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KPFM → Electrostatic force compensation → Vbias → Models to quantitative estimates 

� Forces:
• VdW
• Chemical
• Magnetic
• Electrostatic



Outline
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I. IntroductionI. Introduction



Electrostatic forces: macroscopic concept
5

� Parallel-plate capacitor: � Capacitance C:

� Time dependance:



Electrostatic forces: macroscopic concept
6

*Lord Kelvin, Phil. Mag. 46, 82 (1898)

William Thomson (later Lord Kelvin of Largs): 
1824 (Belfast, Ireland) - 1907 (Largs, UK)

Metallic electrode

Metallic sample

Vbias

Idc



Electrostatic forces: macroscopic concept
7

� Electrostatic force acting on the plates of a charged parallel-plate capacitor:

� Electrostatic force acting on an electrode of any kind:

Here:

(attractive! because the gradient of C is <0)



Surface dipole & work function in metals
8

K. Wandelt, Appl. Surf. Sci. 111, 1 (1997)
"The work function ϕ of an infinite homogeneous metal surface is defined
as the energy difference between... the Fermi level... and a final state… the
so called vacuum level."

surface dipole



Electrostatic forces and Contact Potential Difference (CPD)
9

( < 0, in the present case)



Electrostatic forces and Contact Potential Difference (CPD)
10

Vbias = VCPD → electrostatic force compensation



Electrostatic forces and Contact Potential Difference (CPD)
11



Electrostatic forces and Contact Potential Difference (CPD)

� The essence of KPFM is to detect electrostatic forces between tip and
surface and to compensate them by applying the proper dc bias on the
sample during scanning :

� This is why KPFM may be used on any kind of surfaces: metals, semi-
conductors & insulators, despite with the former the concept of CPD is
ambiguous…



Electrostatic forces and Contact Potential Difference (CPD)

� Electr. forces may either stem from charges or dipoles (ions, vacancies, 
clusters, charge transfer within molecules…) at the tip-surface interface



Electrostatic forces and Contact Potential Difference (CPD)

� Therefore, KPFM was thought as a mean to measure CPD* variations
between tip and surface:

� BUT this relies on two (major) assumptions:
• the force must depend quadratically on the effective applied bias V

• V (hence, VCPD) must not depend on z

* only if the tip is grounded and V is applied to the sample, Vbias = -VCPD otherwise



Sign of the charge & dipole orientation*
15

� q > 0 (<0): negative (positive) shift of VCPD w.r.t. VCPD,ref

� ↑↑↑↑ (↓↓↓↓)       : negative (positive) shift of VCPD w.r.t. VCPD,ref

*consistent with most frequently reported results (see « References » section at the end of the slides)



Example
16

� ZnPcCl8 on Ag(111)1:

1P. Milde et al. Nanotechnology 19, 305501 (2008)

VCPD, ref

VCPD, P1

VCPD, P2

• VCPD, ref = 4.73 V

• VCPD, P1= VCPD, ref -103 mV →→→→ interf. dip. decreased →→→→ c.t. to the sample →→→→ layer gets + charged
• VCPD, P2 = VCPD, ref -54 mV  →→→→ idem, but less than with P1
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II. Principles of KPFMII. Principles of KPFM



Concepts of non contact-AFM
18

F.Giessibl, Phys Rev. B 56, 16010 (1997); Phys. Rev.B 61, 9968 (2000)



Concepts of non contact-AFM
19

Nc-AFM

� Constant ∆f:
• Topography
• Averaged It

� Error signals:
• ∆f (→topography)
• Amplitude (→dissip.) 
• Phase

Dissipation

� Constant height:
• ∆f → interaction force
• Averaged It



Fundamentals of KPFM (in connection with nc-AFM)
20

Total interaction force between the cantilever and the surface
(4D: X, Y, Z, Vbias)



Fundamentals of KPFM (in connection with nc-AFM)
21

Ideally, the only option to perform accurate and « intrumentation-free » forces & CPD 
measurements is to do 4D force fields measurements:

but « ideal situations » don’t exist…

z
V

z (nm)

∆
f 

(H
z)



