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It is the aim of this lecture to recall how, in relativistic quantum physics, negative energy 

states are avoided by adopting the field viewpoint. For this purpose we chose as the simplest 

possible case 

that of an uncharged particle obeying the Klein-Gordon equation. The essential arguments 

developed here then apply equally to the case of more general systems.  

Negative energy states, causality 

In quantum mechanics we associate a particle with a wave function Ψ �,  depending on  ݐ

time and space coordinates t and x respectively. The wave functions are solutions of a 

differential equation known as the Schrödinger equation. In a heuristic way this equation 

can be derived by replacing the energy and momentum of the particle by operators, 

according to the relations � = −�ℏ ࢖and࢚�� = −�ℏ∇ 

For a particle we then have in the non relativistic case� − 2࢖

2݉ = 0 yielding 

ݐ߲߲  (1) − �ℏ
2݉ ∇2 Ψ = 0 

In the relativistic case we start from the relation �2 = ݉2ܿ4 +  2ܿ2and obtain, after inserting the relevant differential operators࢖

(2)  − 1ܿ2

ݐ2߲߲ 2
+ ∇2 Ψ − ݉2ܿ2ℏ2

Ψ = 0 

This relativistic version of the Schrödinger equation is called the Klein-Gordon equation. It is 

important to note that in contrast to the  

non relativistic eq.(1) the Klein-Gordon equation contains the second time derivative 

meaning that it allows for negative energy solutions. Using from now on natural units  ℏ = 1 

, ܿ = 1 , we write explicitly 

(3) − ݐ2߲߲ 2
+ ∇2 Ψ − ݉2Ψ = 0 

Setting Ψ �, = ݐ ݐ��−݁ � ߰  
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Eq.(3) reduces to 

(4)    �2 − ߰ 2࢖ − ݉2߰ = 0 

where we have used   ∇2=  . 2࢖−

For plane wave solutions with 2࢖ =  we then have the energy relations ,ݐݏ݊݋ܿ

(5a)   �2 = 2࢖  + ݉2  

(5b)   � = 2࢖ ± + ݉2 

Hence there are negative energy solutions. The question arises whether these solutions 

cannot be discardedas non physical. But in that case we would not have a complete set of 

basis functions since these solutions are part of it. In actual calculations this could yield 

erroneous results. Furthermore, in a less obvious way, omitting these solutions leads to a 

violation of the principle of causality as we shall demonstrate now. 

Consider the amplitude� ݐ = ݐ��−݁ �   �0  for the evolution of a free particle from an 

initial to a final position during the time interval t . Discarding negative energy states this 

amplitude would be 

= ݐ �   (6) = 0� 2݉+2࢖ ݐ�−݁ �  2݉+2࢖ ݐ�−݁ ࢖ � ݌3݀    0� ࢖ 
Inserting the wave functions 

= ࢖ �    (7)
1

(2�)3/2
= 0� ࢖    ;  �∙࢖�݁

1

(2�)3/2
 �∙࢖�−݁

We have 

= ݐ �   (8)
1

(2�)3 2݉+2࢖ ݐ�−݁ 0�−� ∙࢖�݁݌3݀ 
 

Using polar coordinates as follows: ࢖ ∙  � − �૙ = � ࢖ − �૙ ܿ݌3݀   ;�ݏ݋ =  �݀�݊�ݏ2݌�2

We arrive after integration over � at the expression 

= ݐ �   (9)
1

� ݌ ݊�ݏ݌݀݌  0�−� 2�2 ∗ 2݉+2࢖ ݐ�−݁  0�
 

For simplicity we set � =  � − �0 . With a convergence factor  ݁−Λ 2݉+2࢖
, Λ > 0 , inserted 

the value of this integral is known [1]. Setting ܾ = ݐ� + Λ its value is proportional to the 

Bessel function 2� ݉ 2ܭ + ܾ2 1/2 up to a rational function of X and t. For large values of its argument the 

Bessel function reduces essentially to the exponential ݁−݉ �2+ܾ2 1/2

 [2] ,leading for Λ = 0 to 

the result 
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2ݐ−2� ݉−݁   (10)
 

Given this factor in the expression of �(ݐ)we have a non zero amplitude outside the light 

cone, thus violating the principle according to which space like separated events cannot be 

causally connected. Consequently violation of the causality principle occurs if only positive 

energy functions are taken into account.  

