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BASIC CONCEPTS OF REPRESENTATION THEORY

AMRITANSHU PRASAD

1. Representations and Modules

Let K be a field, and G be a finite group. For a K-vector space V , let GL(V )
denote the group of all invertible K-linear maps V → V .

Definition 1.1 (Representation). A representation of G is a pair (ρ, V ), where V
is a K-vector space and ρ : G→ GL(V ) is a homomorphism of groups.

Definition 1.2 (Multiplicative character). A multiplicative character of G is a
homomorphism χ : G→ K∗.

Multiplicative char-
acters give rise to
one dimensional rep-
resentations.

Each multiplicative character χ gives rise to a representation as follows: take V
to the one dimensional vector space K, and take ρ to be the homomorphism which
takes g ∈ G to the linear automorphism of K which multiplies each element by
χ(g).

Exercise 1.3. Show that each multiplicative character of G contains [G,G] in its
kernel (and therefore descends to a multiplicative character G/[G,G] → K∗). Here
[G,G] denotes the subgroup of G generated by elements of the form xyx−1y−1 as
x and y run over all elements of G, and K∗ denotes the multiplicative group of
non-zero elements of K.

Representations of groups can be viewed as modules for certain special types of
rings which we call K-algebras. It is assumed that the reader is familiar with at
least the definition of rings, ideals and modules. If not, a quick look at the relevant
definitions in a standard textbook (for example, Jacobson [1, Chapter 2]) should
suffice.

Definition 1.4 (K-algebra). A K-algebra is a ring R whose underlying additive
group is a K-vector space and whose multiplication operation R × R → R is K-
bilinear. Only unital K-algebras will be considered here, namely those with a
multiplicative unit.

Example 1.5. The space Mn(K) of n×n matrices with entries in the field K is a
unital K-algebra. If V is an n-dimensional vector space over K, then the choice of
a basis for V identifies Mn(K) with the algebra EndK V of K-linear maps V → V .

A left ideal of a K-algebra R is a linear subspace which is closed under multi-
plication on the left by elements of R. Similarly, a right ideal is a linear subspace
which is closed under multiplication on the right by elements of R. A two-sided
ideal is a subspace which is both a left and a right ideal.

Example 1.6. Let W ⊂ Kn be a linear subspace. Then

{A ∈Mn(K) | Ax ∈W for all x ∈ Kn}
1
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is a right ideal in Mn(K), while

{A ∈Mn(K) | Ax = 0 for all x ∈W}

is a left ideal in Mn(K).

Exercise 1.7. Show thatMn(K) has no two-sided ideals except for the two obvious
ones, namely {0} and Mn(K).

Exercise 1.8. Show that, if R is a K-algebra and I is a two-sided ideal in R, then
the product operation of R descends to a bilinear map R/I × R/I → R/I which
makes it a K-algebra.

Example 1.9. The polynomial ring K[x1, . . . , xn] is a commutative unital K-
algebra. A large number of K-algebras can be constructed by taking quotients of
this algebra by its ideals.

A K-algebra homomorphism is a homomorphism of rings which is also K-linear.
It will be assumed that a K-algebra homomorphism R→ S takes the unit of R to
the unit of S.

The usual definition of modules for a ring can be adapted to K-algebras:

Definition 1.10 (Module). For aK-algebra R, an R-module is a pair (ρ̃, V ), where
V is a K-vector space, and ρ̃ : R→ EndK V is a K-algebra homomorphism.

The notion of an R-module in Definition 1.10 requires the K-linearity of ρ̃, and
is therefore a little stronger than the general definition of a module for a ring (see,
for example, Definition 3.1 in Jacobson [1]). But this definition is exactly what is
needed to make the correspondence between representations of G and modules of
a certain K-algebra K[G] associated to G, as we shall soon see.

Example 1.11. Every left ideal of R is an R-module. Any subspace of an R-module
M which is closed under the action of R on M can be viewed as an R-module in its
own right, and is called a submodule. A quotient of an R-module by a submodule
is also an R-module.

Example 1.12. The vector space Kn is an Mn(K)-module when vectors in Kn

are written as columns and Mn(K) acts by matrix multiplication on the left.

The group algebra K[G] of the group G is a K-algebra whose additive group is
the K-vector space with basis

{1g|g ∈ G}

and whose product is defined by bilinearly extending

(1) 1g1h = 1gh for all g, h ∈ G.

Another useful way of thinking about the group algebra is as the algebra of
K-valued functions on G with product given by convolution: if f1 and f2 are two
K-valued functions on G, their convolution f1 ∗ f2 is defined by

(2) f1 ∗ f2(g) =
∑

xy=g

f1(x)f2(y) for all g ∈ G.

Exercise 1.13. Identify 1g with the function whose value at g is 1, and which
vanishes everywhere else. Under this identification, show that the two definitions
of the group algebra given above are equivalent.
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Exercise 1.14. Let n > 1 be an integer. Show that K[Z/nZ] is isomorphic to
K[t]/(tn − 1) as an algebra. Here (tn − 1) denotes the ideal in K[t] generated by
tn − 1.

If ρ : G → GL(V ) is a representation, and one defines a K-algebra homomor-
phism ρ̃ : K[G] → EndK(V ) by

(3) ρ̃ : f 7→
∑

g∈G

f(g)ρ(g)

for each f ∈ K[G], then (ρ̃, V ) is a K[G]-module.
Conversely, suppose that ρ̃ : K[G] → EndK(V ) is a K[G]-module. Note that if

e denotes the identity element of G, then 1e is the multiplicative unit of K[G]. If
we assume that ρ̃(1e) = idV (such a module is called unital) then, for any g ∈ G,

ρ̃(1g)ρ̃(1g−1) = ρ̃(1e) = idV ,

so ρ̃(1g) ∈ GL(V ). Define a representation ρ of G by

(4) ρ(g) = ρ̃(1g).

The prescriptions (3) and (4) define an equivalence between representations of G
and unital K[G]-modules. This correspondence makes it possible to use concepts Representations

of G over K are
the same as unital
K[G]-modules.

from ring theory in the study of representations of a group.

Example 1.15 (Regular representation). For each r ∈ R, define L̃(r) to be the
linear endomorphism of R obtained by left multiplication by r. This turns R into
an R-module which is known as the left regular R-module.

Let us examine the above construction in the case where R = K[G]. The group
ring K[G] becomes a representation of G if we define L(g) : K[G] → K[G] by

L(g)1x = L̃(1g)1x = 1gx.

This representation is known as the left regular representation of G. If we define
R : G→ GL(K[G]) by

R(g)1x = 1xg−1

we get another representation of G on K[G], which is known as the right regular
representation of G.

Exercise 1.16. If K[G] is viewed as the space of K-valued functions on G (as in
Exercise 1.13), then

(L(g)f)(x) = f(g−1x) and (R(g)f)(x) = f(xg).

2. Invariant subspaces and simplicity

Definition 2.1 (Invariant subspace). A subspace W of V is called an invariant
subspace for a representation ρ : G→ GL(V ) if ρ(g)W ⊂W for all g ∈ G.

Similarly, a subspace W of V is called an invariant subspace for an R-module
ρ̃ : R→ EndK V if ρ̃(r)W ⊂W for all r ∈ R.

