Exam

A number of different exercises is proposed. You do not need to try to solve them all.

Exercise 1 Let R be a relation on a set X, that is, a subset of X^2 . Let R^0 be the identity relation, that is, x is in relation with y, written xR^0y , if x=y. And let R^{n+1} be the composition of R and R^n . The composition of two relations R and S, written $R \circ S$, is the relation such that $x(R \circ S)y$ if there is z such that xRz and zRy. Hence, xR^ny (n > 0) if there are n-1 intermediate elements x_1, \ldots, x_{n-1} such that $xRx_1, \ldots, x_{n-1}Ry$. A relation S is reflexive if, for all x, xSx. A relation S is transitive if, for all x, y, z, xSz whenever xSy and ySz. Prove that:

- 1. $R^+ = \bigcup_{i>0} R^i$ is transitive.
- 2. R^+ is the smallest transitive relation containing R.
- 3. $R^* = \bigcup_{i>0} R^i$ is transitive and reflexive.
- 4. R^* is the smallest transitive and reflexive relation containing R.
- 5. The function $f(X) = X \circ X$ is monotone, that is, $f(X) \subseteq f(Y)$ if $X \subseteq Y$.
- 6. R^* is a fixpoint of f, that is, $f(R^*) = R^*$.

Proof.

- 1. Assume that xR^+y and yR^+z . Then, there are i and j such that xR^iy and yR^jz . Thus, $xR^{i+j}z$ and xR^+z .
- 2. Let S be a transitive relation containing R. We prove by induction on $i \ge 1$ that R^i is included in S. For i = 1, we have $R^1 = R \subseteq S$ by assumption. Assume now that $R^i \subseteq S$ and that $xR^{i+1}z$. Then, there is y such that xRy and yR^iz . Since $R \subseteq S$ and $R^i \subseteq S$, we have xSy and ySz. Since S is transitive, we have xSz. Thus, $R^{i+1} \subseteq S$.
- 3. For transitivity, the proof is the same as in 1. R^* is reflexive since it includes R^0 .
- 4. As in 2 except that $i \geq 0$. In the case $i = 0, R^0 \subseteq S$ since S is reflexive.
- 5. Assume that aX^2c . Then, there is b such that aXb and bXc. Since $X \subseteq Y$, we have aYb and bYc. Thus, aY^2c .

6. We first prove that $f(R^*) \subseteq R^*$. Let $(x, z) \in f(R^*)$. Then, there is y such that xR^*y and yR^*z . Since R^* is transitive, xR^*z . We now prove that $R^* \subseteq f(R^*)$. Assume that xR^*y . Since R^* is reflexive, we have xR^*xR^*y and $(x, y) \in f(R^*)$.

Exercise 2 We consider the set of λ -terms $t = x \mid \lambda xt \mid tt$, where x is a variable taken in an infinite set \mathcal{X} . Let \rightarrow_{β} be the smallest relation such that:

- $(\lambda xt)u \to_{\beta} t\{x \mapsto u\}$, where $t\{x \mapsto u\}$ is the term obtained by replacing every free occurrence of x in t by u (and renaming bound variables if necessary)
- $\lambda xt \to_{\beta} \lambda xt'$ if $t \to_{\beta} t'$
- $tu \rightarrow_{\beta} t'u$ if $t \rightarrow_{\beta} t'$
- $tu \rightarrow_{\beta} tu'$ if $u \rightarrow_{\beta} u'$

Prove that:

- 1. β -reduction introduces no new variables: if $t \to_{\beta} t'$, then $FV(t') \subseteq FV(t)$.
- 2. If $v \to_{\beta}^* v'$, then $t\{y \mapsto v\} \to_{\beta}^* t\{y \mapsto v'\}$.
- 3. \rightarrow_{β} is stable by substitution: if $t \rightarrow_{\beta} t'$, then $t\{y \mapsto v\} \rightarrow_{\beta} t'\{y \mapsto v\}$.
- 4. \rightarrow_{β} is locally confluent, that is, if $t \rightarrow_{\beta} u$ and $t \rightarrow_{\beta} v$, then there is w such that $u \rightarrow_{\beta}^* w$ and $v \rightarrow_{\beta}^* w$.