Thereare however other shortcomings contained in the relativistic particle theory. One could 

argue that any positive energy state must be unstable since after some time the particle 

would fall into a lower energy state, in the same way as an atomic electron in an excited 

state falls into the ground state after some short life time. In the case of fermions this can be 

prevented by assuming, following Dirac, that all negative energy states are occupied already. 

This situation is due to the fact that, according to the Pauli principle, each state can only 

receive one electron. The completely filled negative states constitute the Dirac sea. 

Moreover, this picture has led Dirac to the prediction of the positron, i.e. a positively 

charged electron, appearing as a hole in the Dirac sea when by some process an electron is 

removed from it.  

It is however possible to give a less artificial description of relativistic quantum particles by 

adopting the field viewpoint which shall be presented now. 

Lagrangian field method 

We consider a field function � depending on the time-space vector ݔ = ,ݐ) �) with 

components ߙݔ , α=Ϭ,ϭ,Ϯ,ϯ. DistiŶguishiŶg ďetǁeeŶ ĐoŶtƌa- and covariant components, ߙݔ , ߚݔ  respectively, we further have ߙݔ = ߚߙ� ߚݔ   and a similar relation with  �ߚߙ = ߚߙ� =

 1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

  .  As usual, Greek indices belong to theMinkowski four- space, Latin 

ones to ordinary space. 

In analogy with classical mechanics, we introduce a Lagrange function, having here the 

character of a density, given by the expression   ℒ ϕ, ߙ,�   , where we have set �,ߙ = �ߙ߲ ߙݔ߲�߲=  . Note also the complementary relation  �,ߙ = �ߙ߲ =
ߙݔ߲�߲  .We now define an action 

iŶtegƌal “ oǀeƌ a ƌegioŶ Ω ďoƌdeƌed ďǇ a Đlosed suƌfaĐe ∑;ΩͿ , as folloǁs:  

(11)� Ω = ,� ℒݔ4݀  ߙ,�  Ω  

Varying this integral in the usual way according to the relation 
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(12)  �� Ω = ݔ4݀   ߲ℒ߲� �� +
߲ℒ߲� ߙ, ߙ,��  Ω  

And using the identities ߲ߙ  ߲ℒ߲� ߙ, �� = ߙ߲  ߲ℒ߲� �� ߙ, +
߲ℒ߲� ߙ, ��ߙ߲   ;              ��ߙ߲ = ߙ,��  

we arrive at 

(13) �� Ω = ݔ4݀    ߲ℒ߲� − ߙ߲ ߲ℒ߲� �� ߙ, + ߙ߲  ߲ℒ߲� ߙ, ��  Ω  

The last term in the parenthesis can be seen as the four-divergence of a four-vector 

proportional to ��  . Theƌefoƌe, ǁith Gauss’s theoƌeŵ it ĐaŶ ďe tƌaŶsfoƌŵed iŶto a suƌfaĐe 

iŶtegƌal oǀeƌ the ďoƌdeƌ ∑;ΩͿ. “iŶĐe the LagƌaŶge ŵethod postulates �� = 0 at the surface, 

this term disappears. On the other hand, if the action integral S has to be an extremum, ��  

must vanish for any value of ��. This leads to the familiar Euler-Lagrange equations 

(14)  
߲ℒ߲� − ߙ߲ ߲ℒ߲� ߙ, = 0 

or more explicitly 

(15)   
߲ℒ߲� − ߙݔ߲߲ ߲ℒ ߲�߲ߙݔ = 0  . 

These equations apply to classical fields, e.g. one component of the electromagnetic vector 

potential, as well as to wave functions in particle quantum mechanics. 

As an example let us therefore consider the Klein-Gordon wave function. 