Example 2.2. For the left regular representation (L,K[G]), the subspace of con-
stant functions is a one dimensional invariant subspace. The subspace

K[G]0 =
{

f : G→ K |
∑

g∈G

f(g) = 0
}

is an invariant subspace of dimension |G| − 1.
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Exercise 2.3. The subspace K[G]0 has an invariant complement in (L,K[G]) if
and only if |G| is not divisible by the characteristic of K (this includes the case
where K has characteristic zero).

Exercise 2.4. Let G = Z/2Z and let K be a field of characteristic two. Show that
the subspace of K[G] spanned by 10 + 11 is the only non-trivial proper invariant
subspace for the left (or right) regular representation of G.

Exercise 2.5. Show that, if every representation of a group is a sum of one di-
mensional invariant subspaces, then the group is abelian. Hint: use Exercise 1.3,
and the regular representation.

Definition 2.6 (Simplicity). A representation or module is said to be simple (or
irreducible) if it has no non-trivial proper invariant subspaces. As a convention, the
representation or module with a zero dimensional vector space is not considered to
be simple.

Example 2.7. Every one dimensional representation is simple.

Exercise 2.8. Every simple module for a finite dimensional K-algebra is finite
dimensional.

Exercise 2.9. If K is algebraically closed, and G is abelian, then every simple
representation of G is of dimension one. Hint: Show that, for any commuting
family of matrices in an algebraically closed field, there is a basis with respect to
which all the matrices in that family are upper triangular.

Example 2.10. The hypothesis that K is algebraically closed is necessary in Ex-
ercise 2.9. Take for example, G = Z/4Z, and ρ : G → GL2(R) the representation

which takes a generator of Z/4Z to the matrix

(

0 1
−1 0

)

. Since this matrix is a

rotation by π/2, no line in R2 is left invariant by it, and so the abelian group Z/4Z
admits a simple two dimensional representation over the real numbers.

Definition 2.11 (Intertwiners). Let (ρ1, V1) and (ρ2, V2) be representations of G.
A linear transformation T : V1 → V2 is called an intertwiner (or aG-homomorphism)
if

(5) T ◦ ρ1(g) = ρ2(g) ◦ T for all g ∈ G.

The space of all intertwiners V1 → V2 is denoted HomG(V1, V2).
Similarly, for R-modules (ρ̃1, V1) and (ρ̃2, V2) an intertwiner is a linear transfor-

mation T : V1 → V2 such that

T ◦ ρ̃1(r) = ρ̃2(r) ◦ T for all r ∈ R.

The space of all such intertwiners is denoted by HomR(V1, V2).

The intertwiner condition (5) can be visualized as a commutative diagram:

V1
T //

ρ1(g)

��
	

V2

ρ2(g)

��
V1

T
// V2
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If one begins with an element in the top-right corner of this diagram, the images
obtained by applying the functions along either of the two paths to the bottom-right
corner are the same.

Exercise 2.12. The kernel of an intertwiner is an invariant subspace of its domain
and the image is an invariant subspace of its codomain.

Endomorphisms of
simple modules are
all multiples of the
identity.

Theorem 2.13 (Schur’s lemma I). If K is algebraically closed and V is a fi-
nite dimensional simple representation of G then every self-intertwiner T : V →
V is a scalar multiple of the identity map. In other words, EndG V = K idV
(EndG V denotes HomG(V, V ), the self-intertwiners of V , which are also called
G-endomorphisms of V ).

Proof. Since K is algebraically closed, any self-intertwiner T : V → V has an
eigenvalue, say λ. Now T − λ idV is also an intertwiner. Moreover, it has a non-
trivial kernel. Since its kernel is an invariant subspace (Exercise 2.12), it must (by
the simplicity of V ) be all of V . Therefore T = λ idV . �

A similar statement (with the same proof) holds for simple modules of a K-
algebra.

Exercise 2.14 (Central character). When K is algebraically closed, show that the
centre Z(G) of G acts on any simple representation by scalar matrices (if g ∈ Z(G)
acts by the scalar matrix λ(g)I, then g 7→ λ(g) is a homomorphism Z(G) → K∗,
which is called the central character of the representation).

Exercise 2.15 (Schur’s lemma for arbitrary fields). Let K be any field (not nec-
essarily algebraically closed). Show that any non-zero self-intertwiner of a simple
representation (or module) is invertible.

Definition 2.16 (Isomorphism). We say that representations (or modules) V1 and
V2 are isomorphic (and write V1 ∼= V2 or ρ1 ∼= ρ2) if there exists an invertible
intertwiner V1 → V2 (its inverse will be an intertwiner V2 → V1).

Isomorphism classes
of one dimensional
representations
are multiplicative
characters.

Exercise 2.17. Near the beginning of Section 1 we saw that multiplicative charac-
ters give rise to one dimensional representations. Show that this constuction gives
rise to a bijection from the set of multiplicative characters of a finite group G to
its set of isomorphism classes of one dimensional representations.

Theorem 2.18 (Schur’s lemma II). If V1 and V2 are simple, then every non-zero
intertwiner T : V1 → V2 is an isomorphism. Consequently, either V1 ∼= V2 or there
are no non-zero intertwiners V1 → V2.

Proof. If T is a non-zero intertwiner then its kernel is an invariant subspace of V1.
Since this kernel can not be all of V1, it is trivial, hence T is injective. Its image,
being a non-trivial invariant subspace of V2 must be all of V2, therefore T is an
isomorphism. �

An easy consequence of the two previous results is:
Homomorphisms be-
tween simple mod-
ules form a vector
space of dimension
at most one.

Corollary 2.19. If K is algebraically closed, V1 and V2 are simple and T : V1 → V2
is any non-trivial intertwiner, then HomG(V1, V2) = KT .

Proof. T is invertible by Schur’s Lemma II. If S : V1 → V2 is another intertwiner,
then T−1 ◦ S is a self-intertwiner of V1. By Schur’s Lemma I, T−1S = λ idV1

for
some λ ∈ K, whence S = λT . �
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3. Complete Reducibility

Definition 3.1 (Completely Reducible Module). An R-module is said to be com-
pletely reducible if it is a direct sum of simple modules.

We have already seen (Exercises 2.3 and 2.4) that not all modules are completely
reducible.

Exercise 3.2. Show that an R-module is completely reducible if and only if every
invariant subspace has an invariant complement.

Exercise 3.3. Show that an invariant subspace of a completely reducible module
is completely reducible. Also, the quotient of a completely reducible module by any
invariant subspace is completely reducible.

Exercise 3.4. If the left regular R-module is completely reducible, then every
R-module is completely reducible.

