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Discrete Fourier Analysis I

Gautami Bhowmik

Definition 1. Consider the circle group S1 = {z ∈ C, |z| = 1} and let
(G,+) be an abelian group . A character χ on G is a group homomor-
phism i.e. χ : (G,+) → (S1,×) where χ satisfies the property χ(t − u) =
χ(t)χ(u)−1∀ t, u ∈ G

Example 1. Let G be the additive group of integers, generated by 1. Let
χ(n) = χ(1)n for every integer n.Then there exists a real number α such
that χ(1) = e2πiα. The function x ∈ R 7→ e2πix ∈ S1 is 1-periodic and is
determined up to an integer. So there is a bijection between the characters
on Z and the quotient group R/Z, often denoted by T the 1-dimensional
torus.

Example 2. Let G = (Z/NZ,+) for a positive integer N . The characters
of Z/NZ are exactly the characters of Z satisfying the condition χ(MN) =
1∀M ∈ Z. Thus χ(N) = 1 which implies that e2πiαN = 1 for some real α.
Thus there exists an integer ℓ such that α = ℓ/N and the characters of Z/NZ

are in bijection with the N -th roots of unity.

Notation 1. For every j ∈ ZN , the character is denoted by ej(k) := ωjk

where ω is a primitive N -th root of unity,

Definition 2. The Pontryagin Dual of a group G is the topological group Ĝ
given by the set of characters onG which obey the product law (χ, χ′) 7→ χ.χ′.

Example 3.

1. Finite abelian groups are self-dual.

2. The dual group of Z is S1.

Exercise 1. 1. Prove the above .

2. Show that an isomorphism between G and Ĝ is not canonical.

3. Prove directly that
̂̂
G ∼= G.
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4. Show that Ĝ×H ∼= Ĝ× Ĥ.

Let N be a positive integer . Consider V , the C vector space of functions
f : ZN → C .

Definition 3. The hermitian scalar product of f, g ∈ V is defined by

〈f, g〉V :=
1

N

∑

n∈ZN

f(n)g(n)

where z̄ is the complex conjugate of z.

We may simply write 〈f, g〉 where V is understood from the context.
Clearly, 〈f, f〉 ≥ 0 and 〈f, g〉 = 〈g, f〉.

Remark 1. In the la language of probability used in ergodic theory, where for
a finite set A with cardinality |A| and a complex-valued function f : A→ C,
the mean or expectation E(f) of f is defined as

EA(f) = En∈Af(n) :=
1

|A|
∑

n∈A

f(n),

the scalar product is nothing but EZN
(fḡ) .

Remark 2. The {ej} form an orthonormal basis of V , since

〈ej, ek〉 =
1

N

∑

n∈ZN

ek(n)ej(n) =
∑

n∈ZN

ω(j−k)n =

{
1 if j = k

ω(j−k)N−1
ωj−k−1

= 0 otherwise.

Since
〈ej, ek〉 = δjk (1)

and V has dimension N , the {ej}j∈ZN
form a complete orthonormal base of

V .

We can now define the Fourier transform.

Definition 4. The discrete Fourier transform f̂ of f ∈ V is defined by

f̂(k) := 〈f, ek〉 =
1

N

N−1∑

s=0

f(s)ω−ks,

where ω = e2πi/N .

In particular, êj(k) = δkj and 1̂(k) = δk.
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Remark 3. The above definition could be seen as the discrete version of

f̂(k) =

∫
f(x)e−2πikxdx

though this is not at all the only motivation for this study. There are many
many applications in and out of mathematics some of which we will see in
this and other courses (many interesting examples of applications can be
found in [8]).

We will use the following identities :

Lemma 1. For f ∈ V we have :

(Inversion) f =
∑

k∈ZN

f̂(k)ek (2)

(Plancherel) 〈f̂ , ĝ〉 = 1

N
〈f, g〉 (3)

(Parseval) (
∑

k∈ZN

|f̂(k)|2)1/2 = (
1

N

∑

x∈ZN

|f(x)|2)1/2. (4)

Proof. The Fourier transform can be written as

∑

k∈ZN

f̂(k)ek(x) =
∑

k

ek(x)
1

N

∑

y

f(y)ek(−y) =
1

N

∑

k

∑

y

f(y)ω(x−y)k.

