Lemma 7.1. Let N be the natural integer such that 2 N -1 < n ≤ 2 N . Then there exists a positive constant C 0 depending only on a and c such that

∆ L 1 ≤ C 0 2 -(a-1) 2 L/(4a) 2 for any L ∈ [1, N ].
Proof of Lemma 7.1. Define the dyadic intervals I L,i by

I L,i =](i -1)2 -L , i2 -L ] for any integer i in [1, 2 L ].
In order to prove Lemma 7.1, we will refine the symmetrization technique introduced in Section 7.2. As in Section 7.2, let (ε i ) i∈[1,2 L ] be a sequence of independent symmetric signs, independent of the sequence (X i ) i∈Z Z .

Let J be a finite subset of integers in [1, 2 L ]. Assume that the supremum of the random variables |Z n (I L,i )| when i ranges over J is more than x. Let then j be the smallest integer in J such that |Z n (I L,i )| ≥ x. Then, for any choice of the signs (ε i ) i∈J\{j} , either

Z n i∈J\{j} ε i 1I I L,i + Z n (I l,j ) or Z n i∈J\{j} ε i 1I I L,i -Z n (I l,j ) does not belong to the interval ] -x, x[. Consequently Card i ∈ J such that Z n i∈J ε i 1I I l,i ≥ x ≥ 2 |J -1 , whence (7.16) IP sup i∈J |Z n (I L,i )| ≥ x ≤ 2IP Z n i∈J ε i 1I I L,i ≥ x .
Let then M be an integer of [1, L] to be chosen later. For any k in [1, 2 M ], let

J k = {(k -1)2 L-M + 1, . . . , k2 L-M }.
Applying (7.16), we obtain that (7.17)

IP(∆ L ≥ x) ≤ 2 2 M k=1 IP Z n i∈J k ε i 1I I L,i ≥ x .
Throughout the sequel, C denotes a positive constant depending on a and c, which may change from line to line. Let us fix the values of the signs ε i . Applying Corollary 1.1 to the random variables Y l = i∈J k ε i 1I I L,i (X l ), we have:

(7.18) n l=1 n m=1 | Cov(Y l , Y m )| ≤ 4 2 -M 0 α -1 (u)du ≤ 4c ∞ i=0 inf(i -a , 2 -M ) ≤ C2 M (1-a)/a .
Therefrom, applying inequality (6.19b) to the random variables Z n i∈J k ε i 1I I L,i conditionally to the values of the signs,

IP Z n i∈J k ε i 1I I L,i ≥ 4λ ≤ Cr r/2 2 M (1-a)r/(2a) λ -r + 2c(2r) a+1 n (1-a)/2 λ -a-1 . Now, by (7.17), IP(∆ L ≥ 4λ) ≤ Cr r/2 min(1, 2 M (2a+(1-a)r)/(2a) λ -r ) + 2c(2r) a+1 min(1, 2 M n (1-a)/2 λ -a-1
). (7.19) Let then r = 4a/(a -1). For this value of r, inequality (7.19) yields (7.20)

IP(∆ L ≥ 4λ) ≤ C min(1, 2 -M λ -r ) + C min(1, 2 M n (1-a)/2 λ -a-1 ).
Integrating (7.20) with respect to λ, we get that 

(7.21) IE(∆ L ) ≤ 8C 2 -M/r + 2 M/(a+1) n (1-a)/(2a+2) . Now, choosing M = [L(a -1)/(4a)] = [L/r] and noticing that n ≥ 2 L-1 , we infer from (7.21) that (7.22) IE(∆ L ) ≤ 16C 2 -L/r 2 + 2 -L(2a-1)/(ra+r) ≤ 32C2 -L/
(x) = (2 -K [2 K x 1 ], . . . , 2 -K [2 K x d ]).
Then, under the assumptions of Theorem 7.3,

lim K→+∞ lim sup n→∞ IE * sup x∈[0,1] d |ν n (x) -ν n (Π K (x))| = 0.
Proof. Let N be the unique integer such that 2 N -1 < n ≤ 2 N . Clearly

ν n (x) = ν n (x) -ν n (Π N (x)) + ν n (Π N (x)). Hence (7.23) sup x∈[0,1] d |ν n (x) -ν n (Π K (x))| ≤ sup x∈[0,1] d |ν n (Π N (x)) -ν n (Π K (x))| + R N with R N = sup x∈[0,1] d |ν n (x) -ν n (Π N (x))|.
In order to bound up R N , we will use the elementary result below.

Lemma 7.2. Let µ be a probability measure on IR d with distribution function G. For each j in [1, d], let G j denote the distribution function of the j-th marginal of µ, which is defined by

G j (x) = µ IR j-1 ×] -∞, x] × IR d-j
. Then, for any x = (x 1 , . . . x d ) and any y = (y 1 , . . .

y d ) in IR d , |G(x) -G(y)| ≤ d j=1 G j (x j ∨ y j ) -G j (x j ∧ y j ) . Proof of Lemma 7.2. Let Q x = {z ∈ IR d such that z ≤ x}. If ∆ denotes the symmetric difference, then |G(x) -G(y)| = |µ(Q x ) -µ(Q y )| ≤ µ(Q x ∆Q y ). Now Q x ∆Q y ⊂ d j=1 IR j-1 ×]
x j ∧y j , x j ∨y j ]×IR d-j , which, together with the subadditivity of µ and the above inequality implies Lemma 7.2. Using Lemma 7.2 we now bound up R N . Let F n,j denote the empirical distribution function associated the the j-th components X j i of the random variables X i , which is defined by F n,j (x j ) = F n (1, . . . , 1, x j , 1, . . . , 1) and let ν n,j (x j ) = √ n(F n,j (x j ) -F j (x j )). By Lemma 7.2 applied twice,

R N ≤ √ n sup x∈[0,1] d d j=1 F n,j (x j ) -F n,j (Π N (x j )) + x j -Π N (x j ) . Now x j -Π N (x j ) ≤ 2 -N , which ensures that R N ≤ √ n d2 -N + √ n sup x∈[0,1] d d j=1 F n,j (x j ) -F n,j (Π N (x j )) .
Next, from the monotonicity properties of the empicial distribution functions F n,j ,

√ n F n,j (x j ) -F n,j (Π N (x j )) ≤ √ n F n,j (Π N (x j ) + 2 -N ) -F n,j (Π N (x j )) ≤ √ n2 -N + ν n,j (Π N (x j ) + 2 -N ) -ν n,j (Π N (x j )).
Since 2 N ≥ n, it follows that

R N ≤ 2dn -1/2 + d j=1 sup x j ∈[0,1] ν n,j (Π N (x j ) + 2 -N ) -ν n,j (Π N (x j )) .
Now the sequence of real-valued random variables (X j i ) i>0 still satisfy the strong mixing condition (i). Hence Lemma 7.1 can be applied with L = N to each of the random variables in the sum on right hand, yielding

(7.24) IE(R N ) ≤ 2dn -1/2 + dC 0 n -(a-1) 2 /(4a) 2 .
We now bound up the main term in (7.23). For any x = (x 1 , . . . , x d ) in the unit cube ]0

, 1] d , let ]0, x] =]0, x 1 ] × • • • ×]0, x d ]. For any j in [1, d] and any natural integer M , ]0, Π M (x j )] = M L j =0 ]Π L j -1 (x j ), Π L j (x j )] (note that Π -1 (x j ) = 0). Hence, taking the product, ]0, Π M (x)] = L∈[0,M ] d d i=j ]Π L j -1 (x j ), Π L j (x j )]. Consequently (7.25) ]0, Π N (x)]\]0, Π K (x)] = L∈[0,N ] d L / ∈[0,K] d d j=1 ]Π L j -1 (x j ), Π L j (x j )]. Notation 7.1. For any L = (L 1 , . . . , L d ) in IN d , let D L be the class of dyadic boxes d i=1 ](k i -1)2 -L i , k i 2 -L i ] (here k = (k 1 , . . . , k d ) are multivariate natural integer). Let Z n =
√ n(P n -P ) denote the normalized and centered empirical measure, as defined in (1.37). We set ∆ L = sup

S∈D L |Z n (S)|.
With these notations, (7.26)

∆ := sup x∈[0,1] d |ν n (Π N (x)) -ν n (Π K (x))| ≤ L∈[0,N ] d \[0,K] d ∆ L .
For a fixed L we now consider the smallest integer j such that L j = max(L 1 , . . . , L d ).

Suppose, for example, that j = 1. Let M be a fixed integer in [1, L 1 ], and

k in [1, 2 M ], let J k be the set of elements of D L contained in the strip (k -1)2 -M < x 1 ≤ k2 -M .
We now adapt the symmetrization method of Section 7.4 to the multivariate case. Let (ε S ) S∈D L be a sequence of independent symmetric signs, independent of the sequence (X i ) i∈Z Z . Inequality (7.17) still holds in the multivariate case, and has the following structure:

IP(∆ L ≥ x) ≤ 2 2 M k=1 IP Z n S∈J k ε S 1I S ≥ x . Now S∈J k ε S 1I S (X i ) = 1I X 1 i ∈I M,k ,
and consequently (7.18) remains true (recall that the random variables X 1 i are uniformly distributed over [0, 1]). Next, applying Inequality (6.19b) with r = 4a/(a -1) as in Section 7.4, we get that, for any M in [1, max(L 1 , . . . , L d )], (7.27) integrating (7.27) with respect to λ, we get that

IP(∆ L ≥ 4λ) ≤ C min(1, 2 -M λ -r ) + C min(1, 2 M n (1-a)/2 λ -a-1 ). Let then |L| ∞ = max(L 1 , . . . , L d ) and choose M = [ |L| ∞ /r ]. Since n ≥ 2 N -1 ≥ 2 |L| ∞ -1 ,
(7.28) IE(|∆ L |) ≤ 32C2 -θ|L| ∞ , with θ = r -2 = (a -1) 2 /(16a 2 ). Now the cardinality of the set of integers L in IN d such that |L| ∞ = J is exactly (J +1) d -J d .
Consequently, both (7.23), ( 7.24), (7.26) and (7.28) yield

(7.29) IE * sup x∈[0,1] d |ν n (x)-ν n (Π K (x))| ≤ d 32C J>K (J +1) d 2 -Jθ +C 0 dn -θ +2dn -1/2 ,
which implies Proposition 7.3 and, consequently, Theorem 7.3.

EMPIRICAL PROCESSES INDEXED

BY CLASSES OF FUNCTIONS

Introduction

In this Chapter, we give new uniform central limit theorems for general empirical processes indexed by classes of sets or classes of functions. In Section 8.2, we consider convex sets of functions embedded in spaces of regular functions. In that case, the conditions implying the uniform central limit theorem are described in terms of regularity of the functions. Here the theory of approximation of functions [confer DeVore and Lorentz (1993)] is a fundamental tool. This tool is used to get the stochastic equicontinuity in Theorem 8.1 under the minimal strong mixing condition k α k < ∞. This result is similar to previous results of [START_REF] Doukhan | Principe d'invariance faible pour la mesure empirique d'une suite de variables aléatoires dépendantes[END_REF] and [START_REF] Massart | Quelques problèmes de convergence pour des processus empiriques[END_REF] for classes of regular functions.

In Section 8.3, we give new results for empirical processes indexed by absolutely regular sequences. [START_REF] Arcones | Central limit theorems for empirical and Uprocesses of stationary mixing sequences[END_REF] and [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF] give extensions of the results of [START_REF] Pollard | A central limit theorem for empirical processes[END_REF] and [START_REF] Ossiander | A central limit theorem under metric entropy with L 2 -bracketing[END_REF] to absolutely regular sequences. Nevertheless these results still lead to suboptimal applications: for example the uniform central limit theorem holds for the normalized and centered multivariate empirical distribution function as soon as the β-mixing coefficients satisfy β n = O(n -b ) for some b > 1. By contrast Rio (1998) obtains the uniform central limit theorem for the multivariate empirical distribution function and more generally for empirical processes indexed by Vapnik-Chervonenkis classes of sets under the minimal absolute regularity condition i>0 β i < ∞. The proof of [START_REF] Rio | Processus empiriques absolument réguliers et entropie universelle[END_REF] is based on the maximal coupling theorem of [START_REF] Goldstein | Maximal coupling[END_REF]. In Section 8.3, we will adapt the proof of [START_REF] Rio | Processus empiriques absolument réguliers et entropie universelle[END_REF] to classes of functions satisfying bracketing conditions. Again the results of Section 8.3 yield the uniform central limit theorem for the multivariate empirical distribution function under the minimal regularity condition i>0 β i < ∞, contrary to the results of [START_REF] Arcones | Central limit theorems for empirical and Uprocesses of stationary mixing sequences[END_REF] and [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF].

Classes of regular functions

In this section, we are interested in convex subsets of classes of regular functions. We will prove in Proposition 8.1 that, for unit balls of some spaces of regular functions, the stochastic equicontinuity property holds true for the empirical process. We then derive from this first result an uniform central limit theorem for the empirical process indexed by compact subsets of this unit ball.

Here we will consider generalized Lipschitz spaces, such as the Zygmund space. We start by some definitions and elementary properties of these spaces. We refer to the books of [START_REF] Meyer | Ondelettes et opérateurs[END_REF] and [START_REF] Devore | Constructive approximation[END_REF] for more about these spaces and their properties. In order to define these spaces, we need to introduce the integrated modulus of regularity. For sake of brievity, we give the definition only in the real case. Définition 8.1. For any real t, let T h be the shift operator, which maps the function f on the function T h f , which is defined by

T h f (x) = f (x + h) for any x. Let ∆ r h (f, x) = (T h -T 0 ) r f (x).
Let p be any real in [1, +∞] (p = ∞ is included). For any closed subinterval I of IR and any function f in L p (I), we define the integrated modulus of regularity of order r of f by

ω r (f, t) p = sup h∈]0,t] I rh |∆ r h (f, x)| p dx 1/p
, where I rh is the closed interval such that inf I rh = inf I and sup I rh = sup I -rh.

We now define the generalized Lipschitz spaces of order s in the univariate case. In order to prove the stochastic equicontinuity property for empirical processes indexed by balls of these classes of functions, it will be convenient to use the wavelets expansions 123 of these functions. Below we give the characterization of the spaces Lip * (s, p, IR d ) for any d ≥ 1. We refer to Meyer (1990, T. 1., pp. 196-198) for a definition of these spaces in the multivariate case and for more about wavelets.

For any nonnegative integer j, let us consider Λ j = 2 -j-1 Z Z d \ 2 -j Z Z d . Let us define Λ = Z Z d j∈IN Λ j . We consider a multiresolution analysis in L 2 (IR d ). For λ in Λ \ Z Z d , we denote by ψ λ the wavelet of the multiresolution analysis corresponding to λ. Then the wavelets {ψ λ : λ ∈ Λ j } form an orthonormal system. For j > 0, we denote by W j the subspace of L 2 (IR d ) generated by this system. Let ϕ denote the father function. For λ in Z Z d , we set ϕ λ (x) = ϕ(x -λ) and we denote by V 0 the subspace of L 2 (IR d ) generated by the orthonormal system {ϕ λ :

λ ∈ Z Z d }. Then L 2 (IR d ) = V 0 ⊥ ⊕ ⊥ ⊕ j>0 W j .
Throughout the sequel we assume that the scaling functions have a compact support and are 1 + [s] times continuously differentiable. For sake of convenience, we set ψ λ = ϕ λ for λ in Z Z d . Then any function f in L 2 (IR d ) has the orthogonal expansion

(8.1) f = λ∈Z Z d a λ ϕ λ + ∞ j=0 λ∈Λ j a λ ψ λ = λ∈Λ a λ ψ λ .
Let Lip * (s, p, IR d ) denote the generalized Lipschitz spaces, as defined in [START_REF] Meyer | Ondelettes et opérateurs[END_REF], and let B(s, p, IR d ) denote the unit ball of this space. [START_REF] Meyer | Ondelettes et opérateurs[END_REF] gives the following characterization of these spaces. In order to compare these spaces, it will be convenient to use the elementary result below.

Lemma 8.1. Let K be a countable set and (a k ) k∈K be a family of nonnegative reals. Then for any reals q > p > 0, 

(f,g)∈F ×F f -g 2 ≤ε Z n (f -g) 2 ≤ κ C θ F ε 1-θ for any ε ∈]0, C F ].
Consequently, if F is equipped with the usual norm of L 2 (IR d ), then the empirical proces {Z n (f ) : f ∈ F} satisfies the stochastic equicontinuity condition (ii) of Theorem 7.1.

Remark 8.1. In the case p = 2, Theorem 8.1 holds true under the condition s > d/2. In that case θ = d/(2s) and 1-θ = (2s-d)/(2s). For example, if s = d, then θ = 1-θ = 1/2.

