Exam

A number of different exercises is proposed. You do not need to try to solve
them all.

Exercise 1 Let R be a relation on a set X, that is, a subset of X2. Let R° be
the identity relation, that is, « is in relation with y, written 2 R%y, if x = y. And
let R™*! be the composition of R and R™. The composition of two relations R
and S, written Ro S, is the relation such that (R o S)y if there is z such that
xRz and zRy. Hence, xR™y (n > 0) if there are n — 1 intermediate elements
Z1,...,Tn_1 such that xRz, ..., 2,1 Ry. A relation S is reflexive if, for all z,
xSz. A relation S is transitive if, for all z,y, z, Sz whenever Sy and yS=z.
Prove that:

1. RT =J,5o R is transitive.
2. RT is the smallest transitive relation containing R.

R* = ;5 R is transitive and reflexive.

L

R* is the smallest transitive and reflexive relation containing R.

o

The function f(X) = X o X is monotone, that is, f(X) C f(Y)if X CY.
6. R* is a fixpoint of f, that is, f(R*) = R*.
Proof.

1. Assume that zRTy and yRTz. Then, there are ¢ and j such that xR’y and
yR/z. Thus, xRz and zR* 2.

2. Let S be a transitive relation containing R. We prove by induction on ¢ > 1
that R’ is included in S. For i = 1, we have R* = R C S by assumption.
Assume now that R C S and that 2R*T1z. Then, there is y such that xRy
and yR'z. Since R C S and R’ C S, we have xSy and ySz. Since S is
transitive, we have £5z. Thus, R**! C S.

3. For transitivity, the proof is the same as in 1. R* is reflexive since it includes
RO.

4. As in 2 except that ¢ > 0. In the case i = 0, R C S since S is reflexive.

5. Assume that aX?c. Then, there is b such that aXb and bXc. Since X C Y,
we have aY'b and bYc. Thus, aY 2c.



6. We first prove that f(R*) C R*. Let (x,z) € f(R*). Then, there is y such
that xR*y and yR*z. Since R* is transitive, zR*2. We now prove that
R* C f(R*). Assume that zR*y. Since R* is reflexive, we have xR*zR*y
and (z,y) € f(R").

Exercise 2 We consider the set of A-terms ¢t = x | Azt | tt, where z is a variable
taken in an infinite set X'. Let —3 be the smallest relation such that:

o (\xt)u —g t{x — u}, where t{z — u} is the term obtained by replacing every
free occurrence of x in ¢ by u (and renaming bound variables if necessary)

o Mt =g Axt' if t —pt
o tu—gtuift —gt
o tu—gtu if u—pgu
Prove that:
1. B-reduction introduces no new variables: if ¢ —5 ¢/, then FV(¢') C FV(¢).

2. If v =% o', then t{y — v} =5 t{y = v’}

w

. —a is stable by substitution: if ¢ = ¢/, then t{y — v} =5 t'{y — v}.

N

. —g is locally confluent, that is, if ¢ =+ v and t —3 v, then there is w such
that u —hw and v -5 w.

This last property means that, locally, the order in which we make (-
reductions is not important, since we can always find a common reduct. An
important property of S-reduction is that it also holds globally: if ¢ —% u and
t —7% v, then there is w such that u —% w and v —§ w. Thus, [S-reduction is in
some sense deterministic: it can lead to only one result.

Proof.
1. We proceed by induction on the definition of — 4.

e Case (A\xt)u —g t{x — u}. We have FV((Azt)u) = (FV(t) — {z}) UFV(u).
By renaming, we can assume that « ¢ FV(u). Let y € FV(¢t{x — u}. Either
y € FV(u) and we are done, or y € FV(t). But y # « since « ¢ FV(u) and
every occurrence of z is replaced by u. Therefore, y € FV((Azt)u).

e Case Azt —p Axt’ since t —p t'. We have FV(A\xt) = FV(¢) — {z} and
FV(Axt') = FV(t') — {z}. And by induction hypothesis, we have FV(¢') C
FV(t). Therefore, FV(Azt') C FV(Axt).

e Case tu —g t'u since t —g t'. We have FV(tu) = FV(¢) UFV(u) and
FV(t'u) = FV(t') UFV(u). By induction hypothesis, FV(t') C FV(tu).
therefore, FV(t'u) C FV(tu).

e Case tu —g tu’ since u —g /. Similar to previous case.