But
∑

k∈ZN
ωzk = Nδz, which yield (2).

Similarly,

〈f̂ , ĝ〉 = 1

N

∑

k∈ZN

f̂(k)ĝ(k) =
1

N
(
∑

x∈ZN

f(x)ek(−x))(
∑

y∈ZN

ĝ(y)ek(−y))

=
1

N3

∑

x

∑

y

f(x)g(y)
∑

k

ek(y − x) =
1

N2

∑

x

f(x)g(x) =
1

N
〈f, g〉.

Finally, Parseval’s identity is a proved as

∑

k∈ZN

|f̂(k)|2 =
∑

k∈ZN

f̂(k)f̂(k) = N〈f̂ , f̂〉 = 〈f, f〉 = 1

N

∑

x

|f(x)|2.

Remark 4. The Fourier transform is a linear isomorphism from V to V
by considering the linear map T : V → V defined by T (f) = f̂ and two
functions are equal if and only if their Fourier transforms are equal.
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With respect to the basis ek, the matrix of T is of the form

[T ] =
1

N
(ω−ij)1≤i,j≤N . (5)

Since êk(x) =
1
N

∑
s es(k − x), êk =

1
N

∑
s es(k)es =

1
N

∑
s ω

−kses.
Now that we have a Vandermonde matrix, the determinant of T is non-

zero and we can consider the inverse application . By (2), T−1(f) =
∑
f(k)ek

and thus T−1(ek) =
∑
ω−kses. This leads to [T−1] = N [T ]⋆, which gives

‖ detT‖ = N−N/2. Note that
√
NT is an unitary matrix.

We now introduce the idea of a convolution in V .

Definition 5. let f, g ∈ V . Their convolution f ∗ g is defined as follows

f ∗ g(x) := 1

N

∑

n∈ZN

f(n)g(x− n).

The following identity is rather useful.

(̂f ∗ g) = f̂ .ĝ (6)

Proof. From definitions,

(̂f ∗ g)(k) = 1

N

∑

s

f ∗ g(s)ω−ks =
1

N2

∑

x

∑

y

f(y)g(x− y)ω−ykω−(x−y)k.

By taking z = x− y, the above becomes

=
1

N

∑

y

f(y)ω−yk.
1

N

∑

z

g(z)ω−zk = f̂(k)ĝ(k).

We will also come across norms in the context of finite groupes G.

Definition 6. The Lp(G) norm of a function f : G → C for 0 < p < ∞ is
defined as

‖f ||Lp(G) := (Ex∈G|f(x)|p)1/p

and the L∞ as
‖f‖L∞(G) := sup

x∈G
|f(x)|.

Similarly the lp(G) norm for 0 < p <∞ is defined to be

||f‖lp(G) := (
∑

|f(x)|p)1/p.

while
‖f ||l∞(G) := ||f ||L∞(G).
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Remark 5. For any finite abelian group G and a function f : G → C the
Fourier transform f̂ : Ĝ→ C can be seen as

f̂(χ) = 〈f, χ〉G =
1

|G|
∑

g∈G

f(g)χ(g).

Remark 6. Norms can serve as a useful language. Thus, for example, we see
that the L2 norm of f is simply the magnitude of hilbert space, i.e. 〈f, f〉1/2.
while Parseval’s identity can be written as

‖f ‖L2=‖ f̂ ‖l2 .

Exercise 2. Prove a Parseval identity for any finite abelian group.

1 Arithmetic Progressions

We encounter the use of finite Fourier analysis in the context of arithmetic
progressions.

Definition 7. An arithmetic progression of length k in an additive group G
is a finite sub-set A of cardinality k (1 ≤ k < order of G) of the form

A = {a0, a0 + d, . . . , a0 + (k − 1)d} = a0 + {0, d, . . . , (k − 1)d}

with a0, d ∈ G. To make sure that the progression is non-trivial we assume
that d is non-zero.

We also need to know the density of a set.

