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Introduction.

0.1. Statement of the result. In 1953, K. Roth [13] proved that a set of positive integers
with positive upper density must contain a non trivial arithmetic progression of length 3.
He more precisely obtained the following quantitative result.

Theorem (Roth (1953)). There exist a positive integer N0 and a positive constant c such
that for any N ≥ N0, any set A of positive integers less than N with density larger than
c/ log logN does contain a non trivial 3-arithmetic progression, i.e. there exist n, r ∈ N
(thus r 6= 0) such that the 3 integers n, n+ r and n+ 2r are all elements of A.

Remark 0.1. Of course any non empty set does contain a trivial 3-arithmetic progres-
sion (meaning that r = 0). Thus we have to exclude these trivial progressions to get a
meaningful result.

The first part of this notes will be devoted to the proof of this theorem whereas a second
part will give some short survey on the analogue of Roth’s theorem in some infinite subsets
of integers of zero density such as the subset of prime numbers.

We tried to give the reader all the details needed in the first part so that a master student
can read Roth’s theorem proof easily. In the second part, some proofs are only sketched
and we rather tried to give an idea of the issues specific to zero density subsets than to
explain precisely how all the arguments work.

These notes are based on some previous notes by K. Soundararajan available at
http://math.stanford.edu/ ksound/Notes.pdf and by T. Gowers [4] and on Tao and Vu’s
book [19]. The author is also indebted to the students and colleagues who attended her
course in Shillong and especially to Jan-Christoph Schlage-Puchta and Olöf Sisask whose
comments and questions were very useful to clarify some of the arguments.
This course was given in the CIMPA research school in Shillong organised in november 2013
by Gautami Bhowmik and Himadri Mukerjee. The author warmly thanks the organisers
for this opportunity.
The author is partly supported by the ANR grant ANR ”Caesar” 12-BS01-0011.

0.2. Tools and notations. Given a positive integer N , we write ZN to denote Z/NZ and
for simplicity, [1, N ] for the set of positive integers less than N . Given a subset of positive
integers A, we write AN for the set A ∩ [1, N ] and if A ⊂ Z is finite, we write |A| for the
number of elements in A and 1A for the indicator function of A. Subsets of integers less
than N will often be identified with the corresponding subsets of ZN .
If f : ZN → C or f : [1, N ]→ C, we define the mean value

Ef =
1

N

∑
n∈[1,N ]

f(n) or Ef =
1

N

∑
n∈ZN

f(n).

We shall see that in the proof of Roth’s theorem (in integers and in subsets of integers)
that Fourier analysis plays a great role. We recall here some definition and introduce some
notation related to this field.

Definition 0.1. Given f, g : ZN → C two functions, we define
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• the Fourier transform f̂ : ZN → C of f by

f̂(k) =
1

N

∑
n∈ZN

f(n)e

(
−kn
N

)
where e(θ) = e2iπθ;

• the convolution of f and g by

(f ∗ g)(n) = Em∈ZN
f(n−m)g(m) = Em∈ZN

f(m)g(n−m).

We recall here for f, g : ZN → C,

• the Fourier inversion formula:

f(n) =
∑
k∈ZN

f̂(k)e

(
kn

N

)
.

• the following property of the convolution: f̂ ∗ g = f̂ ĝ.

Definition 0.2. We also define, for p ≥ 1 and f : ZN → C, the Lp norm of f by

‖f‖Lp =

(
1

N

∑
n∈ZN

|f(n)|p
)1/p

.

For f̂ we shall rather use the `p-norm

‖f̂‖`p =

(∑
n∈ZN

|f(n)|p
)1/p

.

We shall heavily use Parseval’s identities:∑
k∈ZN

f̂(k)ĝ(k) = En∈ZN
f(n)g(n) and

∑
r∈ZN

∣∣∣f̂(k)
∣∣∣2 = En∈ZN

|f(n)|2 ,

and for p ≥ 1 and p′ such that 1
p

+ 1
p′

= 1, Hölder’s inequality:

En∈ZN
f(n)g(n) ≤ ‖f‖Lp‖g‖Lp′ and

∑
n∈ZN

f̂(n)ĝ(n) ≤ ‖f̂‖`p‖ĝ‖`p′

and Cauchy’s inequality

En∈ZN
f(n)g(n) ≤ ‖f‖L2‖g‖L2 and

∑
n∈ZN

f̂(n)ĝ(n) ≤ ‖f̂‖`2‖ĝ‖`2 .

We shall also need a function counting weighted arithmetic progressions.
Given f1, f2, f3 : ZN → C, we define

Λ3(f1, f2, f3) =
1

N2

∑
n,r∈ZN

f1(n)f2(n+ r)f3(n+ 2r).

Remark 0.2. If 1A is the indicator function of a set A ⊂ ZN , then N2Λ3(1A, 1A, 1A) counts
the number of 3-arithmetic progressions in A (as a subset of ZN).
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One key formula in Roth’s argument is the following lemma.

Lemma 0.3. Given f1, f2, f3 : ZN → C, we have

(0.1) Λ3(f1, f2, f3) =
∑
k∈ZN

f̂1(k)f̂2(−2k)f̂3(k).

Proof. We use the definition of the Fourier transform and get∑
k∈ZN

f̂1(k)f̂2(−2k)f̂3(k) =

(
1

N

)3 ∑
k∈ZN

∑
n1,n2,n3∈ZN

f1(n1)f2(n2)f3(n3)e

(
−k(n1 − 2n2 + n3)

N

)

=

(
1

N

)2 ∑
n1,n2,n3∈ZN

f1(n1)f2(n2)f3(n3)
1

N

∑
k∈ZN

e

(
−k(n1 − 2n2 + n3)

N

)

=

(
1

N

)2 ∑
n1,n2,n3∈ZN
n1+n3=2n2

f1(n1)f2(n2)f3(n3)

where in the last equality we used

1

N

∑
k∈ZN

e

(
nk

N

)
=

{
1 if n = 0,

0 otherwise.

Finally, a change of variables gives(
1

N

)2 ∑
n1,n2,n3∈ZN
n1+n3=2n2

f1(n1)f2(n2)f3(n3) = Λ3(f1, f2, f3).

