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Université de Versailles,
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PREFACE

These lecture notes are an extension of a course on weak dependence given at Orsay

during the years 1994-1996 with Paul Doukhan. This course aims to treat the theory of

summation of weakly dependent variables. The first eight chapters give extensions of the

classical results for sums of independent random variables to strongly mixing or absolutely

regular processes. Chapter 9 is devoted to applications to Markov chains. The potential

reader is any researcher who is interested in sharp results for weakly dependent sequences.

I am particularly grateful to Paul Doukhan and Abdelkader Mokkadem for introducing

me to the domain of weak dependence. Thanks are also due to Sana Louhichi and Jérôme

Dedecker for their help and their comments, who helped me to improve these notes.
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NOTATIONS

a ∧ b min(a, b)

a ∨ b max(a, b)

ξ.x Euclidean scalar product of ξ and x

x+, x+ For a real x the number max(0, x)

x−, x− For a real x, the number max(0,−x)

[x] For a real x, the integer part of x

f(x− 0) For a function f , the left limit of f at point x

f(x+ 0) For a function f , the right limit of f at point x

f−1 The generalized inverse function of f

α−1 the function defined by α−1(u) =
∑
i∈IN 1Iu<αi

QX For a random variable X, the inverse of t→ IP(|X| > t)

IE(X) For an integrable random variable X, the expectation of X

Bc Complementary of B

1IB Indicator function of B.

IE(X | A) Conditional expectation of X conditionally to the σ-field A
IP(B | A) Conditional expectation of 1IB conditionally to A
VarX The variance of X

Cov(X,Y ) Covariance between X and Y

|µ| Measure of total variation associated to the measure µ

‖µ‖ Total variation of the measure µ

µ⊗ ν Tensor product of the measures µ and ν

A⊗ B Tensor product of the σ-fields A and B
A ∨ B the σ-field generated by A ∪ B
σ(X) σ-field generated by X

Lr For r ≥ 1, the space of random variables X such that IE(|X|r) <∞
‖X‖r For r ≥ 1, the usual norm on Lr

L∞ The space of almost surely bounded random variables

‖X‖∞ The usual norm on L∞

Lr(P ) For P law on X , the space of functions f such that
∫
X |f |

rdP <∞
Lφ The Orlicz space associated to a convex function φ

‖ . ‖φ The usual norm on Lφ

φ∗ For a function φ, the Young dual of φ
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INTRODUCTION

These notes are essentially translated from the preprint ”Théorèmes limites pour les

suites de variables aléatoires faiblement dépendantes, Prépublication 97-81 de l’Université

de Paris-Sud” which was published in 1997. They are devoted to inequalities and limit

theorems for weakly dependent sequences. Our aim is to give performant technical tools to

Mathematicians or Statisticians which are interested in weak dependence. We will essen-

tially consider classical notions of weak dependence, called mixing conditions. Sometimes

we will give more general results. Nevertheless, most of the results of these notes are based

on the strong mixing coefficients introduced by Rosenblatt (1956).

Here the strong mixing coefficient between two σ-fields A and B is defined by

α(A,B) = 2 sup{IP(A ∩B)− IP(A)IP(B) : (A,B) ∈ A× B}.

This coefficient is equal to the strong mixing coefficient of Rosenblatt (1956), up to the

multiplicative factor 2. This coefficient is a measure of the dependence between A and B.

For example α(A,B) = 0 if and only if A and B are independent For a sequence (Xi)i∈ZZ

of random variables in some Polish space X , let Fk = σ(Xi : i ≤ k) and Gl = σ(Xi : i ≥ l).
The strong mixing coefficients (αn)n≥0 of the sequence (Xi)i∈ZZ are defined by

(I.0) α0 = 1/2 and αn = sup
k∈ZZ

α(Fk,Gk+n) for any n > 0.

The sequence (Xi)i∈ZZ is said to be strongly mixing in the sense of Rosenblatt (1956) if

limn↑∞ αn = 0. In the stationary case, this means that the σ-field Gn of the future after

time n is asymptotically independent of F0, which is the σ-field of the past before time 0.

We refer to Bradley (1986) for other coefficients of weak dependence and relations between

the coefficients of weak dependence.

In these notes, we will mainly establish results for strongly mixing sequences or for

absolutely regular sequences in the sense of Volkonskii and Rozanov (1959). Indeed these

notions of weak dependence are less restrictive than the notions of ρ-mixing and uniform

mixing in the sense of Ibragimov (1962). For example, in the case of autoregressive models

with values in IRd defined by the recursive equation

(I.1) Xn+1 = f(Xn) + εn+1,
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for some sequence of independent and identically distributed integrable innovations (εn)n

with a positive continuous bounded density, the stationary sequence (Xi)i∈ZZ solution of

(I.1) is uniformly mixing in the sense of Ibragimov only if the function f is uniformly

bounded over IRd. This condition is too restrictive for the applications. By contrast the

stationary solution of (I.1) is strongly mixing with a geometric rate of strong mixing as

soon as there exists M > 0, s > 0 and ρ < 1 such that

(I.2) IE(|f(x) + ε0|s) ≤ ρ|x|s pour x > M et sup
|x|≤M

IE(|f(x) + ε0|s) <∞.

We refer to Doukhan and Ghindès (1983) and to Mokkadem (1985) for more about the

model (I.1), and to Doukhan (1994) for other examples of Markov models satisfying mixing

conditions. Although the notions of strong mixing or absolute regularity are less restrictive

than the notions of ρ-mixing and uniform mixing, they are adequate for the applications.

For example, Viennet (1997) obtains optimal results for linear estimators of the density in

the case of absolutely regular sequences.

We now analyze the contents of these lecture notes. Our main tools are covariance

inequalities for random variables satisfying mixing conditions and coupling results which

are similar to the coupling theorems of Berbee (1979) or Goldstein (1979). Chapters 1-4

are devoted to covariance inequalities, moment inequalities and classical limit theorems.

Chapters 5-8 mainly use coupling techniques. The coupling techniques are applied to the

law of the iterated logarithm for partial sums in Chapter 6 and next to empirical processes

in Chapters 7 and 8.

In Chapter 1, we give covariance inequalities for random variables satisfying a strong

mixing condition or an absolute regularity condition. Let us recall Ibragimov’s (1962)

covariance inequality for bounded random variables: if X and Y are uniformly bounded

real-valued random variables, then

(I.3) |Cov(X,Y )| ≤ 2α(σ(X), σ(Y ))‖X‖∞‖Y ‖∞,

where σ(X) and σ(Y ) denote the σ-fields generated by X and Y respectively. We give

extensions of (I.3) to unbounded random variables. We then apply these covariance in-

equalities to get estimates of the variance of partial sums. In the dependent case, the

variance of the sum may be much larger than the sum of variances. We refer to Bradley

(1997) for lower bounds for the variance of partial sums in the strong mixing case. Nev-

ertheless adequate applications of the variance estimates still provide efficient results. For

example, we give in Sections 1.5 and 1.6 some performant applications to density estima-

tion. In Section 1.7* we give other covariance inequalities (* means that this subsection

has been added).
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Chapter 2 is devoted to the applications of covariance inequalities to moment inequal-

ities for partial sums. In Subsections 2.2 and 2.3, we apply the covariance inequlities of

Chapter 1 to Algebraic moments of sums. Our methods are similar to the methods pro-

posed by Doukhan and Portal (1983, 1987). They lead to Rosenthal type inequalities. In

Subsections 2.4 and 2.5, we prove Marcinkiewicz type moment inequalities for the abso-

lute moments of order p > 2, and we give a way to derive exponential inequalities from

these results. In Chapter 3 we give extensions of the maximal inequalities of Doob and

Kolmogorov to dependent sequences. These maximal inequalities are then used to ob-

tain Baum-Katz type laws of large numbers, and consequently rates of convergence in the

strong law of large numbers. We also derive moment inequalities of order p for p in ]1, 2[

from these inequalities.

Chapter 4 is devoted to the classical central limit theorem for partial sums of random

variables. In order to shorten the exposition, we consider strictly stationary sequences

(cf. Rio (1995c) for results in the non stationary case). We then apply projective criteria

which are derived from Gordin’s martingale approximation theorem (1969) to get the

central limit theorem for partial sums of a strongly mixing sequence. Then we give a

uniform functional central limit theorem in the sense of Donsker for the normalized partial

sum process associated to a stationary and strongly mixing sequence. The proof of the

tightness is based on the maximal inequalities of Chapter 3. At the end of the Chapter,

we give a central limit theorem for triangular arrays.

In Chapter 5, we give coupling results for weakly dependent sequences, under assump-

tions of strong mixing or β-mixing. In particular we recall and we prove Berbee’s coupling

Lemma (1979), which characterizes the β-mixing coefficient between a σ-field A and the

σ-field σ(X) generated by some random variable X with values in some Polish space. If

(Ω, T , IP) contains an auxiliary atomless random variable independent of A∨ σ(X), Then

one can construct a random variable X∗ with the same law as X, independent of A and

such that

(I.4) IP(X = X∗) = 1− β(A, σ(X)).

We give a constructive proof of (I.4) for random variables with values in [0, 1]. This

proof is more technical than the usual proof. Nevertheless the constructive proof is more

informative than the usual proof. In particular using a comparison theorem between

α-mixing coefficients and β-mixing coefficients for purely atomic σ-fields due to Bradley

(1983), one can obtain (confer Exercise 1) the following upper bound for the so-constructed

random variables:

(I.5) IE(|X −X∗|) ≤ 4α(A, σ(X))

In Section 5.2, we give a direct proof of (I.5) with an improved constant. Our method of

proof is based on the conditional quantile transformation.
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Chapters 6, 7 and 8 are devoted to the applications of these coupling results. In Chapter

6, we prove that Inequality (I.5) yields efficient deviation inequalities for partial sums

of real-valued random variables. In particular, we generalize the Fuk-Nagaev deviation

inequalities (1973) to partial sums of strongly mixing sequences of real-valued random

variables. For example for sums Sk = X1 + . . . + Xk of real-valued and centered random

variables Xi satisfying ‖Xi‖∞ ≤ 1, we prove that, for any λ > 0 and any r ≥ 1,

(I.6) IP
(

sup
k∈[1,n]

|Sk| ≥ 4λ
)
≤ 4
((

1 +
λ2

rs2
n

)−r/2
+
nα[λ/r]

λ

)
,

with

s2
n =

n∑
i=1

n∑
j=1

|Cov(Xi, Xj)|.

This inequality is an extension of the Fuk-Nagaev inequality to weakly dependent se-

quences. Theorem 6.2 provides an extension in the general case of unbounded random

variables. Choosing r = 2 log log n, we then apply (I.6) to the bounded law of the iterated

logartihm. In Chapters 7 and 8, we apply (I.4), (I.5) and (I.6) to empirical processes

associated to dependent observations. We refer the reader to Dudley (1984) and to Pol-

lard (1990) for more about the theory of functional limit theorems for empirical processes.

In Chapter 7, we give uniform functional central limit theorems for the normalized and

centered empirical distribution function associated to real-valued random variables or to

random variables with values in IRd. We prove that the uniform functional central limit

theorem for the normalized and centered empirical distribution function holds true under

the strong mixing condition αn = O(n−1−ε) for any d > 1. The strong mixing condition

does not depend on the dimension, contrary to the previous results. The proof is based on

Inequality (I.6). This inequality does not provide uniform functional central limit theorems

for empirical processes indexed by large classes of sets. For this reason, we give a more

general result in Chapter 8, which extends Dudley’s theorem (1978) for empirical processes

indexed by classes of sets to β-mixing sequences. The proof of this result is based on the

maximal coupling theorem of Goldstein (1979).

Chapter 9, which concludes these lecture notes, is devoted to the mixing properties of

irreducible Markov and the links between ergodicity, return times, absolute regularity and

strong mixing. We also prove on some example of Markov chain the optimality of some of

the results of the previous chapters. The Annexes are devoted to convex analysis, exponen-

tial inequalities for sums of independent random variables, tools for empirical processes,

upper bounds for the weighted moments introduced in Chapters 1 and 2, measurability

questions and quantile transformations.
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1. VARIANCE OF PARTIAL SUMS

1.1. Introduction

In order to study the deviation and the limiting distribution of a partial sum of real-

valued random variables, one of the main steps is to study the variance of this sum. For

independent random variables, the variance of the sum is the sum of individual variances.

This assertion is generally wrong for dependent random variables, with the notable excep-

tion of martingale differences sequences. However, for stationary sequences, the so-called

series of covariances provides asymptotic estimates of the variance of partial sums. Con-

sequently, for dependent sequences, one needs to give conditions on the sequence implying

the convergence of this series. Such conditions are given, for example, by the so-called

mixing assumptions. In this chapter, we start by giving classical results on the variance

of partial sums in the stationary case. Next we give bounds on the covariance between

two random variables under a strong mixing condition on these random variables. These

results are then applied to variance of partial sums of strongly mixing sequences. Next

we give applications to integrated risks of kernel density estimators or linear estimators

of the density, under mixing assumptions. The end of this section is devoted to the so-

called β-mixing sequences, applications of this notion to density estimation and to an other

covariance inequality in the strong mixing case.

1.2. Stationary processes

In this section we recall some basic results on partial sums of random variables in the

stationary case. We start by recalling the definitions of strict stationarity, and stationarity

at second order.

Définition 1.1. Let T = ZZ or T = IN. The process (Xt)t∈T is said to be strictly

stationary if, for any positive integer t and any finite subset S of T ,

(1.1) {Xs+t : s ∈ S} has the same distribution as {Xs : s ∈ S}.

For sequences (Xt)t∈T of real-valued and square-integrable random variables, (Xt)t∈T

is said to be stationary at second order if, for any positive integer t and any (u, v) in T ×T ,

(1.2) IE(Xu) = IE(Xv) and IE(Xt+uXt+v) = IE(XuXv).
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We now define the covariance between two real-valued integrable random variables X

and Y such that XY is still integrable by

(1.3) Cov(X,Y ) = IE(XY )− IE(X)IE(Y ).

Throughout, we assume that the random variables Xt take their values in IR. Assume

now that (Xt)t∈T is stationary at second order. Let

(1.4) Sn = X1 + · · ·+Xn, Vn = VarSn and vn = Vn − Vn−1,

with the conventions that S0 = 0 and V0 = 0. Clearly Vn = v1 + · · ·+vn. We now estimate

vk. From the bilinearity and the symmetry of the covariance

vk = Cov(Sk, Sk)− Cov(Sk−1, Sk−1) = VarXk + 2
k−1∑
i=1

Cov(Xi, Xk).

Hence, for second order stationary sequences,

(1.5) vk = VarX0 + 2
k−1∑
i=1

Cov(X0, Xi)

and

(1.6) Vn = nVarX0 + 2

n∑
i=1

(n− i) Cov(X0, Xi).

From (1.5) and (1.6) we get the elementary lemma below.

Lemma 1.1. Let (Xi)i∈IN be a sequence of real-valued random variables, stationary at

second order. Assume that the so-called series of covariances

VarX0 + 2
∞∑
i=1

Cov(X0, Xi)

converges. Then the sum v of this series is nonnegative, and n−1 VarSn converges to v.

Remark 1.1. Sometimes v = 0. For example, if there exists a stationary sequence (Yi)i∈ZZ

such that Xi = Yi − Yi−1, satisfying the condition limn↑∞ Cov(Y0, Yn) = 0, then v = 0. In

this specific case, the sequence (Sn)n>0 is bounded in L2, and consequently in probability.

Proof of Lemma 1.1. Since Vn/n = (v1 + · · ·+ vn)/n, the convergence of vk to v implies

that of (Vn/n) to v via the Césaro mean theorem. Furthermore v ≥ 0 since (Vn/n) ≥ 0

for any positive integer n
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We now give a sufficient condition to ensure the convergence of the above series, which

will be called throughout series of covariances of (Xi)i∈IN.

Lemma 1.2. Let (Xi)i∈IN be a sequence of real-valued random variables, stationary at

second order. Assume that there exists a sequence of nonnegative reals (δi)i≥0 such that

(i) Cov(X0, Xi) ≤ δi for any i ≥ 0 and ∆ = δ0 + 2
∑
i>0

δi <∞.

Then VarX0 + 2
∑∞
i=1 Cov(X0, Xi) converge vers v élément de [0,∆]. Furthermore

(1.7) VarSn ≤ nδ0 + 2

n∑
i=1

(n− i)δi ≤ n∆ and vk ≤ δ0 + 2

k−1∑
i=1

δi.

Proof of Lemma 1.2. Write

Cov(X0, Xi) = δi − (δi − Cov(X0, Xi)).

The series
∑
i(δi − Cov(X0, Xi)) is a series of nonnegative reals and, consequently, con-

verges in ĪR
+

. Hence the series of covariances converges to v in [−∞,∆]. By the Césaro

mean theorem, n−1 VarSn converges to v. It follows that v belongs to [0,∆]. Now (1.7)

holds due to the nonnegativity of the numbers δi.

1.3. A covariance inequality under strong mixing

In this section, we give a covariance inequality for real-valued random variables sat-

isfying a strong mixing condition. This inequality will be applied in Section 1.4 to get

conditions on the strong mixing coefficients of stationary sequences ensuring the conver-

gence of series of covariances.

We start by defining the strong mixing coefficient coefficient of Rosenblatt (1956) be-

tween two σ-fields A and B of (Ω, T , IP). We refer to Bradley (1986, 2005) for more about

strong mixing conditions and weak dependence coefficients and to Bradley (2007) for a

much more extensive treatment. In order to get more general results, we will also give less

restrictive coefficients associated to real-valued random variables.

For X and Y real-valued random variables, we set

(1.8a) α(X,Y ) = 2 sup
(x,y)∈IR2

|IP(X > x, Y > y)− IP(X > x)IP(Y > y)|,

and next

(1.8b) α(A, Y ) = sup
A∈A

α(1IA, Y ).
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Note that α(X,Y ) = 0 means that X and Y are independent. Also α(A, Y ) = 0 if and

only if Y is independent of A. The strong mixing coefficient between two σ-fields A and

B is defined by

(1.8c) α(A,B) = sup
B∈B

α(A, 1IB) = 2 sup{|Cov(1IA, 1IB) : (A,B) ∈ A× B}.

This coefficient is the Rosenblatt strong mixing coefficient, up to the multiplicative factor

2. This coefficient vanishes if and only if the σ-fields are independent. Now, by the

Cauchy-Schwarz inequality,

|Cov(1IA, 1IB)| ≤
√

Var 1IA Var 1IB ≤ 1/4.

It follows that

(1.9) 0 ≤ α(A,B) ≤ 1/2.

Furthermore α(A,B) = 1/2 if and only if there exists some event A in A∩B with IP(A) =

1/2. In a similar way the coefficients defined in (1.8a) and (1.8b) are each bounded by 1/2.

Let us now give a slightly different formulation of these coefficients. Clearly

(1.10a) α(A,B) = sup{|Cov(1IA − 1IAc , 1IB)| : (A,B) ∈ A× B}.

Next

Cov(1IA − 1IAc , 1IB) = IE((IP(B | A)− IP(B))(1IA − 1IAc))

and consequently, for a fixed B, the maximum over A is reached by the measurable set

A = (IP(B | A) > IP(B)). Consequently

(1.10b) α(A,B) = sup{IE(|IP(B | A)− IP(B)|) : B ∈ B}.

In the same way, one can prove that

(1.10c) α(A, X) = sup
x∈IR

IE(|IP(X ≤ x | A)− IP(X ≤ x)|).

In order to state the covariance inequality, which takes into accounts the marginal

distribution of the random variables, we now introduce more notations.

Notation 1.1. For any nonincreasing and càdlàg function f with domain the interval I,

let f−1 denote the càdlàg inverse function of f , which is defined by

f−1(u) = inf{x ∈ I : f(x) ≤ u}.
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The basic property of f−1 is that :

x < f−1(u) if and only if f(x) > u.

If f is a nondecreasing and càdlàg function, f−1(u) will be infimum of the set of reals x in

I such that f(x) ≥ u. In that case, the inverse is left continuous and

x ≥ f−1(u) if and only if f(x) ≥ u.

The distribution function F of a real-valued random variable X is defined by F (x) =

IP(X ≤ x). This function is nondecreasing and right continuous. The quantile function of

|X|, which is the inverse of the non increasing and right continuous tail function of |X|,
HX(t) = IP(|X| > t) , is denoted by QX . For any monotonous function f , we set

f(x− 0) = lim
y↗x

f(y) and f(x+ 0) = lim
y↘x

f(y).

Theorem 1.1. Let X and Y be integrable real-valued random variables. Assume that

XY is integrable and let α = α(X,Y ) be defined by (1.8a). Then

(a) |Cov(X,Y )| ≤ 2

∫ α

0

QX(u)QY (u)du ≤ 4

∫ α/2

0

QX(u)QY (u)du.

Conversely, for any symmetric distribution functions F and G and any α in [0, 1/2], one

can construct random variables X and Y with respective distribution functions F and G

such that α(σ(X), σ(Y )) ≤ α and

(b) Cov(X,Y ) ≥
∫ α/2

0

QX(u)QY (u)du,

provided that QXQY is integrable on [0, 1].

Remark 1.2. Theorem 1.1 is due to Rio (1993). We refer to Dedecker and Doukhan (2003)

for extensions of (a) and to Dedecker, Gouëzel and Merlevède (2010) for applications of (a)

to Markov chains associated to intermittent maps (these chains fail to be strongly mixing

in the sense of Rosenblatt). If α = 1/2 (no mixing constraint), Theorem 1.1(a) ensures

that

(1.11a) |Cov(X,Y )| ≤ 2

∫ 1/2

0

QX(u)QY (u)du.

Now, if (Z, T ) is a couple of random variables with the same marginal distributions as

(X,Y ), then

(1.11b) IE(|ZT |) ≤
∫ 1

0

QX(u)QY (u)du;
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If furthermore X and Y have symmetric distributions, then the upper bound in (1.11b) is

reached for Z = εQX(U) and T = εQY (U), where U is uniformly distributed in [0, 1] and

ε is a symmetric sign, independent of U ; see Fréchet (1951, 1957), Bass (1955) or Bártfai

(1970). Consequently, up to a constant factor, (a) cannot be improved.

Let us still give another byproduct of the covariance inequality. Let A be a σ-field

of (Ω, T , IP) and X be a real-valued random variable. Let Y be a real-valued random

variable with mean 0, and α = α(A, Y ). Let εA be the random variable defined by εA = 1

si IE(Y | A) > 0 et εA = −1 otherwise. Then, from Theorem 1.1(a),

(1.11c) IE(|XIE(Y | A)|) = Cov(εAX,Y ) ≤ 2

∫ α

0

QX(u)QY (u)du.

Note that, if U has the uniform law over [0, 1], QX(U) has the same law as |X|. Hence,

if |X| and |Y | are almost surely bounded, then (a) implies that

(1.12a) |Cov(X,Y )| ≤ 2α‖X‖∞‖Y ‖∞,

which gives again the covariance inequality of Ibragimov (1962).

For unbounded random variables, the Hölder inequality applied to the upper bound in

(a) proves that, if p, q and r are strictly positive reals such that p−1 + q−1 + r−1 = 1, then

(1.12b) |Cov(X,Y )| ≤ 2α1/p‖X‖q‖Y ‖r.

which provides a new constant in Inequality (2.2) of Davydov (1968).

Under the weaker tail conditions

IP(|X| > x) ≤ (Λq(X)/x)q and IP(|Y | > y) ≤ (Λr(Y )/y)r.

Theorem 1.1(a) gives:

(1.12c) |Cov(X,Y )| ≤ 2pα1/pΛq(X)Λr(Y ).

Consequently one can obtain the same dependence in α as in (1.12b) under weaker condi-

tions on the tails of the random variables. In the next section, we will prove that Theorem

1.1(a) provides more efficient upper bounds on the variance of partial sums than (1.12b).

Proof of Theorem 1.1. We first prove (a). Let

X+ = sup(0, X) and X− = sup(0,−X).

Clearly

(1.13) X = X+ −X− =

∫ +∞

0

(1IX>x − 1IX<−x)dx.
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Writing Y in the same manner and Applying Fubini’s Theorem, we get that

(1.14) Cov(X,Y ) =

∫ ∞
0

∫ ∞
0

Cov(1IX>x − 1IX<−x, 1IY >y − 1IY <−y)dxdy.

In order to bound up |Cov(X,Y )|, we now prove that:

(1.15) |Cov(1IX>x − 1IX<−x, 1IY >y − 1IY <−y)| ≤ 2 inf(α, IP(|X| > x), IP(|Y | > y) ).

Obviously the term on left hand is bounded up by 2α. Since X and Y play a symmetric

role, it only remains to prove that the term on left hand is bounded up by 2IP(|X| > x).

From the elementary inequality |Cov(S, T )| ≤ 2‖S‖1‖T‖∞ applied to S = 1IX>x− 1IX<−x

and T = 1IY >y − 1IY <−y, we infer that

|Cov(1IX>x − 1IX<−x, 1IY >y − 1IY <−y)| ≤ 2IP(|X| > x),

which completes the proof of (1.15). From (1.15) and (1.14), we have

(1.16) |Cov(X,Y )| ≤ 2

∫ ∞
0

∫ ∞
0

inf(α, IP(|X| > x), IP(|Y | > y))dxdy.

Now

inf(α, IP(|X| > x), IP(|Y | > y) ) =

∫ α

0

1Iu<IP(|X|>x)1Iu<IP(|Y |>y)du.

Since (u < IP(|X| > x)) if and only if (x < QX(u)), one can write (1.16) as follows

(1.17) |Cov(X,Y )| ≤ 2

∫ ∞
0

∫ ∞
0

(∫ α

0

1Ix<QX(u)1Iy<QY (u)du
)
dxdy.

To complete the proof of (a), it is then enough to apply Fubini’s Theorem.

To prove (b), we construct a couple (U, V ) of random variables with marginal distri-

butions the uniform law over [0, 1], satisfying α(σ(U), σ(V )) ≤ α and such that (b) holds

true for (X,Y ) = (F−1(U), G−1(V )).

Let a be any real in in [0, 1], and (Z, T ) be a random variable with the uniform distri-

bution over [0, 1]× [a/2, 1− a/2]. Set

(1.18) (U, V ) = 1IZ∈[a/2,1−a/2](Z, T ) + 1I(Z/∈[a/2,1−a/2[(Z,Z).

Then the random variables U and V are uniformly distributed over [0, 1]. We now prove

that

(1.19) α(σ(U), σ(V )) ≤ 2a.
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Let PU,V denote the law of (U, V ) and PU , PV denote the laws of U and V . Clearly

‖PU,V − PU ⊗ PV ‖ = 4a− 2a2

(here ‖ . ‖ denotes the total variation of the signed measure). Now, by (1.10b) and Remark

1.4 in Section 1.6, the total variation of PU,V − PU ⊗ PV is greater than 2α. Hence (1.19)

holds true.

Next, let (X,Y ) = (F−1(U), G−1(V )). Since X is a measurable function of U and Y a

measurable function of V , α(σ(X), σ(Y )) ≤ α. Now

XY = F−1(Z)G−1(Z)1IZ/∈[a/2,1−a/2] + F−1(Z)G−1(T )1IZ∈[a/2,1−a/2].

Taking the expectation in this formula (recall that Z and T are independent and that

IE(G−1(T )) = 0), we get that

IE(XY ) =

∫ a/2

0

F−1(u)G−1(u)du+

∫ 1

1−a/2
F−1(u)G−1(u)du.

Next, from the symmetry of F ,

F−1(1− u) = −F−1(u) = QX(2u) almost everywhere on [0, 1/2]

(same equality for G). Hence

Cov(X,Y ) ≥ 2

∫ a/2

0

QX(2u)QY (2u)du =

∫ a

0

QX(u)QY (u)du,

which completes the proof of (b).

1.4. Variance of partial sums of a strongly mixing sequence

In this section, we apply Theorem 1.1 to get upper bounds on the variance of Sn =

X1 + · · · + Xn, in the strong mixing case. In this section, the sequence of strong mixing

coefficients (αn)n≥0 of (Xi)i∈IN is defined by

(1.20) α0 = 1/2 and αn = sup
(i,j)∈IN2

|i−j|≥n

α(σ(Xi), σ(Xj)) for n > 0.

By definition the so defined sequence is nonincreasing.

For x in IR, let α(x) = α[x], square brackets designing the integer part. Let

(1.21) α−1(u) = inf{k ∈ IN : αk ≤ u} =
∑
i≥0

1Iu<αi
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(the second equality is due to the monotonicity properties of (αi)i≥0). Starting from

Theorem 1.1(a), we now get an upper bound on the variance of partial sums.

Corollary 1.1. Let (Xi)i∈IN be a sequence of real-valued random variables. Set Qk =

QXk . Then

(a) VarSn ≤
n∑
i=1

n∑
j=1

|Cov(Xi, Xj)| ≤ 4

n∑
k=1

∫ 1

0

[α−1(u) ∧ n]Q2
k(u)du.

In particular, setting

M2,α(Q) =

∫ 1

0

α−1(u)Q2(u)du

for any nonnegative and nonincreasing function Q from [0, 1] into IR, we have:

(b) VarSn ≤ 4

n∑
k=1

M2,α(Qk).

Proof. (b) is an immediate consequence of (a). To prove (a), notice that

α−1(u) ∧ n =

n−1∑
i=0

1Iu<αi .

Clearly

(1.22) VarSn ≤
∑

(i,j)∈[1,n]2

|Cov(Xi, Xj)|.

Now , by Theorem 1.1(a),

|Cov(Xi, Xj)| ≤ 2

∫ α|i−j|

0

Qi(u)Qj(u)du ≤
∫ α|i−j|

0

(Q2
i (u) +Q2

j (u))du.

Hence

∑
(i,j)∈[1,n]2

|Cov(Xi, Xj)| ≤ 2
n∑
i=1

∫ 1

0

n∑
j=1

1Iu<α|i−j|Q
2
i (u)du

≤ 4

n∑
i=1

∫ 1

0

[α−1(u) ∧ n]Q2
i (u)du.(1.23)

Both (1.22) and (1.23) imply Corollary 1.1(a).

We now apply Theorem 1.1 and Corollary 1.1 to stationary sequences.
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Corollary 1.2. Let (Xi)i∈IN be a strictly stationary sequence of real-valued random

variables. Then

(a) |Cov(X0, Xi)| ≤ 2

∫ αi

0

Q2
0(u)du.

Consequently the series of covariances VarX0 + 2
∑
i>0 Cov(X0, Xi) converges to a finite

nonnegative real σ2 as soon as

(DMR) M2,α(Q0) =

∫ 1

0

α−1(u)Q2
0(u)du < +∞.

In that case

(b) VarSn ≤ 4nM2,α(Q0), lim
n↑∞

n−1 VarSn = σ2 and σ2 ≤ 4M2,α(Q0).

Proof. Inequality (a) is an immediate consequence of Theorem 1.1. Now, starting from

(a), we prove Corollary 1.2. Let δi = 2
∫ αi

0
Q2

0(u)du. Clearly the sequence (δi)i satisfies

condition (i) of Lemma 1.2, provided that (DMR) holds true. Corollary 1.2 follows then

from Lemmas 1.1 and 1.2.

In some sense, in the strong mixing case the weighted moments M2,α(Qk) play the

same role as the usual second moments in the independent case. In the section below, we

give upper bounds for these weighted moments under various conditions on the tails of the

random variables and on the strong mixing coefficients.

1.4.1. Upper bounds for the weighted moments M2,α.

At first, note that, if U is a random variable with uniform law over [0, 1], then Q2
k(U)

has the same law as X2
k .

If the sequence (Xi)i∈IN is m-dependent,

α−1(u) =
m∑
i=0

1Iu<αi ≤ m+ 1,

which entails that M2,α(Qk) ≤ (m + 1)IE(X2
k). In that case condition (DMR) holds as

soon as X2
0 is integrable.

If the random variables |Xk| are uniformly bounded by some positive constant M , then

Q2
k(u) ≤M2 and

M2,α(Qk) ≤M2

∫ 1

0

α−1(u)du ≤M2

∫ ∞
0

α(x)dx.
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Then condition (DMR) holds if and only if

(1.24)
∑
i≥0

αi <∞,

which is the classical condition of Ibragimov.

We now give a condition on the tail distribution of the random variables Xk. Assume

that, for some r > 2, IP(|Xk| > x) ≤ (c/x)r for any positive x and any integer k . Then

the quantile fuctions Qk are bounded up by cu−1/r, whence

M2,α(Qk) ≤ c2
∞∑
i=0

∫ αi

0

u−2/rdu ≤ c2r

r − 2

∑
i≥0

α
1−2/r
i .

Consequently condition (DMR) holds as soon as

(IBR)
∑
i≥0

α
1−2/r
i <∞.

In the stationary case, Ibragimov (1962) obtains the convergence of the series of covariances

under (IBR) together with the more restrictive assumption of existence of the moment of

order r for the random variables Xi.

Assume now that, for some r > 2, the random variables Xk belong to Lr. Then, by

the Hölder inequality,

M2,α(Qk) ≤
(∫ 1

0

[α−1(u)]r/(r−2)du
)1−2/r(∫ 1

0

Qrk(u)du
)2/r

.

The second integral on right hand is equal to ‖Xk‖2r, since Qk(U) has the same distribution

as |Xk|. Now let [y] denote the integer part of y and set α(y) = α[y]. Since the inverse

function of u→ [α−1(u)]r/(r−2) is x→ α(x1−2/r),∫ 1

0

[α−1(u/2)]r/(r−2)du =

∫ ∞
0

α(x1−2/r)dx

=
∑
i≥0

((i+ 1)r/(r−2) − ir/(r−2))αi.

Now

(i+ 1)r/(r−2) − ir/(r−2) ≤ r(r − 2)−1(i+ 1)2/(r−2),

which entails that ∫ 1

0

[α−1(u)]r/(r−2)du ≤ r

r − 2

∑
i≥0

(i+ 1)2/(r−2)αi.
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Hence

(1.25a) M2,α(Qk) ≤ exp(2/r)
(∑
i≥0

(i+ 1)2/(r−2)αi

)1−2/r

‖Xk‖2r.

In particular, in the stationary case, condition (DMR) holds if

(1.25b)
∑
i≥0

(i+ 1)2/(r−2)αi <∞.

Under the same moment condition, Davydov’s (1968) covariance inequality ensures the

convergence of the series of covariances under the more restrictive condition (IBR). For

example, if

αk = O(k−r/(r−2)(log k)−θ)

(note that r/(r− 2) is the critical exponent), (1.25b) holds for θ > 1 and (IBR) needs the

stronger condition θ > r/(r − 2).

In oder to give conditions ensuring (DMR) under more general moment conditions on

the random variables Xk and on α−1(U), we now introduce the class of convex functions

(1.26) Φ = {φ : IR+ → IR+ : φ convex, nondecreasing, φ(0) = 0, lim
+∞

φ(x)

x
=∞}.

For any φ in Φ, the Young dual function φ∗ is defined by

φ∗(y) = sup
x>0

(xy − φ(x)).

We refer to Annex A, for some properties of this involutive transformation and to (A.5),

annex A, for a definition of the Orlicz norms below. Inequality (A.8), Annex A, ensures

that

M2,α(Qk) = IE(α−1(U)Q2
k(U)) ≤ 2‖α−1(U)‖φ∗‖X2

k‖φ.

Suppose there exists c′ > 0 such that φ(X2
k/c
′) is integrable. Then the above inequality

shows that condition (DMR) is satisfied if

(1.27) IE(φ∗(α−1(U)/c)) < +∞

for some positive constant c. Since U has the uniform law over [0, 1],

IP(α−1(U) > x) = IP(U < α(x)) = α(x).

Hence, by (A.3), Annex A,

cIE(φ∗(α−1(U)/c)) =

∫ ∞
0

IP(α−1(U) > x)(φ∗)′(x/c)dx

=

∫ ∞
0

α(x)φ′−1(x/c)dx,(1.28)
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where φ′−1 denotes the left-continuous inverse of the derivative of φ. Since φ′−1 is nonde-

creasing, condition (DMR) is satisfied if

(1.29)
∑
i≥0

αiφ
′−1((i+ 1)/c) <∞

for some positive constant c. Bulinskii and Doukhan (1987) generalized Davydov’s covari-

ance inequality (1968) to Orlicz spaces. For sequences of random variables with a finite

φ-moment, they obtain the convergence of the series of covariances under the summability

condition

(HER)
∑
i≥0

φ−1(1/αi)αi <∞,

which was introduced by Herrndorf (1985) for the central limit theorem. In Rio (1993) it

is shown that this condition is more restrictive than (1.29), which we now detail for fast

mixing rates.

Geometric and subgeometric rates of mixing. For b > 0, Consider the function

φb(x) = x(log(1 + x))b.

This function belongs to Φ and has derivative

(1.30) φ′b(x) = (log(1 + x))b + bx(1 + x)−1(log(1 + x))b−1.

The inverse function of φb is equivalent to x→ exp(x1/b) as x tends to ∞. Consequently,

if

(1.31) IE(X2
0 (log(1 + |X0|))b) <∞,

then, by (1.29), condition (DMR) holds true if there exists some positive τ such that

(1.32) αi = O(exp(−τi1/b)) as i→∞.

In particular, if αi = O(ai) for some a in ]0, 1[ (geometric mixing rate) (1.32) and (1.31)

hold with b = 1, and (DMR) holds as soon as

(1.33) IE(X2
0 log(1 + |X0|)) <∞.

Let us compare (1.33) with condition (HER). Under (1.31), (HER) holds if and only the

series
∑
i≥0 | logαi|−b converges. Condition (1.32) does not ensure the convergence of this

series. For example, under (1.33), (HER) does not ensure the convergence of the series of

covariances for geometric rates of convergence.
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Numerical comparisons. We now compare the constants arising from our covariance in-

equality and Davydov’s inequality in the following case: the sequence (Xi)i∈IN is strictly

stationary, IE(X4
0 ) < ∞ and αi ≤ 2−1−i. Applying Davydov’s covariance inequality with

the constant in (1.12b), we get that

(1.34) |VarSn − nVarX0| ≤ 4n‖X0‖24
∑
i>0

√
αi ≤ 2(

√
2 + 2)n‖X0‖24.

This upper bound has to be multiplied by 2
√

2 when using the initial constant of Davydov

(1968).

Now, by Theorem 1.1(a) together with the Schwarz inequality,

|VarSn − nVarX0| ≤ 4n

∫ α1

0

(α−1(u)− 1)Q2
0(u)du

≤ 4n‖(α−1(U)− 1)+‖2‖X0‖24.

Since the inverse function of u→ (α−1(u)− 1)2
+ is x→ α(1 +

√
x),

‖(α−1(U)− 1)+‖22 =

∫ ∞
0

α(1 +
√
x)dx,

and our bounds lead to

(1.35) |VarSn − nVarX0| ≤ 2
√

6n‖X0‖24.

The numerical value of the constant in (1.34) is 6.83 while the numerical value of the

constant in (1.35) is 4.89.

1.5. Applications to density estimation

In this section, (Xi)i∈IN is a strictly stationary sequence of random variables with values

in IRd. The marginal distribution P is assumed to be absolutely continuous with respect

to the Lebesgue measure on IRd. We are interested in estimating the density f of P . In

this section, the strong mixing coefficients of (Xi)i∈IN are defined by (1.20).

1.5.1. Kernel density estimators.

We start by defining kernel density estimators. Let K : IRd → IR be an integrable

kernel, satisfying

(H1)

∫
IRd

K(x)dx = 1 and

∫
IRd

K2(x)dx < +∞.
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Let then (hn)n>0 be a sequence of positive reals converging to 0. The kernel density

estimator fn at time n is defined by

(1.36) fn(x) = (nhdn)−1
n∑
k=1

K(h−1
n (x−Xk)).

For stationary and strongly mixing sequences, Mokkadem (1987) proves that the L2 norm of

fn − IE(fn) has the same order of magnitude as in the independent case , under condition

(1.24). He also obtains some related results for Lp-norms. In this section, we recall

Mokkadem’s result in the case p = 2 and we give a proof of this result.

Theorem 1.2. Let (Xi)i∈IN be a strictly stationary sequence of observations with values

in IRd. Let fn be the kernel density estimator as defined in (1.36). Assume that (H1)

holds. Then ∫
IRd

Var fn(x)dx ≤ 8(nhdn)−1
n−1∑
i=0

αi

∫
IRd

K2(x)dx.

Proof. Set hn = h and Kh(x) = K(x/h). Let P denote the common marginal distri-

bution of the observations Xk. Define the empirical measures Pn and the normalized and

centered empirical measure Zn by

(1.37) Pn = n−1
n∑
k=1

δXk and Zn =
√
n(Pn − P ).

With these notations, Theorem 1.2 is equivalent to the inequality below:

(1.38)

∫
IRd

IE((Zn ∗Kh(x))2)dx ≤ 8

n−1∑
i=0

αi

∫
IRd

K2
h(x)dx.

Now, by the Parseval-Plancherel identity,∫
IRd

(Zn ∗Kh(x))2dx = (2π)−d
∫

IRd
|Ẑn(ξ)K̂h(ξ)|2dξ,

and consequently∫
IRd

IE((Zn ∗Kh(x))2)dx ≤ (2π)−d
∫

IRd
IE(|Ẑn(ξ)|2)|K̂h(ξ)|2dξ

≤ (2π)−d sup
ξ∈IRd

IE(|Ẑn(ξ)|2)

∫
IRd
|K̂h(ξ)|2dξ

≤ sup
ξ∈IRd

IE(|Ẑn(ξ)|2)

∫
IRd

K2
h(x)dx
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by the Parseval-Plancherel identity again. Next

n|Ẑn(ξ)|2 =
( n∑
k=1

(cos(ξ.Xk)− IE(cos(ξ.Xk)))
)2

+

( n∑
k=1

(sin(ξ.Xk)− IE(sin(ξ.Xk)))
)2

.

To finish the proof of (1.38), we start from the above equality and we apply Corollary

1.1 twice. Noting that the random variables cos(ξ.Xk) and sin(ξ.Xk) take their values in

[−1, 1], we get that

IE(|Ẑn(ξ)|2) ≤ 8

∫ 1

0

(α−1(u) ∧ n)du,

which completes the proof of (1.38).

1.5.2. Projection estimators.

Let w : IRd → IR+ be a nonnegative and locally square integrable function. The space

IRd is equipped with the measure w(x)dx. Let (ej)j>0 be complete orthonormal system in

the Hilbert space L2(w(x)dx). Suppose that the observations Xk have a common law P

with density f(x) with respect to the Lebesgue measure on IRd. Assume furthermore that

f belongs to the Hilbert space L2(w(x)dx). Let

aj =

∫
IRd

f(x)ej(x)w(x)dx.

Then, by the Plancherel identity,

f(t) =
∑
j>0

ajej(t).

Let Πmf denote the orthogonal projection of f on the vector space generated by e1, . . . , em.

Then

Πmf =

m∑
j=1

ajej .

Furthermore Πmf converges to f in L2(w(x)dx) as m tends to infinity. Now define the

estimators âj of the coefficients aj by âj = Pn(wej). Then IE(âj) = aj and, under suitable

condtions on w and f , âj converges to aj as n tends to infinity. Now, we set, for some

nondecreasing sequence (mn)n of positive integers going to infinity (to be choosen later),

(1.39) f̂n =

mn∑
j=1

âjej = n−1
mn∑
j=1

n∑
k=1

w(Xk)ej(Xk)ej .
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Then

(1.40) IE(f̂n) =

mn∑
j=1

ajej = Πmnf.

Hence IE(f̂n) converges to f in L2(w(x)dx) as n tends to infinity. In order to get the

convergence of f̂n to f in L2(w(x)dx), it is then enough to bound up the variance of

f̂n. In Theorem 1.3 below, we give an upper bound which is efficient for unconditional

orthonormal bases or Riesz bases. We refer to Leblanc (1995) for wavelets estimators of

the density and to Ango-Nzé (1994) for general linear estimators of the density.

Theorem 1.3. Let (Xi)i∈IN be a strictly stationary sequence of observations with density

f in the Hilbert space L2(w(x)dx). Then

(a) n

∫
IRd

w(x) Var f̂n(x)dx ≤ 4
n−1∑
i=0

αi sup
x∈IRd

(
w(x)

mn∑
j=1

|ej(x)|
)2

.

Let h be defined by h(x) = (1 + x) log(1 + x)− x. Then

(b) n

∫
IRd

w(x) Var f̂n(x)dx ≤ 20‖α−1(U) ∧ n‖h sup
x∈IRd

(
w2(x)

mn∑
j=1

e2
j (x)

)
.

Proof. For convenience, write m = mn. Since (ej)j∈[1,m] is an orthonormal system, it is

easy to check that

(1.41) n

∫
IRd

w(x) Var f̂n(x)dx =
m∑
j=1

VarZn(wej).

Let ε1, . . . , εm be a finite Rademacher sequence, that is, a sequence of symmetric and

independent signs. Suppose furthermore that this sequence is independent of (Xi)i∈IN.

Then

(1.42)
m∑
j=1

VarZn(wej) = IE
((
Zn

( m∑
j=1

εjwej

))2)
.

We now proceed conditionally on ε1, . . . , εm. By Corollary 1.1,

IE
((
Zn

( m∑
j=1

εjwej

))2

| ε1, . . . , εm

)
≤ 4

n−1∑
i=0

αi

∥∥∥ m∑
j=1

εjw(X0)ej(X0)
∥∥∥2

∞
.

Noting that ∥∥∥ m∑
j=1

εjw(X0)ej(X0)
∥∥∥
∞
≤
∥∥∥ m∑
j=1

w(X0)|ej(X0)|
∥∥∥
∞
,
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we then get Theorem 1.3(a).

We now prove (b). Let

c = ‖α−1(U)‖h and c′ =
∥∥∥( m∑

j=1

εjw(X0)ej(X0)
)2∥∥∥

h∗
.

For (ε1, . . . , εm) in {−1, 1}m, let Qε1,...,εm be the quantile function of the random variable∣∣∣∑m
j=1 εjw(X0)ej(X0)

∣∣∣. By Corollary 1.1 applied conditionally on (ε1, . . . , εm),

(1.43) IE
((
Zn

( m∑
j=1

εjwej

))2)
≤ 22−m

∑
(ε1,...,εm)∈{−1,1}m

∫ 1

0

[α−1(u) ∧ n]Q2
ε1,...,εm(u)du.

Next, by inequality (A.7) in Annnex A, applied with x = [α−1(u) ∧ n]/c and y =

Q2
ε1,...,εm(u)/c′, we have

(1.44)
1

cc′
IE
((
Zn

( m∑
j=1

εjwej

))2)
≤ 4 + 22−m

∑
(ε1,...,εm)

∫ 1

0

h∗(Q2
ε1,...,εm(u)/c′)du.

Now Q2
Z(U) has the law of Z2. Hence

∫ 1

0

h∗(Q2
ε1,...,εm(u)/c′)du = IE

(
h∗
(∣∣∣ m∑

j=1

εjw(X0)ej(X0)
∣∣∣2)),

which, together with both (1.44) and inequalities (1.41) and (1.42) ensures that

n

∫
IRd

w(x) Varf̂n(x)dx ≤

8‖α−1(U) ∧ n‖h
∥∥∥( m∑

j=1

εjw(X0)ej(X0)
)2∥∥∥

h∗
.(1.45)

To complete the proof, it remains to show that

(1.46)
∥∥∥( m∑

j=1

εjw(X0)ej(X0)
)2∥∥∥

h∗
≤ 5

2
sup
x∈IRd

(
w2(x)

m∑
j=1

e2
j (x)

)
.

Proof of (1.46). Let (Y1, . . . , Ym) be a Gaussian random vector with independent and

N(0, 1)-distributed components. For any reals p1, . . . , pm and any positive integer k,

IE((p1ε1 + · · · pmεm)2k) ≤ IE((p1Y1 + · · · pmYm)2k).
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Consequently, for any positive s such that 2s(p2
1 + · · · p2

m) < 1,

IE(exp(s(p1ε1 + · · · pmεm)2)) ≤ IE(exp(s(p1Y1 + · · · pmYm)2))

≤ (1− 2s(p2
1 + · · · p2

m))−1/2.(1.47)

Let then ψ(x) = (1− 2x)−1/2 − 1− x. Since the Legendre transform h∗ of the function h

is h∗(x) = ex − 1− x (cf. Annex A), it follows from (1.47) that

IE
(
h∗
(
s
∣∣∣ m∑
j=1

εjw(X0)ej(X0)
∣∣∣2) | X0 = x

)
≤

ψ(sw2(x)(e2
1(x) + · · ·+ e2

m(x))),(1.48)

provided that sw2(x)(e2
1(x) + · · ·+ e2

m(x)) < 1/2. Hence

∥∥∥( m∑
j=1

εjw(X0)ej(X0)
)2∥∥∥

h∗
≤ 1

ψ−1(1)
sup
x∈IRd

(
w2(x)

m∑
j=1

e2
j (x)

)
.

(1.46) follows then from the fact that ψ(2/5) ≤ 1.

Application of Theorem 1.3(a) to unconditional bases. Suppose that (e1, . . . , em) is an

unconditional basis, which means that there exists some positive constant K, independent

of m, such that

(1.49)
∥∥∥ m∑
j=1

cjwej

∥∥∥
∞
≤ K
√
m sup
j∈[1,m]

|cj |.