Proof of Theorem 8.1. Clearly (8.3) sup

(f,g)∈F ×F f -g 2 ≤ε Z n (f -g) 2 ≤ 2 sup f ∈F f 2 ≤ε |Z n (f )| 2 .
Next, by the Schwarz inequality, (8.4), Lemma 8.1 and Proposition 8.1 together with the orthonormality of the wavelets basis imply that sup .5) We now adapt the symmetrization method introduced in the proof of Theorem 1.3. Let (ε λ ) λ∈Λ be a sequence of independent symmetric signs, independent of the sequence (X i ) i∈Z Z . Then (8.6) 

|Z n (f )| ≤ λ∈Z Z d a λ Z n (ψ λ ) + ∞ j=0 λ∈Λ j a λ Z n (ψ λ ) ≤ λ∈Z Z d a 2 λ 1/2 λ∈Z Z d Z 2 n (ψ λ ) 1/2 + ∞ j=0 λ∈Λ j a 2 λ 1/2 λ∈Λ j Z 2 n (ψ λ ) 1/2 . (8.4) Both (8.2),
f ∈F f 2 ≤ε |Z n (f )| 2 ≤ε λ∈Z Z d IE(Z 2 n (ψ λ )) 1/2 + ∞ j=0 inf(C F 2 j(d/p-s) , ε2 jd/2 ) λ∈Λ j 2 -jd IE(Z 2 n (ψ λ )) 1/2 . ( 8 
λ∈Λ j 2 -jd IE(Z 2 n (ψ λ )) = IE Z 2 n λ∈Λ j 2 -jd/2 ε λ ψ λ .
We now fix the values of the signs (ε λ ). Since the father function and the scaling functions have compact supports , there exists a positive constant K such that

λ∈Λ j 2 -jd/2 |ψ λ (x)| ≤ K
for any x in IR d . Consequently, if P denotes the law of X 0 , then for any family (ε λ ) of signs, the quantile function of the random variable

λ∈Λ j 2 -jd/2 ε λ ψ λ (X 0 )
2 is bounded up by K 2 . Hence, both (8.6) and Corollary 1.2(b) ensure that

λ∈Λ j 2 -jd IE(Z 2 n (ψ λ )) ≤ 4K 2 n-1 k=0 α k .
The same upper bound holds true for the scale V 0 , whence

(8.7) IE sup f ∈F f 2 ≤ε Z 2 n (f ) 1/2 ≤ 2K n-1 k=0 α k 1/2 ε + ∞ j=0
inf(C F 2 j(d/p-s) , ε2 jd/2 ) .

Suppose now that ε ≤ C F . Let r be the nonnegative real such that C2 r(d/p-s) = ε2 rd/2 . Then

∞ j=0 inf(C F 2 j(d/p-s) , ε2 jd/2 ) = j≤r ε2 jd/2 + j>r C F 2 j(d/p-s) ≤ ε2 rd/2 (1 -2 -d/2 ) -1 + C F 2 r(d/p-s) (1 -2 d/p-s ) -1 . (8.8)
Next, by definition of r, Both (8.7) and (8.8) together with the above equalities ensure that (8.9) IE sup

C F 2 r(d/p-s) = ε2 rd/2 = C 1/(1+2(s/d)-2/p) F ε (2(s/d)-2/p)/(1+2(s/d)-2/p) = C θ F ε 1-θ . Let C(d, p) = 1 + (1 -2 -d/2 ) -1 + (1 -2 d/p-s ) -1 .
f ∈F f 2 ≤ε Z 2 n (f ) 1/2 ≤ 2KC(d, p) n-1 k=0 α k 1/2 C θ F ε 1-θ ,
provided that ε ≤ C. Theorem 8.1 follows then from (8.3) and (8.9).

From Theorem 8.1, Corollary 4.1 and Theorem 7.1 (Theorem 10.2 in [START_REF] Pollard | Empirical processes : theory and applications[END_REF]) , we now derive the following uniform central limit theorem.

Corollary 8.1. Let (X i ) i∈Z Z be a stationary and ergodic sequence of real-valued random variables with values in IR d . Suppose that the strong mixing coefficients defined by (2.1) satisfy k≥0 α k < ∞. Let p be a real in [1, 2] and let s > d/p. Let F be a bounded and closed subset of Lip * (s, p, IR d ). Suppose furthermore that F is totally bounded in L 2 (IR d ) (see Definition 8.4). Then there exists a Gaussian process G with a.s. uniformly continuous trajectories on the space F equipped with the usual metric in L 2 (IR d ), such that {Z n (f ) : f ∈ F} converges in distribution to G in the sense of Theorem 7.1.

Maximal coupling and entropy with bracketing.

Throughout this section, (X i ) i∈Z Z is a strictly stationary and absolutely regular sequence of random variables with values in some Polish space X . The absolute regularity or βmixing coefficients are defined as in Section 5.5. Below we recall the definition of these coefficients.

Definition 8.3. The absolute regularity or β-mixing coefficients (β n ) n≥0 of the sequence (X i ) i∈Z Z are defined by β 0 = 1 and (8.10)

β n = sup k∈Z Z β(F k , G k+n ) for n > 0,
with the same notations as in Definitions 1.2 and 2.1.

Throughout the sequel, we denote by P the law of X 0 . Z n denotes the normalized empirical measure, as defined in (1.37). We will assume that the sequence of β-mixing coefficients satisfy the summability condition n>0 β n < ∞. Our aim is to extend the uniform central limit theorem of [START_REF] Dudley | Central limit theorems for empirical measures[END_REF] for empirical processes indexed by classes of function with an integrable L 1 (P )-entropy with bracketing to the β-mixing case. Using the maximal coupling lemma of [START_REF] Goldstein | Maximal coupling[END_REF] or [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF], we will construct a positive measure Q with finite total mass, absolutely continuous with respect to P with the following remarkable property: for any class F of uniformly bounded functions with an integrable L 1 (Q)-entropy with bracketing, the empirical process {Z n (f ) : f ∈ F } satisfies the uniform functional central limit theorem.

We now recall the definitions of metric entropy and of metric entropy with bracketing and [START_REF] Dudley | Central limit theorems for empirical measures[END_REF] functional central limit theorem for empirical processes associated to strictly stationary sequences of independent random variables. We start by the definition of metric entropy.

In the general case, the converse inequality does not hold. The notions of entropy and entropy with bracketing are not equivalent. The only notable exception is the case of the uniform distance, which corresponds to (8.15) Λ

(f ) = f ∞ = sup x∈X |f (x)|.
In that case B(f, δ) = [f -δ, f + δ], and consequently balls are intervals. Then (8.16)

H [ ] (2δ, F, . ∞ ) = H(δ, F, . ∞ ).
We now recal Ossiander's theorem (1987) for empirical processes indexed by classes of functions. This result is an extension of [START_REF] Dudley | Central limit theorems for empirical measures[END_REF] Theorem to L 2 (P ). Let (X i ) i∈Z Z be a strictly stationary sequence of independent random variables and let P denote the law of X 0 . Throughout the sequel, let the normalized empirical measures Z n be defined by (1.37). In the iid case, for any f in L 2 (P ), (8.17) Var

Z n (f ) = f 2 dP - f dP 2 .
Consequently, if F is a class of function of L 2 (P ), then the fidi convergence of {Z n (f ) : f ∈ F} to an a.s. uniformly continuous Gaussian process G with covariance function Γ(f, g) = f gdP -f dP gdP holds, as soon as Dudley's criterion is satisfied, i.e. (8.18)

1 0 H(x, F, d P ) dx < ∞,
where d P is defined by (8.19)

d 2 P (f, g) = (f -g) 2 dP - (f -g)dP 2 .
Condition (8.18) does not imply the asymptotic stochastic equicontinuity of Z n . However the corresponding bracketing condition implies the functional central limit theorem for the empirical process.

Theorem 8.2. -Ossiander (1987) -Let (X i ) i∈Z Z be a sequence of independent random variables with common law P and let F ⊂ L 2 (P ). If F is totally bounded with bracketings in L 2 (P ) and if (8.20)

1 0 H [] (x, F, d 2,P ) dx < ∞,
then the empirical process {Z n (f ) : f ∈ F} satisfies the uniform functional central limit theorem.

Ossiander's theorem is a remarkable extension of [START_REF] Dudley | Central limit theorems for empirical measures[END_REF] theorem for classes of uniformly bounded functions with integrable entropy with brackteing in L 1 (P ). We refer to [START_REF] Andersen | The central limit theorem and the law of iterated logarithm for empirical processes under local conditions[END_REF] for more precise results in the independent case. [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF] give the following extension of Ossiander's theorem to β-mixing sequences. For any numerical function f , we set, for sake of convenience,

Q f = Q f (X 0 ) .
Let us define the norm . 2,β by (8.21)

f 2,β = 1 0 β -1 (u)Q 2 f (u)du 1/2
. This norm satisfies (8.12). Hence we may consider the entropy with bracketing with respect to this new norm. Let L 2,β (P ) be the space of functions f such that f 2,β < ∞. [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF] prove that the uniform functional central limit theorem holds for a class of functions F included in L 2,β (P ) as soon as (8.22)

1 0 H [] (x, F, . 2,β ) dx < ∞,
Let us now apply this result to classes of uniformly bounded functions. Let F be a class of numerical functions with values in [-1, 1]. Then the fidi convergence to a Gaussian process holds as soon as the summability condition n>0 β n < ∞ is satisfied. In the general case, (8.22) needs a stronger mixing condition. The same gap appears in the paper by [START_REF] Arcones | Central limit theorems for empirical and Uprocesses of stationary mixing sequences[END_REF]. Nevertheless, since (8.22) implies the functional uniform central limit theorem under the minimal mixing condition n>0 β n < ∞ if F satisfies the stronger entropy condition (8.23)

f 2,β ≤ f ∞ n≥0 β n ,
1 0 H(x, F, . ∞ ) dx < ∞.
However Condition (8.23) is not relevant for classes of sets. If F is the class of indicator functions of orthants or Euclidean balls, (8.22) needs the mixing condition (8.24 (8.23) needs the too restrictive condition b > 2. By contrast, [START_REF] Rio | Processus empiriques absolument réguliers et entropie universelle[END_REF] obtains the uniform functional central limit theorem for these classes of sets under the minimal mixing condition n>0 β n < ∞. His approach is based on repeated application of the maximal coupling lemma. Here we will adapt Rio's approach to the case of entropy with bracketing. As in [START_REF] Rio | Processus empiriques absolument réguliers et entropie universelle[END_REF], we construct a nonnegative function B in L 1 (P ) such that the positive measure Q = BP has some nice properties, which will allow us to prove the stochastic equicontinuity of the empirical process as soon as the class of functions F has an integrable entropy with bracketing in L 1 (Q).

) n≥2 n -1 (log n) -1/2 i≥n β i 1/2 < ∞. For example, if β n = O(n -1 (log n) -b ),
Before stating the main result of this section, we need to define Q. In order to define Q, we will use the maximal coupling theorem (see Theorem 5.1). Applying Theorem 5.1 to (X i ) i∈Z Z , we get that there exists some sequence (X * i ) i∈Z Z of random variable with the following properties: the sequence (X * i ) i∈Z Z has the same law as

(X i ) i∈Z Z , is independent on F 0 = σ(X i : i ≤ 0) and IP(X i = X * i for any i ≥ k) = 1 -β k .
We now define Q from the above coupling sequence. Since

X * k is independent of X k , (8.25) Cov(f (X 0 ), f (X k )) = IE f (X 0 )(f (X k ) -f (X * k ))
for any bounded function f . Consequently

(8.26) | Cov(f (X 0 ), f (X k ))| ≤ 2 f ∞ IE(|f (X k ) -f (X * k )|). Now (8.27) IE(|f (X k ) -f (X * k )|) ≤ IE(|f (X k )|1I X k =X * k ) + IE(|f (X * k )|1I X k =X * k ).
Let us then define the measurable functions b k and b * k from X into [0, 1] by

(8.28) b k (X k ) = IP(X k = X * k | X i ) and b * k (X * k ) = IP(X k = X * k | X * k ).
From (8.27) we get that

(8.29) IE(|f (X k ) -f (X * k )|) ≤ IE(|f (X k )|b k (X k )) + IE(|f (X * k )b * k (X k )). Hence, if b k = (b k + b * k )/2, (8.30) IE(|f (X k ) -f (X * k )|) ≤ 2 X b k |f |dP,
which, together with (8.26), implies (8.31)

Var Z n (f ) ≤ f ∞ X (1 + 4b 1 + • • • + 4b n-1 )|f |dP.
We then define the nonnegative measure Q by (8.32a)

Q = BP = 1 + 4 k>0 b k P.
From (8.25) and (8.28), the functions b k satisfy the additional conditions

(8.32b) 0 ≤ b k ≤ 1 and X b k dP ≤ β k .
Consequently, under the summability condition , the measure Q has a finite total mass and is absolutely continuous with respect to P . Furthermore, the following uniform functional central limit theorem holds for the measure Q defined by (8.32a).

Theorem 8.3. Let (X i ) i∈Z Z be a strictly stationary sequence of random variables with values in some Polish space X , with common law P , and let Q be the nonnegative measure defined by (8.32a). Suppose that the sequence (β k ) k>0 of absolute regularity coefficients defined by (8.10) satisfies the summability condition k>0 β k < ∞. Let F be a class of measurable functions from

X into [0, 1] . Let f 1,Q = X |f |dQ and d 1,Q (f, g) = f -g 1,Q .
Let L 1 (Q) be the space of numerical functions f such that f 1,Q < ∞. Suppose that F is totally bounded with bracketings in L 1 (Q) and that (8.33)

1 0 H [] (x, F, d 1,Q )/x) dx < ∞,
Then the empirical process {Z n (f ) : f ∈ F} satisfies the uniform functional central limit theorem of Theorem 7.1.

Applications of Theorem 8.3. Let us first note that Theorem 8.3 is not adequate for classes of regular functions satisfying entropy conditions in L ∞ (P ). Indeed condition (8.23) does not imply (8.37). The main interest of Theorem 8.3 lies in the applications to classes of sets. Suppose that F = {1I S : S ∈ S}. Since

(8.34) 1I S -1I T 1,Q = Q(S∆T )
(here ∆ denotes the symmetric difference), the notions of entropy with bracketing and entropy with inclusion are equivalent (see [START_REF] Dudley | Central limit theorems for empirical measures[END_REF] for a definition of the entropy with inclusion and a detailed exposition). In that case condition (8.33) is equivalent to the following condition of entropy with bracketings in L 2 (Q):

(8.35) 8.35) is weaker than Doukhan, Massart and Rio's entropy condition (8.22). Generally (8.35) 

1 0 H [] (x, F, d 2,Q ) dx < ∞ with d 2,Q (f, g) = X (f -g) 2 dQ 1/2 . Since f 2.Q ≤ 2 f 2,β , (
(x) = H [] (x, F, d 1,Q ).
There exists some continuous and nonincreasing function H ≥ H 1,Q such that the function x → x 2 H(x) is nondecreasing and

(8.36) v 0 (H(x)/x) 1/2 dx ≤ 2 v 0 (H 1,Q (x)/x) 1/2 dx for any v ∈]0, 1]. Proof. Let H(x) = sup t∈]0,x] (t/x) 2 H 1,Q (t). By definition H ≥ H 1,Q , H is nonincreasing and x → x 2 H(x) is nondecreasing, which implies that H is continuous. Next x H(x) ≤ sup t∈]0,x] t H 1,Q (t) ≤ x 0 H 1,Q (t) dt, whence v 0 (H(x)/x) 1/2 dx ≤ v 0 v 0 1I t<x H 1,Q (t)x -3/2 dtdx ≤ 2 v 0 (H 1,Q (x)/x) 1/2 dx
by the Fubini Theorem. Hence Lemma 8.2 holds true.

We now prove Theorem 8.3: the main step is to prove the stochastic equicontinuity property. If the function H is uniformly bounded, then S is finite. In that case the uniform central limit theorem follows directly from the fidi convergence. Consequently we may assume that lim 0 H(x) = +∞. We start by some definitions. Definition 8.6. Let δ be a fixed positive real. Let K be the first nonnegative integer such that 2 2K H(δ) ≥ nδ. Set q 0 = 2 K . For any integer k in [1, K], let q k = q 0 2 -k and let δ k be the unique positive real satisfying q 2 k H(δ k ) = nδ k . Let δ 0 = δ.

Definition 8.7.

For any k in [0, K], let J k = {B 1,k , B 2,k , . . .} be a totally ordered collection of intervals of functions with diameter less than δ k with respect to . 1,Q , such that F ⊂ [g,h]∈J k [f, g] and log Card F k ≤ H(δ k ). For each interval B j,k = [g j,k , h j,k ] in J k , we choose a point f j,k in B j,k ∩ F. For any f in F, let j be the first integer such that f belongs to B j,k . We set Π k f = f j,k and ∆ k f = h j,k -g j,k . We denote by F k the set of functions Π k f when f ranges over F and by G k the set of functions ∆ k f . From Definition 8.7, the operators Π k and ∆ k satisfy (8.40) |f -

Π k f | ≤ ∆ k f and ∆ k f 1,Q ≤ δ k , ∆ k f ∞ ≤ 2.
We now introduce our chaining argument. Since this chaining argument has to be adapted to the dependence setting, the above defined sequences will play a fundamental role. Here we need to introduce additional notations.