�

Notation 0.4. Given a real number x, we shall write ‖x‖R/Z for the distance between x and
the nearest integer.

1. Proof of Roth’s theorem

In this section, we give a proof of Roth’s theorem that we recall here.

Theorem 1.1 (Roth (1953)). There exist a positive integer N0 and a positive constant
c such that for any N ≥ N0, any set A of positive integers less than N with density
larger than c/ log logN does contain a non trivial 3-arithmetic progression, i.e. there exist
n, r ∈ N (thus r 6= 0) such that the 3 integers n, n+ r and n+ 2r are all elements of A.

1.1. Outline of the proof. First we define arithmetic progressions.

Definition 1.1. A subset P of integers less than N of the form

P = {a+ nb, n ∈ {0, 1, · · · , N1 − 1}} with a, b ∈ N
is called an arithmetic progression of length N1.

We first explain roughly the main ideas of the proof.
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(1) One would expect, for a ”random” set A ⊂ [1, N ] of cardinality δN , around δ3N2

3-arithmetic progressions, whereas we only have δN trivial 3-arithmetic progressions
in A (much less than δ3N2 if N is much larger than 1/δ2).

(2) A non ”random” set has to be structured in some sense. More precisely, Roth
proves that a set with much less 3-arithmetic progressions than expected has to
concentrate on some large arithmetic progression P in A. To prove this part, Roth
uses the discrete Fourier transform and formula (0.1).

(3) If P is an arithmetic progression in A of length N1 on which A concentrates, the
subset A∩P is isomorphic to some set A1 ⊂ [1, N1] of cardinality δ1N1 with δ1 > δ.
Furthermore, if A is progression free (with no non trivial 3-arithmetic progression),
then so does A1.

(4) An iteration of the argument finishes the proof. If A is a progression free subset
of [1, N ] of cardinality δN and if δ and N are large enough, then Roth constructs
a sequence of subsets Ak ⊂ [1, Nk] of integers with cardinality δkNk such that the
sequence (Nk)k does not decrease too fast and the sequence (δk)k increases much
enough so that δk > 1 and we still have Nk > 1/δ2k. We thus get an absurdity.

Remark 1.2. The third point is essential in the argument. Actually, all the argument
would work for any equation of the form ax + by = cz with a + b = c. These equations
are called invariant equations (invariant by translation and multiplication) according to
Rusza’s terminology [14] and [15].

The main steps in the proof will be the following:
Let N be a sufficient large prime integer and A be a subset of [1, N ].

(1) If A is a progression free subset of [1, N ] of density δ > 0, then there exists k 6= 0 such

that
∣∣∣1̂A(k)

∣∣∣ is big.

(2) If
∣∣∣1̂A(k)

∣∣∣ is big for some k 6= 0 then A concentrates on a large arithmetic progression.

(3) By iteration, if A is large enough, we will eventually reach an arithmetic progression
P with relative density of A in P strictly larger than 1, a contradiction.

1.2. Begining of the proof. Before entering the core of the proof, we need to take the
right setting so that everything works.
Let A be a set of positive integers of upper density strictly larger than some positive δ.
It will be very convenient to consider AN as a subset of ZN (N will be chosen so that
|AN | ≥ δN). This procedure may not be harmless since N2Λ3(1AN

,1AN
,1AN

) will count
the number of 3-arithmetic progressions in AN modulo N . This way, we may add some
arithmetic progressions. For instance, (3, 0, 4) is a 3-arithmetic progression in Z7 but not
in N. To prevent us from counting 3-arithmetic progressions in ZN which are not genuine
3-arithmetic progressions in N, we have two choices:

(a) either we choose f1 = 1AN
, f2 = f3 = 1BN

with BN = {x ∈ A : N/3 < x < 2N/3},
which is close to the original argument of Roth in [13];

(b) or we choose f2 = 1AN
and f1 = f3 = 1BN

with BN the set of even or odd numbers in
AN whichever is larger, which is the argument used in Gowers’ proof of Roth’s theorem.
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In these two cases, any 3-arithmetic progression in AN ×BN ×BN in the first case and in
BN × AN × BN in the second one as subsets of ZN is a genuine 3-arithmetic progression
in [1, N ] and |BN | is not too small since:

(a) in the first case, if x ∈ AN and y, z ∈ BN , then 2y −N < N/3 < x+ z and 2y +N >
7N/3 > 5N/3 > x + z. Furthermore, in this case, we have either that |BN | ≥ |AN |/4
or one of the sets AN ∩ [1, N/3] and AN ∩ [2N/3, N ] has cardinality at least 3|A|/8.
This last case implies that the relative density of A on this set is at least 9

8
|AN |/N ,

thus that we found an arithmetic progression of length N1 = N/3 on which the relative
density of A is 9/8 times the density of A in [1, N ].

(b) in the second case by parity, y+z = 2x+N and y+z = 2x−N are forbidden provided
N is odd. In this case we have |BN | ≥ |AN |/2.

We choose to work with the second choice.

In the proof, we shall work modulo N and it will be very convenient to take N > 2
prime (thus odd). The following lemma proves that we can take N prime without loosing
any factor in the density

Lemma 1.3. Let A be a subset of N of upper density α. Then for all δ < α we have
|Ap| ≥ δp for infinitely many prime numbers p.

Remark 1.4. One may think of using Bertrand’s postulate which states that there is a
prime number between n and 2n for any integer n ≥ 2 but this would lead to a loss of 1/2
in the density of A. If this step is only used once this is harmless but in the proof of Roth’s
theorem, we have to use this step at each iteration and we cannot afford such a loss.

Proof. Let ε be some positive real number such that ε < min(α, 1−α). By definition of the
upper density, there exists an infinite increasing sequence (Nk)k of integers (thus tending
to infinity) such that

|ANk
| ≥ (α− ε/2)Nk for every k ∈ N.

The sequence (|An|)n is increasing and satisfies |An| ≤ |An+k| ≤ |An| + k thus for any

n ∈
[
1−α+ε/2
1−α+ε Nk,

α−ε/2
α−ε Nk

]
, we have |An| ≥ (α− ε)n.