Concepts of non contact-AFM
22

Nc-AFM
+

KPFM

� Constant ∆f:
• Topography
• Averaged It

� Error signals:
• ∆f (→topography)
• Amplitude (→dissip.) 
• Phase
• modulated KPFM 

component

Dissipation

� Constant height:
• ∆f → interaction force
• Averaged It

CPD



Fundamentals of KPFM (in connection with nc-AFM)
23

Noncontact-AFM:

Oscillation at f0

(Force → ∆f(z))

Bias voltage applied 
between the tip and the 
surface :

Attractive electrostatic force (tip):

)2sin( modtfVVV acdcbias π+=

Idea1 : bias modulation      discrimination of the electrostatic force                  
w.r.t. other interaction forces

z

1M. Nonnenmacher et al., APL 58, 2921 (1991);  J. Weaver et al. JVSTB 9, 1559 (1991)



Fundamentals of KPFM (in connection with nc-AFM)
24

Spectral components:

� These superimpose to the interaction force between the cantilever and the 
surface

� Static deflection & induced vibrations of the cantilever at f0+fmod and f0+2fmod

� Detection and cancellation of the fmod component by applying a proper dc 
voltage which matches the CPD



Fundamentals of KPFM (in connection with nc-AFM)
25

Vac
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dB

frequency [kHz]  

x10

5 mV

50 mV

500 mV

Deflection power spectrum1, fmod=2 kHz

1U.Zerweck et al., Phys. Rev. B 71, 125424 (2005)



KPFM operational modes: FM- & AM-KPFM
26

frequency
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F
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 c
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f0

f0–fmod f0+fmod

Frequency modulation (FM-KPFM) : fmod ~ 1 kHz
→ fmod is arbitrary but restricted to few kHz

~ 1 kHz

fmod

Amplitude modulation (AM-KPFM) :
fmod = f1 ~ 6.3f0
→ fmod matches the first bending eigenmode of the 

cantilever above the fundamental one

~ 6.3 f0

2fmodf0–2fmod f0+2fmod



Frequency-Modulation KPFM: concept
27

Electrostatic force                         shift of the resonance:

Bias modulation (fmod)                Electr. force modulation (fmod)                 ∆f modulation (fmod)

1st order :

FM-KPFM is sensitive to the
electrostatic force gradient (?)



Frequency-Modulation KPFM: concept
28

Electrostatic force                         shift of the resonance:

Bias modulation (fmod)                force modulation (fmod)                 ∆f modulation (fmod)

1st order :



Frequency-Modulation KPFM: concept
29

Detecting & compensating Amod by setting 
Vdc=VCPD continuously while scanning 

∆f

Amod

∆f



Frequency-modulation KPFM: experimental setup
30



Frequency-modulation KPFM: experimental setup
31
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Kelvin controller input

� Data from Th. Glatzel (E.Meyer’s group, Basel) in [1]:

1Kelvin Probe Force Microscopy, Measuring & Compensating Electrostatic forces, Springer Series in Surface Sciences (Th. Glatzel 
& S. Sadewasser Ed.)



Frequency-modulation KPFM: temporal considerations
32

� fmod has to be within the 
demodulation bandwidth of the 
PLL → compromise:

• extending the PLL 
bandwidth → adds noise to 
∆f detection 

• must remain large enough to 
not influence the z regulation 
(usually requires to slow 
down the scans)

• order of magnitude: 1 kHz

� To avoid this, the oscillating 
component may be used (f0+fmod) 
as the Kelvin LIA input, but then 
the signal is to be amplified 
significantly for a proper detection



Amplitude-Modulation KPFM: concept
33

Fel is now modulated at the frequency of the first bending eigenmode of the cantilever : fmod ~ 6.3 f0 ~ 1 MHz

Fel

Vbias

Vdc

2 Vac

CPDV

Fundamental bending eigenmode

First bending eigenmode

f0 ~ 150 kHz
k0 ~ 30 N/m
Q0 ~ 30000 (∆fHWHM= 2.5 Hz)
Mechanical actuation

f1 = 6.3f0 ~ 1 MHz
k1 >> k0
Q1 ~ 8000 (∆fHWHM= 60 Hz)
Electrostatic actuation

AM-KPFM is sensitive to the
electrostatic force (?)