Setting 

(16)   ℒ =
1

2
ߙ,�   ߙ,�  − ݉2�2  

We write  �,ߙ ߙ,� = ߚߙ� 2ߚ,�    and hence ߲ߙ ߲ℒ߲�,ߙ =
1

2
ߚߙ�ߙ߲ 2ߚ,� =

1

2
 ∂0�,0

2− �߲�,�2  = 2ݐ2߲߲ 
− ∇2 � 

yielding with  
߲ℒ߲� = −݉2�  the Klein-Gordon equation 

2ݐ2߲߲    (17)
− ∇2 + ݉2 � = 0 

The Hamiltonian 

In order to establish a link with classical mechanics, we first conceive the space coordinates ��  as a countable set, each element occupying an infinitesimal space segment ��� . 
Considering the classical expression of the Hamiltonian 

(18)   � = �� ݍ�݌  −  ܮ

with the canonical variable ݌�  obeying the relation 
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�݌   (19) = � ݍ߲/ܮ߲  
We have the correspondence ݍ � → � � �݌   ; → ߲ℒ�߲� � ��� =  �����  
defining the canonical variable 

(20)  �� =
߲ℒ�߲� � 

.With these definitions we obtain for the classical relation (18) the following equivalent 

expression: 

(21)   � =   ��� � − ℒ� ����  

Switching now to the limit of continuous space coordinates, this result takes the form 

(22)   � = − �  � � � ݔ3݀  ℒ �, ߙ,�   =   � ℋݔ3݀ 

whereℋ represents the Hamiltonian density 

(23)   ℋ � = � � �  � − ℒ 

with�(�) the canonical momentum given by  

(24)   � � =
߲ℒ߲�  

Let us consider as an example the Klein-Gordon case. 

According to eq.(16) the Lagrange density can be written as 

(25)   ℒ =
1

2
 � 2 −  ∇� 2 − ݉2�2  

We then have  � � = �  and hence 

(26)   ℋ � = � 2 − 1

2
� 2 +

1

2
 ∇� 2 +

1

2
݉2�2 =

1

2
 � 2 +  ∇� 2 + ݉2�2  

 

Second quantization 

Simply speaking, a given wave function is quantized if it is replaced by an operator. This is 

familiar in quantum electro-dynamics where e.g. one component of the vector potential is 

replaced by photon creation and annihilation operators. A similar procedure can be applied 

to quantum mechanical wave functions and in this latter case one then talks of second 

quantization, since the wave functions are obtained already by a first quantization 

procedure. Note however that the term second quantization is not universally accepted. 

Here we consider again as an example the Klein-Gordon case, which constitutes the simplest 

oŶe, as it ĐoŶĐeƌŶs spiŶless paƌtiĐles like K oƌ π ŵesoŶs. 

Let us first switch from � space to p space by introducing the following transformations: 
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(27a)   � �, = ݐ ݌3݀ 
(2�)3

,࢖)��∙࢖�݁  (࢚

(27b)   ∇� �, = ݐ ݌3݀ 
(2�)3

,࢖)�࢖��∙࢖�݁  (ݐ

(27c)      �  �, = ݐ � �, = ݐ ݌3݀  
(2�)3

,࢖)��∙࢖�݁  (ݐ

The Hamiltonian density then takes the form 

(28) ℋ � = ݌3݀ 
(2�)3

′݌3݀ 
(2�)3

ݔ∙(′࢖+࢖)�݁ 1

2
+ ′࢖ � ࢖ �  ′࢖࢖−) +   (′࢖)�(࢖)�(2݉

Since we want to quantize the system by replacing wave functions by operators in the 

Schrödinger picture, we disregard t in this expression. 

Integrating over the space coordinates, we thus arrive at the following expression for the 

Hamiltonian in terms of functions in p space: 

(29)  � = = � ℋݔ3݀  ݌3݀ 
(2�)3

+ ࢖− � ࢖ �    (࢖−)�(࢖)�2݌߱

With 

2݌߱ (30) = 2࢖ + ݉2 

To obtain eq.(29) we have made use of the relation  ݀3݌+࢖)�݁ݔ ′ )∙� = ࢖)3� +  (′࢖

The parenthesis inside the integral of eq.(29) reminds one of the Hamiltonian 
1

2
2݌  +   2ݍ2߱

of a harmonic oscillator. 