Now if π(x) is the number of the prime numbers less than x, the prime number theorem
gives:∣∣∣∣{p ∈ [1− α + ε/2

1− α + ε
Nk,

α− ε/2
α− ε

Nk

]}∣∣∣∣ = π

(
α− ε/2
α− ε

Nk

)
− π

(
1− α + ε/2

1− α + ε
Nk

)
∼
(
α− ε/2
α− ε

− 1− α + ε/2

1− α + ε

)
Nk

logNk

∼ ε/2

(α− ε)(1− α + ε)

Nk

logNk

.

This last quantity is clearly larger than 1 if k, thus Nk, is large enough thus there are
infinitely many prime numbers p such that |Ap| ≥ (α − ε)p. Taking ε = α − δ yields the
Lemma. �
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We are now ready to begin the proof of Roth’s Theorem.
Let A be a progression free subset of N of density strictly larger than δ > 0. For infinitely
many prime numbers N we have |AN | ≥ δN . For such a prime number N , we choose for
BN the set of odd or even integers in AN whichever is larger and identify the sets with
their corresponding sets in ZN . For simplicity, we write f1 = f3 = 1BN

and f2 = 1AN
. We

have

En∈ZN
f1(n) ≥ δ/2, En∈ZN

f2(n) ≥ δ and #{3AP in AN ⊂ [1, N ]} ≥ N2Λ3(f1, f2, f1).

Furthermore, A being progression-free, we have

|BN |
N2

= Λ3(f1, f2, f1) =
∑
k∈ZN

f̂1(k)2f̂2(−2k) = f̂1(0)2f̂2(0) +
∑
k 6=0

f̂1(k)2f̂2(−2k).

Since f̂1(0)2f̂2(0) = |BN |2|AN |/N3 is much greater than |BN |/N2 when N ≥ 4/δ2, it means
that the function f2 must have large non-zero Fourier coefficients. The purpose of the next
section is to make this statement more precise.

Remark 1.5. Note that N2f̂1(0)2f̂2(0) measures the expected number of 3-arithmetic pro-
gressions inBN×AN×BN ⊂ ZN since we haveN2 triples (x, y, z) in 3-arithmetic progression
modulo N and the probability that (x, y, z) ∈ BN × AN ×BN is |AN ||BN |2/N3.

1.3. Few 3APs implies big Fourier coefficient. The following proposition states that
a lack of 3-arithmetic progressions in A leads to the existence of a large Fourier coefficient
of f2.

Proposition 1.6. Let N be a large prime number, α be a positive real number and f1, f2 :
ZN → [0, 1] be some functions satisfying En∈ZN

f2(n) = α, En∈ZN
f1(n) ≥ α/2 and ‖f1‖2 ≤

α. Then either Λ3(f1, f2, f1) > α3/8 or there exist k ∈ ZN \ {0} such that |f̂2(k)| ≥ α2/8.

Proof. Suppose f1 and f2 satisfy the hypotheses and Λ3(f1, f2, f1) ≤ α3/8. Then

α3

8
≥ Λ3(f1, f2, f1) =

|AN ||BN |2

N3
+
∑
k 6=0

f̂1(k)2f̂2(−2k).

Since |AN ||BN |2 ≥ α3/4N3, this gives

α3

8
≤ sup

k 6=0
|f̂2(−2k)|

∑
k∈ZN

|f̂1(k)|2

= sup
k 6=0
|f̂2(k)|En∈ZN

|f1(n)|2

≤ α sup
k 6=0
|f̂2(k)|.

This proves the announced result. �
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1.4. Big Fourier coefficient implies density increment.

Lemma 1.7. Let x be a real number. Then |e(x) − 1| ≤ 2π‖x‖R/Z where ‖x‖R/Z denotes
the distance between x and the nearest integer.

Proof. The function (x 7→ e(x)) is 1-periodic so this is enough to prove the result for
x ∈ [−1/2, 1/2]. We use

|e(x)− 1| =
∣∣e2iπx − e2iπ0∣∣ = 2| sin(πx)| ≤ 2π|x| = 2π‖x‖R/Z.

�

Proposition 1.8. Let σ be a positive real number, N ≥ 162π2/σ2 be a large prime number
and g : ZN → [−1, 1] be a function satisfying

∑
n∈ZN

g(n) = 0. Assume that there exists
k ∈ ZN such that |ĝ(k)| ≥ σ. Then there exists an arithmetic progression P of length at

least σ
√
N

8π
, such that g has mean value at least σ/8 on P .

Proof. Assume that for some k ∈ ZN ,

|ĝ(k)| :=

∣∣∣∣∣ 1

N

N∑
n=1

g(n)e

(
nk

N

)∣∣∣∣∣ ≥ σ > 0.

Note that ĝ(0) = 0, thus k 6= 0. By Dirichlet’s theorem there exist coprime integers b and

h such that 1 ≤ b ≤ h ≤
√
N and that∣∣∣∣ kN − b

h

∣∣∣∣ ≤ 1

h
√
N

thus

∥∥∥∥khN
∥∥∥∥
R/Z
≤ 1√

N
.

We divide [1, N ] in h congruence classes modulo h

C(a) = {a, a+ h, a+ 2h, · · · } ∩ [1, N ] = {a, a+ h, a+ 2h, · · · , a+ (Na − 1)h}.

We then choose a positive integer M and divide [0, Na− 1] ⊂ R in M intervals Im of same
length and define

Jm(a) = {a+ jh, j ∈ Im} = {a+ jmh, a+ (jm + 1)h, · · · }.

We therefore have

{1, · · · , N} = ∪a∈{1,··· ,h}C(a) = ∪ha=1 ∪Mm=1 Jm(a).

each class C(a) has size at least N
h
−1 and each Jm(a) has size Lm(a) = bNa

M
c ∈

[
N
hM
− 2, N

hM

]
.

Furthermore, we have

σ ≤ |ĝ(k)| =

∣∣∣∣∣∣ 1

N

h∑
a=1

M∑
m=1

∑
n∈Jm(a)

g(n)e

(
nk

N

)∣∣∣∣∣∣
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Now, we know that k
N

= b
h

+θ with |θ| ≤ 1
h
√
N

and for n ∈ Jm(a), we have n = a+h(jm+ l)

with 0 ≤ l ≤ Lm(a)− 1 thus by 1-periodicity of (x 7→ e(x)), we have

e

(
nk

N

)
= e

(
nb

h

)
e(nθ) = e

(
ab

h

)
e((a+ h(jm + l))θ)

= e

(
ab

h

)
[e((a+ hjm)θ) + e((a+ hjm)θ)(e(hlθ)− 1)] .

