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PART 1

Fundamental questions, concepts and techniques

The aim of this course is to give an introduction to the use of discrete Fourier analysis
in tackling additive combinatorial questions. Such use is widespread; we shall have to
restrict ourselves to only a small part of the theory, focusing particularly on questions
that are naturally phrased in terms of sumsets.

1. Sumsets, and some questions

For two subsets A,B of an abelian group G, we write A+B := {a+ b : a ∈ A, b ∈ B} for
their sumset. Generally we shall work withG being the integers Z, the group ZN := Z/NZ

of integers modulo some number N , or a vector space Fn
p over a finite field Fp of size p.

Thus, for example, if A = {1, 2, . . . , n} ⊆ Z, then A+ A = {2, 3, . . . , 2n}, and if A ⊆ Fn
p

is a subspace then A+ A = A.

We shall be interested in the extent to which sumsets must be more additively structured
than other sets. Of course, since A = A + {0} can be considered a sumset itself, we
need to place some kind of restrictions on the summands in order to for the question to
be meaningful—we might restrict to A and B having similar sizes, for example. In the
two examples just given, this was the case, and in each of these the sumset was highly
structured—but then so too were the summands. Let us try taking a highly additively
unstructured set.

Exercise 1.1. Let A = {1, 3, 9, 27, . . . , 3n−1} be a set of integers. What is |A+A|? Show
that A+A does not contain any arithmetic progressions x, x+d, x+2d, . . . , x+(k−1)d
of length k > 4 (with d 6= 0, of course). (Hint: look at base 3 expansions.)

Thus the sum of a set with itself need not be highly additively structured, at least in the
sense of containing long arithmetic progressions, if we are allowed to consider arbitrary
sets. On the other hand, in this example A was simply so ‘spread out’ that there was
no real chance of the sumset being very structured; this was also detected by the sumset
A+A being much larger than A. Might it be that if A is not too spread out, then A+A
must be structured? It turns out that the answer is yes, in a certain sense: if one makes
an assumption along the lines of A + A being small compared to A, then one can find
plenty of additive structure in A, and in particular long arithmetic progressions. Another
(and related) way of ensuring that A is not ‘too spread out’ is to assume that it is a large
subset of some ‘unspread-out’ set, such as the interval {1, . . . , N} or one of the groups
ZN or Fn

p ; it is this type of setup that we shall work with in this course.

Here, then, are some natural questions along these lines.
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1) How small can |A+ A| be in terms of |A|? How large can it be?
2) What structures can we find in A+ A if A ⊆ {1, . . . , N} or ZN and |A| > αN?
3) What about 3A := A+ A+ A, or 4A?
4) What can we say about A if |A + A| < K|A| for some number K? Say if K = 2

or 100, and |A| is large?

While certain answers to Question 1 are more-or-less an exercise in getting to know the
definition, lots of interesting theory has been used and developed in order to provide good
answers to the other questions. It is part of this theory that we shall study, focusing on
Questions 2 and 3, with a quick look at (the highly related) Question 4 if there is time.

We begin by reviewing our most fundamental tool: the Fourier transform.

2. The Fourier transform and its properties

Most of the material in this section will have been covered in other parts of the school,
but we include it here for ease-of-reference and since some of the details and notation
differ1.

2.1. Characters and dual groups.

Definition 2.2. Let G be a finite abelian group. By a character on G we mean a group
homomorphism from G to the multiplicative group of non-zero complex numbers C×. We

denote the collection of all characters on G by Ĝ and give this the group operation of
pointwise multiplication of functions; we call this group the dual of G.

Thus γ : G → C× is a character if γ(a + b) = γ(a)γ(b) for all a, b ∈ G, and for any

γ1, γ2 ∈ Ĝ the character γ1γ2 ∈ Ĝ is given by (γ1γ2)(x) = γ1(x)γ2(x) for each x ∈ G.

Note that we write the group operation multiplicatively on C× and hence on Ĝ too.

Exercise 2.3. SupposeG is a finite abelian group with exponent n. Show that a character
on G can only assume values in the nth roots of unity {z ∈ C : zn = 1}. What is the

identity element in Ĝ? Show that the inverse of a character γ ∈ Ĝ is the conjugate
character γ, defined by γ(x) = γ(x).

Example 2.4. Let N be a positive integer and let G = ZN . For any r ∈ ZN the map
γr : x 7→ e2πirx/N is a character on G, and, conversely, any character is of this form (prove

it). Furthermore, with this identification we have ẐN
∼= ZN .

This example is in fact a rather representative one thanks to the special role played by
cyclic groups in the fundamental theorem of finite abelian groups. To be more precise,
let us for two functions f : X → C and g : Y → C write f ⊗ g for the function from

1The material in this section and the remainder of Part 1 was largely extracted from some notes I
had written for an undergraduate course on additive combinatorics, and so contains more detail than we
dealt with during the school. I have left these details here in case they are useful to someone, but you
may wish to skip or skim them.
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X × Y to C given by

(f ⊗ g)(x, y) = f(x)g(y).

Lemma 2.5. Let G and H be finite abelian groups.

(i) If G and H are isomorphic then so are Ĝ and Ĥ.

(ii) For any characters γ ∈ Ĝ and χ ∈ Ĥ the function γ ⊗ χ is a character on

G×H. Moreover, this identification yields an isomorphism between Ĝ× Ĥ and
the dual of G×H.

Proof. Exercise. �

Proposition 2.6. Let G be a finite abelian group. Then G ∼= Ĝ. In particular, |Ĝ| = |G|.

Proof. By the fundamental theorem of finite abelian groups and part (i) of the preceding
lemma it suffices to prove the theorem for G = ZN1

× · · · × ZNk
. The result then follows

immediately from Example 2.4 and part (ii) of the lemma. �

Example 2.7. Endow the vector space Fn
p over the finite field Fp with the dot product

v · w = v1w1 + · · ·+ vnwn for elements v, w ∈ Fn
p . For any r ∈ Fn

p , the map

γr : v 7→ e2πi(r·v)/p

is then a character on Fn
p . Moreover, every character on Fn

p has this form.

The fact that a finite abelian group and its dual are isomorphic can be useful to bear in
mind, but is in a sense not essential to the theory of characters and Fourier transforms.
The following result, on the other hand, is.

Lemma 2.8 (Sufficiently many characters). Let G be a finite abelian group. For any

non-zero x ∈ G there is a character γ ∈ Ĝ such that γ(x) 6= 1.

Proof. We may assume that G = ZN1
× · · · × ZNk

for some integers Ni > 2. Let x =
(x1, . . . , xk) ∈ G be non-zero; we must then have xj 6= 0 (in ZNj

) for some j. Fix such

a j and define γ ∈ Ĝ by γ(y1, . . . , yk) = e2πiyj/Nj ; this is a character on G such that
γ(x) 6= 1. �

In order to discuss some of the useful properties of characters succinctly let us introduce
a piece of notation. If X is a finite non-empty set and f : X → C is a function then we
write

Ex∈Xf(x) =
1

|X|
∑

x∈X

f(x)

for the average of f over X. If the set X is clear from the context, or is the whole domain
of definition of f , then we may simply write Exf(x) instead.