Definition 8. For a set A of positive integers, its upper density δ is defined
by

δ := lim sup
N→∞

|A ∩ [1, N ]|
N

.

One of the most impressive results in this direction is the following.

Theorem 2. (Szemerédi) Every subset of integers with positive upper density
contains arbitrarily long arithmetic progressions .

This result was proved by Roth [2] by Fourier analytic methods for arith-
metic progressions of length three and by Szemerédi (1975) for arbitrary
lengths. Other than its original combinatorial proof there are many other
surprising ways of treating Szemerédi’s theorem for example by higher order
fourier analytic methods ( Gowers 2001 [3], [4]), by ergodic theory (Fursten-
berg 1977) or by hypergraphs Nagle-Rödl-Schacht-Skokan (2006).
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Notation 2. Let nk(N) be the smallest integer t such that every sub-set of
t elements of the interval [1, N ] contains an arithmetic progression of length
k.

Roth (1953) proved that n3(N) = o(N) for every N . More precisely, the
quantitative version of the theorem is :

Theorem 3. (Roth) Let δ ∈ R+. Then there exists an absolute constant
C > 0 such that if N ≥ exp exp (C/δ) , every sub-set A of [1, N ] ∩ N with
δN elements contains at least one non-trivial arithmetic progression of length
three.

Roth’s theorem and some of its improvements will be proved in the third
course on discrete fourier analysis.

Remark 7. Notice that the set of prime numbers have upper density zero
and do not fall under the cases just mentioned. Using Fourier analytic meth-
ods, van der Corput proved in 1939 that the set of primes contain infinitely
many arithmetic progressions of length 3 while the existence of progressions
of arbitrary length in primes is the famous Green-Tao theorem of 2004, a
particular case (as is Szemerédi’s theorem) of the Erdős-Turán conjecture of
1936 that every set of positive integers A verifying

∑
a∈A

1
a
= ∞ contains

arbitrarily long arithmetic progressions.

2 Uncertainty

As another application we shall consider the uncertainty principle for a finite
group.

Definition 9. The support of a function f is defined as supp (f) := {x :
f(x) 6= 0}.

We have supp (f ⋆ g) ⊂ supp f + supp g. In particular, if f and g are the
indicator fonctions of the sets A and B, we have the equality supp (1A⋆1B) =
A+B.

Theorem 4. (Uncertainty Principle) Let G be a finite group and let f be a
non-zero function of G→ C. Then we have

|supp (f)|.|supp (f̂)| ≥ |G|. (7)
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Proof. Consider the l∞(G) norm of the Fourier transform of f . We can
trivially bound this by the l1(G) norm of f . Thus,

||f̂ ||l∞(G) = sup
χ∈Ĝ

|f̂(χ)| = sup | 1

|G|
∑

x∈G

f(x)χ(x)| ≤ 1

|G|
∑

x∈G

|f(x)|

=
|supp (f)|

|G|
1

|supp (f)|
∑

x∈G

|f(x)|.

By applying the inequality of Cauchy-Schwartz on
∑ |f(x)| we get

||f̂ ||l∞(G) ≤
|supp (f)|

|G| (
1

|supp (f)|
∑

x∈G

|f(x)|2)1/2 = |supp (f)|1/2
|G|1/2 (

1

|G|
∑

|f(x)|2)1/2,

which is, by Parseval ’s identity(4),

=
|supp (f)|1/2

|G|1/2
∑

|f̂(k)|2)1/2.

So we get

||f̂ ||l∞(G) ≤
|supp (f)|1/2

|G|1/2 |supp (f̂)|1/2 sup
k∈G

|f̂(k)|

and we have obtained (7).

Now we shall prove an improvement of this result for the case of G = Zp

to get a bound for the sum of supports of f and its Fourier transform.

Theorem 5. Let p be a prime number and let f : Zp → C be a non-zero
function . Then

|supp (f)|+ |supp (f̂)| ≥ p+ 1. (8)

Conversely if A and B are two non-empty sub-sets of Zp such that |A|+|B| ≥
p+1, then there exists a function f such that supp (f) = A et supp (f̂) = B.