Notation 8.1. Let S k n (f ) = f (X k 1 ) + • • • + f (X k n ) and Z k n (f ) = n -1/2 (S k n (f ) -nP (f )).
We now give our chaining decomposition:

Z 0 n (f -Π 0 f ) = Z K n (f -Π K f ) + K l=1 Z l-1 n (Π l f -Π l-1 f ) + K k=1 (Z k-1 n -Z k n )(f -Π k f ). (8.41)
From the decomposition (8.41), (8.42) IE * (sup

f ∈F |Z 0 n (f -Π 0 f )|) ≤ IE 1 + IE 2 + IE 3 , with IE 1 =IE(sup f ∈F |Z K n (f -Π K f )|), IE 2 = K l=1 IE(sup f ∈F (|Z l-1 n (Π l f -Π l-1 f )|), IE 3 = K k=1 IE(sup f ∈F (|(Z k-1 n -Z k n )(f -Π k f )|).

Control of IE 1

Since the random variables X K i have common law P , by (8.40),

|Z K n (f -Π K f )| ≤ n -1/2 (S K n (|f -Π K f |) + nP (|f -Π K f |)) ≤ n -1/2 (S K n (∆ K f ) + nP (∆ K f )) ≤ Z K n (∆ K f ) + 2 √ nP (∆ k f ). (8.43) Now P ≤ Q and Q(∆ K f ) ≤ δ K , whence (8.44) IE 1 ≤ 2n 1/2 δ K + IE( sup g∈G K Z K n (g)).
By Proposition 8.2(ii), the random vectors (X k 2i+1 , X k 2i+2 ) have he same law as (X 0 , X * 1 ). Consequently, by Proposition 8.2(iii), the random variables X K 1 , . . . , X K q 0 are independent and with common law P . Next 

S K n (g) = A + B with A = (i-1)/q 0 ∈2I N i≤n g(X K i ) and B = (i-1)/q 0 ∈2I N+1 i≤n g(X K i ).
(g) -nP (g)) ≤ nP (g 2 )t 2 1 -4t/3 ≤ n g 1,Q t 2 1 -4t/3
for any g with g ∞ ≤ 1. Since g ∞ ≤ 1 for any g in G k and the logartihm of the cardinality of G k is less than H(δ K ), both (8.45) and Inequality (B.5) together with Lemma D.1 in Annex D then imply that IE( sup

g∈G K Z K n (g)) ≤ 2 δ K H(δ K ) + 2n -1/2 H(δ K ). Now, by definition of δ k , (8.46) n -1/2 q k H(δ k ) = n 1/2 (δ k /q k ) = (δ k H(δ k )) 1/2 .
Since q K = 1, combining (8.44) with the above inequalities, we finally get that

(8.47) IE 1 ≤ 6 δ K H(δ K ) . Control de IE 2 Fix l in [0, K -1] and let IE 2,l = IE(sup f ∈F (|Z l n (Π l+1 f -Π l f )|).
By Proposition 8.2 (ii)-(iii), the random vectors (X l iq l +1 , . . . , X l (i+1)q l ) i∈[0,2 l -1] are independent and indentically distributed. Next S l n (g) = A l + B l with A = (i-1)/q 0 ∈2I N i≤n g(X l i ) and B = (i-1)/q 0 ∈2I N+1 i≤n g(X l i ).

Again, by Proposition 8.2(i) and (iii), A l and B l are sums of independent random variables with the same law as g(X 1 ) + • • • + g(X q l ), at the exception of the last block, which has the same distribution as g(X 1 ) + • • • + g(X n-q l [n/q l ] ). Suppose now that g ∞ ≤ 1. Then these independent random variables are bounded up by q l g ∞ and, by (8.31) 

(g) -nP (g) ) ≤ n g 1,Q t 2 /(1 -4q l t/3). Let then U l = {Π l f -Π l+1 f : f ∈ F}.
For any g dans U l , g ∞ ≤ 1, and g 1,Q ≤ 2δ l . Since the logarithms of the cardinalities of U l and -U l are less than 2H(δ l+1 ), both (8.45) and Inequality (B.5) together with Lemma D.1 in Annex D applied successively to U l and -U l then imply that

(8.49) IE 2,l ≤ 4 δ l H(δ l+1 ) + 4n -1/2 q l H(δ l+1 ).
Now, by definition of δ l+1 ,

q l H(δ l+1 ) = 2(q 2 l+1 H(δ l+1 ) H(δ l+1 )) 1/2 = 2(nδ l+1 H(δ l+1 )) 1/2 , whence IE 2,l ≤ 12(δ l H(δ l+1 )) 1/2 . It follows that (8.50) IE 2 ≤ K-1 l=0 IE 2,l ≤ 12 K-1 l=0 δ l H(δ l+1 ) . Control of IE 3 . For k in [1, K], let IE 3,k = IE(sup f ∈F (|(Z k-1 n -Z k n )(f -Π k f )|). Let h k = f -Π k f : since |h k | ≤ ∆ k f , using (8.40) we get that |S k-1 n (h k ) -S k n (h k )| ≤ n i=1 |h k (X k i ) -h k (X k-1 i )| ≤ n i=1 1I X k i =X k-1 i (∆ k f (X k i ) + ∆ k f (X k-1 i )). (8.51) Hence, if n k is the first entire multiple of 2q k greater than n, (8.52) IE 3,k ≤ n -1/2 IE sup g∈G k n k i=1 1I X k i =X k-1 i (g(X k i ) + g(X k-1 i )) .
In order to apply Lemma D.1, we now need to bounded the Laplace transform of the random variables

T n k ,k (g) = n k i=1 1I X k i =X k-1 i (g(X k i ) + g(X k-1 i )).
From Proposition 8.2, the random variables T n k ,k (g) is the sum of two random variables, which are sums of independent random variables with the same distribution as T 2q k ,k (g) (with the exception of the last random variable). By Proposition 8.2(ii), the random variable T 2q k ,k (g) has the same distribution as

T (g) = q k i=1 1I X i =X * i (g(X i ) + g(X * i )).
Now, from (8.28), proceeding as in the proof of (8.30), we get that 

IE(T (g)) = q k i=1 X (b i + b * i )gdP = 2 q k i=1 X b i gdP. Since T (g) ∞ ≤ 4q k , it follows that 2IE(T (g)) ≤ g 1,Q and IE(T 2 (g)) ≤ T (g) ∞ IE(T (g)) ≤ 2q k g 1,Q . Hence, for any g in G k , (8.53) 2IE(T (g)) ≤ δ k , T ( 
)) ) ≤ (δ k t/2) + q k δ k t 2 /(1 -8q k t/3).
Next, proceeding as in the proof (8.49) and applying (8.46), we get that

(8.55) IE 3,k ≤ n 1/2 (2q k ) -1 δ k + 8δ k H(δ k ) + 8n -1/2 q k H(δ k ) ≤ 12 δ k H(δ k ). Finally (8.56) IE 3 ≤ K k=1 IE 3,k ≤ 12 K k=1 δ k H(δ k ) .
End of the proof of Theorem 8.3.

For n large enough, H(δ) < nδ. Then q 0 ≥ 2 and therefrom q 2 0 H(δ) ≥ nδ and q 2 1 H(δ) < nδ, whence δ ≥ δ 1 . Recall that (δ k ) k satisfies the recursive equations

δ -1 k+1 H(δ k+1 ) = 4δ -1 k H(δ k ).
Let then G(x) = x 2 H(x). From the above equation,

δ 3 k G(δ k+1 ) = 4δ 3 k+1 G(δ k ).
Since G is nondecreasing, it follows that δ 3 k ≥ 4δ 

f ∈F |Z n (f -Π 0 f )| ≤ 4 √ nβ q 0 + 6 δ K H(δ K ) + 24 K k=1 δ k H(δ k ). Now, by (8.57) again, √ δ k ≤ 3(δ k -δ k+1 )/ √ δ k , whence 6 δ K H(δ K )+24 K k=1 δ k H(δ k ) ≤ 72 δ K H(δ K ) + K-1 k=1 (δ k -δ k+1 ) H(δ k )/δ k . (8.58)
Since H is decreasing and δ 1 ≤ δ, we thus get that (8.59) IE(sup

f ∈F |Z n (f -Π 0 f )| ≤ 4 √ nβ q 0 + 72 δ 0 (H(x)/x) 1/2 dx.
From the definition of q 0 , √ nβ q 0 converges to 0 as soon as lim q qβ q = 0. Hence, by (8.59), the stochastic equicontinuity holds true, which completes the proof of Theorem 8.3.

Proof of Corollary 8.2. Let

C β = 1 + 4 i>0 X b i dP.
Let (X i ) i>0 be a sequence of independent random variables with values in some measured space (X , E), with common law P . Let A(X ) be the set of probabilities measures on X with finite support. For any Q in A(X ), we denote by d Q the pseudodistance associated to the usual norm in L 2 (Q). Let F be a class of measurable functions from

X into [-1, 1]. We set (1) H(x, F) = sup Q∈A(X ) H(x, F, d Q ),
where H(x, F, d Q ) is defined as in Definition 8.4. The function x → H(x, F) is called universal Koltchinskii-Pollard entropy. The universal entropy of F is said to be integrable if

(2)

1 0 H(x, F) dx < ∞.
The class F is said to fulfill the measurability condition (M) if there exists a countably generated and locally compact space (K, B(K)) equipped with its Borel σ-field and a surjective map T from K onto F such that the map (x, y) → T (y)(x) is measurable with respect to the σ-fields (X × K, E ⊗ B(K)) and B(IR).

I. A symmetrization inequality.

Here G is a class of measurable functions from X into [-1, 1], satisfying condition (M). 1) Prove that the map (x 1 , . . . , x p , y 1 , . . . , y q ) → sup{g(x 1 ) + • • • + g(x p ) -g(y 1 ) -• • • -g(y q ) : g ∈ G} is universally measurable in the sense of Definition E.1, Annex E.

2) Let (X i ) i>0 b an independent copy of (X i ) i>0 Let P n be the empirical measure associated to X 1 , . . . , X n , as defined in (1.37) and let P n denote the empirical measure associated to X 1 , . . . , X n . Prove that the variables in (3) are measurable and that

(3) IE sup g∈G |P n (g) -P (g)| ≤ IE sup g∈G |P n (g) -P n (g)| .
Hint: apply Jensen's inequality conditionally to X 1 , . . . , X n .

Let (ε i ) i>0 be a sequence of symmetric independent signs, independent of the σ-field generated by (X i ) i>0 and (X i ) i>0 . Let (X s i , X s i ) be defined by (X s i , X s

i ) = (X i , X i ) if ε i = 1 and (X s i , X s i ) = (X i , X i ) if ε i = -1.
3) Prove that the sequence (X s i , X s i ) i is a sequence of independent random variables with common law P ⊗ P . 

|P n (g) -P n (g)| = n -1 IE sup g∈G n i=1 ε i (g(X i ) -g(X i ))| . 5) Prove that (4) IE sup g∈G |P n (g) -P (g)| ≤ 2n -1 IE sup g∈G n i=1 ε i g(X i ) .

II. Stochastic equicontinuity of the symmetrized empirical process

Thoughout Part II, we fix (x 1 , . . . , x n ) in X n . We assume that the class of functions G satisfies the universal entropy condition (2). We set ( 5)

ϕ(σ, G) = σ 0 H(x, G) dx. Let Q n = n -1 (δ x 1 + • • • + δ x n ) denote the empirical measure associated to (x 1 , . . . , x n ). We define the empirical maximal variance V by V = V (x 1 , . . . , x n ) = sup{Q n (g 2 ) : g ∈ G}.
Let δ be any real in ]0, 1]. 

ε i g(x i ) ≤ 2 √ H sup g∈I n i=1 g 2 (x i ) 1/2 . 
2) Prove that, for any nonnegative integer k, there exists a finite subset G k of G with cardinality at most exp(H(2 -k δ)) and such that there exists some map Π k from G into G k satisfying the condition below:

d Q n (g, Π k g) ≤ 2 -k δ for any g ∈ G.
3) Prove that, for any function g in G and any integer l,

n i=1 ε i (g -Π l g)(x i ) ≤ n2 -l δ.
Infer from this inequality that IE sup

g∈G n i=1 ε i g(x i ) = lim l→∞ IE sup g∈G l n i=1 ε i g(x i ) . 4) Let δ k = 2 -k δ.
Prove that, for any g in G l there exists a collection of function g 0 , . . . , g l satisfying g l = g and g k = Π k g k+1 for any integer k in [0, l[. Infer that IE sup

g∈G l n i=1 ε i g(x i ) ≤ 2 l k=1 δ k-1 nH(δ k ) + 2 nH(δ)V . 5) Prove that IE sup g∈G n i=1 ε i g(x i ) ≤ 8 √ nϕ(δ/2, G) + 2 nH(δ)V .
Infer from the above inequality that

(7) IE sup g∈G n i=1 ε i g(X i ) ≤ 8 √ nϕ(δ/2, G) + 2 nH(δ)IE(V (X 1 , . . . , X n )) .
III. Modulus of continuity of the normalized empirical process.

Let H be a nonincreasing entropy function such that

1 0 H(x)dx < ∞ and let ϕ(σ) = σ 0 H(x)dx.
Let E(δ, P, H) be the set of classes of functions G from X into [-1, 1], satisfying the measurability condition (M), such that H(x, G) ≤ H(x) and sup{P (g 2 ) : g ∈ G} ≤ δ 2 . We set w(δ) = sup G∈E(δ,P,H)

IE sup g∈G |Z n (g)| . 
1) Let G be any class of functions in E(δ, P, H). Prove that the class {g 2 /2 : g ∈ G} still belongs to E(δ, P, H). Infer that [START_REF]Maximal coupling and entropy with bracketing[END_REF] w(δ) ≤ 16ϕ(δ/2) + 4 H(δ) δ 2 + 2n -1/2 w(δ) .

Starting from [START_REF]Maximal coupling and entropy with bracketing[END_REF], prove that w(δ) ≤ 16ϕ(δ) + 4w(δ) H(δ)/(nδ 2 ).

2) Prove that w(δ) ≤ 32ϕ(δ) for any positive δ satisfying 2 6 H(δ) ≤ nδ 2 .

3) Prove that the class

G δ = {(f -g)/2 : (f, g) ∈ F × F, d P (f, g) ≤ δ} belongs to E(δ, P, H) for H = H(., F). Infer that, if nδ 2 ≥ 2 6 H(δ), then (9) IE sup g∈G δ |Z n (2g)| ≤ 64 δ 0 H(x, F) dx.
Apply then Theorem 7.1 to conclude.

IRREDUCIBLE MARKOV CHAINS

Introduction

In this chapter, we are interested in the mixing properties of irreducible Markov chains with continuous state space. More precisely, our aim is to give conditions implying strong mixing in the sense of [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] or β-mixing. Here we mainly focus on Markov chains which fail to be ρ-mixing (we refer to [START_REF] Bradley | Basic properties of strong mixing conditions[END_REF] for a precise definition of ρ-mixing). Ley us mention that ρ-mixing essentially needs a spectral gap condition in L 2 for the transition probability kernel. This condition is often too restrictive for the applications in econometric theory or nonparametric statistics. However these Markov models are irreducible. In that case, one can apply general results on irreducible Markov chains. We refer to [START_REF] Nummelin | General irreducible Markov chains and non negative operators[END_REF] for more about irreducible Markov chains and to Meyn and Twedie (1993) for a detailed exposition on Markov chains.

In Section 9.2, we give a brief exposition of the theory of irreducible Markov chains. In Section 9.3 we introduce the regeneration techniques. Our exposition is based on the lecture notes of [START_REF] Nummelin | General irreducible Markov chains and non negative operators[END_REF] and on [START_REF] Nummelin | A splitting technique for Harris recurrent Markov chains[END_REF]. In Section 9.4, we give an example of irreducible and positively recurrent Markov chain, and we apply the results of the previous sections to this example. For this example, we are able to estimate the strong mixing and the β-mixing coefficients precisely. In Section 9.5, we give some relations between the integrability properties of return times, the rates of ergodicity, and the absolute regulariy properties of the chain. Our exposition is based on papers by [START_REF] Lindvall | On coupling of discrete renewal processes Z[END_REF] and [START_REF] Tuominen | Subgeometric rates of convergence of f -ergodic Markov chains[END_REF]. In Section 9.6, we give relations between the rates of ergodicity, the absolute regularity coefficients and the strong mixing coefficients. Starting from papers of [START_REF] Bolthausen | The Berry-Esseen theorem for functionals of discrete Markov chains[END_REF]Bolthausen ( , 1982b)), we prove that, under some adequate assumptions, the coefficients of absolute regularity and the coefficients of strong mixing in the sense of Rosenblatt are of the same order of magnitude. Section 9.7 is devoted to the optimality of the central limit theorem of Chapter 4. The lower bounds are based on the example introduced in Section 9.4.