Then Theorem 1.3 ensures that

(1.50)

∫
IRd

w(x) Var f̂n(x)dx ≤ 4K2m

n

n−1∑
i=0

αi.

For example, suppose that w(x) = 1I]0,1] and let us consider the histogram bases

(1.51) ej,m(x) =
√
m1I](j−1)/m,j/m] for j ∈ [1,m].

Then (1.49) holds with K = 1.

We now apply these facts to laws with density f with support in [0, 1]. Let δ be some

real in ]0, 1]. We denote by F(δ, C) the class of densities with support included in [0, 1]

such that

(1.52) |f(x)− f(y)| ≤ C|x− y|δ for any (x, y) ∈ [0, 1]2,
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Starting from (1.52), one can easily bound up the absolute value of the bias term IE(fn)−f .

Together with Theorem 1.3(a), this yields the result below on the mean integrated square

error.

Corollary 1.3. Let (Xi)i∈IN be strictly stationary sequence of real valued random vari-

ables. Assume that the random variable X1 has a density f in the class F(δ, C), for some

C ≥ 1. For the bases defined in (1.51), let

D2(F(δ, C)) = inf
m>0

sup
f∈F(δ,C)

∫ 1

0

IE
((
f(x)−

m∑
j=1

Pn(ej,m)ej,m(x)
)2)

dx.

Then

D2(F(δ, C)) ≤ 8C2
(
n−1

n−1∑
k=0

αk

)2δ/(1+2δ)

.

Consequently, if
∑
k≥0 αk <∞, then

(a) D2(F(δ, C)) = O(n−2δ/(1+2δ))

and, if αk = O(k−a) for some a in ]0, 1[, then

(b) D2(F(δ, C)) = O(n−2aδ/(1+2δ)).

Remark 1.3. (a) gives an upper bound of the same order as in the independent case. By

contrast (b) provides a slowler rate. It would be interesting to study the Lp risks for p < 2

in that case.

Application of Theorem 1.3(b) to Riesz bases . Suppose that (ej)j>0 satisfies the Riesz

condition:

(1.53) ‖w2(e2
1 + · · ·+ e2

m)‖∞ ≤ K ′m

for some positive constant K ′. Then, by Theorem 1.3(b),

(1.54)

∫
IRd

w(x) Var f̂n(x)dx ≤ 20K ′
m

n
‖α−1(U) ∧ n‖h.

Under the mixing condition

(1.55)
∑
i≥0

αi| logαi| <∞,

(1.54) together with Theorem 1.3(b) yields

(1.56)

∫
IRd

w(x) Var f̂n(x)dx = O(m/n).
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For example, if m = 2m′ + 1, w(x) = 1I[0,1] and e1, . . . , em is the system of trigonometric

polynoms of degree at most m′, (1.53) holds with K ′ = 1. In that case, if F is the ball

of radius R of the Sobolev space Hs(T ) on the torus T = [0, 1]/{0 = 1}, Theorem 1.3(b)

yields the minimax bound

(1.57) inf
m>0

sup
f∈F

∫ 1

0

IE
((
f(x)−

m∑
j=1

Pn(ej)ej(x)
)2)

dx = O(n−2s/(1+2s)).

Note that, for β-mixing sequences, (1.57) holds under the condition
∑
k≥0 βk <∞, as

shown by Viennet (1997).

1.6. A covariance inequality under absolute regularity.

In this section, we state and we prove Delyon’s covariance inequality (1990) for random

variables verifying β-mixing type conditions. We start by the definition of the β-mixing

coefficient between two σ-fields. These coefficient are also called absolute regularity coef-

ficients.

Definition 1.2. Let A and B two σ-fields of (Ω, T , IP). Let the probability measure PA⊗B

be defined on (Ω×Ω,A⊗B) as the image of IP by the canonical injection i from (Ω, T , IP)

into (Ω× Ω,A⊗ B) defined by i(ω) = (ω, ω). Then

PA⊗B(A×B) = IP(A ∩B).

Now, let us denote by PA (resp. PB) the restriction of P to A (resp.B). The β-mixing

coefficient of Volkonskii and Rozanov (1959) is defined by

β(A,B) = sup
C∈A⊗B

|PA⊗B(C)− PA ⊗ PB(C)|.

This coefficient is also called coefficient of absolute regularity.

Remark 1.4. Let C = (A×B) ∪ (Ac ×Bc). Then

PA⊗B(C)− PA ⊗ PB(C) = 2(IP(A ∩B)− IP(A)IP(B)).

This equality ensures that β(A,B) ≥ α(A,B).

We now introduce the stronger uniform mixing coefficient of Ibragimov (1962).

Definition 1.3. The uniform mixing or ϕ-mixing coefficient ϕ(A,B) between two σ-fields

A and B is defined by

ϕ(A,B) = sup
(A,B)∈A×B

IP(A)6=0

|IP(B | A)− IP(B)|.
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This coefficient belongs to [0, 1]. Contrary to the β-mixing coefficient, ϕ(A,B) 6= ϕ(B,A).

In order to compare β(A,B) and ϕ(A,B), we will use the following identity, whose

proof is left to the reader:

(1.58) β(A,B) =
1

2
sup
{∑
i∈I

∑
j∈J
|IP(Ai ∩Bj)− IP(Ai)IP(Bj)|

}
,

the maximum being taken over all finite partitions (Ai)i∈I and (Bj)j∈J of Ω with the sets

Ai in A and the sets Bj in B.

Now, starting from (1.58) we compare the two mixing coefficients. Fix i in I. Let J ′

be the set of elements j of J such that

IP(Ai ∩Bj) ≥ IP(Ai)IP(Bj)

and let B be the union of the sets Bj for j in J ′. Then

1

2

∑
j∈J
|IP(Ai ∩Bj)− IP(Ai)IP(Bj)| = IP(Ai)(IP(B | Ai)− IP(B))

≤ IP(Ai)ϕ(A,B).(1.59)

Summing on I, we thus get that

(1.60) β(A,B) ≤ ϕ(A,B).

Ibragimov (1962) has given a suitable covariance inequality for real-valued random

variables under a uniform mixing condition. It is important to note that this inequality

cannot be deduced from Theorem 1.1(a). Nevertheless this covariance inequality is a

corollary of a more powerfull covariance inequality involving the β-mixing coefficient, due

to Delyon (1990). We now state and prove this inequality. We refer to Dedecker (2004)

for an extension to a weaker notion of dependence.

Theorem 1.4. LetA and B be two σ-fields of (Ω, T , IP). Then there exist random variables

dA and dB with values in [0, 1], respectively A and B-measurables, satisfying

IE(dA) = IE(dB) = β(A,B),

and such that, for any pair (p, q) of reals in [1,∞] with (1/p) + (1/q) = 1 and any random

vector (X,Y ) in Lp(A)× Lq(B),

(a) |Cov(X,Y )| ≤ 2IE1/p(dA|X|p)IE1/q(dB|Y |q).
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Furthermore ‖dA‖∞ ≤ ϕ(A,B) and ‖dB‖∞ ≤ ϕ(B,A). Hence

(b) |Cov(X,Y )| ≤ 2ϕ(A,B)1/pϕ(B,A)1/q‖X‖p‖Y ‖q.

Remark 1.5. (a) was proved by Delyon (1990), (b) is due to Peligrad (1983) and implies

Ibragimov’s covariance inequality (cf. also Bradley and Bryc (1985), Theorem 1.1.).

Proof. Since (X,Y ) is A⊗B-measurable, by the polar decomposition of IPA⊗B−IPA⊗IPB,

we have:

|Cov(X,Y )| ≤
∫

Ω×Ω

|XY |d|IPA⊗B − IPA ⊗ IPB|.

Let µ = |IPA⊗B − IPA ⊗ IPB|. By the Hölder inequality,

(1.61) |Cov(X,Y )| ≤
(∫

Ω×Ω

|X(ω)|pdµ(ω, ω′)
)1/p(∫

Ω×Ω

|Y (ω′)|qdµ(ω, ω′)
)1/q

.

Let µA denote the first margin of µ and µB the second one. Then∫
Ω×Ω

|X(ω)|pdµ(ω, ω′) =

∫
Ω

|X|pdµA and

∫
Ω×Ω

|Y (ω′)|qdµ(ω, ω′) =

∫
Ω

|Y |qdµB.

Hence, to prove Theorem 1.4(a), it is enough to prove that µA = 2dAPA and µB = 2dBPB,

for random variables dA and dB with the prescribed properties.

Starting from (1.58), one can prove that

(1.62) µA(A) = sup
{∑
i∈I

∑
j∈J
|IP(Ai ∩Bj)− IP(Ai)IP(Bj)|

}
,

the maximum being taken over all finite partitions (Ai)i∈I and (Bj)j∈J of Ω with the sets

Ai in A and the sets Bj in B. Therefrom, for any A in A,

µA(A) ≤ sup
{∑
i∈I

∑
j∈J

(IP(Ai ∩Bj) + IP(Ai)IP(Bj))
}
≤ 2IP(A).

Consequently by the Radon-Nikodym theorem, µA is absolutely continuous with respect

to the restriction of IP to A, from which it follows that µA = 2dAIP, for some nonnegative

A-mesurable random variable dA verifying dA ≤ 1. Finally

IE(dA) =

∫
Ω

dµA = 2β(A,B),

which completes the proof of (a).

To prove (b), it suffices to note that µA(A) ≤ 2ϕ(A,B)IP(A) by (1.59). Consequently

dA ≤ ϕ(A,B) a.s., which implies Theorem 1.4(b).
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Starting from Delyon’s covariance inequality, we now give new upper bounds on the

variance of partial sums of functionals. These bounds are due to Viennet (1997).

Corollary 1.4. Let (Xi)i∈IN be a strictly stationary sequence of random variables with

values in some Polish space X . Set βi = β(σ(X0), σ(Xi)). For any numerical function g,

let

Sn(g) = g(X1) + · · ·+ g(Xn).

Denote by P the law of X0. Then there exists a sequence (bi)i∈ZZ of measurable functions

from X into [0, 1], satisfying ∫
X
bidP = βi,

and such that, for any function g in L2(P ),

(a) VarSn(g) ≤ n
∫
X

(1 + 4b1 + · · ·+ 4bn−1)g2dP.

Consequently, if B = 1 + 4
∑
i>0 bi, then

(b) VarSn(g) ≤ n
∫
X
Bg2dP.

Remark 1.6. Starting from (b), one can obtain the bounds of Corollary 1.1 with the

β-mixing coefficients instead of the α-mixing coefficients. Indeed, for any positive i,∫
X
big

2dP =

∫∫
X×[0,1]

1It≤bi(x)g
2(x)P ⊗ λ(dx, dt),

where λ denotes the Lebesgue measure on [0, 1]. Let b(t, x) = 1It≤bi(x) and h(t, x) = g2(x).

By (1.11b) (confer Lemma 2.1, Chap. 2, for a proof of this fact),∫∫
X×[0,1]

1It≤bi(x)g
2(x)P ⊗ λ(dx, dt) ≤

∫ 1

0

Qb(u)Qh(u)du ≤
∫ βi

0

Q2
g(X0)(u)du

(recall that Qh = Q2
g(X0)). It follows that

(1.63)

∫
X
Bg2dP ≤≤ 4

∫ 1

0

β−1(u)Q2
g(u)du.

Proof of Corollary 1.4. From the stationarity

VarSn(g)− nVar g(X0) ≤ 2n

n−1∑
i=1

|Cov(g(X0), g(Xi))|.
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We now apply Theorem 1.4(a) with p = q = 2. There exist random variables B0,i and Bi,0

with values in [0, 1] and with mean value βi, measurable respectively for σ(X0) and σ(Xi),

such that

|Cov(g(X0), g(Xi))| ≤ 2
√

IE(B0,ig2(X0))IE(Bi,0g2(Xi))

≤ IE(B0,ig
2(X0)) + IE(Bi,0g

2(Xi)).

Now B0,i = b0,i(X0) and Bi,0 = bi,0(Xi) and therefrom, since X0 and Xi have the common

marginal law P ,

|Cov(g(X0), g(Xi))| ≤
∫
X

(bi,0 + b0,i)g
2dP.

Setting bi = (bi,0 + b0,i)/2, we then get (a). (b) follows immediately.

Corollary 1.4 yields better results for density estimation than Corollary 1.1. For ex-

ample, we can relax the summability condition on the coefficients in Theorem 1.4(b), as

shown by the result below, which is a particular case of the results of Viennet (1997) on

Lp risks of linear estimators of the density. We refer to Dedecker and Prieur (2005) for

extensions of this result to non absolutely regular sequences.

Corollary 1.5. Let(Xi)i∈IN be a strictly stationary sequence of random variables with

values in IRd, satisfying the assumptions of Theorem 1.4. Then, for the projection estimator

of the density defined by (1.39),

(b) n

∫
IRd

w(x) Var f̂n(x)dx ≤ (1 + 4
n−1∑
i=1

βi) sup
x∈IRd

(
w2(x)

m∑
j=1

e2
j (x)

)
.

Proof. By (1.41) and Corollary 1.4,

n

∫
IRd

w(x) Var f̂n(x)dx ≤
m∑
j=1

∫
IRd

(
1 + 4

n−1∑
i=1

bi(x)
)
f(x)w2(x)e2

j (x)dx,

with bi ≥ 0 and
∫

IRd
bi(x)f(x)dx ≤ βi. Hence

n

∫
IRd

w(x) Var f̂n(x)dx ≤

sup
x∈IRd

(
w2(x)

m∑
j=1

e2
j (x)

)∫
IRd

(
1 + 4

n−1∑
i=1

bi(x)
)
f(x)dx,(1.64)

whcih completes the proof.
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1.7. Other covariance inequalities under strong mixing *

In this section, we give sharper bounds on the covariance under strong mixing condi-

tions. Recall that Theorem 1.1 gives upper bounds involving the quantile function of |X|.
In this section, in order to get sharper bounds, we will use an other approach. Let Lα(F,G)

denote the class of random vectors on IR2 with given marginal distributions functions F

and G, satisfying the mixing constraint α(X,Y ) ≤ α. In the case α = 1/2 (no mixing

constraint), Fréchet (1951, 1957) and Bass (1955) proved that, for continuous distribution

functions F and G,

(1.65) Cov(X,Y ) ≤
∫ 1

0

F−1(u)G−1(u)du−
∫ 1

0

F−1(u)du

∫ 1

0

G−1(u)du,

and that the equality holds when F (X) = G(Y ) in the continuous case. In a similar way

(1.66) Cov(X,Y ) ≥
∫ 1

0

F−1(u)G−1(1− u)du−
∫ 1

0

F−1(u)du

∫ 1

0

G−1(u)du,

and the equality holds when F (X) = 1−G(Y ) in the continuous case. Since the infimum of

Cov(X,Y ) over the class Lα(F,G) is nonpositive, the lower bound in (1.66) is nonpositive.

It follows from this remark and (1.65) that

Cov(X,Y ) ≤
∫ 1

0

F−1(u)(G−1(u)−G−1(1− u))du

Next, using the change of variables t = 1− u in the integral on right hand, we get that

Cov(X,Y ) ≤
∫ 1

0

F−1(1− u)(G−1(1− u)−G−1(u))du.

Define now the dispersion function DF of F by

(1.67) DF (u) = F−1(1− u)− F−1(u).

Using both the two above upper bounds on Cov(X,Y ), we then get that

(1.68) Cov(X,Y ) ≤
∫ 1/2

0

DF (u)DG(u)du.

This upper bound is slightly suboptimal. Theorem 1.5 below gives an upper bound on the

covariance involving DFDG with a multiplicative factor (1−2u), providing a better upper

bound in the case α = 1/2.

Theorem 1.5. Set xα = (1−
√

1− 2α )/2. Let (X,Y ) be an element of Lα(F,G). Then

(a) |Cov(X,Y )| ≤
∫ xα

0

(1− 2u)DF (u)DG(u)du.
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If (Xi)i∈ZZ is a strictly stationary sequence of random variables with distribution function

F , then

(b) |VarSn − nVarX0| ≤ 2n

∫ 1/2

0

(α−1(2u(1− u))− 1)+D
2
F (u)du.

Remark 1.7. Exercise 8 at the end of this chapter is devoted to a comparison between

Theorem 1.1(a) and Theorem 1.5(a).

Proof. The main step is the proof of (a). Without loss of generality we may assume that

0 is a median for the distributions of X and Y . For any real-valued random variable Z,

let Z+ = max(0, Z) and Z− = max(0,−Z). Then

Cov(X,Y ) = Cov(X+, Y +) + Cov(X−, Y −)− Cov(X+, Y −)− Cov(X−, Y +).

We now bound up the four terms on right hand. Let HX(x) = IP(X > x) and HY (y) =

IP(Y > y). From the Hoeffding identity we have:

Cov(X+, Y +) =

∫ ∞
0

∫ ∞
0

(
IP(X > x, Y > y)−HX(x)HY (y)

)
dxdy.

Now

IP(X > x, Y > y)−HX(x)HY (y) ≤ inf(HX(x), HY (y))−HX(x)HY (y).

Let R be the increasing function defined on [0, 1/2] by R(t) = t − t2. Applying the

elementary fact that inf(a, b) − ab ≤ inf(R(a), R(b)) for any reals a and b in [0, 1/2] and

the strong mixing condition, we get that

IP(X > x, Y > y)−HX(x)HY (y) ≤ inf(R(HX(x)), R(HY (y)), α/2)

for any positive x and y. It follows that

Cov(X+, Y +) ≤
∫ ∞

0

∫ ∞
0

inf(R(HX(x)), R(HY (y)), α/2)dxdy.

Let V be a random variable with uniform distribution over [0, 1]. Set

Z = F−1(1−R−1(V ))1IV <α/2 and T = G−1(1−R−1(V ))1IV <α/2.

Then, for any positive reals x and y,

inf(R(HX(x)), R(HY (y)), α/2) = IP(Z > x, T > y).
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Hence

Cov(X+, Y +) ≤ IE(ZT ) =

∫ α/2

0

F−1(1−R−1(v))G−1(1−R−1(v))dv.

In the same way

Cov(X−, Y −) ≤
∫ α/2

0

F−1(R−1(v))G−1(R−1(v))dv.

Now

−Cov(X+, Y −) =

∫ ∞
0

∫ ∞
0

(HX(x)G(−y)− IP(X > x, Y < −y))dxdy

≤
∫ ∞

0

∫ ∞
0

inf(HX(x)G(−y), α/2)dxdy

≤ 1

2

∫ ∞
0

∫ ∞
0

inf(HX(x), G(−y), α)dxdy.

Therefrom, proceeding as in the proof of Theorem 1.1(a),

−Cov(X+, Y −) ≤ 1

2

∫ α

0

F−1(1− v)(−G−1(v))dv

=

∫ α/2

0

F−1(1− 2v)(−G−1(2v))dv.

Now, from the convexity of R−1 on [0, 1/4], 2v ≥ R−1(v). Since v → −F−1(1− v)G−1(v)

is nonincreasing on [0, 1/2], we deduce from the above inequality that

−Cov(X+, Y −) ≤ −
∫ α/2

0

F−1(1−R−1(v))G−1(R−1(v))dv.

Interverting X and Y , we get a similar upper bound for −Cov(X−, Y +), and, collecting

the four upper bounds above, we then get that

(1.69) Cov(X,Y ) ≤
∫ α/2

0

DF (R−1(v))DG(R−1(v))dv.

Since the dispersion function associated to the distribution function of −X is also equal

to DF almost everywhere, the above upper bound still holds true for Cov(−X,Y ). Now

Theorem 1.5(a) follows via the change of variable u = R−1(v).

We now prove (b). Assume that the random variables Xi have the common marginal

distribution function F . With the notations of Section 1.4, Inequality (1.69) yields

|VarSn − nVarX0| ≤ 2n

∫ α1/2

0

(α−1(2v)− 1)D2
F (R−1(v))dv.
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Using again the change of variable u = R−1(v) in the above integral, we then get Theorem

1.5(b).

EXERCISES

1) Let U be a random variable with uniform law over [0, 1] and F be the distribution

function of some real-valued random variable.

a) Prove that X = F−1(U) has the distribution function F .

b) Prove that, if F is continuous everywhere, then F (X) has the uniform law over [0, 1]

and F (X) = U almost surely.

c) Let F be any distribution function (jumps ate allowed) and δ be a random variable

with uniform law over [0, 1], independent of X. Prove that

V = F (X − 0) + δ(F (X)− F (X − 0))

has the uniform law over [0, 1], and that, almost surely F−1(V ) = X. Hint: prove that

X ≥ F−1(V ), and next use the fact that X and F−1(V ) have the same law.

2) Let µ be a law on IR2 and let X be a random variable with distribution the first

marginal law of µ. Let δ be a random variable with uniform law over [0, 1], independent

of X. Construct a function f such that (X, f(X, δ)) has law µ. Hint: if Z = (T,W ) has

law µ, consider the inverse of the distribution function of W conditionally to T .

3) Let F and G be distribution functions of nonnegative real-valued random variables, and

(X,Y ) be a random vector with marginal distribution functions F and G.

a) Prove that

(1) IE(XY ) ≤
∫ 1

0

F−1(u)G−1(u)du.

Suppose now that the equality holds in (1) . Let U be a random variable with uniform

distribution over [0, 1]. Prove that (F−1(U), G−1(U)) and (X,Y ) are equally distributed.

Hint: consider the bivariate distribution function of (X,Y ).

b) Let δ be a random variable with uniform law over [0, 1], independent of (X,Y ).

Prove that, if the equality holds true in (1), then one can construct a random variable

V = f(X,Y, δ) with uniform law over [0, 1], such that (X,Y ) = (F−1(V ), G−1(V )) p.s.

4) Let X be a real-valued random variable and let Q be the quantile function of |X|. Let δ

be a random variable with uniform law over [0, 1], independent of X, and let L(α) be the

class of nonnegative integer random variables A on (Ω, T , IP), such that IP(A > x) = α(x).

Prove that

(2)

∫ 1

0

α−1(u)Q2(u)du = sup
A∈L(α)

IE(AX2).
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5) Throughout this exercise, the strong mixing coefficients αn are defined by par (1.20).

Let (Xi)i∈ZZ be a strictly stationary sequence of real-valued random variables with law P

and distribution function F . Let Zn be defined by (1.37). We are interested in the variance

of Zn(I) for I interval. For any Borel set A, set

In(A) = sup
{ k∑
i=1

VarZn(Ai) : {A1, ..., Ak} finite partition of A
}
.

a) Prove that In is a nondecreasing and nonnegative function.

b) Prove that, for any Borel sets A and B with A∩B = ∅, In(A∪B) ≥ In(A) + In(B).

c) Prove that

(3) In(A) ≤ sup
‖f‖∞=1

VarZn(f1IA).

Deduce from (3) that In(IR) ≤ 1 + 4
∑n−1
i=1 αi.

d) Prove that there exists some distribution function Gn such that

(4) VarZn(]s, t]) ≤ (Gn(t)−Gn(s))(1 + 4

n−1∑
i=1

αi).

for any (s, t) with s ≤ t. Compare (4) with Corollary 1.1.

6) Let F and G be distribution function of nonegative and integrable random variables

and X and Y be random variables with respective distribution functions F and G. Let Φ

be the set of convex functions defined in (1.26).

a) Suppose that F and G are continuous one to one maps from IR+ on [0, 1[. Prove

that

(5)

∫ 1

0

F−1(u)G−1(u)du = inf
φ∈Φ

IE(φ∗(X) + φ(Y )).

Hint : define φ by φ′(G−1) = F−1.

b) Does (5) hold in the general case?

c) Let Z be a nonnegative random variable with distribution function H. Suppose

that, for any φ in Φ, if φ(Y )) is integrable, then φ(Z) is integrable. Prove that under the

assumption of (a),∫ 1

0

F−1(u)G−1(u)du <∞ =⇒
∫ 1

0

F−1(u)H−1(u)du <∞.

7) Let X and Y be complex-valued integrable random variables such that |XY | is integrable

and let α = α(σ(X), σ(Y )). Let RX and IX denote respectively the real parts and the

imaginary part of X.
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a) Prove that QRX ≤ Q|X| and QIX ≤ Q|X|.
b) Suppose that IE(XY ) − IE(X)IE(Y ) = ρ ≥ 0. Apply Theorem 1.1 to the real parts

and the imaginary parts of X and Y to prove that

(6) |IE(XY )− IE(X)IE(Y )| ≤ 4

∫ α

0

Q|X|(u)Q|Y |(u)du.

c) The general case. Suppose that IE(XY )− IE(X)IE(Y ) = ρeiθ for some ρ > 0 and

some θ in IR. Apply (b) to X and e−iθY to prove that Inequality (6) still holds true.

8) Let X and Y be two random variables, with respective distribution functions F and G,

satisfying the assumptions of Theorem 1.1 or Theorem 1.5.

a) Prove that, for any (x, y) in IR2,

|IP(X > x, Y > y)− IP(X > x)IP(y > y)| ≤ inf(F (x), G(x), 1− F (x), 1−G(x), α/2).

b) With the notations of Theorem 1.5, infer from the above inequality that

(7) |Cov(X,Y )| ≤
∫ α/2

0

DF (u)DG(u)du.

c) Noticing that the upper bound in (1.69) is equal to the upper bound in Theorem

1.5(a), prove that Theorem 1.5(a) is sharper than (7). Hint: prove that R−1(v) ≥ v.

d) Symmetric case. Assume here that X and Y have symmetric laws. Prove then that

DF (u) = 2QX(2u) and DG(u) = 2QY (2u) almost everywhere. Infer that∫ α/2

0

DF (u)DG(u)du = 2

∫ α

0

QX(u)QY (u)du.

e) General case. For a real-valued random variable Z, define ΨZ by ΨZ(x) = IP(Z > x)

for x ≥ 0 and ΨZ(x) = IP(Z < x) for x < 0. Go inside the paper of Rio (1993, pages

593-594) to prove that

2

∫ α

0

QX(u)QY (u)du ≥
∫∫

IR2

inf(ΨX(x),ΨY (y), α/2)dxdy

Infer that (7) is sharper than Theorem 1.1(a) in the general case.
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2. ALGEBRAIC MOMENTS, ELEMENTARY

EXPONENTIAL INEQUALITIES

2.1. Introduction

In this chapter, we start by giving upper bounds for algebraic moments of partial sums

from a strongly mixing sequence. These inequalities are similar to Rosenthal’s inequalities

(1970) concerning moments of sums of independent random variables. They may be applied

to provide estimates of deviation probabilities of partial sums from their mean value, which

are more efficient than the results derived from the Marcinkiewicz-Zygmund type moment

inequalities given in Ibragimov (1962) or Billingsley (1968) for uniformly mixing sequences,

or in Yokoyama (1980) for strongly mixing sequences, in particular for partial sums with a

small variance. For example, Rosenthal type inequalities may be used to get precise upper

bounds for integrated Lp-risks in of kernel density estimtors. They provide the exact rates

of convergence, contrary to Marcinkiewicz-Zygmund type moment inequalities, as shown

first by Bretagnolle and Huber (1979) in the independent case.

In Sections 2.2 and 2.3, we follow the approach of Doukhan and Portal (1983), for

algebraic moments in the strong mixing case. In Section 2.4 we give a second method,

which provides explicit constants in inequalities for the algebraic moments of order 2p.

Applying then the Markov inequality to S2p
n , and minimizing the so obtained deviation

bound with respect to p, we then get exponential Hoeffding’s type exponential inequalities

in the uniform mixing case. We also apply this method to get upper bounds for non-

algebraic moments in Section 2.5.

2.2. An upper bound for the fourth moment of sums

In this section, we adapt the method introduced in Billingsley (1968, section 22) to

bound up the moment of order 4 of a sum of random variables satisfying an uniform

mixing condition to the context of strongly mixing sequences. We start by introducing

some notations that we shall use throughout the sequel.

Notation 2.1. Let (Xi)i∈ZZ be a sequence of real-valued random variables. Set Fk =

σ(Xi : i ≤ k) and Gl = σ(Xi : i ≥ l). By convention, if the sequence (Xi)i∈T is defined on

a subset T of ZZ, we set Xi = 0 for i in ZZ \ T .
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During Sections 2.2 and 2.3, the strong mixing coefficients (αn)n≥0 of (Xi)i∈ZZ are

defined, as in Rosenblatt (1956), by

(2.1) α0 = 1/2 and αn = sup
k∈ZZ

α(Fk,Gk+n) for any n > 0.

Starting from Theorem 1.1(a), we now give an upper bound for the fourth moment of

the partial sums for nonstationary sequences.

Theorem 2.1 Let (Xi)i∈IN be a sequence of centered real-valued random variables with

finite fourth moments. Let Qk = Q|Xk| and set

M4,α,n(Qk) =
n∑
k=1

∫ 1

0

[α−1(u) ∧ n]3Q4
k(u)du.

Then

IE(S4
n) ≤ 3

( n∑
i=1

n∑
j=1

|IE(XiXj)|
)2

+48
n∑
k=1

M4,α,n(Qk).

Proof. For i /∈ [1, n], let us replace the initial random variables Xi by the null random

variable. With this convention

(2.2) S4
n = 24

∑
i<j<k<l

XiXjXkXl+12
∑
j<k

i/∈{j,k}

X2
iXjXk+6

∑
i<j

X2
iX

2
j +4

∑
i 6=j

X3
iXj+

∑
i

X4
i .

It follows that

(2.3) IE(S4
n) ≤ 3

∑
i≤j≤k≤l

|IE(XiXjXkXl)|(1 + 1Ii<j)(1 + 1Ij<k)(1 + 1Ik<l).

We now apply Theorem 1.1(a) to the product XiXjXkXl at the maximal spacing. So, let

m = sup(j − i, k − j, l − k). If m = k − j > 0, then Theorem 1.1(a) applied to X = XiXj

and Y = XkXl yields

(2.4) |IE(XiXjXkXl)| ≤ |IE(XiXj)IE(XkXl)|+ 2

∫ αm

0

QXiXj (u)QXkXl(u)du.

If m = j − i and k − j < m, Theorem 1.1(a) applied to X = Xi and Y = XjXkXl yields

(2.5) |IE(XiXjXkXl)| ≤ 2

∫ αm

0

QXi(u)QXjXkXl(u)du.

The case m = l − k and sup(k − j, j − i) < m can be treated in the same way and gives

the same inequality. To complete the proof, we will need the technical lemma below, due

to Bass (1955) in the case p = 2.
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Lemma 2.1. Let Z1, ... Zp be nonnegative random variables. Then

(a) IE(Z1...Zp) ≤
∫ 1

0

QZ1(u)...QZp(u)du.

Furthermore

(b)

∫ 1

0

QZ1Z2
(u)QZ3

(u)...QZp(u)du ≤
∫ 1

0

QZ1
(u)QZ2

(u)...QZp(u)du

and

(c)

∫ 1

0

QZ1+Z2
(u)QZ3

(u)...QZp(u)du ≤
∫ 1

0

(QZ1
(u) +QZ2

(u))QZ3
(u)...QZp(u)du.

Proof of Lemma 2.1. We first prove (a). By the Fubini Theorem,

(2.6)

IE(Z1...Zp) =

∫
IRp

IP(Z1 > z1, . . . , Zp > zp)dz1 . . . dzp ≤
∫

IRp
inf

i∈[1,p]
IP(Zi > zi)dz1 . . . dzp.

Now

(2.7) inf
i∈[1,p]

IP(Zi > zi) =

∫ 1

0

1Iz1<QZ1
(u) . . . 1Izp<QZp (u)du.

Plugging (2.7) in (2.6) and applying again the Fubini theorem, we then get (a).

Let us now prove (b). Let U be a random variable with the uniform distribution over

[0, 1]. For any nonnegative random variable Z, QZ(U) has the distribution of Z. Now (cf.

exercise 1, Chap. 1), if H(t) = IP(Z1Z2 > t), then, for any random variable δ with uniform

distribution over [0, 1] independent of (Z1, Z2),

W = 1− V = H(Z1Z2 − 0) + δ(H(Z1Z2)−H(Z1Z2 − 0))

has the uniform law. Let (T1, T2, · · · , Tp) = (Z1, Z2, QZ3(W ), . . . , QZp(W )). Then the

random variable (T1T2, T3, . . . , Tp) has the same law as (QZ1Z2
(U), QZ3

(U), . . . , QZp(U)).

Hence, by Lemma 2.1(a),∫ 1

0

QZ1Z2
(u)QZ3

(u)...QZp(u)du ≤
∫ 1

0

QZ1
(u)QZ2

(u)...QZp(u)du,

which completes the proof of (b). The proof of (c), being similar, is omitted.

We now complete the proof of Theorem 2.1. Both inequalities (2.4) and(2.5) together

with Lemma 2.1(b) applied repeatedly yield

|IE(XiXjXkXl)| ≤ 2

∫ αm

0

Qi(u)Qj(u)Qk(u)Ql(u)du

+ |IE(XiXj)IE(XkXl)|1Ik−j>max(j−i,l−k),(2.8)
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where m = max(j − i, k − j, l − k) > 0 is the maximal spacing. In the case m = 0, (2.8)

still holds since

E(X4
i ) =

∫ 1

0

Q4
i (u)du ≤ 2

∫ 1/2

0

Q4
i (u)du.

Now ∑
i≤j<k≤l

|IE(XiXj)IE(XkXl)|(1 + 1Ii<j)(1 + 1Ik<l) ≤
( ∑

(i,j)∈[1,n]2

|IE(XiXj)|
)2

.

Hence, by (2.3) and (2.8),

IE(S4
n)− 3

( n∑
i=1

n∑
j=1

|IE(XiXj)|
)2

≤ 12
∑

i≤j≤k≤l

∫ αm

0

(Q4
i (u) +Q4

j (u) +Q4
k(u) +Q4

l (u))du

≤ 48
n−1∑
m=0

n∑
k=1

∫ αm

αm+1

(m+ 1)3Q4
k(u)du,(2.9)

with the convention that αn = 0 in (2.9). Hence Theorem 2.1 holds

Application of Theorem 2.1 to bounded random variables. Suppose that ‖Xi‖∞ ≤ 1 for

any i > 0. Then by Theorem 2.1 and Corollary 1.2,

IE(S4
n) ≤ 3

( n∑
i=1

n∑
j=1

|IE(XiXj)|
)2

+ 144n
n−1∑
m=0

(m+ 1)2αm

≤ 48n2
(n−1∑
m=0

αm

)2

+ 144n
n−1∑
m=0

(m+ 1)2αm.(2.10)

Let us compare this result with Lemma 4, Section 20, in Billingsley (1968). This lemma

gives, in our setting (note that the proof of Billingsley can be adapted to strongly mixing

sequences),

(2.11) IE(S4
n) ≤ 768n2

(n−1∑
m=0

√
αm

)2

.

For any p > 0, set

(2.12) Λp(α
−1) = sup

0≤m<n
(m+ 1)(αm)1/p.

Applying (2.10), we get

(2.13) IE(S4
n) ≤ (8π2 + 144)(nΛ2(α−1))2 ≤ 223n2(Λ2(α−1))2.
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Since (αm)m≥0 est nonincreasing,

(2.14) Λ2(α−1) ≤
n−1∑
m=0

√
αm,

which shows that (2.13) implies (2.11). Now, if the strong mixing coefficients αm satisfy

αm = O(m−2), then (2.13) ensures that IE(S4
n) = O(n2). In that case (2.11) leads to a

logarithmic loss.

2.3. Even algebraic moments

In this section, we extend Theorem 2.1 to moments of order 2p with p > 2 integer. Our

main result is the following.

Theorem 2.2. Let p > 0 be an integer and (Xi)i∈IN be a sequence of centered real-

valued random variables with finite moments of order 2p. Set Qk = QXk . Then there exist

positive constants ap and bp such that

IE
(
S2p
n

)
≤ ap

(∫ 1

0

n∑
k=1

[α−1(u) ∧ n]Q2
k(u)du

)p
+ bp

n∑
k=1

∫ 1

0

[α−1(u) ∧ n]2p−1Q2p
k (u)du.

Remark 2.1. Recall that Qk(U) and |Xk| have the same law. The weighted moments

on right hand in the above inequality play the same role as the usual moments in the

independent case. We refer to Annex C for more comparisons between these quantities

and the usual moments.

Doukhan and Portal (1983) give recursive relations which allow to bound up ap and

bp by induction on p. These upper bounds can be used to derive exponential inequal-

ities for geometrically strongly mixing sequences or random fields (cf. Doukhan, León

and Portal (1984) or Doukhan (1994)). For nonalgebraic moments, one can derive mo-

ments inequalities from the algebraic case via interpolation inequalities (see Utev (1985)

or Doukhan (1994)). Nevertheless, interpolation inequalities lead to suboptimal mixing

conditions. In Chapter 6, we will give another way to prove moment inequalities, which

leads to unimprovable mixing conditions.

Proof of Theorem 2.2. We follow the line of proof of Doukhan and Portal (1983); cf.

also Doukhan (1994). For any positive integer q, let

(2.15) Aq(n) =
∑

1≤i1≤···≤iq≤n

|IE(Xi1 . . . Xiq )|.
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It is easy to check that

(2.16) IE(S2p
n ) ≤ (2p)!A2p(n).

Therefrom Theorem 2.2 follows from similar upper bounds on Aq(n). We will bound up

these quantities by induction on q via Lemma 2.2 below.

Lemma 2.2. Suppose that the random variables X1, . . . Xn are centered and with finite

absolute moments of order q. Then

Aq(n) ≤
q−1∑
r=1

Ar(n)Aq−r(n) + 2

n∑
k=1

∫ 1

0

[α−1(u) ∧ n]q−1Qqk(u)du.

Proof. As in the proof of Theorem 2.1, we may assume that αn = 0. Let

m(i1, . . . , iq) = sup
k∈[1,q[

(ik+1 − ik)

and

(2.17) j = inf{k ∈ [1, q[ : ik+1 − ik = m(i1, . . . , iq)}.

Theorem 1.1(a) applied to X = Xi1 . . . Xij and Y = Xij+1 . . . Xiq together with Lemma

2.1(b) ensures that

(2.18)

|IE(Xi1 . . . Xiq )| ≤ |IE(Xi1 . . . Xij )IE(Xij+1
. . . Xiq )|+ 2

∫ αm(i1,...,iq)

0

Qi1(u) . . . Qiq (u)du.

Summing (2.18) on (i1, . . . , iq) we infer that

(2.19) Aq(n) ≤
q−1∑
r=1

Ar(n)Aq−r(n) + 2
∑

i1≤···≤iq

∫ αm(i1,...,iq)

0

Qi1(u) . . . Qiq (u)du.

Now, starting from the elementary inequality

Qi1(u) . . . Qiq (u) ≤ q−1(Qqi1(u) + · · ·+Qiq (u)),

and interverting the sum and the integral, we get that

∑
i1≤···≤iq

∫ αm(i1,...,iq)

0

Qi1(u) . . . Qiq (u)du ≤ 1

q

q∑
l=1

n∑
il=1

n−1∑
m=0

∫ αm

αm+1

χ(il,m)Qqil(u)du,
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where χ(il,m) is the cardinality of the set of (q − 1)-uples (i1, .., il−1, il+1, .., iq) such that

i1 ≤ · · · ≤ il−1 ≤ il ≤ il+1 ≤ · · · ≤ iq and sup
k∈[1,q[

(ik+1 − ik) ≤ m.

Noting that χ(il,m) ≤ (m+ 1)q−1, we then get Lemma 2.2.

End of the proof of Theorem 2.2. Let

(2.20) Mq,α,n =
n∑
k=1

∫ 1

0

[α−1(u) ∧ n]q−1Qqk(u)du.

We will prove by induction on q that

H(q) Aq(n) ≤ aqMq/2
2,α,n + bqMq,α,n.

By Corollary 1.2, H(2) holds true with a2 = 2 et b2 = 0. Suppose now that H(r) holds for

any r ≤ q − 1 Then, from Lemma 2.2 we get that

Aq(n) ≤
q−2∑
r=2

(arM
r/2
2,α,n + brMr,α,n)(aq−rM

(q−r)/2
2,α,n + bq−rMq−r,α,n) + 2Mq,α,n.

Hence H(q) will hold true if we prove that, for any r in [2, q − 2],

(2.21) (arM
r/2
2,α,n + brMr,α,n)(aq−rM

(q−r)/2
2,α,n + bq−rMq−r,α,n) ≤ aq,rMq/2

2,α,n + bq,rMq,α,n.

To prove (2.21) we apply the Young inequality qxy ≤ rxq/r + (q − r)yq/(q−r) to the left

hand side in (2.21). Noting that (v+w)s ≤ 2s−1(vs+ws) for any s ≥ 1, we get that (2.21)

will hold true if

(2.22) Mq/r
r,α,n ≤ cq,r(M

q/2
2,α,n +Mq,α,n).

Now, let

Mp,α,n(Qk) =

∫ 1

0

[α−1(u) ∧ n]p−1Qpk(u)du.

By the Hölder inequality,

Mr,α,n(Qk) ≤ (Mq,α,n(Qk))(r−2)/(q−2)(M2,α,n(Qk))(q−r)/(q−2).

Therefrom

Mr,α,n =
n∑
k=1

Mr,α,n(Qk) ≤
n∑
k=1

(Mq,α,n(Qk))(r−2)/(q−2)(M2,α,n(Qk))(q−r)/(q−2).
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Hence, by the Hölder inequality applied with exponents (q− 2)/(r− 2) and (q− 2)/(q− r)
together with the adequate Young inequality,

Mr,α,n ≤M (r−2)/(q−2)
q,α,n M

(q−r)/(q−2)
2,α,n ≤ c′r,q(Mr/q

q,α,n +M
r/2
2,α,n),

which implies (2.22). Whence (2.21) holds, and Lemma 2.2 follows by induction on q.

Both (2.16) and Lemma 2.2 then imply Theorem 2.2.

Application to bounded random variables. Suppose that ‖Xi‖∞ ≤ 1 for any i > 0. Then

(2.23) IE(S2p
n ) ≤ (2ap + bp)n

p(Λp(α
−1))p,

Consequently, if the strong mixing coefficients (αm)m≥0 satisfy αm = O(m−p), then

(2.23) implies the Marcinkiewicz-Zygmund type inequality IE(S2p
n ) = O(np). In that case

Yokoyama’s inequalities (1980) are not efficient (cf. Annex C for more details).

2.4. Exponential inequalities

The constants ap and bp appearing in Theorem 2.2 can be bounded up by explicit

constants. Nevertheless, in the case of geometrically mixing sequences, it seems that it is

difficult to obtain the exact dependence in p of the constants (recall that one can derive

exponential inequalities from moment inequalities with explicit constants). In this section,

we give a different way to obtain moment inequalities, which is more suitable to derive

exponential inequalities. Next we will derive exponential inequalities for geometrically

strongly mixing inequalities from these new inequalities. We will also get the so called

Collomb inequalities (1984) for uniformly mixing sequences via this method. We refer to

Delyon (2015) and Wintenberger (2010) for additional results.

Notation 2.2. Let Fi = σ(Xj : j ≤ i). We set IEi(Xk) = IE(Xk | Fi).

The fundamental tool of this section is the equality below.

Theorem 2.3. let (Xi)i∈ZZ be a sequence of real-valued random variables and ψ be a

convex differentiable map from IR into IR+, with ψ(0) = 0, and such that the second

derivative of ψ in the sense of distributions is absolutely continuous with respect to the

Lebesgue measure on IR. Let ψ′′ denote the density of the second derivative of ψ. Suppose

that for any i in [1, n] and any k in [i, n],

(a) IE(|(ψ′(Si)− ψ′(Si−1))Xk|) <∞.

Then

IE(ψ(Sn)) =
n∑
i=1

∫ 1

0

IE
(
ψ′′(Si−1 + tXi)

(
−tX2

i +Xi

n∑
k=i

IEi(Xk)
))
dt.
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Proof. By the Taylor integral formula at order 2

ψ(Sn) =
n∑
i=1

(ψ(Si)− ψ(Si−1))

=

n∑
k=1

ψ′(Sk−1)Xk +

n∑
i=1

∫ 1

0

(1− t)ψ′′(Si−1 + tXi)X
2
i dt.

Now

ψ′(Sk−1) =

k−1∑
i=1

(ψ′(Si)− ψ′(Si−1)) =

k−1∑
i=1

∫ 1

0

ψ′′(Si−1 + tXi)Xidt.

Plugging this equality in the Taylor formula, we get that

(2.24) ψ(Sn) =
n∑
i=1

∫ 1

0

ψ′′(Si−1 + tXi)
(
−tX2

i +Xi

n∑
k=i

Xk

)
dt.

Now, taking the mean in the above equality, noticing that, under assumption (a), the

random variables (1 − t)ψ′′(Si−1 + tXi)X
2
i and ψ′′(Si−1 + tXi)XiXk are integable with

respect to the product measure λ⊗ IP and applying the Fubini theorem, we get that

IE(ψ(Sn)) =
n∑
i=1

∫ 1

0

IE
(
ψ′′(Si−1 + tXi)

(
−tX2

i +Xi

n∑
k=i

Xk)
))
dt.

Theorem 2.3 follows then from this equality and the fact that

IE
(
ψ′′(Si−1 + tXi)XiXk

)
= IE

(
ψ′′(Si−1 + tXi)XiIEi(Xk)

)
.

We now derive an Hoeffding type inequality from Theorem 2.3 (cf. Theorem B.4,

Annex B, for Hoeffding’s inequality for bounded and independent random variables). This

inequality is an extension of the Azuma inequality (1967) for martingales to dependent

sequences.

Theorem 2.4. let (Xi)i∈ZZ be a sequence of real-valued bounded random variables. Let

(m1,m2, . . . ,mn) be a n-uple of positive reals such that

(a) sup
j∈[i,n]

(
‖X2

i ‖∞ + 2 ‖Xi

j∑
k=i+1

IEi(Xk)‖∞
)
≤ mi for any i ∈ [1, n],

with the convention
∑i
k=i+1 IEi(Xk) = 0. Then, for any nonegative integer p,

(b) IE(S2p
n ) ≤ (2p)!

2p p!

( n∑
i=1

mi

)p
.
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Consequently, for any positive x,

(c) IP(|Sn| ≥ x) ≤
√
e exp

(
− x2/(2m1 + · · ·+ 2mn)

)
.

Proof. Define the functions ψp by ψ0(x) = 1 and ψp(x) = x2p/(2p)! for p > 0. Set

Mi = ‖Xi‖2∞. We prove (b) by induction on p. At range 0, (b) holds true for any sequence

(Xi)i∈ZZ, since S0
n = 1. If (b) holds at range p for any sequence (Xi)i∈ZZ, then, applying

Theorem 2.3 to ψ = ψp+1 and noting that ψ′′p+1 = ψp, we get that

(2.25) 2IE(ψp+1(Sn)) ≤
n∑
i=1

∫ 1

0

IE(ψp(Si−1 + tXi))(mi + (1− 2t)Mi)dt.

We now apply the induction hypothesis to the sequence (X ′l)l∈ZZ defined by X ′l = Xl for

any 1 ≤ l < i, X ′i = tXi and X ′l = 0 for l /∈ [1, i]. For l < i and j < i,

X ′l

j∑
m=l+1

IEl(X
′
m) = Xl

j∑
m=l+1

IEl(Xm).

For l < i and j ≥ i,

X ′l

j∑
m=l+1

IEl(X
′
m) = tXl

i∑
m=l+1

IEl(Xm) + (1− t)Xl

i−1∑
m=l+1

IEl(Xm).

Hence the sequence (X ′l)l∈ZZ satisfies assumption (a) with the new sequence (m′i)i defined

by m′l = ml for l < i and m′i = t2Mi. Consequently, applying (b) to S′i = X ′1 + · · · + X ′i,

we get that

2pp! IE(ψp(Si−1 + tXi)) ≤ (m1 + · · ·+mi−1 + t2Mi)
p.

Now mi + (1− 2t)Mi ≥ mi −Mi ≥ 0. Hence

2p+1p!

∫ 1

0

IE(ψp(Si−1 + tXi))(mi + (1− 2t)Mi)dt

≤
∫ 1

0

(m1 + · · ·+mi−1 + t2Mi)
p(mi + (1− 2t)Mi)dt

≤
∫ 1

0

(m1 + · · ·+mi−1 + tmi + t(1− t)Mi)
p(mi + (1− 2t)Mi)dt,(2.26)

since tmi + t(1− t)Mi ≥ t2Mi. Now

(p+ 1)

∫ 1

0

(m1+ · · ·+mi−1 + tmi + t(1− t)Mi)
p(mi + (1− 2t)Mi)dt =

(m1 + · · ·+mi)
p+1 − (m1 + · · ·+mi−1)p+1,(2.27)
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whence

2p+1(p+ 1)!

∫ 1

0

IE(ψp(Si−1 + tXi))(mi + (1− 2t)Mi)dt ≤

(m1 + · · ·+mi)
p+1 − (m1 + · · ·+mi−1)p+1.(2.28)

Finally both (2.25) and (2.28) ensure that the induction hypothesis holds at range p + 1

for the sequence (Xi)i∈ZZ. Hence (b) holds true by induction on p.

In order to prove (c), we will apply the Markov inequality to S2p
n for some adequate p.