The following relations are known as the character orthogonality relations ; they form the
foundation of discrete Fourier analysis.
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Proposition 2.9 (Orthogonality of characters). Let G be a finite abelian group and

suppose a, b ∈ G and γ1, γ2 ∈ Ĝ. Then

Ex∈Gγ1γ2(x) =

{
1 if γ1 = γ2

0 otherwise

and

∑

γ∈Ĝ

γ(a− b) =

{
|G| if a = b

0 otherwise.

Proof. For the first claim it suffices to prove that for any non-identity character γ ∈ Ĝ one

has Exγ(x) = 0. Now, for any γ ∈ Ĝ we have Ex∈Gγ(x) = Ex∈Gγ(x+ y) = γ(y)Ex∈Gγ(x)
for each y ∈ G, the first equality being a result of a change of variables. Letting y ∈ G
be such that γ(y) 6= 1 if γ is not the identity character then proves the claim.
For the second claim of the proposition it similarly suffices to prove that

∑
γ∈Ĝ γ(x) = 0

if x 6= 0. This follows in a similar way to the previous part, now using Lemma 2.8 to find

a character χ ∈ Ĝ such that χ(x) 6= 1 and shifting the summation over Ĝ by χ. �

Remark 2.10. We shall generally use averaged sums when summing over the group G

and ordinary sums when summing over Ĝ; this means that one does not need to remember
various normalisations in results to come.

2.11. The Fourier transform. The above relations are called orthogonality relations
for the following reason. We can define an inner product 〈·, ·〉G on the complex vector
space CG of complex-valued functions on G by setting

〈f, g〉G = Ex∈Gf(x)g(x)

for f, g : G→ C. The first relation then says that the characters on G form an orthonor-
mal set in CG, and since there are |G| characters (which is the dimension of CG) they in
fact form an orthonormal basis. This observation leads us to the definition of the Fourier
transform, which tells us how to express a function f : G→ C in terms of this basis.

Definition 2.12. Let G be a finite abelian group. Given a function f : G→ C we define

the Fourier transform of f to be the function f̂ : Ĝ→ C given by

f̂(γ) = Ex∈Gf(x)γ(x).

The complex numbers f̂(γ) for γ ∈ Ĝ are known as the Fourier coefficients of f .

Thus f̂(γ) = 〈f, γ〉G. In particular, if γ ∈ Ĝ then γ̂(χ) = 1 if χ = γ and is 0 otherwise,

so 1̂(γ) = 1 if γ = 1 and is 0 otherwise. Note also that f̂(1) = Ex∈Gf(x) is precisely the
average of f , giving this Fourier coefficient a special status. Furthermore, the operation

of taking the Fourier transform is linear: ̂αf + βg = αf̂ + βĝ for any α, β ∈ C.

Importantly, the Fourier coefficients tell us how to express f as a linear combination of
characters:
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Theorem 2.13 (Fourier inversion formula). Let f : G → C be a function on a finite
abelian group G. Then, for any x ∈ G,

f(x) =
∑

γ∈Ĝ

f̂(γ)γ(x).

In particular, f is completely determined by its sequence of Fourier coefficients.

Proof. This is the standard identity f =
∑

γ〈f, γ〉γ from linear algebra, valid since the

characters form an orthonormal basis of CG. More directly,
∑

γ∈Ĝ

f̂(γ)γ(x) = Ey∈Gf(y)
∑

γ∈Ĝ

γ(x− y) = f(x),

by the character orthogonality relations. �

We also furnish CĜ, the vector space of complex-valued functions on Ĝ, with the inner
product

〈f, g〉Ĝ =
∑

γ∈Ĝ

f(γ)g(γ)

for functions f, g : Ĝ→ C. This differs from the inner product that we put on CG only in

the normalisation of the sum. There is of course a slight abuse of notation here since Ĝ is
a group in its own right, and so we could use our previous definition of the inner product
on a group here too, but rather than introduce extra notation to circumvent this we shall
simply employ the convention that if there is a ̂ appearing in the subscript of the inner
product then we use unnormalised sums and if there is not then we use averaged sums.

Theorem 2.14 (The Plancherel theorem and Parseval’s identity). Let G be a finite
abelian group and let f, g : G→ C be two functions. Then

〈f, g〉G = 〈f̂ , ĝ〉Ĝ,
or, in other words,

Ex∈Gf(x)g(x) =
∑

γ∈Ĝ

f̂(γ)ĝ(γ).

In particular we have the identity

Ex∈G|f(x)|2 =
∑

γ∈Ĝ

|f̂(γ)|2.

Proof. Again these identities follow from the properties of orthonormal bases in inner
product spaces. More directly,

∑

γ∈Ĝ

f̂(γ)ĝ(γ) = ExEyf(x)g(y)
∑

γ∈Ĝ

γ(y − x),

whence the result follows from the character orthogonality relations. �

Note that we have followed our convention of using E for sums over the group and
∑

for sums over the dual group here; this is what ensures that we do not have to put in
normalising factors of |G| in the above identities.
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Remark 2.15. We have defined the Fourier transform of a function f : G → C to

be a function f̂ on Ĝ, the dual of G. Now, we know that Ĝ ∼= G for finite abelian

groups G, and so we could have defined f̂ to be a function on G. This approach may
be preferable in some instances, but we shall avoid doing this in these notes as we find

that distinguishing Ĝ and G keeps things conceptually simpler in arguments. The added
level of abstraction will hopefully not cause any problems given the explicit description

one can give of characters in Ĝ in terms of elements of G: we shall usually be interested
in the groups ZN and Fn

p , and in these cases one can think of characters in terms of their
explicit descriptions given in Examples 2.4 and 2.7.

3. Convolution

We can now start to describe some reasons why the Fourier transform is useful to us.
Broadly speaking, our main objects of interest are subsets A of abelian groups, and
such sets can be studied via their indicator functions2 1A on the group. These indicator
functions, in turn, can be studied via their Fourier transforms 1̂A. It might seem like this
would make things more complicated, replacing a {0, 1}-valued function by a complex-
valued function, but it turns out this reparameterisation reveals a lot about A in a simple
way. Indeed, characters are homomorphisms, so behave nicely under addition, and since
1̂A tells us what 1A looks like decomposed into characters, we should be kind of happy with
this move3. A more tangible reason to be happy comes from the operation of convolution.

Definition 3.1. Let G be a finite abelian group. For any two functions f, g : G→ C we
define their convolution f ∗ g to be the function from G to C given by

(f ∗ g)(x) = Ey∈Gf(y)g(x− y).

