## Exam

A number of different exercises is proposed. You do not need to try to solve them all.

Exercise 1 Let $R$ be a relation on a set $X$, that is, a subset of $X^{2}$. Let $R^{0}$ be the identity relation, that is, $x$ is in relation with $y$, written $x R^{0} y$, if $x=y$. And let $R^{n+1}$ be the composition of $R$ and $R^{n}$. The composition of two relations $R$ and $S$, written $R \circ S$, is the relation such that $x(R \circ S) y$ if there is $z$ such that $x R z$ and $z R y$. Hence, $x R^{n} y(n>0)$ if there are $n-1$ intermediate elements $x_{1}, \ldots, x_{n-1}$ such that $x R x_{1}, \ldots, x_{n-1} R y$. A relation $S$ is reflexive if, for all $x$, $x S x$. A relation $S$ is transitive if, for all $x, y, z, x S z$ whenever $x S y$ and $y S z$. Prove that:

1. $R^{+}=\bigcup_{i>0} R^{i}$ is transitive.
2. $R^{+}$is the smallest transitive relation containing $R$.
3. $R^{*}=\bigcup_{i \geq 0} R^{i}$ is transitive and reflexive.
4. $R^{*}$ is the smallest transitive and reflexive relation containing $R$.
5. The function $f(X)=X \circ X$ is monotone, that is, $f(X) \subseteq f(Y)$ if $X \subseteq Y$.
6. $R^{*}$ is a fixpoint of $f$, that is, $f\left(R^{*}\right)=R^{*}$.

## Proof.

1. Assume that $x R^{+} y$ and $y R^{+} z$. Then, there are $i$ and $j$ such that $x R^{i} y$ and $y R^{j} z$. Thus, $x R^{i+j} z$ and $x R^{+} z$.
2. Let $S$ be a transitive relation containing $R$. We prove by induction on $i \geq 1$ that $R^{i}$ is included in $S$. For $i=1$, we have $R^{1}=R \subseteq S$ by assumption. Assume now that $R^{i} \subseteq S$ and that $x R^{i+1} z$. Then, there is $y$ such that $x R y$ and $y R^{i} z$. Since $R \subseteq S$ and $R^{i} \subseteq S$, we have $x S y$ and $y S z$. Since $S$ is transitive, we have $x S z$. Thus, $R^{i+1} \subseteq S$.
3. For transitivity, the proof is the same as in 1. $R^{*}$ is reflexive since it includes $R^{0}$.
4. As in 2 except that $i \geq 0$. In the case $i=0, R^{0} \subseteq S$ since $S$ is reflexive.
5. Assume that $a X^{2} c$. Then, there is $b$ such that $a X b$ and $b X c$. Since $X \subseteq Y$, we have $a Y b$ and $b Y c$. Thus, $a Y^{2} c$.
6. We first prove that $f\left(R^{*}\right) \subseteq R^{*}$. Let $(x, z) \in f\left(R^{*}\right)$. Then, there is $y$ such that $x R^{*} y$ and $y R^{*} z$. Since $R^{*}$ is transitive, $x R^{*} z$. We now prove that $R^{*} \subseteq f\left(R^{*}\right)$. Assume that $x R^{*} y$. Since $R^{*}$ is reflexive, we have $x R^{*} x R^{*} y$ and $(x, y) \in f\left(R^{*}\right)$.

Exercise 2 We consider the set of $\lambda$-terms $t=x|\lambda x t| t t$, where $x$ is a variable taken in an infinite set $\mathcal{X}$. Let $\rightarrow_{\beta}$ be the smallest relation such that:

- $(\lambda x t) u \rightarrow_{\beta} t\{x \mapsto u\}$, where $t\{x \mapsto u\}$ is the term obtained by replacing every free occurrence of $x$ in $t$ by $u$ (and renaming bound variables if necessary)
- $\lambda x t \rightarrow_{\beta} \lambda x t^{\prime}$ if $t \rightarrow_{\beta} t^{\prime}$
- $t u \rightarrow_{\beta} t^{\prime} u$ if $t \rightarrow_{\beta} t^{\prime}$
- $t u \rightarrow_{\beta} t u^{\prime}$ if $u \rightarrow_{\beta} u^{\prime}$

Prove that:

1. $\beta$-reduction introduces no new variables: if $t \rightarrow_{\beta} t^{\prime}$, then $\mathrm{FV}\left(t^{\prime}\right) \subseteq \mathrm{FV}(t)$.
2. If $v \rightarrow_{\beta}^{*} v^{\prime}$, then $t\{y \mapsto v\} \rightarrow_{\beta}^{*} t\left\{y \mapsto v^{\prime}\right\}$.
3. $\rightarrow_{\beta}$ is stable by substitution: if $t \rightarrow_{\beta} t^{\prime}$, then $t\{y \mapsto v\} \rightarrow_{\beta} t^{\prime}\{y \mapsto v\}$.
4. $\rightarrow_{\beta}$ is locally confluent, that is, if $t \rightarrow_{\beta} u$ and $t \rightarrow_{\beta} v$, then there is $w$ such that $u \rightarrow_{\beta}^{*} w$ and $v \rightarrow_{\beta}^{*} w$.

This last property means that, locally, the order in which we make $\beta$ reductions is not important, since we can always find a common reduct. An important property of $\beta$-reduction is that it also holds globally: if $t \rightarrow_{\beta}^{*} u$ and $t \rightarrow_{\beta}^{*} v$, then there is $w$ such that $u \rightarrow_{\beta}^{*} w$ and $v \rightarrow_{\beta}^{*} w$. Thus, $\beta$-reduction is in some sense deterministic: it can lead to only one result.

## Proof.

1. We proceed by induction on the definition of $\rightarrow_{\beta}$.

- Case $(\lambda x t) u \rightarrow_{\beta} t\{x \mapsto u\}$. We have $\mathrm{FV}((\lambda x t) u)=(\mathrm{FV}(t)-\{x\}) \cup \mathrm{FV}(u)$. By renaming, we can assume that $x \notin \mathrm{FV}(u)$. Let $y \in \mathrm{FV}(t\{x \mapsto u\}$. Either $y \in \mathrm{FV}(u)$ and we are done, or $y \in \mathrm{FV}(t)$. But $y \neq x$ since $x \notin \mathrm{FV}(u)$ and every occurrence of $x$ is replaced by $u$. Therefore, $y \in \mathrm{FV}((\lambda x t) u)$.
- Case $\lambda x t \rightarrow_{\beta} \lambda x t^{\prime}$ since $t \rightarrow_{\beta} t^{\prime}$. We have $\mathrm{FV}(\lambda x t)=\mathrm{FV}(t)-\{x\}$ and $\mathrm{FV}\left(\lambda x t^{\prime}\right)=\mathrm{FV}\left(t^{\prime}\right)-\{x\}$. And by induction hypothesis, we have $\mathrm{FV}\left(t^{\prime}\right) \subseteq$ $\mathrm{FV}(t)$. Therefore, $\mathrm{FV}\left(\lambda x t^{\prime}\right) \subseteq \mathrm{FV}(\lambda x t)$.
- Case $t u \rightarrow_{\beta} t^{\prime} u$ since $t \rightarrow_{\beta} t^{\prime}$. We have $\mathrm{FV}(t u)=\mathrm{FV}(t) \cup \mathrm{FV}(u)$ and $\mathrm{FV}\left(t^{\prime} u\right)=\mathrm{FV}\left(t^{\prime}\right) \cup \mathrm{FV}(u)$. By induction hypothesis, $\mathrm{FV}\left(t^{\prime}\right) \subseteq \mathrm{FV}(t u)$. therefore, $\mathrm{FV}\left(t^{\prime} u\right) \subseteq \mathrm{FV}(t u)$.
- Case $t u \rightarrow_{\beta} t u^{\prime}$ since $u \rightarrow_{\beta} u^{\prime}$. Similar to previous case.

2. Let $\sigma=\{y \mapsto v\}$ and $\sigma^{\prime}=\left\{y \mapsto v^{\prime}\right\}$. We proceed by induction on $t$.

