Exam

A number of different exercises is proposed. You do not need to try to solve them all.

Exercise 1 Let R be a relation on a set X, that is, a subset of X^{2}. Let R^{0} be the identity relation, that is, x is in relation with y, written $x R^{0} y$, if $x=y$. And let R^{n+1} be the composition of R and R^{n}. The composition of two relations R and S, written $R \circ S$, is the relation such that $x(R \circ S) y$ if there is z such that $x R z$ and $z R y$. Hence, $x R^{n} y(n>0)$ if there are $n-1$ intermediate elements x_{1}, \ldots, x_{n-1} such that $x R x_{1}, \ldots, x_{n-1} R y$. A relation S is reflexive if, for all x, $x S x$. A relation S is transitive if, for all $x, y, z, x S z$ whenever $x S y$ and $y S z$. Prove that:

1. $R^{+}=\bigcup_{i>0} R^{i}$ is transitive.
2. R^{+}is the smallest transitive relation containing R.
3. $R^{*}=\bigcup_{i \geq 0} R^{i}$ is transitive and reflexive.
4. R^{*} is the smallest transitive and reflexive relation containing R.
5. The function $f(X)=X \circ X$ is monotone, that is, $f(X) \subseteq f(Y)$ if $X \subseteq Y$.
6. R^{*} is a fixpoint of f, that is, $f\left(R^{*}\right)=R^{*}$.

Exercise 2 We consider the set of λ-terms $t=x|\lambda x t| t t$, where x is a variable taken in an infinite set \mathcal{X}. Let \rightarrow_{β} be the smallest relation such that:

- $(\lambda x t) u \rightarrow_{\beta} t\{x \mapsto u\}$, where $t\{x \mapsto u\}$ is the term obtained by replacing every free occurrence of x in t by u (and renaming bound variables if necessary)
- $\lambda x t \rightarrow_{\beta} \lambda x t^{\prime}$ if $t \rightarrow_{\beta} t^{\prime}$
- $t u \rightarrow_{\beta} t^{\prime} u$ if $t \rightarrow_{\beta} t^{\prime}$
- $t u \rightarrow_{\beta} t u^{\prime}$ if $u \rightarrow_{\beta} u^{\prime}$

Prove that:

1. β-reduction introduces no new variables: if $t \rightarrow_{\beta} t^{\prime}$, then $\mathrm{FV}\left(t^{\prime}\right) \subseteq \mathrm{FV}(t)$.
2. If $v \rightarrow_{\beta}^{*} v^{\prime}$, then $t\{y \mapsto v\} \rightarrow_{\beta}^{*} t\left\{y \mapsto v^{\prime}\right\}$.
3. \rightarrow_{β} is stable by substitution: if $t \rightarrow_{\beta} t^{\prime}$, then $t\{y \mapsto v\} \rightarrow_{\beta} t^{\prime}\{y \mapsto v\}$.
4. \rightarrow_{β} is locally confluent, that is, if $t \rightarrow_{\beta} u$ and $t \rightarrow_{\beta} v$, then there is w such that $u \rightarrow_{\beta}^{*} w$ and $v \rightarrow_{\beta}^{*} w$.

This last property means that, locally, the order in which we make β reductions is not important, since we can always find a common reduct. An important property of β-reduction is that it also holds globally: if $t \rightarrow_{\beta}^{*} u$ and $t \rightarrow_{\beta}^{*} v$, then there is w such that $u \rightarrow_{\beta}^{*} w$ and $v \rightarrow_{\beta}^{*} w$. Thus, β-reduction is in some sense deterministic: it can lead to only one result.

Exercise 3 Define a 2-tapes Turing machine ($\Sigma, Q, q_{i}, q_{f}, \delta$) computing the function $n \mapsto 2 n$, where Σ is the finite alphabet used by the machine with at least the symbols $\{\square, 0,1\}, Q$ is the finite set of states of the machine, q_{i} the initial state, q_{f} the final state, and δ is a partial function from $Q \times \Sigma^{2}$ to $Q \times \Sigma^{2} \times\{-1,0,+1\}$. To do this, you are free to introduce in Σ symbols different from $\{\square, 0,1\}$, and in Q states different from $\left\{q_{i}, q_{f}\right\}$. The machine starts in position 0 in state q_{i} with, on tape $1, \square$ followed by $n 1$'s and then 0 's, and on tape 2 , \square followed by 0 's. It must end in position 0 in state q_{f} with, on tape 2 , \square followed by $2 n$ 1's and then 0 's.

Exercise 4 We consider a set \mathcal{X} of variables, a set \mathcal{F} of function symbols and a set \mathcal{P} of predicate symbols. We assume that every (function or predicate) symbol f is equipped with an arity $\alpha_{\mathrm{f}} \in \mathbb{N}$, that is, in a term of the form $\mathrm{f}\left(t_{1}, \ldots, t_{n}\right)$, we always have $n=\alpha_{\mathrm{f}}$. A model is given by a set A and, for each function symbol f of arity n, a function $\mathrm{f}_{A}: A^{n} \rightarrow A$ and, for each predicate symbol P of arity n, a function $\mathrm{P}_{A}: A^{n} \rightarrow$ Bool where Bool $=\{$ true, false $\}$. Then, given a finite valuation $\mu: \mathcal{X} \rightarrow A$, the interpretation of a formula ϕ, written $\llbracket \phi \rrbracket_{\mu}$, is defined as follows:

- $\llbracket x \rrbracket_{\mu}=\mu(x)$
- $\llbracket \mathrm{f}\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\mu}=\mathrm{f}_{A}\left(\llbracket t_{1} \rrbracket_{\mu}, \ldots, \llbracket t_{n} \rrbracket_{\mu}\right)$
- $\llbracket \mathrm{P}\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\mu}=\mathrm{P}_{A}\left(\llbracket t_{1} \rrbracket_{\mu}, \ldots, \llbracket t_{n} \rrbracket_{\mu}\right)$
- $\llbracket \perp \rrbracket_{\mu}=$ false
- $\llbracket \neg \phi \rrbracket_{\mu}=\operatorname{not}\left(\llbracket \phi \rrbracket_{\mu}\right)$
- $\llbracket \phi \vee \psi \rrbracket_{\mu}=\operatorname{or}\left(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu}\right)$
- $\llbracket \phi \wedge \psi \rrbracket_{\mu}=\operatorname{and}\left(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu}\right)$
- $\llbracket \phi \Rightarrow \psi \rrbracket_{\mu}=\operatorname{impl}\left(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu}\right)$
- $\llbracket \forall x \phi \rrbracket_{\mu}=$ forall $\left(\left\{\llbracket \phi \rrbracket_{\mu \cup\{x, a\}} \mid a \in A\right\}\right)$ if $x \notin \operatorname{dom}(\mu)$
- $\llbracket \exists x \phi \rrbracket_{\mu}=\operatorname{exists}\left(\left\{\llbracket \phi \rrbracket_{\mu \cup\{x, a\}} \mid a \in A\right\}\right)$ if $x \notin \operatorname{dom}(\mu)$
where $\operatorname{dom}(\mu)$ is the set of variables on which μ is defined, the boolean functions not, or, ... are defined as usual, and forall, exists : $\mathcal{P}($ Bool $) \rightarrow$ Bool are defined as follows:
- forall $(S)=$ true iff false $\notin S$
- exists $(S)=$ true iff true $\in S$

The universal closure of a formula ϕ with free variables x_{1}, \ldots, x_{n} is $\bar{\forall} \phi=$ $\forall x_{1} \ldots \forall x_{n} \phi$. A formula ϕ is valid if, in every model $A, \llbracket \bar{\forall} \phi \rrbracket=$ true.

Let the provability relation \vdash be the smallest relation on pairs (Γ, ϕ) where Γ is a finite set of formulas (the assumptions) and ϕ a formula, such that:

$$
\begin{aligned}
& \text { (axiom) } \frac{\phi \in \Gamma}{\Gamma \vdash \phi} \\
& \text { (} \perp \text {-elim) } \frac{\Gamma \vdash \perp}{\Gamma \vdash \phi} \\
& \left(\Rightarrow \text {-intro) } \frac{\Gamma \cup\{\phi\} \vdash \psi}{\Gamma \vdash \phi \Rightarrow \psi}\right. \\
& (\Rightarrow-\mathrm{elim}) \frac{\Gamma \vdash \phi \Rightarrow \psi \quad \Gamma \vdash \phi}{\Gamma \vdash \psi} \\
& (\wedge \text {-intro }) \frac{\Gamma \vdash \phi \quad \Gamma \vdash \psi}{\Gamma \vdash \phi \wedge \psi} \\
& (\wedge \text {-elim-left }) \frac{\Gamma \vdash \phi \wedge \psi}{\Gamma \vdash \phi} \\
& \text { (} \wedge \text {-elim-right) } \frac{\Gamma \vdash \phi \wedge \psi}{\Gamma \vdash \psi} \\
& (\vee \text {-intro-left }) \frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \vee \psi} \\
& \text { (V-intro-right) } \frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \vee \psi} \\
& (\vee \text {-elim }) \frac{\Gamma \vdash \phi \vee \psi \quad \Gamma \cup\{\phi\} \vdash \chi \quad \Gamma \cup\{\psi\} \vdash \chi}{\Gamma \vdash \chi} \\
& \text { (} \forall \text {-intro) } \frac{\Gamma \vdash \phi \quad x \notin \mathrm{FV}(\Gamma)}{\Gamma \vdash \forall x \phi} \\
& (\forall \text {-elim }) \frac{\Gamma \vdash \forall x \phi}{\Gamma \vdash \phi\{x \mapsto t\}}
\end{aligned}
$$

$$
\begin{aligned}
(\exists \text {-intro }) & \frac{\Gamma \vdash \phi\{x \mapsto t\}}{\Gamma \vdash \exists x \phi} \\
(\exists-\mathrm{elim}) & \frac{\Gamma \vdash \exists x \phi \quad \Gamma \cup\{\phi\} \vdash \chi \quad x \notin \mathrm{FV}(\Gamma) \cup \mathrm{FV}(\chi)}{\Gamma \vdash \chi}
\end{aligned}
$$

(EM) $\Gamma \vdash \phi \vee \neg \phi$
Prove that the provability relation is correct, that is, in every model A, if $\Gamma \vdash \phi$ and $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$, then $\phi_{1} \wedge \ldots \wedge \phi_{n} \Rightarrow \phi$ is valid.