Lemma 3.2 (Basic properties of convolutions). The operation of convolution is commu-
tative, associative and bilinear. In other words, for any f, g, h : G→ C we have

(i) f ∗ g = g ∗ f ,
(ii) f ∗ (g ∗ h) = (f ∗ g) ∗ h (and so we may write f ∗ g ∗ h), and
(iii) (f + g) ∗ h = f ∗ h+ g ∗ h and f ∗ (g + h) = f ∗ g + f ∗ h.

Furthermore we have Exf ∗ g(x) = (Exf(x))(Exg(x)).

Proof. We prove commutativity and leave the proof of the other claims as an exercise.
For any x ∈ G we have

f ∗ g(x) = Ey∈Gf(y)g(x− y) = Ez∈Gf(x− z)g(z) = g ∗ f(x),
the second equality following from changing the order of summation by setting z =
x− y. �

2If X is a set then we write 1X for the indicator function of X, defined by 1X(x) = 1 if x ∈ X and
1X(x) = 0 if x /∈ X.

3Incidentally, expressing an indicator function as a sum of other functions in a non-trivial way is a
generally useful trick: we saw it used in Anirban Mukhopadhyay’s number theory course, for example,
where we at several points used a decomposition of the form 1{1}(n) =

∑
d|n µ(d).
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Convolution is directly relevant to additive combinatorics through the following lemma.
For a function f : X → C we write supp(f) = {x ∈ X : f(x) 6= 0} for the support of f .

Lemma 3.3. Let G be a finite abelian group and let A,B,A1, . . . , Ak ⊆ G. Then

A1 + · · ·+ Ak = supp(1A1
∗ · · · ∗ 1Ak

).

In particular we have that A + B = supp(1A ∗ 1B). Moreover we have the more specific
relationship

1A1
∗ · · · ∗ 1Ak

(x) =
|{(a1, . . . , ak) ∈ A1 × · · · × Ak : a1 + · · ·+ ak = x}|

|G|k−1
; (3.1)

this convolution thus gives a normalised count of how many ways there are of writing x
as a1 + · · ·+ ak with ai ∈ Ai. Finally we have

1A ∗ 1B(x) =
|A ∩ (x− B)|

|G| .

Proof. Exercise. �

Thus, not only can we study sumsets A+A = supp(1A ∗ 1A) and A+A+A = supp(1A ∗
1A∗1A) using convolutions, but we can study how ‘robustly’ an element lies in the sumset,
this being measured by 1A ∗ 1A(x) or 1A ∗ 1A ∗ 1A(x).

Exercise 3.4. What is f ∗ 1? What is 1A ∗ 1{x}?

It may at this stage seem more natural not to normalise as we have done in the definition
of convolution, but it turns out that this normalisation is useful in many situations—in

particular it fits with our convention of taking averages over G (and sums over Ĝ) from
our discussion of the Fourier transform. Note that a particular consequence of it is that
we always have 0 6 1A1

∗ · · · ∗ 1Ak
(x) 6 1 for any x ∈ G. More generally, the convolution

of two [0, 1]-valued functions is itself a [0, 1]-valued function.

A key property of the Fourier transform is that it interacts nicely with convolutions.
Specifically, Fourier transforms convert the somewhat complex operation of convolution
to the simple operation of taking pointwise products.

Lemma 3.5. Let f, g : G→ C be two functions on a finite abelian group G. Then

f̂ ∗ g = f̂ · ĝ

We again leave the proof to the reader.

Note, then, that the Fourier inversion formula tells us that

f ∗ g(x) =
∑

γ∈Ĝ

f̂(γ)ĝ(γ)γ(x)

and more generally that

f1 ∗ · · · ∗ fk(x) =
∑

γ∈Ĝ

f̂1(γ) · · · f̂k(γ)γ(x);

expressions we shall find very useful shortly.
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Exercise 3.6. Use this to prove that the two-variable sum
∑

x,d∈G

1A(x)1A(x+ d)1A(x+ 2d) (3.2)

counting the number of three-term progressions in A is equal to a multiple of the one-
variable sum ∑

γ∈Ĝ

1̂A(γ)
21̂A(γ

−2) (3.3)

when expressed in terms of 1̂A, at least if |G| is odd. (You should be able to guess the
multiple from our conventions!) This will be very useful in another part of this school.

4. Bohr sets

We mentioned some different groups of interest at the start: Z, ZN and Fn
p . We saw

different types of sets with small sumset in these groups: in the first two we had the
arithmetic progressions, whereas in the third we had subspaces. In this section we intro-
duce the notion of a Bohr set, which to some extent extends to arbitrary groups both the
concepts of subspaces and arithmetic progressions simultaneously. This notion will crop
up fairly naturally in the course of our arguments.

Definition 4.1. Let G be a finite abelian group, let Γ ⊆ Ĝ be a set of characters and let
δ > 0. Then we define

BohrG(Γ, δ) = {x ∈ G : |γ(x)− 1| 6 δ for all γ ∈ Γ}
and call this a Bohr set with rank |Γ| and radius δ. If the group G is clear from the
context we may drop the subscript from the BohrG.

A Bohr set is thus an approximate annihilator of a certain set of characters; it should be
compared with the definition of the annihilator of a subspace V in linear algebra.

Before we make these relationships between Bohr sets, subspaces and arithmetic progres-
sions more precise, let us note some elementary properties of Bohr sets in the form of
some exercises. In each of these exercises we suppose that G is a finite abelian group.

Exercise 4.2. Let Γ ⊆ Ĝ be a set of characters. Show that BohrG(Γ, δ) is symmetric,
that is that BohrG(Γ, δ) = −BohrG(Γ, δ). Show also that BohrG(Γ, δ) = G if δ > 2.

Exercise 4.3. Let Γ1,Γ2 ⊆ Ĝ be sets of characters and suppose δ > 0. Show that
Bohr(Γ1 ∪ Γ2, δ) = Bohr(Γ1, δ) ∩ Bohr(Γ2, δ).

Exercise 4.4. Let Γ ⊆ Ĝ be a set of characters and suppose δ1, δ2 > 0. Show that
Bohr(Γ, δ1) + Bohr(Γ, δ2) ⊆ Bohr(Γ, δ1 + δ2).

We next show that, in Fn
p , Bohr sets of not too large rank contain large subspaces.