This last property means that, locally, the order in which we make β -reductions is not important, since we can always find a common reduct. An important property of β -reduction is that it also holds globally: if $t \to_{\beta}^* u$ and $t \to_{\beta}^* v$, then there is w such that $u \to_{\beta}^* w$ and $v \to_{\beta}^* w$. Thus, β -reduction is in some sense deterministic: it can lead to only one result.

Proof.

- 1. We proceed by induction on the definition of \rightarrow_{β} .
 - Case $(\lambda xt)u \to_{\beta} t\{x \mapsto u\}$. We have $\mathrm{FV}((\lambda xt)u) = (\mathrm{FV}(t) \{x\}) \cup \mathrm{FV}(u)$. By renaming, we can assume that $x \notin \mathrm{FV}(u)$. Let $y \in \mathrm{FV}(t\{x \mapsto u\})$. Either $y \in \mathrm{FV}(u)$ and we are done, or $y \in \mathrm{FV}(t)$. But $y \neq x$ since $x \notin \mathrm{FV}(u)$ and every occurrence of x is replaced by u. Therefore, $y \in \mathrm{FV}((\lambda xt)u)$.
 - Case $\lambda xt \to_{\beta} \lambda xt'$ since $t \to_{\beta} t'$. We have $FV(\lambda xt) = FV(t) \{x\}$ and $FV(\lambda xt') = FV(t') \{x\}$. And by induction hypothesis, we have $FV(t') \subseteq FV(t)$. Therefore, $FV(\lambda xt') \subseteq FV(\lambda xt)$.
 - Case $tu \to_{\beta} t'u$ since $t \to_{\beta} t'$. We have $FV(tu) = FV(t) \cup FV(u)$ and $FV(t'u) = FV(t') \cup FV(u)$. By induction hypothesis, $FV(t') \subseteq FV(tu)$. therefore, $FV(t'u) \subseteq FV(tu)$.
 - Case $tu \to_{\beta} tu'$ since $u \to_{\beta} u'$. Similar to previous case.