In the latter case quantization is achieved by introducing creation and destruction 

operatorsܽ† ,ܽ, according to the relation ݍ =
1 2߱  ܽ + ݌   ;   †ܽ = ݌߱ �−

2
 ܽ − ܽ†  

with the commutator ܽ, ܽ† = 1 

We therefore try in eq.(29) the substitutions 

(31a)   � ࢖ = ݌߱ �−
2

࢖ܽ  − †࢖−ܽ   

(31b)   � ࢖ =
݌2߱ 1 ࢖ܽ  + †࢖−ܽ   

The parenthesis inside the integral in eq.(29) is then found to be given by the expression     = †࢖ܽ࢖ܽ ݌߱ + †࢖−ܽ   ࢖−ܽ
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Since complete summation over p takes place, we can disregard the minus signs of the 

indices and write    = †࢖ܽ࢖ܽ ݌߱ + = ࢖ܽ†࢖ܽ ݌2߱ ࢖ܽ†࢖ܽ  +
1

2
   †࢖ܽ,࢖ܽ 

We thus obtain for the Hamiltonian the following result 

(32)  � = ݌3݀ 
(2�)3

݌߱ ࢖ܽ†࢖ܽ  +
1

2
   †࢖ܽ,࢖ܽ 

According to general rules of quantum physics, the commutation relation for canonical 

variables takes in the present case the following form: 

(33)    � � , �(�′) = ��3(� − �′) . 

IŶseƌtiŶg iŶto the Đoŵŵutatoƌ the tƌaŶsfoƌŵatioŶ ƌelatioŶs giǀeŶ ďǇ eƋ.’s ;27a,c) we write 

(34)   � � , �(�′) = ݌3݀ 
(2�)3 ′݌3݀ 

(2�)3
�∙࢖�݁ ′࢖�݁ ∙�′ , ࢖ �    (′࢖)�

Substituting for � ݌ ,  the eǆpƌessioŶs giǀeŶ ďǇ eƋ.’s ;31a,b) we obtain after a lengthy  ′݌ �

but straightforward calculation 

, ࢖ �    (35) = (′࢖)�
�
2
′݌ܽ   , †݌−ܽ  + ݌ܽ  , †′݌−ܽ    

Adopting the trial rule 

݌ܽ    (36) , †′݌ܽ  = ࢖)3�3 �2  −  (′࢖

Eq.(35) reduces to 

, ࢖ �    (37) = (′࢖)� ࢖)3�3 �2 � +  (′࢖

Substituting this result into eq.(34) we recover the commutation relation of eq.(33). This 

confirms the validity of the trial rule of eq.(36). 

In the field equations developed above the number of particles concerned is not specified. 

Let us now be more specific by introducing single particle states  ࢖ >   assumed to constitute 

an orthonormal set in a given inertial frame. Acting with the Hamiltonian of eq.(32) on one 

of these states, e.g 1࢖ >   , and using eq.(36) for the commutator, we obtain the formal 

expression 

1࢖ �   (38) >  = 1݌߱
1࢖  >  + 3 �2 ݌3݀  

1

2 1࢖  0 3� ߱݌ >   
The second term on the r.h.s.of this equationcontains the infinitequantity�3 0  and 

moreover it involves an infinite sum over energies ߱2/݌. Mostly this term can be considered 

as some sort of ground state energy �0 which cannot be detected experimentally and thus 
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be ignored. Note however that a similar term occurring in QED plays an important part in 

several physical processes as will be shown below. 

In order to establish the time dependence of the operators� and � one has to replace them 

by Heisenberg operators according to the relation � �, = ݐ ݐ��−݁�ݐ��݁ and similarly for �(�,   . (ݐ

Starting from the expressions (31a,b) we evaluate the corresponding Heisenberg operators 

of ܽ݌   andܽ݌†  as follows: 

Acting on an eigenstate ࢖ >   of �, according to eq.(38), the infinite zero-point energy term 

cancels in the operator product since it is a c number. We are thus  

left with the expression  ݁��ݐ��−݁݌ܽݐ ࢖  >  = ݌߱�−݁ ࢖ ݌ܽݐ >   
using݁��݌ܽݐ ࢖  >  =  0 >= ݌ܽ ࢖  >    
Similarly we have ݁��ݐ��−݁†݌ܽݐ  0 >  = ݌߱�݁ †݌ܽݐ  0 >   
Hence the requested operator equations are 

(39a)   ܽݐ ݌ = ݌߱�−݁ ݌ܽݐ  

(39b)   ܽݐ †݌ = ݌߱�݁ †݌ܽݐ  

With eq.(31b) the quantized form of eq.(27a) becomes 

(40)   � �, = ݐ ݌3݀ 
(2�)3

݌2߱ 1 ݌߱�−݁݌ܽ  �∙࢖�݁ݐ + ݌߱�݁†݌ܽ   �∙࢖�−݁ݐ

Wheƌe eƋ.’s ;ϯ9a,b) have been used. 