Using Lemma 1.7, we get for l ≤ Lm(a)− 1 and |θ| ≤ 1
h
√
N

,

|e (hlθ)− 1| ≤ 2π ‖hlθ‖R/Z

≤ 2πLm(a)√
N

.

Combining this and using that |g(n)| ≤ 1 and |e(x)| = 1, we have that

σ ≤

∣∣∣∣∣∣ 1

N

h∑
a=1

e

(
ab

h

) M∑
m=1

e((a+ hjm)θ)
∑

n∈Jm(a)

g(n)

∣∣∣∣∣∣+
1

N

N∑
n=1

|g(n)|2πLm(a)√
N

≤ 1

N

h∑
a=1

M∑
m=1

∣∣∣∣∣∣
∑

n∈Jm(a)

g(n)

∣∣∣∣∣∣+
2πLm(a)√

N
.

Now we choose M large enough so that 2πLm(a)√
N
≤ σ

2
and get

1

N

h∑
a=1

M∑
m=1

∣∣∣∣∣∣
∑

n∈Jm(a)

g(n)

∣∣∣∣∣∣ ≥ σ

2
.

Since
∑N

n=1 g(n) = 0, we also have

1

N

h∑
a=1

M∑
m=1

max

0,
∑

n∈Jm(a)

g(n)

 ≥ σ

4

Thus there exist some arithmetic progression Jm(a) of length at least σ
√
N

8π
(provided N ≥

(16π/σ)2 for some positive constant c) such that

1

|Jm(a)|
∑

n∈Jm(a)

g(n) ≥ σ

4
.

�
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1.5. Iteration. Let A be a subset of N of upper density strictly larger than δ. For infinitely
many prime numbers N , we can define f1 = 1BN

and f2 = 1AN
as before and we have

1

N

∑
n∈ZN

f1(n) ≥ δ/2 and
1

N

∑
n∈ZN

f2(n) ≥ δ.

Furthermore, the number of 3-arithmetic progressions in AN as a subset of [1, N ] is larger
than N2Λ3(f1, f2, f1).
Given such a prime N larger than (16π)2/α2, we define α by α = En∈ZN

f2(n). Then,
according to Proposition 1.6, either we have Λ3(f1, f2, f1) ≥ α3/8 or there exist k ∈ ZN\{0}
such that f̂2(k) ≥ α2/8.
If A does not contain any non trivial 3-arithmetic progression, then we must be in the
second case. We write g = f2−α1[1,N ] and apply Proposition 1.8 with σ = α2/8. Thus we
find an arithmetic progression P = {x+ lh, l ≤ N1} in [1, N ] on which the mean value of g

is larger than σ/4. We write N1 = |P | ≥ σ
√
N/(8π) and A1 = {l ∈ [1, N1] : n+lh ∈ P∩A}.

We get a subset A1 of [1, N1] with

|A1| ≥
(
α +

σ

4

)
N1 ≥

(
δ +

δ2

4× 8

)
N1 =: (δ + c2δ

2)N1 =: δ1N1

and

N1 ≥
δ2
√
N

64π
=: c1δ

2
√
N provided N ≥ c/δ2.

We iterate the argument on A1. We get that if N1 ≥ c/δ21 (which is implied by N1 ≥
c/δ2), then there exists a subset A2 of ZN2 such that

N2 ≥ c1(δ + c2δ
2)2
√
N1 ≥ (c1δ

2)1+1/2N1/4 and
|A2|
N2

≥ δ + 2c2δ
2.

After k iteration, we get that there exists a subset Ak of ZNk
such that

|Ak|
Nk

≥ δ + kc2δ
2 and Nk ≥

(
c1δ

2
)(1+ 1

2
+···+ 1

2k−1 )
N

1

2k =
(
c1δ

2
)2(1−2−k)

N
1

2k .

After k1 = dδ−1/c2e iterations, we get a relative density larger than 2δ on a progression of

length larger than Nk1 ≥ min(c1δ
2, 1)N1/2k1 which is larger than c/δ2k1 if N is large enough

(depending on δ, c1 and c2). After k2 iterations, we reach a density larger than 4δ on a

progression of length larger than Nk2 ≥ min(c1(2δ)
2, 1)N

1/2k2

k1
. We finally reach a density

larger than 1 and get a contradiction. Some precise study of admissible values for the
constants give the quantitative version of Roth’s theorem.

1.6. Quantitative improvements of Roth’s theorem. Since 1953, significative quan-
titative improvements of Roth’s theorem have been made. If r3(N) denotes the maximum
size of a subset of positive integers less than N with no nontrivial 3-arithmetic progression,
Roth proved that

r3(N)� N

log logN
.
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Much later, Heath-Brown [8] (1987) and Szemerédi [18] (1990) improved (independantly)
this result by showing that

r3(N) ≤ CN(logN)−c

for some small positive c and some large constant C. The main idea of Heath-Brown and
Szemerédi’s works is to consider diophantine approximations of a large bench of frequencies
rather than one frequency at a time in the application of Dirichlet’s Theorem. They prove
that a lack of 3-arithmetic progression in A implies that the `2 norm on a subset S of
ZN (rather than the `∞ norm in Roth’s work) of the Fourier transform of the balanced
function 1A − δ1[1,N ] has to be large. Then they prove that if this `2 norm on S is large
then A concentrates on some large arithmetic progression. To do so, they simultaneously
approximate the elements ξ/N with ξ ∈ S.

By considering Bohr sets where previous arguments had used arithmetic progressions,
Bourgain obtained

r3(N) ≤ CN(log logN)2(logN)−2/3

in [2,3] (1999, 2008). Bourgain proves that a lack of 3-arithmetic progression in A implies
a density increment in regular Bohr sets.
Part of these improvements are summarized in [19].
Very recently, Sanders [16] and [17] obtained the best known result so far by proving that

r3(N) ≤ CN
(log logN)5

logN
.

These quantitative results are related to some very strong conjecture.