If V is a finite dimensional completely reducible R-module, then

(6) V ∼= V ⊕m1

1 ⊕ V ⊕m2

2 ⊕ · · · ⊕ V ⊕mr
r ,

where (by grouping the simple subspaces of V which are isomorphic together)
V1, V2, . . . , Vr is a collection of pairwise non-isomorphic simple R-modules. The
number mk is called the multiplicity of Vk in V . We shall refer to (6) as the de-
composition of V into simple modules with multiplicities. Let W be another finite
dimensional completely reducible module whose decomposition into simple modules
with multiplicities is

(7) W ∼= V ⊕n1

1 ⊕ V ⊕n2

2 ⊕ · · ·V ⊕nr
r

(by allowing some of the nk’s and mk’s to be 0, we may assume that the underlying
collection V1, V2, . . . , Vr of simple modules is the same for V and W ). Since there
are no intertwiners Vi → Vj for i 6= j, any T ∈ HomR(W,V ) can be expressed as

T =
⊕

k

Tk,

where Tk : V ⊕nk

k → V ⊕mk

k is an intertwiner. Represent an element x ∈ V ⊕nk

k as

a vector (x1, . . . , xnk
) and y ∈ V ⊕mk

k as y = (y1, . . . , ymk
), with each xi, yi ∈ Vk.

Writing these vectors as columns, the intertwiner Tk can itself be expressed as an
mk × nk matrix Tk = (Tij) (where Tij ∈ EndR Vk) using











T (x)1
T (x)2

...
T (x)mk











=











T11 T12 · · · T1nk

T21 T22 · · · T2nk

...
...

. . .
...

Tmk1 Tmk2 · · · Tmknk





















x1
x2
...
xnk











.

If K is algebraically closed, then Schur’s lemma I (Theorem 2.13) holds. Thus, theHomomorphisms be-
tween modules made
up of copies of the
same simple module
can be thought of as
matrices with entries
in K.

entries of the matrix, being scalar multiples of the identity idVk
can themselves be

thought of as scalars, allowing us to write

HomR(W,V ) =

r
⊕

k=1

Mmk×nk
(K),

where Mmk×nk
denotes the set of mk × nk matrices with entries in K. One easily

checks that composition of intertwiners expressed as matrices in the above manner
corresponds to multiplication of matrices.
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Theorem 3.5. If K is algebraically closed and V and W have decompositions into
sums of simple modules with multiplicities given by (6) and (7), then

dimHomR(V,W ) = dimHomR(W,V ) =
∑

i

mini.

In the special case where W = V , we obtain
The Endomorphism
algebra of a com-
pletely reducible
module is a sum of
matrix algebras.

Theorem 3.6. Let K be an algebraically closed field and R be a K-algebra. If the
R-module V is a sum of non-isomorphic simple modules with multiplicities given by
(6), then EndR V is a sum of matrix algebras (with componentwise multiplication):

EndR V ∼=

r
⊕

i=1

Mmi
(K),

where the right hand side should be interpreted as a sum of algebras.

Sum of algebras

The notion of a sum of algebras will come up often and therefore deserves a
short discussion.

Definition 3.7 (Sum of algebras). If R1, R2, . . . , Rk are algebras, their sum is
the algebra whose underlying vector space is the direct sum R := R1 ⊕ R2 ⊕
· · · ⊕Rk, with multiplication defined componentwise:

(r1 + r2 + · · ·+ rk)(s1 + s2 + · · ·+ sk) = r1s1 + r2s2 + · · ·+ rksk

Thus each Ri is a subalgebra of R for each i. If each of the algebras Ri is
unital with unit 1i, then the sum

1 := 11 + 12 + · · ·+ 1k

is the multiplicative unit for R. In particular, R is also unital. If (ρ̃i,Mi) is a
unital Ri module (meaning that ρ̃i(1i) = idMi

) then

M =M1 ⊕M2 ⊕ · · · ⊕Mk

is also a unital R-module when ρ̃ : R→ EndKM is defined by

ρ̃(r1 + r2 + · · ·+ rk) := ρ̃1(r1) + ρ̃2(r2) + · · ·+ ρ̃k(rk).

The Mi’s can be recovered from M by Mi = ρ̃(1i)M . Thus R-modules corre-
spond precisely to collections of Ri-modules (one for each i).

On a purely combinatorial level:

Theorem 3.8. Assume that K is algebraically closed. If the R-module V is a sum
of non-isomorphic simple modules with multiplicities given by (6), then

dimEndR V =

r
∑

i=1

m2
i .

Recall that the centre of aK-algebra R consists of those elements which commute
with every element of R.

We all know that the centre of a matrix algebra consists of the scalar matrices.
The centre of a direct sum of algebras is the direct sum of their centres. It follows
that the dimension of the centre of

⊕r

i=1Mmi
(K) is the number of i such that

mi > 0. Thus a consequence of Theorem 3.6 is
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Theorem 3.9. Let R be a K-algebra, with K algebraically closed. If the R-module
V is a sum of non-isomorphic simple modules with multiplicities given by (6) with
all the multiplicities mi > 0, then the dimension of the centre of EndR V is r.

Exercise 3.10. Let R be a K-algebra, where K is an algebraically closed field.
Show that a completely reducible R-module V is simple if and only if dimEndR V =
1.

Exercise 3.11. Assume that K is algebraically closed, that V is simple and that
W is completely reducible. Then dimHomR(V,W ) is the multiplicity of V in W .

Exercise 3.12. Assume that K is algebraically closed. A completely reducibleA completely re-
ducible module has
a multiplicity-free
decomposition if
and only its endo-
morphism algebra is
commutative.

R-module V has a multiplicity-free decomposition (meaning that its decomposition
into simple modules with multiplicities is of the form (6) with mi = 1 for all i) if
and only if its endomorphism algebra EndR V is commutative.

Exercise 3.13. Assume that K is algebraically closed. If V and W are completely
reducible finite dimensional R-modules such that

dimEndR V = dimHomR(V,W ) = dimEndRW

then V and W are isomorphic.

Exercise 3.14. TwoR-modules V andW , satisfying (6) and (7), where V1, V2, . . . , Vr
are pairwise non-isomorphic simpleR-modules, are isomorphic if and only ifmi = ni
for i = 1, 2, . . . , r.

A completely re-
ducible module with
a multiplicity-free
decomposition into
finitely many sim-
ple modules has
only finitely many
invariant subspaces.

Exercise 3.15. Assume that K is algebraically closed. Suppose that V1, . . . , Vr are
pairwise non-isomorphic simple R-modules. Show that every invariant subspace of
V = V1 ⊕ · · · ⊕ Vr is of the form Vi1 ⊕ · · · ⊕ Vik for some 1 ≤ i1 < · · · < ik ≤ r. In
contrast, if n ≥ 2, then V ⊕n has infinitely many invariant subspaces if K is infinite.
Hint: using Exercise 3.11, HomR(Vi, V ) is of dimension one.

4. Maschke’s theorem

In Exercise 2.3 we saw that when the characteristic of K divides |G| then an
invariant subspace of a representation need not contain a complement. On the
other hand, we have

Theorem 4.1 (Maschke). If (ρ, V ) is a representation of G and the characteris-
tic of the field K does not divide |G|, then every invariant subspace of V has an
invariant complement.

Proof of Maschke’s theorem. Let W be an invariant subspace and let U be any
complement (not necessarily invariant) of W . Thus V = W ⊕ U , meaning that
every vector x ∈ V can be uniquely written in the form x = xW + xU . Define
projection operators on V by

PW (x) = xW and PU (x) = xU for all x ∈ V.