Irreducible Markov chains

In this section, we recall some classical results on irreducible Markov chains. We start by the definition of the transition probability and the notion of irreducibility. Let (X, X ) be a measurable space. Throughout this chapter, we assume that the σ-field X is countably generated, which means that X is generated by a finite or a countable family of sets. When X is topological, then X will be taken as the Borel σ-field of X, but otherwise it may be arbitrary.

Definition 9.1. If P : X × X → Ī R + is such that (i) for each A in X , P (., A) is a nonnegative measurable function on X, (ii) for each x in X, P (x, .) is a nonnegative measure on X , then we call P positive kernel. The kernel P is said to be finite (resp. σ-finite) if, for any x in X, the measure P (x, .) is finite (resp. σ-finite). P is said to be bounded if sup{P (x, X) : x ∈ X} < ∞. P is said to be stochastic or to be a transition probability kernel if P (x, X) = 1 for any x in X. P is said to be substochastic if P (x, X) ≤ 1 for any x in X.

The product P 1 P 2 ot two positive kernels P 1 and P 2 is defined by

P 1 P 2 (x, A) = X P 1 (x, dy)P 2 (y, A).
The powers P n of P are defined by P 0 (x, A) = δ x (A) = 1I x∈A and P n = P P n-1 . If P is a transition probability kernel, then we call P n the n-step transition probability kernel. Throughout, we call I the transition probability kernel defined by I(x, A) = δ x (A). If P is a transition probability kernel, then G = n≥0 P n is called potential of P .

Let γ be a Radon measure and let f be a numerical measurable function. For any x in X and any A in X , let γP 1 (A) = P 1 (x, A)γ(dx), P 1 f (x) = f (y)P 1 (x, dy) and γP 1 (f ) = P 1 f (x)γ(dx).

With these notations, for f = 1I A , γP 1 (f ) = γP 1 (A) . We now define a relation on X × X , called communication structure. Definition 9.2. Let (x, A) be a element of X × X . We say that A is accessible from x under P if there exists a positive integer n such that P n (x, A) > 0. In that case we write x → A. The set Ā = {x ∈ X : G(x, A) > 0} is the set of points from which A is accessible.

Starting from definition 9.2, we now give an extension of the notion of irreducibility to continuous state spaces. Definition 9.3. Let ϕ be a positive and σ-finite measure on X, such that ϕ(X) > 0. The stochastic kernel P is called ϕ-irreducible if Ā = X for any A in X such that ϕ(A) > 0. The measures ϕ satisfying these conditions are called irreducibility measures under P . An irreducibility measure m under P is called maximal irreducibility measure under P if any irreducibility measure ϕ under P is absolutely continuous with respect to m.

The proposition below, due to [START_REF] Tweedie | R-theory for Markov chains on a general state space I: solidarity properties and R-recurrent chains[END_REF], gives a characterization of the maximal irreducibility measures. Proposition 9.1. Suppose that P is ϕ-irreducible under P . Then (i) There exists a maximal irreducibility measure m under P . (ii) Any irreducibility measure ϕ under P such that ϕP is absolutely continuous with respect to ϕ is maximal.

(iii) If m(B) = 0 then the set B + = B ∪ {x ∈ X : x → B} satisfies m(B + ) = 0.
Throughout the rest of this section, P is an irreducible stochastic kernel and m is a maximal irreducibility measure under P . The theorem below, due to [START_REF] Jain | Contributions to Doeblin's theory of Markov processes[END_REF], gives a characterization of the irreducible stochastic kernels.

Theorem 9.1. Let P be an irreducible stochastic kernel and let m be a maximal irreducibility measure under P . Then there exists a positive integer m 0 , a measurable function s with values in [0, 1] such that m(s) > 0 and a probability measure ν such that

M(m 0 , s, ν) P m 0 (x, A) ≥ s(x)ν(A) for any (x, A) ∈ X × X . The substochastic kernel (x, A) → s(x)ν(A) is noted s ⊗ ν.
Remark 9.1. (i) A positive measure ϕ is irreducible under P if and only if for any nonnegative function f such that ϕ(f ) > 0, the potential G associated to P fulfills the following positivity condition: P Gf (x) > 0 for any x in X.

(ii) In Theorem 9.1, one can assume that ν(s) > 0 (confer Section 2.3 in [START_REF] Nummelin | General irreducible Markov chains and non negative operators[END_REF] for more about Theorem 9.1).

Assume now that M(m 0 , s, ν) is satisfied. From the above remark, P is ν-irreducible, since (9.1)

P G ≥ G(s ⊗ ν) = Gs ⊗ ν.
Consequently, if ν(f ) > 0 then P Gf (x) ≥ Gs(x)ν(f ) > 0 (the fact that Gs(x) > 0 is implied by the condition m(s) > 0). This fact together with Proposition 9.1(ii) lead to the remark below.

Remark 9.2. If M(1, s, ν) is satisfied then m = n≥0 2 -1-n ν(P -s ⊗ ν)
n is a maximal irreducibility measure under P .

We now define the period of an irreducible Markov chain. Let (s, ν) satisfy condition M(m 0 , s, ν) for some positive integer m 0 . Suppose furthermore that ν(s) > 0. Let then the set I be defined by

I = {m ≥ 1 : M(m, δs, ν) is fulfilled for some δ > 0}.
The greatest common divisor of I is called period of the chain. One can prove that the period does not depend on (s, ν). The chain is said to be aperiodic if d = 1. For example, if condition M(m 0 , s, ν) holds true with m 0 = 1, then the chain is aperiodic.

Renewal process of an irreducible chain

In this section, we consider an homogenous Markov chain with transition probability kernel P (x, .) and state space X = [0, 1]. Throughout the section, we assume that condition M(m 0 , s, ν) of Theorem 9.1 holds true for m 0 = 1, which ensures that the chain is irreducible and aperiodic. We will also assume that ν(s) > 0.

Definition 9.4. Let the substochastic kernel Q be defined by

Q = P -s ⊗ ν. The stochastic kernel Q 1 is defined from Q by (1 -s(x))Q 1 (x, A) = Q(x, A) if s(x) < 1 and Q 1 (x, A) = ν(A) if s(x) = 1.
We now construct a stationary Markov chain with initial law µ and transition probability measure P (x, .) Let ζ 0 be a random variable with law µ. We assume that the underlying probability space is rich enough to contain a sequence (U i , ε i ) i≥0 of independent random variables with uniform law over [0, 1] 2 , and that this random sequence is independent of ζ 0 . For any x in [0, 1] such that s(x) < 1, let F x denote the distribution function of Q 1 (x, .). Let F denote the distribution function of ν. The sequence (ξ n ) n≥0 is defined by induction in the following way: ξ 0 = ζ 0 and, for any nonnegative integer n, (9.2)

ξ n+1 = 1I s(ξ n )≥U n F -1 (ε n ) + 1I s(ξ n )<U n F -1 ξ n (ε n ).
By the Kolmogorov extension theorem, there exists a unique sequence [ξ n ) n≥0 of random variables satisfying the above conditions. Furthermore this sequence is a Markov chain. Now

IP(ξ n+1 ∈ A | ξ n = x, U n = u, ε n = ε) = 1I s(x)>u 1I F -1 (ε)∈A + 1I s(x)≤u 1I F -1 x (ε)∈A .
Hence, integrating with respect to ε, we get that

IP(ξ n+1 ∈ A | ξ n = x, U n = u) = 1I s(x)>u ν(A) + 1I s(x)≤u Q 1 (x, A),
Now, integrating on [0, 1] with respect to u, we obtain that

(9.3) IP(ξ n+1 ∈ A | ξ n = x) = s(x)ν(A) + (1 -s(x))Q 1 (x, A) = P (x, A),
which proves that the transition probability kernel of this chain is P (x, .). Let us now define the renewal process associated to the so constructed chain. The law of the renewal process will mainly depend on s and ν.

Definition 9.5. Let the sequence (η i ) i∈IN of random variables with values in {0, 1} be defined by η i = 1I U i ≤s(ξ i ) . This sequence is called incidence process associated to the chain (ξ i ) i∈IN . The renewal times (T i ) i≥0 are defined by

T i = 1 + inf{n ≥ 0 : n j=0 η j = i + 1}.
We set τ = T 0 and τ i = T i+1 -T i for i ≥ 0.

Let IP µ be the law of the chain with transition probability kernel P and initial law µ. When µ = δ x , we denote by P x this law. By definition of τ , (9.4) λQ n (s) = IP λ (τ = n + 1) and λQ n (1) = IP λ (τ > n).

Let us make some comments about (9.4). For any initial law λ, λP n -λQ n = n k=1 λQ n-k (P -Q)P k-1 .

Since P -Q = s ⊗ ν, λQ n-k (P -Q)P k-1 = λQ n-k (s)νP k-1 , which leads to the identity The identity (9.5) provides more information, and will be used again in the next sections.

We now give the definition of recurrence and classical results on the recurrence properties of irreducible chains. Definition 9.6. Let (ξ i ) i≥0 be an irreducible Markov chain with maximal irreducibility measure m. The chain is said to be recurrent if, for any B in X + = {A ∈ X : m(A) > 0},

h ∞ B (x) = IP x k≥0 1I ξ k ∈B = ∞ = 1 m-almost everywhere.
One can prove that the chain with transition probability P starting from ξ 0 = x is recurrent if and only if T i is finite almost surely for any nonnegative integer i. Consequently, applying (9.4), we get the lemma below. We now prove that the second condition appearing in Lemma 9.1 can be removed. Assume that lim n νQ n (1) = 0. By (9.6) 

applied to λ = δ x , n-1 l=0 Q l s(x) + δ x Q n (1) = 1.
Let the nonnegative kernel G Q be defined by G Q = n≥0 Q n . From the above identity, G Q s(x) ≤ 1 and G Q s(x) = 1 if and only if lim n δ x Q n (1) = 0, which is equivalent to IP x (τ = ∞) = 0. Now, since lim n νQ n (1) = 0, IP ν (τ = ∞) = 0. Consequently, if G Q s(x) = 1, then the chain with transition P starting from x is recurrent ( h B (x) = 1 for any B in X + ). Let then m by the maximal irreducibility measure defined in Remark 9.2. The Markov chain with transition P is recurrent if and only if G Q s(x) = 1 m-almost everywhere. Since G Q s(x) ≤ 1, this equality holds m-almost everywhere if and only if 

mG Q (s) = X G Q s(x)m(dx) =

Mixing properties of positively recurrent Markov chains: an example

Throughout this section X = [0, 1]. For Markov chains, the strong mixing coefficients defined in (2.1) and the β-mixing coefficients defined in definition 8.3 satisfy (9.9) α n = sup k∈T α(σ(X k ), σ(X k+n )) and β n = sup k∈T β(σ(X k ), σ(X k+n )).

We refer to [START_REF] Davydov | Mixing conditions for Markov chains[END_REF] and to [START_REF] Bradley | Basic properties of strong mixing conditions[END_REF] for a proof of this result.

Let us consider an irreducible Markov chain. Suppose there exists a couple (s, ν) satisfying condtion M(m 0 , s, ν) with m 0 = 1. Then the chain is aperiodic. Let Q = P -s ⊗ ν. Assume furthermore that the positive measure n≥0 νQ n , which is usually called Pitman occupation measure (see [START_REF] Pitman | Uniform rates of convergence for Markov chain transition[END_REF] for more about this measure), has a finite total mass. Then the probability measure is an invariant law under P . Furthermore the chain is recurrent, the renewal times (τ i ) i≥0 are integrable and the return times in a recurrent set A (A is recurrent if m(A) > 0) are also integrable. In that case the chain is said to be positively recurrent.

In this section, we will introduce some additional assumption which provides nice estimates of the mixing coefficients. This assumption will be called excessivity assumption. Under this assumption the lemma below provides a rate of convergence to the invariant law π. Lemma 9.2. Let P be an irreducible transition probability kernel satisfying M(1, s, ν) and λ an initial probability law. Suppose that the following assumption holds true: H(λ, s) λP l (s) ≥ π(s) for any l ≥ 0.

Then, for any positive integer n, λP n -π ≤ 2πQ n (1).

Proof. Using the decomposition

λP n = n k=1 λP n-k (P -Q)Q k-1 + λQ n .
and proceeding as in the proof of (9.5), we get that (9.11)

λP n = n k=1
λP k-1 (s)νQ n-k + λQ n .

In the stationary case λ = µ = π, by (9.4) together with the definition of π, From (9.22) and Proposition 9.6, we now get the corollary below.

Corollary 9.1. Let P be a stochastic kernel. Assume that P is irreducible, aperiodic, positively recurrent, and satisfies condition M(1, s, ν). Let π denote the invariant probability law. Then, for any ψ in Λ 0 such that IE π (ψ(T 0 )) < ∞, 1 0 ψ(β -1 (u))du < +∞.

Remark 9.5. From Corollary 9.5, one can derive the following result. Suppose that T 0 has a finite Laplace transform in a neighborhood of 0. Let U be a random variable with uniform law over [0, 1]. Then β -1 (U ) has a finite Laplace transform in another neighborhood of 0. To prove this fact, suppose that IE(exp(εβ -1 (U ))) = ∞ for any positive ε. Then one can construct a function ψ in Λ 0 such that IE(ψ(β -1 (U ))) = ∞. For this function IE π (ψ(T 0 )) = ∞. Now, since T 0 has a finite Laplace transform in a neighborhood of 0, IE π (ψ(T 0 )) < ∞ for any ψ in Λ 0 , which leads to a contradiction. Hence geometric ergodicity implies geometric β-mixing.

We now give quantitative relations concerning return times in small sets and absolute regularity coefficients. Our results are derived from the paper of [START_REF] Tuominen | Subgeometric rates of convergence of f -ergodic Markov chains[END_REF]. Definition 9.9. Let f be a measurable function from X into [1, ∞] and let m be a signed measure. The f -variation of m is defined by m f = sup{|m(g)| : |g| ≤ f }. Definition 9.10. Let τ D = inf{n > 0 : ξ n ∈ D}. The aperiodic and irreducible chain (ξ i ) i≥0 is said to be (f, ψ)-ergodic if and only if there exists a small set D such that (9.25) sup

x∈D IE x τ D -1 i=o ψ(i)f (ξ i ) < ∞.
We now give the ergodicity criterion of [START_REF] Tuominen | Subgeometric rates of convergence of f -ergodic Markov chains[END_REF].

Theorem 9.2. Let P be a stochastic kernel. Suppose that P is irreducible and aperiodic. Let ψ be an element of Λ 0 . The chain (ξ i ) i≥0 with kernel P is (f, ψ)-ergodic if and only if there exists a sequence (V n ) n≥0 of measurable functions from X into Ī R + , a small set C and a positive constant b such that V 0 is bounded over C, V 0 (x) = ∞ implies V 1 (x) = ∞, and, for any n ≥ 0, (9.26) ψ(n)f ≤ V n -P V n+1 + bψ(n)1I C .

Proof. Here we prove that (9.26) implies the (f, ψ)-ergodicity. We refer to [START_REF] Tuominen | Subgeometric rates of convergence of f -ergodic Markov chains[END_REF] for a complete proof and for more details. Applying (9.26) with n = i to x = ξ i , summing on i from i = 0 to i = τ C -1 we get that

IE x τ C -1 i=o ψ(i)f (ξ i ) ≤ τ C -1 i=o IE x (V i (ξ i ) -P V i+1 (ξ i )) + bψ(0)1I x∈C .
Now IE x (P V i+1 (ξ i )) = IE x (V i+1 (ξ i+1 )). Hence the above inequality ensures that (9.27)

IE x τ C -1 i=o ψ(i)f (ξ i ) ≤ V 0 (x) + bψ(0)1I x∈C .
Since V 0 is uniformly bounded over C, (9.27) implies (9.25).

We now give applications of the (f, ψ)-ergodicity to estimates of the absolute regularity coefficients of the chain. We refer to Theorem 3.6(i) and Theorem 4.3 in [START_REF] Tuominen | Subgeometric rates of convergence of f -ergodic Markov chains[END_REF] for more about this subject. Theorem 9.3. Let P be a stochastic kernel. Suppose that P is irreducible and aperiodic. Let ψ be an element of Λ 0 . Assume that the chain (ξ i ) i≥0 with kernel P is (f, ψ)-ergodic. Then the chain is positively recurrent and, if π denotes the unique stationary law, then ∞ n=0 ψ(n) X P n (x, .) -π f π(dx) < ∞.