The proof of such a result requires the existence of an inversible linear
application on a sub-set of Zp. So the Vandermonde matrix of (5) is no
longer sufficient . We shall instead use a résult of Chebotarëv which was first
proved in 1926, but was subsequently re-proved several times. Here we give
an elementary proof due to Frenkel.

Lemma 6. (Chebotarëv) Let p be a prime number and let A,A′ ⊆ Zp with
|A| = |A′|. Let ω be a p-th root of unity. Then the matrix (ωji)j∈A,i∈A′ has
non-zero determinant .
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We use two auxilliary lemmas.

Lemma 7. Let ω be a p-th root of unity for a prime number p. Then

Z[ω]

(1− ω)
= Fp. (9)

Proof. We shall find a surjective homomorphism of Z[ω] to Fp whose kernel
will be the ideal (1−ω). This homomorphism will be built out of two others.
Let Ω be an indeterminate and let Φp(Ω) = 1 + Ω + · · · + Ωp−1 be the
minimal polynomial of an algebraic integer ω. Consider the two following
ring homomorphisms

ψ1 : Z[Ω] → Z[ω] =
Z[Ω]

(Φp(Ω))
, Ω 7→ ω, (10)

and

ψ2 : Z[Ω] → Fp =
Z[Ω]

(1− Ω, p)
, Ω 7→ 1. (11)

They are both surjective and since Φp(Ω) ≡ mod (1− Ω), we have kerψ1 ⊂
kerψ2. Thus there exists a surjective homomorphism ψ3 de Zω to Fp such
that ψ2 = ψ1.ψ3 with

kerψ3 =
(1− Ω, p)

(Φp(Ω))
.

But since p ≡ Φp(ω) = 0 mod (1− ω) we obtain kerψ3 = (1− ω).

Exercise 3. Find another proof of the above lemma.

Let g be a non-zero polynomial with coefficients in a field F . Let us use
the notations ma(g) for the number of times that a ∈ F∗ is a root of g and
c(g) for the number of non-zero coefficients of g.

Lemma 8. Consider a non-zero polynomial g ∈ Fp[x] with degree less than
p. Then ma(g) < c(g) for every a ∈ F∗

p.

Proof. We suppose the result to be already true for degrees less than k ≥ 1,
the case of k = 0 being obvious. Now let deg g(x) = k.

If g(0) = 0, consider h(x) = g(x)/x of degree k−1. Then ma(g) = ma(h)
and c(g) = c(h) By the induction hypothesis ma(h) < c(h).

If g(0) 6= 0, consider the derived polynomial g′(x). Thus we have ma(g)−
ma(g

′) ≤ 1 and c(g) = c(g′) + 1. Since g′(x) 6= 0, and is of degree less than
k, the induction hypothesis on g′ gives ma(g

′) + 1 < c(g′) + 1, the desired
l’inequality .
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Proof. (of lemma 6) Let
∑

j∈A ajω
ji = 0 for every i ∈ A′. i.e.

g(x) =
∑

j∈A

ajx
j ∈ Z[ω][x] = 0 ∀ ωi, i ∈ A′. (12)

We shall prove that aj = 0 for every j ∈ A. From (12) we get that g(x)

is divisible by
∏

i∈A′(x− ωi). By using the homomorphism ψ : Z[ω] → Z[ω]
(1−ω)

and (9) for coefficients of g(x), we obtain a polynomial ḡ(x) ∈ Fp(x) which
is divisible by (x − 1)|A

′|, i.e. m1(ḡ) ≥ |A′|. However c(ḡ) ≤ |A| = |A′| ,
which, by Lemma (8) gives ḡ ≡ 0. So every aj is divisible by 1 − ω and we
can continue dividing indefinitely unless every aj = 0.

Now we prove the improvement on cyclic groups of prime order.

Proof. (of Theorem 5)
Suppose, if possible, that there exists a non-zero fonction f such that

|supp (f)|+ |supp (f̂)| ≤ p.
Let A = supp f and let |A| = p − t, where t is a non-negative integer.