- Case $t=y$. Then, $t \sigma=v$ and $t \sigma^{\prime}=v^{\prime}$. Thus, $t \sigma \rightarrow_{\beta}^{*} t \sigma^{\prime}$.
- Case $t \in \mathcal{X}-\{y\}$. Then, $t \sigma=x=t \sigma^{\prime}$. Thus, $t \sigma \rightarrow_{\beta}^{*} t \sigma^{\prime}$.
- Case $t=\lambda x u$. By renaming, we can assume that $x \notin\{y\} \cup \mathrm{FV}(v)$. After property $1, x \notin \mathrm{FV}\left(v^{\prime}\right)$. Hence, $t \sigma=\lambda x(u \sigma)$ and $t \sigma^{\prime}=\lambda x\left(u \sigma^{\prime}\right)$. By induction hypothesis, $u \sigma \rightarrow_{\beta} u \sigma^{\prime}$. Therefore, $t \sigma \rightarrow_{\beta}^{*} t \sigma^{\prime}$.
- Case $t=a b$. Then, $t \sigma=(a \sigma)(b \sigma)$ and $t \sigma^{\prime}=\left(a \sigma^{\prime}\right)\left(b \sigma^{\prime}\right)$. By induction hypothesis, $a \sigma \rightarrow_{\beta}^{*} a \sigma^{\prime}$ and $b \sigma \rightarrow_{\beta}^{*} b \sigma^{\prime}$. Therefore, $t \sigma \rightarrow_{\beta}^{*}\left(a \sigma^{\prime}\right)(b \sigma)$ and $\left(a \sigma^{\prime}\right)(b \sigma) \rightarrow_{\beta}^{*}\left(a \sigma^{\prime}\right)\left(b \sigma^{\prime}\right)$. Since $\rightarrow_{\beta}^{*}$ is transitive, $t \sigma \rightarrow_{\beta}^{*} t \sigma^{\prime}$.

3. Let $\sigma=\{y \mapsto v\}$. We proceed by induction on the definition of $\rightarrow_{\beta}$.

- Case $(\lambda x t) u \rightarrow_{\beta} t\{x \mapsto u\}$. By renaming, we can assume that $x \notin\{y\} \cup$ $\mathrm{FV}(v) \cup \mathrm{FV}(u)$. Hence, we have $((\lambda x t) u) \sigma=(\lambda x(t \sigma))(u \sigma)$ and $(t\{x \mapsto$ $u\}) \sigma=(t \sigma)\{x \mapsto u \sigma\}$ (can be proved by induction on $t$ ). Therefore, $((\lambda x t) u) \sigma \rightarrow_{\beta}(t\{x \mapsto u\}) \sigma$.
- Case $\lambda x t \rightarrow_{\beta} \lambda x t^{\prime}$ since $t \rightarrow_{\beta} t^{\prime}$. By renaming, we can assume that $x \notin$ $\{y\} \cup \mathrm{FV}(v)$. Hence, we have $(\lambda x t) \sigma=\lambda x(t \sigma)$ and $\left(\lambda x t^{\prime}\right) \sigma=\lambda x\left(t^{\prime} \sigma\right)$. By induction hypothesis, $t \sigma \rightarrow_{\beta} t^{\prime} \sigma$. Therefore, $(\lambda x t) \sigma \rightarrow_{\beta}\left(\lambda x t^{\prime}\right) \sigma$.
- Case $t u \rightarrow_{\beta} t^{\prime} u$ since $t \rightarrow_{\beta} t^{\prime}$. We have $(t u) \sigma=(t \sigma)(u \sigma)$ and $\left(t^{\prime} u\right) \sigma=$ $\left(t^{\prime} \sigma\right)(u \sigma)$. By induction hypothesis, $t \sigma \rightarrow_{\beta} t^{\prime} \sigma$. Therefore, $(t u) \sigma \rightarrow_{\beta}$ $\left(t^{\prime} u\right) \sigma$.
- Case $t u \rightarrow_{\beta} t u^{\prime}$ since $u \rightarrow_{\beta} u^{\prime}$. Similar to previous case.