Proposition 4.5 (Bohr sets contain subspaces). Let p be a prime and let G = Fn
p for

some n > 1. Let Γ ⊆ F̂n
p be a set of characters and suppose δ > 0. Then the Bohr set

Bohr(Γ, δ) contains a subspace of Fn
p of dimension at least n− |Γ|.
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Proof. The point here is that Bohr(Γ, δ) contains the subspace 〈Γ〉⊥, the actual annihilator
of the subspace generated by Γ. The result then follows as this subspace has dimension

n − dim〈Γ〉. But let us be a bit more explicit: let us identify F̂n
p with Fn

p itself as in

Example 2.7. Then, writing γ1, . . . , γk for the elements of Γ, we have4 γi(x) = e((ri ·x)/p)
for some vectors ri ∈ Fn

p , where v · w is the usual dot product of vectors. Let

V = {x ∈ Fn
p : ri · x = 0 for all i = 1, . . . , k} = ker f,

where f : Fn
p → Fk

p is defined by

f(x) = (r1 · x, . . . , rk · x).
This is a linear map, and since the dimension of its image is clearly at most k we have,
by the rank-nullity theorem, that

dimV = n− rank f > n− k.

We also have that V ⊆ Bohr(Γ, δ), since for any x ∈ V and any i ∈ {1, . . . , k}
|γi(x)− 1| = |e((ri · x)/p)− 1| = 0 6 δ,

and so we are done. �

So Bohr sets in Fn
p are highly structured: they contain (and are often equal to) huge

subspaces. What about in ZN? We shall use the following lemma from Diophantine
approximation to get a handle on the situation; ‖x‖R/Z represents the distance from x to
the nearest integer.

Lemma 4.6. Let N be a positive integer and let x1, . . . , xk ∈ ZN . Then there is a
non-zero element d ∈ ZN such that∥∥∥∥

dxi

N

∥∥∥∥
R/Z

6 N−1/k for all i = 1, . . . , k.

Proof. This is Dirichlet’s boxing argument. Define x = (x1, . . . , xk) ∈ Zk
N and consider

the elements 0,x, 2x, . . . , (N − 1)x in Zk
N . Base a cube of side

⌈
N1−1/k

⌉
at each of these

points; since there are only Nk points in total in Zk
N , two of these cubes must intersect.

Hence two of the points, say mx and nx with m 6= n, must have each pair of components
within a distance of at most

⌊
N1−1/k

⌋
of each other. In other words, for each i the element

(n−m)xi must lie between −N1−1/k and N1−1/k in ZN . We may thus take d = n−m. �

Proposition 4.7 (Bohr sets contain arithmetic progressions). Let N be a prime, let

Γ ⊆ ẐN be a set of characters and suppose δ > 0. Then BohrZN
(Γ, δ) contains an

arithmetic progression P of length

|P | > 1
2π
δN1/|Γ|.

Proof. We identify ẐN with ZN , via Example 2.4 so that, writing γ1, . . . , γk for the ele-
ments of Γ, we have γi(x) = e((rix)/N) for some ri ∈ ZN . By the preceding lemma we
can find a non-zero element d ∈ ZN such that ‖dri/N‖R/Z 6 N−1/k for each i. Let M be
a positive integer to be determined later and define an arithmetic progression P by

P = {−Md, . . . ,−d, 0, d, 2d, . . . ,Md} ⊆ ZN ;

4We employ here and elsewhere the standard notation e(θ) = e2πiθ.
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we claim that this is contained in Bohr(Γ, δ) provided we pick M not too large. Indeed,
if n ∈ [−M,M ] then, for any i ∈ {1, . . . , k}, we have5 that

|γi(nd)− 1| 6 2π‖ndri/N‖R/Z 6 2π|n|‖dri/N‖R/Z 6 2πM/N1/k,

and this will be at most δ provided we pick M =
⌊
δN1/k/2π

⌋
. Since |P | = 2M + 1 we

are done. �

5. Notes and references

At the end of each part of these notes are some remarks and references. These are in no
way meant to be encyclopaedic; instead the intention is that they might offer starting
points if one wants to deepen one’s knowledge, and to provide at least some sort of
historical context. I apologise in advance to anyone who ought to have been mentioned
but was not.

Most of the content of this part of the notes is standard, and the standard reference is
the book Additive Combinatorics by Tao and Vu [14], which contains lots of useful and
interesting material.

Before we move on to the course material proper, let us just mention one further type of
structure that is of high interest in additive combinatorics:

Generalised progressions. It turns out that much more is true than is suggested by
Proposition 4.7: in ZN Bohr sets contain large generalised arithmetic progressions. We
shall not really use this fact in this course, but it is worth bearing in mind.

Definition 5.1 (Generalised arithmetic progressions). A generalised arithmetic progres-
sion in an abelian group G is any set6 of the form

P = {a+ λ1x1 + · · ·+ λdxd : Mi 6 λi 6 Ni},
where a, x1, . . . , xd ∈ G and the Mi and Ni are integers with Mi 6 Ni. We call x =
(x1, . . . , xd) the base or basis of P and d the dimension or rank of P . P is called proper
if all the elements λ1x1 + · · ·+ λdxd with Mi 6 λi 6 Ni are distinct.

There are several useful ways of thinking about generalised arithmetic progressions. For
example, one can think of a generalised arithmetic progression in Z as a linear projection
of a box in Zd to Z. One can also think of a generalised arithmetic progression with base
set {x1, . . . , xd} as (a translate of) a truncated version of the subgroup generated by the
xi. Yet another way to think about a generalised arithmetic progression is as a sum of
ordinary arithmetic progressions.

By using more sophisticated arguments than those appearing in the proofs of Lemma 4.6
and Proposition 4.7, relying on the Geometry of Numbers, one can prove the following.

5Note that 4‖θ‖R/Z 6 |e(θ)− 1| 6 2π‖θ‖R/Z for all θ ∈ R, as follows from drawing a picture.
6There is an abuse of terminology here: really the progression should be defined as a tuple consisting

of the parameters involved in its definition rather than as a set, but it would get very tedious to talk
about such tuples and so we refer simply to the set instead.
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Proposition 5.2 (Bohr sets contain GAPs). Let N be a prime, let Γ ⊆ ẐN be a set
of d characters and suppose δ ∈ (0, 2]. Then BohrZN

(Γ, δ) contains a proper generalised
arithmetic progression P of rank at most d and size

|P | >
(

δ

2πd

)d

N.

For this and more, see §4.4 in Tao–Vu.
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PART 2

Structures in sumsets: three or more summands

We now come to answering some of the questions we set out at the start of these notes
about structures in sumsets. The more sets we add, the more structure we expect to see,
and indeed it turns out that sets like A + A are somewhat trickier to analyse than sets
like A+ A+ A. We therefore begin with sums of at least three sets.

1. Strategy

We shall focus on establishing results of the following form.

Theorem 1.1. Let α > 0 and suppose A ⊆ [1, N ] is a set of size at least αN . Then
3A = A+ A+ A contains an arithmetic progression P of length

|P | > cαN cα3

,

where c > 0 is an absolute constant.

