

Mécanique des Milieux Continus I

Jean-Jacques Marigo

▶ To cite this version:

Jean-Jacques Marigo. Mécanique des Milieux Continus I. Engineering school. MEC 430, Ecole Polytechnique, 2014, pp.340. cel-01023392

HAL Id: cel-01023392 https://cel.hal.science/cel-01023392v1

Submitted on 12 Jul 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MEC 430

Mécanique des Milieux Continus I

Année 2

Jean-Jacques Marigo

Département de Mécanique

Edition 2014

AVANT-PROPOS

Ce cours est une introduction à la mécanique des milieux continus déformables. Les concepts fondamentaux sont présentés dans le cadre simplifié des structures élancées ce qui permet d'arriver rapidement à des applications et de traiter de nombreux phénomènes avec un formalisme mathématique allégé. Toutefois, la démarche suivie pour présenter les concepts est la même que celle sur laquelle s'appuiera la deuxième partie du cours de Mécanique des milieux continus (MEC431) pour décrire les structures tridimensionnelles : efforts intérieurs, efforts extérieurs, équations d'équilibre, conditions aux limites, déformations, lois de comportement et problèmes aux limites. Une fois tous les concepts introduits, on s'intéressera à la résolution des problèmes obtenus et à la mise en évidence des phénomènes qui en découlent tant en statique qu'en dynamique, en petits qu'en grands déplacements. On étudiera ainsi les problèmes de statique de fils, de tiges, de poutres ou d'arcs élastiques ce qui permettra de traiter les problèmes classiques de la résistance des matériaux, de mettre en évidence des phénomènes d'instabilité comme le flambement ou d'aborder les questions de couche limite. Dans l'étude du comportement dynamique de telles structures on s'intéressera plus particulièrement à la propagation des ondes, aux vibrations et aux chocs. De plus, on présentera l'approche variationnelle qui offre d'une part une autre vision des lois physiques qui gouvernent le comportement mécanique de telles structures, et qui fournit d'autre part des outils mathématiques et numériques pour traiter les équations. Ceci nous permettra en particulier d'obtenir des propriétés énergétiques fondamentales, de définir des concepts de stabilité et de faire une introduction à la méthode des éléments finis.

Dans ce document écrit, toutes les notions de géométrie, de déformation ou de cinématique ont été regroupées dans le premier chapitre ce qui permet de s'y référer dans les chapitres suivants. Toutefois sa lecture peut se faire progressivement. Ainsi le chapitre 2 sur la modélisation des efforts et les conditions d'équilibre ne fait appel qu'à la géométrie des courbes planes paramétrées. Les notions de déformation ne sont utiles qu'à partir du chapitre 3 où est présenté le concept de loi de comportement alors que la cinématique est essentiellement utilisée au chapitre 6. Avec simplement les notions de géométrie et de déformation, le lecteur est armé pour étudier de façon détaillée tous les problèmes de statique de milieux curvilignes. C'est l'objet du chapitre 4 dans lequel de nombreux problèmes variés sont traités de façon complète. Chacun a son rôle pédagogique et permet de dégager une idée, d'illustrer un phénomène ou de présenter une méthode. On ne saurait trop recommander leur lecture active pour s'imprégner au mieux de tous les concepts introduits précédemment. Le chapitre 5 est dédié à l'approche variationnelle qui est à la base de tous les traitements théoriques et numériques modernes. Il est probablement celui qui exige le plus de technicité du point de vue mathématique et qui présente le plus de nouveauté du point de vue physique pour un élève venant de classes préparatoires. Mais l'investissement est absolument nécessaire. Le chapitre 6 enfin est une introduction à la dynamique des milieux continus déformables. On y présente les concepts d'onde et de vibration élastiques dans un cadre certes restreint mais qui est suffisant pour illustrer les principaux phénomènes.

Un code de couleurs est utilisé pour souligner l'importance de certains paragraphes ou de certaines expressions. Ainsi les textes encadrés en vert contiennent des définitions essentielles pour la compréhension, les textes encadrés en bleu indiquent des résultats particulièrement importants, alors que les textes encadrés en rouge attirent l'attention du lecteur sur une difficulté technique, un point délicat dans la démarche ou un terme supplémentaire ou différent par rapport à une formule antérieure. Enfin, des fiches de synthèse regroupant les principales définitions sont placées en fin de document.

Table des matières

1	Géo	métrie	e, déformation et cinématique	11		
	1.1	Exem	ples de milieux continus curvilignes	11		
	1.2	Config	gurations d'un milieu continu curviligne	11		
		1.2.1	Courbe plane paramétrée	12		
		1.2.2	Paramétrisation normale	17		
	1.3	Déform	nations d'un milieu continu curviligne	18		
		1.3.1	Configuration de référence et configuration déformée	18		
		1.3.2	Déplacement et rotation	19		
		1.3.3	Déformation d'extension et déformation de flexion	20		
		1.3.4	Relations déformations-dérivées de la position	24		
		1.3.5	Relations déformations-déplacements	24		
			Cas général	24		
			Cas d'une configuration de référence rectiligne	26		
			Cas des petits déplacements	26		
	1.4	Ciném	atique d'un milieu continu curviligne	28		
		1.4.1	Description lagrangienne du mouvement	28		
		1.4.2	Description eulérienne du mouvement	31		
2	Modélisation des efforts et conditions d'équilibre					
	2.1	forts extérieurs	34			
		2.1.1	Efforts répartis	34		
		2.1.2	Efforts ponctuels	37		
	2.2 Les efforts intérieurs		forts intérieurs	39		
		2.2.1	Leur définition	39		
		2.2.2	Leur détermination	41		
	2.3	Conditions d'équilibre d'un milieu continu curviligne				
	2.4	2.4 Vérification de l'équilibre par la méthode des coupures		43		
		2.4.1	Cas des milieux curvilignes avec extrémités	43		
		2.4.2	Cas des milieux curvilignes à courbe fermée	47		
		2.4.3	Extension aux assemblages de milieux curvilignes	51		
	2.5	Quelqu	ues propriétés générales sur les efforts intérieurs	51		
		2.5.1	La question du principe de l'action et de la réaction	51		
		2.5.2	Les propriétés de continuité	52		

	2.6	Equat	ions d'équilibre locales $\ldots \ldots \ldots$				
		2.6.1	Etablissement des équations locales				
		2.6.2	Preuve de leur suffisance pour assurer l'équilibre				
3	Lois de comportement						
	3.1	Introd	$uction \dots \dots$				
	3.2	Hypot	hèses générales et faits expérimentaux				
		3.2.1	Le concept de loi de comportement et classification				
		3.2.2	Les restrictions imposées par le principe d'objectivité				
			Position du problème et énoncé du principe d'objectivité				
			Exemple d'illustration				
			Restrictions imposées à un comportement viscoélastique				
			Conclusion				
		3.2.3	Quelques résultats expérimentaux				
		0.2.0	Les grandeurs contrôlées et les grandeurs mesurées				
			Les réponses sous chargement monotone				
			Réponses à des chargements non monotones irréversibilités 72				
			Chargement jusqu'à runture 73				
			Dépendance à la vitesse de déformation 74				
			Dépendance à la température 75				
		324	Les différents comportements de type élastique 79				
	33	Le cor	nortement élastique				
	0.0	331	Justification de l'existence d'une énergie élastique 80				
		0.0.1	Le processus de déformation envisagé				
			Travail des efforts extérieurs et travail de déformation				
			Les efforts extérieurs mis en jeu				
			Les propriétés du travail de déformation pour les milioux électiques				
			Les proprietes du travair de deformation pour les innieux étastiques				
		229	Exprincipe physique involue et ses consequences				
		0.0.2	Pormes et dépendances possibles de l'énergie élastique				
			Dependances au materiau et a la geometrie				
			Ovalgues exemples de potentiel électique				
	94	Log	Queiques exemples de potentiel elastique				
	0.4	241	Les modèles rhéologiques				
		3.4.1	Les modeles rieologiques				
			Cuelcues essemble regimentes ence message				
			Quelques assemblages simples avec masses				
		249	Queiques assemblages simples sans masse $\dots \dots \dots$				
		3.4.2	Viscoelasticite				
4	Stat	ique d	les milieux curvilignes 103				
	4.1	Le pro	bblème aux limites				
		4.1.1	Les conditions aux limites				
			Condition d'encastrement				
			Condition de fixation avec rotation libre				

		Condition de contact avec glissement et rotation libres (appui simple) 10)5
		Condition d'extrémité chargée et libre de se déplacer)6
		Autres conditions aux limites)6
	4.1.2	Les efforts extérieurs)8
		Conservation de la masse)8
		Forces massiques et forces linéiques associées)9
		Forces réparties de contact)9
	4.1.3	Formulation générale d'un problème de statique	10
4.2	Statio	ue des milieux rigides	11
	4.2.1	Tige sous pesanteur et force centrifuge	11
	1.2.1	Cas hyperstatique : encastré-appui simple	12
		Cas isostatique : encastré-libre	12
		Cas hypostatique : fixé-libre	13
	122	Anneau intact ou cassé soumis à des forces ponctuelles	17
	1.2.2	Configurations d'équilibre et lour stabilité	17
		Efforta intérioura dona l'annoau agaé	10
		Efforts intérieurs dans l'anneau casse	10
4.9	C+ - + -		19
4.3	Statiq		21 51
	4.3.1	C l'ut l + l'ut	21
	4.9.9		23
	4.3.2	Quelques proprietes generales des fils à l'équilibre	24
		En l'absence de forces exterieures sur une partie du fil	24
		A une extrémité chargée	24
	4.3.3	Le problème du fil pesant	25
		Cas inextensible	25
		Cas extensible	28
		Comparaison des modèles inextensible et extensible	29
	4.3.4	Le problème du fil soumis à une force ponctuelle	31
	4.3.5	Le problème de la poulie	33
		Cas d'un câble inextensible	33
		Cas d'un câble extensible	35
4.4	Statiq	ue des barres inflexibles ou non fléchies 14	10
	4.4.1	Le problème aux limites	40
		Les hypothèses générales	40
		Les conditions aux limites possibles	40
		Les équations d'équilibre	41
		Les lois constitutives	11
	4.4.2	Le problème de la colonne pesante	41
		Le cas fixée-libre	41
		Le cas fixée-fixée	42
	4.4.3	Le problème de la poutre en béton précontraint	43
4.5	Statio	ue des tiges et arcs élastiquement flexibles	47
	4.5.1	Le problème du flambement d'Euler	$\frac{1}{17}$

			Le problème de l'elastica : tige inextensible, élastiquement flexible, encastrée-	
			$chargée \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	147
			Influence des conditions aux limites	158
			Prise en compte de l'extensibilité	162
		4.5.2	Les variantes du problème du flambement d'Euler	165
		4.5.3	Le problème de la poutre de Galilée	167
			Cadre de l'étude et formulation du problème aux limites	167
			Le problème réduit et classification en fonction de l'intensité du chargement	169
			Chargement faible.	171
			Chargement modéré	173
			Chargement fort.	179
			Chargement extrême.	180
			Etude comparative	181
	4.6	Cas de	es petits déplacements	183
		4.6.1	Linéarisation du problème aux limites	183
		4.6.2	Problème de la tige sous pesanteur et force centrifuge	186
			Cas encastré-appui simple	186
			Cas fixé-libre	189
		4.6.3	Problème de l'anneau intact ou cassé soumis à des forces ponctuelles	191
			Cas de l'anneau intact	192
			Cas de l'anneau cassé	194
				-
5				
5	L'ar	pproch	e variationnelle en statique	197
5	L'a 5.1	p proch Mouve	e variationnelle en statique	197 198
5	L'a 5.1 5.2	p proch Mouve Le Pri	e variationnelle en statique ements virtuels	197 198 201
5	L'a 5.1 5.2	p proch Mouve Le Pri 5.2.1	e variationnelle en statique ements virtuels	197 198 201 201
5	L'a 5.1 5.2	Mouve Mouve Le Pri 5.2.1 5.2.2	e variationnelle en statique ements virtuels	 197 198 201 201 205
5	L'a 5.1 5.2	Mouve Le Pri 5.2.1 5.2.2 5.2.3	e variationnelle en statique ements virtuels	 197 198 201 201 205 208
5	L'ar 5.1 5.2 5.3	Mouve Le Pri 5.2.1 5.2.2 5.2.3 Equili	de variationnelle en statique ements virtuels ements virtuels incipe des Puissances Virtuelles Définitions et énoncé du PPV Preuve que les équations d'équilibre locales impliquent le PPV Preuve de la réciproque bre stable et minimisation d'énergie : premiers exemples	 197 198 201 201 205 208 214
5	L'aj 5.1 5.2 5.3	Mouve Le Pri 5.2.1 5.2.2 5.2.3 Equili 5.3.1	e variationnelle en statique ements virtuels	 197 198 201 201 205 208 214 214
5	L'a 5.1 5.2 5.3	Mouve Le Pri 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2	e variationnelle en statique ements virtuels	 197 198 201 205 208 214 214 217
5	L'a 5.1 5.2 5.3	Mouve Le Pri 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2	e variationnelle en statique ements virtuels	 197 198 201 205 208 214 214 217 217
5	L'a 5.1 5.2	Mouve Le Pri 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2	e variationnelle en statique ements virtuels	 197 198 201 205 208 214 214 217 218
5	L'aj 5.1 5.2 5.3	Mouve Le Pri 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2 Propr	e variationnelle en statique ements virtuels	 197 198 201 205 208 214 217 217 218 219
5	L'aj 5.1 5.2 5.3	Proproch Mouve Le Pri 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2 Propro 5.4.1	e variationnelle en statique ements virtuels	 197 198 201 205 208 214 217 217 218 219 219
5	L'a 5.1 5.2 5.3	Pproch Mouve Le Pri 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2 Propt 5.4.1 5.4.2	e variationnelle en statique ements virtuels	 197 198 201 205 208 214 217 217 218 219 230
5	L'aj 5.1 5.2 5.3	Proproch Mouve Le Pri 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2 Propri 5.4.1 5.4.2 5.4.3	e variationnelle en statique ements virtuels	 197 198 201 205 208 214 217 217 218 219 230 233
5	L'aj 5.1 5.2 5.3	Proproch 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2 Propr 5.4.1 5.4.2 5.4.3 5.4.4	e variationnelle en statique ements virtuels	 197 198 201 205 208 214 217 218 219 230 233 237
5	L'aj 5.1 5.2 5.3 5.4	Proph 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2 Proph 5.4.1 5.4.2 5.4.3 5.4.4 Stabili	e variationnelle en statique ements virtuels	 197 198 201 205 208 214 217 217 218 219 230 233 237 239
5	 L'aj 5.1 5.2 5.3 5.4 5.5 	Proproch 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2 Propro 5.4.1 5.4.2 5.4.3 5.4.4 Stabili 5.5.1	e variationnelle en statique ements virtuels incipe des Puissances Virtuelles Définitions et énoncé du PPV Preuve que les équations d'équilibre locales impliquent le PPV Preuve de la réciproque bre stable et minimisation d'énergie : premiers exemples L'exemple de la barre rigide articulée sous pesanteur et force centrifuge L'exemple du fil tendu Cas du fil inextensible Cas du fil extensible Cas des milieux curvilignes élastiquement extensibles et flexibles Cas des barres élastiquement extensibles non fléchies Cas des fils élastiquement extensibles Cas des milieux inextensibles Cas des milieux inextensibles Cas des milieux inextensibles L'extensible Cas des fils élastiquement extensibles Cas des milieux inextensibles Cas des milieux inextensibles L'extensible Cas des milieux inextensibles L'extensibles L'extensibles L'extensibles L'extensibles L'extensible L'extensible L'extensible L'extensible L'extensible L'exten	 197 198 201 205 208 214 217 218 219 230 233 237 239 239
5	 L'aj 5.1 5.2 5.3 5.4 5.5 	Proproch 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2 Propr 5.4.1 5.4.2 5.4.3 5.4.4 Stabili 5.5.1 5.5.2	e variationnelle en statique ements virtuels incipe des Puissances Virtuelles Définitions et énoncé du PPV Preuve que les équations d'équilibre locales impliquent le PPV Preuve de la réciproque bre stable et minimisation d'énergie : premiers exemples L'exemple de la barre rigide articulée sous pesanteur et force centrifuge L'exemple du fil tendu Cas du fil inextensible cas du fil extensible cas du sil extensible cas des milieux curvilignes élastiquement extensibles et flexibles Cas des fils élastiquement extensibles non fléchies Cas des milieux inextensibles cas des milieux inextensibles cas des états d'équilibre des systèmes conservatifs cas des milieux inextensibles cas des milieux inextensibles cas des états d'équilibre des systèmes conservatifs cas des milieux inextensibles cas des milieux inextensibles cas des états d'équilibre des systèmes conservatifs cas des milieux inextensibles cas des états d'équilibre des systèmes conservatifs cas des états d'équilibre des systèmes conservatifs cas des états d'équilibre des systèmes conservatifs	 197 198 201 205 208 214 217 218 219 230 233 237 239 239 241
5	L'aj 5.1 5.2 5.3 5.4	Proproch Mouve Le Pri 5.2.1 5.2.2 5.2.3 Equili 5.3.1 5.3.2 Propri 5.4.1 5.4.2 5.4.3 5.4.4 Stabili 5.5.1 5.5.2 5.5.3	e variationnelle en statique ements virtuels incipe des Puissances Virtuelles Définitions et énoncé du PPV Preuve que les équations d'équilibre locales impliquent le PPV Preuve de la réciproque bre stable et minimisation d'énergie : premiers exemples L'exemple de la barre rigide articulée sous pesanteur et force centrifuge L'exemple du fil tendu Cas du fil inextensible Cas du fil extensible Cas du fil extensible Cas des milieux curvilignes élastiquement extensibles et flexibles Cas des fils élastiquement extensibles Cas des fils élastiquement extensibles Cas des milieux inextensibles Cas des fils élastiquement extensibles Cas des milieux inextensibles Cas des fils élastiquement extensibles Cas des milieux inextensibles Cas des fils élastiquement extensibles Cas des milieux inextensibles Cas des milieux inextensibles Cas des états d'équilibre des systèmes conservatifs Cas des milieux inextensibles Cas des milieux inextensibles Cas des états d'équilibre des systèmes conservatifs Cas des états d'équilibre des systèmes conservatifs Cas des états d'équ	 197 198 201 205 208 214 217 217 218 219 230 233 237 239 241 242

6	Dyı	namiqu	le des milieux curvilignes 251
	6.1	Cinén	natique des milieux curvilignes
		6.1.1	Rappels
			Description lagrangienne du mouvement
		6.1.2	Description eulérienne du mouvement
		6.1.3	Cinématique des ondes de choc et d'accélération
			Description lagrangienne
			Description eulérienne
			Comparaison des deux descriptions
	6.2	Le pri	ncipe fondamental de la dynamique et les équations du mouvement
		6.2.1	Le principe fondamental de la dynamique
			Sa formulation
			Sa mise en oeuvre
		6.2.2	Les équations locales du mouvement
		0	En représentation la grangienne
			En représentation eulérienne
		623	Formulation d'un problème de dynamique
	6.3	Dvnai	nique des barres élastiques en traction-compression 265
	0.0	631	Les équations du mouvement réduites 265
		632	Cas d'un comportement linéairement élastique 266
		0.0.2	Propriétés générales 266
			Les ordres de grandeur des célérités de propagation des ondes 268
			Le problème de la barre infinie soumise à une déformation initiale 268
			Le problème de la barre semi-infinie en traction simple 269
			Le problème de la barre de longueur finie en traction simple 222
			Les problèmes de choc 276
		633	Cas d'un comportement non linéaire
	64	Dynai	mique des fils inextensibles 281
	0.1	641	Formulation et propriétés générales
		0.1.1	Formulation 281
			Propriétés générales sur les ondes de discontinuité
		642	La dynamique des cordes vibrantes
		0.4.2	Hypothèses sur l'équilibre et les petits mouvements autour de l'équilibre 285
			Linéarisation des équations
			Propriétés générales
			Exemple : oscillations verticales d'un câble pesant
	65	Vibra	tions des tiges álastiques
	0.0	651	Vibrations propres autour d'une configuration naturalle rectiligne
		0.5.1	Hypothèses et définitions
			I a mise on équation 203
			Básolution 904
			I a dépendance aux conditions aux limites
		659	La dependance aux conditions aux minutes
		0.0.2	Des vibrations forcees et le prenomene de resonance
			r resentation du probleme

			Mise en équation	300			
			Décomposition modale	302			
			Résolution	303			
			Conclusion	304			
\mathbf{A}	Que	lques	rappels de mécanique	305			
	A.1	L'espa	ce-temps et ses référentiels	305			
		A.1.1	Les changements de référentiels	305			
			Les différents référentiels	305			
			La représentation du mouvement dans différents référentiels	306			
		A.1.2	Grandeurs objectives et grandeurs non objectives	307			
	A.2	Puissa	nce, travail et énergie potentielle	309			
		A.2.1	Puissance et travail d'une force ou d'un couple	309			
			Puissance et travail d'une force	309			
			Puissance et travail d'un couple	310			
		A.2.2	Les champs de forces dépendant de la position et leurs circulations	310			
		A.2.3	Les forces massiques conservatives et leur potentiel associé	312			
в	Quelques notions de Calcul des Variations						
B 1 Les fonctionnelles et leurs dérivées		nctionnelles et leurs dérivées	313				
		B.1.1	La notion de fonctionnelle	313			
		B.1.2	Les dérivées directionnelles d'une fonctionnelle	314			
	B.2	La mi	nimisation d'une fonctionnelle	316			
		B.2.1	Propriétés générales	316			
		B.2.2	Un problème-type	316			
	B.3	Les m	ultiplicateurs de Lagrange et leur usage	319			
С	Ficł	nes de	synthèse	321			
N T							
Bi	bliog	graphie		339			

Chapitre 1

Géométrie, déformation et cinématique

1.1 Exemples de milieux continus curvilignes

Dans toute la suite de ce cours, on va s'intéresser à des structures ou des assemblages de structures mécaniques élancées et on va les modéliser comme des objets à une dimension plongés dans un espace à une ou plusieurs dimensions. Le plus souvent l'espace sera supposé bidimensionnel et sauf mention explicite du contraire nous nous placerons dans cette situation. De tels éléments de structures élancées se rencontrent très fréquemment dans tous les environnements et à toutes les échelles, créés par l'Homme ou par la Nature : fils, câbles, élastiques, ressorts, barres, bâtons, tiges, perches, poutres, anneaux, arcs, arches, piles, piliers, poteaux, pylônes, tours, portiques, potences, échafaudages, treillis, échelles, troncs, branches, aiguilles, muscles, cheveux, poils, spaghettis, ... Les exemples sont si nombreux que la langue française s'y perd un peu et qu'on aurait du mal à donner une définition précise et à faire la distinction entre une tige, une perche ou un bâton, une pile, un pilier ou un poteau. Ils sont tous évidemment des objets tridimensionnels, mais on tire parti de leur caractère élancé (i.e. du fait que deux de leurs dimensions sont petites devant la troisième) pour décrire leur position dans l'espace en identifiant leur configuration à chaque instant à une courbe. On parle ainsi de milieu continu curviligne. Ce choix est d'abord guidé par des soucis de simplicité, cette modélisation unidimensionnelle permettant de formuler et de résoudre plus facilement les problèmes. On renonce ainsi à décrire finement ce qui se passe dans les sections de tels objets, cette question relevant de la mécanique des milieux continus tridimensionnels qui fera l'objet de la deuxième partie de ce cours d'introduction à la mécanique des milieux continus. Le bien fondé d'une telle modélisation simplifiée et la qualité de l'approximation qui est faite peuvent se démontrer ou se vérifier soit en comparant directement les prévisions avec l'expérience, soit à l'issue d'une démarche rigoureuse de réduction de dimension consistant à déduire le modèle unidimensionnel du modèle tridimensionnel. Nous ferons dans ce cours essentiellement référence à l'expérience pour justifier notre démarche, le lien avec le 3D fera l'objet de cours spécifiques ultérieurs.

1.2 Configurations d'un milieu continu curviligne

Dans toute la suite le plan est muni d'un repère orthonormé $(\mathbf{O}, \mathbf{e}_1, \mathbf{e}_2)$ où \mathbf{O} est l'origine et $(\mathbf{e}_1, \mathbf{e}_2)$ sont les deux vecteurs de base, de norme 1 et orthogonaux entre eux. Un point \mathbf{x} du plan est repéré par ses deux coordonnées cartésiennes (x_1, x_2) ,

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2,\tag{1.1}$$

ce qui permet d'identifier le plan avec \mathbb{R}^2 .

1.2.1 Courbe plane paramétrée

Une courbe paramétrée¹ de ce plan est une application $\zeta \mapsto \mathbf{x}(\zeta)$ qui au paramètre réel ζ associe le point $\mathbf{x}(\zeta)$ du plan ($\mathbf{O}, \mathbf{e}_1, \mathbf{e}_2$). Le paramètre ζ est défini sur un intervalle (ouvert ou semi-ouvert) \mathbb{C} d'extrémités ζ_0 et ζ_1 qui sont telles que $-\infty \leq \zeta_0 < \zeta_1 \leq +\infty$. Cette paramétrisation définit une orientation de la courbe qui est parcourue dans le sens des ζ croissants.

L'intervalle de définition est semi-ouvert quand la courbe est fermée, *i.e.* l'intervalle est $\mathbb{C} = [\zeta_0, \zeta_1)$ ou $\mathbb{C} = (\zeta_0, \zeta_1]$ et on a $\mathbf{x}(\zeta_0) = \mathbf{x}(\zeta_1)$. Dans tous les autres cas l'intervalle de définition est l'ouvert $\mathbb{C} = (\zeta_0, \zeta_1)$, ce qui veut dire que nous adoptons systématiquement la convention que les extrémités d'un milieu curviligne, quand elles existent, ne font pas partie du milieu lui-même.

FIGURE 1.1 – Différence entre les déformations d'un anneau intact (à gauche) et d'un anneau cassé (à droite) à une même sollicitation. La seule chose qui les différencie dans la configuration de référence (courbes grisées) est que le point situé au pôle Nord est un point matériel dans un cas, mais pas dans l'autre.

Remarque 1.1. Un anneau suivant qu'il est intact ou cassé est le parfait exemple permettant d'illustrer ces notions de courbe fermée ou non fermée et de la nécessité de définir le paramètre dans un intervalle semi-ouvert dans le premier cas et dans un intervalle ouvert dans le deuxième. Les configurations d'un anneau intact seront des courbes fermées. Pour les décrire, il faut utiliser un paramètre qui varie dans un intervalle semi-ouvert. Par exemple, dans le cas d'un anneau de forme circulaire dans sa configuration naturelle (Figure 1.1-gauche), une paramétrisation possible est l'angle polaire θ

^{1.} Toutes les notions de géométrie de courbes paramétrées que l'on utilise ici directement sans en détailler l'origine ou la construction se trouvent dans les ouvrages classiques de premier cycle universitaire. On recommande tout particulièrement à ceux qui seraient désireux d'étudier de façon plus approfondie ou de se remémorer ces concepts de consulter le tome 3 "Géométrie et cinématique" du cours de mathématiques de J. Lelong-Ferrand et J.-M. Arnaudiès chez Dunod (2ème édition).

variant dans $[-3\pi/2, +\pi/2)$ ou $(-3\pi/2, +\pi/2]$. Il est essentiel de fermer à une extrémité et d'ouvrir à l'autre pour que le point au pôle Nord soit compté une et une seule fois. Si par contre l'anneau est cassé à ce pôle (Figure 1.1-droite), il faut enlever ce point et donc définir le paramètre dans l'intervalle ouvert $(-3\pi/2, +\pi/2)$. C'est ce "petit" détail qui permettra de rendre compte de la différence des réponses de ces deux anneaux à une même sollicitation.

L'application $\zeta \mapsto \mathbf{x}(\zeta)$ sera supposée au moins continue et continûment différentiable par morceaux, les éventuels points où la dérivée n'est pas définie correspondant à des points anguleux. Nous supposerons en outre que la paramétrisation choisie est telle que la dérivée ne s'annule pas là où elle est définie². À un point de paramètre ζ où l'application est dérivable, le vecteur tangent est défini et colinéaire à $\mathbf{x}'(\zeta)$, le prime dénotant la dérivée par rapport à ζ ,

FIGURE 1.2 – Courbe plane paramétrée

Par conséquent le vecteur unitaire tangent en un tel point est donné par

$$\mathbf{t}(\zeta) = \frac{\mathbf{x}'(\zeta)}{\|\mathbf{x}'(\zeta)\|} \qquad (\text{vecteur unitaire tangent}), \tag{1.2}$$

où $\|\mathbf{u}\|$ désigne la norme euclidienne du vecteur $\mathbf{u} = u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2$, *i.e.*

$$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2}.\tag{1.3}$$

Le vecteur unitaire normal est défini comme étant le vecteur se déduisant du vecteur unitaire tangent par une rotation de $\pi/2$ dans le sens trigonométrique. En notant \mathbf{e}_3 le vecteur unitaire normal au plan $(\mathbf{O}, \mathbf{e}_1, \mathbf{e}_2)$ et tel que le trièdre $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ soit direct, le vecteur unitaire normal à la courbe en ζ s'écrit

$$\mathbf{n}(\zeta) = \mathbf{e}_3 \wedge \mathbf{t}(\zeta) \qquad (\text{vecteur unitaire normal}) \ . \tag{1.4}$$

^{2.} Nous verrons que la condition $\mathbf{x}'(\zeta) \neq \mathbf{0}$ est en fait une condition essentielle d'un point de vue mécanique lorsque nous introduirons les déformations.

En introduisant l'angle tangent $\alpha(\zeta)$, *i.e.* l'angle que fait le vecteur tangent avec l'axe x_1 , le vecteur tangent et le vecteur normal s'écrivent

$$\mathbf{t}(\zeta) = \cos\alpha(\zeta)\mathbf{e}_1 + \sin\alpha(\zeta)\mathbf{e}_2 , \qquad \mathbf{n}(\zeta) = -\sin\alpha(\zeta)\mathbf{e}_1 + \cos\alpha(\zeta)\mathbf{e}_2 . \tag{1.5}$$

L'abscisse curviligne³ qui sépare deux points de la courbe paramétrée est la distance qu'il faut parcourir pour joindre ces deux points tout en se déplaçant sur la courbe dans le sens des ζ croissants. En utilisant le théorème de Pythagore, l'élément de longueur ds est donné par

$$ds^2 = dx_1^2 + dx_2^2.$$

La relation $\zeta \mapsto s = \mathbf{s}(\zeta)$ entre le paramètre ζ et l'abscisse curviligne s s'obtient donc en intégrant la relation suivante :

$$\mathbf{s}'(\zeta) := \frac{d\mathbf{s}}{d\zeta}(\zeta) = \left\| \mathbf{x}'(\zeta) \right\| = \sqrt{x_1'(\zeta)^2 + x_2'(\zeta)^2}.$$
 (1.6)

La constante d'intégration est obtenue en choisissant le point origine de l'abscisse curviligne, choix qui peut être arbitraire. Par la suite, sauf mention explicite du contraire et si la paramétrisation le permet, on choisira pour origine des abscisses curvilignes l'extrémité $\zeta = \zeta_0$ de la courbe. Ce faisant on aura alors

$$\mathbf{s}(\zeta) = \int_{\zeta_0}^{\zeta} \sqrt{x_1'(\zeta^*)^2 + x_2'(\zeta^*)^2} \ d\zeta^*.$$

Dans tous les cas la *longueur totale* ℓ de la courbe sera

$$\ell = \int_{\zeta_0}^{\zeta_1} \sqrt{x_1'(\zeta)^2 + x_2'(\zeta)^2} \, d\zeta$$

longueur qui pourra éventuellement être infinie (c'est par exemple le cas dans certains problèmes de dynamique où l'on s'intéresse à des milieux continus infinis ou semi-infinis pour éviter d'avoir à traiter les phénomènes de réflexion d'ondes aux extrémités).

La courbure algébrique $C(\zeta)$ de la courbe au point ζ est par définition la dérivée de l'angle tangent par rapport à l'abscisse curviligne. Par conséquent, on a

$$C(\zeta) = \frac{\alpha'(\zeta)}{\mathbf{s}'(\zeta)} \qquad \text{(courbure)} \,. \tag{1.7}$$

Le signe de la courbure dépend de la paramétrisation, cf les Exemples 1.1 et 1.2.

Nous venons d'établir les relations qui permettent d'obtenir l'abscisse curviligne $\mathbf{s}(\zeta)$ et la courbure $C(\zeta)$ à partir de la donnée de la courbe paramétrée $\zeta \mapsto \mathbf{x}(\zeta)$. On peut se poser la question de la réciproque et de savoir si on peut reconstruire la courbe à partir des données de $\zeta \mapsto \mathbf{s}(\zeta)$ et $\zeta \mapsto C(\zeta)$. Ceci fait l'objet de la propriété fondamentale suivante :

^{3.} Nous noterons de deux façons différentes l'abscisse curviligne suivant qu'elle est variable, valeur ou fonction : lorsqu'elle est variable ou valeur on la note s alors que quand elle est fonction d'un paramètre on la note s, ce qui donne $s = \mathbf{s}(\zeta)$.

P-1.1 (Caractérisation des courbes planes paramétrées). Connaissant les deux applications $\zeta \mapsto \mathbf{s}(\zeta)$ et $\zeta \mapsto \mathbf{C}(\zeta)$ donnant l'abscisse curviligne et la courbure en fonction du paramètre ζ , la courbe paramétrée $\zeta \mapsto \mathbf{x}(\zeta)$ est déterminée à une rotation et une translation d'ensemble près. Pour fixer la rotation il suffit de se donner l'angle tangent en un point et pour fixer la translation il suffit de se donner la position d'un point.

Vérifions cette propriété. Connaissant les deux fonctions donnant la courbure et l'abscisse curviligne, on déduit de (1.7) la dérivée de l'angle tangent :

$$\alpha'(\zeta) = \mathbf{s}'(\zeta)\mathbf{C}(\zeta).$$

En intégrant on obtient l'angle tangent $\alpha(\zeta)$ à une constante près qui correspond à la rotation d'ensemble. En se donnant $\alpha(\zeta^*)$ pour un certain ζ^* , on fixe la rotation. En reportant dans (1.5) et en tenant compte de (1.2) et (1.6), on en déduit la dérivée $\mathbf{x}'(\zeta)$:

$$\mathbf{x}'(\zeta) = \mathbf{s}'(\zeta)(\cos\alpha(\zeta)\mathbf{e}_1 + \sin\alpha(\zeta)\mathbf{e}_2).$$

En intégrant on obtient $\mathbf{x}(\zeta)$ à un vecteur constant près qui correspond à la translation d'ensemble. En se donnant $\mathbf{x}(\zeta^*)$ pour un certain ζ^* , on fixe la translation.

Remarque 1.2. Cette propriété de caractérisation des courbes planes joue un rôle essentiel dans la définition des déformations d'un milieu continu curviligne comme nous le verrons dans la section 1.3. Notons que $\zeta \mapsto \mathbf{s}(\zeta)$ n'intervient en fait que par sa dérivée dans cette caractérisation, le choix de l'origine de l'abscisse curviligne ne joue pas de rôle.

Exemple 1.1 (Cercle décrit dans le sens trigonométrique). Considérons le cercle de centre **O** et de rayon R. En choisissant pour paramètre l'angle polaire $\zeta = \theta \in [0, 2\pi)$, ce cercle est décrit dans le sens trigonométrique et est représenté par la courbe paramétrée

$$\mathbf{x}(\zeta) = R(\cos\zeta \mathbf{e}_1 + \sin\zeta \mathbf{e}_2).$$

On déduit de (1.6) que $\mathbf{s}'(\zeta) = R$ et de (1.2) que

$$\mathbf{t}(\zeta) = -\sin\zeta \mathbf{e}_1 + \cos\zeta \mathbf{e}_2.$$

Par conséquent l'angle tangent est donné par $\alpha(\zeta) = \frac{\pi}{2} + \zeta$ et la courbure est constante et vaut 1/R, $C(\zeta) = \frac{1}{R}$. C'est un exemple de courbe fermée. Le point $\mathbf{x}(0) = \mathbf{x}(2\pi) = R\mathbf{e}_1$ doit être considéré comme un point intérieur au milieu curviligne.

Exemple 1.2 (Demi-cercle décrit dans le sens anti-trigonométrique). Considérons le demi-cercle de centre **O** et de rayon R situé dans le demi-plan supérieur $x_2 \ge 0$. En choisissant pour paramètre $\zeta = \pi - \theta$ où $\theta \in (0, \pi)$ désigne l'angle polaire, alors $\zeta \in (0, \pi)$, le cercle est décrit dans le sens antitrigonométrique et est représenté par la courbe paramétrée

$$\mathbf{x}(\zeta) = R(-\cos\zeta \mathbf{e}_1 + \sin\zeta \mathbf{e}_2).$$

On déduit de (1.6) que $\mathbf{s}'(\zeta) = R$ et de (1.2) que

$$\mathbf{t}(\zeta) = \sin \zeta \mathbf{e}_1 + \cos \zeta \mathbf{e}_2.$$

 $\begin{array}{l} Par \ cons{\acute{e}quent} \ l'angle \ tangent \ est \ donn{\acute{e}} \ par \ \alpha(\zeta) = \frac{\pi}{2} - \zeta \ et \ la \\ courbure \ est \ constante \ et \ vaut \ -1/R, \ {\rm C}(\zeta) = -\frac{1}{R}. \end{array}$

Les deux exemples précédents montrent que le signe de la courbure dépend du choix de l'orientation de la courbe.

Exemple 1.3 (Portique). Pour décrire le portique correspondant à une cage de football fait de deux montants de hauteur H et d'une barre transversale de longueur L, on peut utiliser la courbe paramétrée suivante où $\zeta \in (0, 2H + L)$:

$$\mathbf{x}(\zeta) = \begin{cases} -\frac{L}{2}\mathbf{e}_{1} + \zeta\mathbf{e}_{2} & si \quad 0 < \zeta \le H \\ (\zeta - H - \frac{L}{2})\mathbf{e}_{1} + H\mathbf{e}_{2} & si \quad H < \zeta \le H + L \\ \frac{L}{2}\mathbf{e}_{1} + (L + 2H - \zeta)\mathbf{e}_{2} & si \quad H + L < \zeta < 2H + L \end{cases}$$

Cette courbe présente des discontinuités du vecteur tangent et de l'angle tangent aux "lucarnes" $\zeta = H$ et $\zeta = H + L$. La courbure n'y est pas définie alors qu'ailleurs elle est nulle. On a ici $\mathbf{s}'(\zeta) = 1$ et le paramètre ζ est donc l'abscisse curviligne.

FIGURE 1.3 – Portique de l'Exemple 1.3

Exemple 1.4 (Poteaux de rugby). Les poteaux de rugby sont un exemple type d'assemblage de milieux continus curvilignes. En effet, il n'est pas possible de décrire un H avec une seule courbe paramétrée. Il en faut (au moins) trois. On a tout intérêt au niveau de la modélisation de suivre la structure matérielle de l'objet et de le décrire comme l'assemblage des deux montants et de la barre transversale. La configuration naturelle est donc faite de trois segments de droite : le montant gauche $x_2 \mapsto (-L/2, x_2)$ et le montant droit $x_2 \mapsto (+L/2, x_2)$ avec $x_2 \in (0, H)$, la barre transversale $x_1 \mapsto (h, x_1)$ avec $x_1 \in (-L/2, +L/2)$. Il est à noter que les points $(\pm L/2, h)$ appartiennent aux montants mais pas à la barre transversale.

1.2.2 Paramétrisation normale

Parmi toutes les paramétrisations possibles d'une courbe, la paramétrisation par l'abscisse curviligne jouit d'un statut particulier en raison de son intérêt pratique. On la qualifie de paramétrisation normale. L'adoption de cette paramétrisation est possible dès lors que la courbe est rectifiable, *i.e.* dès qu'on peut définir la longueur de ses tronçons. Nous ne considérerons que de telles courbes. Une fois choisis un point origine et l'orientation de la courbe, la courbe est donc définie par l'application $s \mapsto \mathbf{x}(s)$ qui à l'abscisse curviligne s associe le point $\mathbf{x}(s)$ du plan. Avec ce choix, la dérivée $\mathbf{x}'(s)$ est automatiquement un vecteur unitaire et correspond donc au vecteur unitaire tangent. En notant $\alpha(s)$ l'angle tangent, le vecteur unitaire tangent s'écrit donc

$$\mathbf{t}(s) = \frac{d\mathbf{x}}{ds}(s) = \cos\alpha(s)\mathbf{e}_1 + \sin\alpha(s)\mathbf{e}_2 \ . \tag{1.8}$$

Le vecteur unitaire normal s'en déduit par rotation de $\pi/2$ et s'écrit donc

$$\mathbf{n}(s) = \mathbf{e}_3 \wedge \mathbf{t}(s) = -\sin\alpha(s)\mathbf{e}_1 + \cos\alpha(s)\mathbf{e}_2 \ . \tag{1.9}$$

La courbure est simplement la dérivée de l'angle tangent par rapport à l'abscisse curviligne,

$$C(s) = \frac{d\alpha}{ds}(s), \qquad (1.10)$$

et permet d'obtenir la dérivée des vecteurs tangent et normal,

$$\frac{d\mathbf{t}}{ds}(s) = \mathsf{C}(s)\mathbf{n}(s)$$
, $\frac{d\mathbf{n}}{ds}(s) = -\mathsf{C}(s)\mathbf{t}(s)$. (1.11)

Exercice 1.1. Reprendre les exercices 1.1 et 1.2 et re-paramétrer le cercle et le demi-cercle en utilisant une paramétrisation normale.

1.3 Déformations d'un milieu continu curviligne

Les milieux continus curvilignes sont amenés à se déplacer et à se déformer sous l'action d'efforts extérieurs. Un des principaux objectifs de la modélisation est de calculer ces changements de position. Ceci passe par une formulation préalable du problème qui elle-même demande de dégager les grandeurs caractéristiques de ces déformations.

1.3.1 Configuration de référence et configuration déformée

Dès que l'on parle de déplacement ou de déformation, on compare en fait *deux* configurations : l'une qui sert de référence et que l'on appelle *configuration de référence*, l'autre qui est à l'étude et que l'on appelle *configuration déformée*. Conformément à la démarche adoptée dans la section précédente, chacune de ces deux configurations est représentée par une courbe (plane) paramétrée.

Pour la configuration de référence, on choisit une paramétrisation normale et on note S l'abscisse curviligne de la courbe de référence \mathbf{x}_{R} . La configuration de référence est donc la courbe plane

 $S \mapsto \mathbf{x}_{\mathsf{R}}(S)$ (configuration de référence)

En utilisant les résultats de la section 1.2.2, le vecteur unitaire tangent \mathbf{t}_{R} , le vecteur unitaire normal \mathbf{n}_{R} , l'angle tangent α_{R} et la courbure C_{R} s'écrivent

$$\begin{cases} \mathbf{t}_{\mathsf{R}}(S) = & \frac{d\mathbf{x}_{\mathsf{R}}}{dS}(S) = \cos\alpha_{\mathsf{R}}(S)\mathbf{e}_{1} + \sin\alpha_{\mathsf{R}}(S)\mathbf{e}_{2}, \\ \mathbf{n}_{\mathsf{R}}(S) = & \mathbf{e}_{3} \wedge \mathbf{t}_{\mathsf{R}}(S) = -\sin\alpha_{\mathsf{R}}(S)\mathbf{e}_{1} + \cos\alpha_{\mathsf{R}}(S)\mathbf{e}_{2}, \\ \mathbf{C}_{\mathsf{R}}(S) = & \frac{d\alpha_{\mathsf{R}}}{dS}(S). \end{cases}$$

Pour la configuration déformée on pourrait faire de même et choisir une paramétrisation normale, mais ce faisant on ne pourrait plus comparer la position des points matériels entre les deux configurations. Il est donc préférable de repérer les points matériels par leur abscisse curviligne dans la configuration de référence et d'utiliser l'abscisse curviligne S comme paramètre de la configuration déformée. Autrement dit, la configuration déformée n'est pas paramétrée par son abscisse curviligne s mais par le paramètre S (qui joue le rôle du paramètre "non normal" ζ de la section 1.2.1). La configuration déformée est donc la courbe paramétrée

$$S \mapsto \mathbf{x}(S)$$
 (configuration déformée)

En utilisant les résultats de la section 1.2.1, son abscisse curviligne s est reliée à S par $s = \mathbf{s}(S)$ et la dérivée de \mathbf{s} est donnée par

$$\mathbf{s}'(S) = \left\| \mathbf{x}'(S) \right\| \quad , \tag{1.12}$$

le prime désignant la dérivée par rapport à S. On a évidemment $\mathbf{s}' \geq 0$ et l'égalité correspond à des transformations telles que l'on réduit un élément de longueur dS à un point. Ce type de dégénérescence, peu réaliste, sera systématiquement exclu de notre étude. En conséquence, nous introduisons la condition suivante :

D-1.1 (Condition de non dégénérescence). Pour qu'aucun élément de longueur du milieu continu curviligne ne puisse dégénérer en un point lors d'une transformation, nous exigerons que l'inégalité suivante soit vérifiée en tout point :

$$\frac{d\mathbf{s}}{dS}(S) = \left\|\mathbf{x}'(S)\right\| > 0, \quad \forall S.$$
(1.13)

Sous cette condition et en tout point non anguleux, on peut définir les vecteurs unitaires tangent et normal, l'angle tangent et la courbure de la configuration déformée qui s'écrivent

$$\begin{cases} \mathbf{t}(S) = & \frac{\mathbf{x}'(S)}{\|\mathbf{x}'(S)\|} = \cos \alpha(S)\mathbf{e}_1 + \sin \alpha(S)\mathbf{e}_2, \\ \mathbf{n}(S) = & \mathbf{e}_3 \wedge \mathbf{t}(S) = -\sin \alpha(S)\mathbf{e}_1 + \cos \alpha(S)\mathbf{e}_2, \\ \mathbf{C}(S) = & \frac{\alpha'(S)}{\mathbf{s}'(S)}. \end{cases}$$

1.3.2 Déplacement et rotation

Si l'on compare les deux configurations, on voit que le "point matériel" s'est déplacé et que le repère local a tourné durant la transformation qui fait passer de la configuration de référence à la configuration déformée. Introduisons ce déplacement et cette rotation. La variation de position est donnée par le vecteur déplacement $\boldsymbol{\xi}$ et la variation d'orientation par la rotation ω :

$$\boldsymbol{\xi}(S) = \mathbf{x}(S) - \mathbf{x}_{\mathsf{R}}(S), \quad \omega(S) = \alpha(S) - \alpha_{\mathsf{R}}(S).$$
(1.14)

FIGURE 1.4 – Configurations de référence (en gris) et déformée (en noir), déplacement et rotation

Le vecteur déplacement peut être projeté soit sur la base globale $(\mathbf{e}_1, \mathbf{e}_2)$, soit sur la base locale. Dans le premier cas, on écrit

$$\boldsymbol{\xi}(S) = \xi_1(S)\mathbf{e}_1 + \xi_2(S)\mathbf{e}_2.$$

Dans le deuxième cas, on a *a priori* le choix entre la base liée à la configuration de référence et la base liée à la configuration déformée. En pratique, comme on utilise essentiellement cette projection dans le cas des petits déplacements, on choisit de projeter sur la base liée à la configuration de référence. On écrit donc

$$\boldsymbol{\xi}(S) = \mathbf{u}(S)\mathbf{t}_{\mathsf{R}}(S) + \mathbf{w}(S)\mathbf{n}_{\mathsf{R}}(S) , \qquad (1.15)$$

la composante u s'appelant déplacement tangentiel ou *déplacement d'extension* et la composante w déplacement normal ou *déflexion*.

1.3.3 Déformation d'extension et déformation de flexion

Si l'on définit les transformations sans déformation comme les applications définies sur \mathbb{R}^n qui ne changent pas les distances entre les points, *i.e.* les applications $\mathbf{x} \mapsto \varphi(\mathbf{x})$ telles que

$$\| oldsymbol{arphi}(\mathbf{x}) - oldsymbol{arphi}(\mathbf{y}) \| = \| \mathbf{x} - \mathbf{y} \|, \qquad orall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,$$

un résultat classique d'algèbre et de géométrie dit que de telles transformations sont nécessairement des *isométries*, *i.e.* des applications affines de la forme $\varphi(\mathbf{x}) = \mathbf{a} + \mathbf{Q}\mathbf{x}$ où \mathbf{a} est le vecteur translation et \mathbf{Q} est une matrice orthogonale, *i.e.* une matrice inversible telle que $\mathbf{Q}^{-1} = \mathbf{Q}^T$. Si l'on veut en plus que l'orientation de l'objet soit conservée dans la transformation, il faut se restreindre aux isométries directes et ne retenir que les rotations en excluant les symétries parmi les matrices orthogonales, cf l'exemple 1.6. Finalement, les transformations sans déformation sont les isométries directes appelées aussi déplacements de corps rigides, *i.e.* les applications φ de \mathbb{R}^n dans \mathbb{R}^n de la forme

$$\varphi(\mathbf{x}) = \mathbf{a} + \mathbf{Q}\mathbf{x}, \quad \mathbf{Q}^{-1} = \mathbf{Q}^T, \ \det \mathbf{Q} = 1.$$

Dans le cas de transformations planes, les matrices de rotation sont de la forme

$$\mathbf{Q} = \begin{pmatrix} \cos \omega & -\sin \omega \\ \sin \omega & \cos \omega \end{pmatrix},$$

 ω étant l'angle de rotation. Si on l'applique aux milieux curvilignes plans, la transformation faisant passer de la configuration de référence à la configuration déformée sera un déplacement de corps rigide si (et seulement si) la configuration déformée $S \mapsto \mathbf{x}(S)$ ou de façon équivalente le déplacement $S \mapsto \boldsymbol{\xi}(S)$ peuvent se mettre sous la forme

$$\mathbf{x}(S) = \mathbf{a} + \mathbf{Q}\mathbf{x}_{\mathsf{R}}(S), \qquad \boldsymbol{\xi}(S) = \mathbf{a} + (\mathbf{Q} - \mathbf{I})\mathbf{x}_{\mathsf{R}}(S) \quad \forall S \in (S_0, S_1),$$

où I désigne la matrice identité. En dérivant cette relation par rapport à S, on obtient

$$\mathbf{x}'(S) = \mathbf{Q}\mathbf{t}_{\mathsf{R}}(S). \tag{1.16}$$

En prenant la norme des vecteurs dans (1.16), comme \mathbf{Q} est une matrice orthogonale et que \mathbf{t}_{R} est de norme 1, on obtient

$$\mathbf{s}'(S) = \|\mathbf{x}'(S)\| = 1.$$

Autrement dit, l'abscisse curviligne est conservée dans la transformation, résultat naturel puisque la transformation conserve les longueurs. En reportant dans (1.16), il vient

$$\mathbf{x}'(S) = \mathbf{t}(S) = \mathbf{Q}\mathbf{t}_{\mathsf{R}}(S).$$

Par conséquent le vecteur tangent dans la configuration déformée se déduit du vecteur tangent dans la configuration de référence par une rotation (uniforme) d'angle ω . Autrement dit, l'angle de rotation $\omega(S)$ est la constante ω :

$$\omega(S) := \alpha(S) - \alpha_{\mathsf{R}}(S) = \omega.$$

En résumé, on vient d'établir que si la transformation est sans déformation alors on a nécessairement $\mathbf{s}' = 1$ et $\omega' = 0$. Ceci suggère d'introduire comme mesure de la déformation les champs $\mathbf{s}' - 1$ et ω' , ce qui conduit à :

D-1.2 (Mesures de la déformation). Lors d'une transformation d'un milieu continu curviligne plan faisant passer de la configuration de référence $S \mapsto \mathbf{x}_{\mathcal{R}}(S)$ à la configuration déformée $S \mapsto \mathbf{x}(S)$, on appelle respectivement déformation d'extension et déformation de flexion les champs ε et κ suivants :

$$\begin{cases} déformation \ d'extension : \quad \varepsilon(S) := \frac{d\mathbf{s}}{dS}(S) - 1 = \left\| \frac{d\mathbf{x}}{dS}(S) \right\| - 1 \\ déformation \ de \ flexion : \quad \kappa(S) := \frac{d\omega}{dS}(S) = \frac{d\alpha}{dS}(S) - \frac{d\alpha_{\mathsf{R}}}{dS}(S) \end{cases}$$
(1.17)

Remarque 1.3. La Condition 1.1 de non dégénérescence peut s'exprimer en terme de la déformation d'extension. Elle est équivalente à

 $\varepsilon > -1$ (condition de non dégénérescence).

Montrons que les deux champs ε et κ caractérisent bien la présence ou l'absence de déformation.

P-1.2 (Caractérisation des transformations sans déformation). La transformation qui fait passer de la configuration de référence $S \mapsto \mathbf{x}_R(S)$ à la configuration déformée $S \mapsto \mathbf{x}(S)$ d'un milieu curviligne plan est un déplacement de corps rigide si et seulement si la déformation d'extension et la déformation de flexion sont identiquement nulles, i.e.

Déplacement de corps rigide $\iff \varepsilon(S) = \kappa(S) = 0, \quad \forall S$

Démonstration. On a déjà montré l'implication directe, il reste à montrer la réciproque. On s'appuie pour cela sur la propriété **P-1.1**. Si $\varepsilon = 0$, alors $\mathbf{s}' = 1$ et donc l'abscisse curviligne ne change pas durant la transformation (moyennant un choix de l'origine), *i.e.* s = S. De plus, on a alors $d\alpha/dS = d\alpha/ds = \mathbf{C}$ et comme $d\alpha_{\mathsf{R}}/dS = \mathsf{C}_{\mathsf{R}}$, on déduit de $\kappa = 0$ que la courbure aussi n'a pas changé, *i.e.* $\mathsf{C} = \mathsf{C}_{\mathsf{R}}$. La configuration de référence et la configuration déformée ont même abscisse curviligne et même courbure. Donc, en vertu de **P-1.1**, elles diffèrent uniquement par un déplacement de corps rigide. Ce résultat fondamental ne justifie que partiellement notre choix de prendre la déformation d'extension et la déformation de flexion comme mesures de la déformation. En effet, ce n'est pas l'unique choix possible et on aurait pu tout aussi bien prendre deux autres champs dans la mesure où ils se construisent à partir de ε et κ et s'annulent en même temps que ces derniers. Par exemple, la déformation de Green-Lagrange $\tilde{\varepsilon}$ et la variation de courbure $\tilde{\kappa}$ définies par

$$\tilde{\varepsilon}(S) := \frac{1}{2} \left(\left\| \mathbf{x}'(S) \right\|^2 - 1 \right) = \varepsilon(S) + \frac{1}{2} \varepsilon(S)^2, \qquad \tilde{\kappa}(S) := \mathsf{C}(S) - \mathsf{C}_{\mathsf{R}}(S) = \frac{\kappa(S) - \varepsilon(S)\mathsf{C}_{\mathsf{R}}(S)}{1 + \varepsilon(S)}$$

satisfont toutes les conditions et pourraient faire l'affaire. Nous justifierons complètement le choix de ε et κ lorsque nous introduirons les notions de travail de déformation au Chapitre 3.

Exemple 1.5 (Étirement et Enroulement d'une tige droite). On considère une tige dont la configuration de référence est rectiligne de longueur ℓ_0 . On envisage les deux expériences suivantes pour illustrer les deux types de déformation.

1. Dans la première, on étire uniformément la tige en la maintenant droite pour arriver à une longueur finale. Moyennant un choix convenable du repère, la configuration de référence est donc

FIGURE 1.5 – Étirement uniforme d'une tige droite

 $\mathbf{x}_{R}(S) = S\mathbf{e}_{1}$ avec $S \in (0, \ell_{0})$. L'étirement étant supposé uniforme, l'abscisse curviligne s dans la configuration déformée du point matériel S sera donc

$$s = \mathbf{s}(S) := S\frac{\ell}{\ell_0}.$$

La tige restant droite la configuration déformée sera donc (à un déplacement rigide près)

$$\mathbf{x}(S) = S \frac{\ell}{\ell_0} \mathbf{e}_1.$$

Par conséquent $\mathbf{s}'(S) = \ell/\ell_0$ et $\alpha_{\mathsf{R}}(S) = \alpha(S) = \omega(S) = 0$, la déformation d'extension est simplement la variation relative de longueur et la déformation de flexion est nulle,

$$\varepsilon = \frac{\ell - \ell_0}{\ell_0}, \qquad \kappa = 0.$$

2. Dans la deuxième on enroule la tige sans l'étirer autour d'un disque de rayon R. L'absence d'étirement fait qu'il n'y a pas de déformation d'extension. Par contre, il y a une déformation de flexion correspondant à la variation de courbure. La tige étant initialement droite, on a $C_R = 0$. La courbure dans la configuration déformée sera $\pm 1/R$, le signe dépendant du choix du sens de l'enroulement. Finalement, on a donc

$$\varepsilon = 0, \qquad \kappa = \pm \frac{1}{R}.$$

FIGURE 1.6 – Enroulement d'une tige droite autour d'un disque. (Sur la figure $R = \ell_0/\pi$.)

Exemple 1.6 (Symétries et déformation). Cet exemple est destiné à montrer que, bien que les symétries soient des isométries, elles induisent des déformations au sens de la Définition 1.2. On considère un milieu curviligne dont la configuration de référence est un arc courbe ($C_R \neq 0$). Il est transformé en son symétrique par rapport à l'axe x_1 , cf Figure 1.7(gauche). Autrement dit, on a

FIGURE 1.7 – A droite : retournement d'un arc ; à gauche : rotation du même arc.

Les distances sont conservées, l'abscisse curviligne également (s = S) et donc la déformation d'extension est nulle. Par contre, la courbure change de signe puisque l'arc est parcouru dans le sens trigonométrique dans la configuration de référence et dans le sens anti-trigonométrique dans la configuration déformée. On a donc $C(S) = -C_R(S)$ et la déformation de flexion n'est pas nulle dès lors que l'arc est courbe, $\kappa = -2C_R$. Ce phénomène de retournement, dit aussi de claquage, se rencontre en pratique. On ne peut passer continûment d'une configuration à l'autre sans effort et il est donc normal que cette transformation soit considérée comme déformante.

On peut remarquer que, si l'arc est symétrique par rapport à l'axe x_2 , la transformation qui fait passer de $\mathbf{x}_R(S)$ à $\mathbf{x}(S) = -\mathbf{x}_R(S)$, transforme l'arc en le même arc que la transformation précédente,

mais les points matériels ne sont pas transformés de la même façon, cf figure 1.7(droite). Ici la transformation correspond à une rotation d'angle π autour de l'origine. C'est donc un déplacement de corps rigide qui n'induit pas de déformation.

1.3.4 Relations déformations-dérivées de la position

Les déformations d'extension et de flexion ont été définies précédemment à partir des dérivées de d'abscisse curviligne et de la rotation. Il est également utile d'avoir leur expression en termes des dérivées de la position. Pour la déformation d'extension, c'est immédiat puisque $\|\mathbf{x}'\| = 1 + \varepsilon$. Pour la déformation de flexion, on part de la relation $\mathbf{x}' = \|\mathbf{x}'\| (\cos \alpha \mathbf{e}_1 + \sin \alpha \mathbf{e}_2)$ qui, dérivée par rapport à S, donne $\mathbf{x}'' \cdot \mathbf{n} = \|\mathbf{x}'\| \alpha'$. Comme $\alpha' = \kappa + C_R$ et $\|\mathbf{x}'\| \mathbf{n} = \mathbf{e}_3 \wedge \mathbf{x}'$, on obtient $(\mathbf{e}_3 \wedge \mathbf{x}') \cdot \mathbf{x}'' = \|\mathbf{x}'\|^2 (\kappa + C_R)$. En résumé, on a

$$\varepsilon = \left\| \mathbf{x}' \right\| - 1, \qquad \kappa = \frac{(\mathbf{e}_3 \wedge \mathbf{x}') \cdot \mathbf{x}''}{\left\| \mathbf{x}' \right\|^2} - C_{\mathsf{R}}.$$
(1.18)

1.3.5 Relations déformations-déplacements

On est souvent amené en pratique à formuler les problèmes de statique ou de dynamique des milieux curvilignes en prenant pour inconnues principales le déplacement $\boldsymbol{\xi}$ ou ses composantes locales le déplacement d'extension u et la déflexion w. Ceci exige d'exprimer à la fois les déformations et la rotation en termes de $\boldsymbol{\xi}$ ou de (u, w) et de leurs dérivées. Nous allons commencer par établir ces relations dans le cas général avant de voir comment elles se simplifient dans quelques cas particuliers.

Cas général

Commençons par la déformation d'extension. Partant de $\mathbf{x} = \mathbf{x}_{R} + \boldsymbol{\xi}$ et dérivant par rapport à S, il vient $\mathbf{x}' = \mathbf{t}_{R} + \boldsymbol{\xi}'$. En prenant la norme de \mathbf{x}' et en utilisant le fait que \mathbf{t}_{R} est unitaire, on obtient l'expression entre la déformation d'extension et la dérivée des déplacements

$$\varepsilon = \sqrt{1 + 2\boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}} + \boldsymbol{\xi}' \cdot \boldsymbol{\xi}'} - 1.$$
(1.19)

Pour l'exprimer en terme de (u, w) et de leurs dérivées, on dérive $\boldsymbol{\xi} = u \mathbf{t}_{R} + w \mathbf{n}_{R}$ par rapport à S pour arriver à

$$\boldsymbol{\xi}' = (\mathbf{u}' - \mathbf{C}_{\mathsf{R}}\mathbf{w})\mathbf{t}_{\mathsf{R}} + (\mathbf{w}' + \mathbf{C}_{\mathsf{R}}\mathbf{u})\mathbf{n}_{\mathsf{R}},$$

où on s'est servi du fait que

$$\frac{d\mathbf{t}_{\mathsf{R}}}{dS} = \mathsf{C}_{\mathsf{R}}\mathbf{n}_{\mathsf{R}}, \quad \frac{d\mathbf{n}_{\mathsf{R}}}{dS} = -\mathsf{C}_{\mathsf{R}}\mathbf{t}_{\mathsf{R}}.$$

En reportant dans (1.19) et en utilisant le fait que \mathbf{t}_{R} et \mathbf{n}_{R} sont de norme 1, on obtient

$$\varepsilon = \sqrt{(1 + \mathbf{u}' - \mathbf{C}_{\mathsf{R}}\mathbf{w})^2 + (\mathbf{w}' + \mathbf{C}_{\mathsf{R}}\mathbf{u})^2} - 1.$$
(1.20)

En décomposant le vecteur **t** sur la base locale $(\mathbf{t}_{R}, \mathbf{n}_{R})$, on a $\mathbf{t} = \cos \omega \mathbf{t}_{R} + \sin \omega \mathbf{n}_{R}$, ce qui permet d'exprimer $\cos \omega$ et $\sin \omega$ en fonction des déplacements. En effet, il vient

$$\begin{cases} \cos\omega = \mathbf{t} \cdot \mathbf{t}_{\mathsf{R}} = \frac{\mathbf{x}' \cdot \mathbf{t}_{\mathsf{R}}}{\|\mathbf{x}'\|} = \frac{1 + \boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}}}{\sqrt{1 + 2\boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}} + \boldsymbol{\xi}' \cdot \boldsymbol{\xi}'}} = \frac{1 + \mathbf{u}' - \mathsf{C}_{\mathsf{R}}\mathbf{w}}{\sqrt{(1 + \mathbf{u}' - \mathsf{C}_{\mathsf{R}}\mathbf{w})^2 + (\mathbf{w}' + \mathsf{C}_{\mathsf{R}}\mathbf{u})^2}} \\ \sin\omega = \mathbf{t} \cdot \mathbf{n}_{\mathsf{R}} = \frac{\mathbf{x}' \cdot \mathbf{n}_{\mathsf{R}}}{\|\mathbf{x}'\|} = \frac{\boldsymbol{\xi}' \cdot \mathbf{n}_{\mathsf{R}}}{\sqrt{1 + 2\boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}} + \boldsymbol{\xi}' \cdot \boldsymbol{\xi}'}} = \frac{\mathbf{w}' + \mathsf{C}_{\mathsf{R}}\mathbf{u}}{\sqrt{(1 + \mathbf{u}' - \mathsf{C}_{\mathsf{R}}\mathbf{w})^2 + (\mathbf{w}' + \mathsf{C}_{\mathsf{R}}\mathbf{u})^2}} \end{cases}$$

soit, en résumé :

$$\cos\omega = \frac{1 + \boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}}}{\sqrt{1 + 2\boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}} + \boldsymbol{\xi}' \cdot \boldsymbol{\xi}'}} = \frac{1 + \mathbf{u}' - \mathsf{C}_{\mathsf{R}}\mathbf{w}}{\sqrt{(1 + \mathbf{u}' - \mathsf{C}_{\mathsf{R}}\mathbf{w})^2 + (\mathbf{w}' + \mathsf{C}_{\mathsf{R}}\mathbf{u})^2}},\tag{1.21}$$

,

$$\sin \omega = \frac{\boldsymbol{\xi}' \cdot \mathbf{n}_{\mathsf{R}}}{\sqrt{1 + 2\boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}} + \boldsymbol{\xi}' \cdot \boldsymbol{\xi}'}} = \frac{\mathbf{w}' + \mathsf{C}_{\mathsf{R}}\mathbf{u}}{\sqrt{(1 + \mathbf{u}' - \mathsf{C}_{\mathsf{R}}\mathbf{w})^2 + (\mathbf{w}' + \mathsf{C}_{\mathsf{R}}\mathbf{u})^2}}.$$
(1.22)

Pour obtenir la déformation de flexion, on dérive une des deux relations précédentes et on tient compte de l'autre. Après quelques calculs, on obtient

$$\kappa = \frac{(\mathbf{w}' + C_{R}\mathbf{u})'(1 + \mathbf{u}' - C_{R}\mathbf{w}) - (\mathbf{w}' + C_{R}\mathbf{u})(\mathbf{u}' - C_{R}\mathbf{w})'}{(1 + \mathbf{u}' - C_{R}\mathbf{w})^{2} + (\mathbf{w}' + C_{R}\mathbf{u})^{2}}.$$
(1.23)

Exemple 1.7 (Dilatation d'un anneau). On considère un anneau dont la configuration de référence est un cercle de rayon R_0 . On le transforme en le dilatant uniformément dans toutes les directions de façon que sa configuration déformée soit un cercle de rayon R. Comme il n'y a pas de rotation, la

FIGURE 1.8 – Dilatation d'un anneau

déformation de flexion est nulle et comme l'allongement est uniforme la déformation d'extension est égale à la variation relative de longueur. D'où

$$\varepsilon = \frac{R - R_0}{R_0}, \qquad \kappa = 0$$

et il est intéressant de remarquer qu'il n'y a pas de déformation de flexion bien qu'il y ait variation de courbure.

On peut vérifier toutes ces propriétés en explicitant la transformation et en utilisant les différentes formules établies précédemment. Ainsi, en choisissant le repère de façon à ce que l'origine soit au centre du cercle et l'origine des abscisses curvilignes le point $R_0\mathbf{e}_1$, la configuration de référence s'écrit

$$\mathbf{x}_{R}(S) = R_0 \Big(\cos \frac{S}{R_0} \mathbf{e}_1 + \sin \frac{S}{R_0} \mathbf{e}_2 \Big).$$

Le déplacement est donné par

$$\boldsymbol{\xi}(S) = (R - R_0)\mathbf{n}_{R}(S) = (R - R_0) \left(\cos\frac{S}{R_0}\mathbf{e}_1 + \sin\frac{S}{R_0}\mathbf{e}_2\right)$$

et ne correspond donc qu'à une déflexion uniforme sans déplacement d'extension :

$$\mathbf{u}(S) = 0, \qquad \mathbf{w}(S) = R - R_0$$

Comme $C_R = 1/R_0$, en utilisant (1.20) on retrouve l'expression de ε . On peut aussi vérifier à partir de (1.21)–(1.23) que $\omega = \kappa = 0$.

Les relations déformations-déplacements sont très complexes dans le cas général et donc peu faciles d'emploi. Elles se simplifient sensiblement dans certaines situations décrites ci-dessous.

Cas d'une configuration de référence rectiligne

Dans ce cas $C_R = 0$ et toutes les expressions se simplifient :

$$\varepsilon = \sqrt{(1 + \mathbf{u}')^2 + \mathbf{w}'^2} - 1,$$
 (1.24)

$$\cos \omega = \frac{1 + \mathbf{u}'}{\sqrt{(1 + \mathbf{u}')^2 + \mathbf{w}'^2}}, \quad \sin \omega = \frac{\mathbf{w}'}{\sqrt{(1 + \mathbf{u}')^2 + \mathbf{w}'^2}}, \tag{1.25}$$

$$\kappa = \frac{\mathbf{w}''(1+\mathbf{u}') - \mathbf{w}'\mathbf{u}''}{(1+\mathbf{u}')^2 + \mathbf{w}'^2}.$$
(1.26)

Cas des petits déplacements

Une situation que l'on rencontre souvent en pratique est celle où la configuration déformée diffère peu de la configuration de référence. On parle alors de *petite perturbation*. Cette notion de petitesse demande évidemment à être rendue précise. Nous adopterons la définition suivante

D-1.3 (Hypothèse des Petites Perturbations (HPP)). On dit que le milieu curviligne subit une petite perturbation lorsqu'il passe de sa configuration de référence à sa configuration déformée si le gradient des déplacements et le produit entre la courbure de référence et les déplacements sont petits devant 1 en tout point du milieu. Autrement dit, on doit alors avoir

$$HPP: |\mathbf{u}'| \ll 1, \quad |\mathbf{w}'| \ll 1, \quad |\mathbf{C}_{R}\mathbf{u}| \ll 1, \quad |\mathbf{C}_{R}\mathbf{w}| \ll 1.$$

Évidemment, en pratique cette notion de petitesse devant 1 est laissée à l'appréciation du modélisateur ou de l'observateur. Lors de calculs préliminaires où des estimations grossières suffisent, on peut autoriser que les gradients des déplacements ou les produits courbure-déplacement aillent jusqu'à 1/10. Dans des calculs plus fins, on pourra exiger qu'aucune de ces quantités ne dépasse 1/1000 pour que l'on puisse adopter ce cadre HPP. De façon générale, on procède comme suit :

1. on calcule la réponse en adoptant HPP et de façon plus générale en linéarisant les équations;

2. on vérifie *a posteriori* que l'hypothèse était raisonnable en fonction du degré d'exigence que l'on a.

Lorsque HPP s'applique, la déformation d'extension et la rotation sont elles-mêmes petites devant 1 comme le montrent (1.20)-(1.23). En ne retenant que les termes du premier ordre on obtient les expressions dites linéarisées de la déformation d'extension, de la rotation et de sa dérivée. Ces relations sont données ci-dessous (et leur obtention est laissée à titre d'exercice) :

P-1.3 (Expressions linéarisées des relations déformations-déplacements).

$$Cas général :$$

$$\varepsilon = \boldsymbol{\xi}' \cdot \mathbf{t}_R = \mathbf{u}' - \mathbf{C}_R \mathbf{w}, \quad \omega = \boldsymbol{\xi}' \cdot \mathbf{n}_R = \mathbf{w}' + \mathbf{C}_R \mathbf{u}, \quad \kappa = (\boldsymbol{\xi}' \cdot \mathbf{n}_R)' = \mathbf{w}'' + (\mathbf{C}_R \mathbf{u})'. \quad (1.27)$$

$$Cas d'une configuration de référence rectiligne :$$

$$\varepsilon = \mathbf{u}', \quad \omega = \mathbf{w}', \quad \kappa = \mathbf{w}''. \quad (1.28)$$

La linéarisation des déformations a pour conséquence importante de changer la forme des champs de déplacement qui annulent les déformations linéarisées. En effet, ce ne sont plus au sens strict les déplacements de corps rigide mais ce que l'on peut appeler les "petits" déplacements de corps rigide comme nous allons l'établir ci-dessous.

P-1.4 (Petits déplacements de corps rigide). Les champs de déplacement qui annulent les déformations linéarisées sont les champs $S \mapsto \boldsymbol{\xi}(S)$ de la forme

$$\boldsymbol{\xi}(S) = \mathbf{a} + \stackrel{*}{\omega} \mathbf{e}_3 \wedge \mathbf{x}_{\mathcal{R}}(S), \qquad \mathbf{a} \in \mathbb{R}^2, \quad \stackrel{*}{\omega} \in \mathbb{R}.$$
(1.29)

Autrement dit, ils correspondent à des translations et des "petites" rotations pour lesquelles la matrice de rotation est proche de l'identité et son écart à la matrice identité est linéarisée en une matrice antisymétrique, i.e.

$$\mathbf{Q} \approx \mathbf{I} + \mathbf{W} \quad avec \quad \mathbf{W} = \begin{pmatrix} 0 & -\overset{*}{\omega} \\ \overset{*}{\omega} & 0 \end{pmatrix}.$$

Démonstration. Le résultat est intuitif si l'on part de la définition des déplacements de corps rigide introduite dans la section 1.3.3, mais il est préférable de le démontrer.

(i) Montrons tout d'abord que les champs de déplacement du type (1.29) conduisent à des déformations linéarisées nulles. Pour un tel champ, la dérivée des déplacements s'écrit

$$\boldsymbol{\xi}'(S) = \overset{*}{\omega} \mathbf{e}_{3} \wedge \mathbf{t}_{\mathsf{R}}(S) = \overset{*}{\omega} \mathbf{n}_{\mathsf{R}}(S).$$

Par conséquent, en utilisant les expressions linéarisées (1.27) on obtient

$$\varepsilon(S) = \boldsymbol{\xi}'(S) \cdot \mathbf{t}_{\mathsf{R}}(S) = 0, \qquad \omega(S) = \boldsymbol{\xi}'(S) \cdot \mathbf{n}_{\mathsf{R}}(S) = \overset{*}{\omega}, \qquad \kappa(S) = \omega'(S) = 0,$$

ce qui est le résultat attendu.

(ii) Montrons maintenant la réciproque, *i.e. tout déplacement annulant les déformations linéarisées* est de la forme (1.29). De la nullité des déformations linéarisées, on déduit que

$$\boldsymbol{\xi}'(S) \cdot \mathbf{t}_{\mathsf{R}}(S) = 0, \qquad \boldsymbol{\xi}'(S) \cdot \mathbf{n}_{\mathsf{R}}(S) = \overset{*}{\omega},$$

où $\overset{\circ}{\omega}$ est une constante arbitraire (qui correspond à la rotation d'ensemble). Par conséquent, la dérivée des déplacements s'écrit

$$\boldsymbol{\xi}'(S) = \overset{*}{\omega} \mathbf{n}_{\mathsf{R}}(S) = \overset{*}{\omega} \mathbf{e}_{3} \wedge \mathbf{t}_{\mathsf{R}}(S) = \overset{*}{\omega} \mathbf{e}_{3} \wedge \mathbf{x}'_{\mathsf{R}}(S).$$

En intégrant, on obtient (1.29), la constante d'intégration étant le vecteur translation **a**.

Exercice 1.2. Refaire la démonstration précédente en utilisant la décomposition des déplacements en $\boldsymbol{\xi} = u \mathbf{t}_R + w \mathbf{n}_R$ et les expressions linéarisées associées des déformations (1.27).

1.4 Cinématique d'un milieu continu curviligne

Dans cette section nous allons faire bouger "continûment" le milieu curviligne en considérant des changements de configuration qui dépendent d'un paramètre réel. En dynamique, ce paramètre sera le temps; dans des problèmes dits quasi-statiques où le milieu est supposé être toujours dans une configuration d'équilibre mais sous des sollicitations qui peuvent être variables, le paramètre sera un paramètre "chronologique" servant à décrire l'histoire du chargement et des configurations d'équilibre associées; dans l'approche variationnelle enfin, on introduira un paramètre pour décrire des mouvements virtuels du milieu. Pour simplifier la présentation, dans toute la première partie ce paramètre sera noté t et appelé temps, ses valeurs étant les *instants*. Il n'y a que dans la partie consacrée aux mouvements virtuels que l'on adoptera des notations spécifiques pour bien distinguer les mouvements virtuels des mouvements réels. A chaque instant, le milieu continu curviligne occupera donc une position (réelle ou virtuelle) que l'on décrira par une courbe paramétrée. Deux options sont possibles pour choisir le paramètre : la description dite *lagrangienne* où l'on suit les points matériels dans leur mouvement et la description dite *eulérienne* où l'on décrit le mouvement à partir d'un repérage de l'espace.

1.4.1 Description lagrangienne du mouvement

On choisit de suivre les points matériels dans leur mouvement. Pour cela, on introduit une configuration dite de référence qui sert à repérer les points matériels, exactement comme nous l'avons fait pour décrire les déformations dans la section précédente. La seule différence est qu'ici on envisage, non plus une seule configuration déformée, mais une famille de telles configurations paramétrée par le temps t. Considérons le cas où le milieu continu se meut dans le plan et prenons pour configuration de référence une courbe plane paramétrée par son abscisse curviligne, notée S pour la distinguer de l'abscisse curviligne s dans la configuration "actuelle". La configuration de référence correspond alors à l'application

$$S \mapsto \mathbf{x}_{\mathsf{R}}(S)$$

dont les vecteurs tangent et normal, l'angle tangent et la courbure sont respectivement donnés par

$$\begin{cases} \mathbf{t}_{\mathsf{R}}(S) = & \frac{d\mathbf{x}_{\mathsf{R}}}{dS}(S) = \cos\alpha_{\mathsf{R}}(S)\mathbf{e}_{1} + \sin\alpha_{\mathsf{R}}(S)\mathbf{e}_{2}, \\ \mathbf{n}_{\mathsf{R}}(S) = & \mathbf{e}_{3} \wedge \mathbf{t}_{\mathsf{R}}(S) = -\sin\alpha_{\mathsf{R}}(S)\mathbf{e}_{1} + \cos\alpha_{\mathsf{R}}(S)\mathbf{e}_{2}, \\ \mathbf{C}_{\mathsf{R}}(S) = & \frac{d\alpha_{\mathsf{R}}}{dS}(S). \end{cases}$$

Un point matériel est identifié avec son abscisse curviligne S dans sa configuration de référence. Au cours du mouvement le milieu curviligne va changer de position pour occuper à chaque instant une configuration correspondant à une courbe plane. Dans la description lagrangienne, on garde comme paramètre pour décrire cette courbe l'abscisse curviligne S de la configuration de référence (et qui donc ne sera pas en général l'abscisse curviligne de la configuration courante). De façon précise, si t désigne le temps ou de façon plus générale un paramètre cinématique servant à décrire l'évolution de la configuration du milieu, la position du milieu curviligne à l'instant t sera donnée par l'application

$$(S,t) \mapsto \mathbf{x}(S,t)$$

où $\mathbf{x}(S,t)$ désigne donc la position à l'instant t du point matériel qui se trouve à l'abscisse curviligne S dans la configuration de référence. En utilisant (1.6) et en conservant S_0 comme point origine, l'abscisse curviligne à l'instant t du point se trouvant en S dans la configuration de référence s'écrit

$$\mathbf{s}(S,t) = \int_{S_0}^{S} \left\| \mathbf{x}'(S^*,t) \right\| dS^*$$
(1.30)

où le prime désigne la dérivée partielle par rapport à S, *i.e.*

Par conséquent, on a

$$\mathbf{x}'(S,t) := \frac{\partial \mathbf{x}}{\partial S}(S,t).$$
$$\mathbf{s}'(S,t) = \|\mathbf{x}'(S,t)\|.$$
(1.31)

Les vecteurs unitaires tangent et normal, l'angle tangent et la courbure sont également des fonctions de S et de t:

$$\begin{cases} \mathbf{t}(S,t) = & \frac{\mathbf{x}'(S,t)}{\|\mathbf{x}'(S,t)\|} = \cos \alpha(S,t)\mathbf{e}_1 + \sin \alpha(S,t)\mathbf{e}_2, \\ \mathbf{n}(S,t) = & \mathbf{e}_3 \wedge \mathbf{t}(S,t) = -\sin \alpha(S,t)\mathbf{e}_1 + \cos \alpha(S,t)\mathbf{e}_2, \\ \mathbf{C}(S,t) = & \frac{\alpha'(S,t)}{\|\mathbf{x}'(S,t)\|} \end{cases}$$
(1.32)

En introduisant la rotation entre la configuration de référence et la configuration actuelle, on a

$$\omega(S,t) := \alpha(S,t) - \alpha_{\mathsf{R}}(S,t). \tag{1.33}$$

La vitesse \mathbf{v} des points matériels s'obtient en dérivant la position par rapport au temps à S fixé, soit

$$\mathbf{v}(S,t) = \dot{\mathbf{x}}(S,t) := \frac{\partial \mathbf{x}}{\partial t}(S,t).$$
(1.34)

Notons que comme $\mathbf{x} = \mathbf{x}_{\mathsf{R}} + \boldsymbol{\xi}$, on a $\mathbf{v} = \dot{\boldsymbol{\xi}}$ et la vitesse est aussi la vitesse de déplacement :

$$\mathbf{v}(S,t) = \dot{\mathbf{x}}(S,t) = \dot{\boldsymbol{\xi}}(S,t). \tag{1.35}$$

L'accélération γ des points matériels s'obtient en dérivant la vitesse par rapport au temps à S fixé et est donc la dérivée seconde de la position par rapport au temps à S fixé,

$$\boldsymbol{\gamma}(S,t) = \dot{\mathbf{v}}(S,t) = \ddot{\mathbf{x}}(S,t) = \ddot{\boldsymbol{\xi}}(S,t).$$
(1.36)

La dérivée première par rapport au temps de l'abscisse curviligne $\dot{\mathbf{s}}$ est la vitesse d'extension. Si l'on conserve la même origine de l'abscisse curviligne au cours du temps, $\dot{\mathbf{s}}(S,t)$ représente donc la variation de longueur à l'instant t du tronçon du milieu continu situé entre l'origine et le point matériel S. Dans la description lagrangienne, on peut évidemment la relier au champ de vitesse et à la configuration du milieu à l'instant t. En effet, en dérivant (1.31) par rapport au temps et en tenant compte de (1.34), il vient

$$\dot{\mathbf{s}}' = rac{\mathbf{x}' \cdot \dot{\mathbf{x}}'}{\|\mathbf{x}'\|} = \dot{\mathbf{x}}' \cdot \mathbf{t} = \mathbf{v}' \cdot \mathbf{t}$$

Il suffit d'intégrer par rapport à S pour obtenir

$$\dot{\mathbf{s}}(S,t) = \int_{S_0}^{S} \mathbf{v}'(S^*,t) \cdot \mathbf{t}(S^*,t) dS^*.$$

Remarquons que comme $\mathbf{s}' = 1 + \varepsilon$, on a $\dot{\mathbf{s}}' = \dot{\varepsilon}$ et on obtient ainsi l'expression de la vitesse de déformation d'extension :

$$\dot{\varepsilon}(S,t) = \mathbf{v}'(S,t) \cdot \mathbf{t}(S,t). \tag{1.37}$$

La dérivée première par rapport au temps de l'angle tangent $\dot{\alpha}$ est la vitesse de rotation. Mais comme $\alpha = \alpha_{\mathsf{R}} + \omega$, on a aussi $\dot{\alpha} = \dot{\omega}$. La vitesse de rotation dépend en général du point S, une exception étant quand le mouvement du milieu est un mouvement de corps rigide, et $\dot{\omega}(S,t)$ représente la vitesse de rotation instantanée du repère local (\mathbf{t}, \mathbf{n}) autour de l'axe \mathbf{e}_3 au point matériel S. En utilisant (1.32), on a d'une part

$$\dot{\mathbf{t}} = \dot{\omega} \, \mathbf{n}, \qquad \dot{\mathbf{n}} = -\dot{\omega} \, \mathbf{t}, \tag{1.38}$$

mais aussi

$$\dot{\mathbf{t}} = \frac{\dot{\mathbf{x}}'}{\|\mathbf{x}'\|} - \frac{\mathbf{x}' \cdot \dot{\mathbf{x}}'}{\|\mathbf{x}'\|^3} \mathbf{x}' = \frac{1}{\|\mathbf{x}'\|} \Big(\mathbf{v}' - (\mathbf{v}' \cdot \mathbf{t}) \mathbf{t} \Big) = \frac{\mathbf{v}' \cdot \mathbf{n}}{\|\mathbf{x}'\|} \mathbf{n}$$

et en comparant on en déduit l'expression de la vitesse de rotation en fonction de la dérivée spatiale de la vitesse :

$$\dot{\omega}(S,t) = \frac{\mathbf{v}'(S,t) \cdot \mathbf{n}(S,t)}{\|\mathbf{x}'(S,t)\|}.$$
(1.39)

Par dérivation par rapport à S, on en déduit la vitesse de déformation de flexion : $\dot{\kappa} = \dot{\omega}'$.

1.4.2 Description eulérienne du mouvement

Dans la description eulérienne, la configuration du milieu à chaque instant est une courbe paramétrée par son abscisse curviligne,

$$(s,t) \mapsto \mathbf{x}(s,t)$$

Les vecteurs unitaires tangent et normal, l'angle tangent et la courbure se déduisent alors de (1.8)–(1.10):

$$\begin{cases} \mathbf{t}(s,t) = & \frac{\partial \mathbf{x}}{\partial s}(s,t) = \cos \alpha(s,t)\mathbf{e}_1 + \sin \alpha(s,t)\mathbf{e}_2, \\ \mathbf{n}(s,t) = & \mathbf{e}_3 \wedge \mathbf{t}(s,t) = -\sin \alpha(s,t)\mathbf{e}_1 + \cos \alpha(s,t)\mathbf{e}_2, \\ \mathbf{C}(s,t) = & \frac{\partial \alpha}{\partial s}(s,t) \end{cases}$$
(1.40)

On perd ainsi la référence aux points matériels, d'un instant à l'autre le point géométrique d'abscisse curviligne s correspond en général à deux points matériels différents. Pour récupérer cette référence aux points matériels, il faut se donner (en plus de la configuration eulérienne \mathbf{x}) la vitesse d'extension eulérienne, *i.e.* l'application

$$(s,t) \mapsto \upsilon(s,t)$$

qui donne la vitesse d'extension du milieu au point d'abscisse curviligne s à l'instant t. En effet, si on repère un point matériel par son abscisse curviligne S dans la configuration du milieu à un certain instant t_0 pris pour temps de référence, alors l'abscisse curviligne de ce point à l'instant t est $\mathbf{s}(S,t)$, solution de l'équation différentielle

$$\frac{\partial \mathbf{s}}{\partial t}(S,t) = \upsilon(\mathbf{s}(S,t),t), \quad \mathbf{s}(S,t_0) = S.$$

Après résolution de cette équation différentielle, connaissant $\mathbf{s}(S, t)$, on peut ainsi reconstruire l'évolution de la position des points matériels du milieu curviligne avec l'application

$$(S,t) \mapsto \mathbf{x}(\mathbf{s}(S,t),t)$$

Notons que $\partial v/\partial s$ représente la vitesse eulérienne de déformation d'extension. La vitesse d'extension eulérienne sert aussi à définir le champ eulérien des vitesses :

$$\mathbf{v}(s,t) = \frac{\partial \mathbf{x}}{\partial t}(s,t) + \upsilon(s,t)\mathbf{t}(s,t), \qquad (1.41)$$

 $\mathbf{v}(s,t)$ représentant donc la vitesse du point matériel qui se trouve à l'abscisse curviligne s à l'instant t.

De façon générale, on utilise v pour définir la *dérivée* dite *matérielle* :

$$\frac{D}{Dt} := \frac{\partial}{\partial t} + v \frac{\partial}{\partial s} \qquad \text{(dérivée matérielle)}. \tag{1.42}$$

Cette dérivée sert à décrire l'évolution par rapport au temps de quantités attachées à un point matériel. Ainsi si Q(S,t) et q(s,t) désignent respectivement les champs lagrangien et eulérien associés à une même grandeur physique, ces deux champs sont reliés par

$$Q(S,t) = q(s(S,t),t).$$

En dérivant par rapport à t à point matériel S fixé les deux membres de l'égalité ci-dessus, il vient

$$\dot{Q}(S,t) = \frac{Dq}{Dt}(s,t).$$

Exercice 1.3. Montrer que le champ eulérien de vitesses est la dérivée matérielle de la position et que la vitesse d'extension eulérienne est la dérivée matérielle de l'abscisse curviligne, i.e.

$$\mathbf{v} = \frac{D\mathbf{x}}{Dt}, \qquad \upsilon = \frac{Ds}{Dt}$$

On définit ainsi l'accélération eulérienne comme la dérivée matérielle de la vitesse eulérienne :

$$\gamma = \frac{D\mathbf{v}}{Dt} \tag{1.43}$$

et la vitesse de rotation eulérienne est la dérivée matérielle de l'angle tangent, *i.e.* $\frac{D\alpha}{Dt}$. En partant de (1.40) et en calculant la dérivée matérielle de **t** il vient

$$\frac{D\alpha}{Dt} \mathbf{n} = \frac{D\mathbf{t}}{Dt} = \frac{D}{Dt} \left(\frac{\partial \mathbf{x}}{\partial s}\right) = \frac{\partial^2 \mathbf{x}}{\partial s \partial t} + v \frac{\partial^2 \mathbf{x}}{\partial s^2} = \frac{\partial \mathbf{v}}{\partial s} - \frac{\partial v}{\partial s} \mathbf{t}.$$

En projetant sur le repère local (\mathbf{t}, \mathbf{n}) , on obtient l'expression de la vitesse eulérienne de rotation eulérienne et la vitesse de déformation d'extension en termes de la dérivée spatiale de la vitesse eulérienne :

$$\frac{D\alpha}{Dt} = \frac{\partial \mathbf{v}}{\partial s} \cdot \mathbf{n}, \qquad \frac{\partial v}{\partial s} = \frac{\partial \mathbf{v}}{\partial s} \cdot \mathbf{t}.$$
(1.44)

Chapitre 2

Modélisation des efforts et conditions d'équilibre

Sur l'utilisation des forces, couples et moments. Dans toute la suite nous éviterons d'utiliser explicitement le formalisme des torseurs pour décrire les efforts. En conséquence, les efforts seront représentés par des forces et des couples appliqués en des points du milieu continu, sans lien a priori entre les premières et les seconds. Les forces seront des vecteurs du plan ($\mathbf{e}_1, \mathbf{e}_2$) alors que les couples auront leur moment porté par \mathbf{e}_3 . On sera ensuite amené à calculer le moment en un point (arbitraire) \mathbf{x} du plan dû à une force \mathcal{F}_0 et à un couple de moment $\mathcal{M}_0\mathbf{e}_3$ appliqués en un point du milieu continu situé au point \mathbf{x}_0 du plan. On rappelle que ce moment sera porté par \mathbf{e}_3 , dépendra de \mathbf{x} et que son unique composante $M(\mathbf{x})$ est donnée par

$$M(\mathbf{x}) = (\mathbf{x}_0 - \mathbf{x}) \wedge \boldsymbol{\mathcal{F}}_0 + \mathcal{M}_0$$

où l'on utilise la notation condensée pour le produit mixte

 $\mathbf{a} \wedge \mathbf{b} = (\mathbf{a} \wedge \mathbf{b}) \cdot \mathbf{e}_3$.

Dans ce chapitre, on s'intéresse aux efforts mécaniques auxquels est soumis un milieu continu curviligne à l'équilibre dans une configuration fixe par rapport à un référentiel donné¹. Il s'agit dans un premier temps de décrire et de modéliser les différents types d'effort (forces ou moments, intérieurs ou extérieurs, répartis ou concentrés, de contact ou à distance, à l'intérieur ou aux extrémités) avant d'établir les conditions qui les relient et qu'ils doivent satisfaire à l'équilibre. À ce stade, la configuration d'équilibre du milieu sera supposée connue. La question de sa détermination ne sera abordée que dans la partie dédiée à la statique. Cette configuration sera paramétrée par son abscisse curviligne, elle pourra être avec ou sans extrémités, mais nous n'envisagerons pour simplifier la présentation que des courbes de longueur finie ℓ .

^{1.} Le choix de présenter ces différents concepts d'abord dans le cadre restreint de la statique avant de les étendre au cadre général de la dynamique est guidé avant tout par des raisons pédagogiques. On pourrait les présenter tous en une seule fois, mais l'exposé perdrait en lisibilité ce qu'il gagnerait en concision.

2.1 Les efforts extérieurs

Ce milieu curviligne est placé dans un environnement qui exerce sur lui des efforts qui peuvent être des forces ou des couples. Mais alors que dans le cas du solide rigide, il suffisait de connaître la résultante de ces forces et le moment résultant en un point de cet ensemble de forces et de couples pour déterminer son mouvement, il devient essentiel dans le cas d'un milieu déformable de donner la répartition précise de ces efforts extérieurs. En effet, comme nous le verrons dès les premiers exemples de statique, deux systèmes d'efforts, chacun à résultante et moment résultant nuls mais répartis différemment, conduisent en général à deux configurations d'équilibre différente. En conséquence, nous choisissons une classification des efforts extérieurs qui met d'abord l'accent sur leur répartition plutôt que sur leur origine physique.

2.1.1 Efforts répartis

Nous distinguerons les forces réparties des couples répartis, les premières étant plus fréquentes que les seconds.

Forces réparties. Il s'agit d'une densité linéique de forces

$$s \mapsto \mathbf{f}(s) = (\mathbf{f}_1(s), \mathbf{f}_2(s))$$

distribuées tout au long du milieu curviligne (l'unité est le N/m). La force $\mathbf{f}(s)ds$ est donc appliquée sur l'élément de longueur ds situé au point matériel d'abscisse curviligne s qui se trouve au point géométrique $\mathbf{x}(s)$. On sera aussi amené à la décomposer sur la base locale, ce qui donne

$$\mathbf{f}(s) = \mathbf{f}_t(s)\mathbf{t}(s) + \mathbf{f}_n(s)\mathbf{n}(s).$$

Voici quelques exemples-type en distinguant les forces à distance des forces de contact.

• *Forces à distance.* Les plus fréquentes en pratique sont les forces de pesanteur et les forces d'inertie d'entraînement.

★ Forces de pesanteur. Ces forces sont à la base des forces massiques. Pour les traduire en forces linéiques il faut les multiplier par la masse linéique que l'on supposera connue dans la configuration considérée et que l'on notera $s \mapsto \varrho(s)$. Dans le cas fréquent d'une pesanteur uniforme de vecteur **g**, la densité de forces linéique sera donc

 $\mathbf{f}(s) = \varrho(s)\mathbf{g}$ (force linéique de pesanteur).

à leur poids propre

★ Forces d'inertie d'entraînement. Lorsque le milieu continu est immobile dans un référentiel non galiléen, ses points matériels sont soumis à des forces d'inertie d'entraînement qui sont, comme les forces de pesanteur, des forces massiques. Prenons l'exemple où le plan ($\mathbf{O}, \mathbf{e}_1, \mathbf{e}_2$) est en rotation uniforme autour de l'axe $\mathbf{O}x_2$ avec une vitesse angulaire Ω par rapport à un référentiel galiléen. Alors un point matériel de masse m, immobile au point $\mathbf{x} = (x_1, x_2)$ du plan (qui peut donc être vu comme un référentiel non galiléen) est soumis à la force d'inertie centrifuge $m\Omega^2 x_1 \mathbf{e}_1$. Par conséquent, si le milieu curviligne est immobile dans ce référentiel dans la configuration $s \mapsto \mathbf{x}(s)$ avec une masse linéique $\varrho(s)$, il sera soumis à la densité de forces linéiques

 $\mathbf{f}(s) = \varrho(s)\Omega^2 x_1(s)\mathbf{e}_1$ (force linéique de force centrifuge).

C'est un exemple de forces linéiques qui dépendent de la position.

Bras d'éolienne soumis à des forces centrifuges

• Forces de contact. Le milieu continu curviligne peut aussi être soumis à des forces réparties dues au contact avec d'autres objets. Ces objets pourront être des solides rigides, des fluides ou d'autres milieux continus déformables. Nous donnons ci-dessous deux exemples de telles forces de contact, mais on sera amené à en rencontrer d'autres.

★ Enroulement d'un câble. Si l'on enroule un câble autour d'une poulie, la poulie exerce sur le câble des efforts de contact qui sont des forces réparties. Cette densité $s \mapsto \mathbf{f}(s)$ n'est pas donnée *a priori* et sa détermination passe par une modélisation du contact. En particulier la loi de frottement adoptée joue un rôle essentiel. Nous traiterons cet exemple dans le chapitre de statique.

 \star Pression d'un fluide. Un autre exemple classique est celui d'un réservoir contenant un fluide qui exerce une pression sur celui-ci. Pour rester dans le cadre d'un milieu curviligne plan, on peut considérer la section d'un tuyau de faible épaisseur qui renferme un gaz sous pression. Si l'on néglige la pesanteur, la pression du fluide à l'équilibre à l'intérieur est une constante p. Le fluide exerce donc sur la paroi du tuyau une densité de force d'intensité p orientée suivant la normale *extérieure* au volume renfermé. Si l'on oriente la configuration d'équilibre de la paroi du tuyau dans le sens trigonométrique, la normale extérieure au volume renfermé est l'opposée de la normale $\mathbf{n}(s)$ à la paroi. Par conséquent, on aura

 $\mathbf{f}(s) = -p\mathbf{n}(s)$ (force linéique due à la pression d'un fluide).

Couples répartis. Il s'agit de couples distribués tout au long du milieu curviligne et dont le moment porté par \mathbf{e}_3 a pour densité $s \mapsto m(s)$ (l'unité est le N). Autrement dit, l'extérieur exerce sur l'élément de longueur ds situé au point matériel d'abscisse curviligne s qui se trouve au point géométrique $\mathbf{x}(s)$ un couple dont le moment est $m(s)\mathbf{e}_3ds$.

Dans beaucoup de situations que nous rencontrerons, il n'y aura pas de couples répartis et donc m(s) = 0. L'exemple ci-dessous emprunté au Génie Civil montre une situation où ils existent et où on peut les calculer en considérant la "vraie" structure tridimensionnelle de l'objet.

* Poutre armée verticale à armature excentrée. Un exemple où les couples répartis sont présents est celui d'une poutre en béton armé contenant une armature d'acier excentrée, cf la figure ci-contre. Supposons pour simplifier que cette poutre soumise à son poids propre se déforme peu et assimilons sa configuration déformée à sa configuration de référence. La poutre est placée (verticalement) dans le champ de pesanteur uniforme $\mathbf{g} = -g\mathbf{e}_2$, les masses *volumiques* du béton et de l'acier étant respectivement ρ_b et ρ_a . Elle est de section carrée de côté H et l'armature de section circulaire de rayon R est située à une distance h dans la direction 1 de la ligne neutre passant par le centre des sections. La ligne passant par le centre géométrique des sections est choisie comme configuration du milieu curviligne, *i.e.* $\mathbf{x}(s) = s\mathbf{e}_2$. Considérons une tranche de cette poutre située entre les abscisses curvilignes s-ds/2et s+ds/2. Le poids de cette tranche fournit la densité linéique de forces $\mathbf{f}(s)$, alors que le moment calculé au point $s\mathbf{e}_2$ résultant des forces de pesanteur s'exerçant sur cette tranche fournit la densité m(s). On a donc

$$\mathbf{f}(s) = \int_{-H/2}^{H/2} \int_{-H/2}^{H/2} \rho(x_1, x_3) \mathbf{g} dx_1 dx_3$$

 et

$$m(s) = \int_{-H/2}^{H/2} \int_{-H/2}^{H/2} \rho(x_1, x_3)(x_1 \mathbf{e}_1 + x_3 \mathbf{e}_3) \wedge \mathbf{g} dx_1 dx_3.$$

$$m = -(\rho_a - \rho_b)\pi R^2 hg$$
 (densité linéique de moment exercé sur la poutre armée).

Exercice 2.1. Vérifier que si la poutre en béton armée est placée horizontalement en la faisant pivoter de 90° autour de \mathbf{e}_3 , alors il n'y a plus de couples concentrés. Qu'en est-il si on la fait pivoter de 90° autour de \mathbf{e}_1 ?

2.1.2 Efforts ponctuels

Dans notre schématisation des objets élancés nous avons "réduit" le milieu continu tridimensionnel en un milieu unidimensionnel. Pour être cohérent il faut schématiser de la même façon les efforts extérieurs. Par conséquent, lorsqu'ils sont appliqués sur des zones de petite taille, il est légitime et cohérent de les assimiler à des efforts *ponctuels* (par opposition aux efforts *répartis* introduits précédemment), *i.e.* à des efforts qui sont appliqués sur un ensemble discret de points du milieu curviligne. Les deux extrémités du milieu curviligne quand elles existent, *i.e.* quand le milieu n'est pas infini, semi-infini ou une courbe fermée, entrent dans cette catégorie de points soumis à des efforts ponctuels. Il est bon toutefois de les distinguer des autres points (dits points intérieurs) du fait du rôle particulier qu'ils jouent dans les conditions aux limites.

Forces et couples appliqués aux extrémités du milieu curviligne. Les efforts que l'extérieur exerce en l'extrémité s = 0 du milieu continu curviligne (quand elle existe) se réduisent à une force \mathcal{F}_0 et à un couple de moment $\mathcal{M}_0\mathbf{e}_3$, tous deux appliqués au point $\mathbf{x}(0)$. De même, Les efforts que l'extérieur exerce en l'extrémité $s = \ell$ du milieu continu curviligne (quand elle existe) se réduisent à une force \mathcal{F}_{ℓ} et à un couple de moment $\mathcal{M}_{\ell}\mathbf{e}_3$, tous deux appliqués au point $\mathbf{x}(\ell)$. Évidemment, ces forces et ces moments peuvent être nuls. Quand la force et le moment sont nuls en une extrémité, on dit que cette extrémité est libre.

* Poutre de Galilée. Dans l'exemple de la poutre ci-contre, schématisée par le segment de droite ci-dessous, l'extrémité $s = \ell$ est soumise au poids suspendu alors que l'extrémité s = 0 est soumise à la réaction du mur auquel elle est accrochée. Par conséquent, on a

$$\mathcal{F}_{\ell} = m\mathbf{g}, \quad \mathcal{M}_{\ell} = 0$$

alors que la force et le moment de réaction \mathcal{F}_0 et \mathcal{M}_0 seront déterminés lorsqu'on écrira l'équilibre global de la poutre (et qu'on aura donc précisé l'ensemble des efforts extérieurs auxquels elle est soumise).

Dessin de la poutre tel qu'il figure dans le livre de Galilée "Discours concernant deux sciences nouvelles"

Forces et couples appliqués en des points intérieurs du milieu curviligne. L'extérieur peut exercer des efforts concentrés en certains points du milieu curviligne. Nous supposerons que ces points sont en nombre fini n et, quand il y en a, nous les repérerons par leur abscisse curviligne $\{s_i\}_{1\leq i\leq n}$. L'effort exercé sur le point matériel s_i se réduit à une force \mathcal{F}_{s_i} et à un couple de moment $\mathcal{M}_{s_i}\mathbf{e}_3$, tous deux appliqués au point géométrique $\mathbf{x}(s_i)$.

On remarquera que les notations sont cohérentes avec celles adoptées pour les efforts aux extrémités et que l'origine s = 0 peut être considérée comme le point d'indice 0 et l'extrémité $s = \ell$ comme le point n + 1.

* Potence. La potence ci-contre est constituée de trois milieux curvilignes : une barre verticale, une barre horizontale et une barre oblique. Chacune de ces barres exerce sur l'autre au point de fixation une force et un couple ponctuels dont les intensités dépendent en particulier de la charge que supporte la potence. Suivant que l'on s'intéresse à l'ensemble des 3 barres ou bien à une barre en particulier, ces efforts ponctuels sont des efforts intérieurs ou bien des efforts extérieurs. Ainsi, si l'on considère la barre horizontale "seule", elle est soumise au système d'efforts décrits sur le schéma ci-contre. Seule la force \mathcal{F}_{ℓ} due à la charge est donnée, tous les autres efforts devront être calculés en étudiant l'équilibre de l'ensemble des 3 barres.

 \star Pont à haubans. Les ponts à haubans sont des exemples-type de structures soumises à des efforts ponctuels. Le tablier du pont schématisé comme un milieu curviligne est soumis aux efforts ponctuels dus aux haubans (câbles qui relient le tablier au pilier porteur). De même, le pilier porteur est un milieu curviligne qui est soumis à des efforts ponctuels dus à ces mêmes haubans. Comme nous le verrons lorsque nous introduirons le concept de *fil*, dans les deux cas ces efforts se réduisent à des forces appliquées aux points d'attache des haubans (les fils ne transmettent pas de moment).

On peut voir sur la figure ci-contre une partie du viaduc de Millau avec un pilier et les haubans accrochés à ce pilier qui portent le tablier. Les véhicules qui passent sur le viaduc sont d'autres exemples de charges ponctuelles (et mobiles) que doit supporter le tablier.

 \star Le saut à la perche. Au moment de l'impulsion, l'extrémité avant de la perche étant bloquée par le butoir, le sauteur positionne sa main avant comme point d'appui pour faire levier alors que sa main arrière tient l'autre extrémité de la perche. Celle-ci est donc soumise au moment de l'impulsion à une flexion 3 points : deux des points correspondent aux extrémités et le troisième point correspond à la prise de la main avant. La perche est soumise à une force ponctuelle en ce point qui va permettre de la fléchir. Cette configuration initiale combinée avec la vitesse d'élan sont des facteurs déterminants pour la qualité du saut.

Les efforts extérieurs sur la perche au moment de l'impulsion

2.2 Les efforts intérieurs

2.2.1 Leur définition

Considérons la poutre de Galilée. Si dans la situation décrite p. 37 on peut l'observer dans une configuration d'équilibre qui est pratiquement horizontale, c'est parce qu'il existe des forces internes entre les "particules" qui assurent la cohésion et qui font qu'on peut parler de milieu continu. Sinon, en l'absence de forces de cohésion, la poutre se désagrégerait et on n'observait qu'un amas de particules désordonnées. De façon générale, c'est grâce à ces forces de cohésion qu'on peut fabriquer des objets qui "se tiennent". Leur origine provient à l'échelle atomique des forces d'interaction entre les atomes. La première étape consiste donc à modéliser ces efforts intérieurs dans le cadre des milieux continus curvilignes. Comme nous l'avons fait pour décrire la géométrie, les déformations et les efforts intérieurs, nous postulerons directement leur forme. Nous n'essaierons pas de les déduire des efforts intérieurs régnant dans les "vrais" objets tridimensionnels et encore moins de faire le lien avec l'échelle microscopique.

D- 2.1 (Hypothèse sur les efforts intérieurs). La configuration du milieu continu curviligne étant $s \mapsto \mathbf{x}(s)$, on postule qu'au point matériel d'abscisse curviligne s:

1. tout voisinage de points devant le point s exerce sur tout voisinage de points derrière le point s des efforts intérieurs dits directs

- qui s'appliquent au point géométrique $\mathbf{x}(s)$,
- qui dépendent du point s mais pas des voisinages choisis,
- qui se réduisent à une force $\mathbf{R}(s)$ et un moment $M(s)\mathbf{e}_3$.

La force $\mathbf{R}(s)$ est appelée la force interne et le moment M(s) est appelé le moment fléchissant au point s. La force interne est un vecteur qui se décompose sur la base locale en

$$\mathbf{R}(s) = N(s)\mathbf{t}(s) + T(s)\mathbf{n}(s) \,. \tag{2.1}$$

La composante N(s) est l'effort normal et la composante T(s) est l'effort tranchant en s.

2. Inversement, tout voisinage de points derrière s exerce sur tout voisinage de points devant s des efforts intérieurs dits réciproques qui se réduisent à une force $\mathbf{R}^{r}(s)$ et à un moment $M^{r}(s)\mathbf{e}_{3}$ qui s'appliquent au point géométrique $\mathbf{x}(s)$ et qui dépendent de s mais pas des voisinages choisis.