Conjecture 1.9 (Erdös-Turán). Let A be a subset of the positive integers. If the series∑
n∈A

1
n

is divergent then A contains arbitrarily long arithmetic progressions.

This is easy (cf tutorial) to prove that this conjecture is implied by the bounds

rk(N)�k
N

logN(log logN)1+ε

with some positive ε (which may depend on k). Thus, Sanders’ result is very close to prov-
ing that any subset A such that

∑
n∈A

1
n

is divergent contains 3-arithmetic progressions.

2. Roth’s theorem in sets of density 0.

2.1. The general strategy. Suppose that we have an infinite subset A of the integers
which contains infinitely many 3-arithmetic progressions but which has zero density (think
of the prime numbers for example). When can we say that Roth’s theorem holds in this set ?
That is, must a subset of positive relative density in A contain a 3-arithmetic progression?

2.1.1. Varnavides Theorem. Roth’s argument not only prove that a subset of integers less
thanN with not too small upper density does contain some non trivial 3-arithmetic progres-
sions. It also leads to the fact that such a set must contain many non trivial 3-arithmetic
progressions. We shall explain how Varnavides [20] proved such a result and how this result
is used to prove Roth’s theorem in sets of integers of zero density.
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Theorem 2.1 (Varnavides, 1959). Let A ⊂ ZN , where N is a prime. Assume |A| ≥ ηN
with η > 0. The number of 3-term arithmetic progressions in A is then at least N2h(η)
where c0 and c1 are absolute constants and

h(η) :=
η

c0 exp (c1/η(log(1/η))5)
.

Proof. Recall Sanders’ result [16]: for given L and η � (log logL)5/logL, every subset of
{1, 2, . . . , L} with at least ηL elements contains at least one non-trivial three-term arith-
metic progression. This result can be rephrased as follows: there are constants c0 and
c1 such that, if L ≥ c0 exp (c1/η(log(1/η))5), then any subset of {1, · · · , L} of density at
least η/2 contains a non-trivial three-term arithmetic progression. It follows that, given
an arithmetic progression Sa,d = {a + d, a + 2d, a + 3d, . . . , a + Ld} in ZN (a, d ∈ ZN ,
d 6= 0, L ≤ N) whose intersection with A has at least (η/2)L elements, there is at least
one non-trivial three-term arithmetic progression in A∩S ⊂ ZN , provided L is large enough.

If we consider all arithmetic progressions of length L and given modulus d 6= 0 in ZN ,
we see that each element of A is contained in exactly L of them. Hence,

∑
a |Sa,d ∩ A| =

L|A| ≥ ηNL, and so (for d 6= 0 fixed) |Sa,d ∩ A| ≥ (η/2)L for at least (η/2)N values of a.
Varying d, we get that |Sa,d ∩A| ≥ (η/2)L for at least (η/2)N(N − 1) arithmetic progres-
sions Sa,d. By the above, each such intersection Sa,d ∩ A contains at least one non-trivial
three-term arithmetic progression.

Each non-trivial three-term arithmetic progression {a1, a2, a3} in ZN can be contained
in at most L(L − 1) arithmetic progressions {a + d, a + 2d, . . . , a + Ld} of length L (the
indices of a1 and a2 in the progression of length L determine the progression). Hence, when
we count the three-term arithmetic progressions coming from the intersections Sa,d ∩ A,
we are counting each such progression at most L(L− 1) times. Thus we have shown that
A contains at least

η

2

N(N − 1)

L(L− 1)
≥ η

2

N2

L2

distinct non-trivial three-term arithmetic progressions for

L =
⌈
c0 exp

(
c1/η(log(1/η))5

)⌉
,

provided that L ≤ N . If L > N , the bound in the statement of the lemma is trivially true
(as there is always at least one trivial three-term arithmetic progression in A.) �

Using this result on characteristic function of sets, we can prove the general following
result.

Lemma 2.2. Let N be a large prime number. For a real number α ∈ (0, 1) and a pos-
itive real number M , there exists some constant c(α,M) such that for any function f :
[1, N ]→ [0,M ] satisfying En∈ZN

f(n) ≥ α, we have the lower bound Λ3(f, f, f) > c(α,M).

Furthermore, we can take c(α,M) =
(
α
2

)3
h
(
α
2M

)
.
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Proof. Let A be the set A := {n ∈ ZN : f(n) ≥ α/2}. Alors

α ≤ En∈ZN
f(n) =

1

N

∑
n∈A

f(n) +
1

N

∑
n6∈A

f(n)

≤ |A|
N
M +

N − |A|
N

α

2
=
α

2
+
(
M − α

2

) |A|
N
,

thus |A| ≥ α
2M−αN ≥

α
2M
N . Now we apply Theorem 2.1 and get that

Λ3(1A,1A,1A) ≥ h
( α

2M

)
,

therefore

Λ3(f, f, f) ≥
(α

2

)3
h
( α

2M

)
.

�

One could weaken the hypothesis of the theorem. Actually, this is not mandatory to
have a L∞ bound for f . A L2 bound of f is enough as stated in the following Lemma.

Lemma 2.3. Let α, c be positive real numbers and f : ZN → C be a function satisfying
EZN

f ≥ α and ‖f‖L2 ≤ c. Then

Λ3(f, f, f) ≥
(α

2

)3
h

(( α
2c

)2)
.

Proof. Let f be a function satisfying the hypotheses. Define A = {n ∈ ZN : f(n) ≥ α/2}.
Then we have

α ≤ En∈ZN
f(n) ≤ 1

N

∑
n∈A

f(n) +
1

N

α

2
(N − |A|).

But

1

N

∑
n∈A

f(n) = En∈ZN
f(n)1A(n) ≤ ‖f‖2‖1A‖2 ≤ c

√
|A|
|N |

,

thus

α ≤ c

√
|A|
|N |

+
1

N

α

2
(N − |A|)

and g(
√
|A|) ≤ 0 with g(x) = x2 − x2c

α

√
N +N . This leads to

|A| ≥ N

(
c

α
−
√( c

α

)2
− 1

)2

≥
( α

2c

)2
N.