In order to prove this we shall use Fourier analysis to study iterated convolutions, and
then apply these results about convolutions to obtain information about sumsets using
the fact that A+A+A is the support of 1A ∗ 1A ∗ 1A (see Lemma 1.3.3). Specifically, we
shall show that convolutions are almost-periodic in a certain sense: we shall show that
there is a long arithmetic progression P such that, for any element x,

|1A ∗ 1A ∗ 1A(x+ t)− 1A ∗ 1A ∗ 1A(x)| 6 ǫ for all t ∈ P .

We shall then use the fact that there is an x for which 1A ∗ 1A ∗ 1A(x) is large to conclude
that, for this x, 1A∗1A∗1A(x+t) must be non-zero for all t ∈ P , and so x+P ⊆ A+A+A.

In the next section we shall employ a related but somewhat simpler argument to deal
with sets of the form 2A − 2A: in addition to being a useful result, this is also a good
warm-up in getting to know the tools.

2. Bogolyubov’s lemma

We begin with the following result, known as Bogolyubov’s lemma. It says that sets of
the form 2A− 2A must be highly structured if A is large1.

1To avoid repeating the word ‘non-empty’ everywhere, we shall assume wherever appropriate in these
notes that the sets given to us are non-empty and that related constants α are non-zero.
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Theorem 2.1 (Bogolyubov’s lemma). Let G be a finite abelian group and suppose A ⊆ G

has size α|G|. Then there is a set Γ ⊆ Ĝ of size at most 1/α2 such that

Bohr(Γ,
√
2) ⊆ 2A− 2A.

Proof. We use the fact that 2A−2A is the support of 1A ∗1A ∗1−A ∗1−A. Applied to this

function, the Fourier inversion formula together with the convolution identity f̂ ∗ g = f̂ · ĝ
yields

1A ∗ 1A ∗ 1−A ∗ 1−A(x) =
∑

γ∈Ĝ

|1̂A(γ)|4γ(x) =
∑

γ∈Ĝ

|1̂A(γ)|4 Re γ(x); (2.1)

our aim is to show that this is strictly greater than 0 for all x in some Bohr set. Define

Γ = {γ ∈ Ĝ : |1̂A(γ)| > δα},
the ‘large spectrum’ of 1A, where δ = α1/2. By Parseval’s identity we have that Γ cannot
be very large:

|Γ|α3
6
∑

γ∈Ĝ

|1̂A(γ)|2 = Ex∈G|1A(x)|2 = α,

so |Γ| 6 1/α2. Now, for any x ∈ Bohr(Γ,
√
2) and any γ ∈ Γ the real part of γ(x) is

non-negative (draw a picture). Together with the fact that 1̂A(1)
4 = α4, this implies from

(2.1) that

1A ∗ 1A ∗ 1−A ∗ 1−A(x) > α4 +
∑

γ∈Ĝ\Γ

|1̂A(γ)|4 Re γ(x)

> α4 −
∑

γ∈Ĝ\Γ

|1̂A(γ)|4

> α4 − δ2α2
∑

γ∈Ĝ\Γ

|1̂A(γ)|2

> 0,

the last inequality following from Parseval’s identity. Thus x ∈ 2A − 2A, and since
x ∈ Bohr(Γ,

√
2) was arbitrary, we are done. �

Combining this theorem with Proposition 1.4.7 immediately yields the following nice
combinatorial result.

Corollary 2.2 (APs in 2A− 2A). Let N be a prime and suppose A ⊆ ZN has size αN .
Then 2A− 2A contains an arithmetic progression P of length

|P | > 1
5
Nα2

.

Similarly we have the following result in Fn
p .

Corollary 2.3 (Subspaces in 2A − 2A). Let p be a prime and suppose A ⊆ Fn
p has size

αpn. Then 2A− 2A contains a subspace of dimension at least n− 1/α2.

Note the discrepancy between the sizes of the sets found in 2A − 2A in the two setups:
in the former we obtain a small power of |G| whereas in the latter we obtain something
proportional to |G|. This is due to us restricting to an arithmetic progression in the
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former result: the enveloping Bohr set has size proportional to |G| in each case, and so
too would the size of a generalised arithmetic progression in 2A − 2A, as follows from
Proposition 1.5.2.

Now, in the above argument we used the particular form of the convolution 1A ∗ 1A ∗
1−A ∗ 1−A, but it turns out that one may argue similarly for more general convolutions
of three or more functions; we turn to this next.

3. Structures in A+ A+ A

We would like to also say something similar to Bogolyubov’s lemma about sets of the
form A + A + A. In the proof of this result we made use of the fact that the function
1A ∗ 1A ∗ 1−A ∗ 1−A had non-negative Fourier coefficients, which need no longer hold true
for convolutions of the form 1A ∗1A ∗1A. We, may however, use very similar techniques to
deal with such convolutions. We start with a preliminary lemma that encodes the heart
of the matter.

Lemma 3.1. Let G be a finite abelian group, let f : G → [0, 1] and write α = Exf(x).

Suppose ǫ > 0. Then there is a set of characters Γ ⊆ Ĝ of size at most 4/αǫ2 such that

|f ∗ f ∗ f(x+ t)− f ∗ f ∗ f(x)| < ǫα2 for all t ∈ Bohr(Γ, ǫ)

holds for any x ∈ G.

Remark 3.2. This lemma is saying that three-fold convolutions of the form f ∗ f ∗ f
are almost-periodic: we have a large, structured supply of almost-periods t. (Recall at
this point what a period of a function is.) One can think of this as being a continuity
property: one can shift the function by certain translates without affecting its value by
much.

Proof. Similarly to the previous proof, let Γ = {γ ∈ Ĝ : |f̂(γ)| > δα} be the large
spectrum of f , where δ = ǫ/2. Parseval’s identity again tells us that this set of characters
cannot be very large: |Γ| 6 1/αδ2 = 4/αǫ2. Now let t ∈ Bohr(Γ, ǫ) and let x ∈ G be

arbitrary. By the Fourier inversion formula and the convolution identity f̂ ∗ g = f̂ · ĝ we
have

|f ∗ f ∗ f(x+ t)− f ∗ f ∗ f(x)| = |
∑

γ∈Ĝ

f̂(γ)3γ(x)(γ(t)− 1)|

6
∑

γ∈Ĝ

|f̂(γ)|3|γ(t)− 1|

6
∑

γ∈Γ

|f̂(γ)|3|γ(t)− 1|+ 2
∑

γ∈Ĝ\Γ

|f̂(γ)|3.

We can bound the first sum using the fact that, for γ ∈ Γ, |γ(t) − 1| 6 ǫ, and we can

bound the second sum using the fact that |f̂(γ)| < δα for any γ /∈ Γ. Using these bounds,
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and the bound |f̂(γ)| 6 α, valid for any γ ∈ Ĝ, we obtain

|f ∗ f ∗ f(x+ t)− f ∗ f ∗ f(x)| < ǫα
∑

γ∈Γ

|f̂(γ)|2 + ǫα
∑

γ∈Ĝ\Γ

|f̂(γ)|2

6 ǫα2,

the final inequality following from the consequence
∑

γ|f̂(γ)|2 = Ex|f(x)|2 6 α of Parse-
val’s identity. �

This kind of almost-periodicity result is extremely useful. Applying it to f = 1A we
almost immediately obtain the following result.