Cette modélisation des efforts intérieurs adoptée a priori appelle quelques commentaires.

• Il faut préciser la notion de voisinages devant et derrière introduits dans l'hypothèse. Nous adopterons les définitions suivantes qui ne sont pas les plus générales mais qui suffisent à notre utilisation future de l'hypothèse :

* Cas d'un milieu avec des extrémités, *i.e.* quand $\mathbb{C} = (0, \ell)$. Les voisinages devant le point s sont les intervalles ouverts de la forme (s, s'') et les voisinages derrière le point s sont les intervalles ouverts de la forme (s', s), avec

$$0 \le s' < s < s'' \le \ell.$$

★ Cas d'un milieu à courbe fermée, *i.e.* quand $\mathbb{C} = [0, \ell)$. On va adopter une définition qui ne privilégie pas le choix (arbitraire) de l'origine de la paramétrisation. Soit $s_0 \in \mathbb{C}$ le point dont on veut définir les voisinages devant et derrière. On fait le changement de paramètre suivant laissant \mathbb{C} invariant :

$$s \mapsto \zeta = \begin{cases} s - s_0 & \text{si } s \ge s_0 \\ s + \ell - s_0 & \text{si } s < s_0 \end{cases}$$

où le point s_0 est devenu l'origine $\zeta = 0$. Les voisinages devant et derrière s_0 sont, dans la nouvelle paramétrisation, les intervalles ouverts de la forme $(0, \zeta')$ et (ζ'', ℓ) , avec

$$0 < \zeta' \le \zeta'' < \ell.$$

• Il ne peut s'agir que d'un postulat car on ne peut pas le démontrer. L'hypothèse forte est de supposer que les actions d'une partie sur l'autre sont *locales* et se réduisent à des forces et des moments. On aurait pu envisager des formes plus complexes d'interaction (moments d'ordre supérieur ou interactions non locales, par exemple). On n'en mesurera la pertinence qu'à travers les conséquences et les prédictions issues de cette modélisation. On peut noter toutefois que ce postulat est cohérent avec la modélisation retenue pour les efforts extérieurs. On verra qu'elle est également cohérente avec la description adoptée pour la géométrie et les déformations.

• Nous n'adoptons pas a priori le principe de l'action et de la réaction qui consisterait à postuler que $\mathbf{R}^r = -\mathbf{R}$ et $M^r = -M$. En fait, nous établirons qu'il n'est pas toujours vrai.

• La définition de la force interne et du moment fléchissant dépend de l'orientation choisie pour le milieu curviligne. Si l'on change l'orientation, alors \mathbf{R} et M sont changés en \mathbf{R}^r et M^r , et vice versa.

• La terminologie qui consiste à appeler effort normal un effort qui est suivant la tangente au milieu curviligne peut paraître paradoxale. Elle tient sa légitimité de son origine tridimensionnelle. En effet si on réintroduit les sections et considérons le milieu tridimensionnel, alors la tangente à la "ligne neutre" est normale à la section transversale et l'effort normal est la résultante des forces surfaciques normales à la section.

2.2.2 Leur détermination

(ii) après coupure

FIGURE 2.1 – Le principe de l'introduction des efforts intérieurs : on coupe le milieu continu au point s et on impose les efforts aux deux extrémités ainsi créées

Pour déterminer les efforts intérieurs en pratique, on utilise la méthode dite des coupures. Elle consiste en les deux étapes suivantes, cf Figure 2.1 :

1. On considère un milieu continu curviligne en équilibre dans une configuration donnée sous l'action d'efforts extérieurs;

2. On coupe le milieu continu en un point arbitraire *s* et on charge les deux extrémités ainsi créées par les efforts intérieurs correspondants : sur l'extrémité amont on exerce les efforts intérieurs directs et sur l'extrémité aval les efforts intérieurs réciproques. On calcule les efforts de façon à ce que les deux sous-parties créées soient exactement dans la même configuration d'équilibre qu'avant la coupure.

2.3 Conditions d'équilibre d'un milieu continu curviligne

Il s'agit d'établir ici le lien entre les efforts intérieurs et les efforts extérieurs lorsque le milieu est en équilibre par rapport à un référentiel dans une configuration donnée. Pour cela nous allons nous appuyer sur le Principe Fondamental de la Statique. Rappelons-le dans le cas d'un solide rigide².

Equilibre d'un solide rigide. Un solide rigide est dit en équilibre par rapport à un référentiel (galiléen ou non) dans une position donnée si et seulement si les efforts extérieurs s'exerçant sur lui dans la position considérée (en y incluant les forces d'inertie d'entrainement dans le cas d'un référentiel non galiléen) ont une force résultante nulle et un moment résultant en un point nul.

^{2.} Dans toute la suite, sauf mention expresse du contraire, *équilibre* dans un référentiel sera synonyme de *non mouvement* dans ce référentiel excluant ainsi les situations où l'objet est en translation uniforme. Cette restriction est importante dans le cas de référentiel non galiléen car les points d'un solide rigide ayant un mouvement de translation uniforme dans un tel référentiel sont soumis à la force de Coriolis. Cette force s'annule si le solide est immobile dans ce référentiel et il ne reste plus que les forces d'inertie d'entrainement (qui elles dépendent de la position du solide) comme forces inertielles.

Il s'agit d'appliquer ce principe en l'adaptant à la situation de milieux continus curvilignes déformables. Ceci demande quelque attention. En effet, si l'on se réfère à un assemblage de n solides rigides, on sait que l'équilibre de l'ensemble exige que chaque solide étudié séparément (mais en tenant compte de l'action des autres sur lui) soit en équilibre. Réciproquement on sait que si chaque solide rigide est en équilibre, alors l'ensemble est en équilibre. Si on veut généraliser cette condition au cas d'un milieu déformable, il faut donc exiger que *toute* sous-partie du milieu continu soit elle-même en équilibre. On adopte donc la définition suivante :

D-2.2 (Equilibre d'un milieu continu curviligne). Un milieu continu curviligne est dit en équilibre par rapport à un référentiel (galiléen ou non) dans une configuration donnée si et seulement si les deux conditions suivantes sont vérifiées :

1. les efforts extérieurs s'exerçant sur lui dans la position considérée (en y incluant les forces d'inertie d'entrainement dans le cas d'un référentiel non galiléen) ont une force résultante nulle et un moment résultant en un point nul;

2. pour toute sous-partie extraite du milieu curviligne, les efforts extérieurs auxquels elle est soumise une fois extraite ont, dans la configuration considérée, une force résultante nulle et un moment résultant en un point nul. Sachant que du fait de l'extraction, ces efforts extérieurs consistent :

(i) aux efforts extérieurs que subissait la sous-partie quand elle était incluse dans l'ensemble du milieu continu;

(ii) aux efforts intérieurs (directs ou réciproques suivant le point) au milieu curviligne en ces points de coupure.

La première condition peut être vue comme un cas particulier de la deuxième, si on considère que l'ensemble du milieu est un cas particulier de sous-ensemble. Cependant, il est préférable de la traiter séparément car elle ne met pas en jeu les efforts intérieurs. Pour pouvoir mettre en oeuvre la deuxième condition, il faut préciser ce que l'on entend par sous-partie du milieu curviligne. Pour ne pas alourdir la présentation par des détails techniques secondaires, nous nous contenterons de vérifier l'équilibre des parties de \mathbb{C} suivantes :

• dans le cas d'une courbe ouverte où $\mathbb{C} = (0, \ell)$, ce sont les intervalles de la forme (s, s') avec $0 \le s < s' \le \ell$;

• dans le cas d'une courbe fermée où $\mathbb{C} = [0, \ell)$, il faut en plus rajouter un voisinage de la "fausse extrémité" s = 0. Ce sont donc les intervalles de la forme (s, s') avec $0 \leq s < s' \leq \ell$ auxquels on rajoute les réunions d'intervalles de la forme $[0, s) \cup (s', \ell)$ avec $0 < s \leq s' < \ell$.

On voit immédiatement que les conditions d'équilibre à respecter sont plus nombreuses pour le milieu déformable. À première vue, la principale difficulté que l'on va rencontrer pour s'assurer de son équilibre est d'envisager toutes les sous-parties. Mais en fait, en vertu des hypothèses faites sur les efforts intérieurs, il suffit de vérifier l'équilibre de familles "génératrices" de sous-parties pour le vérifier pour toutes, comme nous allons le voir ci-dessous.

2.4 Vérification de l'équilibre par la méthode des coupures

Le cas des courbes fermées nécessite un traitement particulier à cause de l'absence d'extrémité. Nous présenterons donc d'abord la méthode des coupures dans le cas d'un milieu curviligne possédant deux extrémités et son extension aux courbes fermées sera faite après. Dans la suite de cette section, $\mathbb{I} \subset \mathbb{C}$ désignera de façon générique l'ensemble de points dont on vérifie l'équilibre. L'idée est de vérifier tout d'abord l'équilibre de l'ensemble du milieu curviligne, puis de le vérifier pour deux familles de parties de plus en plus petites avant de le vérifier pour toutes les parties.

2.4.1 Cas des milieux curvilignes avec extrémités

La configuration que l'on suppose en équilibre est $s \mapsto \mathbf{x}(s)$ avec $s \in \mathbb{C} = (0, \ell)$. Le milieu est supposé soumis à

- une densité de forces linéiques $s \mapsto \mathbf{f}(s)$;
- une densité de couples linéiques de moment $s \mapsto m(s)$;

• une force et un moment (éventuellement nuls) à chaque extrémité, soit $(\mathcal{F}_0, \mathcal{M}_0)$ en s = 0 et $(\mathcal{F}_\ell, \mathcal{M}_\ell)$ en $s = \ell$;

• éventuellement, une famille de forces et de couples ponctuels (extrémités exclues) que l'on indexera par l'abscisse curviligne s_i du point où ils sont appliqués, *i.e.* ($\mathcal{F}_{s_i}, \mathcal{M}_{s_i}$) désigne la force et le moment de l'effort ponctuel appliqué au point géométrique $\mathbf{x}(s_i)$. L'ensemble de ces points est noté \mathbb{P} , il peut être vide, mais est supposé de cardinal fini,

 $\mathbb{P} = \emptyset$ ou bien $\mathbb{P} = \{s_1, \cdots, s_n\}$ (ensemble des points soumis à des efforts extérieurs ponctuels)

1. Equilibre global : on prend $\mathbb{I} = \mathbb{C}$. Pour que la condition d'équilibre soit satisfaite, il faut donc que la résultante et le moment résultant de tous les efforts extérieurs agissant sur le milieu curviligne soient nuls. L'équilibre des forces donne

Equilibre global des forces :
$$\mathbf{0} = \mathcal{F}_0 + \int_0^\ell \mathbf{f}(s) ds + \sum_{s_i \in \mathbb{P}} \mathcal{F}_{s_i} + \mathcal{F}_\ell$$
 (2.2)

Pour écrire l'équilibre des moments, on peut choisir n'importe quel point du plan pour y calculer ces moments. En prenant le point $\mathbf{x}(0)$, on obtient

Equilibre global des moments : $0 = \mathcal{M}_{0} + \int_{0}^{\ell} m(s)ds + \int_{0}^{\ell} (\mathbf{x}(s) - \mathbf{x}(0)) \wedge \mathbf{f}(s)ds$ $+ \sum_{s_{i} \in \mathbb{P}} \mathcal{M}_{s_{i}} + \sum_{s_{i} \in \mathbb{P}} (\mathbf{x}(s_{i}) - \mathbf{x}(0)) \wedge \mathcal{F}_{s_{i}} + \mathcal{M}_{\ell} + (\mathbf{x}(\ell) - \mathbf{x}(0)) \wedge \mathcal{F}_{\ell}$ (2.3)

(iii) les parties amont et aval après la coupure au point $s_2 \in \mathbb{P}$. Noter que les efforts ponctuels exercés en s_2 avant la coupure ne figurent plus

FIGURE 2.2 – Chargement de tout ou partie du milieu curviligne supposé en équilibre dans la configuration représentée : en vert clair, les densités linéiques de forces et de moments ; en vert sombre, les forces et les moments aux extrémités ; en rouge, les forces et les moments ponctuels ; en bleu, les efforts intérieurs.

2. Equilibre des intervalles (s, ℓ) : on prend $\mathbb{I} = (s, \ell)$ avec $s \in \mathbb{C}$. Cette partie est soumise :

• en s, à l'action de la partie amont du milieu et donc, par définition, à la force $\mathbf{R}^{r}(s)$ et au moment $M^{r}(s)$;

- sur (s, ℓ) , à la densité linéique de forces **f** et de moments m;
- sur les points s_i appartenant à $\mathbb{P} \cap (s, \ell)$, aux efforts ponctuels correspondants;
- en ℓ , à la force \mathcal{F}_{ℓ} et au moment \mathcal{M}_{ℓ} .

En écrivant l'équilibre des forces, on obtient

Equilibre des forces sur
$$(s, \ell)$$
 : $\mathbf{0} = \mathbf{R}^r(s) + \int_s^\ell \mathbf{f}(\tilde{s}) d\tilde{s} + \sum_{s_i \in \mathbb{P} \cap (s, \ell)} \mathcal{F}_{s_i} + \mathcal{F}_\ell$ (2.4)

En calculant les moments au point $\mathbf{x}(s)$, la condition d'équilibre des moments donne

Equilibre des moments sur
$$(s, \ell)$$
:

$$0 = M^{r}(s) + \int_{s}^{\ell} m(\tilde{s})d\tilde{s} + \int_{s}^{\ell} (\mathbf{x}(\tilde{s}) - \mathbf{x}(s)) \wedge \mathbf{f}(\tilde{s})d\tilde{s}$$

$$+ \sum_{s_{i} \in \mathbb{P} \cap (s, \ell)} \mathcal{M}_{s_{i}} + \sum_{s_{i} \in \mathbb{P} \cap (s, \ell)} (\mathbf{x}(s_{i}) - \mathbf{x}(s)) \wedge \mathcal{F}_{s_{i}} + \mathcal{M}_{\ell} + (\mathbf{x}(\ell) - \mathbf{x}(s)) \wedge \mathcal{F}_{\ell}$$

$$(2.5)$$

Ces relations d'équilibre fournissent donc les efforts intérieurs $s \mapsto \mathbf{R}^r(s)$ et $s \mapsto M^r(s)$ en termes des efforts extérieurs et de la configuration d'équilibre.

- 3. Equilibre des intervalles (0, s): on prend $\mathbb{I} = (0, s)$ avec $s \in \mathbb{C}$. Cette partie est soumise :
- en 0, à la force \mathcal{F}_0 et au moment \mathcal{M}_0 ;
- sur (0, s), à la densité linéique de forces **f** et de moments m;
- sur les points s_i appartenant à $\mathbb{P} \cap (0, s)$, aux efforts ponctuels correspondants;
- en s, à l'action de la partie aval du milieu et, par définition, à la force $\mathbf{R}(s)$ et au moment M(s).

En écrivant l'équilibre des forces, on obtient

Equilibre des forces sur
$$(0,s)$$
 : $\mathbf{0} = \mathcal{F}_0 + \int_0^s \mathbf{f}(\tilde{s}) d\tilde{s} + \sum_{s_i \in \mathbb{P} \cap (0,s)} \mathcal{F}_{s_i} + \mathbf{R}(s)$. (2.6)

En calculant les moments au point $\mathbf{x}(s)$, la condition d'équilibre des moments donne

Equilibre des moments sur
$$(0, s)$$
:

$$0 = \mathcal{M}_{0} + (\mathbf{x}(0) - \mathbf{x}(s)) \wedge \mathcal{F}_{0} + \int_{0}^{s} m(\tilde{s}) d\tilde{s} + \int_{0}^{s} (\mathbf{x}(\tilde{s}) - \mathbf{x}(s)) \wedge \mathbf{f}(\tilde{s}) d\tilde{s}$$

$$+ \sum_{s_{i} \in \mathbb{P} \cap (0, s)} \mathcal{M}_{s_{i}} + \sum_{s_{i} \in \mathbb{P} \cap (0, s)} (\mathbf{x}(s_{i}) - \mathbf{x}(s)) \wedge \mathcal{F}_{s_{i}} + M(s)$$
(2.7)

Remarque 2.1. Si on choisit l'origine **O** du repère pour calculer les moments, l'équation d'équilibre des moments s'écrit

$$0 = \mathcal{M}_{0} + \mathbf{x}(0) \wedge \mathcal{F}_{0} + \int_{0}^{s} m(\tilde{s}) d\tilde{s} + \int_{0}^{s} \mathbf{x}(\tilde{s}) \wedge \mathbf{f}(\tilde{s}) d\tilde{s}$$

+
$$\sum_{s_{i} \in \mathbb{P} \cap (0,s)} \mathcal{M}_{s_{i}} + \sum_{s_{i} \in \mathbb{P} \cap (0,s)} \mathbf{x}(s_{i}) \wedge \mathcal{F}_{s_{i}} + \mathbf{x}(s) \wedge \mathbf{R}(s) + M(s)$$
(2.8)

qui est équivalente à (2.7) en tenant compte de (2.6).

Ces relations d'équilibre fournissent donc la répartition des efforts intérieurs $s \mapsto \mathbf{R}(s)$ et $s \mapsto M(s)$ en termes des efforts extérieurs et de la configuration d'équilibre.

4. Equilibre de tous les intervalles (s', s'') avec $0 \le s' < s'' \le \ell$: Montrons maintenant que les conditions d'équilibre obtenues précédemment, à savoir (2.2)–(2.7), sont suffisantes pour assurer l'équilibre de n'importe quel intervalle. On prend donc $\mathbb{I} = (s', s'')$. Cette partie est soumise :

- en s', à l'action de la partie derrière du milieu et donc à la force $\mathbf{R}^{r}(s')$ et au moment $M^{r}(s')$;
- sur (s', s''), à la densité linéique de forces **f** et de moments m;
- sur les points s_i appartenant à $\mathbb{P} \cap (s', s'')$, aux efforts ponctuels correspondants;
- en s'', à l'action de la partie devant du milieu et donc à la force $\mathbf{R}(s'')$ et au moment M(s'').

Noter que l'on se sert ici du fait que les efforts intérieurs sont, par hypothèse, des efforts locaux qui ne dépendent pas des voisinages de points derrière ou devant considérés. En conséquence, les efforts exercés en s' après coupure en ce point ne dépendent pas du fait que l'on ait coupé aussi en s'' (et vice versa). Ce sont nécessairement les mêmes que ceux que l'on a calculé en écrivant l'équilibre de (s', ℓ) , *i.e.* $\mathbf{R}^r(s')$ et $M^r(s')$ donnés par (2.4) et (2.5) (*idem* pour les efforts en s'').

En calculant la résultante des forces, on obtient

Résultante des forces sur
$$(s', s'') = \mathbf{R}^r(s') + \int_{s'}^{s''} \mathbf{f}(\tilde{s}) d\tilde{s} + \sum_{s_i \in \mathbb{P} \cap (s', s'')} \mathcal{F}_{s_i} + \mathbf{R}(s'').$$

Si l'on prend (2.4) avec s = s' et (2.6) avec s = s'', qu'on les additionne et qu'on retranche (2.2), il vient

$$\mathbf{0} = \mathbf{R}^{r}(s') + \int_{s'}^{s} \mathbf{f}(\tilde{s}) d\tilde{s} + \sum_{s_i \in \mathbb{P} \cap (s',\ell)} \mathcal{F}_{s_i} + \sum_{s_i \in \mathbb{P} \cap (0,s'')} \mathcal{F}_{s_i} - \sum_{s_i \in \mathbb{P}} \mathcal{F}_{s_i} + \mathbf{R}(s'').$$

Comme $\sum_{s_i \in \mathbb{P} \cap (s',\ell)} \mathcal{F}_{s_i} + \sum_{s_i \in \mathbb{P} \cap (0,s'')} \mathcal{F}_{s_i} - \sum_{s_i \in \mathbb{P}} \mathcal{F}_{s_i} = \sum_{s_i \in \mathbb{P} \cap (s',s'')} \mathcal{F}_{s_i}$, on en déduit que la résultante des forces sur (s',s'') est nulle. On procède de même pour le moment résultant sur (s',s'') et on déduit de (2.3), (2.5) et (2.7) que le moment résultant est nul (le détail des calculs est laissé à titre d'exercice). Par conséquent, l'intervalle (s',s'') est en équilibre dès lors que (2.2)–(2.5) sont satisfaites.

Exercice 2.2. Vérifier que le moment résultant de l'ensemble des efforts extérieurs s'exerçant sur l'intervalle (s', s'') est nul dès lors que (2.2)–(2.7) sont satisfaites.

2.4.2 Cas des milieux curvilignes à courbe fermée

Intéressons-nous maintenant au cas où le milieu continu n'a pas de bord. La configuration que l'on suppose en équilibre est $s \mapsto \mathbf{x}(s)$ avec $s \in \mathbb{C} = [0, \ell)$ et $\mathbf{x}(0) = \mathbf{x}(\ell)$. Pour les efforts extérieurs, une différence majeure par rapport aux milieux curvilignes ouverts est que, comme ici il n'y a pas d'extrémités, il n'y a plus les efforts associés. On définit toujours \mathbb{P} comme l'ensemble des points de \mathbb{C} (éventuellement vide) sur lesquels sont exercés des efforts extérieurs ponctuels, mais notons que s = 0peut être un tel point (c'est le cas sur la figure 2.3).

1. Equilibre global : on prend $\mathbb{I} = \mathbb{C}$. L'équilibre des forces donne

Equilibre global des forces :
$$\mathbf{0} = \int_0^\ell \mathbf{f}(s) ds + \sum_{s_i \in \mathbb{P}} \mathcal{F}_{s_i}$$
 (2.9)

alors que l'équilibre des moments calculé au point $\mathbf{x}(0)$ donne

Equilibre global des moments :

$$0 = \int_0^\ell \left(m(s) + (\mathbf{x}(s) - \mathbf{x}(0)) \wedge \mathbf{f}(s) \right) ds + \sum_{s_i \in \mathbb{P}} \left(\mathcal{M}_{s_i} + (\mathbf{x}(s_i) - \mathbf{x}(0)) \wedge \mathcal{F}_{s_i} \right)$$
(2.10)

2. Equilibre des intervalles (s, ℓ) : on prend $\mathbb{I} = (s, \ell)$ avec $s \in \mathbb{C} = [0, \ell)$. Cette partie³ est soumise :

- en s, à la force $\mathbf{R}^{r}(s)$ et au moment $M^{r}(s)$;
- sur (s, ℓ) , à la densité linéique de forces **f** et de moments m;
- sur les points s_i appartenant à $\mathbb{P} \cap (s, \ell)$, aux efforts ponctuels correspondants;
- en ℓ , cet intervalle est soumis aux efforts des voisinages devant 0 (*i.e.* les intervalles du type (0, h)) et donc à la force $\mathbf{R}(0)$ et au moment M(0).

En écrivant l'équilibre des forces, on obtient

Equilibre des forces sur
$$(s,\ell)$$
 : $\mathbf{0} = \mathbf{R}^r(s) + \int_s^\ell \mathbf{f}(\tilde{s})d\tilde{s} + \sum_{s_i \in \mathbb{P} \cap (s,\ell)} \mathcal{F}_{s_i} + \mathbf{R}(0)$. (2.11)

En calculant les moments au point $\mathbf{x}(s)$, la condition d'équilibre des moments donne

Equilibre des moments sur
$$(s, \ell)$$
:

$$0 = M^{r}(s) + \int_{s}^{\ell} \left(m(\tilde{s}) + (\mathbf{x}(\tilde{s}) - \mathbf{x}(s)) \wedge \mathbf{f}(\tilde{s}) \right) d\tilde{s}$$

$$+ \sum_{s_{i} \in \mathbb{P} \cap (s, \ell)} \left(\mathcal{M}_{s_{i}} + (\mathbf{x}(s_{i}) - \mathbf{x}(s)) \wedge \mathcal{F}_{s_{i}} \right) + M(0) + (\mathbf{x}(0) - \mathbf{x}(s)) \wedge \mathbf{R}(0)$$
(2.12)

3. Quand s = 0, l'étude de l'équilibre de $(0, \ell)$ diffère de celle faite précédemment pour l'équilibre global car le point s = 0 ne fait plus partie du domaine étudié

(i) L'ensemble du milieu avec son chargement, ici $\mathbb{C} = [0, \ell)$ et $\mathbb{P} = \{0, s_1\}$.

(ii) La partie amont (0, s) avec son chargement après coupure du milieu aux points 0 et s.

(iii) La partie aval (s, ℓ) avec son chargement après coupure du milieu aux points 0 et s. FIGURE 2.3 – Cas d'un milieu curviligne à courbe fermée avec des efforts ponctuels en s = 0.

Ces relations d'équilibre fournissent donc les efforts intérieurs $s \mapsto \mathbf{R}^r(s)$ et $s \mapsto M^r(s)$ en termes des efforts extérieurs, de la configuration d'équilibre *et des efforts intérieurs* $\mathbf{R}(0)$ *et* M(0). En particulier, en écrivant (2.11) en s = 0 on obtient

$$\mathbf{R}^{r}(0) + \mathbf{R}(0) = -\int_{0}^{\ell} \mathbf{f}(\tilde{s}) d\tilde{s} - \sum_{s_{i} \in \mathbb{P} \cap (0,\ell)} \boldsymbol{\mathcal{F}}_{s_{i}}.$$

En tenant compte de (2.9), on en déduit que

$$\mathbf{R}^{r}(0) + \mathbf{R}(0) = \begin{cases} \mathbf{0} & \text{si } 0 \notin \mathbb{P} \\ \mathcal{F}_{0} & \text{sinon} \end{cases}$$

De même, en écrivant (2.12) en s = 0 et en tenant compte de (2.10), on obtient

$$M^{r}(0) + M(0) = \begin{cases} \mathbf{0} & \text{si } 0 \notin \mathbb{P} \\ \mathcal{M}_{0} & \text{sinon} \end{cases}$$

On retrouve ici le résultat général qui sera énoncé dans **P-2.1** : le principe de l'action et de la réaction ne s'applique en s = 0 que si aucun effort extérieur ponctuel n'est exercé en s = 0.

- 3. Equilibre des intervalles (0, s): on prend $\mathbb{I} = (0, s)$ avec $s \in (0, \ell)$. Cette partie est soumise :
- en 0, à la force $\mathbf{R}^r(0)$ et au moment $M^r(0)$;
- sur (0, s), à la densité linéique de forces **f** et de moments m;
- sur les points $s_i \in \mathbb{P} \cap (0, s)$, aux efforts ponctuels correspondants;
- en s, à l'action de la partie devant du milieu et donc à la force $\mathbf{R}(s)$ et au moment M(s).

En écrivant l'équilibre des forces, on obtient

$$\mathbf{0} = \mathbf{R}^{r}(0) + \int_{0}^{s} \mathbf{f}(\tilde{s}) d\tilde{s} + \sum_{s_{i} \in \mathbb{P} \cap (0,s)} \mathcal{F}_{s_{i}} + \mathbf{R}(s).$$

En tenant compte de la relation entre $\mathbf{R}^{r}(0)$ et $\mathbf{R}(0)$, on peut aussi l'écrire

Equilibre des forces sur
$$(0,s)$$
 : $\mathbf{0} = -\mathbf{R}(0) + \int_0^s \mathbf{f}(\tilde{s}) d\tilde{s} + \sum_{s_i \in \mathbb{P} \cap [0,s)} \mathcal{F}_{s_i} + \mathbf{R}(s)$ (2.13)

En calculant les moments au point $\mathbf{x}(s)$, la condition d'équilibre des moments donne

$$0 = M^{r}(0) + (\mathbf{x}(0) - \mathbf{x}(s)) \wedge \mathbf{R}^{r}(0) + \int_{0}^{s} \left(m(\tilde{s}) + (\mathbf{x}(\tilde{s}) - \mathbf{x}(s)) \wedge \mathbf{f}(\tilde{s}) \right) d\tilde{s}$$

+
$$\sum_{s_{i} \in \mathbb{P} \cap (0,s)} \left(\mathcal{M}_{s_{i}} + (\mathbf{x}(s_{i}) - \mathbf{x}(s)) \wedge \mathcal{F}_{s_{i}} \right) + M(s).$$

En tenant compte de la relation entre $(\mathbf{R}^{r}(0), M^{r}(0))$ et $(\mathbf{R}(0), M(0))$, on peut aussi l'écrire

Equilibre des moments sur
$$(0, s)$$
:

$$0 = -M(0) - (\mathbf{x}(0) - \mathbf{x}(s)) \wedge \mathbf{R}(0) + \int_0^s \left(m(\tilde{s}) + (\mathbf{x}(\tilde{s}) - \mathbf{x}(s)) \wedge \mathbf{f}(\tilde{s}) \right) d\tilde{s}$$

$$+ \sum_{s_i \in \mathbb{P} \cap [0,s)} \left(\mathcal{M}_{s_i} + (\mathbf{x}(s_i) - \mathbf{x}(s)) \wedge \mathcal{F}_{s_i} \right) + M(s)$$
(2.14)

Ces relations d'équilibre fournissent donc la répartition des efforts intérieurs $s \mapsto \mathbf{R}(s)$ et $s \mapsto M(s)$ pour $s \neq 0$ en termes des efforts extérieurs, de la configuration d'équilibre et de $(\mathbf{R}(0), M(0))$. On voit donc qu'à ce stade $\mathbf{R}(0)$ et M(0) restent indéterminés.

4. Equilibre des intervalles (s', s'') avec $0 \le s' < s'' \le \ell$: Montrons maintenant que les conditions d'équilibre obtenues précédemment, à savoir (2.9)–(2.12), sont suffisantes pour assurer l'équilibre de n'importe quel intervalle de ce type. On prend donc $\mathbb{I} = (s', s'')$. Cette partie est soumise :

- en s', à l'action de la partie derrière du milieu et donc à la force $\mathbf{R}^{r}(s')$ et au moment $M^{r}(s')$;
- sur (s', s''), à la densité linéique de forces **f** et de moments m;
- sur les points s_i appartenant à $\mathbb{P} \cap (s', s'')$, aux efforts ponctuels correspondants;
- en s'', à l'action de la partie devant du milieu et donc à la force $\mathbf{R}(s'')$ et au moment M(s'').

En calculant la résultante des forces, on obtient

Résultante des forces sur
$$(s', s'') = \mathbf{R}^r(s') + \int_{s'}^{s''} \mathbf{f}(\tilde{s}) d\tilde{s} + \sum_{s_i \in \mathbb{P} \cap (s', s'')} \mathcal{F}_{s_i} + \mathbf{R}(s'').$$

Si l'on prend (2.11) avec s = s' et (2.13) avec s = s'', qu'on les additionne et qu'on retranche (2.9), il vient

$$\mathbf{0} = \mathbf{R}^{r}(0) + \mathbf{R}(0) + \mathbf{R}^{r}(s') + \int_{s'}^{s''} \mathbf{f}(\tilde{s}) d\tilde{s} + \sum_{s_i \in \mathbb{P} \cap (s',\ell)} \mathcal{F}_{s_i} + \sum_{s_i \in \mathbb{P} \cap (0,s'')} \mathcal{F}_{s_i} - \sum_{s_i \in \mathbb{P}} \mathcal{F}_{s_i} + \mathbf{R}(s'').$$

Comme $\sum_{s_i \in \mathbb{P} \cap (s',\ell)} \mathcal{F}_{s_i} + \sum_{s_i \in \mathbb{P} \cap (0,s'')} \mathcal{F}_{s_i} - \sum_{s_i \in \mathbb{P}} \mathcal{F}_{s_i} = \sum_{s_i \in \mathbb{P} \cap (s',s'')} \mathcal{F}_{s_i}$, on en déduit que la résultante des forces sur (s',s'') est nulle. On procède de même pour le moment résultant sur (s',s'') et on déduit de (2.3), (2.5) et (2.7) que le moment résultant est nul (le détail des calculs est laissé à titre d'exercice). Par conséquent, l'intervalle (s',s'') est en équilibre dès lors que (2.2)–(2.5) sont satisfaites.

Exercice 2.3. Vérifier que le moment résultant de l'ensemble des efforts extérieurs s'exerçant sur l'intervalle (s', s'') est nul dès lors que (2.2)–(2.7) sont satisfaites.

2.4.3 Extension aux assemblages de milieux curvilignes

Exercice 2.4. Appliquer la méthode des coupures pour déterminer les efforts intérieurs à l'angle d'un portique en forme de T soumis à son poids propre et à la base à des efforts tels que l'équilibre global soit possible, les deux autres extrémités étant libres. À cet angle, i.e. au point de jonction des 2 barres du T, les efforts intérieurs sont définis comme l'indique la figure ci-contre.

2.5 Quelques propriétés générales sur les efforts intérieurs

2.5.1 La question du principe de l'action et de la réaction.

On sait calculer les efforts intérieurs "directs" ($\mathbf{R}(s), M(s)$) et "réciproques" ($\mathbf{R}^{r}(s), M(s)$) en tout point du milieu à l'équilibre dans une configuration donnée et pour des efforts extérieurs donnés, exactement dans le cas d'un milieu avec des extrémités, à un vecteur force et un moment près dans le cas d'une courbe fermée. On peut donc les comparer et voir si le principe de l'action et de la réaction s'applique. Considérons un milieu avec extrémités, si l'on additionne (2.4) et (2.6), on obtient

$$\mathbf{R}^{r}(s) + \mathbf{R}(s) = -\boldsymbol{\mathcal{F}}_{0} - \int_{0}^{\ell} \mathbf{f}(\tilde{s}) d\tilde{s} - \sum_{s_{i} \in \mathbb{P}} \boldsymbol{\mathcal{F}}_{s_{i}} + \sum_{s_{i} \in \mathbb{P} \cap \{s\}} \boldsymbol{\mathcal{F}}_{s_{i}} - \boldsymbol{\mathcal{F}}_{\ell}.$$

En tenant compte de (2.2), il vient

$$\mathbf{R}^{r}(s) + \mathbf{R}(s) = \sum_{s_{i} \in \mathbb{P} \cap \{s\}} \mathcal{F}_{s_{i}} = \begin{cases} \mathbf{0} & \text{si } s \notin \mathbb{P} \\ \mathcal{F}_{s} & \text{si } s \in \mathbb{P} \end{cases}.$$

En procédant de même pour les moments et en additionnant (2.5) et (2.7), il vient

$$0 = M^{r}(s) + M(s) + \mathcal{M}_{0} + (\mathbf{x}(0) - \mathbf{x}(s)) \wedge \mathcal{F}_{0} + \int_{0}^{\ell} m(\tilde{s}) d\tilde{s} + \int_{0}^{\ell} (\mathbf{x}(\tilde{s}) - \mathbf{x}(s)) \wedge \mathbf{f}(\tilde{s}) d\tilde{s}$$
$$+ \sum_{s_{i} \in \mathbb{P}} \mathcal{M}_{s_{i}} - \sum_{s_{i} \in \mathbb{P} \cap \{s\}} \mathcal{M}_{s_{i}} + \sum_{s_{i} \in \mathbb{P}} (\mathbf{x}(s_{i}) - \mathbf{x}(s)) \wedge \mathcal{F}_{s_{i}} + \mathcal{M}_{\ell} + (\mathbf{x}(\ell) - \mathbf{x}(s)) \wedge \mathcal{F}_{\ell}.$$

En tenant compte de (2.2) et (2.3), la relation précédente se simplifie et on obtient

$$M^{r}(s) + M(s) = \sum_{s_{i} \in \mathbb{P} \cap \{s\}} \mathcal{M}_{s_{i}} = \begin{cases} \mathbf{0} & \text{si } s \notin \mathbb{P} \\ \mathcal{M}_{s} & \text{si } s \in \mathbb{P} \end{cases}$$

On voit donc que le principe de l'action et de la réaction ne s'applique qu'aux points où l'extérieur n'exerce pas d'efforts ponctuels. Aux points où sont exercés des efforts extérieurs ponctuels, la somme de l'effort intérieur direct et de l'effort réciproque est égale à l'effort extérieur ponctuel exercé. Ce résultat que l'on a établi ici dans le cadre d'un milieu curviligne ouvert est toujours vrai pour un milieu fermé, la vérification étant laissée comme exercice. En conséquence, nous avons établi la propriété suivante à laquelle nous nous référerons constamment :

P-2.1 (Relations entre les efforts intérieurs directs et réciproques).

• En un point d'un milieu continu curviligne qui n'est pas soumis à des efforts extérieurs ponctuels, le principe de l'action et de la réaction s'applique et les efforts intérieurs réciproques sont bien les opposés des efforts intérieurs directs.

• Par contre, en un point soumis à des efforts extérieurs ponctuels, la somme des efforts intérieurs et réciproques n'est pas nulle mais égale aux efforts ponctuels extérieurs exercés en ce point.

En résumé,

$$\mathbf{R}^{r}(s) + \mathbf{R}(s) = \begin{cases} \mathbf{0} & si \ s \notin \mathbb{P} \\ \mathcal{F}_{s} & si \ s \in \mathbb{P} \end{cases}, \qquad M^{r}(s) + M(s) = \begin{cases} \mathbf{0} & si \ s \notin \mathbb{P} \\ \mathcal{M}_{s} & si \ s \in \mathbb{P} \end{cases},$$
(2.15)

où \mathbb{P} désigne l'ensemble des points s où des efforts ponctuels sont exercés par l'extérieur.

Exercice 2.5. Vérifier que le résultat énoncé dans **P-2.1** est vrai dans le cas d'un milieu curviligne fermé.

2.5.2 Les propriétés de continuité

Regardons si la dépendance des efforts intérieurs par rapport à l'abscisse curviligne est continue ou non. On raisonne pour simplifier sur les relations établies pour un milieu avec extrémités. En utilisant (2.4)-(2.7), on voit immédiatement que tous les efforts intérieurs sont continus aux points $s \notin \mathbb{P}$.

Considérons maintenant un point $s_i \in \mathbb{P}$ et les points un peu à droite de ce point, *i.e.* les points $s = s_i + h$ avec h > 0 et petit. Comme $\mathbb{P} \cap (s_i, \ell) = \mathbb{P} \cap (s_i + h, \ell)$ pour h assez petit, on tire immédiatement de (2.4) et (2.5) que

$$\mathbf{R}^{r+}(s_i) := \lim_{h \downarrow 0} \mathbf{R}^r(s_i + h) = \mathbf{R}^r(s_i), \qquad M^{r+}(s_i) := \lim_{h \downarrow 0} M^r(s_i + h) = M^r(s_i),$$

et donc les efforts intérieurs réciproques sont continus à droite. Par contre, si on considère les points un peu à gauche, *i.e.* les $s = s_i - h$ avec h > 0 et petit, $\mathbb{P} \cap (s_i - h, \ell)$ contient en plus le point s_i par rapport à $\mathbb{P} \cap (s_i, \ell)$. Par conséquent, toujours grâce à (2.4) et (2.5), on obtient

$$\mathbf{R}^{r-}(s_i) := \lim_{h \downarrow 0} \mathbf{R}^r(s_i - h) = \mathbf{R}^r(s_i) - \mathcal{F}_{s_i}, \qquad M^{r-}(s_i) := \lim_{h \downarrow 0} M^r(s_i - h) = M^r(s_i) - \mathcal{M}_{s_i}$$

et donc les efforts intérieurs réciproques ne sont pas continus à gauche en s_i . Ils ne sont donc pas continus et leur saut est égal à l'effort ponctuel extérieur exercé en ce point :

$$\llbracket \mathbf{R}^{r} \rrbracket(s_{i}) := \mathbf{R}^{r+}(s_{i}) - \mathbf{R}^{r-}(s_{i}) = \mathcal{F}_{s_{i}}, \quad \llbracket M^{r} \rrbracket(s_{i}) := M^{r+}(s_{i}) - M^{r-}(s_{i}) = \mathcal{M}_{s_{i}}.$$

On peut suivre la même démarche pour les efforts intérieurs directs en utilisant (2.6) et (2.7). On obtient la propriété suivante :

P-2.2 (Discontinuité des efforts intérieurs aux points $s_i \in \mathbb{P}$). En un point s_i où des efforts extérieurs ponctuels sont exercés, les efforts intérieurs directs sont continus à gauche, mais pas à droite et leur saut est l'opposé de l'effort ponctuel exercé :

$$\begin{cases} \mathbf{R}^{-}(s_i) = \mathbf{R}(s_i), & \mathbf{R}^{+}(s_i) = \mathbf{R}(s_i) - \mathcal{F}_{s_i}, & \llbracket \mathbf{R} \rrbracket(s_i) = -\mathcal{F}_{s_i} \\ M^{-}(s_i) = M(s_i), & M^{+}(s_i) = M(s_i) - \mathcal{M}_{s_i}, & \llbracket M \rrbracket(s_i) = -\mathcal{M}_{s_i} \end{cases}$$

2.6 Equations d'équilibre locales

Les expressions des efforts intérieurs obtenues précédemment par la méthode des coupures sont essentielles sur le plan théorique car elles nous ont permis d'établir les conditions nécessaires et suffisantes d'équilibre, mais elles auront un intérêt pratique moindre dès lors que l'on cherchera les configurations d'équilibre. Il vaut mieux remplacer ces conditions intégrales par des conditions locales. L'objet de cette section est d'établir ces nouvelles conditions et de vérifier qu'elles sont bien équivalentes aux précédentes. Comme ces conditions locales s'obtiennent par dérivation ou par passage à la limite dans les conditions intégrales, il faut un peu de régularité sur les efforts répartis pour que ces opérations soient licites. Nous raisonnerons de façon formelle et n'essaierons pas d'expliciter les conditions de régularité minimales requises.

2.6.1 Etablissement des équations locales

Commençons par l'équilibre des forces sur (0, s) donné par (2.6) ou (2.13) en nous plaçant en un point $s \notin \mathbb{P}$. Comme il n'y a pas de point de \mathbb{P} dans tout voisinage suffisamment petit de s (puisque le nombre de points de \mathbb{P} est fini), on peut dériver ces équations par rapport à s et on obtient :

$$\frac{d\mathbf{R}}{ds}(s) + \mathbf{f}(s) = \mathbf{0}, \quad \forall s \in \mathbb{C} \setminus \mathbb{P} \quad \text{(equilibre local des forces)}.$$
(2.16)

En faisant de même pour l'équilibre des moments sur (0, s), en dérivant (2.8) par rapport à s et en tenant compte de l'équilibre local des forces, il vient :

$$0 = \frac{dM}{ds}(s) + m(s) + \mathbf{x}(s) \wedge \mathbf{f}(s) + \mathbf{x}(s) \wedge \frac{d\mathbf{R}}{ds}(s) + \frac{d\mathbf{x}}{ds}(s) \wedge \mathbf{R}(s)$$
$$= \frac{dM}{ds}(s) + m(s) + \mathbf{t}(s) \wedge \mathbf{R}(s).$$

En décomposant $\mathbf{R}(s)$ sur la base locale $(\mathbf{t}(s), \mathbf{n}(s))$, on a $\mathbf{t}(s) \wedge \mathbf{R}(s) = T(s)$ et on obtient finalement

$$\frac{dM}{ds}(s) + T(s) + m(s) = 0, \quad \forall s \in \mathbb{C} \setminus \mathbb{P} \quad \text{(equilibre local des moments)}.$$
(2.17)

On serait arrivé au même résultat en partant de (2.7) ou (2.14).

Aux points où sont exercés des efforts ponctuels, nous avons déjà établi (cf **P-2.2**) que les efforts intérieurs directs sont continus à gauche mais pas à droite, et que la discontinuité est donnée par

$$\begin{cases} \llbracket \mathbf{R} \rrbracket(s_i) + \mathcal{F}_{s_i} = \mathbf{0}, & \forall s_i \in \mathbb{P} \quad \text{(condition de saut pour les forces)} \\ \llbracket M \rrbracket(s_i) + \mathcal{M}_{s_i} = \mathbf{0}, & \forall s_i \in \mathbb{P} \quad \text{(condition de saut pour les moments)} \end{cases}$$
(2.18)

Regardons pour finir ce qui se passe près des extrémités quand il y en a. Si l'on considère l'équilibre des forces et des moments de l'intervalle (0, s) et que l'on fait tendre s vers 0, en passant à la limite dans (2.6) et (2.7), comme $\mathbb{P} \cap (0, s)$ est vide pour s assez petit, on obtient

$$\lim_{s \downarrow 0} \mathbf{R}(s) = -\mathcal{F}_0, \quad \lim_{s \downarrow 0} M(s) = -\mathcal{M}_0, \quad \text{(conditions sur les efforts en l'extrémité 0)}. \quad (2.19)$$

Faisons tendre maintenant s vers ℓ pour obtenir des informations en l'extrémité ℓ (quand c'est vraiment une extrémité). En passant à la limite dans (2.6), comme $\mathbb{P} \cap (0, s) = \mathbb{P}$ pour s suffisamment proche de ℓ , on obtient

$$\mathbf{0} = \boldsymbol{\mathcal{F}}_0 + \int_0^\ell \mathbf{f}(\tilde{s}) d\tilde{s} + \sum_{s_i \in \mathbb{P}} \boldsymbol{\mathcal{F}}_{s_i} + \lim_{s \uparrow \ell} \mathbf{R}(s).$$

En comparant avec l'équilibre global (2.2), on en déduit que $\lim_{s\uparrow\ell} \mathbf{R}(s) = \mathcal{F}_{\ell}$. En procédant de même pour les moments, on obtient $\lim_{s\uparrow\ell} M(s) = \mathcal{M}_{\ell}$. On a donc finalement obtenu

$$\lim_{s\uparrow\ell} \mathbf{R}(s) = \mathcal{F}_{\ell}, \quad \lim_{s\uparrow\ell} M(s) = \mathcal{M}_{\ell}, \qquad \text{(conditions sur les efforts en l'extrémité }\ell). \tag{2.20}$$

On notera la différence de signe entre les conditions aux extrémités, signe - en 0 et signe + en ℓ . **Remarque 2.2.** L'usage veut que l'on écrive les conditions aux extrémités de la façon suivante :

$$\mathbf{R}(0) = -\boldsymbol{\mathcal{F}}_0, \quad M(0) = -\mathcal{M}_0, \quad \mathbf{R}(\ell) = \boldsymbol{\mathcal{F}}_\ell, \qquad M(\ell) = \mathcal{M}_\ell,$$

en omettant les limites. C'est évidemment un abus de notation, car d'un point de vue strict cela n'a pas de sens de parler d'efforts intérieurs aux extrémités. Ils ne sont théoriquement définis que dans l'ouvert $\mathbb{C} = (0, \ell)$ lorsque le milieu a des extrémités. Ils sont par contre effectivement définis en 0 dans le cas d'une courbe fermée $\mathbb{C} = [0, \ell)$, mais alors il n'y a pas de conditions aux extrémités à écrire puisqu'il n'y a pas d'extrémité. Par la suite, nous suivrons le plus souvent l'usage et adopterons donc la notation abusive.

L'ensemble des équations (2.16)-(2.20) constituent ce que l'on appelle *les équations d'équilibre locales.* Nous les avons obtenues à partir de l'équilibre global et de l'équilibre des intervalles (0, s). Il reste à vérifier qu'en retour elles sont suffisantes pour traduire l'équilibre du milieu continu au sens de la **Définition 2.2**. Ceci fait l'objet de la propriété fondamentale suivante qui clôt ce chapitre sur l'équilibre. **P-2.3** (Conditions nécessaires et suffisantes de l'équilibre d'un milieu continu curviligne). Pour qu'un milieu continu curviligne, sans vitesse à l'instant considéré, soit en équilibre

• dans la configuration $s \mapsto \mathbf{x}(s)$, avec s abscisse curviligne variant dans $\mathbb{C} = (0, \ell)$ ou bien $\mathbb{C} = [0, \ell)$ suivant que le milieu a ou n'a pas d'extrémités,

• et sous le chargement extérieur caractérisé par les densités d'efforts (\mathbf{f}, m) répartis dans \mathbb{C} , les efforts ponctuels $(\mathcal{F}_{s_i}, \mathcal{M}_{s_i})$ exercés sur l'ensemble discret de points $\mathbb{P} \subset \mathbb{C}$, et les efforts $(\mathcal{F}_0, \mathcal{M}_0)$ et $(\mathcal{F}_{\ell}, \mathcal{M}_{\ell})$ aux extrémités quand elles existent,

il faut et il suffit que

1. les efforts intérieurs directs $s \mapsto (\mathbf{R}(s), M(s))$ soient des fonctions **continues à gauche** et dérivables par morceaux qui satisfassent les équations d'équilibre locales :

 $\begin{cases} \lim_{s \downarrow 0} \mathbf{R}(s) = -\mathcal{F}_{0} \quad et \quad \lim_{s \downarrow 0} M(s) = -\mathcal{M}_{0}, \\ \frac{d\mathbf{R}}{ds}(s) + \mathbf{f}(s) = \mathbf{0} \quad et \quad \frac{dM}{ds}(s) + T(s) + m(s) = 0 \quad \forall s \in \mathbb{C} \setminus \mathbb{P}, \\ [\mathbf{R}]](s_{i}) + \mathcal{F}_{s_{i}} = \mathbf{0} \quad et \quad [M]](s_{i}) + \mathcal{M}_{s_{i}} = 0 \quad \forall s_{i} \in \mathbb{P}, \\ \lim_{s \uparrow \ell} \mathbf{R}(s) = \mathcal{F}_{\ell} \quad et \quad \lim_{s \uparrow \ell} M(s) = \mathcal{M}_{\ell}, \end{cases}$

les conditions en s = 0 et $s = \ell$ n'étant à satisfaire que si le milieu a des extrémités, i.e. si $\mathbb{C} = (0, \ell)$;

2. les efforts intérieurs réciproques $(\mathbf{R}^{r}(s), M^{r}(s))$ soient reliés aux efforts intérieurs directs par :

$$\mathbf{R}^{r}(s) + \mathbf{R}(s) = \begin{cases} \mathbf{0} & si \ s \notin \mathbb{P} \\ \mathcal{F}_{s} & si \ s \in \mathbb{P} \end{cases}, \qquad M^{r}(s) + M(s) = \begin{cases} \mathbf{0} & si \ s \notin \mathbb{P} \\ \mathcal{M}_{s} & si \ s \in \mathbb{P} \end{cases}.$$

Une formule d'intégration. Soit a et b deux réels avec a < b et \mathbb{P} un ensemble fini de points appartenant à (a, b). Si ϕ est une fonction définie sur (a, b), continue et différentiable sur $(a, b) \setminus \mathbb{P}$, admettant des limites à droite $\phi^+(s)$ et à gauche $\phi^-(s)$ en tout point $s \in (a, b)$, une limite à droite $\phi^+(a)$ en a et une limite à gauche $\phi^-(b)$ en b, alors on a

$$\int_{(a,b)\backslash\mathbb{P}} \phi'(s)ds = \phi^-(b) - \sum_{s\in\mathbb{P}} \llbracket \phi \rrbracket(s) - \phi^+(a) , \qquad (2.21)$$

où $[\![\phi]\!](s) = \phi^+(s) - \phi^-(s).$

2.6.2 Preuve de leur suffisance pour assurer l'équilibre

DÉMONSTRATION DE **P-2.3**. Il s'agit de démontrer le "il suffit" puisqu'on a déjà montré le "il faut". La démonstration est en elle-même intéressante car elle permet de mettre en évidence quelques sources possibles d'erreur lors de l'utilisation des équations locales. En particulier, nous ferons constamment usage de la formule d'intégration (2.21) (dont la démonstration ne présente pas de difficulté et est omise). Cette formule est essentielle aussi bien dans la démonstration que dans l'usage ultérieur qui sera fait des équations locales. Il faut donc s'en imprégner.

• Montrons que les équations locales redonnent l'équilibre global des forces (2.2) ou (2.9). On part de l'équilibre local des forces que l'on intègre sur $(0, \ell) \setminus (\mathbb{P} \cap (0, \ell))^4$ en utilisant la formule d'intégration (2.21) pour arriver à

$$\mathbf{0} = \int_{(0,\ell)\setminus\left(\mathbb{P}\cap(0,\ell)\right)} \left(\mathbf{R}'(s) + \mathbf{f}(s)\right) ds = \mathbf{R}^{-}(\ell) - \sum_{s_i \in \mathbb{P}\cap(0,\ell)} \left[\!\left[\mathbf{R}\right]\!\right](s_i) - \mathbf{R}^{+}(0) + \int_0^\ell \mathbf{f}(s) ds.$$
(2.22)

On notera que l'on a utilisé

$$\int_{(0,\ell)\setminus\left(\mathbb{P}\cap(0,\ell)\right)}\mathbf{f}(s)ds = \int_{(0,\ell)}\mathbf{f}(s)ds$$

ce qui est licite car **f** est intégrable sur $(0, \ell)$ et l'ensemble $\mathbb{P} \cap (0, \ell)$ est de mesure nulle. Distinguons maintenant le cas $\mathbb{C} = (0, \ell)$ du cas $\mathbb{C} = [0, \ell)$.

Dans le cas $\mathbb{C} = (0, \ell)$, on a $\mathbb{P} \cap (0, \ell) = \mathbb{P}$. Par conséquent, en tenant compte des conditions aux extrémités et des conditions de saut sur \mathbb{P} , (2.22) devient

$$\mathbf{0} = \boldsymbol{\mathcal{F}}_{\ell} + \sum_{s_i \in \mathbb{P}} \boldsymbol{\mathcal{F}}_{s_i} + \boldsymbol{\mathcal{F}}_0 + \int_0^{\ell} \mathbf{f}(s) ds$$

qui n'est rien d'autre que la condition d'équilibre global des forces (2.2).

Dans le cas $\mathbb{C} = [0, \ell)$, si $0 \notin \mathbb{P}$ on a $\mathbb{R}^+(0) = \mathbb{R}^-(\ell)$ et $\mathbb{P} \cap (0, \ell) = \mathbb{P}$. En tenant compte des conditions de saut sur \mathbb{P} , (2.22) devient

$$\mathbf{0} = \sum_{s_i \in \mathbb{P}} \mathcal{F}_{s_i} + \int_0^{\ell} \mathbf{f}(s) ds$$

qui n'est rien d'autre que la condition d'équilibre global des forces (2.9). Si par contre $0 \in \mathbb{P}$, alors $\mathbb{P} \cap (0, \ell) = \mathbb{P} \setminus \{0\}$. De plus comme $\mathbf{R}^-(\ell) - \mathbf{R}^+(0) = -\llbracket \mathbf{R} \rrbracket(0)$, on peut rajouter ce terme à la somme des sauts dans (2.22) que l'on va donc calculer sur $(\mathbb{P} \setminus \{0\}) \cup \{0\} = \mathbb{P}$. Il suffit alors d'utiliser les conditions de saut sur \mathbb{P} pour obtenir (2.9).

• Montrons que les équations locales redonnent l'équilibre global des moments (2.3) ou (2.10). On note d'abord que l'effort tranchant s'écrit aussi

$$T(s) = \mathbf{t}(s) \wedge \mathbf{R}(s) = \mathbf{x}'(s) \wedge \mathbf{R}(s) = (\mathbf{x} \wedge \mathbf{R})'(s) - \mathbf{x}(s) \wedge \mathbf{R}'(s).$$
(2.23)

4. Dans le cas où $\mathbb{C} = [0, \ell)$ et où $0 \in \mathbb{P}$, on a $\mathbb{P} \cap (0, \ell) \neq \mathbb{P}$

En reportant dans l'équation d'équilibre local des moments que l'on intègre sur $(0, \ell) \setminus (\mathbb{P} \cap (0, \ell))$, il vient

$$0 = \int_{(0,\ell) \setminus \left(\mathbb{P} \cap (0,\ell) \right)} (M + \mathbf{x} \wedge \mathbf{R})'(s) ds - \int_{(0,\ell) \setminus \left(\mathbb{P} \cap (0,\ell) \right)} \mathbf{x}(s) \wedge \mathbf{R}'(s) ds + \int_0^\ell m(s) ds.$$

Le premier terme s'intègre avec la formule (2.21) alors que le deuxième se transforme en tenant compte de l'équilibre local des forces, ce qui donne

$$0 = M^{-}(\ell) + \mathbf{x}(\ell) \wedge \mathbf{R}^{-}(\ell) - \sum_{s_{i} \in \mathbb{P} \cap (0,\ell)} \left(\llbracket M \rrbracket(s_{i}) + \mathbf{x}(s_{i}) \wedge \llbracket \mathbf{R} \rrbracket(s_{i}) \right) -M^{+}(0) - \mathbf{x}(0) \wedge \mathbf{R}^{+}(0) + \int_{0}^{\ell} \left(m(s) + \mathbf{x}(s) \wedge \mathbf{f}(s) \right) ds.$$
(2.24)

Dans le cas $\mathbb{C} = (0, \ell)$, comme $\mathbb{P} \cap (0, \ell) = \mathbb{P}$, les conditions aux extrémités et les conditions de saut permettent de transformer (2.24) en

$$0 = \mathcal{M}_{\ell} + \mathbf{x}(\ell) \wedge \mathcal{F}_{\ell} + \sum_{s_i \in \mathbb{P}} \left(\mathcal{M}_{s_i} + \mathbf{x}(s_i) \wedge \mathcal{F}_{s_i} \right) + \mathcal{M}_0 + \mathbf{x}(0) \wedge \mathcal{F}_0 + \int_0^\ell \left(m(s) + \mathbf{x}(s) \wedge \mathbf{f}(s) \right) ds$$

qui n'est rien d'autre que l'équation d'équilibre global des moments calculés à l'origine \mathbf{O} du repère (et non pas en $\mathbf{x}(0)$ comme dans (2.3)).

Dans le cas $\mathbb{C} = [0, \ell)$, on a $\mathbf{x}(\ell) = \mathbf{x}(0)$ car il s'agit du même point matériel. Si $0 \notin \mathbb{P}$ on a $\mathbf{R}^+(0) = \mathbf{R}^-(\ell)$, $M^+(0) = M^-(\ell)$ et $\mathbb{P} \cap (0, \ell) = \mathbb{P}$. En reportant dans (2.24) et en tenant compte des conditions de saut sur \mathbb{P} , on obtient

$$0 = \sum_{s_i \in \mathbb{P}} \left(\mathcal{M}_{s_i} + \mathbf{x}(s_i) \wedge \mathcal{F}_{s_i} \right) + \int_0^\ell \left(m(s) + \mathbf{x}(s) \wedge \mathbf{f}(s) \right) ds$$

qui est bien l'équation d'équilibre global des moments calculés en \mathbf{O} (alors qu'ils le sont en $\mathbf{x}(0)$ dans (2.10)). Si par contre $0 \in \mathbb{P}$, alors les discontinuités en 0 viennent s'ajouter à celles déjà présentes dans $\mathbb{P} \cap (0, \ell)$ pour compléter l'ensemble \mathbb{P} et l'on obtient encore l'équation d'équilibre global des moments calculés en \mathbf{O} .

• Montrons que les équations locales redonnent l'équilibre des forces sur tout intervalle (0, s), i.e. (2.6) ou (2.13). La démarche est quasiment identique à celle que l'on a suivie pour vérifier l'équilibre global. On ne mettra donc l'accent que sur les différences. On intègre l'équation locale d'équilibre des forces sur $(0, s) \setminus (\mathbb{P} \cap (0, s))$ et l'on obtient

$$\mathbf{0} = \mathbf{R}(s) - \sum_{s_i \in \mathbb{P} \cap (0,s)} \llbracket \mathbf{R} \rrbracket(s_i) - \mathbf{R}^+(0) + \int_0^s \mathbf{f}(\tilde{s}) d\tilde{s}$$
(2.25)

où l'on a tenu compte de la continuité de \mathbf{R} à gauche qui donne $\mathbf{R}^{-}(s) = \mathbf{R}(s)$. Si $\mathbb{C} = (0, \ell)$, on utilise les conditions de saut et la condition en 0 pour finalement arriver à

$$\mathbf{0} = \mathbf{R}(s) + \sum_{s_i \in \mathbb{P} \cap (0,s)} \mathcal{F}_{s_i} + \mathcal{F}_0 + \int_0^s \mathbf{f}(\tilde{s}) d\tilde{s}$$

qui est précisément (2.6).

Si $\mathbb{C} = [0, \ell)$ et si $0 \notin \mathbb{P}$, alors $\mathbf{R}^+(0) = \mathbf{R}(0)$ et $\mathbb{P} \cap (0, s) = \mathbb{P} \cap [0, s)$. En reportant dans (2.25) et en tenant compte des conditions de saut, on arrive à (2.13). Si $0 \in \mathbb{P}$, alors on peut écrire, grâce à la continuité à gauche de \mathbf{R} , $\mathbf{R}^+(0) = \mathbf{R}(0) + [\![\mathbf{R}]\!](0)$, ce qui permet d'étendre la somme des sauts à $\mathbb{P} \cap [0, s)$ dans (2.25). On arrive ainsi à (2.13).

• Montrons enfin que les équations locales redonnent l'équilibre des moments sur tout intervalle (0, s), i.e. (2.7) ou (2.14). On introduit la décomposition de l'effort tranchant (2.23) dans l'équation locale d'équilibre des moments que l'on intègre sur $(0, s) \setminus (\mathbb{P} \cap (0, s))$ pour obtenir

$$0 = M^{-}(s) + \mathbf{x}(s) \wedge \mathbf{R}^{-}(s) - \sum_{s_{i} \in \mathbb{P} \cap (0,s)} \left(\llbracket M \rrbracket(s_{i}) + \mathbf{x}(s_{i}) \wedge \llbracket \mathbf{R} \rrbracket(s_{i}) \right) -M^{+}(0) - \mathbf{x}(0) \wedge \mathbf{R}^{+}(0) + \int_{0}^{s} \left(m(s) + \mathbf{x}(s) \wedge \mathbf{f}(s) \right) ds.$$
(2.26)

Dans le cas $\mathbb{C} = (0, \ell)$, la continuité à gauche, la condition en 0 et les conditions de saut permettent d'arriver à

$$0 = M(s) + \mathbf{x}(s) \wedge \mathbf{R}(s) + \sum_{s_i \in \mathbb{P} \cap (0,s)} \left(\mathcal{M}_{s_i} + \mathbf{x}(s_i) \wedge \mathcal{F}_{s_i} \right) + \mathcal{M}_0 + \mathbf{x}(0) \wedge \mathcal{F}_0 + \int_0^s \left(m(s) + \mathbf{x}(s) \wedge \mathbf{f}(s) \right) ds$$

qui est l'équation d'équilibre des moments pour (0, s) calculée à l'origine **O** du repère (alors qu'elle l'était en $\mathbf{x}(s)$ dans (2.7)).

Si $\mathbb{C} = [0, \ell)$ et si $0 \notin \mathbb{P}$, alors $(\mathbf{R}^+(0), M^+(0)) = (\mathbf{R}(0), M(0))$ et $\mathbb{P} \cap (0, s) = \mathbb{P} \cap [0, s)$. En reportant dans (2.25) et en tenant compte de la continuité à gauche et des conditions de saut, on arrive l'équation d'équilibre des moments pour (0, s) calculée à l'origine \mathbf{O} du repère (alors qu'elle l'était en $\mathbf{x}(s)$ dans (2.14)). Si $0 \in \mathbb{P}$, alors on peut écrire, grâce à la continuité à gauche, $\mathbf{R}^+(0) = \mathbf{R}(0) + [\![\mathbf{R}]\!](0)$ et $M^+(0) = M(0) + [\![M]\!](0)$, ce qui permet d'étendre la somme des sauts à $\mathbb{P} \cap [0, s)$ dans (2.26). On arrive ainsi à l'équation cherchée.

On a donc retrouvé les équations d'équilibre global et les équations d'équilibre pour les intervalles (0, s). En utilisant les relations entre les efforts intérieurs réciproques et les efforts intérieurs directs, on retrouve automatiquement les équations d'équilibre des intervalles (s, ℓ) . Par combinaison, on retrouve aussi les équations d'équilibre de toute sous-partie ce qui achève la démonstration.

Remarque 2.3. On notera que dans la démonstration du "il suffit" ci-dessus on a besoin de l'hypothèse de continuité à gauche des efforts intérieurs directs (qui entraine la continuité à droite des efforts intérieurs réciproques) aux points où sont exercés des efforts ponctuels pour obtenir effectivement la valeur de ces efforts intérieurs en ces points. Sinon on ne peut pas déduire ces valeurs des équations locales. En effet, en intégrant les équations locales on tombe inévitablement sur les limites à gauche ou à droite en vertu de la formule d'intégration, jamais sur les valeurs aux points.

Pour finir, nous allons formuler un résultat d'existence et d'unicité portant sur la répartition des efforts intérieurs à l'équilibre. Pour l'essentiel, ce résultat a déjà été établi lors de la vérification de l'équilibre par la méthode des coupures. Nous l'explicitons ici pour pouvoir nous y référer par la suite.

P-2.4 (Sur l'existence de l'équilibre et l'unicité de la répartition des efforts intérieurs). On se place toujours dans les conditions d'un milieu continu curviligne qui est

• sans vitesse à l'instant considéré;

• dans la configuration $s \mapsto \mathbf{x}(s)$, avec s abscisse curviligne variant dans $\mathbb{C} = (0, \ell)$ ou bien $\mathbb{C} = [0, \ell)$ suivant que le milieu a ou n'a pas d'extrémités,

• soumis à un chargement extérieur caractérisé par les densités d'efforts (\mathbf{f}, m) répartis dans \mathbb{C} , les efforts ponctuels $(\mathcal{F}_{s_i}, \mathcal{M}_{s_i})$ exercés sur l'ensemble discret de points $\mathbb{P} \subset \mathbb{C}$, et les efforts $(\mathcal{F}_0, \mathcal{M}_0)$ et $(\mathcal{F}_{\ell}, \mathcal{M}_{\ell})$ aux extrémités quand elles existent.

Ce milieu continu ne peut être en équilibre que si la condition d'équilibre global portant sur les efforts extérieurs est satisfaite, i.e. seulement si

Equilibre global des forces :
$$\mathbf{0} = \int_0^\ell \mathbf{f}(s) ds + \sum_{s_i} \mathcal{F}_{s_i}$$
 (2.27)

Equilibre global des moments :

$$0 = \int_0^\ell \left(m(s) + (\mathbf{x}(s) - \mathbf{x}(0)) \wedge \mathbf{f}(s) \right) ds + \sum_{s_i} \left(\mathcal{M}_{s_i} + (\mathbf{x}(s_i) - \mathbf{x}(0)) \wedge \mathcal{F}_{s_i} \right)$$
(2.28)

où les s_i varient dans $\mathbb{P} \cup \{0, \ell\}$ dans le cas d'un milieu avec extrémités et uniquement dans \mathbb{P} dans le cas d'un milieu à courbe fermée.

Si cette condition est satisfaite, alors il existe une répartition des efforts intérieurs qui assure l'équilibre et elle est

• unique dans le cas d'un milieu curviligne avec extrémités;

• unique à un vecteur force \mathbf{R}_0 et un moment M_0 près dans le cas d'un milieu à courbe fermée, i.e. si $s \mapsto (\mathbf{R}(s), M(s))$ est solution, alors $s \mapsto (\mathbf{R}(s) + \mathbf{R}_0, M(s) + M_0 - \mathbf{x}(s) \wedge \mathbf{R}_0)$ l'est également et ce quels que soient $\mathbf{R}_0 \in \mathbb{R}^2$ et $M_0 \in \mathbb{R}$.

Chapitre 3

Lois de comportement

3.1 Introduction

Dans le chapitre précédent, on a établi les équations d'équilibre que doivent satisfaire les efforts intérieurs pour une configuration donnée et des efforts extérieurs donnés. Cette répartition des efforts intérieurs dépend en général de la configuration d'équilibre envisagée et on a même vu que pour un milieu à courbe fermée ils ne sont pas déterminés exactement. La simple analyse des équations suffit à montrer la nécessité d'introduire des relations supplémentaires si l'on veut déterminer les configurations d'équilibre. L'expérience quotidienne arrive au même constat. Deux objets élancés de même longueur, de même forme, de même section et soumis aux mêmes efforts extérieurs se déforment différemment suivant le matériau constitutif : une tige en acier se déformera beaucoup moins qu'une tige en Plexiglas qui elle-même se déformera moins qu'une corde. Inversement, deux objets élancés constitués du même matériau mais ayant des rapports d'élancement¹ différents se comportent également différemment : si l'on compare deux tiges en acier de 1 m de long soumises au même effort normal, celle qui a la plus petite section se déformera plus. On voit donc que ces relations de comportement manquantes devront contenir des informations à la fois géométriques et matérielles. La dépendance à la géométrie peut s'obtenir à partir d'hypothèses raisonnables et des raisonnements basés sur des questions de dimension physique des quantités mises en jeu. La dépendance vis à vis du matériau doit par contre nécessairement passer par des expériences en laboratoire. Mais identifier à coup sûr le comportement exigerait une infinité d'expériences, comme on le verra dès que l'on examinera quelques résultats expérimentaux. Il est donc nécessaire d'inclure dans cette écriture des lois de comportement quelques principes généraux qui permettront de réduire les possibilités. L'objet de ce chapitre est d'illustrer ces différents aspects pour dégager finalement quelques lois de comportement que nous utiliserons et comparerons par la suite. Dans ce cours introductif, on se limitera aux lois les plus simples qui sont aussi celles qui sont le plus utilisées.

^{1.} Le rapport d'élancement est le rapport entre la longueur de l'objet et le diamètre extérieur de sa section (diamètre du plus petit cercle contenant la section). Les objets élancés sont ceux qui ont un grand rapport d'élancement.

3.2 Hypothèses générales et faits expérimentaux

3.2.1 Le concept de loi de comportement et classification

Nous avons vu au chapitre 2 que les seules équations d'équilibre ne permettent pas de trouver la configuration d'équilibre du milieu curviligne soumis à des efforts extérieurs donnés. Il manque des relations. L'expérience quotidienne nous apprend que les configurations d'équilibre ou plus généralement les réponses à des sollicitations dépendent de la forme, de la taille et de la constitution de la section du milieu tridimensionnel élancé que l'on schématise comme un milieu curviligne. Il faut donc nécessairement entrer sous une forme ou sous une autre ces informations dans la formulation du problème de détermination de l'équilibre si l'on veut pouvoir le résoudre. Ces relations supplémentaires ne peuvent être que des relations entre les grandeurs caractérisant les efforts intérieurs et les grandeurs géométriques ou cinématiques caractérisant la configuration ou les changements de configuration du milieu curviligne. Si l'on examine plus attentivement les équations d'équilibre, on s'aperçoit que les efforts intérieurs ne jouent pas tous le même rôle. En effet, partons de l'équation locale d'équilibre des moments :

$$\frac{dM}{ds} + T + m = 0.$$

On voit qu'on peut calculer l'effort tranchant en terme de la densité linéique de couples et de la dérivée du moment fléchissant,

$$T(s) = -\frac{dM}{ds}(s) - m(s).$$

Reportons ceci dans l'expression de la force intérieure décomposée sur la base locale $(\mathbf{t}(s), \mathbf{n}(s))$:

$$\mathbf{R}(s) = N(s)\mathbf{t}(s) - \frac{dM}{ds}(s)\mathbf{n}(s) - m(s)\mathbf{n}(s).$$

L'équation locale d'équilibre des forces devient alors (en omettant l'argument s) :

$$\mathbf{0} = \frac{d}{ds} \left(N \mathbf{t} - \frac{dM}{ds} \mathbf{n} - m \mathbf{n} \right) + \mathbf{f}.$$

Si on la développe en tenant compte du fait que $d\mathbf{t}/ds = \mathbf{Cn}$ et $d\mathbf{n}/ds = -\mathbf{Ct}$, C étant la courbure, il vient

$$\begin{cases} 0 = -\frac{dN}{ds} + C\frac{dM}{ds} + Cm + \mathbf{f}_t \\ \\ 0 = -CN - \frac{d^2M}{ds^2} - \frac{dm}{ds} + \mathbf{f}_n \end{cases}$$

On a obtenu deux équations scalaires, la première est l'équation d'équilibre des forces projetée sur la tangente, la deuxième sa projection sur la normale. Elles ne mettent donc en jeu que N et M pour ce qui concerne les efforts intérieurs. Finalement on a deux équations différentielles pour déterminer les deux champs $s \mapsto (N(s), M(s))$ et la configuration d'équilibre $s \mapsto \mathbf{x}(s)$. Cela fait quatre champs scalaires inconnus pour deux équations, il manque *deux* relations. Ce sont ces deux relations qui vont caractériser la constitution du milieu curviligne et que l'on appelle *relations constitutives* ou *lois de comportement*.

Ces relations constitutives peuvent prendre des formes variées et plus ou moins complexes suivant le type de milieux ou le type de phénomènes dont on veut rendre compte. Nous donnons ci-dessous quelques exemples de relations allant des plus complexes au plus simples. Dans tous ces exemples, les champs sont paramétrés par l'abscisse curviligne S de la configuration de référence et le temps test indiqué en indice : ainsi, $S \mapsto (N_t(S), M_t(S, t), \mathbf{x}_t(S))$ représente les champs lagrangiens d'effort normal, de moment fléchissant et de position à l'instant t.

1. L'effort normal et le moment fléchissant au point S à l'instant t, $N_t(S)$ et $M_t(S)$), dépendent de toute l'histoire du mouvement jusqu'à l'instant t de tout le milieu continu. La relation constitutive est donc une fonctionnelle du type

$$(N_t, M_t) = \boldsymbol{\varphi}\left(\{\mathbf{x}_{\tau}\}_{\tau \leq t}\right).$$

C'est le cas lors d'une dépendance non locale à la fois en espace et en temps du comportement. On pourrait même envisager des lois encore plus générales dans lesquelles N_t et M_t ne sont pas donnés de façon explicite mais implicite. On aurait alors des relations du type

$$\boldsymbol{\varphi}\left(\{N_{\tau}\}_{\tau\leq t}, \{M_{\tau}\}_{\tau\leq t}, \{\mathbf{x}_{\tau}\}_{\tau\leq t}\right) = \mathbf{0}.$$

2. Les lois non locales précédentes sont à la fois difficiles à identifier et à utiliser. On préfère les simplifier en limitant la dépendance vis à vis de l'espace et du temps à un voisinage arbitrairement petit du point matériel et du temps concernés. Autrement dit, on ne fait dépendre les efforts intérieurs au point S_0 et à l'instant t_0 que des dérivées de $(S,t) \mapsto \mathbf{x}_t(S)$ par rapport à S et à t au point S_0 et à l'instant t_0 que des dérivées par l'ordre de dérivation maximal envisagé :

$$(N_t(S), M_t(S)) = \varphi \left(\mathbf{x}_t(S), \mathbf{x}'_t(S), \dot{\mathbf{x}}_t(S), \mathbf{x}''_t(S), \dot{\mathbf{x}}'_t(S), \ddot{\mathbf{x}}_t(S), \cdots \right).$$

Lorsqu'on s'arrête à l'ordre 2, on obtient la classe des milieux dits viscoélastiques à gradient de déformation d'extension. Nous les envisagerons dans la prochaine section qui est consacrée au principe d'objectivité.

3. Dans les relations constitutives ci-dessus la dépendance vis à vis des vitesses, en particulier vis à vis de $\dot{\mathbf{x}}'$, est caractéristique des comportements visqueux où les efforts intérieurs dépendent de la vitesse de déformation. Lorsque cette dépendance n'existe pas ou peut être négligée, on tombe sur la classe de comportements de type *élastiques* pour lesquels les efforts intérieurs ne dépendent que des dérivées de la position par rapport à S au point et à l'instant considérés :

$$(N_t(S), M_t(S)) = \varphi \left(\mathbf{x}_t(S), \mathbf{x}'_t(S), \mathbf{x}''_t(S), \cdots \right).$$

Les *milieux élastiques* au sens strict du terme appartiennent à la classe où l'on s'arrête à l'ordre 2 de dérivation. L'hypothèse forte est évidemment que les efforts intérieurs ne dépendent pas de l'histoire passée de la déformation du milieu, mais uniquement de la configuration actuelle. Le comportement est dit parfaitement *réversible*.

4. Doivent être incluses dans les relations constitutives, les conditions qui restreignent la déformation du milieu continu. Ainsi, la *rigidité parfaite* au sens d'interdiction absolue de déformation est une loi de comportement. Elle impose que ε et κ soient partout et toujours nuls, *i.e.*

rigidité parfaite :
$$\varepsilon_t(S) = 0, \quad \kappa_t(S) = 0, \quad \forall t, \quad \forall S.$$

La contrepartie est que les efforts intérieurs ne sont plus déterminés par la loi de comportement, ils ne peuvent l'être que par les équations d'équilibre (ou les équations du mouvement dans le cas d'un problème dynamique). L'absence de déformabilité peut n'être que partielle en ne concernant que la déformation d'extension ou bien que la déformation de flexion. On parle ainsi soit de milieu *inextensible* soit de milieu *inflexible*. Dans le premier cas, on a

la condition d'inextensibilité :
$$\varepsilon_t(S) = 0 \quad \forall t, \quad \forall S$$

et l'effort normal n'est pas déterminé par la loi de comportement, il ne peut l'être que par l'équilibre. Dans le deuxième cas, on a

la condition d'inflexibilité :
$$\kappa_t(S) = 0 \quad \forall t, \quad \forall S$$

et le moment fléchissant n'est pas déterminé par la loi de comportement, il ne peut l'être que par l'équilibre.

A l'autre extrême, on trouve les milieux parfaitement perfectibles qui eux ne supportent aucun moment fléchissant et qui sont donc régis par la relation de

parfaite flexibilité :
$$M_t(S) = 0 \quad \forall t, \quad \forall S.$$

Toutes ces conditions extrêmes de non déformabilité ou de parfaite flexibilité doivent évidemment être vues comme des modèles limites, aucun milieu continu réel ne les satisfaisant exactement. Ce sont des approximations qui conduisent à des problèmes d'équilibre en général plus simples à traiter.

3.2.2 Les restrictions imposées par le principe d'objectivité

Dans les familles de lois de comportement présentées dans la section précédente, nous avons envisagé des dépendances vis à vis de l'histoire de la configuration $\{\mathbf{x}_{\tau}\}_{\tau \leq t}$ sans se restreindre à des dépendances uniquement vis à vis de l'histoire des déformations $\{\varepsilon_{\tau}\}_{\tau \leq t}$ et $\{\kappa_{\tau}\}_{\tau \leq t}$. Un des principaux objectifs de cette section est de montrer que ces restrictions vont découler naturellement du principe d'objectivité.

Position du problème et énoncé du principe d'objectivité

Pour identifier une loi de comportement, on doit faire des expériences dans lesquelles on mesure la réponse du milieu à des sollicitations pour déterminer les relations constitutives qui lient les différentes grandeurs. Dans notre cas, il s'agit d'identifier les relations donnant les efforts intérieurs en fonction des déformations subies par le milieu. Ces expériences se font dans des référentiels d'espace-temps et on peut se demander si les relations obtenues dépendent du référentiel choisi. Le principe d'objectivité ² consiste à exiger que non, les relations obtenues doivent être les mêmes quel que soit le référentiel choisi.

Il s'agit de rendre cet énoncé plus précis. Considérons une grandeur physique (force, moment, ...) dont la représentation dans le référentiel \mathcal{R} est G. En faisant des expériences dans le référentiel \mathcal{R} où

^{2.} Ce principe est aussi appelé principe d'indifférence matérielle.

l'on impose des grandeurs caractérisant les évolutions du milieu qui sont représentées par g, on établit que G est relié à g par la loi constitutive

$$G = \varphi(g).$$

Sachant que les grandeurs \mathbf{g} et \mathbf{G} se transforment en \mathbf{g}^* et \mathbf{G}^* dans le changement de référentiel entre \mathcal{R} et \mathcal{R}^* , le principe d'objectivité exige que l'on trouve la même fonction φ si on fait l'expérience dans \mathcal{R}^* . Autrement dit, on doit avoir

$$\mathsf{G}^* = \varphi(\mathsf{g}^*),$$

et ce quel que soit le changement de référentiel et quel que soit le processus de déformation **g** envisagés. On peut l'écrire de façon symbolique

$$(\varphi(\mathbf{g}))^* = \varphi(\mathbf{g}^*), \quad \forall \mathcal{R}^*, \quad \forall \mathbf{g} \qquad (\text{principe d'objectivité})$$

où l'opérateur $(\cdot)^*$ représente la règle de transformation de la grandeur concernée dans le changement de référentiel.

On voit que ce principe impose des restrictions sur la relation de comportement, *i.e.* sur la fonction φ , mais pas sur les évolutions du milieu ou ses réponses, *i.e.* pas sur g ou G. Il rend impossible certaines dépendances. Sa mise en oeuvre passe évidemment par la connaissance des règles de transformation dans les changements de référentiel des grandeurs mises en jeu. Nous allons illustrer le rôle de ce principe dans un cas simple avant d'en étudier les conséquences dans le cas de comportements viscoélastiques généraux.

Exemple d'illustration

Supposons que l'on ait identifié pour un milieu curviligne que la valeur d'une grandeur objective scalaire (l'effort normal par exemple) dépende, au point matériel S et à l'instant t, uniquement de la dérivée du vecteur position par rapport à S en ce point à cet instant, *i.e.*

$$N(S,t) = \varphi\left(\mathbf{x}'(S,t)\right),\,$$

le prime indiquant la dérivée par rapport à S. Comme l'abscisse curviligne, l'effort normal et le vecteur position sont objectifs (cf. Annexe A.1), on a

$$(N(S,t))^* = N(S,t), \quad (\mathbf{x}'(S,t))^* = \mathbf{Q}(t)\mathbf{x}'(S,t).$$

Comme on peut imaginer des expériences de façon à ce que $\mathbf{x}'(S, t)$ soit n'importe quel vecteur $\mathbf{a} \neq \mathbf{0}$ du plan $(\mathbf{e}_1, \mathbf{e}_2)$ et que l'on peut imaginer des changements de référentiel tel que $\mathbf{Q}(t)$ soit n'importe quelle rotation autour de \mathbf{e}_3 , le principe d'objectivité exige que

$$\varphi(\mathbf{a}) = \varphi(\mathbf{Q}\mathbf{a}), \quad \forall \mathbf{a} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}, \quad \forall \mathbf{Q} = \begin{pmatrix} \cos \omega & -\sin \omega \\ \sin \omega & \cos \omega \end{pmatrix}, \quad \omega \in [0, 2\pi).$$
(3.1)

Le cas $\mathbf{a} = \mathbf{0}$ étant exclu, on peut mettre \mathbf{a} sous la forme $\mathbf{a} = r\mathbf{t}$ avec r > 0 et $\|\mathbf{t}\| = 1$. Pour un r > 0 donné, considérons deux vecteurs unitaires quelconques \mathbf{t}_1 et \mathbf{t}_2 . On peut trouver un angle ω tel que $\mathbf{t}_2 = \mathbf{Q}\mathbf{t}_1$. En reportant dans (3.1), on obtient $\varphi(r\mathbf{t}_1) = \varphi(r\mathbf{t}_2)$, ce qui veut dire que φ ne

dépend en fait que de r. Autrement dit, φ ne dépend de \mathbf{a} que par sa norme. Réciproquement si φ ne dépend que de la norme de \mathbf{a} , alors (3.1) est satisfaite puisque $\|\mathbf{Q}\mathbf{a}\| = \|\mathbf{a}\|$. En reportant dans la loi de comportement, on en déduit que N ne peut dépendre que de $\|\mathbf{x}'\| = 1 + \varepsilon$, pas du vecteur tangent $\mathbf{t} = \mathbf{x}' / \|\mathbf{x}'\|$. On a donc établi la propriété suivante :

P-3.1. Pour un milieu curviligne dont l'effort normal N ne dépend a priori que du vecteur dérivée de la position \mathbf{x}' , le principe d'objectivité exige que l'effort normal ne dépende en fait que de la déformation d'extension ε , pas du vecteur tangent \mathbf{t} (autrement dit, pas de l'orientation du milieu) :

 $N = \mathsf{N}(\varepsilon)$.

Restrictions imposées à un comportement viscoélastique

On se propose d'étudier les restrictions qu'impose le principe d'objectivité aux relations de comportement entre les efforts intérieurs et la cinématique du milieu curviligne pour la plus large classe de comportements mettant en jeu la position et ses dérivées jusqu'à l'ordre deux de dérivation.

D-3.1 (Milieux viscoélastiques à gradient de déformation d'extension). On considère un milieu curviligne dont l'effort normal N(S,t) et le moment fléchissant M(S,t) en un point matériel S et un instant t donnés dépendent a priori de la position du milieu $\mathbf{x}(S,t)$, de ses dérivées premières $\mathbf{x}'(S,t)$ et $\dot{\mathbf{x}}(S,t)$, et de ses dérivées secondes $\mathbf{x}''(S,t)$, $\dot{\mathbf{x}}'(S,t)$ et $\ddot{\mathbf{x}}(S,t)$ en ce point à cet instant.

On envisage donc *a priori* une dépendance vis à vis des vitesses pour rendre compte des phénomènes de viscosité et on va jusqu'aux dérivées secondes car la déformation de flexion fait intervenir \mathbf{x}'' . Comme il n'y a pas lieu de privilégier *a priori* certaines dérivées par rapport à d'autres, on les fait donc toutes intervenir jusqu'à l'ordre 2. Comme on se place en un point matériel S_0 donné et à un instant t_0 donné, on peut choisir indépendamment les valeurs des vecteurs $\mathbf{x}(S_0, t_0), \mathbf{x}'(S_0, t_0), \mathbf{x}'(S_0, t_0)$ et $\ddot{\mathbf{x}}(S_0, t_0)$. En d'autres termes, si $\mathbf{x}_0, \mathbf{v}_0, \boldsymbol{\tau}_0, \mathbf{d}_0$ et $\boldsymbol{\gamma}_0$ sont cinq vecteurs arbitraires du plan ($\mathbf{e}_1, \mathbf{e}_2$) et \mathbf{t}_0 un vecteur arbitraire non nul de ce plan, on peut toujours construire un mouvement du milieu continu $(S, t) \mapsto \mathbf{x}(S, t)$ dans le référentiel \mathcal{R} tel que

$$\mathbf{x}(S_0, t_0) = \mathbf{x}_0, \ \mathbf{x}'(S_0, t_0) = \mathbf{t}_0, \ \dot{\mathbf{x}}(S_0, t_0) = \mathbf{v}_0, \ \mathbf{x}''(S_0, t_0) = \boldsymbol{\tau}_0, \ \dot{\mathbf{x}}'(S_0, t_0) = \mathbf{d}_0, \ \ddot{\mathbf{x}}(S_0, t_0) = \boldsymbol{\gamma}_0.$$

Dans le référentiel \mathcal{R}^* , ce mouvement sera représenté par $\mathbf{x}^*(S, t^*) = \mathbf{a}(t) + \mathbf{Q}(t)\mathbf{x}(S, t)$ et on aura donc

$$\begin{cases} \mathbf{x}^{*}(S_{0},t_{0}^{*}) = \mathbf{a} + \mathbf{Q}\mathbf{x}_{0}, & \mathbf{x}^{*'}(S_{0},t_{0}^{*}) = \mathbf{Q}\mathbf{t}_{0}, & \dot{\mathbf{x}}^{*}(S_{0},t_{0}^{*}) = \dot{\mathbf{a}} + \dot{\mathbf{Q}}\mathbf{x}_{0} + \mathbf{Q}\mathbf{v}_{0} \\ \mathbf{x}^{*''}(S_{0},t_{0}) = \mathbf{Q}\boldsymbol{\tau}_{0}, & \dot{\mathbf{x}}^{*'}(S_{0},t_{0}) = \dot{\mathbf{Q}}\mathbf{t}_{0} + \mathbf{Q}\mathbf{d}_{0}, & \ddot{\mathbf{x}}^{*}(S_{0},t_{0}) = \ddot{\mathbf{a}} + \ddot{\mathbf{Q}}\mathbf{x}_{0} + 2\dot{\mathbf{Q}}\mathbf{v}_{0} + \mathbf{Q}\boldsymbol{\gamma}_{0}, \end{cases}$$

où **a**, **\u00e5**, **\u00e5**, **\u00e5** et $\mathbf{\ddot{Q}}$ désignent les valeurs de la translation, de la rotation et de leurs dérivées à l'instant t_0 . Là encore, on peut toujours construire un changement de référentiel tel que **a**, **\u00e5**, $\mathbf{\ddot{a}}$ soit des vecteurs arbitrairement choisis, tel que **Q** soit une matrice de rotation arbitraire et tel que $\mathbf{W} = \mathbf{\dot{Q}}\mathbf{Q}^T$ et $\mathbf{\dot{W}} = \mathbf{W}^2 + \mathbf{\ddot{Q}}\mathbf{Q}^T$ soient des matrices antisymétriques arbitraires. En se limitant aux changements de référentiel laissant le plan $(\mathbf{e}_1, \mathbf{e}_2)$ invariant, on peut identifier \mathbf{W} et $\dot{\mathbf{W}}$ aux scalaires Ω et $\dot{\Omega}$ en vertu du fait que

$$\mathbf{W}\mathbf{u} = \Omega \mathbf{e}_3 \wedge \mathbf{u}, \quad \mathbf{W}\mathbf{u} = \Omega \mathbf{e}_3 \wedge \mathbf{u} \quad \forall \mathbf{u},$$

dont on déduit

$$\dot{\mathbf{Q}}\mathbf{u} = \Omega \mathbf{e}_3 \wedge (\mathbf{Q}\mathbf{u}), \qquad \dot{\mathbf{Q}}\mathbf{u} = \dot{\Omega} \mathbf{e}_3 \wedge (\mathbf{Q}\mathbf{u}) - \Omega^2 \mathbf{Q}\mathbf{u} \qquad \forall \mathbf{u}.$$

D'après le principe d'objectivité, si φ désigne la fonction donnant le comportement d'une grandeur scalaire objective (effort normal, moment fléchissant ou toute autre grandeur objective), cette fonction doit vérifier

$$\varphi(\mathbf{x}_0, \mathbf{t}_0, \mathbf{v}_0, \boldsymbol{\tau}_0, \mathbf{d}_0, \boldsymbol{\gamma}_0) = \varphi(\mathbf{a} + \mathbf{Q}\mathbf{x}_0, \mathbf{Q}\mathbf{t}_0, \dot{\mathbf{a}} + \dot{\mathbf{Q}}\mathbf{x}_0 + \mathbf{Q}\mathbf{v}_0, \mathbf{Q}\boldsymbol{\tau}_0, \dot{\mathbf{Q}}\mathbf{t}_0 + \mathbf{Q}\mathbf{d}_0, \ddot{\mathbf{a}} + \ddot{\mathbf{Q}}\mathbf{x}_0 + \mathbf{Q}\boldsymbol{\gamma}_0)$$

et ce pour tous les vecteurs \mathbf{x}_0 , $\mathbf{t}_0 \neq \mathbf{0}$, \mathbf{v}_0 , $\boldsymbol{\tau}_0$, \mathbf{d}_0 , $\boldsymbol{\gamma}_0$, \mathbf{a} , $\dot{\mathbf{a}}$ et $\ddot{\mathbf{a}}$ du plan (\mathbf{e}_1 , \mathbf{e}_2), toutes les matrices de rotation \mathbf{Q} d'axe \mathbf{e}_3 et tous les scalaires Ω et $\dot{\Omega}$.

En prenant $\mathbf{Q} = \mathbf{I}, \ \Omega = \dot{\Omega} = 0, \ \mathbf{a} = -\mathbf{x}_0, \ \dot{\mathbf{a}} = -\mathbf{v}_0 \ \text{et} \ \ddot{\mathbf{a}} = -\boldsymbol{\gamma}_0, \ \text{on obtient}$

$$arphi(\mathbf{x}_0,\mathbf{t}_0,\mathbf{v}_0,oldsymbol{ au}_0,oldsymbol{ au}_0)=arphi(\mathbf{0},\mathbf{t}_0,\mathbf{0},oldsymbol{ au}_0,\mathbf{d}_0,\mathbf{0})$$

ce qui veut dire que la fonction ne peut pas dépendre explicitement de la position, de la vitesse et de l'accélération du point matériel. On peut donc restreindre les arguments de φ à $(\mathbf{t}_0, \boldsymbol{\tau}_0, \mathbf{d}_0)$ et le principe d'objectivité se réduit à l'égalité

$$\varphi(\mathbf{t}_0, \boldsymbol{\tau}_0, \mathbf{d}_0) = \varphi(\mathbf{Q}\mathbf{t}_0, \mathbf{Q}\boldsymbol{\tau}_0, \Omega \mathbf{e}_3 \wedge (\mathbf{Q}\mathbf{t}_0) + \mathbf{Q}\mathbf{d}_0)$$

qui doit être vraie pour tous les vecteurs $\mathbf{t}_0 \neq \mathbf{0}$, $\boldsymbol{\tau}_0$ et \mathbf{d}_0 , toutes les matrices de rotation \mathbf{Q} et tous les scalaires Ω . Posons $\mathbf{t}_0 = r\mathbf{t}$ où r > 0 et \mathbf{t} un vecteur unitaire du plan $(\mathbf{e}_1, \mathbf{e}_2)$. On a donc $r = \|\mathbf{t}_0\|$. Décomposons $\boldsymbol{\tau}_0$ et \mathbf{d}_0 sur la base (\mathbf{t}, \mathbf{n}) avec $\mathbf{n} = \mathbf{e}_3 \wedge \mathbf{t}$:

$$\boldsymbol{\tau}_0 = (\boldsymbol{\tau}_0 \cdot \mathbf{t}) \ \mathbf{t} + (\boldsymbol{\tau}_0 \cdot \mathbf{n}) \ \mathbf{n}, \qquad \mathbf{d}_0 = (\mathbf{d}_0 \cdot \mathbf{t}) \ \mathbf{t} + (\mathbf{d}_0 \cdot \mathbf{n}) \ \mathbf{n}.$$

En choisissant $\Omega = -\mathbf{d}_0 \cdot \mathbf{n} / \|\mathbf{t}_0\|$ et \mathbf{Q} de façon à ce que $\mathbf{Q}\mathbf{t} = \mathbf{e}_1$, on a

$$\mathbf{Q}\mathbf{n} = \mathbf{e}_2, \qquad \Omega \mathbf{e}_3 \wedge (\mathbf{Q}\mathbf{t}_0) + \mathbf{Q}\mathbf{d}_0 = \Omega \|\mathbf{t}_0\| \, \mathbf{e}_3 \wedge \mathbf{e}_1 + \mathbf{d}_0 \cdot \mathbf{t} \, \, \mathbf{e}_1 + \mathbf{d}_0 \cdot \mathbf{n} \, \, \mathbf{e}_2 = \mathbf{d}_0 \cdot \mathbf{t} \, \, \mathbf{e}_1.$$

Le principe d'objectivité donne alors

$$arphi(\mathbf{t}_0, oldsymbol{ au}_0, \mathbf{d}_0) = arphiig(\|\mathbf{t}_0\| \, \mathbf{e}_1, oldsymbol{ au}_0 \cdot \mathbf{t} \, \, \mathbf{e}_1 + oldsymbol{ au}_0 \cdot \mathbf{n} \, \, \mathbf{e}_2, \mathbf{d}_0 \cdot \mathbf{t} \, \, \mathbf{e}_1 ig)$$

qui permet de conclure que φ ne dépend que de $\|\mathbf{t}_0\|$, $\boldsymbol{\tau}_0 \cdot \mathbf{t}$, $\boldsymbol{\tau}_0 \cdot \mathbf{n}$ et $\mathbf{d}_0 \cdot \mathbf{t}$. Or, en revenant aux variables physiques et en omettant les arguments (S_0, t_0) , on a :

$$\mathbf{t}_0 = \mathbf{x}' = (1+\varepsilon)\mathbf{t}, \quad \boldsymbol{\tau}_0 = \mathbf{x}'' = \varepsilon'\mathbf{t} + (1+\varepsilon)^2 \mathbf{C}\mathbf{n}, \quad \mathbf{d}_0 = \dot{\mathbf{x}}' = \dot{\varepsilon}\mathbf{t} + (1+\varepsilon)\dot{\omega}\mathbf{n}$$

où \mathbf{t} , \mathbf{n} , ε , ε' , C_R et $\dot{\varepsilon}$ représentent le vecteur tangent, le vecteur normal, la déformation d'extension, la dérivée de la déformation d'extension, la courbure et la vitesse de déformation d'extension au point matériel S_0 dans la configuration du milieu à l'instant t_0 . Comme $\|\mathbf{t}_0\| = 1 + \varepsilon$, $\boldsymbol{\tau}_0 \cdot \mathbf{t} = \varepsilon'$, $\boldsymbol{\tau}_0 \cdot \mathbf{n} = (1 + \varepsilon)^2 \mathbf{C}$ et $\mathbf{d}_0 \cdot \mathbf{t} = \dot{\varepsilon}$, la fonction φ ne peut donc dépendre que de la déformation d'extension, de sa dérivée, de sa vitesse et de la courbure (ou de façon équivalente de la déformation de flexion). Comme toutes ces grandeurs sont des scalaires objectifs, cette condition est également suffisante pour que le principe d'objectivité soit satisfait. On a donc obtenu les conditions cherchées que l'on résume ci-dessous.

P-3.2 (Restrictions imposées par le principe d'objectivité sur les milieux viscoélastiques à gradient de déformation d'extension). Pour que le principe d'objectivité soit satisfait il faut et il suffit que l'effort normal et le moment fléchissant ne dépendent que de la déformation d'extension, de la dérivée de la déformation d'extension, de la vitesse de la déformation d'extension et de la déformation de flexion :

$$N = \mathsf{N}(\varepsilon, \varepsilon', \dot{\varepsilon}, \kappa), \qquad M = \mathsf{M}(\varepsilon, \varepsilon', \dot{\varepsilon}, \kappa).$$

Ils ne peuvent pas dépendre de la position, de la vitesse ou de l'accélération du point matériel, ni de l'orientation ou de la vitesse de rotation de la tangente.

Conclusion

Le principe d'objectivité confirme donc que les seules variables géométriques et cinématiques pertinentes pour décrire le comportement sont les déformations d'extension et de flexion et leurs dérivées. On pourrait essayer d'étendre cette propriété à des classes plus générales de lois constitutives, mais comme nous n'étudierons que des milieux élastiques ou viscoélastiques nous nous contenterons du résultat obtenu dans ce cadre.

3.2.3 Quelques résultats expérimentaux

Avant de poursuivre la construction théorique des lois de comportement, nous présentons dans cette section les résultats expérimentaux obtenus dans des essais uni-axiaux de traction-compression pour les grandes familles de matériaux : métaux, polymères, céramiques. On va ainsi mettre en évidence les principaux phénomènes observés et on obtiendra des ordres de grandeur qui nous seront utiles par la suite.

Les grandeurs contrôlées et les grandeurs mesurées

Pour identifier le comportement macroscopique d'un matériau, on commence par réaliser des essais uni-axiaux sur éprouvette, *i.e.* des essais où l'on exerce des forces de traction ou de compression dans une direction. On travaille en général à déplacement contrôlé, ce qui revient à imposer la longueur de l'éprouvette, de façon à pouvoir observer la réponse même dans le cas où les forces supportables sont bornées. Dans la partie cylindrique des éprouvettes, en supposant la réponse homogène, la variation relative de longueur de la partie cylindrique correspond à la déformation d'extension :

$$\varepsilon = \frac{\ell - \ell_{\mathsf{R}}}{\ell_{\mathsf{R}}}$$
 (déformation d'extension)

Cette déformation d'extension est donc donnée en fonction du temps, soit $t \mapsto \varepsilon_t$, et on mesure à chaque instant l'effort normal nécessaire, soit N_t . On obtient la loi constitutive *a priori* sous la forme d'une

fonctionnelle donnant N_t en fonction de l'histoire jusqu'à l'instant t de la déformation d'extension

$$N_t = \mathsf{N}(\{\varepsilon_\tau\}_{\tau \le t}).$$

Nous verrons qu'à cause des irréversibilités la réponse dépend effectivement en général de toute l'histoire.

FIGURE 3.1 – Eprouvettes utilisées dans des essais uni-axiaux : à gauche et au milieu, éprouvette à section circulaire et éprouvette plate pour un essai de traction ; à droite, éprouvette cylindrique pour un essai de compression.

Examinons maintenant la dépendance de N_t vis à vis de la section de l'éprouvette. Si l'on envisage un essai de traction sur un ensemble de n éprouvettes identiques mises en parallèle et soumises à la même histoire de variation de longueur, on trouvera le même effort normal dans chaque éprouvette qui sera donc égal à l'effort normal total divisé par n. Ceci suggère que la grandeur caractérisant le comportement du matériau n'est pas l'effort normal lui-même, mais l'effort normal par unité de surface. Ceci nous conduit à introduire *la contrainte normale* à la section, rapport de l'effort normal N par l'aire A de la section transversale dans sa configuration de référence naturelle³:

$$\sigma := \frac{N}{\mathsf{A}} \qquad \text{(contrainte normale)} \,. \tag{3.2}$$

La contrainte normale a donc la dimension d'une force par unité de surface, autrement dit d'une pression. On l'exprime le plus souvent en MPa.

Avec l'argument précédent⁴, c'est la relation entre σ et l'histoire des déformations d'extension qui est donc caractéristique du matériau constitutif de l'éprouvette. Les essais vont nous permettre d'identifier

^{3.} On pourrait aussi définir une autre contrainte normale en divisant par l'aire de la section transversale déformée. Cette dernière est appelée contrainte normale de Cauchy, alors que celle qui est définie dans (3.2) est la contrainte de Piola-Kirchhoff.

^{4.} Notons toutefois que l'argument ne vaut que pour des sections d'éprouvette d'assez grande taille. En effet, si l'on fait des essais sur des fibres (par exemple, des fibres de verre ou des fibres de carbone) dont le diamètre de la section est micrométrique (voire moins), alors les effets de tension superficielle jouent un rôle. La bonne grandeur est l'effort normal, pas la contrainte, et la loi constitutive dépend de façon non triviale de la section. La loi d'échelle est modifiée.

la loi constitutive du matériau :

$$\sigma_t = \varphi(\{\varepsilon_\tau\}_{\tau \le t}) \qquad \text{(loi constitutive uniaxiale du matériau)}, \tag{3.3}$$

dont on déduit immédiatement celle de l'éprouvette.

Les raisonnements précédents s'appuient de façon essentielle sur le caractère uni-axial et homogène de l'essai. Malheureusement, ces propriétés d'uni-axialité et d'homogénéité ne sont pas toujours satisfaites en pratique (ne serait-ce que par la forme même de l'éprouvette et par la difficulté à imposer des conditions aux limites compatibles). C'est aussi une des préoccupations de l'expérimentateur de s'assurer que les résultats obtenus sont intrinsèques au matériau et pas un effet combiné du matériau, de la géométrie et du chargement. Autrement dit, les résultats d'essais obtenus permettent avant tout de mettre en relation des grandeurs macroscopiques (*i.e.* moyennées en espace) qu'il s'agit de compléter par d'autres analyses afin de s'assurer qu'ils ne sont pas biaisés par des effets structurels.

Les réponses sous chargement monotone

Munis de ces précautions, commençons par rendre compte des différents types de réponses observées sous chargement monotone en distinguant si besoin est les essais de traction $\sigma > 0$, des essais de compression $\sigma < 0$. Lors de tels essais, on obtient une réponse qui peut être décrite par une fonction,

$$\sigma = \varphi_1(\varepsilon),$$

l'indice 1 indiquant qu'il s'agit de la première montée en charge. Les pentes de cette courbe représentent le degré de déformabilité du matériau. On les appelle *modules d'Young* et on est amené à distinguer en particulier

$$\begin{cases} \text{module d'Young initial} & : & \mathsf{E}_0 = \varphi_1'(0) \\ \text{module d'Young tangent} & : & \mathsf{E}(\varepsilon) = \varphi_1'(\varepsilon) \\ \text{module d'Young sécant} & : & \tilde{\mathsf{E}}(\varepsilon) = \varphi_1(\varepsilon)/\varepsilon \end{cases}$$
(3.4)

où le prime indique la dérivée par rapport à $\varepsilon.$

Suivant les matériaux et les conditions de température, on peut obtenir des courbes $\varepsilon \mapsto \varphi_1(\varepsilon)$ d'allure variée et dont les ordres de grandeur des déformations ou des contraintes caractéristiques sont très différents. Les réponses-types sont commentées ci-dessous et représentées sur les Figures 3.2 et 3.3, des valeurs étant données à titre indicatif pour fixer les ordres de grandeur :

1. Pour un acier doux, à température ordinaire, on observe une réponse quasi-linéaire jusqu'à des valeurs de la contrainte autour de 200-250 MPa avec un module d'Young initial autour de 200 GPa (et donc jusqu'à une déformation d'environ 10^{-3}), puis la courbe s'infléchit voire redescend légèrement, se stabilise autour d'une valeur pratiquement constante avant de croître à nouveau, de passer par un maximum et de redescendre. Le maximum est atteint pour des valeurs de la déformation de quelques % et une contrainte autour de 300-350 MPa.

2. Pour un élastomère, la courbe contrainte-déformation est toujours fortement non linéaire, d'abord concave puis convexe avec un changement de concavité vers quelques % de déformation. Le module d'Young tangent est beaucoup plus faible que pour un acier.

FIGURE 3.2 – Réponses schématiques de différents matériaux dans un essai de traction uniaxiale monotone : à gauche, pour un acier; au centre, pour un élastomère; à droite, pour du béton.

3. Pour une éprouvette en béton soumise à un essai de traction, on observe une réponse quasilinéaire jusqu'à une déformation de l'ordre de quelques 10^{-3} et une contrainte de l'ordre de quelques MPa, puis une décroissance rapide de la contrainte (phénomène appelé *adoucissement*).

4. Si l'on réalise un essai de compression sur une éprouvette de béton, l'allure de la courbe contrainte-déformation est sensiblement différente de celle obtenue en traction. La partie linéaire de la réponse est nettement plus importante, puis la courbe s'infléchit progressivement jusqu'à atteindre une valeur maximale 7 à 8 fois plus élevée que la contrainte maximale en traction. Cette phase de croissance non linéaire de la contrainte correspond au phénomène de *durcissement*. Elle est suivie d'une phase d'adoucissement, mais la décroissance de la contrainte est plus lente qu'en traction, cf Figure 3.3.

FIGURE 3.3 – Asymétrie du comportement du béton entre la traction et la compression.
Réponses à des chargements non monotones, irréversibilités

Les non-linéarités observées lors de certaines phases de la réponse sous chargement monotone s'avèrent être dues à une irréversibilité du comportement (mais attention, il ne faut pas confondre les deux concepts) et on le constate en faisant des chargements non monotones. Donc, si après une montée en charge jusqu'à un certain niveau de déformation ε_1 et de contrainte σ_1 , on décharge l'éprouvette jusqu'à ramener les contraintes à 0 puis on la recharge jusqu'à un niveau de déformation ε_2 plus grand (en valeur absolue) que ε_1 , on observe typiquement les réponses suivantes, cf Figure 3.4 :

1. Pour un acier doux, si ε_1 correspond au premier plateau de la montée en charge, la décharge est pratiquement linéaire suivant une pente qui est pratiquement identique à celle de la montée en charge. À la fin de la décharge on observe donc une *déformation résiduelle*. C'est ce phénomène qui est appelé *plasticité*. Si l'on recharge, la réponse est pratiquement linéaire avec toujours la même pente jusqu'au niveau ε_1 , puis la contrainte est à nouveau pratiquement constante et l'on retrouve la courbe de première charge.

2. Pour un élastomère, la décharge est comme la montée en charge fortement non linéaire, la courbe est convexe et la pente diminue progressivement lorsqu'on ramène la contrainte à 0. Contrairement à l'acier, on n'observe pas de déformation résiduelle notable. Ce comportement avec boucle d'hystérésis est appelé *effet Mullins*. La recharge se fait pratiquement suivant la courbe de décharge, ce qui veut dire que cette phase de décharge-recharge est pratiquement réversible (mais non-linéaire). Lorsqu'on dépasse le niveau ε_1 , on retrouve la courbe de première charge.