2. Let 0 = {y— v} and ¢’ = {y — v'}. We proceed by induction on ¢.

Case t = y. Then, toc = v and to’ = v'. Thus, to —% to’.

Case t € X — {y}. Then, to =z = to’. Thus, to =} to'.

Case t = Azu. By renaming, we can assume that x ¢ {y} UFV(v). After
property 1, ¢ FV(v'). Hence, to = Az(uo) and to’ = Ax(uc’). By
induction hypothesis, uoc — g uo’. Therefore, to —7 to’.

Case t = ab. Then, to = (ao)(bo) and to’ = (ac’)(bo’). By induction
hypothesis, ac —7 ao’ and bo —}% bo’. Therefore, to —7% (ac’)(bo) and
(ac’)(bo) —7% (ac’)(bo’). Since —7% is transitive, to —7 to’.

3. Let 0 = {y — v}. We proceed by induction on the definition of — 4.

Case (Azt)u —p t{x — u}. By renaming, we can assume that « ¢ {y} U
FV(v) UFV(u). Hence, we have ((Azt)u)o = (Az(to))(uo) and (t{z —
u})o = (to){x — wo} (can be proved by induction on t). Therefore,
(Azt)u)o —p (tH{z — u})o.

Case Azt —g Axt’ since t —5 t/. By renaming, we can assume that = ¢
{y} UFV(v). Hence, we have (Azt)o = Az(to) and (Azt')o = Az(t'0). By
induction hypothesis, to — g t'o. Therefore, (Axt)o — 5 (Azt’)o.

Case tu —g t'u since t —g t'. We have (tu)o = (to)(uo) and (t'u)o =
(to)(uo). By induction hypothesis, to —3 t'o. Therefore, (tu)o —g
(t'u)o.

Case tu — tu’ since u —4 «'. Similar to previous case.

. We proceed by induction on the definition of ¢t =3 u, and by case on t =3 v.

Case t = (Aza)b and u = a{z — b}.
— Case v = u. Then, it suffices to take w = v = wu.

— Case v = (Aza’)b and @ —p a'. Then, take w = a/{z — b}. We have
u —3 w by property 3. And we have v =3 w by definition of —4.

— Case v = (Aza)b' and b —g b'. Then, take w = a{z — b'}. We have
u — w by property 2. And we have v =3 w by definition of —4.

Case t = Aza, v = A\za’ and a —g a/. Then, v = Azc and a —3 ¢. By

induction hypothesis, there is d such that o’ —sdand ¢ =5 d. Therefore,

by taking w = Azd, we have u —j5 w and v —j w.

Caset =ab, u=a'band a =3 d’.

— Case v = ac and a —g c. By induction hypothesis, there is d such that
a’ —% d and ¢ —% d. Therefore, by taking w = db, we have u —7 w and
v =% w.

— Case v = al/ and b —3 b'. Then, by taking w = a'b’, we have u =g w
and v —g w.

Case tu — tu' since u —4 «'. Similar to previous case.



Exercise 3 Define a 2-tapes Turing machine (3,Q,¢;,qf,6) computing the
function n — 2n, where X is the finite alphabet used by the machine with
at least the symbols {{J,0,1}, @ is the finite set of states of the machine, ¢;
the initial state, ¢y the final state, and 4 is a partial function from @ x X2 to
Qx¥%2x{~1,0,+1}. To do this, you are free to introduce in ¥ symbols different
from {0J,0,1}, and in @ states different from {g;,qs}. The machine starts in
position 0 in state ¢; with, on tape 1, O followed by n 1’s and then 0’s, and on
tape 2, O followed by 0’s. It must end in position 0 in state g with, on tape 2,
O followed by 2n 1’s and then 0’s.

Proof. One possibility is to use a new symbol m to mark where we stopped
and, for each 1 on tape 1, replace 1 by m on tape 1 and replace m on tape 2 by
two 1’s. We will also introduce new states as needed.