Note that PW depends not just on W , but also on U .
Maschke’s theorem is proved by constructing an invariant complement from the

arbitrary complement U by averaging projection operators. The following lemma
gives an interpretation of the invariance of U in terms of the projection operators
PW and PU :
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Lemma 4.2. The subspace U is also invariant for ρ if and only if PW ∈ EndG V
(equivalently, if and only if PU ∈ EndG V , since PW + PU = idV ).

Proof of lemma. Since PW (xW ) = xW , we have

ρ(g)PW (xW ) = ρ(g)xW .

Since W is invariant, ρ(g)xW ∈W and therefore,

PW (ρ(g)(xW )) = ρ(g)xW .

It follows that

(8) PW ◦ ρ(g)(xW ) = ρ(g) ◦ PW (xW ) for all g ∈ G.

On the other hand, since PW (xU ) = 0,

ρ(g)(PW (xU )) = 0.

But PW (ρ(g)xU ) = 0 if and only if ρ(g)xU ∈ U . It follows that the identity

(9) PW (ρ(g)xU ) = ρ(g)(PW (xU )) for all g ∈ G

holds for all xU ∈ U if and only if U is an invariant subspace. Therefore the
intertwining property, namely that

ρ(g) ◦ PW = PW ◦ ρ(g) for all g ∈ G

being the sum of (8) and (9), holds if and only if U is an invariant subspace. This
completes the proof of the lemma. �

In order to complete the proof of Maschke’s theorem, define

PW =
1

|G|

∑

g∈G

ρ(g)PW ρ(g)
−1.

Note that the hypothesis that |G| is not divisible by the characteristic is necessary in
order to make sense of division by |G|. It is easy to see that PW is a self-intertwiner:

ρ(g)PW = PW ρ(g) for all g ∈ G.

If x ∈W then ρ(g)−1(x) ∈W . Therefore PW (ρ(g)−1(x)) = ρ(g)−1(x). It follows
that ρ(g)PW ρ(g)

−1(x) = x, from which one concludes that for x ∈W , PW (x) = x.
Now, if x ∈ V , then PW (x) ∈W and therefore, PW (PW (x)) = PW (x). Thus

PW
2
= PW .

Let PU = idV −PW . One easily checks that PU
2
= PU . Let U denote the image

of PU . Every vector x ∈ V can be written as

x = PW (x) + PU (x),

so V =W + Ū .
We have seen that if x ∈W , then PW (x) = x. Therefore

(10) PU (x) = (1− PW )(x) = 0 for all x ∈W.

On the other hand, if x ∈ Ū , x = PU (x
′) for some x′ ∈ V . Using the fact that

PU
2
= PU ,

(11) PU (x) = PU
2
(x′) = PU (x

′) = x for all x ∈ Ū .
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Together, (10) and (11) imply that W ∩ Ū = 0. Therefore V = W ⊕ U (with
corresponding projection operators PW and PU ). Thus, by Lemma 4.2, U is an
invariant complement of W . �

Theorem 4.3 (Complete Reducibility of representations). If (ρ, V ) is a finite di-
mensional representation of G and the characteristic of K does not divide |G|, then
V is completely reducible.

Proof. Easily follows from Maschke’s theorem (Theorem 4.1). �

Exercise 4.4. Let A be a matrix with entries in an algebraically closed field K.
Suppose that An = 1 for some n not divisible by the characteristic of K. Use
Maschke’s theorem and Exercise 2.9 to show that A is diagonalizable.

Definition 4.5 (Semisimple algebra). A finite dimensional K-algebra R is said to
be semisimple if every finite dimensional R-module M is a sum of simple invariant
subspaces.

Maschke’s theorem
tells us when K[G]
is a semisimple alge-
bra.

Maschke’s theorem tells us that if the characteristic of K does not divide |G|
then K[G] is a semisimple algebra. The converse also holds: if the characteristic
of K divides |G|, then K[G] is not semisimple since the regular module admits an
invariant subspace that does not have an invariant complement (see Exercise 2.3).

The following exercise illustrates another application of the techniques used in
the proof of Maschke’s theorem.

Exercise 4.6. Let N be a normal subgroup of G. If V is a simple representation
of G, then its restriction to N is completely reducible.

Exercise 4.7. Consider a representation V of G in a vector space over C. Show
that V admits a G-invariant Hermitian inner product, namely an Hermitian inner
product 〈·, ·〉 such that

〈g · x, g · y〉 = 〈x, y〉 for all g ∈ G, x, y ∈ V .

Hint: Start with any Hermitian form on V and average it out over G.

Exercise 4.8. Use Exercise 4.7 to give another proof of Maschke’s theorem for
representations over C.

5. Decomposing the regular module

In view of complete reducibility, classifying the simple modules up to isomor-
phism is equivalent to classifying all the finite dimensional modules up to isomor-
phism.

In order to find simple modules, we do not have to look beyond the regular
module (namely R itself, thought of as an R-module; see Example 1.15):

All simple modules
are submodules of
the regular module.

Theorem 5.1. If R is semisimple then every simple R-module is isomorphic to a
submodule of the left regular R-module.

Proof. Given a simple R-module V , choose a non-zero vector x ∈ V . Define φx :
R→ V by

φx(r) = rx for all r ∈ R.

Then φx is a non-zero intertwiner from the left regular R-module to V . It follows
from Theorem 3.5 that V is isomorphic to submodule of R, as claimed. �
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Notice that Theorem 5.1 also shows that, up to isomorphism, there are only
finitely many simple R-modules, namely, those which are isomorphic to some simple
invariant subspace of the regular R-module.

Indeed, if we express the left-regular R-module in the form

(12) R = V ⊕m1

1 ⊕ V ⊕m2

2 ⊕ · · · ⊕ V ⊕mr
r

with V1, V2, . . . , Vr pairwise non-isomorphic, then any simple R-module will be iso-
morphic to exactly one of V1, V2, . . . , Vr.

By Theorem 3.6, if (12) holds, then

EndRR ∼=

r
⊕

i=1

Mmi
(K).

Moreover, it is not difficult to relate EndRR to the K-algebra R:

Exercise 5.2. Let R be a K-algebra with a multiplicative unit. For each r ∈ R,
define ψr : R→ R by

(13) ψr(s) = sr for all s ∈ R.

Show that r 7→ ψr is a vector-space isomorphism R → EndRR. [Hint: for surjec-
tivity, note that r can be recovered from ψr as ψr(1)].

Both R and EndRR are K-algebras. How does the isomorphism of Exercise 5.2
relate these algebra structures? We calculate:

ψr ◦ ψr′(s) = ψr′(s)r

= (sr′)r

= ψr′r(s).

Thus r 7→ ψr is not an algebra homomorphism; rather it reverses the order of
multiplication.

Reversing the order of multiplication in aK-algebra results in anotherK-algebra.
The opposite algebra
is obtained by re-
versing the order of
multiplication.

Definition 5.3 (Opposite algebra). If R is a K-algebra, then its opposite algebra
Ropp is the K-algebra whose underlying vector space is R, but whose multiplication
operation is given by reversing the order of multiplication in R:

rs (product in Ropp) = sr (product in R).

We can now state the exact relationship between the algebras EndRR and R:

Theorem 5.4. For any K-algebra R, the map r 7→ ψr defined in (13) is an iso-
morphism of algebras Ropp → EndRR.