3. Pour du béton en compression, la décharge est en première approximation linéaire mais avec une pente plus faible que celle correspondant au début de la montée en charge. Ce phénomène de perte de rigidité est appelé *endommagement*. À la fin de la décharge, il y a une déformation résiduelle. La recharge est en première approximation réversible jusqu'au niveau ε_1 précédemment atteint, puis l'on suit la courbe de première charge.

FIGURE 3.4 – Réponses schématiques des différents matériaux dans un cycle de charge-déchargerecharge : à gauche, pour un acier doux ; au centre, pour un élastomère ; à droite, pour un béton en compression.

Toutefois, dans tous les cas la réversibilité des phases de décharge-recharge n'est qu'approximative. Si l'on effectue un grand nombre de cycles, on voit progressivement une dérive qui peut suivant les cas se stabiliser ou non selon le type de matériaux testés et le type de cycles effectués, cf Figure 3.5.

FIGURE 3.5 - Réponses des différents matériaux sous chargement cyclique : à gauche, plasticité cyclique d'un acier ; au milieu, adoucissement cyclique d'un élastomère ; à droite, comportement hystérétique d'un béton en compression

Il faut noter toutefois que tous les comportements irréversibles mis en évidence ci-dessus (les déformations résiduelles et la plasticité cyclique pour les métaux, l'effet Mullins et l'adoucissement cyclique des contraintes pour les polymères, la perte progressive de rigidité et le comportement hystérétique des bétons) ne sont pas des effets visqueux. Ils peuvent être modélisés dans un cadre où le comportement est indépendant des vitesses de sollicitation.

Chargement jusqu'à rupture

FIGURE 3.6 – Etat final de différentes éprouvettes après un essai uniaxial : à gauche, rupture par striction d'une éprouvette métallique; au centre, rupture par décohésion des fibres d'un composite à fibres de carbone; à droite, rupture par fissuration longitudinale d'une éprouvette de béton comprimée.

Si l'on revient à un chargement monotone et si on augmente la déformation, l'éprouvette finit par se rompre. Ici encore les mécanismes de rupture observés sont très variés et fortement dépendants du matériau et de l'essai. Par exemple, pour un acier lors d'un essai de traction, on observe avant la rupture un rétrécissement de la section de l'éprouvette (phénomène appelé *striction*), la rupture intervenant ensuite par une séparation en deux de l'éprouvette dans le sens transversal. Pour un composite constitué d'une matrice polymère renforcée par des fibres de carbone dans une direction, la rupture dans un essai de compression (la direction de la compression étant parallèle aux fibres) intervient par une décohésion des fibres. Pour un béton en compression, la rupture se traduit par l'apparition d'un réseau de fissures longitudinales alors que dans un essai de traction elle consiste essentiellement en une fissure unique transversale.

On peut être tenté de proposer une classification des matériaux ou des comportements à partir de ces différences observées dans des essais uni-axiaux. On parle ainsi de comportement *fragile* ou *ductile*.

Comportements fragile ou ductile : Un matériau comme l'acier à température ordinaire qui peut supporter des déformations importantes après la phase initiale élastique est dit *ductile* alors qu'un matériau comme le béton dont la contrainte chute rapidement vers 0 après la phase élastique est dit *fragile*.

Dépendance à la vitesse de déformation

Les réponses présentées précédemment peuvent dépendre fortement de la vitesse de déformation. Cette dépendance est particulièrement nette chez les polymères. Une façon de le mettre en évidence est de faire des essais de traction uni-axiaux en pilotant en déformation et en imposant une vitesse de déformation constante. On constate que, plus la vitesse de déformation est grande, plus la contrainte est élevée pour le même niveau de déformation, cf Figure 3.7. Ces effets visqueux se voient aussi en travaillant soit à déformation constante où l'on observe une *relaxation* des contraintes avec le temps, soit à contrainte constante où l'on observe le phénomène de *fluage*, *i.e.* une augmentation de la déformation avec le temps. En combinant des phases où l'on fait varier très rapidement les déformations avec des phases où l'on maintient les déformations, phases où il y a relaxation des contraintes, on obtient des réponses comme celle qui est représentée dans la Figure 3.8 et qui correspond à un élastomère.

FIGURE 3.7 – Mise en évidence d'un comportement avec viscosité : à gauche, dépendance de la réponse à la vitesse de déformation ; au milieu, relaxation de la contrainte à déformation constante ; à droite, fluage à contrainte constante.

FIGURE 3.8 – Mise en évidence du comportement viscoélastique d'un polymère : à gauche, contrainte normale σ en fonction du temps ; à droite, réponse dans le diagramme (ε, σ)

Dépendance à la température

La température est un paramètre qui peut changer radicalement le comportement d'un matériau ou induire des réponses "inattendues" pour les structures. On présente brièvement dans les paragraphes qui suivent trois de ces propriétés des matériaux liées à la température et quelques unes de leurs conséquences en terme de structures : la dilatation thermique, les changements de phase et la transition fragile-ductile.

1. La dilatation thermique et ses conséquences. Si l'on chauffe une tige en faisant passer sa température de T_0 à $T_1 > T_0$ tout en laissant ses extrémités libres, elle s'allonge. Cette variation relative de longueur est, en première approximation et pourvu que la variation de température ne soit pas trop importante, proportionnelle à $T_1 - T_0$, le coefficient de proportionnalité est le coefficient de dilatation a, grandeur dépendant du matériau constitutif :

$$\varepsilon = \mathsf{a}(T_1 - T_0), \qquad \sigma = 0.$$

Cette relation reste évidemment valable si l'on refroidit la tige en imposant $T_1 < T_0$ et la tige se contracte, cf figure 3.9. Ce coefficient est de l'ordre de 10^{-5} par degré Celsius pour les matériaux usuels.

FIGURE 3.9 – Dilatation ou contraction d'une tige aux extrémités libres suivant qu'on l'échauffe ou qu'on la refroidit.

Si l'on chauffe cette même tige tout en bloquant ses extrémités de façon à empêcher sa dilatation, la tige va se trouver comprimer, la contrainte de compression étant gouvernée par sa loi constitutive thermoélastique. Dans le cas d'un comportement linéaire (approximation raisonnable dans le cas de faibles gradients de température, cette compression est donnée par

$$\sigma = -\mathsf{Ea}(T_1 - T_0),$$

où E est le module d'Young du matériau. Cette relation vaut aussi si l'on refroidit la tige qui se trouve donc alors en traction, cf figure 3.10.

FIGURE 3.10 – Création de contraintes de traction ou de compression dans une tige bloquée aux extrémités du fait d'une diminution ou d'une augmentation de la température.

Cette création de contraintes mécaniques par effet thermique peut avoir des conséquences néfastes pour les structures. On en donne deux exemples ci-dessous pour des rails de chemin de fer.

• Flambement d'un rail.

Lors de la canicule de l'été 2003, l'élévation de température a induit des contraintes de compression suffisamment élevées pour faire flamber des rails SNCF comme ceux de la figure ci-contre. Normalement, ce genre de problème est évité grâce à des joints de dilatation ou des systèmes équivalents répartis à intervalles réguliers. Mais le dimensionnement n'avait manifestement pas prévu une situation aussi exceptionnelle.

• Rupture d'un rail.

La figure ci-contre montre la rupture d'un rail sur la ligne D du RER en Octobre 2003. C'est encore les conditions climatiques qui sont à la base de la rupture. Du fait de la baisse de la température, le rail voulait se contracter, mais cette contraction étant empêchée par la fixation du rail sur le ballast, des contraintes thermiques de traction ont été engendrées, proportionnelles à la baisse de température. Ces contraintes ont été suffisantes pour provoquer la rupture brutale du rail.

2. Les changements de phase et les matériaux à mémoire de forme

(a) Les deux phases d'un AMF. Les propriétés des alliages à mémoire de forme (AMF) sont dues au fait que leur structure cristalline change en fonction de la température et des efforts appliqués. Lorsqu'un AMF comme le Nickel-Titane est libre de contrainte et à une température au dessus d'une température critique A_f, il est dans une phase appelée *austénite* associée à une structure cristalline de base. Si on le refroidit tout en le laissant libre de contrainte, sa structure cristalline change progressivement à partir d'une température M_s pour finir dans la phase appelée martensite quand la température passe sous la valeur Mf. Cette transformation est réversible même si la transformation inverse ne se fait pas aux mêmes niveaux de température. De plus la transformation est modifiée si on exerce des efforts, ce qui conduit à un certain nombre d'effets comme l'effet mémoire simple sens ou l'effet superélastique.

(b) L'effet mémoire simple sens. Si l'on plie à température constante inférieure à M_f une tige d'AMF initialement rectiligne en augmentant progressivement le moment fléchissant, sa structure cristalline martensitique se modifie en s'orientant. Cette structure orientée est stable, ce qui fait que l'AMF conserve une courbure résiduelle même après décharge, phénomène similaire à la *plasticité*. Mais, si on chauffe ensuite la tige tout en la maintenant libre d'effort, la martensite va progressivement se transformer en austénite et la tige va finalement retrouver sa forme rectiligne initiale (avec éventuellement une longueur différente).

(c) L'effet superélastique : Si on déforme une tige d'AMF à température constante supérieure à A_f , la phase austénite initiale se transforme progressivement en martensite lorsque la déformation dépasse une valeur critique (fonction de la température). Si l'on décharge ensuite la tige, l'AMF va subir un changement de phase inverse (mais à des niveaux de déformation et de contrainte différents de la montée en charge) pour revenir à son état initial. Le comportement est donc globalement réversible et ce même si la déformation maximale subie par l'AMF est importante, d'où le nom d'effet superélastique.

Tous ces effets trouvent des applications, en particulier dans le domaine biomédical.

(a) Différentes phases d'un AMF dans un diagramme contrainte-température

3. La transition ductile-fragile des métaux à basse température. Un métal est ductile à température ordinaire, mais devient fragile à basse température. Ceci se traduit par une baisse très marquée de sa résistance à la rupture que l'on peut quantifier en mesurant l'énergie nécessaire pour créer une fissure d'aire unité. Ainsi un acier peut voir son énergie de fissuration divisée par 25 quand la température baisse de 20° C à -10° C. Cette transition fragile-ductile, longtemps méconnue ou mésestimée, est à la base de plusieurs accidents célèbres. L'un d'eux est celui des cargos, appelés Liberty ships, construits durant la Seconde Guerre mondiale et dont 200 sur les 5000 ont subi des dommages importants, certains rompant brutalement et entièrement tel le Schenectady, cf Figure 3.11.

FIGURE 3.11 – Le Schenectady, un des liberty ships entièrement rompus

L'explication avancée est double : d'une part la navigation en Mer du Nord où la *température* de l'eau est *plus froide* que dans l'Atlantique, d'autre part l'urgence de la situation qui a conduit à construire ces bateaux en série à partir de panneaux modulaires *soudés* et non plus rivetés (un bateau était ainsi assemblé en moins d'un mois). La baisse de température a fait que le métal est passé de ductile à fragile avec une chute sensible de l'énergie de rupture. C'est à cette occasion qu'a été découverte la notion de température de transition fragile-ductile grâce en particulier aux travaux de G. R. Irwin, ingénieur de l'US Naval Research Laboratory, qui développa à l'occasion certains des concepts de base de la Mécanique de la Rupture Fragile.

Les mécanismes microscopiques associés : L'explication de ces différents comportements peut être cherchée à une échelle plus fine en observant les mécanismes microscopiques associés : la plasticité des métaux est due aux mouvements des *dislocations* (défaut du réseau cristallin) ; le comportement non linéaire et irréversible des élastomères est dû à l'*étirement des chaînes* et aux modifications des liaisons faibles entre les noeuds du réseau ; le comportement des alliages à mémoire de forme est lié aux modifications de leur structure cristalline et à l'existence de plusieurs phases ; la perte de rigidité progressive et le comportement hystérétique du béton sont liés au développement et au jeu d'ouverture et de fermeture de réseaux de *microfissures*.

3.2.4 Les différents comportements de type élastique

Dans ce cours introductif, nous n'étudierons pas de façon approfondie tous les types de comportement possibles. Nous nous focaliserons d'abord sur les plus simples basés sur l'élasticité, les autres pourront être abordés ponctuellement sous forme d'exercices. On sera ainsi amené à rendre compte des effets du temps en considérant des modèles visco-élastiques ou des effets de la température en considérant des modèles thermo-élastiques.

$$\left(\begin{array}{c}N\\M\end{array}\right)\longleftrightarrow \left(\begin{array}{c}\varepsilon\\\kappa\end{array}\right)$$

TABLE 3.1 – Classification des comportements basés sur l'élasticité en y incluant les cas limites dans lesquels la déformation du milieu est soit impossible (inextensibilité ou inflexibilité), soit au contraire peut se faire sans effort (parfaite flexibilité). On remarquera la dualité entre l'effort normal et la déformation d'extension d'une part, et entre le moment fléchissant et la déformation de flexion d'autre part. Cette dualité formelle prendra tout son sens dès la prochaine section.

3.3 Le comportement élastique

Cette section est dédiée à une étude détaillée du comportement élastique. On commence par présenter une expérience fondamentale qui permet de mettre en évidence la dualité entre les efforts intérieurs et les variables de déformation. On justifie ensuite l'existence d'un potentiel élastique à partir d'un principe physique naturel. On propose enfin une construction de ce potentiel élastique en s'appuyant sur analyse tridimensionnelle simplifiée qui permet de distinguer les dépendances du comportement à la géométrie et au matériau.

3.3.1 Justification de l'existence d'une énergie élastique

Le processus de déformation envisagé.

Imaginons l'expérience suivante :

1. On considère un milieu continu curviligne élastique homogène dans une configuration de référence naturelle de longueur ℓ_{R} et de courbure constante C_{R} . Le milieu est homogène au sens où les relations de comportement élastique $N = \mathbb{N}_{\mathbf{e}}(\varepsilon, \kappa)$ et $M = \mathbb{M}_{\mathbf{e}}(\varepsilon, \kappa)$ donnant l'effort normal et le moment fléchissant en fonction des déformations d'extension et de flexion par rapport à cette configuration de référence ne dépendent pas explicitement du point S^5 . La configuration de référence est naturelle au sens où elle n'engendre pas d'efforts intérieurs et donc $\mathbb{N}_{\mathbf{e}}(0,0) = 0$, $\mathbb{M}_{\mathbf{e}}(0,0) = 0$.

2. On lui fait subir un trajet de déformation homogène⁶ le faisant passer de la configuration de référence à l'état de déformation homogène (ε, κ). Les états de déformation intermédiaires, tous homogènes, seront notés (ε_t, κ_t). Ils ne dépendent donc pas de S et leur dépendance vis à vis du paramètre t variant entre t_0 et t_1 est régulière et telle que ($\varepsilon_{t_0}, \kappa_{t_0}$) = (0,0) et ($\varepsilon_{t_1}, \kappa_{t_1}$) = (ε, κ). Ce processus de chargement est supposé "infiniment lent" de façon à pouvoir négliger les effets d'inertie et à pouvoir considérer que le milieu est à chaque instant t dans un état d'équilibre. Un tel processus est dit quasi-statique.

Nous nous proposons de calculer dans un premier temps l'énergie qu'il faut fournir (ou prendre) à ce milieu pour réaliser ce processus de déformation. Nous introduirons ensuite l'hypothèse physique qui permet de conclure à l'existence d'un potentiel élastique.

Travail des efforts extérieurs et travail de déformation

Utilisons la description lagrangienne pour décrire les évolutions du milieu et la dépendance par rapport à t est indiquée en indice, cf Section 1.4.1. L'énergie fournie par l'extérieur au milieu curviligne durant ce processus est égale au travail des efforts extérieurs. Par définition, ce travail est l'intégrale en temps de la puissance des efforts extérieurs,

$$\mathsf{W} = \int_{t_0}^{t_1} P_t \ dt.$$

^{5.} Ceci veut dire que les fonctions N_e et M_e sont indépendantes de S, mais évidemment les arguments ε et κ dépendront de S dès lors que les déformations ne sont pas homogènes.

^{6.} Ceci veut dire que tous les points ont la même déformation à un instant donné : $\varepsilon_t(S) = \varepsilon_t, \kappa_t(S) = \kappa_t, \forall S$.

La puissance P_t des efforts extérieurs à l'instant t s'écrit

$$P_t = \mathcal{F}_t(0) \cdot \dot{\mathbf{x}}_t(0) + \mathcal{M}_t(0) \dot{\omega}_t(0) + \int_0^{\ell_{\mathsf{R}}} \left(\mathbf{f}_t(S) \cdot \dot{\mathbf{x}}_t(S) + m_t(S) \dot{\omega}_t(S) \right) dS + \mathcal{F}_t(\ell_{\mathsf{R}}) \cdot \dot{\mathbf{x}}_t(\ell_{\mathsf{R}}) + \mathcal{M}_t(\ell_{\mathsf{R}}) \dot{\omega}_t(\ell_{\mathsf{R}}) + \mathcal{M}_t(\ell_{\mathsf{R}}) \cdot \dot{\mathbf{x}}_t(\ell_{\mathsf{R}}) + \mathcal{M}_t(\ell_{\mathsf{R}}) \cdot \dot{\mathbf{x}}_t(\ell_{\mathsf{R}})$$

où $(\mathcal{F}_t(0), \mathcal{M}_t(0))$ et $(\mathcal{F}_t(\ell_R), \mathcal{M}_t(\ell_R))$ représentent les efforts extérieurs aux extrémités (à l'instant t), $(\mathbf{f}_t(S), m_t(S))$ sont les efforts linéiques par *unité de longueur de la configuration de référence*, $\dot{\mathbf{x}}_t$ et $\dot{\omega}_t$ sont les champs de vitesse et de vitesse de rotation en représentation lagrangienne, cf Chapitre 1.

Cette expression de la puissance des efforts extérieurs peut être considérée comme une définition, mais elle est naturelle : les forces travaillent dans les vitesses de leur point d'application, les moments dans les vitesses de rotation de la tangente à leur point d'application et la puissance totale est la somme de toutes les puissances élémentaires.

Les déformations étant homogènes et le milieu étant lui-même homogène, les relations de comportement élastiques permettent de conclure que l'effort normal et le moment fléchissant sont également homogènes et donnés par

$$N_t = \mathbb{N}_{\mathbf{e}}(\varepsilon_t, \kappa_t), \quad M_t = \mathbb{M}_{\mathbf{e}}(\varepsilon_t, \kappa_t).$$

Par contre l'effort tranchant n'est pas donné par la loi de comportement. Comme le processus est quasistatique, les efforts extérieurs et l'effort tranchant vont devoir s'ajuster de façon à ce que les équations d'équilibre locales soient satisfaites. On a donc, en tenant compte du fait que M_t est homogène :

$$\mathbf{f}_t(S) = -\mathbf{R}'_t(S), \qquad m_t(S) = -T_t(S) \left\| \mathbf{x}'_t(S) \right\|,$$

le prime désignant la dérivée par rapport à S. Le facteur $\|\mathbf{x}'_t(S)\|$ (qui en fait est homogène et vaut $1 + \varepsilon_t$) vient du fait que m_t est la densité linéique de couples par unité de longueur de la configuration de référence. Aux extrémités, on doit avoir

$$\boldsymbol{\mathcal{F}}_t(0) = -\mathbf{R}_t(0), \quad \mathcal{M}_t(0) = -M_t, \qquad \boldsymbol{\mathcal{F}}_t(\ell_{\mathsf{R}}) = \mathbf{R}_t(\ell_{\mathsf{R}}), \quad \mathcal{M}_t(\ell_{\mathsf{R}}) = M_t.$$

Comme la déformation est homogène et que $\dot{\kappa}_t = \dot{\omega}'_t(S)$, on a $\dot{\omega}_t(\ell_R) - \dot{\omega}_t(0) = \dot{\kappa}_t \ell_R$. De plus, cf (1.39), la vitesse de rotation s'exprime en terme de la vitesse de position par

$$\|\mathbf{x}_t'(S)\| \ \dot{\omega}_t(S) = \dot{\mathbf{x}}_t'(S) \cdot \mathbf{n}_t(S).$$

En reportant dans l'expression de la puissance puis en faisant une intégration par parties du terme $\mathbf{R}'_t \cdot \dot{\mathbf{x}}_t$, on obtient

$$P_t = -\mathbf{R}_t(0) \cdot \dot{\mathbf{x}}_t(0) - \int_0^{\ell_{\mathsf{R}}} \left(\mathbf{R}'_t(S) \cdot \dot{\mathbf{x}}_t(S) + T_t(S) \dot{\mathbf{x}}'_t(S) \cdot \mathbf{n}_t(S) \right) dS + \mathbf{R}_t(\ell_{\mathsf{R}}) \cdot \dot{\mathbf{x}}_t(\ell_{\mathsf{R}}) + M_t \dot{\kappa}_t \ell_{\mathsf{R}}$$
$$= \int_0^{\ell_{\mathsf{R}}} \left(\mathbf{R}_t(S) - T_t(S) \mathbf{n}_t(S) \right) \cdot \dot{\mathbf{x}}'_t(S) dS + M_t \dot{\kappa}_t \ell_{\mathsf{R}} = \int_0^{\ell_{\mathsf{R}}} N_t \, \dot{\mathbf{x}}'_t(S) \cdot \mathbf{t}_t(S) dS + M_t \dot{\kappa}_t \ell_{\mathsf{R}}.$$

Mais comme $\dot{\mathbf{x}}'_t(S) \cdot \mathbf{t}_t(S) = \dot{\varepsilon}_t$, cf (1.37), et que la déformation et l'effort normal sont homogènes, on obtient

$$P_t = (N_t \dot{\varepsilon}_t + M_t \dot{\kappa}_t) \ell_{\mathsf{R}}.$$

En reportant dans l'expression du travail, on a finalement obtenu le résultat fondamental suivant

P-3.3 (Travail de déformation). Dans un processus de déformation quasi-statique homogène, le travail des efforts extérieurs est égal au travail de déformation qui est la somme du travail de l'effort normal dans la déformation d'extension et du travail du moment fléchissant dans la déformation de flexion :

$$W = \int_{t_0}^{t_1} \left(N_t \dot{\varepsilon}_t + M_t \dot{\kappa}_t \right) dt \ \ell_{\mathsf{R}}.$$

On ne s'est servi de la loi de comportement que pour s'assurer que l'effort normal et le moment fléchissant étaient homogènes. Cette propriété se généralise donc à tout milieu curviligne homogène dont la réponse à une sollicitation homogène est homogène.

Ce résultat est fondamental puisqu'il fait apparaître que la déformation d'extension est bien la variable de déformation naturellement associée à l'effort normal et que la déformation de flexion est la variable de déformation naturellement associée au moment fléchissant. Un autre choix de variables de déformation aurait conduit à une expression différente et en général beaucoup plus complexe du travail de déformation, cf Exercice 3.1.

Exercice 3.1. Donner l'expression du travail de déformation en prenant pour variables de déformation, la déformation de Green-Lagrange $\tilde{\varepsilon} = \varepsilon + \frac{1}{2}\varepsilon^2$ et la variation de courbure $\tilde{\kappa} = C - C_R$.

Les efforts extérieurs mis en jeu

Il est également intéressant de s'arrêter sur les efforts extérieurs nécessaires pour réaliser cette expérience. Si on parcourt la démonstration précédente, on s'aperçoit qu'ils ne sont pas déterminés de façon unique par les équations d'équilibre et les conditions aux limites pour un milieu et un processus de déformation donnés. On peut se donner arbitrairement à chaque instant une répartition $S \mapsto m_t(S)$ de densité linéique de couples dans la mesure où elle est continue et différentiable (par rapport à S). En effet, on déduit alors l'effort tranchant de l'équation d'équilibre des moments, puis la densité \mathbf{f}_t de forces linéiques de l'équation d'équilibre des forces :

$$T_t(S) = -\frac{m_t(S)}{1+\varepsilon_t}, \quad \mathbf{f}_t(S) = -m_t(S)\mathbf{C}_t\mathbf{t}_t(S) + \left(\frac{m_t'(S)}{1+\varepsilon_t} - (1+\varepsilon_t)N_t\mathbf{C}_t\right)\mathbf{n}_t(S),$$

où C_t est la courbure à l'instant t de la configuration déformée qui est reliée aux déformations par

$$\mathsf{C}_t = \frac{\kappa_t - \mathsf{C}_{\mathsf{R}}}{1 + \varepsilon_t}.$$

Les forces aux extrémités s'en déduisent également

$$\boldsymbol{\mathcal{F}}_t(0) = -N_t \mathbf{t}_t(0) + \frac{m_t(0)}{1 + \varepsilon_t} \mathbf{n}_t(0), \quad \boldsymbol{\mathcal{F}}_t(\ell_{\mathsf{R}}) = N_t \mathbf{t}_t(\ell_{\mathsf{R}}) - \frac{m_t(\ell_{\mathsf{R}})}{1 + \varepsilon_t} \mathbf{n}_t(\ell_{\mathsf{R}}).$$

Par conséquent, si on fait une expérience sans introduire de densité de couples, *i.e.* avec $m_t(S) = 0$, alors l'effort tranchant est nul et les forces extérieures à exercer se réduisent à

$$\mathbf{f}_t(S) = -(1+\varepsilon_t)N_t\mathbf{C}_t\mathbf{n}_t(S), \quad \boldsymbol{\mathcal{F}}_t(0) = -N_t\mathbf{t}_t(0), \quad \boldsymbol{\mathcal{F}}_t(\ell_{\mathsf{R}}) = N_t\mathbf{t}_t(\ell_{\mathsf{R}}).$$

On voit qu'il faut donc exercer une densité linéique uniforme de force normale à la configuration d'équilibre, son intensité variant avec la déformation imposée de façon à équilibrer les efforts normaux exercés à chaque extrémité. Ramenée à une densité linéique par unité de longueur de la configuration déformée, cette "pression" (ce n'est pas vraiment une pression car l'unité de p est le N/m et non le N/m²).

FIGURE 3.12 – Efforts extérieurs à imposer pour réaliser un essai de déformation homogène.

Remarque 3.1. La relation précédente entre la pression, l'effort normal et la courbure est identique à la loi de Laplace qui est utilisée pour modéliser les phénomènes de tension superficielles dans les fluides. Cette coïncidence n'est évidemment pas fortuite, car la loi de Laplace découle naturellement de l'équilibre de la surface une fois que l'on a postulé l'existence d'une tension superficielle.

Les propriétés du travail de déformation pour les milieux élastiques

Dans le cas élastique, le travail de déformation s'écrit (par unité de longueur de référence du milieu)

$$\mathsf{W}_{\mathsf{def}} = \int_{t_0}^{t_1} \Big(\mathtt{N}_{\mathsf{e}}(\varepsilon_t, \kappa_t) \dot{\varepsilon}_t + \mathtt{M}_{\mathsf{e}}(\varepsilon_t, \kappa_t) \dot{\kappa}_t \Big) dt.$$

Pour un milieu curviligne élastique donné, il dépend *a priori* du trajet de déformation mais pas de la loi horaire avec laquelle il est décrit. Cela tient au fait que la loi de comportement ne dépend pas des vitesses de déformation. On peut le voir simplement en considérant deux processus de déformation empruntant un même trajet de déformation mais qui est parcouru k fois plus vite dans le deuxième processus. Les vitesses sont multipliées par k, mais comme la durée du processus est divisée par k le travail est inchangé. De façon générale, soit $t \mapsto \tau = \tau(t)$ une fonction continûment différentiable et strictement croissante et soit $t \mapsto (\varepsilon \circ \tau_t, \kappa \circ \tau_t)$ un processus de déformation se déduisant du processus $t \mapsto (\varepsilon_t, \kappa_t)$ par le changement de loi horaire $t \mapsto \tau(t)$. Il est facile de voir qu'ils donnent lieu au même travail de déformation (il suffit de faire le changement de variable $t \to \tau$ dans l'intégrale). Ceci permet d'adopter les notations des formes différentielles et d'écrire le travail de déformation comme la circulation de l'effort normal et du moment fléchissant le long du trajet de déformation Γ :

$$\mathsf{W}_{\mathsf{def}} = \mathcal{W}(\Gamma) := \int_{\Gamma} (\mathtt{N}_{\mathsf{e}}(\varepsilon, \kappa) d\varepsilon + \mathtt{M}_{\mathsf{e}}(\varepsilon, \kappa) d\kappa),$$

où Γ est la courbe orientée dans le plan (ε, κ) décrivant le trajet emprunté. Il est clair que si on parcourt le trajet Γ en sens inverse, le travail le long de ce trajet *rétrograde* Γ^{R} est l'opposé du travail dans le trajet direct :

$$\mathcal{W}(\Gamma^{\mathsf{R}}) = -\mathcal{W}(\Gamma).$$

Le principe physique invoqué et ses conséquences

Enonçons d'abord le principe⁷ avant de l'étudier.

D-3.2 (Principe du travail de déformation positif). La loi de comportement doit être telle que, dans tout processus de déformation quasi-statique homogène et cyclique faisant partir et revenir le milieu curviligne au repos dans sa configuration de référence naturelle, le travail de déformation est positif ou nul. Autrement dit, l'extérieur ne peut pas récupérer de l'énergie en lui faisant faire un cycle de déformation partant de son état naturel.

1. Sa justification. Ce principe peut s'appliquer à des comportements inélastiques, mais nous nous contenterons de l'étudier dans le cas élastique. Essayons d'en donner une justification dans ce cadre élastique. Les cycles de déformation envisagés sont donc les trajets Γ dont l'état initial et l'état final est (0,0). Si on pouvait trouver un cycle Γ tel que le travail correspondant soit négatif, *i.e.* $\mathcal{W}(\Gamma) < 0$, alors, en réitérant le cycle n fois, le travail serait égal à $n\mathcal{W}(\Gamma)$, l'extérieur récupérerait une énergie n fois plus grande. En faisant tendre n vers l'infini, cet élément de milieu curviligne élastique se comporterait comme une source d'énergie inépuisable. Ce n'est manifestement pas réaliste, il faut donc supposer que $\mathcal{W}(\Gamma) \geq 0$ pour tout cycle Γ partant de (0,0).

FIGURE 3.13 – Différents trajets de déformation dans le plan (ε, κ). En rouge, trajet de déformation direct partant de la configuration naturelle; en bleu, trajet rétrograde permettant de faire un cycle ramenant à la configuration naturelle; en vert, trajet finissant par un segment de longueur h utilisé pour montrer que l'effort normal dérive du potentiel W_e.

^{7.} Le principe tel qu'il est énoncé ici ne porte pas de nom. Nous le baptisons *principe du travail de déformation positif*. On en trouve un basé sur la même idée en plasticité mais qui n'est pas strictement identique, il porte le nom de postulat d'Ilyushin.

2. Ses conséquences. Nous nous proposons de montrer en plusieurs étapes l'existence d'une énergie élastique.

(a) Il ne peut pas exister un cycle partant de (0,0) dont le travail correspondant est strictement positif. En effet, s'il existait un tel cycle Γ , alors le travail dans le cycle rétrograde Γ^{R} serait $-W(\Gamma) < 0$ et le principe serait violé. On doit nécessairement avoir

$$\mathcal{W}(\Gamma) = 0$$
 pour tout cycle Γ partant de $(0,0)^8$.

(b) Montrons qu'alors le travail de déformation dans un trajet Γ partant de (0,0) et arrivant à (ε,κ) ne dépend que de (ε,κ) et pas du chemin suivi pour y arriver. Pour cela considérons deux trajets Γ_1 et Γ_2 partant de (0,0) et arrivant tous deux à (ε,κ) . Considérons le trajet Γ consistant en la concaténation du trajet Γ_1 et du trajet rétrograde Γ_2^{R} de Γ_2 . Le trajet Γ étant un cycle partant de (0,0), on doit avoir $\mathcal{W}(\Gamma) = 0$. On obtient donc

$$0 = \mathcal{W}(\Gamma) = \mathcal{W}(\Gamma_1) + \mathcal{W}(\Gamma_2^{\mathsf{R}}) = \mathcal{W}(\Gamma_1) - \mathcal{W}(\Gamma_2)$$

qui est exactement la propriété voulue, $\mathcal{W}(\Gamma_1) = \mathcal{W}(\Gamma_2)$.

(c) Par conséquent, on peut définir la fonction $(\varepsilon, \kappa) \mapsto W_{\mathbf{e}}(\varepsilon, \kappa)$, appelée *potentiel élastique*, donnant le travail de déformation associé à n'importe quel trajet de déformation partant de (0,0) et finissant en (ε, κ) . Par construction, on a $W_{\mathbf{e}}(0,0) = 0$.

(d) Montrons que N_e et M_e dérivent de ce potentiel, *i.e.*

$$N = \frac{\partial W_{\mathbf{e}}}{\partial \varepsilon}(\varepsilon, \kappa), \qquad M = \frac{\partial W_{\mathbf{e}}}{\partial \kappa}(\varepsilon, \kappa), \tag{3.6}$$

ce qui justifiera la terminologie. Pour cela construisons d'abord le trajet Γ_h comme la concaténation du trajet Γ_0 partant de (0,0) et arrivant en (ε,κ) , suivi du *segment* partant de (ε,κ) et arrivant en $(\varepsilon+h,\kappa)$. En utilisant la définition du travail de déformation et l'existence du potentiel W_e , on obtient

$$\mathtt{W}_{\mathbf{e}}(\varepsilon+h,\kappa)-\mathtt{W}_{\mathbf{e}}(\varepsilon,\kappa)=\int_{0}^{1}\mathtt{N}_{\mathbf{e}}(\varepsilon+th,\kappa)h\,dt,$$

le deuxième membre étant le travail de déformation le long du segment parallèle à l'axe des ε paramétrisé par $t \in [0,1]$, le long duquel $\dot{\kappa}_t = 0$ et $\dot{\varepsilon}_t = h$. En divisant par h, en utilisant la continuité de $\mathbb{N}_{\mathbf{e}}$ et en passant à la limite quand $h \to 0$ on obtient la relation souhaitée pour l'effort normal. En considérant ensuite un segment partant de (ε, κ) et arrivant en $(\varepsilon, \kappa + h)$ et en procédant de façon similaire, on obtient la relation souhaitée pour le moment fléchissant.

(e) Interprétons W_e . Par construction, $W_e(\varepsilon, \kappa)$ représente l'énergie que doit fournir l'extérieur ⁹ pour déformer un élément de longueur du milieu curviligne dans un processus quasi-statique homogène le faisant passer de son état naturel à son état déformé (ε, κ). Comme cette énergie est indépendante du trajet de déformation suivi, on peut considérer que $W_e(\varepsilon, \kappa)$ est la densité linéique d'énergie de déformation élastique que possède le milieu curviligne dans cet état de déformation. Cette fonction

^{8.} Il est possible d'en déduire *ipso facto* que $\mathcal{W}(\Gamma) = 0$ est nul dans *tout* cycle Γ .

^{9.} Ce qualificatif d'énergie fournie par l'extérieur au milieu doit être entendue au sens algébrique : l'extérieur donne effectivement de l'énergie au milieu si $W_e(\varepsilon, \kappa) > 0$, il en prend au milieu si $W_e(\varepsilon, \kappa) < 0$.

 W_e joue aussi le rôle de potentiel vis à vis de l'effort normal et du moment fléchissant puisqu'ils en dérivent en vertu de (3.6). On utilisera l'une ou l'autre des deux terminologies, énergie élastique ou potentiel élastique, suivant la propriété que l'on veut faire ressortir.

(f) Examinons enfin de quoi dépend le potentiel élastique. Nous avons construit W_e en partant d'une configuration de référence naturelle caractérisée par sa courbure naturelle C_R . La fonction W_e dépend *a priori* de la courbure naturelle C_R du milieu curviligne. Si l'on fabrique deux objets élancés avec le même matériau, la même section, de même longueur, mais de courbures naturelles différentes, il faudra *a priori* fournir une énergie différente pour les déformer d'une même déformation (ε, κ). Seule l'expérience ou une analyse tridimensionnelle pourront nous permettre de connaître cette dépendance en C_R . De plus, les raisonnements ont été faits en supposant que le milieu était homogène et donc en particulier que la courbure naturelle ne dépendait pas du point matériel. Il s'agirait de refaire les raisonnements lorsque la configuration naturelle du milieu n'est pas à homogène ou à courbure non constante. Nous ne les referons pas et admettrons que le résultat reste valable localement, le potentiel W_e dépendant alors du point matériel S.

3. Conclusion. On peut résumer l'analyse faite dans cette section par la propriété suivante

P-3.4 (Existence d'une énergie élastique). Un milieu curviligne élastique satisfait le principe du travail de déformation positif si et seulement s'il existe, en chaque point matériel S, un potentiel élastique $(\varepsilon, \kappa) \mapsto W_{e}(S; \varepsilon, \kappa)$ continûment différentiable dont dérive les relations de comportement donnant l'effort normal et le moment fléchissant :

$$N = \frac{\partial \mathbf{W}_{\mathbf{e}}}{\partial \varepsilon}(S;\varepsilon,\kappa), \qquad M = \frac{\partial \mathbf{W}_{\mathbf{e}}}{\partial \kappa}(S;\varepsilon,\kappa) \ . \tag{3.7}$$

La fonction potentiel W_e ne dépend pas du point matériel si le milieu curviligne est homogène et à courbure naturelle constante.

Par construction, $W_{\mathbf{e}}(S; \varepsilon, \kappa) dS$ est l'énergie qu'il faut fournir à l'élément de longueur naturelle dSdu milieu curviligne au point S pour le déformer dans un processus quasi-statique depuis son état naturel en l'état de déformation (ε, κ). Par conséquent $W_{\mathbf{e}}$ représente aussi la densité linéique d'énergie élastique du milieu par unité de longueur de référence. Construite à partir d'une configuration de référence naturelle, elle vérifie

$$\mathtt{W}_{\mathbf{e}}(S;0,0)=0,\quad \frac{\partial \mathtt{W}_{\mathbf{e}}}{\partial \varepsilon}(S;0,0)=0,\quad \frac{\partial \mathtt{W}_{\mathbf{e}}}{\partial \kappa}(S;0,0)=0.$$

3.3.2 Formes et dépendances possibles de l'énergie élastique

Dépendances au matériau et à la géométrie

La première question qui se pose est de savoir quelles sont les dépendances du potentiel élastique à la géométrie et au matériau. A priori le potentiel élastique dépend de la section du milieu curviligne, de sa courbure de référence et des matériaux constitutifs. Peut-on expliciter ou séparer ces dépendances ? Nous nous proposons de répondre à cette question à partir d'une analyse tridimensionnelle simplifiée.

Commençons par considérer le cas d'un milieu curviligne homogène dont la configuration de référence naturelle est rectiligne, *i.e.* $C_R = 0$. Nous avons vu dans la section 3.2.3 que l'on pouvait expliciter la dépendance de l'effort normal à la géométrie dans un essai uniaxial d'extension sans flexion, $N = \varphi(\varepsilon)A$, la fonction $\varepsilon \mapsto \sigma = \varphi(\varepsilon)$ donnant la contrainte normale en fonction de la déformation d'extension étant caractéristique du matériau constitutif. On peut écrire cette relation en faisant intervenir l'énergie d'extension $\mathbf{w}_{ex}(\varepsilon)$ du matériau qui est la primitive de $\varphi(\varepsilon)$ nulle en 0. Comme de plus la configuration de référence est naturelle on a $\varphi(0) = \mathbf{w}'_{ex}(0) = 0$ et la loi constitutive associée à ce matériau élastique en sollicitation uniaxiale est

$$\sigma = \mathbf{w}'_{\mathsf{ex}}(\varepsilon) \qquad \text{avec} \qquad \mathbf{w}_{\mathsf{ex}}(0) = \mathbf{w}'_{\mathsf{ex}}(0) = 0 \ . \tag{3.8}$$

La relation effort normal-déformation d'extension à courbure nulle s'écrit donc

$$N = \mathbf{w}'_{\mathbf{ex}}(\varepsilon) \mathbf{A}$$

et les dépendances à la géométrie et au matériau sont ici séparées. Cependant ceci ne vaut que pour un essai d'extension et rien n'a été dit sur le moment fléchissant. A-t-on nécessairement M = 0 dans un essai d'extension ? Qu'obtient-on si on impose $\kappa \neq 0$? Nous allons tenter de répondre à ces questions en partant d'une analyse tridimensionnelle et en faisant quelques hypothèses simplificatrices dont nous discuterons la pertinence. Il s'avère que cette analyse peut être faite directement dans le cas d'un milieu non homogène avec courbure de référence non nulle. Nous nous plaçons donc dans ce cadre général.

Considérons un objet tridimensionnel dont la configuration de référence naturelle est l'arc torique $\Omega_{_{R}}$ suivant ¹⁰, cf Figure 3.14 :

FIGURE 3.14 – A gauche : le tore dans ses configurations de référence et déformée ; à droite : la section de référence Σ_R du tore.

^{10.} Cet arc torique est décrit par le système de coordonnées curvilignes (S, Y, Z). Dans ce système de coordonnées, on peut l'identifier au cylindre $(0, \ell_R) \times \Sigma_R$, Σ_R étant la section transversale.

1. La courbe neutre (courbe qui passe par le centre géométrique des sections transversales) est la courbe à paramétrisation normale $S \mapsto \mathbf{x}_{\mathsf{R}}(S)$ de longueur ℓ_{R} et de courbure constante C_{R} , dont l'origine est \mathbf{O} et dont l'angle tangent en S = 0 est 0, *i.e.*

$$\mathbf{x}_{\mathsf{R}}(S) = \frac{1}{\mathsf{C}_{\mathsf{R}}} \sin(\mathsf{C}_{\mathsf{R}}S)\mathbf{e}_1 + \frac{1}{\mathsf{C}_{\mathsf{R}}} (1 - \cos(\mathsf{C}_{\mathsf{R}}S))\mathbf{e}_2$$

2. Les sections transversales $\Sigma_{R}(S)$ sont identiques au sens où elles se déduisent toutes du même domaine Σ_{R} de \mathbb{R}^{2} :

$$\boldsymbol{\Sigma}_{\mathsf{R}}(S) = \{ \mathbf{x}_{\mathsf{R}}(S) + Y\mathbf{n}_{\mathsf{R}}(S) + Z\mathbf{e}_3 : (Y, Z) \in \boldsymbol{\Sigma}_{\mathsf{R}} \},\$$

la section de base Σ_{R} étant de centre (0,0), *i.e.* $\int_{\Sigma_{\mathsf{R}}} Y \ dY dZ = \int_{\Sigma_{\mathsf{R}}} Z \ dY dZ = 0.$

Cet arc torique peut être hétérogène mais toutes les sections ont un comportement identique, ce qui veut dire que le potentiel élastique w_{ex} ne dépend que de (Y, Z), pas de S.

Faisons subir à cet objet une déformation de façon à le transformer en un autre arc torique Ω dont la courbe neutre est l'arc de cercle $s \mapsto \mathbf{x}(s)$ de longueur ℓ , de courbure C, d'origine O et d'angle tangent initial 0, et dont la section de base est Σ . Autrement dit, on a

$$\mathbf{x}(s) = \frac{1}{\mathsf{C}}\sin(\mathsf{C}s)\mathbf{e}_1 + \frac{1}{\mathsf{C}}(1 - \cos(\mathsf{C}s))\mathbf{e}_2, \qquad s \in (0, \ell)$$

 et

$$\boldsymbol{\Sigma}(s) = \{ \mathbf{x}(s) + y\mathbf{n}(s) + z\mathbf{e}_3 : (y, z) \in \boldsymbol{\Sigma} \},\$$

en supposant toujours que (0,0) est le centre géométrique de Σ . Après cette transformation, le point matériel repéré par ses coordonnées curvilignes (S, Y, Z) dans sa configuration de référence a pour coordonnées curvilignes dans la configuration déformée (s, y, z).

Considérons le morceau du tore qui dans le système de coordonnées de référence (S, Y, Z) est l'arc torique $(0, \ell_R) \times (Y, Y + dY) \times (Z, Z + dZ)$ que l'on peut assimiler à un milieu curviligne avec une section transversale d'aire infinitésimale dYdZ. La courbe paramétrée par S représentant la configuration de référence de ce milieu curviligne est donc l'arc de cercle

$$S \mapsto \mathbf{X}(S, Y, Z) := \mathbf{x}_{\mathsf{R}}(S) + Y\mathbf{n}_{\mathsf{R}}(S) + Z\mathbf{e}_3,$$

Y et Z étant donnés. Comme $\partial \mathbf{X}/\partial S = (1 - C_R Y)\mathbf{t}_R$, la longueur $\ell_R^*(Y, Z)$ et la courbure $C_R^*(Y, Z)$ de cet arc de cercle sont donnés par

$$\ell_{\mathrm{R}}^*(Y,Z) = (1-\mathrm{C}_{\mathrm{R}}Y)\ell_{\mathrm{R}}, \qquad \mathrm{C}_{\mathrm{R}}^*(Y,Z) = \frac{\mathrm{C}_{\mathrm{R}}}{1-\mathrm{C}_{\mathrm{R}}Y}.$$

La configuration déformée de ce morceau du tore est l'arc de cercle

$$s \mapsto \mathbf{x}(s, y, z) := \mathbf{x}(s) + y\mathbf{n}(s) + z\mathbf{e}_3,$$

dont la longueur $\ell^*(y, z)$ et la courbure $C^*(y, z)$ sont

$$\ell^*(y,z) = (1-\mathsf{C} y)\ell, \qquad \mathsf{C}^*(y,z) = \frac{\mathsf{C}}{1-\mathsf{C} y}.$$

Si on note ε et κ les déformations d'extension et de flexion de la courbe neutre (correspondant à Y = Z = y = z = 0), on a

$$\ell = (1 + \varepsilon)\ell_{\mathsf{R}}, \qquad (1 + \varepsilon)\mathsf{C} = \kappa + \mathsf{C}_{\mathsf{R}}.$$

Par conséquent, la déformation d'extension du morceau de tore s'écrit

$$\varepsilon^*(Y,Z) := \frac{\ell^*(y,z)}{\ell^*_{\mathsf{R}}(Y,Z)} - 1 = \frac{(1-\mathsf{C}y)(1+\varepsilon)}{1-\mathsf{C}_{\mathsf{R}}Y} - 1 = \frac{\varepsilon - \kappa y - \mathsf{C}_{\mathsf{R}}(y-Y)}{1-\mathsf{C}_{\mathsf{R}}Y}.$$

Faisons maintenant des hypothèses sur les efforts nécessaires pour assurer l'équilibre de ce morceau de tore dans sa configuration déformée :

H1. la contrainte normale est donnée par la loi constitutive du matériau situé en (Y, Z):

$$\sigma(Y,Z) = \mathbf{w}'_{\mathbf{ex}}(Y,Z;\varepsilon^*(Y,Z))$$

et l'effort normal est donc $\sigma(Y, Z)dYdZ$.

H2. les autres parties du tore exercent sur ce morceau de tore une force normale de densité linéique uniforme p(Y, Z) donnée par

$$p(Y,Z) = C^*(y,z)\sigma(Y,Z)dYdZ;$$

H3. on peut négliger le moment fléchissant du fait que la section de ce morceau de tore est infinitésimale.

FIGURE 3.15 – Equilibre du morceau de tore dans sa configuration déformée

Ces hypothèses sont basées sur l'analyse faite dans la section 3.3.1 concernant les efforts extérieurs mis en jeu pour assurer une déformation homogène d'un milieu curviligne, cf (3.5) et Figure 3.12. On rajoute ici que c'est le reste du milieu qui va exercer la pression normale. Autrement dit, cette pression doit être vue comme un effort intérieur supplémentaire dû au caractère tridimensionnel de l'objet. De plus, on néglige les moments fléchissants du fait que la section est "infinitésimale" et ne présente donc pas de rigidité à la flexion. Ce morceau de tore se comporte comme un fil. Cet absence de couples locaux est une des hypothèses fondamentales dans la modélisation des efforts intérieurs pour les milieux tridimensionnels.

Sous ces hypothèses, on voit que la section Σ du tore déformée est soumise à une densité de forces surfaciques (par unité de surface de la section de référence Σ_{R}) égale à $\sigma(Y, Z)$, qui ne dépend pas de S, et dont on peut calculer la résultante et le moment résultant en (0, 0). On obtient ainsi l'effort normal N et le moment fléchissant M:

$$N = \int_{\boldsymbol{\Sigma}_{\mathsf{R}}} \sigma(Y, Z) dY dZ, \qquad M = \int_{\boldsymbol{\Sigma}_{\mathsf{R}}} (y \mathbf{n}(s) + z \mathbf{e}_3) \wedge \mathbf{t}(s) \ \sigma(Y, Z) dY dZ = -\int_{\boldsymbol{\Sigma}_{\mathsf{R}}} y \ \sigma(Y, Z) dY dZ.$$

On voit que le calcul exact de N et M exige que l'on connaisse la déformation des sections puisqu'il faut connaître en particulier y (qui intervient aussi dans l'expression $\varepsilon^*(Y, Z)$) en fonction de Y, Z, ε et κ . Cette détermination passe nécessairement par une analyse tridimensionnelle précise et sort donc du cadre de ce cours. On peut toutefois obtenir une bonne approximation de N et M sans passer par une analyse 3D complète dans les cas suivants :

H4. Cas des petites déformations. Lorsque les déformations sont petites devant 1, on peut assimiler $y \ge Y$ et les expressions de N et M deviennent :

$$N\approx \int_{\boldsymbol{\Sigma}_{\mathsf{R}}} \mathtt{w}_{\mathsf{ex}}'\left(\frac{\varepsilon-\kappa Y}{1-\mathtt{C}_{\mathsf{R}}Y}\right) dY dZ, \qquad M\approx -\int_{\boldsymbol{\Sigma}_{\mathsf{R}}} Y\, \mathtt{w}_{\mathsf{ex}}'\left(\frac{\varepsilon-\kappa Y}{1-\mathtt{C}_{\mathsf{R}}Y}\right) dY dZ.$$

On voit que ces expressions approchées dérivent du potentiel élastique :

$$\mathbf{W}_{\mathbf{e}}(\varepsilon,\kappa) = \int_{\Sigma_{\mathbf{R}}} \mathbf{w}_{\mathbf{ex}}\left(\frac{\varepsilon - \kappa Y}{1 - \mathbf{C}_{\mathbf{R}}Y}\right) (1 - \mathbf{C}_{\mathbf{R}}Y) dY dZ, \tag{3.9}$$

où il faut tenir compte, lorsque la section est hétérogène, que w_{ex} dépend aussi de (Y, Z).

H5. Cas des dimensions de section petites devant les rayons de courbure. Le concept de milieu curviligne n'a un intérêt que pour des objets élancés, *i.e.* des objets dont la taille de la section est faible devant la longueur de l'objet. On peut aussi demander que la taille de la section soit petite devant le rayon de courbure de référence de l'objet. Dans ce cas $C_R Y$ est petit devant 1 et on peut simplifier les expressions de la déformation $\varepsilon^*(Y, Z)$ et du potentiel élastique W_e qui deviennent

$$\varepsilon^*(Y,Z) = \varepsilon - \kappa Y, \qquad \mathrm{W}_{\mathbf{e}}(\varepsilon,\kappa) = \int_{\boldsymbol{\Sigma}_{\mathsf{R}}} \mathrm{w}_{\mathrm{ex}}\big(\varepsilon - \kappa Y\big) dY dZ.$$

Avec cette deuxième approximation, le potentiel élastique ne dépend plus explicitement de la courbure de référence.

Nous nous baserons désormais sur cette forme simplifiée du potentiel élastique lorsque nous évoquerons la section du milieu curviligne et tous les résultats de l'analyse sont résumés dans la propriété suivante **P-3.5.** Basée sur les conditions d'équilibre et sur le comportement élastique uniaxial des matériaux constitutifs, l'analyse simplifiée de la déformation tridimensionnelle conduit, dans le cas des petites déformations de la section et des faibles courbures de référence, à l'expression suivante du potentiel élastique du milieu curviligne

$$\mathbb{W}_{\mathbf{e}}(\varepsilon,\kappa) = \int_{\Sigma_{R}} \mathbb{w}_{\mathbf{ex}}(Y,Z;\varepsilon-\kappa Y) dY dZ$$
(3.10)

qui ne fait intervenir que le potentiel élastique w_{ex} du ou des matériaux constitutifs identifiable dans des essais de traction-compression.

Propriétés de symétrie du potentiel élastique

Intéressons-nous aux propriétés de symétrie de W_{e} , en particulier à ce qu'il advient si l'on change κ en $-\kappa$ ou ε en $-\varepsilon$. Commençons par le changement de κ en $-\kappa$. On voit à partir de l'expression (3.10) que si la section est symétrique par rapport à l'axe Y = 0 et si les matériaux sont placés symétriquement par rapport à cet axe, *i.e.* si $w_{ex}(-Y,Z;\varepsilon) = w_{ex}(Y,Z;\varepsilon)$ pour tout (Y,Z,ε) possible, alors on a $W_{e}(\varepsilon, -\kappa) = W_{e}(\varepsilon, \kappa)$. Autrement dit, l'énergie élastique est la même que l'on fléchisse le milieu dans un sens ou dans l'autre. Examinons maintenant le changement ε en $-\varepsilon$. On voit, toujours à partir de l'expression (3.10), que si les matériaux constitutifs ont un comportement symétrique en traction-compression, *i.e.* si $w_{ex}(Y,Z;-\varepsilon) = w_{ex}(Y,Z;\varepsilon)$ pour tout (Y,Z,ε) possible, alors on a $W_{e}(-\varepsilon, -\kappa) = W_{e}(\varepsilon, \kappa)$. Lorsque toutes ces propriétés de symétrie sont satisfaites, alors on a $W_{e}(\pm\varepsilon, \pm\kappa) = W_{e}(\varepsilon, \kappa)$. En résumé

P-3.6 (Propriétés de symétrie possibles de W_e).

(i) Si la section est symétrique et si les matériaux sont placés symétriquement par rapport à l'axe Y = 0, alors l'énergie élastique est une fonction paire de κ :

$$W_{\mathbf{e}}(\varepsilon, -\kappa) = W_{\mathbf{e}}(\varepsilon, \kappa);$$

(ii) Si tous les matériaux constitutifs ont un comportement symétrique en traction et en compression, i.e. si $\mathbf{w}_{ex}(-\varepsilon) = \mathbf{w}_{ex}(\varepsilon)$, alors l'énergie élastique est une fonction paire de (ε, κ) :

$$W_{\mathbf{e}}(-\varepsilon,-\kappa) = W_{\mathbf{e}}(\varepsilon,\kappa);$$

(iii) Si toutes les propriétés de symétrie précédentes de la section et des matériaux sont satisfaites, alors l'énergie élastique est une fonction paire de chaque variable :

$$\mathsf{W}_{\mathbf{e}}(-\varepsilon,-\kappa) = \mathsf{W}_{\mathbf{e}}(-\varepsilon,\kappa) = \mathsf{W}_{\mathbf{e}}(\varepsilon,-\kappa) = \mathsf{W}_{\mathbf{e}}(\varepsilon,\kappa)$$

Quelques exemples de potentiel élastique

Voici quelques exemples de lois de comportement élastiques utilisées en pratique qui sont basées sur **P-3.5**, en partant des plus simples.

• Section homogène et matériau linéairement élastique. Par définition, un matériau est linéairement élastique si la contrainte normale est proportionnelle à la déformation d'extension ou de façon équivalente si le potentiel élastique w_{ex} est une fonction quadratique de la déformation d'extension ¹¹:

$$\sigma = \mathsf{E}\varepsilon, \qquad \mathsf{w}_{\mathsf{ex}}(\varepsilon) = \tfrac{1}{2}\,\mathsf{E}\varepsilon^2$$

la constante E étant le *module d'Young*. Si de plus la section est homogène et en tenant compte que l'origine de la section est son centre géométrique, (3.10) donne¹²

$$W_{e}(\varepsilon,\kappa) = \frac{1}{2} \mathsf{EA} \,\varepsilon^{2} + \frac{1}{2} \,\mathsf{EI} \,\kappa^{2} \,, \tag{3.11}$$

où A est l'aire et l est le moment d'inertie géométrique par rapport à l'axe Y = 0 de la section Σ_{R} ,

$$\mathsf{A} = \int_{\Sigma_{\mathsf{R}}} 1 \ dY dZ \,, \qquad \mathsf{I} = \int_{\Sigma_{\mathsf{R}}} Y^2 dY dZ \,. \tag{3.12}$$

On voit que l'énergie élastique se découple en deux termes : l'énergie élastique d'extension et l'énergie élastique de flexion. Par conséquent, l'effort normal et le moment fléchissant sont donnés par

$$N = \mathsf{EA}\,\varepsilon\,,\qquad M = \mathsf{EI}\,\kappa\,,\tag{3.13}$$

il y a découplage entre l'extension et la flexion.

D-3.3. Le coefficient EA est appelé module de rigidité à l'extension et le coefficient EI est appelé module de rigidité à la flexion. Plus EA est élevé et plus le milieu se rapproche d'un comportement inextensible, plus EI est élevé et plus le milieu se rapproche d'un comportement inflexible alors que plus EI est faible et plus le milieu se rapproche d'un comportement flexible.

^{11.} Le comportement linéairement élastique ne peut être qu'une approximation valable dans un domaine restreint de déformation. En effet, avec l'hypothèse de linéarité un effort normal de compression fini et égal à $-\mathsf{EA}$ suffit pour réduire à 0 la longueur d'un milieu curviligne, ce qui n'est pas physiquement raisonnable.

^{12.} Noter l'homogénéité des termes : E a la dimension d'une pression (donc d'une force par unité de surface, unité= MPa), A a la dimension d'une surface (unité= m^2), ε est sans dimension (unité=1), I a la dimension d'une longueur à la puissance 4 (unité= m^4), κ a la dimension de l'inverse d'une longueur (unité= m^{-1}).

Exemple 3.1 (Modules de rigidité de flexion pour différentes formes de section). Le module de rigidité à l'extension EA est le simple produit du module d'Young du matériau par l'aire de la section. On ne peut pas trop jouer dessus une fois que le matériau a été choisi; on ne peut le modifier qu'en ajoutant plus ou moins de matière de façon à modifier l'aire de la section. Par contre, pour le module de rigidité à la flexion EI, on a beaucoup plus de latitude puisqu'il dépend de façon essentielle de la répartition du matériau par rapport à l'axe Y = 0. Pour une même quantité de matière, on a intérêt à éloigner la matière de l'axe pour augmenter la rigidité à la flexion ou au contraire à la rapprocher si on veut la diminuer. Ceci est à l'origine de différentes formes choisies pour les sections de poutre en Génie Civil. Les sections en I ou en T sont conçues pour éloigner un maximum de matière de l'axe (mais cela ne peut évidemment pas se faire sans la barre verticale du I ou du T et cette barre doit être elle-même dimensionnée pour pouvoir résister).

Comparons le module de rigidité à la flexion de différentes sections ayant la même aire $A = a^2$ et constituées du même matériau. Cela revient à comparer leur inertie géométrique I.

1. section carrée de côté $a : I = \frac{1}{12}a^4$;

2. section rectangulaire de largeur a/k et de hauteur ka suivant l'axe des $Y : I = \frac{k^2}{12}a^4$.

3. section circulaire de rayon $\frac{1}{\sqrt{\pi}}a$: $I = \frac{1}{4\pi}a^4$.

4. couronne circulaire de rayon intérieur $(\frac{1}{2} - \frac{1}{2\pi})a$ et de rayon extérieur $(\frac{1}{2} + \frac{1}{2\pi})a : I = (\frac{1}{8} + \frac{1}{8\pi^2})a^4$.

5. section en I dont l'épaisseur de l'âme et des semelles est un quart de la hauteur et de la largeur $b = \sqrt{\frac{8}{5}}a$ de la section : $I = 29a^4/150$.

En prenant une section rectangulaire plus haute que large (k > 1) on augmente l'inertie géométrique par rapport à une section carrée et ce d'autant plus que le rapport k est grand. Une section circulaire est un peu moins rigide qu'une section carrée (l'écart est d'environ 5%). Par contre en prenant une couronne circulaire dont le rayon "moyen" est a/2 et dont l'épaisseur est a/π de façon à ce que l'aire soit a^2 , on augmente l'inertie géométrique de 65% par rapport à la section carrée. En optant pour une section en I on fait plus que doubler l'inertie géométrique (le rapport exact est de $58/25 \approx 2.32$).

• Section hétérogène et matériau linéairement élastique. Dans ce cas le module d'Young est variable dans la section :

$$\mathbf{w}_{\mathbf{ex}}(Y, Z; \varepsilon) = \frac{1}{2} \mathsf{E}(Y, Z) \varepsilon^2$$

et l'énergie élastique du milieu curviligne devient

$$W_{\mathbf{e}}(\varepsilon,\kappa) = \frac{1}{2} \overline{\mathsf{EA}} \,\varepsilon^2 - \overline{\mathsf{EC}} \,\varepsilon \,\kappa + \frac{1}{2} \overline{\mathsf{EI}} \,\kappa^2 \,, \tag{3.14}$$

où EA et $\overline{\mathsf{EI}}$ sont les modules de rigidité à l'extension et à la flexion, $\overline{\mathsf{EC}}$ est le coefficient de couplage flexion-extension,

$$\overline{\mathsf{EA}} = \int_{\Sigma_{\mathsf{R}}} \mathsf{E}(Y,Z) \ dYdZ \ , \qquad \overline{\mathsf{EC}} = \int_{\Sigma_{\mathsf{R}}} \mathsf{E}(Y,Z) \ YdYdZ \ , \qquad \overline{\mathsf{EI}} = \int_{\Sigma_{\mathsf{R}}} \mathsf{E}(Y,Z) \ Y^2dYdZ \ . \tag{3.15}$$

Il y a donc en général couplage entre la flexion et l'extension, sauf si les hétérogénéités sont placées symétriquement par rapport à l'axe Y de façon à ce que le coefficient $\overline{\mathsf{EC}}$ soit nul. L'effort normal et le moment fléchissant sont donnés par

$$N = \overline{\mathsf{EA}}\,\varepsilon - \overline{\mathsf{EC}}\,\kappa \,, \qquad M = -\overline{\mathsf{EC}}\,\varepsilon + \overline{\mathsf{EI}}\,\kappa \,. \tag{3.16}$$

Notons que, sous la condition naturelle que le module d'Young soit strictement positif en chaque point de la section, les coefficients de rigidité vérifient nécessairement l'inégalité :

$$\overline{\mathsf{EA}} \ \overline{\mathsf{EI}} > \overline{\mathsf{EC}}^2.$$

En effet, considérons pour $\alpha \in \mathbb{R}$ le polynôme du second degré en α :

$$P(\alpha) := \int_{\Sigma_{\mathsf{R}}} \mathsf{E}(Y, Z) (\alpha - Y)^2 \, dY dZ.$$

On a de façon évidente $P(\alpha) \ge 0$ pour tout α , et l'égalité à 0 n'est pas possible car il faudrait $Y = \alpha$ partout dans la section. Ce trinôme étant strictement positif pour tout α , son discriminant est strictement positif, ce qui fournit l'inégalité cherchée ¹³.

Ceci permet d'inverser les relations (3.16) pour obtenir les déformations en fonction des efforts intérieurs :

$$\varepsilon = \frac{\overline{\mathsf{EI}}}{\overline{\mathsf{EA}}\ \overline{\mathsf{EI}} - \overline{\mathsf{EC}}^2} \ N + \frac{\overline{\mathsf{EC}}}{\overline{\mathsf{EA}}\ \overline{\mathsf{EI}} - \overline{\mathsf{EC}}^2} \ M, \qquad \kappa = \frac{\overline{\mathsf{EC}}}{\overline{\mathsf{EA}}\ \overline{\mathsf{EI}} - \overline{\mathsf{EC}}^2} \ N + \frac{\overline{\mathsf{EA}}}{\overline{\mathsf{EA}}\ \overline{\mathsf{EI}} - \overline{\mathsf{EC}}^2} \ M. \tag{3.17}$$

On voit que l'application d'un effort normal seul sans moment fléchissant induit une déformation de flexion à cause du coefficient de couplage, et, symétriquement, l'application d'un moment fléchissant seul sans effort normal induit une déformation d'extension. Ces relations déformations-efforts dérivent également d'un potentiel qui est le *potentiel élastique dual*, fonction strictement convexe de (N, M):

$$\varepsilon = \frac{\partial \mathbf{W}^*_{\mathbf{e}}}{\partial N}(N, M), \quad \kappa = \frac{\partial \mathbf{W}^*_{\mathbf{e}}}{\partial M}(N, M),$$

^{13.} L'inégalité $\overline{\mathsf{EA}} \ \overline{\mathsf{EI}} > \overline{\mathsf{EC}}^2$ est une inégalité de convexité. Elle assure que le potentiel élastique W_e est une fonction strictement convexe de (ε, κ) .

avec

$$W^*_{\mathbf{e}}(N,M) = \frac{1}{2} \frac{\overline{\mathsf{EI}}}{\overline{\mathsf{EA}} \ \overline{\mathsf{EI}} - \overline{\mathsf{EC}}^2} \ N^2 + \frac{\overline{\mathsf{EC}}}{\overline{\mathsf{EA}} \ \overline{\mathsf{EI}} - \overline{\mathsf{EC}}^2} \ NM + \frac{1}{2} \frac{\overline{\mathsf{EA}}}{\overline{\mathsf{EA}} \ \overline{\mathsf{EI}} - \overline{\mathsf{EC}}^2} \ M^2 + \frac{\overline{\mathsf{EA}}}{\overline{\mathsf{EA}} \ \overline{\mathsf{EA}} \ \overline{\mathsf{EA}$$

Exemple 3.2 (Poutre en béton armée). L'exemple-type est celui d'une poutre en béton armée. La section est carrée de côté H, l'armature en acier de rayon R est placée à une distance h en dessous de l'axe Y = 0. Les modules d'Young du béton et de l'acier étant E_b et E_a , les coefficients de rigidité s'écrivent

$$\begin{cases} \overline{\mathsf{E}\mathsf{A}} &= \mathsf{E}_b H^2 + (\mathsf{E}_a - \mathsf{E}_b)\pi R^2 \\ \overline{\mathsf{E}\mathsf{C}} &= -(\mathsf{E}_a - \mathsf{E}_b)h\pi R^2 \\ \overline{\mathsf{E}\mathsf{I}} &= \frac{1}{12}\mathsf{E}_b H^4 + (\mathsf{E}_a - \mathsf{E}_b)\pi R^2(h^2 + \frac{1}{4}R^2) \end{cases}$$

Comme $E_a > E_b$, l'acier augmente la rigidité, mais faiblement car le rayon des armatures est en général faible vis à vis de la taille de la section. (Le rôle de l'acier n'est pas de rigidifier, mais de reprendre les efforts de traction. Le béton ne peut pas le faire du fait de sa très faible résistance à la traction qui est d'environ 3 MPa alors que celle de l'acier est de plusieurs centaines de MPa.)

• Section homogène, matériau non linéairement élastique et faible courbure. Comme il a été souligné précédemment, le comportement linéairement élastique ne peut valoir que dans une petite plage de la déformation d'extension. Si l'on suppose que le matériau conserve un comportement élastique sur toute la plage de valeurs possibles de ε , *i.e.* pour $\varepsilon > -1$, ce qui est évidemment une hypothèse simplificatrice si l'on se réfère aux résultats expérimentaux, on doit avoir nécessairement $\lim_{\varepsilon \to -1} w_{ex}(\varepsilon) = +\infty$ et $\lim_{\varepsilon \to -1} w'_{ex}(\varepsilon) = -\infty$. En effet, sinon, il suffirait d'une énergie finie ou d'une contrainte de compression finie pour réduire à 0 la longueur d'un milieu curviligne. Ces conditions sont évidemment incompatibles avec l'hypothèse d'une dépendance quadratique de w_{ex} en ε . Considérons donc des potentiels w_{ex} non linéaires.

Si l'on se limite à des déformations de flexion assez faibles pour que κY soit petit devant 1 pour tout Y de la section, autrement dit si $|\kappa| \max_{Y \in \Sigma_{\mathsf{R}}} |Y| \ll 1$, alors en développant $w_{\mathsf{ex}}(\varepsilon - \kappa Y)$ par rapport à κ jusqu'à l'ordre 2, on obtient :

$$\mathbf{w}_{\mathbf{ex}}(\varepsilon - \kappa Y) \approx \mathbf{w}_{\mathbf{ex}}(\varepsilon) - \mathbf{w}_{\mathbf{ex}}'(\varepsilon)\kappa Y + \frac{1}{2}\,\mathbf{w}_{\mathbf{ex}}''(\varepsilon)\kappa^2 Y^2.$$

En admettant que l'on peut toujours utiliser (3.10) dans ce cadre de déformations finies et en y reportant le développement précédent, la section étant supposée homogène, on obtient le potentiel élastique du milieu curviligne

$$\mathtt{W}_{\mathbf{e}}(\varepsilon,\kappa) = \mathtt{w}_{\mathbf{ex}}(\varepsilon) \mathsf{A} + \tfrac{1}{2}\, \mathtt{w}_{\mathbf{ex}}''(\varepsilon) \mathsf{I} \,\, \kappa^2$$

Le terme en $\mathtt{w}_{\mathtt{ex}}'(\varepsilon)$ n'apparaît pas puisque $\int_{\Sigma_{\mathsf{R}}} YdYdZ = 0$. L'effort normal et le moment fléchissant sont donc donnés par

$$N = \mathbf{w}'_{\mathbf{ex}}(\varepsilon) \mathbf{A} + \frac{1}{2} \mathbf{w}'''_{\mathbf{ex}}(\varepsilon) \mathbf{I} \kappa^2, \qquad M = \mathbf{w}''_{\mathbf{ex}}(\varepsilon) \mathbf{I} \kappa$$

On voit en particulier que le module de rigidité à la flexion est le produit du module d'Young tangent du matériau $w''_{ex}(\varepsilon)$ par le moment d'inertie géométrique l de la section. Ce résultat généralise celui que l'on avait obtenu dans le cas linéaire, le module d'Young tangent remplaçant le module d'Young. Pour l'effort normal, on néglige en général le terme en κ^2 qui est du second ordre.

Exemple 3.3. Un potentiel élastique qui respecte les conditions en $\varepsilon = -1$ est par exemple

$$\mathbf{w}_{\mathbf{ex}}(\varepsilon) = \frac{\mathsf{E}}{4} \left(\varepsilon^2 + \varepsilon \log(1 + \varepsilon) \right) \qquad (potentiel \ \acute{e}lastique \ uniaxial \ non \ linéaire) \ . \tag{3.18}$$

C'est une fonction strictement convexe de ε . La relation contrainte normale-déformation d'extension associée s'écrit

$$\sigma = \frac{\mathsf{E}}{4} \left(2\varepsilon + \frac{\varepsilon}{1+\varepsilon} + \log(1+\varepsilon) \right), \tag{3.19}$$

c'est une fonction strictement croissante de ε . On vérifie facilement que \mathbf{w}_{ex} et \mathbf{w}'_{ex} ont le bon comportement au voisinage de $\varepsilon = -1$ et de plus pour les petites déformations, i.e. pour ε petit devant 1, on retrouve le comportement quadratique $\mathbf{w}_{ex}(\varepsilon) \approx \frac{1}{2} \mathsf{E}\varepsilon^2$. A l'infini, il a aussi un comportement qui est pratiquement quadratique avec un module d'Young tangent de $\mathsf{E}/2$: $\mathbf{w}_{ex}(\varepsilon) \approx \frac{1}{4}\mathsf{E}\varepsilon^2$ pour ε grand.

Les relations constitutives du milieu curviligne sont alors

$$\begin{cases} N = & \frac{1}{4} \mathsf{EA} \left(2\varepsilon + \frac{\varepsilon}{1+\varepsilon} + \log(1+\varepsilon) \right) - \frac{3+\varepsilon}{4(1+\varepsilon)^3} \mathsf{EI} \ \kappa^2 \\ M = & \frac{1}{4} \left(2 + \frac{2+\varepsilon}{(1+\varepsilon)^2} \right) \mathsf{EI} \ \kappa \end{cases}$$

• Dépendance à la température. Comme nous l'avons signalé dans la section 3.2.3, le comportement des matériaux peut dépendre fortement de la température. Pour rendre compte du phénomène de dilatation, les modèles les plus simples consistent à définir une déformation élastique comme différence de la déformation d'extension (on dit aussi déformation totale) et de la déformation thermique qui est elle-même définie à partir du coefficient de dilatation **a** et de l'écart de température par rapport à la température de référence :

$$\varepsilon^e = \varepsilon - \varepsilon^{th}$$
, $\varepsilon^{th} = \mathsf{a}(T - T_0)$.

Le comportement élastique du matériau, à température donnée T, est alors défini en remplaçant dans l'expression du potentiel élastique w_{ex} la déformation totale par la déformation élastique, ce qui conduit à la relation contrainte-déformation :

$$\sigma = \mathbf{w}'_{\mathbf{ex}}(\varepsilon - \varepsilon^{th}).$$

Pour le milieu continu curviligne, on peut reprendre la construction du potentiel élastique faite dans la section 3.3.2. Si l'on suppose que la section, supposée *homogène*, a été fabriquée à une certaine température de référence T_0 et si l'on se place à un instant où la température de la section, supposée uniforme, est T, alors son potentiel élastique est donné par

$$\mathbb{W}_{\mathbf{e}}(T;\varepsilon,\kappa) = \int_{\boldsymbol{\Sigma}_{\mathsf{R}}} \mathbb{w}_{\mathbf{ex}} \big(\varepsilon - \mathbf{a}(T-T_0) - \kappa Y \big) dY dZ \quad (\text{potential thermoélastique}),$$

les relations constitutives s'écrivant toujours

$$N = \frac{\partial \mathbf{W}_{\mathbf{e}}}{\partial \varepsilon}(T;\varepsilon,\kappa), \qquad M = \frac{\partial \mathbf{W}_{\mathbf{e}}}{\partial \kappa}(T;\varepsilon,\kappa).$$

Dans le cas d'un matériau linéairement élastique, ces relations s'écrivent simplement

$$\begin{split} \mathsf{W}_{\mathsf{e}}(T;\varepsilon,\kappa) &= \frac{1}{2} \,\mathsf{E}\mathsf{A}(\varepsilon - \mathsf{a}(T-T_0))^2 + \frac{1}{2} \,\mathsf{E}\mathsf{I}\kappa^2 \\ N &= \mathsf{E}\mathsf{A}(\varepsilon - \mathsf{a}(T-T_0)), \qquad M = \mathsf{E}\mathsf{I}\kappa. \end{split}$$

Le cas d'une section hétérogène est plus délicat à modéliser, car même si la section a été fabriquée à une température T_0 avec tous les matériaux constitutifs dans un état naturel, un changement de température induit des contraintes internes dues à la différence des coefficients de dilatation d'un matériau à l'autre et à la nécessité d'une continuité de la déformation. Nous ne détaillerons pas ici la construction du potentiel dans ce cas. Toutefois une modélisation voisine est faite au chapitre 4 pour des poutres en béton précontraint.

3.4 Les comportements inélastiques

3.4.1 Les modèles rhéologiques

Les éléments de base

Toutes les lois de comportement usuelles des matériaux peuvent être schématisées à l'aide de modèles rhéologiques correspondant à des assemblages en série ou en parallèle de *ressorts*, de *patins*, d'*amortisseurs* et de *masses*¹⁴. Examinons un par un chacun de ces éléments. Tous les objets étant astreints à se déplacer sur un axe prédéfini, leur position est caractérisée par un scalaire et les forces qu'ils subissent sont implicitement orientées suivant cet axe et donc caractérisées également par un scalaire.

1. La masse. Si on exerce une force σ sur une masse (ponctuelle) m, l'évolution de sa position ε au cours du temps est régie par le principe fondamental de la dynamique qui s'écrit ici

$$m\ddot{\varepsilon} = \sigma,$$

 $\ddot{\varepsilon}$ représentant l'accélération de la masse.

2. Le ressort. Une extrémité du ressort est fixée, l'autre extrémité est susceptible de se déplacer et on repère sa position courante par rapport à sa position lorsque le ressort est dans son état naturel, libre de force. On note ε l'allongement du ressort, *i.e.* la différence entre la position actuelle et la position naturelle de l'extrémité chargée. En supposant que le ressort a un comportement élastique linéaire et en notant E sa raideur, la tension σ du ressort est reliée à ε par

$$\sigma = \mathsf{E}\varepsilon.$$

On peut évidemment envisager des relations tension-allongement non linéaires $\sigma = \varphi(\varepsilon)$. On peut

^{14.} Les *masses* servent à rendre compte des effets d'inertie. Ne pas en mettre revient à négliger les effets d'inertie et donc à se placer dans un cadre quasi-statique. Cette hypothèse simplificatrice a des conséquences importantes d'un point de vue qualitatif sur la réponse du système.

FIGURE 3.16 – Le modèle rhéologique de ressort

même rendre compte des concepts de rupture en introduisant un critère de rupture du ressort, par exemple en imposant que le ressort casse lorsque sa tension atteint une valeur critique σ_c ou de façon équivalente lorsque son allongement atteint une valeur critique ε_c .

3. Le patin frottant. Du fait du frottement avec son support, le patin ne se déplace que si la force que l'on exerce sur lui est suffisante pour vaincre la force de frottement $-\sigma$ engendrée par le contact du patin avec son support (le signe – est introduit de façon à ce que σ représente la force qu'exerce le patin sur son support). Lorsqu'il se déplace la force de frottement σ est égale à $\pm \sigma_c$, le signe dépendant du sens de glissement. De façon précise, si on note ε le déplacement du patin depuis une position de référence, la loi de frottement s'écrit

$$|\sigma| \le \sigma_c, \qquad \sigma = \begin{cases} +\sigma_c & \text{si } \dot{\varepsilon} > 0\\ -\sigma_c & \text{si } \dot{\varepsilon} < 0 \end{cases},$$

ce qui peut aussi se condenser en

$$|\sigma| \le \sigma_c, \qquad \sigma \dot{\varepsilon} = \sigma_c \left| \dot{\varepsilon} \right|,$$

 $\dot{\varepsilon}$ représentant la vitesse de déplacement du patin. La force critique σ_c doit être considérée comme

FIGURE 3.17 – Le modèle rhéologique de patin frottant

une caractéristique du contact frottant entre le patin et son support, à identifier expérimentalement. Comme dans le cas du ressort, on a fait ici le choix le plus simple en supposant que les deux sens de glissement sont symétriques et que σ_c est une constante. Rien n'interdit d'envisager des seuils de glissement différents selon que le patin glisse vers la droite ou vers la gauche ou même d'envisager des seuils qui évoluent avec le temps. C'est même nécessaire si l'on veut modéliser des phénomènes d'usure.

4. L'amortisseur. L'action d'une force σ sur un amortisseur ne modifie pas instantanément la position de ce dernier, mais uniquement sa vitesse. De façon précise, si on note ε la variation de position d'un amortisseur par rapport à une position de référence et $\dot{\varepsilon}$ sa vitesse de déplacement, la relation force exercée-vitesse de déplacement s'écrit

 $\sigma = \mu \dot{\varepsilon}$

où le coefficient de viscosité μ est caractéristique de l'amortisseur et déterminé expérimentalement. On peut ici encore envisager des lois plus sophistiquées (non linéaires, à viscosité variable, ...).

FIGURE 3.18 – Le modèle rhéologique d'amortisseur

A partir de ces "briques" élémentaires, on peut en les assemblant construire des modèles capables de rendre compte, au moins qualitativement, du comportement observé des matériaux. Nous allons, à titre d'illustration, étudier quelques assemblages simples et le lecteur est invité à en envisager des plus complexes, certains étant suggérés à titre d'exercices. Les règles d'assemblage sont les suivantes :

• *En série*, les déplacements relatifs entre éléments de la série s'additionnent alors que les forces se transmettent d'un élément à l'autre;

• *En parallèle*, les déplacements de chaque élément sont égaux alors que les forces de chaque élément s'additionnent.

Quelques assemblages simples avec masses

1. ressort-masse. Si l'on met en série un ressort et une masse en fixant l'extrémité libre du ressort et en exerçant une force dépendant du temps $\sigma(t)$ sur la masse, l'équation du mouvement de la masse s'écrit

$$m\ddot{\varepsilon} + E\varepsilon = \sigma,$$

la masse étant soumise à la force exercée σ et à la force de rappel du ressort $-E\varepsilon$. Quand la force exercée σ est constante, la masse oscille autour de sa position d'équilibre $\varepsilon_{eq} = \sigma/E$ avec une pulsation $\omega = \sqrt{E/m}$.

2. *amortisseur-masse*. Mettons une masse à l'extrémité mobile d'un amortisseur et exerçons une force $\sigma(t)$ sur la masse. L'amortisseur exerce sur la masse une force égale à $-\mu\dot{\varepsilon}$ et l'équation du mouvement de la masse est donc

$$m\ddot{\varepsilon} + \mu\dot{\varepsilon} = \sigma.$$

Exercice 3.2. Donner la réponse d'un assemblage amortisseur-masse lorsqu'on impose brusquement une force σ_0 à l'instant 0, alors que l'assemblage est au repos, puis que l'on maintient la force constante.

3. patin-masse. Associons une masse et un patin, tous deux initialement au repos dans une position prise pour référence. Si nous exerçons sur l'assemblage, à partir de l'instant initial, une force σ dépendant du temps, le mouvement est régi par le système suivant

$$m\ddot{\varepsilon} = \sigma - \sigma, \qquad |\sigma| \le \sigma_c, \qquad \sigma\dot{\varepsilon} = \sigma_c |\dot{\varepsilon}|$$

complété par les données initiales $\varepsilon(0) = 0$, $\dot{\varepsilon}(0) = 0$.

Exercice 3.3. Donner la réponse d'un assemblage patin-masse lorsqu'on impose brusquement une force $\sigma_0 > 0$ à l'instant 0, alors que l'assemblage est au repos, puis que l'on maintient la force constante. On distinguera les cas $\sigma_0 < \sigma_c$, $\sigma_0 = \sigma_c$ et $\sigma_0 > \sigma_c$.

Quelques assemblages simples sans masse

1. ressort-amortisseur en série. On fixe l'extrémité d'un ressort, on met en série un amortisseur à l'autre extrémité et on impose une force σ sur l'amortisseur. Si l'on note ε^e l'allongement du ressort et ε^v le déplacement relatif de l'amortisseur, le déplacement du point d'application de la force ε est donné par $\varepsilon = \varepsilon^e + \varepsilon^v$. En écrivant les lois de comportement du ressort et de l'amortisseur, on obtient

$$\sigma = E\varepsilon^e, \quad \dot{\varepsilon}^v = \sigma/\mu.$$

En dérivant la première relation et en éliminant $\dot{\varepsilon}^v$ grâce à la deuxième, on obtient finalement l'équation différentielle suivante régissant les évolutions de l'assemblage $\dot{\sigma} + E\sigma/\mu = E\dot{\varepsilon}$. On peut aussi l'écrire

$$\dot{\sigma} + \frac{\sigma}{\tau} = E\dot{\varepsilon} \qquad (\text{modèle de Maxwell}),$$

où $\tau > 0$ est la constante de temps et E > 0 la raideur. Ce modèle à deux paramètres est appelé modèle viscoélastique de Maxwell.

2. ressort-amortisseur en parallèle. On note σ la force exercée sur l'ensemble et ε l'allongement du ressort et le déplacement de l'amortisseur. La tension dans le ressort étant σ_1 et la force qui s'exerce sur l'amortisseur étant σ_2 , on a $\sigma = \sigma_1 + \sigma_2$. En écrivant les lois de comportement du ressort et de l'amortisseur, on obtient $\sigma_1 = E\varepsilon$ et $\sigma_2 = \mu \dot{\varepsilon}$. En reportant dans la relation précédente, on obtient finalement l'équation régissant les évolutions de l'assemblage $\sigma = E\varepsilon + \mu \dot{\varepsilon}$. On peut aussi l'écrire

 $\sigma = E(\varepsilon + \tau \dot{\varepsilon}) \qquad (\text{modèle de Kelvin-Voigt}),$

où $\tau > 0$ est encore la constante de temps et E > 0 la raideur. Ce modèle, qui comme le précédent est à deux paramètres, est appelé *modèle viscoélastique de Kelvin-Voigt*.

3. ressort-amortisseur en parallèle assemblé avec un ressort en série. Si l'indice 1 fait référence au ressort seul et l'indice 2 à l'assemblage ressort-amortisseur, alors on a

$$\varepsilon = \varepsilon_1 + \varepsilon_2, \quad \sigma = E_1 \varepsilon_1, \quad \sigma = E_2 \varepsilon_2 + \mu \dot{\varepsilon}_2.$$

En éliminant ε_2 , on obtient $\sigma = E_2(\varepsilon - \varepsilon_1) + \mu(\dot{\varepsilon} - \dot{\varepsilon}_1)$. Puis en éliminant ε_1 , il vient

$$\sigma = E_2 \varepsilon - \frac{E_2}{E_1} \sigma + \mu \dot{\varepsilon} - \frac{\mu}{E_1} \dot{\sigma}.$$

Cette relation peut finalement s'écrire

$$\sigma + \tau \dot{\sigma} = E^{\infty} \varepsilon + \tau E^0 \dot{\varepsilon} \qquad (\text{modèle de Zener})$$

où apparaissent trois paramètres : la raideur *instantanée* E^0 , la raideur *différée* E^{∞} et la constante de temps τ . Ces constantes sont reliées aux raideurs E_1 et E_2 des deux ressorts et au module de viscosité μ par

$$E^0 = E_1, \qquad E^\infty = \frac{E_1 E_2}{E_1 + E_2}, \qquad \tau = \frac{\mu}{E_1 + E_2}.$$

Comme les raideurs des ressorts et le module de viscosité sont positifs, la constante de temps est positive et la raideur différée est plus faible que la raideur instantanée :

 $E^0 > E^\infty > 0, \qquad \tau > 0.$

Ce modèle à trois paramètres est appelé modèle viscoélastique de Zener.

FIGURE 3.19 – Les trois modèles rhéologiques de viscoélasticité

4. assemblages à bases de ressorts et de patins. Ces assemblages avec des patins et des ressorts en série ou en parallèle permettent de simuler des comportements *élasto-plastiques* ou de façon plus générale des comportements hystérétiques indépendants des vitesses.

Exercice 3.4. Comparer les réponses prévues par les modèles viscoélastiques de Maxwell, de Kelvin-Voigt et de Zener dans les conditions suivantes :

- 1. Essai à vitesse de déformation $\dot{\varepsilon}$ imposée constante;
- 2. Essai de relaxation où la déformation ε est maintenue constante;
- 3. Essai de fluage où la contrainte σ est maintenue constante.

3.4.2 Viscoélasticité

Pour modéliser le comportement viscoélastique de milieux curvilignes, on peut se baser sur le modèle rhéologique de Zener qui présente l'avantage de rendre compte d'un comportement élastique instantané et différé. Pour écrire les relations constitutives il est commode d'introduire la notion de variables d'état internes. En effet, si on note ε^v l'allongement du ressort en parallèle avec l'amortisseur et ε^e l'allongement du ressort seul, la loi de Zener peut s'écrire

$$\sigma = \mathsf{E}^0 \varepsilon^e, \qquad \varepsilon = \varepsilon^e + \varepsilon^v, \quad \tau \dot{\varepsilon}^v = \left(1 - \frac{\mathsf{E}^\infty}{\mathsf{E}^0}\right) \varepsilon - \varepsilon^v.$$

On peut prendre pour variables d'état du système la déformation totale ε et la déformation visqueuse ε^{v} , la déformation élastique ε^{e} et la contrainte σ s'en déduisant ¹⁵. De même la loi d'évolution de ε^{v} donne $\dot{\varepsilon}^{v}$ en fonction de l'état du système. On voit donc que $\varepsilon^{v}(t)$ (ou de façon équivalente $\varepsilon^{e}(t)$) dépend en fait de l'histoire de la déformation totale jusqu'à l'instant t. Elle sert en quelque sorte de variable mémorisant l'histoire subie par le matériau jusqu'à l'instant t. Ce qui est intéressant et remarquable est que toute l'histoire à retenir se condense en une seule variable. En définissant le potentiel élastique comme l'énergie élastique des deux ressorts, ce potentiel est aussi une fonction des variables d'état :

$$\mathbf{w}_{\mathsf{ex}}(\varepsilon,\varepsilon^{v}) = \frac{1}{2} \mathsf{E}^{0}(\varepsilon-\varepsilon^{v})^{2} + \frac{1}{2} \frac{\mathsf{E}^{0}\mathsf{E}^{\infty}}{\mathsf{E}^{0}-\mathsf{E}^{\infty}} \varepsilon^{v^{2}}.$$

Il sert de potentiel pour la contrainte σ qui s'en déduit par dérivation par rapport à ε :

$$\sigma = \frac{\partial \mathtt{w}_{\mathtt{ex}}}{\partial \varepsilon} (\varepsilon, \varepsilon^v).$$

La variable "duale" de la déformation visqueuse σ^{v} est définie de même par dérivation :

$$\sigma^{v} := -\frac{\partial \mathbf{w}_{\mathbf{ex}}}{\partial \varepsilon^{v}}(\varepsilon^{e}, \varepsilon^{v}) = \mathsf{E}^{0}\left(\varepsilon - \frac{\mathsf{E}^{0}}{\mathsf{E}^{0} - \mathsf{E}^{\infty}}\varepsilon^{v}\right)$$

et ce n'est rien d'autre que la contrainte dans l'amortisseur. Elle intervient dans l'expression de la puissance dissipée $\mathcal{D}(t)$ par l'amortisseur qui est par définition $\mathcal{D}(t) = \sigma^v(t)\dot{\varepsilon}^v(t)$. On en déduit que la puissance de déformation $\dot{W}(t)$ peut s'écrire comme la somme de la variation de l'énergie élastique et de la puissance dissipée :

$$\dot{W}(t) := \sigma(t)\dot{\varepsilon}(t) = \frac{d}{dt}\left(\mathbf{w}_{\mathbf{ex}}(\varepsilon(t), \varepsilon^{v}(t)) + \mathcal{D}(t)\right).$$

On peut se servir de ce formalisme pour écrire la loi viscoélastique du milieu curviligne. En supposant la section homogène, on introduit le potentiel élastique

$$\mathbb{W}_{\mathbf{e}}(\varepsilon,\varepsilon^{v},\kappa) = \frac{1}{2} \mathsf{E}^{0} \mathsf{A}(\varepsilon-\varepsilon^{v})^{2} + \frac{1}{2} \frac{\mathsf{E}^{0}\mathsf{E}^{\infty}}{\mathsf{E}^{0}-\mathsf{E}^{\infty}} \mathsf{A}\varepsilon^{v2} + \frac{1}{2} \mathsf{E}^{0}\mathsf{I}\kappa^{2}$$

dont on déduit les relations constitutives

$$N = \mathsf{E}^0 \mathsf{A}(\varepsilon - \varepsilon^v), \qquad M = \mathsf{E}^0 \mathsf{I} \kappa.$$

La loi d'évolution de la déformation visqueuse peut toujours s'écrire

$$\tau \dot{\varepsilon}^v = \left(1 - \frac{\mathsf{E}^\infty}{\mathsf{E}^0}\right) \varepsilon - \varepsilon^v.$$

On voit qu'avec ce modèle simple la relation moment-déformation de flexion reste purement élastique, mais on pourrait évidemment le complexifier pour y faire intervenir la viscosité.

^{15.} On pour rait prendre également comme couple de variables d'état $(\varepsilon^e, \varepsilon^v).$

Chapitre 4

Statique des milieux curvilignes

4.1 Le problème aux limites

Pour formuler le problème aux limites, nous supposerons que la configuration de référence du milieu curviligne $S \mapsto \mathbf{x}_{\mathsf{R}}(S)$ est donnée. Sauf mention explicite du contraire, la configuration d'équilibre cherchée et tous les efforts intérieurs sont paramétrés par l'abscisse curviligne de référence S:

 $S \mapsto \mathbf{x}(S)$, $S \mapsto \mathbf{R}(S) = N(S)\mathbf{t}(S) + T(S)\mathbf{n}(S)$, $S \mapsto M(S)$.

Pour les efforts répartis, nous raisonnerons par unité de longueur de la configuration de référence et les densités linéiques associées seront indiquées avec $_{R}$ en indice. Ainsi les forces linéiques et les couples linéiques deviennent

$$\mathbf{f}_{\mathrm{R}}(S) = \mathbf{s}'(S)\mathbf{f}\circ\mathbf{s}(S) = (1+\varepsilon(S))\mathbf{f}\circ\mathbf{s}(S) \ , \qquad m_{\mathrm{R}}(S) = \mathbf{s}'(S)m\circ\mathbf{s}(S) = (1+\varepsilon(S))m\circ\mathbf{s}(S) \ .$$

Nous avons introduit dans les chapitres précédents les principaux concepts qui vont nous permettre de déterminer les positions d'équilibre de milieux curvilignes soumis à des efforts extérieurs : dans le chapitre 1 nous avons défini la géométrie et les déformations, dans le chapitre 2 les efforts intérieurs et extérieurs ainsi que les équations d'équilibre, dans le chapitre 3 les lois de comportement. Nous allons maintenant rassembler ces différentes notions pour arriver au problème aux limites qui constitue la formulation finale de la question de l'équilibre. Toutefois, il reste encore à distinguer dans cette formulation ce qui est donné de ce qui est inconnu et doit être déterminé. Cette phase absolument essentielle n'est pas forcément la plus facile, car elle peut exiger de résoudre des problèmes "annexes" avant d'aboutir à un problème "bien-posé". Parmi les points qui restent à préciser, distinguons

- les conditions aux limites : que peut-on imposer aux extrémités d'un milieu curviligne ?
- *les efforts extérieurs :* en quoi dépendent-ils de la configuration du milieu curviligne ?

4.1.1 Les conditions aux limites

Dans le chapitre 2, nous avons introduit les efforts qu'exerçait l'extérieur aux extrémités d'un milieu curviligne *ouvert* et avons alors considéré qu'ils étaient connus ainsi que la configuration d'équilibre afin

d'écrire les équations d'équilibre locales que devaient vérifier les efforts intérieurs. Il s'agit maintenant de préciser ce qui est donné de ce qu'il faut déterminer. En effet, lorsqu'on encastre une tige dans un mur supposé rigide et fixe, on se donne la position et l'orientation de la tige en l'extrémité encastrée, mais par contre on ne peut pas connaître *a priori* quels efforts va exercer le mur sur la tige. Ces *réactions* vont dépendre de la configuration d'équilibre de la tige (qu'il s'agit de trouver) et seront connues une fois que le problème de statique sera entièrement résolu. Ces réactions inconnues ne vont donc pas apparaître dans la formulation du problème aux limites, ce sont les données géométriques relatives à l'encastrement qui vont figurer. Cette *règle heuristique*¹ est générale et va valoir pour toutes les conditions aux limites que nous serons amenés à rencontrer. Énonçons-la à titre indicatif.

C-4.1 (Règle heuristique sur la bonne écriture des conditions aux limites). On ne peut pas imposer à la fois les forces à une extrémité et la position (ou le déplacement) de cette extrémité, et de même, on ne peut pas imposer à la fois le moment et l'orientation (ou la rotation) à une même extrémité. Quand on impose l'un, l'autre ne sera connu qu'une fois le problème de statique résolu. Ici aussi c'est le concept de dualité efforts-positions qui sert de guide et on peut s'appuyer sur le tableau de correspondance suivant

$$\left(\begin{array}{c} \mathbf{R}\\ M\end{array}\right)\longleftrightarrow \left(\begin{array}{cc} \mathbf{x} & ou & \boldsymbol{\xi}\\ \alpha & ou & \omega\end{array}\right) \quad ou \ bien \quad \left(\begin{array}{c} N\\ T\\ M\end{array}\right)\longleftrightarrow \left(\begin{array}{c} \mathbf{u}\\ \mathbf{w}\\ \omega\end{array}\right)$$

En toute extrémité du milieu curviligne, on doit se donner 3 conditions scalaires sachant que l'on ne peut pas se donner deux grandeurs d'une même ligne des tableaux.

Condition d'encastrement

D-4.2 (Conditions à la limite pour un encastrement).

• Quand l'extrémité S = 0 est encastrée au point \mathbf{x}_0 dans la direction $\mathbf{t}_0 = \cos \alpha_0 \mathbf{e}_1 + \sin \alpha_0 \mathbf{e}_2$, la condition à la limite s'écrit

 $\mathbf{x}(0) = \mathbf{x}_0, \quad \alpha(0) = \alpha_0.$

• Quand l'extrémité $S = \ell_R$ est encastrée au point \mathbf{x}_1 dans la direction $\mathbf{t}_1 = \cos \alpha_1 \mathbf{e}_1 + \sin \alpha_1 \mathbf{e}_2$, la condition à la limite s'écrit

$$\mathbf{x}(\ell_{R}) = \mathbf{x}_{1}, \quad \alpha(\ell_{R}) = \alpha_{1}.$$

Notons que c'est la configuration d'équilibre qui doit satisfaire la condition d'encastrement, pas la configuration de référence. On peut très bien prendre une configuration de référence telle que

^{1.} Heuristique veut dire *utile* à la recherche. Cette règle ne peut pas être érigée ici en loi, elle est seulement utile à la recherche ... d'une écriture cohérente des conditions aux limites. On peut la formaliser et elle prendra tout son sens lorsqu'on donnera une formulation variationnelle de l'équilibre au chapitre 5.

 $\mathbf{x}_{\mathsf{R}}(0) \neq \mathbf{x}_0$ et $\alpha_{\mathsf{R}}(0) \neq \alpha_0$. Dans tous les cas, le vecteur déplacement et la rotation devront vérifier

$$\boldsymbol{\xi}(0) = \mathbf{x}_0 - \mathbf{x}_{\mathsf{R}}(0), \qquad \boldsymbol{\omega}(0) = \boldsymbol{\alpha}_0 - \boldsymbol{\alpha}_{\mathsf{R}}(0).$$

Condition de fixation avec rotation libre

D-4.3 (Conditions à la limite pour une fixation avec rotation libre). Quand l'extrémité S = 0 ou l'extrémité $S = \ell_R$ est fixée au point \mathbf{x}_0 par une articulation parfaite laissant la rotation libre, la condition à la limite s'écrit

$$\mathbf{x}(0 \ ou \ \ell_{\mathsf{R}}) = \mathbf{x}_0, \quad M(0 \ ou \ \ell_{\mathsf{R}}) = 0.$$

D-4.4 (Conditions à la limite pour un contact avec glissement et rotation libres, dite aussi condition d'appui simple). L'extrémité S = 0 ou l'extrémité $S = \ell_R$ est astreinte à se trouver sur une courbe $s \mapsto \mathbf{x}_c(s)$ donnée du plan ($\mathbf{e}_1, \mathbf{e}_2$) mais sans que le point de contact soit fixé a priori. Le milieu continu étant libre de glisser sur cette courbe et de tourner, la composante de l'effort intérieur suivant la tangente à la courbe de contact est nulle ainsi que le moment fléchissant. La condition à la limite s'écrit donc

$$\begin{cases} \exists s_0 : \mathbf{x}(0 \text{ ou } \ell_R) = \mathbf{x}_c(s_0), \quad \mathbf{R}(0 \text{ ou } \ell_R) \cdot \mathbf{x}'_c(s_0) = 0, \\ M(0 \text{ ou } \ell_R) = 0. \end{cases}$$

Dans le cas particulier où la courbe de contact est une droite de vecteur directeur \mathbf{t}_c , alors $\mathbf{x}_c(s) = a\mathbf{e}_3 \wedge \mathbf{t}_c + s\mathbf{t}_c$ où a est une constante et la condition devient

$$\mathbf{t}_{c \wedge \mathbf{X}}(0 \text{ ou } \ell_{R}) = a, \quad \mathbf{R}(0 \text{ ou } \ell_{R}) \cdot \mathbf{t}_{c} = 0, \quad M(0 \text{ ou } \ell_{R}) = 0.$$

Apparaît ici la difficulté de trouver le point de contact avec la courbe, *i.e.* s_0 . Ce point sera une des inconnues du problème aux limites.

Condition d'extrémité chargée et libre de se déplacer

D-4.5 (Conditions à la limite pour une extrémité chargée).
Quand l'extrémité S = 0 est soumise à des efforts F₀ et M₀ donnés, la condition à la limite s'écrit **R**(0) = -F₀, M(0) = -M₀.

Quand l'extrémité S = ℓ_R est soumise à des efforts F₁ et M₁ donnés, la condition à la limite s'écrit **R**(ℓ_R) = F₁, M(ℓ_R) = M₁.

Dans ce cas, l'extrémité concernée est libre de se déplacer et de s'orienter, aucune condition ne porte sur la cinématique.

Autres conditions aux limites

Les quatre conditions aux limites précédentes sont les plus fréquentes en pratique. On peut toutefois en rencontrer d'autres, la forme que peuvent prendre ces conditions aux limites variant à l'infini. Contentons-nous d'en citer deux qui illustreront cette variété.

• Condition d'appui élastique. Dans les conditions d'encastrement, de fixation ou d'appui simple précédentes, l'objet sur lequel le milieu curviligne était fixé ou s'appuyait était implicitement supposé rigide. Ce n'est évidemment qu'une schématisation, qui a le mérite de simplifier l'écriture des conditions aux limites et qui s'avère raisonnable dans de nombreuses situations pratiques. On peut toutefois être amené à lever cette condition de rigidité pour mieux rendre compte de l'interaction du milieu continu avec l'objet en contact. Par exemple, on peut remplacer la condition d'encastrement en $S = \ell_R$ par la condition suivante dite d'appui élastique :

$$\mathbf{R}(\ell_{\mathsf{R}}) = -\mathsf{k} \ (\mathbf{x}(\ell_{\mathsf{R}}) - \mathbf{x}_{1}), \quad M(\ell_{\mathsf{R}}) = -\mathsf{c} \ (\alpha(\ell_{\mathsf{R}}) - \alpha_{1}), \qquad \text{(condition d'appui élastique en } S = \ell_{\mathsf{R}}),$$

où k et c sont des constantes de raideur caractéristiques de l'appui, à identifier expérimentalement. L'appui joue donc le rôle d'un ressort en exerçant une force ou un couple de rappel proportionnel à l'écart de position ou d'orientation par rapport à la position \mathbf{x}_1 ou l'orientation α_1 de référence. On voit que si l'on fait tendre les raideurs k et c vers l'infini, on retombe sur la condition d'encastrement, alors que si l'on fait tendre les raideurs k et c vers 0, on retombe sur les conditions d'extrémité libre (avec efforts extérieurs nuls). Ce type de condition à la limite permet donc de passer "continûment" d'un encastrement à une extrémité libre, c'est ce qui fait sa richesse. Ici les ressorts sont supposés linéaires, mais rien n'interdit d'envisager des relations non linéaires. • Condition de contact unilatéral. Dans la condition d'appui simple présentée précédemment, l'extrémité du milieu était astreinte à se déplacer sur la courbe de contact. En pratique, on rencontre très souvent des conditions de contact dites unilatérales où l'on impose seulement à l'extrémité du milieu d'être d'un côté du plan délimité par la courbe de contact $s \mapsto \mathbf{x}_c(s)$. On peut la voir comme une condition de non interpénétration entre le milieu curviligne et l'objet (rigide) dont la "surface libre" est représentée par la courbe de contact. Formulons ces conditions en nous limitant au cas où la courbe de contact est une droite. L'équation paramétrique de cette droite étant $\mathbf{x}_c(s) = a\mathbf{n}_c + s\mathbf{t}_c$, le demi-plan dans lequel doit se trouver l'extrémité S = 0 du milieu est donné par

demi-plan admissible : $\{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} \cdot \mathbf{n}_c \ge a\},\$

la normale unitaire sortante étant $\mathbf{n}_c = \mathbf{e}_3 \wedge \mathbf{t}_c$. La condition cinématique de non interpénétration s'écrit

condition de non-interpénétration de l'extrémité : $\mathbf{x}(0) \cdot \mathbf{n}_c \ge a$.

Pour ce qui est des efforts de contact, nous devons distinguer les cas où l'extrémité du milieu est effectivement en contact de ceux où elle n'est pas en contact avec la courbe. Lorsque l'extrémité n'est pas en contact, on écrira qu'elle est libre et non chargée, ce qui se traduit par les conditions

en cas de non contact de l'extrémité : $\mathbf{x}(0) \cdot \mathbf{n}_c > a$, $\mathbf{R}(0) = \mathbf{0}$, M(0) = 0.

Par contre, lorsque l'extrémité est en contact avec l'objet, celui-ci exerce en général un effort sur le milieu curviligne. Si l'on suppose que ce contact se fait sans frottement, l'effort tangentiel est nul et il ne peut s'agir que d'un effort normal à la droite de contact (*i.e.* \mathcal{F}_0 est colinéaire à \mathbf{n}_c). Mais si l'on admet que l'objet ne peut que repousser le milieu, pas le retenir (hypothèse d'absence de forces de cohésion), alors il faut écrire que l'effort exercé par l'objet sur le milieu est suivant la normale extérieure à l'objet, *i.e.* $\mathcal{F}_0 = \lambda \mathbf{n}_c$ avec $\lambda \geq 0$. Les conditions peuvent donc s'écrire

en cas de contact de l'extrémité sans frottement et sans cohésion :

 $\mathbf{x}(0) \cdot \mathbf{n}_c = a, \quad \mathbf{R}(0) \wedge \mathbf{n}_c = 0, \quad \mathbf{R}(0) \cdot \mathbf{n}_c \le 0, \quad M(0) = 0.$

On voit que dans tous les cas la force tangentielle et le moment exercés sont nuls. Les autres conditions peuvent se regrouper en

$$\mathbf{x}(0) \cdot \mathbf{n}_c \ge a, \qquad \mathbf{R}(0) \cdot \mathbf{n}_c \le 0, \qquad (\mathbf{x}(0) \cdot \mathbf{n}_c - a) \mathbf{R}(0) \cdot \mathbf{n}_c = 0$$

puisque il faut toujours vérifier les conditions de non-interpénétration et de non cohésion et que dans tous les cas au moins une de ces deux conditions est vérifiée comme une égalité². En résumé, on a obtenu

^{2.} Ces trois conditions sont aussi appelées conditions de Kuhn et Tucker dans les problèmes d'optimisation convexe.
D-4.6 (Conditions à la limite pour un contact unilatéral avec glissement et rotation libres). L'extrémité S = 0 est astreinte à se trouver dans le demi-plan $\mathbf{x} \cdot \mathbf{n}_c \geq a$. L'extrémité du milieu continu étant libre de tourner et le contact se faisant sans frottement et sans cohésion, les conditions à la limite s'écrivent

	rotation libre :	M(0) = 0
	non frottement :	$\mathbf{R}(0) \wedge \mathbf{n}_c = 0$
4	non interpénétration :	$\mathbf{x}(0) \cdot \mathbf{n}_c \ge a$
	non cohésion :	$\mathbf{R}(0) \cdot \mathbf{n}_c \le 0$
	soit contact, soit non contact libre :	$\left(\mathbf{x}(0)\cdot\mathbf{n}_c-a\right)\mathbf{R}(0)\cdot\mathbf{n}_c=0$

On pourrait être plus exigeant et demander que tout le milieu continu curviligne se trouve dans le demi-plan $\mathbf{x} \cdot \mathbf{n}_c \geq a$. Cela conduit à des conditions globales où tout le milieu est concerné et pas seulement les extrémités. Nous ne l'envisagerons que dans des problèmes particuliers.