Theorem 3.3. Let G be a finite abelian group and suppose A ⊆ G has size α|G|. Then
there is some element x ∈ G such that

x+ Bohr(Γ, α) ⊆ A+ A+ A,

where |Γ| 6 4/α3.

Proof. Apply the previous lemma to f = 1A with ǫ = α to obtain a set Γ ⊆ Ĝ with
|Γ| 6 4/α3 such that

|1A ∗ 1A ∗ 1A(x+ t)− 1A ∗ 1A ∗ 1A(x)| < α3

for each t ∈ Bohr(Γ, α). By the last part of Lemma 1.3.2 we have Ex1A ∗1A ∗1A(x) = α3;
hence there is an element x ∈ G such that 1A ∗ 1A ∗ 1A(x) > α3. For this element we thus
have, for any t ∈ Bohr(Γ, α),

1A ∗ 1A ∗ 1A(x+ t) > 1A ∗ 1A ∗ 1A(x)− α3
> 0,

whence x+ t ∈ A+ A+ A. Hence x+ Bohr(Γ, α) ⊆ A+ A+ A. �

We again obtain the following immediate corollaries from the results of Section 1.4.

Corollary 3.4. Let N be a prime and suppose A ⊆ ZN has size αN . Then A + A + A
contains an arithmetic progression P of length

|P | > 1
2π
αNα3/4.

Corollary 3.5. Let p be a prime and suppose A ⊆ Fn
p has size αpn. Then A + A + A

contains a translate of a subspace of dimension at least n− 4/α3.

Exercise 3.6. Deduce Theorem 1.1 from Corollary 3.4.

A number of improvements have been made to these results over the years, but it is still
not known what the optimal results are in terms of bounds. If we have time, we shall
discuss this at the end of the course.

Exercise 3.7. What kinds of variants of Lemma 3.1 can you prove for f1 ∗ f2 ∗ f3 with
three functions f1, f2, f3 instead of just a single f?

Exercise 3.8. Formulate a version of Lemma 3.1 for functions f : G → C. What
conditions on f are natural?
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4. Notes and references

The ideas behind the above results have their ideas in fairly classical work on almost-
periodicity, first studied by Harald Bohr. For some background on Bogolyubov’s lemma
see §4.6 of Tao–Vu. Ruzsa is credited with bringing out Bogolyubov’s work [1], which
was related to an elementary proof of Bohr’s approximation theorem for almost-periodic
functions, into the context of the results presented above and in particular to the result
described above as Bogolyubov’s lemma. The results on 3A are essentially due to Freiman,
Halberstam and Ruzsa [5], who again acknowledged Bogolyubov’s work. Incidentally, this
latter paper seems to have inspired Bourgain’s initial work on arithmetic progressions in
A+ A, the topic to which we turn in the next part.

The bounds in the results on structures in 3A can be improved, at least as far as the
dependence on the density in concerned. For 3A, it is (with modern eyes) a fairly straight-
forward matter to use Chang’s theorem [14, Lemma 4.36] to improve the exponent α3 to
α2+ǫ; one can also show this directly from the results of the next part of these notes. The
recent paper [7] of Henriot contains a useful summary of results on 3A and A + B + C,
setting into context the earlier papers [6, 10, 3]. There is a huge gap between the best
known lower bounds and the best known upper bound, which is something like NC/ log(1/α)

[5].

For 2A − 2A a vastly better density dependence is known. One of the most recent
breakthroughs is due to Sanders, who in [11] proved a result of the form of Theorem 2.1
with something like C(log 1/α)4 in place of the 1/α2, using ideas on almost-periodicity
from [4]. See the survey [12] of Sanders for a detailed history, particularly related to
Freiman’s theorem on the classification of sets with small sumset—Question 4 of the
introduction. This is currently a hot topic of research, with one of the ultimate goals
relating to the so-called Polynomial Freiman-Ruzsa conjecture, which would be implied
by something along the lines of one being able to replace the 1/α2 in Theorem 2.1 with
C log(1/α).
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PART 3

Structures in sumsets: A+ A

1. Strategy

We turn now to single sumsets A + A, which are, from our perspective, slightly more
subtle. Our results for 3A in the previous section depended in a simple way on a certain
almost-periodicity result, which said that functions of the form f ∗ f ∗ f have lots of
almost-periods: shifts t for which f ∗ f ∗ f(x+ t) ≈ f ∗ f ∗ f(x) for all x; we then applied
this with f = 1A. Such a result is no longer true with good bounds for single convolutions
f ∗ f , but we shall nevertheless be able to prove the following.

Theorem 1.1. Let A be a subset of [1, N ] of size at least αN . Then A+ A contains an
arithmetic progression of length at least

exp
(
c(α2 logN)1/2 − log logN

)
,

where c > 0 is some absolute constant1.

Note that this is smaller than N s(α) for any fixed α, but it is also much, much larger than
any fixed power of logN . (Take logs!)

But if the almost-periodicity result corresponding to Lemma 2.3.1 fails for f ∗ f , then
what can we do? It turns out we can prove a (in some sense) weaker but still useful type
of result.

Theorem 1.2 (Fourier-based Lp-almost-periodicity). Let p > 2 and ǫ ∈ (0, 1) be param-
eters. Let G be a finite abelian group and suppose f : G → C is a function. Then there
is a Bohr set T ⊆ G of rank at most Cp/ǫ2 and radius cǫ such that

‖f(x+ t)− f(x)‖Lp(x) 6 ǫ‖f̂‖ℓ1 for each t ∈ T .

Note that we have stated this for an arbitrary function f and not a convolution, but one

needs ‖f̂‖ℓ1 =
∑

γ∈Ĝ|f̂(γ)| to be small for the result to be useful, which is the case for
convolutions by Parseval’s identity.

The expression on the left-hand side is simply

(Ex∈G|f(x+ t)− f(x)|p)1/p ,
which, as p→∞, tends to ‖f(·+ t)− f‖∞, the quantity we bounded for convolutions of
three functions in Lemma 2.3.1—a hint as to why the result might be useful to us.

1We shall have quite a lot of constants floating about whose values we do not care much about; from
here on we therefore employ the convention that c and C stand for some absolute constants, but which
may vary from occurrence to occurrence.
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But before we say more about that, let us prove the result itself. For this we shall take
a little detour into probability theory.

Exercise 1.3. Prove a result of the form of Theorem 1.2 in the case p = 2, by using
Parseval’s identity.