- 2. Let $\sigma = \{y \mapsto v\}$ and $\sigma' = \{y \mapsto v'\}$. We proceed by induction on t.
 - Case t = y. Then, $t\sigma = v$ and $t\sigma' = v'$. Thus, $t\sigma \to_{\beta}^* t\sigma'$.
 - Case $t \in \mathcal{X} \{y\}$. Then, $t\sigma = x = t\sigma'$. Thus, $t\sigma \to_{\beta}^* t\sigma'$.
 - Case $t = \lambda xu$. By renaming, we can assume that $x \notin \{y\} \cup FV(v)$. After property 1, $x \notin FV(v')$. Hence, $t\sigma = \lambda x(u\sigma)$ and $t\sigma' = \lambda x(u\sigma')$. By induction hypothesis, $u\sigma \to_{\beta} u\sigma'$. Therefore, $t\sigma \to_{\beta}^* t\sigma'$.
 - Case t = ab. Then, $t\sigma = (a\sigma)(b\sigma)$ and $t\sigma' = (a\sigma')(b\sigma')$. By induction hypothesis, $a\sigma \to_{\beta}^* a\sigma'$ and $b\sigma \to_{\beta}^* b\sigma'$. Therefore, $t\sigma \to_{\beta}^* (a\sigma')(b\sigma)$ and $(a\sigma')(b\sigma) \to_{\beta}^* (a\sigma')(b\sigma')$. Since \to_{β}^* is transitive, $t\sigma \to_{\beta}^* t\sigma'$.
- 3. Let $\sigma = \{y \mapsto v\}$. We proceed by induction on the definition of \rightarrow_{β} .
 - Case $(\lambda xt)u \to_{\beta} t\{x \mapsto u\}$. By renaming, we can assume that $x \notin \{y\} \cup FV(v) \cup FV(u)$. Hence, we have $((\lambda xt)u)\sigma = (\lambda x(t\sigma))(u\sigma)$ and $(t\{x \mapsto u\})\sigma = (t\sigma)\{x \mapsto u\sigma\}$ (can be proved by induction on t). Therefore, $((\lambda xt)u)\sigma \to_{\beta} (t\{x \mapsto u\})\sigma$.
 - Case $\lambda xt \to_{\beta} \lambda xt'$ since $t \to_{\beta} t'$. By renaming, we can assume that $x \notin \{y\} \cup FV(v)$. Hence, we have $(\lambda xt)\sigma = \lambda x(t\sigma)$ and $(\lambda xt')\sigma = \lambda x(t'\sigma)$. By induction hypothesis, $t\sigma \to_{\beta} t'\sigma$. Therefore, $(\lambda xt)\sigma \to_{\beta} (\lambda xt')\sigma$.
 - Case $tu \to_{\beta} t'u$ since $t \to_{\beta} t'$. We have $(tu)\sigma = (t\sigma)(u\sigma)$ and $(t'u)\sigma = (t'\sigma)(u\sigma)$. By induction hypothesis, $t\sigma \to_{\beta} t'\sigma$. Therefore, $(tu)\sigma \to_{\beta} (t'u)\sigma$.
 - Case $tu \to_{\beta} tu'$ since $u \to_{\beta} u'$. Similar to previous case.
- 4. We proceed by induction on the definition of $t \to_{\beta} u$, and by case on $t \to_{\beta} v$.
 - Case $t = (\lambda xa)b$ and $u = a\{x \mapsto b\}$.
 - Case v = u. Then, it suffices to take w = v = u.
 - Case $v = (\lambda x a')b$ and $a \to_{\beta} a'$. Then, take $w = a'\{x \mapsto b\}$. We have $u \to_{\beta} w$ by property 3. And we have $v \to_{\beta} w$ by definition of \to_{β} .
 - Case $v = (\lambda x a)b'$ and $b \to_{\beta} b'$. Then, take $w = a\{x \mapsto b'\}$. We have $u \to_{\beta}^* w$ by property 2. And we have $v \to_{\beta} w$ by definition of \to_{β} .
 - Case $t = \lambda xa$, $u = \lambda xa'$ and $a \to_{\beta} a'$. Then, $v = \lambda xc$ and $a \to_{\beta} c$. By induction hypothesis, there is d such that $a' \to_{\beta}^* d$ and $c \to_{\beta}^* d$. Therefore, by taking $w = \lambda xd$, we have $u \to_{\beta}^* w$ and $v \to_{\beta}^* w$.
 - Case t = ab, u = a'b and $a \to_{\beta} a'$.
 - Case v = ac and $a \to_{\beta} c$. By induction hypothesis, there is d such that $a' \to_{\beta}^* d$ and $c \to_{\beta}^* d$. Therefore, by taking w = db, we have $u \to_{\beta}^* w$ and $v \to_{\beta}^* w$.
 - Case v=ab' and $b\to_{\beta}b'$. Then, by taking w=a'b', we have $u\to_{\beta}w$ and $v\to_{\beta}w$.
 - Case $tu \to_{\beta} tu'$ since $u \to_{\beta} u'$. Similar to previous case.

Exercise 3 Define a 2-tapes Turing machine $(\Sigma, Q, q_i, q_f, \delta)$ computing the function $n \mapsto 2n$, where Σ is the finite alphabet used by the machine with at least the symbols $\{\Box, 0, 1\}$, Q is the finite set of states of the machine, q_i the initial state, q_f the final state, and δ is a partial function from $Q \times \Sigma^2$ to $Q \times \Sigma^2 \times \{-1, 0, +1\}$. To do this, you are free to introduce in Σ symbols different from $\{\Box, 0, 1\}$, and in Q states different from $\{q_i, q_f\}$. The machine starts in position 0 in state q_i with, on tape 1, \Box followed by n 1's and then 0's, and on tape 2, \Box followed by 0's. It must end in position 0 in state q_f with, on tape 2, \Box followed by 2n 1's and then 0's.

Proof. One possibility is to use a new symbol m to mark where we stopped and, for each 1 on tape 1, replace 1 by m on tape 1 and replace m on tape 2 by two 1's. We will also introduce new states as needed.