4.1.2 Les efforts extérieurs

Dans le chapitre 2 nous avons introduit les efforts extérieurs en distinguant les efforts répartis des efforts ponctuels. Parmi les premiers nous avions également distingué les efforts à distance des efforts de contact. Nous balayons à nouveau ces différents types d'efforts extérieurs en analysant leur dépendance à la configuration d'équilibre.

Conservation de la masse

Commençons par rappeler la loi de conservation de la masse, car nous serons amenés à l'utiliser régulièrement.

P-4.1 (Conservation de la masse). Soit $S \mapsto \varrho_R(S)$ la masse linéique du milieu continu dans sa configuration de référence et soit $S \mapsto \varrho(S)$ sa masse linéique dans la configuration déformée (paramétrée par l'abscisse curviligne S de la configuration de référence). En vertu de la loi de conservation de la masse, ces deux masses linéiques sont reliées par

$$(1 + \varepsilon(S))\varrho(S) = \varrho_R(S), \quad \forall S$$
, (4.1)

où ε est la déformation d'extension entre les deux configurations, i.e. $\varepsilon = \mathbf{s}' - 1$.

Il ne faut pas confondre le fait de paramétrer les champs par l'abscisse curviligne de référence et le fait de considérer des densités linéiques par unité de longueur de référence. Ainsi, on aura toujours $\varrho ds = \varrho_{\rm B} dS$ quelle que soit la paramétrisation choisie pour le champ ϱ .

Il faut noter que la masse linéique de référence ρ_{R} peut dépendre de S si le milieu curviligne est hétérogène.

Forces massiques et forces linéiques associées

La grande majorité des efforts à distance que nous rencontrerons sont des forces massiques, i.e. des forces qui agissent sur les masses et dont l'unité est le N/kg. Pour obtenir les forces linéiques **f** (unité=N/m) qui apparaissent dans les équations d'équilibre il faut multiplier ces forces massiques par la masse linéique. Si l'on raisonne, comme nous l'avons fait dans le chapitre 2, par unité de longueur ds de la configuration d'équilibre, c'est la masse linéique ρ qui intervient. Si l'on travaille, comme nous allons le faire dans ce chapitre, par unité de longueur dS de la configuration de référence, il faut multiplier la masse linéique ρ par la variation relative de longueur $\mathbf{s}' = 1 + \varepsilon$. Mais, en vertu de la conservation de la masse (4.1), cela revient à remplacer ρ par la masse linéique de référence ρ_{R} . En reprenant les exemples du chapitre 2, on obtient ainsi

densité linéique de force de pesanteur par unité de longueur de référence :

densité linéique de force centrifuge par unité de longueur de référence :

$$\label{eq:f_R} \begin{bmatrix} \mathbf{f}_{\mathrm{R}}(S) = \varrho_{\mathrm{R}}(S) \mathbf{g} \end{bmatrix}$$

$$\label{eq:f_R} \mathbf{f}_{\mathrm{R}}(S) = \varrho_{\mathrm{R}}(S) \Omega^2 x_1(S) \mathbf{e}_1$$

On notera que la densité de force centrifuge dépend toujours de la configuration d'équilibre.

Forces réparties de contact

Reprenons les deux exemples du chapitre 2, à savoir l'enroulement d'un câble autour d'une poulie et la pression exercée par un fluide sur une membrane, et discutons des forces de contact.

Cas du câble enroulé. Si le câble est inextensible et si l'on se donne la zone de contact du câble avec la poulie (par exemple, la demicirconférence supérieure), alors il n'y a qu'une configuration possible et il s'agit de vérifier que les conditions d'équilibre sont effectivement satisfaites. Pour cela, il faut préciser la loi de contact entre le câble et la poulie. Si l'on opte pour une loi de frottement de type Coulomb, alors on a une inégalité entre la composante tangentielle f_t et la composante normale f_n de la densité linéique de force de contact : $|f_t(S)| \leq k f_n(S)$, k étant le coefficient de frottement.

Cas de la pression d'un fluide. La force linéique exercée par le fluide sur la membrane est une pression normale. La densité linéique par unité de longueur de la configuration d'équilibre s'écrivant $\mathbf{f} = -p\mathbf{n}$, la densité linéique par unité de longueur de référence s'écrit

$$\mathbf{f}_{\mathsf{R}}(S) = -(1 + \varepsilon(S))p\,\mathbf{n}(S),$$

où $\mathbf{n}(S)$ est la normale unitaire à la configuration d'équilibre et qui est donc entrante dans le domaine fluide si la membrane est décrite dans le sens trigonométrique. La pression p peut être une donnée constante ou bien une fonction de l'aire du domaine occupée par le fluide (et donc de la configuration d'équilibre) si le fluide est compressible et la membrane est extensible.

4.1.3 Formulation générale d'un problème de statique

Les inconnues	$S \mapsto \mathbf{x}(S), S \mapsto (\mathbf{R}(S), M(S))$				
	Les équations (le prime indique la dérivée par rapport à S)				
Les relations géométriques	$\begin{cases} \mathbf{t}(S) = \frac{\mathbf{x}'(S)}{\ \mathbf{x}'(S)\ } = \cos \alpha(S)\mathbf{e}_1 + \sin \alpha(S)\mathbf{e}_2\\ \mathbf{n}(S) = \mathbf{e}_3 \wedge \mathbf{t}(S) = -\sin \alpha(S)\mathbf{e}_1 + \cos \alpha(S)\mathbf{e}_2\\ \varepsilon(S) = \ \mathbf{x}'(S)\ - 1\\ \kappa(S) = \frac{\mathbf{x}'(S) \wedge \mathbf{x}''(S)}{\ \mathbf{x}'(S)\ ^2} - C_{R}(S) = \alpha'(S) - \alpha'_{R}(S) \end{cases}$				
La décomposition des efforts intérieurs	$\mathbf{R}(S) = N(S)\mathbf{t}(S) + T(S)\mathbf{n}(S)$				
Les équations d'équilibre (les densités linéiques \mathbf{f}_{R} et m_{R} sont par unité de longueur de la configuration de référence)	$\begin{cases} \mathbf{R}'(S) + \mathbf{f}_{R}(S) = 0 & \forall S \in \mathbb{C}_{R} \setminus \mathbb{P}_{R} \\ \\ M'(S) + \ \mathbf{x}'(S)\ \ T(S) + m_{R}(S) = 0 & \forall S \in \mathbb{C}_{R} \setminus \mathbb{P}_{R} \\ \\ \ \mathbf{R}\ (S_i) + \mathcal{F}_{S_i} = 0 & \forall S_i \in \mathbb{P}_{R} \\ \\ \ M\ (S_i) + \mathcal{M}_{S_i} = 0 & \forall S_i \in \mathbb{P}_{R} \end{cases}$				
Les conditions aux limites (à n'écrire que quand le milieu a des extrémités)	$\begin{pmatrix} \mathbf{R} \\ M \end{pmatrix} \longleftrightarrow \begin{pmatrix} \mathbf{x} \\ \alpha \end{pmatrix} \text{en} S = 0 \text{ et } S = \ell_{R}$				
Les relations constitutives	$\left(\begin{array}{c} N(S)\\ M(S) \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \varepsilon(S)\\ \kappa(S) \end{array}\right) \qquad \forall S \in \mathbb{C}_{R}$				

TABLE 4.1 – Formulation générale d'un problème aux limites où tous les champs sont paramétrés par l'abscisse curviligne de référence S. Il reste à particulariser au cas par cas les efforts extérieurs, les conditions aux limites et les relations constitutives.

4.2 Statique des milieux rigides

On s'intéresse dans cette section à la statique des milieux curvilignes rigides. Les déformations d'extension et de flexion sont donc identiquement nulles :

$$\varepsilon(S) = 0, \quad \kappa(S) = 0 \quad \forall S \in \mathbb{C}_{\mathsf{R}},$$

l'abscisse curviligne et la courbure de référence sont invariables, $\mathbf{s}(S) = S$ et $C(S) = C_R(S)$. Les densités linéiques \mathbf{f}_R et \mathbf{f} sont égales, ainsi que m_R et m. La configuration d'équilibre ne peut différer de la configuration de référence que par un déplacement rigide, *i.e.* un vecteur translation et une rotation d'ensemble. Il s'agit donc dans un premier temps de déterminer ces trois constantes (deux pour la translation, une pour la rotation). Puis, une fois la (ou les) configurations d'équilibre trouvées, il s'agit de calculer la répartition des efforts intérieurs. Nous allons illustrer ces différentes étapes dans différents problèmes de statique en jouant en particulier sur les conditions aux limites. On mettra en évidence à cette occasion quelques propriétés génériques.

4.2.1 Tige sous pesanteur et force centrifuge

Le milieu rigide est une tige droite homogène de longueur ℓ_{R} et de masse linéique ϱ_{R} . Dans tous les cas, elle est fixée au point **O**, le plan (**O**, $\mathbf{e}_1, \mathbf{e}_2$) tournant avec une vitesse angulaire Ω autour de l'axe **Oe**₂. Elle est de plus placée dans le champ de pesanteur uniforme $-g\mathbf{e}_2$. On s'intéresse à l'équilibre de cette tige dans le référentiel tournant où elle sera soumise à la force centrifuge massique $\Omega^2 x_1(S)\mathbf{e}_1$. La force linéique totale est donc

$$\mathbf{f}_{\mathsf{R}}(S) = \mathbf{f}(S) = \varrho_{\mathsf{R}} \Omega^2 x_1(S) \mathbf{e}_1 - \varrho_{\mathsf{R}} g \mathbf{e}_2$$

et il n'y a pas de densité linéique de couples, $m_{R}(S) = m(S) = 0$, ni d'efforts extérieurs ponctuels. Les différents problèmes se distinguent par leurs conditions aux limites :

1. Cas encastré-appui simple. L'extrémité S = 0 est encastrée au point **O** dans la direction \mathbf{e}_1 , alors que l'extrémité $S = \ell_{\mathsf{R}}$ est sur un appui simple sur l'axe $x_2 = 0$;

2. Cas encastré-libre. On conserve l'encastrement de l'extrémité S = 0, mais on enlève l'appui simple en $S = \ell_{\text{R}}$, cette extrémité devenant libre;

On enlève donc une condition cinématique à chaque fois pour passer de quatre conditions cinématiques à deux. Dans le premier cas, il y a une condition superflue pour fixer la position du solide rigide, le système est dit *une fois hyperstatique*. Dans le deuxième cas, il y a juste les conditions qu'il faut pour fixer la position, le système est dit *isostatique*. Dans le troisième cas, il manque une condition pour fixer la position, le système a un degré de liberté, il est dit *une fois hypostatique*.

Cas hyperstatique : encastré-appui simple.

La configuration d'équilibre est fixée par la condition d'encastrement,

$$\mathbf{x}(S) = S\mathbf{e}_1, \quad S \in (0, \ell_{\mathsf{R}}),$$

et la condition d'appui simple est automatiquement vérifiée, $x_2(\ell_R) = 0$. Le vecteur tangent étant \mathbf{e}_1 et le vecteur normal étant \mathbf{e}_2 , les équations d'équilibre s'écrivent

$$N'(S) + \varrho_{\mathsf{R}} \Omega^2 S = 0, \qquad T'(S) - \varrho_{\mathsf{R}} g = 0, \qquad M'(S) + T(S) = 0, \qquad \forall S \in (0, \ell_{\mathsf{R}}).$$

L'encastrement en S = 0 ne fournit aucune information sur les efforts intérieurs, alors que la condition d'appui simple en $S = \ell_{\mathsf{R}}$ donne

$$N(\ell_{\mathsf{R}}) = 0, \qquad M(\ell_{\mathsf{R}}) = 0.$$

A partir de l'équation d'équilibre horizontale et de la condition d'appui simple, on détermine exactement la répartition d'effort normal :

$$N(S) = \frac{1}{2} \varrho_{\mathsf{R}} \Omega^2 (\ell_{\mathsf{R}}^2 - S^2).$$

Par contre l'absence de condition à la limite ne permet de déterminer la répartition d'effort tranchant qu'à une constante près à l'aide de l'équation d'équilibre vertical :

$$T(S) = T_0 + \varrho_{\mathsf{R}} g S,$$

la constante T_0 représentant l'effort tranchant en S = 0 étant arbitraire. En reportant dans l'équation d'équilibre des moments et en utilisant la condition en $S = \ell_R$, on obtient

$$M(S) = T_0(\ell_{\rm R} - S) + \frac{1}{2} \,\varrho_{\rm R} g(\ell_{\rm R}^2 - S^2)$$

et la répartition des moments fléchissants n'est pas non plus parfaitement déterminée puisqu'elle dépend de la constante arbitraire T_0 . On peut résumer ce cas par :

Dans le cas hyperstatique encastré-appui simple, la configuration d'équilibre est parfaitement déterminée mais la répartition des efforts intérieurs n'est connue qu'à une constante arbitraire près.

Cas isostatique : encastré-libre.

La configuration d'équilibre est encore fixée par la condition d'encastrement : $\mathbf{x}(S) = S\mathbf{e}_1$. Les équations d'équilibre sont inchangées, mais vient s'ajouter la condition à la limite $T(\ell_{\mathsf{R}}) = 0$ due à la suppression de l'appui simple. Ceci permet de fixer la constante T_0 ,

$$T_0 = -\varrho_{\mathsf{R}}g\ell_{\mathsf{R}}.$$

La répartition des efforts intérieurs est donc parfaitement déterminée :

$$N(S) = \frac{1}{2} \,\varrho_{\rm R} \Omega^2(\ell_{\rm R}^2 - S^2), \qquad T(S) = -\varrho_{\rm R} g(\ell_{\rm R} - S), \qquad M(S) = -\frac{1}{2} \,\varrho_{\rm R} g(\ell_{\rm R} - S)^2.$$

Dans le cas isostatique encastré-libre, la configuration d'équilibre et la répartition des efforts intérieurs sont parfaitement déterminées.

Cas hypostatique : fixé-libre

La fixation en S = 0 laisse la rotation libre et l'angle tangent α (qui est le même en tout point de la tige) est à déterminer. Les configurations d'équilibre sont donc à chercher parmi la famille de segments de droite paramétrée par α :

$$\mathbf{x}(S) = S(\cos \alpha \mathbf{e}_1 + \sin \alpha \mathbf{e}_2), \quad \forall S \in (0, \ell_{\mathsf{R}}), \qquad \alpha \in [-\pi, \pi).$$

En contrepartie, les conditions aux limites s'écrivent maintenant

$$M(0) = 0$$
, $\mathbf{R}(\ell_{\mathsf{R}}) = \mathbf{0}$, $M(\ell_{\mathsf{R}}) = 0$,

où est apparue la condition de rotation libre en S = 0. Utilisons la forme vectorielle des équations d'équilibre :

$$\mathbf{R}'(S) + \varrho_{\mathsf{R}}\Omega^2 S \cos \alpha \mathbf{e}_1 - \varrho_{\mathsf{R}}g\mathbf{e}_2 = \mathbf{0}, \quad M'(S) + T(S) = 0, \quad T(S) = \mathbf{R}(S) \cdot (-\sin \alpha \mathbf{e}_1 + \cos \alpha \mathbf{e}_2).$$

En intégrant l'équation d'équilibre des forces et grâce à la condition à la limite $\mathbf{R}(\ell_{R}) = \mathbf{0}$, on obtient la répartition des efforts intérieurs en fonction de l'orientation α :

$$\mathbf{R}(S) = \frac{1}{2} \, \varrho_{\mathsf{R}} \Omega^2 \cos \alpha (\ell_{\mathsf{R}}^2 - S^2) \mathbf{e}_1 - \varrho_{\mathsf{R}} g(\ell_{\mathsf{R}} - S) \mathbf{e}_2.$$

L'effort tranchant s'écrit donc

$$T(S) = -\frac{1}{2} \,\varrho_{\mathsf{R}} \Omega^2 \sin \alpha \cos \alpha (\ell_{\mathsf{R}}^2 - S^2) - \varrho_{\mathsf{R}} g \cos \alpha (\ell_{\mathsf{R}} - S).$$

On reporte dans l'équation d'équilibre des moments que l'on intègre en tenant compte de la condition à la limite $M(\ell_R) = 0$ pour obtenir la répartition des moments fléchissants en fonction de l'orientation α :

$$M(S) = -\frac{1}{6}\rho_{\mathsf{R}}\Omega^2 \sin\alpha \cos\alpha (\ell_{\mathsf{R}} - S)^2 (2\ell_{\mathsf{R}} + S) - \frac{1}{2}\rho_{\mathsf{R}}g\cos\alpha (\ell_{\mathsf{R}} - S)^2.$$

$$\tag{4.2}$$

Il ne reste plus qu'à écrire la condition à la limite M(0) = 0 qui fournit l'équation en α :³

$$(2\Omega^2 \ell_{\mathsf{R}} \sin \alpha + 3g) \cos \alpha = 0 \qquad (\text{équation d'équilibre global des moments}) . \tag{4.3}$$

Il s'agit de déterminer les solutions de cette équation en α qui fourniront les configurations d'équilibre de la tige. Etudions cette équation en prenant pour paramètre caractérisant le chargement le rapport adimensionnel λ ,

$$\lambda = \frac{2\Omega^2 \ell_{\mathsf{R}}}{3g} \qquad \text{(paramètre adimensionnel de chargement)}$$

rapport qui permet de comparer l'accélération centrifuge à la pesanteur. Ce paramètre peut être considéré comme non négatif dans la mesure où \mathbf{e}_2 est choisie comme la direction verticale ascendante (et donc g > 0).

^{3.} Cette équation est en fait l'équation d'équilibre global des moments. On aurait pu l'écrire directement sans passer par l'intégration des équations d'équilibre locales, cf. chapitre 2 et (2.3). C'est ce que nous ferons dans les paragraphes dédiés à la stabilité et à la sensibilité aux imperfections.

Positions d'équilibre.

• $\alpha = \pm \pi/2$ sont solutions, quel que soit $\lambda \ge 0$. L'une $\alpha = -\pi/2$ correspond à la position verticale descendante, l'autre $\alpha = +\pi/2$ à la position verticale ascendante;

• Quand $0 \le \lambda \le 1$, ce sont les deux seules solutions possibles;

• Quand $\lambda > 1$, il existe deux autres solutions possibles,

$$\alpha = -\frac{\pi}{2} \pm \arccos\left(\frac{1}{\lambda}\right),$$

symétriques par rapport à la verticale et tendant vers la position horizontale quand $\lambda \to \infty$.

Angles d'équilibre en fonction du paramètre λ

On voit apparaître ici un problème nouveau qui est celui de la multiplicité des positions d'équilibre pour des conditions de chargement données. Se pose naturellement la question de savoir si toutes ces positions d'équilibre sont "équivalentes" et comment le système fait pour choisir "la bonne". Il nous faut rajouter dans la formulation un critère de sélection des solutions. Le critère naturel est celui de *stabilité*, notion d'origine dynamique que l'on peut traduire sous certaines conditions en termes statiques. Ce concept de stabilité sera introduit au chapitre 5 dans le cadre statique pour des *systèmes conservatifs*.

Stabilité des positions d'équilibre. On peut sur cet exemple simple raisonner de façon empirique et introduire cette notion de stabilité par un raisonnement sur les moments. Considérons une configuration de la tige caractérisée par son angle α , sans que ce soit forcément une configuration d'équilibre, et calculons le moment $\mathcal{M}(\alpha)$ en **O** de la force centrifuge et de la pesanteur (il correspond à M(0)dans (4.2)) :

$$\mathcal{M}(\alpha) := \int_0^{\ell_{\mathsf{R}}} \mathbf{x}(S) \wedge \mathbf{f}(S) dS = -\frac{1}{2} \,\varrho_{\mathsf{R}} g \ell_{\mathsf{R}}^2 \cos \alpha - \frac{1}{3} \varrho_{\mathsf{R}} \Omega^2 \ell_{\mathsf{R}}^3 \sin \alpha \cos \alpha.$$

Les configurations d'équilibre sont celles pour lesquelles $\mathcal{M}(\alpha) = 0$. Considérons maintenant une configuration d'équilibre et écartons la tige de cette configuration en la faisant tourner d'un petit angle $\delta \alpha$. Le moment en **O** des efforts extérieurs passe donc de 0 à $\delta \mathcal{M} \approx \mathcal{M}'(\alpha) \delta \alpha$. La condition de stabilité consiste à dire que la configuration d'équilibre est stable si le système a tendance à revenir vers sa position d'équilibre lorsqu'on l'en écarte un peu. Traduit ici en terme de moment des efforts extérieurs, on demande donc que $\delta \mathcal{M}$ soit de signe opposé à $\delta \alpha$. Cela exige que $\mathcal{M}'(\alpha) \leq 0^4$. Comme

$$\mathcal{M}'(\alpha) = \frac{1}{2} \,\varrho_{\mathsf{R}} g \ell_{\mathsf{R}}^2 \big(\sin \alpha - \lambda \cos 2\alpha \big),$$

^{4.} L'inégalité $\mathcal{M}'(\alpha) \leq 0$ est une condition nécessaire mais pas forcément suffisante. Par contre $\mathcal{M}'(\alpha) < 0$ est une condition suffisante, mais pas forcément nécessaire.

on obtient

$$\begin{cases} \mathcal{M}'(\pi/2) = \frac{1}{2} \,\varrho_{\mathsf{R}} g \ell_{\mathsf{R}}^2(\lambda+1) > 0, & \alpha = \pi/2 \text{ est } instable \\\\ \mathcal{M}'(-\pi/2) = \frac{1}{2} \,\varrho_{\mathsf{R}} g \ell_{\mathsf{R}}^2(\lambda-1), & \alpha = -\pi/2 \text{ est } \begin{cases} stable & \text{si } \lambda < 1 \\ instable & \text{si } \lambda > 1 \\\\ \mathcal{M}'\left(-\frac{\pi}{2} \pm \arccos\left(\frac{1}{\lambda}\right)\right) = \frac{1}{2} \,\varrho_{\mathsf{R}} g \ell_{\mathsf{R}}^2\left(\frac{1}{\lambda}-1\right)\left(\frac{2}{\lambda}+1\right) < 0, & \alpha = -\frac{\pi}{2} \pm \arccos\left(\frac{1}{\lambda}\right) \text{ sont } stables \end{cases}$$

La position d'équilibre verticale ascendante est donc toujours instable, quel que soit le chargement alors que la position d'équilibre verticale descendante est stable tant que la vitesse de rotation est suffisamment faible, mais cesse de l'être lorsque la vitesse de rotation dépasse la valeur critique

$$\Omega_c = \sqrt{\frac{3g}{2\ell_{\rm R}}}.$$

La preuve ou non de la stabilité de $\alpha = -\pi/2$ quand $\lambda = 1$ nécessite une étude complémentaire que nous ne ferons pas. En contrepartie, dès que $\Omega > \Omega_c$, les deux autres configurations d'équilibre existantes sont stables.

Branches d'équilibre, bifurcation, échange de stabilité. Raisonnons en terme de branches d'équilibre en faisant varier le paramètre λ ou de façon équivalente la vitesse de rotation Ω (le sens de rotation n'a pas d'importance, on peut supposer $\Omega \geq 0$). Partons de $\lambda = 0$, *i.e.* $\Omega = 0$. La tige est soumise à la pesanteur seule et va donc prendre la position d'équilibre verticale descendante qui est la seule stable. Si l'on fait croître lentement la vitesse de rotation de façon à ce que la tige puisse être considérée en équilibre à chaque instant, alors la tige va rester dans la position d'équilibre verticale descendante tant que $\lambda \leq 1$, *i.e.* tant que $\Omega \leq \Omega_c$. Mais, dès que $\lambda > 1$, la position verticale descendante n'étant plus stable, la tige va prendre une des deux positions d'équilibre stables $\alpha = -\pi/2 \pm \arccos(1/\lambda)$. Les deux sont équivalentes et il n'y a pas moyen de savoir par un raisonnement statique laquelle des deux positions la tige prendra. C'est la dynamique ou, comme nous le verrons dans le paragraphe suivant, la présence inévitable d'imperfections qui permettront de choisir. Toujours est-il que la tige doit quitter cette branche fondamentale que constitue la position verticale descendante pour passer sur la branche bifurquée. Le point ($\lambda = 1, \alpha = -\pi/2$) dans le diagramme d'équilibre est appelé point *de bifurcation*. On voit que cette bifurcation d'équilibre s'accompagne d'une perte de stabilité de la branche fondamentale. Ce type de diagramme d'équilibre avec bifurcation et échange de stabilité est appelé bifurcation supercritique. Nous serons amenés à en voir d'autres du même type sur des exemples différents comme le flambement d'une poutre, mais aussi d'autres de types différents.

Sensibilité aux imperfections. Le système que nous venons d'étudier était "parfait" au sens où la tige était parfaitement droite et l'axe de rotation parfaitement vertical. La conséquence est que le problème présentait une symétrie par rapport à l'axe de rotation $x_1 = 0$. Du fait de cette symétrie, $\alpha = \pm \pi/2$ étaient toujours positions d'équilibre. On peut se demander ce que deviennent les résultats précédents et en particulier les diagrammes d'équilibre si l'on introduit des imperfections, en considérant par exemple une tige non droite ou un axe de rotation non vertical. Pour alléger au maximum les calculs, nous nous limiterons au cas où l'axe de rotation n'est pas parfaitement vertical. En prenant toujours **Oe**₂ comme axe de rotation, cela revient à supposer que le vecteur pesanteur **g** s'écrit

$$\mathbf{g} = g(\sin \alpha_0 \mathbf{e}_1 - \cos \alpha_0 \mathbf{e}_2), \quad g > 0,$$

où α_0 est un angle donné dans l'intervalle $[-\pi, \pi)$. Le cas $\alpha_0 = 0$ correspondant à la situation étudiée précédemment (dite sans imperfection), nous nous intéresserons surtout aux valeurs de α_0 proches de 0, même si l'analyse peut être faite pour toutes les valeurs. Le moment en **O** de la force centrifuge et de la pesanteur devient maintenant

$$\mathcal{M}(\alpha) = \int_0^{\ell_{\mathsf{R}}} S(\cos\alpha \mathbf{e}_1 + \sin\alpha \mathbf{e}_2) \wedge \big(\varrho_{\mathsf{R}}(g\sin\alpha_0 + \Omega^2 S\cos\alpha)\mathbf{e}_1 - \varrho_{\mathsf{R}}g\cos\alpha_0\mathbf{e}_2)dS$$
$$= -\frac{1}{2} \varrho_{\mathsf{R}}g\ell_{\mathsf{R}}^2\big(\cos(\alpha - \alpha_0) + \lambda\sin\alpha\cos\alpha\big),$$

la définition de λ demeurant inchangée.

Positions d'équilibre et leur stabilité en présence d'imperfection. Les positions d'équilibre sont les α qui vérifient

$$\cos(\alpha - \alpha_0) + \lambda \sin \alpha \cos \alpha = 0,$$

et, parmi elles, celles qui sont stables sont celles qui vérifient

$$\sin(\alpha - \alpha_0) < \lambda \cos 2\alpha.$$

Considérons une valeur de $\alpha_0 \in (0, \pi/2)$, les autres cas étant laissés à titre d'exercice. On raisonne graphiquement en s'appuyant sur le graphe ci-contre donnant λ en fonction de α . Pour λ assez faible, il existe deux solutions, une instable, l'autre stable. A partir d'une valeur critique λ_l , plus grande que 1 et qui dépend de l'imperfection α_0 , deux nouvelles solutions apparaissent, l'une stable, l'autre instable. En terme de branches d'équilibre, le principal changement est qu'il n'y a plus de point de bifurcation. Les deux branches stables ne sont plus connectées. Tout se passe comme si l'on regroupait la partie stable de la branche fondamentale du système parfait avec sa branche bifurquée (stable) se trouvant du côté de l'imperfection (partie supérieure à $-\pi/2$ puisque $\alpha_0 > 0$). Du fait de l'imperfection, *i.e.* de l'inclinaison de la verticale par rapport à l'axe de rotation, la tige part de la position d'équilibre $-\pi/2 + \alpha_0$ quand $\lambda = 0$. Puis, quand on augmente progressivement λ , l'angle de la tige augmente progressivement pour tendre vers l'horizontale quand λ tend vers l'infini. Quand l'imperfection est faible, il y a une inflexion de la courbe au voisinage de $\lambda = 1$, pas de bifurcation mais une variation "rapide" de α . Plus l'imperfection est forte et moins l'inflexion est marquée. Le système ne pourra pas passer sur l'autre branche stable sans qu'on l'aide à y aller. Par contre, une fois qu'il sera sur cette $-\pi/2$ deuxième branche stable, il pourra y rester et ne repassera sur

la branche fondamentale que si on diminue λ en deçà du point limite λ_l . Ce passage se fera avec un saut de α .

Branche principale pour différents angles d'imperfection.

Exercice 4.1. Reprendre le problème de l'équilibre de la tige fixée-libre sous pesanteur et force centrifuge, en considérant toutes les inclinaisons possibles de la pesanteur. Que se passe-t-il en particulier quand $= \pm g \mathbf{e}_1$, i.e. quand la pesanteur est orthogonale à l'axe de rotation?

4.2.2 Anneau intact ou cassé soumis à des forces ponctuelles

Considérons deux anneaux rigides de rayon R qui se distinguent par le fait que l'un des deux est "cassé" en un point. Moyennant un choix convenable de l'origine de l'abscisse curviligne et du repère, on peut prendre pour configuration de référence de l'anneau intact le cercle paramétré par $S \in [0, 2\pi R)$ et défini par

$$\mathbf{x}_{\mathsf{R}}(S) = R\cos\left(\frac{S}{R}\right)\mathbf{e}_1 + R\sin\left(\frac{S}{R}\right)\mathbf{e}_2,$$

alors que la configuration de référence de l'anneau cassé est ce même cercle privé du point Re_1 et donc pour lequel $S \in (0, 2\pi R)$. Ces deux anneaux sont soumis au même chargement correspondant à deux forces concentrées, l'une $\mathcal{F}\mathbf{e}_2$ appliquée en $S_1 = \pi R/2$, l'autre $-\mathcal{F}\mathbf{e}_2$ appliquée en $S_2 = 3\pi R/2$. Les extrémités S = 0 et $S = 2\pi R$ de l'anneau cassé sont libres.

FIGURE 4.1 – L'anneau intact et l'anneau cassé dans leur configuration de référence avec leur chargement.

Configurations d'équilibre et leur stabilité

Les anneaux étant rigides, les configurations d'équilibre ne peuvent différer de la configuration de référence que par une translation et une rotation. On peut donc les chercher sous la forme

$$\mathbf{x}(S) = \mathbf{x}_0 + R\cos\left(\frac{S}{R} + \omega\right)\mathbf{e}_1 + R\sin\left(\frac{S}{R} + \omega\right)\mathbf{e}_2,$$

où \mathbf{x}_0 et ω sont le vecteur translation et la rotation à déterminer. Comme aucune condition à la limite cinématique n'est imposée, seules les équations d'équilibre peuvent permettre de fixer \mathbf{x}_0 et ω . Ecrivons

les équations d'équilibre global qui sont les mêmes que l'anneau soit intact ou cassé. La résultante des forces est automatiquement nulle. Le moment résultant en un point quelconque du plan des deux forces ponctuelles appliquées dépend de ω et est donné par

$$\mathcal{M}(\omega) = \left(\mathbf{x}\left(\frac{\pi}{2}R\right) - \mathbf{x}\left(\frac{3\pi}{2}R\right)\right) \wedge \mathcal{F}\mathbf{e}_2 = -2\mathcal{F}R\sin\omega.$$

Les positions d'équilibre sont celles pour lesquelles $\mathcal{M}(\omega) = 0$ et donc celles correspondant à $\omega = 0$ ou $\omega = \pi$ quand $\mathcal{F} \neq 0$, n'importe quel ω quand $\mathcal{F} = 0$, la translation \mathbf{x}_0 étant dans tous les cas arbitraire. Pour déterminer leur stabilité, on peut raisonner comme dans l'exemple précédent en modifiant légèrement la position et en regardant si les efforts extérieurs ont tendance à ramener le système vers la configuration d'équilibre. Une modification $\delta \mathbf{x}_0$ de \mathbf{x}_0 est sans effet, l'équilibre est indifférent vis à vis de la translation. Si l'on modifie la rotation de $\delta\omega$, le moment résultant devient $\delta \mathcal{M} \approx \mathcal{M}'(\omega) \delta \omega = -2\mathcal{F}R \cos \omega \delta \omega$. L'équilibre est indifférent quand $\mathcal{F} = 0$. Quand $\mathcal{F} \neq 0$, si l'on veut que $\delta \mathcal{M}$ ne soit pas de même signe que $\delta \omega$, il faut que $\mathcal{F} \cos \omega > 0$. Par conséquent les configurations d'équilibre stables sont celles où l'on exerce une traction tendant à ouvrir l'anneau et les configurations d'équilibre instables sont celles où l'on exerce une pression tendant à fermer l'anneau. Si l'on raisonne en terme de branches d'équilibre dans un diagramme (\mathcal{F}, ω) , on voit qu'il y a trois branches : la première correspondant à ω quelconque quand $\mathcal{F} = 0$ (les équilibres associés peuvent être considérés comme stables), la deuxième correspondant à $\omega = 0$ qui donne un équilibre stable pour les $\mathcal{F} > 0$ et instable pour les $\mathcal{F} < 0$, la troisième branche correspondant à $\omega = \pi$ qui donne un équilibre stable pour les $\mathcal{F} < 0$ et instable pour les $\mathcal{F} > 0$. On est ici dans un cas particulier de bifurcation d'équilibre avec échange de stabilité quand \mathcal{F} change de signe.

FIGURE 4.2 – Deux configurations d'équilibre de l'anneau pour une même valeur des forces appliquées (celle correspondant à $\omega = 0$ est stable, celle à $\omega = \pi$ est instable) et le diagramme d'équilibre dans le plan (\mathcal{F}, ω) .

Il reste à déterminer les efforts intérieurs, ce qui nécessite de distinguer les deux cas. On se propose de les calculer pour une position d'équilibre stable où $\mathcal{F} > 0$ et donc $\omega = 0$. Leur répartition lorsque $\mathcal{F} < 0$ et $\omega = \pi$ s'en déduit par symétrie.

Efforts intérieurs dans l'anneau cassé

Comme il n'y a pas de forces linéiques, la répartition de la force intérieure $S \mapsto \mathbf{R}(S)$ est constante par morceaux. Les constantes sont obtenues en utilisant les conditions aux limites et les conditions de saut aux points où sont exercées les forces ponctuelles :

$$\mathbf{R}(0) = \mathbf{0}, \quad [\![\mathbf{R}]\!] \left(\frac{\pi}{2}R\right) = -\mathcal{F}\mathbf{e}_2, \quad [\![\mathbf{R}]\!] \left(\frac{3\pi}{2}R\right) = \mathcal{F}\mathbf{e}_2, \quad \mathbf{R}(2\pi R) = \mathbf{0}.$$

On déduit immédiatement

$$\mathbf{R}(S) = \begin{cases} \mathbf{0} & \text{dans } (0, \frac{\pi}{2}R] \cup (\frac{3\pi}{2}R, 2\pi R) \\ -\mathcal{F}\mathbf{e}_2 & \text{dans } (\frac{\pi}{2}R, \frac{3\pi}{2}R] \end{cases}$$

Comme $\mathbf{t}(S) = -\sin(S/R)\mathbf{e}_1 + \cos(S/R)\mathbf{e}_2$ et $\mathbf{n}(S) = -\cos(S/R)\mathbf{e}_1 - \sin(S/R)\mathbf{e}_2$, on en déduit la répartition de l'effort normal et de l'effort tranchant

$$N(S) = \begin{cases} 0 & \text{et} \quad T(S) = \begin{cases} 0 & \text{dans} \quad \left\{ (0, \frac{\pi}{2}R] \cup (\frac{3\pi}{2}R, 2\pi R) \\ (\frac{\pi}{2}R, \frac{3\pi}{2}R] \end{cases} \right.$$

On notera que l'effort normal est continu partout, seul l'effort tranchant est discontinu aux points où sont exercées les forces. En intégrant l'équation d'équilibre des moments M'(S) + T(S) = 0 qui est valable dans tout l'intervalle $(0, 2\pi R)$ puisqu'il n'y a pas de couples concentrés et en tenant compte des conditions aux limites $M(0) = M(2\pi R) = 0^5$, on obtient la répartition du moment fléchissant :

$$M(S) = \begin{cases} 0 & \text{dans } (0, \frac{\pi}{2}R] \cup (\frac{3\pi}{2}R, 2\pi R) \\ \mathcal{F}R\cos(S/R) & \text{dans } (\frac{\pi}{2}R, \frac{3\pi}{2}R] \end{cases}$$

Efforts intérieurs dans l'anneau intact

La seule chose qui diffère dans l'anneau intact est l'absence de conditions aux limites puisqu'il n'y a plus d'extrémité. La force intérieure est toujours constante par morceaux et doit satisfaire les conditions de saut :

$$\llbracket \mathbf{R}
rbracket \left(rac{\pi}{2} R
ight) = -\mathcal{F} \mathbf{e}_2, \quad \llbracket \mathbf{R}
rbracket \left(rac{3\pi}{2} R
ight) = \mathcal{F} \mathbf{e}_2.$$

L'absence de conditions aux limites ne permet pas de déterminer $\mathbf{R}(S)$ exactement mais uniquement à un vecteur arbitraire \mathbf{R}_0 près :

$$\mathbf{R}(S) = \begin{cases} \mathbf{R}_0 & \text{dans } [0, \frac{\pi}{2}R] \cup (\frac{3\pi}{2}R, 2\pi R) \\ \mathbf{R}_0 - \mathcal{F}\mathbf{e}_2 & \text{dans } (\frac{\pi}{2}R, \frac{3\pi}{2}R] \end{cases}$$

En projetant sur la tangente et la normale, on obtient la répartition de l'effort normal et de l'effort tranchant à deux constantes arbitraires près :

$$N(S) = \begin{cases} T_0 \sin(S/R) + N_0 \cos(S/R) & \text{dans} \quad [0, \frac{\pi}{2}R] \cup (\frac{3\pi}{2}R, 2\pi R) \\ T_0 \sin(S/R) - (\mathcal{F} - N_0) \cos(S/R) & \text{dans} \quad (\frac{\pi}{2}R, \frac{3\pi}{2}R] \end{cases}$$

^{5.} On notera que l'on n'a pas besoin d'utiliser les conditions à la limite $\mathbf{R}(2\pi R) = \mathbf{0}$ et $M(2\pi R) = 0$ pour obtenir la répartition exacte des efforts intérieurs. Les conditions en S = 0 suffisent. Celles en $S = 2\pi R$ sont alors automatiquement vérifiées. On en a toutefois tenu compte pour obtenir la configuration d'équilibre.

 et

$$T(S) = \begin{cases} T_0 \cos(S/R) - N_0 \sin(S/R) & \text{dans} \quad [0, \frac{\pi}{2}R] \cup (\frac{3\pi}{2}R, 2\pi R) \\ T_0 \cos(S/R) + (\mathcal{F} - N_0) \sin(S/R) & \text{dans} \quad (\frac{\pi}{2}R, \frac{3\pi}{2}R] \end{cases}$$

 N_0 et T_0 s'interprétant comme l'effort normal et l'effort tranchant en S = 0 qui ne sont donc pas déterminés. On notera que les efforts intérieurs sont bien périodiques et qu'il n'y a pas de discontinuité en 0, on a

$$\mathbf{R}(0) = \mathbf{R}(2\pi R) = \mathbf{R}_0, \quad N(0) = N(2\pi R) = N_0, \quad T(0) = T(2\pi R) = T_0.$$

En intégrant l'équation d'équilibre des moments M'(S) + T(S) = 0 apparaît une troisième constante arbitraire du fait de l'absence de conditions aux limites

$$M(S) = \begin{cases} -T_0 R \sin(S/R) - N_0 R \cos(S/R) + M_0 + N_0 R & \text{dans} \left[0, \frac{\pi}{2}R\right] \cup \left(\frac{3\pi}{2}R, 2\pi R\right) \\ -T_0 R \sin(S/R) + (\mathcal{F} - N_0) R \cos(S/R) + M_0 + N_0 R & \text{dans} \left(\frac{\pi}{2}R, \frac{3\pi}{2}R\right] \end{cases}$$

 M_0 s'interprétant comme le moment fléchissant arbitraire en 0. Le moment fléchissant est bien périodique sans discontinuité en 0, $M(0) = M(2\pi R) = M_0$. On ne peut plus rien tirer du problème aux limites qui laisse donc les trois constantes N_0 , T_0 et M_0 arbitraires. On notera que la répartition des efforts intérieurs obtenue pour l'anneau cassé est une des répartitions possibles dans l'anneau intact, elle correspond à $N_0 = T_0 = 0$ et $M_0 = 0$.

FIGURE 4.3 – Répartition des efforts intérieurs dans les anneaux cassé et intact : pour l'anneau cassé est représentée l'unique répartition possible dans un équilibre stable; pour l'anneau intact est représentée la répartition associée à $N_0 = \mathcal{F}/2$, $T_0 = 0$ et $M_0 = 0$ parmi l'infinité de répartitions possibles dans un équilibre stable.

On pourrait être tenté de lever l'indétermination en invoquant des conditions de symétrie. Pour que l'effort normal et le moment fléchissant soient symétriques et que l'effort tranchant soit antisymétrique par rapport à l'axe passant par les points d'applications des forces, il faut et il suffit que $N_0 = \mathcal{F}/2$ et $T_0 = 0$, M_0 restant arbitraire. Par conséquent, d'une part l'argument de symétrie ne suffit pas à fixer les constantes, mais surtout il ne peut pas être érigé en principe. En effet, il s'avère erroné dans de nombreuses situations pour des problèmes non linéaires. Le cas de la tige soumise à la pesanteur et à la force centrifuge en est une illustration : la configuration d'équilibre symétrique correspondant à $\alpha = 0$ cesse d'être stable pour une valeur critique de la vitesse de rotation pour laisser place à une solution non symétrique. La seule façon "raisonnable" de lever l'indétermination est d'abandonner l'hypothèse de rigidité pour introduire une déformabilité de l'anneau. Nous verrons dans la section dédiée aux arcs élastiques que la répartition des efforts intérieurs est alors parfaitement déterminée pour chaque configuration d'équilibre possible (le fait qu'il existe plusieurs positions d'équilibre est "normal" dans les problèmes de statique non linéaires et il serait impropre d'essayer de l'éviter).

On peut résumer les résultats obtenus dans les deux cas par

P-4.2 (Les solutions des problèmes aux limites pour les anneaux rigides). Pour l'anneau rigide cassé, le problème aux limites ne définit la position d'équilibre qu'à une translation près mais par contre permet de déterminer exactement la répartition des efforts intérieurs. Pour l'anneau rigide intact, le problème aux limites ne définit la position d'équilibre qu'à une translation près mais ne définit aussi la répartition des efforts intérieurs qu'à un vecteur force et un moment près. L'indétermination de cette répartition ne peut être levée qu'en abandonnant l'hypothèse de rigidité.

4.3 Statique des fils

4.3.1 Le problème aux limites et la condition de stabilité

Cette section est dédiée à l'étude de la statique des fils inextensibles ou extensibles. Par définition, les fils sont des objets parfaitement flexibles qui ne supportent aucun moment fléchissant. Nous supposerons en outre pour que l'équilibre soit possible qu'ils ne sont soumis ni à des densités linéiques de couples, ni à des couples concentrés. On déduit alors de l'équation locale d'équilibre des moments que l'effort tranchant est nécessairement nul. Par conséquent le seul effort intérieur qui règne dans un fil est l'effort normal. Résumons ces premières propriétés qui serviront de base à tous les problèmes de statique de fils que nous allons traiter.

P-4.3 (Propriétés générales des fils en équilibre). Par définition d'un fil, le moment fléchissant est partout nul :

$$M(S) = 0, \quad \forall S \in \mathbb{C}_R$$

Si l'on suppose que l'extérieur n'exerce pas de densité linéique de couples $m(S) = 0, \forall S \in \mathbb{C}_R$ et pas de moments concentrés, alors l'effort tranchant est nécessairement nul partout pour que l'équation d'équilibre des moments soit satisfaite : $T(S) = 0, \forall S \in \mathbb{C}_R$. Le seul effort intérieur est l'effort normal

$$\mathbf{R}(S) = N(S)\mathbf{t}(S), \quad \forall S \in \mathbb{C}_R$$

La conséquence est qu'un fil doit adapter sa forme d'équilibre de façon à ce qu'il ne soit soumis qu'à un effort normal. On dit qu'**un fil résiste par sa forme**. L'autre particularité des fils est qu'on ne peut pas envisager n'importe quelle condition à la limite. En effet, comme le moment fléchissant est nul et donc donné, d'après la règle heuristique on ne peut imposer l'orientation α d'un fil aux extrémités. Physiquement, cela tient au fait qu'un fil ne supportant pas de moment, on ne peut pas contrôler son orientation. On pourra le vérifier sur les exemples que nous traiterons. Il faut donc abandonner les conditions aux limites d'encastrement et n'envisager que des conditions de fixation, d'appui simple ou d'extrémité chargée. Dans le cas d'extrémité chargée, il ne faut évidemment considérer que des forces imposées, le moment étant nécessairement nul. Pour ce qui est du comportement, on n'étudiera que des fils inextensibles ou des fils élastiquement extensibles. Dans le cas inextensible, la déformation d'extension ε est identiquement nulle, chaque morceau de fil ne peut changer de longueur, l'abscisse curviligne est invariable, l'abscisse curviligne *s* de la configuration d'équilibre coïncide avec l'abscisse curviligne *S* de la configuration de référence. Dans le cas élastiquement extensible, l'effort normal est fonction de la déformation d'extension, fonction qui dérive du potentiel élastique, $N = N_{ex}(\varepsilon) = W'_{ex}(\varepsilon)$ et nous supposerons toujours que la configuration de référence est naturelle, *i.e.* $N_{ex}(0) = W'_{ex}(0) = 0$. D'autres conditions apparaîtront lors de la résolution des problèmes aux limites, elles seront introduites le moment venu. Finalement, la formulation d'un problème aux limites pour un fil est résumée dans le tableau ci-dessous.

Les inconnues	$S \mapsto \mathbf{x}(S), S \mapsto N(S)$
Les relations géométriques	Les équations (le prime indique la dérivée par rapport à S) $\begin{cases} \mathbf{t}(S) = \frac{\mathbf{x}'(S)}{\ \mathbf{x}'(S)\ }, & \mathbf{n}(S) = \mathbf{e}_3 \wedge \mathbf{t}(S), \\ \varepsilon(S) = \ \mathbf{x}'(S)\ - 1 & \forall S \in \mathbb{C}_R \end{cases}$
Les équations d'équilibre (la densité linéique f _R est par unité de longueur de référence)	$\begin{cases} (N\mathbf{t})'(S) + \mathbf{f}_{R}(S) = 0 \qquad \forall S \in \mathbb{C}_{R} \setminus \mathbb{P}_{R} \\ \\ \llbracket N \mathbf{t} \rrbracket(S_i) + \mathcal{F}_{S_i} = 0 \qquad \forall S_i \in \mathbb{P}_{R} \end{cases}$
Les conditions aux limites (à n'écrire que quand le milieu a des extrémités)	$N \mathbf{t} \longleftrightarrow \mathbf{x}$ en $S = 0$ et $S = \ell_{R}$
Les relations constitutives	$\varepsilon(S) = 0 \text{ou} N(S) = \mathtt{N}_{\mathtt{ex}}(S; \varepsilon(S)) \qquad \forall S \in \mathbb{C}_{\mathtt{R}}$

TABLE 4.2 – Formulation d'un problème aux limites pour un fil où tous les champs sont paramétrés par l'abscisse curviligne de référence S.

(Régularité des solutions). Comme le moment fléchissant est nul et que l'on ne contrôle pas l'orientation, les solutions du problème aux limites ne sont pas forcément régulières. Il faut chercher *a* priori une configuration $S \mapsto \mathbf{x}(S)$ qui soit continue, mais seulement différentiable par morceaux. Le vecteur tangent peut être discontinu aux points où sont appliquées des forces ponctuelles.

Condition de stabilité

Nous allons commencer par voir sur un exemple très simple qu'il faut rajouter une condition supplémentaire qui s'avèrera être une condition de stabilité sans quoi les problèmes d'équilibre de fil admettent en général une infinité de solutions.

Considérons un fil inextensible ⁶ de longueur ℓ_{R} fixé en son extrémité S = 0 au point **O** et soumis à son extrémité $S = \ell_{\mathsf{R}}$ à la force $\mathcal{F} = \mathcal{F}\mathbf{e}_1$ avec $\mathcal{F} > 0$. Les forces linéiques sont nulles. Le problème aux limites s'écrit

$$\begin{cases} \left\| \frac{d\mathbf{x}}{dS}(S) \right\| = 1 \quad \text{et} \quad \frac{d}{dS} \left(N \frac{d\mathbf{x}}{dS} \right)(S) = \mathbf{0}, \quad \forall S \in (0, \ell_{\mathsf{R}}) \\ \mathbf{x}(0) = \mathbf{0}, \quad N(\ell_{\mathsf{R}}) \frac{d\mathbf{x}}{dS}(\ell_{\mathsf{R}}) = \mathcal{F}\mathbf{e}_{1}. \end{cases}$$

L'équation d'équilibre et la condition à la limite en ℓ_R donnent

$$N(S)\frac{d\mathbf{x}}{dS}(S) = \mathcal{F}\mathbf{e}_1, \quad \forall S \in (0, \ell_{\mathsf{R}}).$$

Du fait de l'inextensibilité, on a $\|\mathbf{x}'(S)\| = 1$ et donc $|N(S)| = \mathcal{F}$ en tout point. On en déduit $\mathbf{x}'(S) = \operatorname{sign}(N(S))\mathbf{e}_1$, mais il n'est pas possible de déterminer le signe. En effet on peut très bien choisir $N(S) = +\mathcal{F}$ sur une partie arbitraire \mathbb{I}^+ de $(0, \ell_R)$ et $N(S) = -\mathcal{F}$ sur la partie complémentaire \mathbb{I}^- de $(0, \ell_R)$. On aura alors $\mathbf{x}'(S) = +\mathbf{e}_1$ sur \mathbb{I}^+ et $\mathbf{x}'(S) = -\mathbf{e}_1$ sur \mathbb{I}^- , le fil changeant d'orientation à chaque changement de signe. En intégrant on obtiendra la position d'équilibre

FIGURE 4.4 – Configuration d'équilibre solution du problème aux limites avec des zones comprimées (en rouge).

Toutes ces solutions sont admissibles au sens où elles vérifient toutes les équations du problème aux limites. Toutefois le fil se trouve en compression dans la partie \mathbb{I}^- quand elle existe et sur la base de ce que l'on peut observer on doit écarter les situations où le fil est en compression. Nous verrons au chapitre 5 que ceci est une **condition de stabilité**. Adoptons-la dès maintenant.

D-4.7 (Condition de stabilité pour un fil). Pour des raisons de stabilité qui seront démontrées au chapitre 5, un fil ne peut pas supporter des compressions. On ne retiendra donc parmi les solutions qui vérifient les problèmes aux limites que celles qui vérifient la condition supplémentaire

$$N(S) \ge 0 \quad \forall S \in \mathbb{C}_{R}$$
 (condition de stabilité)

^{6.} L'exemple est traité en supposant le fil inextensible pour simplifier la présentation, mais on obtiendrait le même type de résultats et une infinité de positions d'équilibre possibles si on considérait un fil extensible. La condition de stabilité est la même.

Dans le problème précédent, si l'on rejette les solutions où de telles zones de compression existent, alors il ne reste plus qu'une seule solution :

$$\mathbf{x}(S) = S\mathbf{e}_1, \qquad N(S) = \mathcal{F}, \quad \forall S \in (0, \ell_{\mathsf{R}}).$$

C'est évidemment celle que l'on observe dans une telle situation.

4.3.2 Quelques propriétés générales des fils à l'équilibre

En l'absence de forces extérieures sur une partie du fil

En utilisant l'équation locale d'équilibre, dans les parties connexes (autrement dit, les intervalles) I du fil qui ne sont soumises à aucun effort extérieur ($\mathbf{f}_{R} = \mathbf{0}$ dans I et $\mathbb{I} \cap \mathbb{P} = \emptyset$), on obtient

$$N(S)\mathbf{t}(S) = \mathbf{R}_0, \quad \forall S \in \mathbb{I},$$

la force intérieure est constante. La valeur de cette constante dépend *a priori* du problème aux limites. Mais distinguons deux possibilités suivant que la constante est nulle ou non.

- 1. Si $\mathbf{R}_0 = \mathbf{0}$, alors N(S) = 0 et l'orientation du fil $\mathbf{t}(S)$ est arbitraire dans \mathbb{I} ;
- 2. Si $\mathbf{R}_0 \neq \mathbf{0}$, alors en ne retenant que les solutions où le fil est tendu (condition de stabilité), on a

$$N(S) = \|\mathbf{R}_0\|$$
 et $\mathbf{t}(S) = \frac{\mathbf{R}_0}{\|\mathbf{R}_0\|}$ $\forall S \in \mathbb{I}.$

L'orientation du fil étant constante, la configuration d'équilibre est *rectiligne* dans cette partie non soumise à des forces extérieures. De plus, la tension y est également constante. On ne peut pas en dire plus à ce stade, les valeurs de ces constantes dépendront du problème aux limites et des autres parties du fil.

P-4.4 (Propriété des parties de fil libres). Un intervalle $\mathbb{I} = (S_0, S_1)$ d'un fil, qui n'est soumis à aucune force extérieure et qui est dans un état d'équilibre stable, est nécessairement dans l'une des deux situations suivantes :

- 1. soit sous tension nulle, auquel cas sa position d'équilibre est arbitraire;
- 2. soit sous tension positive uniforme, auquel cas sa position d'équilibre est rectiligne.

À une extrémité chargée

Supposons que l'extrémité $S = \ell_{\mathsf{R}}$ du fil soit soumise à une force \mathcal{F} non nulle. Alors la condition à la limite s'écrit $N(\ell_{\mathsf{R}})\mathbf{t}(\ell_{\mathsf{R}}) = \mathcal{F}$ et, si l'on ne retient que les situations où le fil est tendu, on obtient

$$N(\ell_{\mathsf{R}}) = \|\mathcal{F}\| \quad \text{et} \quad \mathbf{t}(\ell_{\mathsf{R}}) = \frac{\mathcal{F}}{\|\mathcal{F}\|}.$$

On voit donc que le fil va s'orienter dans le sens de la force, la tension étant égale à l'intensité de la force appliquée. Dans le cas d'une extrémité libre où la force appliquée est nulle, on obtient simplement que la tension du fil est nulle à l'extrémité, mais on n'a aucune information sur l'orientation du fil qui dépendra du problème aux limites.

On peut faire évidemment les mêmes raisonnements si l'extrémité S = 0 est chargée. Il faut simplement faire attention aux signes. En effet la condition à la limite s'écrit alors $N(0)\mathbf{t}(0) = -\mathcal{F}$ et l'on obtient

$$N(0) = \|\mathcal{F}\|$$
 et $\mathbf{t}(0) = -\frac{\mathcal{F}}{\|\mathcal{F}\|}.$

Le fil s'oriente dans la direction opposée à la force appliquée (cette différence entre les deux extrémités tient évidemment au fait que l'on a choisi un sens de parcours du fil). En résumé on a donc

P-4.5 (Propriété des extrémités chargées ou libres). Suivant que l'extrémité S = 0 ou ℓ_R est libre ou soumise à une force \mathcal{F} non nulle, la configuration d'équilibre stable du fil est telle que :

1. si $\mathcal{F} = \mathbf{0}$, alors $N(0 \text{ ou } \ell_R) = 0$ et l'orientation du fil à l'extrémité reste à déterminer;

2. si $\mathcal{F} \neq \mathbf{0}$, alors $N(0 \text{ ou } \ell_{\mathsf{R}}) = \|\mathcal{F}\|$ et l'orientation de l'extrémité est donnée par

$$\mathbf{t}(0) = -\frac{\boldsymbol{\mathcal{F}}}{\|\boldsymbol{\mathcal{F}}\|} \qquad ou \qquad \mathbf{t}(\ell_R) = \frac{\boldsymbol{\mathcal{F}}}{\|\boldsymbol{\mathcal{F}}\|}.$$

4.3.3 Le problème du fil pesant

Considérons un fil homogène de longueur naturelle ℓ_{R} et de masse linéique de référence ϱ_{R} , fixé en son extrémité S = 0 au point **O**, soumis à une force $\mathcal{F} = \mathcal{F}_1 \mathbf{e}_1 + \mathcal{F}_2 \mathbf{e}_2$ en son extrémité $S = \ell_{\mathsf{R}}$ et placé dans le champ de pesanteur uniforme $\mathbf{g} = -g\mathbf{e}_2$ avec g > 0. Nous allons chercher les configurations d'équilibre stables en commençant par le cas d'un fil inextensible.

Cas inextensible

Le problème aux limites s'écrit

$$\begin{cases} \left\| \frac{d\mathbf{x}}{dS}(S) \right\| = 1 \quad \text{et} \quad \frac{d}{dS} \left(N \frac{d\mathbf{x}}{dS} \right)(S) = \varrho_{\mathsf{R}} g \mathbf{e}_{2}, \quad \forall S \in (0, \ell_{\mathsf{R}}), \\ \mathbf{x}(0) = \mathbf{0}, \quad N(\ell_{\mathsf{R}}) \frac{d\mathbf{x}}{dS}(\ell_{\mathsf{R}}) = \mathcal{F}_{1} \mathbf{e}_{1} + \mathcal{F}_{2} \mathbf{e}_{2}. \end{cases}$$

En intégrant l'équation d'équilibre et en tenant compte de la condition à la limite en ℓ_R , on obtient

$$N(S)\mathbf{x}'(S) = \mathcal{F}_1\mathbf{e}_1 + \left(\mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S)\right)\mathbf{e}_2, \quad \forall S \in (0, \ell_{\mathsf{R}}).$$

$$(4.4)$$

Grâce à la condition d'inextensibilité et à la condition de stabilité, on en déduit la répartition de l'effort normal

$$N(S) = \sqrt{\mathcal{F}_1^2 + \left(\mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S)\right)^2}, \quad \forall S \in (0, \ell_{\mathsf{R}}).$$

$$(4.5)$$

Etudions d'abord le cas particulier $\mathcal{F}_1 = 0$. Dans ce cas $\mathbf{x}'(S)$ est colinéaire à \mathbf{e}_2 pour tout S et donc la position d'équilibre est verticale avec éventuellement des branches ascendantes et des branches descendantes suivant les valeurs de \mathcal{F}_2 . Distinguons les différents cas.

• Quand $\mathcal{F}_1 = 0$ et $\mathcal{F}_2 \geq \rho_R g \ell_R$. Dans ce cas, la force est verticale ascendante avec une intensité supérieure au poids du fil, le fil est partout tendu, *i.e.* N(S) > 0, $\forall S \in (0, \ell_R)$. En reportant (4.5) dans (4.4) on en déduit $\mathbf{x}'(S) = \mathbf{e}_2$, $\forall S \in (0, \ell_R)$. La position d'équilibre est verticale ascendante et la seule solution est

$$\mathbf{x}(S) = S\mathbf{e}_2, \quad N(S) = \mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S), \qquad \forall S \in (0, \ell_{\mathsf{R}}).$$

• Quand $\mathcal{F}_1 = 0$ et $\mathcal{F}_2 \leq 0$. Dans ce cas la force est verticale descendante, le fil est aussi partout tendu mais maintenant, comme $\mathcal{F}_2 - \varrho_R g(\ell_R - S) < 0$, (4.5) et (4.4) donnent $\mathbf{x}'(S) = -\mathbf{e}_2, \forall S \in (0, \ell_R)$. La position d'équilibre est verticale descendante et la seule solution est

$$\mathbf{x}(S) = -S\mathbf{e}_2, \quad N(S) = \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S) - \mathcal{F}_2, \qquad \forall S \in (0, \ell_{\mathsf{R}}).$$

• Quand $\mathcal{F}_1 = 0$ et $0 < \mathcal{F}_2 < \varrho_R g \ell_R$. Lorsque la force est verticale ascendante avec une intensité plus faible que le poids du fil, le point $S_1 = \ell_R - \frac{\mathcal{F}_2}{\varrho_R g}$ a une tension nulle alors que tous les autres points sont tendus. En reportant (4.5) dans (4.4) on en déduit $\mathbf{x}'(S) = -\mathbf{e}_2$ quand $S < S_1$ et $\mathbf{x}'(S) = \mathbf{e}_2$ quand $S > S_1$. La première partie du fil, jusqu'à S_1 , est verticale descendante alors que la deuxième partie du fil, au-delà de S_1 , est verticale ascendante. Finalement, l'unique solution est

$$\begin{cases} \mathbf{x}(S) = -S\mathbf{e}_2, & N(S) = \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S) - \mathcal{F}_2 & \text{si} & 0 < S \le \ell_{\mathsf{R}} - \frac{\mathcal{F}_2}{\varrho_{\mathsf{R}}g} \\ \mathbf{x}(S) = \left(S - 2\ell_{\mathsf{R}} + 2\frac{\mathcal{F}_2}{\varrho_{\mathsf{R}}g}\right)\mathbf{e}_2, & N(S) = \mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S) & \text{si} & \ell_{\mathsf{R}} - \frac{\mathcal{F}_2}{\varrho_{\mathsf{R}}g} \le S < \ell_{\mathsf{R}} \end{cases}$$

Revenons au cas général. Lorsque $\mathcal{F}_1 \neq 0$, l'effort normal ne s'annule nulle part, le fil est partout tendu et (4.4) donne

$$\mathbf{x}'(S) = \frac{\mathcal{F}_1}{\sqrt{\mathcal{F}_1^2 + \left(\mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S)\right)^2}} \mathbf{e}_1 + \frac{\mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S)}{\sqrt{\mathcal{F}_1^2 + \left(\mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S)\right)^2}} \mathbf{e}_2$$

Il "suffit" d'intégrer en tenant compte de la condition de fixation pour obtenir la position d'équilibre. Il s'avère qu'ici on sait calculer analytiquement les primitives et on obtient

$$\begin{cases} x_1(S) &= \frac{\mathcal{F}_1}{\varrho_{\mathsf{R}}g} \operatorname{argsh}\left(\frac{\mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S)}{\mathcal{F}_1}\right) - \frac{\mathcal{F}_1}{\varrho_{\mathsf{R}}g} \operatorname{argsh}\left(\frac{\mathcal{F}_2 - \varrho_{\mathsf{R}}g\ell_{\mathsf{R}}}{\mathcal{F}_1}\right) \\ x_2(S) &= \frac{\mathcal{F}_1}{\varrho_{\mathsf{R}}g} \sqrt{1 + \frac{\left(\mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S)\right)^2}{\mathcal{F}_1^2}} - \frac{\mathcal{F}_1}{\varrho_{\mathsf{R}}g} \sqrt{1 + \frac{\left(\mathcal{F}_2 - \varrho_{\mathsf{R}}g\ell_{\mathsf{R}}\right)^2}{\mathcal{F}_1^2}} \end{cases}$$

qui est l'équation paramétrée d'une chaînette.

FIGURE 4.5 – Configuration d'équilibre du fil pesant inextensible pour différentes valeurs de la force horizontale \mathcal{F}_1 (comparée au poids $\mathcal{P} = \rho_R g \ell_R$ du fil), la force verticale étant égale à la moitié du poids : $\mathcal{F}_2 = \mathcal{P}/2$. Chaque courbe est une chainette.

Si l'on souhaite fixer l'extrémité $S = \ell_{\mathsf{R}}$ au point $\ell \mathbf{e}_1$ tel que $0 < \ell < \ell_{\mathsf{R}}$, il faut exercer une force \mathcal{F} dont la composante verticale \mathcal{F}_2 est $\mathcal{P}/2$ (la moitié du poids du fil). La relation entre la composante horizontale \mathcal{F}_1 de la force et la position horizontale $\ell := x_1(\ell_{\mathsf{R}})$ est donnée par

$$\frac{\ell}{\ell_{\mathsf{R}}} = \frac{2\mathcal{F}_1}{\mathcal{P}} \operatorname{argsh}\left(\frac{\mathcal{P}}{2\mathcal{F}_1}\right).$$

La position ℓ est une fonction croissante de \mathcal{F}_1 , croissant de 0 à ℓ_{R} quand \mathcal{F}_1 croît de 0 à l'infini. On ne pourra donc jamais tendre complètement le fil pour le mettre dans une position d'équilibre horizontale. Il faudrait une force infinie, le fil rompra avant. Un développement limité de argsh x au voisinage de x = 0 montre que $1 - \ell/\ell_{\mathsf{R}}$ tend vers 0 comme $\frac{\mathcal{P}^2}{24\mathcal{F}_1^2}$ quand \mathcal{F}_1 tend vers l'infini. Cette impossibilité à tendre complètement le câble peut se voir aussi en calculant la *flèche* au milieu du fil qui est donnée par

$$\mathsf{w} := -x_2(\ell_{\mathsf{R}}/2) = \left(\sqrt{\frac{\mathcal{F}_1^2}{\mathcal{P}^2} + \frac{1}{4}} - \frac{\mathcal{F}_1}{\mathcal{P}}\right)\ell_{\mathsf{R}}.$$

C'est une fonction décroissante de \mathcal{F}_1 , décroissant de $\ell_R/2$ à 0 quand \mathcal{F}_1 croît de 0 à l'infini. On peut voir que w/ℓ_R tend vers 0 comme $\frac{\mathcal{P}}{8\mathcal{F}_1}$ quand \mathcal{F}_1 tend vers l'infini.

FIGURE 4.6 – Position horizontale ℓ de l'extrémité et flèche au centre w en fonction du rapport entre la force horizontale \mathcal{F}_1 et le poids \mathcal{P} du fil.

Cas extensible

Pour un fil extensible, le problème aux limites devient

$$\begin{aligned} \mathbf{t}(S) &= \frac{\mathbf{x}'(S)}{\|\mathbf{x}'(S)\|}, \quad \|\mathbf{x}'(S)\| = 1 + \varepsilon(S), \quad \forall S \in (0, \ell_{\mathsf{R}}) \\ \frac{d(N\mathbf{t})}{dS}(S) &= \varrho_{\mathsf{R}} g \mathbf{e}_{2}, \quad N(S) = \mathbb{N}_{\mathsf{ex}}(\varepsilon(S)), \quad \forall S \in (0, \ell_{\mathsf{R}}) \\ \mathbf{x}(0) &= \mathbf{0}, \quad N(\ell_{\mathsf{R}}) \mathbf{t}(\ell_{\mathsf{R}}) = \mathcal{F}_{1} \mathbf{e}_{1} + \mathcal{F}_{2} \mathbf{e}_{2}. \end{aligned}$$

Nous écarterons les cas particuliers et nous limiterons au cas où $\mathcal{F}_1 > 0$ et $\mathcal{F}_2 = \mathcal{P}/2$. L'équation d'équilibre et la condition à la limite en ℓ_R donnent

$$N(S)\mathbf{t}(S) = \mathcal{F}_1\mathbf{e}_1 + \varrho_{\mathsf{R}}g\left(S - \frac{\ell_{\mathsf{R}}}{2}\right)\mathbf{e}_2,$$

dont on déduit

$$\begin{cases} N(S) = \sqrt{\mathcal{F}_1^2 + \varrho_{R}^2 g^2 \left(S - \frac{\ell_{R}}{2}\right)^2} = \mathbb{N}_{ex}(\varepsilon(S)), \\ \mathbf{x}'(S) = \frac{1 + \varepsilon(S)}{\sqrt{\mathcal{F}_1^2 + \varrho_{R}^2 g^2 \left(S - \frac{\ell_{R}}{2}\right)^2}} \left(\mathcal{F}_1 \mathbf{e}_1 + \varrho_{R} g \left(S - \frac{\ell_{R}}{2}\right) \mathbf{e}_2\right). \end{cases}$$

La première équation fournit non seulement la répartition de l'effort normal mais aussi la répartition de la déformation d'extension (sous la condition que la loi de comportement soit inversible). En reportant ensuite l'expression de ε dans la deuxième équation, on obtient l'expression de $\mathbf{x}'(S)$ qu'il suffit d'intégrer en tenant compte de la condition à la limite en 0. Explicitons les calculs dans le cas d'une loi constitutive linéaire

$$\mathbb{N}_{ex}(\varepsilon) = \mathsf{E}\mathsf{A}\varepsilon.$$

L'inversion est alors évidente et on obtient $\varepsilon(S) = N(S)/\mathsf{EA}$. En reportant dans l'expression de $\mathbf{x}'(S)$, il vient

$$\mathbf{x}'(S) = \frac{\mathcal{F}_{1}\mathbf{e}_{1} + \varrho_{\mathsf{R}}g\left(S - \frac{\ell_{\mathsf{R}}}{2}\right)\mathbf{e}_{2}}{\sqrt{\mathcal{F}_{1}^{2} + \varrho_{\mathsf{R}}^{2}g^{2}\left(S - \frac{\ell_{\mathsf{R}}}{2}\right)^{2}}} + \frac{\mathcal{F}_{1}}{\mathsf{EA}}\mathbf{e}_{1} + \frac{\varrho_{\mathsf{R}}g}{\mathsf{EA}}\left(S - \frac{\ell_{\mathsf{R}}}{2}\right)\mathbf{e}_{2}$$

où on voit que le premier terme du membre de droite (encadré en vert) correspond au cas inextensible, l'extensibilité n'intervenant que dans les deux autres termes (encadrés en rouge). Autrement dit, si on note $S \mapsto \boldsymbol{\xi}(S)$ l'écart entre la position d'équilibre du fil extensible et celle du fil inextensible (de même longueur naturelle et de même masse linéique naturelle), on obtient en intégrant et en tenant compte que $\boldsymbol{\xi}(0) = \mathbf{0}$ puisque les deux fils sont fixés en \mathbf{O} :

$$\boldsymbol{\xi}(S) = \frac{\mathcal{F}_1}{\mathsf{E}\mathsf{A}} S \mathbf{e}_1 - \frac{\varrho_{\mathsf{R}}g}{2\mathsf{E}\mathsf{A}} S(\ell_{\mathsf{R}} - S) \mathbf{e}_2.$$

On voit que $\xi_2(\ell_R) = 0$ et donc que les deux extrémités du fil extensible sont, comme pour le fil inextensible, sur l'axe horizontal $x_2 = 0$ quand \mathcal{F}_2 est égale à la moitié du poids du fil (c'est une propriété de symétrie). La position horizontale de l'extrémité ℓ_R et la flèche au milieu du fil s'écrivent maintenant

$$\frac{\ell}{\ell_{\mathsf{R}}} := \frac{x_1(\ell_{\mathsf{R}})}{\ell_{\mathsf{R}}} = \left[\frac{2\mathcal{F}_1}{\mathcal{P}}\operatorname{argsh}\left(\frac{\mathcal{P}}{2\mathcal{F}_1}\right)\right] + \frac{\mathcal{F}_1}{\mathsf{E}\mathsf{A}}$$
(4.6)

 et

$$\frac{\mathsf{w}}{\ell_{\mathsf{R}}} := -\frac{x_2(\ell_{\mathsf{R}}/2)}{\ell_{\mathsf{R}}} = \sqrt{\frac{\mathcal{F}_1^2}{\mathcal{P}^2} + \frac{1}{4}} - \frac{\mathcal{F}_1}{\mathcal{P}} + \frac{\mathcal{P}}{\mathsf{8EA}}.$$
(4.7)

Comparaison des modèles inextensible et extensible

On voit que l'extensibilité du fil augmente le déplacement à l'extrémité et la flèche au centre, pour une même force appliquée et un même poids du fil. Ce résultat est naturel, la structure est plus souple, se déforme plus. Notons que l'augmentation de la flèche ne dépend pas de la force appliquée, mais uniquement du rapport entre le poids du fil et son module de rigidité à l'extension. Par contre, l'augmentation du déplacement horizontal de l'extrémité est proportionnel à la force appliquée. Il n'y a plus de distance limite et ℓ tend vers l'infini quand \mathcal{F}_1 tend vers l'infini. Toutefois, ce résultat théorique établi dans un cadre purement élastique doit être nuancé. Examinons quelques situations rencontrées en pratique en jouant sur la longueur du fil et le matériau constitutif.

Le fil étant homogène, la masse linéique de référence ρ_{R} du fil est reliée à la masse volumique ρ_{m} du matériau constitutif et à l'aire A de la section du fil par

$$\varrho_{\mathsf{R}} = \rho_{\mathsf{m}}\mathsf{A}$$

Introduisons la pression p :

$$p = \rho_{\mathsf{m}} g \ell_{\mathsf{R}}$$

qui représente la force par unité de surface qui est exercée par une colonne pesante de hauteur ℓ_{R} de ce matériau placée verticalement dans le champ de pesanteur d'intensité g. Introduisons enfin la contrainte de tension σ , rapport de la force appliquée \mathcal{F}_1 par l'aire de la section du fil :

$$\sigma = \frac{\mathcal{F}_1}{\mathsf{A}},$$

c'est la contrainte que subit le matériau au centre du fil où l'effort normal est \mathcal{F}_1 . Le déplacement de l'extrémité et la flèche au centre s'écrivent alors

$$\frac{\ell}{\ell_{\rm R}} = \frac{2\sigma}{p} \operatorname{argsh}\left(\frac{p}{2\sigma}\right) + \frac{\sigma}{{\rm E}}, \qquad \frac{{\rm w}}{\ell_{\rm R}} = \sqrt{\frac{\sigma^2}{p^2} + \frac{1}{4}} - \frac{\sigma}{p} + \frac{p}{8{\rm E}}$$

Ils dépendent des rapports entre les trois quantités p, σ et E qui ont toutes la dimension d'une pression (unité=Pa). La première est essentiellement liée à la géométrie (la longueur du fil), la deuxième au chargement appliqué, la troisième au matériau constitutif (son module d'Young). Envisageons différentes situations.

1. Câbles métalliques. Si l'on considère des câbles métalliques, la pression p est en pratique toujours faible par comparaison au module d'Young E. En effet, même pour un câble de 100 m de long, p ne dépasse pas 10⁷ Pa alors que le module d'Young des métaux est de l'ordre de 10¹¹ Pa. De plus, si l'on veut qu'ils restent toujours en régime élastique, il faut que le rapport σ/E ne dépasse pas la déformation de limite d'élasticité du matériau. Pour des métaux elle est de l'ordre de 10⁻³ et on peut donc négliger aussi l'augmentation de déplacement horizontal due à l'extensibilité du fil. Par conséquent, le modèle inextensible est suffisant pour rendre compte de l'équilibre d'un fil métallique pesant jusqu'à rupture. Pour une contrainte σ de l'ordre de 10⁸ Pa, le câble reste en régime élastique, le rapport σ/p est grand et le câble est pratiquement horizontal.

2. Elastiques en caoutchouc. Pour que l'augmentation du déplacement horizontal ne soit pas négligeable, il faut prendre des matériaux qui supportent des déformations d'extension σ/E de l'ordre de 1 tout en restant élastique. C'est le cas des élastiques en caoutchouc. Ces élastomères ont de plus la particularité d'avoir un module d'Young initial très faible, de l'ordre de 10^6 Pa.

(a) Pour des fils en caoutchouc de 1 m de long, p est de l'ordre de 10^4 Pa et est donc petit devant E. Par conséquent, si on le soumet à une contrainte σ de l'ordre de E, le rapport σ/p est grand, on pourra négliger la pesanteur et considérer le fil comme étant soumis seulement à une force à l'extrémité. Sa configuration d'équilibre est pratiquement rectiligne et son allongement pratiquement égal à σ/E .

(b) Pour des fils en caoutchouc de 10 m de long ou plus, p est supérieure à E/10. On ne peut plus négliger la flèche. Si l'on veut fixer les extrémités du fil en deux points distants de la longueur naturelle du fil, *i.e.* $\ell = \ell_{\rm R} = 10$ m, il faudra exercer une contrainte $\sigma = 7.10^4$ Pa, ce qui provoquera un allongement du fil de 7% et la flèche au centre sera de 1.73 m.

Le tableau ci-	-dessous donne	quelques valeur	rs numériques	qui illustrent	les remarques	précédentes po	our
un fil en caou	utchouc. On pr	end $\rho_{\rm m} = 10^3 {\rm kg}$	$g/m^3, g = 10m$	n/s^2 et $E = 1$	MPa.		

ℓ_{R}	σ	p	σ/p	p/E	σ/E	ℓ	W
(m)	(MPa)	(MPa)	(1)	(1)	(1)	(m)	(m)
1	0.016	0.01	1.6	0.01	0.016	1.0	0.0776
1	0.1	0.01	10	0.01	0.1	1.1	0.0137
1	1	0.01	100	0.01	1	2.	0.0025
10	0.07	0.1	0.7	0.1	0.07	10.	1.73
10	1	0.1	10	0.1	1	20.	0.25

4.3.4 Le problème du fil soumis à une force ponctuelle

Considérons un fil inextensible de longueur $2\ell_{\mathsf{R}}$ qui est attaché aux deux extrémités, l'extrémité S = 0 au point $\mathbf{A}' = -\ell_{\mathsf{R}} \cos \alpha \, \mathbf{e}_1$ et l'extrémité $S = 2\ell_{\mathsf{R}}$ au point $\mathbf{A} = \ell_{\mathsf{R}} \cos \alpha \, \mathbf{e}_1$ avec $\alpha \in (0, \pi/2)$. Le milieu du fil est soumis à une force ponctuelle $\mathcal{F} = \mathcal{F}(\cos \theta \mathbf{e}_1 + \sin \theta \mathbf{e}_2)$ avec $\mathcal{F} > 0$, sinon il est libre de toute force linéique, $\mathbf{f}_{\mathsf{R}} = 0$. Le problème aux limites s'écrit

$$\begin{cases} \|\mathbf{x}'(S)\| = 1, \quad N(S) \ge 0, \quad (N\mathbf{x}')'(S) = \mathbf{0} \quad \forall S \in (0, 2\ell_{\mathsf{R}}) \setminus \{\ell_{\mathsf{R}}\} \\ [N\mathbf{x}'][(\ell_{\mathsf{R}}) + \mathcal{F}(\cos\theta\mathbf{e}_{1} + \sin\theta\mathbf{e}_{2}) = \mathbf{0} \\ \mathbf{x}(0) = -\ell_{\mathsf{R}}\cos\alpha\mathbf{e}_{1}, \quad \mathbf{x}(2\ell_{\mathsf{R}}) = \ell_{\mathsf{R}}\cos\alpha\mathbf{e}_{1}. \end{cases}$$

Comme les forces linéiques sont nulles, on peut appliquer **P-4.4** à chaque brin $\mathbb{I}^- = (0, \ell_{\mathsf{R}})$ et $\mathbb{I}^+ = (\ell_{\mathsf{R}}, 2\ell_{\mathsf{R}})$. La tension est constante dans chaque brin, notons les N^+ et N^- . Si le brin \mathbb{I}^\pm est tendu, *i.e.* si $N^\pm > 0$, alors le brin est rectiligne, *i.e.* $\mathbf{x}'(S) = \mathbf{t}^\pm$ dans \mathbb{I}^\pm . La condition de saut en ℓ_{R} interdit que $N^- = N^+ = 0$ puisque la force appliquée est non nulle. Il reste donc trois cas à envisager : (i) le brin \mathbb{I}^- tendu et le brin \mathbb{I}^+ non tendu ; (ii) le brin \mathbb{I}^- non tendu et le brin \mathbb{I}^+ tendu ; (iii) les deux brins tendus.

FIGURE 4.7 – Configurations d'équilibre du fil en fonction de l'orientation de la force : configurations A'BA et A'B'A avec les deux brins tendus, configurations A'CA et A'C'A avec un seul brin tendu.

(i) Cas $N^- > 0$ et $N^+ = 0$. La condition de saut donne $N^- \mathbf{t}^- = \mathcal{F}(\cos\theta \mathbf{e}_1 + \sin\theta \mathbf{e}_2)$ et donc $N^- = \mathcal{F}$ et $\mathbf{t}^- = \cos\theta \mathbf{e}_1 + \sin\theta \mathbf{e}_2$. L'angle tangent α^- est égal à θ . On en déduit la position du point d'application de la force :

$$\mathbf{x}(\ell_{\mathsf{R}}) = \ell_{\mathsf{R}}(\cos\theta - \cos\alpha)\mathbf{e}_1 + \ell_{\mathsf{R}}\sin\theta\mathbf{e}_2,$$

le milieu du fil se trouve au point \mathbf{C} sur le cercle de centre \mathbf{A}' et de rayon ℓ_{R} , sur le rayon d'orientation θ . Le brin \mathbb{I}^+ étant détendu, son orientation est arbitraire. Toutefois, le point \mathbf{C} doit se trouver à une distance du point \mathbf{A} inférieure ou égale à ℓ_{R} puisque le fil est inextensible. Notons que cette condition

géométrique se déduit du problème aux limites. En effet, on a

$$\|\mathbf{x}(2\ell_{\mathsf{R}}) - \mathbf{x}(\ell_{\mathsf{R}})\| = \left\| \int_{\ell_{\mathsf{R}}}^{2\ell_{\mathsf{R}}} \mathbf{x}'(S) dS \right\| \le \int_{\ell_{\mathsf{R}}}^{2\ell_{\mathsf{R}}} \|\mathbf{x}'(S)\| \, dS = \ell_{\mathsf{R}}.$$

Cette condition est équivalente à l'inégalité $\cos \theta \ge \cos \alpha$ et donc exige que $\theta \in [-\alpha, +\alpha]$. Réciproquement, si cette condition sur l'orientation θ de la force est satisfaite, alors la configuration construite avec le brin \mathbb{I}^- tendu et le brin \mathbb{I}^+ détendu est solution du problème aux limites puisque toutes les conditions sont satisfaites.

(ii) Cas $N^- = 0$ et $N^+ > 0$. Ce cas est le symétrique du précédent : le brin \mathbb{I}^- est détendu, le brin \mathbb{I}^+ est tendu avec $N^+ = \mathcal{F}$ et $\mathbf{t}^+ = -\cos\theta \mathbf{e}_1 - \sin\theta \mathbf{e}_2$ et donc $\alpha^+ = \pi + \theta$. Le milieu du fil se trouve au point \mathbf{C}' donné par

$$\mathbf{x}(\ell_{\mathsf{R}}) = \ell_{\mathsf{R}}(\cos\alpha + \cos\theta)\mathbf{e}_1 + \ell_{\mathsf{R}}\sin\theta\mathbf{e}_2.$$

Comme il doit se trouver à une distance de \mathbf{A}' inférieure ou égale à ℓ_{R} , l'orientation θ de la force doit être telle que $\cos \theta \leq -\cos \alpha$, *i.e.* $\theta \in [\pi - \alpha, \pi + \alpha]$. Réciproquement, si cette condition est satisfaite, alors la configuration obtenue est solution.

(iii) Cas $N^- > 0$ et $N^+ > 0$. Les deux brins sont tendus et leur configuration est rectiligne. Le milieu du fil se trouve à la distance ℓ_R des points \mathbf{A}' et \mathbf{A} , il coïncide donc soit avec le point \mathbf{B} , soit avec le point \mathbf{B}' :

$$\mathbf{x}(\ell_{\mathsf{R}}) = \epsilon \ell_{\mathsf{R}} \sin \alpha \mathbf{e}_2, \quad \epsilon = \pm 1.$$

(a) Cas $\epsilon = +1$. Le milieu du fil est en **B**, $\alpha^- = \alpha$ et $\alpha^+ = -\alpha$, les tensions sont données par la condition de saut :

$$N^{-} - N^{+})\cos\alpha\mathbf{e}_{1} + (N^{-} + N^{+})\sin\alpha\mathbf{e}_{2} = \mathcal{F}(\cos\theta\mathbf{e}_{1} + \sin\theta\mathbf{e}_{2}).$$

En projetant on obtient

(.

$$N^{-} = \left(\frac{\sin\theta}{\sin\alpha} + \frac{\cos\theta}{\cos\alpha}\right) \frac{\mathcal{F}}{2}, \qquad N^{+} = \left(\frac{\sin\theta}{\sin\alpha} - \frac{\cos\theta}{\cos\alpha}\right) \frac{\mathcal{F}}{2}.$$

Pour que les tensions soient effectivement positives, il faut que $\theta \in (\alpha, \pi - \alpha)$. Réciproquement, si cette condition est satisfaite, alors la configuration avec les deux brins tendus et le milieu du fil en **B** est solution.

(b) Cas $\epsilon = -1$. C'est le cas symétrique du précédent, le milieu du fil est en **B**', $\alpha^- = -\alpha$ et $\alpha^+ = \alpha$, les tensions sont données par

$$N^{-} = \left(-\frac{\sin\theta}{\sin\alpha} + \frac{\cos\theta}{\cos\alpha}\right)\frac{\mathcal{F}}{2}, \qquad N^{+} = -\left(\frac{\sin\theta}{\sin\alpha} + \frac{\cos\theta}{\cos\alpha}\right)\frac{\mathcal{F}}{2}.$$

Cette configuration est la solution si $\theta \in (\alpha - \pi, -\alpha)$.

En résumé, on a donc obtenu

Le problème du fil inextensible soumis à une force ponctuelle appliquée au milieu du fil admet une ou une infinité de configurations d'équilibre stables suivant l'orientation de la force. La solution est unique quand les deux brins sont tendus, alors que quand un seul brin est tendu la position de l'autre brin reste arbitraire. Dans tous les cas, la répartition de l'effort normal est unique. Dans le cas où les deux brins sont tendus, la tangente est discontinue au point d'application de la force.

4.3.5 Le problème de la poulie

On se propose ici de calculer l'intensité minimale \mathcal{F}_1 de la force qu'il est nécessaire d'exercer à l'extrémité d'un câble enroulé autour d'une poulie pour soutenir un poids ou plus généralement une force d'intensité \mathcal{F}_0 à l'autre extrémité. Le rayon de la poulie est R et le câble est enroulé dans le sens anti-trigonométrique sur un demi-tour⁷. On suppose que le contact câble-poulie se fait avec une loi de frottement de Coulomb. Cette loi dit que le câble ne glisse pas sur la poulie au point de contact s considéré tant que les composantes tangentielle et normale de la force linéique de contact (force exercée par la poulie sur le câble) en ce point vérifient

$$|\mathbf{f}_t(s)| < \mathsf{k} \mathbf{f}_n(s)$$

où k est la constante de frottement (indépendante de s), $\mathbf{t}(s)$ et $\mathbf{n}(s)$ étant la tangente et la normale au câble au point s. Quand $f_t(s) = \mathsf{k} f_n(s)$ le câble peut glisser dans le sens trigonométrique (direction opposée à \mathbf{t}) alors que quand $f_t(s) = -\mathsf{k} f_n(s)$ le câble peut glisser dans le sens antitrigonométrique (direction de \mathbf{t}). Réciproquement, quand le câble glisse au point s dans le sens trigonométrique on a $f_t(s) = \mathsf{k} f_n(s)$, alors que quand il glisse dans l'autre sens on a $f_t(s) = -\mathsf{k} f_n(s)$, ce qui veut dire que l'on a toujours l'inégalité large : $|f_t(s)| \leq \mathsf{k} f_n(s)$. On supposera dans un premier temps que le câble est inextensible avant de reconsidérer le problème dans le cas où le câble est élastique. Dans tous les cas le poids propre du câble est négligé, la poulie est rigide et ne tourne pas.

FIGURE 4.8 – Le câble enroulé d'un demi-tour autour de la poulie et les deux forces appliquées aux extrémités.

Cas d'un câble inextensible

En vertu de **P-4.4** et **P-4.5**, les deux brins aux extrémités qui ne sont pas en contact avec la poulie et qui doivent supporter les forces \mathcal{F}_0 et \mathcal{F}_1 sont tendus, rectilignes et leur tension est respectivement égale à $\mathcal{F}_0 = ||\mathcal{F}_0||$ et $\mathcal{F}_1 = ||\mathcal{F}_1||$. Le câble étant inextensible, l'abscisse curviligne est indépendante de l'état de tension et on choisit pour origine s = 0 le premier point du câble en contact avec la poulie.

^{7.} On pourrait généraliser ce problème en envisageant un enroulement sur une longueur arbitraire et en faisant plusieurs tours le cas échéant.

Le câble est donc en contact avec la poulie pour $s \in (0, \pi R)$, les longueurs des deux brins qui ne sont pas en contact avec la poulie ne sont pas précisées car elles ne jouent aucun rôle.

La configuration du câble est parfaitement déterminée⁸, mais il reste à vérifier que c'est bien une configuration d'équilibre en montrant que l'on peut trouver une répartition de l'effort normal de façon à ce que les équations d'équilibre et la loi de Coulomb soient satisfaites. Sur la partie en contact, la répartition de l'effort normal $s \mapsto N(s)$ et des forces linéiques de contact $s \mapsto \mathbf{f}(s)$ doivent satisfaire :

$$\begin{cases} \text{Equilibre tangentiel}: \quad \frac{dN}{ds}(s) + \mathbf{f}_t(s) = 0, \quad \forall s \in (0, \pi R) \\ \text{Equilibre normal}: \quad -\frac{N(s)}{R} + \mathbf{f}_n(s) = 0, \quad \forall s \in (0, \pi R) \\ \text{Loi de Coulomb}: \quad |\mathbf{f}_t(s)| \le \mathsf{k} \, \mathbf{f}_n(s), \quad \forall s \in (0, \pi R) \\ \text{Conditions aux limites}: \qquad N(0) = \mathcal{F}_1, \qquad N(\pi R) = \mathcal{F}_0 \end{cases}$$

Le signe moins dans l'équation d'équilibre projetée sur la normale vient du fait que le câble est orienté dans le sens anti-trigonométrique ce qui implique que la courbure est -1/R. Si l'on reporte les équations d'équilibre dans la loi de Coulomb, on obtient (en notant par un prime la dérivée par rapport à s) :

$$-\frac{\mathsf{k}}{R}N(s) \le N'(s) \le \frac{\mathsf{k}}{R}N(s) \qquad \forall s \in (0, \pi R).$$

On a donc obtenu deux *inéquations différentielles* pour N. Chacune peut s'intégrer comme on le fait pour une équation différentielle. En effet, considérons l'inéquation $RN'(s) \leq kN(s)$ et faisons le changement de fonction $N(s) = \exp(ks/R)\nu(s)$, on obtient $\nu'(s) \leq 0$. En intégrant cette inégalité entre 0 et πR , on en déduit $\nu(\pi R) \leq \nu(0)$. En revenant à N on a donc obtenu l'inégalité $N(0) \geq$ $N(\pi R) \exp(-k\pi)$. En utilisant les conditions aux limites, on a obtenu l'inégalité suivante entre \mathcal{F}_0 et \mathcal{F}_1 :

$$\mathcal{F}_1 \ge \exp(-\mathsf{k}\pi)\mathcal{F}_0. \tag{4.8}$$

On procède de même avec l'autre inéquation différentielle en faisant le changement de fonction $N(s) = \exp(-ks/R)\nu(s)$ pour obtenir finalement

$$\mathcal{F}_1 \le \exp(\mathsf{k}\pi)\mathcal{F}_0. \tag{4.9}$$

On a donc obtenu un minorant et un majorant de la force \mathcal{F}_1 pour que l'équilibre et la loi de Coulomb puissent être satisfaits simultanément. Si \mathcal{F}_1 est en dehors de cet intervalle, on est sûr que soit l'équilibre soit la loi de Coulomb ne pourront être satisfaits ⁹.

Les bornes obtenues sont optimales au sens où l'égalité $\mathcal{F}_1 = \mathcal{F}_0 \exp(-k\pi)$ ne peut être satisfaite que si $f_t(s) = -kf_n(s)$ pour tout $s \in (0, \pi R)$, et de même, l'égalité $\mathcal{F}_1 = \mathcal{F}_0 \exp(k\pi)$ ne peut être

^{8.} Nous avons supposé a priori que le câble était en contact sur tout le demi-tour de poulie. Le "vrai" problème serait un problème de contact unilatéral où on envisagerait aussi la possibilité que le câble décolle de la poulie en certains points. Dans ce cas, la configuration ne serait pas connue et sa détermination conduirait à un traitement nettement plus difficile. Nous nous contenterons de travailler avec l'hypothèse raisonnable de contact partout.

^{9.} Il est intéressant de noter que ces forces limites ne dépendent que du coefficient de frottement mais pas du rayon de la poulie. Cette propriété remarquable est d'un grand intérêt pratique.

satisfaite que si $f_t(s) = kf_n(s)$ pour tout $s \in (0, \pi R)$ (il suffit de remonter les calculs des estimations précédentes pour le voir). Par conséquent,

$$\begin{cases} f_t(s) = -\mathsf{k}f_n(s) & \text{et} \quad N(s) = \mathcal{F}_0 \exp\mathsf{k}\Big(\frac{s}{R} - \pi\Big) & \forall s \in (0, \pi R) & \text{si} \ \mathcal{F}_1 = \mathcal{F}_0 \exp(-\mathsf{k}\pi) \\ f_t(s) = +\mathsf{k}f_n(s) & \text{et} \quad N(s) = \mathcal{F}_0 \exp\mathsf{k}\Big(\pi - \frac{s}{R}\Big) & \forall s \in (0, \pi R) & \text{si} \ \mathcal{F}_1 = \mathcal{F}_0 \exp(+\mathsf{k}\pi) \end{cases}$$

Dans le premier cas tout le câble peut glisser dans le sens anti-trigonométrique sur la poulie alors que dans le deuxième tout le câble peut glisser dans le sens trigonométrique.

Montrons maintenant que si \mathcal{F}_1 est strictement à l'intérieur de l'intervalle trouvé, alors le câble ne peut pas glisser. En effet si \mathcal{F}_1 satisfait les inégalités strictes

$$\exp(-\mathsf{k}\pi)\mathcal{F}_0 < \mathcal{F}_1 < \exp(\mathsf{k}\pi)\mathcal{F}_0,$$

alors, comme les bornes sont optimales, l'inégalité stricte $|f_t(s)| < k f_n(s)$ est nécessairement vraie sur une longueur finie du câble. Par conséquent, ces points-là ne peuvent pas glisser. Mais comme le câble est inextensible, il glisse soit partout soit nulle part. Donc il ne glisse nulle part. Remarquons aussi que la répartition de l'effort normal ne peut plus être déterminée exactement. En effet, on a seulement

$$R\left|N'(s)\right| \le \mathsf{k}N(s) \quad \forall s \in (0, \pi R), \qquad N(0) = \mathcal{F}_1, \quad N(\pi R) = \mathcal{F}_0$$

ce qui laisse une infinité de possibilités.

On peut résumer l'ensemble des résultats obtenus par

Pour soutenir la force \mathcal{F}_0 exercée à une extrémité du câble, il faut exercer à l'autre extrémité une force au moins égale à $\mathcal{F}_0 \exp(-k\pi)$ et au plus égale à $\mathcal{F}_0 \exp(k\pi)$, sinon il n'est pas possible de vérifier à la fois l'équilibre et la loi de Coulomb. Lorsque la force exercée est à l'intérieur de cet intervalle, alors la condition d'inextensibilité assure que le câble ne glissera nulle part, mais laisse par contre la répartition de l'effort normal indéterminée. Lorsque une borne est atteinte, la répartition de l'effort normal est parfaitement déterminée, la condition de glissement est atteinte en tout point de contact, tout le câble peut glisser dans le sens donné par la force de plus grande intensité.

Cas d'un câble extensible

L'hypothèse d'inextensibilité n'est pas vraiment satisfaisante puisqu'elle laisse la répartition de l'effort normal indéterminée tant que le câble ne peut pas glisser. Nous nous proposons donc de lever cette condition et de considérer un câble élastique. Pour simplifier les calculs, nous supposerons que la relation entre l'effort normal et la déformation d'extension est linéaire

$$\mathtt{N}_{\mathtt{ex}}(\varepsilon) = \mathsf{E}\mathsf{A}\varepsilon$$

La détermination de la répartition de l'effort normal va nécessiter que l'on résolve non plus un simple problème de statique mais un *problème d'évolution*. Cela tient au caractère irréversible de la loi de Coulomb qui exige qu'on traite le problème de façon incrémentale à partir de la donnée d'un processus de chargement, car la réponse dépend *a priori* de ce processus.

On considère le processus de chargement suivant :

1. Avant de mettre le câble en contact avec la poulie, on le tend en exerçant une force $\pm \mathcal{F}_0 \mathbf{e}_1$ d'intensité identique aux deux extrémités. Le câble est alors dans l'état de tension et de déformation uniforme

$$N = \mathcal{F}_0, \qquad \varepsilon = \varepsilon_0 := \frac{\mathcal{F}_0}{\mathsf{EA}}.$$

2. On enroule progressivement le câble autour de la poulie en changeant progressivement l'orientation des forces exercées aux extrémités, sans changer l'intensité \mathcal{F}_0 . Durant toute cette étape, le câble reste dans le même état de tension et de déformation uniforme, \mathcal{F}_0 et ε_0 . À la fin de cette étape, les deux forces sont égales à $-\mathcal{F}_0\mathbf{e}_2$ et le câble est enroulé d'un demi-tour autour de la poulie. Cette configuration sera la configuration initiale du problème d'évolution.

FIGURE 4.9 – Enroulement progressif du câble autour de la poulie à tension constante.

3. Sans changer l'orientation des forces et en maintenant l'intensité de la force égale à \mathcal{F}_0 à une extrémité, on relâche ensuite progressivement l'intensité de la force à l'autre extrémité pour la faire passer de \mathcal{F}_0 à la valeur finale $\mathcal{F}_1 < \mathcal{F}_0$ au-delà de laquelle l'équilibre n'est plus possible. Les valeurs intermédiaires sont notées \mathcal{F}_t où t croissant de 0 à 1 est le paramètre cinématique utilisé pour décrire le processus. La décroissance de \mathcal{F}_t est supposée "infiniment" lente de façon à pouvoir négliger tous les effets d'inertie et à pouvoir considérer que le système est à chaque instant en équilibre.

Il s'avère qu'il vaut mieux adopter une description *eulérienne* pour traiter ce problème. On introduit donc l'abscisse curviligne s du demi-cercle supérieur de la poulie qui est décrit dans le sens antitrigonométrique. On lui associe l'angle $\theta = s/R$, cf Figure 4.8. Il va s'agir de trouver la répartition $s \mapsto N_t(s)$ de l'effort normal et la répartition $s \mapsto S_t(s)$ des points matériels sur la poulie à chaque instant du processus. (La fonction $s \mapsto S_t(s)$ est l'inverse de la fonction $S \mapsto s_t(S)$ donnant l'abscisse curviligne à l'instant t en fonction de l'abscisse curviligne de référence dans la description lagrangienne.) Comme par définition $\varepsilon = ds/dS - 1$, les fonctions donnant la position des points matériels $s \mapsto S_t(s)$, la déformation d'extension $s \mapsto \varepsilon_t(s)$ et l'effort normal $s \mapsto N_t(s)$ à l'instant t dans la description eulérienne sont reliées par

$$\mathbf{S}'_t(s) = \frac{1}{1 + \varepsilon_t(s)}, \qquad N_t(s) = \mathsf{EA}\varepsilon_t(s).$$

En vertu de **P-4.4** et **P-4.5**, les brins de gauche et de droite qui ne sont pas en contact avec le câble sont nécessairement chacun dans un état de tension et de déformation uniforme donné par la

force appliquée en l'extrémité concernée :

$$N_t(s) = \begin{cases} \mathcal{F}_t & \text{si} \quad s \le 0\\ \mathcal{F}_0 & \text{si} \quad s \ge \pi R \end{cases}, \qquad \varepsilon_t(s) = \begin{cases} \mathcal{F}_t/\mathsf{E}\mathsf{A} & \text{si} \quad s \le 0\\ \mathcal{F}_0/\mathsf{E}\mathsf{A} & \text{si} \quad s \ge \pi R \end{cases}$$

Pour la partie du câble en contact avec la poulie, la configuration initiale donne

$$N_0(s) = \mathcal{F}_0, \quad \varepsilon_0(s) = \varepsilon_0 = \frac{\mathcal{F}_0}{\mathsf{E}\mathsf{A}} \quad \forall s \in (0, \pi R).$$

Cette configuration est bien compatible avec la loi de Coulomb, puisque les équations d'équilibre donnent $R \mathbf{f}_0(s) = \mathbf{n}(s)$, *i.e.* une force linéique tangentielle nulle et une force linéique normale strictement positive.

Pour $t \in (0, 1)$, nous allons chercher une évolution du système qui satisfait à chaque instant l'équilibre. Nous supposerons que le contact se fait uniquement par des forces réparties, sans force ponctuelle. Cette condition pourrait se déduire de la condition de contact unilatéral, de la loi de Coulomb et du comportement élastique, mais au prix de développements techniques qui alourdiraient l'exposé. Il est préférable d'adopter cette hypothèse. Dans ces conditions, l'équilibre, la loi de Coulomb et la relation de comportement donnent

$$R|N'_t(s)| \le k N_t(s), \quad N_t(s) = \mathsf{EA}\varepsilon_t(s) \qquad \forall s \in (0, \pi R).$$

L'effort normal et la déformation sont donc des fonctions continues de s et l'effort normal doit satisfaire les conditions aux limites

$$N_t(0) = \mathcal{F}_t, \qquad N_t(\pi R) = \mathcal{F}_0.$$

Par continuité, il existe un intervalle pour s de la forme $(0, \bar{\theta}_t R)$ dans lequel $\varepsilon_t(s)$ varie continûment de $\mathcal{F}_t/\mathsf{EA}$ à $\mathcal{F}_0/\mathsf{EA}$. Le câble a nécessairement glissé en ces points-là puisque la déformation a changé depuis l'instant initial. Ils ont même forcément glissé à un instant antérieur à t dans le sens antitrigonométrique puisque la déformation a diminué. Ceci suggère de chercher une évolution reposant sur l'hypothèse qui suit.

Hypothèse sur le glissement : À l'instant t, le câble glisse dans le sens anti-trigonométrique aux points de contact qui se trouvent dans un intervalle $(0, \bar{\theta}_t R)$ alors que les autres points de contact ne glissent pas. La longueur $\bar{\theta}_t R$ de la zone de glissement croît avec t.

Sur la figure ci-contre, est indiquée en rouge la zone de glissement et en vert la zone de non glissement à l'instant t du processus de relâchement de la force sur le brin de gauche. À l'instant 0 il n' y a pas de zone rouge, elle apparaît dès que t > 0 et augmente progressivement avec t au détriment de la zone verte qui disparaîtra quand $\mathcal{F}_t = \mathcal{F}_1$.

Sous cette hypothèse, comme les points dans l'intervalle $(0, \bar{\theta}_t R)$ glissent à l'instant t dans le sens anti-trigonométrique, on doit avoir $RN'_t(s) = kN_t(s)$ dans cette zone. Comme la zone croît, les points dans $(\bar{\theta}_t R, \pi R)$ n'ont jamais glissé et sont donc encore dans leur état initial. Par conséquent, tant que $\bar{\theta}_t \leq \pi$, N_t doit vérifier

$$N_t(0) = \mathcal{F}_t, \quad RN'_t(s) = \mathsf{k} \, N_t(s) \, \mathrm{dans} \, (0, \bar{\theta}_t R), \quad N_t(s) = \mathcal{F}_0 \, \mathrm{dans} \, [\bar{\theta}_t R, \pi R].$$

On en déduit la valeur de $\bar{\theta}_t$ et la répartition de l'effort normal

$$\bar{\theta}_t = \frac{1}{\mathsf{k}} \log \frac{\mathcal{F}_0}{\mathcal{F}_t}, \qquad N_t(s) = \begin{cases} \mathcal{F}_0 \exp\left(\mathsf{k}(s/R - \bar{\theta}_t)\right) & \text{si } s \in [0, \bar{\theta}_t R] \\ \mathcal{F}_0 & \text{si } s \in [\bar{\theta}_t R, \pi R] \end{cases}$$

expressions qui ne sont valables que tant que $\bar{\theta}_t \leq \pi$. Comme \mathcal{F}_t décroît, $\bar{\theta}_t$ croît avec t comme il était attendu. À l'instant t = 0, $\bar{\theta}_0 = 0$. On aura $\bar{\theta}_t = \pi$ et tous les points de contact glisseront quand $\mathcal{F}_t = \mathcal{F}_0 \exp(-k\pi)$ qui est exactement la force \mathcal{F}_1 prédite par le modèle inextensible. Au delà, quand $\mathcal{F}_t < \mathcal{F}_1$, il n'est plus possible de satisfaire à la fois l'équilibre et la loi de Coulomb. Remarquons que l'évolution de la zone de glissement et la répartition de l'effort normal sont indépendantes du rayon R de la poulie (N_t dépend en fait de θ) et du module de rigidité EA du câble. Mais il est essentiel de supposer le câble élastique pour trouver cette répartition puisqu'on s'est basée sur cette propriété pour trouver la zone de glissement.

Il reste à déterminer la répartition des points matériels et leur glissement durant le processus. Le module de rigidité va intervenir via ε_0 . Connaissant $N_t(s)$, on déduit $\varepsilon_t(s)$ de la loi de comportement ce qui donne $\mathbf{S}'_t(s)$:

$$\mathbf{S}_t'(s) = \begin{cases} \frac{1}{1 + \varepsilon_0 \exp\left(\mathsf{k}\left(\frac{s}{R} - \bar{\theta}_t\right)\right)} & \text{si } s \in [0, \bar{\theta}_t R] \\\\ \frac{1}{1 + \varepsilon_0} & \text{si } s \in [\bar{\theta}_t R, \pi R] \end{cases}$$

En intégrant on obtient $\mathbf{S}_t(s)$, la constante d'intégration étant donnée par le fait que les points au-delà de $\bar{\theta}_t R$ n'ont jamais glissé. Précisément, on a

$$\mathbf{S}_t(\bar{\theta}_t R) = \mathbf{S}_0(\bar{\theta}_t R) = \frac{\theta_t R}{1 + \varepsilon_0}$$

si l'on convient que l'origine de S_0 est prise en 0, *i.e.* $S_0(0) = 0$. La primitive de S'_t s'obtient en faisant le changement de variable $u = \exp(k\theta)$ et finalement $S_t(s)$ s'écrit

$$\mathbf{S}_t(s) = \frac{\bar{\theta}_t R}{1 + \varepsilon_0} - \frac{R}{\mathsf{k}} \log \frac{\varepsilon_0 + \exp\left(\mathsf{k}(\bar{\theta}_t - s/R)\right)}{1 + \varepsilon_0} \quad \text{si} \quad 0 \le s \le \bar{\theta}_t R.$$

En dérivant $S_t(s)$ par rapport à t, on trouve

$$\dot{\mathbf{S}}_t(s) = \frac{\varepsilon_0 (1 - \exp\left(k(\bar{\theta}_t - s/R)\right)\bar{\theta}_t}{(1 + \varepsilon_0)(\varepsilon_0 + \exp\left(k(\bar{\theta}_t - s/R)\right)} < 0 \quad \text{si} \quad 0 \le s \le \bar{\theta}_t R.$$

Puisque $\dot{\mathbf{S}}_t(s) < 0$ dans la zone de glissement $(0, \bar{\theta}_t R)$, le point matériel qui est en contact au point s à l'instant t se trouvera à un point s' > s à un instant ultérieur t' > t. Autrement dit, les points matériels glissent dans le sens anti-trigonométrique ce qui est conforme à notre hypothèse et qui achève la construction de la solution. On peut noter que le module de rigidité du câble intervient par l'intermédiaire de ε_0 . Plus le câble est raide et plus ε_0 est faible pour une valeur de \mathcal{F}_0 donnée. À la limite quand EA tend vers l'infini, ε_0 tend vers 0 et on obtient $\mathbf{S}_t(s) = s$, autrement dit un glissement nul. On retombe sur le cas inextensible à la différence près que la répartition d'effort normal est maintenant déterminée (rappelons qu'elle est indépendante du module de rigidité du câble). L'abandon de l'hypothèse d'inextensibilité a donc effectivement permis de lever toutes les indéterminations sans changer la force limite qui avait été trouvée dans le cadre inextensible. Résumons les résultats obtenus.