Set

A = x2/(2m1 + · · ·+ 2mn) and p = [A+ (1/2)],

square brackets designating the integer part. (c) holds trivially fo A ≤ 1/2. Hence we may

assume that A ≥ 1/2. Then p > 0, and applying the Markov inequality to S2p
n , we get

that

(2.29) IP(|Sn| ≥ x) ≤ (4A)−p(2p)!/p!.

If A belongs to [1/2, 3/2], (2.29) yields

IP(|Sn| ≥ x) ≤ (2A)−1 ≤
√
e exp(−A),

since 2A ≥ exp(A − 1/2) for A dans [1/2, 3/2]. Next, if A ≥ 3/2, using the fact that the

sequence (2πn)−1/2(e/n)nn! is nonincreasing, we get that (2p)! ≤
√

2(4p/e)pp!, whence

IP(|Sn| ≥ x) ≤
√

2 (eA)−ppp.

Now, taking the logarithm in this inequality, we obtain

A+ log IP(|Sn| ≥ x) ≤ log
√

2 + fp(A),

with fp(A) = (A − p) − p log(A/p). Here p ≥ 2 and A belongs to [p − 1/2, p + 1/2[.

Since f ′p(A) = (A− p)/A and f ′′p (A) = p/A2, the function fp is convex. Consequently the

maximum of fp is reached at A = p− 1/2 or A = p+ 1/2. Since fp reaches his minimum

at point p and f ′′p is decreasing, the maximum de fp is reached for A = p− 1/2. Hence

A+ log IP(|Sn| ≥ x) ≤ log 2− 1

2
+ p log

( 2p

2p− 1

)
≤ log 2− 1

2
+ 2 log(4/3),

since p ≥ 2. Thus we get that

IP(|Sn| ≥ x) ≤ 16
√

2

9
√
e

exp(−A) ≤
√
e exp(−A),
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which completes the proof of Theorem 2.4(c)

We now apply Theorem 2.4 to uniformly mixing sequences, as defined below.

Definition 2.1. The uniform mixing coefficients of (Xi)i∈ZZ are defined by

ϕ0 = 1 and ϕn = sup
k∈ZZ

ϕ(Fk, σ(Xk+n)) for any n > 0.

The sequence (Xi)i∈ZZ is said to be uniformly mixing if ϕn converges to 0 as n tends to∞.

Corollary 2.1 below provides a Hoeffding type inequality for uniformly mixing sequences

of bounded random variables.

Corollary 2.1. Let (Xi)i∈ZZ be a sequence of centered and real-valued bounded random

variables. Set θn = 1+4(ϕ1 + · · ·+ϕn−1) and Mi = ‖Xi‖2∞. Then, for any positive integer

p,

(a) IE(S2p
n ) ≤ (2p)!

p!

(θn
2

)p
(M1 + · · ·+Mn)p.

Next, for any positive x,

(b) IP(|Sn| ≥ x) ≤
√
e exp

(
− x2/(2θnM1 + · · ·+ 2θnMn)

)
.

Proof. Let us apply Theorem 2.4 to the sequence (Xi)i∈ZZ. Since the random variables

Xk are centered at expectation, by Theorem 1.4(b) and the Riesz-Fisher theorem,

‖IEi(Xk)‖∞ ≤ 2ϕk−i‖Xk‖∞.

Hence we may apply Theorem 2.4 with

mi = Mi + 4

n∑
k=i+1

√
MiMk ϕk−i.

Summing on i, we have:

m1 + · · ·+mn ≤
n∑
i=1

Mi + 4
∑

1≤i<k≤n

√
MiMk ϕk−i

≤
n∑
i=1

Mi + 2
∑

1≤i<k≤n

(Mi +Mk)ϕk−i ≤ θn
n∑
i=1

Mi.

Corollary 2.4 follows then from both Theorem 2.4 and the above upper bound.
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2.5. New moment inequalities

In this section, we derive from Theorem 2.3 new moment inequalities for strongly mixing

sequences. These inequalities are similar to the type Marcinkiewicz-Zygmund inequalities

for independent random variables. Throughout the section, the strong mixing coefficients

are defined in the following way:

(2.30) α0 = 1/2 and αn = sup
k∈ZZ

α(Fk, Xk+n) for any n > 0.

Our main result is as follows.

Theorem 2.5. Let p be any real in ]1,∞[. Let (Xi)i∈ZZ be a strictly stationary sequence

of real-valued random variables with mean 0 and finite moment of order 2p. Set Q = QX0
.

Then, with the notations of Section 2.4, for any positive n,

(a) IE(|Sn|2p) ≤ (4np)p sup
l∈[1,n]

IE
(∣∣∣X0

l−1∑
i=0

IE0(Xi)
∣∣∣p).

Consequently

(b) IE(|Sn|2p) ≤ (8np)p
∫ 1

0

[α−1(u) ∧ n]pQ2p(u)du.

Remark 2.2. Inequality (a) may be applied to some dynamical systems with hyper-

bolicity, as shown by Melbourne and Nicol (2008). Inequality (b) can be improved if the

strong mixing coefficients are defined by (2.1). We shall obtain Marcinkiewicz-Zygmund

type inequalities under a weaker mixing condition in Chap. 6 (see Section 6.4 and (C.15)

in Annex C).

Proof. We prove Theorem 2.5 by induction on n. Our induction hypothesis is the follow-

ing. For any integer k ≤ n and any t in [0, 1],

IE(|Sk−1 + tXk|2p) ≤ (4p)p(k − 1 + t)p sup
l∈[1,k]

IE
(∣∣∣X0

l−1∑
i=0

IE0(Xi)
∣∣∣p).

First, for any integer k ≤ 4p,

‖Sk−1 + tXk‖2p ≤ (k − 1 + t)‖X0‖2p ≤
√

4p(k − 1 + t) ‖X0‖2p.

Hence the induction hypothesis holds for k ≤ [4p].
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Now let n > 4p. If the induction hypothesis holds at range n − 1, then, applying

Theorem 2.3 with ψ(x) = |x|2p, and setting

hn(t) = IE(|Sn−1 + tXn|2p) and Γn = sup
l∈[1,n]

‖X0

l−1∑
i=0

IE0(Xi)‖p,

we obtain that

hn(t)

4p2
≤
n−1∑
i=1

∫ 1

0

IE
(
|Si−1 + sXi|2p−2Xi

n∑
k=i

IEi(Xk)
)
ds

+

∫ t

0

IE(|Sn−1 + sXn|2p−2X2
n)ds.

We now apply the Hölder inequality with exponents p/(p− 1) and p:

IE
(
|Si−1 + sXi|2p−2Xi

n∑
k=i

IEi(Xk)
)
≤ (hi(s))

(p−1)/p‖Xi

n∑
k=i

IEi(Xk)‖p.

From the stationarity of (Xi)i∈ZZ,

hn(t) ≤ 4p2Γn

(n−1∑
i=1

∫ 1

0

(hi(s))
(p−1)/pds+

∫ t

0

(hn(s))(p−1)/pds
)
.

Now if the induction hypothesis holds at range n− 1,∫ 1

0

(hi(s))
(p−1)/pds ≤ (4pΓn)p−1

∫ 1

0

(i− 1 + s)p−1ds

≤ (4Γn)p−1pp−2(ip − (i− 1)p).

Set then gn(s) = (4p(n− 1 + s)Γn)p. The above inequalities ensure that

hn(t) ≤ gn(0) + 4p2Γn

∫ t

0

(hn(s))(p−1)/pds.

Now, let

Hn(t) =

∫ t

0

(hn(s))(p−1)/pds.

The above differential inequality may be written as

H ′n(s)(gn(0) + 4p2ΓnHn(s))−1+1/p ≤ 1.

Integrating this differential inequality between 0 and t yields

(hn(t))1/p − (gn(0))1/p ≤ 4ptΓn,
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which implies that hn ≤ gn. Hence (a) holds true.

To prove (b), it is enough to prove that

Γn ≤ ‖(α−1 ∧ n)Q2‖p.

Let q = p/(p− 1). Clearly

Γn ≤ ‖
n−1∑
i=0

|IE0(Xi)|X0‖p.

Hence, by the Riesz-Fisher theorem, there exists a random variable Y in Lq(F0) such that

‖Y ‖q = 1 and

Γn ≤ IE(Y

n−1∑
i=0

|X0IE0(Xi)|) ≤
n−1∑
i=0

‖Y X0IE0(Xi)‖1.

Hence, by (1.11c),

Γn ≤ 2

n−1∑
i=0

∫ αi

0

QY X0(u)QXi(u)du.

Finally, by Lemma 2.1(b)

Γn ≤ 2

∫ 1

0

QY (u)[α−1(u) ∧ n]Q2(u)du,

which implies (b) via the Hölder inequality on [0, 1] applied to the functions QY and

[α−1 ∧ n]Q2.

To conclude this section, we give a pseudo exponential inequality for geometrically

strongly mixing sequences. Our result is similar to the results of Theorem 6 in Doukhan,

León and Portal (1984).

Corollary 2.2. Let (Xi)i∈ZZ be a sequence of centered real-valued random variables each

bounded a.s. by 1, and (αn)n≥0 be defined by (2.30). Suppose that, for some a < 1,

lim supn α
1/n
n < a. Then there exists some positive x0 such that, for any x ≥ x0 and any

positive integer n,

IP
(
|Sn| ≥ x

√
n log(1/a)

)
≤ ax/2.

Proof. It is easy to check that

lim sup
p→∞

p−1‖α−1Q2‖p < (−e log a)−1.

Hence there exists some p0 > 1 such that, for any p ≥ p0,

‖Sn‖22p ≤ 4np2(−e log a)−1.
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By the Markov inequality applied to S2p
n , we infer that

IP
(
|Sn| ≥ x

√
n log(1/a)

)
≤ e−p

( −2p

x log a

)2p

.

Set then p = −(x/2) log a. Then the above inequality yields Corollary 2.2 if p ≥ p0, which

holds true as soon as x ≥ −(2p0/ log a).

EXERCISES

1) Let (Xi)i∈ZZ be a sequence of centered real-valued random variables, with finite fourth

moments, and let (αn)n≥0 be defined by (2.1).

a) Let i ≤ j ≤ k ≤ l be natural integers. Prove that

(1) |IE(XiXjXkXl)| ≤ 2

∫ 1

0

1Iu<αj−i1Iu<αl−kQi(u)Qj(u)Qk(u)Ql(u)du.

b) Prove that

IE(S4
n) ≤ 12

∑
1≤i≤j≤k≤l≤n

|IE(XiXjXkXl)|(1 + 1Ij<k).

c) Prove that

(2) IE(S4
n) ≤ 24

n∑
j=1

n∑
k=1

∫ 1

0

[α−1(u) ∧ n]2Q2
j (u)Q2

k(u)du.

d) Suppose now that ‖Xk‖∞ ≤ 1 for any k in [1, n]. Derive from the above inequalities

that

(3) IE(S4
n) ≤ 24n2

n−1∑
m=0

(2m+ 1)αm.

Compare (3) with (2.13) and (2.11).

2) Let (Sn)n≥0 be a martingale sequence in Lp for some p > 2 and Xn = Sn − Sn−1.

Either use Inequality (2.3) in Pinelis (1994) or adapt the proof of Theorem 2.5 to prove

the inequality (4) below, given in Rio (2009):

(4) ‖Sn‖2p ≤ ‖S0‖2p + (p− 1)

n∑
k=1

‖Xk‖2p.
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3. MAXIMAL INEQUALITIES AND STRONG LAWS

3.1. Introduction

In this chapter, we are interested in extensions of the classical maximal inequalities of

Kolmogorov and Doob to weakly dependent sequences. Here we adapt previously known

tools to the context of weakly dependent sequences. In Section 3.2, we give a maximal

inequality for second order moments of the maximum of partial sums. From this maxi-

mal inequality we then obtain a criterion for the almost sure convergence of a series of

dependent random variables in the style of Kolmogorov’s criterion. Next, in Section 3.3,

we give new maximal inequalities, which are more suitable for long range dependence.

These inequalities allow us to get an extension of the results of Berbee (1987) on rates of

convergence in the strong law of large numbers for β-mixing sequences to strongly mixing

sequences.

3.2. An extension of the maximal inequality of Kolmogorov

All along this chapter, (Xi)i∈IN is a sequence of real-valued random variables. The

strong mixing coefficients of (Xi)i∈IN are defined by (2.30). We set

(3.1) QXi = Qi, S0 = 0, Sk =

k∑
i=1

(Xi − IE(Xi)) and S∗n = sup
k∈[0,n]

Sk.

In this section, we prove the maximal inequality below.

Theorem 3.1. Let (Xi)i∈IN be a sequence of centered real-valued random variables with

finite variance and λ be any nonnegative real. Set pk = IP(S∗k > λ). Then

IE((S∗n − λ)2
+) ≤ 4

n∑
i=1

∫ pi

0

Qi(u)
(
Qi(u) + 4

n∑
k=i+1

Qk(u)1Iu<αk−i

)
du

≤ 16

n∑
k=1

∫ pk

0

[α−1(u) ∧ n]Q2
k(u)du,(a)

with x+ = sup(x, 0). In the particular case λ = 0,

(b) IE(S∗2n ) ≤ 16
n∑
k=1

∫ 1

0

[α−1(u) ∧ n]Q2
k(u)du.
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From Theorem 3.1(b), one can derive the following extension of Kolmogorov’s result

on the almost sure convergence of series of random variables. We refer to Cuny and Fan

(2016) for more about series of dependent random variables.

Corollary 3.1. The series
∑∞
i=1Xi converges almost surely as soon as the condition below

holds:

(a)

∞∑
i=1

∫ 1

0

α−1(u)Q2
i (u)du < +∞.

Application of Corollary 3.1. Suppose that the random variables Xi are defined from a

strictly stationary and strongly mixing sequence (Zi)i∈ZZ by Xi = ciZi. If QZ0 satisfies

condition (DMR), then condition (a) of Corollary 3.1 holds true as soon as
∑
i>0 c

2
i <∞.

Proof of Theorem 3.1. The proof is done by adapting a trick of Garsia (1965) to our

context: write

(3.2) (S∗n − λ)2
+ =

n∑
k=1

((S∗k − λ)2
+ − (S∗k−1 − λ)2

+).

Since (S∗k)k≥0 is nondecreasing, the quantities on righ hand are nonnegative. Now

((S∗k − λ)+ − (S∗k−1 − λ)+)((S∗k − λ)+ + (S∗k−1 − λ)+) > 0

if and only if Sk > λ and Sk > S∗k−1, and then Sk = S∗k . Consequently

(3.3) (S∗k − λ)2
+ − (S∗k−1 − λ)2

+ ≤ 2(Sk − λ)((S∗k − λ)+ − (S∗k−1 − λ)+),

which implies that

(S∗n − λ)2
+ ≤ 2

n∑
k=1

(Sk − λ)(S∗k − λ)+ − 2
n∑
k=1

(Sk − λ)(S∗k−1 − λ)+

≤ 2(Sn − λ)+(S∗n − λ)+ − 2

n∑
k=1

(S∗k−1 − λ)+Xk.(3.4)

Since

(Sn − λ)+(S∗n − λ)+ ≤
1

4
(S∗n − λ)2

+ + (Sn − λ)2
+,

it follows that

(3.5) (S∗n − λ)2
+ ≤ 4(Sn − λ)2

+ − 4
n∑
k=1

(S∗k−1 − λ)+Xk.
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Next we bound up (Sn − λ)2
+. Adapting the decomposition (3.2), we get:

(Sn − λ)2
+ =

n∑
k=1

((Sk − λ)2
+ − (Sk−1 − λ)2

+)

= 2

n∑
k=1

(Sk−1 − λ)+Xk + 2

n∑
k=1

X2
k

∫ 1

0

(1− t)1ISk−1+tXk>λdt.(3.6)

Noticing then that 1ISk−1+tXk>λ ≤ 1IS∗
k
>λ, we infer from (3.6) that

(Sn − λ)2
+ ≤ 2

n∑
k=1

(Sk−1 − λ)+Xk +

n∑
k=1

X2
k1IS∗

k
>λ.

From (3.5) and the above inequality we now obtain that

(3.7) (S∗n − λ)2
+ ≤ 4

n∑
k=1

(2(Sk−1 − λ)+ − (S∗k−1 − λ)+)Xk + 4
n∑
k=1

X2
k1IS∗

k
>λ.

Set D0 = 0 and Dk = 2(Sk − λ)+ − (S∗k − λ)+ for any positive k. Clearly

Cov(Dk−1, Xk) =
k−1∑
i=1

Cov(Di −Di−1, Xk).

Now the random variables Di −Di−1 are measurable with respect to Fi = σ(Xj : j ≤ i).

Hence

(3.8) IE((S∗n − λ)2
+) ≤ 4

n∑
k=1

IE(X2
k1IS∗

k
>λ) + 4

n−1∑
i=1

IE
(∣∣(Di −Di−1)

n∑
k=i+1

IEi(Xk)
∣∣).

In order to bound up QDi−Di−1
, we now bound up |Di−Di−1|. If (S∗i −λ)+ = (S∗i−1−λ)+,

then

|Di −Di−1| = 2|(Si − λ)+ − (Si−1 − λ)+| ≤ 2|Xi|1IS∗
i
>λ,

since Di − Di−1 = 0 if Si ≤ λ and Si−1 ≤ λ. In the opposite case Si = S∗i > λ and

Si−1 ≤ S∗i−1 < Si. Therefrom Di−Di−1 = (Si−λ)+ +(S∗i−1−λ)+−2(Si−1−λ)+ belongs

to [0, 2|(Si − λ)+ − (Si−1 − λ)+| ]. In each case |Di −Di−1| ≤ 2|Xi|1IS∗
i
>λ, whence

(3.9) IE((S∗n − λ)2
+) ≤ 4

n∑
k=1

IE(X2
k1IS∗

k
>λ) + 8

n−1∑
i=1

IE
(

1IS∗
i
>λ

∣∣Xi

n∑
k=i+1

IEi(Xk)
∣∣).

Next, by (1.11c) together with Lemma 2.1,

IE
(

1IS∗
i
>λ|XiIEi(Xk)|

)
≤ 2

∫ αk−i

0

Qi(u)Qk(u)1Iu<pidu

≤
∫ αk−i

0

(Q2
i (u)1Iu<pi +Q2

k(u)1Iu<pk)du,(3.10)
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(use the monotonicity of the sequence (pk)k>0). Now, by Lemma 2.1(a), we also have

IE(X2
k1IS∗

k
>λ) ≤

∫ pk

0

Q2
k(u)du.

Theorem 3.1 follows then from (3.9), (3.10) and the above inequality.

3.3. Rates of convergence in the strong law of large numbers

Let r be be any real in ]1, 2[ and (Xi)i∈IN be a strictly stationary sequence. Theorem

3.1 applied to the sequence (Xi)i∈IN provides the almost sure convergence of n−1/rSn to 0

under the strong mixing condition∫ 1

0

α−1(u)QrX0
(u)du <∞.

This condition needs the summability of the series of strong mixing coefficients, even for

bounded random variables. By contrast, for strictly stationary and β-mixing sequences of

bounded random variables, Berbee (1987) proved the almost sure convergence of n−1/rSn

to 0 under the β-mixing condition

(BER)
∑
i≥0

(i+ 1)r−2βi <∞.

which is clearly weaker than the summability of β-mixing coefficients. In the strong mixing

case, Shao (1993) has given some rates in the strong law of large numbers under weaker

conditions than the integral condition above. However, in the bounded case, he does not

obtain the convergence of n−1/rSn to 0 under the strong mixing condition corresponding to

Berbee’s condition. In this section, we give a new maximal inequality, which minimizes the

effects of long range dependence. This inequality is then applied to get rates of convergence

in the strong law of large numbres under minimal assumptions on the mixing coefficients

and the tails of the random variables, as in Rio (1995a).

Theorem 3.2. Let (Xi)i∈IN be a sequence of centered random variables with finite vari-

ances. Then, for any nonnegative integer p and any positive x,

IP(S∗n ≥ 2x) ≤ 4

x2

n∑
k=1

∫ 1

0

[α−1(u) ∧ p]Q2
k(u)du+

4

x

n∑
k=1

∫ αp

0

Qk(u)du.

Before proving Theorem 3.2, we give an application to the rates of convergence in the

strong law. We refer to Dedecker and Merlevède (2007) for extensions of the corollary

below to other types of dependence and Banach-valued random variables.

58



Corollary 3.2. Let (Xi)i∈IN be a sequence of centered and integrable real-valued random

variables. Set Q = supi>0Qi.

(i) Let r be any real in ]1, 2[. Suppose that

(a) Mr,α(Q) =

∫ 1

0

[α−1(u)]r−1Qr(u)du < +∞.

Then n−1/rSn converges to 0 almost surely.

(ii) Suppose that Q satisfies the weaker condition

(b)

∫ 1

0

Q(u) log(1 + α−1(u))du <∞.

Then n−1Sn converges almost surely to 0.

Remark 3.1. Let X be a nonnegative random variable such that QX = Q. For m-

dependent sequences conditions (a) and (b) are respectively equivalent to the usual inte-

grability conditions IE(Xr) <∞ and IE(X) <∞. Note that, in the stationary and ergodic

case, the strong law of large numbers holds as soon as the variables are integrable. This

result does not hold for non-stationary strongly mixing sequences: condition (b) cannot

be relaxed, as proved in Rio (1995a).

Remark 3.2. We refer to Annex C for more about conditions (a) and (b). Notice that

(a) and (b) are respectively equivalent to the condtion below with r in ]1, 2[ or r = 1:

(3.11)
∑
i≥0

(i+ 1)r−2

∫ αi

0

Qr(u)du <∞.

For bounded sequences, (3.11) is equivalent to the strong mixing condition∑
i≥0

(i+ 1)r−2αi <∞.

Since αi ≤ βi, Corollary 3.2 includes Berbee’s result.

Proof of Theorem 3.2. Dividing the random variables by x if necessary, we may assume

that x = 1. Define the function g by g(y) = y − 1 for y in [1, 2], g(y) = 0 for y ≤ 1 and

g(y) = 1 for y ≥ 2. Then

IP(S∗n ≥ 2) ≤ IE(g(S∗n)) ≤
n∑
k=1

IE(g(S∗k)− g(S∗k−1)).

Let f be the nonnegative and differentiable function defined by f(y) = y2 for y dans [0, 1],

f(y) = 2y − 1 for y ≥ 1 and f(y) = 0 for any negative y. Since g is nondecreasing,
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g(S∗k) − g(S∗k−1) ≥ 0. If this quantity is strictly positive, then Sk > S∗k−1 and Sk > 1.

Hence

g(S∗k)− g(S∗k−1) ≤ (g(S∗k)− g(S∗k−1))(2Sk − 1),

which implies that

IP(S∗n ≥ 2) ≤
n∑
k=1

IE
(

(g(S∗k)− g(S∗k−1))(2Sk − 1)
)

≤ IE((2Sn − 1)g(S∗n))− 2
n∑
k=1

Cov(g(S∗k−1), Xk)

≤ IE(f(Sn)g(S∗n))− 2

n∑
k=1

Cov(g(S∗k−1), Xk)

≤ IE(f(Sn))− 2
n∑
k=1

Cov(g(S∗k−1), Xk).(3.12)

Now, since f ′ is 2-Lipschitz,

(3.13) IE(f(Sn)) =
n∑
k=1

IE(f(Sk)− f(Sk−1)) ≤
n∑
k=1

VarXk +
n∑
k=1

Cov(f ′(Sk−1), Xk).

Set then gk(X1, . . . Xk−1) = 1
2f
′(Sk−1)− g(S∗k−1). From (3.12) and (3.13) we get that

(3.14) IP(S∗n ≥ 2) ≤
n∑
k=1

VarXk + 2
n∑
k=1

Cov(gk(X1, . . . Xk−1), Xk).

Recall that 1
2f
′ and g are 1-Lipschitz and coordinatewise nondecreasing. Therefrom the

function gk is separately 1-Lipschitz with respect to each coordinate. Let then, for i ≤ k−1,

D′i,k = gk(X1, . . . , Xi, 0, . . . , 0)− gk(X1, . . . , Xi−1, 0, . . . , 0).

For any nonnegative integer p,

(3.15) gk(X1, . . . Xk−1) = gk(X1, . . . , X(k−p)+ , 0, . . . , 0) +
k−1∑

i=(k−p)++1

D′i,k.

Now the first term on the right vanishes if p ≥ k. Since gk is with values in [−1, 1] and

the first term on right hand in (3.15) is measurable with respect to σ(Xi : i ≤ k − p), by

Theorem 1.1(a),

|Cov(gk(X1, . . . , X(k−p)+ , 0, . . . , 0), Xk) ≤ 2

∫ αp

0

Qk(u)du.
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Next the random variables D′i,k verify |D′i,k| ≤ |Xi−k| and are measurable with respect to

σ(Xi : i ≤ k − i), whence

|Cov(D′i,k, Xk)| ≤ 2

∫ αi

0

Qk−i(u)Qk(u)du ≤
∫ αi

0

(Q2
k−i(u) +Q2

k(u))du.

Both (3.15) and the two above inequalities ensure that

(3.16) |Cov(gk(X1, . . . Xk−1), Xk)| ≤
p−1∑
i=1

∫ αi

0

(Q2
k−i(u) +Q2

k(u))du+ 2

∫ αp

0

Qk(u)du.

Now, both (3.14), (3.16) and the elementary inequality VarXk ≤ 2
∫ α0

0
Q2
k(u)du imply

Theorem 3.2.

Proof of Corollary 3.2. The proof of Corollary 3.2 is a direct consequence of Proposition

3.1 below applied to the sequences (Xi)i∈IN and (−Xi)i∈IN via the Borel-Cantelli lemma:

indeed the series in Proposition 3.1 are convergent if and only if for any positive ε,∑
N>0

IP(S∗2N > ε2N/r) <∞,

which implies the convergence of n−1/rS∗n to 0, due to the monotonicity of S∗n.

Proposition 3.1. With the same notations as in Theorem 3.2, under condition (a) of

Corollary 3.2, for any positive ε,

(a)
∑
n>0

n−1IP(S∗n ≥ εn1/r) <∞.

Under condition (b) of Corollary 3.2, for any positive ε,

(b)
∑
n>0

n−1IP(S∗n ≥ εn) <∞.

Proof. For arbitrary v in [0, 1], let the sequences (X̄i)i∈ZZ and (X̃i)i∈ZZ be defined by

X̄i = (Xi ∧Q(v)) ∨ (−Q(v)) and X̃i = Xi − X̄i.

Let U be uniformly distributed over [0, 1]. Since |Xi| has the same distribution as Qi(U),

QX̄i(u) = Qi(u) ∧Q(v) and QX̃i(u) = sup(Qi(u)−Q(v), 0).

Now Qi ≤ Q, whence

(3.17) |IE(X̃i)| ≤ IE(|X̃i|) ≤
∫ v

0

(Q(u)−Q(v))du.
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Set S̄k =
∑k
i=1(X̄i − IE(X̄i)) and S̄∗n = supk∈[0,n] S̄k. Noting that

S∗n ≤ S̄∗n +

n∑
i=1

(|X̃i|+ |IE(X̃i)|),

we infer from (3.17) that

(3.18) n−1IP(S∗n ≥ 5x) ≤ n−1IP(S̄∗n ≥ 4x) +
2

x

∫ v

0

(Q(u)−Q(v))du.

Next, by Theorem 3.2 applied to the random variables X̄i, we get that

(3.19) n−1IP(S̄∗n ≥ 4x) ≤ 1

x2

∫ 1

0

[α−1(u) ∧ p]Q2(v ∨ u)du+
2

x

∫ αp

0

Q(v ∨ u)du.

We now choose the parameters p and v in such a way that the terms on right hand lead

to the same integral condition. Set

(3.20) R(u) = α−1(u)Q(u).

In the strong mixing case, R plays the same role as the quantile function Q in the indepen-

dent case. We will choose v in such a way that R(v) is of the order of n1/r. Before choosing

v, we choose p = α−1(v), in order to get upper bounds of the same order of magnitude in

(3.18) and (3.19). With this choice of p, αp ≤ v. Consequently∫ 1

0

[α−1(u) ∧ p]Q2(v ∨ u)du ≤
∫ 1

0

R(v ∨ u)Q(u)du.

Therefrom, by (3.18) and(3.19),

(3.21) n−1IP(S∗n ≥ 5x) ≤ 2

x

∫ v

0

Q(u)du+
1

x2

∫ 1

0

R(v ∨ u)Q(u)du.

Let ε be any real in ]0, 1]. Set x = xn = εn1/r and v = vn = R−1(n1/r) in (3.21). Since

R is right continuous and nonincreasing,

(3.22) (R(u) ≤ n1/r) if and only if (u ≥ vn),

whence ∫ vn

0

R(vn)Q(u)du ≤ n1/r

∫ vn

0

Q(u)du.

It follows that

(3.23) n−1IP(S∗n ≥ 5xn) ≤ 3ε−2
(
n−1/r

∫ vn

0

Q(u)du+ n−2/r

∫ 1

vn

R(u)Q(u)du
)
.
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Let us prove (a). Set cε = ε2/3. Summing on n the inequalities (3.23) , we get that

cε
∑
n>0

1

n
IP(S∗n ≥ 5xn) ≤

∫ 1

0

Q(u)
∑
n>0

(
n−1/r1Iu<vn + n−2/rR(u)1Iu≥vn

)
du,

with xn = εn1/r. Now, applying (3.22),

(3.24)
∑
n>0

cε
n

IP(S∗n ≥ 5xn) ≤
∫ 1

0

Q(u)
∑
n>0

(
n−1/r1In<Rr(u) + n−2/rR(u)1In≥Rr(u)

)
du.

Since r belongs to ]1, 2[, there exist constants cr and Cr depending only on r such that∑
0<n<Rr(u)

n−1/r ≤ crRr−1(u) and
∑

n≥Rr(u)∨1

n−2/r ≤ Cr(Rr−2(u) ∧ 1).

Both the above inequalities and (3.24) ensure that

∑
n>0

1

n
IP(S∗n ≥ 5εn1/r) ≤ C

∫ 1

0

Rr−1(u)Qr(u)du,

for some constant C depending only on r, which completes the proof of Proposition 3.1(a).

To prove Proposition 3.1(b), we need to truncate the random variables again. Let

Yi = (Xi ∧ n) ∨ (−n), Ỹi = Xi − Yi and T ∗n = sup
k∈[0,n]

k∑
i=1

(Yi − IE(Yi)).

Since QYi ≤ Q ∧ n for any i in [1, n], it follows from (3.23) that

(3.25) n−1IP(T ∗n ≥ 5εn) ≤ c−1
ε

(
n−1

∫ vn

0

(Q(u) ∧ n)du+ n−2

∫ 1

vn

R(u)Q(u)du
)
.

Now set Γ =
⋃n
i=1(Xi 6= Yi). For any ω /∈ Γ,

(3.26) S∗n(ω) ≤ T ∗n(ω) +
n∑
i=1

IE(|Yi −Xi|).

Let X be a nonnegative random variable such that QX = Q. Then

IP(Γ) ≤
n∑
i=1

IP(|Xi| > n) ≤ nIP(X > n)

and
n∑
i=1

IE(|Yi −Xi|) =
n∑
i=1

∫ ∞
n

IP(|Xi| > u)du ≤ nIE((X − n)+).
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Since IE((X−n)+) ≤ ε for n large enough, there exists some positive integer n0 such that,

for any n ≥ n0,

(3.27)
cε
n

IP(S∗n ≥ 6εn) ≤ IP(X > n) +
( 1

n

∫ vn

0

(Q(u) ∧ n)du+
1

n2

∫ 1

vn

R(u)Q(u)du
)
.

Set then wn = Q−1(n) = IP(X > n). Since wn ≤ u < vn if and only if Q(u) ≤ n < R(u),

we get that

n−1

∫ vn

0

(Q(u) ∧ n)du = IP(X > n) + n−1

∫ 1

0

Q(u)1IQ(u)≤n<R(u)du.

Hence for n ≥ n0,

(3.28)
cε
n

IP(S∗n ≥ 6εn) ≤ IP(X > n) +

∫ 1

0

Q(u)
( 1

n
1IQ(u)≤n<R(u) +

R(u)

n2
1In≥R(u)

)
du.

Finally, since∑
Q(u)∨1≤n<R(u)

n−1 ≤ 1 + log(1 + α−1(u)) and
∑

n≥R(u)∨1

n−2 ≤ 2(R(u) ∨ 1)−1,

(3.28) implies Proposition 3.1(b).

EXERCISES

1) Let (Xi)i∈IN be a sequence of real-valued and integrable centered random variables. Set

Q = supi>0Qi and let R be defined by (3.20).

a) Prove that, for any positive x > 0,

(1) n−1IP(S∗n ≥ 5x) ≤ 3

x

∫ R−1(x)

0

Q(u)du+
1

x2

∫ 1

R−1(x)

R(u)Q(u)du.

Hint : apply (3.21).

b) Prove that, for any r in ]1, 2[,

(2) IE(S∗rn ) = r5r
∫ ∞

0

xr−1IP(S∗n ≥ 5x)dx.

c) Infer from (2) that

(3) IE(S∗rn ) ≤ n5r
r(5− 2r)

(r − 1)(2− r)

∫ 1

0

[α−1(u)]r−1Qr(u)du.

Prove that (3) still holds if α−1(u) is changed to α−1(u) ∧ n.
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2) Let (Xi)i∈IN be a sequence of real-valued and integrable centered random variables.

Assume that IE(|Xi|p) <∞ for any positive i, for some fixed p > 2.

a) Let S be a nonnegative random variable. Prove that

(4) 2IE(Sp) = p(p− 1)(p− 2)

∫ ∞
0

IE((S − λ)2
+)λp−3dλ.

b) Set H(λ) = IP(S∗n > λ). Prove that

(5) IE(S∗pn ) ≤ 8p(p− 1)(p− 2)
n∑
k=1

∫ ∞
0

(∫ H(λ)

0

[α−1(u) ∧ n]Q2
k(u)du

)
λp−3dλ.

c) Starting from (5), prove that

(6) IE(S∗pn ) ≤ 8p(p− 1)

n∑
k=1

∫ 1

0

[α−1(u) ∧ n]Q2
k(u)Qp−2

S∗n
(u)du.

Hint: apply the Fubini Theorem and note that the inverse function of H is QS∗n .

d) Prove that

(7) IE(S∗pn ) ≤ [8p(p− 1)]p/2n(p−2)/2
n∑
k=1

∫ 1

0

[α−1(u) ∧ n]p/2Qpk(u)du.

Compare (7) with the inequalities of Chapter 2 and with Corollary 1 in Yokoyama (1980).

3) A Marcinkiewicz-Zygmund inequality for martingales. Let (Xi)i∈IN be a se-

quence of real-valued and integrable centered random variables and let Fk = σ(Xi : i ≤ k).

Suppose that (Sk)k≥0 is a martingale with respect to Fk. Let p > 2. Prove that, if

IE(|Xi|p) <∞ for any positive i, then

(8) IE(S∗pn ) ≤ [4p(p− 1)]p/2n(p−2)/2
n∑
i=1

IE(|Xi|p).

Hint: apply (3.8) and use the ideas of Exercise 2.

4) A maximal inequality of Serfling. In this exercise, we prove an inequality of Serfling

(1970) in a particular case. Let p > 2 and (Xi)i∈IN be a sequence of real-valued random

variables such that for any couple of natural integers (m,n) such that m < n,

(9) IE((Sn − Sm)p+) ≤ (n−m)p/2.

The goal of the exercise is to prove that there exists some constant K(p) such that

(10) IE(S∗pn ) ≤ K(p)np/2.
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a) Let

ϕ(N) = sup
k≥0
‖ sup
i∈[0,2N ]

Sk2N+i − Sk2N ‖p.

Prove that, for any positive integer N ,

(11) ϕ(N) ≤ sup
k≥0
‖(S(k+1/2)2N − Sk2N )+‖p + 21/pϕ(N − 1).

b) Infer that

ϕ(N) ≤ (21/2 − 21/p)−12N/2.

Next prove that (10) holds true with K(p) = (1 − 2
1
p−

1
2 )−p. Compare (10) with the

Doob-Kolmogorov inequality for martingales.
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4. CENTRAL LIMIT THEOREMS

4.1. Introduction

In this chapter, we are interested in the convergence in distribution of suitably nor-

malized partial sums of a strongly mixing and stationary sequence of real-valued random

variables. In Section 4.2, we give the extension of Ibragimov’s central limit theorem for

partial sums of a strongly mixing sequence of bounded random variables to unbounded

random variables, due to Doukhan, Massart and Rio (1994). We essentially follow the line

of proof of Ibragimov and Linnik (1971) and Hall and Heyde (1980). This approach is

based on Gordin’s theorem (1969) on martingale approximation. Next, in Section 4.3, we

prove a functional central limit theorem for the normalized partial sum process under the

same integrability condition on the tails of the random variables. In Section 4.4, we give

a triangular version of the central limit theorem. This result is obtained by adapting the

Lindeberg method to the dependent case.

4.2. A central limit theorem for strongly mixing and stationary sequences

In this section, we derive a central limit theorem for partial sums from the covariance

inequalities of Chapter 1. Our proof is based on Theorem 5.2 in Hall and Heyde (1980),

which is a consequence of Gordin’s results (1969, 1973) on approximation by martingales

(see Volný (1993) for a survey). We first recall Theorem 5.2 in Hall and Heyde.

Theorem 4.1. Let (Xi)i∈ZZ be a stationary and ergodic sequence of real-valued random

variables.

Sn =

n∑
i=1

(Xi − IE(Xi)) and F0 = σ(Xi : i ≤ 0).

Suppose that, for any nonnegative integer n,

(a)
∑
k>0

Cov(IE(Xn | F0), Xk) converges

and

(b) lim
n→+∞

sup
K>0

∣∣∣ ∑
k≥K

Cov(IE(Xn | F0), Xk)
∣∣∣ = 0,
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Then n−1 VarSn converges to a nonnegative real σ2 and n−1/2Sn converges in distribution

to the normal law N(0, σ2).

The proof of Theorem 4.1 can be found in Hall and Heyde (1980). Now we derive from

Theorem 4.1 a central limit theorem for partial sums of a strongly mixing sequence.

Theorem 4.2. Let (Xi)i∈ZZ be a strictly stationary and ergodic sequence of real-valued

random variables. satisfying condition (DMR) of Corollary 1.2, with the strong mixing

coefficients defined by (2.30). Then n−1 VarSn converges to a nonnegative real σ2 and

n−1/2Sn converges in distriubtion to the normal law N(0, σ2).

Remark 4.1. From Lemma 1.1, σ2 is equal to the series of covariances defined in Lemma

1.1. It is worth noticing that Theorem 4.2 implies the uniform integrability of the sequence

of random variables (n−1S2
n)n>0. This fact follows from Theorem 5.4 in Billingsley (1968).

We refer to Merlevède and Peligrad (2000) for a central limit theorem under a weaker

strong mixing condition.

If the strong mixing coefficients (αn)n≥0 are defined by (2.1), then the convergence of

αn to 0 implies the ergodicity of the sequence, and consequently the ergodicity assumption

can be removed. If the strong mixing coefficients are defined by (2.30), the ergodicity

assumption cannot be removed, as proved by the counterexample of Exercise 1, Chap. 4.

In Section 9.7 of Chapter 9, we will prove the optimality of condition (DMR) for power type

mixing rates. We mention that Bradley (1997) shows that condition (DMR) is optimal for

arbitrary mixing rates.

Proof of Theorem 4.2. We have to prove that assumptions (a) and (b) of Theorem 4.1

holds true under condition (DMR), for an ergodic sequence. Clearly these conditions are

implied by the absolute convergence of the series of covariance together with the condition

(4.1) lim
n→+∞

∑
k>0

|Cov(IE(Xn | F0), Xk)| = 0.

To prove that (4.1) holds true, we now apply Theorem 1.1(a). Let

(4.2) X0
n = IE(Xn | F0).

Since the random variable X0
n is F0-measurable, Theorem 1.1(a) yields

(4.3) |Cov(IE(Xn | F0), Xk)| ≤ 2

∫ αk

0

QX0
n
(u)QXk(u)du.

Let δ be a random variable with uniform distribution over [0, 1], independent of (Xi)i∈ZZ.

Then (see Exercise 1, Chap. 1) the random variable

U0
n = HX0

n
(|X0

n|) + δ(HX0
n
(|X0

n| − 0)−HX0
n
(|X0

n|))
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has the uniform distribtution over [0, 1] and QX0
n
(U0

n) = |X0
n| almost surely. Let ε0

n denote

the sign of X0
n. Then

(4.4)

∫ αk

0

QX0
n
(u)QXk(u)du = IE(X0

nε
0
nQXk(U0

n)1IU0
n≤αk).

Since δ is independent of(Xi)i∈ZZ,

X0
n = IE(Xn | σ(δ) ∨ F0),

whence ∫ αk

0

QX0
n
(u)QXk(u)du = IE(Xnε

0
nQXk(U0

n)1IU0
n≤αk).

It follows that

(4.5)

∫ αk

0

QX0
n
(u)QXk(u)du ≤ IE(|Xn|QXk(U0

n)1IU0
n≤αk).

Now, by (4.5) and Lemma 2.1(a),

(4.6)

∫ αk

0

QX0
n
(u)QXk(u)du ≤

∫ αk

0

QXn(u)QXk(u)du.

Both (4.3) and (4.6) together with the stationarity of the sequence then ensure that

(4.7) |Cov(X0
n, Xk)| ≤ 2

∫ αk

0

Q2
X0

(u)du.

Now

(4.8) Cov(X0
n, Xk) = Cov(X0

n, X
0
k) = Cov(X0

k , Xn)

and therefrom, interverting k and n in (4.7), we get that

(4.9) |Cov(X0
n, Xk)| ≤ 2

∫ αn

0

Q2
X0

(u)du.

Consequently

|Cov(X0
n, Xk)| ≤ 2

∫ inf(αk,αn)

0

Q2
X0

(u)du,

which ensures the normal convergence of the series. Hence (4.1) holds true, which completes

the proof of Theorem 4.2.

Starting from Theorem 4.2, we now derive a central limit theorem for stationary and

strongly mixing sequences of random variables in the multivariate case.
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Corollary 4.1. Let (Xi)i∈ZZ be a strictly stationary sequence of random variables with val-

ues in IRd. Let Q0 be the generalized inverse function of HX0
(t) = IP(‖X0‖ > t). Assume

that (Xi)i∈ZZ satisfies condition (DMR) of Corollary 1.2, with the strong mixing coefficients

defined by (2.1). Then n−1 Cov(Sn, Sn) converges to Γ = VarX0 + 2
∑
k>0 Cov(X0, Xk)

and n−1/2Sn converges in distribution to the normal law N(0,Γ).

Proof. For a and b in IRd, denote by a.b the Euclidean scalar product of a and b. Now

a.Sn = (a.X1 − IE(a.X1)) + · · ·+ (a.Xn − IE(a.Xn))

for any a in IRd. Consequently, by Theorem 4.2, n−1/2a.Sn converges in distribution to

the normal law N(0, σ2(a)), with

σ2(a) = Var(a.X0) + 2
∑
k>0

Cov(a.X0, a.Xk) = a.Γa.

Hence

lim
n→∞

IE(exp(ia.n−1/2Sn)) = exp(a.Γa/2).

Corollary 4.1 follows then from the Paul Lévy theorem.

4.3. A functional central limit theorem for the partial sum process

In this section, we give an extension of the functional central limit theorem of Donsker

to strongly mixing and stationary sequences of real-valued random variables. We refer to

Sections 9 and 10 in Billingsley (1968) for the definition of the functional central limit

theorem and to Section 14 in Billingsley (1968) for the weak convergence in the Skorohod

space D([0, 1]).

Theorem 4.3 below is the functional version of Theorem 4.2. This result improves

the functional central limit theorems of Oodaira and Yoshihara (1972) and Herndorff

(1985), which hold under conditions (IBR) and (HER) respectively. We refer to Mer-

levède, Peligrad and Utev (2006) for a survey of functional central limit theorems for

dependent random variables and to Gordin and Peligrad (2011) for functional central limit

theorems via martingale approximation.

Theorem 4.3. Let W denote the usual Wiener measure on [0, 1] (ses Billingsley (1968) for

a definition) and let (Xi)i∈ZZ be a stationary sequence of real-valued and centered random

variables, satisfying condition (DMR) with the usual strong mixing coefficients, which are

defined by (2.1). Let {Zn(t) : t ∈ [0, 1]} be the normalized partial sum process, defined by

Zn(t) = n−1/2
∑[nt]
i=1Xi, square brackets designating the integer part.

Let σ be the nonnegative finite number defined by defined by σ2 = limn n
−1 VarSn.

Then Zn converges in distribution to σW in the Skorohod space D([0, 1]).
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Proof. Let Q denote the quantile function of |X0|. We start by proving the finite

dimensional convergence of Zn to σW . Let t0 < t1 < . . . < tk be any increasing sequence

of reals in [0, 1] such that t0 = 0 and tk = 1. We have to prove that the random vector

(Zn(tj)−Zn(tj−1))1≤j≤k converges in distribution to (σWtj−σWtj−1
)1≤j≤k. Let ϕn denote

the characteristic function of (Zn(tj)− Zn(tj−1))1≤j≤k, which is defined by

ϕn(x) = IE exp
(
i
k∑
j=1

xj(Zn(tj)− Zn(tj−1))
)

for x = (x1, x2, . . . xk).

Let ε > 0 be any positive real such that ε < inf1≤j≤k(tj − tj−1). Let

ϕn,ε(x) = IE exp
(
i
k∑
j=1

xj(Zn(tj − ε)− Zn(tj−1))
)
.

Since the function y → eiy is 1-Lipschitz,

(4.10) |ϕn(x)− ϕn,ε(x)| ≤
k∑
j=1

‖xj(Zn(tj − ε)− Zn(tj))‖1 ≤ 4‖x‖1
√
εM2,α(Q)

by Corollary 1.1(b). Now, by Inequality (6) of Exercise 7, Chap. 1 applied repeatedly k

times, ∣∣∣ϕn,ε(x)−
k∏
j=1

IE exp
(
ixj(Zn(tj − ε)− Zn(tj−1))

)∣∣∣ ≤ 4kα[nε]−1,

which ensures the asymptotic independence of the above increments. Together with The-

orem 4.1, this inequality ensures that

(4.11) lim
n→∞

ϕn,ε(x) = exp
(
σ2

k∑
j=1

(tj − tj−1 − ε)x2
j ).

The finite dimensional convergence follows then from both (4.10) and (4.11).

It remains to prove the tightness property for the sequence of partial-sum processes

(Zn)n. According to Billingsley (1968), Section 8, Theorems 8.2 and 8.4, the tightness

property holds in the stationary case if the sequence (n−1S∗2n )n>0 is uniformly integrable.

Hence Proposition 4.1 below completes the proof of Theorem 4.2.

Proposition 4.1. Let (Xi)i∈ZZ be a stritctly stationary sequence of centered real-valued

random variables stisfying condition (DMR) of Corollary 1.2 for the mixing coefficients

defined in (2.30). Set S∗n = supk∈[0,n] Sk. Then the sequence (n−1S∗2n )n>0 is uniformly

integrable.
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Proof of Proposition 4.1. Proposition 4.1 is implied by

(4.12) lim
A→+∞

sup
n>0

n−1IE
(
(S∗n −A

√
n)2

+

)
= 0.

Now, applying Theorem 3.1(a), we get that

n−1IE
(
(S∗n −A

√
n)2

+

)
≤ 16

∫ pn

0

α−1(u)Q2(u)du,

with pn = IP(S∗n > A
√
n). Now, by the Chebyshev inequality together with Theorem

3.1(b),

pn ≤ A−2IE(S∗2n /n) ≤ 16M2,α(Q)A−2.

Hence the two above inequalities imply (4.12), which completes the proof of Proposition

4.1.

4.4. A central limit theorem for strongly mixing triangular arrays *

In this section, we adapt the Lindeberg (1922) method to strongly mixing sequences.

The extensions to mixing sequences started with Bergström (1972) in the stationary φ-

mixing case (see Krieger (1984) for remarks on Bergström’s paper). Dehling (1983) ex-

tended the method to strong mixing conditions and random vectors.

Let (Xin)i∈[1,n] be a triangular array of independent random variables with mean zero

and finite variance. Suppose that Var(X1n + · · ·+Xnn) = 1. Let Snn = X1n + · · ·+Xnn.

Lindeberg (1922) proved that Snn converges in distribution to a standard normal law as

n tends to ∞ if

(4.13)

n∑
i=1

IE(X2
in1I|Xin|>ε)→ 0 as n→∞ for any ε > 0.

Now one can easily prove that (4.13) holds true if and only if

(4.14)
n∑
i=1

IE
(
X2
in min(|Xin|, 1)

)
→ 0 as n→∞.

Let then U be a random variable with uniform law over [0, 1]. Since the random variable

QXin(U) as the same distribution as |Xin|, (4.14) is equivalent to

(4.15)
n∑
i=1

∫ 1

0

Q2
Xin(x) min(QXin(x), 1)dx→ 0 as n→∞.

In this section, we obtain a generalization of the Lindeberg condition to strongly mixing

sequences by replacing QXin by α−1QXin and dx by dx/α−1(x). Theorem 4.4 below is
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due to Rio (1995c). We refer to Neumann (2013), for a variant under other types of

dependence, with applications to statistics.