Now, we can apply Varnavides Theorem to 1A and we get

Λ3(1A, 1A, 1A) ≥ h

(( α
2c

)2)
.
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Since f(n) ≥ α/2 when n ∈ A, we have

Λ3(f, f, f) ≥
(α

2

)3
Λ3(1A, 1A, 1A),

thus the result. �

Unfortunately, these theorems are not enough to directly deal with the case of subsets
of integers of density 0. Indeed, taking a subset A of A of relative density δ > 0 in A, we
get

E[1,N ]1AN
∼ δ
|AN |
N
→N→+∞ 0

thus these theorems do not apply. We may think of normalizing the function so that the
density becomes positive but then the normalized characteristic function f = N

|AN |
1AN

is

not bounded anymore, neither in L∞-norm nor in L2-norm.

2.1.2. Tranference principles. In order to deal with the previous issue, we will approximate
the normalized function f by some function f1 satisfying the hypothesis of Lemma 2.2
(Green and Tao transference principle) or of Lemma 2.3 (new transference principle). Here
”approximate” means that we will choose f1 so that Λ3(f, f, f) is close to Λ3(f1, f1, f1).

Before stating such results, we introduce here a few tools that will be needed in the
proofs.

Definition 2.1. Let f : ZN → C be some function and ε be some positive real number.
We define the ε-spectrum R by

R = {k ∈ ZN : |f̂(k)| ≥ ε}
and the Bohr set B of set of frequencies R and of radius ε by

B = {n ∈ ZN : ∀k ∈ R, ‖nk/N‖R/Z ≤ ε}.

We also define the normalized characteristic function of B, β : ZN → C by β = N
|B|1B.

Bohr sets are usual tools in Fourier analysis. We already noticed that this was heavily
used by Bourgain in is work on Roth’s Theorem. Note that according to Lemma 1.7, we
have

(2.1) ∀k ∈ R, |β̂(k)− 1| � ε.

We shall also need a lower bound for the size of B. A pigeonhole argument leads to the
lower bound

(2.2) |B| � εrN where r = |R|.
We are now ready to state the first transference principle.

Theorem 2.4 (Transference principle, Green-Tao [6]). Let N be a large prime number.
Let f : ZN → R+ be a function satisfying the following conditions:

(1) EZN
f ≥ α for some α > 0,

(2) ‖f̂‖p ≤M for some p ∈]2, 3[ and some M > 0,
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(3) f ≤ ν with supk∈ZN
|ν̂ − 10(k)| ≤ η for some η ∈ (0, 1).

Then Λ3(f, f, f) ≥
(
α
2

)3
h
(
α
4

)
− OM,p

(
(log log(1/η)/ log(1/η))3/p−1

)
with h defined in

Lemma 2.1.

When the assumption (3) is satisfied, we say that ν is η-pseudorandom.

Remark 2.5. According to Lemma 2.3, assumptions (1) and (2) with p = 2 yields the
conclusion.

Proof. We write f = f1 + f2 with f1 = f ∗ σ.
We choose σ so that f1 satisfies the hypothesis of Roth’s theorem and that Λ3(f1, f1, f1)
and Λ3(f, f, f) are close to each other.

(1) The formula

∆ = |Λ3(f, f, f)− Λ3(f1, f1, f1)| ≤
∑
k

|f̂(−2k)f̂(k)2||1− σ̂(−2k)σ̂(k)2|

leads us to choose σ so that σ̂(k) is close to 1 when f̂(k) is large. According to
(2.1), the function β defined in Definition 2.1 should be a good candidate but it
will be easier to work with a function σ such that σ̂ is positive so we rather work
with σ = β ∗ β with some ε > 0. According to (2.1) and the definitions, we have

|f̂2(k)| = |f̂(k)(1− σ̂(k))| �

{
ε
∑

n∈Z |f(n)| ≤ ε|ν̂(0)| ≤ ε(1 + η) if k ∈ R,
|f̂(k)| ≤ ε if k 6∈ R.

We write p′ for the real number such that 1
p

+ 1
p′

= 1. Hölder’s inequality and

hypothesis (2) yields

|Λ3(f2, f2, f2)| ≤ ‖f̂2‖`p‖f̂2
2
‖`p′ ≤ ‖f̂2‖`p

(
‖f̂2‖p`p‖f̂2‖

2p′−p
∞

)1/p′
= ‖f̂2‖p`p‖f̂2‖

3−p
∞ �p M

p (ε(1 + η) + ε)3−p �p M
pε3−p.

The quantities Λ3(fi, fj, fh) with at least two 2 among {i, j, h} are similarly bounded:

we apply Hölder’s inequality with an `p norm for the function f̂1 and an `p′ norm

for the product of the two f̂2 functions; if needed, we apply Cauchy’s inequality
for this last product. The quantities Λ3(fi, fj, fh) with only one 2 among {i, j, h}
are bounded this way: first, we apply Hölder’s inequality with an `p/2 norm for the

product of the functions f̂1 and an `(p/2)′-norm the function f̂2; if needed, we apply

Cauchy’s inequality for the product of the functions f̂1. The idea remains the same
in any case: we know how to control the `p norm of both f̂1 and f̂2 and we want to

be able to pick up some `∞ norm of f̂2 after Hölder’s inequality.

With these estimates, we obtain the upper bound

∆ = |
∑

(i,j,h) 6=(1,1,1)

Λ3(fi, fj, fh)| �p M
pε3−p.
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(2) We have EZN
f1 = EZN

f ≥ α. It remains to prove that f1 is bounded.

|f1(n)| = |B|−2
∑

m1,m2∈B

f(n+m1 −m2)

≤ |B|−2
∑

m1,m2∈B

ν(n+m1 −m2)

=

∣∣∣∣∣|B|−2 ∑
m1,m2∈B

∑
r∈ZN

ν̂(r)eN(−r(n+m1 −m2))

∣∣∣∣∣
≤
∑
r∈ZN

|ν̂(r)|

∣∣∣∣∣|B|−1 ∑
m∈B

eN(−rm)

∣∣∣∣∣
2

=
∑
r∈ZN

|ν̂(r)||β̂(r)|2.

Using hypothesis (3), we get

|f1(n)| ≤ 1 + η‖β‖22 = 1 + η
N

|B|
.