We first add an m in position 1 in tape 2 by the rules (z denotes the letter
on tape 1, and y the letter on tape 2, where letters belong to ¥ = {[0,0,1,m}):

o (QZal‘y) — (QO,my, 1)
L4 <QOa xy) — <Q1a xm, 0)

We then parse tape 1 until a 0 or a 1 is reached. If we reach a 0, then we go
back to position 0 and stop:

* (q1,0y) = (g2, 0y, —1)
o (q27 my) — (q2a my, _1)
o (CI27 Dy) — (Qf7 Dya O)

If we reach a 1, then we replace it by m, go back to position 0:

(Q1a 1y) — (Q3a my, _1)

(Q?n my) — (q3a my, _1)
L4 <Q3a Dy) — (Q47 Dya 1)

add two 1’s at the end of tape 2, and go back to position 0 to start again on
state q1:

A Q47$1) (q4ax1a1)

q4,xm) (Q57$171)

(
(
* (gs5,2y) = (g6, 71, —1)
(
(

q67x1) (q67x1a_1)

QG7x|:|) (Q17x|j71)



Exercise 4 We consider a set X of variables, a set F of function symbols and
a set P of predicate symbols. We assume that every (function or predicate)
symbol f is equipped with an arity af € N, that is, in a term of the form
f(t1,...,t,), we always have n = a5. A model is given by a set A and, for each
function symbol f of arity n, a function f4 : A™ — A and, for each predicate
symbol P of arity n, a function P4 : A™ — Bool where Bool = {true, false}.
Then, given a finite valuation p : X — A, the interpretation of a formula ¢,
written [¢],, is defined as follows:

o [z], = p(z)

o [f(t1,....tn)]p =Ffa(ltaly, -, [tnln)

o [P(t1,....tn)]u =Pallta]p - - [tnl)

o [L], = false

o [=9], = not([¢],)

o [oV]u=or([8] [¥]0)

o [6A Y] = and([9],, [¥],)

o [¢= ¢lu = impl([0],, [¥],)

o [Vz¢l, = forall({[¢luu(w,ay | @ € A}) if 2 ¢ dom(p)
o [Fz¢]y = exists({[#] uuiz,a) | @ € A}) if 2 & dom(p)

where dom(u) is the set of variables on which p is defined, the boolean functions
not, or, ...are defined as usual, and forall, exists : P(Bool) — Bool are defined
as follows:

o forall(S) = true iff false ¢ S
o exists(S) = true iff true € S

The universal closure of a formula ¢ with free variables x1,...,z, is V¢ =
Vzy...Vo,¢. A formula ¢ is valid if, in every model A, [V¢] = true.

Let the provability relation F be the smallest relation on pairs (T', ¢) where
T is a finite set of formulas (the assumptions) and ¢ a formula, such that:
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Prove that the provability relation is correct, that is, in every model A, if
F'F¢and T = {¢1,...,d,}, then &1 A ... A ¢, = ¢ is valid.

Proof. We proceed by induction on the definition of F. Let T = {¢1, ..., d,}.
In the following, we identity I and the formula ¢; A ... A ¢,. Let A be a model
and £ a valuation such that dom(p) € FV(I') and [I'], = true.

(A-intro) We have [¢ A o] = and([¢],, [¢],). By induction hypothesis, [¢], = true
and [¢],, = true. Therefore, [¢ A )] = true.

(A-elim-left) By induction hypothesis, we have [¢ A 9], = and([¢] ., [¢],) = true. There-
fore, [¢], = true.

(A-elim-right) Similar.



(V-intro) We have [Vz¢], = forall({[¢].ufz,ay | @ € A}). But, for all a € A, by
induction hypothesis, we have [¢],u(z,a} = true. Therefore, [Vz¢], = true.

(V-elim) By induction hypothesis, we have [Va¢] = forall({[#] ,u{z.0} | @ € A}) = true.
Therefore, by definition of forall, we have [¢p{z — t}], = true since [¢p{z —
t}, = [9]uufzsay Where a = [t],, (can be proved by induction on ¢).