Amplitude-Modulation KPFM: concept
34

Detecting & compensating A1 by setting 
Vdc=VCPD continuously while scanning



Amplitude-modulation KPFM: experimental setup
35



Amplitude-modulation KPFM: temporal considerations
36

frequency

f0

fmod

Amplitude modulation (AM-KPFM) :
fmod = f1 ~ 6.3f0
→ fmod matches the first bending eigenmode of the 

cantilever above the fundamental one

~6.3f0
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AM- vs. FM-KPFM
37



AM- vs. FM-KPFM
38

FM-KPFM AM-KPFM

Pros • Ease of implementation
• CPD contrast larger than

AM- in the large 
amplitude regime

• Better S/N ratio than FM-
KPFM

• More sensitive to 
capacitive contributions 
involved in high-resolution
CPD imaging

• CPD atomic-scale
contrast reported

Cons • Low bandwidth, slow, 
unless sidebands are 
used (but LIA input to be
amplified)

• Implementation more 
demanding (2nd PLL)

• Large detector bandwidth
required with usual
cantilevers (~1 MHz)
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III. Electrostatic modelsIII. Electrostatic models



1 - A charge trapped within the capacitor1
40

� Double capacitance model1:

1Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, edited by R.
Waser (John Wiley & Sons, New York, 2003); R. Stomp et al., Pys. Rev. Lett. 94 , 056802 (2005);
J. Polesel et al., Nanotechnology 15, S24 (2004)



1 - A charge trapped within the capacitor1
41

� Superposition principle:

J. Polesel et al., Nanotechnology 15, S24 (2004)



What about polarisability ?!?



1 - A charge trapped within the capacitor1
43

E

� Dipole moment of each part of dielectric within the capacitance:

polarizability



2 - An assembly of charges trapped within the capacitor1
44



2 - An assembly of charges trapped within the capacitor
45



2 - An assembly of charges trapped within the capacitor
46

Lateral periodicity (in plane)

Distance dependence

Polarization, i.e. Bias dependence



2 - An assembly of charges trapped within the capacitor
47

• short-range
• Lateral periodicity of the MSP
• Proportional to Vb

• short-range
• Vb

2  dependence (required!!!) induced by the polarization
• No lateral periodicity



2 - An assembly of charges trapped within the capacitor
48



Summary
49

In general, the electrostatic has the form:

Hence, the fmod-modulated component has the form:

Therefore:

• The measured « CPD » conceals the physics of the interface
(parameters A & B): capacitance, charges, dipoles…

• B and A may be tip geometry and distance dependent…



Summary
50

~ B, linear term ~ q

~ C-B2/4A ~ ?

~ AVb
2, capacitive &

polarization effects
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IV. ApplicationsIV. Applications



KPFM on metallic surfaces including adsorbates:
52

Kelvin

5 µm

Topography

~ 910 mV

Kelvin-histogram UPS measurement

KCl on Au(111)1 (FM-KPFM):

1U. Zerweck et al., Phys. Rev. B 71, 125424 (2005);

� KCl islands decrease the CPD: interface dipole decreased (c.t. to the sample)

� Quantitative measurement of the CPD when adsorbates are larger than 
the tip radius

• result confirmed in the literature (see “References” section)

� Thin insulating films :



KPFM on metallic surfaces including adsorbates:
53

1Ch. Loppacher et al., Nanotechnology 15, S9 (2004)
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- 5,3
600 meV

Au(111)

510 meV

Cu(111)

- 4,9 - 4,7

1044 meV

Ag(111)

KBr thin film on metals

• Interface dipole varies with the nature of the metal
• Adsorption properties must change

Qiu et al., Science 299, 542 (2003) 

10 nm  

Porphyrin / Al2O3 / NiAl (110)

� Thin insulating films :

Ionic thin films on Au(111)1 (FM-KPFM):



KPFM on metallic surfaces including adsorbates:
54

1T. Ichii et al., JAP 107 024315 (2010);