Exercise 1.4. By expanding the square, or otherwise, deduce a version of Bogolyubov’s
lemma from this p = 2 case, if perhaps with worse constants. Can you deduce the f ∗f ∗f
almost-periodicity lemma?

2. The law of large numbers: the Marcinkiewicz-Zygmund inequality

If one takes a bunch of independent samples from a numerical population, then one
expects their mean (the sample mean) to be a fair approximation to the population mean,
as long as the number of samples is not very small. Various versions of this principle are
associated with the phrase the law of large numbers ; we shall use the following version.

Lemma 2.1 (Marcinkiewicz-Zygmund inequality). Let p > 2, and suppose X1, . . . , Xn

are independent, mean-zero complex-valued random variables with E|Xj|p <∞. Then

E|
k∑

j=1

Xj|p 6 (Cp)p/2 E



(

k∑

j=1

|Xj|2
)p/2


 . (2.1)

Exercise 2.2. What does the p = 2 case of this inequality say? Prove that one actually
has equality in this case, with no factor (Cp)p/2: the variance of a sum of independent
random variables is the sum of the variances. (Our proof of the general case will follow
a natural argument for this quite closely.) Lemma 2.1 says that this is still true up to
some constant even for higher moments/Lp-norms.

How does this link with the law of large numbers? Let us assume that |Xj| 6 1. If we
divide throughout by kp, and assume that k is large enough, we see that the ‘sample
mean’ Ej∈[k]Xj is pretty close (in Lp expectation) to its actual mean (0): the error is at

most (Cp/k)p/2, which is small provided our number of samples k is large enough.

To prove this inequality, which is relatively central to our argument, we begin with the
following special case in which the random variables are assumed to be symmetric. For
discrete random variables, as in our applications, this just means that P(X = x) = P(X =
−x) for all x. Note that this automatically implies that EX = 0.

Lemma 2.3 (Khintchine’s inequality). Let p > 2, and suppose X1, . . . , Xn are indepen-
dent, symmetric (real-valued) random variables with E|Xj|p <∞. Then

E|
k∑

j=1

Xj|p 6 (Cp)p/2E



(

k∑

j=1

X2
j

)p/2

 .

Remark 2.4. This is usually stated for the case when Xj = ±cj with equal probability;
the version above is more convenient for us and follows directly from Khintchine’s proof.
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Proof. At the cost of increasing the constant C in the conclusion slightly, we may assume
that p = 2m is an even integer, since if p 6 q we have (E|X|p)1/p 6 (E|X|q)1/q (this is
the nesting of Lp-norms; cf Jensen’s inequality)2.
We may then expand the left-hand side combinatorially: by the multinomial theorem

E


∑

j∈[k]

Xj




2m

= E
∑

r1,...,rk>0
r1+···+rk=2m

(
2m

r1, . . . , rk

)
Xr1

1 · · ·Xrk
k , (2.2)

the multinomial coefficient being
(

2m

r1, . . . , rk

)
=

(2m)!

r1! · · · rk!
.

By the linearity of expectation we may take the E inside the sum, and since the Xj are
independent we have EXr1

1 · · ·Xrk
k = (EXr1

1 ) · · · (EXrk
k ). But if some rj is odd then, since

the variables are symmetric, EX
rj
j = 0. Thus we may restrict the summation in (2.2) to

where all the rj are even, say rj = 2sj, and so

E


∑

j∈[k]

Xj




2m

=
∑

s1+···+sk=m

(
2m

2s1, . . . , 2sk

)
(EX2s1

1 ) · · · (EX2sk
k )

6
(2m)!

2mm!

∑

s1+···+sk=m

(
m

s1, . . . , sk

)
(EX2s1

1 ) · · · (EX2sk
k )

=
(2m)!

2mm!
E


∑

j∈[k]

X2
j




m

,

the inequality being a consequence of the trivial bound (2sj)! > 2sjsj!. Since (2m)!/2mm! 6
mm, we are done. �

Exercise 2.5. What does this say when Xj = cj and Xj = −cj each with probability
1/2, for constants cj ∈ R? (This is the traditional setting of Khintchine’s inequality.)

Of course, not all random variables are symmetric—in our application it certainly need not
be the case. However, it turns out that we can deduce the full Marcinkiewicz-Zygmund
inequality from the above special case by the very useful trick of symmetrisation. The
basic idea behind this is very simple: if one has a random variable X then, letting X ′ be
an independent copy of X, the random variable X −X ′ is a symmetric random variable
whose statistics are highly related to those of X.

Since this trick can cause some confusion, let us be completely explicit about it here, in
the following lemma-with-definition.

Lemma 2.6. For a random variable X on a sample space Ω, let the symmetrisation X(s)

be the random variable on Ω × Ω defined by X(s)(ω, ν) = X(ω) − X(ν). For p > 1, if
EX = 0 and E|X|p <∞, then,

E|X(s)|p > E|X|p.

2Alternatively, just assume p is an even integer in the statement and only apply it in this case.
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Note that the first expectation in this inequality is with respect to the product measure
on Ω× Ω, whereas the second one is with respect to the measure on Ω itself.

Proof. By the mean-zero hypothesis, we have

Eω|X(ω)|p = Eω|X(ω)− EνX(ν)|p = Eω|EνX(ω)−X(ν)|p 6 EωEν |X(ω)−X(ν)|p,
the inequality being a case of Jensen’s inequality. This gives the result, by Fubini. �

Proof of Lemma 2.1. The complex-valued case follows from the real-valued one by looking
at real and imaginary parts, so we assume that the Xj are real-valued3. Using Lemma

2.6 and applying Lemma 2.3 to the symmetric random variables X
(s)
j yields

E|
∑

j∈[k]

Xj|p 6 E|
∑

j∈[k]

X
(s)
j |p 6 (Cp)p/2E





∑

j∈[k]

(X
(s)
j )2




p/2

 .

The right-hand side cannot be much bigger than the right-hand side of (2.1): applying
the inequality (a− b)2 6 2(a2 + b2) and the triangle inequality for the Lp/2 norm gives

E


∑

j∈[k]

(Xj(ω)−Xj(ν))
2




p/2

6 2p/2E


∑

j∈[k]

Xj(ω)
2 +

∑

j∈[k]

Xj(ν)
2




p/2

6 2pE


∑

j∈[k]

X2
j




p/2

,

whence we are done. �

This (essentially) completes our detour into probability; next we come to applying these
results.

3. Approximation by short trigonometric polynomials and

Lp-almost-periodicity

As we shall see, a natural way to prove Theorem 1.2 is by approximating the function f
by a short trigonometric polynomial, in the following sense.

Theorem 3.1 (Short trigonometric approximation).