There are many non-commutative algebras which are isomorphic to their oppo-
site algebras:

Exercise 5.5. An isomorphism of K-algebras Mn(K) → Mn(K)opp is given by
T 7→ T t.

Matrix algebras and
group algebras are
isomorphic to their
opposites.

Exercise 5.6. Let G be a group. An isomorphism of K-algebras K[G] → K[G]opp

is defined by 1g 7→ 1g−1 for each g ∈ G.
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Exercise 5.7. The K-algebra of upper triangular n× n matrices is isomorphic to
the opposite of the K-algebra of lower triangular n × n matrices. The K-algebra Can you think of an

algebra that is not
isomorphic to its op-
posite?

of upper triangular n × n matrices is also isomorphic to the K-algebra of lower
triangular n× n matrices. Thus the K-algebra of upper triangular n× n matrices
is isomorphic to its own opposite.

Returning to our semisimple algebraR, we find thatR is isomorphic to (EndRR)
opp,

which in turn is isomorphic to a sum of matrix algebras, which are isomorphic to
their own opposites. We get:

Every semisimple al-
gebra is a sum of ma-
trix algebras.

Theorem 5.8 (Wedderburn decomposition). When K is an algebraically closed
field, every semisimple K-algebra is isomorphic to a sum of matrix algebras.

Thus matrix algebras are the building blocks of semisimple algebras. If our goal
is to understand modules for semisimple algebras, it makes sense to first understand
modules for matrix algebras (see the dicussion accompanying Definition 3.7). To
begin with, let us first understand the invariant subspaces in the left regular R-
module when R is the matrix algebra Mn(K).

Exercise 5.9. For each linear subspace V of Kn define MV to be the set of all
matrices whose rows, when thought of as elements of Kn, lie in V .

(1) MV is an invariant subspace of the left regularMn(K)-module of dimension
n dimK V .

(2) Every invariant subspace of the left regular Mn(K)-module is of the form
MV for some linear subspace V of Kn.

(3) MV is simple if and only if V is one dimensional.
(4) MV is isomorphic to MW as an Mn(K)-module if and only if the two

subspaces V and W have the same dimension.

For example, take Ui to be the line spanned by the ith coordinate vector. Then
MUi

consists of all matrices whose non-zero entries all lie in the ith column. By
Exercise 5.9, theMUi

’s are simple invariant subspaces which are isomorphic to each
other

Mn(K) =MU1
⊕MU2

⊕ · · · ⊕MUn
∼=M⊕n

U1

is the decomposition of the left regular Mn(K)-module into simple invariant sub-
spaces.

The vector spaceKn is itself aMn(K)-module whenMn(K) acts by left multipli-
cation on column vectors. Define a linear map Kn →MUi

by taking x ∈ Kn to theAll simple modules
for a matrix algebra
are isomorphic.

matrix whose ith column is x and all other columns are 0. This is an isomorphism
Kn →MUi

of Mn(K)-modules.
We obtain the decomposition of the left regular Mn(K)-module:

Theorem 5.10. As an Mn(K)-module

Mn(K) ∼= Kn ⊕Kn ⊕ · · · ⊕Kn (n times).

By Theorem 5.1, every simple module for Mn(K) is isomorphic to the module
Kn.

From Theorem 5.10, we can get the decomposition of the regular module for any
sum of matrix algebras:
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Corollary 5.11. Let

R =

r
⊕

i=1

Mmi
(K).

Let (ρ̃i, Vi) denote the R-module whose underlying vector space Vi is K
mi , regarded

as column vectors and if

r = r1 + r2 + · · ·+ rk rj ∈Mmj
(K)),

then ρ̃i(r)(x) = rix for x ∈ Vi (left multiplication of a column vector by a matrix).
The decomposition of the left regular R-module into simples is given by

R ∼=

r
⊕

i=1

V ⊕mi

i .

Corollary 5.11 can be rephrased as follows:

Corollary 5.12. If K is an algebraically closed field and R is a semisimple K-
algebra, then there is an isomorphism of algebras

R ∼=
⊕

(ρ̃i,Vi)

EndK Vi,

where (ρ̃i, Vi) runs over the set of isomorphism classes of simple R-modules.

The following exercise should convince the reader that the Wedderburn decom-
position is unique:

Exercise 5.13. An element ǫ ∈ R is said to be idempotent if ǫ2 = ǫ. A central
idempotent is an idempotent that lies in the centre of R (i.e., it commutes with
every r ∈ R). A central idempotent is said to be primitive if it can not be written
as ǫ1 + ǫ2 where ǫ1 and ǫ2 are both non-zero central idempotents.

In the ring R =
⊕k

i=1Mmi
(K), let ǫi denote the identity matrix of the ith

summand. Show that ǫ1, ǫ2, . . . , ǫk are all the primitive central idempotents of R. The Wedderburn
decomposition can
be recovered from
the primitive central
idempotents.

The ith matrix algebra can be isolated in R as the two-sided ideal RǫiR. Clearly,
the multiplicative unit 1 of R is the sum of the primitive central idempotents:

(14) 1 = ǫ1 + ǫ2 + · · ·+ ǫk.

Corollary 5.14. Let G be a finite group and K be an algebraically closed field
whose characteristic does not divide |G|. Let (ρi, Vi), i = 1, . . . , r be a complete set
of representatives of the isomorphism classes of simple representations of G. Let
di = dimVi. Then

(1) d21 + . . .+ d2r = |G|.
(2) r is the number of conjugacy classes of G.

Proof. By Corollary 5.12 and the equivalence between K[G]-modules and represen-
tations of G discussed in Section 1,

K[G] =

r
⊕

i=1

EndK(Vi).

Comparing the dimensions of the two sides of the above isomorphism gives (1).
Since r is the dimension of the centre of

⊕r

i=1Mmi
(K) which is isomorphic to

K[G], it suffices to show that the centre of K[G] has dimension equal to the number
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of conjugacy classes in G. For
∑

g ag1g to lie in the centre of K[G], it suffices that
it commute with 1x for each x ∈ G, i.e.,

∑

g

ag1xg =
∑

g

ag1gx for each x ∈ G.

By re-indexing the sums, we may write
∑

g

ax−1g1g =
∑

g

agx−11g for each x ∈ G.

Comparing the coefficients of 1g on both sides of the above equality gives

ax−1g = agx−1 for all x, g ∈ G.

Replacing g by gx in the above identity gives

ax−1gx = ag for all x, g ∈ G.

Thus
∑

g ag1g is in the centre of K[G] if and only if the function g 7→ ag is constant

on the conjugacy classes of G. It follows that the dimension of the centre of K[G]
is the number of conjugacy classes of G, completing the proof of (2). �

If (ρ̃, V ) is an R-module for a finite dimensional K-algebra R, and ρ̃(R) =
EndK V , then clearly, V can not admit a non-trivial proper invariant subspace.
Therefore V is simple. The converse is true whenever K is algebraically closed.
When R is semisimple, then this is easier to prove and goes by the name of Burn-
side’s theorem.

Theorem 5.15 (Burnside’s theorem). Let K be an algebraically closed field and R
be a finite dimensional semisimple K-algebra. If (ρ̃, V ) is a simple R-module then
ρ̃(R) = EndK V .