4. We proceed by induction on the definition of $t \rightarrow_{\beta} u$, and by case on $t \rightarrow_{\beta} v$.

- Case $t=(\lambda x a) b$ and $u=a\{x \mapsto b\}$.
- Case $v=u$. Then, it suffices to take $w=v=u$.
- Case $v=\left(\lambda x a^{\prime}\right) b$ and $a \rightarrow_{\beta} a^{\prime}$. Then, take $w=a^{\prime}\{x \mapsto b\}$. We have $u \rightarrow_{\beta} w$ by property 3 . And we have $v \rightarrow_{\beta} w$ by definition of $\rightarrow_{\beta}$.
- Case $v=(\lambda x a) b^{\prime}$ and $b \rightarrow_{\beta} b^{\prime}$. Then, take $w=a\left\{x \mapsto b^{\prime}\right\}$. We have $u \rightarrow_{\beta}^{*} w$ by property 2 . And we have $v \rightarrow_{\beta} w$ by definition of $\rightarrow_{\beta}$.
- Case $t=\lambda x a, u=\lambda x a^{\prime}$ and $a \rightarrow_{\beta} a^{\prime}$. Then, $v=\lambda x c$ and $a \rightarrow_{\beta} c$. By induction hypothesis, there is $d$ such that $a^{\prime} \rightarrow_{\beta}^{*} d$ and $c \rightarrow_{\beta}^{*} d$. Therefore, by taking $w=\lambda x d$, we have $u \rightarrow_{\beta}^{*} w$ and $v \rightarrow_{\beta}^{*} w$.
- Case $t=a b, u=a^{\prime} b$ and $a \rightarrow_{\beta} a^{\prime}$.
- Case $v=a c$ and $a \rightarrow_{\beta} c$. By induction hypothesis, there is $d$ such that $a^{\prime} \rightarrow_{\beta}^{*} d$ and $c \rightarrow_{\beta}^{*} d$. Therefore, by taking $w=d b$, we have $u \rightarrow_{\beta}^{*} w$ and $v \rightarrow_{\beta}^{*} w$.
- Case $v=a b^{\prime}$ and $b \rightarrow_{\beta} b^{\prime}$. Then, by taking $w=a^{\prime} b^{\prime}$, we have $u \rightarrow_{\beta} w$ and $v \rightarrow_{\beta} w$.
- Case $t u \rightarrow_{\beta} t u^{\prime}$ since $u \rightarrow_{\beta} u^{\prime}$. Similar to previous case.

Exercise 3 Define a 2-tapes Turing machine $\left(\Sigma, Q, q_{i}, q_{f}, \delta\right)$ computing the function $n \mapsto 2 n$, where $\Sigma$ is the finite alphabet used by the machine with at least the symbols $\{\square, 0,1\}, Q$ is the finite set of states of the machine, $q_{i}$ the initial state, $q_{f}$ the final state, and $\delta$ is a partial function from $Q \times \Sigma^{2}$ to $Q \times \Sigma^{2} \times\{-1,0,+1\}$. To do this, you are free to introduce in $\Sigma$ symbols different from $\{\square, 0,1\}$, and in $Q$ states different from $\left\{q_{i}, q_{f}\right\}$. The machine starts in position 0 in state $q_{i}$ with, on tape 1 , $\square$ followed by $n 1$ 's and then 0 's, and on tape 2 , $\square$ followed by 0 's. It must end in position 0 in state $q_{f}$ with, on tape 2 ,followed by $2 n 1$ 's and then 0 's.

Proof. One possibility is to use a new symbol $m$ to mark where we stopped and, for each 1 on tape 1 , replace 1 by $m$ on tape 1 and replace $m$ on tape 2 by two 1's. We will also introduce new states as needed.

We first add an $m$ in position 1 in tape 2 by the rules ( $x$ denotes the letter on tape 1 , and $y$ the letter on tape 2 , where letters belong to $\Sigma=\{\square, 0,1, m\}$ ):

- $\left(q_{i}, x y\right) \rightarrow\left(q_{0}, x y, 1\right)$
- $\left(q_{0}, x y\right) \rightarrow\left(q_{1}, x m, 0\right)$

We then parse tape 1 until a 0 or a 1 is reached. If we reach a 0 , then we go back to position 0 and stop:

- $\left(q_{1}, 0 y\right) \rightarrow\left(q_{2}, 0 y,-1\right)$
- $\left(q_{2}, m y\right) \rightarrow\left(q_{2}, m y,-1\right)$
- $\left(q_{2}, \square y\right) \rightarrow\left(q_{f}, \square y, 0\right)$

If we reach a 1 , then we replace it by $m$, go back to position 0 :

- $\left(q_{1}, 1 y\right) \rightarrow\left(q_{3}, m y,-1\right)$
- $\left(q_{3}, m y\right) \rightarrow\left(q_{3}, m y,-1\right)$
- $\left(q_{3}, \square y\right) \rightarrow\left(q_{4}, \square y, 1\right)$
add two 1 's at the end of tape 2 , and go back to position 0 to start again on state $q_{1}$ :
- $\left(q_{4}, x 1\right) \rightarrow\left(q_{4}, x 1,1\right)$
- $\left(q_{4}, x m\right) \rightarrow\left(q_{5}, x 1,1\right)$
- $\left(q_{5}, x y\right) \rightarrow\left(q_{6}, x 1,-1\right)$
- $\left(q_{6}, x 1\right) \rightarrow\left(q_{6}, x 1,-1\right)$
- $\left(q_{6}, x \square\right) \rightarrow\left(q_{1}, x \square, 1\right)$