CuPc on Au(111)1 (FM-KPFM):

� Molecular films :

Topography Kelvin

Kelvin

� Molecular resolution in KPFM
� +30mV positive shift, increase of 

the interface dipole, c.t. to the layer
� Results interpreted in terms of 

electrostatic MS interaction

M=Cu, Co



KPFM on metallic surfaces including adsorbates:
55

500 nm

Topography Kelvin
∆UCPD= +450 mV

Ag(111)

C60

KPM

1U. Zerweck et al., Nanotechnology 18 084006 (07); Hayashi et al., JAP 92, 3784 (02)

� Molecular films :

C60 on Ag(111)1 (FM-KPFM):

� C60 layers increase the CPD: interface dipole increase, c.t. to the 
molecules

� Behavior which depends on the nature of the metal
� Results compliant with macroscopic KPM



KPFM on bulk insulators
56

1C. Barth et al., Nanotechnology 17, S155 (2006)

Kelvin

Kelvin

Topography

Topography

� Significant positive CPD shift at the step
edges (+300 mV)

� Local (-) charges are heterogeneously
trapped along the step edges : not intrinsic

� Similar behavior on other alkali halides
(KCl)

Origin of these charges?

� Mixed ionic crystals1: NaCl(001)+1% KCl (FM-KPFM)



topography

Kelvin

“Double layer surface“ effect2

� Ionic crystals are extrinsic : Ca2+ impurities
nearby steps below the surface
� Global charge of the crystal is neutral → V- centers 
(cationic vacancies)
� Net negative charge nearby (below) step edges and kink 
sites

Ca2+ Ca2+

Cl- Cl- Cl- K+ Cl-

K+Cl- Cl- K+ Cl- K+ Cl-

K+ Cl- K+ Cl-

K+Cl- Cl- Cl- K+ Cl-

Surface

Bulk

K+K+

KPFM on bulk insulators
57

1C. Barth et al., Phys. Rev. Lett. 98, 136804 (2007); 2J. Frenkel, Kinetic Theory of Liquids, (Clarendon Press,Oxford, 1946).

Topography

Topography

KelvinTopography

∆∆∆∆f @ constant height

Strong electrostatic
interaction -

+

� KCl(001)1: (FM-KPFM)



KPFM on bulk insulators including molecular films
58

� CyanoPorphyrin on KBr(001) +Au1: (AM-KPFM)

1T. Glatzel et al., Nanotechnology 17, S155 (2006)



KPFM on bulk insulators including molecular films
59

1A. Hinaut et al., J. Beilstein Nanotech. 3, 221 (2012)

� Triphenylene derivative on KBr(001)1: (FM-KPFM)

� Two kinds of adsorption: flat (h) and 
vertical (v)

� Both domains exhibit lower CPDs 
than KBr: surface dipole increase

� h-domains consist of molecules 
interacting electrostatically with the 
substrate via polar CN groups 
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V. High-resolution KPFMV. High-resolution KPFM



Surface dipole & work function in metals
61

K. Wandelt, Appl. Surf. Sci. 111, 1 (1997)
"The work function ϕ of an infinite homogeneous metal surface is defined
as the energy difference between... the Fermi level... and a final state… the
so called vacuum level."

surface dipole

"...Real (metallic) surfaces are (a) of limited
size, (b) made up by discrete atoms, (c) mostly
include chemical and structural defects...
Consequently Φ(z) … vary parallel to the
surface. A few Å away from the surface, the
energy difference ϕloc=∆Φ(x,y,z)-µ acquires the
character of a local work function"

Local Contact Potential Difference (LCPD)
= Short-Range Electrostatic forces

KPFM



High-resolution KPFM: semiconductor surfaces
62

� S. Kitamura et al., Appl. Surf. Sci. 157, 222 (2000) : Au/Si(111) 7x7

� K. Okamoto et al., Appl. Surf. Sci. 210, 128 (2003) : Si(111)5√3x5√3-Sb

"The potential difference of atomic
structures...does not seem to reflect the
work function as we initially expected. It
is therefore considered that the atomic
potential difference reflects the local
electron density on the surface."