Proof. Think of EndK V as an R-module using r · T = ρ̃(r) ◦ T . Let x1, . . . , xn
be a basis of V over K. If we write T ∈ EndK V as a matrix with respect to this
basis, then each column of this matrix can be thought of as a vector in V , and the
action of R on EndK V is coincides with the action of R on each column under this
identification. Therefore, as R-modules,

EndK V ∼= V ⊕n.

Now the image R̄ of R in EndK V , being a subalgebra of EndK V , can be viewed as
a submodule of EndK V . Since it is also completely reducible, it must be isomorphic
to V ⊕d for some d ≤ n. Therefore EndR̄ R̄ = EndR R̄ = Md(K). On the other
hand EndR̄ R̄ = R̄opp. It follows that R̄ is isomorphic to Md(K). But then, since
R̄ has an n-dimensional simple module (the module V ), d must equal n. �

6. Tensor products

The simplest way to understand tensor products is to work with bases. If V and
W are vector spaces with bases x1, . . . , xn and y1, . . . , ym respectively, their tensor
product is the vector space whose basis is given by formal symbols xi ⊗ yj , and is
usually denoted by V ⊗W . The map on bases

(xi, yj) 7→ xi ⊗ yj
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extends uniquely to a bilinear map B : V ×W → V ⊗W , which we shall call the
tensor product map. For (x, y) ∈ V ×W , the vector B(x, y) in V ⊗W is usually
denoted by x⊗ y. In general, we can write

x = a1x1 + · · ·+ anxn and y = b1y1 + · · ·+ bmym,

for unique scalars a1, . . . , an and b1, . . . , bm. Then

x⊗ y =

n
∑

i=1

m
∑

j=1

aibj (xi ⊗ yj).

Starting with different bases of V and W would have led to an apparently different
description of the tensor product; let us provisionally denote it by V ⊠W . Write B′

for the corresponding tensor product map V ×W → V ⊠W . However, the tensor
product is independent of the choice of basis in the sense that there exists a unique
isomorphism φ : V ⊗W → V ⊠W such that B′ = φ ◦B. This situation is visually
described by asserting that the diagram

(15) V ×W

B

yy

B′

%%
V ⊗W

φ
// V ⊠W

commutes (in other words, it does not matter along which path you compose the
functions; the end result is the same). One may try to work out this isomorphism
φ in terms of the change-of-basis matrices.

An interesting alternative is to use the following basis-free characterization of
the tensor product [2, Section 8.10]:

The universal prop-
erty of tensor prod-
ucts allows for a
basis-free characteri-
zation.

Exercise 6.1 (Universal property of tensor products). Show that the tensor prod-
uct V ⊗W has the following property: For every vector space U and every bilinear
map D : V ×W → U , there exists a unique linear transformation D̃ : V ⊗W → U
such that D = D̃ ◦ B. In other words, there exists a unique linear transformation
D̃ such that the diagram

V ×W

B

yy

D

##
V ⊗W

D̃

// U

commutes.

Applying the result of Exercise 6.1 to U = V ⊠W and D = B′, we find that there
exists a unique linear transformation φ : V ⊗W → V ⊠W such that the diagram
(15) commutes. Exercise 6.1 is also valid with V ⊠W instead of V ⊗W . Now taking
U = V ⊗W and D = B, we obtain a linear transformation ψ : V ⊠W → V ⊗W
such that

V ×W

B′

yy

B

%%
V ⊠W

ψ
// V ⊗W
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commutes. By putting the two diagrams together we get

V ×W

B

yy
B′

��

B

%%
V ⊗W

φ
// V ⊠W

ψ
// V ⊗W

whence it follows that the composition ψ ◦ φ satisfies the commutative diagram

V ×W

B

yy

B

%%
V ⊗W

ψ◦φ
// V ⊗W

However, this diagram would still commute if we replace ψ ◦ φ by idV⊗W . The
uniqueness assertion in Exercise 6.1 with U = V ⊗ W and D = B forces that
ψ◦φ = idV⊗W . Similarly, it follows that φ◦ψ = idV⊠W . Thus φ is an isomorphism.

In the above reasoning, it is does not matter how V ⊗W and V ⊠W are con-
structed. The conclusion is that any two models of the tensor product which satisfy
the universal property of Exercise 6.1 are identified by a unique isomorphism (in
this context, a model for the tensor product includes two pieces of informations:
the vector space V ⊗W as well as the bilinear map B : V ×W → V ⊗W ). Thus
all the different models of tensor product are identified with each other via unique
isomorphisms.

If S : V1 → V2 and T : W1 → W2, Bi : Vi ×Wi → Vi ⊗Wi are tensor product
maps, since (x, y) 7→ B2(S(x), T (y)) is a bilinear map V1 × W1 → V2 ⊗ W2, by
Exercise 6.1, there exists a unique linear map S⊗T : V1⊗W1 → V2⊗W2 such that

(S ⊗ T ) ◦B1 = B2(S(x), T (y)).

Classically, S ⊗ T is known as the Kronecker product of S and T .

Exercise 6.2. Show that (S, T ) 7→ S ⊗ T induces an isomorphism Hom(V1, V2)⊗
Hom(W1,W2) → Hom(V1 ⊗ V2,W1 ⊗W2).

Exercise 6.3. Show that trace(S ⊗ T ) = (traceS)(traceT ).

Definition 6.4. Suppose (ρ, V ) is a representation of G and (σ,W ) is a represen-
tation of H. Then ρ ⊠ σ : (g, h) 7→ ρ(g) ⊗ σ(h) is a representation of G × H on
V ⊗W , which is known as the external tensor product of (ρ, V ) and (σ,W ).

Remark 6.5. The notion of tensor product defined above for representations of two
groups is called the external tensor product. There is also a notion of internal
tensor product (ρ ⊗ σ, V ⊗W ), which is defined when (ρ, V ) and (σ,W ) are both
representations of the same group G. This is nothing but the external tensor
product (which is a representation of G × G) restricted to {(g, g) | g ∈ G}, the
diagonal copy of G inside G×G.

Exercise 6.6. If V ′ = HomK(V,K) is the dual vector space of a vector space V
then for any vector space W the linear map V ′ ⊗W → HomK(V,W ) induced by
the bilinear map V ′ ×W → HomK(V,W ) defined by

(ξ, y) 7→ (x 7→ ξ(x)y)

is an isomorphism of vector spaces.
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Exercise 6.7. Let (ρ, V ) and (σ,W ) be representations of groups G and H respec-
tively. Then (ρ′ ⊠ σ, V ′ ⊗W ) is a representation of G×H by Exercise 6.8. On the
other hand Hom(V,W ) (which by Exercise 6.6 is canonically isomorphic to the vec-
tor space V ′⊗W ) also a representation of G×H via τ : G×H → GL(Hom(V,W ))
defined by

τ(g, h)(T ) = σ(h) ◦ T ◦ ρ(g)−1.

Show that the isomorphism of Exercise 6.6 is in fact an intertwiner of representa-
tions of G × H. Thus V ′ ⊗W and Hom(V,W ) are isomorphic representations of
G×H.