Theorem 4.4. Let m be a positive integer and (Xin)n≥m,1≤i≤n be a double array of

real-valued random variables with mean zero and finite variance. Let (αk,n)k≥0 be the

sequence of strong mixing coefficients in the sense of (2.1) of the sequence (Xin)i∈[1,n]

and α−1
(n) be the inverse function of the associated mixing rate function. Let us define

Sin = X1n + · · ·+Xin and Vi,n = VarSin. Suppose that

(a) Vn,n = 1 and lim sup
n→∞

max
i∈[1,n]

Vi,n <∞.

Let Qi,n = QXin . Assume furthermore that

(b) lim
n→∞

(
n∑
i=1

∫ 1

0

α−1
(n)(x)Q2

i,n(x) min
(
α−1

(n)(x)Qi,n(x), 1
)
dx

)
= 0.

Then Snn converges in distribution to a standard normal law as n tends to ∞.

Remark 4.2. Theorem 4.2 in the case σ > 0 follows from Theorem 4.4 applied to

Xin = (VarSn)−1/2Xi via Lebesgue’s dominated convergence theorem.

Proof of Theorem 4.4. The main step of the proof is the proposition below, which

gives quantitative estimates of the accuracy of the characteristic function of a sum to

the characteristic function of a normal law. In order to state this result, we need some

additional notations.

Definition 4.1. For any nonnegative quantile function Q and any positive t, let

M3,α(Q, t) =

∫ 1

0

α−1(x)Q2(x)(tα−1(x)Q(x) ∧ 1)dx.

The proposition below provides an estimate with an error term depending on the above

truncated moments.

Proposition 4.2. Let (Xi)i∈IN be a strongly mixing sequence of real-valued random

variables with finite variance and mean zero. For any positive k, let Sk = X1 + · · · + Xk

and ϕk(t) = IE(exp(itSk)). Set Vk = VarSk and V ∗n = supk∈[1,n] Vk. Let Qk = QXk . For

any positive integer n and any real t,

| exp(Vnt
2/2)ϕn(t)− 1| ≤ 16t2 exp(V ∗n t

2/2)

n∑
k=1

M3,α(Qk, |t|).

Before proving Proposition 4.2, we complete the proof of Theorem 4.4. Since

M3,α(Q, |t|) ≤ max(|t|, 1)M3,α(Q, 1),
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Proposition 4.2 ensures that

|et
2/2ϕn(t)− 1| ≤ 16t2(|t| ∨ 1)eV

∗
n t

2/2
n∑
i=1

∫ 1

0

α−1
(n)(x)Q2

i,n(x)
(
α−1

(n)(x)Qi,n(x) ∧ 1
)
dx,

with V ∗n = maxi∈[1,n] Vi,n. Now, under assumption (a), the sequence (V ∗n )n is a bounded

sequence and, under assumption (b), the above sum converges to 0 as n tends to ∞.

Consequently

lim
n→∞

| exp(t2/2)ϕn(t)− 1| = 0,

which imples Theorem 4.4 via the Paul Lévy theorem.

Proof of Proposition 4.2. Considering the random variables −Xi if t < 0, we may

assume that t > 0. Let V0 = 0, S0 = 0 and ϕ0 be the characteristic function of S0. Set

vk = Vk − Vk−1 and let

(4.16) ∆k = ϕk(t)− e−vkt
2/2ϕk−1(t).

Then

(4.17) |et
2/2ϕn(t)− 1| ≤

n∑
k=1

eVkt
2/2|∆k|.

Let then

(4.18) ∆k,1 = ϕk(t)− (1− vkt2/2)ϕk−1(t) and ∆k,2 = (1− vkt2/2− e−vkt
2/2)ϕk−1(t).

Clearly ∆k = ∆k,1 + ∆k,2. From (4.17) and the fact that |ϕk−1(t)| ≤ 1,

(4.19) |eVnt
2/2ϕn(t)− 1| ≤ eV

∗
n t

2/2
( n∑
k=1

(
|∆k,1|+ g(vkt

2/2)
)
,

with g(u) = min(1, eu)|1− u− e−u|. Now, it is easy to check that g(u) ≤ ψ(u), with

(4.20) ψ(u) = u2/2 for u ∈ [−1, 1] and ψ(u) = |u| − (1/2) for u /∈ [−1, 1].

Hence

(4.21) |eVnt
2/2ϕn(t)− 1| ≤ eV

∗
n t

2/2
( n∑
k=1

|∆k,1|+
n∑
k=1

ψ(vkt
2/2)

)
.

Consequently Proposition 4.2 follows from the upper bounds below via (4.21).
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Proposition 4.3. For any positive t,

(a)
n∑
k=1

|∆k,1| ≤
38

3
t2

n∑
k=1

M3,α(Qk, t)

and

(b)

n∑
k=1

ψ(vkt
2/2) ≤ 10

3
t2

n∑
k=1

M3,α(Qk, t).

Proof of Proposition 4.3(b). By definition,

vk = VarXk + 2
k−1∑
j=1

Cov(Xj , Xk).

Hence, by Theorem 1.1(a) applied to the random variables Xj and Xk,

(4.22) |vk| ≤ 4

∫ 1

0

Qk(x)Mk(x)dx with Mk(x) =

k∑
j=1

Qj(x)1Ix<αk−j .

We now introduce some notations.

Definition 4.2. Let Rk = α−1Qk and let Hk denote the generalized inverse function of

Rk. Set uk = Hk(1/t),

xk =

∫ uk

0

Qk(x)Mk(x)dx and yk =

∫ 1

uk

Qk(x)Mk(x)dx.

From (4.22) together with the elementary inequality

(4.23) ψ(x+ y) ≤ x+ (y2/2)

applied to x = 2xkt
2 and y = 2ykt

2, we get that

(4.24)

n∑
k=1

ψ(vkt
2/2) ≤ 2t2

n∑
k=1

xk + 2t4
n∑
k=1

y2
k.

Hence Proposition 4.3(b) follows from the lemma below.

Lemma 4.1. With notations of Definitions 4.1 and 4.2,

n∑
k=1

(xk + t2y2
k) ≤ 5

3

n∑
k=1

M3,α(Qk, t).
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Proof of Lemma 4.1. By definition of Hk, tRk(x) ≥ 1 for any x in ]0, uk[. Hence

(4.25) xk ≤
k∑
j=1

∫ uk∧αk−j

0

Qj(x)Qk(x)(tRk(x) ∧ 1)dx.

Now, from Lemma G.1(a) applied to a = tRj(x) and c = tRk(x),

(4.26) Qj(x)Qk(x)(tRk(x) ∧ 1) ≤ 2

3
Q2
k(x)(tRk(x) ∧ 1) +

1

2
Q2
j (x)(tRj(x) ∧ 1),

which ensures that

(4.27) xk ≤
k∑
j=1

∫ αk−j∧uk

0

(2

3
Q2
k(x)(tRk(x) ∧ 1) +Q2

j (x)(tRj(x) ∧ 1)
)
dx.

Next, by the Schwarz inequality

y2
k ≤

∫ 1

uk

Q2
k(x)M2

k (x)dx =
k∑
j=

k∑
l=1

∫ 1

uk

Q2
k(x)Qj(x)Ql(x)1Ix<αk−j∧αk−ldx.

Now, applying the elementary inequality 2Qj(x)Ql(x) ≤ Q2
j (x) + Q2

l (x) and noting that∑k−1
m=0 1Ix<αm ≤ α−1(x) we obtain that

(tyk)2 ≤
k∑
j=1

∫ 1

uk

t2α−1(x)Q2
k(x)Q2

j (x)1Ix<αk−jdx.

Now, α−1(x) ≤ (α−1(x))2 and, for x > uk, tRk(x) ≤ 1. It follows that

t2α−1(x)Q2
k(x) ≤ (tRk(x))2 ≤ tRk(x) ∧ 1 for any x > uk.

Hence

(tyk)2 ≤
k∑
j=1

∫ 1

uk

(tRk(x) ∧ 1)Q2
j (x)1Ix<αk−jdx.

By Lemma G.1(b) applied to a = tRj(x) and c = tRk(x), proceeding as in the proof of

(4.26), we get that

(4.28) (tRk(x) ∧ 1)Q2
j (x) ≤ 1

3
Q2
k(x)(tRk(x) ∧ 1) +Q2

j (x)(tRj(x) ∧ 1),

which ensures that

(4.29) (tyk)2 ≤
k∑
j=1

∫ αk−j

αk−j∧uk

(2

3
Q2
k(x)(tRk(x) ∧ 1) +Q2

j (x)(tRj(x) ∧ 1)
)
dx.
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Adding (4.27) and (4.29) and summing on k, we then get Lemma 4.1, , which completes

the proof of Proposition 4.3(b).

Proof of Proposition 4.3(a). Let us give another expression for ∆1,k. Define the

function χt by χt(x) = exp(itx). Then χ′′t = −t2χt. Hence

(4.30) ∆1,k = IE
(
χt(Sk))− χt(Sk−1)− 1

2vkχ
′′
t (Sk−1)

)
.

Let us now define the class F(1, t) of regular functions as follows.

Definition 4.3. Let F(1, t) be the class of real-valued two times differentiable functions

f such that ‖f ′′‖∞ ≤ 1 and f ′′ is t-Lipschitz, that is |f ′′(x) − f ′′(y)| ≤ t|x − y| for any

reals x and y.

Define then

(4.31) Dk = sup
f∈F(1,t)

IE
(
f(Sk−1 +Xk)− f(Sk−1)− 1

2vkf
′′(Sk−1)

)
.

We start by comparing ∆1,k and Dk.

Lemma 4.2. For any positive real t, |∆1,k| ≤ t2Dk.

Proof of Lemma 4.2. From the polar decomposition of a complex number, there exists

some real θ such that |∆1,k| = ∆1,ke
−iθ. It follows that

|∆1,k| = IE
(
ei(tSk−θ) − ei(tSk−1−θ)(1− 1

2vkt
2)
)

= IE
(
cos(tSk − θ))− (1− 1

2vkt
2) cos(tSk−1 − θ)

)
.(4.32)

For any real θ, the function gθ defined by gθ(x) = t−2 cos(tx − θ) belongs to F(1, t).

Furthermore g′′θ = −t2gθ. Hence Lemma 4.2 follows from (4.32).

From Lemma 4.2, Proposition 4.3(a) follows from the more general upper bound below.

Proposition 4.4. Under the assumptions of Proposition 4.2,

n∑
k=1

Dk ≤
38

3

n∑
k=1

M3,α(Qk, t).

Proof of Proposition 4.4. Throughout the proof, we make the convention that Xi =

Si = 0 for any i ≤ 0. The main step of the proof is the following upper bound for Dk.

Lemma 4.3. Let u be any real in [0, 1/2] Set Q̄k(x) = min(Qk(x), Qk(u)) and p =

α−1(u). Then

Dk ≤4

∫ u

0

Mk(x)Qk(x)dx

+ 2t

p−1∑
j=0

j+p−1∑
l=0

∫ αj∧α(l−j)+

0

(1 + 1Il∈[j,2j−1])Qk−l(x)Qk−j(x)Q̄k(x)dx.
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Proof of Lemma 4.3. Throughout the proof, we make the convention that Si = 0 for

any i ≤ 0. We set

(4.33) Mk(x, u) =

p−1∑
j=0

Qk−j(x)1Ix<αj and X̄k = (Xk ∧Qk(u)) ∨ (−Qk(u)).

Let Q̄k denote the quantile function of |X̄k|. From the definition of X̄k,

(4.34) QX̄k(u) = Q̄k(x) and QXk−X̄k(x) = (Qk(x)−Qk(u))+ .

Let f be any element of F(1, t). By the Taylor integral formula,

f(Sk)− f(Sk−1)− f ′(Sk−1)Xk = Xk

∫ 1

0

(f ′(Sk−1 + vXk)− f ′(Sk−1))dv

= Xk

∫ 1

0

(f ′(Sk−1 + vXk)− f ′(Sk−1 + vX̄k))dv

+XkX̄k

∫ 1

0

∫ 1

0

vf ′′(Sk−1 + vv′X̄k)dvdv′.(4.35)

The first term on right hand is bounded up by |Xk(Xk − X̄k)|/2. Moreover

∣∣∣ ∫ 1

0

∫ 1

0

vf ′′(Sk−1 + vv′X̄k)dvdv′ − 1

2
f ′′(Sk−1)

∣∣∣ ≤ t

6
|X̄k|,

which ensures that the second term is bounded up by |XkX̄
2
k/6|. Now, from (4.34)

(4.36) IE|Xk(Xk − X̄k)| =
∫ u

0

Qk(x)(Qk(x)−Qk(u))dx

and

(4.37) IE|XkX̄
2
k | =

∫ 1

0

Qk(x)Q̄2
k(x)dx ≤ 2

∫ 1/2

0

Qk(x)Q̄2
k(x)dx.

Hence

IE
(
f(Sk)− f(Sk−1)− f ′(Sk−1)Xk −

1

2
f ′′(Sk−1)XkX̄k

)
≤

1

2

∫ u

0

Qk(x)(Qk(x)−Qk(u))dx+
t

3

∫ 1/2

0

Qk(x)Q̄2
k(x)dx.(4.38)

We now control the second order term

(4.39) Dk,2(f) = IE
(
f ′′(Sk−1)XkX̄k

)
− IE(f ′′(Sk−1))IE(XkX̄k).
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Let Γk,j = f ′′(Sk−j)− f ′′(Sk−j−1). Clearly

(4.40) f ′′(Sk−1)XkX̄k =

p−1∑
j=1

Γk,jXkX̄k + f ′′(Sk−p)XkX̄k.

Since |Γk,j | ≤ t|Xk−j |, applying Theorem 1.1(a) applied to X = Γk,i and Y = XkX̄k, we

get that

(4.41) |Cov(Γk,j , XkX̄k)| ≤ 2t

∫ αj

0

Qk−j(x)Qk(x)Q̄k(x)dx.

Noting that αp ≤ u, we also get that

(4.42) |Cov(f ′′(Sk−p), XkX̄k)| ≤ 2

∫ u

0

Qk(x)Q̄k(x)dx.

The two above inequalities and the decomposition (4.40) together then yield

(4.43) Dk,2(f) ≤ 2

∫ 1/2

0

(
t(Mk(x, u)−Qk(x)) + 1Ix<u

)
Qk(x)Q̄k(x)dx.

Next, by (4.36)

(4.44) IE(f ′′(Sk−1))IE(Xk(X̄k −Xk)) ≤ ‖f ′′‖∞
∫ u

0

Qk(x)(Qk(x)−Qk(u))dx.

Combining (4.38), (4.43) and (4.44) we then get that

IE
(
f(Sk)− f(Sk−1)− f ′(Sk−1)Xk −

1

2
f ′′(Sk−1)IE(X2

k)
)
≤∫ u

0

Q2
k(x)dx+ t

∫ 1/2

0

Mk(x, u)Qk(x)Q̄k(x)dx.(4.45)

It remains to estimate the first order term IE(f ′(Sk−1)Xk). Let

(4.46) Dk,1(f) = IE(f ′(Sk−1)Xk)−
k−1∑
j=1

IE(f ′′(Sk−1))IE(Xk−jXk).

In order to bound up Dk,1(f) we introduce the decomposition below

Dk,1(f) =

k−1∑
j=1

Dj
k,1(f), where

Dj
k,1(f) = Cov(f ′(Sk−j)− f ′(Sk−j−1), Xk)− IE(f ′′(Sk−1))IE(Xk−jXk).(4.47)
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We now consider two cases. If j ≥ p, then αj ≤ u. Since

(4.48) |f ′(Sk−j)− f ′(Sk−j−1)| ≤ |Xk−j |,

it follows from Theorem 1.1(a) that

(4.49) Cov(f ′(Sk−j)− f ′(Sk−j−1), Xk) ≤ 2

∫ αj

0

Qk−j(x)Qk(x)dx.

Now, by Theorem 1.1(a) applied to X = Xk−j and Y = Xk,

(4.50) |IE(f ′′(Sk−1))IE(Xk−jXk)| ≤ 2‖f ′′‖∞
∫ αj

0

Qk−j(x)Qk(x)dx.

Hence

(4.51)
∑
j≥p

Dj
k,1(f) ≤ 4

∑
j≥p

∫ αj

0

Qk−j(x)Qk(x)dx.

If j < p, we write

(4.52a) Dj
k,1(f) = D̄j

k,1(f) + D̃j
k,1(f),

with

(4.52b) D̄j
k,1(f) = Cov(f ′(Sk−j)− f ′(Sk−j−1), X̄k)− IE(f ′′(Sk−1))IE(Xk−jX̄k).

From the definition of D̃j
k,1(f) and the fact that |f ′′| ≤ 1,

D̃j
k,1(f) ≤ |Cov(f ′(Sk−j)− f ′(Sk−j−1), Xk − X̄k)|+ IE|Xk−j(Xk − X̄k)|

≤ 2

∫ u∧αj

0

Qk−j(x)(Qk(x)− Q̄k(x))dx+

∫ u

0

Qk−j(x)(Qk(x)− Q̄k(x))dx

by Theorem 1.1(a) together with (4.48) and Lemma 2.1(a). Since u ∧ αj ≤ u, we get that

(4.53) D̃j
k,1(f) ≤ 3

∫ u

0

Qk−j(x)(Qk(x)− Q̄k(x))dx.

We now bound up D̄j
k,1(f). Let

(4.54) Rk,j = f ′(Sk−j)− f ′(Sk−j−1)− f ′′(Sk−j−1)Xk−j .

By the Taylor formula at order two, |Rk,j | ≤ tX2
k−j/2. Consequently, applying Theorem

1.1(a),

(4.55) Cov(Rk,j , X̄k) ≤ t
∫ αj

0

Q2
k−j(x)Q̄k(x)dx.
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We now estimate

(4.56) D̄j,1
k,1(f) := D̄j

k,1(f)− Cov(Rk,j , X̄k).

Here we introduce the decomposition below

(4.57) f ′′(Sk−j−1) = f ′′(Sk−2j) +

j−1∑
l=1

Γk,j+l.

Now, recall that |Γk,j+l| ≤ t|Xk−j−l|. Hence, by Theorem 1.1(a) applied toX = Γj,k+lXk−j

and Y = X̄k and Lemma 2.1(b),

(4.58) Cov(Γk,j+lXk−j , X̄k) ≤ 2t

∫ αj

0

Qk−j−l(x)Qk−j(x)Q̄k(x)dx.

We now bound up the remainder term

(4.59) D̄j,2
k,1(f) := Cov(f ′′(Sk−2j)Xk−j , X̄k)− IE(f ′′(Sk−1))IE(Xk−jX̄k).

Here we use the decomposition

D̄j,2
k,1(f) = Cov(f ′′(Sk−2j), Xk−jX̄k) + IE(f ′′(Sk−2j)Xk−j)IE(Xk − X̄k)

+ IE(f ′′(Sk−2j)− f ′′(Sk−1))IE(Xk−jX̄k).(4.60)

Using Lemma 2.1(a) and noticing that αj ≥ u for j < p, we get that

(4.61) |IE(f ′′(Sk−2j)Xk−j)IE(Xk − X̄k)| ≤
∫ u

0

Qk−j(x)1Ix<αj (Qk(x)− Q̄k(x))dx.

Next

(4.62) |f ′′(Sk−2j)− f ′′(Sk−1)| ≤ t
2j−1∑
l=1

|Xk−l|

and, by Theorem 1.1(a) applied to X = Xk−j and Y = X̄k,

(4.63) |IE(Xk−jX̄k)| ≤
∫ αj

0

Qk−j(x)Q̄k(x)dx,

whence

(4.64) IE(f ′′(Sk−2j)− f ′′(Sk−1))IE(Xk−jX̄k) ≤ 2t

2j−1∑
l=1

∫ αj

0

Qk−l(x)Qk−j(x)Q̄k(x)dx.
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It remains to bound up Cov(f ′′(Sk−2j), Xk−jX̄k). Clearly

(4.65) f ′′(Sk−2j) =

p−1∑
l=j

Γk,l+j + f ′′(Sk−j−p).

Now, by Theorem 1.1(a) applied to X = Γk,l+j and Y = Xk−jX̄k and Lemma 2.1(b),

(4.66)

p−1∑
l=j

Cov(Γk,l+j , Xk−jX̄k) ≤ 2t

p−1∑
l=j

∫ αj∧αl

0

Qk−j−l(x)Qk−j(x)Q̄k(x)dx.

Noting that αp ≤ u ≤ αj , and applying Theorem 1.1(a) with X = f ′′(Sk−i−p) and

Y = Xk−iX̄k together with Lemma 2.1(b), we also get that

(4.67) Cov(f ′′(Sk−j−p), Xk−jX̄k) ≤ 2

∫ u

0

1Ix<αjQk−j(x)Q̄k(x)dx.

Using the decomposition (4.60), and adding the inequalities (4.61), (4.64), (4.66) and

(4.67), we then get that

D̄j,2
k,1(f) ≤

∫ u

0

Qk−j(x)1Ix<αj (Qk(x) + Q̄k(x))dx

+ 2t

j+p−1∑
l=1

∫ αj∧α(l−j)+

0

Qk−l(x)Qk−j(x)Q̄k(x)dx.

Next, from (4.53), (4.55), (4.58) and the decomposition (4.52), for any j in [1, p− 1],

Dj
k,1(f) ≤

∫ u

0

Qk−j(x)1Ix<αj (4Qk(x)− 2Q̄k(x))dx

+ 2t

j+p−1∑
l=1

∫ αj∧α(l−j)+

0

(1 + 1Il∈[j,2j−1])Qk−l(x)Qk−j(x)Q̄k(x)dx,(4.68)

Now, summing (4.68) on j for j in [1, p− 1] and adding (4.51), we get that

Dk,1(f) ≤4

∫ u

0

(Mk(x)−Qk(x))Qk(x)dx

+ 2t

p−1∑
j=1

j+p−1∑
l=1

∫ αj∧α(l−j)+

0

(1 + 1Il∈[j,2j−1])Qk−l(x)Qk−j(x)Q̄k(x)dx.(4.69)

Adding (4.45), we then obtain Lemma 4.3.

End of the proof of Proposition 4.4. Replacing the random variables Xk by tXk

if necessary, we may assume that t = 1. Let then uk = Hk(1), pk = α−1(uk) and

Q̄k(x) = min(Qk(x), Qk(uk)). Applying Lemma 4.3 with u = uk, we get that

(4.70a)
n∑
k=1

Dk ≤ 4
n∑
k=1

∫ uk

0

Mk(x)Qk(x)dx+
n∑
k=1

Ik
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with

(4.70b) Ik =

pk−1∑
j=0

j+pk−1∑
l=0

∫ αj∧α(l−j)+

0

(1 + 1Il∈[j,2j−1])2Qk−l(x)Qk−j(x)Q̄k(x)dx.

We now bound the first term on right hand in (4.70a). By definition of uk, Rk(x) ≥ 1

for x < uk. It follows that

(4.71)

∫ uk

0

Mk(x)Qk(x)dx ≤
k∑
j=1

∫ αk−j

0

Rj(x)Rk(x)(Rk(x) ∧ 1)(α−1(x))−2dx.

Now, by Lemma G.1(a),

Rj(x)Rk(x)(Rk(x) ∧ 1) ≤ 1
2R

2
j (x)(Rj(x) ∧ 1) + 2

3R
2
k(x)(Rk(x) ∧ 1).

Putting this inequality in the right hand side of (4.71) and summing on k, we obtain that

(4.72)
n∑
k=1

∫ uk

0

Mk(x)Qk(x)dx ≤ 7

6

n∑
k=1

M3,α(Qk, 1).

We now bound up Ik. From the inequality 2Qk−l(x)Qk−j(x) ≤ Q2
k−l(x) +Q2

k−j(x),

Ik ≤ I(1)
k + I

(2)
k with I

(1)
k =

pk−1∑
j=0

j+pk−1∑
l=0

∫ αj∧α(l−j)+

0

(1 + 1Il∈[j,2j−1])Q
2
k−j(x)Q̄k(x)dx

and I
(2)
k =

pk−1∑
j=0

j+pk−1∑
l=0

∫ αj∧α(l−j)+

0

(1 + 1Il∈[j,2j−1])Q
2
k−l(x)Q̄k(x)dx.(4.73)

In order to manage I
(1)
k , we write

I
(1)
k =

pk−1∑
j=0

∫ 1

0

nj(x)Q2
k−j(x)Q̄k(x)dx with nj(x) =

j+pk−1∑
l=0

(1 + 1Il∈[j,2j−1])1Ix<α(l−j)+∧αj .

Next

(4.74) nj(x) = (3j + 1)1Ix<αj +

pk−1∑
m=j+1

1Ix<αm ≤ 3(α−1(x) ∧ pk)1Ix<αj .

Since (α−1(x) ∧ pk)Q̄k(x) ≤ (Rk(x) ∧ 1), it follows that

(4.75) I
(1)
k ≤ 3

k−1∑
j=0

∫ αj

0

Q2
k−j(x)(Rk(x) ∧ 1)dx.
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In a similar way

I
(2)
k ≤

2pk−2∑
l=0

∫ 1

0

Nl(x)Q2
k−l(x)Q̄k(x)dx with Nl(x) =

pk−1∑
j=0

(1 + 1Il∈[j,2j−1])1Ix<α(l−j)+∧αj .

Now min(α(l−j)+ , αj) ≤ min(αl−[l/2], αj). Consequently

Nl(x) ≤ 1Ix<αl−[l/2]

(pk−1∑
j=0

1Ix<αj +
∑

j∈]l/2,l]
j<pk

1Ix<αj

)
.

If l < pk, then

∑
j∈]l/2,l]
j<pk

1Ix<αj ≤
1

2

∑
j∈]l/2,l]

(
1Ix<αj + 1Ix<αl−j

)
≤ 1

2

pk−1∑
m=0

1Ix<αm .

Otherwise l ≥ pk and

∑
j∈]l/2,l]
j<pk

1Ix<αj ≤
∑

j∈]pk/2,pk[

1Ix<αj ≤
1

2

pk−1∑
m=0

1Ix<αm

again. From the above inequalities Nl(x) ≤ 3
2

(
α−1(x) ∧ pk

)
1Ix<αl−[l/2]

, whence

(4.76) I
(2)
k ≤ 3

2

k−1∑
l=0

∫ αl−[l/2]

0

Q2
k−l(x)(Rk(x) ∧ 1)dx.

Now (4.75) and (4.76) together with (4.28) ensure that

n∑
k=1

Ik ≤ 2
n∑

m=1

(n−1∑
l=0

∫ αl−[l/2]

0

Q2
m(x)(Rm(x) ∧ 1)dx+ 2

n−1∑
j=0

∫ αj

0

Q2
m(x)(Rm(x) ∧ 1)dx

)
.

Since
∑n−1
l=0 1Ix<αl−[l/2]

≤ 2
∑n−1
j=0 1Ix<αj ≤ 2α−1(x), the above inequality implies that

(4.76)
n∑
k=1

Ik ≤ 8
n∑

m=1

M3,α(Qm, 1).

Proposition 4.4 follows then from (4.70), (4.72) and (4.77).

EXERCISES

1) A non Gaussian limit law. Let (εi)i∈ZZ be a sequence of Gaussian random variables

with common distribution N(0, 1) and V = (a, b) be a random variable with values in the

unit circle, independent of the sequence (εi)i∈ZZ. We set Xi = aεi−1 + bεi.
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a) Prove that the coefficients (αk)k≥0 defined by (2.30) satisfy αk = 0 for any k ≥ 2.

b) Prove that n−1/2Sn converges in distribution to (a + b)Y , where Y is a N(0, 1)-

distributed random variable, independent of V = (a, b). Give a necessary and sufficient

condition on V ensuring that the limit law is a Gaussian one.

Problem. - Agrégation de mathématiques 1994 - Our aim in this problem is to provide

a second proof of the central limit theorem for stationary and strongly mixing sequences.

We follow the approach of Bolthausen (1982a), which is based on the Stein method (1972).

Throughout the problem, (Xi)i∈ZZ is a strictly stationary sequence of centered real-valued

random variables satisfying condition (DMR) for the strong mixing coefficients (αn)n≥0

defined by (2.1). Furthermore we assume that

σ2 =
∑
i∈ZZ

Cov(X0, Xi) > 0.

A

Let (νn)n>0 be a sequence of probability measures on IR such that

(0) K := sup
n>0

∫
IR

x2dνn(x) <∞.

Suppose furthermore that, for any real λ,

(1) lim
n→∞

∫
IR

(iλ− x) exp(iλx)dνn(x) = 0.

1) Prove that, if (νn)n>0 converges weakly to a probability measure ν, then ν is the

standard normal law.

2) Deduce from 1) and from (0) that (νn)n>0 converges in distribution to the standard

normal law.

B

Throughout part B, we assume that ‖X0‖∞ = M <∞. Let (mn)n>0 be a nondecreas-

ing sequence of positive integers converging to ∞ and such that mn ≤ n/2 for any n > 0.

For j in [1, n], we set

Dn = {(l, j) ∈ [1, n]2 : |j − l| ≤ mn} and Dn(j) = {l ∈ [1, n] : |j − l| ≤ mn}

Let

Vn =
∑

(l,j)∈Dn

Cov(Xj , Xl).
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1) Prove that (Vn/n)n>0 converges to σ2 as n tends to ∞.

Throughout the rest of Part B, we assume that n is large enough to ensure that Vn > 0.

We set, for l in ZZ,

Yl,n = V −1/2
n Xl, Tn(j) =

∑
l∈Dn(j)

Yl,n and Tn =

n∑
l=1

Yl,n.

Here λ is any real.

2) Prove that

IE((iλ− Tn) exp(iλTn)) = iλIE(exp(iλTn)An)− IE(exp(iλTn)Bn)− IE(Cn)

with

An = 1−
n∑
j=1

Tn(j)Yj,n , Bn =
n∑
j=1

Yj,n(1− exp(−iλTn(j))− iλTn(j))

and

Cn =
n∑
j=1

Yj,n exp(iλTn − iλTn(j)).

3a) Apply the Taylor integral formula to show that

| exp(iλx)− iλx− 1| ≤ (λx)2/2.

3b) Prove that there exists some positive constant K1 such that

IE(|Bn|) ≤ K1n
−1/2mn

for n large enough.

3c) Prove that there exists some positive constant K2 such that

|IE(Cn)| ≤ K2n
1/2αmn

for n large enough.

4) Let m be a nonnegative integer and (j, l, j′, l′) be an element of ZZ4 such that |j−l| ≤
m and |j′ − l′| ≤ m.

a) If |j − j′| ≥ 2m, prove that

|Cov(XjXl, Xj′Xl′)| ≤ 2M4α|j−j′|−2m.

b) If k = min(|j − j′|, |j − l|, |j − l′|), prove that

|Cov(XjXl, Xj′Xl′)| ≤ 4M4αk.
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5) Prove that IE(An) = 0. Next, prove that there exists some positive constant K3 such

that

IE(A2
n) ≤ K3n

−1m2
n

for n large enough.

6a) Prove that the sequence (mαm)m>0 converges to 0, Find a sequence (mn)n>0 of

positive integers with the above prescribed properties such that

lim
n→∞

n1/2αmn = lim
n→∞

n−1/2mn = 0.

6b) Prove then that n−1/2Sn converges in distribution to the law N(0, σ2).

C

Let M be any positive real. We set

fM (x) = x1I|x|≤M .

We denote by H the tail function defined by H(x) = IP(|X0| > x) and by Q the cadlag

inverse of H. Let

Zn = n−1/2
n∑
j=1

Xj , Z̄n,M = n−1/2
n∑
j=1

(fM (Xj)− IE(fM (Xj))

and

Z̃n,M = Zn − Z̄n,M .

1) Prove that

IE(Z̃2
n,M ) ≤ 4

∫ H(M)

0

α−1(u)Q2(u)du.

2a) Prove that the series ∑
k∈ZZ

Cov(fM (X0), fM (Xk)).

is abolutely convergent.

2b) Let σ2(M) be the sum of the above series. Prove that σ2(M) converges to σ2 as

M tends to ∞.

2c) Prove that the central limit theorem holds under condition (DMR). �

2) A central limit theorem for β-mixing sequences. Let (Xi)i∈ZZ be a strictly

stationary sequence of random variables with values in some Polish space X , with common
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law P . We assume that the sequence of strong mixing coefficients defined in (2.1) is

summable and that the sequence of β-mixing coefficients (βi)i≥0 defined in Corollary 1.4

is summable. Let B be defined as in Corollary 1.4 and Q = BP .

a) Prove that, for any g in L2(Q), the series∑
Cov(g(X0), g(Xt))

is absolutely convergent. Bound up the sum σ2(g) of this series.

b) Proceed as in part C of the problem to prove that

Zn(g) = n−1/2(Sn(g)− IE(Sn(g)) )

converges in distribution to the law N(0, σ2(g)).
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5. MIXING AND COUPLING

5.1. Introduction

One of the most popular techniques to get limit theorems for dependent processes is to

replace the initial sequence by a sequence with finite range dependence. In this direction,

the coupling lemmas allow one to replace the initial sequence after time 0 by a new sequence

independent of the past before time 0. In this chapter, we give coupling theorems for mixing

sequences. The cost of the coupling will depend on the mixing condition involved. Here

we will give coupling results for strongly mixing or absolutely regular sequences.

For sequences of random variables satisfying a β-mixing condition, the new sequence is

equal to the initial sequence after time n with high probability. This result was obtained

independently by Berbee (1979) and Goldstein (1979). This result fails in the strong

mixing case. Nevertheless one can still obtain weaker results, which are efficient for real-

valued random variables. These results are stated and proved in Section 5.2 in the case of

bounded random variables. Next, in Section 5.3, we will state and prove coupling lemmas

for random variables satisfying a β-mixing condition. In Section 5.4 we compare the results

of Section 5.2 to previous results on the same subject. In Section 5.5, we give the strong

version of Berbee’s or Goldstein’s Lemma, called maximal coupling. Section 5.6 is devoted

to an extension of the results of Section 5.2 to unbounded random variables.

5.2. A coupling lemma for real-valued random variables

We first state the coupling lemma of Berbee (1979) for random variables satisfying a

β-mixing condition. This lemma will be proved in Section 5.3.

Lemma 5.1. Let A be a σ-field in (Ω, T , IP) and X be a random variable with values

in some Poilsh space. Let δ be a random variable with uniform distribution over [0, 1],

independent of the σ-field generated by X and A. Then there exists a random variable

X∗, with the same law as X, independent of A, such that IP(X 6= X∗) = β(A, σ(X)).

Furthermore X∗ is measurable with respect to the σ-field generated by A and (X, δ).

When X is a real-valued random variable with values in the compact interval [a, b],

Lemma 5.1 ensures that

(5.1) IE(|X −X∗|) ≤ (b− a)β(A, σ(X)).
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In this section we will prove that (5.1) is still true if one replaces the β-mixing coefficient

by the strong mixing coefficient, and more generally, by the dependence coefficient defined

in (1.8b).

Lemma 5.2. Let A be a σ-field in (Ω, T , IP) and X be a real-valued random variable

with values in [a, b]. Let δ be a random variable with uniform distribution over [0, 1],

independent of the σ-field generated by X and A. Then there exists a random variable

X∗, with the same law as X, independent of A, such that

IE(|X −X∗|) ≤ (b− a)α(A, X).

Furthermore X∗ is measurable with respect to the σ-field generated by A and (X, δ).

Proof. We will define X∗ from X via the conditional quantile transformation. The

main interest of the quantile transformation, is that this transformation minimizes the L1-

distance between X and X∗. We refer to Major (1978) for the properties of the quantile

transformations.

Let F be the distribution function of X, and FA by the conditional distribution function

ofX givenA, which is defined by FA(t) = IP(X ≤ t | A). Since δ is independent ofA∨σ(X)

and has the uniform distribution over [0, 1], the random variable

(5.2) V = FA(X − 0) + δ(FA(X)− FA(X − 0))

has the uniform distribution over [0, 1], conditionally to A (see Annex F). Hence V is

independent of A and has the uniform distribution over [0, 1]. Therefrom

(5.3) X∗ = F−1(V )

is independent ofA and has the same distribution function asX. Furthermore (see Exercise

1, Chap. 1),

(5.4) X = F−1
A (V ) a.s.,

whence

(5.5) IE(|X −X∗|) = IE
(∫ 1

0

|F−1
A (v)− F−1(v)|dv

)
.

Since X takes its values in [a, b],∫ 1

0

|F−1
A (v)− F−1(v)|dv =

∫ b

a

|FA(t)− F (t)|dt.
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Interverting the integral and the mean, we infer that

(5.6) IE(|X −X∗|) =

∫ b

a

IE(|FA(t)− F (t)|)dt.

Now, by (1.10c), for any real t,

(5.7) IE(|FA(t)− F (t)|) ≤ α(A, X),

which, together with (5.6) implies Lemma 5.2.

5.3. A coupling lemma for β-mixing random variables

In this section, we give a constructive proof of Lemma 5.1. In Section 5.4 we will study

connections between coupling for β-mixing random variables and coupling for strongly

mixing random variables.

Proof of Lemma 5.1. Let X∗ be a random variable, independent of A and with the

same distribution as X. For any pair (Ai)i∈I and (Bj)j∈J of finite partitions of Ω and X ,

with Ai in A and Bj Borelian of X ,∑
i∈I

∑
j∈J
|Cov(1IAi , 1IX∈Bj )| =

∑
i∈I

∑
j∈J
|IP(Ai ∩ (X ∈ Bj))− IP(Ai ∩ (X∗ ∈ Bj))|

≤
∑
i∈I

IE(1IAi
∑
j∈J
|1IX∈Bj − 1IX∗∈Bj |).

Now
∑
j∈J |1IX∈Bj − 1IX∗∈Bj | ≤ 21IX 6=X∗ , and consequently

(5.8)
1

2

∑
i∈I

∑
j∈J
|Cov(1IAi , 1IX∈Bj )| ≤ IP(X 6= X∗).

Therefrom, by (1.58), IP(X 6= X∗) ≥ β(A, σ(X)).

Let us now prove the converse inequality. From Lemma E.1 in Annex E, is is enough

to prove Lemma 5.1 for random variables X with values in ([0, 1],B) where B denotes

the σ-field of Borel sets of [0, 1]. We start by the construction of the random variables in

(Ω× [0, 1]× [0, 1],A⊗ B ⊗ B).

Here, we use the notations introduced in the proof of Lemma 5.2. We have to construct

a probability measure on the above product space in such a way that, if Y denotes the

second canonical projection and Y ∗ denotes the third canonical projection, then

(5.9) IP(Y ≤ t | A) = FA(t), IP(Y ∗ ≤ t | A) = F (t) and IP(Y 6= Y ∗) ≤ β.
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On the first component we consider the probability induced on A by IP. In order to define

the law on the product space, it is enough to define the conditional law νA of (Y, Y ∗)

conditionally to ω.

Notations 5.1. For L nonnegative integer, let IL,1 = [0, 2−L] and IL,i =](i−1)2−L, i2−L]

for i in [2, 2L],. Let BL be the Boole algebra generated by the sets IL,i.

We now define a coherent sequence (νL,A)L of conditional probabilities on the algebras

BL⊗BL. The conditional probability νA will be defined from these conditional probabilities

via some extension theorem.

Assume that a coherent sequence (νL,A)L≤N of conditional laws on the Boole algebras

BL ⊗BL has been constructed in such a way that these laws are measrurable with respect

to A and satisfy the condition H(L) below: if pLi,j = νL,A(IL,i × IL,j), then, for any L in

[0, N ] and any i in [1, 2L],

pLi,i = IP(X ∈ IL,i | A) ∧ IP(X ∈ IL,i),
2L∑
j=1

pLi,j = IP(X ∈ IL,i | A),

2L∑
i=1

pLi,j = IP(X ∈ IL,i)

(note that H(0) is satisfied anyway). We have to construct an extension νN+1,A of νN,A

to the Boole algebra BN+1 ⊗ BN+1 in such a way that H(N + 1) still holds true.

For any pair (i, j) of integers in [1, 2N ], the extension νN+1,A has to satisfy the con-

straints

C(N + 1) pNi,j =
1∑
ε=0

1∑
η=0

pN+1
2i−ε,2j−η.

Furthermore we need to construct νN+1,A in such a way that H(N + 1) holds true. Set

(5.10) aiε = IP(X ∈ IN+1,2i−ε | A), bjε = IP(X ∈ IN+1,2j−ε) and qijεη = pN+1
2i−ε,2j−η.

We start by defining the diagonal terms. In order to fulfill H(N + 1), we set

(5.11) qiiεε = IP(X ∈ IN+1,2i−ε | A) ∧ IP(X ∈ IN+1,2i−ε).

Now we have to fulfill both constraint C(N + 1) for j = i and (5.11). With the notations

introduced in (5.10), it means that

(5.12) qii00 = ai0∧bi0, qii11 = ai1∧bi1 and qii01 +qii10 = inf(ai0 +ai1, b
i
0 +bi1)−(ai0∧bi0)−(ai1∧bi1).

If ai0 + ai1 ≤ bi0 + bi1, then the constraint on the first marginal at range N , which may

be written
∑
j p

N
i,j = ai0 + ai1, implies that pNi,j = 0 for j 6= i, whence qijεη = 0 for j 6= i.
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Consequently the first marginal constraints at range N + 1 for the lines 2i and 2i− 1 hold

true if and only if

(i) qii01 = ai0 − (ai0 ∧ bi0) and qii10 = ai1 − (ai1 ∧ bi1).

Hence there exists a unique (qiiεη)ε,η satisfying (5.12) and the marginal constraints on the

lines. Similarly, if ai0 + ai1 > bi0 + bi1, then the constraint on the first marginal at range N ,

which is implies that pNj,i = 0 for any j 6= i. Then the marginal constraints at range N + 1

on columns 2i et 2i− 1 hold true if and only if

(ii) qii10 = bi0 − (ai0 ∧ bi0) and qii01 = bi1 − (ai1 ∧ bi1).

Hence there exists a unique (qiiεη)ε,η satisfying (5.12) and the marginal constraints on the

columns.

It remains to define the probabilities pN+1
2i−ε,2j−η for j 6= i. If pNi,j = 0, then these numbers

are equal to 0. If pNi,j 6= 0, then

(5.13) IP(X ∈ IN,i | A) > IP(X ∈ IN,i) and IP(X ∈ IN,j | A) < IP(X ∈ IN,j).

Under (5.13) the reals qii10 and qii01 are determined by ( (ii). Summing on the lines 2i et

2i− 1, we then get that the marginal constraints are satisfied if{
qii00 + qii01 = bi1 + (ai0 ∧ bi0)− (ai1 ∧ bi1) ≤ ai0
qii10 + qii11 = bi0 + (ai1 ∧ bi1)− (ai0 ∧ bi0) ≤ ai1.

Now bi0 + bi1 < ai0 + ai1, whence bi0 < ai0 or bi1 < ai1. If bi0 < ai0, then{
bi1 + (ai0 ∧ bi0) ≤ bi0 + bi1 ≤ inf(ai0 + ai1, a

i
0 + bi1)

bi0 + (ai1 ∧ bi1)− (ai0 ∧ bi0) ≤ (ai1 ∧ bi1) ≤ ai1,

which ensures that the above marginal constraints are satisfied. The case bi1 < ai1 can be

treated in a similar way. Hence ri0 = (ai0 − qii00 − qii01)/(ai0 + ai1 − bi0 − bi1) is nonnegative.

In a similar way, it can be proven that ri0 ≤ 1. Lety then ri1 = 1− ri0. We now deal with

the column j. By (4.13), the reals qjjεη satisfy condition (i) (with j instead of i). Starting

from (i), one can define nonnegative reals sj0 et sj1 = 1− sj0 corresponding to the column

j, in the same way as the reals ri0 and ri1 are defined from (ii). We then set

(5.14) pN+1
2i−ε,2j−η = riεsjηp

N
i,j for (ε, η) ∈ {0, 1}2,

which completes the definition of νN+1,A. Condition C(N + 1) is then satisfied. We now

check the constraint on the first margin (the constraint on the second margin can be
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checked in a similar way). Under (i) this constraint holds immediately since pNij = 0 for

j 6= i. Under (ii), we have to prove that

(5.15)

2N∑
j=1

1∑
η=0

p2i,2j−η = ai0,

Now, separating j = i and j 6= i in this sum and using (ii), we get that (5.15) holds true

if and only if ri0
∑
j 6=i p

N
i,j = (ai0 − qii00 − qii01). Now the constraint at range N on the line

i for νN,A may be written as
∑
j 6=i p

N
i,j = (ai0 + ai1 − bi0 − bi1), so that (5.15) holds true by

definition of ri0. Consequently there exists a sequence (νN,A)N of conditional probabilities

with the prescribed properties. Define then the probability measure νN on A⊗BN⊗BN by

νN (A×BN ) = IE(νN,A(BN )1IA). The so defined sequence (νN )N of probability measures is

coherent. Hence, by the Kolmogorov extension theorem, there exists a unique probability

measure ν on A⊗ B ⊗ B such that

(5.16) ν(A×BN ) = νN (A×BN ) = IE(1IAνN,A(BN ))

for any A in A, any positive integer N and any BN in BN ⊗ BN . Let then νA be defined

by

(5.17) ν(A×B) = IE(1IAνA(B)) for A ∈ A and B ∈ B ⊗ B.

The restriction of νA to BN ⊗ BN is equal to νN,A. Hence, for any dyadic number x,

(5.18) νA([0, x]× [0, 1]) = FA(x) et νA([0, 1]× [0, x]) = F (x).

Since the dyadic numbers are dense in [0, 1], it follows that (5.18) holds for any real x

in [0, 1]. Let then Y denote the second canonical projection and Y ∗ the third canonical

projection. From (5.18) the random variable Y ∗ is independent of A (here A denotes the

σ-field induced by the first projection) and has the same law as X. From (5.18) again the

conditional law of Y given A is equal to the conditional law of X given A. Furthermore

(5.19) IP(Y = Y ∗) = lim
N→∞

IE
(
νN,A

( 2N⋃
i=1

IN,i × IN,i
))

= lim
N→∞

2N∑
i=1

IE(pNi,i).

Now

2N∑
i=1

IE(pNi,i) =
1

2

2N∑
i=1

IE(|IP(X ∈ IN,i | A)− IP(X ∈ IL,i)|) ≥ 1− β(A, σ(X)),

which ensures that IP(Y 6= Y ∗) ≤ β(A, σ(X)). Hence IP(Y 6= Y ∗) = β(A, σ(X)).
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Let then Ω̃ = Ω×[0, 1]×[0, 1]×[0, 1] be quipped with ν⊗λ. By Lemma E.2, there exists

a random variable V with uniform law over [0, 1] independent of the σ-field G induced by

the first two projections and a measurable function g such that Y ∗ = g(ω, Y, V ) almost

surely. Setting X∗ = g(ω,X, δ), we then get Lemma 5.1.

5.4. Comparison of α-mixing and β-mixing coefficients for finite σ-fields

In this section, we are interested in a converse inequality for β-mixing and strong mixing

coefficients, in the case ot σ-fields with a finite number of atoms. Below we give a result

of Bradley (1983) which was used to obtain approximation theorems by Bradley (1983) in

the case of real-valued random variables. At the end of this section we will compare this

lemma with Lemma 5.1.

Lemma 5.3. Let A be a σ-field of (Ω, T , IP) and B be a Boole algebra included in T ,

having exactly K atoms. Then β(A,B) ≤ (2K)1/2α(A,B).

Remark 5.1. The above lemma is optimal up to some multiplicative constant, as proved

by Bradley (1983). This fact will be proved in Exercise 2.

Proof of Lemma 5.3. We may assume that the probability space is large enough to

contain a finite sequence (ε1, . . . , εK) de of independent and symmetric signs, independent

of A ∨ B. Let B1, . . . , BK denote the atoms of B. Set

Y =
K∑
k=1

εi(1IBk − IP(Bk)).

We now proceed conditionally to (ε1, . . . , εK) : the random variable Y is conditionally

centered, so that we may apply (1.11c) with X = 1 conditionally to the values of the signs.

Since Y belongs to [−1, 1], integrating with respect to the signs, we get that

(5.20) IE
(∣∣∣ K∑

k=1

εi(IP(Bk | A)− IP(Bk))
∣∣∣) ≤ 2α(A,B).

Now, by the lower bound of Szarek (1976) in Khinchin’s inequality, for any finite sequence

a1, . . . , aK of reals,

IE(|a1ε1 + · · ·+ aKεK |) ≥ 2−1/2(a2
1 + · · ·+ a2

K)

≥ (2K)−1/2(|a1|+ · · ·+ |aK |)(5.21)

by the Cauchy-Schwarz inequality. Taking ak = IP(Bk | A)− IP(Bk) in (5.21), we get that

2α(A,B) ≥ (2K)−1/2
K∑
i=1

IE(|IP(Bk | A)− IP(Bk)|) = (2/K)1/2β(A,B),
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which completes the proof of Lemma 5.3.

We now explain the method of Bradley (1983) for strongly mixing sequences. Divide

[a, b] into K intervals , H1, H2, . . . Hk of the same length. For X random variable with

values in [a, b], consider the Boole algebra B generated by the atoms Bk = (X ∈ Hk).