First attempt to identify species of individual 
atoms by KPFM

Au

Au
Au

Topography Kelvin

Potential of adatoms (surface potential) : VSi ~ VSb-0.2V
: "This value disagrees with the theoretical work

functions of Si and Sb in bulk state...Our result
indicates that KPFM on atomic scale does not

measure the energy of the HOMO level."

Si

Topography Kelvin



High-resolution KPFM: bulk insulators
63

1F.Bocquet et al., Phys. Rev. B 78, 035410 (2008);

� KBr(001)1: T.Glatzel (Basel, AM-KPFM)



High-resolution KPFM: charge state of individual atoms
64

Topographic sensitivity to the charge state on the atomic scale

Spectroscopic sensitivity to the charge state on the atomic scale



High-resolution KPFM: intramolecular resolution
65



High-resolution KPFM: modelling
66

2 31

• Tip termination: metallic 
atomic asperity
• Sample: Bulk ionic crystal
• Analytical & Experimental 
approach

F.Bocquet et al., Phys. Rev. B 78, 
035410 (2008)
L.Nony et al., Nanotechnology 20, 
264014 (2009)

• Tip termination: ionic cluster 
(Na+-terminated)
• Sample: Bulk ionic crystal
• Fully numerical approach

L.Nony et al., Phys. Rev. Lett. 103, 
036802 (2009)

• Tip termination: single metallic atom
• Sample: 2ML NaCl / Cu(111)
• Fully analytical approach

F.Bocquet et al., Phys.Rev.B 83, 035411 (2011)
Based upon the work by L.Gross et al. Science 
324, 1428 (2009)



SRE forces: influence of the polarization
67

� Atomistic force field including bias dependence (A. Foster): 



SRE forces: influence of the polarization
68

X

Y
Bias

� Force vs. Vbias at z = 4.5 Å:



SRE forces: influence of the polarization
69

X

Y
Bias

X

Y
Force

� Force vs. Vb at z = 4.5 Å:



SRE forces: influence of the polarization
70

� Bias modulation → both electronic & ionic polarization (ionic displacements)

� Self-consistent coupling between SRE & chemical forces

Ionic cores displacements



LCPD atomic-scale contrast
71

� nc-AFM/KPFM simulator:
� Cantilever: A0 = 8 nm p-p ; f0 = 150 kHz ; kc=30N/m ; Q = 30000

� FM-KPFM: VAC = 0.5 V;  fmod = 1 kHz  

� Scan speed : 1.5 s/line

0.56 V

Constant ∆∆∆∆f = - 47.22 Hz (zstart ~ 0.45 nm) Constant height: z = 0.45 nm

� Simultaneous atomic scale contrast in topography & CPD

� Contrast magnitude compliant with experimental data (30pm, 0.1V)

� Cross talk between topography & CPD when performing experiments at constant ∆f

0.87 V



Charge state of a single atom
72



Charge state of a single atom
73

SRE force

Polarizability for Gold: α=6.78Å3



Charge state of a single atom
74

Force →

∆f derived from the total force (LR+SR components, z = 5.1 Å, R = 50 Å)

Experimental data by L.Gross et al. Cross section derived from the model



Charge state of a single atom
75

Force →

∆f derived from the total force (LR+SR components, z = 5.8 Å, R = 50 Å)
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ConclusionConclusion



Take home message
77

Context: KPFM & nc-AFM in UHV, distance to the surface ~ < 1 nm, large 
amplitudes, metallic samples covered with a thin dielectric or bulk insulators

� Compensating electrostatic forces is required for high-resolution nc-AFM 
imaging → necessity for using KPFM 

� Technic adds further complexity to the experimental setup but…

� There is no obvious reason for choosing FM- rather than AM-KPFM mode so
far…

� The sign of the charges or the dipole orientation of the species trapped within
the capacitance which shift the CPD w.r.t. CPDref (background) is easy to 
determine

� BUT getting quantitative numbers out of the experimental data is difficult
(requires complex models) as the CPD is tip and distance dependent

� SRE forces yield a spatially-consistent map of the local CPD, but…
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