Pour le processus de chargement envisagé et en supposant le câble élastique, dès que l'on commence à relâcher la force d'un brin, le câble se met à glisser dans le sens opposé sur une zone qui croît au fur et à mesure que l'on diminue la force appliquée à ce brin. Lorsque la force a atteint la valeur minimale $\mathcal{F}_1 = \mathcal{F}_0 \exp(-k\pi)$, tout le câble en contact avec la poulie glisse. On retrouve ainsi la valeur prédite par le cas inextensible. L'abandon de l'hypothèse d'inextensibilité a toutefois permis de trouver la répartition exacte de l'effort normal et le glissement des points matériels au cours du processus.

Parmi les questions qui restent en suspens et qui mériteraient d'être étudiées, citons :

1. Tout en conservant le même processus de chargement, la solution trouvée est-elle unique? Cette question est légitime puisque la construction repose sur une hypothèse faite sur la zone de glissement.

2. Si l'on changeait de processus de chargement, trouverait-on d'autres réponses ? La force minimale à exercer pour que l'équilibre soit possible en dépend-elle ?

La première question qui concerne les propriétés d'unicité dans les problèmes d'évolution du glissement gouverné par la loi de frottement de Coulomb est une question théorique qui n'a pas reçu à ce jour une réponse dans le cas général. Elle sort du cadre de ce cours. On peut par contre tenter de répondre à la seconde en résolvant le problème d'évolution associé à d'autres processus de chargement. On en propose un ci-dessous à titre d'exercice.

Exercice 4.2. Variante du problème de la poulie. On reprend le problème d'évolution pour un câble élastique en changeant le processus de chargement. Les deux premières étapes sont modifiées : (i) on enroule le câble d'un demi-tour autour de la poulie sans le tendre ; (ii) on tire sur les deux brins en leur imposant la même force, son intensité croissant de 0 jusqu'à \mathcal{F}_0 . La troisième étape est inchangée : (iii) on relâche progressivement l'intensité de la force du brin de gauche jusqu'à ce que l'équilibre ne soit plus possible. Voici quelques éléments de la solution :

1. Lors de l'étape (ii), tout le câble glisse dès la mise en tension : la moitié de gauche dans le sens trigonométrique, l'autre moitié dans l'autre sens. La répartition de l'effort normal à la fin de cette mise en tension est donnée par

$$N_0(s) = \mathcal{F}_0 \exp\left(-\mathsf{k}\left(\frac{\pi}{2} - \left|\frac{\pi}{2} - \frac{s}{R}\right|\right)\right) \quad pour \quad s \in (0, \pi R).$$

2. Lors de l'étape (iii), le câble glisse sur un intervalle $(0, \bar{\theta}_t)$ croissant avec t. Quand $\bar{\theta}_t = \pi/2$, la tension dans le brin de gauche est $\mathcal{F}_1 = \mathcal{F}_0 \exp(-k\pi)$, tout le câble peut glisser dans le sens antitrigonométrique. Si l'on relâche encore la tension, l'équilibre n'est plus possible.

4.4 Statique des barres inflexibles ou non fléchies

4.4.1 Le problème aux limites

Les hypothèses générales

Cette section est dédiée à l'étude des milieux continus curvilignes dont la configuration d'équilibre est rectiligne et dont le seul effort intérieur non nul est l'effort normal. En pratique, cette propriété provient soit du fait qu'ils sont inflexibles et donc qu'ils conservent toujours leur courbure de référence supposée nulle, soit du fait que la forme particulière des chargements et des conditions aux limites font qu'ils ne sont sollicités qu'en traction-compression et que la configuration d'équilibre rectiligne associée est stable. Ceci n'est pas spécifique aux milieux curvilignes mais se rencontre aussi dans les milieux tridimensionnels. Cette particularité conduit à des problèmes aux limites plus simples à étudier, ce qui permet une étude complète et approfondie même dans des situations "fortement non linéaires". Nous profiterons d'ailleurs de ce cadre simplifié pour étudier des comportements autres qu'élastiques. Les hypothèses générales qui vaudront dans cette section sont résumées ci-dessous.

D-4.8 (Barres en traction-compression, sans flexion). Dans toute cette section, nous considérons un milieu curviligne dont les configurations sont rectilignes. En notant \mathbf{t} son vecteur tangent, la configuration d'équilibre peut donc s'écrire

$$\mathbf{x}(S) = \mathbf{x}_0 + \mathbf{s}(S)\mathbf{t} \quad \forall S \in \mathbb{C}_R = (0, \ell_R),$$

où \mathbf{x}_0 étant donc la position d'équilibre de l'extrémité S = 0 de la barre. Du point de vue cinématique, l'inconnue est la fonction $S \mapsto \mathbf{s}(S)$ qui donne l'abscisse curviligne dans la configuration d'équilibre du point matériel S. Elle vérifie donc $\mathbf{s}(0) = 0$ et la longueur de la barre à l'équilibre est $\ell = \mathbf{s}(\ell_R)$. La déformation d'extension s'en déduit par dérivation :

$$\mathbf{s}'(S) = 1 + \varepsilon(S) \qquad \forall S \in (0, \ell_R).$$

L'unique effort intérieur est l'effort normal que l'on considère comme fonction de S,

$$\mathbf{R}(S) = N(S)\mathbf{t}, \quad M(S) = 0 \quad \forall S \in \mathbb{C}_R = (0, \ell_R).$$

Les différences essentielles par rapport aux fils qui ont été étudiés dans la section précédente sont :

- 1. On autorise des réponses où l'effort normal est négatif (compression);
- 2. On n'envisage pas des configurations d'équilibre non rectilignes.

Les conditions aux limites possibles

Nous considérerons différents problèmes aux limites qui se distinguent en particulier par leurs conditions aux limites. La barre

- est *soit* fixée au point \mathbf{x}_0 , *soit* soumise à la force $\mathcal{F}_0 \mathbf{t}$ en son extrémité S = 0;
- est soumise à des forces linéiques $S \mapsto \mathbf{f}_{\mathsf{R}}(S) = \mathbf{f}_{\mathsf{R}}(S)\mathbf{t}$;

- est soumise à des forces ponctuelles $\mathcal{F}_{S_i}\mathbf{t}$ aux points matériels $S_i \in \mathbb{P}_{\mathsf{R}}$;
- est soit fixée au point $\mathbf{x}_{\ell} = \mathbf{x}_0 + \ell \mathbf{t}$, soit soumise à la force $\mathcal{F}_{\ell} \mathbf{t}$ en son extrémité $S = \ell_{\mathsf{R}}$.

Toutes ces forces (linéiques ou ponctuelles) peuvent éventuellement dépendre de la position $\mathbf{s}(S)$ du point matériel où elles sont appliquées. Ces différents types de conditions aux limites seront appelés *fixée-fixée, fixée-libre, libre-fixée* ou *libre-libre* suivant que l'extrémité concernée est fixée ou bien libre (au sens de libre de se déplacer) :

Type de C. L.	$fix \acute{e} - fix \acute{e} = \mathrm{FF}$	$fix \acute{e} - libre = FL$	libre-fixé $e = LF$	libre-libre = LL
S = 0	$\mathbf{x}(0) = \mathbf{x}_0$	$\mathbf{x}(0) = \mathbf{x}_0$	$N^+(0) = -\mathcal{F}_0$	$N^+(0) = -\mathcal{F}_0$
$S=\ell_{\rm R}$	$\mathbf{x}(\ell_{R}) = \mathbf{x}_{\ell}$	$N^-(\ell_{R}) = \mathcal{F}_\ell$	$\mathbf{x}(\ell_{R}) = \mathbf{x}_{\ell}$	$N^-(\ell_{R}) = \mathcal{F}_{\ell}$

TABLE 4.3 – Tableau des différentes conditions aux limites possibles.

Les équations d'équilibre

Dans tous les cas l'effort normal doit vérifier les équations d'équilibre locales

$$\begin{cases} \frac{dN}{dS}(S) + f_{\mathsf{R}}(S) = 0 \quad \forall S \in (0, \ell_{\mathsf{R}}) \setminus \mathbb{P}_{\mathsf{R}}, \\ \llbracket N \rrbracket(S_i) + \mathcal{F}_{S_i} = 0 \quad \forall S_i \in \mathbb{P}_{\mathsf{R}}. \end{cases}$$
(4.10)

Les lois constitutives

Nous envisagerons des comportements élastiques ou visco-élastiques.

4.4.2 Le problème de la colonne pesante

On considère une colonne à section constante et homogène d'aire A, constituée d'un matériau de masse volumique $\rho_{\rm m}$ et placée dans le champ de pesanteur uniforme $\mathbf{g} = -g\mathbf{e}_2, g > 0$. Aucune force ponctuelle n'est exercée. On se propose d'étudier sa réponse pour différentes conditions aux limites et différents comportements. Suivant les cas $\mathbf{t} = \epsilon \mathbf{e}_2$ avec $\epsilon = \pm 1$, la colonne sera donc orientée soit dans le sens vertical ascendant ($\epsilon = +1$), soit vertical descendant ($\epsilon = -1$).

Le cas fixée-libre

Ici la colonne est fixée au point **O** à son extrémité S = 0, l'autre extrémité étant libre. (Le cas *libre-fixée* se traite de façon similaire.) L'équation d'équilibre et la condition à la limite en $s = \ell_{\mathsf{R}}$ s'écrivent :

$$N'(S) - \epsilon \rho_{\mathsf{m}} \mathsf{A} g = 0 \quad \forall S \in (0, \ell_{\mathsf{R}}), \qquad N(\ell_{\mathsf{R}}) = 0.$$

On en déduit la répartition de l'effort normal indépendamment de la loi constitutive (le système est isostatique) :

$$N(S) = -\epsilon \rho_{\mathsf{m}} \mathsf{A}g(\ell_{\mathsf{R}} - S) \quad \forall S \in (0, \ell_{\mathsf{R}})$$

Cette répartition est la même que si la colonne était rigide, la section de côte S doit supporter tout le poids de la colonne entre elle et l'extrémité libre. Cela engendre soit partout des tractions (N(S) > 0) si $\epsilon = -1$, soit partout des compressions (N(S) < 0) si $\epsilon = +1$. La loi constitutive n'intervient que dans la détermination de la configuration d'équilibre $S \mapsto \mathbf{s}(S)$.

Après identification du comportement du matériau par un essai de traction-compression uni-axial, dans le cas d'un comportement élastique la relation d'élasticité s'écrit (cf Section 3.3.2)

$$N = \mathbb{N}_{\mathbf{ex}}(\varepsilon) = \mathbf{w}'_{\mathbf{ex}}(\varepsilon) \mathsf{A}.$$

Par conséquent, en tenant compte de la condition à la limite en S = 0, la configuration d'équilibre doit vérifier

$$\mathbf{w}_{\mathrm{ex}}^{\prime}\big(\mathbf{s}^{\prime}(S)-1\big)=-\epsilon\rho_{\mathrm{m}}g(\ell_{\mathrm{R}}-S)\quad\forall S\in(0,\ell_{\mathrm{R}}),\qquad\mathbf{s}(0)=0.$$

Tout dépend alors de la monotonie de la relation contrainte-déformation. Si $\mathbf{w}'_{ex}(\varepsilon)$ est une fonction strictement croissante de ε , alors on peut inverser la relation précédente et calculer $\mathbf{s}'(S)$. Par contre, si $\mathbf{w}'_{ex}(\varepsilon)$ n'est pas une fonction strictement croissante de ε , alors la relation effort normal-déformation n'est pas inversible et il peut y avoir plusieurs valeurs possibles pour $\mathbf{s}'(S)$. Plaçons-nous dans le premier cas, le second qui concerne les matériaux à mémoire de forme sera partiellement étudié au chapitre 5, section 5.5.2, lorsqu'on discutera les questions de stabilité. Donc, $\varepsilon \mapsto \mathbf{w}'_{ex}(\varepsilon)$ étant inversible, il "suffit" d'inverser puis d'intégrer pour obtenir la configuration d'équilibre :

$$\mathbf{s}(S) = S + \int_0^S (\mathbf{w}'_{\mathsf{ex}})^{-1} \Big(-\epsilon \frac{\rho_{\mathsf{m}}g}{\mathsf{E}} (\ell_{\mathsf{R}} - \zeta) \Big) d\zeta.$$

Par exemple, si l'on prend une loi d'élasticité linéaire $w_{ex}(\varepsilon) = \frac{1}{2} \mathsf{E}\varepsilon^2$, on obtient

$$\mathbf{s}(S) = S - \frac{1}{2} \epsilon \rho_{\mathsf{m}} g(2\ell_{\mathsf{R}} - S)S.$$

En particulier la longueur de la colonne pesante à l'équilibre est donnée par

$$\frac{\ell}{\ell_{\rm R}} = 1 - \epsilon \frac{\rho_{\rm m} g \ell_{\rm R}}{2 {\rm E}}. \label{eq:electropy}$$

On voit apparaître comme pour le fil pesant le rapport $\rho_m g \ell_R/E$, rapport qui en pratique est petit devant 1 pour les colonnes et les matériaux du Génie Civil.

Le cas fixée-fixée

Ici la colonne est fixée au point **O** à son extrémité S = 0 alors que l'autre extrémité est fixée au point $\mathbf{x}_{\ell} = \ell \mathbf{e}_2$. On peut se limiter au cas $\epsilon = +1$, car le cas $\epsilon = -1$ s'en déduit en changeant l'orientation du paramétrage $(S \to \ell_{\mathsf{R}} - S)$. L'équation d'équilibre s'écrit toujours

$$N'(S) - \rho_{\mathsf{m}} \mathsf{A} g = 0 \quad \forall S \in (0, \ell_{\mathsf{R}}),$$

mais il n'y a plus de condition à la limite statique. Le système est maintenant hyperstatique et l'équation d'équilibre seule ne permet pas de déterminer exactement la répartition de l'effort normal. On obtient seulement

$$N(S) = N_0 + \rho_{\mathsf{m}} \mathsf{A} g S \quad \forall S \in (0, \ell_{\mathsf{R}})$$

et la constante N_0 reste à déterminer. Pour la trouver, il faut écrire la loi de comportement et les conditions aux limites de fixation. Nous nous limiterons au cas d'un comportement linéairement élastique. La loi constitutive s'écrivant $N_{ex}(\varepsilon) = \mathsf{E}\mathsf{A}\varepsilon$, on en déduit

$$\mathbf{s}'(S) = 1 + \frac{N_0}{\mathsf{E}\mathsf{A}} + \frac{\rho_{\mathsf{m}}g}{\mathsf{E}} \, S \quad \forall S \in (0, \ell_{\mathsf{R}}).$$

Les conditions aux limites exigeant que $\mathbf{s}(0) = 0$ et $\mathbf{s}(\ell_{\mathsf{R}}) = \ell$, on doit avoir $\int_0^{\ell_{\mathsf{R}}} \mathbf{s}'(S) dS = \ell$, équation qui fournit N_0 :

$$N_0 = \mathsf{E}\mathsf{A}\left(\frac{\ell}{\ell_{\mathsf{R}}} - 1\right) - \frac{1}{2}\,\rho_{\mathsf{m}}\mathsf{A}g\ell_{\mathsf{R}}.$$

En reportant, la répartition d'effort normal est maintenant parfaitement déterminée et s'écrit :

$$N(S) = \mathsf{EA}\left(\frac{\ell}{\ell_{\mathsf{R}}} - 1\right) - \frac{1}{2}\,\rho_{\mathsf{m}}\mathsf{A}g(\ell_{\mathsf{R}} - 2S) \quad \forall S \in (0, \ell_{\mathsf{R}}).$$

On obtient aussi la configuration d'équilibre par une simple intégration :

$$\mathbf{s}(S) = \frac{S}{\ell_{\rm R}} \, \ell - \frac{\rho_{\rm m}g}{2{\rm E}} S(\ell_{\rm R} - S). \label{eq:sigma}$$

On remarquera que si $\ell = \ell_{R}$, autrement dit si on n'allonge pas la colonne, alors la constante N_0 et la répartition de l'effort normal ne dépend pas du module d'Young. En résumé, on a obtenu

Dans le cas *fixée-fixée*, la colonne est hyperstatique mais la prise en compte de sa déformabilité permet de trouver la répartition exacte des efforts intérieurs.

4.4.3 Le problème de la poutre en béton précontraint

Le béton est le matériau le plus utilisé en construction du fait du faible coût et de la facilité de sa fabrication. Il a pourtant le défaut d'être très peu résistant à la traction. En effet sa résistance à la traction ne dépasse pas 3 MPa soit cent fois moins qu'un acier. Pour pallier cet inconvénient, on utilise une technique qui consiste à comprimer au préalable le béton à l'aide de câble d'acier pré-tendu avant de le mettre en service. Cette méthode est due à Eugène Freyssinet, ingénieur polytechnicien, qui la proposa en 1928 et porte désormais le nom de béton précontraint. L'inévitable fluage du béton au cours du temps vient réduire l'efficacité du procédé en diminuant progressivement la tension des armatures et donc leur précontrainte de compression sur le béton. L'objet de cette section est d'illustrer ce procédé dans le cas simple d'une poutre droite destinée à supporter des efforts de traction simple.
Nous modéliserons les différentes phases du procédé en supposant que

(i) les câbles d'acier ont un comportement linéairement élastique caractérisé par le module d'Young E_a ;

(ii) le béton est un matériau viscoélastique régi par la loi de Zener caractérisée par le module d'Young instantané E_b^0 , le module d'Young différé E_b^∞ et la constante de temps τ .

(iii) Le câble d'acier de section circulaire est placé au centre géométrique de la section de la poutre, les aires des sections d'acier et de béton étant A_a et A_b .

Câble de précontrainte

Pont en béton précontraint

Il s'agit de calculer les contraintes dans l'acier et dans le béton durant les différentes phases de la fabrication, puis après la mise en service.

1. Mise en tension du câble. Le câble d'acier a une longueur naturelle ℓ_{R}^a . On exerce une tension N_p , ce qui a pour effet de l'allonger et l'amener à la longueur ℓ_{R}^b . En notant $\overline{\varepsilon}$ cette prédéformation du câble, on a

$$\overline{\varepsilon} = \frac{N_p}{\mathsf{E}_a \mathsf{A}_a}, \qquad \ell^b_{\mathsf{R}} = (1 + \overline{\varepsilon})\ell^a_{\mathsf{R}}. \tag{4.11}$$

2. Coulage du béton. La béton est coulé autour de l'acier que l'on maintient sous la tension N_p . Quand le béton est sec, il est libre de contrainte et la longueur de référence naturelle du béton est donc ℓ_{R}^b .

FIGURE 4.10 – Mise en tension du câble et coulage du béton

3. Compression initiale du béton. On supprime la traction sur le câble qui essaie donc de reprendre sa longueur naturelle ℓ_{R}^{a} . Mais, en supposant que l'adhérence du béton est parfaite, ceci va avoir pour effet de comprimer le béton qui en retour va gêner ce relâchement du câble qui ne sera que partiel. Calculons les efforts normaux N_{a}^{0} et N_{b}^{0} dans l'acier et le béton ainsi que la longueur ℓ_{0} de la poutre à la fin de cette phase. Nous sommes ici dans un cas *libre-libre*. Comme la poutre est libre de tout effort extérieur, on a

$$N_a^0 + N_b^0 = 0.$$

La loi d'élasticité de l'acier et la loi d'élasticité instantanée du béton (que l'on peut adopter durant cette phase parce qu'elle ne dure pas longtemps) donnent

$$N_a^0 = \mathsf{E}_a \mathsf{A}_a \left(\frac{\ell_0}{\ell_{\mathsf{R}}^a} - 1 \right), \qquad N_b^0 = \mathsf{E}_b^0 \mathsf{A}_b \left(\frac{\ell_0}{\ell_{\mathsf{R}}^b} - 1 \right).$$

En combinant ces trois relations et en tenant compte de (4.11), on obtient les quantités cherchées :

$$\ell_{0} = \frac{1 + \frac{N_{p}}{\mathsf{E}_{a}\mathsf{A}_{a}}}{1 + \frac{N_{p}}{\mathsf{E}_{a}\mathsf{A}_{a} + \mathsf{E}_{b}^{0}\mathsf{A}_{0}}} \ell_{\mathsf{R}}^{b}, \qquad N_{b}^{0} = -N_{a}^{0} = -\frac{\mathsf{E}_{b}^{0}\mathsf{A}_{b}}{\mathsf{E}_{a}\mathsf{A}_{a} + \mathsf{E}_{b}^{0}\mathsf{A}_{b} + N_{p}} N_{p}.$$
(4.12)

En pratique, comme l'acier doit rester élastique lors de la pré-tension, la déformation $\overline{\varepsilon}$ ne peut pas dépasser quelques 10^{-3} et par conséquent on peut négliger les variations de longueur. En négligeant N_p devant $\mathsf{E}_a\mathsf{A}_a + \mathsf{E}_b^0\mathsf{A}_b$, la contrainte de compression du béton vaut donc

$$\sigma_b^0 \approx -\frac{\mathsf{E}_b^0 \overline{\varepsilon}}{1+\frac{\mathsf{E}_b^0 \mathsf{A}_b}{\mathsf{E}_a \mathsf{A}_a}}.$$

FIGURE 4.11 – Compression instantanée du béton après suppression de la tension sur le câble et compression différée du béton due au fluage du béton

4. Fluage du béton et relaxation de la précontrainte. Même si on laisse la poutre libre d'efforts extérieurs, le béton qui est comprimé va progressivement fluer. Si l'on adopte le modèle de Zener, l'évolution de l'effort normal dans le béton est reliée à l'évolution de la longueur de la poutre par

$$N_b(t) + \tau \dot{N}_b(t) = \mathsf{E}_b^{\infty} \mathsf{A}_b \varepsilon(t) + \tau \mathsf{E}_b^0 \mathsf{A}_b \dot{\varepsilon}(t), \qquad \varepsilon(t) = \frac{\ell(t)}{\ell_{\mathsf{R}}^b} - 1$$

avec pour conditions initiales les valeurs trouvées à l'issue de la phase de compression initiale,

$$N_b(0) = N_b^0, \qquad \ell(0) = \ell_0.$$

Comme la poutre est libre et que l'acier est supposé élastique, on a

$$N_a(t) + N_b(t) = 0,$$
 $N_a(t) = \mathsf{E}_a \mathsf{A}_a \left(\frac{\ell(t)}{\ell_{\mathsf{R}}^a} - 1\right).$

En tirant $\ell(t)$ en fonction de $N_b(t)$ et en reportant dans la loi de Zener, on obtient l'équation différentielle qui régit l'évolution de $N_b(t)$:

$$(\mathsf{E}_{a}\mathsf{A}_{a} + \mathsf{E}_{b}^{\infty}\mathsf{A}_{b} + N_{p})N_{b}(t) + (\mathsf{E}_{a}\mathsf{A}_{a} + \mathsf{E}_{b}^{0}\mathsf{A}_{b} + N_{p})\tau\dot{N}_{b}(t) = -\mathsf{E}_{b}^{\infty}\mathsf{A}_{b}N_{p}.$$
(4.13)

Compte-tenu de la condition initiale, sa solution s'écrit

$$N_b(t) = N_b^{\infty} + (N_b^0 - N_b^{\infty}) \exp(-t/\tau_*)$$

où N_b^0 est donné par (4.12), alors que l'effort normal différé N_b^∞ et la constante de temps τ_* sont donnés par

$$N_b^{\infty} = -\frac{\mathsf{E}_b^{\infty}\mathsf{A}_b}{\mathsf{E}_a\mathsf{A}_a + \mathsf{E}_b^{\infty}\mathsf{A}_b + N_p}N_p, \qquad \tau_* = \frac{\mathsf{E}_a\mathsf{A}_a + \mathsf{E}_b^0\mathsf{A}_b + N_p}{\mathsf{E}_a\mathsf{A}_a + \mathsf{E}_b^{\infty}\mathsf{A}_b + N_p}\tau.$$
(4.14)

Si on néglige N_p devant $\mathsf{E}_a \mathsf{A}_a + \mathsf{E}_b^{\infty} \mathsf{A}_b$, la contrainte différée de compression du béton vaut donc

$$\sigma_b^{\infty} \approx -\frac{\mathsf{E}_b^{\infty} \overline{\varepsilon}}{1+\frac{\mathsf{E}_b^{\infty} \mathsf{A}_b}{\mathsf{E}_a \mathsf{A}_a}}$$

elle est à comparer avec la contrainte instantanée σ_b^0 . Comme $\mathsf{E}_b^{\infty} < \mathsf{E}_b^0$, on a $|\sigma_b^{\infty}| < |\sigma_b^0|$, le fluage du béton a pour effet de diminuer sa compression par le câble de précontrainte et d'accroître les risques de rupture en traction.

Pour finir, quelques valeurs numériques pour fixer les ordres de grandeur. Le taux d'armature, *i.e.* le rapport A_a/A_b , n'excède jamais quelques pourcents. Le rapport E_b^0/E_b^∞ entre les modules d'Young instantané et différé du béton peut aller jusqu'à 3, le rapport E_a/E_b^0 entre le module d'Young de l'acier et le module instantané du béton est de l'ordre de 5. On prend des aciers à haute résistance de façon à augmenter la déformation de pré-tension, ce qui permet d'avoir des valeurs de $\overline{\varepsilon}$ de l'ordre de quelques 10^{-3} . En prenant $E_b^0 = 4.10^{10}$ Pa, $E_b^0/E_b^\infty = 3$, $E_a/E_b^0 = 5$, $A_a/A_b = 2\%$, $\overline{\varepsilon} = 3.10^{-3}$ et sachant que la résistance en traction du béton est d'environ 3 MPa, on obtient

$$\sigma_b^0 = -10.9 \text{ MPa}, \qquad \sigma_b^\infty = -9.2 \text{ MPa},$$

soit une perte de précontrainte de 15% à cause du fluage.

4.5 Statique des tiges et arcs élastiquement flexibles

4.5.1 Le problème du flambement d'Euler

Le flambement est un phénomène qui peut conduire brutalement à la rupture d'une structure élancée sans qu'il y ait eu de signes avant-coureurs. Le problème-type est celui de l'elastica traité pour la première fois par Euler (portrait ci-contre) en 1744. Il s'agit d'une tige droite élastiquement flexible et inextensible soumise à une force de compression. Tant que la force reste en dessous d'une valeur critique \mathcal{F}_0 la tige reste droite sans se déformer, mais au-delà de cette valeur critique elle fléchit et ce d'autant plus que la charge critique a été dépassée. C'est l'exemple-type de **bifurcation d'équilibre super-critique**. La conséquence de cette flexion post-flambée pour des structures réelles est qu'elles sont alors également sollicitées en traction et elles peuvent

rompre si elles n'ont pas été dimensionnées en conséquence.

Portrait de Leonhard Euler par Jakob Emanuel Handmann (1753)

FIGURE 4.12 – Le phénomène de flambement : à gauche, configuration d'équilibre rectiligne tant que la force de compression ne dépasse pas une valeur critique; à droite, configuration d'équilibre fléchie quand la force de compression a dépassé la valeur critique.

Le problème de l'elastica : tige inextensible, élastiquement flexible, encastrée-chargée

L'objectif de cette section est de traiter de façon complète le problème modèle de l'*elastica* qui est celui que considéra Euler.

1. Sa formulation initiale. On considère une tige inextensible de longueur ℓ_{R} , élastiquement flexible avec un module de rigidité à la flexion El dont la configuration de référence naturelle rectiligne est $\mathbf{x}_{\mathsf{R}}(S) = S\mathbf{e}_1, S \in (0, \ell_{\mathsf{R}})$. Son extrémité S = 0 est encastrée en **O** dans la direction \mathbf{e}_1 alors que son extrémité $S = \ell_{\mathsf{R}}$ est soumise à la force $\mathcal{F} = -\mathcal{F}\mathbf{e}_1$ de direction fixe et dont l'intensité sera prise comme paramètre de chargement, le signe moins étant introduit de façon à ce que $\mathcal{F} > 0$ corresponde à une compression. La pesanteur est négligée. Le problème aux limites se formule donc de la façon suivante : On notera que la condition d'inextensibilité est automatiquement vérifiée puisque $\|\mathbf{x}'(S)\| = 1$.

2. Sa formulation réduite. L'équation locale d'équilibre des forces dit que la force intérieure $\mathbf{R}(S)$ doit être constante. La condition à la limite en ℓ_{R} dit que cette constante est la force appliquée. En projetant suivant la tangente et la normale on obtient donc

$$\mathbf{R}(S) = -\mathcal{F}\mathbf{e}_1, \quad N(S) = -\mathcal{F}\cos\alpha(S), \quad T(S) = \mathcal{F}\sin\alpha(S) \quad \forall S \in (0, \ell_{\mathsf{R}}).$$

En reportant dans l'équation locale d'équilibre des moments et en utilisant la condition d'encastrement en 0 et de moment nul en ℓ_{R} , on obtient le système différentiel régissant l'angle tangent $S \mapsto \alpha(S)$:

(Le problème réduit de l'elastica)
$$\begin{cases} \mathsf{El}\alpha''(S) + \mathcal{F}\sin\alpha(S) = 0, \quad \forall S \in (0, \ell_{\mathsf{R}}) \\ \alpha(0) = 0, \quad \alpha'(\ell_{\mathsf{R}}) = 0 \end{cases}$$
(4.15)

Une fois ce problème résolu, on obtient la configuration d'équilibre par une simple intégration :

$$\mathbf{x}(S) = \left(\int_0^S \cos\alpha(\zeta)d\zeta\right)\mathbf{e}_1 + \left(\int_0^S \sin\alpha(\zeta)d\zeta\right)\mathbf{e}_2.$$

Tout se ramène donc à la résolution de (4.15).

3. La méthode de résolution. Remarquons d'abord que la configuration de référence (correspondant à $\alpha(S) = 0$ pour tout S) est toujours configuration d'équilibre quelle que soit la force appliquée. C'est la solution fondamentale. Le problème du flambement est de trouver les autres configurations d'équilibre. Le système différentiel (4.15) ressemble à l'équation du pendule. L'équation différentielle est la même, l'abscisse curviligne S jouant ici le rôle de la variable de temps. Toutefois, il y a une différence essentielle qui tient aux conditions aux limites. Il s'agit ici d'un problème aux limites avec une et une seule condition à la limite en chaque extrémité, alors que le problème du pendule est un problème de Cauchy avec deux conditions initiales en une extrémité (par exemple, la donnée de $\alpha(\ell_R)$ et $\alpha'(\ell_R)$). Alors que dans le problème de Cauchy on est assuré de l'unicité, ce n'est plus le cas ici. On n'est plus assuré que $\alpha \equiv 0$ soit la seule solution et le phénomène de flambement correspond justement à cette perte d'unicité. On peut toutefois se servir de cette propriété d'unicité de la solution d'un problème de Cauchy pour construire les solutions du problème aux limites. C'est la *méthode de tir*. On se donne la condition manquante à une extrémité, par exemple $\alpha(\ell_R) = \alpha_\ell^{-10}$ et on considère le problème de Cauchy

$$\begin{cases} \mathsf{El}\alpha''(S) + \mathcal{F}\sin\alpha(S) = 0, \quad \forall S \in (0, \ell_{\mathsf{R}}) \\ \alpha(\ell_{\mathsf{R}}) = \alpha_{\ell}, \quad \alpha'(\ell_{\mathsf{R}}) = 0 \end{cases}$$
(4.16)

où $\mathcal{F} \in \mathbb{R}$ et $\alpha_{\ell} \in [-\pi, \pi]$ sont donnés. Ce problème admet une solution unique qui dépend des données \mathcal{F} et α_{ℓ} . Notons-la $S \mapsto \alpha[\mathcal{F}, \alpha_{\ell}](S)$ en faisant apparaître entre crochets la dépendance aux paramètres \mathcal{F} et α_{ℓ} . Pour qu'elle soit solution du problème aux limites réduit de l'elastica il faut et il suffit qu'elle s'annule en 0, ce qui fournit l'équation implicite reliant α_{ℓ} et \mathcal{F} :

$$\alpha[\mathcal{F}, \alpha_\ell](0) = 0. \tag{4.17}$$

Par conséquent, pour un \mathcal{F} donné, à tout α_{ℓ} satisfaisant (4.17) on peut associer une et une seule solution du problème de l'élastica. Réciproquement, toute solution du problème de l'elastica doit satisfaire (4.17). La discussion du nombre de solutions se ramène donc à l'étude de (4.17). C'est ce que nous ferons dans les prochains paragraphes.

4. Calcul direct de la charge de flambement et des points de bifurcation. Il s'avère que l'on n'a pas besoin de résoudre le problème non linéaire complet pour déterminer la charge critique de flambement. La méthode se base sur la remarque suivante : $\alpha \equiv 0$ étant toujours solution, les solutions se trouvant sur les branches qui bifurquent de la branche fondamentale doivent correspondre, près du ou des points de bifurcation, à des solutions où $S \mapsto \alpha(S)$ est voisin de 0 sans être identiquement nul. On peut donc les trouver en linéarisant (4.15), linéarisation qui consiste à remplacer sin α par α . Ce système différentiel linéarisé est appelé problème de bifurcation. De façon précise, il s'agit de trouver $\mathcal{F} \in \mathbb{R}$ et $S \mapsto \alpha(S)$ tels que

	$\alpha \neq 0$	
(Le problème de bifurcation de l'elastica)	$EI\alpha''(S) + \mathcal{F}\alpha(S) = 0, \forall S \in (0, \ell_{R})$	(4.18)
	$\label{eq:alpha} \left(\alpha(0) = 0, \alpha'(\ell_{R}) = 0 \right.$	

Ce problème linéaire est en fait un problème aux valeurs propres, la force \mathcal{F} étant la valeur propre et $S \mapsto \alpha(S)$ le mode propre. Dans le cas d'espèce, la résolution est élémentaire. Remarquons tout d'abord que \mathcal{F} est nécessairement strictement positif. En effet, multiplions l'équation différentielle par $\alpha(S)$ et intégrons sur $(0, \ell_R)$ pour finalement obtenir après une intégration par parties où les termes de bord disparaissent du fait des conditions aux limites :

$$\mathcal{F}\int_0^{\ell_{\mathsf{R}}} \alpha(S)^2 dS = -\int_0^{\ell_{\mathsf{R}}} \mathsf{E} \mathsf{I} \alpha''(S) \alpha(S) dS = +\int_0^{\ell_{\mathsf{R}}} \mathsf{E} \mathsf{I} \alpha'(S)^2 dS > 0.$$

^{10.} On pourrait tout aussi bien se donner $\alpha'(0) = \kappa_0$ et résoudre le problème de Cauchy associé aux deux conditions en 0.

Donc $\mathcal{F} > 0$. La solution générale de l'équation différentielle est

$$\alpha(S) = a \cos\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}S\right) + b \sin\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}S\right),$$

la condition à la limite $\alpha(0) = 0$ donne a = 0 et la condition $\alpha'(\ell_{\mathsf{R}}) = 0$ donne

$$b\cos\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}\,\ell_{\mathsf{R}}\right) = 0.$$

Mais comme $\alpha \neq 0$, on doit avoir $b \neq 0$ et c'est donc le cosinus qui doit s'annuler. Cela donne la famille de valeurs propres possibles

$$\mathcal{F}_n = (2n+1)^2 \frac{\pi^2 \mathsf{EI}}{4\ell_{\mathsf{R}}^2}, \quad n \in \mathbb{N}.$$

Le mode propre associé s'écrit

$$\alpha_n(S) = \alpha_\ell \sin\left((2n+1)\frac{\pi S}{2\ell_{\mathsf{R}}}\right), \quad \alpha_\ell \in \mathbb{R},$$

l'amplitude α_{ℓ} étant arbitraire. En résumé, on a donc obtenu¹¹

P-4.6 (Charge de flambement, mode de flambement et points de bifurcations). Le problème de bifurcation montre qu'il existe une suite croissante de points de bifurcation sur la branche fondamentale, les forces et modes de bifurcation correspondant étant donnés par

$$\mathcal{F}_n = (2n+1)^2 \frac{\pi^2 \mathsf{EI}}{4\ell_{\mathsf{R}}^2}, \qquad \alpha_n(S) = \alpha_\ell \sin\left((2n+1)\frac{\pi S}{2\ell_{\mathsf{R}}}\right), \quad \alpha_\ell \in \mathbb{R}, \quad n \in \mathbb{N}.$$

Le premier point de bifurcation correspond à la charge de flambement \mathcal{F}_0 et au mode de flambement $\alpha_0(S)$:

$$\mathcal{F}_0 = \frac{\pi^2 \mathsf{EI}}{4\ell_{\scriptscriptstyle R}^2}, \quad \alpha_0(S) = \alpha_\ell \sin\left(\frac{\pi S}{2\ell_{\scriptscriptstyle R}}\right)$$

dont l'amplitude α_{ℓ} reste arbitraire dans cette étude linéarisée.

On peut aussi calculer la configuration d'équilibre associée à chaque mode propre par simple intégration. Sachant que les expressions précédentes ne sont en fait de bonnes approximations que pour des valeurs de α_{ℓ} faibles, on peut approcher $\cos \alpha_n(S)$ par 1 et $\sin \alpha_n(S)$ par $\alpha_n(S)$. On en déduit

$$\mathbf{x}_n(S) \approx S\mathbf{e}_1 + \frac{2\alpha_\ell}{(2n+1)\pi} \left(1 - \cos\left((2n+1)\frac{\pi S}{2\ell_{\mathsf{R}}}\right)\right) \mathbf{e}_2.$$
(4.19)

^{11.} Insistons sur le fait que ces branches bifurquées et les modes de bifurcation ne sont que des approximations (du fait de la linéarisation) des vraies branches bifurquées et des vrais modes de bifurcation. Seuls les points de bifurcation sont exacts. De plus, il n'est pas possible de savoir à ce stade de la résolution quelle est la bonne configuration d'équilibre, seule l'étude de leur stabilité le permettra.

Le mode de flambement donne seulement l'allure de la forme flambée au voisinage de la charge de flambement. L'amplitude et la forme exactes de la forme flambée ne seront déterminées qu'une fois le problème non-linéaire entièrement résolu.

FIGURE 4.13 – A gauche : diagramme de bifurcation dans le plan $(\mathcal{F}, \alpha_{\ell})$ au voisinage de la branche fondamentale pour le problème de l'elastica ; à droite : configuration d'équilibre de l'elastica dans les modes de flambement associés. Les modes sont normalisés de façon à ce que $|\alpha_n(\ell_R)| = \pi/4$ pour tous les n.

5. Calcul exact des branches bifurquées. On adopte la méthode de tir présentée à l'étape 3. Par symétrie on a $\alpha[\mathcal{F}, -\alpha_{\ell}] = -\alpha[\mathcal{F}, \alpha_{\ell}]$ et donc si α_{ℓ} est solution de $\alpha[\mathcal{F}, \alpha_{\ell}](0) = 0$ pour un certain \mathcal{F} alors $-\alpha_{\ell}$ l'est également pour ce même \mathcal{F} . Comme $\alpha_{\ell} = 0$ correspond à la branche fondamentale, on peut ne considérer que le cas où $\alpha_{\ell} \in (0, \pi]$. La première étape consiste à construire une *intégrale première* de l'équation différentielle (4.16). Pour cela on la multiplie par $\alpha'(S)$ et on remarque que l'on obtient une différentielle exacte :

$$0 = \mathsf{EI}\alpha''(s)\alpha'(S) + \mathcal{F}\sin(\alpha(S))\alpha'(S) = \frac{d}{dS}\left(\frac{1}{2}\,\mathsf{EI}\alpha'(S)^2 - \mathcal{F}\cos(\alpha(S))\right), \quad \forall s \in (0,\ell_{\mathsf{R}}).$$

La constante d'intégration s'exprime en fonction des données en ℓ_R et on obtient une équation du type $\alpha'^2 = \varphi(\alpha)$:

$$\mathsf{E}\mathsf{I}\alpha'^2 = 2\mathcal{F}\big(\cos\alpha - \cos\alpha_\ell\big),\tag{4.20}$$

qui est une équation différentielle du premier ordre à variables séparées. On peut la représenter dans l'espace des phases (α, α') , la relation entre α et α' donnant un point qui doit se trouver sur une courbe fermée qui dépend du paramètre de tir α_{ℓ} et de la force \mathcal{F} , cf Figure 4.14.

FIGURE 4.14 – Espace des phases : relation entre α' et α pour différentes valeurs du paramètre de tir α_{ℓ} ; interprétation graphique de l'intégration de l'équation différentielle pour une valeur de α_{ℓ} .

En vertu du fait que α doit croître (par rapport à S) quand α' est positif et décroître quand α' est négatif, la courbe fermée doit être décrite dans le sens anti-trigonométrique. Comme $\alpha(0) = 0$, on doit partir du point \mathbf{A} ou du point \mathbf{A}' ; comme $\alpha(\ell_{\mathsf{R}}) = \alpha_{\ell}$, on doit arriver au point \mathbf{B} . Une première solution est de décrire l'arc \mathbf{AB} en parcourant la courbe fermée sur un quart de tour, une deuxième est de décrire l'arc $\mathbf{A'B}$ en parcourant la courbe fermée sur trois-quarts de tour et ainsi de suite la $n^{\text{ème}}$ solution consistant à décrire la courbe sur (2n - 1) quarts de tour. Chaque quart de tour dans l'espace des phases correspond à une distance ℓ parcourue dans l'espace physique donnée par

$$\ell := \sqrt{\frac{\mathsf{EI}}{\mathcal{F}}}\mathsf{K}(\alpha_{\ell}) \quad \text{avec} \quad \mathsf{K}(\alpha_{\ell}) := \int_{0}^{\alpha_{\ell}} \frac{d\alpha}{\sqrt{2(\cos\alpha - \cos\alpha_{\ell})}}.$$

L'intégrale $\mathsf{K}(\alpha_{\ell})$ est une intégrale elliptique de première espèce. En faisant le changement de variable $\alpha \to \theta$ défini par $\sin(\alpha/2) = \sin(\alpha_{\ell}/2) \sin \theta$ où θ varie de 0 à $\pi/2$ quand α varie de 0 à α_{ℓ} , l'intégrale peut s'écrire

$$\mathsf{K}(\alpha_{\ell}) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - \sin^2 \frac{\alpha_{\ell}}{2} \sin^2 \theta}}.$$

Sous cette forme il est facile de voir que $K(\alpha_{\ell})$ croît de $\pi/2$ à $+\infty$ quand α_{ℓ} croît de 0 à π .

Comme on doit avoir parcouru la distance ℓ_{R} dans l'espace physique quand on a fait (2n + 1) quarts de tour dans l'espace des phases, la $n^{\text{ème}}$ branche solution du problème de l'elastica est donc telle que $(2n + 1)\ell = \ell_{\mathsf{R}}$, ce qui se traduit par la relation suivante entre la force et le paramètre de tir :

$$\mathcal{F} = (2n+1)^2 \mathsf{K}(\alpha_\ell)^2 \frac{\mathsf{EI}}{\ell_{\mathsf{R}}^2}, \quad n \in \mathbb{N}, \quad \alpha_\ell \in (-\pi, \pi) , \qquad (4.21)$$

où on a réintroduit les valeurs négatives de α_{ℓ} par symétrie. Comme $\mathsf{K}(0) = \pi/2$ on retrouve pour α_{ℓ} les valeurs des points de bifurcation \mathcal{F}_n trouvées au paragraphe précédent à partir du problème de bifurcation. Mais maintenant on a obtenu les branches exactes passant par les points de bifurcation et même toutes les branches puisque notre construction par la méthode de tir est exhaustive. Les cinq premières branches sont représentées dans la Figure 4.15.

On peut noter quelques propriétés remarquables :

• Il n'existe aucune branche du côté des \mathcal{F} négatifs, *i.e.* du côté des forces de traction. Le flambement d'un milieu curviligne ne peut avoir lieu qu'en compression;

• Chaque branche coupe la branche fondamentale au point de bifurcation trouvé dans l'analyse linéaire. Le diagramme de bifurcation de la figure 4.13 issu de l'analyse linéaire est un "zoom" du vrai diagramme de bifurcation au voisinage de la branche fondamentale;

• Il n'existe pas de bifurcations secondaires sur les branches bifurquées;

• Les branches sont symétriques, ce qui veut dire que la tige peut flamber aussi bien d'un côté que de l'autre. Seules les imperfections ou la dynamique permettront de choisir le côté.

• Toutes les branches convergent vers $\alpha_{\ell} = \pm \pi$ quand \mathcal{F} tend vers l'infini. Nous verrons que cela correspond à une configuration d'équilibre voisine de celle d'un fil inextensible.

• Il resterait à établir quelles sont les branches stables. Ceci sera fait au chapitre 5 après l'introduction d'un critère de stabilité énergétique.

FIGURE 4.15 – Les cinq premières branches bifurquées exactes pour le problème de l'elastica dans le plan $(\mathcal{F}, \alpha_{\ell})$

6. Etude des positions d'équilibre flambées. Considérons une valeur de \mathcal{F} supérieure à la charge de flambement \mathcal{F}_0 . Il existe deux valeurs possibles $\pm \alpha_{\ell}$ de l'angle tangent à l'extrémité ℓ_{R} qui sont solutions de

$$\mathcal{F} = \mathsf{K}(\alpha_{\ell})^2 \frac{\mathsf{EI}}{\ell_{\mathsf{R}}^2} \qquad (\text{Relation entre la force appliquée et l'angle tangent à l'extrémité } \ell_{\mathsf{R}}) \tag{4.22}$$

et qui se trouvent donc sur la première branche bifurquée (n = 0). Retenons la valeur $\alpha_{\ell} \in (0, \pi)$. À cette valeur de l'angle tangent en ℓ_{R} est associée une et une seule solution du problème de Cauchy (4.16). Par construction, comme elle vérifie aussi la condition d'encastrement $\alpha(0) = 0$, c'est une configuration d'équilibre. C'est même la seule configuration d'équilibre associée à cette valeur de la force qui soit située sur la première branche bifurquée du côté des $\alpha > 0$. Il reste à déterminer $s \mapsto \alpha(s)$ et $s \mapsto \mathbf{x}(s)$. Pour l'angle tangent, en se servant du diagramme (α, α') de la figure 4.14, on voit que le point décrit le quart de tour en partant de **A** pour arriver en **B** quand s croît de 0 à ℓ_{R} . Par conséquent $\alpha' > 0$, α est une fonction strictement croissante de S et on tire de (4.20) et (4.22)

$$\frac{d\alpha}{\sqrt{2(\cos\alpha - \cos\alpha_{\ell})}} = \mathsf{K}(\alpha_{\ell})\frac{dS}{\ell_{\mathsf{R}}}.$$
(4.23)

En intégrant et en tenant compte de la condition d'encastrement en S = 0, on obtient S en fonction α , *i.e.* la fonction $\alpha \mapsto S(\alpha)$ inverse de la fonction $S \mapsto \alpha(S)$:

$$S(\alpha) = \frac{\ell_{\mathsf{R}}}{\mathsf{K}(\alpha_{\ell})} \int_{0}^{\alpha} \frac{d\beta}{\sqrt{2(\cos\beta - \cos\alpha_{\ell})}}$$

l'intégrale étant une intégrale elliptique de première espèce que l'on peut aussi transformer à l'aide du changement de variable $\alpha \to \theta$. Pour déterminer la position, on utilise la définition du vecteur tangent $\mathbf{x}' = \cos \alpha \mathbf{e}_1 + \sin \alpha \mathbf{e}_2$ et là encore on va naturellement tomber sur une paramétrisation de la configuration d'équilibre non pas par l'abscisse curviligne mais par l'angle tangent. En effet, en utilisant (4.23) on obtient

$$\begin{cases} dx_1 = \cos \alpha \ dS = \frac{\ell_{\mathsf{R}}}{\mathsf{K}(\alpha_\ell)} \frac{\cos \alpha \ d\alpha}{\sqrt{2(\cos \alpha - \cos \alpha_\ell)}} \\ dx_2 = \sin \alpha \ dS = \frac{\ell_{\mathsf{R}}}{\mathsf{K}(\alpha_\ell)} \frac{\sin \alpha \ d\alpha}{\sqrt{2(\cos \alpha - \cos \alpha_\ell)}} \end{cases}$$

En intégrant et en tenant compte de la condition de fixation en \mathbf{O} , on obtient la courbe paramétrée par l'angle tangent :

$$\mathbf{x}(\alpha) = \frac{\ell_{\mathsf{R}}}{\mathsf{K}(\alpha_{\ell})} \left(\int_0^\alpha \frac{\cos\beta \ d\beta}{\sqrt{2(\cos\beta - \cos\alpha_{\ell})}} \ \mathbf{e}_1 + \left(\sin\frac{\alpha_{\ell}}{2} - \sqrt{\sin^2\frac{\alpha_{\ell}}{2} - \sin^2\frac{\alpha}{2}} \right) \mathbf{e}_2 \right),\tag{4.24}$$

la première intégrale (qui donne x_1) pouvant s'exprimer en termes d'intégrales elliptiques de première et de deuxième espèce. En résumé, à une valeur de la force $\mathcal{F} > \mathcal{F}_0$ on associe la valeur de $\alpha_{\ell} > 0$ donnée par (4.22) et la configuration d'équilibre paramétrée par α donnée par (4.24).

FIGURE 4.16 – À gauche : les configurations d'équilibre de l'elastica après flambement (correspondant à la première branche bifurquée) pour différentes valeurs de la force appliquée (la valeur est indiquée à l'extrémité de la courbe en proportion de la force de flambement \mathcal{F}_0).

À droite : comparaison des configurations d'équilibre exactes (trait plein) et approchées (en pointillé) pour des valeurs de la force proches de la charge de flambement. Les configurations approchées sont obtenues à partir de (4.19) en prenant pour angle tangent à l'extrémité la valeur exacte.

Sur les figures 4.16 droite et gauche sont représentées les configurations d'équilibre correspondant à des valeurs croissantes de la force appliquée. On peut en particulier remarquer que

• La position flambée exacte est bien approchée par le mode de flambement calculé à partir du problème de bifurcation linéarisé lorsque la force est proche de la charge de flambement (jusqu'à quelques pourcents au dessus), comme le montre la figure 4.16 de droite.

• La déflexion, *i.e.* la valeur de x_2 évolue très vite dès que l'on a dépassé la charge de flambement. En effet on peut voir sur la position d'équilibre correspondant à une force 10% supérieure à la charge de flambement que la déflexion de l'extrémité est environ égale à la moitié de la longueur de la tige, $x_2(\ell_R) \approx \ell_R/2$.

• Lorsqu'on augmente la force, la tige s'oriente progressivement vers l'axe des x_1 négatifs. On notera qu'il subsiste toutefois toujours un écart par rapport à la configuration $S \mapsto \mathbf{x}_0(S) = -S\mathbf{e}_1$ qui serait celle d'un fil inextensible n'ayant aucune rigidité à la flexion. Cet écart tient à la condition d'encastrement et à la non nullité de la rigidité à la flexion comme nous allons le montrer dans le paragraphe suivant.

7. Comportement asymptotique pour des grandes valeurs de \mathcal{F} et couche limite. Commençons par comparer les résultats que vous venons d'obtenir pour une tige inextensible élastiquement flexible avec ceux donnés par le modèle de fil inextensible. Pour un fil inextensible, l'équilibre des forces donne aussi $\mathbf{R}(S) = -\mathcal{F}\mathbf{e}_1$ et comme le moment fléchissant est nul par définition, l'équation d'équilibre des moments se réduit à T(S) = 0. Les équations régissant l'angle tangent s'écrivent donc

Equilibre d'un fil inextensible :
$$\forall S \in (0, \ell_{\mathsf{R}}), \quad \begin{cases} N(S) = -\mathcal{F} \cos \alpha(S) \\ T(S) = \mathcal{F} \sin \alpha(S) = 0 \end{cases}$$

en rappelant que l'on n'écrit pas la condition d'encastrement pour un fil. Si l'on rajoute la condition de stabilité $N(S) \ge 0$, il ne reste plus qu'une configuration d'équilibre possible qui est $\alpha(S) = \pi$ pour

tout $S \in (0, \ell_R)$. Du fait que le fil est fixé au point **O** en son extrémité S = 0, la position d'équilibre est donc $\mathbf{x}^*(S) = -S\mathbf{e}_1$.

Pour une tige possédant une rigidité à la flexion, les calculs précédents montrent que, lorsque la force appliquée est grande par rapport à la charge de flambement \mathcal{F}_0 , la configuration d'équilibre de la tige tend à se rapprocher de celle d'un fil avec un angle tangent voisin de π partout sauf au voisinage de l'encastrement où la condition d'encastrement l'oblige à partir avec un angle tangent nul, voir par exemple la configuration d'équilibre correspondant à $\mathcal{F} = 50\mathcal{F}_0$ sur la figure 4.16. Cette transition entre $\alpha = 0$ et $\alpha = \pi$ est un phénomène de *couche limite* que nous allons étudier.

Associons à chaque valeur \mathcal{F} de la force appliquée une longueur caractéristique ℓ en posant

 $\ell := \sqrt{\frac{\pi^2 \mathsf{EI}}{4\mathcal{F}}} \qquad (\text{longueur caractéristique de la force appliquée}) \,.$

Par conséquent $\ell = \ell_R$ quand $\mathcal{F} = \mathcal{F}_0$ et donc plus la force appliquée est grande devant la charge de flambement et plus la longueur caractéristique est petite devant la longueur de la tige. Réécrivons le problème réduit de l'elastica (4.15) en faisant apparaître ℓ :

$$\begin{cases} \frac{4\ell^2}{\pi^2} \frac{d^2 \alpha}{dS^2}(S) + \sin \alpha(S) = 0, \quad \forall S \in (0, \ell_{\mathsf{R}}) \\ \hline \alpha(0) = 0, \quad \alpha'(\ell_{\mathsf{R}}) = 0 \end{cases}.$$

$$(4.25)$$

Mathématiquement, quand ℓ est petit, on a affaire à un problème de *perturbation singulière*, le petit paramètre affecte la dérivée d'ordre supérieur (ici la dérivée seconde de l'angle tangent). La solution asymptotique obtenue après passage à la limite du petit paramètre ne peut plus satisfaire certaines conditions aux limites par manque de régularité. Ici en passant à la limite quand ℓ tend vers 0, on tombe sur le modèle de fil inextensible et si l'on ne retient que la solution $\alpha = \pi$ pour que le fil soit en tension, on ne peut plus satisfaire la condition d'encastrement. On est passé d'un modèle où la rigidité de flexion permettait de contrôler la courbure à un modèle sans aucune rigidité qui autorise des discontinuités de la tangente. Ce qui nous intéresse ici est d'étudier le comportement de la solution pour des valeurs petites mais non nulles du paramètre. Partant de (4.25), en intégrant une première fois à l'aide de l'intégrale première et en se plaçant sur la première branche bifurquée avec $\alpha_{\ell} \in (0, \pi)$, on obtient

$$\begin{cases} \frac{\ell^2}{\pi^2} \alpha'^2 = \sin^2(\alpha_\ell/2) - \sin^2(\alpha/2) & \text{dans} \quad (0, \ell_{\mathsf{R}}) \\ \hline \alpha(0) = 0, \quad \alpha'(\ell_{\mathsf{R}}) = 0, \quad \alpha(\ell_{\mathsf{R}}) = \alpha_\ell \end{cases}$$

$$(4.26)$$

avec α_{ℓ} relié à ℓ par

$$\int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - \sin^2 \frac{\alpha_\ell}{2} \, \sin^2 \theta}} = \frac{\pi \ell_{\mathsf{R}}}{2\ell}$$

Pour étudier le phénomène de couche limite, nous allons nous placer à des échelles de longueur de l'ordre de ℓ . (On pourrait le formaliser en faisant le changement de variable $\zeta = S/\ell$, mais cela

alourdirait inutilement les notations et la présentation.) Comme ℓ_{R} est grand devant ℓ , l'extrémité $S = \ell_{\mathsf{R}}$ va être rejetée à l'infini et on va travailler sur la demi-droite $(0, \infty)$. Comme α_{ℓ} tend vers π quand ℓ tend vers 0, on remplace formellement α_{ℓ} par π dans les relations précédentes pour arriver finalement au

Problème de couche limite de l'elastica :	$\int \ell^2 \alpha'(S)^2 = \pi^2 \cos^2(\alpha(S)/2), \forall S \in (0, +\infty)$		
	$\begin{aligned} \alpha(0) = 0, \alpha(+\infty) = \pi \end{aligned}$		

Il correspond dans l'espace des phases au cas limite où $\alpha_{\ell} = \pi$, cf figure 4.14. Comme il faut parcourir une distance infinie dans l'espace physique pour faire un quart de tour dans l'espace des phases et que l'on doit arriver au point **B**, il faut partir du point **A** et α' sera toujours strictement positif. Par conséquent, on a $\ell \alpha' = +\pi \cos(\alpha/2)$ avec $\alpha(0) = 0$, équation différentielle qui se résout sans difficulté pour donner

$$\alpha(S) = 2 \arcsin\left(\operatorname{th} \frac{\pi S}{2\ell}\right), \quad S \in (0, +\infty)$$

La configuration d'équilibre $S \mapsto \mathbf{x}(S)$ s'obtient par intégration en partant de la définition du vecteur tangent

$$x_1'(S) = \cos \alpha(S) = \left(1 - 2 \operatorname{th}^2 \frac{\pi S}{2\ell}\right), \qquad x_2'(S) = \sin \alpha(S) = \frac{2 \operatorname{sh} \frac{\pi S}{2\ell}}{\operatorname{ch}^2 \frac{\pi S}{2\ell}}.$$

L'intégration ne présente pas de difficulté et grâce à la condition de fixation $\mathbf{x}(0) = \mathbf{0}$ on obtient finalement

$$\mathbf{x}(S) = \left(\underbrace{-S}_{\pi} + \underbrace{\frac{4\ell}{\pi} \operatorname{th} \frac{\pi S}{2\ell}}_{2\ell} \right) \mathbf{e}_1 + \left(\underbrace{0}_{\pi} + \underbrace{\frac{4\ell}{\pi} \left(1 - \frac{1}{\operatorname{ch} \frac{\pi S}{2\ell}} \right)}_{2\ell} \right) \mathbf{e}_2, \quad S \in (0, +\infty)$$

Notons que l'on a obtenu des expressions explicites, contrairement à la solution exacte qui contenait des intégrales elliptiques à calculer numériquement. On reconnait dans l'expression de la configuration d'équilibre la configuration correspondant à un fil inextensible, ce sont les termes encadrés en vert : $\mathbf{x}^*(S) = -S\mathbf{e}_1$. Si l'on prend cette configuration \mathbf{x}^* comme configuration de référence, alors le champ de déplacement $\boldsymbol{\xi}$ correspond aux termes encadrés en rouge et représente le *correcteur de couche limite* :

$$\boldsymbol{\xi}(S) = \frac{4\ell}{\pi} \operatorname{th} \frac{\pi S}{2\ell} \mathbf{e}_1 + \frac{4\ell}{\pi} \left(1 - \frac{1}{\operatorname{ch} \frac{\pi S}{2\ell}} \right) \mathbf{e}_2, \quad S \in (0, +\infty) \ .$$

Son amplitude est de l'ordre de ℓ et on peut remarquer que le vecteur déplacement $\boldsymbol{\xi}(S)$ décrit un quart de cercle quand S croît de 0 à l'infini. Précisément, on a

$$\xi_1^2 + \left(\frac{4\ell}{\pi} - \xi_2\right)^2 = \frac{16\ell^2}{\pi^2},$$

le vecteur déplacement se trouve sur le cercle de centre $(0, 4\ell/\pi)$ et de rayon $4\ell/\pi$. Il décrit rapidement ce quart de cercle puisqu'il part de (0, 0) quand S = 0 pour atteindre pratiquement le point $(4\ell/\pi, 4\ell/\pi)$

quand $S = 4\ell$, cf figure 4.17. Autrement dit, la tige ne diffère pratiquement de la configuration d'équilibre d'un fil que par la translation d'ensemble $\frac{4\ell}{\pi}(\mathbf{e}_1 + \mathbf{e}_2)$ dès que $S > 4\ell$.

FIGURE 4.17 – Représentation de la configuration d'équilibre pour des grandes valeurs de la force appliquée \mathcal{F} . À gauche : le champ des déplacements par rapport à la configuration d'équilibre d'un fil inextensible, les marques rouges indiquant l'abscisse curviligne. À droite : Configurations d'équilibre exactes (trait plein rouge) comparées aux configurations d'équilibre obtenues à partir du problème de couche limite (trait pointillé bleu).

Le problème de couche limite ne doit théoriquement être utilisé que pour calculer la couche limite lorsque la longueur caractéristique ℓ est petite devant la longueur ℓ_{R} de la tige. Toutefois, on peut l'utiliser en pratique sur une plage de valeurs de ℓ assez grande comme le montre la figure 4.17 de droite. En effet, on voit que dès que $\mathcal{F} > 16\mathcal{F}_0$, ce qui correspond à $\ell < \ell_{\mathsf{R}}/4$, il n'y a pratiquement pas de différence entre la solution exacte et la solution de couche limite. L'approximation est même satisfaisante dès que $\ell < \ell_{\mathsf{R}}/2$ (*i.e.* $\mathcal{F} > 4\mathcal{F}_0$).

Influence des conditions aux limites

Les calculs précédents ont été faits sous l'hypothèse que la tige était encastrée à une extrémité et chargée à l'autre. On peut évidemment rencontrer d'autres types de conditions aux limites et aussi bien la valeur de la charge de flambement que les modes de flambement en dépendent. Contentons-nous ici de calculer la première charge de flambement \mathcal{F}_1 et le mode associé $S \mapsto \alpha_1(S)$ (ou $S \mapsto \mathbf{x}_1(S)$) pour quelques jeux de conditions aux limites qui sont résumées dans le tableau ci-dessous

Type de C. L.	encastrée-rotation bloquée	$fix \acute{e}$ - $charg \acute{e}$	encastrée-appui simple
en $S = 0$	$\mathbf{x} = 0, \ \alpha = 0$	$\mathbf{x} = 0, \ M = 0$	$\mathbf{x} = 0, \ \alpha = 0$
en $S = \ell_{R}$	$\mathbf{R} = -\mathcal{F}\mathbf{e}_1, \ \alpha = 0$	$\mathbf{R} = -\mathcal{F}\mathbf{e}_1, \ M = 0$	$R_1 = -\mathcal{F}, x_2 = 0, \ M = 0$

1. Cas encastrée-rotation bloquée. Dans ce cas seule une condition en ℓ_{R} change, la condition $\alpha'(\ell_{\mathsf{R}}) = 0$ étant remplacée par $\alpha(\ell_{\mathsf{R}}) = 0$. Le problème de bifurcation consiste donc à trouver $\mathcal{F} \in \mathbb{R}$ et $S \mapsto \alpha(S) \not\equiv 0$ tels que

$$\begin{cases} \mathsf{E}\mathsf{I}\alpha''(S) + \mathcal{F}\alpha(S) = 0, \quad \forall S \in (0, \ell_{\mathsf{R}}) \\ \alpha(0) = \alpha(\ell_{\mathsf{R}}) = 0 \end{cases}$$

$$(4.27)$$

On peut suivre la même démarche que dans le cas encastrée-chargée. On montre d'abord que $\mathcal{F} > 0$ dont on déduit que la solution générale de l'équation différentielle s'écrit

$$\alpha(S) = a \cos\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}\,S\right) + b \sin\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}\,S\right).$$

La condition à la limite en 0 donne a = 0 et, comme b ne doit pas être nul, celle en ℓ_{R} donne

$$\sin\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}\,\ell_{\mathsf{R}}\right) = 0$$

On en déduit la famille de points de bifurcation et de modes de bifurcation associés

$$\mathcal{F}_n = n^2 \frac{\pi^2 \mathsf{EI}}{\ell_{\mathsf{R}}^2}, \quad \alpha_n(S) = \alpha_\ell \sin\left(n\pi \frac{S}{\ell_{\mathsf{R}}}\right) \quad n \in \mathbb{N}^*, \quad \alpha_\ell \in \mathbb{R}$$

Noter que n = 0 est interdit car il donnerait $\alpha \equiv 0$. La charge de flambement et le mode de flambement correspondent au premier point de bifurcation, *i.e.* n = 1:

Charge et mode de flambement du cas encastrée-rotation bloquée :
$$\mathcal{F}_1 = \frac{\pi^2 \mathsf{EI}}{\ell_{\mathsf{R}}^2}$$
, $\alpha_1(S) = \alpha_\ell \sin\left(\frac{\pi S}{\ell_{\mathsf{R}}}\right)$

La charge de flambement est donc 4 fois plus élevée que dans le cas encastrée-chargée, résultat que l'on pouvait deviner en invoquant des arguments de symétrie. En effet, si on suppose que le mode de flambement est symétrique par rapport au milieu de la tige (hypothèse qui se base sur le fait que les conditions aux limites sont symétriques), alors on a $\alpha'(\ell_R/2) = 0$ et on se retrouve dans la situation encastrée-chargée d'une tige deux fois plus courte. Comme la charge de flambement est inversement proportionnelle au carré de la longueur, on retrouve le facteur 4. Notons toutefois que cet argument vaut pour le premier mode (et de façon générale pour les modes impairs), mais pas pour les modes pairs qui eux ne sont pas symétriques.

2. Cas fixée-chargée. Dans ce cas les rotations aux extrémités sont libres et les moments fléchissants sont nuls. Le problème de bifurcation consiste donc à trouver $\mathcal{F} \in \mathbb{R}$ et $S \mapsto \alpha(S) \not\equiv 0$ tels que

$$\begin{cases} \mathsf{El}\alpha''(S) + \mathcal{F}\alpha(S) = 0, \quad \forall S \in (0, \ell_{\mathsf{R}}) \\ \alpha'(0) = \alpha'(\ell_{\mathsf{R}}) = 0 \end{cases}$$

$$(4.28)$$

On peut remarquer que $\mathcal{F} = 0$ avec $\alpha(S)$ constant est solution. Cela tient au fait que le système est hypostatique et que la rotation d'ensemble n'est pas bloquée. Si l'on écarte cette solution (il suffit pour l'empêcher de remplacer la condition en ℓ_R par une condition d'appui simple, la vérification de ceci est laissée à titre d'exercice), les autres correspondent à des valeurs positives de \mathcal{F} . Ce faisant, la solution générale de l'équation différentielle s'écrit toujours

$$\alpha(S) = a \cos\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}\,S\right) + b \sin\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}\,S\right)$$

La condition à la limite en 0 donne b = 0 et, comme a ne doit pas être nul, celle en ℓ_{R} donne

$$\sin\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}\,\ell_{\mathsf{R}}\right) = 0.$$

On obtient finalement la famille de points de bifurcation et de modes de bifurcation suivante (en y incluant le cas n = 0) :

$$\mathcal{F}_n = n^2 \frac{\pi^2 \mathsf{EI}}{\ell_{\mathsf{R}}^2}, \quad \alpha_n(S) = \alpha_\ell \cos\left(n\pi \frac{S}{\ell_{\mathsf{R}}}\right) \quad n \in \mathbb{N}, \quad \alpha_\ell \in \mathbb{R}.$$

Le spectre est le même que dans le cas *encastrée-rotation bloquée* mis à part le fait qu'il contient en plus la valeur propre 0, les modes propres sont différents. La "vraie" charge de flambement et le "vrai" mode de flambement correspondent à n = 1:

Charge et mode de flambement du cas fixée-chargée :
$$\mathcal{F}_1 = \frac{\pi^2 \mathsf{EI}}{\ell_{\mathsf{R}}^2}, \quad \alpha_1(S) = \alpha_\ell \cos\left(\frac{\pi S}{\ell_{\mathsf{R}}}\right)$$

3. Cas encastrée-appui simple. La présence de l'appui simple oblige à refaire toute la démarche pour obtenir le problème de bifurcation. Repartons du problème aux limites de l'elastica **D-4.9** en y substituant les conditions aux limites du cas encastrée-appui simple. L'équation locale d'équilibre des forces dit que la force intérieure est constante, mais la condition d'appui simple donne seulement sa composante R_1 et donc

$$\mathbf{R}(S) = -\mathcal{F}\mathbf{e}_1 + T_0\mathbf{e}_2, \quad \forall S \in (0, \ell_{\mathsf{R}}),$$

où T_0 est une constante restant à déterminer. L'effort tranchant s'écrit maintenant $T(S) = \mathcal{F} \sin \alpha(S) + T_0 \cos \alpha(S)$ et en reportant dans l'équation locale d'équilibre des moments on obtient

$$\mathsf{E}\mathsf{I}\alpha''(S) + \mathcal{F}\sin\alpha(S) + T_0\cos\alpha(S) = 0, \quad \forall S \in (0, \ell_{\mathsf{R}}).$$

Les conditions d'encastrement en 0 et de rotation libre en ℓ_{R} fournissent deux conditions pour l'angle tangent : $\alpha(0) = 0$ et $\alpha'(\ell_{\mathsf{R}}) = 0$. Nous allons en récupérer une troisième grâce à la condition d'appui simple qui servira à déterminer la constante T_0 . En effet comme $x'_2(S) = \sin \alpha(S)$ et que $x_2(0) = x_2(\ell_{\mathsf{R}}) = 0$, on a

$$0 = x_2(\ell_{\mathsf{R}}) - x_2(0) = \int_0^{\ell_{\mathsf{R}}} x_2'(S) dS = \int_0^{\ell_{\mathsf{R}}} \sin \alpha(S) dS$$

qui est donc une condition intégrale sur l'angle tangent. Finalement le problème réduit de l'elastica s'écrit dans notre cas

Le problème réduit de l'elastica dans le cas encastrée-appui simple
$$\begin{cases} \mathsf{E}\mathsf{I}\alpha''(S) + \mathcal{F}\sin\alpha(S) + T_0\cos\alpha(S) = 0, \ \forall S \in (0,\ell_{\mathsf{R}}) \\ \alpha(0) = 0, \quad \alpha'(\ell_{\mathsf{R}}) = 0, \quad \int_0^{\ell_{\mathsf{R}}} \sin\alpha(S)dS = 0 \end{cases}$$

Une fois ce problème de l'angle tangent résolu, on obtient la position d'équilibre $S \mapsto \mathbf{x}(S)$ par intégration et la condition de fixation en **O** (la condition d'appui simple sera automatiquement satisfaite puisqu'elle est contenue dans la condition intégrale). Comme nous cherchons uniquement les points de bifurcation et les modes de bifurcation ¹², linéarisons le problème réduit en remplaçant formellement sin α par α et cos α par 1. On obtient le problème de bifurcation qui consiste à chercher $S \mapsto \alpha(S) \neq 0, \mathcal{F} \in \mathbb{R}$ et $T_0 \in \mathbb{R}$ tels que

Le problème de bifurcation de l'elastica dans le cas encastrée-appui simple $\begin{cases} \mathsf{El}\alpha''(S) + \mathcal{F}\alpha(S) + T_0 = 0, \ \forall S \in (0, \ell_{\mathsf{R}}) \\ \alpha(0) = 0, \quad \alpha'(\ell_{\mathsf{R}}) = 0, \quad \int_0^{\ell_{\mathsf{R}}} \alpha(S) dS = 0 \end{cases}$

En multipliant l'équation d'équilibre des moments par $\alpha(S)$, en intégrant sur $(0, \ell_R)$, en intégrant par parties le terme $\alpha'' \alpha$ et en tenant compte des conditions aux limites et de la condition intégrale, on obtient encore que $\mathcal{F} > 0$. Par conséquent la solution générale de l'équation différentielle s'écrit

$$\alpha(S) = -\frac{T_0}{\mathcal{F}} + a\cos\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}S\right) + b\sin\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}S\right).$$

La condition en 0 donne $T_0 = a\mathcal{F}$ et les deux autres conditions conduisent au système linéaire homogène en a et b:

$$\begin{pmatrix} -\sin(\lambda\pi) & \cos(\lambda\pi) \\ -\lambda\pi + \sin(\lambda\pi) & 1 - \cos(\lambda\pi) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad \lambda := \sqrt{\frac{\mathcal{F}}{\mathsf{EI}}} \frac{\ell_{\mathsf{R}}}{\pi}.$$

Comme on cherche une solution non nulle, il faut que le déterminant soit nul ce qui fournit l'équation pour \mathcal{F} :

$$\operatorname{tg}\left(\sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}\,\ell_{\mathsf{R}}\right) = \sqrt{\frac{\mathcal{F}}{\mathsf{EI}}}\,\ell_{\mathsf{R}}, \qquad \mathcal{F} > 0 \;.$$

Cela revient à chercher les solutions de l'équation $tg(\lambda \pi) = \lambda \pi$ parmi les $\lambda > 0$. Les solutions forment une suite croissante λ_n tendant vers l'infini, $\lambda_n \in (n, n + 1/2)$ pour $n \in \mathbb{N}^*$. La première racine $\lambda_1 \approx 1.4303$ fournit la charge de flambement \mathcal{F}_1 et le mode de flambement α_1 ,

Charge et mode de flambement du cas encastrée-appui simple :

$$\mathcal{F}_1 = \lambda_1^2 \frac{\pi^2 \mathsf{EI}}{\ell_{\mathsf{R}}^2}, \quad \alpha_1(S) = \alpha_\ell \left(\cos(\lambda_1 \pi) - \cos\left(\lambda_1 \pi \left(1 - \frac{S}{\ell_{\mathsf{R}}}\right) \right) \right), \quad \alpha_\ell \in \mathbb{R}, \quad \lambda_1 \approx 1.4303.$$

^{12.} Noter que $\alpha \equiv 0$ est toujours solution que que soit \mathcal{F} , la constante T_0 vaut 0 (pas d'effort tranchant).

Le mode flambé en terme de position est en première approximation donné par

$$\mathbf{x}_1(S) \approx S\mathbf{e}_1 + \frac{\alpha_\ell \ell_{\mathsf{R}}}{\lambda_1 \pi} \left(\sin\left(\lambda_1 \pi \left(1 - \frac{S}{\ell_{\mathsf{R}}}\right)\right) - \left(1 - \frac{S}{\ell_{\mathsf{R}}}\right) \sin(\lambda_1 \pi) \right) \mathbf{e}_2.$$

Si on compare cette charge de flambement avec celle du cas encastrée-chargée, on voit que \mathcal{F}_1 est $4\lambda_1^2 \approx 8$ fois plus élevée que \mathcal{F}_0 donnée dans **P-4.6**, la condition d'appui simple en interdisant toute déflexion de l'extrémité rigidifie le système et diminue sensiblement le risque de flambement.

Exercice 4.3. Déterminer les points de bifurcation et les modes de bifurcation dans le cas fixée-appui simple où les conditions aux limites s'écrivent

$$\mathbf{x}(0) = \mathbf{0}, \quad \alpha'(0) = 0, \quad R_1(\ell_R) = -\mathcal{F}, \quad x_2(\ell_R) = 0, \quad \alpha'(\ell_R) = 0.$$

Vérifier que ce sont les mêmes que ceux du cas fixée-chargée mis à part que $\mathcal{F}_0 = 0$ et $\alpha_0(S) = cste$ ne sont plus solution.

Exercice 4.4. Déterminer les points de bifurcation et les modes de bifurcation dans le cas où les conditions aux limites s'écrivent

$$\mathbf{x}(0) = \mathbf{0}, \quad \alpha(0) = 0, \quad R_1(\ell_R) = -\mathcal{F}, \quad x_2(\ell_R) = 0, \quad \alpha(\ell_R) = 0.$$

Les comparer à ceux du cas encastrée-appui simple.

Prise en compte de l'extensibilité

1. Reformulation du problème aux limites. Tous les calculs jusqu'ici ont été faits sous l'hypothèse d'inextensibilité de la tige. Sachant que cette condition n'est évidemment jamais parfaitement satisfaite en pratique, il est légitime de se demander quels seraient les changements en terme de charge de flambement ou de configuration flambée si l'on tenait compte de l'extensibilité de la tige. Nous allons nous limiter à le faire dans le cas d'un comportement d'extension linéairement élastique, même si la démarche adoptée pourrait s'étendre à un comportement élastique non linéaire quelconque. On suppose en outre qu'il y a un découplage entre la flexion et l'extension et donc que les relations constitutives s'écrivent

$$N(S) = \mathsf{EA}(\mathsf{s}'(S) - 1), \qquad M(S) = \mathsf{EI}\alpha'(S),$$

où $S \mapsto \mathbf{s}(S)$ donne le changement d'abscisse curviligne entre la configuration de référence (qui est ici $\mathbf{x}_{\mathsf{R}}(S) = S\mathbf{e}_1$) et la configuration d'équilibre. On fixe la constante de \mathbf{s} en choisissant l'origine de l'abscisse curviligne et ici on prend $\mathbf{s}(0) = 0$. On se place dans le cadre des conditions aux limites classiques de l'elastica, *i.e.* dans le cas *encastrée-chargée*. Le problème aux limites complet s'écrit donc : **D-4.10** (Le problème aux limites de l'elastica avec extensibilité). Pour $\mathcal{F} \in \mathbb{R}$ donné, il s'agit de trouver $S \mapsto (\mathbf{s}(S), \alpha(S), \mathbf{x}(S))$ et $S \mapsto (\mathbf{R}(S), M(S))$ vérifiant

\bullet les relations géométriques dans $(0,\ell_{\mathtt{R}})$:	$\begin{cases} \mathbf{t}(S) = \cos \alpha(S)\mathbf{e}_1 + \sin \alpha(S)\mathbf{e}_2\\ \mathbf{x}'(S) = \mathbf{s}'(S)\mathbf{t}(S), \mathbf{s}'(S) > 0 \end{cases}$
• les efforts intérieurs dans $(0, \ell_R)$:	$\mathbf{R}(S) = N(S)\mathbf{t}(S) + T(S)\mathbf{e}_3 \wedge \mathbf{t}(S)$
\bullet les équations d'équilibre dans $(0,\ell_{\mathtt{R}})$:	$\begin{cases} \mathbf{R}'(S) = 0 \\ M'(S) + \mathbf{s}'(S) \end{cases} T(S) = 0 \end{cases}$
\bullet les conditions aux limites en 0 et $\ell_{\rm R}$:	$\begin{cases} \mathbf{x}(0) = 0 \\ \alpha(0) = 0 \end{cases}, \qquad \begin{cases} \mathbf{R}(\ell_{R}) = -\mathcal{F}\mathbf{e}_{1} \\ M(\ell_{R}) = 0 \end{cases}$
\bullet les relations constitutives dans $(0,\ell_{\mathtt{R}})$:	$\begin{cases} N(S) = EA(s'(S) - 1) \\ M(S) = EI\alpha'(S) \end{cases}$

Les changements par rapport au cas inextensible sont encadrés en rouge. Les inconnues principales sont maintenant $S \mapsto (\mathbf{s}(S), \alpha(S))$, les efforts intérieurs s'en déduisant par dérivation et la position d'équilibre s'en déduisant par intégration

$$\mathbf{x}(S) = \int_0^S \mathbf{s}'(\zeta) \big(\cos\alpha(\zeta)\mathbf{e}_1 + \sin\alpha(\zeta)\mathbf{e}_2\big) d\zeta.$$

Nous allons voir que nous pouvons "éliminer" aussi \mathbf{s} et construire un système différentiel "réduit" régissant $S \mapsto \alpha(S)$ seul. L'équation locale d'équilibre des forces et la condition en ℓ_{R} dit que la force intérieure est encore égale à la force exercée, $\mathbf{R}(S) = -\mathcal{F}\mathbf{e}_1$, ce qui en projetant donne toujours pour expressions de l'effort normal et de l'effort tranchant :

$$N(S) = -\mathcal{F}\cos\alpha(S), \quad T(S) = \mathcal{F}\sin\alpha(S).$$

En s'aidant de la loi d'extensibilité et de l'expression ci-dessus de l'effort normal on peut exprimer \mathbf{s}' en fonction de α et déduire l'abscisse curviligne à l'équilibre de l'angle tangent par intégration :

$$\mathbf{s}(S) = S - \frac{\mathcal{F}}{\mathsf{EA}} \int_0^S \cos \alpha(\zeta) d\zeta,$$

la condition de non dégénérescence exigeant que $\mathcal{F} \cos \alpha(S) < \mathsf{EA}, \forall S \in (0, \ell_{\mathsf{R}})$ et donc que $\mathcal{F} \leq \mathsf{EA}^{13}$ puisque $\alpha(0) = 0$. En reportant dans l'équation locale d'équilibre des moments, en tenant compte de

^{13.} Notons toutefois que cette borne sur la force appliquée tient au fait que nous avons choisi une loi d'extensibilité linéaire. Il est de ce fait possible de réduire à 0 la longueur d'un telle tige en exerçant une force finie. En prenant une loi plus réaliste, cf l'exemple 3.3 du chapitre 3, on fait disparaître cette borne.

la loi de flexibilité et des conditions aux limites d'encastrement en 0 et de moment fléchissant nul en ℓ_{R} , on obtient le système différentiel cherché :

(Problème réduit de l'elastica dans le cas extensible)
$$\begin{cases} \mathsf{El}\alpha''(S) + \mathcal{F}\sin\alpha(S) - \frac{\mathcal{F}^2}{2\mathsf{EA}}\sin 2\alpha(S) = 0, \ \forall S \in (0, \ell_{\mathsf{R}}) \\ \alpha(0) = 0, \quad \alpha'(\ell_{\mathsf{R}}) = 0 \end{cases}$$

Notons que $\alpha \equiv 0$ est encore solution pour toute valeur admissible de la force, seule la position d'équilibre est modifiée du fait de l'extensibilité. La branche fondamentale est donc maintenant

$$\alpha(S) = 0, \quad \mathbf{x}(S) = \left(1 - \frac{\mathcal{F}}{\mathsf{E}\mathsf{A}}\right)S, \quad \forall S \in (0, \ell_{\mathsf{R}}), \quad \mathcal{F} < \mathsf{E}\mathsf{A},$$

le cas limite $\mathcal{F} = \mathsf{E}\mathsf{A}$ étant à exclure puisqu'il donnerait $\mathbf{s}' \equiv 0$. Pour trouver les autres solutions, le problème réduit peut se résoudre en suivant exactement la même démarche que dans le cas inextensible : on peut calculer d'abord les points de bifurcation et les modes de bifurcation associés, puis faire apparaître une intégrale première pour calculer enfin les branches bifurquées exactes. Nous nous contenterons de souligner les différences marquantes par rapport au cas inextensible.

2. La charge de flambement et le mode de flambement. En linéarisant le problème réduit autour de la solution fondamentale, on obtient le problème de bifurcation qui consiste à trouver $\alpha \neq 0$ et $\mathcal{F} < \mathsf{EA}$ tels que

$$\begin{cases} \mathsf{EI}\alpha''(S) + \left(1 - \mathcal{F}/\mathsf{EA}\right)\mathcal{F}\alpha(S) = 0, \quad \forall S \in (0, \ell_{\mathsf{R}})\\ \alpha(0) = 0, \quad \alpha'(\ell_{\mathsf{R}}) = 0 \end{cases}$$

On voit qu'il suffit de remplacer \mathcal{F} par $(1 - \mathcal{F}/\mathsf{EA})\mathcal{F}$ dans le problème inextensible. Si l'on définit la charge de flambement comme le premier point de bifurcation, on obtient pour la charge de flambement $\mathcal{F}_0^{\mathsf{ex}}$ dans le cas extensible

$$\mathcal{F}_0^{\mathsf{ex}} = \left(1 - \sqrt{1 - \frac{4\mathcal{F}_0}{\mathsf{E}\mathsf{A}}}\right) \frac{\mathsf{E}\mathsf{A}}{2} = \left(1 - \sqrt{1 - \frac{\pi^2\mathsf{I}}{\mathsf{A}\ell_{\mathsf{R}}^2}}\right) \frac{\mathsf{E}\mathsf{A}}{2},$$

sous réserve que $\pi^2 I < (A\ell_R^2)$ (sinon, il n'y a pas de flambement possible). En pratique, comme la modélisation par un milieu curviligne n'a de sens que pour des objets élancés, le rapport $\pi^2 I/(A\ell_R^2) = 4\mathcal{F}_0/EA$ est petit devant 1. En effet, I/A est de l'ordre du carré du "diamètre" **a** de la section et donc $\pi^2 I/(A\ell_R^2)$ est de l'ordre de \mathbf{a}^2/ℓ_R^2 qui est supposé petit. En se plaçant dans cette situation et en faisant un développement limité de la racine carrée dans l'expression de \mathcal{F}_0^{ex} , on trouve au deuxième ordre

$$\mathcal{F}_0^{\mathsf{ex}} \approx (1 + \varepsilon_0) \mathcal{F}_0 \quad \text{avec} \quad \varepsilon_0 := \frac{\mathcal{F}_0}{\mathsf{E}\mathsf{A}} = \frac{\pi^2 \mathsf{I}}{4\mathsf{A}\ell_\mathsf{R}^2},$$

où ε_0 représente la déformation de compression simple de la tige due à la force de compression \mathcal{F}_0 . Par conséquent $\mathcal{F}_0^{\mathsf{ex}}$ est (légèrement) supérieure à \mathcal{F}_0 , on sous-estime (un peu) la charge de flambement en ne tenant pas compte de l'extensibilité. Mais l'écart est d'autant plus faible que la tige est élancée.

Par exemple, si on considère une poutre à section carrée de côté **a**, on a $\pi^2 I/(A\ell_R^2) = \pi^2 a^2/(12\ell_R^2)$ ce qui donne pour un rapport d'élancement ℓ_R/a de 20 un rapport $\pi^2 I/(A\ell_R^2) \approx 2.10^{-3}$. La déformation de compression de la poutre correspondant à la valeur \mathcal{F}_0 de la force est donc $\varepsilon_0 = \mathcal{F}_0/EA \approx 5.10^{-4}$, ce qui rend légitime de ne pas tenir compte de l'extensibilité pour calculer la force de flambement.

Les autres points de bifurcation sont les \mathcal{F} tels que

$$\mathcal{F}^2 - \mathsf{E}\mathsf{A}\mathcal{F} + (2n+1)^2\mathsf{E}\mathsf{A}\mathcal{F}_0 = 0, \quad n \in \mathbb{N}^*.$$

Il n'en existe qu'un nombre fini du fait du comportement linéairement élastique. Mais leur étude est inutile, seule la première branche bifurquée se révélant stable.

3. La branche flambée exacte. L'intégrale première s'obtient en multipliant l'équation d'équilibre des moments par α' :

$$0 = \mathsf{EI}\alpha''\alpha' + \mathcal{F}\sin\alpha\alpha' - \frac{\mathcal{F}^2}{2\mathsf{EA}}\sin2\alpha\alpha' = \frac{d}{dS}\left(\frac{1}{2}\,\mathsf{EI}\alpha'^2 - \mathcal{F}\cos\alpha + \frac{\mathcal{F}^2}{4\mathsf{EA}}\cos(2\alpha)\right).$$

On obtient l'équation différentielle du premier ordre à variables séparées

$$\mathsf{EI}\alpha'^{2} = 2\mathcal{F}\big(\cos\alpha - \cos\alpha_{\ell}\big) - \frac{\mathcal{F}^{2}}{2\mathsf{EA}}\big(\cos(2\alpha) - \cos(2\alpha_{\ell})\big)$$

qui diffère de celle trouvée dans le cas inextensible par le terme encadré en rouge. On voit que tant que \mathcal{F}/EA est petit devant 1, ce terme peut être négligé et la solution inextensible constitue une bonne approximation. Les effets de l'extensibilité se font sentir quand \mathcal{F} devient proche de EA . En pratique, ce cas ne se présente que pour des matériaux qui peuvent se déformer beaucoup tout en restant élastique comme les objets en caoutchouc. Pour les autres matériaux, il y aura rupture ou au moins un comportement inélastique bien avant que \mathcal{F} atteigne des valeurs proches de EA .

4.5.2 Les variantes du problème du flambement d'Euler

• Le flambement sous poids-propre. Le phénomène de flambement sous poids propre est très fréquent. On peut l'observer quotidiennement avec les plantes ou en manipulant des fils ou des feuilles de papier. La modélisation du phénomène est très proche de celle du problème de flambement d'Euler, la seule différence provenant du fait que la force est répartie et non plus concentrée à l'extrémité. Dans le cas d'une tige inextensible encastrée-libre, en prenant pour paramètre la longueur de la tige, on trouve numériquement que la tige flambe si sa longueur ℓ_R dépasse la longueur critique ℓ_0 donnée par

$$\ell_0^3 = 7.837 \frac{\mathsf{EI}}{\rho_{\mathsf{m}} \mathsf{A}g}.$$

• Le flambement dû à la température. Si, partant d'une configuration naturelle à la température T_0 , l'on chauffe une tige tout en l'empêchant de se dilater, elle va se trouver comprimée et si l'augmentation $\theta = T - T_0$ de température est trop élevée, la tige va flamber. Ce phénomène touche tout particulièrement les structures très élancées (comme des rails de chemin de fer) car plus la structure est élancée et moindre sera l'augmentation de température θ_c nécessaire pour la faire flambée. C'est pourquoi on est obligé de prévoir des joints de dilatation régulièrement répartis.

Pour modéliser le phénomène on change la relation constitutive entre l'effort normal et la déformation d'extension pour tenir compte de la dilatation

$$N = \mathsf{EA}(\varepsilon - \mathsf{a}(T - T_0))$$

alors que la relation moment fléchissant-déformation de flexion reste inchangée $M = \mathsf{El}\kappa$. Pour obtenir l'augmentation de température critique θ_c au delà de laquelle la tige flambe, on suit une démarche en tout point analogue à celle qui donne la charge de flambement d'Euler. Cette valeur dépend évidemment du type de conditions aux limites envisagé.

• Le flambement d'un anneau. Si l'on soumet un anneau élastique de forme naturelle circulaire à une force linéique normale uniforme p pointant vers *l'intérieur*, l'anneau garde sa forme circulaire (avec une diminution du rayon du fait de la compression) tant que p ne dépasse pas une valeur critique p_c . Mais au delà de cette valeur critique, l'anneau va flamber en s'ovalisant pour "se soustraire" à cette compression trop forte. Pour obtenir la valeur critique p_c au delà de laquelle l'anneau flambe, on suit une démarche en tout point analogue à celle qui donne la charge de flambement d'Euler. Dans le cas d'un anneau homogène de rayon naturel R, on trouve

$$p_c = \frac{3\mathsf{EI}}{R^3}$$

A contrario, si l'on soumet l'anneau à une force linéique normale uniforme p pointant vers *l'extérieur*, alors quelle que soit la valeur de p il va se dilater tout en gardant sa forme circulaire. L'anneau se trouvant en traction ne flambera jamais.

Ovalisation de l'anneau si la pression externe est trop forte

Dilatation uniforme de l'anneau sous pression interne

4.5.3 Le problème de la poutre de Galilée

Cadre de l'étude et formulation du problème aux limites

En 1638 paraissent en Hollande les Discours concernant deux sciences nouvelles, ouvrage dont Galilée avait entrepris la rédaction cinq ans plus tôt, au début de sa période d'exil. Les deux sciences en question sont ce qu'il est convenu d'appeler de nos jours la Résistance des Matériaux et la Dynamique. Si les travaux de Galilée sur la chute des corps sont bien connus, ceux relatifs à la résistance des corps à la rupture le sont moins. Il pose pourtant à cette occasion des questions fondamentales comme celle par exemple des effets d'échelle et comment la résistance d'une poutre à son poids propre dépend de sa taille. C'est dans cette discussion que l'on peut trouver le fameux dessin sur la poutre qui est reproduit ci-dessous. Il s'avère que le problème de la poutre de Galilée encastrée à une extrémité, soumise à son poids propre et à une force à l'autre extrémité est le problème fondamental de la théorie des structures. Il est à la Résistance des Matériaux ce que l'équation du pendule est à la Dynamique. L'analogie ne s'arrête d'ailleurs pas là, puisque les deux problèmes sont fondamentalement régis par la même équation. Nous allons en faire ici une étude approfondie.

Portrait de Galilée par Giusto Sustermans (1636)

FIGURE 4.18 – À gauche : le dessin de la poutre de Galilée ; à droite : sa modélisation comme milieu continu curviligne.

Nous allons étudier le problème de la poutre de Galilée sous les hypothèses suivantes :

• La poutre est homogène et constituée d'un matériau linéairement élastique de masse volumique de référence ρ_m et de module d'Young E. Sa configuration de référence naturelle est rectiligne, sa longueur naturelle est ℓ_R et sa section droite naturelle est carrée de côté a. En conséquence, on adopte pour loi de comportement du milieu curviligne celle d'une tige linéairement élastique avec un découplage

entre la flexion et l'extension et les relations constitutives s'écrivent

$$N(S) = \mathsf{EA}(\mathsf{s}'(S) - 1), \quad M(S) = \mathsf{EI}\alpha'(S) \quad \text{avec} \quad \mathsf{A} = \mathsf{a}^2, \quad \mathsf{I} = \frac{1}{12}\mathsf{a}^4.$$

• La poutre est encastrée horizontalement au point **O** en son extrémité S = 0 et on prend pour configuration de référence (naturelle)

$$\mathbf{x}_{\mathsf{R}}(S) = S\mathbf{e}_1, \quad S \in (0, \ell_{\mathsf{R}}).$$

• Elle est placée dans le champ de pes anteur uniforme $-g\mathbf{e}_2$ et la force linéique due à la pes anteur peut s'écrire

$$\mathbf{f} = -\varrho_{\mathsf{R}}g\mathbf{e}_2, \quad \varrho_{\mathsf{R}} = \rho_{\mathsf{m}}\mathsf{A}.$$

• Son extrémité $S = \ell_{\mathsf{R}}$ est soumise à une force d'intensité $\mathcal{F} > 0$ et d'orientation $\omega \in [-\pi, +\pi]$,

$$\mathcal{F} = \mathcal{F}(\cos \omega \mathbf{e}_1 + \sin \omega \mathbf{e}_2).$$

Le problème aux limites associé se formule donc de la façon suivante :

D- 4.11 (Le problème aux limites de la poutre de Galilée). Trouver $S \mapsto (\mathbf{s}(S), \mathbf{x}(S), \alpha(S))$ et $S \mapsto (\mathbf{R}(S), M(S))$ vérifiant (le prime indique une dérivée par rapport à S) : $\{\mathbf{t}(S) = \cos \alpha(S)\mathbf{e}_{S} + \sin \alpha(S)\mathbf{e}_{S}\}$

\bullet les relations géométriques dans $(0,\ell_{\rm R})$:	$\begin{cases} \mathbf{t}(S) = \cos \alpha(S)\mathbf{e}_1 + \sin \alpha(S)\mathbf{e}_2 \\ \mathbf{x}'(S) = \mathbf{s}'(S)\mathbf{t}(S), \mathbf{s}'(S) > 0 \end{cases}$
\bullet les efforts intérieurs dans $(0,\ell_{\mathtt{R}})$:	$\mathbf{R}(S) = N(S)\mathbf{t}(S) + T(S)\mathbf{e}_3 \wedge \mathbf{t}(S)$
\bullet les équations d'équilibre dans $(0,\ell_{\mathtt{R}})$:	$\begin{cases} \mathbf{R}'(S) = \rho_{m} A g \mathbf{e}_2\\ M'(S) + \mathbf{s}'(S) T(S) = 0 \end{cases}$
• les conditions aux limites en 0 et $\ell_{\mathtt{R}}$:	$\begin{cases} \mathbf{s}(0) = 0\\ \mathbf{x}(0) = 0\\ \alpha(0) = 0 \end{cases}, \begin{cases} \mathbf{R}(\ell_R) = \mathcal{F}(\cos \omega \mathbf{e}_1 + \sin \omega \mathbf{e}_2)\\ M(\ell_R) = 0 \end{cases}$
\bullet les relations constitutives dans $(0,\ell_{\mathtt{R}})$:	$\begin{cases} N(S) = EA(\mathbf{s}'(S) - 1) \\ M(S) = EI\alpha'(S) \end{cases}$

Les différentes données de ce problème sont des paramètres sur lesquels on sera amené à jouer. Par exemple, on voit que si l'on néglige la pesanteur en prenant g = 0 et si l'on prend pour orientation de la force $\omega = \pi$, on retombe sur le problème de l'elastica d'Euler (dans sa version extensible). Le problème de la poutre de Galilée tel qu'il est schématisé sur le dessin d'origine (cf Figure 4.18) correspond à $\omega = -\pi/2$. On sera amené aussi à regarder l'influence du rapport d'élancement ℓ_{R}/a de la poutre ou du rapport entre les intensités des différentes forces mises en jeu. Le principal objectif de cette section est de faire une *analyse qualitative* du problème général en examinant suivant la valeur des paramètres du problème si certains effets peuvent être négligés : par exemple, sous quelles conditions peut-on négliger l'extensibilité de la poutre ou au contraire sous quelles conditions peut-on négliger sa rigidité à la flexion. Autrement dit, on se propose de trouver les situations dans lesquelles il est possible de substituer au modèle "complet" un modèle "simplifié" plus facile à résoudre sans qu'il y ait une perte significative au niveau de la précision du résultat. Pour cela, on va tout d'abord se ramener à un problème réduit formulé uniquement en terme de l'angle tangent $S \mapsto \alpha(S)$, comme on l'avait fait pour le problème de l'elastica.

Le problème réduit et classification en fonction de l'intensité du chargement

L'équation locale d'équilibre des forces et la condition à la limite en $S = \ell_{\mathsf{R}}$ permettent de déterminer la répartition de la force intérieure (caractère isostatique du problème) :

$$\mathbf{R}(S) = \mathcal{F}\cos\omega\mathbf{e}_1 + \left(\mathcal{F}\sin\omega - \mathcal{P}(1 - S/\ell_{\mathsf{R}})\right)\mathbf{e}_2, \qquad \mathcal{P} := \rho_{\mathsf{m}}\mathsf{A}\ell_{\mathsf{R}}g,$$

où \mathcal{P} désigne le poids total de la poutre. En projetant sur le repère local, on obtient la répartition de l'effort normal et de l'effort tranchant en terme de l'angle tangent :

$$\begin{cases} N(S) = \mathcal{F}\cos\left(\omega - \alpha(S)\right) - \mathcal{P}(1 - S/\ell_{\mathsf{R}})\sin\alpha(S) \\ T(S) = \mathcal{F}\sin\left(\omega - \alpha(S)\right) - \mathcal{P}(1 - S/\ell_{\mathsf{R}})\cos\alpha(S) \end{cases}$$

Grâce à la relation d'extensibilité, on en déduit la déformation d'extension en fonction de l'angle tangent

$$\mathbf{s}'(S) = 1 + \frac{\mathcal{F}}{\mathsf{EA}}\cos\left(\omega - \alpha(S)\right) - \frac{\mathcal{P}}{\mathsf{EA}}(1 - S/\ell_{\mathsf{R}})\sin\alpha(S),$$

ce qui permet en utilisant la condition $\mathbf{s}(0) = 0$ de déterminer l'abscisse curviligne à l'équilibre en fonction de l'angle tangent par simple intégration. En reportant dans les relations géométriques on en déduit la dérivée de la position en fonction de l'angle tangent

$$\begin{cases} x_1'(S) = \left(1 + \frac{\mathcal{F}}{\mathsf{E}\mathsf{A}}\cos\left(\omega - \alpha(S)\right) - \frac{\mathcal{P}}{\mathsf{E}\mathsf{A}}(1 - S/\ell_{\mathsf{R}})\sin\alpha(S)\right)\cos\alpha(S)\\ x_2'(S) = \left(1 + \frac{\mathcal{F}}{\mathsf{E}\mathsf{A}}\cos\left(\omega - \alpha(S)\right) - \frac{\mathcal{P}}{\mathsf{E}\mathsf{A}}(1 - S/\ell_{\mathsf{R}})\sin\alpha(S)\right)\sin\alpha(S) \end{cases}$$

ce qui permettra là encore d'obtenir la position d'équilibre par simple intégration en utilisant la condition de fixation en 0, $\mathbf{x}(0) = \mathbf{0}$.

En reportant les expressions de T et s' dans l'équation locale d'équilibre des moments, en utilisant la relation de flexibilité et les conditions aux limites d'encastrement en 0 et de rotation libre en ℓ_{R} , on obtient le problème réduit désiré

Le problème réduit de la poutre de Galilée
$$\begin{cases} \mathsf{El}\alpha'' + \left(1 + \frac{\mathcal{F}}{\mathsf{EA}}\cos\left(\omega - \alpha\right) - \frac{\mathcal{P}}{\mathsf{EA}}\left(1 - \frac{S}{\ell_{\mathsf{R}}}\right)\sin\alpha\right)\left(\mathcal{F}\sin\left(\omega - \alpha\right) - \mathcal{P}\left(1 - \frac{S}{\ell_{\mathsf{R}}}\right)\cos\alpha\right) = 0\\ \alpha(0) = 0, \quad \alpha'(\ell_{\mathsf{R}}) = 0. \end{cases}$$

On peut l'écrire sous forme adimensionnelle en faisant apparaître explicitement la charge de flambement d'Euler \mathcal{F}_0 et en substituant à S le paramètre sans dimension ζ ,

$$\mathcal{F}_0 = \frac{\pi^2 \mathsf{EI}}{4\ell_{\mathsf{R}}^2}, \qquad \zeta = \frac{S}{\ell_{\mathsf{R}}} \in (0,1),$$

pour arriver au

Problème adimensionnalisé de la poutre de Galilée :

$$\begin{cases} \frac{d^2\alpha}{d\zeta^2} + \frac{\pi^2}{4} \left(1 + \frac{\mathcal{F}}{\mathsf{EA}} \cos\left(\omega - \alpha\right) - \frac{\mathcal{P}}{\mathsf{EA}} (1 - \zeta) \sin\alpha \right) \left(\frac{\mathcal{F}}{\mathcal{F}_0} \sin\left(\omega - \alpha\right) - \frac{\mathcal{P}}{\mathcal{F}_0} (1 - \zeta) \cos\alpha \right) = 0, \\ \alpha(0) = 0, \quad \frac{d\alpha}{d\zeta}(1) = 0. \end{cases}$$

Le problème dépend donc de 4 paramètres sans dimension correspondant aux rapports entre d'une part la force appliquée \mathcal{F} ou le poids \mathcal{P} et d'autre part la charge de flambement \mathcal{F}_0 ou le module de rigidité à l'extension EA. Notons que même s'il n'y a pas de flambement dans le problème de Galilée, la valeur de la charge de flambement du problème d'Euler de cette même poutre va servir de valeur de référence pour les forces appliquées. Commençons par comparer \mathcal{F}_0 à EA. Pour la poutre homogène à section carrée, on a

$$\frac{\mathcal{F}_0}{\mathsf{E}\mathsf{A}} = \frac{\pi^2 \mathsf{a}^2}{48\ell_{\mathsf{R}}^2}.$$

Comme on ne s'intéresse qu'à des objets élancés, le rapport a/ℓ_R est nécessairement petit et on peut donc considérer que le rapport $\mathcal{F}_0/\mathsf{EA}$ est petit devant 1. (Par exemple pour une poutre de rapport d'élancement 10, *i.e.* $\ell_R/a = 10$, on a $\mathcal{F}_0/\mathsf{EA} \approx 2.10^{-3}$.) Prenons pour norme du chargement la somme $\mathcal{F} + \mathcal{P}$ de la force appliquée et du poids et introduisons le paramètre $\lambda \in [0, 1]$ qui donne le "poids" respectif de ces deux chargements

$$\mathcal{F} = \lambda(\mathcal{F} + \mathcal{P}), \quad \mathcal{P} = (1 - \lambda)(\mathcal{F} + \mathcal{P}), \quad \lambda \in [0, 1]$$

ce qui permettra de considérer le cas $\lambda = 1$ où le poids est négligeable devant la force ou encore le cas $\lambda = 0$ où le poids agit seul, sans que cela change l'ordre de grandeur du chargement qui est donné dans tous les cas par la somme. Ceci permet de réduire notre étude aux quatre cas décrits dans le tableau suivant :

Chargement faible	Chargement modéré	Chargement fort	Chargement extrême
$\mathcal{F} + \mathcal{P} \ll \mathcal{F}_0 \ll EA$	$\mathcal{F} + \mathcal{P} \sim \mathcal{F}_0 \ll EA$	$\mathcal{F}_0 \ll \mathcal{F} + \mathcal{P} \ll EA$	$\mathcal{F}_0 \ll \mathcal{F} + \mathcal{P} \sim EA$

TABLE 4.4 – Les différents cas d'ordre de grandeur du chargement pour le problème de la poutre de Galilée.

où « signifie *petit devant* et ~ *du même ordre que*. En pratique, comme ces notions d'ordre de grandeur et de petitesse vont être utilisées pour négliger certains termes, leurs définitions dépendent

du degré d'exigence de l'utilisateur quant à la précision recherchée. On raisonnera dans un premier temps de façon qualitative en étudiant séparément chaque cas avant de faire une étude comparative quantitative.

Chargement faible.

Dans ce cas, comme \mathcal{F} et \mathcal{P} sont petits devant EA, que les sinus et les cosinus sont entre -1 et 1 et que ζ est entre 0 et 1, on a

$$\left|\mathcal{F}\cos\left(\omega-\alpha\right)-\mathcal{P}(1-\zeta)\sin\alpha\right|\leq\mathcal{F}+\mathcal{P}\ll\mathsf{EA}.$$

On peut donc négliger la déformation d'extension devant 1 dans l'équation différentielle du problème adimensionnalisé. Introduisons le paramètre ϵ :

$$\epsilon := \frac{\pi^2(\mathcal{F} + \mathcal{P})}{4\mathcal{F}_0} \ll 1$$

qui par hypothèse est petit devant 1. Explicitons la dépendance de la (ou des) solution(s) du problème adimensionnalisé par rapport à ce petit paramètre en la notant α_{ϵ} . En négligeant la déformation d'extension, α_{ϵ} vérifie donc

$$\begin{cases} \frac{d^2 \alpha_{\epsilon}}{d\zeta^2}(\zeta) + \epsilon \lambda \sin\left(\omega - \alpha_{\epsilon}(\zeta)\right) - \epsilon (1 - \lambda)(1 - \zeta) \cos\alpha_{\epsilon}(\zeta) = 0, \quad \forall \zeta \in (0, 1) \\ \alpha_{\epsilon}(0) = 0, \quad \frac{d\alpha_{\epsilon}}{d\zeta}(1) = 0. \end{cases}$$

Toujours grâce aux propriétés des fonctions trigonométriques et de $1-\zeta$, on a l'estimation suivante

$$\left|\frac{d^2\alpha_{\epsilon}}{d\zeta^2}(\zeta)\right| \leq \epsilon \lambda + \epsilon (1-\lambda) = \epsilon, \quad \forall \zeta \in (0,1)$$

qui dit que la dérivée seconde de l'angle tangent est uniformément bornée par ϵ . Grâce aux conditions aux limites $\alpha_{\epsilon}(0) = 0$ et $d\alpha_{\epsilon}/d\zeta(1) = 0$, on en déduit par intégration les estimations suivantes pour l'angle tangent et sa dérivée

$$\left|\frac{d\alpha_{\epsilon}}{d\zeta}(\zeta)\right| \leq (1-\zeta)\epsilon, \quad |\alpha_{\epsilon}(\zeta)| \leq \epsilon/2, \quad \forall \zeta \in (0,1).$$

L'angle tangent est donc au plus d'ordre ϵ . En première approximation la poutre ne se déforme pas et se comporte comme un objet rigide. Si l'on veut affiner l'analyse et calculer la faible déformée de la poutre, on peut en construire une approximation en linéarisant l'équation différentielle. Cela consiste à développer les termes par rapport au petit paramètre ϵ en s'arrêtant au premier ordre, sachant que par hypothèse les forces sont d'ordre ϵ (par rapport à la force de référence \mathcal{F}_0) et que l'angle tangent est au plus d'ordre ϵ . On peut le formaliser en s'appuyant sur la méthode dite des développements asymptotiques que l'on présente brièvement ci-dessous. 1. On suppose que α_{ϵ} peut se développer en puissances entières de ϵ :

$$\alpha_{\epsilon} = \epsilon \alpha_1 + \epsilon^2 \alpha_2 + \epsilon^3 \alpha_3 + \cdots,$$

le terme α_i étant appelé *terme d'ordre i*. On a tenu compte ci-dessus que α_{ϵ} est au moins d'ordre 1 et donc que terme d'ordre 0 est nul.