Applying Lemma 5.1 together with Lemma 5.3, one can construct a random variable X∗

(which depends on the number K of intervals) with the same distribution as X, indepen-

dent of A and such that

(5.22) IP
(

(X,X∗) ∈
K⋃
k=1

Hk ×Hk

)
≥ 1− (2K)1/2α(A, σ(X)).

Now, if (X,X∗) belongs to Hk × Hk for some k in [1,K], then|X − X∗| ≤ (b − a)/K.

Consequently

(5.23) IP(|X −X∗| > K−1(b− a)) ≤ (2K)1/2α(A, σ(X)).

Now, for any λ in [0, b− a], applying (5.23) with K = 1 + [(b− a)/λ], we get that

(5.24) IP(|X −X∗| > λ) ≤ 2((b− a)/λ)1/2α(A, σ(X))

(see Bradley (1983), Theorem 3). The main default of (5.24) is that X∗ depends on λ:

therefore this inequality cannot be integrated with respect to λ, which leads to a loss for

IE(|X −X∗|). From (5.24),

IE(|X −X∗|) ≤ λ+ (b− a)IP(|X −X∗| > λ) ≤ λ+ 2α(A, σ(X))(b− a)3/2λ−1/2.

For the optimal choice λ = (b− a)(α(A, σ(X)))2/3, the above inequality gives

(5.25) IE(|X −X∗|) ≤ 3(b− a)1/3(α(A, σ(X)))2/3.

For the pair (X,X∗) constructed in the proof of Lemma 5.1, this upper bound can be

improved. We refer to Exercise 1 for an upper bound on IE(|X−X∗|) for the pair (X,X∗)

constructed in the proof of Lemma 5.1 similar to the upper bound of Lemma 5.2.

5.5. Maximal coupling and absolutely regular sequences

In this section, we give a relation between maximal coupling and absolutely regular

sequences. Theorem 5.1 below, which can be found in Goldstein (1979) and Berbee (1979),

generalizes a result of Griffeath (1975) for Markov chains.

Theorem 5.1. Let (ξi)i∈ZZ be a sequence of random variables with values in some

Polish space X . Assume that (Ω, T , IP) is rich enough to contain a random variables U
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with uniform distribution over [0, 1], independent of (ξi)i∈ZZ. Let F0 = σ(ξi : i ≤ 0)

and Gn = σ(ξi : i ≥ n). Then one can construct a sequence (ξ∗i )i∈ZZ with the same joint

distribution as the initial sequence (ξi)i∈ZZ, independent of F0 and measurable with respect

to the σ-field generated by U and (ξi)i∈ZZ, in such a way that, for any positive integer n,

(a) IP(ξk 6= ξ∗k for some k ≥ n | F0) = ess sup {|IP(B | F0)− IP(B)| : B ∈ Gn}.

In particular

(b) IP(ξk 6= ξ∗k for some k ≥ n) = β(F0,Gn).

Remark 5.2. The β-mixing coefficients of the sequence (ξi)i∈ZZ are determined uniquely

by property (b). Hence Theorem 5.1 contains all the information needed to explore the

properties of β-mixing sequences. In Chapter 8 we will apply this result to uniform limit

theorems for empirical processes.

5.6. An extension of Lemma 5.2 to unbounded random variables *

In this section, we give an extension of Lemma 5.2 to unbounded real-valued random

variables. The result below is due to Peligrad (2002).

Lemma 5.4. Let A be a σ-field in (Ω, T , IP) and X be a real-valued and integrable

random. Let δ be a random variable with uniform distribution over [0, 1], independent of

the σ-field generated by X and A. Then there exists a random variable X∗, with the same

law as X, independent of A, such that

IE(|X −X∗|) ≤ 2

∫ α(A,X)

0

QX(u)du.

Furthermore X∗ is measurable with respect to the σ-field generated by A and (X, δ).

Proof. As in Lemma 5.2, the random variable X∗ is defined from X by (5.2) and (5.3).

For the so-defined random variable X∗, (5.5) still holds true. Proceeding exactly as in the

proof of (5.6), we then get that

(5.26) ‖X −X∗‖1 =

∫
IR

IE(|FA(t)− F (t)|)dt.

Since |FA(t)− F (t)| = |IP(X > t | A)− IP(X > t)|,∫ ∞
0

IE(|FA(t)− F (t)|)dt =

∫ ∞
0

IE(|IP(X > t | A)− IP(X > t)|)dt.
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Next ∫ 0

−∞
IE(|FA(t)− F (t)|)dt =

∫ 0

−∞
IE(|IP(X < t | A)− IP(X < t)|)dt,

whence

(5.27)

‖X −X∗‖1 =

∫ ∞
0

IE(|IP(X > t | A)− IP(X > t)|+ |IP(−X > t | A)− IP(−X > t)|)dt.

Now, by (1.10c),

IE(|IP(X > t | A)− IP(X > t)|+ |IP(−X > t | A)− IP(−X > t)|) ≤ 2α(A, X).

Furthermore

|IP(X > t | A)−IP(X > t)|+|IP(−X > t | A)−IP(−X > t)| ≤ IP(|X| > t)+IP(|X| > t | A),

whence

IE(|IP(X > t | A)− IP(X > t)|+ |IP(−X > t | A)− IP(−X > t)|) ≤ 2IP(|X| > t).

Combining (5.27) with the two above upper bounds, we get that

‖X −X∗‖1 ≤ 2

∫ ∞
0

inf(α(A, X), IP(|X| > t))dt.

Since ∫ ∞
0

inf(α(A, X), IP(|X| > t))dt =

∫ α(A,X)

0

QX(u)du,

Lemma 5.4 follows.

EXERCISES

1) Let A be a σ-field of (Ω, T , IP) and X be a random variable with values [0, 1]. Set

α = α(A, σ(X)) and let X∗ be the random variable constructed in the proof of Lemma

5.2.

a) Prove that, for any positive integer N ,

IP( there exists i ∈ [1, 2N ] such that(X,X∗) ∈ IN,i × IN,i) ≥ 1− 2(N+1)/2α.

Infer that, for any positive λ, IP(|X −X∗| > λ) ≤ 2λ−1/2α.

b) Prove that IE(|X −X∗|) ≤ 4α.

We now assume that the random variable X takes its values in [0, 1]d equipped with

the distance d∞.
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c) Prove that there exists a bijective and bimeasurable transformation from [0, 1] dans

[0, 1]d such that, for any positive integer N , the images of the dyadic intervals IN,i are

dyadic boxes with diameter bounded up by 2−[N/d].

d) Construct a random variable X∗ independent of A and with the same law as X in

such a way that

IP(d∞(X,X∗) > 4λ1/d) ≤ (2/λ)1/2α.

From the above upper bound, deduce an upper bound on IE(d∞(X,X∗)). Compare this

upper bound with the upper bound which can be deduced from Lemma 5.1 in the β-mixing

case.

2) On the optimality of Lemma 5.3. - Bradley (1983) - Recall that the correlation

between two square-integrable random variables X and Y is defined by

Corr(X,Y ) = (VarX VarY )−1/2 Cov(X,Y ).

If A and B are two σ-fields in some probability space, we set

ρ(A,B) = sup{Corr(X,Y ) : X ∈ L2(A), Y ∈ L2(B)}.

Let N be an even natural integer. Let Ω1 = [0, 1] equipped with its Borel field, which

is noted here F1, and P1 be the Lebesgue measure on F1. Let Ω2 = {1, . . . , N} equipped

with F2 = P(Ω2). On Ω2 we consider the uniform distribution, which is noted P2.

Set m = N/2. Let h1, h2, . . . be the Rademacher functions given by hj(x) = (−1)[x2j ].

On Ω = Ω1 × Ω2 equipped with F1 ⊗ F2, we define the probability measure P as follows:

the density with respect to the Lebesgue measure of the conditional law of ω1 conditionally

to (ω2 = j) is equal to 1− hj(x) for j in [1,m] and to 1− hj−m(x) for j in [m+ 1, N ].

Let then A = {F1 × Ω2 : F1 ∈ F1} and B = {Ω1 × F2 : F2 ∈ F2}.
a) Prove that β(A,B) = 1/2.

b) Prove that any numerical function g on {1, 2, . . . , N} has the decomposition g =

g1 + g2 with g1(j + m) = −g1(j + m) and g2(j + m) = g2(m) for any j in [1,m]. Prove

that this decomposition is unique. Next, prove that, under the law P2, Var g ≥ Var g1.

c) Let f be a square integrable Borelian function on [0, 1], with mean 0. Prove that

Cov(f, g) = Cov(f, g1). Infer that |Corr(f, g)| ≤ |Corr(f, g1)|.
d) Let cj = g1(j). Prove that

Cov(f, g1) =
2

N

∫ 1

0

m∑
j=1

cjhj(x)f(x)dx.

Infer that ρ(A,B) ≤ (2/N)1/2.

e) Prove that ρ(A,B) ≥ 2α(A,B). Conclude that α(A,B)(N/2)1/2 ≤ β(A,B).
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6. FUK-NAGAEV INEQUALITIES, APPLICATIONS

6.1. Introduction

In this chapter, we generalize the classical exponential inequalities for sums of inde-

pendent random variables (we refer to Annex B for these inequalities) to sums of strongly

mixing random variables. Our approach is based on coupling, as in Bradley (1983) and

Bosq (1993). We improve their results by using Lemma 5.2, which provides a more efficient

coupling for strongly mixing random variables. Starting from the initial sequence and ap-

plying this coupling lemma, we will replace the initial sequence by a q-dependent sequence

of random variables. The cost of this coupling depends on q. We refer to Theorem 2

in Berkes and Philipp (1979) for a similar method in the φ-mixing case. Next, applying

the usual exponential inequalities for sums of independent random variables to this new

sequence, we obtain inequalities with two parts in the upper bound: an exponential term

and a term depending mainly on the mixing coefficient αq. For power-type rates of mixing

the second term does not decrease exponentially. This is the reason why our inequalities

are similar to the inequalities of Fuk and Nagaev (1971) for sums of unbounded random

variables. In Section 6.3, we derive a Fuk-Nagaev type inequality for unbounded random

variables from the inequalities of Section 6.2. Next, in Section 6.4, we apply this inequlity

to get moment inequalities in the style of Rosenthal (1970) and Marcinkiewicz-Zygmund

type inequalities. Our method is similar to the method used in Petrov (1989). In Section

6.5 we give an application of our Fuk-Nagaev type inequality to the bounded law of the

iterated logarithm.

6.2. Exponential inequalities for partial sums

In this section, we apply Lemma 5.2 together with the Bennett inequality for sums of

independent random variables to get a new maximal inequality for partial sums of bounded

random variables in the strong mixing case.

Theorem 6.1. Let (Xi)i>0 be a sequence of real-valued random variables such that

‖Xi‖∞ ≤M for any positive i, and (αn)n≥0 be the sequence of strong mixing coefficients
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defined by (2.1). Set Xi = 0 for any i > n. Let Sk =
∑k
i=1(Xi − IE(Xi)). Let q be any

positive integer, and vq be any positive real such that

vq ≥
∑
i>0

IE((Xiq−q+1 + · · ·+Xiq)
2).

Set M(n) =
∑n
i=1 ‖Xi‖∞ and let h(x) = (1 + x) log(1 + x)− x. Then, for any λ ≥ qM ,

IP
(

sup
k∈[1,n]

|Sk| ≥ (1Iq>1 + 5/2)λ
)
≤ 4 exp

(
− vq

(qM)2
h
(λqM

vq

))
+ 4M(n)

αq+1

λ

≤ 4 exp
(
− λ

2qM
log
(

1 +
λqM

vq

))
+ 4M(n)

αq+1

λ
.

Proof. Set Ui = Siq − Siq−q. Since Xi = 0 for any i > n, the random variables Ui are

almost surely equal to 0 for i large enough. Now, for any integer j, d(j, qZZ) ≤ [q/2]. It

follows that

sup
k∈[1,n]

|Sk| ≤ 2[q/2]M + sup
j>0
|
j∑
i=1

Ui|.

Hence Theorem 6.1 is a byproduct of the inequality below:

(6.1) IP
(

sup
j>0
|
j∑
i=1

Ui| ≥ 5λ/2
)
≤ 4 exp

(
− vq

(qM)2
h(λqM/vq)

)
+ 4M(n)

αq+1

λ
.

The inequality in Theorem 6.1 follows immediately from both (6.1) and the lower bound

h(x) ≥ x
∫ 1

0

log(1 + tx)dt ≥ x log(1 + x)

∫ 1

0

tdt ≥ x log(1 + x)/2.

Proof of Inequality (6.1). Let (δj)j>0 be a sequence of independent random variables

with uniform law over [0, 1], independent of the sequence (Ui)i>0. Applying Lemma 5.2

recursively, we obtain that, for any integer i ≥ 3, there exists a measurable function Fi such

that the random variable U∗i = Fi(U1, ..., Ui−2, Ui, δi) satisfies the conclusions of Lemma

5.2 with A = σ(Ul : l < i− 1). Set then U∗i = Ui for i = 1 and i = 2. The so constructed

sequence (U∗i )i>0 has the properties below:

1. for any positive i, the random variable U∗i has the same distribution as Ui.

2. the random variables (U∗2i)i>0 are independent and the random variables (U∗2i−1)i>0

are independent.

3. For any integer i ≥ 3,

IE(|Ui − U∗i |) ≤ 2αq+1

iq∑
k=iq−q+1

‖Xk‖∞.
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Replacing the initial random variables Ui by the random variables U∗i , we get that

(6.2) sup
j>0
|
j∑
i=1

Ui| ≤
∑
i≥3

|Ui − U∗i |+ sup
j>0
|
j∑
i=1

U∗2i|+ sup
j>0
|
j∑
i=1

U∗2i−1|.

By property 3 together with the Markov inequality,

(6.3) IP
(∑
i>0

|Ui − U∗i | ≥ λ/2
)
≤ 4M(n)αq+1λ

−1.

To complete the proof of Inequality (6.1), it then suffices to apply twice Theorem B.1(b)

in Annex B with K = Mq and v = vq to the random variables (U∗2i)i>0 and the random

variables (U∗2i−1)i>0.

6.3. Fuk-Nagaev inequalities for partial sums

In this section, we give an extension of the Fuk-Nagaev inequality for sequences of

independent random variables to strongly mixing sequences of random variables. However,

in order to get an efficient inequality, we have to assume that the tails of the random

variables are uniformly bounded. We refer to Dedecker and Prieur (2004) for an extension

of this inequality to a weaker notion of dependence and to Merlevède Peligrad and Rio

(2011) for more efficient inequalities in the case of exponential or semi-exponential rates

of mixing.

Theorem 6.2. Let (Xi)i>0 be a sequence of real-valued and centered random variables

with finite variances. Let (αn)n≥0 denote the sequence of strong mixing coefficients defined

in (2.1). Set Q = supi>0Qi and

(6.4) s2
n =

n∑
i=1

n∑
j=1

|Cov(Xi, Xj)|.

Let then R(u) = α−1(u)Q(u) and let H(u) = R−1(u) denote the generalized inverse

function of R. Then, for any positive λ and any r ≥ 1,

(6.5) IP
(

sup
k∈[1,n]

|Sk| ≥ 4λ
)
≤ 4
(

1 +
λ2

rs2
n

)−r/2
+ 4nλ−1

∫ H(λ/r)

0

Q(u)du.

Remark 6.1. As in Theorem 6.1, we may assume that Xi = 0 for i > n. Consequently

(6.5) remains true if α−1(u) is replaced by α−1(u) ∧ n.

Proof. We may assume that Xi = 0 for any i > n. Let q be any positive integer and let

M be a positive real. Set

(6.6) Ui = Siq − Siq−q and Ūi = (Ui ∧ qM) ∨ (−qM) for any i ∈ { 1, . . . , [n/q] }.
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From the assumption Xi = 0 for i > n, Ūi = 0 for i > [n/q]. Let then ϕM (x) = (|x|−M)+.

We start by proving that

(6.7) sup
k∈[1,n]

|Sk| ≤ sup
j>0
|
j∑
i=1

Ūj |+ qM +

n∑
k=1

ϕM (Xk).

To prove (6.7), we notice that, if the maximum of the random variables |Sk| is obtained

for k0, then, for j0 = [k0/q],

(6.8) sup
k∈[1,n]

|Sk| ≤ |
j0∑
i=1

Ūi|+
j0∑
i=1

|Ui − Ūi|+
k0∑

k=qj0+1

|Xk|.

Now, by convexity of the function ϕM ,

(6.9)

j0∑
i=1

|Ui − Ūi| ≤
qj0∑
k=1

ϕM (Xk).

Moreover

(6.10)

k0∑
k=qj0+1

|Xk| ≤ (k0 − qj0)M +

k0∑
k=qj0+1

ϕM (Xk),

and combining the three above inequalities, we get (6.7).

In order to apply Theorem 6.1, we have to center the random variables Ūi. Since the

random variables Ui are centered,

sup
j>0

∣∣∣ j∑
i=1

Ūi

∣∣∣ ≤ sup
j>0

∣∣∣ j∑
i=1

(Ūi − IE(Ūi))
∣∣∣+
∑
i>0

IE(|Ui − Ūi|)

≤ sup
j>0

∣∣∣ j∑
i=1

(Ūi − IE(Ūi))
∣∣∣+

n∑
k=1

IE(ϕM (Xk)),(6.11)

by convexity of ϕM . Hence

(6.12) sup
k∈[1,n]

|Sk| ≤ sup
j>0

∣∣∣ j∑
i=1

(Ūi − IE(Ūi))
∣∣∣+ qM +

n∑
k=1

(IE(ϕM (Xk)) + ϕM (Xk)).

We now choose M and q. Let x = λ/r and v = H(x). If v = 1/2, then

(6.13) 4nλ−1

∫ H(λ/r)

0

Q(u)du ≥ 2nλ−1

∫ 1

0

Q(u)du ≥ 2λ−1
n∑
i=1

IE(|Xi|).
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In that case, Inequality (6.5) follows immediately from the Markov inequality applied to

the random variable |X1|+ · · ·+ |Xn|. If v < 1/2, then α−1(v) > 0. In that case, we set

(6.14) q = α−1(v) and M = Q(v).

With this choice of q and v,

(6.15) qM = R(v) = R(H(x)) ≤ x ≤ λ.

We now apply Theorem 6.1 to the random variables Ūi . Setting q = 1 and M = x in

Theorem 6.1 and noticing that

(6.16) IE(Ū2
i ) ≤ IE(U2

i ) ≤
∑

l,m∈]iq−q,iq]

|Cov(Xl, Xm)|,

which ensures that Theorem 6.1 holds with v1 = s2
n, we get that

(6.17) IP
(

sup
j>0

∣∣∣ j∑
i=1

(Ūj − IE(Ūi))
∣∣∣ ≥ 5λ/2

)
≤ 4
(

1 +
λ2

rs2
n

)−r/2
+ 4nMαq+1λ

−1.

It remains to bound up the deviation of the second random variable on right hand in

(6.12). (6.17). By the Markov inequality,

IP
( n∑
k=1

(IE(ϕM (Xk)) + ϕM (Xk)) ≥ λ/2
)
≤ 4

λ

n∑
k=1

∫ 1

0

(Qk(u)−Q(v)+du

≤ 4n

λ

∫ v

0

(Q(u)−Q(v))du.(6.18))

Since q ≥ α−1(v), one can prove that αq ≤ v and Mαq+1 ≤ vQ(v). Putting together

(6.13), (6.17), (6.18), and noting that Mq ≤ λ, we then obtain Theorem 6.2.

An application to power-type rates of mixing. Let (Xi)i>0 be a strongly mixing sequence.

Assume that the strong mixing coefficients αn satisfy αn ≤ cn−a for some constants c ≥ 1

et a > 1. Suppose furthermore that there exists some p > 2 such that

IP(|Xi| > t) ≤ t−p for any t > 0.

Then, setting b = ap/(a+ p), an elementary calculation yields H(x) ≤ cb/a(2/x)b, whence

4λ−1

∫ H(λ/r)

0

Q(u)du ≤ 4Cr−1(λ/r)−(a+1)p/(a+p),

104



with C = 2p(2p− 1)−1(2ac)(p−1)/(a+p). Consequently, by Theorem 6.2, for any r ≥ 1 and

any positive λ,

(6.19a) IP
(

sup
k∈[1,n]

|Sk| ≥ 4λ
)
≤ 4
(

1 +
λ2

rs2
n

)−r/2
+ 4Cnr−1(r/λ)(a+1)p/(a+p).

If ‖Xi‖∞ ≤ 1 (which corresponds to p =∞), Theorem 6.2 applied with Q = 1 yields

(6.19b) IP
(

sup
k∈[1,n]

|Sk| ≥ 4λ
)
≤ 4
(

1 +
λ2

rs2
n

)−r/2
+ 2ncr−1(2r/λ)a+1.

6.4. Application to moment inequalities

In this section we adapt to the strong mixing case the method proposed by Petrov

(1989) in the independent case to derive moment inequalities in the style of Rosenthal

(1970) from the Fuk-Nagaev inequality. Our first result is an extension of Theorem 2.2 for

algebraic moments to moments of any order p > 2.

Theorem 6.3. Let (Xi)i>0 be a sequence of real-valued and centered random variables

and (αn)n≥0 be the sequence of strong mixing coefficients defined by (2.1). Suppose that,

for some p > 2, IE(|Xi|p) <∞ for any positive integer i. Then

IE
(

sup
k∈[1,n]

|Sk|p
)
≤ apspn + nbp

∫ 1

0

[α−1(u) ∧ n]p−1Qp(u)du,

where

Q = sup
i>0

Qi, ap = p4p+1(p+ 1)p/2 and bp =
p

p− 1
4p+1(p+ 1)p−1.

Remark 6.2. We refer to Annex C for more about the quantities involved in these moment

inequalities. Note that Q can be replaced by Q(n) = supi∈[1,n]Qi in Theorem 6.3.

Proof. As in the proof of Theorems 6.1 and 6.2 we may assume that Xi = 0 for any i > n.

under this assumption case α−1(u) ≤ n. First

IE
(

sup
k∈[1,n]

|Sk|p
)

= p4p
∫ ∞

0

λp−1IP
(

sup
k∈[1,n]

|Sk| ≥ 4λ
)
dλ.

Now, applying Theorem 6.2 with r = p+ 1, we get that

(6.20) IE
(

sup
k∈[1,n]

|Sk|p
)
≤ p4p(4E2 + 4nE1),

with

E2 =

∫ ∞
0

(
1 +

λ2

rs2
n

)−r/2
λp−1dλ and E1 =

∫ ∞
0

∫ 1

0

λp−2Q(u)1Iu<H(λ/r)dλdu.
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We now bound up E2. Since H is the right continuous inverse of R, (H(λ/r) > u) if

and only if (λ < rR(u)). Hence, interverting the integrals, we obtain that

(6.21) E1 ≤
1

p− 1
(p+ 1)p−1

∫ 1

0

Q(u)Rp−1(u)du.

To bound E2, we introduce the change of variable x = λ/(sn
√
r). Then

E2 = (p+ 1)p/2spn

∫ ∞
0

xp−2(1 + x2)−(p+1)/2xdx.

Since xp−2 ≤ (1 + x2)(p−2)/2, it follows that

E2 ≤ (p+ 1)p/2sp/2n

∫ ∞
0

(1 + x2)−3/2xdx.

Consequently

E2 ≤ (p+ 1)p/2sp/2n .

Both (6.20), (6.21) and the above inequality then imply Theorem 6.3.

Let

Mp,α(Q) =

∫ 1

0

[α−1(u)]p−1Qp(u)du and Mp,α,n(Q) =

∫ 1

0

[α−1(u) ∧ n]p−1Qp(u)du.

If Mp,α(Q) < ∞, then Theorem 6.3 yields a Rosenthal type inequality. Since Mp,α,n(Q)

converges to Mp,α(Q) as n tends to infinity, this is not the case if Mp,α(Q) = ∞. Never-

theless, one can still obtain a Marcinkiewicz-Zygmund type inequality. In order to state

this inequality, we need to introduce weak norms.

Definition 6.1. For any real r ≥ 1 and any real-valued random variable X, we set

Λr(X) = sup
t>0

(
trIP(|X| > t)

)1/r
.

With this definition limr→∞ Λr(X) = ‖X‖∞.

Corollary 6.1 below gives a moment inequality which improves on the results of Yokoyama

(1980).

Corollary 6.1. Let p > 2 and (Xi)i>0 be a sequence of real-valued and centered random

variables and (αn)n≥0 be the sequence of strong mixing coefficients defined by (2.1). Sup-

pose that, for some r > p, Λr(Xk) < ∞ for any positive integer k and that the strong

mixing coefficients satisfy

αn ≤ κ(n+ 1)−pr/(2r−2p) for any n ≥ 0, for some positive κ.
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Then there exists some positive constant C(κ, p) such that

IE
(

sup
k∈[1,n]

|Sk|p
)
≤ r

r − p
C(κ, p)κ−p/rnp/2

(
sup
k>0

Λr(Xk))
)p
.

Remark 6.3. Corollary 6.1 still holds in the case r = ∞. In that case the mixing

coefficients have to satisfy αn ≤ κ(n+ 1)−p/2 and

IE
(

sup
k∈[1,n]

|Sk|p
)
≤ C(κ, p)np/2 sup

k>0
‖Xk‖p∞.

Proof of Corollary 6.1. Let K = supk>0 Λr(Xk). By the Markov inequality,

IP(|Xk| > t) ≤ (K/t)r for any positive t,

whence Q(u) ≤ Ku−1/r for any u in [0, 1]. Now both the above bound on Q and (C.10)

ensure that

Mp,α,n(Q) ≤ Kp(p− 1)
n−1∑
i=0

(i+ 1)p−2

∫ αi

0

u−p/rdu

≤ Kp r

r − p
κ1−p/r(p− 1)

n∑
j=1

j−2+(p/2).

Now, for p ≤ 4,

n∑
j=1

j−2+(p/2) ≤
∫ n

0

x−2+(p/2)dx = 2(p− 2)−1n−1+(p/2),

and, for p > 4,

n∑
j=1

j−2+(p/2) ≤ n−2+(p/2) +

∫ n

1

x−2+(p/2)dx ≤ 2n−1+(p/2).

It follows that

(6.22) nMp,α,n(Q) ≤ r

r − p
.

2(p− 1)

(p− 2) ∧ 1
Kpκ1−p/rnp/2.

We now bound up spn. By Corollary 1.1 together with the fact that Q2(u) ≤ K2u−2/r, we

have:

s2
n ≤ 4nK2

n−1∑
i=0

∫ αi

0

u−2/rdu ≤ 4nr

r − 2
K2κ1−2/r

n∑
j=1

j−p(r−2)/(2r−2p) ≤ 4np

p− 2
K2κ1−2/r
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under the mixing assumption of Corollary 6.1. Now, both the above bound, (6.22) and

Theorem 6.3 imply Corollary 6.1 with

C(κ, p) =
( 4p

p− 2

)p/2
apκ

p/2 +
2(p− 1)

(p− 2) ∧ 1
bpκ.

6.5. Application to the bounded law of the iterated logarithm

The first known results on the law of the iterated logarithm for strongly mixing seuqneces

are due to Oodaira and Yoshihara (1971a, 1971b). Later Rio (1995b) obtained the func-

tional law of the iterated logarithm in the sense of Strassen (1964) under condition (DMR)

via the above Fuk-Nagev type inequality and the coupling lemma of Chapter 5. Since the

proof is rather technical, we will prove here only a bounded law of the iterated logarithm.

Throughout this section we use the notations Lx = log(x ∨ e) and LLx = L(Lx).

Theorem 6.4. Let (Xi)i>0 be a strictly stationary sequence of real-valued and centered

random variables, satisfying condition (DMR) for the sequence of strong mixing coefficients

defined by (2.1). Then, with the same notations as in Theorem 6.2,

lim sup
n→∞

|Sn|
sn
√

log log n
≤ 8 almost surely.

Proof. We first notice that, from the stationarity assumption,

(6.23) lim
n→∞

n−1s2
n = VarX0 + 2

∞∑
i=1

|Cov(X0, Xi)| = V > 0.

To prove Theorem 6.4, it is enough to prove that

(6.24)
∑
n>0

n−1IP
(

sup
k∈[1,n]

|Sk| ≥ 8sn
√
LLn

)
<∞,

and next to apply the Borel-Cantelli lemma, as in Stout (1974, Chap. 5).

In order to prove (6.24), we now apply Theorem 6.2 with r = 2LLn and λ = λn =

2sn
√
LLn. Let xn = λ/r = sn(LLn)−1/2. Summing on n, we get that

(6.25)
∑
n>0

n−1IP
(

sup
k∈[1,n]

|Sk| ≥ 8sn
√
LLn

)
≤ 4

∑
n>0

n−13−LLn +
∑
n>0

4

λn

∫ H(xn)

0

Q(u)du.

The series
∑
n>0 n

−13−LLn is clearly convergent. To bound up the second series on right

hand, we intervert sum and integral: since (u < H(xn)) if and only if (R(u) > xn), we

thus obtain ∑
n>0

4

λn

∫ 1

0

Q(u)1Iu<H(xn)du = 4

∫ 1

0

Q(u)
(∑
n>0

xn
s2
n

1Ixn<R(u)

)
du.
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Now, by (6.23), the terms in the series are similar to (nV LLn)−1/2. It follows that∑
n>0

xn
s2
n

1Ixn<R(u) ≤ CR(u)

for some positive constant C. Consequently

(6.26)
∑
n>0

1

λn

∫ H(xn)

0

Q(u)du ≤ C
∫ 1

0

R(u)Q(u)du,

which implies (6.24). Hence Theorem 6.4 holds true.

EXERCISES

1) Let (Xi)i>0 be a sequence of real-valued and centered random variables and (αn)n≥0 be

the sequence of strong mixing coefficients defined by (2.1). We assume that sn ≥ 1. Prove

that, if ‖Xi‖∞ ≤ 1 for anny positive i, then, for any λ in [sn, s
2
n],

(1) IP
(

sup
k∈[1,n]

|Sk| ≥ 4λ
)
≤ 4 exp

(
− λ2

4s2
n

)
+ 4nλ−1α(s2

n/λ).

Compare the terms on right hand in this inequality under the mixing assumption αn =

O(an) for some a in ]0, 1[.

2) An inequality of Doukhan and Portal. In this exercise, we will give an improved

version of the exponential inequality of Doukhan and Portal (1987). We assume that

‖Xi‖∞ ≤ 1 for any positive i and that the strong mixing coefficients defined by (2.1)

satisfy αq ≤ c exp(−aq) foa any q ≥ 0, for some positive constants a and c. Prove that,

for any n ≥ 4 and any x ≥ log n,

(2) IP
(
|Sn| ≥ 5(sn ∨ 2

√
5 )
√
x+

10

3a
x2
)
≤ c exp(−x).

3) Kolmogorov’s law of the iterated logarithm. Let (Xi)i>0 be a sequence of iden-

tically distributed and independent centered random variables, with variance 1.

a) Prove that, for any ε > 0 small enough,

(3)
∑
n>0

n−1IP(S∗n ≥ (1 + ε)2
√

2nLLn ) <∞.

Hint: apply Theorem B.3(b) in Annex B with λx = εn.

b) Infer from (a) that

lim sup
n→∞

(2nLLn)−1/2|Sn| ≤ 1 almost surely.

109



7. EMPIRICAL DISTRIBUTION FUNCTIONS

7.1. Introduction

In this chapter we are interested in functional limit theorems for the empirical distribu-

tion function associated to a stationary and strongly mixing sequence of random variables

with values in IRd. In the iid case, the functional central limit theorem for the suitably

normalized and centered empirical distribution function is due to Donsker (1952). Donsker

proved in particular that the Lipschitzian functionals of a suitably normalized and centered

version of the empirical distribution function converge in distribution to the distribution

of the corresponding functionals associated to a Brownian bridge. For this reason, the nor-

malized and centered version of the empirical distribution function is often called empirical

bridge. Dudley (1966) extended the results of Donsker to the multivariate case, with a

more rigourous approach. Following the approach of Dudley (1966), the proofs of these

theorems generally include two steps. The first step consists in proving the finite dimen-

sional convergence of the empirical bridge to a suitable Gaussian process. The second step

consists in proving the asymptotic equicontinuity of the empirical bridge for the uniform

metric.

We now give a brief review of existing results before year 2000 in the strong mixing

case. Yoshihara (1979) extended the uniform central limit theorem of Donsker (1952) for

the empirical bridge to stationary and strongly mixing sequences of real-valued random

variables satisfying the strong mixing condition αn = O(n−a) for some a > 3. Next

Dhompongsa (1984) generalized the result of Yoshihara to the multivariate case: he proved

that, for random variables in IRd, the uniform central limit theorem of Dudley (1966) for

the multivariate distribution function holds if αn = O(n−a) for some a > d + 2. Next

Shao and Yu (1996) weakened the condition of Yoshihara (1979): they obtained Donsker’s

uniform central limit theorem under the strong mixing condition αn = O(n−a) for some

a > 1 +
√

2. In the β-mixing case, Arcones and Yu (1994), Doukhan, Massart and Rio

(1995) and Rio (1998) obtained the uniform central limit theorem under slowler rates of

mixing in a more general setting. In particular Rio (1998) proved that, for any d ≥ 1, the

uniform central limit theorem of Dudley (1966) for the multivariate distribution function

holds if
∑
n>0 βn < ∞. Since this condition is the minimal β-mixing condition implying
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the finite dimensional convergence, this result cannot be improved. In Section 8.3 of

Chapter 8, we will give an other proof of this result. Nevertheless the proofs in the β-

mixing case involve coupling arguments and cannot be extended to the strong mixing case.

In this section, we give less technical results in the strong mixing case, for the empirical

distribution function. In particular we will prove in Sections 7.4 and 7.5 that the uniform

central limit theorem of Dudley (1966) for the multivariate distribution function holds if

αn = O(n−a) for some a > 1. Before proving these theorems, we give in Section 7.2 an

elementary L2-estimate for the maximum of the empirical bridge. Next, in Section 7.3, we

recall some facts of the theory of functional limit theorems. For further work on empirical

distribution functions and empirical processes for dependent data, we refer to Dehling,

Mikosch and Sørensen (2002).

7.2. An elementary estimate

Let (Xi)i∈ZZ be a sequence of real-valued random variables with common distribution

function F . We set

(7.1) Fn(x) =
1

n

n∑
i=1

1IXi≤x and νn(x) =
√
n(Fn(x)− F (x)).

The centered empirical measures Pn and Zn are defined by (1.37). In this section we

will study the rate of uniform convergence of Fn to F . Proposition 7.1 below provides an

estimate of the L2-norm of the maximal deviation. If the series of strong mixing coefficients

is convergent, this estimate is optimal up to a logarithmic factor.

Proposition 7.1. Let (Xi)i∈ZZ be a strictly stationary sequence of real-valued random

variables and let (αk)k≥0 denote the sequence of strong mixing coefficients defined by

(1.20). Suppose that the common distribution function F of the random variables is

continuous. Then

(7.2) IE(sup
x∈IR
|νn(x)|2) ≤

(
1 + 4

n−1∑
k=0

αk

)(
3 +

log n

2 log 2

)2

.

Proof. For any Borelian A, let In(A) be defined as in Exercise 5, Chapter 1. Let (εi)i>0

be a sequence of independent and symmetric random variables with values in {−1, 1}.
Then, for any finite partition A1, . . . , Ak of A,

(7.3)
k∑
i=1

VarZn(Ai) = IE
(
Z2
n

( k∑
i=1

εi1IAi

))
,

which ensures that

(7.4) In(A) ≤ sup{VarZn(f1IA) : ‖f‖∞ ≤ 1}.
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In order to prove Proposition 7.1, we now introduce a chaining argument. Let N be

some positive integer, to be chosen later. For any real x such that F (x) 6= 0 and F (x) 6= 1,

let us write F (x) into basis 2:

F (x) =

N∑
l=1

bl(x)2−l + rN (x) with rN (x) ∈ [0, 2−N [,

with bl = 0 or bL = 1. For any L in [1, N ], set

ΠL(x) =
L∑
l=1

bl(x)2−l and iL = ΠL(x)2L.

Let then the reals (xL)L be chosen in such a way that F (xL) = ΠL(x). With these

notations

(7.5) νn(x) = νn(Π1(x)) +
N∑
L=2

(
νn(ΠL(x))− νn(ΠL−1(x))

)
+ νn(x)− νn(ΠN (x)).

Let then the reals xL,i be defined by F (xL,i) = i2−L. From (7.5) we get that

(7.6a) sup
x∈[0,1]

|νn(x)| ≤
N∑
L=1

∆L + ∆∗N ,

with

(7.6b) ∆L = sup
i∈[1,2L]

|Zn(]xL,i−1, xL,i)| and ∆∗N = sup
x∈IR
|Zn(]ΠN (x), x])|.

Let us now bound up the L2-norm of the maximum of the empirical process. By the

triangle inequality,

(7.7)
(

IE( sup
x∈[0,1]

|νn(x)|2)
)1/2

≤
N∑
L=1

‖∆L‖2 + ‖∆∗N‖2.

Since

∆2
L ≤

2L∑
i=1

Z2
n(](i− 1)2−L, i2−L]),

it follows from both (7.4) and Theorem 1.1 that

(7.8) IE(∆2
L) ≤

2L∑
i=1

VarZn(](i− 1)2−L, i2−L]) ≤ 1 + 4
n−1∑
k=0

αk.
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It remains to bound up ∆∗N . from the inequalities

−
√
n2−N ≤ Zn(]ΠN (x), x]) ≤ Zn(]ΠN (x),ΠN (x) + 2−N ]) +

√
n2−N ,

we get that

(7.9) ∆∗N ≤ ∆N +
√
n2−N .

Both (7.7), (7.8) and (7.9) then ensure that

(7.10)
(

IE( sup
x∈[0,1]

|νn(x)|2)
)1/2

≤ (1 +N +
√
n 2−N )

(
1 + 4

n−1∑
k=0

αk

)1/2

.

Taking N = 1 + [(2 log 2)−1 log n] and noticing that
√
n2−N ≤ 1 for this choice of N , we

then get Proposition 7.1.

7.3. Functional central limit theorems

In Section 7.2, we proved that, under the strong mixing condition (1.24), the order

of magnitude of the supremum of the empirical bridge is at most O(log n). Now, if the

strong mixing coefficients are defined by (2.1), the mixing condition
∑
n αn < ∞ implies

the finite dimensional convergence of the empirical bridges νn to a Gaussian process G

with covariance function

(7.11) Cov(G(x), G(y)) =
∑
t∈ZZ

Cov(1IX0≤x, 1IXt≤y).

Here we are interested in the uniform convergence with respect to x of νn to G. Such

a result will be called uniform central limit theorem or functional central limit theorem.

In this section we give a precise definition of the notion of uniform central limit theorem

and sufficient conditions for the uniform central limit theorem to hold. Our exposition is

derived from Pollard (1990, Section 10).

Let (T, ρ) be a metric or a pseudo-metric space. Denote by B(T ) the space of real-valued

and bounded functions on T . On B(T ) we consider the uniform distance

d(x, y) = sup
t∈T
|x(t)− y(t)|.

Let {Xn(ω, t) : t ∈ T} be a sequence of real-valued random processes on T . We are

interested in the convergence in distribution of this sequence under the distance d. More

precisely we have in view the functional convergence to a Gaussian process with trajectories

in the space

Uρ(T ) = {x ∈ B(T ) : x is uniformly continuous under ρ}.
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Under the distance d, the space Uρ(T ) is countably generated if and only if (T, ρ) is totally

bounded. In that case, a Borelian probability measure P on Uρ(T ) is uniquely determined

by the finite dimensional projections

P (B | t1, . . . , tk) = P{x ∈ Uρ(T ) : (x(t1), . . . , x(tk)) ∈ B},

where {t1, . . . tk} ranges over the set of finite subsets of T and B is any Borelian of IRk.

For example, in the case of random variables with uniform distribution over [0, 1], the

space T = [0, 1] is equipped with the usual distance on IR. Then the Gaussian process

G with covariance function defined by (7.11) is uniquely defined as soon as his law is

concentrated on Uρ(T ).

We now recall the definition of the finite dimensional convergence (fidi convergence).

The fidi convergence of (Xn( . , t)) holds true if and only if for any finite subset {t1, . . . tk}
of T there exists a probability measure P such that

(7.12) (Xn( . , t1), . . . , (Xn( . , tk)) −→ P ( . | t1, . . . , tk) in distribution.

We now give a criterion for the convergence in Uρ(T )

Theorem 7.1. - Theorem 10.2 in Pollard (1990) - Let (T, ρ) be a totally bounded pseudo-

metric space and let {Xn(ω, t) : t ∈ T} be a sequence of random processes on T . Suppose

that

(i) The fidi convergence in the sense of (7.12) holds true.

(ii) For any positive ε and η, there exists a positive δ such that

lim sup
n→∞

IP∗
{

sup
(s,t)∈T×T
ρ(s,t)<δ

|Xn(ω, s)−Xn(ω, t)| > η
}
< ε.

Then there exists a Borelian probability measure P concentrated on Uρ(T ) witht finite

dimensional margins given by (7.12). Furthermore Xn converges in distribution to P in

the space B(T ).

Conversely, if Xn converges in distribution to a probability measure P concentrated on

Uρ(T ), then conditions (i) and (ii) are fulfilled.

Condition (ii) is called stochastic equicontinuity. If the limiting process is a Gaussian

process then (Xn) is said to satisfy the functional central limit theorem or the uniform

central limit theorem. We refer to Pollard (1990) for a proof of this result. Now, in Section

7.4 below we apply this result to the functional central limit theorem for the empirical

bridge in the strong mixing case.
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7.4. A functional central limit theorem for the empirical distribution function

In this section, we prove a functional central limit theorem for the empirical distribu-

tion function associated to a stationary strongly mixing sequence of real-valued random

variables. In order to give elementary proofs, we will assume that the common distri-

bution function of the random variables is continuous. Nevertheless this result can be

extended to arbitrary distribution functions. Theorem 7.2 below improves previous results

of Yoshihara (1979) and Shao and Yu (1996). We refer to Doukhan and Surgailis (1998),

Louhichi (2000), Dehling, Durieu and Volný (2009) and Dedecker (2010) for other types

of dependence.

Theorem 7.2. Let (Xi)i∈ZZ be a strictly stationary sequence of real-valued random vari-

ables with common continuous distribution function F . Assume that the sequence (αn)n≥0

of strong mixing coefficients defined by (2.1) satisfies

(i) αn ≤ cn−a for some real a > 1 and some constant c ≥ 1.

Then there exists a Gaussian process G with uniformly continuous trajectories on IR

equipped with the pseudo-metric dF given by dF (x, y) = |F (x) − F (y)|, such that νn

converges in distribution to G in B(IR) as n tends to ∞.

Proof. Considering Ui = F (Xi) it is sufficient to prove Theorem 7.2 for random variables

with the uniform distribution over [0, 1]. Now, by Corollary 4.1, the fidi convergence to

a Gaussian process G with covariance defined by (7.11) holds. According to Theorem

7.2 it remains to prove the stochastic equicontinuity property (ii). This property follows

immediately from the proposition below.

Proposition 7.2. Let (Xi)i∈ZZ be a strictly stationary sequence of random variables with

uniform distribution over [0, 1]. Assume that (Xi)i∈ZZ satisfies the strong mixing condition

(i) of Theorem 7.2. Let ΠK(x) = 2−K [2Kx]. Then

lim
K→∞

lim sup
n→∞

IE∗
(

sup
x∈[0,1]

|νn(x)− νn(ΠK(x))|
)

= 0.

Proof of Proposition 7.2. Proceeding as in the proof of (7.6), we first obtain that

sup
x∈[0,1]

|νn(x)− νn(ΠK(x))| ≤
N∑

L=K+1

∆L + ∆∗N .

Now, applying (7.9), we have:

(7.13) sup
x∈[0,1]

|νn(x)− νn(ΠK(x))| ≤
N∑

L=K+1

∆L + ∆N +
√
n 2−N := ∆.

115



By the triangle inequality,

(7.14) ‖∆‖1 ≤
√
n 2−N +

N−1∑
L=K+1

‖∆L‖1 + 2‖∆N‖1.

Let then N be the natural integer such that 2N−1 < n ≤ 2N . For this choice of N , by

(7.14),

(7.15) ‖∆‖1 ≤ n−1/2 + 2

N∑
L=K+1

‖∆L‖1.

Hence Proposition 7.2 follows from the lemma below.

Lemma 7.1. Let N be the natural integer such that 2N−1 < n ≤ 2N . Then there exists

a positive constant C0 depending only on a and c such that

‖∆L‖1 ≤ C02−(a−1)2L/(4a)2 for any L ∈ [1, N ].

Proof of Lemma 7.1. Define the dyadic intervals IL,i by IL,i =](i − 1)2−L, i2−L] for

any integer i in [1, 2L]. In order to prove Lemma 7.1, we will refine the symmetrization

technique introduced in Section 7.2. As in Section 7.2, let (εi)i∈[1,2L] be a sequence of

independent symmetric signs, independent of the sequence (Xi)i∈ZZ.

Let J be a finite subset of integers in [1, 2L]. Assume that the supremum of the random

variables |Zn(IL,i)| when i ranges over J is more than x. Let then j be the smallest integer

in J such that |Zn(IL,i)| ≥ x. Then, for any choice of the signs (εi)i∈J\{j}, either

Zn

( ∑
i∈J\{j}

εi1IIL,i

)
+ Zn(Il,j) or Zn

( ∑
i∈J\{j}

εi1IIL,i

)
− Zn(Il,j)

does not belong to the interval ]− x, x[. Consequently

Card
{
i ∈ J such that

∣∣∣Zn(∑
i∈J

εi1IIl,i

)∣∣∣ ≥ x} ≥ 2|J‖−1,

whence

(7.16) IP
(

sup
i∈J
|Zn(IL,i)| ≥ x

)
≤ 2IP

(∣∣∣Zn(∑
i∈J

εi1IIL,i

)∣∣∣ ≥ x).
Let then M be an integer of [1, L] to be chosen later. For any k in [1, 2M ], let

Jk = {(k − 1)2L−M + 1, . . . , k2L−M}.
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Applying (7.16), we obtain that

(7.17) IP(∆L ≥ x) ≤ 2
2M∑
k=1

IP
(∣∣∣Zn(∑

i∈Jk

εi1IIL,i

)∣∣∣ ≥ x).
Throughout the sequel, C denotes a positive constant depending on a and c, which may

change from line to line. Let us fix the values of the signs εi. Applying Corollary 1.1 to

the random variables Yl =
∑
i∈Jk εi1IIL,i(Xl), we have:

(7.18)
n∑
l=1

n∑
m=1

|Cov(Yl, Ym)| ≤ 4

∫ 2−M

0

α−1(u)du ≤ 4c
∞∑
i=0

inf(i−a, 2−M ) ≤ C2M(1−a)/a.

Therefrom, applying inequality (6.19b) to the random variables Zn
(∑

i∈Jk εi1IIL,i
)

condi-

tionally to the values of the signs,

IP
(∣∣∣Zn(∑

i∈Jk

εi1IIL,i

)∣∣∣ ≥ 4λ
)
≤ Crr/22M(1−a)r/(2a)λ−r + 2c(2r)a+1n(1−a)/2λ−a−1.

Now, by (7.17),

IP(∆L ≥ 4λ) ≤ Crr/2 min(1, 2M(2a+(1−a)r)/(2a)λ−r)

+ 2c(2r)a+1 min(1, 2Mn(1−a)/2λ−a−1).(7.19)

Let then r = 4a/(a− 1). For this value of r, inequality (7.19) yields

(7.20) IP(∆L ≥ 4λ) ≤ C min(1, 2−Mλ−r) + C min(1, 2Mn(1−a)/2λ−a−1).

Integrating (7.20) with respect to λ, we get that

(7.21) IE(∆L) ≤ 8C
(

2−M/r + 2M/(a+1)n(1−a)/(2a+2)
)
.

Now, choosing M = [L(a − 1)/(4a)] = [L/r] and noticing that n ≥ 2L−1, we infer from

(7.21) that

(7.22) IE(∆L) ≤ 16C
(

2−L/r
2

+ 2−L(2a−1)/(ra+r)
)
≤ 32C2−L/r

2

,

which implies Lemma 7.1. Hence Proposition 7.2 holds, which completes the proof of

Theorem 7.2.
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7.5. Multivariate distribution functions

Throughout this section, IRd is equipped with the usual product order. Let (Xi)i∈ZZ be

a strictly stationary sequence of random variables with values in IRd. We set

Fn(x) = n−1
n∑
i=1

1IXi≤x and F (x) = IP(X0 ≤ x).

The so defined empirical distribution function corresponds to the empirical process indexed

by the class of lower-left closed orthants. We then define the empirical bridges νn by

νn(x) =
√
n (Fn(x)− F (x)).

The result below extends Theorem 7.2 to the multivariate case. The most striking fact

is that, for multivariate distribution functions, the mixing condition does not depend on

the dimension d, contrary to the previous results on the same subject. We refer to Bücher

(2015) for an extension of this result to the sequential empirical process.