By our assumption, |supp (f̂)| ≤ t. Therefore there exist at least p − t
elements in Zp which are not in supp f̂ . We can choose a set A′ of the same

cardinality as A among these elements such that A′ ∩ supp f̂ = ∅. Thus for
every k ∈ A′, we get f̂(k) = 0. We can consider f as a non-zero function
such that f(x) = 0, x /∈ A. Hence the linear application TAf = f̂ |A′ = 0.

However by Chebotarëv,’s Lemma, TA = 1
|A|

(ω−ji)j∈A,i∈A′ has non-zero
determinant and hence TA is inversible, which is a contradiction.

Conversely suppose that there exist two sub-sets A,B of Zp. It suffices
to prove the result for the case |A| + |B| = p + 1 since the case |A| + |B| >
p + 1 would then follow by considering sub-sets A1, B1 of A,B such that
|A1|+ |B1| = p+ 1.

We can choose A′ with the same cardinality as A in Zp . As before, by

the use of Lemma (6), the linear application TA such that TAf = f̂ |A′ for a
function f with supp f ⊆ A, is invertible. In particuliar, we may choose A′

in such a way that A′ ∩ B = {k′} and f which would satisfy the conditions
f̂(k) = 0 if k ∈ A′\{k′} and f̂(k′) 6= 0. Since Zp is a disjoint union of A′\{k′}
and B, we obtain that

supp f̂ ⊆ B.

But we have already proved that |supp (f)|+ |supp (f̂)| ≥ p+1, which leads
us to

p+ 1 ≤ |supp (f)|+ |supp (f̂)| = |A| − |A\supp f |+ |B − |B\{supp f̂}|.
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And since |A|+ |B| = p+ 1, we obtain |A\supp f | = |B\supp f̂ | = 0. Thus
supp f = A et supp f̂ = B, as desired.

Exercise 4. Prove that the case |A| + |B| = p + 1 proved above is indeed
sufficient for Theorem 5.

And now we shall apply the Principle of Uncertainty just obtained on Zp

to give a new proof of a classical result in the context of sumsets.

Definition 10. Let (G,+) be an additive group. let A et B be two non-
empty subsets of G. The sum de A,B is the sub-set

A+B := {a+ b | a ∈ A, b ∈ B}.
The question of finding bounds on sumsets is an active area of research

and some of this will be treaed in the second course on DFA.
Below we see one of the oldest theorems in the subject known as the

Cauchy (1813)- Davenport (1935) Theorem reproved recently using uncer-
tainty [7].

Corollary 9. Let p be a prime number and let A and B be two non-empty
subsets of Zp. Then we have

|A+B| ≥ min(|A|+ |B| − 1, p).

Proof. (Chapman, Tao) Let us first fix A et B. Since they are non-empty,
we can find two non-empty sub-sets X and Y of Zp such that |X| = p+ 1−
|A|, |Y | = p + 1 − |B|. Now let |X ∩ Y | = max(|X| + |Y | − p, 1). Since
|A| + |X| = p + 1, we use Theorem (5) to get a function f such that supp
(f) = A and supp (f̂) = X. By the same theorem there exists a function g
such that supp (g) = B and supp (ĝ) = Y .

Consider the convolution f ⋆ g. We then have,

supp (f ⋆ g) ⊂ supp (f) + supp (g) = A+B

and
supp (̂f ⋆ g) = supp (f̂ .ĝ) = supp (f̂) ∩ supp (ĝ) = X ∩ Y.

By using (8) for f ⋆ g, a non-zero function , we obtain

|A+B|+ |X ∩ Y | ≥ p+ 1. (13)

Case 1. |X| + |Y | − p > 1. Here we get |X ∩ Y | = |X| + |Y | − p, so
that |A + B| + |X ∩ Y | ≥ p + 1 which gives |A + B| ≥ p + 1 − |X ∩ Y | =
p+ 1− |X| − |Y |+ p = |A|+ |B| − 1 = min(|A|+ |B| − 1, p).

Case 2. |X|+|Y |−p = 1. Here we have |A|+|B|−1 = p and |X∩Y | = 1,
which gives |A+B| ≥ p = min(|A|+ |B| − 1, p).

Exercise 5. Find another proof of the Cauchy-Davenport Theorem.
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