In particular, if f = 1, then IE(ψ 0 (β -1 (U ))) < ∞ (here U has the uniform law over [0, 1]).

Rates of strong mixing and rates of ergodicity of irreducible chains

In this section, we give relations between the strong mixing coefficients and the integrability properties of renewal times. We will prove that the tails of the random variables α -1 (U ), T 0 and β -1 (U ) have of the same order of magnitude, which implies, in particular, that the strong mixing and the β-mixing coefficients are of the same order for irreducible, aperiodic and positivley recurrent Markov chains.

We start by giving some relations between the strong mixing coefficients of the chain (ξ i ) i≥0 equipped with the usual filtration (F k ) k defined by F k = σ(ξ i : i ≤ k) and the strong Proof of Proposition 9.7.

Let us apply (9.12) with λ = ν. From the equality of masses, we have: Multiplying (9.29) by ψ(n), summing on n and noting that, by Lemma 1 in [START_REF] Stone | One-sided error estimates in renewal theory[END_REF], ψ(i + j) ≤ ψ(i)ψ(j), we infer that By (9.30) applied to ψ M ≤ ψ, we get (9.31)

n≥0 IP π (T 0 = n)ψ 0 M (n) ≤ C ψ n≥0 IP π (T 0 = n)ψ M (n).
We now prove that the series n IP π (T 0 = n)ψ(n) converges. Suppose that this series diverges. Then, for any positive n 0 , the function g defined by

g(M ) = n≥n 0 IP π (T 0 = n)ψ M (n)
is equivalent to n≥0 IP π (T 0 = n)ψ M (n) as M tends to infinity. Hence, by (9.31), for any positive integer n 0 , (9.32) lim sup

M →+∞ 1 g(M ) n≥n 0 IP π (T 0 = n)ψ 0 M (n) ≤ C ψ .
Now, by Lemma 2 in [START_REF] Stone | One-sided error estimates in renewal theory[END_REF], for any positive ε and any integer j 0 , there exists a positive constant c(ε, j 0 ) such that (9.33) ψ(n) ≤ (1 + ε)ψ(n -j) + c(ε, j 0 )

for any n > j 0 and any j ≤ j 0 . Hence, for any positive j 0 , there exists a rank n 0 such that, for any n ≥ n 0 and any j ≤ j 0 , 2ψ(n -j) ≥ ψ(n). This inequality still holds true for the function ψ M . Hence 2ψ 0 M (n) ≥ j 0 ψ M (n) for n ≥ n 0 . Consequently

1 g(M ) n≥n 0 IP π (T 0 = n)ψ 0 M (n) ≥ j 0 2 .
For j 0 ≥ 4C ψ , the above inequality does not hold under (9.32) for M large. Hence the series n IP π (T 0 = n)ψ(n) converges. The second assertion follows from Corollary 9.1.

Proceeding as in Exercise 6, Chapter 1, one can derive the corollary below from Proposition 9.7. In this corollary, the moment restriction on f (ξ 0 ) comes from the fact that the functions ψ 0 defined in Definition 9.8 from a function ψ in Λ 0 fulfill the constraint log ψ 0 (n) = o(n).

Corollary 9.2. Let P be an irreducible and aperiodic stochastic kernel, fulfilling M(1, s, ν). Let π denote the unique invariant law and let (ξ i ) i≥0 be the stationary Markov chain with transition P and initial law π. Then, for any numerical function f satisfying the integrability condition IE(f 2 (ξ 0 ) log + |f (ξ 0 )|) < ∞, the integrals below are simultaneously convergent or divergent:

1 0 Q T 0 (u)Q 2 f (ξ 0 ) (u)du, 1 0 α -1 (u)Q 2 f (ξ 0 ) (u)du and 1 0 β -1 (u)Q 2 f (ξ 0 ) (u)du.
Corollary 9.2 proves that Theorem 4.2 can be applied in the case of Markov chains as soon as the random variable Q T 0 (U )Q 2 f (ξ 0 ) (U ) is integrable (here U denotes a random variables with uniform law over [0, 1]). In the forthcoming section, we prove that this condition cannot be improved. chain is positively recurrent and the invariant law π is given by π = ax a-1 λ (see the proof of Lemma 9.3). Let t(x) = 1 -x. for any positive k where Γ is the Γ function of Euler. Since the distribution function of π is F π (x) = x a , the stationary sequence (U i ) i defined by U i = ξ a i is a stationary Markov chain of random variables with uniform law over [0,1]. This chain has the same β-mixing coefficients as the initial chain (ξ i ) i∈Z Z . Now Theorem 9.4(i) follows from Proposition 9.4 and (9.35).

We now prove (ii). We may assume, without loss of generality, that IE(f (U i )) = 0. Now, using the renewal scheme, we prove thet some compound sums defined from the variables f (U i ) are partial sums of independent and identically distributed random variables. With the notations of Definition 9.5.

(9.36)

T n -1 i=1 f (U i ) = τ -1 i=1 f (U i ) + n-1 k=0 τ k f (U T k ).
We now prove that (9.37)

T n -1 i=1 f (U i ) - [nIE(τ 1 )] i=1 f (U i ) = o P ( √ n ).
To prove (9.37), we start by noting that the random variables (X T k , τ k ) k>0 are independent and identically distributed. Proof. If λ = Kz + √ 2V z then λ 2 ≤ 2(V + Kλ)z, which implies the second inequality. We now prove the first inequality. Starting from (B.3) and noting that e x -1 -x ≤ x 2 /2 for any negative x, we get that log IE(exp

(tS n )) ≤ t 2 2 n i=1 IE(Z 2 i ) + n i=1 ∞ m=3 t m m! IE(Z m i+ ).
Therefrom, if assumption (a) holds, then, for any nonnegative t, (B.4) log IE(exp(tS n )) ≤ γ(t) = 1 2 V t 2 /(1 -Kt).

From Lemma B.1, the proof of Theorem B.2 will be complete if we prove that (B.5) γ * -1 (z) = Kz + √ 2V z.

To prove (B.5), we apply Lemma A.2: setting u = (1/t) -K in the formula of Lemma A.2, we get that We now give some applications of Theorem B.1 to deviation inequalities for sums of unbounded random variables. The inequalities below are due to [START_REF] Fuk | Probability inequalities for sums of independent random variables[END_REF].

Theorem B.3. Let Z 1 , . . . , Z n be a finite sequence of independent and square integrable random variables. Then, for any V ≥ by the Markov inequality applied to the second term on right hand. The end of the proof is then exactly the same as the end of the proof of (B.7).

We now state an inequality of Hoeffding for independent and bounded random variables Set q = IE(Z). Taking the expectation in the above inequality, we get that IE(exp(tZ)) ≤ cosh t + q sinh t.

Hence M p,α (Q) is finite as soon as there exists some r > p such that (C.12) IP(X > x) ≤ (c/x) r and ∞ i=0 (i + 1) p-2 α 1-p/r i < ∞.

Assume now that p > 2. We have in view bounds for M p,α,n (Q) in the case where M p,α (Q) = ∞. Recall that , by Theorem 6.3,IE sup k∈[1,n] |S k | p ≤ a p s p n + nb p M p,α,n (Q).

Hence, if M p,α,n (Q) = O(n q ) for some q ≤ (p-2)/2, the Marcinkiewicz-Zygmund inequality of order p holds true. Now, let s < p -1. From (C.10), the mixing condition (C.13) In the case of bounded random variables, (C.15) holds true as soon as α i = O(i -p/2 ). In the unbounded case, (C.15) holds true, for example, if there exists some r > p such that (C.16) IP(X > x) ≤ (c/x) r and α i = O(i -pr/(2r-2p) ).

Geometric rates of mixing. Assume that α i = O(a i ) for some a < 1. Then, using the same arguments as in the proof of (1.33), we get that M p,α (Q) is finite as soon as (C.17) IE(X p (log(1 + X)) p-1 ) < ∞.

D. Two versions of a Lemma of Pisier

In this annex, we give an upper bound for the expectation of the maximum of a finite number of integrable random variables. This bound is then used to get upper bounds on this expectation under some assumptions on the Laplace transform or on the moments of the random variables in the style of Lemma 1.6 in [START_REF] Pisier | Some applications of the metric entropy condition to harmonic analysis[END_REF]. Choosing t = F -1 (N -1) in the above formula, we obtain:

t + N i=1 IE(Z i -t) + = F -1 (N -1) + N N -1
(F -1 (u) -F -1 (N -1))du, which implies Proposition D.1.

Application to exponentail tails. Assume that H i (t) ≤ exp(-t) for any positive t and any i in [1, N ]. Then H(t) ≤ N exp(-t), which ensures that H -1 (x) ≤ log(N/x). It follows that IE(T ) ≤ 1 + log N .

Application to power-type tails. Assume that H i (t) ≤ (a i /t) p for some p > 1 and some finite sequence (a i ) i of positive reals. Let a p = (a p 1 +• • •+a p N ) 1/p . Then H(t) ≤ ( a p /t) p , which ensures that H -1 (u) ≤ a p u -1/p . It follows that (p -1)IE(T ) ≤ p a p .

We now give an application of Proposition D.1 to random variables with finite exponential moments. The lemma below is stated in [START_REF] Massart | A uniform Marcinkiewicz-Zygmund strong law of large numbers for empirical processes[END_REF]. A short proof is given in [START_REF] Rio | Processus empiriques absolument réguliers et entropie universelle[END_REF].

  > x, Y > y) -IP(X > x)IP(Y > y)|,and next (1.8b) α(A, Y ) = sup A∈A α(1I A , Y ).

  B) = sup{| Cov(1I A -1I A c , 1I B )| : (A, B) ∈ A × B}. Next Cov(1I A -1I A c , 1I B ) = IE((IP(B | A) -IP(B))(1I A -1I A c ))and consequently, for a fixed B, the maximum over A is reached by the measurable set A = (IP(B | A) > IP(B)). Consequently (1.10b) α(A, B) = sup{IE(|IP(B | A) -IP(B)|) : B ∈ B}.

Definition 1. 3 .

 3 The uniform mixing or ϕ-mixing coefficient ϕ(A, B) between two σ-fields A and B is defined byϕ(A, B) = sup (A,B)∈A×B I P(A) =0 |IP(B | A) -IP(B)|.This coefficient belongs to [0, 1]. Contrary to the β-mixing coefficient, ϕ(A, B) = ϕ(B, A).

  a) Prove that I n is a nondecreasing and nonnegative function. b) Prove that, for any Borel sets A and B with A

  n . Now, under assumption (a), the sequence (V * n ) n is a bounded sequence and, under assumption (b), the above sum converges to 0 as n tends to ∞. Consequently lim n→∞ | exp(t 2 /2)ϕ n (t) -1| = 0, which imples Theorem 4.4 via the Paul Lévy theorem.

When

  X is a real-valued random variable with values in the compact interval [a, b], Lemma 5.1 ensures that (5.1) IE(|X -X * |) ≤ (b -a)β(A, σ(X)).

  Hint: apply Theorem B.3(b) in Annex B with λx = εn. b) Infer from (a) that lim sup n→∞ (2nLLn) -1/2 |S n | ≤ 1 almost surely.

Definition 8 . 2 .

 82 Let s be any positive real. Set r = [s] + 1. We denote by Lip * (s, p, I) the space of functions f in L p (I) such that for some positive constant M ,I rh |∆ r h (f, x)| p dx 1/p ≤ M h s for any h > 0.On Lip * (s, p, I), we consider the semi-norm|f | Lip * (s,p) = sup t>0 t -s ω r (f, t) p .We define a norm on Lip * (s, p, I) by f Lip * (s,p) = |f | Lip * (s,p) + f p . Let B(s, p, I) denote the unit ball associated to this norm.Remark 8.1. In the case p = 2, the space Lip * (s, 2, IR) contains the Sobolev space of order s. For s = 1 and p = ∞, the space Lip * (1, ∞, I) is the Zygmund space Z(I) of functions f such that |f (x + 2t) -2f (x + t) + f (x)| ≤ M t. This space contains the space Lip(1, ∞, I) of Lipschitz functions on I.

≤

  f ond .It follows from(8.2) that Lip * (s, p,IR d ) ⊂ L 2 (IR d ) for s > (d/p) -(d/2). Moreover Lip * (s, p, IR d ) ⊂ L ∞ (IR d) for s > d/p. Let us now give the main result of this section. Theorem 8.1. Let (X i ) i∈Z Z be a strictly stationary sequence of random variables with values IR d . Suppose that the strong mixing coefficients (α k ) k≥0 defined by (1.20) satisfy k≥0 α k < ∞. Let p be any real in [1, 2] and let s be any real such that s > d/p. Let a be a positive real and let F = aB(s, p, IR d ). Let C F = sup{ f ond : f ∈ F}. Set θ = d/(d + 2(s -d/p)). Let Z n be defined by (1.37). Then there exists some positive constant κ such that (a) sup

  k (s)νP k-1 + λQ n .The equality of total masses in (9k (s) + λQ n (1) = 1.The last equality corresponds to the trivial identityIP λ (τ > n) + n k=1 IP λ (τ = k) = 1.

Lemma 9 . 1 .

 91 The irreducible Markov chain (ξ i ) i≥0 is recurrent if and only if lim n→∞ νQ n (1) = 0 and lim n→∞ δ x Q n (1) = 0 m-almost everywhere.

  s) = IP ν (τ = ∞).Hence the equality holds in (9.7) if and only if IP ν (τ = ∞) = lim n νQ n (1) = 0. Thus we have proved the proposition below. Proposition 9.2. Let m be the maximal irreducibility measure of Remark 9.2. The irreducible chain (ξ i ) i≥0 is recurrent if and only if lim n→∞ νQ n (1) = 0.

( 9 .

 9 23) IE ν (T 0 )IP π (T 0 = n + 1) = IP ν (T 0 > n). Hence (9.24) IE ν (ψ 0 (T 0 )) = IE ν (T 0 ) k≥0 IP π (T 0 = k + 1)ψ(k) ≤ IE π (ψ(T 0 )).

(

  νP k (s) -π(s))νQ n-k-1 (1) + νQ n (1). Now, by(9.4), π(s)νQ l (1) = π(s) n≥0 νQ n+l (s) = IP π (T 0 = l + 1).Hence (9.28) ensures thatπ(s)IP π (T 0 > n) = n k=0 (νP k (s) -π(s))IP π (T 0 = n -k) + IP π (T 0 = n + 1). Now νP k (s) -π(s) = IE π (s(ξ k+1 ) | s(ξ 0 ) ≥ U 0 ) -IE π (s(ξ k+1 )). Therefrom (9.29) π(s)|νP k (s) -π(s)| ≤ αk+1 ≤ α k .

  T 0 = n)ψ 0 (n) ≤ (π(s)) -2 1 + k≥0 α k ψ(k) n≥0 IP π (T 0 = n)ψ(n). For M > 2, let ψ M (n) = ψ(n) ∧ M . Let us consider a function ψ in Λ 0 such that n ψ(n)α n < ∞. Set C ψ = (π(s)) -2 1 + k≥0 α k ψ(k) .

( 9 . 0 ( 1

 901 34) IP π (τ > k) = IE π (t k ) = k -a k -x/k) k ax a-1 dx. π (t k ) = aΓ(a),

  Let ζ k = X T k . The random variables ζ k are independent with common law ν. Now (9.38) IP(τ k > n | ζ k = ζ) = (1 -ζ) n ,which ensures that IE(τ 2 1 ) < ∞ for any a > 1. Hence, by the usual central limit theorem, (T n -nIE(τ 1 ))/ √ n converges in distribution to a nondegenerate normal law. It follows that, for any positive , there exists some positive A such that(k f (U T k )| = 1 0 |f (ζ a )|αζ a-1 dζ < ∞ and IE(τ k f (U T k )) = 0.Then, for any positive λ,IP(S * n ≥ λ) ≤ exp(-z) ≤ exp -λ 2 2(V + Kλ) ,where z = z(λ) is the positive real defined by Kz + √ 2V z = λ.