Exercise 4 We consider a set $\mathcal{X}$ of variables, a set $\mathcal{F}$ of function symbols and a set $\mathcal{P}$ of predicate symbols. We assume that every (function or predicate) symbol f is equipped with an arity $\alpha_{\mathrm{f}} \in \mathbb{N}$, that is, in a term of the form $\mathrm{f}\left(t_{1}, \ldots, t_{n}\right)$, we always have $n=\alpha_{\mathrm{f}}$. A model is given by a set $A$ and, for each function symbol f of arity $n$, a function $\mathrm{f}_{A}: A^{n} \rightarrow A$ and, for each predicate symbol P of arity $n$, a function $\mathrm{P}_{A}: A^{n} \rightarrow$ Bool where Bool $=\{$ true, false $\}$. Then, given a finite valuation $\mu: \mathcal{X} \rightarrow A$, the interpretation of a formula $\phi$, written $\llbracket \phi \rrbracket_{\mu}$, is defined as follows:

- $\llbracket x \rrbracket_{\mu}=\mu(x)$
- $\llbracket \mathrm{f}\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\mu}=\mathrm{f}_{A}\left(\llbracket t_{1} \rrbracket_{\mu}, \ldots, \llbracket t_{n} \rrbracket_{\mu}\right)$
- $\llbracket \mathrm{P}\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\mu}=\mathrm{P}_{A}\left(\llbracket t_{1} \rrbracket_{\mu}, \ldots, \llbracket t_{n} \rrbracket_{\mu}\right)$
- $\llbracket \perp \rrbracket_{\mu}=$ false
- $\llbracket \neg \phi \rrbracket_{\mu}=\operatorname{not}\left(\llbracket \phi \rrbracket_{\mu}\right)$
- $\llbracket \phi \vee \psi \rrbracket_{\mu}=\operatorname{or}\left(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu}\right)$
- $\llbracket \phi \wedge \psi \rrbracket_{\mu}=\operatorname{and}\left(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu}\right)$
- $\llbracket \phi \Rightarrow \psi \rrbracket_{\mu}=\operatorname{impl}\left(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu}\right)$
- $\llbracket \forall x \phi \rrbracket_{\mu}=$ forall $\left(\left\{\llbracket \phi \rrbracket_{\mu \cup\{x, a\}} \mid a \in A\right\}\right)$ if $x \notin \operatorname{dom}(\mu)$
- $\llbracket \exists x \phi \rrbracket_{\mu}=\operatorname{exists}\left(\left\{\llbracket \phi \rrbracket_{\mu \cup\{x, a\}} \mid a \in A\right\}\right)$ if $x \notin \operatorname{dom}(\mu)$
where $\operatorname{dom}(\mu)$ is the set of variables on which $\mu$ is defined, the boolean functions not, or, ... are defined as usual, and forall, exists : $\mathcal{P}$ (Bool) $\rightarrow$ Bool are defined as follows:
- forall $(S)=$ true iff false $\notin S$
- $\operatorname{exists}(S)=$ true iff true $\in S$

The universal closure of a formula $\phi$ with free variables $x_{1}, \ldots, x_{n}$ is $\bar{\forall} \phi=$ $\forall x_{1} \ldots \forall x_{n} \phi$. A formula $\phi$ is valid if, in every model $A, \llbracket \bar{\forall} \phi \rrbracket=$ true.

Let the provability relation $\vdash$ be the smallest relation on pairs $(\Gamma, \phi)$ where $\Gamma$ is a finite set of formulas (the assumptions) and $\phi$ a formula, such that:

$$
\begin{aligned}
(\text { axiom }) & \frac{\phi \in \Gamma}{\Gamma \vdash \phi} \\
(\perp \text {-elim) } & \frac{\Gamma \vdash \perp}{\Gamma \vdash \phi} \\
(\Rightarrow \text {-intro }) & \frac{\Gamma \cup\{\phi\} \vdash \psi}{\Gamma \vdash \phi \Rightarrow \psi}
\end{aligned}
$$