Let p > 2 and ǫ > 0. Let f : G → C be normalised so that ‖f̂‖ℓ1 = 1. Then there are

characters γ1, . . . , γk ∈ Ĝ and coefficients c1, . . . , ck ∈ C with |cj| = 1, where k 6 Cp/ǫ2,
such that

‖f − 1

k

∑

j∈[k]

cjγj‖p 6 ǫ.

Proof. Write, as we may by the Fourier inversion formula,

f =
∑

γ∈Ĝ

f̂(γ)γ =
∑

γ∈Ĝ

|f̂(γ)|cγγ

where |cγ| = 1. Now let χ : G → C× be a random ‘twisted’ character picked according

to the distribution P(χ = cγγ) = |f̂(γ)|, so that

Eχ =
∑

γ

cγγ P(χ = cγγ) = f.

3One can also modify the proof of Lemma 2.3 to work directly with complex-valued random variables.
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Let χ1, . . . , χk be independent samples according to this distribution for some k to be
specified. Then, by the Marcinkiewicz-Zygmund inequality, Lemma 2.1,

E ‖Ej∈[k]χj − f‖pp = Ex∈G E |Ej∈[k]χj(x)− f(x)|p

6

(
Cp

k

)p/2

Ex∈G E

[(
Ej∈[k]|χj(x)− f(x)|2

)p/2]

6

(
Cp

k

)p/2

,

the last inequality following from the fact that |χj(x)|, |f(x)| 6 1. Pick k = ⌈Cp/ǫ2⌉
so that the final bound is at most ǫp. Since the expectation over all twisted characters
is this small, certainly there is some choice of χ1 = cγ1γ1, . . . , χk = cγkγk such that
‖Ej∈[k]χj − f‖pp 6 ǫp, and we are done. �

Thus, up to a small error in Lp, we may approximate any f with ‖f̂‖ℓ1 small by a short
trigonometric polynomial4. Indeed, we can do so with a number of characters that is
in a sense independent of |G|, whereas a priori one needs |G| characters to express f
exactly. Since such short sums are actually L∞-almost-periodic, this leads very quickly
to Theorem 1.2, which we now recall.

Theorem 1.2. Let p > 2 and ǫ ∈ (0, 1). For any f : G→ C there is a Bohr set T ⊆ G
of rank at most Cp/ǫ2 and radius cǫ such that

‖f(x+ t)− f(x)‖Lp(x) 6 ǫ‖f̂‖ℓ1 for each t ∈ T .

Proof. Apply Theorem 3.1 to f ′ := f/‖f̂‖ℓ1 with parameters p and ǫ/3 to get a set of

characters Γ ⊆ Ĝ of size at most Cp/ǫ2 and coefficients cj of absolute value 1 such that the
function g = Eγ∈Γ cγγ approximates f ′ well: ‖f ′−g‖p 6 1

3
ǫ. For any t ∈ T := Bohr(Γ, ǫ/3)

we then have, for any x ∈ G,

|g(x+ t)− g(x)| = |Eγ∈Γ cγγ(x)(γ(t)− 1)| 6 Eγ∈Γ |γ(t)− 1| 6 ǫ/3,

and so

‖f ′(·+ t)− f ′‖p 6 ‖f ′(·+ t)− g(·+ t)‖p + ‖g(·+ t)− g‖p + ‖g − f ′‖p 6 ǫ. �

4. Long progressions in A+ A

It is now a short matter to deduce Theorem 1.1. We prove the following variant for cyclic
groups, and leave it as an exercise to deduce the version for integers from this.

Theorem 4.1. Let N be a prime and let A ⊆ ZN be a set of size at least αN . Then
A+ A contains an arithmetic progression of length at least

exp
(
c(α2 logN)1/2 − log logN

)
.

4Why polynomial? In the case of G = ZN all the characters are of the form γn for some fixed γ.
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Proof. Apply Theorem 1.2 to f := 1A ∗ 1A with parameters p and ǫ to be determined.
We get a Bohr set T of rank at most Cp/ǫ2 and radius cǫ such that, for each t ∈ T ,

‖f(·+ t)− f‖p 6 ǫ‖f̂‖ℓ1 = ǫ
∑

γ∈Ĝ

|1̂A(γ)|2 = ǫα,

where we have used the convolution identity and Parseval’s identity. Let P ⊆ T be an
arithmetic progression—we shall attempt to find a translate of this in A+ A. We have

Ex∈G sup
t∈P
|f(x+ t)− f(x)| 6 Ex∈G

(∑

t∈P

|f(x+ t)− f(x)|p
)1/p

6

(∑

t∈P

Ex|f(x+ t)− f(x)|p
)1/p

6 ǫα|P |1/p.

If we can show that this is less than α2 = Ex∈Gf(x), then we can be happy, as there then
exists some x ∈ G such that |f(x+ t)− f(x)| < f(x) for all t ∈ P , whence f(x+ t) > 0
and so x+P ⊆ supp f = A+A. So now we just have to optimise the parameters to make
this the case. We pick ǫ = α/2, and so all we need is for |P | to be at most 2p. On the

other hand, we can find an arithmetic progression in T of any length up to cαN cα2/p, by
Proposition 1.4.7. If α is very small, the result is trivial; otherwise we pick p = Cα

√
logN

which then gives the desired bound. �

Remark 4.2. So how did we use the fact that we had Lp-almost-periods for a large p?
We did indeed do an Lp ←→ L∞ approximation as hinted at earlier, though not over the
whole group, but rather on a much smaller scale, namely over (the relatively small set)
P .

Exercise 4.3. Show that in Fn
p , A + A contains a translate of a subspace of dimension

at least cα2n.

Exercise 4.4. Can you extend the results to A+B?

5. Notes and references

The first result of the form of Theorem 1.1 was proved by Bourgain [2], who essentially
proved the result with an exponent 1/3 instead of 1/2. Green [6] subsequently proved
Theorem 1.1 itself. The proof given above follows [3], in which a somewhat better density
dependence is also proved. An exposition of Bourgain’s argument with a focus on almost-
periodicity can be found in [13].

For a fixed density α, say 1/1000, it is not currently known whether the kind of bound
in Theorem 1.1 is best possible or not. By way of upper bounds, there is a remarkable
construction due to Ruzsa [9] which establishes that one cannot replace the exponent 1/2
in the theorem by anything larger than 2/3, even if one makes A a symmetric subset of
ZN of size almost N/2. This is particularly striking, since as soon as |A| > N/2 one has
A+ A = ZN .
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The result on short approximations can be vastly generalised; the proof given above
essentially constitutes a proof of Maurey’s lemma in Banach space theory [8]. This
perspective unites parts of the arguments from [3] and [4]; see [3] for something of a
discussion on this.

There is a lot more that could be said here, but we did not have time for much more
during the course, and it is probably a good idea to keep these notes somewhat focused.
Many of the topics we have touched on in the course lead on to active areas of research;
the course content will hopefully allow anyone who wants to get up to speed with the
latest developments in these areas to do so.
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