  /u) + uz + Kz) = √ 2V z + Kz, which proves (B.5). Hence Theorem B.2 holds.We now give an application of Theorem B.2 to bounded random variables in Corollary B.1 below, which improves on the usual Bernstein's inequality.Corollary B.1. Let Z 1 , . . . , Z n be a finite sequence of independent random variables. Suppose that Z i ≤ M almost surely for any i. SetD n = n i=1 IE(Z 2 i ) and L n = (M D n ) n ≥ 2D n x + max(L n /3, 1/4)M x) ≤ exp(-x).Remark B.1. The usual multiplicative factor before M x is 1/3. Since L n ≤ 1, Corollary B.1 gives slightly better bounds. Proof of Corollary B.1. For any m ≥ 4, since Z m i+ ≤ M m-3 Z 3 i+ , m-3 (M L n /3) ≤ max(M/4, M L n /3) m-2 . Consequently, assumption (a) of Theorem B.2 holds true with V = D n and K = max(M/4, M L n /3), which completes the proof of Corollary B.1.

  n i=1 IE(Z 2 i ) and any couple (λ, x) of strictly positive reals,(a) IP(S * n ≥ λ) ≤ exp(-x -2 V h(λx/V )) + n i=1 IP(Z i > x), with h(x) = (1 + x) log(1 + x) -x. Moreover, for any positive ε, (b) IP(S * n ≥ (1 + ε)λ) ≤ exp(-x -2 V h(λx/V )-x) + .Let us prove (a).If Z i ≤ x for any i in [1, n], then, by (B.6), S * n ≤ S * n . It follows that IP(S * n > S * n ) ≤ IP(Z 1 > x) + • • • + IP(Z n > x). .1(a), since IE( Z2 i ) ≤ IE(Z 2 i ). We now prove (b). Applying (B.6), we obtain thatIP(S * n ≥ (1 + ε)λ) ≤ IP( S * n ≥ λ) + IP n i=1 (Z i -x) + ≥ ελ ≤ IP( S * n ≥ λ) + (ελ) -1 n i=1 IE(Z i -x) +

Theorem B. 4 .

 4 Let Z 1 , . . . , Z n be a finite sequence of independent bounded real-valued random variables. Suppose that Z 2 i ≤ M i for any i in[1, n]. Then, for any positive λ.

  n ≥ λ) ≤ exp -x 2 /(2M 1 + • • • + 2M n ) . |S k | ≥ λ) ≤ 2 exp -x 2 /(2M 1 + • • • + 2M n ) . Proof. It is enough to prove that, if Z belongs to [-m, m] almost surely, then (B.8) IE(exp(tZ -tIE(Z)) ≤ exp(t 2 m 2 /2), which ensures that log IE exp(tS n ) ≤ t 2 (M 1 + • • • + M n )/2,and next to apply Lemma B.1. To prove (B.8), we may assume that m = 1. From the convexity of the exponential function, 2 exp(tZ) ≤ (1 -Z) exp(-t) + (1 + Z) exp(t).

α i 0 Q

 0 p (u)du = O((i + 1) -s ) ensures that (C.14) nM p,α,n (Q) = O(n p-s ) as n → ∞.In particular, if p > 2 and s = p/2, (C.15) nM p,α,n (Q) = O(n p/2 ) as soon asα i 0 Q p (u)du = O((i + 1) -p/2).

- 1 F 0 H

 10 Proposition D.1. Let Z 1 , . . . , Z N be a finite family of real-valued integrable random variables. Let F i be the distribution function ofZ i . Let F = F 1 + F 2 + • • • + F N and let F -1 denote the generalized inverse of F . Then IE max(Z 1 , Z 2 , . . . , Z N ) ≤ N N -1 (u)du. Remark D.1. Let H i = 1-F i denote the tail function of X i . Let H = H 1 +H 2 +• • •+H N and let H -1 denote the generalized inverse of F . Then Proposition D.1 is equivalent to IE max(Z 1 , Z 2 , . . . , Z N ) ≤ 1 -1 (u)du.Proof. For N = 1, Proposition D.1 is obvious. Let N ≥ 2 and T = max(Z 1 , Z 2 , . . . , Z N ). For any real t,T ≤ t + sup i∈[1,N ] (Z i -t) + ≤ t + N i=1(Z i -t) + . 1 (u) -t) + du.

  proved that S nn converges in distribution to a standard normal law as n tends to ∞ if

	n	
	(4.13)	IE(X 2
	i=1	

in 1I |X in |>ε ) → 0 as n → ∞ for any ε > 0. Now one can easily prove that (4.13) holds true if and only if (4.14)

  dx.

	Now (4.75) and (4.76) together with (4.28) ensure that
	n
	k=1

  For any x = (x 1 , . . . x d ) in IR d and any relative integer K , let Π K

	over [0, 1].	
	r 2	,
	which implies Lemma 7.1. Hence Proposition 7.2 holds, which completes the proof of
	Theorem 7.2.	

  Proposition 8.1. For f in Lip * (s, p, IR d ), let Then . ond is a norm on Lip * (s, p, IR d ). Furthermore this norm is equivalent to the usual norm . Lip * (s,p,IR d ) on Lip * (s, p, IR d ).

	f ond = sup	|a λ | p 1/p	, sup	|a λ | p 1/p	2 js+jd/2-jd/p .
	λ∈Z Z d		j∈IN	λ∈Λ j	

  provides better results for classes of sets. For example, for the class of orthants, the uniform central limit theorem holds under the minimal mixing condition k>0 β k < ∞, as shown by Corollary 8.2 below. Corollary 8.2. Let (X i ) i∈Z Z be a strictly stationary sequence of random variables with values in IR d , satisfying the β-mixing condition k>0 β k < ∞. Assume that the marginal distribution functions F j of the law of X 0 are continuous. Then there exists a Gaussian process G with uniformly continuous trajectories on IR d equipped with the pseudo-metric d F given by |F j (x j ) -F j (y j )|, where x = (x 1 , . . . x d ) and y = (y 1 , . . . y d ), such that the normalized and centered empirical distribution function ν n defined in Section 7.5 converges in distribution to G in B(IR d ) as n tends to ∞.Proof of Theorem 8.3. We start by replacing the initial entropy function by some function H with additional monotonicity properties.

	d F (x, y) = sup
	j∈[1,d]
	Lemma 8.2. Let H 1,Q

  , their variance is bounded up by the length of the block multiplied by g 1,Q . Hence, as previously, by the Schwarz inequality together with Inequality (B.4),

	(8.48)	log IE( exp t(S l n

  g) ∞ ≤ 2q k and IE(T 2 (g)) ≤ 2q k δ k .

	Now, by (8.53) and Inequality (B.4),
	(8.54)	log IE(exp(tT (g

) -p . Compare (10) with the Doob-Kolmogorov inequality for martingales.

Consequently the first marginal constraints at range N + 1 for the lines 2i and 2i -1 hold true if and only if (i) q ii 01 = a i 0 -(a i 0 ∧ b i 0 ) and q ii 10 = a i 1 -(a i 1 ∧ b i 1 ).

Hence there exists a unique (q ii εη ) ε,η satisfying (5.12) and the marginal constraints on the lines. Similarly, if a i 0 + a i 1 > b i 0 + b i 1 , then the constraint on the first marginal at range N , which is implies that p N j,i = 0 for any j = i. Then the marginal constraints at range N + 1 on columns 2i et 2i -1 hold true if and only if (ii)

Hence there exists a unique (q ii εη ) ε,η satisfying (5.12) and the marginal constraints on the columns.

It remains to define the probabilities p N +1 2i-ε,2j-η for j = i. If p N i,j = 0, then these numbers are equal to 0. If p N i,j = 0, then (5.13) IP(X ∈ I N,i | A) > IP(X ∈ I N,i ) and IP(X ∈ I N,j | A) < IP(X ∈ I N,j ).

Under (5.13) the reals q ii 10 and q ii 01 are determined by ( (ii). Summing on the lines 2i et 2i -1, we then get that the marginal constraints are satisfied if

which ensures that the above marginal constraints are satisfied. The case b i 1 < a i 1 can be treated in a similar way. Hence r i0 = (a i 0 -q ii 00 -q ii 01 )/(a i 0 + a i 1 -b i 0 -b i 1 ) is nonnegative. In a similar way, it can be proven that r i0 ≤ 1. Lety then r i1 = 1 -r i0 . We now deal with the column j. By (4.13), the reals q jj εη satisfy condition (i) (with j instead of i). Starting from (i), one can define nonnegative reals s j0 et s j1 = 1 -s j0 corresponding to the column j, in the same way as the reals r i0 and r i1 are defined from (ii). We then set (5.14) p N +1 2i-ε,2j-η = r iε s jη p N i,j for (ε, η) ∈ {0, 1} 2 , which completes the definition of ν N +1,A . Condition C(N + 1) is then satisfied. We now check the constraint on the first margin (the constraint on the second margin can be

Multivariate distribution functions

Throughout this section, IR d is equipped with the usual product order. Let (X i ) i∈Z Z be a strictly stationary sequence of random variables with values in IR d . We set

1I X i ≤x and F (x) = IP(X 0 ≤ x).

The so defined empirical distribution function corresponds to the empirical process indexed by the class of lower-left closed orthants. We then define the empirical bridges ν n by

The result below extends Theorem 7.2 to the multivariate case. The most striking fact is that, for multivariate distribution functions, the mixing condition does not depend on the dimension d, contrary to the previous results on the same subject. We refer to [START_REF] Bücher | A note on weak convergence of the sequential multivariate empirical process under strong mixing[END_REF] for an extension of this result to the sequential empirical process.

Theorem 7.3. Let (X i ) i∈Z Z be a strictly stationary sequence of random variables with values IR d . For each j in [1, d], let F j denote the distribution function of the j-th component of X 0 . Suppose that the distribution functions F j are continuous. Assume furthermore that the strong mixing condition (i) of Theorem 7.2 holds true for the strong mixing coefficients defined by (2.1). Then there exists a Gaussian process G with uniformly continuous trajectories on IR d equipped with the pseudo-metric d F given by d F (x, y) = sup j∈ [1,d] |F j (x j ) -F j (y j )|, where x = (x 1 , . . . x d ) and y = (y 1 , . . . y d ),

such that ν n converges in distribution to G in B(IR d ) as n tends to ∞.

Proof.

Let X i = (X 1 i , . . . , X d i ). Define the random variables Y i in [0, 1] d by Y i = (F 1 (X 1 i ), . . . , F d (X d i )). Since the marginal distributions functions F i are continuous, the random variables Y i have uniform margins. Consequently, in order to prove Theorem 7.3, we may assume, without loss of generality, that the random variables X i are with values in [0, 1] d and with marginal distributions the uniform distribution over [0,1]. In that case d F is the distance induced by the norm . ∞ . Under condition (i) of Theorem 7.2, the strong mixing coefficients are summable. Hence Corollary 4.1 implies the fidi convergence fo a Gaussian process with covariance defined by (7.11). In view of Theorem 7.1, it remains to prove the stochastic equicontinuity property. This property follows immediately from Proposition 7.3 below. Proposition 7.3. Let (X i ) i∈Z Z be a strictly stationary sequence of random variables with values in [0, 1] d . Suppose that the coordinates of X 0 have the uniform distribution Definition 8.4. Let (V, d) be a pseudo-metric space. Let [START_REF] Dudley | The sizes of compact subsets of Hilbert space and continuity of Gaussian processes[END_REF] has given an entropy criterion ensuring the a.s. uniform continuity of Gaussian processes. Let H be an Hilbert space and B be a Gaussian process indexed by H, with covariance function the scalar product of H. If V is a totally bounded subset of H and if (8.11)

then there exists a version of B with a.s. uniformly continuous trajectories on V .

However, as shown by some counterexamples, condition (8.11) does not imply the uniform functional central limit theorem for empirical processes. Some additional conditions are needed, such as bracketing conditions. Below we define the notions of brackets and diameter of brackets and the notion of entropy with bracketing. Definition 8.5. Let V be a subspace of the space of numerical functions on (X , P ). Let Λ : V → IR + be a function such that, for any f and any g in V , (8.12) |f | ≤ |g| implies that Λ(f ) ≤ Λ(g).

Let F ⊂ V . If f ≤ g, we denote by [f, g] the set of functions h such that f ≤ h ≤ g. This set is called interval of functions. The nonnegative real Λ(g

A class F of functions in V is said to be totally bounded with bracketing if, for any positive δ, there exists a finite family S(δ) of intervals of functions in V with diameter lass than δ, such that (8.13a) for any f ∈ F, there exists

The covering number N [ ] (δ, F) in (V, Λ) is the minimal cardinality of families S(δ) satisfying (8.13a). The entropy with bracketing is defined by (8.13b)

If Λ is a norm on V and if d λ is the distance corresponding to this norm, then the following relation between entropy and entropy with bracketing holds:

The first step of the proof is to replace the initial sequence by a sequence of independent blocks of length q 0 . This will be done using the coupling lemma 5.1. Applying recursively Lemma 5.1, we get that there exists some sequence (X 0 i ) i>0 with the properties below. 1. Let q = q 0 . For any i ≥ 0, the random vector U 0 i = (X 0 iq+1 , . . . , X 0 iq+q ) has the same law as U i = (X iq+1 , . . . , X iq+q ).

2. The random vectors (U 0 2i ) i≥0 form an independent sequence. and the same property holds for (U 0 2i+1 ) i≥0 . 3. Furthermore IP(U i = U 0 i ) ≤ β q for any i ≥ 0.

Using properties 1-3, we now bound up the cost of replacement of te initial sequence by this new sequence.

Hence, by Property 3, (8.38)

which completes the proof of Lemma 8.2. Now, from Definition 8.6, q 2 0 ≥ nδ/H(δ). Since lim n↑∞ nβ n = 0, it ensures that lim n↑∞ √ nβ q 0 = 0. Consequently the upper bound in Lemma 8.2 tends to 0 as n tends to ∞. Therefrom the stochastic equicontinuity property holds for Z n if and only if this property holds true for Z 0 n . Let us now prove the stochastic equicontinuity property for Z 0 n . The main problem which arises here is that the length of blocks q 0 is too large to get efficient Bernstein's type exponential inequalities. In order to improve the results of [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF] or [START_REF] Arcones | Central limit theorems for empirical and Uprocesses of stationary mixing sequences[END_REF], we will replace recursively the sequence (X 0 n ) n by sequences (X j n ) n with independent blocks of length q j = q 0 2 -j . In order to construct the sequences (X j n ) n , we will assume that the underlying probability space is rich enough in the following sense: there exists an array (u j,i ) (j,i)∈IN×IN of independent random variables with uniform law on [0, 1] independent of the sequence (X 0 i ) i .
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We first construct the sequence (X 1 l ) l from (X 0 l ) l . Let q = q 0 . Then q 1 = q/2 and

By the maximal coupling theorem (Theorem 5.1) applied to the sequence (ξ k ) -q 1 <k≤q 1 defined by ξ k = X k-qi-q 1 together with the Skorohod lemma (Lemma E.2), there exists a random sequence (ξ * k ) -q 1 <k≤q 1 with the same distribution as (ξ k ) -q 1 <k≤q 1 , which is a measurable function of u 0,i and W 0 i , such that the random vector (ξ * 1 , . . . , ξ * q 1 ) is independent of U 0 i , has the same distribution as V 0 i . We then set (here q = q 0 ) (8.39)

From (8.39) together with (8.30) and (8.32), for any bounded function f ,

Proceeding by induction one can prove the proposition below.

Proposition 8.2. Let (X * i ) i∈Z Z be defined from (X i ) i∈Z Z via Theorem 5.1. Then one can construct sequences (X j i ) i>o for j in [1, K] with the properties below: (i) Let q = q 0 . Set T j i = (X j iq+1 , . . . , X j iq+q ) j∈[0,K] . Then the blocks (T j i ) i≥0 are identically distributed. Furthermore the blocks (T j 2i ) i≥0 are mutually independent and the blocs (T j 2i+1 ) i≥0 are mutually independent. (ii) For j in [0, K], let W j i = (U j i , V j i ) with U j i = (X j q j i+1 , . . . X j q j i+q j+1 ) and V j i = (X j q j i+q j+1 +1 , . . . X j q j i+q j ).

Then, for any j in [1, K] and any nonnegative integer i, W j 2i = U j-1 i , W j 2i+1 is a measurable function of W j-1 i and u j-1,i , and the random vector (W j-1 i , W j 2i+1 ) has the same distribution as (X 1-q j , . . . , X q j , X * 1 , . . . X * q j ). Properties (i) and (ii) ensure the following additional properties:

(iii) For any j in [0, K], the random vectors W j 0 , . . . , W j 2 j -1 are independent and identically distributed, and W j 0 has the same law as (X 1 , . . . , X q j ). (iv) For any bounded function f , any j in [0, K -1] and any i ≥ 0,

In order to control the fluctuations, we will define δ k -nets F k as well as projections Π k on F k . Throughout this proof, IR d is equipped with the product order. As in the proof of Theorem 7.4, we may assume that the components of X 0 are uniformly distributed over [0, 1]. Let P denot the law of X 0 . For t in [0, 1], let (8.60)

For any (s, t) in [0, 1] d with s < t,

Now Q is absolutely continuous with respect to P , which implies that the marginal distribution function G j is continuous and has a bounded variation. Furthermore, since

The sequence of random variables (Y i ) i has the same β-mixing properties as the initial sequence (X i ) i Furthermore, from the definition of G, for any

Hence it is enough to prove that the empirical distribution function associated to (Y i ) i satisfies the uniform central limit theorem. Set

Hence the entropy with bracketing H 1,Q associated to the new sequence (Y i ) i and the class of lower-left orthants satisfies H 1,Q (x) = O(log(1/x)) as x tends to 0, which implies Corollary 8.2.

