Exam

A number of different exercises is proposed. You do not need to try to solve them all.

Exercise 1 Let R be a relation on a set X, that is, a subset of X^2 . Let R^0 be the identity relation, that is, x is in relation with y, written xR^0y , if x = y. And let R^{n+1} be the composition of R and R^n . The composition of two relations R and S, written $R \circ S$, is the relation such that $x(R \circ S)y$ if there is z such that xRz and zRy. Hence, xR^ny (n > 0) if there are n - 1 intermediate elements x_1, \ldots, x_{n-1} such that $xRx_1, \ldots, x_{n-1}Ry$. A relation S is reflexive if, for all x, xSx. A relation S is transitive if, for all x, y, z, xSz whenever xSy and ySz. Prove that:

- 1. $R^+ = \bigcup_{i>0} R^i$ is transitive.
- 2. R^+ is the smallest transitive relation containing R.
- 3. $R^* = \bigcup_{i>0} R^i$ is transitive and reflexive.
- 4. R^* is the smallest transitive and reflexive relation containing R.
- 5. The function $f(X) = X \circ X$ is monotone, that is, $f(X) \subseteq f(Y)$ if $X \subseteq Y$.
- 6. R^* is a fixpoint of f, that is, $f(R^*) = R^*$.

Exercise 2 We consider the set of λ -terms $t = x \mid \lambda xt \mid tt$, where x is a variable taken in an infinite set \mathcal{X} . Let \rightarrow_{β} be the smallest relation such that:

- $(\lambda xt)u \rightarrow_{\beta} t\{x \mapsto u\}$, where $t\{x \mapsto u\}$ is the term obtained by replacing every free occurrence of x in t by u (and renaming bound variables if necessary)
- $\lambda xt \rightarrow_{\beta} \lambda xt'$ if $t \rightarrow_{\beta} t'$
- $tu \rightarrow_{\beta} t'u$ if $t \rightarrow_{\beta} t'$
- $tu \rightarrow_{\beta} tu'$ if $u \rightarrow_{\beta} u'$

Prove that:

- 1. β -reduction introduces no new variables: if $t \to_{\beta} t'$, then $FV(t') \subseteq FV(t)$.
- 2. If $v \to_{\beta}^{*} v'$, then $t\{y \mapsto v\} \to_{\beta}^{*} t\{y \mapsto v'\}$.

- 3. \rightarrow_{β} is stable by substitution: if $t \rightarrow_{\beta} t'$, then $t\{y \mapsto v\} \rightarrow_{\beta} t'\{y \mapsto v\}$.
- 4. \rightarrow_{β} is locally confluent, that is, if $t \rightarrow_{\beta} u$ and $t \rightarrow_{\beta} v$, then there is w such that $u \rightarrow^*_{\beta} w$ and $v \rightarrow^*_{\beta} w$.

This last property means that, locally, the order in which we make β -reductions is not important, since we can always find a common reduct. An important property of β -reduction is that it also holds globally: if $t \to_{\beta}^{*} u$ and $t \to_{\beta}^{*} v$, then there is w such that $u \to_{\beta}^{*} w$ and $v \to_{\beta}^{*} w$. Thus, β -reduction is in some sense deterministic: it can lead to only one result.

Exercise 3 Define a 2-tapes Turing machine $(\Sigma, Q, q_i, q_f, \delta)$ computing the function $n \mapsto 2n$, where Σ is the finite alphabet used by the machine with at least the symbols $\{\Box, 0, 1\}$, Q is the finite set of states of the machine, q_i the initial state, q_f the final state, and δ is a partial function from $Q \times \Sigma^2$ to $Q \times \Sigma^2 \times \{-1, 0, +1\}$. To do this, you are free to introduce in Σ symbols different from $\{\Box, 0, 1\}$, and in Q states different from $\{q_i, q_f\}$. The machine starts in position 0 in state q_i with, on tape 1, \Box followed by n 1's and then 0's, and on tape 2, \Box followed by 0's. It must end in position 0 in state q_f with, on tape 2, \Box followed by 2n 1's and then 0's.

Exercise 4 We consider a set \mathcal{X} of variables, a set \mathcal{F} of function symbols and a set \mathcal{P} of predicate symbols. We assume that every (function or predicate) symbol f is equipped with an arity $\alpha_{f} \in \mathbb{N}$, that is, in a term of the form $f(t_1, \ldots, t_n)$, we always have $n = \alpha_{f}$. A model is given by a set A and, for each function symbol f of arity n, a function $f_A : A^n \to A$ and, for each predicate symbol P of arity n, a function $P_A : A^n \to \text{Bool}$ where $\text{Bool} = \{\text{true}, \text{false}\}$. Then, given a finite valuation $\mu : \mathcal{X} \to A$, the interpretation of a formula ϕ , written $[\![\phi]\!]_{\mu}$, is defined as follows:

- $\llbracket x \rrbracket_{\mu} = \mu(x)$
- $\llbracket f(t_1, ..., t_n) \rrbracket_{\mu} = f_A(\llbracket t_1 \rrbracket_{\mu}, ..., \llbracket t_n \rrbracket_{\mu})$
- $[\![\mathsf{P}(t_1,\ldots,t_n)]\!]_{\mu} = \mathsf{P}_A([\![t_1]\!]_{\mu},\ldots,[\![t_n]\!]_{\mu})$
- $\llbracket \bot \rrbracket_{\mu} = \mathsf{false}$
- $\llbracket \neg \phi \rrbracket_{\mu} = \operatorname{not}(\llbracket \phi \rrbracket_{\mu})$
- $\llbracket \phi \lor \psi \rrbracket_{\mu} = \operatorname{or}(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu})$
- $\llbracket \phi \land \psi \rrbracket_{\mu} = \operatorname{and}(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu})$
- $\llbracket \phi \Rightarrow \psi \rrbracket_{\mu} = \operatorname{impl}(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu})$
- $\llbracket \forall x \phi \rrbracket_{\mu} = \mathsf{forall}(\{\llbracket \phi \rrbracket_{\mu \cup \{x,a\}} \mid a \in A\}) \text{ if } x \notin \mathrm{dom}(\mu)$
- $\llbracket \exists x \phi \rrbracket_{\mu} = \text{exists}(\{\llbracket \phi \rrbracket_{\mu \cup \{x,a\}} \mid a \in A\}) \text{ if } x \notin \text{dom}(\mu)$

where dom(μ) is the set of variables on which μ is defined, the boolean functions not, or, ... are defined as usual, and forall, exists : $\mathcal{P}(\mathsf{Bool}) \to \mathsf{Bool}$ are defined as follows:

- forall(S) = true iff false $\notin S$
- exists(S) = true iff true $\in S$

The universal closure of a formula ϕ with free variables x_1, \ldots, x_n is $\overline{\forall} \phi = \forall x_1 \ldots \forall x_n \phi$. A formula ϕ is *valid* if, in every model A, $[\![\overline{\forall} \phi]\!] = \mathsf{true}$.

Let the provability relation \vdash be the smallest relation on pairs (Γ, ϕ) where Γ is a finite set of formulas (the assumptions) and ϕ a formula, such that:

$$\begin{array}{l} (\operatorname{axiom}) \quad \frac{\phi \in \Gamma}{\Gamma \vdash \phi} \\ (\bot \operatorname{-elim}) \quad \frac{\Gamma \vdash \bot}{\Gamma \vdash \phi} \\ (\Rightarrow \operatorname{-intro}) \quad \frac{\Gamma \cup \{\phi\} \vdash \psi}{\Gamma \vdash \phi \Rightarrow \psi} \\ (\Rightarrow \operatorname{-elim}) \quad \frac{\Gamma \vdash \phi \Rightarrow \psi \quad \Gamma \vdash \phi}{\Gamma \vdash \psi} \\ (\land \operatorname{-intro}) \quad \frac{\Gamma \vdash \phi \quad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi} \\ (\land \operatorname{-elim-left}) \quad \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi} \\ (\land \operatorname{-elim-right}) \quad \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} \\ (\lor \operatorname{-intro-left}) \quad \frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \lor \psi} \\ (\lor \operatorname{-intro-right}) \quad \frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \lor \psi} \\ (\lor \operatorname{-intro-right}) \quad \frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \lor \psi} \\ (\lor \operatorname{-elim}) \quad \frac{\Gamma \vdash \phi \lor \psi}{\Gamma \vdash \phi \lor \psi} \\ (\forall \operatorname{-elim}) \quad \frac{\Gamma \vdash \phi \lor x \notin \Gamma \cup \{\phi\} \vdash \chi \quad \Gamma \cup \{\psi\} \vdash \chi}{\Gamma \vdash \forall x \phi} \\ (\forall \operatorname{-elim}) \quad \frac{\Gamma \vdash \forall x \phi}{\Gamma \vdash \forall x \phi} \\ (\forall \operatorname{-elim}) \quad \frac{\Gamma \vdash \forall x \phi}{\Gamma \vdash \phi \lbrace x \mapsto t \rbrace} \end{array}$$

$$\begin{array}{l} (\exists \text{-intro}) & \frac{\Gamma \vdash \phi\{x \mapsto t\}}{\Gamma \vdash \exists x \phi} \\ (\exists \text{-elim}) & \frac{\Gamma \vdash \exists x \phi \quad \Gamma \cup \{\phi\} \vdash \chi \quad x \notin \mathrm{FV}(\Gamma) \cup \mathrm{FV}(\chi)}{\Gamma \vdash \chi} \\ (\mathrm{EM}) & \Gamma \vdash \phi \lor \neg \phi \end{array}$$

Prove that the provability relation is correct, that is, in every model A, if $\Gamma \vdash \phi$ and $\Gamma = \{\phi_1, \ldots, \phi_n\}$, then $\phi_1 \land \ldots \land \phi_n \Rightarrow \phi$ is valid.