$(\Rightarrow-\operatorname{elim}) \frac{\Gamma \vdash \phi \Rightarrow \psi \quad \Gamma \vdash \phi}{\Gamma \vdash \psi}$
( $\wedge$-intro) $\frac{\Gamma \vdash \phi \quad \Gamma \vdash \psi}{\Gamma \vdash \phi \wedge \psi}$
( $\wedge$-elim-left) $\frac{\Gamma \vdash \phi \wedge \psi}{\Gamma \vdash \phi}$
$\left(\wedge\right.$-elim-right) $\frac{\Gamma \vdash \phi \wedge \psi}{\Gamma \vdash \psi}$
( V -intro-left) $\frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \vee \psi}$
( $\vee$-intro-right) $\frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \vee \psi}$
$\left(\mathrm{V}\right.$-elim) $\frac{\Gamma \vdash \phi \vee \psi \quad \Gamma \cup\{\phi\} \vdash \chi \quad \Gamma \cup\{\psi\} \vdash \chi}{\Gamma \vdash \chi}$
( $\forall$-intro) $\frac{\Gamma \vdash \phi \quad x \notin \mathrm{FV}(\Gamma)}{\Gamma \vdash \forall x \phi}$
$\left(\forall\right.$-elim) $\frac{\Gamma \vdash \forall x \phi}{\Gamma \vdash \phi\{x \mapsto t\}}$
( $\exists$-intro) $\frac{\Gamma \vdash \phi\{x \mapsto t\}}{\Gamma \vdash \exists x \phi}$
$(\exists-\mathrm{elim}) \frac{\Gamma \vdash \exists x \phi \quad \Gamma \cup\{\phi\} \vdash \chi \quad x \notin \mathrm{FV}(\Gamma) \cup \mathrm{FV}(\chi)}{\Gamma \vdash \chi}$
(EM) $\Gamma \vdash \phi \vee \neg \phi$
Prove that the provability relation is correct, that is, in every model $A$, if $\Gamma \vdash \phi$ and $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$, then $\phi_{1} \wedge \ldots \wedge \phi_{n} \Rightarrow \phi$ is valid.

Proof. We proceed by induction on the definition of $\vdash$. Let $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$. In the following, we identity $\Gamma$ and the formula $\phi_{1} \wedge \ldots \wedge \phi_{n}$. Let $A$ be a model and $\mu$ a valuation such that $\operatorname{dom}(\mu) \subseteq \mathrm{FV}(\Gamma)$ and $\llbracket \Gamma \rrbracket_{\mu}=$ true.
( $\wedge$-intro) We have $\llbracket \phi \wedge \psi \rrbracket=\operatorname{and}\left(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu}\right)$. By induction hypothesis, $\llbracket \phi \rrbracket_{\mu}=$ true and $\llbracket \psi \rrbracket_{\mu}=$ true. Therefore, $\llbracket \phi \wedge \psi \rrbracket=$ true.
( $\wedge$-elim-left) By induction hypothesis, we have $\llbracket \phi \wedge \psi \rrbracket_{\mu}=\operatorname{and}\left(\llbracket \phi \rrbracket_{\mu}, \llbracket \psi \rrbracket_{\mu}\right)=$ true. Therefore, $\llbracket \phi \rrbracket_{\mu}=$ true.
( $\wedge$-elim-right) Similar.
( $\forall$-intro) We have $\llbracket \forall x \phi \rrbracket_{\mu}=$ forall $\left(\left\{\llbracket \phi \rrbracket_{\mu \cup\{x, a\}} \mid a \in A\right\}\right.$ ). But, for all $a \in A$, by induction hypothesis, we have $\llbracket \phi \rrbracket_{\mu \cup\{x, a\}}=$ true. Therefore, $\llbracket \forall x \phi \rrbracket_{\mu}=$ true.
( $\forall$-elim) By induction hypothesis, we have $\llbracket \forall x \phi \rrbracket=$ forall $\left(\left\{\llbracket \phi \rrbracket_{\mu \cup\{x, a\}} \mid a \in A\right\}\right)=$ true. Therefore, by definition of forall, we have $\llbracket \phi\{x \mapsto t\} \rrbracket_{\mu}=$ true since $\llbracket \phi\{x \mapsto$ $t\} \rrbracket_{\mu}=\llbracket \phi \rrbracket_{\mu \cup\{x \mapsto a\}}$ where $a=\llbracket t \rrbracket_{\mu}$ (can be proved by induction on $\phi$ ).