EXERCISES 1) Use Exercise 4 in Chap. 1 to prove that the map f → f 2,β , which is defined in (8.21) is a norm on L 2,β (P ).

Problem. In this problem, we will prove the uniform central limit theorem of [START_REF] Pollard | A central limit theorem for empirical processes[END_REF] for classes of functions satisfying an universal entropy condition, in a particular case.

Apply now (9.11) with λ = π: since π is an invariant measure, we get that

Hence (9.12)

Since λP k-1 (s) -π(s) ≥ 0, the measure

. Hence the decomposition (9.12) ensures that λP n -π is the difference of two nonnegative measures with masses πQ n (1), which completes the proof of Lemma 9.2.

Starting from Lemma 9.2, we now bound up the β-mixing coefficients the stationary chain with transition P . Proposition 9.3. Let P be a transition probability kernel satisfying the assumptions of Lemma 9.2. with λ = ν. Then, for any positive integer n,

Remark 9.3. Let (ξ i ) i≥0 be the stationary chain with transition P and τ be the first renewal time, as defined in definition 9.5. Let τ be an independent copy of τ . Then Proposition 9.3 is equivalent to the upper bound

Proof of Proposition 9.3. Applying (9.5) with λ = δ x , we get that (9.13)

Next the equality of masses in (9.13) yields

Consequently

which ensures that (9.14)

Integrating (9.14) with respect to π, we get that

Applying Lemma 9.2 with λ = ν we then obtain Proposition 9.3.

To conclude this section, we give an example of kernel satisfying the assumptions of Proposition 9.3. Lemma 9.3. Let ν be an atomless law and s be a measurable function with values in ]0, 1] such that ν(s) > 0. Suppose furthermore that

Then P is aperiodic, positively recurrent and satisfies H(ν, s).

Remark 9.4. Since ν is an atomless law, the renewal times are observable.

It follows that the Pitman occupation measure is equal to s -1 ν. By assumption (a), this measure has a finite total mass, which ensures that the chain is positively recurrent. Furthermore

is the unique invariant law under P .

Let a 0 = 1 and a k = νP k-1 (s) -π(s). The equality of masses in (9.12) yields (9.16)

It follows that H(ν, s) is implied by the weaker condition

From (9.15) and the fact that 1/s = l≥0 t l , the last condition holds if and only if

which ensures that each term in the above sum is nonnegative. Hence (9.19) holds true, which completes the proof of Lemma 9.3.

Starting from Proposition 9.3, we now give estimates of the β-mixing coefficients for the transition P defined in Lemma 9.3 in the stationary case.

Proposition 9.4. Let ν be an atomless law on ]0, 1] and s be a function with values in ]0, 1] such that ν(s) > 0. Let P (x, .) = s(x)ν + (1 -s(x))δ x . Assume that the assumption (a) of Lemma 9.3 holds. Let (ξ i ) i≥0 be the stationary chain with transition probability kernel P . Then the stationary law is the unique invariant law π defined by (9.16). Now, let τ = inf{i > 0 : ξ i = ξ i-1 } and τ be an independent copy of τ . Then, for any positive n,

Proof. The upper bound comes from Proposition 9.3 together with Remark 9.3. We now prove the lower bound. From (9.12) applied with λ = δ x ,

Since the measures νQ n-k and πQ n are atomless, it follows that

Integrating this lower bound with respect to the invariant law π then yields the desired result.

In Section 9.7, we wil apply Proposition 9.4 to prove the optimality of the strong mixing condition of Theorem 4.2. In the forthcoming sections, we give links between ergodicity, regularity and strong mixing.

Small sets, absolute regularity and strong mixing

In this section, we give relations between the return times in small sets in the sense of Nummelin and the various mixing coefficients. Definition 9.7. Let P be an irreducible and recurrent transition probability kernel, m be a maximal irreducibility measure and D be a measurable set such that m(D) > 0. A set D is called a small set if there exists a positive integer m, a positive constant ρ and a probability measure ν such that P m (x, .) ≥ ρ1I D (x)ν. The chain is said to be Doeblin recurrent if X is a small set. Then the above condition is called Doeblin's condition.

The small sets are called C-sets by [START_REF] Orey | Lecture notes on limit theorems for Markov chain transition[END_REF] and small sets by [START_REF] Nummelin | General irreducible Markov chains and non negative operators[END_REF]. They differ from the petite sets defined in [START_REF] Meyn | Markov chains and stochastic stability[END_REF].

We now prove that the Doeblin recurrent chains are geometrically uniformly mixing. This result is essentially due to [START_REF] Doeblin | Sur les propriétés asymptotiques de mouvements régis par certains types de chaînes simples[END_REF]. Here we give a proposition which can be found in [START_REF] Ueno | On recurrent Markov processes[END_REF]. Proposition 9.5. Let P be a probability transition kernel satisfying Doeblin's condition with m = N . Then, for any measurable set A such that ν(A) > 0, any (x, x ) in X × X and any positive integer k,

Furthermore there exists a unique invariant probability law π under P . The chain ξ i ) i∈Z Z with probability transition kernel P and initial law π satisfies

Proof. We prove (i) by induction on k. For k = 1,

Suppose that (i) holds true at range k. Write

Now the function y

Then

Therefrom, by the Fubini theorem,

under the induction hypothesis. Consequently, if (i) holds true at range k, then (i) holds true at range k + 1. Thus, by induction on k, (i) holds true for any positive integer k.

We now prove (ii). We start by noting that

π is an invariant law under P . Now, by (i), for any measurable set A,

We now prove that π is unique. If π is an invariant law, then

Suppose now that the chain fails to be Doeblin recurrent. Then the rate of convergence to the invariant measure depends on the initial law and the chain fails to be uniformly mixing. Throughout the rest of this section, we are interested in the relations between the integrabiliy properties of the renewal times and the rates of mixing for non uniformly mixing Markov chains. Our aim is to remove the excessivity assumption of Section 9.4. We will extend results of [START_REF] Bolthausen | The Berry-Esseen theorem for functionals of discrete Markov chains[END_REF]Bolthausen ( , 1982b) ) to general rates of mixing. Our extensions are based on a Proposition of [START_REF] Lindvall | On coupling of discrete renewal processes Z[END_REF] which gives a link between coupling and regeneration times. Thus, we start by introducing the coupling method, which goes back to [START_REF] Doeblin | Sur les propriétés asymptotiques de mouvements régis par certains types de chaînes simples[END_REF]. Our exposition comes from [START_REF] Pitman | Uniform rates of convergence for Markov chain transition[END_REF] paper.

Let us consider two initial laws µ and λ. We define the chain (ξ i , ξ i ) i≥0 on X × X as follows: the initial law of the chain is µ ⊗ λ, and the transition probability kernel is P ⊗ P . Then (ξ i ) i≥0 is a Markov chain with initial law µ and transition probability kernel P and (ξ i ) i≥0 is a Markov chain with initial law λ and transition P . Furthermore, from the definition, these chains are independent. Let (η i ) i≥0 and (η i ) i≥0 denote the incidence processes associated to the chains (ξ i ) i≥0 and (ξ i ) i≥0 (see Definition 9.5 for the definition). Set (9.20)

Then ξ T and ξ T have the distribution ν. Furthermore ξ T is independent of (ξ i ) i<T and ξ T is independent of (ξ i ) i<T . We now define the coupled chain (ξ i ) i≥0 by ξ i = ξ i for i < T and ξ i = ξ i for i ≥ T . By the Markov property, this new chain is a Markov chain with initial law λ. Furthermore ξ i = ξ i for i ≥ T . We call T coupling time of the chains. From the definition of the coupling time, (9.21)

We refer to [START_REF] Pitman | Uniform rates of convergence for Markov chain transition[END_REF] for a proof of (9.21). If the kernel P is positively recurrent and if π is the invariant law, then, applying (9.21) with λ = µ = π, we get that (9.22)

Consequently the rate of β-mixing is closely related to the tail of the coupling time. In order to give more precise quantitative results, let us now introduce some classes of increasing functions.

Definition 9.8. Let Λ 0 be the class of nondecreasing functions ψ from IN into [2, +∞[ such that the sequence ((log ψ(n))/n) n is nonincreasing and converges to 0. For ψ in Λ 0 , define the cumulative function ψ 0 associated to ψ by ψ 0 (k) =

k-1 i=0 ψ(i). The proposition below, due to [START_REF] Lindvall | On coupling of discrete renewal processes Z[END_REF], generalizes a previous result of Pitman (1974). We refer to [START_REF] Lindvall | On coupling of discrete renewal processes Z[END_REF] for a proof of this result. Proposition 9.6. Let P be a stochastic kernel. Assume that P is irreducible, aperiodic, positively recurrent, and satisfies condition M(1, s, ν). Let ψ be an element of Λ 0 . If

mixing coefficients of the extended chain (ξ i , U i ) i≥0 defined in Section 9.3 by Equation (9.2). Our lemma is inspirated from Lemma 5 in Bolthausen (1982b).

Lemma 9.4. Let (α n ) n≥0 and ( βn ) n≥0 denote respectively the sequences of strong mixing and β-mixing of the completed chain (ξ i , U i ) i≥0 . Then, for any positive integer n, αn+1 ≤ α n ≤ αn and βn+1 ≤ β n ≤ βn .

Proof. If C is a σ-field independent of A ∨ B, then, as proved in [START_REF] Bradley | Basic properties of strong mixing conditions[END_REF],

.

It follows that αn+1 ≤ α n . The proof of the inequality β n ≤ βn+1 is similar.

We now compare the strong mixing coefficients and the tail functions of the regeneration times.

Proposition 9.7. Let P be an irreducible and aperiodic stochastic kernel, satisfying M(1, s, ν). Let ψ be a function in Λ 0 . Suppose that the stationary chain (ξ i ) i≥0 with transition P and invariant law π satisfies n ψ(n)α n < ∞. Then, with the notations of Proposition 9.5, IE π (ψ 0 (T 0 )) < ∞, and consequently n ψ(n)β n < ∞.

Remark 9.6. Proceeding as in Remark 9.5, one can prove that, if the above chain is geometrically strongly mixing, then the renewal times have a finite Laplace transform in a neighborhood of 0, and consequently the chain is geometrically β-mixing.

Application to arithmetic rates of mixing. Suppose that ψ(n) = max(2, n q-1 ) for some q ≥ 1. By Proposition 9.7, E π (T q 0 ) < ∞ ⇔ n>0 n q-1 β n < ∞ ⇔ n>0 n q-1 α n < ∞. Moreover, by (9.24), these conditions are equivalent to the condition IE(τ q+1 0 ) < ∞. Next, using the fact that Proposition 9.7 holds for any function ψ in Λ 0 , one can prove that, for any q > 1, IP π (T

). Moreover, by (9.24), these conditions are equivalent to the tail condition IP(τ 0 > n) = O(n -q-1 ). 9.7. On the optimality of Theorem 4.2

In this section, we prove that condition (DMR) is sharp for the central limit theorem in the stationary case. In order to prove the optimality of this condition, we will construct a stationary Markov chain of random variables with values in [0, 1] and strong mixing coefficients of the order of n -a in such a way that, for any nonnegative decreasing function f such that the integrals appearing in Corollary 9.2 diverge, the random variable

(the times T 0 and T 1 are defined in Section 9.3) fails to have a finite second moment. Applying then the converse of the central limit theorem, we will prove that the normalized and centered partial sums do not satisfy the central limit theorem. The chain will be defined from the transition probability kernel P introduced in Lemma 9.3. This transition can also be used to get lower bounds in the law of the iterated logarithm of Chapter 6 and lower bounds in the Marcinkiewicz-Zygmund type strong laws of Chapter 3 (we refer to Theorem 2 in Rio (1995a) for lower bounds in the strong laws). We mention that [START_REF] Bradley | On quantiles and the central limit question for strongly mixing sequences[END_REF] gives more general results with arbitrary rates of mixing.

Theorem 9.4. For any real a > 1, there exists a stationary Markov chain (U i ) i∈Z Z of random variables with uniform law over [0, 1] and β-mixing coefficients (β n ) n such that: (i) 0 < lim inf n→+∞ n a β n ≤ lim sup n→+∞ n a β n < ∞, (ii) for any measurable and integrable function f :]0, 1] → IR such that (a)

] does not converge in law. From Theorem 9.4 and Corollary 9.2, we get the following converse to Theorem 4.2 in Section 4.

Corollary 9.3. Let a > 1 and let F be the distribution function of a centered and integrable random variable Z with atomless distribution. If (a)

then there exists a stationary Markov chain (Z i ) i∈Z Z of random variables with distribution function F such that (i) 0 < lim inf n→+∞ n a α n ≤ lim sup n→+∞ n a β n < ∞, (ii) n -1/2 n i=1 Z i does not converge in distribution to a normal law. Proof of Theorem 9.4. Let P (x, .) = s(x)ν + (1 -s(x))δ x be the transition probability kernel of Lemma 9.3. Take X =]0, 1] and s(x) = x. Let λ denote the Lebesgue measure on [0, 1]. For a > 0, let us define the regeneration measure ν by ν = (1 + a)x a λ. Then the Therefrom, applying the strong law of large numbers to the sequence (τ k f (U T k )) k>0 , we get that

Now, from (9.36), the random variable

). Therefore, putting together (9.38) and the above inequality we get (9.37).

From (9.37), if the compound sums ∆ n = n -1/2 n-1 k=0 τ k f (U T k ) do not converge in distribution to a normal law as n tends to ∞, then the normalized sums n -1/2 n i=1 f (U i ) do not satisfy the central limit theorem. Now by the converse of the central limit theorem (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF] for more about this), ∆ n converges in law to a normal random variable if and only IE(τ 2 k f 2 (U T k )) < ∞. By (9.38), this condition holds if and only if

Setting u = ζ a in the above integral, we then get Theorem 9.4(ii), which completes the proof.

EXERCISES 1) Let p > 2. Prove that, for any a > 1 and any continuous distribution function F such that IR |x| p dF (x) < ∞ and IR xdF (x) = 0, there exists a stationary sequence (X i ) i∈Z Z of random variables with common law F and β-mixing coefficients β i of the order of i -a , such that

for some positive constant c. Compare this result with Theorem 6.3 and Corollary 6.1.

2) Let (ξ i ) i∈Z Z be a stationary Markov chain. Assume that the uniform mixing coefficients ϕ n converge to 0 as n tends to ∞. Prove that ϕ n = O(ρ n ) for some ρ in [0, 1[.

ANNEXES A. Young duality and Orlicz spaces

In this annex we recall some basic properties of the Young transform of convex functions. Next we define the Orlicz spaces and the Orlicz norms and we give elementary applications of these notions.

Let us introduce the class of convex functions

We denote by D φ the set of nonnegative reals x such that φ(x) < ∞. From the convexity of φ, the set D φ is an interval. Starting from (A.1), we now prove that φ * belongs to Φ. Clearly φ * is nondecreasing. Noticing that the straight line D 0,z with equation y = -z does not intersect G φ if and only if z ≥ 0, we get that φ * (0) = 0. To prove that φ * is a convex function, we will apply the elementary lemma below (proof omitted).

Lemma A.1. For any set I and any collection (ψ i ) i∈I of convex functions, ψ = sup i∈I ψ i is a convex function.

The convexity of φ * follows immediately from Lemma A.1 to the collection of functions (ψ x ) x∈D φ defined by ψ x (λ) = λx -φ(x). We now prove that φ * is left-continuous. First note that

This inequality is called Young's inequality. If l = lim λ λ 0 φ * (λ) is finite, then, taking the limit as λ tends to λ 0 in the Young inequality, we get that φ(x) + l ≥ λ 0 x for any x in D φ , which ensures that φ(λ 0 ) is finite and satisfies φ(λ 0 ) ≤ l. Since φ * is nondecreasing, it follows that l = φ(λ 0 ).

We now prove that φ * * = φ. From the Young inequality φ(x) ≥ φ * * (x). Suppose now that y > φ * * (x). Then, for any nonnegative λ, y > λx -φ * (λ). Now, from the convexity of φ, G φ is the intersection of all the half-planes y > λx -φ * (λ). Hence y > φ(x), which proves the converse inequality φ(x) ≤ φ * * (x).