Since
∑

m |f̂(m)|p ≤ M , we have r ≤ (M/ε)p, thus using (2.2), we get |B| �
ε(M/ε)pN and |f1(n)| ≤ 1 + η(1/ε)(M/ε)p . We take ε such that η(1/ε)(M/ε)p = 1 and
apply Theorem 2.2 to f1. We get

Λ3(f1, f1, f1) ≥ c(α, 2) with c(α,M) =
(α

2

)3
h
( α

2M

)
.

Putting everything together we obtain

Λ3(f, f, f) ≥ c(α, 2)−Op

(
M3(ε/M)3−p

)
≥ c(α, 2)−Op

(
M3

(
log(1/ε)

log(1/η)

)3/p−1
)
.

Now we use that with our choice of ε we have log(1/ε) ≤ 1
p

log log(1/η) and get the

announced result. �

There are many applications of this principle in the literature: in [5] for the prime
numbers, [6] for Chen primes and [19] for random subsets of torsion groups. We shall see
later how Green used this principle in [5] to prove Roth’s theorem in the primes. We also
state an alternative transference principle based on Lemma 2.3, this alternative principle
is used in [9] to sharpen Green’s quantitative result in the primes.

Theorem 2.6. Let N be a large prime number. Let f : ZN → R+ be a function satisfying
the following conditions:

(1) α ≤ Ef ≤ 1,

(2) ‖f̂‖p ≤M for some p ∈ (2, 3) and some M > 0,
(3) ‖f1‖2 ≤ c with f1 = f ∗ β where β = N

|B|1B and B is the Bohr set defined as

previously.
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Then

Λ3(f, f, f) ≥
(α

2

)3
h

(( α
2c

)2)
−Op

(
Mpε3−p

)
.

Proof. We choose ε > 0 and write f = f1 + f2 with f1 = f ∗ β where β is defined as in
Definition 2.1. We shall mimic the proof of Theorem 2.4.
In the first step of the proof of Theorem 2.4, we only used the third hypothesis to get an
upper bound of ‖f‖1. Furthermore, replacing σ by β in this step is harmless. Therefore,
using β rather than σ and replacing ‖f‖1 ≤ |ν̂(0)| by ‖f‖1 ≤ 1 in the first step leads to
the upper bounds

∆ = |
∑

(i,j,h)6=(1,1,1)

Λ3(fi, fj, fh)| �p M
pε3−p.

It remains to prove that Λ3(f1, f1, f1) is large. We have again Ef1 = Ef ≥ α and now
‖f1‖2 ≤ c. We apply Lemma 2.3 and get

Λ3(f1, f1, f1) ≥
(α

2

)3
h

(( α
2c

)2)
and therefore

Λ3(f, f, f) ≥ Λ3(f1, f1, f1)−∆ ≥
(α

2

)3
h

(( α
2c

)2)
−Op(M

pε3−p).

�

2.2. Roth’s Theorem for the primes. In this section, we will mostly give some sketches
of the proves which can be found in the literature. The first proof of Roth’s Theorem in
the primes was given by Green in [5]. He proved that there exist some constant C such
that if a subset A of the primes satisfies

δP (N) :=
|AN |
|PN |

≥ C
√

log log log log logN/
√

log log log logN

for infinitely many integersN , thenAmust contain some non trivial 3-arithmetic progression.
His quantitative result was sharpen by Helfgott and de Roton in [9] who proved that

δP (N) ≥ C(log log logN)/(log logN)1/3

is enough. Their method would actually lead, with the use of Sander’s result rather than
Bourgain’s one on Roth’s Theorem, to the better bound :

δP (N) ≥ C(log log logN)5/2/(log logN)1/2.

The best known result so far is due to Naslund [10] who proved that

δP (N) ≥ 1/(log logN)1−ε for some positive ε

is enough.
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2.2.1. Pseudo random measure for the primes. Following the strategy of transference prin-
ciple (Theorem 2.4), we would like to majorate the normalized indicator function of the
primes by some uniform measure. Unfortunately, prime numbers are ill distributed in
arithmetic progressions with small modulus. For example, there are only 1 prime number
with residue 0 modulo 3 and half of the primes with residue 1 and residue 2. This fact
explains the reason why we need to switch from a set of primes to a set of integers (non
necessarily prime) to find a ”uniform” measure on our set. The W -trick (terminology in [6]
coming from the use of the letter W in [5]) consists in focussing on the intersection of the
primes with an arithmetic progression of large modulus, rather than working on all the
primes.

Lemma 2.7. Let α, z be positive real numbers and N ′ be a large integer. We define
W =

∏
p≤z p. Let A be a subset of the primes less than N ′ such that |A| ≥ αN ′/ logN ′.

Then there exists some arithmetic progression P (b) = {b+nW : 1 ≤ n ≤ N ′/W} such that

|P (b) ∩ A| � α
log z

logN ′
N ′

W
− log z,

where the implied constant is absolute.

Proof. If (b,W ) 6= 1, the set {m ∈ P (b) : m prime} is empty. Since the progressions P (b)
with (b,W ) = 1 are distinct, we have∑

b:(b,W )=1

|A ∩ P (b)| = |A| − |A ∩ [1,W − 1]| ≥ α
N

logN
−W.

But |{b ≤ W : (b,W ) = 1}| ∼ W/log z ∼ ez/ log z. Therefore there exists some progression
P (b) such that

|A ∩ P (b)| �
(
α

N

logN
−W

)
log z

W
� α

log z

logN

N

W
− log z.

�

Now, we fix z = 1
3

logN ′, W =
∏

p≤z p, and let N be the least prime larger than

d2N ′/W e. (The requirement N > d2N ′/W e will ensure that no new three-term arithmetic
progressions are created when we apply the reduction map π : Z → Z/NZ to a set
contained in [1, N ′/W ].) By Bertrand’s postulate, N ≤ 2N ′/W . Let A be a subset of
the primes less than N ′ such that |A| ≥ αN ′/ logN ′. We assume α ≥ (logN ′)N ′−1/2

(say) and obtain from Lemma 2.7 that there is an arithmetic progression P (b) such that
|P (b) ∩ A| � α(log z/logN)N . We define A0 to be

(2.3) A0 =

{
n =

m− b
W

: m ∈ P (b) ∩ A
}
.