Exercise 6.8. Assume that K is algebraically closed and that its characteristic
divides neither |G| nor |H|. Show that if ρ and σ are simple then so is ρ⊠ σ (hint:
use Burnside’s theorem (Theorem 5.15) and Exercise 6.6). If, furthermore (τ, U)
and (θ,X) are simple representations of G and H respectively such that ρ ⊠ σ is
isomorphic to τ ⊠ θ then ρ is isomorphic to τ and σ is isomorphic to θ.

7. Characters

In this section, we make the Wedderburn decomposition explicit when R =
K[G]. We assume that K is an algebraically closed field whose characteristic does
not divide |G|. The simple K[G]-modules are just the simple representations of
G (under the correspondence discussed in Section 1. Each simple representation
(ρ, V ) corresponds to a matrix algebra in the Wedderburn decomposition of R
(Corollary 5.11). The identity matrix in this matrix algebra is a primitive central
idempotent of K[G], which we denote by ǫρ (see Exercise 5.13). The element ǫρ can
be viewed as a K-valued function g 7→ ǫρ(g) on G, as explained in Section 1. Our
goal shall be the determination of the values ǫρ(g) in terms of ρ and g. The answer
(17) highlights the important role that characters play in representation theory.

Definition 7.1 (Contragredient Representation). Let (ρ, V ) be a representation of
G. The contragredient representation is the representation (ρ′, V ′) where V ′ is the
vector space dual to V (V ′ = HomK(V,K)) and ρ′(g)−1 is the adjoint of the linear
operator ρ(g), namely the linear operator for which

(ρ′(g)−1(ξ))(x) = ξ(ρ(g)(x)) for all ξ ∈ V ′ and x ∈ V.

If (ρ, V ) is a representation of G then (ρ⊗ρ′, V ⊗V ′) is a representation of G×G
defined by

(ρ⊗ ρ′)(g, g′)(x⊗ ξ) = [ρ(g)x]⊗ [ρ′(g′)ξ].

By combining the left and right regular modules, K[G] can also be considered a
representation of G×G:

T (g, g′)1x = 1g′xg−1 .

These two representations of G×G are linked by matrix coefficients:

Lemma 7.2. Let c : V ⊗ V ′ → K[G] be defined by

c(x⊗ ξ) =
∑

g∈G

ξ(ρ(g)x)1g.

Then c is an intertwiner of representations of G×G.
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Matrix coefficients

Suppose x1, . . . , xn is a basis of V and ξ1, . . . , ξn is the dual basis of V ′ (the
linear functional ξi is defined by ξi(xj) = δij). Then ξi(ρ(g)xj) is the (i, j)th
entry of the matrix of ρ(g) with respect to the basis x1, . . . , xn. Given (x, ξ) ∈
V × V ′ it is always possible to find a basis x1, . . . , xn such that x = x1 and
ξ = ξ1. For this reason ξ(ρ(g)x) is called a matrix coefficient of ρ(g).

Theorem 7.3. Let (ρ1, V1), (ρ2, V2), . . . , (ρk, Vk) be a set of representatives for the
isomorphism classes of simple representations of G. The linear mapA generalization

of Theorem 7.3 to
compact topological
groups is called the
Peter-Weyl theorem.

Φ :

k
⊕

i=1

Vi ⊗ V ′

i → K[G]

defined by
xi ⊗ ξi 7→ c(xi ⊗ ξi) for xi ∈ Vi, ξi ∈ V ′

i

is an isomorphism of representations of G×G.

Proof. Note that Φ is an intertwiner of representations of G × G by Lemma 7.2.
Since Φ is a linear transformation between two vector spaces which have (by the
Wedderburn decomposition) the same dimension, it suffices to show that Φ is in-
jective.

By Exercise 6.8, the V ′
i ⊗ Vi are pairwise non-isomorphic simple representations

of G×G. By Exercise 3.15, the kernel of Φ, being an invariant subspace, must be
a sum of some subcollection of the V ′

i ⊗Vi. However, none of the subspaces V ′
i ⊗Vi

can be contained in the kernel, since for any non-zero vector vi ∈ Vi, there exists
ξi ∈ V ′

i such that Φ(ξi ⊗ vi)(1) = ξi(vi) 6= 0. �

Exercise 7.4. Work out the isomorphism of Theorem 7.3 for G = Z/3Z. What
about other cyclic groups?

If we restrict the representation K[G] of G×G to the second copy of G in G×G,
we get the left regular representation of G. On the other hand, the restriction of the
representation V ⊗ V ′ of G×G to the second copy of G is isomorphic to V ′⊕dimV .
Theorem 7.3 therefore gives a decomposition of the regular representation:

Theorem 7.5. In the notation of Theorem 7.3, the left regular represenation of G
has decomposition

K[G] ∼=

k
⊕

i=1

V ⊕ dimVi

i ,

so each simple representation of G occurs in the regular representation with multi-
plicity equal to its dimension.

Applying the result of Exercise 6.7 to the case where (σ,W ) = (ρ, V ), we find
that V ⊗V ′ and End(V ) are isomorphic as representations of G×G. Under this iso-
morphism of V ⊗V ′ with linear endomorphisms of V , matrix coefficients correspond
to trace:

Theorem 7.6. Let V be a finite dimensional vector space and V ′ be its dual. ThenThe natural pairing
on V ′ × V becomes
the trace of the asso-
ciated rank-one op-
erator.

for every (ξ, y) ∈ V ′ × V , ξ(y) is the trace of the linear operator

Tξ,y : x 7→ ξ(x)y.
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Proof. Extend y to a basis of V . The matrix of Tξ,y with respect to any such
basis has only one non-zero column, namely the first one. Its trace is therefore the
element in the first row and first column, which is ξ(y). �

Theorem 7.6 can be restated by saying that the following diagram commutes:

(16) V ′ ⊗ V // K

EndK V

trace

;;

where the horizontal arrow represents the linear map V ′ ⊗ V → K induced by the
bilinear map (ξ, x) 7→ ξ(x) and the vertical equality represents the canonical linear
isomorphism V ′ ⊗ V → EndK V .

Using the fact that EndK V is isomorphic to V ′⊗V as a representation of G×G,
we may rewrite Theorem 7.3 as

Theorem 7.7. Let (ρ1, V1), (ρ2, V2), . . . , (ρk, Vk) be a set of representatives for the
isomorphism classes of simple representations of G. The linear map

Φ :

k
⊕

i=1

EndK(Vi) → K[G]

defined by

Ti 7→
∑

g∈G

trace(ρ(g)Ti)1g for Ti ∈ EndK(Vi)

is an isomorphism of representations of G×G.

Exercise 7.8. Show that EndG×GK[G] is the centre of K[G] (you may use The-
orem 5.4 as a starting point for this).

It follows (using Exercise 3.12, or independently from Theorem 7.3 and Exer-
cise 6.8) thatK[G] has a multiplicity-free decomposition into simple representations
of G×G. Both, the Wedderburn decomposition (the version given in Corollary 5.12)
and Theorem 7.7 are decompositions of K[G] into a sum of simple representations
of G × G. Therefore, they must coincide on each simple factor up to a scalar. It
follows that for each of the primitive central idempotent ǫi, which is the image of
the identity element of EndK(Vi) is given by

ǫi(g) = ci trace(ρ(g)),

where ci is some constant depending on i.
Note that if V and W are two finite dimensional vector spaces over K, T ∈

EndK(V ) and S : V → W is an isomorphism, then T and STS−1 have the same
trace. It follows that isomorphic representations have the same character.