2. On développe ensuite les différents termes de l'équation différentielle par rapport à ϵ . (On fait éventuellement de même pour les conditions aux limites, ici c'est immédiat.) Par exemple

 $\sin(\omega - \alpha_{\epsilon}) = \sin\omega - \epsilon \cos\omega \,\alpha_1 - \frac{1}{2} \,\epsilon^2 \sin\omega \,\alpha_1^2 + \cdots, \qquad \cos\alpha_{\epsilon} = 1 - \frac{1}{2} \,\epsilon^2 \alpha_1^2 + \cdots$

3. On identifie enfin les termes de même puissance de ϵ pour obtenir une suite d'équations différentielles régissant les différents termes du développement. (On fait de même pour les conditions aux limites.) On obtient ainsi à l'ordre 1

$$\begin{cases} \frac{d^2\alpha_1}{d\zeta^2}(\zeta) + \lambda \sin \omega - (1-\lambda)(1-\zeta) = 0, & \forall \zeta \in (0,1) \\ \alpha_1(0) = 0, & \frac{d\alpha_1}{d\zeta}(1) = 0. \end{cases}$$

On voit immédiatement que cela revient à remplacer $\sin \alpha$ par 0 et $\cos \alpha$ par 1 dans l'équation différentielle. En revenant aux variables physiques, on obtient ainsi

Le problème linéarisé de la poutre de Galilée
$$\begin{cases} \mathsf{El}\alpha''(S) + \mathcal{F}\sin\omega - \mathcal{P}\left(1 - \frac{S}{\ell_{\mathsf{R}}}\right) = 0, & \forall S \in (0, \ell_{\mathsf{R}})\\\\ \alpha(0) = 0, & \alpha'(\ell_{\mathsf{R}}) = 0. \end{cases}$$

Sa résolution est immédiate, il suffit d'intégrer deux fois en s'aidant des conditions aux limites :

$$\alpha(S) = \frac{\mathcal{F}\sin\omega}{2\mathsf{EI}} \left(2\ell_{\mathsf{R}} - S\right)S - \frac{\mathcal{P}}{6\mathsf{EI}\ell_{\mathsf{R}}}(3\ell_{\mathsf{R}}^2 - 3\ell_{\mathsf{R}}S + S^2)S$$

L'angle tangent à l'extrémité ℓ_{R} vaut

0

$$\alpha_{\ell} := \alpha(\ell_{\mathsf{R}}) = \frac{\mathcal{F}\sin\omega\ell_{\mathsf{R}}^2}{2\mathsf{E}\mathsf{I}} - \frac{\mathcal{P}\ell_{\mathsf{R}}^2}{6\mathsf{E}\mathsf{I}} = \frac{\pi^2(3\mathcal{F}\sin\omega - \mathcal{P})}{24\mathcal{F}_0} \sim \epsilon, \tag{4.29}$$

et est donc d'ordre ϵ comme attendu. On peut aussi construire une approximation de la position d'équilibre $S \mapsto \mathbf{x}(S)$ en procédant de la même façon. Comme $\mathbf{x}' = \cos \alpha \mathbf{e}_1 + \sin \alpha \mathbf{e}_2$ (puisqu'on néglige la déformation d'extension), on obtient au premier ordre :

$$\mathbf{x}'(S) = \mathbf{e}_1 + \alpha(S)\mathbf{e}_2, \quad \mathbf{x}(0) = \mathbf{0}.$$

D'où en intégrant

$$\mathbf{x}(S) = S\mathbf{e}_1 + \left(\frac{\mathcal{F}\sin\omega}{6\mathsf{EI}}\left(3\ell_\mathsf{R} - S\right)S^2 - \frac{\mathcal{P}}{24\mathsf{EI}\ell_\mathsf{R}}\left(6\ell_\mathsf{R}^2 - 4\ell_\mathsf{R}S + S^2\right)S^2\right)\mathbf{e}_2$$

la flèche à l'extrémité vaut

$$\mathbf{w}(\ell_{\mathsf{R}}) = \frac{\mathcal{F}\sin\omega\ \ell_{\mathsf{R}}^3}{3\mathsf{EI}} - \frac{\mathcal{P}\ell_{\mathsf{R}}^3}{8\mathsf{EI}} \sim \epsilon\ell_{\mathsf{R}}$$

et $w(\ell_R)/\ell_R$ est donc aussi de l'ordre de ϵ . Si l'on revient au calcul des efforts intérieurs, comme α est petit, on obtient en première approximation la même répartition que si le milieu était rigide :

$$N(S) = \cos\omega \mathcal{F}, \quad T(S) = \sin\omega \mathcal{F} - (1 - S/\ell_{\mathsf{R}})\mathcal{P}, \quad M(S) = \sin\omega \mathcal{F}(\ell_{\mathsf{R}} - S) - \frac{1}{2}(1 - S/\ell_{\mathsf{R}})^2 \mathcal{P}\ell_{\mathsf{R}}.$$

On pourrait affiner l'approximation en calculant les termes suivants du développement asymptotique. Ceci est laissé à titre d'exercice.

Exercice 4.5. Calculer le terme suivant α_2 du développement asymptotique de l'angle tangent dans le cas d'un chargement faible pour le problème de la poutre de Galilée.

Les résultats de ce cas sont résumés ci-dessous.

P-4.7 (Solution du problème de la poutre de Galilée aux chargements faibles). Lorsque la force appliquée \mathcal{F} et le poids \mathcal{P} de la poutre sont faibles devant la force de flambement \mathcal{F}_0 , la poutre se comporte en première approximation comme un milieu rigide qui s'écarte peu de sa configuration de référence naturelle horizontale. Une valeur approchée du déplacement d'équilibre peut s'obtenir en résolvant un problème linéarisé construit en s'appuyant sur la présence du petit paramètre $(\mathcal{F}+\mathcal{P})/\mathcal{F}_0$. Il montre que le déplacement est en première approximation de l'ordre du petit paramètre et donc proportionnel au (faible) chargement, alors que les efforts intérieurs sont en première approximation les mêmes que si la poutre était rigide.

Chargement modéré

Dans ce cas \mathcal{F} et \mathcal{P} sont encore petits devant EA et on peut toujours négliger la déformation d'extension devant 1 dans l'équation différentielle du problème adimensionnalisé. Mais c'est la seule approximation que l'on puisse faire puisque le chargement est du même ordre de grandeur que la force de flambement. Ce cas est en fait le cas central où les rotations et les déplacement sont finis et où la rigidité à la flexion et les moments fléchissants ne sont pas négligeables. Nous allons l'étudier en négligeant le poids. La raison est essentiellement d'ordre technique. Du fait de la présence explicite de l'abscisse curviligne dans l'équation d'équilibre des moments lorsqu'on tient compte du poids, il n'existe plus d'intégrale première et la résolution de l'équation différentielle doit se faire numériquement. Par contre, en négligeant le poids on peut procéder comme on l'a fait pour le problème du flambement d'Euler. Par conséquent, ce cas se ramène à l'étude du problème différentiel suivant :

Le problème de la poutre de Galilée	$\int EI\alpha''(S) - \mathcal{F}\sin\left(\alpha(S) - \omega\right) = 0, \forall S \in (0, \ell_{R})$
dans le cas inextensible sans pesanteur	$\alpha(0) = 0, \alpha'(\ell_{R}) = 0.$

Tous les calculs vont être faits dans le cas où $\omega \in (-\pi, 0)$, la force est donc orientée vers le bas. Ceci n'est pas réducteur car

- le cas $\omega = \pm \pi$ (compression simple) correspond au problème de l'elastica inextensible;
- le cas $\omega = 0$ (traction simple) admet comme unique solution $\alpha \equiv 0$;
- les cas $\omega \in (0, \pi)$ se déduisent de ceux que nous allons traiter par symétrie.

1. Résolution. En multipliant l'équation différentielle par $\alpha'(S)$ apparaît l'intégrale première. En effet, on obtient alors

$$0 = \mathsf{E}\mathsf{I}\alpha''\alpha' - \mathcal{F}\sin\left(\alpha - \omega\right)\alpha' = \frac{d}{dS}\left(\frac{1}{2}\,\mathsf{E}\mathsf{I}\alpha'^2 + \mathcal{F}\cos(\alpha - \omega)\right).$$

Par conséquent, $\frac{1}{2} \mathsf{El} \alpha'^2 + \mathcal{F} \cos(\alpha - \omega)$ est constant dans $(0, \ell_{\mathsf{R}})$ et comme $\alpha'(\ell_{\mathsf{R}}) = 0$ on peut écrire l'intégrale première sous la forme

$$\mathsf{EI}\alpha'^2 = 2\mathcal{F}\big(\cos(\alpha_\ell - \omega) - \cos(\alpha - \omega)\big),\tag{4.30}$$

où $\alpha_{\ell} \in (\omega, 0)$ est le paramètre de tir qui fixe la constante. L'angle tangent $\alpha(\ell_{\mathsf{R}})$ vaut α_{ℓ} ou $2\pi + 2\omega - \alpha_{\ell}$ suivant les branches considérées, cf Figure 4.19.

FIGURE 4.19 – Résolution graphique dans l'espace des phases du problème de la poutre de Galilée dans le cas $\omega < 0$ (force orientée vers le bas) et en négligeant la pesanteur. Pour α_{ℓ} donné dans $(\omega, 0)$: le point de la branche principale (en rouge sur la figure de droite) correspondant à $\alpha(\ell_{R}) = \alpha_{\ell}$ s'obtient en parcourant l'arc **AB** (en rouge) dans l'espace des phases; le point de la branche secondaire (en violet sur la figure de droite) correspondant à $\alpha(\ell_{R}) = 2\pi + 2\omega - \alpha_{\ell}$ s'obtient en parcourant l'arc **CD** (en violet) dans l'espace des phases; le point de la branche tertiaire (en bleu sur la figure de droite) correspondant à $\alpha(\ell_{R}) = 2\pi + 2\omega - \alpha_{\ell}$ s'obtient en parcourant l'arc **CD** (en siolet) dans l'espace des phases; le point de la branche tertiaire (en bleu sur la figure de droite) correspondant à $\alpha(\ell_{R}) = 2\pi + 2\omega - \alpha_{\ell}$ s'obtient en parcourant l'arc **AD** (en bleu) dans l'espace des phases. Les autres branches se construisent de façon similaire. Les courbes tracées correspondent au cas où $\omega = -3\pi/4$ et $\alpha_{\ell} = -\pi/4$.

Dans l'espace des phases cela correspond à une courbe fermée qui passe par les points $\mathbf{B} = (\alpha_{\ell}, 0)$ et $\mathbf{D} = (2\omega + 2\pi - \alpha_{\ell}, 0)$, cf figure 4.19. Du fait de l'inclinaison ω de la force, cette courbe n'est plus centrée en $\alpha = 0$ mais en $\alpha = \omega + \pi > 0$. Pour α_{ℓ} donné, comme $\alpha(0) = 0$ et $\alpha'(\ell_{R}) = 0$, il faut partir des points \mathbf{A} ou \mathbf{C} pour arriver en \mathbf{B} ou \mathbf{D} quand $S = \ell_{R}$. La résolution graphique et la construction des trois premières branches sont décrites sur la figure 4.19. Une fois la relation entre \mathcal{F} et $\alpha(\ell_{R})$ obtenue, la configuration d'équilibre s'obtient par simple intégration. Cette construction des configurations d'équilibre est décrite ci-dessous pour les trois premières branches.

(a) Branche principale. Quand $\alpha_{\ell} = 0$, les points **A** et **B** sont au point **O** (origine) dans l'espace des phases, la solution est $\alpha \equiv 0$, la tige est dans sa configuration de référence naturelle ce qui correspond au point **O** dans le plan ($\mathcal{F}, \alpha_{\ell}$). Quand $\alpha_{\ell} \in (\omega, 0)$, le point **A** dans l'espace des phases correspond à S = 0. Quand S croît de 0 à ℓ_{R} , on décrit l'arc **AB** dans l'espace des phases, le point **B** correspondant à $S = \ell_{\mathsf{R}}$. Comme α décroît de 0 à α_{ℓ} , la relation entre \mathcal{F} et α_{ℓ} s'obtient par quadrature à l'aide de (4.30) :

$$\int_{\alpha_{\ell}}^{0} \frac{d\alpha}{\sqrt{\cos(\alpha_{\ell} - \omega) - \cos(\alpha - \omega)}} = \sqrt{\frac{2\mathcal{F}}{\mathsf{EI}}} \ell_{\mathsf{R}}$$

expression qui peut s'écrire aussi en terme d'une intégrale elliptique de première espèce par changement de variable. Quand α_{ℓ} décroît de 0 à ω , \mathcal{F} croît de 0 à $+\infty$, le point $(\mathcal{F}, \alpha_{\ell})$ décrivant la branche principale (en rouge sur la figure 4.19). La configuration d'équilibre de la poutre dans l'espace physique s'obtient par intégration en utilisant (4.30) et la condition de fixation en **O** :

$$\begin{cases} dx_1 = \cos \alpha \ dS = -\sqrt{\frac{\mathsf{EI}}{2\mathcal{F}}} \frac{\cos \alpha \ d\alpha}{\sqrt{\cos(\alpha_\ell - \omega) - \cos(\alpha - \omega)}} \\ dx_2 = \sin \alpha \ dS = -\sqrt{\frac{\mathsf{EI}}{2\mathcal{F}}} \frac{\sin \alpha \ d\alpha}{\sqrt{\cos(\alpha_\ell - \omega) - \cos(\alpha - \omega)}} \end{cases}$$

ce qui fournit de façon naturelle une courbe paramétrée par l'angle tangent α . Les configurations d'équilibre quand $\omega = -3\pi/4$ et $\alpha_{\ell} = -\pi/4$ ou $-3\pi/4 + \pi/180$ sont représentées en rouge sur la figure 4.20.

(b) Branche secondaire. Quand $\alpha_{\ell} = 0$, les points **C** et **D** sont respectivement en **O** et **D**₀ = $(2\pi + 2\omega, 0)$ dans l'espace des phases. Il faut exercer une force \mathcal{F}_* pour que l'équilibre soit possible, cette force étant calculée à l'aide de (4.30)

$$\int_0^{\pi+\omega} \frac{2d\alpha}{\sqrt{\cos\omega - \cos(\alpha - \omega)}} = \sqrt{\frac{2\mathcal{F}_*}{\mathsf{EI}}} \ell_{\mathsf{R}}.$$

Quand $\alpha_{\ell} \in (\omega, 0)$, le point **C** dans l'espace des phases correspond à S = 0. Quand S croît de 0 à ℓ_{R} , on décrit l'arc **CD** dans l'espace des phases, le point **D** correspondant à $S = \ell_{\mathsf{R}}$. L'angle tangent α croît de 0 à $2\pi + 2\omega - \alpha_{\ell}$ et la relation entre \mathcal{F} et α_{ℓ} s'obtient par quadrature à l'aide de (4.30) :

$$\int_{0}^{2\pi+2\omega-\alpha_{\ell}} \frac{d\alpha}{\sqrt{\cos(\alpha_{\ell}-\omega)-\cos(\alpha-\omega)}} = \sqrt{\frac{2\mathcal{F}}{\mathsf{EI}}}\ell_{\mathsf{R}},$$

expression qui pourrait aussi s'écrire en terme d'une intégrale elliptique de première espèce par changement de variable. Quand α_{ℓ} décroît de 0 à ω , le point $(\mathcal{F}, 2\pi + 2\omega - \alpha_{\ell})$ décrit la branche secondaire (en violet sur la figure 4.19). La configuration d'équilibre de la poutre dans l'espace physique s'obtient par intégration en utilisant (4.30) et la condition de fixation en **O**:

$$\begin{cases} dx_1 = \cos \alpha \ dS = \sqrt{\frac{\mathsf{EI}}{2\mathcal{F}}} \frac{\cos \alpha \ d\alpha}{\sqrt{\cos(\alpha_\ell - \omega) - \cos(\alpha - \omega)}} \\ dx_2 = \sin \alpha \ dS = \sqrt{\frac{\mathsf{EI}}{2\mathcal{F}}} \frac{\sin \alpha \ d\alpha}{\sqrt{\cos(\alpha_\ell - \omega) - \cos(\alpha - \omega)}} \end{cases}$$

ce qui fournit aussi une courbe paramétrée par l'angle tangent α . Les configurations d'équilibre quand $\omega = -3\pi/4$ et $\alpha_{\ell} = -\pi/4$ ou $-3\pi/4 + \pi/180$ sont représentées en violet sur la figure 4.20.

FIGURE 4.20 – Configurations d'équilibre de la poutre correspondant aux trois premières branches quand $\omega = -3\pi/4$: en trait plein pour $\alpha_{\ell} = -\pi/4$; en pointillé pour $\alpha_{\ell} = -3\pi/4 + \pi/180$. Les couleurs correspondent aux branches (en rouge : la position associée au point **AB** de la branche principale; en violet : la position associée au point **CD** de la branche secondaire; en bleu : la position associée au point **AD** de la branche tertiaire. On notera la formation d'une boucle dans la configuration d'équilibre de la branche tertiaire.

(c) Branche tertiaire. Elle démarre comme la branche secondaire du point $(\mathcal{F}_*, 2\pi + 2\omega)$ correspondant à $\alpha_{\ell} = 0$. Quand $\alpha_{\ell} \in (\omega, 0)$, le point **A** dans l'espace des phases correspond à S = 0. Quand S croît de 0 à ℓ_{R} , on décrit l'arc **AD** dans l'espace des phases, le point **D** correspondant à $S = \ell_{\mathsf{R}}$. L'angle tangent α décroît d'abord de 0 à α_{ℓ} avant de croître jusqu'à $2\pi + 2\omega - \alpha_{\ell}$. La relation entre \mathcal{F} et α_{ℓ} s'obtient par quadrature à l'aide de (4.30) :

$$\int_{\alpha_{\ell}}^{0} \frac{d\alpha}{\sqrt{\cos(\alpha_{\ell} - \omega) - \cos(\alpha - \omega)}} + \int_{\alpha_{\ell}}^{2\pi + 2\omega - \alpha_{\ell}} \frac{d\alpha}{\sqrt{\cos(\alpha_{\ell} - \omega) - \cos(\alpha - \omega)}} = \sqrt{\frac{2\mathcal{F}}{\mathsf{EI}}} \ell_{\mathsf{R}}.$$

Quand α_{ℓ} décroît de 0 à ω , le point $(\mathcal{F}, 2\pi + 2\omega - \alpha_{\ell})$ décrit la branche tertiaire (en bleu sur la figure 4.19). La configuration d'équilibre de la poutre dans l'espace physique s'obtient toujours par intégration en utilisant (4.30) et la condition de fixation en **O**. Les configurations d'équilibre quand $\omega = -3\pi/4$ et $\alpha_{\ell} = -\pi/4$ ou $-3\pi/4 + \pi/180$ sont représentées en bleu sur la figure 4.20.

2. Influence de l'orientation de la force. Il est intéressant d'observer la dépendance des branches d'équilibre par rapport à l'orientation de la force. Pour des valeurs de ω proches de $\pm \pi$, on voit ainsi l'influence des imperfections sur la réponse "parfaite" correspondant au problème de flambement d'Euler. La figure ci-dessous représente les trois premières branches pour une orientation de la force $\omega = -\pi + \pi/180$ qui correspond donc à un désalignement de 1° par rapport à l'axe de la poutre. On voit que la branche principale provient de la déformation de l'assemblage de la branche fondamentale jusqu'au point de première bifurcation et de la demi-branche bifurquée côté $\alpha_{\ell} < 0$ du système "parfait" ($\omega = \pm \pi$). De même, la branche secondaire est la déformation d'une partie de la branche fondamentale entre les deux premiers points de bifurcation et l'autre demi-branche bifurquée (côté $\alpha_{\ell} > 0$) du système "parfait" alors que la troisième branche est la déformée du reste de la branche fondamentale entre les deux premiers points de bifurcation et de la deuxième demi-branche bifurquée. On pourrait continuer et on constaterait que toutes les branches sont des déformées d'un assemblage de la branche fondamentale et de demi-branches bifurquées. Plus l'angle de désalignement est faible et plus la déformation des branches est faible. On peut voir toutefois que même pour un angle faible de 1°, l'influence de l'imperfection est nette au voisinage des points de bifurcation. Evidemment dans le cas d'une force verticale ($\omega = -\pi/2$), on a affaire à une forte "imperfection" et les branches du système imparfait diffèrent sensiblement du système parfait. Toutefois, le nombre de branches reste le même.

Représentation des premières trois branches d'équilibre dans le plan $(\mathcal{F}, \alpha(\ell_{\mathsf{R}}))$ pour une orientation de la force appliquée faisant un angle de 1 degré par rapport à l'axe de la tige ($\omega = -179$ degrés). En trait plein rouge, la branche principale qui part de l'origine et correspond à la configuration naturelle; en trait plein violet, la branche secondaire qui ne passe pas par la configuration naturelle; en trait plein bleu, la branche tertiaire qui part du même point que la branche secondaire; en pointillé rouge, la branche fondamentale et les deux premières branches bifurquées du système parfait ($\omega = \pm 180$ degrés).

Représentation dans le plan $(\mathcal{F}, \alpha_{\ell})$ de la branche d'équilibre passant par la configuration naturelle pour deux orientations de la force appliquée. *Cas* 1° : désalignement de 1 degré par rapport au cas parfait du problème de flambement ($\omega = -179$ degrés); *Cas* 90° : force appliquée verticalement vers le bas ($\omega = -\pi/2$); en pointillé rouge, la branche fondamentale et la première branche bifurquée du système parfait ($\omega = \pi$). Les pointillés bleus représentent les asymptotes quand \mathcal{F} tend vers l'infini.

3. Influence de l'intensité de la force. Alors que quand $\omega = \pm \pi$ la poutre ne fléchit que lorsque la force dépasse la force critique de flambement \mathcal{F}_0 , elle fléchit pour toute valeur de \mathcal{F} quand il y a une composante non axiale de la force. Toutefois, cette flexion est plus ou moins prononcée suivant l'intensité ou l'orientation de la force. Les deux figures ci-dessous illustrent ceci dans le cas d'un faible désalignement de 1° ou d'une force verticale.

FIGURE 4.21 – Cas $\omega = -179^{\circ}$: désalignement de 1 degré de la force de compression. Il n'y a pas de bifurcation, mais on peut noter la variation rapide de la configuration d'équilibre au voisinage de la charge de flambement. Pour des grandes valeurs de \mathcal{F} , la configuration est proche du cas parfait $\omega = -\pi$ correspondant au problème de flambement d'Euler.

FIGURE 4.22 – Cas $\omega = -\pi/2$: force verticale. La poutre fléchit progressivement au fur et à mesure que la force croît pour tendre vers une position d'équilibre verticale. On peut noter la couche limite au voisinage de l'encastrement pour de grandes valeurs de \mathcal{F} .

Chargement fort.

Dans le cas d'un chargement fort, on peut toujours négliger la déformation d'extension devant 1, ce qui revient à considérer la poutre comme inextensible. L'équation différentielle régissant l'angle tangent peut alors s'écrire

$$\frac{4\mathcal{F}_0}{\pi^2 \mathcal{F}} \frac{d^2 \alpha}{d\zeta^2}(\zeta) + \sin\left(\omega - \alpha(\zeta)\right) - \frac{\mathcal{P}}{\mathcal{F}}(1-\zeta)\cos\alpha(\zeta) = 0, \quad \forall \zeta \in (0,1)$$

et le petit paramètre $\mathcal{F}_0/\mathcal{F}$ affecte maintenant la dérivée d'ordre supérieur. Si l'on néglige ce terme, ce qui revient à négliger la rigidité à la flexion, on tombe sur l'équation d'équilibre d'un fil. De façon précise, en revenant aux grandeurs physiques, le problème aux limites devient alors

$$\begin{cases} \mathcal{F}\sin\left(\omega-\alpha(S)\right) - \mathcal{P}\left(1-\frac{S}{\ell_{\mathsf{R}}}\right)\cos\alpha(S) = 0, \quad \forall S \in (0,\ell_{\mathsf{R}})\\ \mathbf{x}'(S) = \cos\alpha(S)\mathbf{e}_{1} + \sin\alpha(S)\mathbf{e}_{2}, \quad \forall S \in (0,\ell_{\mathsf{R}})\\ \alpha(0) = 0, \quad \mathbf{x}(0) = \mathbf{0}, \quad \alpha'(\ell_{\mathsf{R}}) = 0 \end{cases}$$
Ce problème est voisin de celui du fil pesant inextensible traité dans la section 4.3.3, mais il en diffère toutefois par les *conditions aux limites* et *la condition de stabilité*. En effet, la première équation n'est rien d'autre que la nullité de l'effort tranchant, T(S) = 0. Elle donne l'orientation locale du fil *via* tg $\alpha(S)$:

$$\operatorname{tg} \alpha(S) = \operatorname{tg} \omega - \frac{\mathcal{P}(\ell_{\mathsf{R}} - S)}{\mathcal{F}\ell_{\mathsf{R}} \cos \omega}$$

Cette équation possède systématiquement deux solutions, $\alpha(S)$ et $\pi + \alpha(S)$, et il faut rajouter la condition de stabilité, *i.e.* de positivité de l'effort normal $N(S) \ge 0$, pour discriminer entre les deux possibilités. Par exemple, si on néglige le poids, on obtient

$$\mathcal{P} = 0, \quad \operatorname{tg} \alpha(S) = \operatorname{tg} \omega, \quad N(S) = \mathcal{F} \cos(\omega - \alpha(S)).$$

La condition de stabilité permet de ne retenir que la solution où $\alpha(S) = \omega$ en tout point et de rejeter toutes celles où $\alpha(S) = \omega - \pi$ en des points.

Mais la position d'équilibre stable fournit par le modèle de fil inextensible ne vérifie en général aucune des deux conditions aux limites¹⁴. Il va donc y avoir un phénomène de couches limites aux deux extrémités. On pourrait calculer ces couches limites en procédant comme nous l'avons fait dans le problème du flambement d'Euler. Ceci permettrait d'avoir une meilleure approximation de la configuration d'équilibre au voisinage des extrémités. Nous ne développerons pas ici les calculs.

En résumé, en négligeant la rigidité à la flexion et en ne retenant que la configuration où $N(S) \ge 0$, on obtient

Dans le cas d'un **chargement fort**, la configuration d'équilibre de la poutre de Galilée est donnée en première approximation par **le modèle de fil inextensible** et correspond à la solution du problème du fil pesant (cf Section 4.3.3) :

$$\begin{cases} x_1(S) = \frac{\mathcal{F}_1}{\varrho_{\mathsf{R}}g} \operatorname{argsh}\left(\frac{\mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S)}{\mathcal{F}_1}\right) - \frac{\mathcal{F}_1}{\varrho_{\mathsf{R}}g} \operatorname{argsh}\left(\frac{\mathcal{F}_2 - \varrho_{\mathsf{R}}g\ell_{\mathsf{R}}}{\mathcal{F}_1}\right) \\ x_2(S) = \frac{\mathcal{F}_1}{\varrho_{\mathsf{R}}g} \sqrt{1 + \frac{\left(\mathcal{F}_2 - \varrho_{\mathsf{R}}g(\ell_{\mathsf{R}} - S)\right)^2}{\mathcal{F}_1^2}} - \frac{\mathcal{F}_1}{\varrho_{\mathsf{R}}g} \sqrt{1 + \frac{\left(\mathcal{F}_2 - \varrho_{\mathsf{R}}g\ell_{\mathsf{R}}\right)^2}{\mathcal{F}_1^2}} \end{cases}$$

où $\mathcal{F}_1 = \mathcal{F} \cos \omega$, $\mathcal{F}_2 = \mathcal{F} \sin \omega$. Cette solution approchée, qui ne vérifie pas en général les conditions aux limites d'encastrement en S = 0 et de dérivée de la rotation nulle en $S = \ell_{\mathsf{R}}$, peut être améliorée en calculant les correcteurs de couche limite aux deux extrémités.

Chargement extrême.

Lorsque $\mathcal{F} + \mathcal{P}$ est de l'ordre de grandeur de EA on ne peut plus négliger la déformation d'extension. Par contre on peut négliger la rigidité à la flexion. Ce faisant on tombe sur le problème d'équilibre

^{14.} En fait, la condition à la limite en $S = \ell_{\mathsf{R}}$ est automatiquement satisfaite si on néglige le poids car alors $\alpha(S) = \omega, \forall S$. De façon générale, l'équilibre du fil pesant donne $\alpha'(\ell_{\mathsf{R}}) = \frac{\mathcal{P}\cos\omega}{\mathcal{F}\ell_{\mathsf{R}}}$ et $\alpha'(\ell_{\mathsf{R}})$ n'est nul que si $\mathcal{P} = 0$ ou $\omega = \pm \pi/2$.

d'un fil extensible. De façon précise, le problème aux limites devient alors

$$\begin{cases} \mathcal{F}\sin\left(\omega-\alpha(S)\right) - \mathcal{P}\left(1-\frac{S}{\ell_{\mathsf{R}}}\right)\cos\alpha(S) = 0, \quad \forall S \in (0,\ell_{\mathsf{R}}) \\ \mathbf{x}'(S) = \left(1 + \frac{\mathcal{F}}{\mathsf{E}\mathsf{A}}\cos\left(\omega-\alpha(S)\right) - \frac{\mathcal{P}}{\mathsf{E}\mathsf{A}}\left(1-\frac{S}{\ell_{\mathsf{R}}}\right)\sin\alpha(S)\right) \left(\cos\alpha(S)\mathbf{e}_{1} + \sin\alpha(S)\mathbf{e}_{2}\right), \\ \alpha(0) = 0, \quad \mathbf{x}(0) = \mathbf{0}, \quad \alpha'(\ell_{\mathsf{R}}) = 0. \end{cases}$$

Il ne diffère de celui obtenu dans le cas d'un chargement fort que par la prise en compte de la déformation d'extension. Mais ici aussi, la position d'équilibre stable fournie par le modèle de fil extensible ne vérifie en général aucune des deux conditions aux limites. Il va donc y avoir un phénomène de couches limites aux deux extrémités que l'on pourrait calculer pour avoir une meilleure approximation de la configuration d'équilibre au voisinage des extrémités. Ces couches limites diffèrent de celles intervenant dans le cas d'un chargement fort à cause de la déformation d'extension qui ne peut pas être négligée. Mais ces calculs ne seront pas développés ici. En ne retenant que les solutions où l'effort normal est non négatif, on obtient

Dans le cas d'un **chargement extrême**, la configuration d'équilibre de la poutre de Galilée est donnée en première approximation par **le modèle de fil extensible** et correspond à la solution du problème du fil pesant extensible, cf Section 4.3.3. Cette solution approchée, qui ne vérifie pas en général les conditions aux limites d'encastrement en S = 0 et de dérivée de la rotation nulle en $S = \ell_{R}$, peut être améliorée en calculant les correcteurs de couche limite aux deux extrémités.

Etude comparative

On peut résumer l'ensemble de l'étude du problème de la poutre de Galilée par le tableau suivant où est indiqué le modèle le mieux adapté suivant l'ordre de grandeur de l'intensité du chargement

Chargement	faible	modéré	fort	extrême
	$\mathcal{F}+\mathcal{P}\ll\mathcal{F}_0\llEA$	$\mathcal{F} + \mathcal{P} \sim \mathcal{F}_0 \ll EA$	$\mathcal{F}_0 \ll \mathcal{F} + \mathcal{P} \ll EA$	$\mathcal{F}_0 \ll \mathcal{F} + \mathcal{P} \sim EA$
Déflexion	petit déplacement	grand déplacement	grand déplacement	grand déplacement
Extension	négligeable	négligeable	négligeable	non négligeable
Modèle	milieu rigide avec	tige inextensible	fil inextensible	fil élastique
	corrections élastiques		+ couches limites	+ couches limites

TABLE 4.5 – Les modèles les mieux adaptés suivant l'ordre de grandeur du chargement pour le problème de la poutre de Galilée.

Cette analyse qualitative peut et doit être complétée par des comparaisons quantitatives. Les modèles simplifiés comme celui du fil inextensible avec prise en compte des couches limites ou celui du modèle rigide corrigé par le calcul des petits déplacements élastiques ont l'avantage d'être résolubles "à la main". Mais il ne sont que des approximations, le modèle le plus complet restant évidemment celui des tiges élastiques où aucune approximation n'est faite. Ce dernier présente cependant l'inconvénient d'être fortement non linéaire et exige en général un traitement numérique pour accéder à la solution. Il devient par conséquent important de chiffrer le domaine de validité des modèles simplifiés en comparant

leur prévision par rapport au modèle complet. Nous nous contenterons de le faire ici dans le cas de la poutre de Galilée où la force appliquée est verticale et où le poids est négligeable. La comparaison est faite sur les configurations d'équilibre prévues par les différents modèles suivant l'intensité de la force.

On voit sur la figure 4.23 que le modèle de flexion linéarisé introduit pour les chargements faibles est une bonne approximation pour des valeurs de \mathcal{F} inférieures à $\mathcal{F}_0/4$. Au delà, le simple fait que l'on y suppose que $x_1(S) = S$ et que l'on néglige donc tout déplacement horizontal (d'extension) le rend moins acceptable. On voit aussi que dès que les valeurs de \mathcal{F} sont supérieures à $5\mathcal{F}_0$ le modèle de fil avec prise en compte de la couche limite est tout à fait satisfaisant. Ceci permet de conclure, au moins dans le cas étudié, que l'on peut se passer de l'étude du modèle complet sur une grande plage de valeurs de \mathcal{F} .

FIGURE 4.23 – Comparaison des différents modèles dans le cas d'une force verticale ($\omega = -\pi/2$) en l'absence de pesanteur. En rouge : la configuration d'équilibre donnée par le modèle de tige inextensible; en pointillé vert : celle donnée par le modèle linéarisé de flexion; en pointillé bleu : celle donnée par le modèle de fil inextensible avec prise en compte de la couche limite à l'encastrement.

4.6 Cas des petits déplacements

4.6.1 Linéarisation du problème aux limites

Dans le problème de la poutre de Galilée, on a vu que dans le cas de chargements faibles les déplacements et les déformations étaient faibles ce qui permettait de faire un traitement simplifié du problème en le linéarisant. Il s'avère que ce procédé peut se généraliser à toutes les situations où le chargement est faible (par rapport à un chargement de référence qu'il s'agira de préciser à chaque fois). En effet, ce chargement faible induit des petits déplacements et des petites déformations par rapport à une configuration de référence (qu'il s'agira aussi de bien choisir à chaque fois), ce qui permet de simplifier le problème en négligeant certains termes. On aboutit ainsi à un problème aux limites dit *linéarisé* qui jouit de propriétés particulières et qui se résout en général beaucoup plus facilement que le problème complet. Cette approche simplifiée, qui n'est pas spécifique aux milieux curvilignes, est le coeur de la Résistance des Matériaux et du Calcul des Structures développés depuis plus d'un siècle en ingénierie. On se propose de décrire ici cette méthode de linéarisation avant de l'illustrer sur quelques exemples.

Le procédé de linéarisation peut se diviser en quatre grandes étapes qui sont décrites ci-dessous. Pour simplifier la présentation, nous supposerons que le milieu a un comportement élastique et qu'il se déforme peu et se déplace peu par rapport à une configuration de référence *naturelle*¹⁵.

1. Choix de la configuration de référence. On suppose a priori que le milieu s'écarte peu d'une configuration de référence naturelle qu'il faut commencer par préciser. Connaissant la forme naturelle de l'objet par la relation $S \mapsto C_{\mathsf{R}}(S)$ entre l'abscisse curviligne (naturelle) et la courbure (naturelle), elle est connue à un déplacement rigide près. De façon précise, connaissant $S \mapsto C_{\mathsf{R}}(S)$, on déduit par intégration $S \mapsto \alpha_{\mathsf{R}}(S)$ à une constante près α_{R}^0 ,

$$\alpha_{\rm R}(S) = \alpha_{\rm R}^0 + \int_0^S {\rm C}_{\rm R}(\tilde{S}) d\tilde{S}.$$

Puis sachant que $\mathbf{x}'_{\mathsf{R}}(S) = \cos \alpha_{\mathsf{R}}(S)\mathbf{e}_1 + \sin \alpha_{\mathsf{R}}(S)\mathbf{e}_2$, on obtient la configuration de référence par intégration à un vecteur translation près $\mathbf{x}^0_{\mathsf{R}}$,

$$\mathbf{x}_{\mathsf{R}}(S) = \mathbf{x}_{\mathsf{R}}^{0} + \int_{0}^{S} \cos \alpha_{\mathsf{R}}(\tilde{S}) d\tilde{S} \, \mathbf{e}_{1} + \int_{0}^{S} \sin \alpha_{\mathsf{R}}(\tilde{S}) d\tilde{S} \, \mathbf{e}_{2}.$$

Il s'agit donc de fixer les constantes α_{R}^{0} et \mathbf{x}_{R}^{0} . Pour cela on s'aide des conditions aux limites du problème. Leur détermination est immédiate dans le cas d'un problème isostatique ou hyperstatique où on impose au moins trois conditions aux limites cinématiques, mais peut demander la résolution d'un problème de statique de milieu rigide dans le cas hypostatique (on peut même avoir le choix entre plusieurs configurations de référence si le problème de statique de milieu rigide associé possède plusieurs solutions). Il faut donc raisonner au cas par cas et nous verrons quelques exemples-type dans les sections qui suivent. Pour l'heure, nous supposerons que la configuration de référence naturelle $S \mapsto \mathbf{x}_{R}(S)$ a été identifiée.

^{15.} On pourrait évidemment s'intéresser aussi aux cas où l'on prédéforme le milieu curviligne avant de lui superposer des chargements faibles qui l'écarteront peu de cette configuration d'équilibre prédéformée. Pour l'essentiel, la procédure est la même, mais le problème aux limites linéarisé obtenu diffère du fait de la présence des prédéformations. La méthode de linéarisation se généralise aussi aux milieux inélastiques.

2. Linéarisation des équations d'équilibre. Comme le milieu s'écarte peu de la configuration de référence $S \mapsto \mathbf{x}_{\mathsf{R}}(S)$, la première simplification consiste à écrire les équations d'équilibre en négligeant les changements de géométrie et en identifiant la configuration d'équilibre avec la configuration de référence. De façon précise, on fait les approximations suivantes :

(a) Décomposition des efforts intérieurs. La force intérieure $\mathbf{R}(S)$ est décomposée sur la base locale de la configuration de référence $(\mathbf{t}_{\mathsf{R}}(S), \mathbf{n}_{\mathsf{R}}(S))$:

$$\mathbf{R}(S) = N(S) \mathbf{t}_{\mathsf{R}}(S) + T(S) \mathbf{n}_{\mathsf{R}}(S),$$

alors que l'effort normal et l'effort tranchant se définissent normalement par rapport à la base locale de la configuration d'équilibre $(\mathbf{t}(S), \mathbf{n}(S))$.

(b) Efforts extérieurs. Les efforts extérieurs répartis sont définis par leur densité (\mathbf{f}_{R}, m_{R}) par rapport à la configuration de référence en négligeant les variations de longueur, *i.e.* $\mathbf{s}'(S) \approx 1$. Les efforts extérieurs ponctuels (y compris les efforts aux extrémités) sont appliqués aux points dans leur configuration de référence. Lorsque ces efforts dépendent de la position ou de l'orientation du milieu dans le plan, leur valeur est prise en identifiant la configuration d'équilibre à la configuration de référence, cf le problème de la tige soumise à une force centrifuge.

(c) Equations d'équilibre. Compte tenu des approximations précédentes, les équations d'équilibre locales s'écrivent finalement

$$\begin{cases} \mathbf{R}'(S) + \mathbf{f}_{\mathsf{R}}(S) = \mathbf{0} & \forall S \in \mathbb{C}_{\mathsf{R}} \setminus \mathbb{P}_{\mathsf{R}} \\ M'(S) + \mathbf{1} T(S) + \mathbf{m}_{\mathsf{R}}(S) = 0 & \forall S \in \mathbb{C}_{\mathsf{R}} \setminus \mathbb{P}_{\mathsf{R}} \\ \llbracket \mathbf{R} \rrbracket(S_i) + \mathbf{\mathcal{F}}_{S_i} = \mathbf{0} & \forall S_i \in \mathbb{P}_{\mathsf{R}} \\ \llbracket M \rrbracket(S_i) + \mathbf{\mathcal{M}}_{S_i} = 0 & \forall S_i \in \mathbb{P}_{\mathsf{R}} \end{cases}$$

où les termes encadrés en rouge sont ceux susceptibles d'avoir été simplifiés par rapport au problème complet. En particulier, si l'on projette l'équation locale d'équilibre des forces sur le repère local de la configuration de référence, on obtient

$$\begin{cases} N'(S) - \mathbf{C}_{\mathsf{R}}(S) \ T(S) + \mathbf{f}_{\mathsf{R}}(S) \cdot \mathbf{t}_{\mathsf{R}}(S) \\ T'(S) + \mathbf{C}_{\mathsf{R}}(S) \ N(S) + \mathbf{f}_{\mathsf{R}}(S) \cdot \mathbf{n}_{\mathsf{R}}(S) \\ \end{cases} = 0$$

équations qui ne font intervenir que la géométrie de la configuration de référence.

(d) *Conditions aux limites.* On peut être conduit à linéariser également les conditions aux limites. C'est en particulier le cas pour les conditions d'encastrement ou d'appui simple. On se contentera de les étudier sur des exemples.

3. Linéarisation des relations déformations-déplacements. Les inconnues cinématiques naturelles pour le problème aux limites linéarisé sont les deux composantes (u, w) du vecteur déplacement $\boldsymbol{\xi}$, *i.e.* le déplacement d'extension et la déflexion. La rotation, la déformation d'extension et la déformation

de flexion s'expriment en termes de u, w, de leurs dérivées et de la courbure de référence. On adopte ici l'hypothèse HPP et on utilise les expressions linéarisées, cf Chapitre 1

$$\begin{cases} \varepsilon = \boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}} = \mathbf{u}' - \mathsf{C}_{\mathsf{R}} \mathbf{w}, \\ \\ \omega = \boldsymbol{\xi}' \cdot \mathbf{n}_{\mathsf{R}} = \mathbf{w}' + \mathsf{C}_{\mathsf{R}} \mathbf{u}, \\ \\ \\ \kappa = (\boldsymbol{\xi}' \cdot \mathbf{n}_{\mathsf{R}})' = \mathbf{w}'' + (\mathsf{C}_{\mathsf{R}} \mathbf{u})' \end{cases}$$

4. Linéarisation des relations constitutives. On pourrait limiter le procédé de linéarisation aux trois étapes précédentes car elles s'appuient uniquement sur l'hypothèse HPP postulant que les déplacements et les déformations sont petits. Elles ne nécessitent aucune hypothèse sur la loi de comportement. On peut très bien concevoir un problème en petits déplacements et petites déformations en élasto-plasticité où la relation contrainte-déformation est fortement non linéaire. En effet, pour beaucoup de matériaux les non-linéarités de comportement ont lieu à des niveaux de déformation d'extension de l'ordre de 10^{-4} - 10^{-3} et les déformations à rupture ne dépassent pas quelques pourcents. En conséquence, une grande majorité des problèmes d'ingénierie se traitent dans le cadre HPP avec des comportements non linéaires, y compris les problèmes de rupture et de propagation de fissures.

Toutefois, sachant que la plupart des matériaux ont un comportement que l'on peut considérer comme linéairement élastique dans une certaine plage de déformations, on peut aussi adopter ce cadre de comportement linéarisé si le chargement est suffisamment faible. Dans ce cas la loi constitutive s'écrit

dans le cas d'une section hétérogène, cf Chapitre 3. Elle se réduit à $N = \mathsf{EA}\varepsilon$ et $M = \mathsf{EI}\kappa$ dans le cas d'une section homogène.

Si l'on examine le problème aux limites obtenu après ces quatre étapes de linéarisation, on constate immédiatement les simplifications suivantes par rapport au problème complet d'origine :

• Tous les efforts extérieurs ne dépendent que de la configuration de référence et sont donc connus a priori;

• Du fait de la linéarité des équations d'équilibre par rapport aux efforts intérieurs, de la linéarité des relations géométriques entre les déformations et les déplacements et de la linéarité des relations constitutives entre les efforts intérieurs et les déformations, le problème aux limites obtenu est linéaire par rapport aux inconnues (N, T, M, u, w);

• En éliminant les efforts intérieurs et en conservant les déplacements comme inconnues principales, on obtient un système différentiel linéaire du quatrième ordre en w et du deuxième ordre en u.

Toutes ces simplifications font que le problème aux limites linéarisé jouit de propriétés remarquables que nous pourrons constater sur les exemples qui suivent et que nous démontrerons dans le chapitre dédié aux approches variationnelles.

4.6.2 Problème de la tige sous pesanteur et force centrifuge

Ce problème a été traité au début du chapitre sous l'hypothèse d'un comportement rigide. On a en particulier constaté qu'il n'était pas possible de déterminer la répartition des efforts intérieurs dans le cas *encastré-appui simple* du fait du caractère hyperstatique du problème. Nous allons voir qu'en levant l'hypothèse de rigidité et en supposant un comportement élastique, on peut déterminer complètement les efforts intérieurs. Ce résultat justifie à lui seul le bien-fondé du développement d'une mécanique des milieux continus déformables. En contrepartie, il peut arriver que le problème linéarisé admette une infinité de solutions possibles en déplacement, c'est ce que nous constaterons dans le cas *fixé-libre*.

Cas encastré-appui simple

L'extrémité S = 0 est encastrée au point **O** dans la direction \mathbf{e}_1 , alors que l'extrémité $S = \ell_{\mathsf{R}}$ est sur un appui simple sur l'axe $x_2 = 0$. On prend donc pour configuration de référence naturelle :

$$\mathbf{x}_{\mathsf{R}}(S) = S\mathbf{e}_1, \quad S \in (0, \ell_{\mathsf{R}}).$$

Dans cette configuration, l'élément de longueur dS situé en S est soumis à la force $\mathbf{f}_{\mathsf{R}}(S)dS$ somme de la force de pesanteur et de la force centrifuge, ce qui donne

$$\mathbf{f}_{\mathsf{R}}(S) = \varrho_{\mathsf{R}} \Omega^2 S \mathbf{e}_1 - \varrho_{\mathsf{R}} g \mathbf{e}_2$$

L'approximation tient ici au fait que la force centrifuge devrait normalement se calculer sur la configuration d'équilibre et la densité de forces linéiques devrait donc s'écrire $\mathbf{f}_{R}(S) = \varrho_{R}\Omega^{2}x_{1}(S)\mathbf{e}_{1} - \varrho_{R}g\mathbf{e}_{2}$. En supposant le déplacement horizontal petit, on approxime $x_{1}(S)$ par S. Le repère local de la configuration de référence étant ici $\mathbf{t}_{R} = \mathbf{e}_{1}$ et $\mathbf{n}_{R} = \mathbf{e}_{2}$, le déplacement et les efforts intérieurs se décomposent en

$$\boldsymbol{\xi}(S) = \mathbf{u}(S)\mathbf{e}_1 + \mathbf{w}(S)\mathbf{e}_2, \qquad \mathbf{R}(S) = N(S)\mathbf{e}_1 + T(S)\mathbf{e}_2,$$

l'approximation dans la projection de **R** venant de l'identification de (\mathbf{t}, \mathbf{n}) avec $(\mathbf{e}_1, \mathbf{e}_2)$. Comme la configuration de référence vérifie la condition d'encastrement en S = 0, pour que la configuration d'équilibre la vérifie il faut que $\boldsymbol{\xi}(0) = \mathbf{0}$ et $\omega(0) = 0$. La courbure de référence étant nulle, l'expression linéarisée de la rotation en fonction de la dérivée des déplacements se réduit à $\omega = \mathbf{w}'$. Par conséquent la condition linéarisée d'encastrement s'écrit

$$u(0) = w(0) = 0, \qquad w'(0) = 0.$$

La condition d'appui simple en ℓ_{R} s'écrit théoriquement $x_2(\ell_{\mathsf{R}}) = \xi_2(\ell_{\mathsf{R}}) = 0$, $\mathbf{R}(\ell_{\mathsf{R}}) \cdot \mathbf{e}_1 = 0$ et $M(\ell_{\mathsf{R}}) = 0$. En utilisant les décompositions du déplacement et de la force intérieure, elle devient

$$\mathbf{w}(\ell_{\mathsf{R}}) = 0, \qquad N(\ell_{\mathsf{R}}) = 0, \qquad M(\ell_{\mathsf{R}}) = 0.$$

L'approximation tient ici au fait que l'on confond $\mathbf{t}(\ell_R)$ avec $\mathbf{t}_R(\ell_R) = \mathbf{e}_1$. Enfin, si l'on suppose que la tige est homogène et à section constante, les relations constitutives se réduisent à

$$N(S) = \mathsf{EAu}'(S), \qquad M(S) = \mathsf{EIw}''(S),$$

où l'on a pris les expressions linéarisées des déformations et on a tenu compte que $C_R = 0$. En résumé, le problème aux limites linéarisé s'écrit

Equations d'équilibre	$\begin{cases} N'(S) + \varrho_{\rm R} \Omega^2 S = 0\\ T'(S) - \varrho_{\rm R} g = 0\\ M'(S) + T(S) = 0 \end{cases}$	$\forall S \in (0, \ell_{R})$
Relations constitutives	$\begin{cases} N(S) = EAu'(S) \\ M(S) = EIw''(S) \end{cases}$	$dS \in (0, \ell_{R})$
Conditions aux limites	nditions aux limites $\begin{cases} u(0) = 0, & w(0) = 0, & w'(0) = 0\\ N(\ell_{R}) = 0, & w(\ell_{R}) = 0, & M(\ell_{R}) = 0 \end{cases}$	

Pour le résoudre on peut suivre la démarche utilisée dans le cas rigide en partant des équations d'équilibre. L'équation d'équilibre horizontale et la condition d'appui simple $N(\ell_{\mathsf{R}})$ permettent de déterminer la répartition de l'effort normal

$$N(S) = \frac{1}{2} \,\varrho_{\mathrm{R}} \Omega^2 (\ell_{\mathrm{R}}^2 - S^2),$$

qui est exactement celle du problème rigide. L'équation d'équilibre vertical donne

$$T(S) = T_0 + \varrho_{\mathsf{R}} g S,$$

la constante T_0 restant à déterminer. En reportant dans l'équation d'équilibre des moments et en tenant compte de la condition d'appui simple $M(\ell_{\mathsf{R}}) = 0$, on obtient

$$M(S) = T_0(\ell_{\mathsf{R}} - S) + \frac{1}{2} \,\varrho_{\mathsf{R}} g(\ell_{\mathsf{R}}^2 - S^2), \tag{4.31}$$

ce qui est aussi ce qu'avait donné le problème rigide. Mais ici, grâce à l'hypothèse d'élasticité, on va pouvoir déterminer T_0 et donc la répartition des efforts intérieurs. En effet, à partir de l'expression de M(S) et de la relation d'élasticité moment-courbure, on obtient

$$\mathbf{w}''(S) = \frac{T_0}{\mathsf{EI}}(\ell_{\mathsf{R}} - S) + \frac{\varrho_{\mathsf{R}}g}{2\mathsf{EI}}(\ell_{\mathsf{R}}^2 - S^2)$$

et l'on dispose de trois conditions aux limites portant sur w. La condition d'encastrement w'(0) permet d'intégrer une fois et on obtient

$$\mathbf{w}'(S) = \frac{T_0}{2\mathsf{EI}}(2\ell_{\rm R}S - S^2) + \frac{\varrho_{\rm R}g}{6\mathsf{EI}}(3\ell_{\rm R}^2S - S^3).$$

La condition de fixation en 0 et d'appui simple en ℓ_{R} exigeant que $\mathbf{w}(0) = \mathbf{w}(\ell_{\mathsf{R}}) = 0$, on doit avoir $0 = \int_0^{\ell_{\mathsf{R}}} \mathbf{w}'(S) dS$, équation qui fournit T_0 :

$$T_0 = -\frac{5}{8}\varrho_{\mathsf{R}}g\ell_{\mathsf{R}}.$$

On a donc déterminé la répartition des efforts intérieurs :

$$N(S) = \frac{1}{2} \varrho_{\mathsf{R}} \Omega^2(\ell_{\mathsf{R}}^2 - S^2) , \qquad T(S) = \varrho_{\mathsf{R}} g \left(S - \frac{5}{8} \ell_{\mathsf{R}} \right) , \qquad M(S) = \frac{1}{8} \varrho_{\mathsf{R}} g (\ell_{\mathsf{R}} - S) (4S - \ell_{\mathsf{R}}) .$$

La détermination complète des champs de déplacement ne présente pas de difficultés. De l'expression de N(S), on déduit $\mathfrak{u}'(S)$ grâce à la loi de comportement, puis par intégration $\mathfrak{u}(S)$ grâce à la condition de fixation $\mathfrak{u}(0) = 0$. De même, connaissant T_0 , on connait $\mathfrak{w}'(S)$, puis par intégration $\mathfrak{w}(S)$ grâce à la condition de fixation $\mathfrak{w}(0) = 0$ (la condition $\mathfrak{w}(\ell_R) = 0$ a été prise en compte pour obtenir T_0). Finalement, les déplacements sont donnés par

$$\mathbf{u}(S) = \frac{\varrho_{\mathrm{R}}\Omega^2}{6\mathrm{EA}}(3\ell_{\mathrm{R}}^2 - S^2)S \ , \qquad \mathbf{w}(S) = -\frac{\varrho_{\mathrm{R}}g}{48\mathrm{EI}}S^2(\ell_{\mathrm{R}} - S)(3\ell_{\mathrm{R}} - 2S)$$

Ces résultats appellent quelques commentaires :

• Les efforts intérieurs ne dépendent pas des modules de rigidité de la tige (et en particulier du module d'Young du matériau), seuls les déplacements en dépendent. Ceci peut paraître paradoxal puisque c'est l'hypothèse d'élasticité qui a permis de lever l'indétermination sur les efforts intérieurs. Ce résultat est à rapprocher de celui que l'on avait obtenu pour le problème de la poulie où la prise en compte de l'élasticité du câble avait permis de déterminer exactement la répartition des efforts intérieurs et des efforts de contact. En fait cette indépendance vis à vis des modules de rigidité a plusieurs causes : (i) l'hypothèse HPP, (ii) l'hypothèse de comportement linéairement élastique, (iii) l'hypothèse d'homogénéité de la tige. Il suffit de lever une de ces hypothèses pour qu'une dépendance de la répartition des efforts intérieurs aux modules de rigidité apparaisse. Nous l'illustrerons à la fin de cet exemple.

• Il y a un découplage entre l'effet de la force centrifuge et l'effet du poids. La force centrifuge n'induit pas de flexion, la pesanteur n'induit pas d'extension. Cela tient évidemment à la linéarisation.

• La répartition des efforts intérieurs n'est pas symétrique par rapport au milieu de la tige. Cela tient à la dissymétrie des conditions aux limites : encastrement d'un côté, appui simple de l'autre. On voit en particulier que l'encastrement doit reprendre cinq huitièmes du poids, l'appui simple seulement trois huitièmes. Là encore l'hypothèse d'homogénéité de la tige est essentielle. Dans le cas d'une tige hétérogène ou à section variable, la répartition du poids entre les deux extrémités pourrait être très différente.

• La déformation d'extension est maximale en 0 où elle vaut

$$\mathbf{u}'(0) = \frac{\rho_{\mathsf{m}} \Omega^2 \ell_{\mathsf{R}}^2}{2\mathsf{E}},$$

 ρ_{m} étant la masse volumique du matériau constitutif. Le déplacement d'extension est maximal en ℓ_{R} et $\mathfrak{u}(\ell_{\mathsf{R}})/\ell_{\mathsf{R}}$ est du même ordre que $\mathfrak{u}'(0)$. La rotation est maximale en ℓ_{R} où elle vaut

$$\mathbf{w}'(\ell_{\mathsf{R}}) = rac{
ho_{\mathsf{m}} g \mathsf{A} \ell_{\mathsf{R}}^3}{48 \mathsf{EI}}.$$

La déflexion maximale $\max_{S} |\mathbf{w}(S)| / \ell_{\mathsf{R}}$ est du même ordre. Par conséquent pour que l'hypothèse HPP soit acceptable, il faut que

$$\rho_{\rm m}\Omega^2\ell_{\rm R}^2\ll 2{\rm E},\qquad \rho_{\rm m}g{\rm A}\ell_{\rm R}^3\ll 48{\rm EI},$$

conditions qui dépendent à la fois de la géométrie, du chargement et du matériau. En particulier la deuxième condition demande que le poids \mathcal{P} de la tige soit petit devant sa charge de flambement d'Euler \mathcal{F}_0 , ce qui est conforme à l'analyse qualitative faite pour la poutre de Galilée. Si ces conditions ne sont pas satisfaites, par exemple si les tiges sont trop longues ou trop souples ou bien si la vitesse de rotation est trop forte, alors il faut traiter le problème non linéaire complet.

Cas d'une tige hétérogène. Reconsidérons le problème en supposant que la tige est constituée de deux matériaux de même masse volumique, mais de module d'Young respectifs E_a et E_b , le premier constituant la première moitié de la tige $(0, \ell_{\mathsf{R}}/2)$, le deuxième la deuxième moitié $(\ell_{\mathsf{R}}/2, \ell_{\mathsf{R}})$. La section de la tige est constante. La seule modification à apporter au problème aux limites linéarisé concerne les relations constitutives qui maintenant s'écrivent

$$N(S) = \mathsf{E}(S)\mathsf{Au}'(S), \qquad M(S) = \mathsf{E}(S)\mathsf{Iw}''(S) \quad \text{avec} \quad \mathsf{E}(S) = \begin{cases} \mathsf{E}_a & \text{si } 0 < S < \ell_{\mathsf{R}}/2\\ \mathsf{E}_b & \text{si } \ell_{\mathsf{R}}/2 < S < \ell_{\mathsf{R}} \end{cases}$$

La répartition de l'effort normal est inchangée. Par contre, la répartition de l'effort tranchant et du moment fléchissant va changer. En effet, on tire toujours des équations d'équilibre et de la condition $M(\ell_{\mathsf{R}}) = 0$ que M(S) est de la forme (4.31). Pour déterminer T_0 , il faut utiliser la loi de flexion qui donne

$$\mathbf{w}''(S) = \frac{T_0}{\mathsf{E}(S)\mathsf{I}}(\ell_{\mathsf{R}} - S) + \frac{\varrho_{\mathsf{R}}g}{2\mathsf{E}(S)\mathsf{I}}(\ell_{\mathsf{R}}^2 - S^2).$$

Comme $w(0) = w(\ell_R) = 0$ et w'(0) = 0, la constante T_0 s'obtient en écrivant

$$0 = \int_0^{\ell_{\mathsf{R}}} \mathsf{w}'(S) dS = \int_0^{\ell_{\mathsf{R}}} \int_0^S \mathsf{w}''(\tilde{S}) d\tilde{S} dS.$$

Tous calculs faits, on obtient

$$T_0 = -\frac{13\mathsf{E}_a + 67\mathsf{E}_b}{16\mathsf{E}_a + 112\mathsf{E}_b}\varrho_{\mathsf{R}}g\ell_{\mathsf{R}},$$

ce qui montre que la répartition de l'effort tranchant et du moment fléchissant dépend du rapport E_a/E_b des modules d'Young des matériaux constitutifs.

Cas fixé-libre

L'extrémité S = 0 est fixée au point **O** par une articulation qui laisse libre sa rotation, alors que l'extrémité $S = \ell_{\mathsf{R}}$ est libre. Les conditions aux limites cinématiques ne permettant pas de fixer la rotation d'ensemble, on envisage la famille de configurations de référence naturelles suivantes qui dépendent de l'angle $\alpha_0 \in [-\pi, \pi)$:

$$\mathbf{x}_{\mathsf{R}}(S) = S(\cos \alpha_0 \mathbf{e}_1 + \sin \alpha_0 \mathbf{e}_2), \quad S \in (0, \ell_{\mathsf{R}}).$$

L'angle α_0 fait partie des inconnues qu'il s'agira de déterminer pour que le problème aux limites linéarisé admette une solution. La densité de forces linéiques associée à cette configuration de référence s'écrit maintenant

$$\mathbf{f}_{\mathsf{R}}(S) = \varrho_{\mathsf{R}} \Omega^2 S \cos \alpha_0 \mathbf{e}_1 - \varrho_{\mathsf{R}} g \mathbf{e}_2,$$

alors que le repère local de la configuration de référence devient

$$\mathbf{t}_{\mathsf{R}} = \cos \alpha_0 \mathbf{e}_1 + \sin \alpha_0 \mathbf{e}_2, \qquad \mathbf{n}_{\mathsf{R}} = -\sin \alpha_0 \mathbf{e}_1 + \cos \alpha_0 \mathbf{e}_2.$$

Le déplacement et les efforts intérieurs se décomposent en

$$\boldsymbol{\xi}(S) = \mathbf{u}(S)\mathbf{t}_{\mathsf{R}} + \mathbf{w}(S)\mathbf{n}_{\mathsf{R}} \qquad \mathbf{R}(S) = N(S)\mathbf{t}_{\mathsf{R}} + T(S)\mathbf{n}_{\mathsf{R}}.$$

Par conséquent, le problème aux limites linéarisé s'écrit $\begin{cases} N'(S) + \varrho_{\mathsf{R}} \Omega^2 S \cos^2 \alpha_0 - \varrho_{\mathsf{R}} g \sin \alpha_0 = 0\\ T'(S) - \varrho_{\mathsf{R}} \Omega^2 S \sin \alpha_0 \cos \alpha_0 - \varrho_{\mathsf{R}} g \cos \alpha_0 = 0\\ M'(S) + T(S) = 0 \end{cases} \quad \forall S \in (0, \ell_{\mathsf{R}})$

Equations d'équilibre

Relations constitutives

Conditions aux limites

$$\begin{cases} N(S) = \mathsf{EAu}'(S)\\ M(S) = \mathsf{EIw}''(S) \end{cases} \quad \forall S \in (0, \ell_{\mathsf{R}}) \\ \begin{cases} \mathsf{u}(0) = 0, \quad \mathsf{w}(0) = 0, \quad M(0) = 0\\ N(\ell_{\mathsf{R}}) = 0, \quad T(\ell_{\mathsf{R}}) = 0, \quad M(\ell_{\mathsf{R}}) = 0 \end{cases}$$

L'équation d'équilibre suivant la normale \mathbf{n}_{R} et la condition à la limite $T(\ell_{\mathsf{R}}) = 0$ donnent

$$T(S) = -\frac{1}{2} \,\varrho_{\mathsf{R}} \Omega^2 \sin \alpha_0 \cos \alpha_0 (\ell_{\mathsf{R}}^2 - S^2) - \varrho_{\mathsf{R}} g \cos \alpha_0 (\ell_{\mathsf{R}} - S).$$

Compte tenu que $M(0) = M(\ell_R) = 0$, l'équation d'équilibre des moments donne

$$0 = \int_0^{\ell_{\mathsf{R}}} M'(S) dS = -\int_0^{\ell_{\mathsf{R}}} T(S) dS,$$

ce qui constitue en fait l'équation d'équilibre global des moments qui fournit l'équation que doit satisfaire l'angle α_0 :

 $(2\Omega^2 \ell_{\mathsf{R}} \sin \alpha_0 + 3g) \cos \alpha_0 = 0$ (condition nécessaire d'équilibre).

C'est exactement l'équation que l'on avait obtenue en supposant la tige rigide au début du chapitre.

Autrement dit, le problème linéarisé n'admet de solution que si on choisit pour configuration de référence une des configurations d'équilibre du problème rigide associé.

Cette équation a été étudiée dans le problème rigide et peut admettre de deux à quatre solutions suivant les valeurs des paramètres de chargement. Plaçons-nous dans le cas où $2\Omega^2 \ell_{\mathsf{R}} > 3g$ et choisissons la configuration d'équilibre de la branche bifurquée supérieure, *i.e.*

$$\alpha_0 = -\frac{\pi}{2} + \arccos\left(\frac{1}{\lambda}\right), \qquad \lambda = \frac{2\Omega^2 \ell_{\rm R}}{3g} > 1$$

Dans cette configuration, la répartition des efforts intérieurs est donnée par

$$\begin{cases} N(S) = \left(1 - \frac{S}{\ell_{\mathsf{R}}} + \frac{3}{4}(\lambda^2 - 1)\left(1 - \frac{S^2}{\ell_{\mathsf{R}}^2}\right)\right)\frac{\mathcal{P}}{\lambda}\\ T(S) = -\left(1 - \frac{S}{\ell_{\mathsf{R}}}\right)\left(1 - \frac{3S}{\ell_{\mathsf{R}}}\right)\sqrt{\lambda^2 - 1}\frac{\mathcal{P}}{4\lambda}\\ M(S) = \frac{S}{\ell_{\mathsf{R}}}\left(1 - \frac{S}{\ell_{\mathsf{R}}}\right)^2\sqrt{\lambda^2 - 1}\frac{\mathcal{P}\ell_{\mathsf{R}}}{4\lambda} \end{cases}$$

où $\mathcal{P} = \rho_{\mathsf{R}} g \ell_{\mathsf{R}}$ désigne le poids de la tige. Cette répartition est identique à celle trouvée dans le problème rigide. A l'aide de la loi de comportement d'extension et la condition $\mathfrak{u}(0) = 0$, on obtient par intégration le déplacement d'extension $\mathfrak{u}(S)$:

$$\mathbf{u}(S) = \left(\frac{S}{\ell_{\mathrm{R}}} - \frac{S^2}{2\ell_{\mathrm{R}}^2} + \frac{1}{4}(\lambda^2 - 1)\left(\frac{3S}{\ell_{\mathrm{R}}} - \frac{S^3}{\ell_{\mathrm{R}}^3}\right)\right) \frac{\mathcal{P}}{\mathrm{EA}} \frac{\ell_{\mathrm{R}}}{\lambda}$$

A l'aide de la loi de comportement de flexion et de l'expression de M(S), on obtient la courbure linéarisée $\mathbf{w}''(S)$. Mais on ne dispose que d'une condition à la limite $\mathbf{w}(0) = 0$ pour calculer la déflexion $\mathbf{w}(S)$. Il manque une condition pour fixer les deux constantes d'intégration. En fait la rotation linéarisée $\omega(S) = \mathbf{w}'(S)$ est définie à une constante près, conséquence du caractère hypostatique du problème linéarisé. En résumé,

Dans le cas **fixé-libre**, le problème aux limites linéarisé de la tige sous pesanteur et force centrifuge n'admet une solution que si l'on prend pour configuration de référence une des positions d'équilibre du problème rigide associé. La répartition des efforts intérieurs est alors la même que celle fournie par le problème rigide. Par contre les petits déplacements élastiques ne sont pas parfaitement déterminés. En particulier, la rotation est définie à une constante près. Autrement dit, le problème linéarisé admet une solution à condition de linéariser autour d'une configuration d'équilibre du problème rigide associé, mais alors la solution en déplacement n'est pas unique mais est définie à un "petit" déplacement rigide admissible près.

4.6.3 Problème de l'anneau intact ou cassé soumis à des forces ponctuelles

Nous reprenons les problèmes qui avaient été traités en supposant l'anneau rigide. On avait vu que dans le cas de l'anneau intact, il n'était pas possible de déterminer exactement la répartition des efforts intérieurs mais qu'ils étaient définis à trois constantes arbitraires près. Le premier objectif est de montrer qu'en abandonnant l'hypothèse de rigidité et en supposant l'anneau élastique, on lève automatiquement l'indétermination. Le deuxième est d'illustrer la différence entre un anneau intact et un anneau cassé en comparant les déplacements d'équilibre. Tout ceci est fait dans le cadre HPP.

On prend pour configuration de référence naturelle de l'anneau intact le cercle paramétré par $S \in [0, 2\pi R)$ et défini par

$$\mathbf{x}_{\mathsf{R}}(S) = R\cos\left(\frac{S}{R}\right)\mathbf{e}_1 + R\sin\left(\frac{S}{R}\right)\mathbf{e}_2,$$

alors que la configuration de référence de l'anneau cassé est ce même cercle privé du point Re_1 et donc pour lequel $S \in (0, 2\pi R)$. Rappelons que ces deux anneaux sont soumis au même chargement correspondant à deux forces concentrées, l'une $\mathcal{F}\mathbf{e}_2$ appliquée en $S_1 = \pi R/2$, l'autre $-\mathcal{F}\mathbf{e}_2$ appliquée en $S_2 = 3\pi R/2$. Les extrémités S = 0 et $S = 2\pi R$ de l'anneau cassé sont libres. Nous avons vu que ces configurations naturelles sont également des configurations d'équilibre stable du problème rigide associé.

FIGURE 4.24 – L'anneau intact et l'anneau cassé dans leur configuration de référence naturelle avec leur chargement.

Cas de l'anneau intact

Les équations d'équilibre sont les mêmes que dans le problème rigide. Par conséquent, elles conduisent à la répartition suivante des efforts intérieurs :

$$\begin{aligned} \text{Dans} \left(0, \frac{\pi}{2}R\right] \cup \left(\frac{3\pi}{2}R, 2\pi R\right) &: \begin{cases} N(S) = T_0 \sin(S/R) + N_0 \cos(S/R) \\ T(S) = T_0 \cos(S/R) - N_0 \sin(S/R) \\ M(S) = -T_0 R \sin(S/R) - N_0 R \cos(S/R) + M_0 + N_0 R \end{cases} \\ \\ \text{Dans} \left(\frac{\pi}{2}R, \frac{3\pi}{2}R\right] &: \begin{cases} N(S) = T_0 \sin(S/R) - (\mathcal{F} - N_0) \cos(S/R) \\ T(S) = T_0 \cos(S/R) + (\mathcal{F} - N_0) \sin(S/R) \\ M(S) = -T_0 R \sin(S/R) + (\mathcal{F} - N_0) R \cos(S/R) + M_0 + N_0 R \end{cases} \end{aligned}$$

où N_0 , T_0 et M_0 sont trois constantes qui restent à déterminer. Elles vont être fournies par les relations constitutives et les conditions de régularité des champs. Remarquons que N et M sont liés par

$$M(S) = (N_0 - N(S))R + M_0.$$
(4.32)

Si l'on suppose l'anneau homogène et à section constante, les relations constitutives d'élasticité linéarisées s'écrivent

$$\varepsilon(S) := \mathbf{u}'(S) - \frac{\mathbf{w}(S)}{R} = \frac{N(S)}{\mathsf{EA}}, \qquad \omega'(S) = \frac{M(S)}{\mathsf{EI}}, \qquad \omega(S) := \mathbf{w}'(S) + \frac{\mathbf{u}(S)}{R}.$$

Les déplacements et la rotation doivent être continus, y compris aux points où sont exercées les forces ponctuelles, ce qui exige que

$$\llbracket \mathbf{u} \rrbracket(\frac{\pi}{2}R) = \llbracket \mathbf{w} \rrbracket(\frac{\pi}{2}R) = \llbracket \omega \rrbracket(\frac{\pi}{2}R) = 0, \qquad \llbracket \mathbf{u} \rrbracket(\frac{3\pi}{2}R) = \llbracket \mathbf{w} \rrbracket(\frac{3\pi}{2}R) = \llbracket \omega \rrbracket(\frac{3\pi}{2}R) = 0.$$

D'autre part, comme l'anneau est intact, les déplacements et la rotation doivent être périodiques, ce qui exige que

$$\mathbf{u}(0) = \mathbf{u}(2\pi R), \qquad \mathbf{w}(0) = \mathbf{w}(2\pi R), \qquad \boldsymbol{\omega}(0) = \boldsymbol{\omega}(2\pi R).$$

La détermination des constantes N_0 , T_0 et M_0 ne nécessite pas de calculer les déplacements, comme on va le voir. Remarquons d'abord que la continuité et la périodicité de la rotation donnent

$$0 = \int_0^{2\pi R} \omega'(S) dS = \int_0^{2\pi R} \frac{M(S)}{\mathsf{EI}} dS$$

ce qui fournit une première équation. En remarquant que la dérivée des déplacements peut s'écrire

$$\boldsymbol{\xi}' = \left(\mathbf{u}' - \frac{\mathbf{w}}{R}\right)\mathbf{t}_{\mathsf{R}} + \left(\mathbf{w}' + \frac{\mathbf{u}}{R}\right)\mathbf{n}_{\mathsf{R}} = \varepsilon\mathbf{t}_{\mathsf{R}} + R\omega\mathbf{t}_{\mathsf{R}}',\tag{4.33}$$

la continuité et la périodicité des déplacements et de la rotation conduisent à

$$0 = \int_0^{2\pi R} \boldsymbol{\xi}'(S) dS = \int_0^{2\pi R} \left(\boldsymbol{\varepsilon}(S) - R\boldsymbol{\omega}'(S) \right) \mathbf{t}_{\mathsf{R}}(S) dS = \int_0^{2\pi R} \left(\frac{N(S)}{\mathsf{E}\mathsf{A}} - \frac{M(S)R}{\mathsf{E}\mathsf{I}} \right) \mathbf{t}_{\mathsf{R}}(S) dS.$$

En utilisant (4.32) et le fait que $\int_0^{2\pi R} {\bf t}_{\sf R}(S) dS = {\bf 0},$ on arrive à

$$\int_0^{2\pi R} N(S) \mathbf{t}_{\mathsf{R}}(S) dS = \mathbf{0},$$

ce qui fournit les deux autres équations. Finalement les trois constantes doivent donc vérifier

$$\int_0^{2\pi R} M(S) dS = 0, \quad \int_0^{2\pi R} N(S) \cos(S/R) dS = 0, \quad \int_0^{2\pi R} N(S) \sin(S/R) dS = 0,$$

qui est un système linéaire en (N_0, T_0, M_0) . Sa résolution est immédiate et on en déduit

$$N_0 = \frac{\mathcal{F}}{2}, \qquad \overline{T_0 = 0}, \qquad M_0 = -\left(\frac{1}{2} - \frac{1}{\pi}\right) \mathcal{F}R$$

Par conséquent la répartition des efforts intérieurs est la suivante :

$$N(S) = \frac{\mathcal{F}}{2} \left| \cos \frac{S}{R} \right|, \quad T(S) = -\frac{\mathcal{F}R}{2} \operatorname{sign}(\cos \frac{S}{R}) \sin \frac{S}{R}, \quad M(S) = \frac{\mathcal{F}R}{\pi} - \frac{\mathcal{F}R}{2} \left| \cos \frac{S}{R} \right|$$

et leur graphe est représenté sur la figure 4.25. Notons que la répartition de l'effort normal et du moment fléchissant est symétrique alors que celle de l'effort tranchant est antisymétrique. Ces propriétés de symétrie sont dues à l'homogénéité de l'anneau, il suffirait de considérer un anneau constitué de deux matériaux différents sur deux moitiés pour que la symétrie soit rompue.

FIGURE 4.25 – Répartition des efforts intérieurs dans l'anneau intact élastique obtenue dans le cadre HPP.

Une fois cette répartition des efforts intérieurs connue, on pourrait calculer les déplacements d'équilibre (qui ne seraient définis qu'à un petit déplacement de corps rigide près, cf le cas de l'anneau cassé ci-après). Nous n'expliciterons pas ici les calculs.

Cas de l'anneau cassé

Les équations d'équilibre et les conditions à la limite d'extrémité libre en S = 0 et $S = 2\pi R$ permettent de calculer exactement la répartition des efforts intérieurs. Dans le cadre HPP, cette répartition est la même que celle trouvée dans le cadre rigide et par conséquent on a

$$\begin{aligned} \forall S \in (0, \frac{\pi}{2}R] \cup (\frac{3\pi}{2}R, 2\pi R) &: N(S) = 0, \\ \forall S \in (\frac{\pi}{2}R, \frac{3\pi}{2}R] &: N(S) = -\mathcal{F}\cos(S/R), \quad T(S) = \mathcal{F}\sin(S/R), \quad M(S) = \mathcal{F}R\cos(S/R). \end{aligned}$$

Les relations constitutives et les conditions de continuité sont les mêmes que pour l'anneau intact :

$$\begin{split} \varepsilon(S) &:= \mathbf{u}'(S) - \frac{\mathbf{w}(S)}{R} = \frac{N(S)}{\mathsf{E}\mathsf{A}}, \qquad \omega'(S) = \frac{M(S)}{\mathsf{E}\mathsf{I}}, \qquad \omega(S) := \mathbf{w}'(S) + \frac{\mathbf{u}(S)}{R}, \\ & \llbracket \mathbf{u} \rrbracket (\frac{\pi}{2}R) = \llbracket \mathbf{w} \rrbracket (\frac{\pi}{2}R) = \llbracket \omega \rrbracket (\frac{\pi}{2}R) = 0, \qquad \llbracket \mathbf{u} \rrbracket (\frac{3\pi}{2}R) = \llbracket \mathbf{w} \rrbracket (\frac{3\pi}{2}R) = \llbracket \omega \rrbracket (\frac{3\pi}{2}R) = 0, \end{split}$$

mais l'anneau étant cassé on n'a plus à satisfaire les conditions de périodicité, les déplacements et la rotation en S = 0 et $S = 2\pi R$ sont indépendants.

On peut remarquer immédiatement que comme on n'impose aucune condition à la limite sur les déplacements, ceux-ci vont être définis à un déplacement rigide près. Dans le cadre HPP adopté, ce déplacement rigide est en fait ce que nous avons appelé un *petit déplacement de corps rigide* au chapitre 1, cf (1.29), *i.e.* un déplacement de la forme $\mathbf{a} + \omega_0 \mathbf{e}_3 \wedge \mathbf{x}_{\mathsf{R}}(S)$ avec $\mathbf{a} \in \mathbb{R}^2$ et $\omega_0 \in \mathbb{R}$. Nous allons le constater en calculant les déplacements et la rotation.

La rotation $\omega(S)$ s'obtient à une constante près en intégrant la loi de comportement de flexion :

$$\omega(S) = \omega_0 + \int_{\pi R}^S \frac{M(\tilde{S})}{\mathsf{EI}} d\tilde{S} = \begin{cases} \omega_0 + \frac{\mathcal{F}R^2}{\mathsf{EI}} & \text{si } S \in (0, \pi R/2) \\ \omega_0 + \frac{\mathcal{F}R^2}{\mathsf{EI}} \sin(S/R) & \text{si } S \in [\pi R/2, 3\pi R/2] \\ \omega_0 - \frac{\mathcal{F}R^2}{\mathsf{EI}} & \text{si } S \in (3\pi R/2, 2\pi R) \end{cases}$$

où ω_0 est la constante arbitraire correspondant à la "petite" rotation d'ensemble. Pour calculer les déplacements, il vaut mieux partir de (4.33) :

$$\boldsymbol{\xi}'(S) = \varepsilon(S)\mathbf{t}_{\mathsf{R}}(S) + \omega(S)\mathbf{n}_{\mathsf{R}}(S),$$

ce qui permet d'obtenir $\boldsymbol{\xi}(S)$ par simple intégration sans avoir à résoudre des équations différentielles. Les calculs peuvent même être encore plus simplifiés si l'on remarque que $\mathbf{n}_{\mathsf{R}} = R\mathbf{t}_{\mathsf{R}}'$ et M = -NR. En effet, on a alors

$$\boldsymbol{\xi}' = \varepsilon \mathbf{t}_{\mathsf{R}} + R\omega \mathbf{t}_{\mathsf{R}}' = (\varepsilon - R\omega')\mathbf{t}_{\mathsf{R}} + (R\omega \mathbf{t}_{\mathsf{R}})' = \left(\frac{N}{\mathsf{E}\mathsf{A}} - \frac{MR}{\mathsf{E}\mathsf{I}}\right)\mathbf{t}_{\mathsf{R}} + (R\omega \mathbf{t}_{\mathsf{R}})' = \left(\frac{1}{\mathsf{E}\mathsf{A}} + \frac{R^2}{\mathsf{E}\mathsf{I}}\right)N\mathbf{t}_{\mathsf{R}} + (\omega R\mathbf{t}_{\mathsf{R}})'.$$

En intégrant on obtient

$$\boldsymbol{\xi}(S) = \mathbf{a} + \omega_0 R \mathbf{e}_2 + \omega(S) R \mathbf{t}_{\mathsf{R}}(S) + \left(\frac{1}{\mathsf{E}\mathsf{A}} + \frac{R^2}{\mathsf{E}\mathsf{I}}\right) \int_{\pi R}^{S} N(\tilde{S}) \mathbf{t}_{\mathsf{R}}(\tilde{S}) d\tilde{S}.$$

où **a** est le vecteur translation arbitraire¹⁶. Comme $\mathbf{t}_{\mathsf{R}}(S) = -\sin(S/R)\mathbf{e}_1 + \cos(S/R)\mathbf{e}_2$, le calcul de l'intégrale ne présente aucune difficulté et on obtient finalement que

1. Le premier quart de l'anneau $(0, \pi R/2)$ a un déplacement de corps rigide :

$$\boldsymbol{\xi}(S) = \mathbf{a} + \omega_0 R \mathbf{e}_2 + \left(1 + \frac{\mathsf{I}}{\mathsf{A}R^2}\right) \frac{\mathcal{F}R^2}{2\mathsf{E}\mathsf{I}} \left(R \mathbf{e}_1 + \frac{\pi R}{2} \mathbf{e}_2\right) + \left(\omega_0 + \frac{\mathcal{F}R^2}{\mathsf{E}\mathsf{I}}\right) \mathbf{e}_3 \wedge \mathbf{x}_{\mathsf{R}}(S);$$

2. Les deuxième et troisième quarts $(\pi R/2, 3\pi R/2)$ subissent le déplacement :

$$\boldsymbol{\xi}(S) = \mathbf{a} + \omega_0 R \mathbf{e}_2 - \left(1 + \frac{\mathsf{I}}{\mathsf{A}R^2}\right) \frac{\mathcal{F}R^2}{2\mathsf{E}\mathsf{I}} (S - \pi R) \mathbf{e}_2 + \left(\omega_0 + \left(1 - \frac{\mathsf{I}}{\mathsf{A}R^2}\right) \frac{\mathcal{F}R^2}{2\mathsf{E}\mathsf{I}} \sin\frac{S}{R}\right) \mathbf{e}_3 \wedge \mathbf{x}_{\mathsf{R}}(S);$$

3. Le dernier quart de l'anneau $(3\pi R/2, 2\pi)$ a un déplacement de corps rigide :

$$\boldsymbol{\xi}(S) = \mathbf{a} + \omega_0 R \mathbf{e}_2 + \left(1 + \frac{\mathsf{I}}{\mathsf{A}R^2}\right) \frac{\mathcal{F}R^2}{2\mathsf{E}\mathsf{I}} \left(R\mathbf{e}_1 - \frac{\pi R}{2}\mathbf{e}_2\right) + \left(\omega_0 - \frac{\mathcal{F}R^2}{\mathsf{E}\mathsf{I}}\right) \mathbf{e}_3 \wedge \mathbf{x}_{\mathsf{R}}(S).$$

Les extrémités S = 0 et $S = 2\pi R$ qui occupaient la même position géométrique Re_1 dans la configuration de référence vont s'écarter sous l'effet du chargement. L'ouverture au point de cassure est donnée par

$$\boldsymbol{\xi}(0) - \boldsymbol{\xi}(2\pi R) = \left(2 + \left(1 + \frac{\mathsf{I}}{\mathsf{A}R^2}\right)\frac{\pi}{2}\right)\frac{\mathcal{F}R^2}{\mathsf{E}\mathsf{I}}R\mathbf{e}_2$$

^{16.} La translation **a** et la rotation ω_0 correspondent au déplacement et à la rotation du point $S = \pi R$.

Elle est proportionnelle à la force exercée du fait du cadre HPP et est purement longitudinale (*i.e.* suivant \mathbf{e}_2) du fait des symétries du problème issues du chargement appliqué et de l'homogénéité de l'anneau. En pratique, on peut négliger le terme $\frac{1}{AR^2}$ qui est petit devant 1 si l'anneau est suffisamment élancé, ce qui revient à négliger la déformation d'extension.

Théoriquement le cadre HPP est licite pourvu que

$$\mathcal{F} \ll \mathsf{EI}/R^2 := \mathcal{F}_0,$$

 \mathcal{F}_0 représentant à un coefficient multiplicatif près (indépendant du rayon de l'anneau, de la section et du module d'Young du matériau) la charge de flambement d'Euler de l'anneau sous compression uniforme. Si on se réfère à l'analyse faite pour le problème de la poutre de Galilée, le cadre HPP fournit une approximation satisfaisante jusqu'à des valeurs de \mathcal{F} égales à $\mathcal{F}_0/4$. La figure ci-contre montre la configuration d'équilibre de l'anneau cassé calculée dans le cadre HPP quand $\mathcal{F} = \mathcal{F}_0/5$. Le déplacement de corps rigide arbitraire a été fixé de façon à ce que $\boldsymbol{\xi}(\pi R) = \mathbf{0}$ et $\omega(\pi R) = 0$, *i.e.* $\mathbf{a} = \mathbf{0}$ et $\omega_0 = 0$.

Chapitre 5

L'approche variationnelle en statique

Le premier objectif de ce chapitre est d'obtenir une caractérisation des efforts intérieurs à l'équilibre qui soit équivalente aux équations d'équilibre locales. Cette nouvelle caractérisation s'appuiera sur la notion de mouvement virtuel et sur le travail des efforts intérieurs et extérieurs dans ces mouvements virtuels. Comme lors de l'établissement des équations d'équilibre locales, aucune hypothèse sera faite sur le comportement du milieu continu curviligne ou sur l'origine des efforts extérieurs. La nouvelle formulation sera donc aussi générale que la précédente, elle sera variationnelle par nature au sens où on envisagera une infinité de mouvements virtuels (on les fera donc *varier*). Elle porte le nom de *Principe des Puissances Virtuelles*, en abrégé PPV.

Le deuxième objectif est d'obtenir des propriétés énergétiques des états d'équilibre. Pour cela on introduit dans le PPV les informations associées au problème aux limites considéré, informations qui concernent le comportement du milieu, le type de chargement envisagé ou les conditions aux limites. Sous la condition que les données soient telles que le système soit *conservatif* et que que l'on puisse définir une *énergie potentielle*, on peut alors établir ces propriétés énergétiques en termes de l'énergie potentielle. Ceci permet d'introduire en particulier le concept de *stabilité* et de fournir un *critère de sélection* des états d'équilibre.

Le dernier objectif est de montrer que l'approche variationnelle est un outil puissant tant d'un point de vue théorique que pratique. D'un point de vue théorique, cela fournit un cadre mathématique et physique général pour formuler, formaliser et étudier les problèmes de statique. D'un point de vue pratique, cela conduit à des méthodes numériques d'approximation précises et robustes. En particulier, les méthodes de discrétisation telle la *Méthode des Eléments Finis* s'appuient de façon essentielle sur ces formulations variationnelles.

Le nom de Lagrange est attaché à celui du Calcul des Variations. Il développa avec Euler cette branche des Mathématiques et fournit ainsi un nouveau formalisme pour l'écriture les lois de la mécanique classique. Son ouvrage intitulé *Méchanique Analitique*, publié à Paris en 1788, présente la Mécanique comme une branche de l'Analyse en avertissant le lecteur par cette phrase désormais célèbre 'On ne trouvera point de Figures dans cet ouvrage. Les méthodes que j'y expose ne demandent ni constructions, ni raisonnements géométriques ou mécaniques, mais seulement des opérations algébriques... 'Le Calcul des Variations a trouvé depuis de nombreuses autres applications dans toutes les sciences. Plusieurs concepts liés à cette approche portent désormais le nom de Lagrange, tels les équations d'Euler-Lagrange ou les multiplicateurs de Lagrange.

Portrait de Joseph Louis Lagrange (1736-1813)

5.1 Mouvements virtuels

Dans l'approche variationnelle on est amené à considérer des mouvements virtuels du milieu curviligne. Nous aurions pu les introduire au chapitre 1 car les notions et le formalisme sont identiques à ceux de la cinématique réelle. Mais nous les introduisons maintenant car nous ne les utiliserons effectivement que dans ce chapitre pour établir le fameux PPV (Principe des Puissances Virtuelles) et les propriétés énergétiques de l'équilibre ou du mouvement des milieux curvilignes.

Nous partons de la configuration $s \mapsto \mathbf{x}(s)$ paramétrée par son abscisse curviligne et nous envisageons des "petits mouvements virtuels" du milieu continu curviligne autour de cette configuration. La configuration $s \mapsto \mathbf{x}(s)$ peut être tout aussi bien une configuration d'équilibre qu'une configuration réellement occupée par le milieu à un certain instant de son mouvement, voire une configuration "virtuelle" que le milieu n'a pas encore occupée ou n'occupera jamais. Elle va en quelque sorte nous servir de nouvelle configuration de référence et on va paramétrer les autres configurations envisagées dans le mouvement virtuel par s. (Autrement dit s va jouer le rôle de S; on qualifie parfois cela de description lagrangienne réactualisée.)

Pour décrire le mouvement virtuel, nous introduisons un paramètre réel h dont la dimension physique n'a pas besoin d'être précisée ici (il pourra être aussi bien homogène à un temps qu'à une longueur ou bien encore sans dimension). Les configurations virtuelles du milieu sont la famille de courbes planes paramétrées par s:

$$(h,s) \mapsto \mathbf{x}_h(s)$$
 (mouvement virtuel)

où h varie dans un intervalle contenant 0. Cette famille est soumise aux conditions suivantes :

1. Le mouvement virtuel passe par la configuration de référence \mathbf{x} en h = 0: $\mathbf{x}_{h=0}(s) = \mathbf{x}(s)$;

2. La dépendance en h sera supposée aussi régulière que le nécessite le contexte. En particulier la dérivée de \mathbf{x}_h par rapport à h en h = 0 existe et est appelée la vitesse virtuelle de déplacement du milieu. On la note $\mathbf{\dot{x}}$:

$$\left| \mathbf{\dot{x}}(s) = \frac{d\mathbf{x}_h}{dh}(s) \right|_{h=0} \qquad (\text{vitesse virtuelle de déplacement})$$

3. Le champ de vitesse virtuelle $s \mapsto \mathbf{\tilde{x}}(s)$, en tant que fonction de l'abscisse curviligne s, est régulier par morceaux. Cette régularité variera avec le contexte et sera précisée à chaque fois.

Lors de ce mouvement virtuel, les grandeurs géométriques et cinématiques changent avec h.

• On peut calculer, à chaque "instant" h, les vecteurs unitaires tangent et normal \mathbf{t}_h et \mathbf{n}_h , l'angle tangent α_h , l'abscisse curviligne s_h et la courbure \mathbf{C}_h . En adaptant les formules obtenues dans la section 1.3.1, on arrive aux expressions suivantes dont l'obtention est laissée à titre d'exercice :

Dénomination	Notation	Relation
vecteur tangent virtuel	\mathbf{t}_h	$\mathbf{t}_{h} = rac{\mathbf{x}_{h}^{\prime}}{\left\ \mathbf{x}_{h}^{\prime} ight\ }$
vecteur normal virtuel	\mathbf{n}_h	$\mathbf{n}_{h}=\mathbf{e}_{3}{\wedge}\mathbf{t}_{h}$
angle tangent virtuel	$lpha_h$	$\cos \alpha_h = \mathbf{t}_h \cdot \mathbf{e}_1, \sin \alpha_h = \mathbf{t}_h \cdot \mathbf{e}_2$
abscisse curviligne virtuelle	s_h	$s_h' = \ \mathbf{x}_h'\ $
courbure virtuelle	\mathtt{C}_h	$lpha_h'/s_h'$

TABLE 5.1 – Grandeurs géométriques associées à la configuration virtuelle $s \mapsto \mathbf{x}_h(s)$ où le prime ' désigne la dérivée par rapport à s.

• En prenant pour configuration de référence la configuration $s \mapsto \mathbf{x}(s)$ et pour configuration déformée la configuration $s \mapsto \mathbf{x}_h(s)$, on peut aussi introduire toutes les grandeurs associées à la déformation du milieu dans ce changement "virtuel" de configuration, tels le déplacement virtuel $\boldsymbol{\xi}_h$, le déplacement d'extension virtuel \mathbf{u}_h , la déflexion virtuelle \mathbf{w}_h , la rotation virtuelle ω_h , la déformation de flexion virtuelle κ_h . On peut utiliser, en adaptant les notations, tous les résultats établis dans les sections 1.3.2-1.3.3 pour obtenir leurs expressions. Le tableau ci-dessous les résume.

Attention. Les déplacements, les rotations et les déformations sont définies par rapport à la configuration $s \mapsto \mathbf{x}(s)$. On sera amené dans la section 5.4 à les définir par rapport à la configuration de référence $S \mapsto \mathbf{x}_{\mathsf{R}}(S)$.

Dénomination	Notation	Relation	
déplacement virtuel	$oldsymbol{\xi}_h$	$\boldsymbol{\xi}_h = \mathbf{x}_h - \mathbf{x}$	
déplacement d'extension virtuel	\mathtt{u}_h	$\mathtt{u}_h = oldsymbol{\xi}_h \cdot \mathbf{t}$	
déflexion virtuelle	\mathtt{w}_h	${\mathtt w}_h = {m \xi}_h \cdot {f n}$	
rotation virtuelle	ω_h	$\cos \omega_h = \mathbf{t}_h \cdot \mathbf{t}, \sin \omega_h = \mathbf{t}_h \cdot \mathbf{n}$	
déformation d'extension virtuelle	ε_h	$\varepsilon_h = s'_h - 1$	
déformation de flexion virtuelle	κ_h	$\kappa_h = \omega'_h$	

TABLE 5.2 – Déplacements et déformations virtuels lors du passage de la configuration de référence $s \mapsto \mathbf{x}$ à la configuration virtuelle $s \mapsto \mathbf{x}_h(s)$

• Intéressons-nous aux petits mouvements virtuels autour de la configuration de référence $s \mapsto \mathbf{x}(s)$ en calculant la dérivée par rapport à h en h = 0 des grandeurs attachées au milieu curviligne dans son mouvement virtuel. On définit ainsi l'opérateur de dérivation dit de *vitesse virtuelle*. La *vitesse virtuelle* de la grandeur concernée est notée en la surmontant d'une astérisque * ce qui conduit au tableau suivant :

Dénomination	Notation	Relation
vitesse virtuelle de déplacement	ξ	$\overset{*}{\boldsymbol{\xi}}=\overset{*}{\mathbf{x}}$
vitesse virtuelle de déplacement d'extension	ů	$u = \xi \cdot t$
vitesse virtuelle de déplacement de flexion	* W	$\mathbf{\tilde{w}} = \mathbf{\tilde{\xi}} \cdot \mathbf{n}$
vitesse virtuelle de rotation	ж	$\overset{*}{\omega} = rac{d {m{\xi}}}{ds} \cdot {m{n}}$
vitesse virtuelle de déformation d'extension	* E	$\dot{\varepsilon} = \frac{d\dot{s}}{ds} = \frac{d\dot{\xi}}{ds} \cdot \mathbf{t}$
vitesse virtuelle de déformation de flexion	$\overset{*}{\kappa}$	$\overset{*}{\kappa} = \frac{d}{ds} \Big(\frac{d \overset{*}{\boldsymbol{\xi}}}{ds} \cdot \mathbf{n} \Big)$

TABLE 5.3 - Définition des vitesses virtuelles des principales grandeurs géométriques ou cinématiques associées à un mouvement virtuel

Indiquons comment l'on obtient les expressions ci-dessus. On se servira à l'occasion de la propriété suivante dont la démonstration est laissée à titre d'exercice.

Exercice 5.1. Montrer que l'opérateur différentiel * commute avec la dérivée par rapport à s, i.e.

 $\left(\begin{array}{c} {}^{*}_{\mathbf{G}} \end{array}\right)' = ({}^{*}_{\mathbf{G}'})$

* vitesse virtuelle de déplacement : En partant de $\mathbf{x}_h = \mathbf{x} + \boldsymbol{\xi}_h$ et en appliquant l'opérateur de dérivation *, on obtient le résultat ;

* vitesses virtuelles de déplacement d'extension et de flexion : En partant de la décomposition $\boldsymbol{\xi}_h = \mathbf{u}_h \mathbf{t} + \mathbf{w}_h \mathbf{n}$ et en appliquant l'opérateur de dérivation *, on obtient $\overset{*}{\boldsymbol{\xi}} = \overset{*}{\mathbf{u}} \mathbf{t} + \overset{*}{\mathbf{w}} \mathbf{n}$. En projetant sur la base locale (\mathbf{t}, \mathbf{n}) on obtient le résultat;

* vitesse virtuelle de déformation d'extension : En partant de $1 + \varepsilon_h = s'_h = ||\mathbf{x}'_h||$ et en appliquant l'opérateur de dérivation *, on obtient $\hat{\varepsilon} = (\hat{\mathbf{x}})' = (\hat{\mathbf{x}})' \cdot \mathbf{t}$ grâce au fait que $\mathbf{x}' = \mathbf{t}$ et donc que $||\mathbf{x}'|| = 1$.

* vitesse virtuelle de rotation : En partant de $\sin \omega_h = \mathbf{n} \mathbf{t}_h = \mathbf{n} \mathbf{x}'_h / s'_h$ et en appliquant l'opérateur de dérivation *, on obtient $\overset{*}{\omega} = \mathbf{n} \cdot \begin{pmatrix} * \\ \boldsymbol{\xi} \end{pmatrix}'$ compte tenu du fait que $\omega_0 = 0$ et que $\mathbf{x}'_0 = \mathbf{t}$. D'où le résultat.

* vitesse virtuelle de déformation de flexion : Il suffit d'appliquer l'opérateur de dérivation * à $\kappa_h = \omega'_h$.

Exercice 5.2. Etablir les relations suivantes entre les vitesses virtuelles de déformation et les vitesses virtuelles de déplacement, puis les comparer aux expressions linéarisées entre les déformations et les déplacements obtenues dans **P-1.3** :

$$\boxed{\overset{*}{\varepsilon} = \frac{d\overset{*}{\mathbf{u}}}{ds} - \mathsf{C}\overset{*}{\mathbf{w}}}, \qquad \boxed{\overset{*}{\omega} = \frac{d\overset{*}{\mathbf{w}}}{ds} + \mathsf{C}\overset{*}{\mathbf{u}}}, \qquad \boxed{\overset{*}{\kappa} = \frac{d}{ds} \left(\frac{d\overset{*}{\mathbf{w}}}{ds} + \mathsf{C}\overset{*}{\mathbf{u}}\right)}. \tag{5.1}$$

5.2 Le Principe des Puissances Virtuelles

Nous nous plaçons dans la situation du Chapitre 2 et supposons que le milieu continu est en équilibre dans la configuration $s \mapsto \mathbf{x}(s)$ paramétrée par son abscisse curviligne, sous l'action d'efforts extérieurs donnés. Nous avons montré au Chapitre 2 que dans ces conditions les efforts intérieurs satisfaisaient nécessairement les équations d'équilibre locales, cf **P-2.3**. L'objectif ici est d'obtenir une formulation variationnelle équivalente à ces équations d'équilibre.

5.2.1 Définitions et énoncé du PPV

L'énoncé du PPV s'appuie sur la notion de puissance ou de travail des efforts intérieurs ou extérieurs dans le mouvement virtuel envisagé. Cette terminologie et le débat qu'elle suscite parfois méritent qu'on s'y arrête.

D- 5.1 (Un point de terminologie). Les deux terminologies de puissance virtuelle ou de travail virtuel sont aussi licites ou illicites l'une que l'autre pour ce qui est de la dimension physique des grandeurs mises en jeu : si le paramètre h est sans dimension, ξ a la dimension d'un déplacement et donc on obtiendra des quantités qui ont la dimension d'un travail; par contre, si le paramètre h a la dimension d'un temps, ξ a la dimension d'une vitesse et on obtiendra des quantités qui ont la dimensions pour h, on obtiendra des quantités avec des dimensions afférentes. Comme il s'avère que le principe ne dépend pas du choix de la dimension d'un temps il s'avère que le principe ne dépend pas du choix de la dimension d'une puise sont a priori acceptables. Toutefois, il est essentiel de noter que les champs virtuels mis en jeu dans le PPV sont les dérivées en h = 0 du mouvement virtuel envisagé et s'apparentent donc conceptuellement à des vitesses. De ce fait, on adoptera la terminologie de puissance.

FIGURE 5.1 – Le milieu curviligne dans sa configuration d'équilibre sous le chargement considéré et en grisé son mouvement virtuel depuis cette configuration.

Avant de définir les différentes quantités entrant dans le PPV, il faut préciser la régularité des champs de vitesse virtuelle envisagés. Dans le cadre de sa forme générale, nous envisageons le plus de champs possibles et donc admettons des champs "très irréguliers". (Par contre, lors de l'utilisation du PPV dans les problèmes aux limites, l'ensemble des champs de vitesse virtuelle admissibles sera restreint par les conditions aux limites et le comportement du milieu.) Cela conduit à

D-5.2 (L'hypothèse sur la régularité des champs de vitesse virtuelle). Dans le cadre de la forme générale du PPV, les champs de vitesse virtuelle de déplacement $s \mapsto \overset{*}{\boldsymbol{\xi}}(s)$ et de rotation $s \mapsto \overset{*}{\omega}(s)$ sont réguliers par morceaux sur \mathbb{C} au sens suivant :

1. ils sont définis, continus et continument différentiables sauf en un nombre fini de points \mathbb{S}^* ;

- 2. ils admettent ainsi que leur dérivée une limite à droite et à gauche en tout point de \mathbb{S}^* ;
- 3. ils admettent ainsi que leur dérivée une limite aux extrémités dans le cas d'une courbe ouverte;
- 4. ils sont reliés par $\overset{*}{\omega}(s) = \overset{*}{\boldsymbol{\xi}'}(s) \cdot \mathbf{n}(s)$ en tout point de $\mathbb{C} \setminus \mathbb{S}^*$.

Cette régularité dépend évidemment de la configuration d'équilibre étudiée $s \mapsto \mathbf{x}(s)$ qui peut elle même posséder des points anguleux où la tangente et la normale ne sont pas définies. On inclura ces points anguleux dans \mathbb{S}^* . L'ensemble de tels champs est noté $\mathcal{V}_{tot}(\mathbf{x})$, c'est un espace vectoriel (qui dépend de la configuration d'équilibre \mathbf{x}).

On voit donc que l'on autorise une discontinuité du champ de vitesse virtuel en un nombre fini de points S^* . On peut se représenter de tels champs comme des coupures (virtuelles) introduites dans le milieu, dans le même esprit que cela avait été fait dans la méthode des coupures pour introduire les efforts intérieurs. Par hypothèse, la vitesse virtuelle de déformation d'extension $\overset{*}{\varepsilon}$ et la vitesse virtuelle de rotation $\overset{*}{\omega}$ sont donc continues et continument différentiables sur $\mathbb{C} \setminus \mathbb{S}^*$, et admettent des limites à droite et à gauche sur \mathbb{S}^* . Toujours comme conséquence de l'hypothèse, la vitesse virtuelle de déformation de flexion $\overset{*}{\kappa}$, dérivée de la dérivée de la vitesse virtuelle de rotation, est continue sur $\mathbb{C} \setminus \mathbb{S}^*$:

$$\overset{*}{\varepsilon}(s) = \frac{d \overset{*}{\boldsymbol{\xi}}}{ds}(s) \cdot \mathbf{t}(s), \quad \overset{*}{\omega}(s) = \frac{d \overset{*}{\boldsymbol{\xi}}}{ds}(s) \cdot \mathbf{n}(s), \quad \overset{*}{\kappa}(s) = \frac{d \overset{*}{\omega}}{ds}(s) \quad \text{dans} \quad \mathbb{C} \setminus \mathbb{S}^*.$$
(5.2)

On sait d'autre part que les charges ponctuelles exercées sur l'ensemble fini de points \mathbb{P} vont y engendrer des discontinuités des efforts intérieurs. Par conséquent, les différents champs sont susceptibles d'être discontinus sur $\mathbb{P} \cup \mathbb{S}^*$ et nous adopterons la notation générale suivante :

En un point s où le champ $s \mapsto \varphi(s)$ est discontinu en y admettant une limite à gauche $\varphi^{-}(s)$ et une limite à droite $\varphi^{+}(s)$, on note $[\![\varphi]\!](s)$ son saut et $\langle \varphi \rangle(s)$ sa valeur moyenne :

$$\llbracket \varphi \rrbracket(s) = \varphi^+(s) - \varphi^-(s) , \qquad \langle \varphi \rangle(s) = \frac{1}{2} \left(\varphi^+(s) + \varphi^-(s) \right) . \tag{5.3}$$

On a alors la formule suivante pour le saut et la moyenne d'un produit

$$\llbracket \varphi \psi \rrbracket = \llbracket \varphi \rrbracket \langle \psi \rangle + \langle \varphi \rangle \llbracket \psi \rrbracket, \qquad \langle \varphi \psi \rangle = \langle \varphi \rangle \langle \psi \rangle + \frac{1}{4} \llbracket \varphi \rrbracket \llbracket \psi \rrbracket.$$
(5.4)

Nous sommes maintenant en mesure de définir les notions de puissance virtuelle de déformation des efforts intérieurs et de puissance virtuelle des efforts extérieurs.

D-5.3 (Puissance virtuelle de déformation). Pour un milieu curviligne dans la configuration $s \mapsto \mathbf{x}(s)$ paramétrée par l'abscisse curviligne $s \in \mathbb{C}$ avec une répartition des efforts intérieurs $s \mapsto \mathbf{R}(s) = N(s)\mathbf{t}(s) + T(s)\mathbf{n}(s)$ et $s \mapsto M(s)$, la puissance virtuelle de déformation des efforts intérieurs dans le mouvement virtuel caractérisé par le champ de vitesse virtuelle de déplacement $s \mapsto \overset{*}{\boldsymbol{\xi}}(s)$ est définie par

$$\mathsf{P}_{\mathsf{def}}[\mathbf{R}, M](\overset{*}{\boldsymbol{\xi}}) := \int_{\mathbb{C} \setminus \mathbb{S}^*} \Big(N(s) \overset{*}{\varepsilon}(s) + M(s) \overset{*}{\kappa}(s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\omega}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\omega}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\omega}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\omega}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\omega}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\omega}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\omega}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\omega}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\omega}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\boldsymbol{\xi}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\boldsymbol{\xi}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\boldsymbol{\xi}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\boldsymbol{\xi}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}]\!](s) + \big\langle M \big\rangle(s) [\![\overset{*}{\boldsymbol{\xi}]\!](s) \Big) ds + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}]\!](s) + \sum_{\mathbb{S}^*} \Big(\big\langle \mathbf{R} \big\rangle(s) - \sum_{\mathbb{S}^*} \Big(\big\langle$$

On peut faire quelques remarques relatives à cette définition :

• Dans la notation $\mathsf{P}_{\mathsf{def}}[\mathbf{R}, M](\hat{\boldsymbol{\xi}})$, les arguments \mathbf{R} et M sont optionnels. On ne les fera figurer explicitement que si le contexte l'impose, par exemple quand on envisage plusieurs jeux d'efforts intérieurs. Par contre, la vitesse virtuelle figurera toujours explicitement.