We first add an m in position 1 in tape 2 by the rules (x denotes the letter on tape 1, and y the letter on tape 2, where letters belong to $\Sigma = \{\Box, 0, 1, m\}$):

- $(q_i, xy) \rightarrow (q_0, xy, 1)$
- $(q_0, xy) \to (q_1, xm, 0)$

We then parse tape 1 until a 0 or a 1 is reached. If we reach a 0, then we go back to position 0 and stop:

- $(q_1, 0y) \to (q_2, 0y, -1)$
- $(q_2, my) \to (q_2, my, -1)$
- $(q_2, \Box y) \rightarrow (q_f, \Box y, 0)$

If we reach a 1, then we replace it by m, go back to position 0:

- $(q_1, 1y) \to (q_3, my, -1)$
- $(q_3, my) \to (q_3, my, -1)$
- $(q_3, \Box y) \rightarrow (q_4, \Box y, 1)$

add two 1's at the end of tape 2, and go back to position 0 to start again on state q_1 :

- $(q_4, x1) \to (q_4, x1, 1)$
- $(q_4, xm) \to (q_5, x1, 1)$
- $(q_5, xy) \to (q_6, x1, -1)$
- $(q_6, x_1) \to (q_6, x_1, -1)$
- $(q_6, x\Box) \rightarrow (q_1, x\Box, 1)$

Exercise 4 We consider a set \mathcal{X} of variables, a set \mathcal{F} of function symbols and a set \mathcal{P} of predicate symbols. We assume that every (function or predicate) symbol f is equipped with an arity $\alpha_{\mathsf{f}} \in \mathbb{N}$, that is, in a term of the form $\mathsf{f}(t_1,\ldots,t_n)$, we always have $n=\alpha_{\mathsf{f}}$. A model is given by a set A and, for each function symbol f of arity n, a function $\mathsf{f}_A:A^n\to A$ and, for each predicate symbol P of arity n, a function $\mathsf{P}_A:A^n\to\mathsf{Bool}$ where $\mathsf{Bool}=\{\mathsf{true},\mathsf{false}\}$. Then, given a finite valuation $\mu:\mathcal{X}\to A$, the interpretation of a formula ϕ , written $\llbracket\phi\rrbracket_{\mu}$, is defined as follows:

- $\bullet \ \llbracket x \rrbracket_{\mu} = \mu(x)$
- $[\![f(t_1,\ldots,t_n)]\!]_{\mu} = f_A([\![t_1]\!]_{\mu},\ldots,[\![t_n]\!]_{\mu})$
- $[P(t_1, ..., t_n)]_{\mu} = P_A([t_1]_{\mu}, ..., [t_n]_{\mu})$
- $\llbracket \bot \rrbracket_{\mu} = \mathsf{false}$
- $\bullet \ \llbracket \neg \phi \rrbracket_{\mu} = \mathsf{not}(\llbracket \phi \rrbracket_{\mu})$
- $\bullet \ \llbracket \phi \vee \psi \rrbracket_{\mu} = \operatorname{or}(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu})$
- $\llbracket \phi \wedge \psi \rrbracket_{\mu} = \operatorname{and}(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu})$
- $\llbracket \phi \Rightarrow \psi \rrbracket_{\mu} = \operatorname{impl}(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu})$
- $\llbracket \forall x \phi \rrbracket_{\mu} = \text{forall}(\{\llbracket \phi \rrbracket_{\mu \cup \{x,a\}} \mid a \in A\}) \text{ if } x \notin \text{dom}(\mu)$
- $\bullet \ \ [\![\exists x\phi]\!]_{\mu} = \mathsf{exists}(\{[\![\phi]\!]_{\mu \cup \{x,a\}} \mid a \in A\}) \text{ if } x \not \in \mathsf{dom}(\mu)$

where $dom(\mu)$ is the set of variables on which μ is defined, the boolean functions not, or, ... are defined as usual, and forall, exists : $\mathcal{P}(\mathsf{Bool}) \to \mathsf{Bool}$ are defined as follows:

- forall(S) = true iff false $\notin S$
- $\bullet \ \operatorname{exists}(S) = \operatorname{true} \ \operatorname{iff} \ \operatorname{true} \in S$

The universal closure of a formula ϕ with free variables x_1, \ldots, x_n is $\overline{\forall} \phi = \forall x_1 \ldots \forall x_n \phi$. A formula ϕ is *valid* if, in every model A, $[\![\overline{\forall} \phi]\!] = \mathsf{true}$.