Theorem 7.3. Let (Xi)i∈ZZ be a strictly stationary sequence of random variables with

values IRd. For each j in [1, d], let Fj denote the distribution function of the j-th component

of X0. Suppose that the distribution functions Fj are continuous. Assume furthermore

that the strong mixing condition (i) of Theorem 7.2 holds true for the strong mixing

coefficients defined by (2.1). Then there exists a Gaussian process G with uniformly

continuous trajectories on IRd equipped with the pseudo-metric dF given by

dF (x, y) = sup
j∈[1,d]

|Fj(xj)− Fj(yj)|, where x = (x1, . . . xd) and y = (y1, . . . yd),

such that νn converges in distribution to G in B(IRd) as n tends to ∞.

Proof. Let Xi = (X1
i , . . . , X

d
i ). Define the random variables Yi in [0, 1]d by Yi =

(F1(X1
i ), . . . , Fd(X

d
i )). Since the marginal distributions functions Fi are continuous, the

random variables Yi have uniform margins. Consequently, in order to prove Theorem 7.3,

we may assume, without loss of generality, that the random variables Xi are with values in

[0, 1]d and with marginal distributions the uniform distribution over [0, 1]. In that case dF

is the distance induced by the norm ‖ . ‖∞. Under condition (i) of Theorem 7.2, the strong

mixing coefficients are summable. Hence Corollary 4.1 implies the fidi convergence fo a

Gaussian process with covariance defined by (7.11). In view of Theorem 7.1, it remains

to prove the stochastic equicontinuity property. This property follows immediately from

Proposition 7.3 below.

Proposition 7.3. Let (Xi)i∈ZZ be a strictly stationary sequence of random variables

with values in [0, 1]d. Suppose that the coordinates of X0 have the uniform distribution
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over [0, 1]. For any x = (x1, . . . xd) in IRd and any relative integer K , let ΠK(x) =

(2−K [2Kx1], . . . , 2−K [2Kxd]). Then, under the assumptions of Theorem 7.3,

lim
K→+∞

lim sup
n→∞

IE∗
(

sup
x∈[0,1]d

|νn(x)− νn(ΠK(x))|
)

= 0.

Proof. Let N be the unique integer such that 2N−1 < n ≤ 2N . Clearly

νn(x) = νn(x)− νn(ΠN (x)) + νn(ΠN (x)).

Hence

(7.23) sup
x∈[0,1]d

|νn(x)− νn(ΠK(x))| ≤ sup
x∈[0,1]d

|νn(ΠN (x))− νn(ΠK(x))|+RN

with

RN = sup
x∈[0,1]d

|νn(x)− νn(ΠN (x))|.

In order to bound up RN , we will use the elementary result below.

Lemma 7.2. Let µ be a probability measure on IRd with distribution function G. For

each j in [1, d], let Gj denote the distribution function of the j-th marginal of µ, which is

defined by Gj(x) = µ
(
IRj−1×] −∞, x] × IRd−j). Then, for any x = (x1, . . . xd) and any

y = (y1, . . . yd) in IRd,

|G(x)−G(y)| ≤
d∑
j=1

(
Gj(xj ∨ yj)−Gj(xj ∧ yj)

)
.

Proof of Lemma 7.2. Let Qx = {z ∈ IRd such that z ≤ x}. If ∆ denotes the symmetric

difference, then

|G(x)−G(y)| = |µ(Qx)− µ(Qy)| ≤ µ(Qx∆Qy).

NowQx∆Qy ⊂
⋃d
j=1 IRj−1×]xj∧yj , xj∨yj ]×IRd−j , which, together with the subadditivity

of µ and the above inequality implies Lemma 7.2.

Using Lemma 7.2 we now bound up RN . Let Fn,j denote the empirical distribution

function associated the the j-th components Xj
i of the random variables Xi, which is

defined by Fn,j(xj) = Fn(1, . . . , 1, xj , 1, . . . , 1) and let νn,j(xj) =
√
n(Fn,j(xj) − Fj(xj)).

By Lemma 7.2 applied twice,

RN ≤
√
n sup
x∈[0,1]d

( d∑
j=1

(
Fn,j(xj)− Fn,j(ΠN (xj)) + xj −ΠN (xj)

))
.
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Now xj −ΠN (xj) ≤ 2−N , which ensures that

RN ≤
√
nd2−N +

√
n sup
x∈[0,1]d

d∑
j=1

(
Fn,j(xj)− Fn,j(ΠN (xj))

)
.

Next, from the monotonicity properties of the empicial distribution functions Fn,j ,

√
n
(
Fn,j(xj)− Fn,j(ΠN (xj))

)
≤
√
n
(
Fn,j(ΠN (xj) + 2−N )− Fn,j(ΠN (xj))

)
≤
√
n2−N + νn,j(ΠN (xj) + 2−N )− νn,j(ΠN (xj)).

Since 2N ≥ n, it follows that

RN ≤ 2dn−1/2 +

d∑
j=1

sup
xj∈[0,1]

(
νn,j(ΠN (xj) + 2−N )− νn,j(ΠN (xj))

)
.

Now the sequence of real-valued random variables (Xj
i )i>0 still satisfy the strong mixing

condition (i). Hence Lemma 7.1 can be applied with L = N to each of the random variables

in the sum on right hand, yielding

(7.24) IE(RN ) ≤ 2dn−1/2 + dC0n
−(a−1)2/(4a)2 .

We now bound up the main term in (7.23). For any x = (x1, . . . , xd) in the unit cube

]0, 1]d, let ]0, x] =]0, x1]× · · ·×]0, xd]. For any j in [1, d] and any natural integer M ,

]0,ΠM (xj)] =
M⋃

Lj=0

]ΠLj−1(xj),ΠLj (xj)]

(note that Π−1(xj) = 0). Hence, taking the product,

]0,ΠM (x)] =
⋃

L∈[0,M ]d

d∏
i=j

]ΠLj−1(xj),ΠLj (xj)].

Consequently

(7.25) ]0,ΠN (x)]\]0,ΠK(x)] =
⋃

L∈[0,N]d

L/∈[0,K]d

d∏
j=1

]ΠLj−1(xj),ΠLj (xj)].

Notation 7.1. For any L = (L1, . . . , Ld) in INd, let DL be the class of dyadic boxes∏d
i=1](ki − 1)2−Li , ki2

−Li ] (here k = (k1, . . . , kd) are multivariate natural integer). Let
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Zn =
√
n(Pn − P ) denote the normalized and centered empirical measure, as defined in

(1.37). We set

∆L = sup
S∈DL

|Zn(S)|.

With these notations,

(7.26) ∆ := sup
x∈[0,1]d

|νn(ΠN (x))− νn(ΠK(x))| ≤
∑

L∈[0,N ]d\[0,K]d

∆L.

For a fixed L we now consider the smallest integer j such that Lj = max(L1, . . . , Ld).

Suppose, for example, that j = 1. Let M be a fixed integer in [1, L1], and k in [1, 2M ], let

Jk be the set of elements of DL contained in the strip (k − 1)2−M < x1 ≤ k2−M .

We now adapt the symmetrization method of Section 7.4 to the multivariate case. Let

(εS)S∈DL be a sequence of independent symmetric signs, independent of the sequence

(Xi)i∈ZZ. Inequality (7.17) still holds in the multivariate case, and has the following struc-

ture:

IP(∆L ≥ x) ≤ 2
2M∑
k=1

IP
(∣∣∣Zn(∑

S∈Jk

εS1IS

)∣∣∣ ≥ x).
Now ∣∣∣ ∑

S∈Jk

εS1IS(Xi)
∣∣∣ = 1IX1

i
∈IM,k ,

and consequently (7.18) remains true (recall that the random variables X1
i are uniformly

distributed over [0, 1]). Next, applying Inequality (6.19b) with r = 4a/(a−1) as in Section

7.4, we get that, for any M in [1,max(L1, . . . , Ld)],

(7.27) IP(∆L ≥ 4λ) ≤ C min(1, 2−Mλ−r) + C min(1, 2Mn(1−a)/2λ−a−1).

Let then |L|∞ = max(L1, . . . , Ld) and choose M = [ |L|∞/r ]. Since n ≥ 2N−1 ≥ 2|L|∞−1,

integrating (7.27) with respect to λ, we get that

(7.28) IE(|∆L|) ≤ 32C2−θ|L|∞ , with θ = r−2 = (a− 1)2/(16a2).

Now the cardinality of the set of integers L in INd such that |L|∞ = J is exactly (J+1)d−Jd.
Consequently, both (7.23), (7.24), (7.26) and (7.28) yield

(7.29) IE∗
(

sup
x∈[0,1]d

|νn(x)−νn(ΠK(x))|
)
≤ d
(

32C
∑
J>K

(J+1)d2−Jθ+C0dn
−θ+2dn−1/2

)
,

which implies Proposition 7.3 and, consequently, Theorem 7.3.
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8. EMPIRICAL PROCESSES INDEXED

BY CLASSES OF FUNCTIONS

8.1. Introduction

In this Chapter, we give new uniform central limit theorems for general empirical pro-

cesses indexed by classes of sets or classes of functions. In Section 8.2, we consider convex

sets of functions embedded in spaces of regular functions. In that case, the conditions

implying the uniform central limit theorem are described in terms of regularity of the

functions. Here the theory of approximation of functions [confer DeVore and Lorentz

(1993)] is a fundamental tool. This tool is used to get the stochastic equicontinuity in

Theorem 8.1 under the minimal strong mixing condition
∑
k αk <∞. This result is simi-

lar to previous results of Doukhan, León and Portal (1987) and Massart (1987) for classes

of regular functions.

In Section 8.3, we give new results for empirical processes indexed by absolutely regular

sequences. Arcones and Yu (1994) and Doukhan et al. (1995) give extensions of the results

of Pollard (1982) and Ossiander (1987) to absolutely regular sequences. Nevertheless these

results still lead to suboptimal applications: for example the uniform central limit theorem

holds for the normalized and centered multivariate empirical distribution function as soon

as the β-mixing coefficients satisfy βn = O(n−b) for some b > 1. By contrast Rio (1998)

obtains the uniform central limit theorem for the multivariate empirical distribution func-

tion and more generally for empirical processes indexed by Vapnik-Chervonenkis classes

of sets under the minimal absolute regularity condition
∑
i>0 βi < ∞. The proof of Rio

(1998) is based on the maximal coupling theorem of Goldstein (1979). In Section 8.3, we

will adapt the proof of Rio (1998) to classes of functions satisfying bracketing conditions.

Again the results of Section 8.3 yield the uniform central limit theorem for the multivari-

ate empirical distribution function under the minimal regularity condition
∑
i>0 βi < ∞,

contrary to the results of Arcones and Yu (1994) and Doukhan et al. (1995).

8.2. Classes of regular functions

In this section, we are interested in convex subsets of classes of regular functions. We

will prove in Proposition 8.1 that, for unit balls of some spaces of regular functions, the
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stochastic equicontinuity property holds true for the empirical process. We then derive

from this first result an uniform central limit theorem for the empirical process indexed by

compact subsets of this unit ball.

Here we will consider generalized Lipschitz spaces, such as the Zygmund space. We

start by some definitions and elementary properties of these spaces. We refer to the books

of Meyer (1990) and Devore and Lorentz (1993) for more about these spaces and their

properties. In order to define these spaces, we need to introduce the integrated modulus

of regularity. For sake of brievity, we give the definition only in the real case.

Définition 8.1. For any real t, let Th be the shift operator, which maps the function f

on the function Thf , which is defined by Thf(x) = f(x+ h) for any x. Let

∆r
h(f, x) = (Th − T0)rf(x).

Let p be any real in [1,+∞] (p = ∞ is included). For any closed subinterval I of IR and

any function f in Lp(I), we define the integrated modulus of regularity of order r of f by

ωr(f, t)p = sup
h∈]0,t]

(∫
Irh

|∆r
h(f, x)|pdx

)1/p

,

where Irh is the closed interval such that inf Irh = inf I and sup Irh = sup I − rh.

We now define the generalized Lipschitz spaces of order s in the univariate case.

Definition 8.2. Let s be any positive real. Set r = [s] + 1. We denote by Lip∗(s, p, I) the

space of functions f in Lp(I) such that for some positive constant M ,(∫
Irh

|∆r
h(f, x)|pdx

)1/p

≤Mhs for any h > 0.

On Lip∗(s, p, I), we consider the semi-norm

|f |Lip∗(s,p) = sup
t>0

t−sωr(f, t)p.

We define a norm on Lip∗(s, p, I) by ‖f‖Lip∗(s,p) = |f |Lip∗(s,p) +‖f‖p. Let B(s, p, I) denote

the unit ball associated to this norm.

Remark 8.1. In the case p = 2, the space Lip∗(s, 2, IR) contains the Sobolev space of

order s. For s = 1 and p = ∞, the space Lip∗(1,∞, I) is the Zygmund space Z(I) of

functions f such that |f(x+ 2t)− 2f(x+ t) + f(x)| ≤Mt. This space contains the space

Lip(1,∞, I) of Lipschitz functions on I.

In order to prove the stochastic equicontinuity property for empirical processes indexed

by balls of these classes of functions, it will be convenient to use the wavelets expansions
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of these functions. Below we give the characterization of the spaces Lip∗(s, p, IRd) for any

d ≥ 1. We refer to Meyer (1990, T. 1., pp. 196-198) for a definition of these spaces in the

multivariate case and for more about wavelets.

For any nonnegative integer j, let us consider Λj = 2−j−1ZZd \ 2−jZZd. Let us define

Λ = ZZd
⋃(⋃

j∈IN Λj
)
. We consider a multiresolution analysis in L2(IRd). For λ in Λ \ ZZd,

we denote by ψλ the wavelet of the multiresolution analysis corresponding to λ. Then the

wavelets {ψλ : λ ∈ Λj} form an orthonormal system. For j > 0, we denote by Wj the

subspace of L2(IRd) generated by this system. Let ϕ denote the father function. For λ in

ZZd, we set ϕλ(x) = ϕ(x − λ) and we denote by V0 the subspace of L2(IRd) generated by

the orthonormal system {ϕλ : λ ∈ ZZd}. Then

L2(IRd) = V0

⊥
⊕
( ⊥
⊕
j>0

Wj

)
.

Throughout the sequel we assume that the scaling functions have a compact support and

are 1 + [s] times continuously differentiable. For sake of convenience, we set ψλ = ϕλ for

λ in ZZd. Then any function f in L2(IRd) has the orthogonal expansion

(8.1) f =
∑
λ∈ZZd

aλϕλ +
∞∑
j=0

∑
λ∈Λj

aλψλ =
∑
λ∈Λ

aλψλ.

Let Lip∗(s, p, IRd) denote the generalized Lipschitz spaces, as defined in Meyer (1990),

and let B(s, p, IRd) denote the unit ball of this space. Meyer (1990) gives the following

characterization of these spaces.

Proposition 8.1. For f in Lip∗(s, p, IRd), let

‖f‖ond = sup
(( ∑

λ∈ZZd

|aλ|p
)1/p

, sup
j∈IN

((∑
λ∈Λj

|aλ|p
)1/p

2js+jd/2−jd/p
))
.

Then ‖ . ‖ond is a norm on Lip∗(s, p, IRd). Furthermore this norm is equivalent to the usual

norm ‖ . ‖Lip∗(s,p,IRd) on Lip∗(s, p, IRd).

In order to compare these spaces, it will be convenient to use the elementary result

below.

Lemma 8.1. Let K be a countable set and (ak)k∈K be a family of nonnegative reals.

Then for any reals q > p > 0,

(∑
k∈K

aqk

)1/q

≤
(∑
k∈K

apk

)1/p

.

124



By Lemma 8.1, for any p in [1, 2],

(8.2)
( ∑
λ∈Λj

a2
λ

)1/2

≤ ‖f‖ond2j(−s−d/2+d/p) and
( ∑
λ∈ZZd

a2
λ

)1/2

≤ ‖f‖ond.

It follows from (8.2) that Lip∗(s, p, IRd) ⊂ L2(IRd) for s > (d/p) − (d/2). Moreover

Lip∗(s, p, IRd) ⊂ L∞(IRd) for s > d/p. Let us now give the main result of this section.

Theorem 8.1. Let (Xi)i∈ZZ be a strictly stationary sequence of random variables with

values IRd. Suppose that the strong mixing coefficients (αk)k≥0 defined by (1.20) satisfy∑
k≥0 αk < ∞. Let p be any real in [1, 2] and let s be any real such that s > d/p. Let

a be a positive real and let F = aB(s, p, IRd). Let CF = sup{‖f‖ond : f ∈ F}. Set

θ = d/(d + 2(s − d/p)). Let Zn be defined by (1.37). Then there exists some positive

constant κ such that

(a) ‖ sup
(f,g)∈F×F
‖f−g‖2≤ε

Zn(f − g)‖2 ≤ κCθF ε1−θ for any ε ∈]0, CF ].

Consequently, if F is equipped with the usual norm of L2(IRd), then the empirical proces

{Zn(f) : f ∈ F} satisfies the stochastic equicontinuity condition (ii) of Theorem 7.1.

Remark 8.1. In the case p = 2, Theorem 8.1 holds true under the condition s > d/2. In

that case θ = d/(2s) and 1−θ = (2s−d)/(2s). For example, if s = d, then θ = 1−θ = 1/2.

Proof of Theorem 8.1. Clearly

(8.3) ‖ sup
(f,g)∈F×F
‖f−g‖2≤ε

Zn(f − g)‖2 ≤ 2‖ sup
f∈F
‖f‖2≤ε

|Zn(f)| ‖2.

Next, by the Schwarz inequality,

|Zn(f)| ≤
∣∣∣ ∑
λ∈ZZd

aλZn(ψλ)
∣∣∣+

∞∑
j=0

∣∣∣ ∑
λ∈Λj

aλZn(ψλ)
∣∣∣

≤
( ∑
λ∈ZZd

a2
λ

)1/2( ∑
λ∈ZZd

Z2
n(ψλ)

)1/2

+

∞∑
j=0

(∑
λ∈Λj

a2
λ

)1/2(∑
λ∈Λj

Z2
n(ψλ)

)1/2

.(8.4)

Both (8.2), (8.4), Lemma 8.1 and Proposition 8.1 together with the orthonormality of the

wavelets basis imply that

‖ sup
f∈F
‖f‖2≤ε

|Zn(f)| ‖2 ≤ε
( ∑
λ∈ZZd

IE(Z2
n(ψλ))

)1/2

+
∞∑
j=0

inf(CF2j(d/p−s), ε2jd/2)
(∑
λ∈Λj

2−jdIE(Z2
n(ψλ))

)1/2

.(8.5)
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We now adapt the symmetrization method introduced in the proof of Theorem 1.3.

Let (ελ)λ∈Λ be a sequence of independent symmetric signs, independent of the sequence

(Xi)i∈ZZ. Then

(8.6)
∑
λ∈Λj

2−jdIE(Z2
n(ψλ)) = IE

(
Z2
n

( ∑
λ∈Λj

2−jd/2ελψλ

))
.

We now fix the values of the signs (ελ). Since the father function and the scaling functions

have compact supports , there exists a positive constant K such that∑
λ∈Λj

2−jd/2|ψλ(x)| ≤ K

for any x in IRd. Consequently, if P denotes the law of X0, then for any family (ελ) of

signs, the quantile function of the random variable(∑
λ∈Λj

2−jd/2ελψλ(X0)
)2

is bounded up by K2. Hence, both (8.6) and Corollary 1.2(b) ensure that

∑
λ∈Λj

2−jdIE(Z2
n(ψλ)) ≤ 4K2

n−1∑
k=0

αk.

The same upper bound holds true for the scale V0, whence

(8.7)
(

IE
(

sup
f∈F
‖f‖2≤ε

Z2
n(f)

))1/2

≤ 2K
( n−1∑
k=0

αk

)1/2(
ε+

∞∑
j=0

inf(CF2j(d/p−s), ε2jd/2)
)
.

Suppose now that ε ≤ CF . Let r be the nonnegative real such that C2r(d/p−s) = ε2rd/2.

Then

∞∑
j=0

inf(CF2j(d/p−s), ε2jd/2) =
∑
j≤r

ε2jd/2 +
∑
j>r

CF2j(d/p−s)

≤ ε2rd/2(1− 2−d/2)−1 + CF2r(d/p−s)(1− 2d/p−s)−1.(8.8)

Next, by definition of r,

CF2r(d/p−s) = ε2rd/2 = C
1/(1+2(s/d)−2/p)
F ε(2(s/d)−2/p)/(1+2(s/d)−2/p) = CθF ε

1−θ.

Let C(d, p) = 1 + (1− 2−d/2)−1 + (1− 2d/p−s)−1. Both (8.7) and (8.8) together with the

above equalities ensure that

(8.9)
(

IE
(

sup
f∈F
‖f‖2≤ε

Z2
n(f)

))1/2

≤ 2KC(d, p)
( n−1∑
k=0

αk

)1/2

CθFε
1−θ,
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provided that ε ≤ C. Theorem 8.1 follows then from (8.3) and (8.9).

From Theorem 8.1, Corollary 4.1 and Theorem 7.1 (Theorem 10.2 in Pollard (1990)) ,

we now derive the following uniform central limit theorem.

Corollary 8.1. Let (Xi)i∈ZZ be a stationary and ergodic sequence of real-valued random

variables with values in IRd. Suppose that the strong mixing coefficients defined by (2.1)

satisfy
∑
k≥0 αk < ∞. Let p be a real in [1, 2] and let s > d/p. Let F be a bounded

and closed subset of Lip∗(s, p, IRd). Suppose furthermore that F is totally bounded in

L2(IRd) (see Definition 8.4). Then there exists a Gaussian process G with a.s. uniformly

continuous trajectories on the space F equipped with the usual metric in L2(IRd), such

that {Zn(f) : f ∈ F} converges in distribution to G in the sense of Theorem 7.1.

8.3. Maximal coupling and entropy with bracketing.

Throughout this section, (Xi)i∈ZZ is a strictly stationary and absolutely regular sequence

of random variables with values in some Polish space X . The absolute regularity or β-

mixing coefficients are defined as in Section 5.5. Below we recall the definition of these

coefficients.

Definition 8.3. The absolute regularity or β-mixing coefficients (βn)n≥0 of the sequence

(Xi)i∈ZZ are defined by β0 = 1 and

(8.10) βn = sup
k∈ZZ

β(Fk,Gk+n) for n > 0,

with the same notations as in Definitions 1.2 and 2.1.

Throughout the sequel, we denote by P the law of X0. Zn denotes the normalized

empirical measure, as defined in (1.37). We will assume that the sequence of β-mixing

coefficients satisfy the summability condition
∑
n>0 βn < ∞. Our aim is to extend the

uniform central limit theorem of Dudley (1978) for empirical processes indexed by classes

of function with an integrable L1(P )-entropy with bracketing to the β-mixing case. Using

the maximal coupling lemma of Goldstein (1979) or Berbee (1979), we will construct a

positive measure Q with finite total mass, absolutely continuous with respect to P with

the following remarkable property: for any class F of uniformly bounded functions with an

integrable L1(Q)-entropy with bracketing, the empirical process {Zn(f) : f ∈ F} satisfies

the uniform functional central limit theorem.

We now recall the definitions of metric entropy and of metric entropy with bracketing

and Dudley’s (1978) functional central limit theorem for empirical processes associated to

strictly stationary sequences of independent random variables. We start by the definition

of metric entropy.
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Definition 8.4. Let (V, d) be a pseudo-metric space. Let

N(δ, V, d) = min{n ∈ IN : ∃ Sn = {x1, ..., xn} ⊂ S such that d(x, Sn) ≤ δ for any x ∈ S}.

(V, d) is said to be totally bounded if N(δ, V, d) <∞ for any positive δ. The metric entropy

function H is defined by H(δ, V, d) = log(N(δ, V, d) ∨ 2).

Dudley (1967) has given an entropy criterion ensuring the a.s. uniform continuity of

Gaussian processes. Let H be an Hilbert space and B be a Gaussian process indexed by

H, with covariance function the scalar product of H. If V is a totally bounded subset of

H and if

(8.11)

∫ 1

0

√
H(x, V, d) dx <∞.

then there exists a version of B with a.s. uniformly continuous trajectories on V .

However, as shown by some counterexamples, condition (8.11) does not imply the uni-

form functional central limit theorem for empirical processes. Some additional conditions

are needed, such as bracketing conditions. Below we define the notions of brackets and

diameter of brackets and the notion of entropy with bracketing.

Definition 8.5. Let V be a subspace of the space of numerical functions on (X , P ). Let

Λ : V → IR+ be a function such that, for any f and any g in V ,

(8.12) |f | ≤ |g| implies that Λ(f) ≤ Λ(g).

Let F ⊂ V . If f ≤ g, we denote by [f, g] the set of functions h such that f ≤ h ≤ g. This

set is called interval of functions. The nonnegative real Λ(g−f) is called diameter of [f, g].

A class F of functions in V is said to be totally bounded with bracketing if, for any

positive δ, there exists a finite family S(δ) of intervals of functions in V with diameter lass

than δ, such that

(8.13a) for any f ∈ F , there exists [g, h] ∈ S(δ) such that f ∈ [g, h].

The covering number N[ ](δ,F) in (V,Λ) is the minimal cardinality of families S(δ) satis-

fying (8.13a). The entropy with bracketing is defined by

(8.13b) H[ ](δ,F ,Λ) = logN[ ](δ,F) ∨ 2.

If Λ is a norm on V and if dλ is the distance corresponding to this norm, then the

following relation between entropy and entropy with bracketing holds:

(8.14) H(δ,F , dΛ) ≤ H[ ](2δ,F ,Λ).
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In the general case, the converse inequality does not hold. The notions of entropy and

entropy with bracketing are not equivalent. The only notable exception is the case of the

uniform distance, which corresponds to

(8.15) Λ(f) = ‖f‖∞ = sup
x∈X
|f(x)|.

In that case B̄(f, δ) = [f − δ, f + δ], and consequently balls are intervals. Then

(8.16) H[ ](2δ,F , ‖ . ‖∞) = H(δ,F , ‖ . ‖∞).

We now recal Ossiander’s theorem (1987) for empirical processes indexed by classes of

functions. This result is an extension of Dudley’s (1978) Theorem to L2(P ). Let (Xi)i∈ZZ

be a strictly stationary sequence of independent random variables and let P denote the

law of X0. Throughout the sequel, let the normalized empirical measures Zn be defined

by (1.37). In the iid case, for any f in L2(P ),

(8.17) VarZn(f) =

∫
f2dP −

(∫
fdP

)2

.

Consequently, if F is a class of function of L2(P ), then the fidi convergence of {Zn(f) :

f ∈ F} to an a.s. uniformly continuous Gaussian process G with covariance function

Γ(f, g) =
∫
fgdP −

∫
fdP

∫
gdP holds, as soon as Dudley’s criterion is satisfied, i.e.

(8.18)

∫ 1

0

√
H(x,F , dP ) dx <∞,

where dP is defined by

(8.19) d2
P (f, g) =

∫
(f − g)2dP −

(∫
(f − g)dP

)2

.

Condition (8.18) does not imply the asymptotic stochastic equicontinuity of Zn. However

the corresponding bracketing condition implies the functional central limit theorem for the

empirical process.

Theorem 8.2. - Ossiander (1987) - Let (Xi)i∈ZZ be a sequence of independent random

variables with common law P and let F ⊂ L2(P ). If F is totally bounded with bracketings

in L2(P ) and if

(8.20)

∫ 1

0

√
H[](x,F , d2,P ) dx <∞,

then the empirical process {Zn(f) : f ∈ F} satisfies the uniform functional central limit

theorem.
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Ossiander’s theorem is a remarkable extension of Dudley’s (1978) theorem for classes

of uniformly bounded functions with integrable entropy with brackteing in L1(P ). We

refer to Andersen et al. (1988) for more precise results in the independent case. Doukhan,

Massart and Rio (1995) give the following extension of Ossiander’s theorem to β-mixing

sequences. For any numerical function f , we set, for sake of convenience, Qf = Qf(X0).

Let us define the norm ‖ . ‖2,β by

(8.21) ‖f‖2,β =
(∫ 1

0

β−1(u)Q2
f (u)du

)1/2

.

This norm satisfies (8.12). Hence we may consider the entropy with bracketing with respect

to this new norm. Let L2,β(P ) be the space of functions f such that ‖f‖2,β <∞. Doukhan,

Massart and Rio (1995) prove that the uniform functional central limit theorem holds for

a class of functions F included in L2,β(P ) as soon as

(8.22)

∫ 1

0

√
H[](x,F , ‖ . ‖2,β) dx <∞,

Let us now apply this result to classes of uniformly bounded functions. Let F be a

class of numerical functions with values in [−1, 1]. Then the fidi convergence to a Gaussian

process holds as soon as the summability condition
∑
n>0 βn < ∞ is satisfied. In the

general case, (8.22) needs a stronger mixing condition. The same gap appears in the paper

by Arcones and Yu (1994). Nevertheless, since

‖f‖2,β ≤ ‖f‖∞
∑
n≥0

βn,

(8.22) implies the functional uniform central limit theorem under the minimal mixing

condition
∑
n>0 βn <∞ if F satisfies the stronger entropy condition

(8.23)

∫ 1

0

√
H(x,F , ‖ . ‖∞) dx <∞.

However Condition (8.23) is not relevant for classes of sets. If F is the class of indicator

functions of orthants or Euclidean balls, (8.22) needs the mixing condition

(8.24)
∑
n≥2

n−1(log n)−1/2
(∑
i≥n

βi

)1/2

<∞.

For example, if βn = O(n−1(log n)−b), (8.23) needs the too restrictive condition b > 2. By

contrast, Rio (1998) obtains the uniform functional central limit theorem for these classes

of sets under the minimal mixing condition
∑
n>0 βn < ∞. His approach is based on
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repeated application of the maximal coupling lemma. Here we will adapt Rio’s approach

to the case of entropy with bracketing. As in Rio (1998), we construct a nonnegative

function B in L1(P ) such that the positive measure Q = BP has some nice properties,

which will allow us to prove the stochastic equicontinuity of the empirical process as soon

as the class of functions F has an integrable entropy with bracketing in L1(Q).

Before stating the main result of this section, we need to define Q. In order to define

Q, we will use the maximal coupling theorem (see Theorem 5.1). Applying Theorem 5.1

to (Xi)i∈ZZ, we get that there exists some sequence (X∗i )i∈ZZ of random variable with the

following properties: the sequence (X∗i )i∈ZZ has the same law as (Xi)i∈ZZ, is independent

on F0 = σ(Xi : i ≤ 0) and

IP(Xi = X∗i for any i ≥ k) = 1− βk.

We now define Q from the above coupling sequence. Since X∗k is independent of Xk,

(8.25) Cov(f(X0), f(Xk)) = IE
(
f(X0)(f(Xk)− f(X∗k))

)
for any bounded function f . Consequently

(8.26) |Cov(f(X0), f(Xk))| ≤ 2‖f‖∞IE(|f(Xk)− f(X∗k)|).

Now

(8.27) IE(|f(Xk)− f(X∗k)|) ≤ IE(|f(Xk)|1IXk 6=X∗k ) + IE(|f(X∗k)|1IXk 6=X∗k ).

Let us then define the measurable functions b′k and b∗k from X into [0, 1] by

(8.28) b′k(Xk) = IP(Xk 6= X∗k | Xi) and b∗k(X∗k) = IP(Xk 6= X∗k | X∗k).

From (8.27) we get that

(8.29) IE(|f(Xk)− f(X∗k)|) ≤ IE(|f(Xk)|b′k(Xk)) + IE(|f(X∗k)b∗k(Xk)).

Hence, if bk = (b′k + b∗k)/2,

(8.30) IE(|f(Xk)− f(X∗k)|) ≤ 2

∫
X
bk|f |dP,

which, together with (8.26), implies

(8.31) VarZn(f) ≤ ‖f‖∞
∫
X

(1 + 4b1 + · · ·+ 4bn−1)|f |dP.
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We then define the nonnegative measure Q by

(8.32a) Q = BP =
(

1 + 4
∑
k>0

bk

)
P.

From (8.25) and (8.28), the functions bk satisfy the additional conditions

(8.32b) 0 ≤ bk ≤ 1 and

∫
X
bkdP ≤ βk.

Consequently, under the summability condition , the measure Q has a finite total mass and

is absolutely continuous with respect to P . Furthermore, the following uniform functional

central limit theorem holds for the measure Q defined by (8.32a).

Theorem 8.3. Let (Xi)i∈ZZ be a strictly stationary sequence of random variables with

values in some Polish space X , with common law P , and let Q be the nonnegative measure

defined by (8.32a). Suppose that the sequence (βk)k>0 of absolute regularity coefficients

defined by (8.10) satisfies the summability condition
∑
k>0 βk < ∞. Let F be a class of

measurable functions from X into [0, 1] . Let

‖f‖1,Q =

∫
X
|f |dQ and d1,Q(f, g) = ‖f − g‖1,Q.

Let L1(Q) be the space of numerical functions f such that ‖f‖1,Q < ∞. Suppose that F
is totally bounded with bracketings in L1(Q) and that

(8.33)

∫ 1

0

√
H[](x,F , d1,Q)/x) dx <∞,

Then the empirical process {Zn(f) : f ∈ F} satisfies the uniform functional central limit

theorem of Theorem 7.1.

Applications of Theorem 8.3. Let us first note that Theorem 8.3 is not adequate for classes

of regular functions satisfying entropy conditions in L∞(P ). Indeed condition (8.23) does

not imply (8.37). The main interest of Theorem 8.3 lies in the applications to classes of

sets. Suppose that F = {1IS : S ∈ S}. Since

(8.34) ‖1IS − 1IT ‖1,Q = Q(S∆T )

(here ∆ denotes the symmetric difference), the notions of entropy with bracketing and

entropy with inclusion are equivalent (see Dudley (1978) for a definition of the entropy

with inclusion and a detailed exposition). In that case condition (8.33) is equivalent to the

following condition of entropy with bracketings in L2(Q):

(8.35)

∫ 1

0

√
H[](x,F , d2,Q) dx <∞ with d2,Q(f, g) =

(∫
X

(f − g)2dQ
)1/2

.
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Since ‖f‖2.Q ≤ 2‖f‖2,β , (8.35) is weaker than Doukhan, Massart and Rio’s entropy con-

dition (8.22). Generally (8.35) provides better results for classes of sets. For example, for

the class of orthants, the uniform central limit theorem holds under the minimal mixing

condition
∑
k>0 βk <∞, as shown by Corollary 8.2 below.

Corollary 8.2. Let (Xi)i∈ZZ be a strictly stationary sequence of random variables with

values in IRd, satisfying the β-mixing condition
∑
k>0 βk <∞. Assume that the marginal

distribution functions Fj of the law of X0 are continuous. Then there exists a Gaussian

process G with uniformly continuous trajectories on IRd equipped with the pseudo-metric

dF given by

dF (x, y) = sup
j∈[1,d]

|Fj(xj)− Fj(yj)|, where x = (x1, . . . xd) and y = (y1, . . . yd),

such that the normalized and centered empirical distribution function νn defined in Section

7.5 converges in distribution to G in B(IRd) as n tends to ∞.

Proof of Theorem 8.3. We start by replacing the initial entropy function by some

function H with additional monotonicity properties.

Lemma 8.2. Let H1,Q(x) = H[](x,F , d1,Q). There exists some continuous and nonin-

creasing function H ≥ H1,Q such that the function x→ x2H(x) is nondecreasing and

(8.36)

∫ v

0

(H(x)/x)1/2dx ≤ 2

∫ v

0

(H1,Q(x)/x)1/2dx for any v ∈]0, 1].

Proof. Let H(x) = supt∈]0,x](t/x)2H1,Q(t). By definition H ≥ H1,Q, H is nonincreasing

and x→ x2H(x) is nondecreasing, which implies that H is continuous. Next

x
√
H(x) ≤ sup

t∈]0,x]

t
√
H1,Q(t) ≤

∫ x

0

√
H1,Q(t) dt,

whence∫ v

0

(H(x)/x)1/2dx ≤
∫ v

0

∫ v

0

1It<x

√
H1,Q(t)x−3/2dtdx ≤ 2

∫ v

0

(H1,Q(x)/x)1/2dx

by the Fubini Theorem. Hence Lemma 8.2 holds true.

We now prove Theorem 8.3: the main step is to prove the stochastic equicontinuity

property. If the function H is uniformly bounded, then S is finite. In that case the

uniform central limit theorem follows directly from the fidi convergence. Consequently we

may assume that lim0H(x) = +∞. We start by some definitions.

Definition 8.6. Let δ be a fixed positive real. Let K be the first nonnegative integer such

that 22KH(δ) ≥ nδ. Set q0 = 2K . For any integer k in [1,K], let qk = q02−k and let δk be

the unique positive real satisfying q2
kH(δk) = nδk. Let δ0 = δ.

133



The first step of the proof is to replace the initial sequence by a sequence of independent

blocks of length q0. This will be done using the coupling lemma 5.1. Applying recursively

Lemma 5.1, we get that there exists some sequence (X0
i )i>0 with the properties below.

1. Let q = q0. For any i ≥ 0, the random vector U0
i = (X0

iq+1, . . . , X
0
iq+q) has the same

law as Ui = (Xiq+1, . . . , Xiq+q).

2. The random vectors (U0
2i)i≥0 form an independent sequence. and the same property

holds for (U0
2i+1)i≥0.

3. Furthermore IP(Ui 6= U0
i ) ≤ βq for any i ≥ 0.

Using properties 1-3, we now bound up the cost of replacement of te initial sequence

by this new sequence.

Lemma 8.2. Let S0
n(f) = f(X0

1 ) + · · ·+ f(X0
n) and Z0

n(f) = n−1/2(S0
n(f)− nP (f)). Set

q = q0. Then

IE∗
(

sup
f∈F
|Zn(f)− Z0

n(f)|
)
≤ 2
√
nβq.

Proof. Set Sn(f) = f(X1) + · · ·+ f(Xn). For any f in F ,

(8.37) |Sn(f)− S0
n(f)| ≤

n∑
i=1

|f(Xi)− f(X0
i )| ≤ 2

n∑
i=1

1IXi 6=X0
i
.

Hence, by Property 3,

(8.38) IE∗
(

sup
f∈F
|Zn(f)− Z0

n(f)|
)
≤ 2n−1/2

n∑
i=1

IP(Xi 6= X0
i ) ≤ 2

√
nβq,

which completes the proof of Lemma 8.2.

Now, from Definition 8.6, q2
0 ≥ nδ/H(δ). Since limn↑∞ nβn = 0, it ensures that

limn↑∞
√
nβq0 = 0. Consequently the upper bound in Lemma 8.2 tends to 0 as n tends

to ∞. Therefrom the stochastic equicontinuity property holds for Zn if and only if this

property holds true for Z0
n.

Let us now prove the stochastic equicontinuity property for Z0
n. The main problem

which arises here is that the length of blocks q0 is too large to get efficient Bernstein’s

type exponential inequalities. In order to improve the results of Doukhan, Massart and

Rio (1995) or Arcones and Yu (1994), we will replace recursively the sequence (X0
n)n by

sequences (Xj
n)n with independent blocks of length qj = q02−j . In order to construct the

sequences (Xj
n)n, we will assume that the underlying probability space is rich enough in

the following sense: there exists an array (uj,i)(j,i)∈IN×IN of independent random variables

with uniform law on [0, 1] independent of the sequence (X0
i )i.
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We first construct the sequence (X1
l )l from (X0

l )l. Let q = q0. Then q1 = q/2 and

W 0
i = (U0

i , V
0
i ) with U0

i = (X0
qi+1, . . . X

0
qi+q1) and V 0

i = (X0
qi+q1+1, . . . X

0
qi+q0).

By the maximal coupling theorem (Theorem 5.1) applied to the sequence (ξk)−q1<k≤q1
defined by ξk = Xk−qi−q1 together with the Skorohod lemma (Lemma E.2), there exists a

random sequence (ξ∗k)−q1<k≤q1 with the same distribution as (ξk)−q1<k≤q1 , which is a mea-

surable function of u0,i and W 0
i , such that the random vector (ξ∗1 , . . . , ξ

∗
q1) is independent

of U0
i , has the same distribution as V 0

i . We then set (here q = q0)

(8.39) X1
l = X0

l for l ∈ [iq + 1, iq + q1] and X1
l = ξ∗l+qi+q1 for l ∈]iq + q1, iq + q].

From (8.39) together with (8.30) and (8.32), for any bounded function f ,

iq0+q0∑
l=iq0+1

IE( |f(X0
i )− f(X1

i )| ) ≤ ‖f‖1,Q.

Proceeding by induction one can prove the proposition below.

Proposition 8.2. Let (X∗i )i∈ZZ be defined from (Xi)i∈ZZ via Theorem 5.1. Then one can

construct sequences (Xj
i )i>o for j in [1,K] with the properties below:

(i) Let q = q0. Set T ji = (Xj
iq+1, . . . , X

j
iq+q)j∈[0,K]. Then the blocks (T ji )i≥0 are identically

distributed. Furthermore the blocks (T j2i)i≥0 are mutually independent and the blocs

(T j2i+1)i≥0 are mutually independent.

(ii) For j in [0,K], let

W j
i = (U ji , V

j
i ) with U ji = (Xj

qji+1, . . . X
j
qji+qj+1

) and V ji = (Xj
qji+qj+1+1, . . . X

j
qji+qj

).

Then, for any j in [1,K] and any nonnegative integer i, W j
2i = U j−1

i , W j
2i+1 is a

measurable function of W j−1
i and uj−1,i, and the random vector (W j−1

i ,W j
2i+1) has

the same distribution as (X1−qj , . . . , Xqj , X
∗
1 , . . . X

∗
qj ).

Properties (i) and (ii) ensure the following additional properties:

(iii) For any j in [0,K], the random vectors W j
0 , . . . ,W

j
2j−1 are independent and identically

distributed, and W j
0 has the same law as (X1, . . . , Xqj ).

(iv) For any bounded function f , any j in [0,K − 1] and any i ≥ 0,

iqj+qj∑
l=iqj+1

IE( |f(Xj
i − f(Xj+1

i )| ) ≤ ‖f‖1,Q.

In order to control the fluctuations, we will define δk-nets Fk as well as projections Πk

on Fk.
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Definition 8.7. For any k in [0,K], let Jk = {B1,k, B2,k, . . .} be a totally ordered

collection of intervals of functions with diameter less than δk with respect to ‖ . ‖1,Q, such

that F ⊂
⋃

[g,h]∈Jk [f, g] and log Card Fk ≤ H(δk). For each interval Bj,k = [gj,k, hj,k] in

Jk, we choose a point fj,k in Bj,k ∩F . For any f in F , let j be the first integer such that

f belongs to Bj,k. We set Πkf = fj,k and ∆kf = hj,k − gj,k. We denote by Fk the set of

functions Πkf when f ranges over F and by Gk the set of functions ∆kf .

From Definition 8.7, the operators Πk and ∆k satisfy

(8.40) |f −Πkf | ≤ ∆kf and ‖∆kf‖1,Q ≤ δk, ‖∆kf‖∞ ≤ 2.

We now introduce our chaining argument. Since this chaining argument has to be adapted

to the dependence setting, the above defined sequences will play a fundamental role. Here

we need to introduce additional notations.

Notation 8.1. Let Skn(f) = f(Xk
1 ) + · · ·+ f(Xk

n) and Zkn(f) = n−1/2(Skn(f)− nP (f)).

We now give our chaining decomposition:

Z0
n(f −Π0f) = ZKn (f −ΠKf) +

K∑
l=1

Zl−1
n (Πlf −Πl−1f)

+
K∑
k=1

(Zk−1
n − Zkn)(f −Πkf).(8.41)

From the decomposition (8.41),

(8.42) IE∗(sup
f∈F
|Z0
n(f −Π0f)|) ≤ IE1 + IE2 + IE3,

with
IE1 =IE(sup

f∈F
|ZKn (f −ΠKf)|),

IE2 =
K∑
l=1

IE(sup
f∈F

(|Zl−1
n (Πlf −Πl−1f)|),

IE3 =

K∑
k=1

IE(sup
f∈F

(|(Zk−1
n − Zkn)(f −Πkf)|).

Control of IE1

Since the random variables XK
i have common law P , by (8.40),

|ZKn (f −ΠKf)| ≤ n−1/2(SKn (|f −ΠKf |) + nP (|f −ΠKf |))

≤ n−1/2(SKn (∆Kf) + nP (∆Kf))

≤ ZKn (∆Kf) + 2
√
nP (∆kf).(8.43)
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Now P ≤ Q and Q(∆Kf) ≤ δK , whence

(8.44) IE1 ≤ 2n1/2δK + IE( sup
g∈GK

ZKn (g)).

By Proposition 8.2(ii), the random vectors (Xk
2i+1, X

k
2i+2) have he same law as (X0, X

∗
1 ).

Consequently, by Proposition 8.2(iii), the random variables XK
1 , . . . , X

K
q0 are independent

and with common law P . Next

SKn (g) = A+B with A =
∑

(i−1)/q0∈2IN
i≤n

g(XK
i ) and B =

∑
(i−1)/q0∈2IN+1

i≤n

g(XK
i ).

Now, by the Schwarz inequality,

log IE
(
exp t(SKn (g)− nP (g))

)
≤ 1

2

(
log IE(exp(2t(A− IE(A)) + log IE(exp(2t(B − IE(B))

)
.

By Proposition 8.2(i) (and (iii)), A and B are sums of independent random variables with

the same law as g(X1). Hence, applying Inequality (B.4) in Annex B to A and B, we

obtain that

(8.45) log IE
(
exp t(SKn (g)− nP (g))

)
≤ nP (g2)t2

1− 4t/3
≤ n‖g‖1,Qt2

1− 4t/3

for any g with ‖g‖∞ ≤ 1. Since ‖g‖∞ ≤ 1 for any g in Gk and the logartihm of the

cardinality of Gk is less than H(δK), both (8.45) and Inequality (B.5) together with Lemma

D.1 in Annex D then imply that

IE( sup
g∈GK

ZKn (g)) ≤ 2
√
δKH(δK) + 2n−1/2H(δK).

Now, by definition of δk,

(8.46) n−1/2qkH(δk) = n1/2(δk/qk) = (δkH(δk))1/2.

Since qK = 1, combining (8.44) with the above inequalities, we finally get that

(8.47) IE1 ≤ 6
√
δKH(δK) .

Control de IE2

Fix l in [0,K − 1] and let

IE2,l = IE(sup
f∈F

(|Zln(Πl+1f −Πlf)|).
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By Proposition 8.2 (ii)-(iii), the random vectors (X l
iql+1, . . . , X

l
(i+1)ql

)i∈[0,2l−1] are inde-

pendent and indentically distributed. Next

Sln(g) = Al +Bl with A =
∑

(i−1)/q0∈2IN
i≤n

g(X l
i) and B =

∑
(i−1)/q0∈2IN+1

i≤n

g(X l
i).

Again, by Proposition 8.2(i) and (iii), Al and Bl are sums of independent random variables

with the same law as g(X1)+ · · ·+g(Xql), at the exception of the last block, which has the

same distribution as g(X1)+ · · ·+g(Xn−ql[n/ql]). Suppose now that ‖g‖∞ ≤ 1. Then these

independent random variables are bounded up by ql‖g‖∞ and, by (8.31), their variance is

bounded up by the length of the block multiplied by ‖‖g‖1,Q. Hence, as previously, by the

Schwarz inequality together with Inequality (B.4),

(8.48) log IE( exp t(Sln(g)− nP (g) ) ≤ n‖g‖1,Qt2/(1− 4qlt/3).

Let then

Ul = {Πlf −Πl+1f : f ∈ F}.

For any g dans Ul, ‖g‖∞ ≤ 1, and ‖g‖1,Q ≤ 2δl. Since the logarithms of the cardinalities of

Ul and −Ul are less than 2H(δl+1), both (8.45) and Inequality (B.5) together with Lemma

D.1 in Annex D applied successively to Ul and −Ul then imply that

(8.49) IE2,l ≤ 4
√
δlH(δl+1) + 4n−1/2qlH(δl+1).

Now, by definition of δl+1,

qlH(δl+1) = 2(q2
l+1H(δl+1)H(δl+1))1/2 = 2(nδl+1H(δl+1))1/2,

whence IE2,l ≤ 12(δlH(δl+1))1/2. It follows that

(8.50) IE2 ≤
K−1∑
l=0

IE2,l ≤ 12

K−1∑
l=0

√
δlH(δl+1) .

Control of IE3.

For k in [1,K], let

IE3,k = IE(sup
f∈F

(|(Zk−1
n − Zkn)(f −Πkf)|).

Let hk = f −Πkf : since |hk| ≤ ∆kf , using (8.40) we get that

|Sk−1
n (hk)− Skn(hk)| ≤

n∑
i=1

|hk(Xk
i )− hk(Xk−1

i )|

≤
n∑
i=1

1IXk
i
6=Xk−1

i
(∆kf(Xk

i ) + ∆kf(Xk−1
i )).(8.51)
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Hence, if nk is the first entire multiple of 2qk greater than n,

(8.52) IE3,k ≤ n−1/2IE
(

sup
g∈Gk

nk∑
i=1

1IXk
i
6=Xk−1

i
(g(Xk

i ) + g(Xk−1
i ))

)
.

In order to apply Lemma D.1, we now need to bounded the Laplace transform of the

random variables

Tnk,k(g) =

nk∑
i=1

1IXk
i
6=Xk−1

i
(g(Xk

i ) + g(Xk−1
i )).