This is a subset of X := {n ∈ [1, N ] : b+ nW is prime} satisfying

|A0| � α
log z

logN
N.
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Our task is to show that there is a non-trivial three-term arithmetic progression in A0 ⊂
Z/NZ. It will follow immediately that there is a non-trivial three-term arithmetic progres-
sion in A ⊂ Z. According to the transference principles, this is enough to have ‖f‖L1 not

too small, ‖f̂‖`p bounded for some p ∈ (2, 3) and either f majorated by some pseudorandom
measure of ‖f ∗ β‖L2 bounded.

Let f be the normalized characteristic function of A0, i.e., f = (logN/(N log z))1A0 .
To begin with, we remark that ‖f‖1 = (logN/(N ′ log z))|A0| � α. Furthermore, by the
definition of f , we have 0 ≤ f(n) ≤ λ(n), where λ : Z→ R is defined by

(2.4) λ =
logN

N log z
1X with X = {n : 1 ≤ n ≤ N and b+ nW is prime}.

Green uses in [5] that the W -trick (passage to an arithmetic progression b+nW of large
modulus) removes all but the largest peaks in the Fourier transform of the primes. He uses

the circle method to get an upper bound for λ̂.
Helfgott and de Roton [9] use in a more direct way the fact that the elements of {n :
b+ nW prime} are not forbidden from having small divisors. They use Ramaré’s envelop-
ing sieve [12], based partially on work on sieves in [11] (see also [6]). This allows them to
take a larger W but this step remains necessary.

We will not explain here how this enveloping use of a sieve works. We just note that
Green’s work uses some restriction theorems on primes and refer to [5], [1] for these the-
orems and Helfgott and de Roton use some restriction theorem for an upper-bound sieve
(see [6] for the enveloping sieve).

The application of Green and Tao’s results on the enveloping sieve yields

(2.5)
∑
m∈ZN

|f̂(m)|q �q 1 for q > 2.

To summarize, we now have a function f : ZN → R satisfying the hypotheses (1) and
(2) of both Theorem 2.4 and Theorem 2.6. Whereas Green worked with the first Theorem,
Helfgott and de Roton worked with the second one. We shall now explain how they gained
the third hypothesis. Using Theorem 2.6 then lead to a quantitative Roth’s Theorem in
the primes.

2.2.2. A bound for the L2 norm of f1. The main idea is the following: if we convolve the
function λ defined in (2.4) with β, then the L2 norm of λ will go down dramatically. This
is simply due to the fact that, for any k 6= 0, we have a good upper bound (essentially
� k

φ(k)
N

(logN)2
) on the number of primes p ≤ N such that p + k is also a prime. The only

fact about β we shall use is that it is not concentrated in too small a set, i.e., the Bohr set
B is not too small. The fact that we have restricted ourselves to a congruence class b+nW
modulo W will finally come into play, in that it will in effect eliminate the potentially
harmful factor k

φ(k)
.
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Since β is nonnegative, we have ‖f1‖2 = ‖f ∗ β‖2 ≤ ‖λ ∗ β‖2 with

λ(n) =

{
logN/log z if 1 ≤ n ≤ N and b+ nW prime,

0 otherwise.

Furthermore, we can assume that β and f are defined on [−(N−1)/2, (N−1)/2] rather that
on [1, N ] is we take ε < 1/4. Therefore, by symmetry of Bohr sets, we have β(−m) = β(m)
and

‖λ ∗ β‖22 = En |Emβ(n)λ(n−m)|2(2.6)

= Em1Em2β(m1)β(m2)Enλ(n+m1)λ(n+m2).(2.7)

Lemma 2.8. For any integers m1, m2, we have

(2.8) Enλ(n+m1)λ(n+m2)�
{

logN/(log z) if m1 = m2,∏
p|(m1−m2), p>z

p
p−1 if m1 6= m2,

where the implied constant is absolute.

Proof. The case m1 = m2 follows from Brun-Titchmarsh:

Enλ2(n+m) =
1

N

(
logN

log z

)2

|{m ≤ n ≤ N ′ +m : b+ (n−m)W is prime }|

�
(

logN

log z

)2
W

ϕ(W ) logN

� logN

log2 z

∏
p≤z

(1− 1/p)−1 � logN

log z
.

To obtain the case m1 6= m2, we will use a result based on Selberg’s sieve. It is clear
that Enλ(n+m1)λ(n+m2) equals 1

N
(logN/(log z))2 times

(2.9) |{1 ≤ n ≤ N ′ : b+ nM and b+ (n+m2 −m1)M are primes}| .

By [7, Thm. 5.7],

(2.9)�
∏
p≤z

(
1− 1

p

)−2 ∏
p>z

p|m1−m2

(
1− 1

p

)−1
N ′

(logN ′)2

�
∏
p>z

p|m1−m2

p

p− 1

N ′(log z)2

(logN ′)2
.

The statement follows. �

Let us now evaluate the last line of (2.7), with Lemma 2.8 in hand. The contribution of
the diagonal terms (m1 = m2) in (2.7) is � logN/(|B|N log z). The contribution of the
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non-diagonal terms (m1 6= m2) is

(2.10)
� 1

N

∑
m1

∑
m2

m2 6=m1

β(m1)β(m2)
∏
p>z

p|m1−m2

p

p− 1
.

Some consideration on the number of large prime divisors of an integer less than N yield
to ∏

p>z

p|m

p

p− 1
� 1 for any m 6= 0 with |m| ≤ N ′.

Thus ∑
n

|β ∗ λ(n)|2 � 1

N

(
logN

|B| log z
+ 1

)
.

The right side is � 1/N as long as |B| � logN/ log z. Using (2.2) we get some condition
on the parameters so that it happens. With all the constraints, we get the announced
result.

To conclude, we briefly explain the main difference between Naslund’s work [10] and
Helfgott and de Roton’s one [9]. In his work, Naslund uses the L2q norm of f1 rather than
de L2 norm. Since there are very few prime numbers p such that p, p+ k1, p+ k2, · · · p+ kl
are all prime, he gets a very good bound for this norm. He then applies a transference
principle, similar to Theorem 2.6 with an L2q norm rather than an L2-norm to conclude.
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