• Nous avons vu au Chapitre 1 que la déformation du milieu était parfaitement caractérisée par la déformation d'extension et la déformation de flexion. Il est donc naturel que cette quantité soit appelée puissance virtuelle de déformation. Mais la vraie hypothèse consiste à postuler que les variables duales sont l'effort normal et le moment fléchissant. C'est le PPV et son équivalence avec les équations d'équilibre locales qui justifieront ce choix.

• L'effort tranchant n'intervient explicitement que lors qu'on envisage des discontinuités de vitesse. Sa valeur moyenne au point de discontinuité travaille alors dans le saut normal $[\![\xi]\!] \cdot \mathbf{n}$ de la vitesse virtuelle.

D-5.4 (Puissance virtuelle des efforts extérieurs). Pour un milieu curviligne dans la configuration $s \mapsto \mathbf{x}(s)$ paramétrée par l'abscisse curviligne $s \in \mathbb{C}$ et soumis à des efforts extérieurs caractérisés par les densités $s \mapsto (\mathbf{f}(s), m(s))$ de forces et de moments linéiques, les efforts ponctuels $(\mathcal{F}_{s_i}, \mathcal{M}_{s_i})$ sur l'ensemble discret de points $s_i \in \mathbb{P}$ et les efforts aux extrémités (quand elles existent) $(\mathcal{F}_0, \mathcal{M}_0)$ et $(\mathcal{F}_{\ell}, \mathcal{M}_{\ell})$, la puissance virtuelle de ces efforts extérieurs dans le mouvement virtuel caractérisé par le champ de vitesse virtuelle de déplacement $s \mapsto \overset{*}{\boldsymbol{\xi}}(s)$ est définie par

$$\begin{aligned} \mathsf{P}_{\mathsf{ext}}[\boldsymbol{\mathcal{F}}_{0}, \mathcal{M}_{0}, \cdots](\boldsymbol{\xi}) &= \boldsymbol{\mathcal{F}}_{0} \cdot \boldsymbol{\xi}^{*}(0) + \mathcal{M}_{0} \, \boldsymbol{\omega}^{*}(0) + \int_{\mathbb{C} \setminus \mathbb{S}^{*}} \left(\mathbf{f}(s) \cdot \boldsymbol{\xi}(s) + m(s) \, \boldsymbol{\omega}(s) \right) ds \\ &+ \sum_{s_{i} \in \mathbb{P}} \left(\boldsymbol{\mathcal{F}}_{s_{i}} \cdot \left\langle \begin{array}{c} \boldsymbol{\xi} \\ \boldsymbol{\xi} \end{array} \right\rangle(s_{i}) + \mathcal{M}_{s_{i}} \left\langle \begin{array}{c} \boldsymbol{\omega} \\ \boldsymbol{\omega} \end{array} \right\rangle(s_{i}) \right) + \boldsymbol{\mathcal{F}}_{\ell} \cdot \boldsymbol{\xi}^{-}(\ell) + \mathcal{M}_{\ell} \, \boldsymbol{\omega}^{-}(\ell) \end{aligned}$$

• Comme pour la puissance virtuelle de déformation et pour les mêmes raisons, on ne fait figurer explicitement dans la notation de la puissance $\mathsf{P}_{\mathsf{ext}}[\mathcal{F}_0, \mathcal{M}_0, \cdots](\overset{*}{\boldsymbol{\xi}})$ les efforts extérieurs qu'en cas d'ambiguité.

• Cette définition est des plus naturelles : les forces travaillent dans les vitesses de déplacement, les moments travaillent dans les vitesses de rotation des points d'application et les puissances s'additionnent.

• On notera qu'aux points où sont appliqués des efforts ponctuels, la vitesse virtuelle pourra être discontinue si on introduit une cassure virtuelle en ces points. Les efforts ponctuels travailleront dans la vitesse moyenne $\langle \xi \rangle$.

• La puissance des efforts aux extrémités n'apparait évidemment pas dans un milieu à courbe fermée. Dans une courbe ouverte, les efforts aux extrémités travaillent dans la vitesse virtuelle limite qui est supposée exister par hypothèse.

Nous sommes maintenant en mesure d'énoncer le PPV¹

P-5.1 (Le Principe des Puissances Virtuelles). On considère un milieu continu curviligne dans les conditions suivantes :

• il est dans la configuration $s \mapsto \mathbf{x}(s)$, avec s abscisse curviligne variant dans $\mathbb{C} = (0, \ell)$ ou bien $\mathbb{C} = [0, \ell)$ suivant que le milieu a ou n'a pas d'extrémités,

• il est soumis au chargement extérieur caractérisé par les densités d'efforts (\mathbf{f}, m) répartis dans \mathbb{C} , les efforts ponctuels $(\mathcal{F}_{s_i}, \mathcal{M}_{s_i})$ exercés sur l'ensemble discret de points $\mathbb{P} \subset \mathbb{C}$, et les efforts $(\mathcal{F}_0, \mathcal{M}_0)$ et $(\mathcal{F}_\ell, \mathcal{M}_\ell)$ aux extrémités quand elles existent.

Alors les efforts intérieurs directs $s \mapsto (\mathbf{R}(s), M(s))$, supposés continus dans $\mathbb{C} \setminus \mathbb{P}$ et continues à gauche sur \mathbb{P} , vérifient les équations d'équilibre locales au sens de **D-2.3 si et seulement s'ils** vérifient

$$\mathsf{P}_{\mathsf{def}}[\mathbf{R}, M](\overset{*}{\boldsymbol{\xi}}) = \mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}), \quad \forall \overset{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{tot}(\mathbf{x})$$
(5.5)

Autrement dit, à l'équilibre, la puissance virtuelle de déformation des efforts intérieurs est égale à la puissance virtuelle des efforts extérieurs, ce quelle que soit la vitesse virtuelle.

5.2.2 Preuve que les équations d'équilibre locales impliquent le PPV

Dans cette section, pour alléger les notations, nous noterons $\mathbb{P}^* = \mathbb{P} \cup \mathbb{S}^*$ l'ensemble des points de discontinuité possibles, réunion des points de discontinuités du champ de vitesse virtuelle ou de ses dérivées, des points où sont exercés des efforts ponctuels et des points anguleux de la configuration d'équilibre.

Nous savons grâce à **P-2.3**, que le milieu est en équilibre seulement si les efforts intérieurs directs sont des fonctions continues dans $\mathbb{C} \setminus \mathbb{P}$ et continues à gauche sur \mathbb{P} qui vérifient les équations d'équilibre

^{1.} Nous considérerons ici le PPV comme un théorème en établissant son équivalence, via la Propriété 2.3, avec la définition de l'équilibre 2.2 introduite au Chapitre 2 qui était basée sur le Principe Fondamental de la Statique et la définition 2.1 des efforts intérieurs. Certaines approches de la Mécanique des Milieux Continus font du PPV un principe de base qui sert en particulier à définir les efforts intérieurs, alors qu'ici ces efforts ont été définis au préalable.

locales. Soient donc $s \mapsto (\mathbf{R}(s), M(s))$ de tels champs et envisageons un mouvement virtuel caractérisé par $\overset{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{tot}(\mathbf{x})$. Considérons l'équation locale d'équilibre des forces

$$\mathbf{0} = \frac{d\mathbf{R}}{ds}(s) + \mathbf{f}(s), \quad \forall s \in \mathbb{C} \setminus \mathbb{P}.$$
(5.6)

Pour tout $s \in (0, \ell) \setminus (\mathbb{P}^* \cap (0, \ell))$ faisons le produit scalaire par la vitesse virtuelle de déplacement $\dot{\boldsymbol{\xi}}(s)$ et intégrons l'équation scalaire obtenue pour arriver à

$$0 = \int_{(0,\ell) \setminus (\mathbb{P}^* \cap (0,\ell))} \frac{d\mathbf{R}}{ds}(s) \cdot \overset{*}{\boldsymbol{\xi}}(s) ds + \int_{\mathbb{C} \setminus \mathbb{S}^*} \mathbf{f}(s) \cdot \overset{*}{\boldsymbol{\xi}}(s) ds$$
(5.7)

où l'on a tenu compte dans la deuxième intégrale que $\mathbf{f} \cdot \overset{*}{\boldsymbol{\xi}}$ est intégrable sur $\mathbb{C} \setminus \mathbb{S}^*$ et que \mathbb{P} est de mesure nulle. (On pourrait même intégrer sur \mathbb{C} en entier, puisque $\mathbf{f} \cdot \overset{*}{\boldsymbol{\xi}}$ y est intégrable et que \mathbb{P} est de mesure nulle. Nous gardons toutefois cette expression car le terme analogue qui viendra des moments doit être lui intégré uniquement sur $\mathbb{C} \setminus \mathbb{S}^*$.)

On procède de la même manière pour l'équation locale d'équilibre des moments qui, rappelons-le, s'écrit

$$0 = \frac{dM}{ds}(s) + T(s) + m(s), \quad \forall s \in \mathbb{C} \setminus \mathbb{P}.$$
(5.8)

Pour tout $s \in (0, \ell) \setminus (\mathbb{P}^* \cap (0, \ell))$, multiplions-la par la vitesse virtuelle de rotation $\overset{*}{\omega}(s)$ et intégrons l'équation scalaire obtenue pour arriver à

$$0 = \int_{(0,\ell) \setminus (\mathbb{P}^* \cap (0,\ell))} \frac{dM}{ds}(s) \,\overset{*}{\omega}(s)ds + \int_{\mathbb{C} \setminus \mathbb{S}^*} \left(T(s) + m(s)\right) \,\overset{*}{\omega}(s)ds.$$
(5.9)

Remarquons qu'ici la deuxième intégrale doit être calculée sur $\mathbb{C} \setminus \mathbb{S}^*$ car $\boldsymbol{\xi}$ est (ou peut être) discontinu sur \mathbb{S}^* et $\overset{*}{\omega}$ fait intervenir sa dérivée. Par contre les points de \mathbb{P} qui ne sont pas dans \mathbb{S}^* peuvent être ignorés. Notons que (5.7) et (5.9) ont la même dimension physique et sont homogènes à une énergie ou à une puissance suivant que le paramètre virtuel h est sans dimension ou homogène à un temps. On peut les additionner pour obtenir l'unique équation scalaire

$$0 = \int_{(0,\ell) \setminus (\mathbb{P}^* \cap (0,\ell))} \left(\frac{d\mathbf{R}}{ds}(s) \cdot \overset{*}{\boldsymbol{\xi}}(s) + \frac{dM}{ds}(s) \overset{*}{\boldsymbol{\omega}}(s) \right) ds + \int_{\mathbb{C} \setminus \mathbb{S}^*} \left(T(s) \overset{*}{\boldsymbol{\omega}}(s) + \mathbf{f}(s) \cdot \overset{*}{\boldsymbol{\xi}}(s) + m(s) \overset{*}{\boldsymbol{\omega}}(s) \right) ds.$$

Intégrons par parties la première intégrale en se servant de la formule d'intégration (2.21), *i.e.* en décomposant les deux termes de l'intégrale en

$$\frac{d\mathbf{R}}{ds}(s)\cdot\overset{*}{\boldsymbol{\xi}}(s) + \frac{dM}{ds}(s)\overset{*}{\omega}(s) = \frac{d}{ds}\left(\mathbf{R}\cdot\overset{*}{\boldsymbol{\xi}} + M\overset{*}{\omega}\right)(s) - \mathbf{R}(s)\cdot\frac{d\overset{*}{\boldsymbol{\xi}}}{ds}(s) - M(s)\frac{d\overset{*}{\omega}}{ds}(s)$$

avant d'intégrer le premier terme du membre de droite avec (2.21). En regroupant les termes, on arrive à

$$0 = -\int_{\mathbb{C}\backslash\mathbb{S}^*} \left(\mathbf{R}(s) \cdot \frac{d\,\hat{\boldsymbol{\xi}}}{ds}(s) + M(s) \frac{d\,\overset{*}{\omega}}{ds}(s) \right) ds + \left(\mathbf{R}\cdot\,\overset{*}{\boldsymbol{\xi}} + M\,\overset{*}{\omega} \right)^+ (\ell) - \left(\mathbf{R}\cdot\,\overset{*}{\boldsymbol{\xi}} + M\,\overset{*}{\omega} \right)^- (0) + \int_{\mathbb{C}\backslash\mathbb{S}^*} \left(T(s)\,\overset{*}{\omega}(s) + \mathbf{f}(s)\cdot\,\overset{*}{\boldsymbol{\xi}}(s) + m(s)\,\overset{*}{\omega}(s) \right) ds - \sum_{s_i \in \mathbb{P}^* \cap (0,\ell)} \left[\left[\mathbf{R}\cdot\,\overset{*}{\boldsymbol{\xi}} + M\,\overset{*}{\omega} \right] \right] (s_i).$$
(5.10)

en remarquant que la première intégrale a été étendue à $\mathbb{C} \setminus \mathbb{S}^*$ car l'intégrande y est intégrable et que l'ensemble des points manquants est de mesure nulle. En décomposant $\mathbf{R}(s)$ sur la base locale $(\mathbf{t}(s), \mathbf{n}(s))$ et en rappelant que

$$\overset{*}{\omega}(s) = \frac{d}{\delta} \frac{\boldsymbol{\xi}}{ds}(s) \cdot \mathbf{n}(s), \qquad \overset{*}{\varepsilon}(s) = \frac{d}{\delta} \frac{\boldsymbol{\xi}}{ds}(s) \cdot \mathbf{t}(s), \qquad \overset{*}{\kappa}(s) = \frac{d}{\delta} \frac{\boldsymbol{\omega}}{ds}(s),$$

on remarque que

$$\mathbf{R}(s) \cdot \frac{d\overset{*}{\boldsymbol{\xi}}}{ds}(s) - T(s)\overset{*}{\omega}(s) = N(s)\frac{d\overset{*}{\boldsymbol{\xi}}}{ds}(s) \cdot \mathbf{t}(s) + T(s)\frac{d\overset{*}{\boldsymbol{\xi}}}{ds}(s) \cdot \mathbf{n}(s) - T(s)\frac{d\overset{*}{\boldsymbol{\xi}}}{ds}(s) \cdot \mathbf{n}(s) = N(s)\overset{*}{\varepsilon}(s).$$

Ceci permet de simplifier (5.10) pour l'écrire

$$0 = -\int_{\mathbb{C}\backslash\mathbb{S}^*} \left(N(s) \stackrel{*}{\varepsilon}(s) + M(s) \stackrel{*}{\kappa}(s) \right) ds + \int_{\mathbb{C}\backslash\mathbb{S}^*} \left(\mathbf{f}(s) \cdot \stackrel{*}{\boldsymbol{\xi}}(s) + m(s) \stackrel{*}{\omega}(s) \right) ds + \left(\mathbf{R} \cdot \stackrel{*}{\boldsymbol{\xi}} + M \stackrel{*}{\omega} \right)^{-} (\ell) - \left(\mathbf{R} \cdot \stackrel{*}{\boldsymbol{\xi}} + M \stackrel{*}{\omega} \right)^{+} (0) - \sum_{s_i \in \mathbb{P}^* \cap (0,\ell)} \left[\left[\mathbf{R} \cdot \stackrel{*}{\boldsymbol{\xi}} + M \stackrel{*}{\omega} \right] (s_i).$$
(5.11)

Considérons les termes de saut et utilisons (5.4) pour les mettre sous la forme

$$\llbracket \mathbf{R} \cdot \overset{*}{\boldsymbol{\xi}} + M \overset{*}{\omega} \rrbracket = \langle \mathbf{R} \rangle \cdot \llbracket \overset{*}{\boldsymbol{\xi}} \rrbracket + \langle M \rangle \llbracket \overset{*}{\omega} \rrbracket + \llbracket \mathbf{R} \rrbracket \cdot \langle \overset{*}{\boldsymbol{\xi}} \rangle + \llbracket M \rrbracket \langle \overset{*}{\omega} \rangle$$

Distinguons maintenant le cas des milieux à extrémités de ceux à courbe fermée, en commençant par les premiers.

• Milieux à courbe ouverte. Quand $\mathbb{C} = (0, \ell)$, les conditions aux extrémités donnent

$$\mathbf{R}^{+}(0) = -\boldsymbol{\mathcal{F}}_{0}, \quad M^{+}(0) = -\boldsymbol{\mathcal{M}}_{0}, \qquad \mathbf{R}^{-}(\ell) = \boldsymbol{\mathcal{F}}_{\ell}, \quad M^{-}(\ell) = \boldsymbol{\mathcal{M}}_{\ell}$$
(5.12)

alors que les conditions de saut des efforts intérieurs sur $\mathbb P$ s'écrivent

$$\llbracket \mathbf{R} \rrbracket(s_i) = -\mathcal{F}_{s_i}, \quad \llbracket M \rrbracket(s_i) = -\mathcal{M}_{s_i}, \quad \forall s_i \in \mathbb{P}.$$
(5.13)

Comme **R** et M ne sont discontinus que sur \mathbb{P} alors que $\overset{*}{\boldsymbol{\xi}}$ et ses dérivées ne sont discontinus que sur \mathbb{S}^* , et comme $\mathbb{P}^* \cap (0, \ell) = \mathbb{P}^* = \mathbb{P} \cup \mathbb{S}^*$, on a

$$\sum_{s_i \in \mathbb{P}^* \cap (0,\ell)} [\![\mathbf{R} \cdot \overset{*}{\boldsymbol{\xi}} + M \overset{*}{\boldsymbol{\omega}}]\!](s_i) = \sum_{s_i \in \mathbb{S}^*} \left(\langle \mathbf{R} \rangle \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!] + \langle M \rangle [\![\overset{*}{\boldsymbol{\omega}}]\!] \right)(s_i) - \sum_{s_i \in \mathbb{P}} \left(\boldsymbol{\mathcal{F}}_{s_i} \cdot \langle \overset{*}{\boldsymbol{\xi}} \rangle(s_i) + \mathcal{M}_{s_i} \langle \overset{*}{\boldsymbol{\omega}} \rangle(s_i) \right).$$
(5.14)

En reportant (5.12) et (5.14) dans (5.11) on obtient

$$\int_{\mathbb{C}\backslash\mathbb{S}^{*}} \left(N(s) \stackrel{*}{\varepsilon}(s) + M(s) \stackrel{*}{\kappa}(s) \right) ds + \sum_{s_{i}\in\mathbb{S}^{*}} \left(\langle \mathbf{R} \rangle \cdot \llbracket \boldsymbol{\xi} \rrbracket + \langle M \rangle \llbracket \boldsymbol{\omega} \rrbracket \right) (s_{i})$$

$$= \int_{\mathbb{C}\backslash\mathbb{S}^{*}} \left(\mathbf{f}(s) \cdot \stackrel{*}{\boldsymbol{\xi}}(s) + m(s) \stackrel{*}{\omega}(s) \right) ds + \sum_{s_{i}\in\mathbb{P}} \left(\boldsymbol{\mathcal{F}}_{s_{i}} \cdot \langle \stackrel{*}{\boldsymbol{\xi}} \rangle (s_{i}) + \boldsymbol{\mathcal{M}}_{s_{i}} \langle \stackrel{*}{\omega} \rangle (s_{i}) \right)$$

$$+ \boldsymbol{\mathcal{F}}_{0} \cdot \stackrel{*}{\boldsymbol{\xi}^{+}}(0) + \boldsymbol{\mathcal{M}}_{0} \stackrel{*}{\omega^{+}}(0) + \boldsymbol{\mathcal{F}}_{\ell} \cdot \stackrel{*}{\boldsymbol{\xi}^{-}}(\ell) + \boldsymbol{\mathcal{M}}_{\ell} \stackrel{*}{\omega^{-}}(\ell).$$
(5.15)

On reconnait sur la première ligne la puissance virtuelle de déformation $\mathsf{P}_{\mathsf{def}}[\mathbf{R}, M](\boldsymbol{\xi})$ et dans les deux autres la puissance virtuelles des efforts extérieurs $\mathsf{P}_{\mathsf{ext}}(\boldsymbol{\xi})$, ce qui fournit l'égalité entre les puissances virtuelles. Comme la vitesse virtuelle $\boldsymbol{\xi}$ a été choisie arbitrairement dans $\boldsymbol{\mathcal{V}}_{tot}(\mathbf{x})$, on donc obtenu

$$\mathsf{P}_{\mathsf{def}}[\mathbf{R}, M](\hat{\boldsymbol{\xi}}) = \mathsf{P}_{\mathsf{ext}}(\hat{\boldsymbol{\xi}}), \quad \forall \; \hat{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{\mathrm{tot}}(\mathbf{x}),$$

qui était la forme annoncée du PPV.

• Milieux à courbe fermée. Quand $\mathbb{C} = [0, \ell)$, alors par définition

$$\left(\mathbf{R}\cdot\overset{*}{\boldsymbol{\xi}}+M\overset{*}{\omega}\right)^{+}(0)-\left(\mathbf{R}\cdot\overset{*}{\boldsymbol{\xi}}+M\overset{*}{\omega}\right)^{-}(\ell)=\left[\!\left[\mathbf{R}\cdot\overset{*}{\boldsymbol{\xi}}+M\overset{*}{\omega}\right]\!\right](0)$$

et la deuxième ligne de (5.11) devient $-\sum_{s_i \in \mathbb{P}^*} \llbracket \mathbf{R} \cdot \overset{*}{\boldsymbol{\xi}} + M \overset{*}{\omega} \rrbracket(s_i)$. En utilisant (5.13), on obtient

$$\sum_{s_i \in \mathbb{P}^*} \llbracket \mathbf{R} \cdot \overset{*}{\boldsymbol{\xi}} + M \overset{*}{\boldsymbol{\omega}} \rrbracket(s_i) = \sum_{s_i \in \mathbb{S}^*} \left(\langle \mathbf{R} \rangle \cdot \llbracket \overset{*}{\boldsymbol{\xi}} \rrbracket + \langle M \rangle \llbracket \overset{*}{\boldsymbol{\omega}} \rrbracket \right)(s_i) - \sum_{s_i \in \mathbb{P}} \left(\boldsymbol{\mathcal{F}}_{s_i} \cdot \langle \overset{*}{\boldsymbol{\xi}} \rangle(s_i) + \mathcal{M}_{s_i} \langle \overset{*}{\boldsymbol{\omega}} \rangle(s_i) \right).$$

Il suffit alors de reporter dans (5.11) pour arriver à

$$\int_{\mathbb{C}\backslash\mathbb{S}^{*}} \left(N(s) \stackrel{*}{\varepsilon}(s) + M(s) \stackrel{*}{\kappa}(s) \right) ds + \sum_{s_{i}\in\mathbb{S}^{*}} \left(\langle \mathbf{R} \rangle \cdot \llbracket \mathbf{\xi} \rrbracket + \langle M \rangle \llbracket \boldsymbol{\omega} \rrbracket \right) (s_{i})$$

$$= \int_{\mathbb{C}\backslash\mathbb{S}^{*}} \left(\mathbf{f}(s) \cdot \stackrel{*}{\mathbf{\xi}}(s) + m(s) \stackrel{*}{\omega}(s) \right) ds + \sum_{s_{i}\in\mathbb{P}} \left(\boldsymbol{\mathcal{F}}_{s_{i}} \cdot \langle \stackrel{*}{\mathbf{\xi}} \rangle (s_{i}) + \boldsymbol{\mathcal{M}}_{s_{i}} \langle \stackrel{*}{\omega} \rangle (s_{i}) \right)$$
(5.16)

qui est l'égalité cherchée pour les milieux à courbe fermée.

5.2.3 Preuve de la réciproque

La démonstration n'est pas essentielle et peut être sautée en première lecture.

Supposons maintenant que les efforts intérieurs $s \mapsto \mathbf{R}(s)$ et $s \mapsto M(s)$ soient des fonctions continues dans $\mathbb{C} \setminus \mathbb{P}$ et continues à gauche sur \mathbb{P} qui satisfont (5.15) ou (5.16) suivant que la courbe est fermée ou non. Dans les deux cas on a donc l'égalité variationnelle suivante

$$\int_{\mathbb{C}\backslash\mathbb{S}^*} \left(N(s)\mathbf{t}(s) \cdot \overset{*}{\boldsymbol{\xi}}'(s) + M(s) \overset{*}{\omega}'(s) \right) ds + \sum_{s_i \in \mathbb{S}^*} \left(\langle \mathbf{R} \rangle \cdot [\overset{*}{\boldsymbol{\xi}}]] + \langle M \rangle [\overset{*}{\boldsymbol{\omega}}]] \right) (s_i) = \mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}), \quad \forall \overset{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{\mathsf{tot}}(\mathbf{x}),$$
(5.17)

où $\overset{*}{\omega} = \overset{*}{\boldsymbol{\xi}}' \cdot \mathbf{n}$ et le prime dénote la dérivée par rapport à *s*. Seule l'expression de $\mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}})$ change suivant les cas. Prenons pour $\overset{*}{\boldsymbol{\xi}}$ un champ de vitesse de corps rigide, *i.e.*

$$\hat{\boldsymbol{\xi}}(s) = \mathbf{a} + \overset{*}{\omega} \mathbf{e}_3 \wedge \mathbf{x}(s), \quad \mathbf{a} \in \mathbb{R}^2, \quad \overset{*}{\omega} \in \mathbb{R}.$$

Il est évidemment continu et comme $\overset{*}{\boldsymbol{\xi}}'(s) = \overset{*}{\omega} \mathbf{e}_3 \wedge \mathbf{t}(s)$, on a $\overset{*}{\boldsymbol{\xi}}'(s) \cdot \mathbf{t}(s) = 0$ et $\overset{*}{\omega}(s) = \overset{*}{\omega}$. Par conséquent (5.17) donne $\mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}) = 0$. En reportant dans la définition de la puissance des efforts extérieurs, on obtient dans le cas d'une courbe ouverte

$$0 = \left(\sum_{s_i \in \mathbb{P} \cup \{0,\ell\}} \mathcal{F}_{s_i} + \int_{\mathbb{C}} \mathbf{f}(s) ds\right) \cdot \mathbf{a} + \left(\sum_{s_i \in \mathbb{P} \cup \{0,\ell\}} \left(\mathcal{M}_{s_i} + \mathbf{x}(s_i) \wedge \mathcal{F}_{s_i}\right) + \int_{\mathbb{C}} \left(m(s) + \mathbf{x}(s) \wedge \mathbf{f}(s)\right) ds\right) \overset{*}{\omega}$$

qui est vraie pour tout $\mathbf{a} \in \mathbb{R}^2$ et tout $\overset{*}{\omega} \in \mathbb{R}$. (Dans le cas d'une courbe fermée, les sommes ne portent que sur \mathbb{P} .) Par conséquent, chacun de leur facteur ci-dessus doit être nul. On reconnait en eux la résultante des forces et le moment résultant en **O**. Donc les efforts extérieurs vérifient les conditions d'équilibre global. Dans ce cas, on sait depuis le chapitre 2 qu'il existe une répartition des efforts intérieurs (unique pour un milieu à extrémités, mais non unique pour les courbes fermées) telle que les équations d'équilibre locales soient satisfaites. Soit $s \mapsto (\tilde{\mathbf{R}}(s), \tilde{M}(s))$ une telle répartition. En vertu du *il faut* de **P-5.1**, ils vérifient aussi le PPV, *i.e.*

$$\mathsf{P}_{\mathsf{def}}[\tilde{\mathbf{R}}, \tilde{M}](\overset{*}{\boldsymbol{\xi}}) = \mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}), \quad \forall \overset{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{\mathrm{tot}}(\mathbf{x}).$$

En retranchant avec (5.17), on en déduit que les écarts

$$\delta N = N - \tilde{N}, \qquad \delta M = M - \tilde{M}$$

vérifient

$$\int_{\mathbb{C}\backslash\mathbb{S}^*} \left(\delta N \,\,\overset{*}{\boldsymbol{\xi}}' \cdot \mathbf{t} + \delta M(\,\overset{*}{\boldsymbol{\xi}}' \cdot \mathbf{n})'\right)(s) ds + \sum_{s_i \in \mathbb{S}^*} \left(\langle \delta \mathbf{R} \rangle \cdot [\overset{*}{\boldsymbol{\xi}}]] + \langle \delta M \rangle [\overset{*}{\boldsymbol{\xi}}' \cdot \mathbf{n}]\right)(s_i) = 0, \quad \forall \,\,\overset{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{\text{tot}}(\mathbf{x}). \tag{5.18}$$

On est donc ramené à caractériser quels sont les efforts intérieurs (supposés continus partout sauf en un nombre fini de points \mathbb{P} où ils ne sont que continus à gauche) dont la puissance de déformation est nul dans toute vitesse virtuelle. Il faut pour cela distinguer les milieux à extrémités des milieux à courbe fermée.

• Cas des courbes ouvertes. Il s'agit de montrer que $\delta \mathbf{R}$ et δM sont nuls partout. On procède en plusieurs étapes, en envisageant différents types de champs de vitesse virtuelle.

1. Prenons d'abord

$$\boldsymbol{\xi}^{*}(s) = \int_{0}^{s} \left(\int_{0}^{\zeta} \delta M(\sigma) d\sigma \right) \mathbf{n}(\zeta) d\zeta.^{2}$$

Ce champ est continu partout et continument différentiable partout sauf aux points anguleux, sa dérivée valant

$$\boldsymbol{\xi}'(s) = \left(\int_0^s \delta M(\zeta) d\zeta\right) \,\mathbf{n}(s).$$

Par conséquent la vitesse virtuelle de déformation associée est nulle alors que la vitesse virtuelle de rotation associée est donnée par

$$\overset{*}{\omega}(s) = \overset{*}{\boldsymbol{\xi}}'(s) \cdot \mathbf{n}(s) = \int_0^s \delta M(\zeta) d\zeta.$$

Elle est donc continue partout et continument différentiable sur $\mathbb{C} \setminus \mathbb{P}$ où elle vaut $\overset{*}{\omega}'(s) = \delta M(s)$. En reportant dans (5.18) on obtient

$$\int_{\mathbb{C}} \delta M(s)^2 ds = 0$$

^{2.} Ce champ a la dimension d'une énergie multipliée par une surface. Il suffit de le multiplier par une constante pour lui donner la dimension que l'on veut. De toute façon, la constante ne jouera pas d'autre rôle.

et donc δM est nul presque partout. Mais comme il est supposé continu dans $\mathbb{C} \setminus \mathbb{P}$, il y est donc nul, d'où $\delta M = 0$ dans $\mathbb{C} \setminus \mathbb{P}$. Comme il est continu à gauche sur \mathbb{P} , il y est nul aussi, donc il est nul partout. Ce faisant (5.18) se réduit à

$$\int_{\mathbb{C}\setminus\mathbb{S}^*} \delta N(s) \mathbf{t}(s) \cdot \overset{*}{\boldsymbol{\xi}}'(s) ds + \sum_{s_i \in \mathbb{S}^*} \left\langle \delta \mathbf{R} \right\rangle(s_i) \cdot [\overset{*}{\boldsymbol{\xi}}](s_i) = 0, \quad \forall \overset{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{\text{tot}}(\mathbf{x}).$$
(5.19)

2. Prenons maintenant

$$\overset{*}{\boldsymbol{\xi}}(s) = \int_{0}^{s} \delta N(\zeta) \mathbf{t}(\zeta) d\zeta.^{3}$$

Ce champ est continu partout et est continument différentiable partout sauf en un nombre fini de points, sa dérivée valant alors $\overset{*}{\boldsymbol{\xi}}'(s) = \delta N(s)\mathbf{t}(s)$. (En fait, comme δN et \mathbf{t} sont définis et continus sauf en un nombre fini de points correspondant aux points de \mathbb{P} et aux points anguleux de la courbe, il en est de même pour $\overset{*}{\boldsymbol{\xi}}'$.) En reportant dans (5.18), il vient

$$\int_{\mathbb{C}} \delta N(s)^2 \, ds = 0$$

et donc $\delta N = 0$ presque partout. Ceci suffit pour réduire (5.19) à

$$\sum_{s_i \in \mathbb{S}^*} \left\langle \delta \mathbf{R} \right\rangle(s_i) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s_i) = 0, \quad \forall \overset{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{\text{tot}}.$$
(5.20)

3. Soit s_0 un point arbitraire de $(0, \ell)$. Prenons

$$\overset{*}{\boldsymbol{\xi}}(s) = \varphi(s) \langle \delta \mathbf{R} \rangle(s_0) \quad \text{avec} \quad \varphi(s) = \begin{cases} 0 & \text{si } s < s_0 \\ 1 & \text{sinon} \end{cases}$$

Ce champ est donc continu partout sauf en s_0 où son saut vaut $\langle \delta \mathbf{R} \rangle (s_0)$. En reportant dans (5.20) on obtient $\|\langle \delta \mathbf{R} \rangle (s_0)\| = 0$ et donc $\langle \delta \mathbf{R} \rangle (s_0) = \mathbf{0}$. Comme s_0 est arbitraire, on a $\langle \delta \mathbf{R} \rangle = \mathbf{0}$ partout. Mais comme par hypothèse $\delta \mathbf{R}$ est continu dans $\mathbb{C} \setminus \mathbb{P}$, on a $[\![\delta \mathbf{R}]\!] = \langle \delta \mathbf{R} \rangle = \mathbf{0}$ dans $\mathbb{C} \setminus \mathbb{P}$. Donc $\delta \mathbf{R}^+ = \delta \mathbf{R}^- = \mathbf{0}$ dans $\mathbb{C} \setminus \mathbb{P}$. Mais comme $\delta \mathbf{R}$ est continu à gauche, $\delta \mathbf{R}$ est nul partout.

• Cas des courbes fermées. La démonstration précédente ne s'applique pas car dans les deux premières étapes les champs que l'on a introduits ne sont pas périodiques et présentent donc des discontinuités en s = 0. Il faut l'adapter. De plus, on ne peut pas espérer montrer que $\delta \mathbf{R}$ et δM sont nuls puisque $\tilde{\mathbf{R}}$ et \tilde{M} ne sont définis qu'à un vecteur force \mathbf{R}_0 et un moment M_0 près, cf **P-2.4**. On procède en deux étapes, la première regroupant les deux premières étapes de la démonstration du cas des courbes ouvertes. Pour alléger les notations, la moyenne d'une fonction sur \mathbb{C} sera notée avec la fonction surmontée d'une barre :

$$\overline{\varphi} := \frac{1}{\ell} \int_0^\ell \varphi(s) ds.$$

^{3.} Même remarque que précédemment sur les dimensions du champ virtuel.

1. On pose

$$\overset{*}{\varepsilon}(s) = \delta N(s) - \mathbf{R}_0 \cdot \mathbf{t}(s), \qquad \overset{*}{\kappa}(s)\ell^2 = \delta M(s) - M_0 + \mathbf{x}(s) \wedge \mathbf{R}_0^{-4}$$
(5.21)

où le vecteur \mathbf{R}_0 et le scalaire M_0 sont choisis de façon à ce que les moyennes de \hat{k} et $\hat{\boldsymbol{\xi}}'$ soient nulles :

$$\overline{\overset{*}{\varepsilon}} = 0, \qquad \overline{\overset{*}{\varepsilon}} \, \mathbf{t} - \overset{*}{\kappa} \, \mathbf{e}_{3 \wedge \mathbf{X}} = \mathbf{0}. \tag{5.22}$$

Montrons d'abord que (5.22) permet effectivement de trouver \mathbf{R}_0 et M_0 en termes de δN , δM et \mathbf{x} . La première condition $\mathbf{k} = 0$ permet de trouver M_0 en terme de \mathbf{R}_0 et des autres champs :

$$M_0 = \overline{\delta M} + \overline{\mathbf{x}} \wedge \mathbf{R}_0. \tag{5.23}$$

En reportant dans la deuxième, on obtient l'équation en \mathbf{R}_0 qui peut s'écrire après quelques simplifications :

$$\overline{\mathbf{R}_0 \cdot \mathbf{t} \mathbf{t}} + \overline{\mathbf{R}_0 \cdot \mathbf{y} \mathbf{y}} = \overline{\delta N \mathbf{t}} - \overline{\delta M \mathbf{r}} \quad \text{avec} \quad \ell \mathbf{r} = \mathbf{e}_3 \wedge (\mathbf{x} - \overline{\mathbf{x}})$$

Comme c'est un système linéaire en \mathbf{R}_0 , il suffit de montrer qu'il est inversible, *i.e.* que

$$\overline{\mathbf{R}_0 \cdot \mathbf{t} \, \mathbf{t}} + \overline{\mathbf{R}_0 \cdot \mathbf{r} \, \mathbf{r}} = \mathbf{0} \quad \Longrightarrow \quad \mathbf{R}_0 = \mathbf{0}$$

En prenant l'égalité de gauche et en faisant le produit scalaire par \mathbf{R}_0 , on obtient

$$\overline{(\mathbf{R}_0 \cdot \mathbf{t})^2 + (\mathbf{R}_0 \cdot \mathbf{r})^2} = 0$$

ce qui n'est possible que si $\mathbf{R}_0 \cdot \mathbf{t} = \mathbf{R}_0 \cdot \mathbf{r} = 0$ partout. Si \mathbf{R}_0 n'était pas nul, alors $\mathbf{x} - \overline{\mathbf{x}}$ serait colinéaire à \mathbf{R}_0 et donc \mathbf{t} aussi. Mais comme \mathbf{t} est orthogonal à \mathbf{R}_0 , c'est impossible, donc $\mathbf{R}_0 = \mathbf{0}$. Il existe donc un et un seul choix de M_0 et \mathbf{R}_0 pour que les conditions (5.22) soient satisfaites.

Avec ce choix, la vitesse virtuelle de rotation s'obtient par intégration de $\overset{*}{k}$ en fixant arbitrairement la constante

$$\overset{*}{\omega}(s) = \overset{*}{\omega}_{0} + \int_{0}^{s} \overset{*}{\kappa}(\zeta) d\zeta = \frac{1}{\ell^{2}} \int_{0}^{s} \left(\delta M(\zeta) - M_{0} + \mathbf{x}(\zeta) \wedge \mathbf{R}_{0} \right) d\zeta.$$

Grâce à la condition $\overline{\check{\kappa}} = 0$, on a $\overset{*}{\omega}(0) = \overset{*}{\omega}(\ell)$ et donc $\overset{*}{\omega}$ est continue dans \mathbb{C} . De même comme $\overset{*}{\xi}' = \overset{*}{\varepsilon} \mathbf{t} + \overset{*}{\omega} \mathbf{n}, \overset{*}{\xi}$ s'obtient par intégration en fixant arbitrairement la constante :

$$\overset{*}{\boldsymbol{\xi}}(s) = \overset{*}{\boldsymbol{\xi}}_{0} + \int_{0}^{s} \left(\overset{*}{\varepsilon}(\zeta) \mathbf{t}(\zeta) + \overset{*}{\omega}(\zeta) \mathbf{n}(\zeta) \right) d\zeta$$

Mais en vertu de la deuxième condition de (5.22), on a

$$\mathbf{\check{\xi}}(\ell)/\ell - \mathbf{\check{\xi}}(0)\ell = \overline{\check{\varepsilon} \mathbf{t} + \overset{*}{\omega} \mathbf{n}} = \overline{\check{\varepsilon} \mathbf{t} + \overset{*}{\omega} \mathbf{e}_{3} \wedge \mathbf{x}'} = \overline{\check{\varepsilon} \mathbf{t} + (\overset{*}{\omega} \mathbf{e}_{3} \wedge \mathbf{x})' - \overset{*}{\kappa} \mathbf{e}_{3} \wedge \mathbf{x}} = \overline{\check{\varepsilon} \mathbf{t} - \overset{*}{\kappa} \mathbf{e}_{3} \wedge \mathbf{x}} = \mathbf{0},$$

grâce au fait que $\overline{(\overset{*}{\omega} \mathbf{e}_3 \wedge \mathbf{x})'} = \overset{*}{\omega}(\ell) \mathbf{e}_3 \wedge \mathbf{x}(\ell) - \overset{*}{\omega}(0) \mathbf{e}_3 \wedge \mathbf{x}(0) = \mathbf{0}$ puisque $\overset{*}{\omega}$ et \mathbf{x} sont périodiques. Donc $\overset{*}{\boldsymbol{\xi}}$ est également continue dans \mathbb{C} .

^{4.} Ici, du point de vue des dimensions, il faut simplement s'assurer qu'elles sont compatibles, *i.e.* que la dimension de $\overset{*}{\kappa}$ est celle de $\overset{*}{\varepsilon}$ divisée par une longueur, ce qui explique la présence du ℓ^2 .

En reportant (5.21) dans (5.18), on obtient en utilisant encore la notation condensée

$$0 = \overline{\delta N \stackrel{*}{\varepsilon} + \delta M \stackrel{*}{\kappa}} = \overline{\stackrel{*^2}{\varepsilon} + \stackrel{*}{\varepsilon} \mathbf{t} \cdot \mathbf{R}_0} + \ell^2 \stackrel{*^2}{\kappa} + \stackrel{*}{\kappa} M_0 - \stackrel{*}{\kappa} \mathbf{x} \wedge \mathbf{R}_0} = \overline{\stackrel{*^2}{\varepsilon} + \ell^2 \stackrel{*^2}{\kappa}}$$

où on s'est servi de (5.22)-(5.23) pour simplifier les termes où apparaissaient M_0 et \mathbf{R}_0 . On en déduit que $\overset{*}{\varepsilon} = \overset{*}{\kappa} = 0$ et donc que

$$\delta N = \mathbf{R}_0 \cdot \mathbf{t}, \qquad \delta M = M_0 - \mathbf{x} \wedge \mathbf{R}_0. \tag{5.24}$$

Par continuité, ces relations sont vraies partout pour δM et partout sauf aux points anguleux pour δN . Notons que, compte tenu de (5.24), les relations (5.22) sont automatiquement satisfaites ce qui veut dire que \mathbf{R}_0 et M_0 peuvent être choisis arbitrairement.

2. En reportant dans (5.18), on obtient : $\forall \overset{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{tot}(\mathbf{x})$,

$$0 = \int_{\mathbb{C}\setminus\mathbb{S}^{*}} \left(\mathbf{R}_{0} \cdot \mathbf{t} \ \boldsymbol{\xi}' \cdot \mathbf{t} + \delta M(\boldsymbol{\xi}' \cdot \mathbf{n})' \right) ds + \sum_{\mathbb{S}^{*}} \left(\left\langle \delta \mathbf{R} \right\rangle \cdot [\boldsymbol{\xi}]] + \delta M[\boldsymbol{\xi}' \cdot \mathbf{n}] \right)$$

$$= \int_{\mathbb{C}\setminus\mathbb{S}^{*}} \left(\mathbf{R}_{0} \cdot \mathbf{t} \ \boldsymbol{\xi}' \cdot \mathbf{t} + \mathbf{R}_{0} \cdot \mathbf{n} \ \boldsymbol{\xi}' \cdot \mathbf{n} + \left(\delta M \ \boldsymbol{\xi}' \cdot \mathbf{n} \right)' \right) ds + \sum_{\mathbb{S}^{*}} \left(\left\langle \delta \mathbf{R} \right\rangle \cdot [\boldsymbol{\xi}]] + [\delta M \ \boldsymbol{\xi}' \cdot \mathbf{n}] \right)$$

$$= \int_{\mathbb{C}\setminus\mathbb{S}^{*}} \mathbf{R}_{0} \cdot \boldsymbol{\xi}' ds + \sum_{\mathbb{S}^{*}} \left\langle \delta \mathbf{R} \right\rangle \cdot [\boldsymbol{\xi}]] + \int_{\mathbb{C}\setminus\mathbb{S}^{*}} \left(\delta M \ \boldsymbol{\xi}' \cdot \mathbf{n} \right)' ds + \sum_{\mathbb{S}^{*}} [\delta M \ \boldsymbol{\xi}' \cdot \mathbf{n}]$$
(5.25)

où le terme $\delta M \overset{*}{\omega}'$ a été intégré par parties en utilisant le fait que δM est continu, dérivable et que $\delta M' = -\mathbf{R}_0 \cdot \mathbf{n}$. On peut utiliser la formule d'intégration (2.21) qui dans le cas d'une courbe fermée donne

$$\int_{\mathbb{C}\backslash\mathbb{S}^*} \varphi'(s) ds + \sum_{\mathbb{S}^*} \llbracket \varphi \rrbracket(s_i) = 0$$

Ceci permet d'annuler les termes en δM dans (5.25) et de simplifier le terme en \mathbf{R}_0 pour arriver à

$$\sum_{s_i \in \mathbb{S}^*} \left(\left\langle \delta \mathbf{R} \right\rangle(s_i) - \mathbf{R}_0 \right) \cdot \llbracket \boldsymbol{\xi} \rrbracket(s_i) = 0, \quad \forall \ \boldsymbol{\xi} \in \boldsymbol{\mathcal{V}}_{\text{tot}}(\mathbf{x}).$$
(5.26)

Il suffit alors de construire un $\boldsymbol{\xi}$ qui saute uniquement en un point arbitraire $s \in \mathbb{C}$ avec un saut qui vaut $\langle \delta \mathbf{R} \rangle(s) - \mathbf{R}_0$ pour en déduire que $\langle \delta \mathbf{R} \rangle(s) = \mathbf{R}_0$. Par continuité on en déduit que $\delta \mathbf{R} = \mathbf{R}_0$ partout. Ce faisant, (5.26) est trivialement satisfaite et on ne peut plus rien déduire du PPV.

En résumé, on a montré que $M = \tilde{M} + M_0 - \mathbf{x} \wedge \mathbf{R}_0$ et $N = \tilde{N} + \mathbf{R}_0$ où $M_0 \in \mathbb{R}$ et $\mathbf{R}_0 \in \mathbb{R}^2$ sont arbitraires. Autrement dit, (\mathbf{R}, M) vérifient, comme $(\tilde{\mathbf{R}}, \tilde{M})$, les équations d'équilibre locales en vertu de **P-2.4**.

P-5.2 (Les premières conclusions à tirer du PPV). Le PPV s'écrit donc (en simplifiant les notations)

$$\int_{\mathbb{C}\backslash\mathbb{S}^*} (N \stackrel{*}{\varepsilon} + M \stackrel{*}{\kappa}) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle \cdot \llbracket \stackrel{*}{\boldsymbol{\xi}} \rrbracket + \langle M \rangle \llbracket \stackrel{*}{\boldsymbol{\omega}} \rrbracket \right) = \mathsf{P}_{\mathsf{ext}}(\stackrel{*}{\boldsymbol{\xi}}), \quad \forall \stackrel{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{tot}(\mathbf{x}).$$

• Il est valable quel que soit le comportement du milieu curviligne ;

• Il est équivalent aux équations d'équilibre locales et permet donc de calculer la répartition des efforts intérieurs si l'on se donne les efforts extérieurs et la configuration d'équilibre.

• À ce stade, tant qu'on ne précise pas le comportement du milieu et son environnement, il ne donne aucune information supplémentaire sur les configurations d'équilibre;

• Il justifie le choix de la déformation d'extension ε et de la déformation de flexion κ comme grandeurs caractéristiques de la déformation puisqu'elles apparaissent naturellement comme les variables duales de l'effort normal N et du moment fléchissant M dans la puissance de déformation;

• L'effort tranchant T n'a pas de variable de déformation associée si ce n'est le saut de déplacement normal dans le cas de mouvements avec "cassures", ce qui justifie qu'on ne le fasse pas apparaître dans les lois de comportement où aucune discontinuité des déplacements n'est envisagée. Par contre, il faudrait le faire apparaître dans des modèles de rupture en le faisant dépendre des sauts de déplacement.

Exercice 5.3. (Identification des variables duales) L'objectif de l'exercice est d'illustrer la notion de dualité entre les efforts intérieurs intérieurs et les variables de déformation via la définition de la puissance de déformation. Supposons que l'on ait choisi la déformation de Green-Lagrange $\tilde{\varepsilon}$ et la variation de courbure $\tilde{\kappa}$ comme variables de déformation. Elles sont reliées à la déformation d'extension ε et de flexion κ par

$$\tilde{\varepsilon} = \varepsilon + \frac{1}{2} \, \varepsilon^2, \qquad \tilde{\kappa} = \mathtt{C} - \mathtt{C}_{\mathtt{R}} = \frac{\kappa - \varepsilon \mathtt{C}_{\mathtt{R}}}{1 + \varepsilon},$$

où C_R et C sont les courbures de, respectivement, la configuration déformée et la configuration de référence. Leur variable duale \tilde{N} et \tilde{M} sont par définition celles qui donneront la même puissance de déformation, ce qui permet de les identifier en écrivant

$$\tilde{N} \stackrel{*}{\tilde{\varepsilon}} + \tilde{M} \stackrel{*}{\tilde{\kappa}} = N \stackrel{*}{\varepsilon} + M \stackrel{*}{\kappa}, \qquad \forall (\stackrel{*}{\varepsilon}, \stackrel{*}{\kappa}).$$

Montrer que \tilde{N} et \tilde{M} sont alors données par

$$\tilde{N} = \frac{N}{1+\varepsilon} + \frac{M \mathrm{C}}{(1+\varepsilon)^2}, \qquad \tilde{M} = (1+\varepsilon)M.$$

Ce ne sont évidemment plus l'effort normal et le moment fléchissant.

Refaire les raisonnements en prenant pour variables de déformation $(\tilde{\varepsilon}, \kappa)$, i.e. la déformation de Green-Lagrange et la déformation de flexion. Montrer que les variables duales sont alors $(N/(1+\varepsilon), M)$. Quels sont les efforts intérieurs associés à $(\varepsilon, \tilde{\kappa})$?

5.3 Equilibre stable et minimisation d'énergie : premiers exemples

Nous entamons ici la deuxième partie consacrée aux formulations variationnelles de l'équilibre. Nous allons introduire dans le PPV toutes les informations sur le comportement du milieu ou sur le chargement auquel il est soumis qui restreignent la cinématique du milieu (typiquement, les conditions aux limites de fixation ou d'encastrement et les conditions d'inextensibilité ou d'inflexibilité du milieu). L'objectif est d'obtenir des propriétés énergétiques des configurations d'équilibre. Nous allons commencer par deux exemples avant d'étudier de façon générale les systèmes conservatifs.

5.3.1 L'exemple de la barre rigide articulée sous pesanteur et force centrifuge

Reprenons l'exemple étudié au chapitre 4 de la tige rigide droite homogène, de longueur ℓ_{R} , de masse linéique ϱ_{R} , soumise à la pesanteur et à des forces centrifuges. La tige est fixée au point **O** mais sa rotation y est libre alors que l'extrémité $s = \ell_{\mathsf{R}}$ est libre. Elle est placée dans le champ de pesanteur uniforme $-g\mathbf{e}_2$ et le plan ($\mathbf{O}, \mathbf{e}_1, \mathbf{e}_2$) tourne avec une vitesse angulaire Ω autour de l'axe \mathbf{Oe}_2 , ce qui fait qu'elle est soumise à la densité de forces linéiques $\tilde{\mathbf{f}}(s) = \varrho_{\mathsf{R}}\Omega^2 \tilde{x}_1(s)\mathbf{e}_1 - \varrho_{\mathsf{R}}g\mathbf{e}_2$ qui dépend de la configuration $s \mapsto \tilde{\mathbf{x}}(s)$.

Si $s \mapsto \tilde{\mathbf{x}}(s)$ est une configuration de la tige respectant son indéformabilité et sa fixation en \mathbf{O} , on peut l'écrire

$$\tilde{\mathbf{x}}(s) = s(\cos \tilde{\alpha} \mathbf{e}_1 + \sin \tilde{\alpha} \mathbf{e}_2) \quad \text{avec} \quad \tilde{\alpha} \in [-\pi, \pi)$$

l'angle $\tilde{\alpha}$ étant son seul degré de liberté. Si l'on calcule le moment résultant $\mathcal{M}(\tilde{\alpha})$ des forces linéiques en **O**, on obtient

$$\mathcal{M}(\tilde{\alpha}) := \int_0^{\ell_{\mathsf{R}}} \tilde{\mathbf{x}}(s) \wedge \tilde{\mathbf{f}}(s) ds = -\frac{1}{2} \, \varrho_{\mathsf{R}} g \ell_{\mathsf{R}}^2 \cos \tilde{\alpha} - \frac{1}{3} \varrho_{\mathsf{R}} \Omega^2 \ell_{\mathsf{R}}^3 \sin \tilde{\alpha} \cos \tilde{\alpha}.$$

Comme la rotation en **O** est libre, on obtient la configuration d'équilibre caractérisée par l'angle α en écrivant que $\mathcal{M}(\alpha) = 0$, ce qui donne l'équation en α :

$$-\frac{1}{2} \varrho_{\mathsf{R}} g \ell_{\mathsf{R}}^2 \cos \alpha - \frac{1}{3} \varrho_{\mathsf{R}} \Omega^2 \ell_{\mathsf{R}}^3 \sin \alpha \cos \alpha = 0.$$

Montrons que cette équation se déduit du PPV par un bon choix du mouvement virtuel. En effet, en prenant pour mouvement virtuel

$$\mathbf{x}_h(s) = s\cos(\alpha + h\,\overset{*}{\omega})\mathbf{e}_1 + s\sin(\alpha + h\,\overset{*}{\omega})\mathbf{e}_2, \quad \overset{*}{\omega} \in \mathbb{R},$$

le champ de vitesse virtuelle est

$$\hat{\boldsymbol{\xi}}(s) = \overset{*}{\omega} s(-\sin \alpha \mathbf{e}_1 + \cos \alpha \mathbf{e}_2) = \overset{*}{\omega} \mathbf{e}_3 \wedge \mathbf{x}(s).$$

Comme ce mouvement virtuel respecte l'indéformabilité de la barre, on a $\xi = 0$, k = 0 et par conséquent la puissance virtuelle de déformation est nulle. Comme ce mouvement virtuel respecte la fixation de

la tige en **O**, la force de réaction $-\mathcal{F}_0$ ne travaille pas. La puissance virtuelle des efforts extérieurs se réduit donc à la puissance de la pesanteur et de la force centrifuge, ce qui conduit à :

$$\mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}) = \int_{0}^{\ell_{\mathsf{R}}} \mathbf{f}(s) \cdot \overset{*}{\boldsymbol{\xi}}(s) ds = \overset{*}{\omega} \int_{0}^{\ell_{\mathsf{R}}} \mathbf{x}(s) \wedge \mathbf{f}(s) ds = \mathcal{M}(\alpha) \overset{*}{\omega}.$$

Pour ce mouvement virtuel le PPV s'écrivant $\mathsf{P}_{\mathsf{ext}}(\hat{\boldsymbol{\xi}}) = 0$, on retrouve bien l'équation d'équilibre $\mathcal{M}(\alpha) = 0$. Donnons-en une interprétation énergétique en s'appuyant sur le fait que les forces de pesanteur et d'inertie centrifuge sont des forces conservatives, cf Annexe A.2. L'énergie potentielle de la tige dans sa configuration $s \mapsto \tilde{\mathbf{x}}(s)$ caractérisée par l'angle $\tilde{\alpha}$ est définie par

$$\mathcal{P}_{\texttt{tot}}(\tilde{\alpha}) := \int_0^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}} \Big(g \, \tilde{x_2}(s) \big) - \frac{1}{2} \, \Omega^2 \tilde{x_1}(s)^2 \Big) ds$$

et peut donc s'écrire

$$\mathcal{P}_{tot}(\tilde{\alpha}) = \frac{1}{2} \varrho_{\mathsf{R}} g \ell_{\mathsf{R}}^2 \left(\sin \tilde{\alpha} - \frac{\lambda}{2} \cos^2 \tilde{\alpha} \right) \quad \text{avec} \quad \lambda = \frac{2\Omega^2 \ell_{\mathsf{R}}}{3g}, \tag{5.27}$$

 λ étant le paramètre de chargement adimensionné. On vérifie facilement que $\mathcal{P}'_{tot}(\tilde{\alpha}) = -\mathcal{M}(\tilde{\alpha})$ dont on déduit immédiatement

P-5.3. Les états d'équilibre de la tige sont ceux qui rendent stationnaire l'énergie potentielle, i.e. ceux qui annulent sa dérivée :

$$\alpha = configuration \ d'équilibre \iff \mathcal{P}'_{tot}(\alpha) = 0 \ . \tag{5.28}$$

Cette propriété est déjà intéressante en soi puisqu'elle ramène la recherche des configurations d'équilibre à celle des points stationnaires de l'énergie potentielle. Mais elle va nous permettre d'aller plus loin et de définir la notion de stabilité d'une configuration en terme de propriété de minimum de l'énergie potentielle. Introduisons cette notion de stabilité par la définition suivante :

D-5.5 (Définition d'une configuration stable de la tige). Une configuration de la tige rigide soumise à la pesanteur, à la force centrifuge et satisfaisant sa condition de fixation en **O** est dite **stable** si et seulement si elle est un minimum local de l'énergie potentielle. Autrement dit, l'angle α caractérisant cette configuration stable doit être tel que

$$\exists h > 0, \quad \forall \tilde{\alpha} : |\tilde{\alpha} - \alpha| \le h, \qquad \mathcal{P}_{\mathsf{tot}}(\alpha) \le \mathcal{P}_{\mathsf{tot}}(\tilde{\alpha}). \tag{5.29}$$

Cette notion de stabilité semble être indépendante de la notion d'équilibre. En fait il n'en est rien car une condition *nécessaire* pour qu'un état soit stable est qu'il soit un état d'équilibre. Pour montrer cela, considérons une configuration stable α . Prenons ϵ petit mais non nul, développons $\mathcal{P}_{tot}(\alpha + \epsilon)$ au premier ordre par rapport à ϵ et utilisons (5.29) pour arriver à

$$0 \leq \mathcal{P}_{\mathsf{tot}}(\alpha + \epsilon) - \mathcal{P}_{\mathsf{tot}}(\alpha) = \mathcal{P}'_{\mathsf{tot}}(\alpha)\epsilon + o(\epsilon).$$
En prenant $\epsilon > 0$, en divisant par ϵ et en passant à la limite quand ϵ tend vers 0, on obtient $\mathcal{P}'_{tot}(\alpha) \ge 0$. De même, pour $\epsilon < 0$, en divisant par ϵ et en passant à la limite quand ϵ tend vers 0, on obtient $\mathcal{P}'_{tot}(\alpha) \le 0$. Par conséquent $\mathcal{P}'_{tot}(\alpha) = 0$ et donc α est nécessairement une configuration d'équilibre.

Il reste à voir quelles configurations d'équilibre sont effectivement des minima locaux. On peut raisonner graphiquement et il est intéressant d'étudier l'évolution du graphe de l'énergie potentielle avec le paramètre de chargement λ . Cette évolution est représentée sur la figure 5.2 où on distingue les cas $0 \le \lambda < 1$, $\lambda = 1$ et $\lambda > 1$.

1. Tant que $0 \le \lambda < 1$. Le graphe ne présente alors que deux extrema $\alpha = \pm \pi/2$ qui sont donc les deux configurations d'équilibre possibles. De plus $-\pi/2$ correspond au minimum global et $\pi/2$ au maximum global. Donc $\alpha = -\pi/2$ est une configuration stable mais pas $\alpha = \pi/2$.

2. Quand $\lambda = 1$. Les propriétés précédentes restent vraies. La seule différence est que le graphe de $\alpha \mapsto \mathcal{P}_{tot}(\alpha)$ est plus aplati au voisinage de $\alpha = -\pi/2$.

3. Dès que $\lambda > 1$. Alors $\alpha = -\pi/2$ devient un maximum local alors que $\alpha = \pi/2$ reste le maximum global. Ces deux configurations ne sont plus stables. Par contre, deux minima globaux situés symétriquement de part et d'autre de $-\pi/2$ apparaissent. Ce sont les deux configurations d'équilibre stables correspondant à la branche bifurquée.

FIGURE 5.2 – Evolution du graphe de l'énergie potentielle avec le paramètre de chargement λ . En noir $\lambda < 1$, en vert $\lambda = 1$ et en rouge $\lambda > 1$. Les états d'équilibre stables correspondent aux minima locaux (les points rouges pour $\lambda > 1$ et le point $-\pi/2$ pour $\lambda \leq 1$).

On retrouve donc finalement les mêmes configurations stables que celles obtenues à partir du critère empirique. Mais si ces deux critères de stabilité coïncident sur cet exemple, le critère basé sur l'énergie présente toutefois le grand avantage d'être facilement généralisable et nous utiliserons pleinement cette latitude dans les prochaines sections. On peut résumer les résultats obtenus ici par **P-5.4.** On déduit du critère de stabilité **D-5.5** que les seules configurations stables sont les configurations d'équilibre qui satisfont le critère empirique introduit au chapitre 4 et disant qu'un état d'équilibre est stable si le moment résultant des efforts extérieurs a tendance à l'y ramener.

5.3.2 L'exemple du fil tendu

Cas du fil inextensible

Reprenons l'exemple du fil inextensible de longueur ℓ_{R} fixé en **O** en son extrémité s = 0 et soumis à la force $\mathcal{F}\mathbf{e}_1$, $\mathcal{F} > 0$, en son extrémité $s = \ell_{\mathsf{R}}$.

FIGURE 5.3 – Le problème du fil tendu.

Nous avons établi au chapitre 4 que la seule configuration d'équilibre possible avec le fil partout en tension est la configuration rectiligne

$$\mathbf{x}(S) = S\mathbf{e}_1, \quad S \in (0, \ell_{\mathsf{R}}).$$

Vérifions que cette configuration est celle qui, parmi toutes les configurations possibles $S \mapsto \tilde{\mathbf{x}}(S)$ de longueur ℓ_{R} et telles que $\tilde{\mathbf{x}}(0) = \mathbf{0}$, **minimise** $-\mathcal{F}\tilde{x}_1(\ell_{\mathsf{R}})$. En effet, comme le fil est inextensible, attaché en $\mathbf{0}$ et de longueur ℓ_{R} , l'abscisse $\tilde{x}_1(\ell_{\mathsf{R}})$ de son extrémité $S = \ell_{\mathsf{R}}$ est au plus égale à ℓ_{R} . On a donc

$$-\mathcal{F}\ell_{\mathsf{R}} = -\mathcal{F}x_1(\ell_{\mathsf{R}}) = \min_{S \mapsto \tilde{\mathbf{x}}(S) : \tilde{\mathbf{x}}(0) = \mathbf{0}, \|\tilde{\mathbf{x}}'(S)\| = 1} -\mathcal{F}\tilde{x}_1(\ell_{\mathsf{R}}).$$

Or il s'avère que $-\mathcal{F}\tilde{x}_1(\ell_R)$ représente l'énergie potentielle du système fil inextensible-force dans sa configuration $\tilde{\mathbf{x}}$ avec la force appliquée en $S = \ell_R$. En effet, un fil inextensible a une énergie de déformation nulle alors que $-\mathcal{F}\tilde{x}_1(\ell_R)$ représente l'énergie potentielle de la "charge morte" $\mathcal{F}\mathbf{e}_1$, cf Annexe A.2. Par conséquent, on a établi

P-5.5. Dans le cas d'un fil inextensible, la configuration d'équilibre correspondant au fil tendu est celle qui possède la plus petite énergie potentielle parmi toutes les configurations qui respectent la condition de fixation en 0 et la condition d'inextensibilité, l'énergie potentielle étant définie comme l'opposé du travail de la force appliquée.

Notons au passage que, sous les mêmes conditions, si l'on cherche à maximiser l'énergie potentielle, on trouve que le maximum est $\mathcal{F}\ell_{\mathsf{R}}$ et qu'il est atteint par la configuration $\tilde{\mathbf{x}}(S) = -S\mathbf{e}_1$. Dans cette configuration le fil est partout en compression. Cet exemple suggère, comme le précédent, de chercher un lien entre les équilibres et leur stabilité avec les propriétés de minimisation d'énergie. On pourrait craindre que cela tienne à la particularité du problème étudié, mais on va voir qu'elle s'étend au fil extensible.

Cas du fil extensible

Considérons maintenant le problème où le fil est **extensible** (les conditions aux limites demeurant inchangées). Pour simplifier supposons que la loi d'extensibilité est celle d'un fil linéairement élastique, *i.e.*

$$N = W'_{ex}(\varepsilon) = \mathsf{E}\mathsf{A}\varepsilon, \qquad W_{ex}(\varepsilon) = \frac{1}{2}\,\mathsf{E}\mathsf{A}\varepsilon^2.$$

Si l'on cherche les configurations d'équilibre où le fil est partout en tension, on trouve encore que la seule possible est la configuration rectiligne, alignée avec la force, l'allongement relatif étant donné par la loi d'extensibilité. Autrement dit, on a

$$\varepsilon = \frac{\mathcal{F}}{\mathsf{EA}}, \qquad \mathbf{x}(S) = (1+\varepsilon)S\mathbf{e}_1, \quad S \in (0, \ell_{\mathsf{R}}).$$

Montrons que cette configuration possède encore la propriété de minimiser l'énergie potentielle parmi toutes les configurations admissibles. Mais il faut pour cela changer l'expression de l'énergie potentielle en lui rajoutant l'énergie élastique du fil. En notant $S \mapsto \tilde{\mathbf{x}}(S)$ une configuration du fil, on définit donc l'énergie potentielle $\mathcal{P}_{tot}(\tilde{\mathbf{x}})$ du fil dans cette configuration $\tilde{\mathbf{x}}$ par

$$\mathcal{P}_{\mathsf{tot}}(\tilde{\mathbf{x}}) := \int_0^{\ell_{\mathsf{R}}} \frac{1}{2} \mathsf{E}\mathsf{A}\left(\left\|\tilde{\mathbf{x}}'(S)\right\| - 1\right)^2 dS - \mathcal{F}\tilde{x}_1(\ell_{\mathsf{R}}).$$

L'énergie potentielle de la configuration d'équilibre \mathbf{x} valant

$$\mathcal{P}_{tot}(\mathbf{x}) = -\mathcal{F}\ell_{\mathsf{R}} - \frac{\mathcal{F}^2\ell_{\mathsf{R}}}{2\mathsf{E}\mathsf{A}},$$

montrons que l'on a maintenant

$$-\mathcal{F}\ell_{\mathsf{R}} - \frac{\mathcal{F}^{2}\ell_{\mathsf{R}}}{2\mathsf{E}\mathsf{A}} = \min_{S \mapsto \tilde{\mathbf{x}}(S) \ : \ \tilde{\mathbf{x}}(0) = \mathbf{0}} \int_{0}^{\ell_{\mathsf{R}}} \frac{1}{2} \mathsf{E}\mathsf{A} \left(\left\| \tilde{\mathbf{x}}'(S) \right\| - 1 \right)^{2} dS - \mathcal{F}\tilde{x}_{1}(\ell_{\mathsf{R}}).$$

Remarquons d'abord que, comme $\tilde{x}_1(0) = 0$, on a $\tilde{x}_1(\ell_R) = \int_0^{\ell_R} \tilde{x}'_1(S) dS$ et on peut donc écrire l'énergie potentielle de la façon suivante

$$\mathcal{P}_{\texttt{tot}}(\tilde{\mathbf{x}}) = \int_0^{\ell_{\mathsf{R}}} \left(\frac{1}{2} \mathsf{EA}\left(\left\| \tilde{\mathbf{x}}'(S) \right\| - 1 \right)^2 - \mathcal{F} \tilde{x}_1'(S) \right) dS.$$

Comme $\|\tilde{\mathbf{x}}'\| = \sqrt{\tilde{x}_1'^2 + \tilde{x}_2'^2} \ge |\tilde{x}_1'|$ et que $-\mathcal{F}\tilde{x}_1' \ge -\mathcal{F}|\tilde{x}_1'|$, on a $-\mathcal{F}\tilde{x}_1' \ge -\mathcal{F}\|\tilde{\mathbf{x}}'\|$ et par conséquent

$$\mathcal{P}_{\text{tot}}(\tilde{\mathbf{x}}) \ge \int_0^{\ell_{\mathsf{R}}} \left(\frac{1}{2} \mathsf{E}\mathsf{A}\left(\left\| \tilde{\mathbf{x}}'(S) \right\| - 1 \right)^2 - \mathcal{F} \left\| \tilde{\mathbf{x}}'(S) \right\| \right) dS.$$
(5.30)

Or le minimum de la fonction $x \mapsto \frac{1}{2} \mathsf{EA} (x-1)^2 - \mathcal{F}x$ sur \mathbb{R} est atteint en $x = 1 + \mathcal{F}/\mathsf{EA} > 0$ et vaut $-\mathcal{F} - \mathcal{F}^2/2\mathsf{EA}$. Par conséquent, en reportant dans (5.30), on obtient la minoration suivante

$$\mathcal{P}_{\texttt{tot}}(\tilde{\mathbf{x}}) \geq -\mathcal{F}\ell_{\text{R}} - \frac{\mathcal{F}^{2}\ell_{\text{R}}}{2\text{EA}} = \mathcal{P}_{\texttt{tot}}(\mathbf{x})$$

qui est l'inégalité cherchée. On a donc étendu au cas extensible la propriété

P-5.6. Dans le cas d'un fil extensible, la configuration d'équilibre correspondant au fil tendu est celle qui possède la plus petite énergie potentielle parmi toutes les configurations qui respectent la condition de fixation en 0, l'énergie potentielle étant définie comme la différence entre l'énergie d'extension et le travail de la force appliquée.

Si l'on compare les deux énergies potentielles à l'équilibre, on voit que celle du cas extensible est plus petite que celle du cas inextensible. En fait, cette propriété peut s'obtenir sans calcul si on remarque que le problème de minimisation du cas inextensible est un sous-cas du problème de minimisation du cas extensible. En effet, il suffit de minimiser l'énergie potentielle $\mathcal{P}_{tot}(\tilde{\mathbf{x}})$ sur le sous-ensemble des configurations qui vérifient la condition d'inextensibilité, *i.e.* telles que $\|\tilde{\mathbf{x}}'(S)\| = 1$, pour retomber sur le cas inextensible. Mais en minimisant sur un ensemble plus petit la même fonction on obtient un minimum qui est forcément plus grand (ou au mieux égal). D'où l'inégalité entre les deux minima. Cette remarque est une illustration du type de propriétés que l'on peut déduire "sans calcul" de l'approche variationnelle.

5.4 Propriétés énergétiques des états d'équilibre des systèmes conservatifs

La question est de savoir dans quelle mesure on peut étendre les propriétés énergétiques établies sur les deux exemples précédents à des problèmes plus généraux de statique. Nous allons voir que cela est possible pour les **systèmes conservatifs** où les forces extérieures dérivent d'un potentiel et le comportement est du type élastique (en y incluant les cas limites). Pour la clarté de l'exposé, nous commencerons par traiter le cas "général" des tiges et arcs élastiquement extensibles et flexibles avant de considérer les cas limites d'inextensibilité, d'inflexibilité et de parfaite flexibilité. La démarche est la même dans chaque cas, mais des modifications sont à apporter aux définitions et aux propriétés quand le comportement "dégénère".

5.4.1 Cas des milieux curvilignes élastiquement extensibles et flexibles

Pour établir les propriétés énergétiques la démarche est la suivante :

1. on part du problème aux limites dans lequel les charges sont supposées conservatives et le comportement élastique;

2. on définit les configurations cinématiquement admissibles pour ce problème et leur énergie potentielle;

3. on calcule les variations virtuelles de l'énergie potentielle dans les mouvements virtuels cinématiquement admissibles;

4. on établit les propriétés énergétiques en s'appuyant sur le PPV.

Nous allons expliciter cette démarche en nous plaçant dans un cadre d'hypothèses portant sur le chargement et les conditions aux limites. Ceci ne couvre évidemment pas toutes les situations que l'on peut rencontrer tout en restant dans le cadre des systèmes conservatifs. Il s'agira donc de refaire à chaque fois la démarche et de rétablir les propriétés en adaptant les définitions.

1. Le problème aux limites et ses hypothèses. On considère un milieu curviligne élastique (non nécessairement homogène) dont la longueur et la courbure naturelles sont ℓ_{R} et C_{R} et on prend pour configuration de référence sa configuration naturelle $S \mapsto \mathbf{x}_{\mathsf{R}}(S)$. Son comportement élastique est caractérisé par le potentiel élastique $(\varepsilon, \kappa) \mapsto \mathsf{W}_{\mathsf{e}}(\varepsilon, \kappa)$. Il est soumis à des forces linéiques provenant de forces massiques dérivant du potentiel $\mathbf{y} \mapsto \Phi(\mathbf{y})$ et la densité linéique de moments est nulle

$$\mathbf{f}_{\mathsf{R}}(S) = -\varrho_{\mathsf{R}}(S) \nabla \Phi(\mathbf{x}(S)), \qquad m_{\mathsf{R}}(S) = 0.$$

Il est également soumis à des efforts ponctuels $(\mathcal{F}_i, \mathcal{M}_i)$ aux n points matériels $\{S_i\}_{1 \leq i \leq n}$, efforts qui sont des charges mortes (*i.e.* indépendantes de la position du point matériel). Le milieu possède des extrémités ⁵ et on envisage le jeu suivant de conditions aux limites : l'extrémité S = 0 est encastrée au point \mathbf{x}_0 dans la direction α_0 alors que l'extrémité $S = \ell_{\mathsf{R}}$ est soumise à des efforts $(\mathcal{F}_\ell, \mathcal{M}_\ell)$ indépendants de la position (charges mortes). Nous supposerons en outre pour simplifier la présentation que la configuration de référence respecte cette condition d'encastrement, *i.e.*

$$\mathbf{x}_{\mathsf{R}}(0) = \mathbf{x}_{0}, \quad \mathbf{x}_{\mathsf{R}}'(0) = \cos \alpha_{0} \mathbf{e}_{1} + \sin \alpha_{0} \mathbf{e}_{2}.$$

En résumé et sans rappeler toutes les définitions (cf chapitre 4), le problème aux limites consiste à trouver la configuration d'équilibre $S \mapsto \mathbf{x}(S)$ et la répartition des efforts intérieurs associée $S \mapsto (\mathbf{R}(S), M(S))$ tels que

$$\begin{array}{ll} \text{équations d'équilibre} & : & \begin{cases} \mathbf{R}'(S) - \varrho_{\mathsf{R}}(S)\nabla\Phi(\mathbf{x}(S)) = \mathbf{0} & \text{dans} & \mathbb{C}_{\mathsf{R}} \setminus \mathbb{P}_{\mathsf{R}} \\ M'(S) + \|\mathbf{x}'(S)\| \ T(S) = 0 & \text{dans} & \mathbb{C}_{\mathsf{R}} \setminus \mathbb{P}_{\mathsf{R}} \\ \|\mathbf{R}\|(S_i) + \mathbf{\mathcal{F}}_i = \mathbf{0} & \text{sur} & \mathbb{P}_{\mathsf{R}} \\ \|M\|(S_i) + \mathbf{\mathcal{M}}_i = 0 & \text{sur} & \mathbb{P}_{\mathsf{R}} \\ \|M\|(S_i) + \mathbf{\mathcal{M}}_i = 0 & \text{sur} & \mathbb{P}_{\mathsf{R}} \end{cases} \\ \text{conditions aux limites} & : & \begin{cases} \mathbf{x}(0) = \mathbf{x}_0, & \alpha(0) = \alpha_0 \\ \mathbf{R}(\ell_{\mathsf{R}}) = \mathbf{\mathcal{F}}_{\ell}, & M(\ell_{\mathsf{R}}) = \mathbf{\mathcal{M}}_{\ell} \end{cases} \\ \text{relations de comportement} & : & N(S) = \frac{\partial \mathsf{W}_{\mathsf{e}}}{\partial \varepsilon}(\varepsilon(S), \kappa(S)) , & M(S) = \frac{\partial \mathsf{W}_{\mathsf{e}}}{\partial \kappa}(\varepsilon(S), \kappa(S)) \end{cases}$$

où $\mathbb{C}_{\mathsf{R}} = (0, \ell_{\mathsf{R}})$ et $\mathbb{P}_{\mathsf{R}} = \{S_1, \dots, S_n\}$, tous les champs sont des fonctions de S et le prime désigne la dérivée par rapport à S. Les termes encadrés en rouge représentent les données du problème aux limites dont la nature assure que le système est conservatif. Pour des raisons qui vont apparaître dans le prochain paragraphe, on a intérêt à écrire la condition d'encastrement de la façon suivante :

$$\mathbf{x}(0) = \mathbf{x}_0, \qquad \mathbf{x}'(0) \cdot \mathbf{n}_0 = 0 \quad \text{avec} \quad \mathbf{n}_0 = -\sin\alpha_0 \mathbf{e}_1 + \cos\alpha_0 \mathbf{e}_2. \tag{5.31}$$

^{5.} Le cas d'un milieu sans extrémité se traite en remplaçant les conditions aux limites par des conditions de périodicité.

2. Les configurations cinématiquement admissibles et leur énergie potentielle. De façon générale les configurations cinématiquement admissibles sont celles qui satisfont les conditions aux limites cinématiques (comme par exemple les conditions d'encastrement, de fixation, d'appui simple ou de périodicité) ainsi que les conditions qui limitent leur déformation (comme les conditions d'inextensibilité ou d'inflexibilité). Du point de vue de la régularité, ces configurations doivent être d'énergie potentielle finie. Par conséquent la définition des configurations cinématiquement admissibles va de pair avec celle de l'énergie potentielle. Commençons par cette dernière. Pour le problème aux limites considéré ci-dessus, l'énergie potentielle d'une configuration $S \mapsto \tilde{\mathbf{x}}(S)$ consiste en la somme de l'énergie élastique et de l'énergie potentielle des charges conservatives qui sont définies par

(énergie potentielle totale)
$$\mathcal{P}_{tot}(\tilde{\mathbf{x}}) = \mathcal{P}_{ela}(\tilde{\mathbf{x}}) + \mathcal{P}_{ext}(\tilde{\mathbf{x}})$$

avec

$$(\text{énergie élastique}) \qquad \mathcal{P}_{\texttt{ela}}(\tilde{\mathbf{x}}) = \int_0^{\ell_{\mathsf{R}}} \mathtt{W}_{\texttt{e}}(\tilde{\varepsilon}(S), \tilde{\kappa}(S)) dS$$

 et

(énergie potentielle des charges conservatives)

$$\mathcal{P}_{\mathtt{ext}}(\tilde{\mathbf{x}}) = \int_0^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}}(S) \Phi(\tilde{\mathbf{x}}(S)) dS - \sum_{i=1}^n \left(\mathcal{F}_i \cdot \tilde{\mathbf{x}}(S_i) + \mathcal{M}_i \tilde{\omega}(S_i) \right) - \left(\mathcal{F}_\ell \cdot \tilde{\mathbf{x}}(\ell_{\mathsf{R}}) + \mathcal{M}_\ell \tilde{\omega}(\ell_{\mathsf{R}}) \right)$$

où $\tilde{\omega}$, $\tilde{\varepsilon}$ et $\tilde{\kappa}$ désignent la rotation, la déformation d'extension et la déformation de flexion associées à la configuration $\tilde{\mathbf{x}}$. On notera que l'énergie potentielle associée à un moment imposé \mathcal{M} (d'intensité indépendante de la position et de l'orientation de la tige) est simplement l'opposé du produit du moment par l'orientation de la tige au point d'application, la constante arbitraire ayant été fixée de façon à ce que le potentiel soit nul lorsque la tige est dans sa configuration de référence. Du point de vue mathématique, l'énergie potentielle est une **fonctionnelle**, *i.e.* une fonction à valeur réelle dont les arguments sont des fonctions (ici les configurations du milieu curviligne), cf Annexe B.

Pour le problème aux limites considéré ci-dessus, les *configurations cinématiquement admissibles* sont celles d'énergie finie qui respectent la condition d'encastrement en s = 0. Par conséquent **l'ensemble** des configurations cinématiquement admissibles est défini par

$$\mathcal{C}_{\mathrm{ad}} = \{ S \mapsto \tilde{\mathbf{x}}(S) : \mathcal{P}_{\mathtt{tot}}(\tilde{\mathbf{x}}) < +\infty, \quad \tilde{\mathbf{x}}(0) = \mathbf{x}_0, \quad \tilde{\mathbf{x}}'(0) \cdot \mathbf{n}_0 = 0 \}$$

La régularité minimale pour que l'énergie soit finie dépend du potentiel élastique et du potentiel des forces conservatives.

Exemple 5.1 (Régularité des champs dans le problème de la poutre de Galilée). Si l'on considère le problème de la poutre de Galilée, cf 4.5.3, pour lequel la configuration naturelle est rectiligne, le potentiel élastique est quadratique et la force à l'extrémité est une charge morte, l'énergie potentielle s'écrit

$$\mathcal{P}_{\texttt{ela}}(\tilde{\mathbf{x}}) = \int_0^{\ell_R} \left(\frac{1}{2} \mathsf{EA} \left(\left\| \tilde{\mathbf{x}}'(S) \right\| - 1 \right)^2 + \frac{1}{2} \mathsf{EI} \tilde{\alpha}'(S)^2 \right) dS + \mathcal{F} \cdot \tilde{\mathbf{x}}(\ell_R).$$

Par conséquent parmi les configurations qui vérifient la condition d'encastrement celles qui sont d'énergie finie sont celles pour lesquelles $S \mapsto \tilde{x}'_1(S), S \mapsto \tilde{x}'_2(S)$ et $S \mapsto \tilde{\alpha}'(S)$ sont de carré intégrales. On peut montrer (c'est l'objet de l'Analyse Fonctionnelle) que ceci implique que $S \mapsto \tilde{\mathbf{x}}(S)$ et $S \mapsto \tilde{\alpha}(S)$ sont nécessairement **continues** sur $[0, \ell_R]$. La rigidité à la flexion fait qu'il ne peut pas y avoir de discontinuité de la tangente.

Si l'on admet que de façon générale l'ensemble des configurations d'énergie finie est un espace vectoriel (ce qui est vrai en pratique et l'exemple ci-dessus en est une illustration), alors on voit facilement (grâce en particulier à l'écriture de la condition d'encastrement sous la forme (5.31)) que \mathcal{C}_{ad} est un espace *affine* et même un espace *vectoriel* si $\mathbf{x}_0 = \mathbf{0}$. En effet, introduisons le champ de déplacement $\tilde{\boldsymbol{\xi}}$ par rapport à la configuration de référence,

$$\tilde{\mathbf{x}}(S) = \mathbf{x}_{\mathsf{R}}(S) + \tilde{\boldsymbol{\xi}}(S).$$

Comme la configuration de référence vérifie la condition d'encastrement, le déplacement doit vérifier

$$\tilde{\boldsymbol{\xi}}(0) = \mathbf{0}, \qquad \tilde{\boldsymbol{\xi}}'(0) \cdot \mathbf{n}_0 = 0.$$

Définissons l'ensemble des déplacements cinématiquement admissibles par

$$\mathcal{V}_{\mathrm{ad}} = \{S \mapsto \tilde{\boldsymbol{\xi}}(S) \; : \; \mathcal{P}_{\mathtt{tot}}(\tilde{\boldsymbol{\xi}}) < +\infty, \quad \tilde{\boldsymbol{\xi}}(0) = \mathbf{0}, \quad \tilde{\boldsymbol{\xi}}'(0) \cdot \mathbf{n}_0 = 0 \}$$

On voit immédiatement que \mathcal{V}_{ad} est un espace vectoriel, car si $\tilde{\boldsymbol{\xi}}$ et $\boldsymbol{\xi} \in \mathcal{V}_{ad}$, alors $\tilde{\lambda}\tilde{\boldsymbol{\xi}} + \lambda \boldsymbol{\xi} \in \mathcal{V}_{ad}$ pour tous les $\tilde{\lambda}$ et $\lambda \in \mathbb{R}$. Par conséquent \mathcal{C}_{ad} peut s'écrire

$${\mathcal C}_{
m ad} = {f x}_{
m R} + {m {\cal V}}_{
m ad},$$

c'est un espace affine et \mathcal{V}_{ad} est son espace vectoriel associé.

3. Les variations virtuelles de l'énergie potentielle dans les mouvements virtuels cinématiquement admissibles. Une étape clé dans l'établissement des propriétés énergétiques des configurations d'équilibre est le calcul des variations de l'énergie potentielle lors de petits mouvements virtuels autour d'une de ces configurations d'équilibre. D'un point de vue mathématique, ceci fait appel à la notion de **dérivée directionnelle d'une fonctionnelle** qui est introduite en Annexe B.

Soit $S \mapsto \mathbf{x}(S)$ une configuration⁶ paramétrée par l'abscisse curviligne de référence. Elle est supposée cinématiquement admissible et est donc un élément de \mathcal{C}_{ad} . Envisageons un mouvement virtuel paramétré par h voisin de 0 durant lequel toutes les configurations traversées sont cinématiquement admissibles. En suivant les notations de la section 5.1, la configuration associée à "l'instant" h est la courbe $s \mapsto \mathbf{x}_h(s)$ paramétrée par l'abscisse curviligne de \mathbf{x} . Pour calculer l'énergie associée à cette configuration virtuelle, il vaut mieux la paramétriser par l'abscisse curviligne de référence S, ce qui revient à considérer l'application $S \mapsto \mathbf{x}_{h^{\circ}} \mathbf{s}(S)$. On va donc être amené constamment à passer de l'une à l'autre des représentations de cette configuration, ce qui exige un peu d'attention.

6. A ce stade nous n'avons pas besoin de demander que $S \mapsto \mathbf{x}(S)$ soit une configuration d'équilibre. Les raisonnements sont valables pour toute configuration admissible.

Appuyons nous sur le fait qu'ici C_{ad} est un espace affine et construisons un mouvement virtuel de la forme suivante :

$$\mathbf{x}_{h} \circ \mathbf{s}(S) = \mathbf{x}(S) + h \stackrel{*}{\boldsymbol{\xi}} \circ \mathbf{s}(S) \quad \text{avec} \quad \stackrel{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \boldsymbol{\mathcal{V}}_{\mathrm{ad}}$$

On vérifie immédiatement que $\mathbf{x}_{h^{\circ}} \mathbf{s} \in \mathcal{C}_{ad}$ pour tout $h \in \mathbb{R}$ et que ce mouvement virtuel satisfait toutes les conditions requises. On notera que la vitesse virtuelle $\boldsymbol{\xi}$ est plus régulière et doit satisfaire en plus les conditions d'encastrement par rapport aux vitesses virtuelles qui sont utilisées dans le PPV.

Il s'agit de calculer $\mathcal{P}_{tot}(\mathbf{x}_{h} \circ \mathbf{s})$ et sa dérivée par rapport à h en h = 0. Remarquons d'abord que les déformations qui interviennent dans l'expression du potentiel élastique sont celles calculées par rapport à la configuration de référence $S \mapsto \mathbf{x}_{\mathsf{R}}(S)$ et non par rapport à la configuration déformée $S \mapsto \mathbf{x}(S)$ comme cela avait été fait dans l'établissement du PPV. Ceci va nécessiter que l'on adapte les définitions et certaines formules en conséquence, en particulier celles relatives aux déformations.

Notons $\varepsilon_h^{\mathsf{R}}$, ω_h^{R} et κ_h^{R} la déformation d'extension, la rotation et la déformation de flexion de la configuration virtuelle $\mathbf{x}_{h^{\circ}}h$ par rapport à la configuration de référence \mathbf{x}_{R} . Par définition, ces grandeurs sont données par

$$\begin{cases} \varepsilon_h^{\mathsf{R}}(S) := \|(\mathbf{x}_h \circ \mathbf{s})'(S)\| - 1 = \left\| \frac{d\mathbf{x}_h}{ds}(s) \right\| \frac{d\mathbf{s}}{dS}(S) - 1 = (1 + \varepsilon_h(s)) \frac{d\mathbf{s}}{dS}(S) - 1 \\ \omega_h^{\mathsf{R}}(S) := \alpha_h \circ \mathbf{s}(S) - \alpha_{\mathsf{R}}(S) = \omega_h \circ \mathbf{s}(S) + \omega(S) \\ \kappa_h^{\mathsf{R}}(S) := \frac{d\omega_h^{\mathsf{R}}}{dS}(S) = \frac{d\alpha_h}{ds}(s) \frac{d\mathbf{s}}{dS}(S) - \mathsf{C}_{\mathsf{R}}(S) = \kappa_h(s) \frac{d\mathbf{s}}{dS}(S) + \kappa(S) \end{cases}$$
(5.32)

Passons maintenant au calcul des variations de l'énergie potentielle dans le mouvement virtuel. Nous allons traiter les deux termes de l'énergie séparément en nous appuyant sur la notion de dérivée directionnelle d'une fonctionnelle.

(a) Variation virtuelle de l'énergie élastique. Compte tenu des notations introduites précédemment, l'énergie élastique du milieu dans sa configuration virtuelle $\mathbf{x}_{h\circ \mathbf{s}}$ s'écrit

$$\mathcal{P}_{\texttt{ela}}(\mathbf{x}_{h^{\circ}}\,\mathbf{s}) = \int_{0}^{\ell_{\mathsf{R}}} \mathsf{W}_{\texttt{e}}\left(\varepsilon_{h}^{\mathsf{R}}(S), \kappa_{h}^{\mathsf{R}}(S)\right) dS.$$

Il s'agit de calculer la dérivée de $\mathcal{P}_{ela}(\mathbf{x}_{h} \circ \mathbf{s})$ par rapport à h en h = 0. Cela passe par le calcul des vitesses virtuelles de déformation. En utilisant (5.32) et les définitions de $\overset{*}{\varepsilon}(s)$ et $\overset{*}{\kappa}(s)$, on obtient

$$\left. \frac{d}{dh} \Big(\varepsilon_h^{\mathsf{R}}(S) \Big) \right|_{h=0} = \overset{*}{\varepsilon}(s) \frac{d\mathbf{s}}{dS}(S) , \qquad \left. \frac{d}{dh} \Big(\kappa_h^{\mathsf{R}}(S) \Big) \right|_{h=0} = \overset{*}{\kappa}(s) \frac{d\mathbf{s}}{dS}(S) .$$

Pour calculer la variation de l'énergie élastique on raisonne formellement en dérivant sous le signe somme et en utilisant la règle de dérivation des fonctions composées, ce qui donne

$$\begin{aligned} \mathcal{P}_{\texttt{ela}}'(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) &:= \left. \frac{d}{dh} \Big(\mathcal{P}_{\texttt{ela}}(\mathbf{x}_{h} \circ \mathbf{s}) \Big) \right|_{h=0} \\ &= \left. \int_{0}^{\ell_{\mathsf{R}}} \left(\frac{\partial \mathsf{W}_{\texttt{e}}}{\partial \varepsilon}(\varepsilon(S), \kappa(S)) \overset{*}{\varepsilon} \circ \mathbf{s}(S) + \frac{\partial \mathsf{W}_{\texttt{e}}}{\partial \kappa}(\varepsilon(S), \kappa(S)) \overset{*}{\kappa} \circ \mathbf{s}(S) \right) \frac{d\mathbf{s}}{dS}(S) dS \\ &= \left. \int_{0}^{\ell_{\mathsf{R}}} \left(N(S) \overset{*}{\varepsilon} \circ \mathbf{s}(S) + M(S) \overset{*}{\kappa} \circ \mathbf{s}(S) \right) \frac{d\mathbf{s}}{dS}(S) dS, \end{aligned} \end{aligned}$$

où on a fait apparaître l'effort normal et le moment fléchissant associés à la configuration déformée \mathbf{x} via la loi de comportement élastique

$$N = \frac{\partial \mathbf{W}_{\mathbf{e}}}{\partial \varepsilon}(\varepsilon, \kappa), \qquad M = \frac{\partial \mathbf{W}_{\mathbf{e}}}{\partial \kappa}(\varepsilon, \kappa).$$

En faisant le changement de variable $S \to s = \mathbf{s}(S)$ dans l'intégrale et en notant (abusivement) N(s) et M(s) l'effort normal et le moment fléchissant au point d'abscisse curviligne s de la configuration déformée, on obtient

$$\mathcal{P}_{\texttt{ela}}'(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) = \int_{0}^{\ell} \Big(N(s) \overset{*}{\varepsilon}(s) + M(s) \overset{*}{\omega}(s) \Big) ds = \mathsf{P}_{\mathsf{def}}[N, M](\overset{*}{\boldsymbol{\xi}}).$$

Autrement dit, on a obtenu la propriété fondamentale suivante, valable pour toute configuration admissible et toute vitesse virtuelle admissible 7 :

P-5.7. La variation de l'énergie élastique dans un mouvement virtuel admissible autour d'une configuration admissible est égale à la puissance des efforts intérieurs associée à cette configuration dans les déformations virtuelles associées au mouvement virtuel :

$$\mathcal{P}'_{\texttt{ela}}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) = \int_{0}^{\ell} \left(N(s) \overset{*}{\varepsilon}(s) + M(s) \overset{*}{\omega}(s) \right) ds.$$

(b) Variation virtuelle de l'énergie potentielle des forces conservatives. On procède de façon identique pour l'autre partie de l'énergie potentielle. Compte tenu des notations précédentes, la part de l'énergie potentielle due aux charges conservatives du milieu dans sa configuration virtuelle $\mathbf{x}_{h\circ}\mathbf{s}$ s'écrit

$$\mathcal{P}_{\mathsf{ext}}(\mathbf{x}_{h} \circ \mathbf{s}) = \int_{0}^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}}(S) \Phi(\mathbf{x}_{h} \circ \mathbf{s}(S)) dS - \sum_{i=1}^{n} \left(\boldsymbol{\mathcal{F}}_{i} \cdot \mathbf{x}_{h} \circ \mathbf{s}(S_{i}) + \mathcal{M}_{i} \, \omega_{h}^{\mathsf{R}}(S_{i}) \right) \\ - \boldsymbol{\mathcal{F}}_{\ell} \cdot \mathbf{x}_{h} \circ \mathbf{s}(\ell_{\mathsf{R}}) - \mathcal{M}_{\ell} \, \omega_{h}^{\mathsf{R}}(\ell_{\mathsf{R}}).$$

Il s'agit de calculer la dérivée de $\mathcal{P}_{ext}(\mathbf{x}_h \circ \mathbf{s})$ par rapport à h en h = 0. En s'appuyant sur le fait que

$$\frac{d}{dh} \Big(\mathbf{x}_{h} \circ \mathbf{s}(S) \Big) \Big|_{h=0} = \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}(S) = \overset{*}{\boldsymbol{\xi}}(s) \Big|_{h=0}, \qquad \left| \frac{d}{dh} \Big(\omega_{h}^{\mathsf{R}}(S) \Big) \Big|_{h=0} = \overset{*}{\omega} \circ \mathbf{s}(S) = \overset{*}{\omega}(s) = \frac{d}{ds} \overset{*}{\boldsymbol{\xi}}(s) \cdot \mathbf{n}(s) \Big|_{h=0}$$

et en dérivant sous le signe somme, on obtient

$$\mathcal{P}_{\mathsf{ext}}^{\prime}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) = \int_{0}^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}}(S) \nabla \Phi(\mathbf{x}(S)) \cdot \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}(S) dS \\ -\sum_{i=1}^{n} \left(\boldsymbol{\mathcal{F}}_{i} \cdot \overset{*}{\boldsymbol{\xi}}(s_{i}) + \boldsymbol{\mathcal{M}}_{i} \overset{*}{\boldsymbol{\omega}}(s_{i}) \right) - \boldsymbol{\mathcal{F}}_{\ell} \cdot \overset{*}{\boldsymbol{\xi}}(\ell) - \boldsymbol{\mathcal{M}}_{\ell} \overset{*}{\boldsymbol{\omega}}(\ell).$$

^{7.} En comparant avec **D-5.3**, la régularité des champs de vitesse virtuelle admissibles fait que la puissance de déformation se réduit à la puissance de l'effort normal dans la déformation d'extension et du moment fléchissant dans la déformation de flexion. L'effort tranchant ne travaille pas puisque les vitesses virtuelles sont continues.

Remarquons que l'intégrale peut s'écrire en terme des forces linéiques $\mathbf{f}_{\mathsf{R}}(S)$ par unité de longueur de la configuration de référence,

$$\int_0^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}}(S) \nabla \Phi(\mathbf{x}(S)) \cdot \stackrel{*}{\boldsymbol{\xi}} \circ \mathbf{s}(S) dS = -\int_0^{\ell_{\mathsf{R}}} \mathbf{f}_{\mathsf{R}}(S) \cdot \stackrel{*}{\boldsymbol{\xi}} \circ \mathbf{s}(S) dS = -\int_0^{\ell_{\mathsf{R}}} \mathbf{f}_{\mathsf{R}}(S$$

Les forces linéiques $\mathbf{f}(s)$ par unité de longueur de la configuration déformée s'en déduisant par

$$\mathbf{f}_{\mathrm{R}}(S) = \mathbf{f}(s) \frac{d\mathbf{s}}{dS}(S),$$

en reportant dans l'intégrale et en y faisant le changement de variable $S \rightarrow s$, on obtient

$$\int_0^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}}(S) \nabla \Phi(\mathbf{x}(S)) \cdot \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}(S) dS = -\int_0^{\ell} \mathbf{f}(s) \cdot \overset{*}{\boldsymbol{\xi}}(s) ds.$$

Finalement on a obtenu

$$\mathcal{P}_{\mathsf{ext}}^{\prime}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}\circ\mathbf{s}) = -\int_{0}^{\ell}\mathbf{f}(s)\cdot\overset{*}{\boldsymbol{\xi}}(s)ds - \sum_{i=1}^{n}\left(\boldsymbol{\mathcal{F}}_{i}\cdot\overset{*}{\boldsymbol{\xi}}(s_{i}) + \mathcal{M}_{i}\overset{*}{\boldsymbol{\omega}}(s_{i})\right) - \boldsymbol{\mathcal{F}}_{\ell}\cdot\overset{*}{\boldsymbol{\xi}}(\ell) - \mathcal{M}_{\ell}\overset{*}{\boldsymbol{\omega}}(\ell),$$

où $s_i = \mathbf{s}(S_i)$. Si l'on regarde le membre de droite de l'équation ci-dessus et si on le compare à **D-5.4**, il ne manque que la puissance des efforts extérieurs en S = 0, *i.e.* $\mathcal{F}_0 \cdot \overset{*}{\boldsymbol{\xi}}(0) + \mathcal{M}_0 \overset{*}{\omega}(0)$, pour avoir l'expression complète de la puissance virtuelle des efforts extérieurs dans la vitesse virtuelle $\overset{*}{\boldsymbol{\xi}}$. Mais comme $\overset{*}{\boldsymbol{\xi}}(0) = \mathbf{0}$ et $\overset{*}{\omega}(0) = 0$ pour tout mouvement virtuel admissible, ces termes s'annulent ici et on a $\mathcal{P}'_{ext}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) = -\mathsf{P}_{ext}(\overset{*}{\boldsymbol{\xi}})$. On a donc obtenu la propriété fondamentale suivante

P-5.8. La variation de l'énergie potentielle due aux charges conservatives dans un mouvement virtuel admissible autour d'une configuration admissible est égale à l'opposée de la puissance virtuelle des efforts extérieurs associés à cette configuration dans la vitesse virtuelle associée au mouvement virtuel :

$$\mathcal{P}_{\texttt{ext}}'(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) = -\mathsf{P}_{\texttt{ext}}(\overset{*}{\boldsymbol{\xi}}).$$

En additionnant les deux contributions, on est finalement arrivé à l'expression suivante pour la variation de l'énergie potentielle

$$\mathcal{P}_{\mathsf{tot}}^{\prime}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) = \mathsf{P}_{\mathsf{def}}[N, M](\overset{*}{\boldsymbol{\xi}}) - \mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}), \qquad \forall \mathbf{x} \in \boldsymbol{\mathcal{C}}_{\mathrm{ad}}, \quad \forall \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \boldsymbol{\mathcal{V}}_{\mathrm{ad}}.$$
(5.33)

4. Les propriétés énergétiques des états d'équilibre. Énonçons tout de suite la propriété fondamentale avant de la démontrer.

P-5.9 (Le théorème de l'énergie potentielle pour les milieux élastiques sous chargement conservatif). Une configuration $S \mapsto \mathbf{x}(S)$ et la répartition des efforts intérieurs $S \mapsto (N(S), M(S))$ associée par la loi de comportement élastique sont solutions du problème aux limites de statique **si et seulement si** cette configuration est cinématiquement admissible et rend stationnaire l'énergie potentielle dans toute vitesse virtuelle cinématiquement admissible, i.e.

 $\boxed{S\mapsto \mathbf{x}(S)\in \boldsymbol{\mathcal{C}}_{ad}},\qquad \qquad \mathcal{P}_{\mathtt{tot}}'(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}\circ\mathbf{s})=0,\qquad \forall \; \overset{*}{\boldsymbol{\xi}}\circ\mathbf{s}\in \boldsymbol{\mathcal{V}}_{ad}$

 $N(S) = \frac{\partial \mathtt{W}_{\mathbf{e}}}{\partial \varepsilon}(\varepsilon(S), \kappa(S)) \,, \qquad M(S) = \frac{\partial \mathtt{W}_{\mathbf{e}}}{\partial \kappa}(\varepsilon(S), \kappa(S)) \,.$

et

(a) Preuve que les configurations d'équilibre rendent stationnaire l'énergie potentielle. Soit \mathbf{x} une configuration d'équilibre et (N, M) l'effort normal et le moment fléchissant associés par la loi de comportement. Cette configuration est cinématiquement admissible. Soit $s \mapsto \boldsymbol{\xi}(s)$ une vitesse virtuelle cinématiquement admissible associée choisie arbitrairement dans $\boldsymbol{\mathcal{V}}_{ad}$. Comme \mathbf{x} est une configuration d'équilibre, on a d'après le PPV

$$\mathsf{P}_{\mathsf{def}}[N,M](\overset{*}{\boldsymbol{\xi}}) = \mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}), \qquad orall \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \mathcal{V}_{\mathrm{ad}}.$$

Par conséquent, en vertu de (5.33), on a aussi

$$\mathcal{P}'_{ t tot}(\mathbf{x})(\overset{*}{m{\xi}}\circ\mathbf{s})=0, \qquad orall \overset{*}{m{\xi}}\circ\mathbf{s}\in m{\mathcal{V}}_{ ext{ad}}$$

qui est la condition de stationnarité cherchée.

(b) Preuve de la réciproque (qui est la partie la plus délicate). Soit \mathbf{x} une configuration cinématiquement admissible rendant stationnaire l'énergie potentielle et soit (N, M) l'effort normal et le moment fléchissant associés par la loi de comportement. En vertu de (5.33), on a donc

$$\mathsf{P}_{\mathsf{def}}[N,M](\hat{\boldsymbol{\xi}}) = \mathsf{P}_{\mathsf{ext}}(\hat{\boldsymbol{\xi}}), \qquad \forall \ \hat{\boldsymbol{\xi}} \circ \mathbf{s} \in \boldsymbol{\mathcal{V}}_{\mathrm{ad}}.$$
(5.34)

Mais on ne peut pas utiliser la réciproque du PPV car l'inégalité variationnelle ci-dessus n'est vraie que pour des vitesses virtuelles dans \mathcal{V}_{ad} et pas dans $\mathcal{V}_{tot}(\mathbf{x})$ tout entier. On voit d'ailleurs que l'effort tranchant T n'apparaît pas du fait de la trop grande régularité des vitesses virtuelles envisagées. Il va donc falloir réintroduire T et proposer une nouvelle démonstration pour montrer que (N, T, M)satisfont bien les équations d'équilibre et les conditions aux limites du problème aux limites.

Nous adoptons désormais et jusqu'à la fin de la démonstration de la réciproque la description eulérienne. Tous les champs, y compris les efforts intérieurs, sont vus comme des fonctions de s qui varie dans $\mathbb{C} = (0, \ell)$ et le prime désigne la dérivée par rapport à s.