From Proposition 8.2, the random variables Tnk,k(g) is the sum of two random variables,

which are sums of independent random variables with the same distribution as T2qk,k(g)

(with the exception of the last random variable). By Proposition 8.2(ii), the random

variable T2qk,k(g) has the same distribution as

T (g) =

qk∑
i=1

1IXi 6=X∗i (g(Xi) + g(X∗i )).

Now, from (8.28), proceeding as in the proof of (8.30), we get that

IE(T (g)) =

qk∑
i=1

∫
X

(b′i + b∗i )gdP = 2

qk∑
i=1

∫
X
bigdP.

Since ‖T (g)‖∞ ≤ 4qk, it follows that

2IE(T (g)) ≤ ‖g‖1,Q and IE(T 2(g)) ≤ ‖T (g)‖∞IE(T (g)) ≤ 2qk‖g‖1,Q.

Hence, for any g in Gk,

(8.53) 2IE(T (g)) ≤ δk, ‖T (g)‖∞ ≤ 2qk and IE(T 2(g)) ≤ 2qkδk.

Now, by (8.53) and Inequality (B.4),

(8.54) log IE(exp(tT (g)) ) ≤ (δkt/2) + qkδkt
2/(1− 8qkt/3).

Next, proceeding as in the proof (8.49) and applying (8.46), we get that

(8.55) IE3,k ≤ n1/2(2qk)−1δk +
√

8δkH(δk) + 8n−1/2qkH(δk) ≤ 12
√
δkH(δk).

Finally

(8.56) IE3 ≤
K∑
k=1

IE3,k ≤ 12
K∑
k=1

√
δkH(δk) .
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End of the proof of Theorem 8.3.

For n large enough, H(δ) < nδ. Then q0 ≥ 2 and therefrom

q2
0H(δ) ≥ nδ and q2

1H(δ) < nδ,

whence δ ≥ δ1. Recall that (δk)k satisfies the recursive equations

δ−1
k+1H(δk+1) = 4δ−1

k H(δk).

Let then G(x) = x2H(x). From the above equation,

δ3
kG(δk+1) = 4δ3

k+1G(δk).

Since G is nondecreasing, it follows that δ3
k ≥ 4δ3

k+1. Hence

(8.57) 22/3δk+1 ≤ δk for k ≥ 1 and δ1 ≤ δ.

Now, both Lemma 8.2 together with (8.42), (8.47), (8.50), (8.56) and (8.57) yield

IE(sup
f∈F
|Zn(f −Π0f)| ≤ 4

√
nβq0 + 6

√
δKH(δK) + 24

K∑
k=1

√
δkH(δk).

Now, by (8.57) again,
√
δk ≤ 3(δk − δk+1)/

√
δk, whence

6
√
δKH(δK)+24

K∑
k=1

√
δkH(δk) ≤

72
(√

δKH(δK) +
K−1∑
k=1

(δk − δk+1)
√
H(δk)/δk

)
.(8.58)

Since H is decreasing and δ1 ≤ δ, we thus get that

(8.59) IE(sup
f∈F
|Zn(f −Π0f)| ≤ 4

√
nβq0 + 72

∫ δ

0

(H(x)/x)1/2dx.

From the definition of q0,
√
nβq0 converges to 0 as soon as limq qβq = 0. Hence, by (8.59),

the stochastic equicontinuity holds true, which completes the proof of Theorem 8.3.

Proof of Corollary 8.2. Let

Cβ = 1 + 4
∑
i>0

∫
X
bidP.
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Throughout this proof, IRd is equipped with the product order. As in the proof of Theorem

7.4, we may assume that the components of X0 are uniformly distributed over [0, 1]. Let

P denot the law of X0. For t in [0, 1], let

(8.60) Gj(t) = Q(x = (x1, . . . , xd) ∈ IRd : xj ≤ t).

For any (s, t) in [0, 1]d with s < t,

Gj(t)−Gj(s) = Q(x = (x1, . . . , xd) ∈ IRd : s < xj ≤ t).

Now Q is absolutely continuous with respect to P , which implies that the marginal distri-

bution function Gj is continuous and has a bounded variation. Furthermore, since Q ≥ P ,

Gj(t)−Gj(s) ≥ t−s. Hence Gj is a one to one continuous mapping from [0, 1] onto [0, Cβ ].

Let then

(8.61) G(x1, . . . xd) = (C−1
β G1(x1), . . . , C−1

β Gd(xd)) and Yi = G(Xi).

The sequence of random variables (Yi)i has the same β-mixing properties as the initial

sequence (Xi)i Furthermore, from the definition of G, for any t in [0, 1]d, Xi ≤ t if and

only if G(Xi) ≤ G(t). Hence it is enough to prove that the empirical distribution function

associated to (Yi)i satisfies the uniform central limit theorem. Set

ΠK(t) = (2−K [2Kt1], . . . , 2−K [2Ktd]) and Π+
K(t) = (2−K(1+[2Kt1]), . . . , 2−K(1+[2Ktd])).

If Y0 = (Y 1
0 , . . . , Y

d
0 ),

(8.62) IP(ΠK(t) ≤ Y0 ≤ Π+
K(t)) ≤

d∑
j=1

IP([2Ktj ] ≤ 2KY j0 ≤ [2Ktj ] + 1) ≤ dCβ2−K .

Hence the entropy with bracketing H1,Q associated to the new sequence (Yi)i and the

class of lower-left orthants satisfies H1,Q(x) = O(log(1/x)) as x tends to 0, which implies

Corollary 8.2.

EXERCISES

1) Use Exercise 4 in Chap. 1 to prove that the map f → ‖f‖2,β , which is defined in (8.21)

is a norm on L2,β(P ).

Problem. In this problem, we will prove the uniform central limit theorem of Pollard

(1982) for classes of functions satisfying an universal entropy condition, in a particular

case.
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Let (Xi)i>0 be a sequence of independent random variables with values in some mea-

sured space (X , E), with common law P . Let A(X ) be the set of probabilities measures on

X with finite support. For any Q in A(X ), we denote by dQ the pseudodistance associated

to the usual norm in L2(Q). Let F be a class of measurable functions from X into [−1, 1].

We set

(1) H(x,F) = sup
Q∈A(X )

H(x,F , dQ),

where H(x,F , dQ) is defined as in Definition 8.4. The function x → H(x,F) is called

universal Koltchinskii-Pollard entropy. The universal entropy of F is said to be integrable

if

(2)

∫ 1

0

√
H(x,F) dx <∞.

The class F is said to fulfill the measurability condition (M) if there exists a countably

generated and locally compact space (K,B(K)) equipped with its Borel σ-field and a

surjective map T from K onto F such that the map (x, y) → T (y)(x) is measurable with

respect to the σ-fields (X ×K, E ⊗ B(K)) and B(IR).

I. A symmetrization inequality.

Here G is a class of measurable functions from X into [−1, 1], satisfying condition (M).

1) Prove that the map

(x1, . . . , xp, y1, . . . , yq)→ sup{g(x1) + · · ·+ g(xp)− g(y1)− · · · − g(yq) : g ∈ G}

is universally measurable in the sense of Definition E.1, Annex E.

2) Let (X ′i)i>0 b an independent copy of (Xi)i>0 Let Pn be the empirical measure

associated to X1, . . . , Xn, as defined in (1.37) and let P ′n denote the empirical measure

associated to X ′1, . . . , X
′
n. Prove that the variables in (3) are measurable and that

(3) IE
(

sup
g∈G
|Pn(g)− P (g)|

)
≤ IE

(
sup
g∈G
|Pn(g)− P ′n(g)|

)
.

Hint: apply Jensen’s inequality conditionally to X1, . . . , Xn.

Let (εi)i>0 be a sequence of symmetric independent signs, independent of the σ-field

generated by (Xi)i>0 and (X ′i)i>0. Let (Xs
i , X

′s
i ) be defined by (Xs

i , X
′s
i ) = (Xi, X

′
i) if

εi = 1 and (Xs
i , X

′s
i ) = (X ′i, Xi) if εi = −1.

3) Prove that the sequence (Xs
i , X

′s
i )i is a sequence of independent random variables

with common law P ⊗ P .
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4) Starting from (3), prove that

IE
(

sup
g∈G
|Pn(g)− P ′n(g)|

)
= n−1IE

(
sup
g∈G

∣∣∣ n∑
i=1

εi(g(Xi)− g(X ′i))|
)
.

5) Prove that

(4) IE
(

sup
g∈G
|Pn(g)− P (g)|

)
≤ 2n−1IE

(
sup
g∈G

∣∣∣ n∑
i=1

εig(Xi)
∣∣∣).

II. Stochastic equicontinuity of the symmetrized empirical process

Thoughout Part II, we fix (x1, . . . , xn) in Xn. We assume that the class of functions G
satisfies the universal entropy condition (2). We set

(5) ϕ(σ,G) =

∫ σ

0

√
H(x,G) dx.

Let Qn = n−1(δx1
+ · · ·+δxn) denote the empirical measure associated to (x1, . . . , xn). We

define the empirical maximal variance V by V = V (x1, . . . , xn) = sup{Qn(g2) : g ∈ G}.
Let δ be any real in ]0, 1].

1) Let I be a finite subset of G with cardinality exp(H) ≥ 2. Prove that

(6) IE
(

sup
g∈I

∣∣∣ n∑
i=1

εig(xi)
∣∣∣) ≤ 2

√
H sup

g∈I

( n∑
i=1

g2(xi)
)1/2

.

2) Prove that, for any nonnegative integer k, there exists a finite subset Gk of G with

cardinality at most exp(H(2−kδ)) and such that there exists some map Πk from G into Gk
satisfying the condition below:

dQn(g,Πkg) ≤ 2−kδ for any g ∈ G.

3) Prove that, for any function g in G and any integer l,

∣∣∣ n∑
i=1

εi(g −Πlg)(xi)
∣∣∣ ≤ n2−lδ.

Infer from this inequality that

IE
(

sup
g∈G

∣∣∣ n∑
i=1

εig(xi)
∣∣∣) = lim

l→∞
IE
(

sup
g∈Gl

∣∣∣ n∑
i=1

εig(xi)
∣∣∣).
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4) Let δk = 2−kδ. Prove that, for any g in Gl there exists a collection of function

g0, . . . , gl satisfying gl = g and gk = Πkgk+1 for any integer k in [0, l[. Infer that

IE
(

sup
g∈Gl

∣∣∣ n∑
i=1

εig(xi)
∣∣∣) ≤ 2

l∑
k=1

δk−1

√
nH(δk) + 2

√
nH(δ)V .

5) Prove that

IE
(

sup
g∈G

∣∣∣ n∑
i=1

εig(xi)
∣∣∣) ≤ 8

√
nϕ(δ/2,G) + 2

√
nH(δ)V .

Infer from the above inequality that

(7) IE
(

sup
g∈G

∣∣∣ n∑
i=1

εig(Xi)
∣∣∣) ≤ 8

√
nϕ(δ/2,G) + 2

√
nH(δ)IE(V (X1, . . . , Xn)) .

III. Modulus of continuity of the normalized empirical process.

Let H be a nonincreasing entropy function such that∫ 1

0

√
H(x)dx <∞ and let ϕ(σ) =

∫ σ

0

√
H(x)dx.

Let E(δ, P,H) be the set of classes of functions G from X into [−1, 1], satisfying the

measurability condition (M), such that H(x,G) ≤ H(x) and sup{P (g2) : g ∈ G} ≤ δ2. We

set

w(δ) = sup
G∈E(δ,P,H)

IE
(

sup
g∈G
|Zn(g)|

)
.

1) Let G be any class of functions in E(δ, P,H). Prove that the class {g2/2 : g ∈ G}
still belongs to E(δ, P,H). Infer that

(8) w(δ) ≤ 16ϕ(δ/2) + 4
√
H(δ)

√
δ2 + 2n−1/2w(δ) .

Starting from (8), prove that

w(δ) ≤ 16ϕ(δ) + 4w(δ)
√
H(δ)/(nδ2).

2) Prove that w(δ) ≤ 32ϕ(δ) for any positive δ satisfying 26H(δ) ≤ nδ2.

3) Prove that the class

Gδ = {(f − g)/2 : (f, g) ∈ F × F , dP (f, g) ≤ δ}

belongs to E(δ, P,H) for H = H(.,F). Infer that, if nδ2 ≥ 26H(δ), then

(9) IE
(

sup
g∈Gδ
|Zn(2g)|

)
≤ 64

∫ δ

0

√
H(x,F) dx.

Apply then Theorem 7.1 to conclude.
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9. IRREDUCIBLE MARKOV CHAINS

9.1. Introduction

In this chapter, we are interested in the mixing properties of irreducible Markov chains

with continuous state space. More precisely, our aim is to give conditions implying strong

mixing in the sense of Rosenblatt (1956) or β-mixing. Here we mainly focus on Markov

chains which fail to be ρ-mixing (we refer to Bradley (1986) for a precise definition of

ρ-mixing). Ley us mention that ρ-mixing essentially needs a spectral gap condition in

L2 for the transition probability kernel. This condition is often too restrictive for the

applications in econometric theory or nonparametric statistics. However these Markov

models are irreducible. In that case, one can apply general results on irreducible Markov

chains. We refer to Nummelin (1984) for more about irreducible Markov chains and to

Meyn and Twedie (1993) for a detailed exposition on Markov chains.

In Section 9.2, we give a brief exposition of the theory of irreducible Markov chains.

In Section 9.3 we introduce the regeneration techniques. Our exposition is based on the

lecture notes of Nummelin (1984) and on Nummelin (1978). In Section 9.4, we give an

example of irreducible and positively recurrent Markov chain, and we apply the results

of the previous sections to this example. For this example, we are able to estimate the

strong mixing and the β-mixing coefficients precisely. In Section 9.5, we give some relations

between the integrability properties of return times, the rates of ergodicity, and the absolute

regulariy properties of the chain. Our exposition is based on papers by Lindvall (1979)

and Tuominen and Tweedie (1994). In Section 9.6, we give relations between the rates of

ergodicity, the absolute regularity coefficients and the strong mixing coefficients. Starting

from papers of Bolthausen (1980, 1982b), we prove that, under some adequate assumptions,

the coefficients of absolute regularity and the coefficients of strong mixing in the sense of

Rosenblatt are of the same order of magnitude. Section 9.7 is devoted to the optimality

of the central limit theorem of Chapter 4. The lower bounds are based on the example

introduced in Section 9.4.

9.2. Irreducible Markov chains

In this section, we recall some classical results on irreducible Markov chains. We start
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by the definition of the transition probability and the notion of irreducibility. Let (X,X )

be a measurable space. Throughout this chapter, we assume that the σ-field X is countably

generated, which means that X is generated by a finite or a countable family of sets. When

X is topological, then X will be taken as the Borel σ-field of X, but otherwise it may be

arbitrary.

Definition 9.1. If P : X ×X → ĪR
+

is such that

(i) for each A in X , P (., A) is a nonnegative measurable function on X,

(ii) for each x in X, P (x, .) is a nonnegative measure on X ,

then we call P positive kernel. The kernel P is said to be finite (resp. σ-finite) if, for

any x in X, the measure P (x, .) is finite (resp. σ-finite). P is said to be bounded if

sup{P (x,X) : x ∈ X} < ∞. P is said to be stochastic or to be a transition probability

kernel if P (x,X) = 1 for any x in X. P is said to be substochastic if P (x,X) ≤ 1 for any

x in X.

The product P1P2 ot two positive kernels P1 and P2 is defined by

P1P2(x,A) =

∫
X
P1(x, dy)P2(y,A).

The powers Pn of P are defined by P 0(x,A) = δx(A) = 1Ix∈A and Pn = PPn−1. If P is

a transition probability kernel, then we call Pn the n-step transition probability kernel.

Throughout, we call I the transition probability kernel defined by I(x,A) = δx(A). If

P is a transition probability kernel, then G =
∑
n≥0 P

n is called potential of P .

Let γ be a Radon measure and let f be a numerical measurable function. For any x in

X and any A in X , let

γP1(A) =

∫
P1(x,A)γ(dx), P1f(x) =

∫
f(y)P1(x, dy) and γP1(f) =

∫
P1f(x)γ(dx).

With these notations, for f = 1IA, γP1(f) = γP1(A) . We now define a relation on X ×X ,

called communication structure.

Definition 9.2. Let (x,A) be a element of X × X . We say that A is accessible from x

under P if there exists a positive integer n such that Pn(x,A) > 0. In that case we write

x→ A. The set Ā = {x ∈ X : G(x,A) > 0} is the set of points from which A is accessible.

Starting from definition 9.2, we now give an extension of the notion of irreducibility to

continuous state spaces.

Definition 9.3. Let ϕ be a positive and σ-finite measure on X, such that ϕ(X) > 0. The

stochastic kernel P is called ϕ-irreducible if Ā = X for any A in X such that ϕ(A) > 0.

The measures ϕ satisfying these conditions are called irreducibility measures under P . An
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irreducibility measure m under P is called maximal irreducibility measure under P if any

irreducibility measure ϕ under P is absolutely continuous with respect to m.

The proposition below, due to Tweedie (1974), gives a characterization of the maximal

irreducibility measures.

Proposition 9.1. Suppose that P is ϕ-irreducible under P . Then

(i) There exists a maximal irreducibility measure m under P .

(ii) Any irreducibility measure ϕ under P such that ϕP is absolutely continuous with

respect to ϕ is maximal.

(iii) If m(B) = 0 then the set B+ = B ∪ {x ∈ X : x→ B} satisfies m(B+) = 0.

Throughout the rest of this section, P is an irreducible stochastic kernel and m is a

maximal irreducibility measure under P . The theorem below, due to Jain and Jamison

(1967), gives a characterization of the irreducible stochastic kernels.

Theorem 9.1. Let P be an irreducible stochastic kernel and let m be a maximal irre-

ducibility measure under P . Then there exists a positive integer m0, a measurable function

s with values in [0, 1] such that m(s) > 0 and a probability measure ν such that

M(m0, s, ν) Pm0(x,A) ≥ s(x)ν(A) for any (x,A) ∈ X ×X .

The substochastic kernel (x,A)→ s(x)ν(A) is noted s⊗ ν.

Remark 9.1. (i) A positive measure ϕ is irreducible under P if and only if for any

nonnegative function f such that ϕ(f) > 0, the potential G associated to P fulfills the

following positivity condition: PGf(x) > 0 for any x in X.

(ii) In Theorem 9.1, one can assume that ν(s) > 0 (confer Section 2.3 in Nummelin

(1984) for more about Theorem 9.1).

Assume now that M(m0, s, ν) is satisfied. From the above remark, P is ν-irreducible,

since

(9.1) PG ≥ G(s⊗ ν) = Gs⊗ ν.

Consequently, if ν(f) > 0 then PGf(x) ≥ Gs(x)ν(f) > 0 (the fact that Gs(x) > 0 is

implied by the condition m(s) > 0). This fact together with Proposition 9.1(ii) lead to the

remark below.

Remark 9.2. If M(1, s, ν) is satisfied then m =
∑
n≥0 2−1−nν(P − s⊗ ν)n is a maximal

irreducibility measure under P .

We now define the period of an irreducible Markov chain. Let (s, ν) satisfy condition

M(m0, s, ν) for some positive integer m0. Suppose furthermore that ν(s) > 0. Let then

the set I be defined by

I = {m ≥ 1 :M(m, δs, ν) is fulfilled for some δ > 0}.
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The greatest common divisor of I is called period of the chain. One can prove that the

period does not depend on (s, ν). The chain is said to be aperiodic if d = 1. For example,

if condition M(m0, s, ν) holds true with m0 = 1, then the chain is aperiodic.

9.3. Renewal process of an irreducible chain

In this section, we consider an homogenous Markov chain with transition probability

kernel P (x, .) and state space X = [0, 1]. Throughout the section, we assume that condi-

tion M(m0, s, ν) of Theorem 9.1 holds true for m0 = 1, which ensures that the chain is

irreducible and aperiodic. We will also assume that ν(s) > 0.

Definition 9.4. Let the substochastic kernel Q be defined by Q = P − s ⊗ ν. The

stochastic kernel Q1 is defined from Q by

(1− s(x))Q1(x,A) = Q(x,A) if s(x) < 1 and Q1(x,A) = ν(A) if s(x) = 1.

We now construct a stationary Markov chain with initial law µ and transition probabil-

ity measure P (x, .) Let ζ0 be a random variable with law µ. We assume that the underlying

probability space is rich enough to contain a sequence (Ui, εi)i≥0 of independent random

variables with uniform law over [0, 1]2, and that this random sequence is independent of ζ0.

For any x in [0, 1] such that s(x) < 1, let Fx denote the distribution function of Q1(x, .).

Let F denote the distribution function of ν. The sequence (ξn)n≥0 is defined by induction

in the following way: ξ0 = ζ0 and, for any nonnegative integer n,

(9.2) ξn+1 = 1Is(ξn)≥UnF
−1(εn) + 1Is(ξn)<UnF

−1
ξn

(εn).

By the Kolmogorov extension theorem, there exists a unique sequence [ξn)n≥0 of random

variables satisfying the above conditions. Furthermore this sequence is a Markov chain.

Now

IP(ξn+1 ∈ A | ξn = x, Un = u, εn = ε) = 1Is(x)>u1IF−1(ε)∈A + 1Is(x)≤u1IF−1
x (ε)∈A.

Hence, integrating with respect to ε, we get that

IP(ξn+1 ∈ A | ξn = x, Un = u) = 1Is(x)>uν(A) + 1Is(x)≤uQ1(x,A),

Now, integrating on [0, 1] with respect to u, we obtain that

(9.3) IP(ξn+1 ∈ A | ξn = x) = s(x)ν(A) + (1− s(x))Q1(x,A) = P (x,A),

which proves that the transition probability kernel of this chain is P (x, .). Let us now

define the renewal process associated to the so constructed chain. The law of the renewal

process will mainly depend on s and ν.
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Definition 9.5. Let the sequence (ηi)i∈IN of random variables with values in {0, 1} be

defined by ηi = 1IUi≤s(ξi). This sequence is called incidence process associated to the chain

(ξi)i∈IN. The renewal times (Ti)i≥0 are defined by

Ti = 1 + inf{n ≥ 0 :
n∑
j=0

ηj = i+ 1}.

We set τ = T0 and τi = Ti+1 − Ti for i ≥ 0.

Let IPµ be the law of the chain with transition probability kernel P and initial law µ.

When µ = δx, we denote by Px this law. By definition of τ ,

(9.4) λQn(s) = IPλ(τ = n+ 1) and λQn(1) = IPλ(τ > n).

Let us make some comments about (9.4). For any initial law λ,

λPn − λQn =
n∑
k=1

λQn−k(P −Q)P k−1.

Since P −Q = s⊗ ν, λQn−k(P −Q)P k−1 = λQn−k(s)νP k−1, which leads to the identity

(9.5) λPn =

n∑
k=1

λQn−k(s)νP k−1 + λQn.

The equality of total masses in (9.5) yields

(9.6)

n∑
k=1

λQn−k(s) + λQn(1) = 1.

The last equality corresponds to the trivial identity

IPλ(τ > n) +

n∑
k=1

IPλ(τ = k) = 1.

The identity (9.5) provides more information, and will be used again in the next sections.

We now give the definition of recurrence and classical results on the recurrence prop-

erties of irreducible chains.

Definition 9.6. Let (ξi)i≥0 be an irreducible Markov chain with maximal irreducibility

measure m. The chain is said to be recurrent if, for any B in X+ = {A ∈ X : m(A) > 0},

h∞B (x) = IPx

(∑
k≥0

1Iξk∈B =∞
)

= 1 m-almost everywhere.
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One can prove that the chain with transition probability P starting from ξ0 = x is re-

current if and only if Ti is finite almost surely for any nonnegative integer i. Consequently,

applying (9.4), we get the lemma below.

Lemma 9.1. The irreducible Markov chain (ξi)i≥0 is recurrent if and only if

lim
n→∞

νQn(1) = 0 and lim
n→∞

δxQ
n(1) = 0 m-almost everywhere.

We now prove that the second condition appearing in Lemma 9.1 can be removed.

Assume that limn νQ
n(1) = 0. By (9.6) applied to λ = δx,

n−1∑
l=0

Qls(x) + δxQ
n(1) = 1.

Let the nonnegative kernel GQ be defined by GQ =
∑
n≥0Q

n. From the above identity,

GQs(x) ≤ 1 and GQs(x) = 1 if and only if limn δxQ
n(1) = 0, which is equivalent to

IPx(τ = ∞) = 0. Now, since limn νQ
n(1) = 0, IPν(τ = ∞) = 0. Consequently, if

GQs(x) = 1, then the chain with transition P starting from x is recurrent ( hB(x) = 1

for any B in X+). Let then m by the maximal irreducibility measure defined in Remark

9.2. The Markov chain with transition P is recurrent if and only if GQs(x) = 1 m-almost

everywhere. Since GQs(x) ≤ 1, this equality holds m-almost everywhere if and only if

mGQ(s) =

∫
X

GQs(x)m(dx) =

∫
X

1.m(dx) = m(1).

Consequently the chain is recurrent if and only if

(9.7)
∑
n≥0

2−1−n
∑
p≥n

νQp(s) =
∑
n≥0

2−1−nνQn(1).

Now

(9.8) νQn(1)−
∑
p≥n

νQp(s) = IPν(τ =∞).

Hence the equality holds in (9.7) if and only if IPν(τ = ∞) = limn νQ
n(1) = 0. Thus we

have proved the proposition below.

Proposition 9.2. Let m be the maximal irreducibility measure of Remark 9.2. The

irreducible chain (ξi)i≥0 is recurrent if and only if

lim
n→∞

νQn(1) = 0.
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9.4. Mixing properties of positively recurrent Markov chains: an example

Throughout this section X = [0, 1]. For Markov chains, the strong mixing coefficients

defined in (2.1) and the β-mixing coefficients defined in definition 8.3 satisfy

(9.9) αn = sup
k∈T

α(σ(Xk), σ(Xk+n)) and βn = sup
k∈T

β(σ(Xk), σ(Xk+n)).

We refer to Davydov (1973) and to Bradley (1986) for a proof of this result.

Let us consider an irreducible Markov chain. Suppose there exists a couple (s, ν)

satisfying condtion M(m0, s, ν) with m0 = 1. Then the chain is aperiodic. Let Q =

P − s ⊗ ν. Assume furthermore that the positive measure
∑
n≥0 νQ

n, which is usually

called Pitman occupation measure (see Pitman (1974) for more about this measure), has

a finite total mass. Then the probability measure

(9.10) π =
(∑
n≥0

νQn(1)
)−1∑

n≥0

νQn.

is an invariant law under P . Furthermore the chain is recurrent, the renewal times (τi)i≥0

are integrable and the return times in a recurrent set A (A is recurrent if m(A) > 0) are

also integrable. In that case the chain is said to be positively recurrent.

In this section, we will introduce some additional assumption which provides nice es-

timates of the mixing coefficients. This assumption will be called excessivity assumption.

Under this assumption the lemma below provides a rate of convergence to the invariant

law π.

Lemma 9.2. Let P be an irreducible transition probability kernel satisfying M(1, s, ν)

and λ an initial probability law. Suppose that the following assumption holds true:

H(λ, s) λP l(s) ≥ π(s) for any l ≥ 0.

Then, for any positive integer n,

‖λPn − π‖ ≤ 2πQn(1).

Proof. Using the decomposition

λPn =
n∑
k=1

λPn−k(P −Q)Qk−1 + λQn.

and proceeding as in the proof of (9.5), we get that

(9.11) λPn =
n∑
k=1

λP k−1(s)νQn−k + λQn.
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Apply now (9.11) with λ = π: since π is an invariant measure, we get that

π =

n∑
k=1

π(s)νQn−k + πQn.

Hence

(9.12) λPn − π =

n∑
k=1

(λP k−1(s)− π(s))νQn−k + λQn − πQn.

Since λP k−1(s)− π(s) ≥ 0, the measure

µ =
n∑
k=1

(λP k−1(s)− π(s))νQn−k + λQn

is a nonnegative measure. Now λPn(X) = π(X) = 1, which ensures µ(X) = πQn(X) =

πQn(1). Hence the decomposition (9.12) ensures that λPn − π is the difference of two

nonnegative measures with masses πQn(1), which completes the proof of Lemma 9.2.

Starting from Lemma 9.2, we now bound up the β-mixing coefficients the stationary

chain with transition P .

Proposition 9.3. Let P be a transition probability kernel satisfying the assumptions of

Lemma 9.2. with λ = ν. Then, for any positive integer n,

βn =

∫
X
‖δxPn − π‖π(dx) ≤ 2πQn(1) + 2

n∑
k=1

πQk−1(s)πQn−k(1).

Remark 9.3. Let (ξi)i≥0 be the stationary chain with transition P and τ be the first

renewal time, as defined in definition 9.5. Let τ ′ be an independent copy of τ . Then

Proposition 9.3 is equivalent to the upper bound βn ≤ IP(τ + τ ′ > n).

Proof of Proposition 9.3. Applying (9.5) with λ = δx, we get that

(9.13) δxP
n =

n∑
k=1

Qk−1s(x)νPn−k + δxQ
n.

Next the equality of masses in (9.13) yields

n∑
k=1

Qk−1s(x) + δxQ
n(1) = 1.

Consequently

δxP
n − π =

n∑
k=1

Qk−1s(x)(νPn−k − π) + δxQ
n − δxQn(1)π,
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which ensures that

(9.14) ‖δxPn − π‖ =

n∑
k=1

Qk−1s(x)‖νPn−k − π‖+ 2δxQ
n(1).

Integrating (9.14) with respect to π, we get that∫
X
‖δxPn − π‖π(dx) ≤

n∑
k=1

πQk−1(s)‖νQn−k − π‖+ 2πQn(1).

Applying Lemma 9.2 with λ = ν we then obtain Proposition 9.3.

To conclude this section, we give an example of kernel satisfying the assumptions of

Proposition 9.3.

Lemma 9.3. Let ν be an atomless law and s be a measurable function with values in

]0, 1] such that ν(s) > 0. Suppose furthermore that

(a)

∫
X

1

s(x)
ν(dx) <∞.

Let P (x, .) = s(x)ν + (1− s(x))δx. Then P is aperiodic, positively recurrent and satisfies

H(ν, s).

Remark 9.4. Since ν is an atomless law, the renewal times are observable.

Proof. Clearly Q = P − s⊗ ν = (1− s(x))δx, whence νQn = (1− s(x))nν. It follows that

the Pitman occupation measure is equal to s−1ν. By assumption (a), this measure has a

finite total mass, which ensures that the chain is positively recurrent. Furthermore

(9.15) π =
(∫
X

1

s(x)
ν(dx)

)−1 1

s(x)
ν

is the unique invariant law under P .

Let a0 = 1 and ak = νP k−1(s)− π(s). The equality of masses in (9.12) yields

(9.16) an +
n−1∑
k=0

akνQ
n−k(1) = πQn(1).

Set t(x) = 1− s(x). From the convexity l→ log IEν(tl),

(9.17) νQn−k(1) = IEν(tn−k) ≤ IEν(tn−k−1)
IEν(tn)

IEν(tn−1)
.

Hence

(9.18) πQn(1) ≤ an +
IEν(tn)

IEν(tn−1)

n−1∑
k=0

akνQ
n−k−1(1) = an +

IEν(tn)πQn−1(1)

IEν(tn−1)
,
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which ensures that

(9.19) anIEν(tn−1) ≥ πQn(1)IEν(tn−1)− IEν(tn)πQn−1(1).

It follows that H(ν, s) is implied by the weaker condition

IEπ(tn)IEν(tn−1)− IEν(tn)IEπ(tn−1) ≥ 0.

From (9.15) and the fact that 1/s =
∑
l≥0 t

l, the last condition holds if and only if∑
k≥n

(
IEν(tk)IEν(tn−1)− IEν(tn)IEν(tk−1)

)
≥ 0.

Now, from the convexity of l→ log IEν(tl),

IEν(tk)IEν(tn−1)− IEν(tn)IEν(tk−1) ≥ 0 for any k ≥ n,

which ensures that each term in the above sum is nonnegative. Hence (9.19) holds true,

which completes the proof of Lemma 9.3.

Starting from Proposition 9.3, we now give estimates of the β-mixing coefficients for

the transition P defined in Lemma 9.3 in the stationary case.

Proposition 9.4. Let ν be an atomless law on ]0, 1] and s be a function with values in

]0, 1] such that ν(s) > 0. Let P (x, .) = s(x)ν + (1− s(x))δx. Assume that the assumption

(a) of Lemma 9.3 holds. Let (ξi)i≥0 be the stationary chain with transition probability

kernel P . Then the stationary law is the unique invariant law π defined by (9.16). Now,

let τ = inf{i > 0 : ξi 6= ξi−1} and τ ′ be an independent copy of τ . Then, for any positive

n,

IP(τ > n) ≤ βn ≤ IP(τ + τ ′ > n).

Proof. The upper bound comes from Proposition 9.3 together with Remark 9.3. We now

prove the lower bound. From (9.12) applied with λ = δx,

δxP
n − π =

n∑
k=1

(P k−1s(x)− π(s))νQn−k + (1− s(x))nδx − πQn.

Since the measures νQn−k and πQn are atomless, it follows that

‖δxPn − π‖ ≥ (1− s(x))n.

Integrating this lower bound with respect to the invariant law π then yields the desired

result.
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In Section 9.7, we wil apply Proposition 9.4 to prove the optimality of the strong mixing

condition of Theorem 4.2. In the forthcoming sections, we give links between ergodicity,

regularity and strong mixing.

9.5. Small sets, absolute regularity and strong mixing

In this section, we give relations between the return times in small sets in the sense of

Nummelin and the various mixing coefficients.

Definition 9.7. Let P be an irreducible and recurrent transition probability kernel, m

be a maximal irreducibility measure and D be a measurable set such that m(D) > 0. A

set D is called a small set if there exists a positive integer m, a positive constant ρ and

a probability measure ν such that Pm(x, .) ≥ ρ1ID(x)ν. The chain is said to be Doeblin

recurrent if X is a small set. Then the above condition is called Doeblin’s condition.

The small sets are called C-sets by Orey (1971) and small sets by Nummelin (1984).

They differ from the petite sets defined in Meyn and Tweedie (1993).

We now prove that the Doeblin recurrent chains are geometrically uniformly mixing.

This result is essentially due to Doeblin (1938). Here we give a proposition which can be

found in Ueno (1960).

Proposition 9.5. Let P be a probability transition kernel satisfying Doeblin’s condition

with m = N . Then, for any measurable set A such that ν(A) > 0, any (x, x′) in X ×X
and any positive integer k,

(i) |PNk(x,A)− PNk(x′, A)| ≤ (1− ρ)k.

Furthermore there exists a unique invariant probability law π under P . The chain ξi)i∈ZZ

with probability transition kernel P and initial law π satisfies

(ii) ϕNk ≤ (1− ρ)k.

Proof. We prove (i) by induction on k. For k = 1,

PN (x,A)− PN (x′, A) = (PN (x,A)− ρν(A))− (PN (x′, A)− ρν(A)).

Hence

|PN (x,A)− PN (x′, A)| ≤ 1− ρ.

Suppose that (i) holds true at range k. Write

PNk+N (x,A)− PNk+N (x′, A) =

∫
X

(PN (y,A)− ρν(A))(PNk(x, dy)− PNk(x′, dy)).
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Now the function y → PN (y,A)− ρν(A) takes its values in [0, 1− ρ]. Let

Bu = {y ∈ X : PN (y,A)− ρν(A) > u}.

Then

PN (y,A)− ρν(A) =

∫ 1−ρ

0

1IBu(y)du.

Therefrom, by the Fubini theorem,

PNk+N (x,A)− PNk+N (x′, A) =

∫ 1−ρ

0

(PNk(x,Bu)− PNk(x′, Bu) )du.

Now |PNk(x,Bu)−PNk(x′, Bu)| ≤ (1−ρ)k under the induction hypothesis. Consequently,

if (i) holds true at range k, then (i) holds true at range k+ 1. Thus, by induction on k, (i)

holds true for any positive integer k.

We now prove (ii). We start by noting that

π0 = ν + ν(PN − ρν) + · · ·+ ν(PN − ρν)k + · · ·

is invariant under PN , since π0(PN − ρν) = π0 − ν (the total mass of π0 is equal to 1/ρ).

Next the measure π1 = π0 + π0P + · · · + π0P
N−1 is invariant under P . We then set

π = π1/π1(X ). π is an invariant law under P . Now, by (i), for any measurable set A,

PNk(x′, A)− πPNk(A) =

∫
X

(PNk(x′, A)− PNk(x,A))π(dx) ≤ (1− ρ)k

which ensures that ϕNk ≤ (1− ρ)k.

We now prove that π is unique. If π′ is an invariant law, then

π′(A)− π(A) = π′PNk(A)− πPNk(A)

=

∫∫
(PNk(x,A)− PNk(x′, A))π ⊗ π′(dx, dx′),

Hence |π′(A)− π(A)| ≤ (1− ρ)k for any natural integer k, which implies that π = π′.

Suppose now that the chain fails to be Doeblin recurrent. Then the rate of convergence

to the invariant measure depends on the initial law and the chain fails to be uniformly

mixing. Throughout the rest of this section, we are interested in the relations between

the integrabiliy properties of the renewal times and the rates of mixing for non uniformly

mixing Markov chains. Our aim is to remove the excessivity assumption of Section 9.4. We

will extend results of Bolthausen (1980, 1982b) to general rates of mixing. Our extensions

are based on a Proposition of Lindvall (1979) which gives a link between coupling and
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regeneration times. Thus, we start by introducing the coupling method, which goes back

to Doeblin (1938). Our exposition comes from Pitman’s (1974) paper.

Let us consider two initial laws µ and λ. We define the chain (ξi, ξ
′
i)i≥0 on X × X

as follows: the initial law of the chain is µ ⊗ λ, and the transition probability kernel is

P ⊗P . Then (ξi)i≥0 is a Markov chain with initial law µ and transition probability kernel

P and (ξ′i)i≥0 is a Markov chain with initial law λ and transition P . Furthermore, from

the definition, these chains are independent. Let (ηi)i≥0 and (η′i)i≥0 denote the incidence

processes associated to the chains (ξi)i≥0 and (ξ′i)i≥0 (see Definition 9.5 for the definition).

Set

(9.20) T = 1 + inf{i ≥ 0 : ηi = η′i = 1}.

Then ξT and ξ′T have the distribution ν. Furthermore ξT is independent of (ξi)i<T and ξ′T
is independent of (ξ′i)i<T . We now define the coupled chain (ξ′′i )i≥0 by ξ′′i = ξ′i for i < T

and ξ′′i = ξi for i ≥ T . By the Markov property, this new chain is a Markov chain with

initial law λ. Furthermore ξ′′i = ξi for i ≥ T . We call T coupling time of the chains. From

the definition of the coupling time,

(9.21)

∫
X×X

‖δxPn − δyPn‖ µ⊗ λ(dx, dy) ≤ 2IPµ⊗λ(T > n).

We refer to Pitman (1974) for a proof of (9.21). If the kernel P is positively recurrent and

if π is the invariant law, then, applying (9.21) with λ = µ = π, we get that

(9.22) βn ≤ IPπ⊗π(T > n).

Consequently the rate of β-mixing is closely related to the tail of the coupling time. In order

to give more precise quantitative results, let us now introduce some classes of increasing

functions.

Definition 9.8. Let Λ0 be the class of nondecreasing functions ψ from IN into [2,+∞[

such that the sequence ((logψ(n))/n)n is nonincreasing and converges to 0. For ψ in Λ0,

define the cumulative function ψ0 associated to ψ by ψ0(k) =
∑k−1
i=0 ψ(i).

The proposition below, due to Lindvall (1979), generalizes a previous result of Pitman

(1974). We refer to Lindvall (1979) for a proof of this result.

Proposition 9.6. Let P be a stochastic kernel. Assume that P is irreducible, aperiodic,

positively recurrent, and satisfies condition M(1, s, ν). Let ψ be an element of Λ0. If

(a) IEµ(ψ(T0)) <∞, IEλ(ψ(T0)) <∞ and IEν(ψ0(T0)) <∞,

then IEµ⊗λ(ψ(T )) <∞.
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In the stationary case λ = µ = π, by (9.4) together with the definition of π,

(9.23) IEν(T0)IPπ(T0 = n+ 1) = IPν(T0 > n).

Hence

(9.24) IEν(ψ0(T0)) = IEν(T0)
∑
k≥0

IPπ(T0 = k + 1)ψ(k) ≤ IEπ(ψ(T0)).

From (9.22) and Proposition 9.6, we now get the corollary below.

Corollary 9.1. Let P be a stochastic kernel. Assume that P is irreducible, aperiodic, pos-

itively recurrent, and satisfies conditionM(1, s, ν). Let π denote the invariant probability

law. Then, for any ψ in Λ0 such that IEπ(ψ(T0)) <∞,∫ 1

0

ψ(β−1(u))du < +∞.

Remark 9.5. From Corollary 9.5, one can derive the following result. Suppose that T0 has

a finite Laplace transform in a neighborhood of 0. Let U be a random variable with uniform

law over [0, 1]. Then β−1(U) has a finite Laplace transform in another neighborhood of

0. To prove this fact, suppose that IE(exp(εβ−1(U))) = ∞ for any positive ε. Then

one can construct a function ψ in Λ0 such that IE(ψ(β−1(U))) = ∞. For this function

IEπ(ψ(T0)) = ∞. Now, since T0 has a finite Laplace transform in a neighborhood of

0, IEπ(ψ(T0)) < ∞ for any ψ in Λ0, which leads to a contradiction. Hence geometric

ergodicity implies geometric β-mixing.

We now give quantitative relations concerning return times in small sets and absolute

regularity coefficients. Our results are derived from the paper of Tuominen and Tweedie

(1994).

Definition 9.9. Let f be a measurable function from X into [1,∞] and let m be a signed

measure. The f -variation of m is defined by ‖m‖f = sup{|m(g)| : |g| ≤ f}.

Definition 9.10. Let τD = inf{n > 0 : ξn ∈ D}. The aperiodic and irreducible chain

(ξi)i≥0 is said to be (f, ψ)-ergodic if and only if there exists a small set D such that

(9.25) sup
x∈D

IEx

(τD−1∑
i=o

ψ(i)f(ξi)
)
<∞.

We now give the ergodicity criterion of Tuominen and Tweedie (1994).

Theorem 9.2. Let P be a stochastic kernel. Suppose that P is irreducible and aperiodic.

Let ψ be an element of Λ0. The chain (ξi)i≥0 with kernel P is (f, ψ)-ergodic if and only
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if there exists a sequence (Vn)n≥0 of measurable functions from X into ĪR
+

, a small set C

and a positive constant b such that V0 is bounded over C, V0(x) =∞ implies V1(x) =∞,

and, for any n ≥ 0,

(9.26) ψ(n)f ≤ Vn − PVn+1 + bψ(n)1IC .

Proof. Here we prove that (9.26) implies the (f, ψ)-ergodicity. We refer to Tuominen and

Tweedie (1994) for a complete proof and for more details. Applying (9.26) with n = i to

x = ξi, summing on i from i = 0 to i = τC − 1 we get that

IEx

(τC−1∑
i=o

ψ(i)f(ξi)
)
≤
τC−1∑
i=o

IEx(Vi(ξi)− PVi+1(ξi)) + bψ(0)1Ix∈C .

Now IEx(PVi+1(ξi)) = IEx(Vi+1(ξi+1)). Hence the above inequality ensures that

(9.27) IEx

(τC−1∑
i=o

ψ(i)f(ξi)
)
≤ V0(x) + bψ(0)1Ix∈C .

Since V0 is uniformly bounded over C, (9.27) implies (9.25).

We now give applications of the (f, ψ)-ergodicity to estimates of the absolute regularity

coefficients of the chain. We refer to Theorem 3.6(i) and Theorem 4.3 in Tuominen and

Tweedie (1994) for more about this subject.

Theorem 9.3. Let P be a stochastic kernel. Suppose that P is irreducible and aperiodic.

Let ψ be an element of Λ0. Assume that the chain (ξi)i≥0 with kernel P is (f, ψ)-ergodic.

Then the chain is positively recurrent and, if π denotes the unique stationary law, then

∞∑
n=0

ψ(n)

∫
X

‖Pn(x, .)− π‖fπ(dx) <∞.

In particular, if f = 1, then IE(ψ0(β−1(U))) <∞ (here U has the uniform law over [0, 1]).

9.6. Rates of strong mixing and rates of ergodicity of irreducible chains

In this section, we give relations between the strong mixing coefficients and the inte-

grability properties of renewal times. We will prove that the tails of the random variables

α−1(U), T0 and β−1(U) have of the same order of magnitude, which implies, in particular,

that the strong mixing and the β-mixing coefficients are of the same order for irreducible,

aperiodic and positivley recurrent Markov chains.

We start by giving some relations between the strong mixing coefficients of the chain

(ξi)i≥0 equipped with the usual filtration (Fk)k defined by Fk = σ(ξi : i ≤ k) and the strong

159



mixing coefficients of the extended chain (ξi, Ui)i≥0 defined in Section 9.3 by Equation

(9.2). Our lemma is inspirated from Lemma 5 in Bolthausen (1982b).

Lemma 9.4. Let (α̃n)n≥0 and (β̃n)n≥0 denote respectively the sequences of strong mixing

and β-mixing of the completed chain (ξi, Ui)i≥0. Then, for any positive integer n,

α̃n+1 ≤ αn ≤ α̃n and β̃n+1 ≤ βn ≤ β̃n.

Proof. If C is a σ-field independent of A ∨ B, then, as proved in Bradley (1986),

α(A,B ∨ C) = α(A,B).

Now Uk+n is independent of (ξk+n, ξk−1, Uk−1). Hence, by (1.10b),

α̃n+1 = sup
k>0

sup
B∈B(IR)

IE|IP(ξk+n ∈ B | Fk−1)− IP(ξk+n ∈ B)|.

Now

IE|IP(ξk+n ∈ B | Fk−1)− IP(ξk+n ∈ B)| ≤ IE|IP(ξk+n ∈ B | Fk−1 ∨ σ(ξk))− IP(ξk+n ∈ B)|.

Since ξk+n is a measurable deterministic function of ξk and (Ui, εi)i∈[k,k+n[,

IP(ξk+n ∈ B | Fk−1 ∨ σ(ξk)) = IP(ξk+n ∈ B | σ(ξk)).

It follows that α̃n+1 ≤ αn. The proof of the inequality βn ≤ β̃n+1 is similar.

We now compare the strong mixing coefficients and the tail functions of the regeneration

times.

Proposition 9.7. Let P be an irreducible and aperiodic stochastic kernel, satisfying

M(1, s, ν). Let ψ be a function in Λ0. Suppose that the stationary chain (ξi)i≥0 with

transition P and invariant law π satisfies
∑
n ψ(n)αn < ∞. Then, with the notations of

Proposition 9.5, IEπ(ψ0(T0)) <∞, and consequently
∑
n ψ(n)βn <∞.

Remark 9.6. Proceeding as in Remark 9.5, one can prove that, if the above chain is

geometrically strongly mixing, then the renewal times have a finite Laplace transform in

a neighborhood of 0, and consequently the chain is geometrically β-mixing.

Application to arithmetic rates of mixing. Suppose that ψ(n) = max(2, nq−1) for some

q ≥ 1. By Proposition 9.7, Eπ(T q0 ) < ∞ ⇔
∑
n>0 n

q−1βn < ∞ ⇔
∑
n>0 n

q−1αn < ∞.

Moreover, by (9.24), these conditions are equivalent to the condition IE(τ q+1
0 ) <∞.

Next, using the fact that Proposition 9.7 holds for any function ψ in Λ0, one can prove

that, for any q > 1, IPπ(T0 > n) = O(n−q) ⇔ βn = O(n−q) ⇔ αn = O(n−q). Moreover,

by (9.24), these conditions are equivalent to the tail condition IP(τ0 > n) = O(n−q−1).
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Proof of Proposition 9.7. Let us apply (9.12) with λ = ν. From the equality of

masses, we have:

(9.28) πQn(1) =
n−1∑
k=0

(νP k(s)− π(s))νQn−k−1(1) + νQn(1).

Now, by (9.4),

π(s)νQl(1) = π(s)
∑
n≥0

νQn+l(s) = IPπ(T0 = l + 1).

Hence (9.28) ensures that

π(s)IPπ(T0 > n) =

n∑
k=0

(νP k(s)− π(s))IPπ(T0 = n− k) + IPπ(T0 = n+ 1).

Now

νP k(s)− π(s) = IEπ(s(ξk+1) | s(ξ0) ≥ U0)− IEπ(s(ξk+1)).

Therefrom

(9.29) π(s)|νP k(s)− π(s)| ≤ α̃k+1 ≤ αk.

Multiplying (9.29) by ψ(n), summing on n and noting that, by Lemma 1 in Stone and

Wainger (1967), ψ(i+ j) ≤ ψ(i)ψ(j), we infer that

(9.30)
∑
n≥0

IPπ(T0 = n)ψ0(n) ≤ (π(s))−2
(

1 +
∑
k≥0

αkψ(k)
)∑
n≥0

IPπ(T0 = n)ψ(n).

For M > 2, let ψM (n) = ψ(n) ∧ M . Let us consider a function ψ in Λ0 such that∑
n ψ(n)αn <∞. Set

Cψ = (π(s))−2
(

1 +
∑
k≥0

αkψ(k)
)
.