Let the provability relation \vdash be the smallest relation on pairs (Γ, ϕ) where Γ is a finite set of formulas (the assumptions) and ϕ a formula, such that:

(axiom)
$$\frac{\phi \in \Gamma}{\Gamma \vdash \phi}$$

$$(\perp$$
-elim) $\frac{\Gamma \vdash \bot}{\Gamma \vdash \phi}$

$$(\Rightarrow -intro) \frac{\Gamma \cup \{\phi\} \vdash \psi}{\Gamma \vdash \phi \Rightarrow \psi}$$

$$(\Rightarrow \text{-elim}) \ \frac{\Gamma \vdash \phi \Rightarrow \psi \quad \Gamma \vdash \phi}{\Gamma \vdash \psi}$$

(\(\triangle\)-intro\)
$$\frac{\Gamma \vdash \phi \quad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi}$$

$$(\land \text{-elim-left}) \ \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi}$$

$$(\land \text{-elim-right}) \ \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi}$$

$$(\vee \text{-intro-left}) \ \frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \lor \psi}$$

$$(\vee\text{-intro-right})\ \frac{\Gamma\vdash\psi}{\Gamma\vdash\phi\vee\psi}$$

$$(\vee\text{-elim}) \ \frac{\Gamma \vdash \phi \lor \psi \quad \Gamma \cup \{\phi\} \vdash \chi \quad \Gamma \cup \{\psi\} \vdash \chi}{\Gamma \vdash \chi}$$

$$(\forall \text{-intro}) \ \frac{\Gamma \vdash \phi \quad x \notin \mathrm{FV}(\Gamma)}{\Gamma \vdash \forall x \phi}$$

$$(\forall \text{-elim}) \ \frac{\Gamma \vdash \forall x \phi}{\Gamma \vdash \phi \{x \mapsto t\}}$$

$$(\exists \text{-intro}) \ \frac{\Gamma \vdash \phi\{x \mapsto t\}}{\Gamma \vdash \exists x \phi}$$

$$(\exists\text{-elim}) \ \frac{\Gamma \vdash \exists x \phi \quad \Gamma \cup \{\phi\} \vdash \chi \quad x \not\in \mathrm{FV}(\Gamma) \cup \mathrm{FV}(\chi)}{\Gamma \vdash \chi}$$

(EM)
$$\Gamma \vdash \phi \lor \neg \phi$$

Prove that the provability relation is correct, that is, in every model A, if $\Gamma \vdash \phi$ and $\Gamma = \{\phi_1, \dots, \phi_n\}$, then $\phi_1 \land \dots \land \phi_n \Rightarrow \phi$ is valid.

Proof. We proceed by induction on the definition of \vdash . Let $\Gamma = \{\phi_1, \ldots, \phi_n\}$. In the following, we identity Γ and the formula $\phi_1 \land \ldots \land \phi_n$. Let A be a model and μ a valuation such that $\operatorname{dom}(\mu) \subseteq \operatorname{FV}(\Gamma)$ and $[\![\Gamma]\!]_{\mu} = \operatorname{true}$.

(\(\lambda\)-intro) We have $[\![\phi \wedge \psi]\!] = \operatorname{and}([\![\phi]\!]_{\mu}, [\![\psi]\!]_{\mu})$. By induction hypothesis, $[\![\phi]\!]_{\mu} = \operatorname{true}$ and $[\![\psi]\!]_{\mu} = \operatorname{true}$. Therefore, $[\![\phi \wedge \psi]\!] = \operatorname{true}$.

(\(\lambda\)-elim-left) By induction hypothesis, we have $[\![\phi \wedge \psi]\!]_{\mu} = \operatorname{and}([\![\phi]\!]_{\mu}, [\![\psi]\!]_{\mu}) = \operatorname{true}$. Therefore, $[\![\phi]\!]_{\mu} = \operatorname{true}$.

 $(\land -elim-right)$ Similar.

- $\begin{array}{lll} (\forall\text{-intro}) \ \ \text{We have} \ [\![\forall x\phi]\!]_{\mu} = \text{forall}(\{[\![\phi]\!]_{\mu\cup\{x,a\}} \mid a\in A\}). \ \ \text{But, for all} \ a\in A, \ \text{by induction hypothesis, we have} \ [\![\phi]\!]_{\mu\cup\{x,a\}} = \text{true.} \end{array}$

. . .