Introducing the Lorentz invariant scalar product  ݔ݌ = 0ݔ0݌ − � ∙ �in four space, with 0݌ = ݌߱   and  0ݔ=t , 

We obtain for the quantized field the expression 

(41)    � �, = ݐ ݌3݀ 
(2�)3

݌2߱ 1 ݔ∙݌�−݁݌ܽ  +  .  ݔ∙݌�݁†݌ܽ

 

Causality again. 

As mentioned earlier, two points x,y with space like separation  ݔ − 2 ݕ < 0 are not causally 

connected. This means that in this case, which corresponds to the region outside the light 

cone, the commutator  � ݔ ,  .must vanish  (ݕ)�

Starting from eq.(41) the commutator is given by the expression 
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, ݔ � (42) = (ݕ)� ݌3݀ 
(2�)3

1

݌2߱ (ݕ−ݔ)∙݌�−݁  − ݌�݁   (ݕ−ݔ)∙

where the operator commutation rule of eq.(36) has been used. In order to obtain zero for 

this quantity, the inversion transformation ݔ − ݕ → ݔ)− −  has to be applied to the (ݕ

second integral. However, this is only legitimate if this transformation leaves the value of the 

integral invariant. This we shall discuss now. First set  ݔ − ݕ = Δ =  Δ0,�  , withΔ0 = Δݐ , � = �� . Thenwe have 

݌  (43) ∙ ݔ  − = ݕ 0∆0݌ − ࢖ ∙ ૙݌     ;   � = ݌߱  

Now define a space like surface [3] 

(44)   Δ0
2 − �2 = ܭ   ;     2ܭ− > 0 

Without loss of generality we can restrict ourselves to the plane  Δ0, Δ1  where the surface 

of eq.(44) appears as the curve 

(45)   Δ0
2 − Δ1

2 =  2see figureܭ−

Now take a particular point  Δ0, Δ1  on this curve and rotate the coordinate frame in both 

terms of eq.(42) from  Δ0, Δ1  to  Δ′0, Δ′1  

One then has the relations  

(46)   Δ1 = Δ′1ܿݏ݋ܿ    ;       �ݏ݋� =
Δ1 Δ1
2+Δ0

2
 

Hence the transformed quantities are  Δ′૙ , Δ′૚ =
૚�࢙࢕�  ,Δ′૛ = , Δ′૜ = Δ૜ 

yielding the following result in terms of rotated quantities: ݁−�(ݕ−ݔ)∙݌ − ݌�݁ → ݕ−ݔ ∙ ′∆∙′࢖�−݁ − ′࢖�݁ ∙∆′  
 

 

Now the cumbersome factor ݁�0∆0݌  has disappeared and the transformation ∆′→ −∆′ leaves 

the value of the second integral unchanged, since in this integral one can change the sign of 

the integration variable without affecting its value. The fact that for any point on a given 

curve the corresponding coordinate rotation can be made, and that this is true for any curve, 

proves the statement that the commutator vanishes at any point outside the light cone. 

Inside the light cone, i.e. for time like separations, the commutator does not vanish so that 

in this region points can be causally connected. It is however interesting to note that the 
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corresponding commutator is invariant with respect to proper Lorentz transformations as 

shown e.g. in ref.[3] . 

 

 

Fig. 1 

 

Note finally, that in many calculations the infinite energy of the vacuum state is eliminated 

by performing normal ordering of operators. It consists in reshuffling operator products in 

such a way that destruction operators always stand on the right of creation operators. 

Generalizations [4] 

Particles obeying the Klein-Gordon equation do not bear any electric charges. In order to 

treat charged particles, complex wave functions have to be introducedinto the theory. Even 

more profound modifications are necessary in the case of electrons according to the Dirac 

theory. Here, due to the presence of spin, wave functions are represented by spinors 

consisting of four functions as components of a vector. An even more striking difference 

occurs if second quantization is performed. In this case, the fermion character of the particle 

is taken into account in postulating for the field operators anti-commutation rules instead of 

the commutation rules pertaining to bosons.  
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However, the general idea of avoiding negative energy states by means of second 

quantization, already applied to the Klein-Gordon case, remains essentially the same in this 

and other situations.   
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