This allows us to equate the traces on both side of the isomorphism

K[G] ∼=

r
⊕

i=1

V ⊕ dimVi

i
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of Theorem 7.5 to obtain the identity

1e =
1

|G|

r
∑

i=1

dimVi
∑

g∈G

trace(ρi(g))1g

=
1

|G|

r
∑

i=1

dimVic
−1
i ǫi

The right hand side is a linear combination of linearly independent vectors ǫ1, . . . , ǫr
in the vector space K[G]. On the other hand, we already know that

1e =

r
∑

i=1

ǫi.

It follows immediately that ci = dimVi/|G|, or in other words that

Theorem 7.9. Let G be a finite group and K be an algebraically closed field whose
characteristic does not divide |G|. Let (ρ1, V1), . . . , (ρr, Vr) be a set of representa-
tives for the isomorphism classes of simple representations of G over the field K.The primitive cen-

tral idempotents are
determined by the
characters of simple
representations.

Let

(17) ǫi(g) =
dimVi
|G|

trace(ρi(g)).

Then ǫ1, . . . , ǫr are the primitive central idempotents in K[G].

Definition 7.10 (Character). If G is a group and ρ : G→ GL(V ) is a representa-
tion of G on a finite dimensional vector space V then the K-valued function

χρ(g) = trace(ρ(g))

is called the character of ρ.

Exercise 7.11. If χ is the character of a representation in a complex vector space,
then |χ(g)| ≤ χ(1) for all g ∈ G. Equality holds if and only if g lies in kernel of the
corresponding representation. Hint: show that χ(g) is the trace of a matrix whose
eigenvalues are unit complex numbers.

If (ρ1, V1), . . . , (ρk, Vk) are a set of representatives for the isomorphism classes of
simple representation of G, and we write χi(g) for trace(ρi(g);Vi) then the functions
χ1, . . . , χr are called the irreducible characters of G. An immediate consequence
of Theorem 7.9 is that {χ1, . . . , χr} is a linearly independent set in K[G]. Now
suppose that a representation (ρ, V ) has a decomposition into simples given by

V ⊕m1

1 ⊕ · · · ⊕ V ⊕mr
r ,

then
χρ = m1χ1 + · · ·+mrχr.

By the linear independence of irreducible characters, the coefficients m1, . . . ,mr

and hence the isomorphism class of (ρ, V ) is completely determined by χρ. We
have

Theorem 7.12. Let K be an algebraically closed field whose characteristic does not
divide |G|. If two finite dimensional representations of G have the same character,
then they are isomorphic.

Their most important properties follow from the characterization (17) of primi-
tive central idempotents:
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Exercise 7.13 (Schur’s orthogonality relations). WhenK is an algebraically closed
field whose characteristic does not divide |G|, then the irreducible characters χ1, . . . , χr
form a basis for the centre of K[G] (which is the space of K-valued functions on
G which are constant on conjugacy classes, as we have seen in the proof of Corol-
lary 5.14) and satisfy the identities

1

|G|

∑

g∈G

χi(g)χj(g
−1h) = δij

χi(h)

χi(1)
,

which, upon substituting h = 1, give Schur’s orthogonality relations:

(18)
1

|G|

∑

g∈G

χi(g)χj(g
−1) = δij .

In other words, if we define a bilinear map K[G]×K[G] → K by

(19) 〈f1, f2〉G =
1

|G|

∑

g∈G

f1(g)f2(g
−1),

then the irreducible characters form an orthonormal set for this pairing.

An obvious consequence of Theorem 18 is that when the characteristic of K does
not divide |G|, then the number of isomorphism classes of simple representations is
the number of conjugacy classes in G. Further, each irreducible character of G is
a function on the conjugacy classes. The character table of G is the square array
whose rows are indexed by the isomorphism classes of the simple representations of
G and whose columns are indexed by its conjugacy classes. Each entry is the value
of the irreducible character of the simple representation indexing its row evaluated
at any element of the the conjugacy class indexing its column.

The importance of the identities (18) is that they allow us to calculate the dimen-
sions of intertwiner spaces between representations (and hence also multiplicities of
the simple representation in a given representation) using characters.

Theorem 7.14. Let K be an algebraically closed field whose characteristic does
not divide |G|. Let (ρ, V ) and (σ,W ) be two finite dimensional representations of
G over K. Then

(20) dimHomG(V,W ) = 〈χρ, χσ〉G.

Proof. Suppose that V1, . . . , Vr is a set of representatives for the isomorphism classes
of simple representations of G. If V andW have decompositions given by equations
(6) and (7) respectively, then

χρ = n1χ1 + · · ·+ nrχr

χσ = m1χ1 + · · ·+mrχr.

Now using the fact that χ1, . . . , χr form an orthonormal set for the pairing (19) we
have that

〈χρ, χσ〉 = m1n1 + · · ·+mrnr,

which, by Theorem 3.5, is the dimension of HomG(V,W ). �

As a special case, we may compute the multiplicity of a simple representation in
any given representation using characters:
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Theorem 7.15. Let K be an algebraically closed field whose characteristic does
not divide |G|. Suppose that a simple representation (ρ, V ) of G occurs in a repre-
sentation (σ,W ) with multiplicity m. Then

m = 〈χρ, χσ〉G.

Exercise 7.16. Compute the character table for the following groups:

(1) finite cyclic groups
(2) (2) the dihedral group of order 8 (this is the group of symmetries of a

square)
(3) (5) the quaternion group (this is the group consisting of the elements

{±1,±i,±j,±k} in the ring of quaternions.

Dihedral Groups

The dihedral group D2n is defined to be the group of linear transformations
R2 → R2 which fixes the vertices of a regular n-gon centred at the origin.
This group consists of rotations (by angles that are multiples of 2π/n) and
reflections about the n axes of symmetry of the n-gon, and therefore has order
2n. If s denotes any one of the reflections, and r a rotation by 2π/n, then D2n

has a presentation

〈s, r | s2 = 1, rn = 1, s−1rs = r−1〉

Exercise 7.17. Let g1, g2, . . . , gr denote representatives of the conjugacy classes
of G. Let χ1, χ2, . . . , χr be the characters of the simple representations of G. Ley
X denote the matrix whose (i, j)th element is χi(gj). Let Z denote the diagonal
matrix whose ith diagonal entry is the cardinality of the centralizer of gi for each
i ∈ {1, . . . , r}. Let E denote the permutation matrix for which Eij = 1 if g−1

i

lies in the conjugacy class of gj . When K is an algebraically closed field whose
characteristic does not divide |G|, show that X ′X = EZ (here X ′ denotes the
transpose of X). Use this to deduce the dual orthogonality relations:

r
∑

k=1

χk(g
−1
i )χk(gj) =

{

|ZG(gj)| if i = j,

0 otherwise.

[Hint: start off by computing the matrix XX ′.]

Exercise 7.18. When K is an algebraically closed field whose characteristic does
not divide |G|, show that thet centre Z(G) of G consists of those elements for which
|χ(g)| = χ(1) for each irreducible character χ.
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