By (9.30) applied to ψM ≤ ψ, we get

(9.31)
∑
n≥0

IPπ(T0 = n)ψ0
M (n) ≤ Cψ

∑
n≥0

IPπ(T0 = n)ψM (n).

We now prove that the series
∑
n IPπ(T0 = n)ψ(n) converges. Suppose that this series

diverges. Then, for any positive n0, the function g defined by

g(M) =
∑
n≥n0

IPπ(T0 = n)ψM (n)
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is equivalent to
∑
n≥0 IPπ(T0 = n)ψM (n) as M tends to infinity. Hence, by (9.31), for any

positive integer n0,

(9.32) lim sup
M→+∞

1

g(M)

∑
n≥n0

IPπ(T0 = n)ψ0
M (n) ≤ Cψ.

Now, by Lemma 2 in Stone and Wainger (1967), for any positive ε and any integer j0,

there exists a positive constant c(ε, j0) such that

(9.33) ψ(n) ≤ (1 + ε)ψ(n− j) + c(ε, j0)

for any n > j0 and any j ≤ j0. Hence, for any positive j0, there exists a rank n0 such that,

for any n ≥ n0 and any j ≤ j0, 2ψ(n− j) ≥ ψ(n). This inequality still holds true for the

function ψM . Hence 2ψ0
M (n) ≥ j0ψM (n) for n ≥ n0. Consequently

1

g(M)

∑
n≥n0

IPπ(T0 = n)ψ0
M (n) ≥ j0

2
.

For j0 ≥ 4Cψ, the above inequality does not hold under (9.32) for M large. Hence the

series
∑
n IPπ(T0 = n)ψ(n) converges. The second assertion follows from Corollary 9.1.

Proceeding as in Exercise 6, Chapter 1, one can derive the corollary below from Propo-

sition 9.7. In this corollary, the moment restriction on f(ξ0) comes from the fact that

the functions ψ0 defined in Definition 9.8 from a function ψ in Λ0 fulfill the constraint

logψ0(n) = o(n).

Corollary 9.2. Let P be an irreducible and aperiodic stochastic kernel, fulfillingM(1, s, ν).

Let π denote the unique invariant law and let (ξi)i≥0 be the stationary Markov chain with

transition P and initial law π. Then, for any numerical function f satisfying the in-

tegrability condition IE(f2(ξ0) log+ |f(ξ0)|) < ∞, the integrals below are simultaneously

convergent or divergent:∫ 1

0

QT0
(u)Q2

f(ξ0)(u)du,

∫ 1

0

α−1(u)Q2
f(ξ0)(u)du and

∫ 1

0

β−1(u)Q2
f(ξ0)(u)du.

Corollary 9.2 proves that Theorem 4.2 can be applied in the case of Markov chains

as soon as the random variable QT0
(U)Q2

f(ξ0)(U) is integrable (here U denotes a random

variables with uniform law over [0, 1]). In the forthcoming section, we prove that this

condition cannot be improved.
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9.7. On the optimality of Theorem 4.2

In this section, we prove that condition (DMR) is sharp for the central limit theorem

in the stationary case. In order to prove the optimality of this condition, we will construct

a stationary Markov chain of random variables with values in [0, 1] and strong mixing

coefficients of the order of n−a in such a way that, for any nonnegative decreasing function f

such that the integrals appearing in Corollary 9.2 diverge, the random variable
∑T1−1
i=T0

f(ξi)

(the times T0 and T1 are defined in Section 9.3) fails to have a finite second moment.

Applying then the converse of the central limit theorem, we will prove that the normalized

and centered partial sums do not satisfy the central limit theorem. The chain will be

defined from the transition probability kernel P introduced in Lemma 9.3. This transition

can also be used to get lower bounds in the law of the iterated logarithm of Chapter 6 and

lower bounds in the Marcinkiewicz-Zygmund type strong laws of Chapter 3 (we refer to

Theorem 2 in Rio (1995a) for lower bounds in the strong laws). We mention that Bradley

(1997) gives more general results with arbitrary rates of mixing.

Theorem 9.4. For any real a > 1, there exists a stationary Markov chain (Ui)i∈ZZ of

random variables with uniform law over [0, 1] and β-mixing coefficients (βn)n such that:

(i) 0 < lim infn→+∞ naβn ≤ lim supn→+∞ naβn <∞,

(ii) for any measurable and integrable function f :]0, 1]→ IR such that

(a)

∫ 1

0

u−1/af2(u)du = +∞,

n−1/2
∑n
i=1[f(Ui)− IE(f(Ui))] does not converge in law.

From Theorem 9.4 and Corollary 9.2, we get the following converse to Theorem 4.2 in

Section 4.

Corollary 9.3. Let a > 1 and let F be the distribution function of a centered and

integrable random variable Z with atomless distribution. If

(a)

∫ 1

0

u−1/aQ2
Z(u)du = +∞,

then there exists a stationary Markov chain (Zi)i∈ZZ of random variables with distribution

function F such that

(i) 0 < lim infn→+∞ naαn ≤ lim supn→+∞ naβn <∞,

(ii) n−1/2
∑n
i=1 Zi does not converge in distribution to a normal law.

Proof of Theorem 9.4. Let P (x, .) = s(x)ν + (1− s(x))δx be the transition probability

kernel of Lemma 9.3. Take X =]0, 1] and s(x) = x. Let λ denote the Lebesgue measure

on [0, 1]. For a > 0, let us define the regeneration measure ν by ν = (1 + a)xaλ. Then the
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chain is positively recurrent and the invariant law π is given by π = axa−1λ (see the proof

of Lemma 9.3). Let t(x) = 1− x. for any positive k

(9.34) IPπ(τ > k) = IEπ(tk) = k−a
∫ k

0

(1− x/k)kaxa−1dx.

Consequently

(9.35) lim
k→+∞

kaIEπ(tk) = aΓ(a),

where Γ is the Γ function of Euler. Since the distribution function of π is Fπ(x) = xa,

the stationary sequence (Ui)i defined by Ui = ξai is a stationary Markov chain of random

variables with uniform law over [0, 1]. This chain has the same β-mixing coefficients as the

initial chain (ξi)i∈ZZ. Now Theorem 9.4(i) follows from Proposition 9.4 and (9.35).

We now prove (ii). We may assume, without loss of generality, that IE(f(Ui)) = 0. Now,

using the renewal scheme, we prove thet some compound sums defined from the variables

f(Ui) are partial sums of independent and identically distributed random variables. With

the notations of Definition 9.5.

(9.36)

Tn−1∑
i=1

f(Ui) =
τ−1∑
i=1

f(Ui) +
n−1∑
k=0

τkf(UTk).

We now prove that

(9.37)

Tn−1∑
i=1

f(Ui)−
[nIE(τ1)]∑
i=1

f(Ui) = oP (
√
n ).

To prove (9.37), we start by noting that the random variables (XTk , τk)k>0 are independent

and identically distributed. Let ζk = XTk . The random variables ζk are independent with

common law ν. Now

(9.38) IP(τk > n | ζk = ζ) = (1− ζ)n,

which ensures that IE(τ2
1 ) <∞ for any a > 1. Hence, by the usual central limit theorem,

(Tn − nIE(τ1))/
√
n converges in distribution to a nondegenerate normal law. It follows

that, for any positive ε, there exists some positive A such that

(9.39) lim inf
n→+∞

IP(nIE(τ1) ∈ [T[n−A
√
n], T[n+A

√
n]]) ≥ 1− ε.

Now, by (9.38),

IE|τkf(UTk)| =
∫ 1

0

|f(ζa)|αζa−1dζ <∞ and IE(τkf(UTk)) = 0.
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Therefrom, applying the strong law of large numbers to the sequence (τkf(UTk))k>0, we

get that

n−1/2 sup
m∈[n−A

√
n,n+A

√
n ]

∣∣∣ n∑
k=1

IE(τkf(UTk))−
m∑
k=1

IE(τkf(UTk))
∣∣∣ −→

P
0 as n→∞.

Now, from (9.36), the random variable n−1/2|
∑Tn−1
i=1 f(Ui)−

∑[nIE(τ1)]
i=1 f(Ui)| is less than

the above random variable on the event (nIE(τ1) ∈ [T[n−A
√
n], T[n+A

√
n]]). Therefore,

putting together (9.38) and the above inequality we get (9.37).

From (9.37), if the compound sums ∆n = n−1/2
∑n−1
k=0 τkf(UTk) do not converge in

distribution to a normal law as n tends to ∞, then the normalized sums n−1/2
∑n
i=1 f(Ui)

do not satisfy the central limit theorem. Now by the converse of the central limit theorem

(see Feller (1950) for more about this), ∆n converges in law to a normal random variable

if and only IE(τ2
kf

2(UTk)) <∞. By (9.38), this condition holds if and only if

IE(ζ−2
1 [f(ζa1 )]2) = (1 + a)

∫ 1

0

ζa−2[f(ζa)]2dζ <∞.

Setting u = ζa in the above integral, we then get Theorem 9.4(ii), which completes the

proof.

EXERCISES

1) Let p > 2. Prove that, for any a > 1 and any continuous distribution function F such

that
∫

IR
|x|pdF (x) < ∞ and

∫
IR
xdF (x) = 0, there exists a stationary sequence (Xi)i∈ZZ

of random variables with common law F and β-mixing coefficients βi of the order of i−a,

such that

IE(|Sn|p) ≥ cnp
∫ n−a

0

Qp0(u)du,

for some positive constant c. Compare this result with Theorem 6.3 and Corollary 6.1.

2) Let (ξi)i∈ZZ be a stationary Markov chain. Assume that the uniform mixing coefficients

ϕn converge to 0 as n tends to ∞. Prove that ϕn = O(ρn) for some ρ in [0, 1[.

165



ANNEXES

A. Young duality and Orlicz spaces

In this annex we recall some basic properties of the Young transform of convex functions.

Next we define the Orlicz spaces and the Orlicz norms and we give elementary applications

of these notions.

Let us introduce the class of convex functions

Φ̄ = {φ : IR+ → ĪR
+

: φ convex, nondecreasing, left-continuous, φ(0) = 0}.

We denote by Dφ the set of nonnegative reals x such that φ(x) <∞. From the convexity

of φ, the set Dφ is an interval.

A.1. Young duality. For φ in Φ̄, let

Gφ = {(x, y) ∈ Dφ × IR+ such that y > φ(x)}

denote the super-graph of φ and let Ḡφ denote the closure of Gφ. The Young dual function

of φ is defined by

φ∗(λ) = sup
x∈Dφ

(λx− φ(x)) for any λ ≥ 0.

Thus z = φ∗(λ) if and only if the straight line with equation y = λx− z is tangent to Gφ.

In that case, Dλ,z ∩ Ḡφ 6= ∅ and Dλ,z ∩Gφ = ∅. It follows that

(A.1) z ≥ φ∗(λ) if and only if Dλ,z ∩Gφ = ∅.

Starting from (A.1), we now prove that φ∗ belongs to Φ̄. Clearly φ∗ is nondecreasing.

Noticing that the straight line D0,z with equation y = −z does not intersect Gφ if and

only if z ≥ 0, we get that φ∗(0) = 0. To prove that φ∗ is a convex function, we will apply

the elementary lemma below (proof omitted).

Lemma A.1. For any set I and any collection (ψi)i∈I of convex functions, ψ = supi∈I ψi

is a convex function.
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The convexity of φ∗ follows immediately from Lemma A.1 to the collection of functions

(ψx)x∈Dφ defined by ψx(λ) = λx − φ(x). We now prove that φ∗ is left-continuous. First

note that

(A.2) φ(x) + φ∗(λ) ≥ λx for any (x, λ) ∈ Dφ ×Dφ∗ .

This inequality is called Young’s inequality. If l = limλ↗λ0
φ∗(λ) is finite, then, taking the

limit as λ tends to λ0 in the Young inequality, we get that φ(x) + l ≥ λ0x for any x in

Dφ, which ensures that φ(λ0) is finite and satisfies φ(λ0) ≤ l. Since φ∗ is nondecreasing,

it follows that l = φ(λ0).

We now prove that φ∗∗ = φ. From the Young inequality φ(x) ≥ φ∗∗(x). Suppose now

that y > φ∗∗(x). Then, for any nonnegative λ, y > λx − φ∗(λ). Now, from the convexity

of φ, Gφ is the intersection of all the half-planes y > λx − φ∗(λ). Hence y > φ(x), which

proves the converse inequality φ(x) ≤ φ∗∗(x).

Derivatives of φ∗. The derivatives of φ∗ satisfy the relations below:

(A.3) (φ∗)′(λ+ 0) = φ′−1(λ+ 0) and (φ∗)′(λ− 0) = φ′−1(λ− 0) = φ′−1(λ).

To prove (A.3), we consider the intersection points of the straight line y = λx−φ∗(λ) with

Ḡφ. Since the inverse functions are left-continuous the intersection point (x(λ), y(λ)) with

maximal coodinate x satisfy x(λ) = φ′−1(λ + 0). For arbitrary ε > 0, let us consider the

straight line with equation y − φ(x(λ)) = (λ + ε)(x − x(λ)). For x = 0 in this equation,

y = φ∗(λ) + εx(λ). Consequently φ∗(λ + ε) ≥ φ∗(λ) + εx(λ). Next, for any x > x(λ),

φ′(x) > λ. Hence, for x > x(λ) and ε small enough, φ′(x) ≥ λ + ε. Therefrom, for any

t ≥ x, (λ+ ε)t− φ(t) ≤ (λ+ ε)x− φ(x). Now, for any t ≤ x,

(λ+ ε)t− (φ∗(λ) + εx) ≤ λt− φ∗(λ) ≤ φ(t).

Both the two above inequalities ensure that (λ+ ε)t− (φ∗(λ) + εx) ≤ φ(t) for any positive

t. Hence φ∗(λ+ ε) ≤ φ∗(λ) + εx. Thus we have proved that

(A.4) φ∗(λ) + εx(λ) ≤ φ∗(λ+ ε) ≤ φ∗(λ) + εx.

The left hand side inequality in (A.3) follows immediately from (A.4). The proof of the

second part of (A.3) is similar.

Inverse function of φ∗. The lemma below furnishes a direct way to compute the inverse

function of φ∗.

Lemma A.2. For any φ in Φ̄ and any positive x,

φ∗−1(x) = inf
t∈Dφ

t−1(φ(t) + x).
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Proof of Lemma A.2. The slope of the straight line Dx,t containing (0,−x) and (t, φ(t))

is equal to t−1(φ(t) + x). Let t0 be the point which realizes the minimum of this slope

and λ0 be the corresponding slope. Then the straight line Dx,t0 is tangent to the curve

y = φ(t). Consequently φ(λ0) = x, which completes the proof of Lemma A.2.

A.2. Orlicz spaces. Let φ be any function in Φ̄ such that φ 6= 0. For any random vector

Z in a normed vector space (E, |.|), the Luxemburg norm associated to φ is defined by

(A.5) ‖Z‖φ = inf{c > 0 : IE(φ(|Z|/c) ≤ 1}

if there exists some positive real c such that IE(φ(|Z|/c) < ∞, and by ‖Z‖φ = +∞
otherwise.

We now prove that ‖ . ‖φ is a norm. Clearly ‖λZ‖φ = |λ‖λZ‖φ. Next, from the

convexity of φ, for c > ‖Z‖φ and c′ > ‖Z ′‖φ,

(A.6) IE
(
φ(|Z + Z ′|/(c+ c′))

)
≤ c

c+ c′
IE(φ(|Z|/c)) +

c′

c+ c′
IE(φ(|Z ′|/c′)) ≤ 1,

which proves the triangle inequality. Now, if ‖Z‖φ = 0, then, for any positive integer

n, φ(n|Z|) = 0 almost surely. Consequently, for any positive a such that φ(a) > 0,

n|Z| ≤ a almost surely, which implies that Z = 0 almost surely, which completes the

proof. Throughout the sequel, we denote by Lφ the normed space of real-valued random

variables Z such that ‖Z‖φ <∞.

We now give classical extensions of the Hölder inequalities to Orlicz spaces. Let X and

Y be nonnegative random variables. Then, by the Young inequality (A.2),

(A.7) IE(XY ) ≤ IE(φ(X) + φ∗(Y )).

Now, let c > ‖X‖φ and c′ > ‖Y ‖φ∗ , Applying (A.7) to (X/c, Y/c′), we get that IE(XY ) ≤
2cc′. it follows that

(A.8) IE(XY ) ≤ 2‖X‖φ‖Y ‖φ∗ for any X ∈ Lφ and any Y ∈ Lφ
∗
.

We now give some applications of these theoretical results to particular functions. We refer

to Dellacherie and Meyer (1975) for more about theoretical results.

A.3. Applications to classical Orlicz spaces. First take p > 1 and φ(x) = (xp/p).

Let q = p/(p− 1) be the conjugate exponent. Then φ∗(y) = q−1yq. Hence, by (A.7),

(A.9) IE(XY ) ≤ 1

p
IE(Xp) +

1

q
IE(Y q).

applying this inequality to X/‖X‖p and Y/‖Y ‖q, we get the usual Hölder inequality

(A.10) IE(XY ) ≤ (IE(Xp))1/p(IE(Y q))1/q.
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Note that (A.8) implies (A.10) only in the case p = q = 2. For p 6= 2, a direct application

of (A.8) leads to the mutiplicative loss 2p−1/pq−1/q.

Now, let φ(x) = ex − 1− x. Then the equation of the tangent to the curve (x, φ(x)) at

the point (t, φ(t)) is y − φ(t) = (x− t)(et − 1), whence φ∗(et − 1) = (t− 1)et + 1. Now, if

λ = et − 1, then t = log(1 + λ) and consequently

(A.11) φ∗(λ) = (1 + λ)(log(1 + λ)− 1) + 1 = (1 + λ) log(1 + λ)− λ.

Affine transformations . Let A be defined by A(x, y) = (ax, by + cx), with a > 0, b > 0

and c ≥ 0. Let φA be the map whose graph is the image by A of the graph of φ. Then

(A.12) φA(x) = bφ(x/a) + cx/a.

Since the tangent to Gφ with slope λ is changed to the tangent to GφA with slope (bλ+c)/a

by the map A, we get that

(A.13) φ∗A(λ′) = bφ∗((aλ′ − c)/b) for any λ′ ≥ c/a and φ∗A(λ′) = 0 otherwise.

B. Exponential inequalities for sums of independent random variables

This annex is devoted to some usual exponential inequalites for sums. We refer to

Chapter 2 in Bercu, Delyon and Rio (2015) more about this subject. Throughout the

section Z1, Z2, . . . is a sequence of independent real-valued random variables with finite

variance. Set

S0 = 0, Sk = (Z1 − IE(Z1)) + · · ·+ (Zk − IE(Zk)) and S∗n = max(S0, S1, . . . , Sn).

We start by recalling a version of Bennett’s inequality due to Fuk and Nagaev (1971).

Theorem B.1. Let K be a positive constant. Assume that Z1, Z2, . . . satisfy the addi-

tional conditions Zi ≤ K almost surely. Then, for any V ≥ IE(Z2
1 ) + · · ·+ IE(Z2

n) and any

positive λ,

(a) IP(S∗n ≥ λ) ≤ exp(−K−2V h(λK/V )),

with h(x) = (1 + x) log(1 + x)− x. If furthermore |Zi| ≤ K almost surely, then

(b) IP( sup
k∈[1,n]

|Sk| ≥ λ) ≤ 2 exp(−K−2V h(λK/V )).

Proof. The proof is based on the classical Crámer-Chernoff calculation, which we now

recall in Lemma B.1 below.
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Lemma B.1. Let γ be a nondecreasing convex function on IR+, such that γ(t) ≥
log IE(exp(tSn)) for any nonnegative t. Then, for any positive λ,

log(IP(S∗n ≥ λ)) ≤ inf
t>0

(γ(t)− tλ) = −γ∗(λ).

Proof of Lemma B.1. For t in the domain of γ, set Mk(t) = exp(tSk). Then, from

the Jensen inequality, (Mk(t))k≥0 is a nonnegative submartingale. Hence, by the Doob

maximal inequality,

(B.1) IP(S∗n ≥ λ) ≤ IE(exp(tSn − tλ)) ≤ exp(γ(t)− tλ).

Lemma B.1 follows immediately

Proof of Theorem B.1. From Lemma B.1, it is enough to prove that

(B.2) log IE(exp(tSn)) ≤ K−2V (exp(tK)− tK − 1),

and next to apply (A.11) and (A.13). Now, using the independence of the random variables

Zi and next the concavity of the logarithm, we get that

log IE(exp(tSn)) =
n∑
i=1

(log IE(exp(tZi))− tIE(Zi))

≤
n∑
i=1

IE(exp(tZi)− tZi − 1).(B.3)

Next, the function ψ defined by ψ(0) = 1/2 and ψ(x) = x−2(ex − x − 1) for x 6= 0 is

nondecreasing. Since Zi ≤ K almost surely, it follows that

IE(exp(tZi)− tZi − 1) ≤ K−2IE(Z2
i )(exp(tK)− tK − 1).

Combining this inequality with (B.3), we get (B.2). Hence (a) holds. To prove (b), apply

(a) to the random variables −Z1, . . . ,−Zn and add the two inequalities.

Below we give an one-sided version of the Bernstein inequality, which allows to consider

random variables with finite Laplace transform only in a right neighborhood of the origin.

We refer to Pollard (1984) for the usual Bernstein’s inequality.

Theorem B.2. Let Z1, . . . , Zn be a finite sequence of independent random variables. Set

Zi+ = max(Zi, 0). Suppose that there exist positive constants K and V such that

(a)
n∑
i=1

IE(Z2
i ) ≤ V and

n∑
i=1

1

m!
IE(Zmi+) ≤ 1

2
V Km−2 for any m ≥ 3.
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Then, for any positive λ,

IP(S∗n ≥ λ) ≤ exp(−z) ≤ exp
(
− λ2

2(V +Kλ)

)
,

where z = z(λ) is the positive real defined by Kz +
√

2V z = λ.

Proof. If λ = Kz +
√

2V z then λ2 ≤ 2(V + Kλ)z, which implies the second inequality.

We now prove the first inequality. Starting from (B.3) and noting that ex − 1− x ≤ x2/2

for any negative x, we get that

log IE(exp(tSn)) ≤ t2

2

n∑
i=1

IE(Z2
i ) +

n∑
i=1

∞∑
m=3

tm

m!
IE(Zmi+).

Therefrom, if assumption (a) holds, then, for any nonnegative t,

(B.4) log IE(exp(tSn)) ≤ γ(t) =
1

2
V t2/(1−Kt).

From Lemma B.1, the proof of Theorem B.2 will be complete if we prove that

(B.5) γ∗−1(z) = Kz +
√

2V z.

To prove (B.5), we apply Lemma A.2: setting u = (1/t) − K in the formula of Lemma

A.2, we get that

γ∗−1(z) = inf
t∈]0,1/K[

(V t/(1−Kt) + (z/t)) = inf
u>0

((V/u) + uz +Kz) =
√

2V z +Kz,

which proves (B.5). Hence Theorem B.2 holds.

We now give an application of Theorem B.2 to bounded random variables in Corollary

B.1 below, which improves on the usual Bernstein’s inequality.

Corollary B.1. Let Z1, . . . , Zn be a finite sequence of independent random variables.

Suppose that Zi ≤M almost surely for any i. Set

Dn =
n∑
i=1

IE(Z2
i ) and Ln = (MDn)−1

n∑
i=1

IE(Z3
i+).

Then, for any positive x,

IP(S∗n ≥
√

2Dnx+ max(Ln/3, 1/4)Mx) ≤ exp(−x).

Remark B.1. The usual multiplicative factor before Mx is 1/3. Since Ln ≤ 1, Corollary

B.1 gives slightly better bounds.

171



Proof of Corollary B.1. For any m ≥ 4, since Zmi+ ≤Mm−3Z3
i+,

n∑
i=1

1

m!
IE(Zmi+) ≤ Mm−3

m!

n∑
i=1

IE(Z3
i+) ≤ Mm−2Ln

m!
Dn ≤

(M
4

)m−3MLn
3

Dn.

Now (M/4)m−3(MLn/3) ≤
(
max(M/4,MLn/3)

)m−2
. Consequently, assumption (a) of

Theorem B.2 holds true with V = Dn and K = max(M/4,MLn/3), which completes the

proof of Corollary B.1.

We now give some applications of Theorem B.1 to deviation inequalities for sums of

unbounded random variables. The inequalities below are due to Fuk and Nagaev (1971).

Theorem B.3. Let Z1, . . . , Zn be a finite sequence of independent and square integrable

random variables. Then, for any V ≥
∑n
i=1 IE(Z2

i ) and any couple (λ, x) of strictly positive

reals,

(a) IP(S∗n ≥ λ) ≤ exp(−x−2V h(λx/V )) +

n∑
i=1

IP(Zi > x),

with h(x) = (1 + x) log(1 + x)− x. Moreover, for any positive ε,

(b) IP(S∗n ≥ (1 + ε)λ) ≤ exp(−x−2V h(λx/V )) +
1

λε

n∑
i=1

IE((Zi − x)+).

Proof. Set

Z̄i = Zi ∧ x, S̄k =

k∑
i=1

(Z̄i − IE(Z̄i)) and S̄∗n = sup
k∈[0,n]

S̄k

with the convention that S̄0 = 0. Since

Sk ≤ S̄k +
k∑
i=1

(Zi − x)+ −
k∑
i=1

IE(Zi − x)+ ≤ S̄k +
n∑
i=1

(Zi − x)+,

we have:

(B.6) S∗n ≤ S̄∗n +
n∑
i=1

(Zi − x)+.

Let us prove (a). If Zi ≤ x for any i in [1, n], then, by (B.6), S∗n ≤ S̄∗n. It follows that

IP(S∗n > S̄∗n) ≤ IP(Z1 > x) + · · ·+ IP(Zn > x).
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Therefrom

IP(S∗n ≥ λ) ≤ IP(S̄∗n ≥ λ) +
n∑
i=1

IP(Zi > x)

≤ exp(−x−2V h(λx/V )) +
n∑
i=1

IP(Zi > x)(B.7)

by Theorem B.1(a), since IE(Z̄2
i ) ≤ IE(Z2

i ).

We now prove (b). Applying (B.6), we obtain that

IP(S∗n ≥ (1 + ε)λ) ≤ IP(S̄∗n ≥ λ) + IP
( n∑
i=1

(Zi − x)+ ≥ ελ
)

≤ IP(S̄∗n ≥ λ) + (ελ)−1
n∑
i=1

IE(Zi − x)+

by the Markov inequality applied to the second term on right hand. The end of the proof

is then exactly the same as the end of the proof of (B.7).

We now state an inequality of Hoeffding for independent and bounded random variables

Theorem B.4. Let Z1, . . . , Zn be a finite sequence of independent bounded real-valued

random variables. Suppose that Z2
i ≤Mi for any i in [1, n]. Then, for any positive λ.

(a) IP(S∗n ≥ λ) ≤ exp
(
−x2/(2M1 + · · ·+ 2Mn)

)
.

Moreover

(b) IP( sup
k∈[1,n]

|Sk| ≥ λ) ≤ 2 exp
(
−x2/(2M1 + · · ·+ 2Mn)

)
.

Proof. It is enough to prove that, if Z belongs to [−m,m] almost surely, then

(B.8) IE(exp(tZ − tIE(Z)) ≤ exp(t2m2/2),

which ensures that log IE exp(tSn) ≤ t2(M1 + · · · + Mn)/2, and next to apply Lemma

B.1. To prove (B.8), we may assume that m = 1. From the convexity of the exponential

function,

2 exp(tZ) ≤ (1− Z) exp(−t) + (1 + Z) exp(t).

Set q = IE(Z). Taking the expectation in the above inequality, we get that

IE(exp(tZ)) ≤ cosh t+ q sinh t.
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Let f(t) = cosh t+ q sinh t. Taking the logarithm in the above inequality, we have:

log IE(exp(tZ − tIE(Z)) ≤ log f(t)− qt.

Now (log f)′′ = (f ′′/f)− (f ′/f)2 ≤ 1, since f ′′ = f . Hence, integrating twice this differen-

tial inequality, we get that log f(t) ≤ qt + t2/2, which implies Theorem B.4(a). Theorem

1.4(b) is obvious.

(∗) Sums of non independent random variables. Consider now a random variable which

is equal to A+B, where A and B are real-valued random variables, and B may depend on

A. Suppose the the Laplace transforms of A and B are finite on a right neighborhood of

0 and let γA and γB denote the log-Laplace transforms of A and B respectively. Adding

Chernoff’s deviation inequalities yields

IP(A+B ≥ γ∗−1
A (z) + γ∗−1

B (z)) ≤ 2 exp(−z).

In fact, the above inequality can be improved of a factor 2, as proved by the lemma below,

stated by Rio (1994). The original proof in Rio (1994) was due to Jean Bretagnolle. Here

we will give a shorter proof based on Lemma A.2.

Lemma B.2. Let A and B be real-valued and centered random variables with respec-

tive log-Laplace transforms γA and γB . Suppose that γA and γB are finite in a right

neighborhood of 0. Then, for any positive z,

(a) γ∗−1
A+B(z) ≤ γ∗−1

A (z) + γ∗−1
B (z).

Consequently, for any positive z,

(b) IP(A+B > γ∗−1
A (z) + γ∗−1

B (z)) ≤ exp(−z).

Remark B.2. Clearly (a) may be extended to a finite sum of random variables. For

example suppose that A1, A2, . . . An is a finite collection of random variables satisfying

log IE(exp(tAi) ≤ σ2
i t

2/(1− cit) for t ∈ [0, ci[, with ci > 0 and σi > 0.

Then Inequality (B.5) together with Lemma B.2 yield

(B.9) IP(A1 +A2 + · · ·+An ≥ σ
√

2z + cz) ≤ exp(−z),

with σ = σ1 + σ2 + · · ·+ σn and c = c1 + c2 + · · ·+ cn.

Proof of Lemma B.2. By the Hölder inequality, for any reals p > 1 and q > 1 with

(1/p) + (1/q) = 1,

log IE(exp(t(A+B)) = γA+B(t) ≤ p−1γA(tp) + q−1γB(tq).
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Applying Lemma A.2, we infer that

γ∗−1
A+B(z) ≤ inf

p>1
inf
t>0

( γA(tp) + z

tp
+
γB(tp/(p− 1)) + z

tp/(p− 1)

)
.

Now, the map (t, p) → (tp, tp/(p− 1)) is a diffeomorphism from IR∗+×]1,∞[ onto IR∗2+ . It

follows that the term on right hand in the above inequality is equal to γ∗−1
A (z) + γ∗−1

B (z),

which completes the proof of Lemma B.2(a). Part (b) is a direct consequence of (a).

C. Upper bounds for the weighted moments

In this annex, we give upper bounds for the quantities Mp,α(Q) introduced in chapters

one to six. Throughout Annex C, let Q be the quantile function of a nonnegative random

variable X. For p ≥ 1, let

(C.1) Mp,α(Q) =

∫ 1

0

[α−1(u)]p−1Qp(u)du, Mp,α,n(Q) =

∫ 1

0

[α−1(u) ∧ n]p−1Qp(u)du.

Here we give sufficient conditions ensuring that Mp,α(Q) is finite. We also give some precise

upper bounds on Mp,α(Q) and Mp,α,n(Q) depending on the mixing rate and the quantile

function Q or the tail function of X.

We first bound up Mp,α(Q) under moment conditions on X. Let U be a random variable

with the uniform distibution over [0, 1]. Then X and Q(U) are identically distributed.

Hence

(C.2) IE(Xr) =

∫ 1

0

Qr(u)du for any r > 0.

Suppose now that IE(Xr) < ∞ for some r > 1. Then, for any p in ]1, r[, by the Hölder

inequality applied with exponents r/(r − p) and r/p, we get that

(C.3) Mp,α(Q) ≤
(∫ 1

0

[α−1(u)](p−1)r/(r−p)du
)1−p/r(∫ 1

0

Qr(u)du
)p/r

.

Now, proceeding as in the proof of (1.25), we note that, for any positive q,

(C.4)

∫ 1

0

[α−1(u)]qdu =
∑
i≥0

((i+ 1)q − iq)αi.

Next (i+ 1)q − iq ≤ max(q, 1)(i+ 1)q−1, and consequently

(C.5)

∫ 1

0

[α−1(u)]qdu ≤ max(q, 1)
∑
i≥0

(i+ 1)q−1αi.
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Both (C.3) and (C.5) ensure that

(C.6) Mp,α(Q) ≤ max(1, (p− 1)1−p/rep/r)‖X‖pr
(∑
i≥0

(i+ 1)(pr−2r+p)/(r−p)αi

)1−p/r
.

If the random variable X is bounded, then, taking r =∞ in (C.6), we get that

(C.7) Mp,α(Q) ≤ max(1, p− 1)‖X‖p∞
∑
i≥0

(i+ 1)p−2αi.

Consequently Mp,α(Q) is finite as soon as there exists some real r > p such that

(C.8) IE(Xr) <∞ and
∑
i≥0

(i+ 1)(pr−2r+p)/(r−p)αi <∞.

We now bound up the quantities Mp,α(Q) and Mp,α,n(Q) in a slightly different way.

Clearly

[α−1(u)]p−1 = (p− 1)

∫ ∞
0

1Iu<α(t)t
p−2dt.

Hence, by the Fubini-Tonelli theorem

Mp,α(Q) = (p− 1)

∫ ∞
0

tp−2
(∫ α(t)

0

Qp(u)du
)
dt.

Next

(p− 1)

∫ i+1

i

tp−2dt = (i+ 1)p−1 − ip−1 ≤ max(1, p− 1)(i+ 1)p−2.

Therefrom

(C.9) Mp,α(Q) ≤ max(1, p− 1)
∞∑
i=0

(i+ 1)p−2

∫ αi

0

Qp(u)du

and

(C.10) Mp,α,n(Q) ≤ max(1, p− 1)
n−1∑
i=0

(i+ 1)p−2

∫ αi

0

Qp(u)du.

We now apply (C.9) to random variables satisfying a tail assumption. Suppose that

IP(X > x) ≤ (c/x)r.

Then Q(u) ≤ cu−1/r, and consequently, if r > p,

(C.11) Mp,α(Q) ≤ cr

r − p
max(1, p− 1)

∞∑
i=0

(i+ 1)p−2α
1−p/r
i .
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Hence Mp,α(Q) is finite as soon as there exists some r > p such that

(C.12) IP(X > x) ≤ (c/x)r and
∞∑
i=0

(i+ 1)p−2α
1−p/r
i <∞.

Assume now that p > 2. We have in view bounds for Mp,α,n(Q) in the case where

Mp,α(Q) =∞. Recall that , by Theorem 6.3,

IE
(

sup
k∈[1,n]

|Sk|p
)
≤ apspn + nbpMp,α,n(Q).

Hence, ifMp,α,n(Q) = O(nq) for some q ≤ (p−2)/2, the Marcinkiewicz-Zygmund inequality

of order p holds true. Now, let s < p− 1. From (C.10), the mixing condition

(C.13)

∫ αi

0

Qp(u)du = O((i+ 1)−s)

ensures that

(C.14) nMp,α,n(Q) = O(np−s) as n→∞.

In particular, if p > 2 and s = p/2,

(C.15) nMp,α,n(Q) = O(np/2) as soon as

∫ αi

0

Qp(u)du = O((i+ 1)−p/2).

In the case of bounded random variables, (C.15) holds true as soon as αi = O(i−p/2). In

the unbounded case, (C.15) holds true, for example, if there exists some r > p such that

(C.16) IP(X > x) ≤ (c/x)r and αi = O(i−pr/(2r−2p)).

Geometric rates of mixing. Assume that αi = O(ai) for some a < 1. Then, using the same

arguments as in the proof of (1.33), we get that Mp,α(Q) is finite as soon as

(C.17) IE(Xp(log(1 +X))p−1) <∞.

D. Two versions of a Lemma of Pisier

In this annex, we give an upper bound for the expectation of the maximum of a finite

number of integrable random variables. This bound is then used to get upper bounds on

this expectation under some assumptions on the Laplace transform or on the moments of

the random variables in the style of Lemma 1.6 in Pisier (1983).
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Proposition D.1. Let Z1, . . . , ZN be a finite family of real-valued integrable random

variables. Let Fi be the distribution function of Zi. Let F = F1 + F2 + · · · + FN and let

F−1 denote the generalized inverse of F . Then

IE
(
max(Z1, Z2, . . . , ZN )

)
≤
∫ N

N−1

F−1(u)du.

Remark D.1. Let Hi = 1−Fi denote the tail function of Xi. Let H = H1 +H2 + · · ·+HN

and let H−1 denote the generalized inverse of F . Then Proposition D.1 is equivalent to

IE
(
max(Z1, Z2, . . . , ZN )

)
≤
∫ 1

0

H−1(u)du.

Proof. For N = 1, Proposition D.1 is obvious. Let N ≥ 2 and T = max(Z1, Z2, . . . , ZN ).

For any real t,

T ≤ t+ sup
i∈[1,N ]

(Zi − t)+ ≤ t+
N∑
i=1

(Zi − t)+. (D.1)

Hence

IE(T ) ≤ t+
N∑
i=1

IE(Zi − t)+. (D.2)

Next
N∑
i=1

IE(Zi − t)+ =

∫
IR

(z − t)+dF (z) =

∫ N

0

(F−1(u)− t)+du.

Choosing t = F−1(N − 1) in the above formula, we obtain:

t+

N∑
i=1

IE(Zi − t)+ = F−1(N − 1) +

∫ N

N−1

(F−1(u)− F−1(N − 1))du,

which implies Proposition D.1.

Application to exponentail tails. Assume that Hi(t) ≤ exp(−t) for any positive t and any

i in [1, N ]. Then H(t) ≤ N exp(−t), which ensures that H−1(x) ≤ log(N/x). It follows

that IE(T ) ≤ 1 + logN .

Application to power-type tails. Assume that Hi(t) ≤ (ai/t)
p for some p > 1 and some

finite sequence (ai)i of positive reals. Let ‖a‖p = (ap1+· · ·+apN )1/p. Then H(t) ≤ (‖a‖p/t)p,
which ensures that H−1(u) ≤ ‖a‖pu−1/p. It follows that (p− 1)IE(T ) ≤ p‖a‖p.

We now give an application of Proposition D.1 to random variables with finite expo-

nential moments. The lemma below is stated in Massart and Rio (1998). A short proof is

given in Rio (1998).
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Lemma D.1. Let (Zi)i∈I be a finite family of real-valued random variables. Suppose

there exists some convex and nondecreasing function L, taking finite values on a right

neighborhood of 0, such that log IE(exp(tZi)) ≤ L(t) for any nonnegative t and any i in I.

Let hL be the Young transform of L and let H denote the logarithm of the cardinality of

I. Then

IE(sup
i∈I

Zi) ≤ h−1
L (H).

Proof. We may assume that I = {1, 2, . . . , N}. Let T = supi∈I Zi. By Proposition D.1

and the Jensen inequality, for any positive t,

exp(tIE(T )) ≤
∫ N

N−1

exp(tF−1(u))du ≤
∫ N

0

exp(tF−1(u))du.

Now ∫ N

0

exp(tF−1(u))du =

∫
IR

exp(tx)dF (x) =

N∑
i=1

IE
(
exp(tZi)

)
≤ N exp(L(t)).

Taking the logarithm, dividing by t and minimizing with respect to t, we infer that

IE(T ) ≤ inf
t>0

t−1(L(t) +H).

Lemma D.1 follows then from Lemma A.2.

Application to exponentail tails (continued). From the assumption, we may apply Lemma

D.1 with the logarithm of the Laplace transform of the standard exponential law: Lemma

D.1 holds with L(x) = − log(1 − x) for x ≥ 0. Then L∗(t) = 0 for t ≤ 1 and L∗(t) =

t− 1− log t for t ≥ 1. Consequently Lemma D.1 yields IE(T ) ≤M with M ≥ 1 solution of

the equation M = 1 + log(MN). Note that M − 1 − logN ≥ log(1 + logN), which gives

the order of the loss, when applying Lemma D.1 instead of Proposition D.1.

We now consider random variables with finite moments.

Lemma D.2. Let (Zi)i∈I be a finite family of nonnegative real-valued random variables.

Suppose there exists some convex and nondecreasing function M , taking finite values on

a right neighborhood of 1, such that log IE(Zri ) ≤M(r) for any r ≥ 1 and any i in I. Let

hM be the Young transform of M and H be the logarithm of the cardinality of I. Then

IE(sup
i∈I

Zi) ≤ exp(h−1
M (H)).

Proof. We may assume that I = {1, 2, . . . , N}. Let T = supi∈I Zi. Starting from

Proposition D.1 and applying the Hölder inequality, we get that

(IE(T ))r ≤
∫ N

N−1

(F−1(u))rdu ≤
∫ N

0

(F−1(u))rdu
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Now ∫ N

0

(F−1(u))rdu =

∫ ∞
0

xrdF (x) =
N∑
i=1

IE(Zri ) ≤ N exp(M(r)).

Taking the logarithm, dividing by r and minimizing with respect to r, we infer that

log IE(T ) ≤ inf
r≥1

r−1(M(r) +H).

Lemma D.2 follows then from Lemma A.2.

E. Classical results on measurability

In this annex, we first recall a Lemma of Skorohod (1976) on representation of random

variables. Next we give some properties of projections, which are helpfull to prove the

measurability of some functions (see Dellacherie (1972), Chap. 1). We first recall some

lemma which may be found in Skorohod (1976).

Lemma E.1. Let X be a Polish space. then there exists Alors a one to one mapping

f from X onto a Borel subset of [0, 1], which is bi-measurable with respect to the Borel

σ-fields.

Starting from Lemma E.1, we now prove a Lemma of Skorohod (1976) stated below.

Lemma E.2. Let X be a Polish space and let X be a random variable from (Ω, T , IP)

into X equipped with its Borelian σ-field B(X ). Let A be a σ-field in (Ω, T , IP) and δ be

a random variable with uniform distribution over [0, 1], independent of A ∨ σ(X). Then

there exists a measurable mapping g from (Ω× [0, 1],A⊗ B([0, 1])) into X and a random

variable V with uniform law over [0, 1], measurable with respect A ∨ σ(X) ∨ σ(δ) and

independent of A such that X = g(ω, V ) almost surely.

Proof. From Lemma E.1, it is enough to prove Lemma E.2 in the case X = [0, 1]. Let

then FA(t) = IP(X ≤ t | A) denote the conditional distribution function of X. Then the

random variable

V = FA(X − 0) + δ(FA(X)− FA(X − 0))

is measurable with respect to A∨σ(X)∨σ(δ), independent of A and V has the uniform law

over [0, 1] (see Annex F). Now the mapping g defined by g(ω, v) = F−1
A (v) is measurable

with respect to A ⊗ B([0, 1]) and g satisfies X = g(ω, V ), which completes the proof of

Lemma E.2.

We now recall a theorem of Dellacherie (1972, Theorem T32, page 17) on projections.

Theorem E.1. Let (Ω,F , P ) be a complete probabilised space and (K,B(K)) be a

countably generated and locally compact space equipped with its Borel σ-field. Let us
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denote by π the canonical projection from K×Ω on Ω. Then, for any B in B(K)⊗F , the

set π(B) belongs to F .

We refer to Dudley (1989, Chap. 13) for more about the measurability properties

of projections and for universally measurable sets and universally measurable functions,

which are defined below.

Definition E.1. Let (X,X ) be a measurable space and A be a subset of X. Then A is

said to be universally measurable if, for any law P on (X,X ), A belongs to the completed

σ-field of X for P . Let (Y,Y) be a measurable space. A mapping f from X into Y is said

to be universally measurable if, for any B in Y, the set f−1(B) is universally measurable

in X.

To complete this section, we now give a slightly different formulation of Theorem E.1,

using universally measurable sets.

Corollary E.1. Let (X,X ) be a measurable space and let (K,B(K)) be a countably

generated and locally compact space equipped with its Borel σ-field. Let us denote by π

the canonical projection from K ×Ω on Ω. Then, for any B in B(K)⊗F , the set π(B) is

universallly measurable.

F. The conditionnal quantile transformation

In this annex, we will study the properties of the so-called conditionnal quantile trans-

formation introduced in the proof of Lemma 5.2 and in the proof of Skorohod’s lemma. The

first step to define this transformation is to define a measurable selection of the conditional

distribution function.

Let A be a σ-field in (Ω, T , IP) and X be a real-valued random variable. For any

rational number q, we set

FA(q) = IP(X ≤ q | A).

The so defined random function is almost surely defined on Q, and this function is nonde-

creasing. The conditional distribution function is defined as the unique right continuous

function extending this function to the set of reals. Consequently, for any real x,

(F.1) FA(x) = lim
q↘x
q∈Q

FA(q).

The function FA defined by (F.1) has the property below: the application which sends

(x, ω) on FA(x) is measurable with respect to the completed σ-field associated to B(IR)⊗A.

We now define the conditionnal quantile transformation.
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Lemma F.1. Let X be a real-valued random variable, A be a σ-field of (Ω, T , IP) and δ

be a random variable with uniform distribution over [0, 1], independent of σ(X) ∨ A. Let

FA be the conditional distribution function defined by (F.1). Set

V = FA(X − 0) + δ(FA(X)− FA(X − 0)).

Then V has the uniform distribution over [0, 1], and is independent of A. Furthermore

F−1
A (V ) = X almost surely.

Proof. Let v(ω, x, t) = FA(x − 0) + t(FA(x) − FA(x − 0)). The so defined mapping v

is measurable with respect to A ⊗ B(IR) ⊗ B(IR). Hence V = v(ω,X, δ) is a real-valued

random variable. Let a be any real in [0, 1]. Let us consider

b = F−1
A (a+ 0) = sup{x ∈ IR : FA(x) ≤ a}.

If FA is continuous at point b, then FA(b) = a. In that case (v(ω, x, t) ≤ a) if and only if

(x ≤ b), which ensures that IP(V ≤ a | A) = IP(X ≤ b | A) = FA(b) = a.

If FA is not continuous at point b, then a belongs to [FA(b− 0), FA(b)], which implies

that

a = v(ω, b, u) for some u ∈ [0, 1].

In that case (v(ω, x, t) ≤ a) if and only if either (x < b) or (x = b and t ≤ u). Then

IP(V ≤ a | A) = FA(b− 0) + u(FA(b)− FA(b− 0)) = a.

Consequently V has the unifom distribution over [0, 1], conditionnally to A, and therefrom

V is uniformly distributed over [0, 1].

Now, since x belongs to the set of reals y such that FA(y) ≥ v(ω, x, t), we have:

x ≥ F−1
A (v(ω, x, t)) for any t ∈ [0, 1].

It follows that X ≥ F−1
A (V ) almost surely. Let φ be the distribution function of the

standard normal law. Since (F−1
A (V ) > t) if and only if (V > FA(t)), we have:

IE(φ(F−1
A (V )) | A) =

∫
IR

IP(F−1
A (V ) > t | A)φ′(t)dt

=

∫
IR

IP(V > FA(t) | A)φ′(t)dt

=

∫
IR

(1− FA(t))φ′(t)dt = IE(φ(X) | A).

It follows that IE(φ(X)) = IE(φ(F−1
A (V ))). Since φ(X) ≥ φ(F−1

A (V )) almost surely, it

implies that φ(X) = φ(F−1
A (V )) almost surely. Hence X = F−1

A (V ) almost surely, which

completes the proof of lemma F.1.
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Annex G. Technical tools

Lemma G.1. For any nonnegative reals a and c,

ac(c ∧ 1) ≤ 2
3c

2(c ∧ 1) + 1
2a

2(a ∧ 1),(a)

a2(c ∧ 1) ≤ 1
3c

2(c ∧ 1) + a2(a ∧ 1).(b)

Proof of Lemma G.1. To prove (a), note that, if a ≤ 1, then, by Young’s inequality,

ac(c ∧ 1) ≤ 2
3c

3/2(c ∧ 1)3/2 + 1
3a

3 ≤ 2
3c

2(c ∧ 1) + 1
3a

2(a ∧ 1).

Hence (a) holds. If a ≥ 1, then

ac(c ∧ 1) ≤ (a2 + c2(c ∧ 1)2)/2 ≤ (a2(a ∧ 1) + c2(c ∧ 1))/2.

Consequently (a) still holds true.

We now prove (b). If a ≥ 1, then a2(c ∧ 1) ≤ a2 ≤ a2(a ∧ 1) and (b) holds true. If

a ≤ 1, then, by Young’s inequality,

a2(c ∧ 1) ≤ 2
3a

3 + 1
3 (c ∧ 1)3 ≤ a2(a ∧ 1) + 1

3c
2(c ∧ 1),

which completes the proof of (b).
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versité Paris 9, Dauphine.

Arcones, M. A. and Yu, B. (1994). Central limit theorems for empirical and U-

processes of stationary mixing sequences. J. Theoret. Prob. 7, 47-71.

Azuma, K. (1967). Weighted sums of certain dependent random variables. Tôkohu
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Saint-Flour XII-1982. Lectures Notes in Math. 1097, 1-142. Springer. Berlin.

187



Dudley, R. M. (1989). Real analysis and probability. Wadsworth Inc., Belmont, Cali-

fornia.

Feller, W. (1950). An introduction to probability theory and its applications. Wiley,

New-York.
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