Derivatives of φ * . The derivatives of φ * satisfy the relations below:

To prove (A.3), we consider the intersection points of the straight line y = λx -φ * (λ) with Ḡφ . Since the inverse functions are left-continuous the intersection point (x(λ), y(λ)) with maximal coodinate x satisfy x(λ) = φ -1 (λ + 0). For arbitrary ε > 0, let us consider the straight line with equation y -φ(x(λ)) = (λ + ε)(x -x(λ)). For x = 0 in this equation, y = φ * (λ) + εx(λ). Consequently φ * (λ + ε) ≥ φ * (λ) + εx(λ). Next, for any x > x(λ), φ (x) > λ. Hence, for x > x(λ) and ε small enough, φ (x) ≥ λ + ε. Therefrom, for any t ≥ x, (λ + ε)t -φ(t) ≤ (λ + ε)x -φ(x). Now, for any t ≤ x,

Both the two above inequalities ensure that (λ + ε)t -(φ * (λ) + εx) ≤ φ(t) for any positive t. Hence φ * (λ + ε) ≤ φ * (λ) + εx. Thus we have proved that

The left hand side inequality in (A.3) follows immediately from (A.4). The proof of the second part of (A.3) is similar.

Inverse function of φ * . The lemma below furnishes a direct way to compute the inverse function of φ * .

Lemma A.2. For any φ in Φ and any positive x,

Proof of Lemma A.2. The slope of the straight line D x,t containing (0, -x) and (t, φ(t)) is equal to t -1 (φ(t) + x). Let t 0 be the point which realizes the minimum of this slope and λ 0 be the corresponding slope. Then the straight line D x,t 0 is tangent to the curve y = φ(t). Consequently φ(λ 0 ) = x, which completes the proof of Lemma A.2.

A.2. Orlicz spaces. Let φ be any function in Φ such that φ = 0. For any random vector Z in a normed vector space (E, |.|), the Luxemburg norm associated to φ is defined by

if there exists some positive real c such that IE(φ(|Z|/c) < ∞, and by Z φ = +∞ otherwise.

We now prove that . φ is a norm. Clearly λZ φ = |λ λZ φ . Next, from the convexity of φ, for c > Z φ and c > Z φ ,

which proves the triangle inequality. Now, if Z φ = 0, then, for any positive integer n, φ(n|Z|) = 0 almost surely. Consequently, for any positive a such that φ(a) > 0, n|Z| ≤ a almost surely, which implies that Z = 0 almost surely, which completes the proof. Throughout the sequel, we denote by L φ the normed space of real-valued random variables Z such that Z φ < ∞.

We now give classical extensions of the Hölder inequalities to Orlicz spaces. Let X and Y be nonnegative random variables. Then, by the Young inequality (A.2), We now give some applications of these theoretical results to particular functions. We refer to [START_REF] Dellacherie | Probabilité et potentiel[END_REF] for more about theoretical results.

A.3. Applications to classical Orlicz spaces. First take p > 1 and φ(x) = (x p /p). Let q = p/(p -1) be the conjugate exponent. Then φ * (y) = q -1 y q . Hence, by (A.7), (A.9)

applying this inequality to X/ X p and Y / Y q , we get the usual Hölder inequality

Note that (A.8) implies (A.10) only in the case p = q = 2. For p = 2, a direct application of (A.8) leads to the mutiplicative loss 2p -1/p q -1/q . Now, let φ(x) = e x -1 -x. Then the equation of the tangent to the curve (x, φ(x)) at the point (t, φ(t)) is y -φ(t) = (x -t)(e t -1), whence φ * (e t -1) = (t -1)e t + 1. Now, if λ = e t -1, then t = log(1 + λ) and consequently

Affine transformations . Let A be defined by A(x, y) = (ax, by + cx), with a > 0, b > 0 and c ≥ 0. Let φ A be the map whose graph is the image by A of the graph of φ. Then (A.12)

Since the tangent to G φ with slope λ is changed to the tangent to G φ A with slope (bλ+c)/a by the map A, we get that (A.13) φ * A (λ ) = bφ * ((aλ -c)/b) for any λ ≥ c/a and φ * A (λ ) = 0 otherwise.

B. Exponential inequalities for sums of independent random variables

This annex is devoted to some usual exponential inequalites for sums. We refer to Chapter 2 in [START_REF] Bercu | Concentration inequalities for sums and martingales[END_REF] more about this subject. Throughout the section Z 1 , Z 2 , . . . is a sequence of independent real-valued random variables with finite variance. Set

We start by recalling a version of Bennett's inequality due to [START_REF] Fuk | Probability inequalities for sums of independent random variables[END_REF].

Theorem B.1. Let K be a positive constant. Assume that Z 1 , Z 2 , . . . satisfy the additional conditions Z i ≤ K almost surely. Then, for any

Proof. The proof is based on the classical Crámer-Chernoff calculation, which we now recall in Lemma B.1 below.

Lemma B.1. Let γ be a nondecreasing convex function on IR + , such that γ(t) ≥ log IE(exp(tS n )) for any nonnegative t. Then, for any positive λ,

Proof of Lemma B.1. For t in the domain of γ, set M k (t) = exp(tS k ). Then, from the Jensen inequality, (M k (t)) k≥0 is a nonnegative submartingale. Hence, by the Doob maximal inequality,

and next to apply (A.11) and (A.13). Now, using the independence of the random variables Z i and next the concavity of the logarithm, we get that

Next, the function ψ defined by ψ(0) = 1/2 and ψ(x) = x -2 (e x -x -1) for x = 0 is nondecreasing. Since Z i ≤ K almost surely, it follows that

Combining this inequality with (B.3), we get (B.2). Hence (a) holds. To prove (b), apply (a) to the random variables -Z 1 , . . . , -Z n and add the two inequalities.

Below we give an one-sided version of the Bernstein inequality, which allows to consider random variables with finite Laplace transform only in a right neighborhood of the origin. We refer to [START_REF] Pollard | Convergence of stochastic processes[END_REF] for the usual Bernstein's inequality.

Theorem B.2. Let Z 1 , . . . , Z n be a finite sequence of independent random variables. Set Z i+ = max(Z i , 0). Suppose that there exist positive constants K and V such that

Let f (t) = cosh t + q sinh t. Taking the logarithm in the above inequality, we have:

Hence, integrating twice this differential inequality, we get that log f (t) ≤ qt + t 2 /2, which implies Theorem B.4(a). Theorem 1.4(b) is obvious.

( * ) Sums of non independent random variables. Consider now a random variable which is equal to A + B, where A and B are real-valued random variables, and B may depend on A. Suppose the the Laplace transforms of A and B are finite on a right neighborhood of 0 and let γ A and γ B denote the log-Laplace transforms of A and B respectively. Adding Chernoff's deviation inequalities yields

In fact, the above inequality can be improved of a factor 2, as proved by the lemma below, stated by [START_REF] Rio | Local invariance principles and their application to density estimation[END_REF]. The original proof in [START_REF] Rio | Local invariance principles and their application to density estimation[END_REF] was due to Jean Bretagnolle. Here we will give a shorter proof based on Lemma A.2.

Lemma B.2. Let A and B be real-valued and centered random variables with respective log-Laplace transforms γ A and γ B . Suppose that γ A and γ B are finite in a right neighborhood of 0. Then, for any positive z,

Consequently, for any positive z,

Remark B.2. Clearly (a) may be extended to a finite sum of random variables. For example suppose that A 1 , A 2 , . . . A n is a finite collection of random variables satisfying log IE(exp

Then Inequality (B.5) together with Lemma B.2 yield (B.9)

Proof of Lemma B.2. By the Hölder inequality, for any reals p > 1 and q > 1 with

Applying Lemma A.2, we infer that

It follows that the term on right hand in the above inequality is equal to γ * -1 A (z) + γ * -1 B (z), which completes the proof of Lemma B.2(a). Part (b) is a direct consequence of (a).

C. Upper bounds for the weighted moments

In this annex, we give upper bounds for the quantities M p,α (Q) introduced in chapters one to six. Throughout Annex C, let Q be the quantile function of a nonnegative random variable X. For p ≥ 1, let

Here we give sufficient conditions ensuring that M p,α (Q) is finite. We also give some precise upper bounds on M p,α (Q) and M p,α,n (Q) depending on the mixing rate and the quantile function Q or the tail function of X.

We first bound up M p,α (Q) under moment conditions on X. Let U be a random variable with the uniform distibution over [0, 1]. Then X and Q(U ) are identically distributed. Hence (C.2) IE(X r ) = 1 0 Q r (u)du for any r > 0.

Suppose now that IE(X r ) < ∞ for some r > 1. Then, for any p in ]1, r[, by the Hölder inequality applied with exponents r/(r -p) and r/p, we get that

. Now, proceeding as in the proof of (1.25), we note that, for any positive q, (C.4)

Next (i + 1) q -i q ≤ max(q, 1)(i + 1) q-1 , and consequently

Both (C.3) and (C.5) ensure that (C.6) M p,α (Q) ≤ max(1, (p -1) 1-p/r e p/r ) X p r i≥0

(i + 1) (pr-2r+p)/(r-p) α i 1-p/r .

If the random variable X is bounded, then, taking r = ∞ in (C.6), we get that

Consequently M p,α (Q) is finite as soon as there exists some real r > p such that (C.8) IE(X r ) < ∞ and i≥0 (i + 1) (pr-2r+p)/(r-p) α i < ∞.

We now bound up the quantities M p,α (Q) and M p,α,n (Q) in a slightly different way.

Hence, by the Fubini-Tonelli theorem

We now apply (C.9) to random variables satisfying a tail assumption. Suppose that IP(X > x) ≤ (c/x) r .

Then Q(u) ≤ cu -1/r , and consequently, if r > p, 

Proof. We may assume that I = {1, 2, . . . , N }. Let T = sup i∈I Z i . By Proposition D.1 and the Jensen inequality, for any positive t,

Taking the logarithm, dividing by t and minimizing with respect to t, we infer that

Lemma D.1 follows then from Lemma A.2.

Application to exponentail tails (continued). From the assumption, we may apply Lemma D.1 with the logarithm of the Laplace transform of the standard exponential law: Lemma D.1 holds with L(x) = -log(1 -x) for x ≥ 0. Then L * (t) = 0 for t ≤ 1 and L * (t) = t -1 -log t for t ≥ 1. Consequently Lemma D.1 yields IE(T ) ≤ M with M ≥ 1 solution of the equation M = 1 + log(M N ). Note that M -1 -log N ≥ log(1 + log N ), which gives the order of the loss, when applying Lemma D.1 instead of Proposition D.1.

We now consider random variables with finite moments.

Lemma D.2. Let (Z i ) i∈I be a finite family of nonnegative real-valued random variables. Suppose there exists some convex and nondecreasing function M , taking finite values on a right neighborhood of 1, such that log IE(Z r i ) ≤ M (r) for any r ≥ 1 and any i in I. Let h M be the Young transform of M and H be the logarithm of the cardinality of I. Then

Proof. We may assume that I = {1, 2, . . . , N }. Let T = sup i∈I Z i . Starting from Proposition D.1 and applying the Hölder inequality, we get that

Taking the logarithm, dividing by r and minimizing with respect to r, we infer that log IE(T ) ≤ inf r≥1 r -1 (M (r) + H).

Lemma D.2 follows then from Lemma A.2.

E. Classical results on measurability

In this annex, we first recall a Lemma of [START_REF] Skorohod | On a representation of random variables[END_REF] on representation of random variables. Next we give some properties of projections, which are helpfull to prove the measurability of some functions (see [START_REF] Dellacherie | Capacités et processus stochastiques. Ergebnisse der mathematik und ihrer grenzgebiete[END_REF], Chap. 1). We first recall some lemma which may be found in [START_REF] Skorohod | On a representation of random variables[END_REF].

Lemma E.1. Let X be a Polish space. then there exists Alors a one to one mapping f from X onto a Borel subset of [0, 1], which is bi-measurable with respect to the Borel σ-fields.

Starting from Lemma E.1, we now prove a Lemma of [START_REF] Skorohod | On a representation of random variables[END_REF] stated below.

Lemma E.2. Let X be a Polish space and let X be a random variable from (Ω, T , IP) into X equipped with its Borelian σ-field B(X ). Let A be a σ-field in (Ω, T , IP) and δ be a random variable with uniform distribution over [0, 1], independent of A ∨ σ(X). Then there exists a measurable mapping g from (Ω × [0, 1], A ⊗ B([0, 1])) into X and a random variable V with uniform law over [0, 1], measurable with respect A ∨ σ(X) ∨ σ(δ) and independent of A such that X = g(ω, V ) almost surely.

is measurable with respect to A∨σ(X)∨σ(δ), independent of A and V has the uniform law over [0, 1] (see Annex F). Now the mapping g defined by g(ω, v) = F -1 A (v) is measurable with respect to A ⊗ B([0, 1]) and g satisfies X = g(ω, V ), which completes the proof of Lemma E.2.

We now recall a theorem of Dellacherie (1972, Theorem T32, page 17) on projections.

Theorem E.1.

Let (Ω, F, P ) be a complete probabilised space and (K, B(K)) be a countably generated and locally compact space equipped with its Borel σ-field. Let us denote by π the canonical projection from K × Ω on Ω. Then, for any B in B(K) ⊗ F, the set π(B) belongs to F.

We refer to Dudley (1989, Chap. 13) for more about the measurability properties of projections and for universally measurable sets and universally measurable functions, which are defined below.

Definition E.1. Let (X, X ) be a measurable space and A be a subset of X. Then A is said to be universally measurable if, for any law P on (X, X ), A belongs to the completed σ-field of X for P . Let (Y, Y) be a measurable space. A mapping f from X into Y is said to be universally measurable if, for any B in Y, the set f -1 (B) is universally measurable in X.

To complete this section, we now give a slightly different formulation of Theorem E.1, using universally measurable sets.

Corollary E.1. Let (X, X ) be a measurable space and let (K, B(K)) be a countably generated and locally compact space equipped with its Borel σ-field. Let us denote by π the canonical projection from K × Ω on Ω. Then, for any B in B(K) ⊗ F, the set π(B) is universallly measurable.

F. The conditionnal quantile transformation

In this annex, we will study the properties of the so-called conditionnal quantile transformation introduced in the proof of Lemma 5.2 and in the proof of Skorohod's lemma. The first step to define this transformation is to define a measurable selection of the conditional distribution function.

Let A be a σ-field in (Ω, T , IP) and X be a real-valued random variable. For any rational number q, we set

The so defined random function is almost surely defined on Q, and this function is nondecreasing. The conditional distribution function is defined as the unique right continuous function extending this function to the set of reals. Consequently, for any real x, (F.1)

The function F A defined by (F.1) has the property below: the application which sends (x, ω) on F A (x) is measurable with respect to the completed σ-field associated to B(IR)⊗A.

We now define the conditionnal quantile transformation.

Lemma F.1. Let X be a real-valued random variable, A be a σ-field of (Ω, T , IP) and δ be a random variable with uniform distribution over [0, 1], independent of σ(X) ∨ A. Let F A be the conditional distribution function defined by (F.1). Set

Then V has the uniform distribution over [0, 1], and is independent of A. Furthermore F -1 A (V ) = X almost surely. Proof. Let v(ω, x, t) = F A (x -0) + t(F A (x) -F A (x -0)). The so defined mapping v is measurable with respect to A ⊗ B(IR) ⊗ B(IR). Hence V = v(ω, X, δ) is a real-valued random variable. Let a be any real in Consequently V has the unifom distribution over [0, 1], conditionnally to A, and therefrom V is uniformly distributed over [0, 1]. Now, since x belongs to the set of reals y such that F A (y) ≥ v(ω, x, t), we have:

x ≥ F -1 A (v(ω, x, t)) for any t ∈ [0, 1].

It follows that X ≥ F -1 A (V ) almost surely. Let φ be the distribution function of the standard normal law. Since (F -1 A (V ) > t) if and only if (V > F A (t)), we have:

It follows that IE(φ(X)) = IE(φ(F -1 A (V ))). Since φ(X) ≥ φ(F -1 A (V )) almost surely, it implies that φ(X) = φ(F -1 A (V )) almost surely. Hence X = F -1 A (V ) almost surely, which completes the proof of lemma F.1. Proof of Lemma G.1. To prove (a), note that, if a ≤ 1, then, by Young's inequality, ac(c ∧ 1) ≤ 2 3 c 3/2 (c ∧ 1) 3/2 + 1 3 a 3 ≤ 2 3 c 2 (c ∧ 1) + 1 3 a 2 (a ∧ 1).

Hence (a) holds. If a ≥ 1, then ac(c ∧ 1) ≤ (a 2 + c 2 (c ∧ 1) 2 )/2 ≤ (a 2 (a ∧ 1) + c 2 (c ∧ 1))/2.

Consequently (a) still holds true.

We now prove (b). If a ≥ 1, then a 2 (c ∧ 1) ≤ a 2 ≤ a 2 (a ∧ 1) and (b) holds true. If a ≤ 1, then, by Young's inequality, a 2 (c ∧ 1) ≤ 2 3 a 3 + 1 3 (c ∧ 1) 3 ≤ a 2 (a ∧ 1) + 1 3 c 2 (c ∧ 1), which completes the proof of (b).

Chapter 1.