Explicitons d'abord (5.34):

$$0 = -\int_0^\ell \left(N \stackrel{*}{\varepsilon} + M \stackrel{*}{\kappa} \right) ds + \int_0^\ell \mathbf{f} \cdot \stackrel{*}{\boldsymbol{\xi}} ds + \sum_{i=1}^n \left(\boldsymbol{\mathcal{F}}_i \cdot \stackrel{*}{\boldsymbol{\xi}} (s_i) + \boldsymbol{\mathcal{M}}_i \stackrel{*}{\omega} (s_i) \right) + \boldsymbol{\mathcal{F}}_\ell \cdot \stackrel{*}{\boldsymbol{\xi}} (\ell) + \boldsymbol{\mathcal{M}}_\ell \stackrel{*}{\omega} (\ell).$$

Comme $\overset{*}{\varepsilon} = \overset{*}{\xi}' \cdot \mathbf{t}, \ \overset{*}{\omega} = \overset{*}{\xi}' \cdot \mathbf{n}$ et $\overset{*}{\kappa} = \overset{*}{\omega}'$, en reportant il vient

$$0 = -\int_0^\ell \left(N \, \overset{*}{\boldsymbol{\xi}}' \cdot \mathbf{t} + M(\overset{*}{\boldsymbol{\xi}}' \cdot \mathbf{n})' \right) ds + \int_0^\ell \mathbf{f} \cdot \overset{*}{\boldsymbol{\xi}} \, ds + \sum_{i=1}^n \left(\mathcal{F}_i \cdot \overset{*}{\boldsymbol{\xi}}(s_i) + \mathcal{M}_i \, \overset{*}{\omega}(s_i) \right) + \mathcal{F}_\ell \cdot \overset{*}{\boldsymbol{\xi}}(\ell) + \mathcal{M}_\ell \, \overset{*}{\omega}(\ell).$$

L'égalité ci-dessus a lieu pour tout $\overset{*}{\boldsymbol{\xi}}$ régulier et tel que $\overset{*}{\boldsymbol{\xi}}(0) = \mathbf{0}$ et $\overset{*}{\boldsymbol{\xi}}'(0) \cdot \mathbf{n}(0) = 0$. En intégrant par partie le terme en $M(\overset{*}{\boldsymbol{\xi}}' \cdot \mathbf{n})'$ à l'aide de la formule d'intégration (2.21), on obtient

$$\int_0^\ell M(\mathbf{\xi}' \cdot \mathbf{n})' ds = -\int_{\mathbb{C}\setminus\mathbb{P}} M' \, \mathbf{\xi}' \cdot \mathbf{n} \, ds - \sum_{s_i \in \mathbb{P}} \llbracket M \rrbracket(s_i) \, \overset{*}{\omega}(s_i) + M(\ell) \, \overset{*}{\omega}(\ell),$$

où $\mathbb{P} = \{s_1, \dots, s_n\}$ et le terme de bord en s = 0 s'annule grâce à la condition cinématique $\overset{*}{\omega}(0) = 0$. En posant

$$\mathbf{R}(s) := N(s)\mathbf{t}(s) - \frac{dM}{ds}(s)\mathbf{n}(s), \quad \forall s \in \mathbb{C} \setminus \mathbb{P}$$

ce qui revient à $d\acute{e}\!f\!inir$ l'effort tranchant par

$$T(s) := -\frac{dM}{ds}(s) ,$$

l'intégrale encadrée en rouge dans l'équation variationnelle peut alors s'écrire

$$\int_0^\ell \left(N \, \boldsymbol{\xi}' \cdot \mathbf{t} + M(\boldsymbol{\xi}' \cdot \mathbf{n})' \right) ds = \int_{\mathbb{C} \setminus \mathbb{P}} \mathbf{R} \cdot \, \boldsymbol{\xi}' \, ds - \sum_{s_i \in \mathbb{P}} \llbracket M \rrbracket(s_i) \, \boldsymbol{\omega}(s_i) + M(\ell) \, \boldsymbol{\omega}(\ell).$$

En intégrant par partie le terme $\mathbf{R} \cdot \overset{*}{\boldsymbol{\xi}}'$ à l'aide de la formule d'intégration (2.21), il vient

$$\int_{\mathbb{C}\setminus\mathbb{P}} \mathbf{R} \cdot \overset{*}{\boldsymbol{\xi}}' \, ds = -\int_{\mathbb{C}\setminus\mathbb{P}} \mathbf{R}' \cdot \overset{*}{\boldsymbol{\xi}} \, ds - \sum_{s_i \in \mathbb{P}} \llbracket \mathbf{R} \rrbracket(s_i) \cdot \overset{*}{\boldsymbol{\xi}}(s_i) + \mathbf{R}(\ell) \overset{*}{\boldsymbol{\xi}}(\ell),$$

le terme de bord en S = 0 s'annulant grâce à la condition cinématique $\hat{\boldsymbol{\xi}}(0) = 0$. En reportant tous les calculs intermédiaires dans l'égalité variationnelle, on obtient finalement

$$0 = \int_{\mathbb{C}\backslash\mathbb{P}} \left(\mathbf{R}' + \mathbf{f} \right) \cdot \overset{*}{\boldsymbol{\xi}} ds + \sum_{i=1}^{n} \left(\llbracket \mathbf{R} \rrbracket(s_{i}) + \boldsymbol{\mathcal{F}}_{i} \right) \cdot \overset{*}{\boldsymbol{\xi}}(s_{i}) + \sum_{i=1}^{n} \left(\llbracket M \rrbracket(s_{i}) + \mathcal{M}_{i} \right) \overset{*}{\boldsymbol{\omega}}(s_{i}) + \left(\boldsymbol{\mathcal{F}}_{\ell} - \mathbf{R}(\ell) \right) \cdot \overset{*}{\boldsymbol{\xi}}(\ell) + \left(\mathcal{M}_{\ell} - M(\ell) \right) \overset{*}{\boldsymbol{\omega}}(\ell), \qquad \forall \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \boldsymbol{\mathcal{V}}_{ad}.$$

$$(5.35)$$

Pour finir la démonstration et obtenir les équations d'équilibre locales et les conditions aux limites en $s = \ell$, il faut jouer sur le champ de vitesse virtuelle. On va en particulier s'appuyer sur le *Lemme Fondamental du Calcul des Variations* présenté en Annexe B. Ce lemme permet de passer d'une propriété variationnelle à une propriété locale, ce qui est exactement ce dont on a besoin ici. On suppose pour simplifier la présentation que \mathbf{R}' et \mathbf{f} sont continus dans $\mathbb{C} \setminus \mathbb{P}$ et on ordonne les n points $s_i \in \mathbb{P}$ où sont exercés les efforts ponctuels en posant

$$0 = s_0 < s_1 < \dots < s_n < s_{n+1} = \ell.$$

On procède en plusieurs étapes.

i. Soit $i \in \{0, \dots, n\}$ et $j \in \{1, 2\}$. En prenant $\overset{*}{\boldsymbol{\xi}}(s) = \varphi(s)\mathbf{e}_j$ avec $\varphi \in \mathcal{D}(s_i, s_{i+1})$, (5.35) s'écrit $\int_{s_i}^{s_{i+1}} \left(R'_j(s) + f_j(s)\right)\varphi(s)ds = 0, \quad \forall \varphi \in \mathcal{D}(s_i, s_{i+1}).$

On déduit du Lemme Fondamental que $R'_j + f_j = 0$ dans (s_i, s_{i+1}) . Comme c'est vrai pour tout j et tout i, on a

$$\mathbf{R}' + \mathbf{f} = 0 \quad \text{dans} \quad \mathbb{C} \setminus \mathbb{P},$$

i.e. la force intérieure vérifie les équations d'équilibre locales.

ii. En reportant cette propriété dans (5.35), celle-ci devient

$$0 = \sum_{i=1}^{n} \left(\llbracket \mathbf{R} \rrbracket(s_{i}) + \mathcal{F}_{i} \right) \cdot \overset{*}{\boldsymbol{\xi}}(s_{i}) + \sum_{i=1}^{n} \left(\llbracket M \rrbracket(s_{i}) + \mathcal{M}_{i} \right) \overset{*}{\boldsymbol{\omega}}(s_{i}) + \left(\mathcal{F}_{\ell} - \mathbf{R}(\ell) \right) \cdot \overset{*}{\boldsymbol{\xi}}(\ell) + \left(\mathcal{M}_{\ell} - M(\ell) \right) \overset{*}{\boldsymbol{\omega}}(\ell), \quad \forall \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \mathcal{V}_{ad}.$$

$$(5.36)$$

iii. Comme on peut choisir arbitrairement $\boldsymbol{\xi}(s_i)$ dans \mathbb{R}^2 et $\overset{*}{\omega}(s_i)$ dans \mathbb{R} pour $i \in \{1, \dots, n+1\}$, l'égalité (5.36) ne peut être satisfaite que si chaque terme de la somme est nulle. Par conséquent, on a

$$\llbracket \mathbf{R} \rrbracket(s_i) + \mathcal{F}_i = \mathbf{0}, \qquad \llbracket M \rrbracket(s_i) + \mathcal{M}_i = 0 \qquad \forall i \in \{1, \cdots, n\}$$

 et

$$\mathbf{R}(\ell) = \mathcal{F}_{\ell}, \qquad M(\ell) = \mathcal{M}_{\ell},$$

i.e. les conditions de saut des efforts intérieurs aux points où sont exercés les efforts ponctuels et les conditions aux limites en $s = \ell$.

En résumé, on a bien établi que si \mathbf{x} est une configuration cinématiquement admissible qui rend stationnaire l'énergie potentielle, alors c'est une configuration d'équilibre, puisque les efforts intérieurs associés vérifient les équations d'équilibre locales dans $\mathbb{C}\setminus\mathbb{P}$, les conditions de saut sur \mathbb{P} et les conditions aux limites en l'extrémité $s = \ell$. Ceci achève la démonstration du théorème de l'énergie potentielle. On remarquera dans la démonstration de la réciproque qu'il a fallu définir l'effort tranchant à partir de la dérivée du moment fléchissant puisqu'il ne figurait pas dans la formulation variationnelle de départ et qu'il n'est pas donné par la loi de comportement.

5. Interprétation des réactions en S = 0 comme multiplicateurs de Lagrange associés aux conditions d'encastrement. Dans l'établissement du PPV on envisage tous les mouvements virtuels possibles en supposant connus la configuration d'équilibre et tous les efforts extérieurs. En particulier les efforts extérieurs en S = 0 sont supposés connus et on les fait travailler dans des mouvements virtuels de translation ou de rotation de l'extrémité. Dans le problème aux limites par contre on suppose que le milieu est encastré en cette extrémité et les efforts extérieurs de réaction sont des inconnues du problème. En conséquence, comme dans la définition des configurations ou des vitesses virtuelles cinématiquement admissibles on tient compte des conditions d'encastrement et on interdit toute translation et toute rotation de l'extrémité, les efforts de réaction n'apparaissent ni dans l'expression de l'énergie potentielle ni dans ses variations car on ne les fait pas travailler. Il est possible de les faire apparaître dans la preuve de la réciproque grâce à la notion de multiplicateur de Lagrange comme nous allons le voir.

L'égalité variationnelle (5.34) peut se lire

$$\mathbf{L}_0(\overset{*}{\boldsymbol{\xi}}) = 0, \quad \forall \overset{*}{\boldsymbol{\xi}} \text{ régulier}: \quad \overset{*}{\boldsymbol{\xi}}(0) = \mathbf{0}, \quad \overset{*}{\omega}(0) = \overset{*}{\boldsymbol{\xi}}'(0) \cdot \mathbf{n}_0 = 0$$

où

$$\mathsf{L}_0(\overset{*}{\boldsymbol{\xi}}) := \mathsf{P}_{\mathsf{def}}[N, M](\overset{*}{\boldsymbol{\xi}}) - \mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}})$$

désigne la différence entre la puissance de déformation et la puissance des efforts extérieurs donnés. Remarquons que $\overset{*}{\boldsymbol{\xi}} \mapsto \mathsf{L}_0(\overset{*}{\boldsymbol{\xi}})$ est une forme linéaire sur l'ensemble des $\overset{*}{\boldsymbol{\xi}}$ réguliers. De la même façon, les relations qui à $\overset{*}{\boldsymbol{\xi}}$ associent $\overset{*}{\boldsymbol{\xi}}_1(0)$, $\overset{*}{\boldsymbol{\xi}}_2(0)$ et $\overset{*}{\omega}(0)$ peuvent être vues comme trois formes linéaires sur l'ensemble des $\overset{*}{\boldsymbol{\xi}}$ réguliers :

$$L_1(\overset{*}{\boldsymbol{\xi}}) := \overset{*}{\xi}_1(0), \quad L_2(\overset{*}{\boldsymbol{\xi}}) := \overset{*}{\xi}_2(0), \quad L_3(\overset{*}{\boldsymbol{\xi}}) := \overset{*}{\omega}(0)$$

Par conséquent l'équation variationnelle (5.34) dit que L₀ s'annule quand L₁, L₂ et L₃ s'annulent :

$$\mathsf{L}_1(\overset{*}{\boldsymbol{\xi}}) = \mathsf{L}_2(\overset{*}{\boldsymbol{\xi}}) = \mathsf{L}_3(\overset{*}{\boldsymbol{\xi}}) = 0 \implies \mathsf{L}_0(\overset{*}{\boldsymbol{\xi}}) = 0.$$

Le théorème des multiplicateurs de Lagrange, cf **P-B.2**, dit que ceci est vrai si et seulement si L_0 est une combinaison linéaire de L_1 , L_2 et L_3 , *i.e.*

$$\exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3 \quad : \quad \mathsf{L}_0 = \lambda_1 \mathsf{L}_1 + \lambda_2 \mathsf{L}_2 + \lambda_3 \mathsf{L}_3.$$

Le réel λ_i est appelé le *multiplicateur de Lagrange* associé à la contrainte $L_i(\overset{*}{\boldsymbol{\xi}}) = 0$. L'égalité précédente entre les formes linéaires signifie que

$$\mathsf{L}_0(\boldsymbol{\xi}) - \sum_{i=1}^3 \lambda_i \mathsf{L}_i(\boldsymbol{\xi}) = 0 \quad \forall \, \boldsymbol{\xi} \text{ régulier}$$

et on a donc obtenu une égalité variationnelle pour tous les ξ réguliers, les contraintes ont disparu. En explicitant, on a obtenu que (5.34) est équivalent à

$$0 = -\int_{0}^{\ell} (N \overset{*}{\varepsilon} + M \overset{*}{\kappa}) ds + \underbrace{(\lambda_{1}\mathbf{e}_{1} + \lambda_{2}\mathbf{e}_{2}) \cdot \overset{*}{\boldsymbol{\xi}}(0) + \lambda_{3} \overset{*}{\omega}(0)}_{+ \int_{0}^{\ell} \mathbf{f} \cdot \overset{*}{\boldsymbol{\xi}} ds + \sum_{i=1}^{n} \left(\boldsymbol{\mathcal{F}}_{i} \cdot \overset{*}{\boldsymbol{\xi}}(s_{i}) + \boldsymbol{\mathcal{M}}_{i} \overset{*}{\omega}(s_{i}) \right) + \boldsymbol{\mathcal{F}}_{\ell} \cdot \overset{*}{\boldsymbol{\xi}}(\ell) + \boldsymbol{\mathcal{M}}_{\ell} \overset{*}{\omega}(\ell), \quad \forall \overset{*}{\boldsymbol{\xi}} \text{ régulier.}$$

En comparant avec le PPV complet et l'expression de la puissance virtuelle des efforts extérieurs, cf **D-5.4**, on voit que $\lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2$ n'est rien d'autre que la réaction \mathcal{F}_0 en 0 et que λ_3 n'est rien d'autre que le moment réaction \mathcal{M}_0 en 0. On a donc obtenu

P-5.10. Dans la formulation variationnelle de l'équilibre (5.34), la réaction \mathcal{F}_0 et le moment réaction \mathcal{M}_0 en 0 sont les multiplicateurs de Lagrange associés respectivement à la condition cinématique de fixation $\boldsymbol{\xi}(0) = 0$ et à celle d'encastrement $\overset{*}{\omega}(0) = 0$.

Exercice 5.4. Refaire toute la démarche et établir le théorème de l'énergie potentielle pour d'autres jeux de conditions aux limites :

1. Le milieu curviligne est fixé en S = 0 au point \mathbf{x}_0 par une articulation parfaite et son extrémité $S = \ell_R$ est en appui simple sur la droite $x_2 = kx_1 + a$;

2. Le milieu curviligne est sans extrémité.

5.4.2 Cas des barres élastiquement extensibles non fléchies

1. Le problèmes aux limites et ses hypothèses. Nous considérons un milieu curviligne dont les configurations sont supposées a priori rectilignes, avec une direction donnée et fixe \mathbf{t} . La configuration déformée est donc caractérisée par le champ de déplacement $S \mapsto \mathbf{u}(S)$ par rapport à la configuration de référence, *i.e.*

$$\mathbf{x}(S) = (S + \mathbf{u}(S))\mathbf{t}, \quad S \in \mathbb{C}_{\mathsf{R}} = (0, \ell_{\mathsf{R}}).$$

L'abscisse curviligne s dans la configuration déformée est reliée à S par

$$s = \mathtt{s}(S) = S + \mathtt{u}(S)$$

et la déformation d'extension est donc simplement

$$\varepsilon(S) = \mathbf{u}'(S) > -1.$$

L'unique effort intérieur non nul est l'effort normal, $\mathbf{R}(S) = N(S)\mathbf{t}$ et M(S) = 0. Il est relié à la déformation d'extension par la relation $N = \mathbb{N}_{ex}(\varepsilon) = \mathbb{W}'_{ex}(\varepsilon)$. Nous partons d'un problème aux limites type où la barre

• est fixée en S = 0 et donc u(0) = 0;

• est soumise à des forces linéiques dépendant de la position et dont la densité linéique par rapport à l'abscisse curviligne de référence est donnée par

$$\mathbf{f}_{\mathsf{R}}(S) = -\varrho_{\mathsf{R}}(S)\Phi'(S + \mathfrak{u}(S))\mathbf{t}$$

où le potentiel $x \mapsto \Phi(x)$ est défini et régulier pour $x \in (0, +\infty)$;

• est soumise à des forces ponctuelles "mortes" $\{\mathcal{F}_i \mathbf{t}\}_{1 \leq i \leq n}$ aux *n* points matériels $\{S_i\}_{1 \leq i \leq n}$;

• est soumise à une force morte $\mathcal{F}_{\ell} \mathbf{t}$ en l'extrémité ℓ_{R} .

Par conséquent, le problème aux limites consiste à trouver $S \mapsto (\mathfrak{u}(S), N(S))$ tels que

$$\begin{cases} N'(S) - \varrho_{\mathsf{R}}(S)\Phi'(S + \mathfrak{u}(S)) = 0 \quad \text{dans} \quad (0, \ell_{\mathsf{R}}) \setminus \mathbb{P}_{\mathsf{R}}, \\ [\![N]\!](S_i) + \mathcal{F}_i = 0 \quad \text{sur} \quad \mathbb{P}_{\mathsf{R}}, \\ N(S) = \mathbb{W}_{\mathsf{ex}}'(\mathfrak{u}'(S)) \quad \text{dans} \quad (0, \ell_{\mathsf{R}}), \\ \mathfrak{u}(0) = 0, \qquad N(\ell_{\mathsf{R}}) = \mathcal{F}_{\ell}, \end{cases}$$
(5.37)

où $\mathbb{P}_{\mathsf{R}} = \{S_1, \cdots, S_n\}^8$.

2. Energie potentielle et champs cinématiquement admissibles. L'énergie se décompose en énergie élastique d'extension et en énergie potentielle due aux forces conservatives. Comme la configuration du système est parfaitement caractérisée par le déplacement d'extension u, ces énergies sont des fonctionnelles de u:

$$\mathcal{P}_{\mathtt{tot}}(\mathtt{u}) = \mathcal{P}_{\mathtt{ela}}(\mathtt{u}) + \mathcal{P}_{\mathtt{ext}}(\mathtt{u})$$

avec

$$\mathcal{P}_{\texttt{ela}}(\texttt{u}) = \int_0^{\ell_{\mathsf{R}}} \mathbb{W}_{\texttt{ex}}(\texttt{u}'(S)) dS, \qquad \mathcal{P}_{\texttt{ext}}(\texttt{u}) = \int_0^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}}(S) \Phi(S + \texttt{u}(S)) dS - \sum_{i=1}^n \mathcal{F}_i \texttt{u}(S_i) - \mathcal{F}_\ell \texttt{u}(\ell_{\mathsf{R}}) + \mathcal{F}_\ell \texttt{u}(\ell_{\mathsf{R})} + \mathcal{F}_\ell \texttt$$

où la constante arbitraire dans le potentiel des charges mortes a été fixée de façon à ce que le potentiel soit nul dans la configuration de référence.

Les champs de déplacement d'extension cinématiquement sont ceux d'énergie finie qui respectent la condition de fixation en 0 :

$$\mathcal{\boldsymbol{C}}_{\mathrm{ad}} = \{ S \mapsto \mathtt{u}(S) \ : \ \mathcal{\boldsymbol{P}}_{\mathtt{tot}}(\mathtt{u}) < +\infty, \quad \mathtt{u}(0) = 0 \}.$$

Il faut théoriquement inclure la condition de non dégénérescence $\mathbf{u}' > -1$ comme condition d'admissibilité cinématique. Elle est automatiquement incluse dans la condition d'énergie finie si l'on choisit le potentiel élastique de façon à ce que $\lim_{\varepsilon \to -1} W_{ex}(\varepsilon) = +\infty$, mais elle ne l'est pas pour un potentiel quadratique. Dans ce dernier cas, on se contente en pratique de vérifier *a posteriori* que les déplacements d'équilibre trouvés vérifient bien la condition de non dégénérescence. De même la régularité dépend essentiellement du potentiel élastique.

Exemple 5.2. Si le comportement est linéairement élastique et donc le potentiel élastique quadratique, $W_{ex}(u') = \frac{1}{2} EAu'^2$, alors le déplacement d'extension u et sa dérivée u' doivent être de carré intégrable, i.e. u doit être un élément de l'espace de Sobolev $H^1(0, \ell_R)$ pour que l'énergie potentielle soit finie.

^{8.} On peut remarquer que ce problème est un cas particulier du problème général traité dans la section précédente. On pourrait utiliser directement les résultats, mais il est bon d'un point de vue pédagogique de refaire certaines étapes dans ce cadre simplifié car on y fait apparaître nettement les points clés.

Si l'on fait abstraction de la condition de non dégénéres cence, \mathcal{C}_{ad} est un espace *vectoriel* et donc $\mathcal{V}_{ad} = \mathcal{C}_{ad}$.

3. La première variation de l'énergie. Envisageons un mouvement virtuel cinématiquement admissible de la barre $\mathbf{u}_{h^{\circ}}\mathbf{s}$ autour d'une configuration $\mathbf{u} \in \mathcal{C}_{ad}$. Comme \mathcal{C}_{ad} est un espace vectoriel, on peut choisir $\mathbf{u}_{h^{\circ}}\mathbf{s}$ de la forme suivante :

$$\mathfrak{u}_h \circ \mathfrak{s}(S) = \mathfrak{u}(S) + h \overset{*}{\mathfrak{u}} \circ \mathfrak{s}(S) \quad ext{avec} \quad \overset{*}{\mathfrak{u}} \circ \mathfrak{s} \in \mathcal{C}_{\mathrm{ad}}.$$

La déformation d'extension associée à ce mouvement virtuel est $(\mathbf{u}_h \circ \mathbf{s})'$ et peut s'écrire

$$(\mathbf{u}_h \circ \mathbf{s})'(S) = \frac{d\mathbf{u}_h}{ds}(s)\mathbf{s}'(S) \quad \text{avec} \quad s = \mathbf{s}(S).$$

En prenant sa dérivée par rapport à h en h = 0, on obtient la vitesse de déformation d'extension par rapport à la configuration de référence :

$$\frac{d}{dh}\Big((\mathbf{u}_{h^{\circ}}\,\mathbf{s})'(S)\Big)\Big|_{h=0} = \frac{d\overset{\mathbf{u}}{\mathbf{u}}}{ds}(s)\mathbf{s}'(S).$$

En utilisant cette expression, la dérivée de l'énergie élastique s'écrit

$$\mathcal{P}_{\texttt{ela}}'(\texttt{u})(\overset{*}{\texttt{u}} \circ \texttt{s}) := \left. \frac{d}{dh} \big(\mathcal{P}_{\texttt{ela}}(\texttt{u}_h \circ \texttt{s}) \big) \right|_{h=0} = \int_0^{\ell_{\mathsf{R}}} \texttt{W}_{\texttt{ex}}'(\texttt{u}'(S)) \frac{d\overset{*}{\texttt{u}}}{ds}(\texttt{s}(S))\texttt{s}'(S) dS = \int_0^{\ell} N \circ \texttt{S}(s) \frac{d\overset{*}{\texttt{u}}}{ds}(s) ds,$$

où $N \circ \mathbf{S}$ désigne le champ eulérien d'effort normal associé à la configuration u. On reconnait dans le dernier terme la puissance virtuelle de l'effort normal dans la vitesse virtuelle de la déformation d'extension et on a donc obtenu

$$\mathcal{P}_{\texttt{ela}}^{\prime}(\mathtt{u})(\overset{*}{\mathtt{u}}\circ\mathtt{s})=\mathsf{P}_{\mathsf{def}}[N](\overset{*}{\mathtt{u}}).$$

Le calcul de la dérivée de l'énergie potentielle \mathcal{P}_{ext} ne présente pas de difficulté et on trouve

$$\begin{split} \mathcal{P}_{\mathsf{ext}}'(\mathsf{u})(\overset{*}{\mathsf{u}} \circ \mathsf{s}) &:= \left. \frac{d}{dh} \big(\mathcal{P}_{\mathsf{ext}}(\mathsf{u}_{h} \circ \mathsf{s}) \big) \right|_{h=0} \\ &= \left. \int_{0}^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}}(S) \Phi'(S + \mathsf{u}(S)) \overset{*}{\mathsf{u}} \circ \mathsf{s}(S) dS - \sum_{i=1}^{n} \mathcal{F}_{i} \overset{*}{\mathsf{u}}(s_{i}) - \mathcal{F}_{\ell} \overset{*}{\mathsf{u}}(\ell) \right. \\ &= \left. - \int_{0}^{\ell} \mathsf{f}_{t}(s) \overset{*}{\mathsf{u}}(s) ds - \sum_{i=1}^{n} \mathcal{F}_{i} \overset{*}{\mathsf{u}}(s_{i}) - \mathcal{F}_{\ell} \overset{*}{\mathsf{u}}(\ell), \end{split}$$

où f_t est la densité linéique des forces par unité de longueur de la configuration déformée. On reconnait au second membre l'opposée de la puissance virtuelle des forces extérieures, sachant que la réaction en S = 0 ne travaille pas puisque $\mathring{u}(0) = 0$. On a donc obtenu que

$$\mathcal{P}_{\mathtt{ext}}'(\mathtt{u})(\mathtt{\mathring{u}}\circ\mathtt{s})=-\mathsf{P}_{\mathtt{ext}}(\mathtt{\mathring{u}}).$$

4. Théorème de l'énergie potentielle. Soit (u, N) une solution du problème aux limites. Comme N vérifie les équations d'équilibre, on peut appliquer le PPV qui, en n'utilisant que des mouvements virtuels cinématiquement admissibles, se réduit ici à

$$\mathsf{P}_{\mathsf{def}}[N](\overset{*}{\mathsf{u}}) - \mathsf{P}_{\mathsf{ext}}(\overset{*}{\mathsf{u}}) = 0, \quad \forall \overset{*}{\mathsf{u}} \circ \mathsf{s} \in \mathcal{C}_{\mathrm{ad}}.$$

Par conséquent, en vertu des relations précédentes, on a

$$\mathbf{u} \in \boldsymbol{\mathcal{C}}_{\mathrm{ad}}, \qquad \boldsymbol{\mathcal{P}}_{\mathsf{tot}}'(\mathbf{u})(\overset{*}{\mathbf{u}} \circ \mathbf{s}) = 0 \quad \forall \overset{*}{\mathbf{u}} \circ \mathbf{s} \in \boldsymbol{\mathcal{C}}_{\mathrm{ad}}.$$
(5.38)

Autrement dit u rend stationnaire l'énergie potentielle. La réciproque

u vérifie (5.38) \implies (u, $N := W'_{ex}(u')$) est solution du problème aux limites

se démontre comme on l'a fait dans la section précédente en utilisant le Lemme Fondamental du Calcul des Variations. Nous ne la détaillerons pas. En conclusion

P-5.11. Le théorème de l'énergie potentielle s'applique aussi aux barres élastiques non fléchies soumises à des forces conservatives.

5.4.3 Cas des fils élastiquement extensibles

On considère maintenant un fil élastiquement extensible qui est soumis à des charges conservatives. Il va s'agir d'établir une nouvelle version du théorème de l'énergie potentielle pour ce type de système conservatif. De façon précise, on se place dans les conditions suivantes :

1. Le problème aux limites et ses hypothèses. On considère un fil élastique (pas nécessairement homogène) d'abscisse curviligne naturelle $S \in (0, \ell_{\mathsf{R}})$ et de masse linéique naturelle $S \mapsto \varrho_{\mathsf{R}}(S)$. Son comportement élastique est caractérisé par le potentiel élastique $\varepsilon \mapsto W_{\mathsf{ex}}(\varepsilon)$ (pouvant dépendre explicitement de S si le fil n'est pas homogène). Il est soumis à des forces linéiques provenant de forces massiques dérivant du potentiel $\mathbf{y} \mapsto \Phi(\mathbf{y})$

$$\mathbf{f}_{\mathsf{R}}(S) = -\varrho_{\mathsf{R}}(S)\nabla\Phi(\mathbf{x}(S)).$$

Il est également soumis à des forces ponctuelles \mathcal{F}_i aux n points matériels $S_i \in \mathbb{P}_{\mathbb{R}}$, forces qui sont des charges mortes. Enfin, on envisage le jeu suivant de conditions aux limites : l'extrémité S = 0 est fixée au point \mathbf{x}_0 alors que l'extrémité $S = \ell_{\mathbb{R}}$ est soumise à la force \mathcal{F}_{ℓ} indépendante de la position (charge morte). Par conséquent, le problème aux limites consiste à trouver la configuration d'équilibre $S \mapsto \mathbf{x}(S)$ et la répartition de l'effort normal $S \mapsto N(S)$ tels que

$$\begin{array}{ll} \text{équations d'équilibre} & : & \begin{cases} \frac{d(N\mathbf{t})}{dS}(S) - \varrho_{\mathsf{R}}(S)\nabla\Phi(\mathbf{x}(S)) = \mathbf{0} & \text{dans} & \mathbb{C}_{\mathsf{R}} \setminus \mathbb{P}_{\mathsf{R}} \\ & [\![N\mathbf{t}]\!](S_i) + \mathcal{F}_i = \mathbf{0} & \text{sur} & \mathbb{P}_{\mathsf{R}} \end{cases} \\ \text{conditions aux limites} & : & \mathbf{x}(0) = \mathbf{x}_0 & N(\ell_{\mathsf{R}})\mathbf{t}(\ell_{\mathsf{R}}) = \mathcal{F}_{\ell} \\ \text{relation de comportement} & : & N(S) = \mathbb{W}_{\mathsf{ex}}'(\varepsilon(S)) \end{cases}$$

où tous les champs sont des fonctions de S. Si l'on compare au problème aux limites d'un milieu élastiquement flexible et extensible, on voit que l'on a enlevé tous les efforts extérieurs de type moments et la condition d'encastrement car les fils ne supportent pas de moment et qu'on ne peut pas contrôler leur orientation. Cette absence de rigidité à la flexion va avoir quelques conséquences, en particulier sur la régularité des configurations admissibles, qui font qu'il est nécessaire de refaire toute la démarche. Toutefois, nous nous appuierons sur celle suivie dans le cas élastiquement flexible et n'insisterons que sur les différences.

2. Les configurations cinématiquement admissibles et leur énergie potentielle. Pour le problème aux limites considéré ci-dessus, l'énergie potentielle d'une configuration $S \mapsto \tilde{\mathbf{x}}(S)$ consiste en la somme de l'énergie élastique et de l'énergie potentielle des charges conservatives qui sont définies par

(énergie potentielle totale)
$$\mathcal{P}_{tot}(\tilde{\mathbf{x}}) = \mathcal{P}_{ela}(\tilde{\mathbf{x}}) + \mathcal{P}_{ext}(\tilde{\mathbf{x}})$$

avec

$$(\text{énergie élastique}) \qquad \mathcal{P}_{\texttt{ela}}(\tilde{\mathbf{x}}) = \int_0^{\ell_{\mathsf{R}}} \mathtt{W}_{\texttt{ex}}(\tilde{\varepsilon}(S)) dS$$

 et

(energie potentielle des charges conservatives)

$$\mathcal{P}_{\text{ext}}(\tilde{\mathbf{x}}) = \int_0^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}}(S) \Phi(\tilde{\mathbf{x}}(S)) dS - \sum_{i=1}^n \mathcal{F}_i \cdot \tilde{\mathbf{x}}(S_i) - \mathcal{F}_\ell \cdot \tilde{\mathbf{x}}(\ell_{\mathsf{R}})$$

où $\tilde{\varepsilon} = \|\tilde{\mathbf{x}}'(S)\| - 1$ désigne la déformation d'extension associée à la configuration $\tilde{\mathbf{x}}$. L'énergie élastique se réduit donc à l'énergie d'extension puisque l'énergie de flexion est nulle.

L'ensemble des configurations cinématiquement admissibles est maintenant défini par

$$\mathcal{C}_{\text{ad}} = \{ S \mapsto \tilde{\mathbf{x}}(S) : \mathcal{P}_{\texttt{tot}}(\tilde{\mathbf{x}}) < +\infty, \quad \tilde{\mathbf{x}}(0) = \mathbf{x}_0 \} \,,$$

autrement dit il est constitué des configurations d'énergie finie qui respectent la condition de fixation en s = 0, mais il n'y a plus la condition d'encastrement. Comme l'énergie élastique a changé, la régularité requise aussi. Voyons le changement effectif sur l'exemple du fil pesant traité dans 4.3.3.

Exemple 5.3 (Régularité des champs dans le problème du fil pesant). Si l'on considère le problème du fil pesant, cf 4.3.3, pour lequel le potentiel élastique est quadratique, la pesanteur est uniforme et la force à l'extrémité est une charge morte, l'énergie potentielle s'écrit

$$\mathcal{P}_{\texttt{ela}}(\tilde{\mathbf{x}}) = \int_0^{\ell_R} \left(\frac{1}{2} \mathsf{EA} \left(\left\| \tilde{\mathbf{x}}'(S) \right\| - 1 \right)^2 + \varrho_R g \tilde{x}_2(S) \right) dS + \mathcal{F} \cdot \tilde{\mathbf{x}}(\ell_R).$$

Par conséquent, parmi les configurations qui vérifient la condition de fixation en S = 0, les configurations d'énergie finie sont celles pour lesquelles $S \mapsto \tilde{x}_2(S)$ est intégrable et $S \mapsto (\tilde{x}'_1(S), \tilde{x}'_2(S))$ sont de carré intégrales. On peut montrer que ceci implique que $S \mapsto \tilde{\mathbf{x}}(S)$ est nécessairement **continue** sur $[0, \ell_R]$, mais par contre sa dérivée $\tilde{\mathbf{x}}'(S)$ **peut être discontinue**. L'absence de rigidité à la flexion fait qu'il peut y avoir discontinuité de la tangente. On notera que C_{ad} est un espace affine et même un espace vectoriel si $\mathbf{x}_0 = \mathbf{0}$. L'espace vectoriel associé est l'ensemble \mathcal{V}_{ad} des déplacements cinématiquement admissibles

$$\mathcal{V}_{\mathrm{ad}} = \{ \tilde{\boldsymbol{\xi}} : \mathcal{P}_{\mathtt{tot}}(\tilde{\boldsymbol{\xi}}) < +\infty, \quad \tilde{\boldsymbol{\xi}}(0) = \mathbf{0} \}.$$

3. Les variations virtuelles de l'énergie potentielle dans les mouvements virtuels cinématiquement admissibles. Soit $S \mapsto \mathbf{x}(S)$ une configuration (non nécessairement d'équilibre) paramétrée par l'abscisse curviligne de référence. Elle est supposée cinématiquement admissible et est donc un élément de \mathcal{C}_{ad} . En s'appuyant sur le fait que \mathcal{C}_{ad} est un espace affine, envisageons un mouvement virtuel autour de \mathbf{x} défini par

$$\mathbf{x}_h \circ \mathbf{s}(S) = \mathbf{x}(S) + h \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}(S) \quad \text{avec} \quad \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \boldsymbol{\mathcal{V}}_{\mathrm{ad}}$$

En notant $\varepsilon_h^{\mathsf{R}}$ la déformation d'extension de la configuration virtuelle $\mathbf{x}_h \circ h$ par rapport l'abscisse curviligne de référence S, on a encore

$$\varepsilon_h^{\mathsf{R}}(S) := \left\| (\mathbf{x}_h \circ \mathbf{s})'(S) \right\| - 1 = \left\| \frac{d\mathbf{x}_h}{ds}(s) \right\| \frac{d\mathbf{s}}{dS}(S) - 1 = (1 + \varepsilon_h(s)) \frac{d\mathbf{s}}{dS}(S) - 1,$$

 $s = \mathbf{s}(S)$ désignant l'abscisse curviligne de la configuration $S \mapsto \mathbf{x}(S)$.

Le calcul des variations de l'énergie potentielle dans le mouvement virtuel est similaire à celui fait dans la section précédente, la seule différence résidant dans l'absence des termes liés aux moments et aux rotations. On obtient finalement

$$\mathcal{P}_{\mathsf{tot}}^{\prime}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) = \mathsf{P}_{\mathsf{def}}[N, 0](\overset{*}{\boldsymbol{\xi}}) - \mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}), \qquad \forall \mathbf{x} \in \mathcal{C}_{\mathrm{ad}}, \quad \forall \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \mathcal{V}_{\mathrm{ad}}.$$
(5.39)

avec

$$\mathsf{P}_{\mathsf{def}}[N,0](\boldsymbol{\xi}) = \int_0^\ell N(s)\,\boldsymbol{\xi}(s)ds\,,\qquad \mathsf{P}_{\mathsf{ext}}(\boldsymbol{\xi}) = \int_0^\ell \mathbf{f}(s)\cdot\,\boldsymbol{\xi}(s)ds + \sum_{i=1}^n \boldsymbol{\mathcal{F}}_i\cdot\,\boldsymbol{\xi}(s_i) + \boldsymbol{\mathcal{F}}_\ell\cdot\,\boldsymbol{\xi}(\ell)\,,$$

où $s_i = \mathbf{s}(S_i)$ et $\ell = \mathbf{s}(\ell_R)$. Notons que la vitesse virtuelle envisagée $\boldsymbol{\xi}$ est plus régulière que celles de $\boldsymbol{\mathcal{V}}_{tot}(\mathbf{x})$ considérées dans le PPV, mais moins régulière que les vitesses cinématiquement admissibles en présence de rigidité à la flexion. Elle est encore trop régulière pour que l'effort tranchant apparaisse dans la puissance virtuelle de déformation, ce qui va nous obliger à le définir.

4. Les propriétés énergétiques des états d'équilibre. Le théorème de l'énergie potentielle s'étend à ce type de milieux conservatifs et on obtient

P-5.12 (Le théorème de l'énergie potentielle pour les fils élastiques sous chargement conservatif). Une configuration $S \mapsto \mathbf{x}(S)$ et la répartition de l'effort normal $S \mapsto N(S)$ associée par la loi de comportement élastique sont solutions du problème aux limites de statique **si et seulement si** cette configuration est cinématiquement admissible et rend stationnaire l'énergie potentielle dans toute vitesse virtuelle cinématiquement admissible, i.e.

$$\boxed{S\mapsto \mathbf{x}(S)\in \boldsymbol{\mathcal{C}}_{ad}}, \qquad \mathcal{P}_{\mathtt{tot}}'(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}\circ\mathbf{s})=0, \quad \forall \overset{*}{\boldsymbol{\xi}}\circ\mathbf{s}\in\boldsymbol{\mathcal{V}}_{ad}}, \qquad \boxed{N(S)=\mathtt{W}_{\mathtt{ex}}'(\varepsilon(S))}.$$

Seule la preuve de la réciproque diffère. Indiquons les principaux changements. Soit \mathbf{x} une configuration cinématiquement admissible rendant stationnaire l'énergie potentielle et soit $(N, M) = (W'_{ex}(\varepsilon), 0)$ l'éffort normal et le moment fléchissant associés par la loi de comportement. En vertu de (5.39), on a donc

$$\mathsf{P}_{\mathsf{def}}[N,0](\overset{*}{\boldsymbol{\xi}}) = \mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}), \qquad \forall \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \boldsymbol{\mathcal{V}}_{\mathrm{ad}}.$$
(5.40)

On adopte désormais la description eulérienne, tous les champs sont vus comme des fonctions de $s = \mathbf{s}(S)$ qui varie dans $\mathbb{C} = (0, \ell)$ et le prime désigne la dérivée par rapport à s. On pose

$$T(s) := 0$$
, $\mathbf{R}(s) := N(s)\mathbf{t}(s)$.

En explicitant (5.40), on obtient

$$0 = -\int_0^\ell N \stackrel{*}{\varepsilon} ds + \int_0^\ell \mathbf{f} \cdot \stackrel{*}{\boldsymbol{\xi}} ds + \sum_{i=1}^n \boldsymbol{\mathcal{F}}_i \cdot \stackrel{*}{\boldsymbol{\xi}}(s_i) + \boldsymbol{\mathcal{F}}_\ell \cdot \stackrel{*}{\boldsymbol{\xi}}(\ell).$$
(5.41)

Comme $\overset{*}{\varepsilon} = \overset{*}{\xi}' \cdot \mathbf{t}$, en reportant il vient

$$0 = -\int_0^\ell \mathbf{R} \cdot \overset{*}{\boldsymbol{\xi}}' ds + \int_0^\ell \mathbf{f} \cdot \overset{*}{\boldsymbol{\xi}} ds + \sum_{i=1}^n \boldsymbol{\mathcal{F}}_i \cdot \overset{*}{\boldsymbol{\xi}}(s_i) + \boldsymbol{\mathcal{F}}_\ell \cdot \overset{*}{\boldsymbol{\xi}}(\ell).$$

L'égalité ci-dessus a lieu pour tout $\overset{*}{\boldsymbol{\xi}}$ continu, continûment différentiable par morceau et tel que $\overset{*}{\boldsymbol{\xi}}(0) = \mathbf{0}$. En intégrant par partie le terme $\mathbf{R} \cdot \overset{*}{\boldsymbol{\xi}}'$ à l'aide de la formule d'intégration (2.21), il vient

$$\int_0^{\ell} \mathbf{R} \cdot \overset{*}{\boldsymbol{\xi}}' \, ds = -\int_{\mathbb{C} \setminus \mathbb{P}} \mathbf{R}' \cdot \overset{*}{\boldsymbol{\xi}} \, ds - \sum_{s_i \in \mathbb{P}} \llbracket \mathbf{R} \rrbracket(s_i) \cdot \overset{*}{\boldsymbol{\xi}}(s_i) + \mathbf{R}(\ell) \overset{*}{\boldsymbol{\xi}}(\ell),$$

le terme de bord en s = 0 s'annulant grâce à la condition cinématique $\hat{\boldsymbol{\xi}}(0) = 0$. En reportant dans l'égalité variationnelle, on obtient

$$0 = \int_{\mathbb{C}\setminus\mathbb{P}} \left(\mathbf{R}' + \mathbf{f}\right) \cdot \overset{*}{\boldsymbol{\xi}} ds + \sum_{i=1}^{n} \left(\left[\left[\mathbf{R} \right] \right](s_i) + \boldsymbol{\mathcal{F}}_i \right) \cdot \overset{*}{\boldsymbol{\xi}}(s_i) + \left(\boldsymbol{\mathcal{F}}_{\ell} - \mathbf{R}(\ell) \right) \cdot \overset{*}{\boldsymbol{\xi}}(\ell), \quad \forall \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \boldsymbol{\mathcal{V}}_{\mathrm{ad}}.$$
(5.42)

La fin de la démonstration est identique. On joue sur le champ de vitesse virtuelle et on s'appuie sur le Lemme Fondamental du Calcul des Variations pour obtenir les équations d'équilibre, les conditions de saut et la condition à la limite en $s = \ell$.

En conclusion, le théorème de l'énergie potentielle s'applique encore. Il y a simplement plus de configurations et donc plus de vitesses virtuelles cinématiquement admissibles pour un fil que pour un milieu possédant une rigidité à la flexion. Une des conséquences est que les configurations d'équilibre sont *a priori* moins régulières, la tangente en particulier pouvant être discontinue.

Exercice 5.5. Etablir le théorème de l'énergie potentielle pour un fil homogène élastiquement extensible soumis à la pesanteur $-g\mathbf{e}_2$ et dont les deux extrémités sont en appui simple sur la courbe $x_2 = -x_1^2/R$ où R > 0 est une longueur donnée. On donnera en particulier les définitions de $\mathcal{P}_{tot}(\mathbf{x})$, de \mathcal{C}_{ad} en remarquant que \mathcal{C}_{ad} n'est pas une espace affine et de l'espace vectoriel tangent $\mathcal{V}_{ad}(\mathbf{x})$ à \mathcal{C}_{ad} en \mathbf{x} .

5.4.4 Cas des milieux inextensibles.

Le théorème de l'énergie potentielle s'applique encore aux milieux inextensibles à condition d'inclure la condition d'inextensibilité dans la condition d'admissibilité cinématique. Toutefois la démonstration de la réciproque est sensiblement plus délicate et passe par la notion de **multiplicateur de Lagrange** associé à la condition d'inextensibilité. On va illustrer ceci dans le cas d'un fil inextensible, ce qui permet de réduire la présentation, mais la démarche serait la même pour un milieu inextensible et élastiquement flexible. Comme le fil est inextensible l'abscisse curviligne est invariable et notée $s \in \mathbb{C} = (0, \ell)$.

1. Le problème aux limites consiste à trouver la configuration d'équilibre $s \mapsto \mathbf{x}(s)$ et la répartition de l'effort normal $s \mapsto N(s)$ tels que

 \mathbb{P}

équations d'équilibre	:	$\begin{cases} \frac{d(N\mathbf{t})}{ds}(s) - \varrho_{R}(s)\nabla\Phi(\mathbf{x}(s)) = 0 & \text{dans} & \mathbb{C} \setminus \\ \llbracket N\mathbf{t} \rrbracket(s_i) + \mathcal{F}_i = 0 & \text{sur} & \mathbb{P} \end{cases}$
conditions aux limites	:	$\mathbf{x}(0) = \mathbf{x}_0$ $N(\ell)\mathbf{t}(\ell) = \boldsymbol{\mathcal{F}}_{\ell}$
condition d'inextensibilité	:	$\varepsilon(s) := \ \mathbf{x}'(s)\ - 1 = 0$ dans \mathbb{C} ,

où $\mathbb{P} = \{s_1, \cdots, s_n\}.$

2. L'énergie élastique est nulle et l'énergie potentielle se réduit à celle des forces conservatives :

$$\mathcal{P}_{\texttt{ela}}(\tilde{\mathbf{x}}) = 0, \qquad \mathcal{P}_{\texttt{tot}}(\tilde{\mathbf{x}}) = \int_0^\ell \varrho_{\mathsf{R}}(s) \Phi(\tilde{\mathbf{x}}(s)) ds - \sum_{i=1}^n \mathcal{F}_i \cdot \tilde{\mathbf{x}}(s_i) - \mathcal{F}_\ell \cdot \tilde{\mathbf{x}}(\ell).$$

L'ensemble des configurations cinématiquement admissibles est défini par

$$\mathcal{C}_{\mathrm{ad}} = \left\{ s \mapsto \tilde{\mathbf{x}}(s) : \mathcal{P}_{\mathsf{tot}}(\tilde{\mathbf{x}}) < +\infty, \quad \tilde{\mathbf{x}}(0) = \mathbf{x}_0, \quad \left\| \tilde{\mathbf{x}}'(s) \right\| = 1 \quad \forall s \in (0, \ell) \right\}$$

et contient donc la condition d'inextensibilité. Ce faisant \mathcal{C}_{ad} n'est plus un espace affine, mais seulement une variété différentiable. On notera que la régularité doit être suffisante non seulement pour que l'énergie potentielle soit finie mais aussi pour que les conditions d'inextensibilité et de fixation en s = 0aient un sens. Nous n'envisagerons que des configurations continues et continûment différentiables par morceau.

3. Si l'on considère un mouvement virtuel autour d'une configuration admissible $s \mapsto \mathbf{x}(s)$, comme la vitesse virtuelle de déformation d'extension s'écrit $\overset{*}{\varepsilon} = \overset{*}{\boldsymbol{\xi}}' \cdot \mathbf{t}$, la vitesse virtuelle de déplacement devra vérifier $\overset{*}{\boldsymbol{\xi}}' \cdot \mathbf{t} = 0$ pour qu'elle soit cinématiquement admissible. L'ensemble des champs de vitesse virtuelle cinématiquement admissibles est donc

$$\mathcal{V}_{\mathrm{ad}}(\mathbf{x}) = \left\{ s \mapsto \overset{*}{\boldsymbol{\xi}}(s) : \text{``régulière''}, \quad \overset{*}{\boldsymbol{\xi}}(0) = \mathbf{0}, \quad \overset{*}{\boldsymbol{\xi}}'(s) \cdot \mathbf{t}(s) = 0 \quad \forall s \in (0, \ell) \right\}$$

C'est l'espace vectoriel tangent à \mathcal{C}_{ad} en \mathbf{x} . Au niveau de la régularité, nous supposerons que $\overset{*}{\boldsymbol{\xi}}$ est continue et continûment différentiable par morceau. Le calcul des variations de l'énergie potentielle dans le mouvement virtuel est immédiat et on obtient pour $\mathbf{x} \in \mathcal{C}_{ad}$ et $\overset{*}{\boldsymbol{\xi}} \in \mathcal{V}_{ad}(\mathbf{x})$

$$\mathcal{P}_{\mathsf{tot}}'(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}) = -\mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}) = -\int_{0}^{\ell} \mathbf{f}(s) \cdot \overset{*}{\boldsymbol{\xi}}(s) ds - \sum_{i=1}^{n} \mathcal{F}_{i} \cdot \overset{*}{\boldsymbol{\xi}}(s_{i}) - \mathcal{F}_{\ell} \cdot \overset{*}{\boldsymbol{\xi}}(\ell).$$

4. Soit $s \mapsto \mathbf{x}(s)$ une solution du problème aux limites. Elle est donc cinématiquement admissible. Comme $\mathcal{V}_{ad}(\mathbf{x}) \subset \mathcal{V}_{tot}(\mathbf{x})$ on peut appliquer le PPV et, comme $\mathsf{P}_{\mathsf{def}}[N,0](\overset{*}{\boldsymbol{\xi}}) = 0$ pour $\overset{*}{\boldsymbol{\xi}} \in \mathcal{V}_{ad}(\mathbf{x})$, on obtient

$$\mathcal{P}'_{ t tot}(\mathbf{x})(\overset{*}{m{\xi}})=0, \quad orall \overset{*}{m{\xi}} \in m{\mathcal{V}}_{
m ad}(\mathbf{x}),$$

La configuration d'équilibre rend donc stationnaire l'énergie potentielle.

Il reste à montrer la réciproque pour établir le théorème de l'énergie potentielle. Soit $s \mapsto \mathbf{x}(s) \in \mathcal{C}_{ad}$ tel que

$$\mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}) = 0, \quad \forall \overset{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{\mathrm{ad}}(\mathbf{x}).$$

Il s'agit de montrer que $s \mapsto \mathbf{x}(s)$ est une configuration d'équilibre et de trouver le champ d'effort normal associé. La difficulté tient au fait que l'effort normal n'apparait plus car la puissance virtuelle de déformation est nulle pour les champs de vitesse respectant la condition d'inextensibilité. Pour le faire réapparaître nous allons encore utiliser les multiplicateurs de Lagrange. Toutefois ici il existe une infinité de contraintes cinématiques, à savoir $\boldsymbol{\xi}'(s) \cdot \mathbf{t}(s) = 0$ pour tout $s \in (0, \ell)$. Nous introduisons donc une infinité de multiplicateurs de Lagrange $\lambda(s)$, un pour chaque point $s \in (0, \ell)$, et nous utilisons encore formellement le théorème **P-B.2** bien que l'on sorte du cadre dans lequel il a été démontré pour obtenir

$$\mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}) = \int_{0}^{\ell} \lambda(s) \, \overset{*}{\boldsymbol{\xi}}'(s) \cdot \mathbf{t}(s) ds, \quad \forall \, \overset{*}{\boldsymbol{\xi}} \text{ régulier}: \, \overset{*}{\boldsymbol{\xi}}(0) = \mathbf{0}.$$

En explicitant $\mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}})$ et en comparant l'équation variationnelle ci-dessus avec (5.41), on voit que $\lambda(s)$ peut être identifié avec l'effort normal N(s) et la fin de la démonstration de la réciproque est identique. Par conséquent, on a obtenu

P-5.13 (Le théorème de l'énergie potentielle pour les fils inextensibles sous chargement conservatif). Une configuration $s \mapsto \mathbf{x}(s)$ est solution du problème aux limites de statique **si et seulement si** cette configuration est cinématiquement admissible et rend stationnaire l'énergie potentielle, i.e.

$$s\mapsto \mathbf{x}(s)\in \mathcal{m{C}}_{ad}\,,\qquad \mathcal{P}_{ extsf{tot}}'(\mathbf{x})(\overset{*}{m{\xi}})=0,\quad orall\,\overset{*}{m{\xi}}\in \mathcal{m{V}}_{ad}(\mathbf{x})$$

En chaque point du fil, l'effort normal N(s) est le multiplicateur de Lagrange associé à la condition d'inextensibilité $\overset{*}{\varepsilon} \circ \mathbf{s}(s) = 0$.

5.5 Stabilité des états d'équilibre des systèmes conservatifs

Nous avons vu au chapitre 4 de nombreux exemples où le milieu curviligne possédait plusieurs configurations d'équilibre pour un même chargement : la tige rigide pesante sous force centrifuge, l'anneau sous force ponctuelle, le fil pesant ou le fil soumis à une force, l'elastica dans le problème du flambement d'Euler ou la poutre de Galilée. Dans certains de ces exemples nous avons introduit un critère empirique de stabilité pour sélectionner les "bons" états d'équilibre. Ainsi pour les fils nous avons introduit la condition que le fil devait être partout en tension pour éliminer les solutions parasites. Pour la tige rigide sous force centrifuge nous avons fait un raisonnement sur les moments pour discriminer les configurations d'équilibre. Il s'agit maintenant de justifier ces choix en proposant un critère général de stabilité qui puisse s'appliquer à toutes ces situations. Nous allons pour cela développer l'idée présentée à la section 5.3.1 et qui consiste à formuler un critère de stabilité pour les subilité avant de l'appliquer à différentes situations.

5.5.1 Le critère énergétique de stabilité

Donnons-en d'abord un énoncé informel.

D-5.6 (Critère de stabilité d'une configuration pour un système conservatif). Une configuration cinématiquement admissible d'un système conservatif est dite stable si on ne peut pas trouver de configurations cinématiquement admissibles proches de cette configuration ayant une énergie potentielle plus petite. Autrement dit, toute petite perturbation admissible du système à partir d'un état stable nécessite un apport d'énergie.

Les configurations stables sont donc les minima locaux de l'énergie potentielle. Ce critère reprend l'idée avancée section 5.3.1 et ne fait que généraliser à des milieux curvilignes déformables une propriété bien connue pour des points matériels ou des solides rigides placés dans des champs de forces dérivant d'un potentiel. Alors que pour les points matériels et les solides rigides cette propriété peut se déduire d'une notion dynamique de la stabilité, nous allons l'adopter ici *a priori*.

Il s'agit de formaliser cet énoncé en s'appuyant sur les mouvements virtuels pour définir la notion de configuration proche. Soit un milieu curviligne au comportement de type élastique et soumis à un système de charges conservatives. L'ensemble des configurations cinématiquement admissibles correspondante est \mathcal{C}_{ad} et l'énergie potentielle est $\mathcal{P}_{tot} : \mathcal{C}_{ad} \to \mathbb{R}$. Soit $\mathbf{x} \in \mathcal{C}_{ad}$ une configuration du milieu dont on veut étudier la stabilité et $\{\mathbf{x}_{h} \circ \mathbf{s}\}_{-\bar{h} \leq h \leq \bar{h}}$ un mouvement virtuel du milieu autour de cette configuration dont chaque configuration $\mathbf{x}_{h} \circ \mathbf{s}$ est cinématiquement admissible. Pour que \mathbf{x} soit stable, on demande que

$$\mathcal{P}_{tot}(\mathbf{x}) \le \mathcal{P}_{tot}(\mathbf{x}_{h^{\circ}} \mathbf{s}) \quad \text{pour } |h| \text{ assez petit}$$

$$(5.43)$$

et ce quel que soit le mouvement virtuel cinématiquement admissible envisagé. Par la suite nous nous limiterons aux mouvements virtuels dont la dépendance vis à vis de h est régulière (au moins deux fois différentiables) en h = 0. Les dérivées première et seconde en h = 0 seront notées respectivement $s \mapsto \overset{*}{\boldsymbol{\xi}}(s)$ et $s \mapsto \overset{*}{\boldsymbol{\xi}}(s)$ et correspondent à la vitesse virtuelle et l'accélération virtuelle du milieu :

$$\overset{*}{\boldsymbol{\xi}}(s) = \left. \frac{d}{dh} \big(\mathbf{x}_h(s) \big) \right|_{h=0}, \qquad \overset{**}{\boldsymbol{\xi}}(s) = \left. \frac{d^2}{dh^2} \big(\mathbf{x}_h(s) \big) \right|_{h=0}.$$

Nous allons déduire de (5.43) une condition nécessaire de stabilité dont on se sert constamment en pratique. Pour cela développons d'abord $\mathbf{x}_h(s)$ par rapport à h jusqu'à l'ordre 2,

$$\mathbf{x}_{h\circ}\mathbf{s}(S) = \mathbf{x}(S) + h \, \overset{*}{\boldsymbol{\xi}}_{\circ} \, \mathbf{s}(S) + \frac{1}{2} \, h^2 \, \overset{**}{\boldsymbol{\xi}}_{\circ} \, \mathbf{s}(S) + o(h^2)$$

puis $\mathcal{P}_{tot}(\mathbf{x}_h \circ \mathbf{s})$,

$$\mathcal{P}_{\mathsf{tot}}(\mathbf{x}_h \circ \mathbf{s}) = \mathcal{P}_{\mathsf{tot}}(\mathbf{x}) + h\mathcal{P}_{\mathsf{tot}}'(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}) + \frac{1}{2}h^2\mathcal{P}_{\mathsf{tot}}'(\mathbf{x})(\overset{**}{\boldsymbol{\xi}}) + \frac{1}{2}h^2\mathcal{P}_{\mathsf{tot}}''(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}) + o(h^2)$$

et reportons dans (5.43) pour obtenir

$$0 \le h\mathcal{P}'_{tot}(\mathbf{x})(\overset{*}{\xi}) + \frac{1}{2}h^{2}\mathcal{P}'_{tot}(\mathbf{x})(\overset{**}{\xi}) + \frac{1}{2}h^{2}\mathcal{P}''_{tot}(\mathbf{x})(\overset{*}{\xi}) + o(h^{2}).$$
(5.44)

En prenant h > 0, en divisant par h et en passant à la limite quand $h \to 0$ dans (5.44), on obtient $\mathcal{P}'_{tot}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}) \geq 0$. En faisant de même avec h < 0, on obtient l'inégalité inverse $\mathcal{P}'_{tot}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}) \leq 0$ et donc finalement l'égalité. Comme ceci doit être vrai pour tout mouvement virtuel, en les envisageant tous on engendre toutes les vitesses virtuelles admissibles et on a donc obtenu que \mathbf{x} doit rendre stationnaire l'énergie potentielle,

$$\mathcal{P}'_{tot}(\mathbf{x})(\hat{\boldsymbol{\xi}}) = 0, \quad \forall \ \hat{\boldsymbol{\xi}} \in \mathcal{V}_{ad}(\mathbf{x}).$$
 (5.45)

On généralise ainsi la propriété établie sur l'exemple de la barre rigide sous force centrifuge que seules les configurations d'équilibre peuvent être stables. La stationnarité est donc une condition nécessaire de stabilité, mais elle n'est pas en général suffisante et peut être vue comme la condition de stabilité d'ordre 1 (par référence au développement par rapport à h). Si on reporte la condition de stationnarité dans (5.44) et si on passe à la limite après avoir divisé par h^2 , on obtient la condition nécessaire de stabilité d'ordre 2

$$\mathcal{P}_{\texttt{tot}}''(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}) + \mathcal{P}_{\texttt{tot}}'(\mathbf{x})(\overset{**}{\boldsymbol{\xi}}) \geq 0$$

qui doit être vraie pour toutes les vitesses virtuelles admissibles et toutes les accélérations virtuelles admissibles. On ne peut pas aller beaucoup plus loin dans le cas général sans entrer des informations complémentaires sur \mathcal{C}_{ad} et sur l'ensemble des vitesses virtuelles et des accélérations virtuelles admissibles. L'inégalité précédente peut se simplifier par exemple si l'accélération virtuelle est un élément de $\mathcal{V}_{ad}(\mathbf{x})$, car alors $\mathcal{P}'_{tot}(\mathbf{x})(\overset{**}{\boldsymbol{\xi}}) = 0$ et la condition nécessaire de stabilité du second ordre devient alors une condition de positivité de la dérivée seconde de l'énergie. En résumé, on a obtenu

P-5.14 (Conditions nécessaires de stabilité). Pour qu'une configuration $\mathbf{x} \in \mathcal{C}_{ad}$ soit stable, il faut que ce soit une configuration d'équilibre et qu'elle vérifie la condition de stabilité d'ordre 2

$$\mathcal{P}_{\text{tot}}''(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}) + \mathcal{P}_{\text{tot}}'(\mathbf{x})(\overset{**}{\boldsymbol{\xi}}) \ge 0$$
(5.46)

pour tout couple $(\overset{*}{\boldsymbol{\xi}},\overset{*}{\boldsymbol{\xi}})$ de vitesse et d'accélération virtuelle admissible.

Nous allons illustrer ce critère de stabilité sur quelques exemples.

5.5.2 Conditions nécessaires de stabilité pour les barres non fléchies

Considérons le problème aux limites de la section 5.4.3 et étudions les conséquences des conditions nécessaires de stabilité **P-5.14** pour ce système conservatif. Soit u une configuration d'équilibre, elle rend stationnaire l'énergie potentielle. Comme C_{ad} est un espace vectoriel, elle vérifie donc $\mathcal{P}'_{tot}(u)(u) = 0$ pour tout $u \circ s \in C_{ad}$. Choisissons un mouvement virtuel de la forme

$$\mathtt{u}_h \circ \mathtt{s} = \mathtt{u} + h \overset{*}{\mathtt{u}} \circ \mathtt{s} \quad ext{avec} \quad \overset{*}{\mathtt{u}} \circ \mathtt{s} \in oldsymbol{\mathcal{C}}_{ ext{ad}},$$

Avec ce choix l'accélération virtuelle d'extension est nulle, $\overset{**}{\mathbf{u}} = 0$, et la condition nécessaire de stabilité se réduit à

$$\mathcal{P}''_{ ext{tot}}(\mathbf{u})(\mathbf{\mathring{u}}\circ\mathbf{s})\geq 0, \qquad \forall \ \mathbf{\mathring{u}}\circ\mathbf{s}\in \boldsymbol{\mathcal{C}}_{\mathrm{ad}}.$$

Le calcul de la dérivée seconde ne présente pas de difficulté. On remarquera en particulier que l'énergie potentielle due aux charges mortes dépendant linéairement de u, sa dérivée seconde est nulle et $\mathcal{P}'_{tot}(u)$ se réduit donc à la dérivée seconde de l'énergie élastique et de l'énergie due aux forces linéiques. Finalement, on obtient

$$0 \leq \int_{0}^{\ell_{\mathsf{R}}} \left(\underbrace{\mathsf{W}_{\mathsf{ex}}''(\mathsf{u}'(S))}_{ds} \frac{d\mathring{\mathsf{u}}}{ds}(s)^{2} \mathsf{s}'(S)^{2} \right) + \varrho_{\mathsf{R}}(S) \underbrace{\Phi''(s)}_{\mathfrak{u}(s)^{2}} dS, \quad \forall \, \mathring{\mathsf{u}} \circ \mathsf{s} \in \mathcal{C}_{\mathrm{ad}}, \tag{5.47}$$

où $s = \mathbf{s}(S) = S + \mathbf{u}(S)$. Le premier terme sous l'intégrale est le produit du module tangent de rigidité à l'extension $W''_{ex}(\varepsilon)$ par le carré de la vitesse virtuelle de déformation d'extension $\overset{*}{\varepsilon} \mathbf{s}'$.

La déformation d'extension $\varepsilon = \mathbf{u}'$ à l'équilibre est continue par morceau (elle est en général discontinue aux points où sont exercées des forces ponctuelles ou aux interfaces dans le cas d'une barre hétérogène). Montrons qu'en tous les points où la déformation d'extension est définie et continue (c'est partout sauf en un nombre fini de points \mathbb{P}_{R}) le module tangent de rigidité à l'extension doit être non négatif, $\mathbb{W}_{\mathsf{ex}}'(\varepsilon) \geq 0$, pour que la condition nécessaire de stabilité soit satisfaite. Pour cela, considérons un point S_0 où ε est définie et continue. Définissons $S \mapsto \mathfrak{u} \circ \mathfrak{s}(S)$ par

$$\mathring{u}(0) = 0, \quad \frac{d \, \mathring{u} \circ \mathbf{s}}{dS}(S) = \begin{cases} +1 & \text{si } S \in (S_0 - \epsilon, S_0) \\ -1 & \text{si } S \in (S_0, S_0 + \epsilon) \\ 0 & \text{sinon} \end{cases}$$

où $\epsilon > 0$ est un petit paramètre destiné à tendre vers 0.

Par conséquent $\overset{*}{\mathbf{u}} \circ \mathbf{s}$ est nul en dehors de l'intervalle $(S_0 - \epsilon, S_0 + \epsilon)$, linéaire par morceau dans l'intervalle et vaut ϵ en S_0 . En reportant dans (5.47), il vient

$$0 \leq \int_{S_0 - \epsilon}^{S_0 + \epsilon} \left(\mathbb{W}_{ex}''(\varepsilon(S)) + \varrho_{\mathsf{R}}(S) \Phi''(\mathbf{s}(S)) \ \mathbf{u}(\mathbf{s}(S))^2 \right) dS.$$

En divisant par ϵ et en passant à la limite quand $\epsilon \to 0$, comme $\overset{*}{\mathfrak{u}}(\mathfrak{s}(S))^2 \leq \epsilon^2$ et que ε est continue en S_0 , on obtient $W''_{\mathtt{ex}}(\varepsilon(S_0)) \geq 0$ qui est l'inégalité cherchée. En résumé, on a donc obtenu **P-5.15.** Dans une barre élastique en équilibre stable sous l'action de forces conservatives, le module tangent de rigidité à l'extension est nécessairement non négatif aux points où la déformation d'extension est définie et continue :

$$\forall \mathbf{w}_{ex}''(\mathbf{u}'(S)) \ge 0, \quad \forall S \in (0, \ell_{R}) \setminus \mathbb{P}_{R},$$

où \mathbb{P}_{R} désigne les points où u' n'est pas définie ou n'est pas continue.

Cette inégalité est évidemment automatiquement satisfaite si le potentiel élastique est une fonction convexe ou de façon équivalente si la relation $\varepsilon \mapsto N = W'_{ex}(\varepsilon)$ est monotone croissante. C'est le cas par exemple pour un comportement linéairement élastique car alors $W''_{ex}(\varepsilon) = \mathsf{E}\mathsf{A} > 0$. Mais on n'est pas assuré pour autant que toute configuration d'équilibre soit stable, car nous n'avons raisonné que par conditions nécessaires. En particulier, on n'est pas assuré que l'inégalité (5.47) soit satisfaite car les forces linéiques et le terme en $\Phi''(s)$ peut "déstabiliser" le système.

Par contre, on peut affirmer que si la relation déformation-effort normal n'est pas toujours monotone croissante, alors les configurations d'équilibre stables ne peuvent contenir que des états de déformation où le module tangent de rigidité (*i.e.* la pente de la courbe $N = N_{ex}(\varepsilon)$) est positif. Ainsi, pour des matériaux à mémoire de forme où la relation $N = N_{ex}(\varepsilon)$ n'est pas toujours monotone, on ne pourra jamais observer dans une barre en équilibre des points se situant sur la branche descendante (branche **AB** sur la figure ci-contre).

5.5.3 Conditions nécessaires de stabilité pour les fils extensibles

Considérons le problème aux limites de la section 5.4.3 en supposant pour simplifier que la force linéique est due à la pesanteur uniforme $-g\mathbf{e}_2$. Toutes les forces extérieures données sont donc des charges mortes et les énergies s'écrivent

$$\mathcal{P}_{\texttt{ela}}(\tilde{\mathbf{x}}) = \int_0^{\ell_{\mathsf{R}}} \mathbb{W}_{\texttt{ex}}(\tilde{\varepsilon}(S)) dS, \qquad \mathcal{P}_{\texttt{ext}}(\tilde{\mathbf{x}}) = \int_0^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}}(S) g\tilde{x_2}(S) dS - \sum_{i=1}^n \mathcal{F}_i \cdot \tilde{\mathbf{x}}(S_i) - \mathcal{F}_\ell \cdot \tilde{\mathbf{x}}(\ell_{\mathsf{R}})$$

où la configuration cinématiquement admissible $\tilde{\mathbf{x}}$ appartient à l'espace affine \mathcal{C}_{ad} dont l'espace vectoriel associé est \mathcal{V}_{ad} ,

$$\mathcal{C}_{\mathrm{ad}} = \{ S \mapsto \tilde{\mathbf{x}}(S) \text{ régulier} : \tilde{\mathbf{x}}(0) = \mathbf{x}_0 \}, \qquad \mathcal{V}_{\mathrm{ad}} = \{ S \mapsto \mathbf{v}(S) \text{ régulier} : \mathbf{v}(0) = \mathbf{0} \}.$$

La régularité requise est la continuité et la différentiabilité par morceau de \mathbf{x} , la dérivée de \mathbf{x} pouvant être discontinue. Etudions la stabilité d'une configuration d'équilibre \mathbf{x} . Nous savons qu'elle doit rendre stationnaire l'énergie potentielle et qu'elle vérifie donc

$$\mathcal{P}'_{ t tot}(\mathbf{x})(\hat{\boldsymbol{\xi}} \circ \mathbf{s}) = 0, \quad orall \, \hat{\boldsymbol{\xi}} \circ \mathbf{s} \in \boldsymbol{\mathcal{V}}_{\mathrm{ad}}.$$

Envisageons un mouvement virtuel autour de \mathbf{x} de la forme $\mathbf{x}_{h^{\circ}}\mathbf{s} = \mathbf{x} + h \, \mathbf{\xi} \circ \mathbf{s}$ avec $\mathbf{\xi} \circ \mathbf{s} \in \mathbf{\mathcal{V}}_{ad}$. Comme l'énergie potentielle due aux forces extérieures \mathcal{P}_{ext} est linéaire, sa dérivée seconde est nulle et la condition nécessaire de stabilité (5.46) devient

$$\mathcal{P}_{\texttt{ela}}''(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}\circ\mathbf{s})\geq0,\quad\forall\overset{*}{\boldsymbol{\xi}}\circ\mathbf{s}\in\mathcal{V}_{\mathrm{ad}}.$$

Pour calculer la dérivée seconde, revenons à la définition

$$\mathcal{P}_{\texttt{ela}}''(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}) = \left. \frac{d^2}{dh^2} \Big(\mathcal{P}_{\texttt{ela}}(\mathbf{x} + h \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) \Big) \right|_{h=0} = \int_0^{\ell_{\mathsf{R}}} \left. \frac{d^2}{dh^2} \Big(\mathbb{W}_{\texttt{ex}}(\varepsilon_h^{\mathsf{R}}(S)) \Big) \right|_{h=0} dS$$

avec $\varepsilon_h^{\mathsf{R}} = \left\| \frac{d\mathbf{x}}{dS} + h \frac{d(\mathbf{\xi} \circ \mathbf{s})}{dS} \right\| - 1$. En utilisant la dérivée des fonctions composées, on obtient

$$\frac{d^2}{dh^2} \Big(\mathbf{W}_{\mathbf{ex}}(\varepsilon_h^{\mathbf{R}}) \Big) \Big|_{h=0} = \mathbf{W}_{\mathbf{ex}}'(\varepsilon) \left. \frac{d^2 \varepsilon_h^{\mathbf{R}}}{dh^2} \right|_{h=0} + \mathbf{W}_{\mathbf{ex}}''(\varepsilon) \left(\left. \frac{d \varepsilon_h^{\mathbf{R}}}{dh} \right|_{h=0} \right)^2$$

En notant par un prime la dérivée par rapport à S, le calcul des dérivées par rapport à h de $\varepsilon_h^{\mathsf{R}}$ donne

$$\frac{d\varepsilon_h^{\mathsf{R}}}{dh} = \frac{\left(\mathbf{x}' + h(\mathbf{\hat{\xi}} \circ \mathbf{s})'\right) \cdot (\mathbf{\hat{\xi}} \circ \mathbf{s})'}{\left\|\mathbf{x}' + h(\mathbf{\hat{\xi}} \circ \mathbf{s})'\right\|}$$

et donc, comme $\mathbf{s}'(S) = \|\mathbf{x}'(S)\|$ et $\mathbf{t}(S) = \mathbf{x}'(S) / \|\mathbf{x}'(S)\|$,

$$\begin{cases} \left. \frac{d\varepsilon_h^{\mathsf{R}}(S)}{dh} \right|_{h=0} &= \mathbf{s}'(S) \frac{d^2 \boldsymbol{\xi}}{ds}(s) \cdot \mathbf{t}(S) = \mathbf{s}'(S) \, \tilde{\boldsymbol{\varepsilon}}(s), \\ \left. \frac{d^2 \varepsilon_h^{\mathsf{R}}(S)}{dh^2} \right|_{h=0} &= \mathbf{s}'(S) \left\| \frac{d^2 \boldsymbol{\xi}}{ds}(s) \right\|^2 - \mathbf{s}'(S) \left(\frac{d^2 \boldsymbol{\xi}}{ds}(s) \cdot \mathbf{t}(S) \right)^2 = \mathbf{s}'(S) \, \tilde{\boldsymbol{\omega}}(s)^2 \end{cases}$$

Finalement, en reportant dans l'expression de la dérivée seconde de l'énergie et en rappelant que $N = W'_{ex}(\varepsilon)$, la condition nécessaire de stabilité s'écrit

$$0 \leq \int_0^\ell \underbrace{N(s)}_{\omega(s)^2} ds + \int_0^{\ell_{\mathsf{R}}} \underbrace{\mathsf{W}_{\mathsf{ex}}''(\varepsilon(S))}_{\varepsilon(\mathsf{s}(S))^2} \underbrace{\mathsf{s}'(S)^2}_{\varepsilon(\mathsf{s}(S))^2} dS, \quad \forall \, \mathbf{\xi} \circ \mathbf{s} \in \mathcal{V}_{\mathrm{ad}}.$$
(5.48)

On voit donc apparaître le produit de l'effort normal par le carré de la vitesse virtuelle de rotation et le produit du module tangent de la rigidité d'extension $W''_{ex}(\varepsilon)$ par le carré de la vitesse virtuelle d'extension. Il est clair que si $N \ge 0$ et $W''_{ex}(\varepsilon) \ge 0$ partout, alors l'inégalité est satisfaite. Montrons que par contre si N < 0 ou $W''_{ex}(\varepsilon) < 0$ dans une partie du fil, alors la condition nécessaire de stabilité ne peut pas être satisfaite et donc l'équilibre est instable. Pour cela, envisageons tour à tour que l'une des quantités est négative sur une partie du fil.

1. Cas où N(s) < 0 dans l'intervalle (s_0, s_1) . Utilisons la représentation eulérienne des champs et construisons une vitesse virtuelle de déplacement admissible de la façon suivante :

$$\boldsymbol{\xi}^{*}(s) = \begin{cases} \mathbf{0} & \text{si } 0 \leq s \leq s_{0} \\ \mathbf{e}_{3} \wedge (\mathbf{x}(s) - \mathbf{x}(s_{0})) & \text{si } s_{0} \leq s \leq s_{1} \\ \mathbf{e}_{3} \wedge (\mathbf{x}(s_{1}) - \mathbf{x}(s_{0})) & \text{si } s_{1} \leq s \leq \ell \end{cases}$$

Cette vitesse virtuelle est continue, nulle en 0 et a la même régularité que la configuration d'équilibre **x** dans chaque intervalle. Elle est donc admissible. Sa dérivée $d \boldsymbol{\xi}/ds$ est non nulle uniquement dans l'intervalle où l'effort normal est négatif et y vaut $\mathbf{e}_3 \wedge \mathbf{t}(s) = \mathbf{n}(s)$. Par conséquent la vitesse virtuelle d'extension $\hat{\varepsilon}$ est partout nulle alors que la vitesse virtuelle de rotation $\hat{\omega}$ vaut 1 dans l'intervalle où N < 0 et est nulle ailleurs. L'inégalité (5.48) est donc violée, cette configuration d'équilibre n'est pas stable.

2. Cas où $W''_{ex}(\varepsilon(S)) < 0$ dans l'intervalle (S_0, S_1) . Utilisons la représentation lagrangienne des champs et construisons une vitesse virtuelle de déplacement admissible de la façon suivante :

$$\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}(S) = \begin{cases} \mathbf{0} & \text{si } 0 \le S \le S_0 \\ \mathbf{x}(S) - \mathbf{x}(S_0) & \text{si } S_0 \le S \le S_1 \\ \mathbf{x}(S_1) - \mathbf{x}(S_0)) & \text{si } S_1 \le S \le \ell_{\mathsf{R}} \end{cases}$$

Cette vitesse virtuelle est continue, nulle en 0 et a la même régularité que la configuration d'équilibre **x** dans chaque intervalle. Elle est donc admissible. La dérivée $d \boldsymbol{\xi}/ds$ est non nulle uniquement dans l'intervalle où $W''_{ex}(\varepsilon) < 0$ et y vaut $\mathbf{t}(S)$. Par conséquent la vitesse virtuelle de rotation $\overset{*}{\omega}$ est partout nulle alors que la vitesse virtuelle d'extension $\overset{*}{\varepsilon}$ vaut 1 dans l'intervalle où $W''_{ex}(\varepsilon) < 0$ et est nulle ailleurs. L'inégalité (5.48) est donc violée, cette configuration d'équilibre n'est pas stable.

Notons que, comme dans toute configuration d'équilibre l'effort normal est continu à gauche (par construction), l'inégalité $N \ge 0$ doit être vraie partout pour que la configuration puisse être stable. Par contre la déformation d'extension est seulement définie et continue par morceau. On vient donc d'établir la propriété fondamentale suivante :

P-5.16. Pour que la **configuration d'équilibre** d'un fil élastiquement extensible soumis à des forces conservatives soit **stable**, **il faut** que le fil soit nulle part en compression et que le module tangent de rigidité à l'extension soit non négatif aux points où la déformation d'extension est définie et continue :

$$N(S) \geq 0, \quad \forall S \in \mathbb{C}_{\mathsf{R}} \, , \qquad {\tt W}_{\tt ex}^{\,\prime\prime}(\varepsilon(S)) \geq 0, \quad \forall S \in \mathbb{C}_{\mathsf{R}} \setminus \mathbb{P}_{\mathsf{R}} \, ,$$

où \mathbb{P}_{P} désigne les points où ε n'est pas définie ou n'est pas continue.

On pourrait étendre cette propriété aux fils inextensibles (dans ce cas, évidemment, la condition sur le module tangent de rigidité à l'extension disparaît), mais la démonstration est techniquement plus difficile car il faut gérer la condition d'inextensibilité. Cela passe par l'introduction de multiplicateurs de Lagrange. Nous nous contenterons de la démonstration dans le cas extensible.

Si l'on compare avec le résultat établi pour les barres non fléchies, on voit que l'on retrouve la même propriété pour le module tangent de rigidité à l'extension, mais que l'on a en plus ici la propriété que le fil doit être en tension. Remarquons que cette dernière propriété a été obtenue en testant la stabilité en *rotation*, chose que l'on n'avait pas envisagée pour les barres. Notons aussi que l'on a construit pour cela des mouvements virtuels où la vitesse virtuelle de rotation est *discontinue*, ce qui est autorisé parce qu'un fil n'a pas de rigidité à la flexion. On ne pourrait donc pas utiliser cette construction pour une tige élastiquement flexible dont la rigidité à la flexion interdit toute discontinuité de la tangente (sinon l'énergie élastique est infinie). C'est cette rigidité à la flexion qui les autorise à avoir des configurations d'équilibre stables même quand elles sont en compression. Le problème de l'elastica en est la parfaite illustration.

5.5.4 Stabilité des configurations d'équilibre pour le problème de l'elastica

On se place dans le cadre du problème du flambement d'Euler en ne considérant que le cas où la tige est *inextensible* et *encastrée-chargée*, cf **D-4.9** section 4.5.1. Dans ce cas, les configurations de l'elastica sont parfaitement caractérisées par la fonction $s \mapsto \alpha(s)$ où $s \in (0, \ell_R)$ qui donne l'angle tangent. La fonction position s'en déduit par intégration

$$\mathbf{x}(s) = \int_0^s \cos\alpha(\zeta) d\zeta \ \mathbf{e}_1 + \int_0^s \sin\alpha(\zeta) d\zeta \ \mathbf{e}_2$$

L'énergie élastique se réduit à l'énergie de flexion

$$\mathcal{P}_{\texttt{ela}}(\alpha) = \int_0^{\ell_{\mathsf{R}}} \tfrac{1}{2} \, \mathsf{E} \mathsf{I} \alpha'(s)^2 ds,$$

alors que l'énergie potentielle due à la charge morte $\mathcal{F} = -\mathcal{F}\mathbf{e}_1$ peut s'écrire

$$\mathcal{P}_{\text{ext}}(\alpha) = \mathcal{F}x_1(\ell_{\text{R}}) = \int_0^{\ell_{\text{R}}} \mathcal{F}\cos\alpha(s) ds$$

Par conséquent l'énergie potentielle totale est la fonctionnelle suivante de α

$$\mathcal{P}_{\mathrm{tot}}(\alpha) = \int_0^{\ell_{\mathrm{R}}} \left(\frac{1}{2} \operatorname{El} \alpha'(S)^2 + \mathcal{F} \cos \alpha(s) \right) ds.$$

Comme α doit vérifier la condition d'encastrement en s = 0 et être d'énergie finie, le bon cadre fonctionnel pour définir les configurations cinématiquement admissibles est $H^1(0, \ell_R)$, l'ensemble des fonctions définies sur $(0, \ell_R)$, de carré sommable et dont la dérivée (au sens des distributions) peut être identifiée à une fonction de carré sommable. Ceci conduit à définir \mathcal{C}_{ad} comme

$$\boldsymbol{\mathcal{C}}_{\mathrm{ad}} = \{ s \mapsto \boldsymbol{\alpha}(s) \in H^1(0, \ell_{\mathsf{R}}) \ : \ \boldsymbol{\alpha}(0) = 0 \}.$$

L'étude précise de cet ensemble sort du cadre de ce cours et nous nous contenterons de raisonner en considérant des fonctions α continues et continûment différentiable par morceau, mais il faut être conscient qu'un certain nombre de résultats fondamentaux (comme celui de l'existence d'un minimum) ne peuvent être établis que dans ce cadre fonctionnel. Notons que \mathcal{C}_{ad} est un espace vectoriel et que nous pouvons l'identifier avec l'ensemble des vitesses virtuelles de rotation admissibles, $\mathcal{V}_{ad} = \mathcal{C}_{ad}$.

Nous sommes dans la situation du problème-type du Calcul des Variations décrit dans l'Annexe B où la fonctionnelle est une intégrale dont l'intégrande (appelé *Lagrangien*) ne dépend pas explicitement de la variable s mais uniquement de la valeur de la fonction $\alpha(s)$ et de sa dérivée $\alpha'(s)$ au point s :

$$\mathcal{L}(\alpha, \alpha') =: \frac{1}{2} \mathsf{El} \alpha'^2 + \mathcal{F} \cos \alpha.$$

On peut appliquer directement les résultats : les fonctions α qui rendent stationnaires la fonctionnelle sont celles qui vérifient l'équation d'Euler-Lagrange, la condition à la limite d'admissibilité en 0 et la condition à la limite naturelle en ℓ_{R} . L'équation d'Euler-Lagrange s'écrit ici

$$0 = \frac{d}{ds} \left(\frac{\partial \mathcal{L}}{\partial \alpha'}(\alpha(s), \alpha'(s)) \right) - \frac{\partial \mathcal{L}}{\partial \alpha}(\alpha(s), \alpha'(s)) = \mathsf{EI}\alpha''(s) + \mathcal{F}\sin\alpha(s)$$

et on reconnait l'équation d'équilibre des moments. La condition à la limite naturelle s'écrit

$$0 = \frac{\partial \mathcal{L}}{\partial \alpha'}(\alpha(\ell_{\mathsf{R}}), \alpha'(\ell_{\mathsf{R}})) = \mathsf{EI}\alpha'(\ell_{\mathsf{R}})$$

et on reconnait la condition de nullité du moment fléchissant à l'extrémité libre. On a donc obtenu que les points stationnaires de l'énergie sont les angles tangents qui vérifient le problème aux limites (réduit) de l'elastica (4.15).

Nous avons résolu ce problème au chapitre 4 en déterminant toutes les configurations d'équilibre. Nous nous sommes appuyés pour cela sur le fait qu'il existe une intégrale première. Nous pouvons noter maintenant que cette propriété est due au double fait que l'équation d'équilibre est une équation d'Euler-Lagrange et que le Lagrangien ne dépend pas de l'abscisse curviligne. En effet, vérifions que l'intégrale première que nous avons trouvé section 4.5.1 est bien celle que fournit le Calcul des Variations dans la situation où le Lagrangien ne dépend pas de la variable. En se référant à l'Annexe B, la quantité $\alpha' \partial \mathcal{L} / \partial \alpha' - \mathcal{L}$ est constante. Or ici, on a

$$cte = \alpha'(s)\frac{\partial \mathcal{L}}{\partial \alpha'}(\alpha(s), \alpha'(s)) - \mathcal{L}(\alpha(s), \alpha'(s)) = \frac{1}{2} \mathsf{El}\alpha'(s)^2 - \mathcal{F}\cos\alpha(s),$$

ce qui est bien ce que l'on avait obtenu, cf (4.20).

Il s'agit maintenant d'étudier la stabilité des positions d'équilibre. Nous allons pour cela suivre une démarche qui mêle analyse qualitative et calculs analytiques ou numériques. On pourra noter au passage tout l'intérêt de l'approche variationnelle.

1. Existence d'un minimum de l'énergie potentielle. La première étape consiste à montrer que le problème de minimisation de \mathcal{P}_{tot} sur \mathcal{C}_{ad} admet une solution, *i.e.* il existe $\alpha \in \mathcal{C}_{ad}$ tel que $\mathcal{P}_{tot}(\alpha) \leq \mathcal{P}_{tot}(\tilde{\alpha}), \forall \tilde{\alpha} \in \mathcal{C}_{ad}$. La démonstration complète sort du cadre de ce cours car elle nécessite la connaissance de propriétés spécifiques à l'espace $H^1(0, \ell_R)$, nous admettrons le résultat.

2. Existence d'équilibre stable. Pour une valeur de \mathcal{F} donnée, une configuration qui minimise l'énergie potentielle sur \mathcal{C}_{ad} est automatiquement stable puisque son énergie est plus petite (ou égale) que l'énergie de n'importe quelle autre configuration admissible. Comme il existe au moins un minimiseur, nous sommes assurés de l'existence d'au moins une configuration stable pour chaque valeur de la force appliquée. Comme un minimiseur est aussi un point stationnaire de l'énergie potentielle et comme les points stationnaires coïncident avec les configurations d'équilibre, le ou les minimiseurs font partie des configurations d'équilibre. Comme nous avons construit toutes les configurations d'équilibre, nous pouvons essayer d'identifier les minimiseurs.

3. La configuration rectiligne est l'unique configuration stable quand $\mathcal{F} \leq \mathcal{F}_0$. Si la tige est en traction ($\mathcal{F} < 0$) ou soumise à une compression plus faible que la force de flambement \mathcal{F}_0 , nous avons montré que la configuration rectiligne $\alpha = 0$ est l'unique configuration d'équilibre. C'est donc le minimiseur de l'énergie potentielle et elle est l'unique configuration stable.

4. La configuration rectiligne n'est plus stable quand $\mathcal{F} > \mathcal{F}_0$. Prenons pour vitesse virtuelle de rotation celle qui correspond au mode de flambement, *i.e.*

$$\overset{*}{\omega}(s) = \sin\left(\frac{\pi s}{2\ell_{\mathsf{R}}}\right),$$

le fait que son amplitude soit unitaire n'ayant pas d'importance. Cette vitesse vérifie bien $\overset{*}{\omega}(0) = 0$ et est un élément de \mathcal{C}_{ad} . En prenant pour mouvement virtuel $\alpha_h(s) = h \overset{*}{\omega}(s)$, l'accélération virtuelle est nulle et, en vertu de **P-5.14**, il suffit de montrer que $\mathcal{P}'_{tot}(0)(\overset{*}{\omega}) < 0$ pour obtenir le résultat. La dérivée seconde s'écrivant

$$\mathcal{P}_{\texttt{tot}}''(0)(\overset{*}{\omega}) = \int_0^{\ell_{\mathsf{R}}} \left(\mathsf{EI} \, \overset{*}{\omega}'(s)^2 - \mathcal{F} \, \overset{*}{\omega}(s)^2 \right) ds,$$

on obtient après un simple calcul que

$$\mathcal{P}_{tot}''(0)(\overset{*}{\omega}) = (\mathcal{F}_0 - \mathcal{F})\frac{\ell_{\mathsf{R}}}{2} \quad \text{où} \quad \mathcal{F}_0 = \frac{\pi^2\mathsf{EI}}{4\ell_{\mathsf{R}}^2}$$

Par conséquent $\mathcal{P}''_{tot}(0)(\overset{*}{\omega}) < 0$ quand \mathcal{F} est supérieure à la charge de flambement \mathcal{F}_0 . Le fait que le mode de flambement soit une perturbation qui prouve l'instabilité de la configuration rectiligne est un indice suggérant que les configurations de première branche bifurquée sont stables. C'est ce que nous allons montrer.

5. Les deux configurations situées sur la première branche bifurquée minimisent l'énergie potentielle et sont donc stables quand $\mathcal{F} > \mathcal{F}_0$. Considérons d'abord une valeur de \mathcal{F} comprise entre les deux premiers points de bifurcation \mathcal{F}_0 et \mathcal{F}_1 . Dans cet intervalle, il n'existe que 3 configurations d'équilibre : la configuration rectiligne $\alpha = 0$ et les deux configurations flambées $\pm \alpha_0$. Comme on vient de montrer que $\alpha = 0$ est instable et que par symétrie α_0 et $-\alpha_0$ ont la même énergie potentielle, les configurations flambées $\pm \alpha_0$ minimisent l'énergie potentielle et sont donc stables. Nous allons montrer que cela reste vrai quelle que soit la valeur de \mathcal{F} au delà de \mathcal{F}_0 en calculant l'énergie potentielle de toutes les configurations d'équilibre et en les comparant.

Prenons $\mathcal{F} \in (\mathcal{F}_n, \mathcal{F}_{n+1}]$ avec $n \geq 0$. Il existe 2n + 3 configurations d'équilibre : la configuration rectiligne $\alpha = 0$ et les configurations (symétriques) $\pm \alpha_i$ situées sur la i^{eme} branche bifurquée, $0 \leq i \leq n$. Nous pouvons écarter la configuration rectiligne puisqu'elle est instable et, grâce à la symétrie, n'étudier que les n + 1 configurations α_i . En utilisant la méthode de tir comme nous l'avons fait dans la section 4.5.1, ces configurations sont caractérisées par l'angle tangent à l'extrémité $\alpha_i(\ell_{\mathsf{R}}) \in (0, \pi)$. Nous avons établi que cet angle tangent est relié à la force appliquée par (4.21)

$$\mathsf{K}(\alpha_i(\ell_{\mathsf{R}})) = \frac{1}{2i+1} \sqrt{\frac{\mathcal{F}\ell_{\mathsf{R}}^2}{\mathsf{E}\mathsf{I}}} \quad \text{où} \quad \mathsf{K}(\alpha) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1-\sin^2\left(\frac{\alpha}{2}\right)\sin^2\theta}}.$$
 (5.49)

Comme $\mathsf{K}(\alpha)$ est une fonction strictement croissante quand α varie dans l'intervalle $(0, \pi)$, les angles tangents $\alpha_i(\ell_{\mathsf{R}})$ sont ordonnés,

$$\alpha_0(\ell_{\mathsf{R}}) > \dots > \alpha_i(\ell_{\mathsf{R}}) > \dots > \alpha_n(\ell_{\mathsf{R}}) \ge 0,$$
(5.50)

propriété qui se traduit dans le plan $\mathcal{F}, \alpha(\ell_R)$ par une hiérarchisation des branches bifurquées, cf Figure 5.4 (gauche).

Pour calculer l'énergie potentielle $\mathcal{P}_{tot}(\alpha_i)$, nous allons utiliser l'intégrale première que vérifie α_i :

$$\mathsf{El}\alpha_i'(s)^2 = 4\mathcal{F}\left(\sin^2\left(\frac{\alpha_i(\ell_{\mathsf{R}})}{2}\right) - \sin^2\left(\frac{\alpha_i(s)}{2}\right)\right), \quad s \in (0, \ell_{\mathsf{R}}).$$
(5.51)

Ceci permet de mettre $\mathcal{P}_{tot}(\alpha_i)$ sous la forme

$$\mathcal{P}_{tot}(\alpha_i) = \int_0^{\ell_{\mathsf{R}}} \left(\frac{1}{2} \mathsf{EI}\alpha'_i(s)^2 + \mathcal{F}\cos\alpha_i(s) \right) ds$$

= $\mathcal{F}\ell_{\mathsf{R}}\cos\alpha_i(\ell_{\mathsf{R}}) + 4\mathcal{F}\int_0^{\ell_{\mathsf{R}}} \left(\sin^2\left(\frac{\alpha_i(\ell_{\mathsf{R}})}{2}\right) - \sin^2\left(\frac{\alpha_i(s)}{2}\right) ds.$

Le point (α_i, α'_i) décrit 2i + 1 quarts de tour dans l'espace des phases. Par symétrie, chaque quart de tour donne la même contribution à l'énergie totale. Après le changement de variable $s \to \alpha_i$ basé sur (5.51) dans l'intégrale, l'expression de l'énergie potentielle devient

$$\mathcal{P}_{\text{tot}}(\alpha_i) = \mathcal{F}\ell_{\text{R}} \cos \alpha_i(\ell_{\text{R}}) + 2\mathcal{F}(2i+1)\sqrt{\frac{\text{EI}}{\mathcal{F}}} \int_0^{\alpha_i(\ell_{\text{R}})} \sqrt{\sin^2\left(\frac{\alpha_i(\ell_{\text{R}})}{2}\right) - \sin^2\left(\frac{\alpha}{2}\right)} \, d\alpha$$

En faisant le changement de variable $\sin \frac{\alpha}{2} = \sin \frac{\alpha_i(\ell_R)}{2} \sin \theta$ et en utilisant (5.49), on obtient finalement

$$\mathcal{P}_{tot}(\alpha_i) = \varphi(\alpha_i(\ell_R))\mathcal{F}\ell_R \qquad \text{avec} \qquad \varphi(\alpha) := -3 + 2\sin^2\left(\frac{\alpha}{2}\right) + \frac{4\mathsf{J}(\alpha)}{\mathsf{K}(\alpha)}$$

où $J(\alpha)$ est l'intégrale elliptique de première espèce,

$$\mathsf{J}(\alpha) := \int_0^{\pi/2} \sqrt{1 - \sin^2\left(\frac{\alpha}{2}\right) \sin^2 \theta} \ d\theta.$$

FIGURE 5.4 – À gauche : les configurations d'équilibre pour $\mathcal{F} > \mathcal{F}_0$. Ici $\mathcal{F} = 36\mathcal{F}_0$ et il existe 7 configurations d'équilibre. À droite : graphe de la fonction $\alpha \mapsto \varphi(\alpha)$ et valeurs de l'énergie potentielle pour les 7 configurations d'équilibre associées à \mathcal{F} .

Tout se ramène donc à l'étude de la fonction φ . Son graphe est représenté sur la figure 5.4 (droite). On voit qu'elle est décroissante de 1 à -1 quand α croît de 0 à π . Compte tenu de (5.50), cela permet d'ordonner les énergies potentielles des configurations d'équilibre

 $\mathcal{P}_{\texttt{tot}}(\alpha_0) < \dots < \mathcal{P}_{\texttt{tot}}(\alpha_i) < \dots \mathcal{P}_{\texttt{tot}}(\alpha_n) \leq \mathcal{P}_{\texttt{tot}}(0) = \mathcal{F}\ell_{\mathsf{R}}$

et de conclure que $\pm \alpha_0$ minimisent l'énergie potentielle sur \mathcal{C}_{ad} . En résumé

P-5.17 (Stabilité des configurations d'équilibre pour le problème du flambement d'Euler). Tant que la force ne dépasse pas la charge de flambement, i.e. quand $\mathcal{F} \leq \mathcal{F}_0$, la configuration rectiligne $\alpha = 0$ est l'unique configuration d'équilibre, elle minimise l'énergie potentielle et est donc stable. Dès que la force dépasse la charge de flambement, i.e. quand $\mathcal{F} > \mathcal{F}_0$, la configuration rectiligne n'est plus stable et les deux configurations d'équilibre $\pm \alpha_0$ situées sur la première branche bifurquée deviennent les minimiseurs de l'énergie potentielle et sont donc stables.

6. La question de la stabilité des autres configurations d'équilibre. L'analyse précédente ne permet pas de conclure quant à la stabilité ou l'instabilité des configurations $\pm \alpha_i$ pour i > 1. D'un point de vue pratique cela n'est pas vraiment important car le scénario probable si l'on augmente progressivement la force sera le suivant : (i) tant que $\mathcal{F} \leq \mathcal{F}_0$ la tige reste dans sa configuration de référence rectiligne ; (ii) dès que $\mathcal{F} > \mathcal{F}_0$ la tige va flamber en suivant la première branche bifurquée. Notons que la configuration d'équilibre de la tige correspondra toujours au minimum de l'énergie potentielle.

Chapitre 6

Dynamique des milieux curvilignes

6.1 Cinématique des milieux curvilignes

Dans toute la suite, sauf mention explicite du contraire, le mouvement est étudié à partir d'un instant de référence que l'on choisit comme origine des temps. Autrement dit le mouvement est étudié à partir de t = 0.

6.1.1 Rappels

Les notions fondamentales de la cinématique des milieux curvilignes ont été introduites au chapitre 1 et nous ne ferons que rappeler ici les principales en renvoyant au chapitre 1 pour les détails. Nous les complèterons par une description de la cinématique des *ondes de discontinuité* dans un milieu curviligne, car ce phénomène joue un rôle essentiel dans sa dynamique.

Description lagrangienne du mouvement

On choisit de suivre les points matériels dans leur mouvement. Un point matériel est identifié avec son abscisse curviligne S dans sa configuration de référence $S \mapsto \mathbf{x}_{\mathsf{R}}(S)$. Le mouvement du milieu curviligne est décrit par l'application

$$(S,t) \mapsto \mathbf{x}(S,t), \qquad (S,t) \in \mathbb{C}_{\mathsf{R}} \times [0,\infty)$$

où $\mathbf{x}(S, t)$ désigne donc la position à l'instant t du point matériel qui se trouve à l'abscisse curviligne S dans la configuration de référence. Les principales grandeurs cinématiques s'en déduisent par dérivation et sont rappelées dans le tableau ci-dessous.
Dénomination	Notation	Relation	
vitesse de déplacement	v	$\mathbf{v}=\dot{\mathbf{x}}=\dot{oldsymbol{\xi}}$	
$acc\acute{e}l\acute{e}ration$	γ	$egin{aligned} oldsymbol{\gamma} = \dot{\mathbf{v}} = \ddot{\mathbf{x}} = \ddot{oldsymbol{\xi}} \end{aligned}$	
vitesse d'extension	ŝ	$\dot{\mathbf{s}}' = \mathbf{v}' \cdot \mathbf{t}$	
vitesse de déformation d'extension	Ė	$\dot{\varepsilon} = \dot{\mathbf{s}}' = \mathbf{v}' \cdot \mathbf{t}$	
vitesse de rotation	ŵ	$\dot{\omega} \ \mathbf{x}'\ = \mathbf{v}' \cdot \mathbf{n}$	

TABLE 6.1 – Définition des principales grandeurs cinématiques associées au mouvement en représentation lagrangienne, cf Chapitre 1. Le prime désigne la dérivée partielle par rapport à S, le point la dérivée partielle par rapport à t.

6.1.2 Description eulérienne du mouvement

Dans la description eulérienne, la configuration du milieu à chaque instant est une courbe paramétrée par son abscisse curviligne,

$$(s,t) \mapsto \mathbf{x}(s,t), \qquad t > 0, \quad s \in \mathbb{C}(t)$$

où $\mathbb{C}(t)$ désigne l'intervalle de définition de l'abscisse curviligne à l'instant t. Il dépend en général du temps, car la longueur du milieu varie, sa longueur courante $\ell(t)$ étant une inconnue à déterminer. Comme le point géométrique d'abscisse curviligne s correspond en général¹ à deux points matériels différents, pour récupérer la référence aux points matériels, il faut se donner aussi la vitesse d'extension eulérienne, i.e. l'application

$$(s,t)\mapsto \upsilon(s,t)$$

qui donne la vitesse d'extension du milieu au point d'abscisse curviligne s à l'instant t. Elle permet de retrouver l'abscisse curviligne $\mathbf{s}(S,t)$ du point matériel S à l'instant t en intégrant l'équation différentielle

$$\frac{\partial \mathbf{s}}{\partial t}(S,t) = v(\mathbf{s}(S,t),t), \quad \mathbf{s}(S,0) = S,$$

où on a supposé que la configuration de référence coïncidait avec la configuration initiale. De façon générale, on utilise v pour définir la *dérivée* dite *matérielle* :

$$\frac{D}{Dt} := \frac{\partial}{\partial t} + \upsilon \frac{\partial}{\partial s} \qquad \text{(dérivée matérielle)}, \tag{6.1}$$

qui sert dans la description eulérienne à définir la variation par rapport au temps de quantités attachées à un point matériel. Cela conduit en particulier au tableau suivant :

^{1.} Quand le milieu est inextensible, s = S et les représentations eulérienne et la grangienne coïncident. La vitesse d'extension v est identiquement nulle.

Dénomination	Notation	Relation	
vitesse de déplacement	v	$\mathbf{v} = \frac{D\mathbf{x}}{Dt}$	
$acc\'el\'eration$	γ	$oldsymbol{\gamma} = rac{D \mathbf{v}}{D t}$	
vitesse d'extension	v	$\upsilon = \frac{Ds}{Dt}$	
vitesse de déformation d'extension	$rac{\partial v}{\partial s}$	$\frac{\partial v}{\partial s} = \frac{\partial \mathbf{v}}{\partial s} \cdot \mathbf{t}$	
vitesse de rotation	$\frac{D\alpha}{Dt}$	$\frac{D\alpha}{Dt} = \frac{\partial \mathbf{v}}{\partial s} \cdot \mathbf{n}$	

TABLE 6.2 – Définition des principales grandeurs cinématiques associées au mouvement en représentation eulérienne, cf Chapitre 1. Tous les champs sont des fonctions de (s, t).

6.1.3 Cinématique des ondes de choc et d'accélération

La vitesse et l'accélération des points matériels d'un milieu curviligne en mouvement ne sont pas toujours des fonctions régulières de l'espace et du temps, aussi bien en description lagrangienne qu'eulérienne. Lorsque les points de discontinuité sont eux-mêmes dépendant du temps, *i.e.* lorsque la discontinuité se propage, on parle d'*onde de discontinuité*. Quand la vitesse est discontinue, on parle d'*onde de choc*, alors que, quand la vitesse est continue mais l'accélération est discontinue, on parle d'*onde d'accélération*. Dans tous les cas, la position (et donc le déplacement) est une fonction continue du temps et de l'espace.

Description lagrangienne.

D-6.1. La cinématique lagrangienne d'une onde de discontinuité est décrite par la fonction $t \mapsto S_o(t)$ qui donne le point matériel qui est "traversé" par l'onde à l'instant t. Nous supposerons cette fonction régulière, au moins continue et continûment différentiable par morceau. Sa dérivée $\dot{S}_o(t)$ est la célérité de propagation de la discontinuité par rapport à la matière et elle représente donc la distance parcourue par l'onde par unité de temps dans la configuration de référence. Cette célérité est supposée finie et non nulle pour que l'on puisse parler de propagation :

$$0 < \mathbf{S}_o(t) < \infty.$$

Soit G une grandeur lagrangienne discontinue sur l'onde. On suppose qu'il est possible de définir une valeur à gauche G^- et une valeur à droite G^+ (l'orientation gauche-droite étant donnée par le sens croissant de l'abscisse curviligne) :

$$\mathbf{G}^{\pm}(\mathbf{S}_o(t),t) := \lim_{h \downarrow 0} \mathbf{G}(\mathbf{S}_o(t) \pm h, t).$$

On notera que dans la mesure où l'onde se propage, on aurait pu définir les valeurs G^{\pm} à partir des limites *avant* et *après* passage de l'onde au point matériel concerné :

$$\mathbf{G}^{\pm}(\mathbf{S}_o(t),t) = \lim_{h \downarrow 0} \mathbf{G}(\mathbf{S}_o(t), t \mp h).$$

Ceci permet de définir un saut $\llbracket G \rrbracket$ et une valeur moyenne $\langle G \rangle$ de la grandeur au passage de l'onde. En supposant connu le mouvement $t \mapsto S_o(t)$ de l'onde, le saut et la valeur moyenne peuvent être considérés comme des fonctions du temps uniquement :

$$[\![\mathbf{G}]\!](t) := \mathbf{G}^+(\mathbf{S}_o(t), t) - \mathbf{G}^-(\mathbf{S}_o(t), t), \qquad \langle \mathbf{G} \rangle(t) := \frac{1}{2} \left(\mathbf{G}^+(\mathbf{S}_o(t), t) + \mathbf{G}^-(\mathbf{S}_o(t), t) \right).$$

Il est possible d'exprimer la dérivée par rapport au temps du saut ou de la valeur moyenne en fonction du saut ou de la valeur moyenne des dérivées spatiale et temporelle d'une grandeur (et de la célérité de l'onde). Ce résultat fait l'objet de la propriété fondamentale suivante :

P-6.1 (Conditions de compatibilité cinématique des discontinuités en description lagrangienne). Soit G une grandeur discontinue sur une onde définie par $t \mapsto S_o(t)$ et admettant ainsi que ses dérivées premières G' et \dot{G} des limites à gauche et à droite sur l'onde. Alors la dérivée du saut ou de la valeur moyenne est reliée au saut ou à la valeur moyenne des dérivées par

$$\frac{d}{dt} \llbracket \mathbf{G} \rrbracket = \dot{\mathbf{S}}_o \llbracket \mathbf{G}' \rrbracket + \llbracket \dot{\mathbf{G}} \rrbracket, \qquad \frac{d}{dt} \langle \mathbf{G} \rangle = \dot{\mathbf{S}}_o \langle \mathbf{G}' \rangle + \langle \dot{\mathbf{G}} \rangle$$
(6.2)

Démonstration. La preuve tient essentiellement à l'interversion de deux passages à la limite (l'un pour la dérivée en temps, l'autre pour la définition des limites gauche et droite). En admettant que l'on peut permuter les limites (ce qui nécessite un peu de régularité), on a

$$\begin{aligned} \frac{d}{dt} \mathbf{G}^{\pm}(\mathbf{S}_{o}(t), t) &:= \quad \frac{d}{dt} \lim_{h \downarrow 0} \mathbf{G}(\mathbf{S}_{o}(t) \pm h, t) = \lim_{h \downarrow 0} \frac{d}{dt} \mathbf{G}(\mathbf{S}_{o}(t) \pm h, t) \\ &= \quad \lim_{h \downarrow 0} \mathbf{G}'(\mathbf{S}_{o}(t) \pm h, t) \dot{\mathbf{S}}_{o}(t) + \lim_{h \downarrow 0} \dot{\mathbf{G}}(\mathbf{S}_{o}(t) \pm h, t) \\ &= \quad \mathbf{G}'^{\pm}(\mathbf{S}_{o}(t), t) \dot{\mathbf{S}}_{o}(t) + \dot{\mathbf{G}}^{\pm}(\mathbf{S}_{o}(t), t). \end{aligned}$$

Il suffit alors de prendre le saut ou la valeur moyenne pour arriver au résultat.

Ces conditions de compatibilité sont d'un grand intérêt pratique. On s'en sert en particulier pour obtenir des relations entre les sauts des dérivées de la position dans le cas d'une onde de choc ou d'accélération. **P-6.2** (Conditions de compatibilité sur une onde de choc ou une onde d'accélération). Sur une onde de choc, comme la position \mathbf{x} est continue, les sauts de ses dérivées $\dot{\mathbf{x}}$ et \mathbf{x}' sont reliés par

$$\llbracket \dot{\mathbf{x}} \rrbracket + \dot{\mathbf{S}}_o \llbracket \mathbf{x}' \rrbracket = \mathbf{0}.$$

Par conséquent, si la tangente \mathbf{t} est continue, alors le saut de vitesse est nécessairement suivant la tangente et est relié au saut de déformation d'extension par

$$\llbracket \mathbf{v} \rrbracket + \dot{\mathbf{S}}_o \llbracket \varepsilon \rrbracket \mathbf{t} = \mathbf{0}.$$

Sur une onde d'accélération, comme la position \mathbf{x} et ses dérivées premières $\dot{\mathbf{x}}$ et \mathbf{x}' sont continues, les sauts de ses dérivées secondes sont reliés par

$$[\mathbf{\dot{x}'}] + \dot{\mathbf{S}}_o[\mathbf{x''}] = \mathbf{0}, \qquad [\mathbf{\ddot{x}}] - \dot{\mathbf{S}}_o^2[\mathbf{x''}] = \mathbf{0}.$$

Par conséquent, si la tangente t et la courbure C sont continues, alors la déformation est continue, le saut d'accélération est nécessairement suivant la tangente et est relié au saut du gradient de la déformation d'extension par

$$\llbracket \boldsymbol{\gamma}
rbracket = \dot{\mathtt{S}}_o^2 \llbracket arepsilon'
rbracket \mathtt{t}$$

Démonstration. Pour une onde de choc, la relation $[\![\dot{\mathbf{x}}]\!] + \dot{\mathbf{S}}_o[\![\mathbf{x}']\!] = \mathbf{0}$ est une conséquence directe de (6.2) et du fait que $[\![\mathbf{x}]\!] = \mathbf{0}$. Comme $\mathbf{v} = \dot{\mathbf{x}}$ et $\mathbf{x}' = (1 + \varepsilon)\mathbf{t}$, on obtient $[\![\mathbf{v}]\!] + \dot{\mathbf{S}}_o[\![\varepsilon]\!]\mathbf{t} = \mathbf{0}$ si $[\![\mathbf{t}]\!] = \mathbf{0}$.

Pour une onde d'accélération, comme $\llbracket \mathbf{x} \rrbracket = \llbracket \dot{\mathbf{x}} \rrbracket = \llbracket \mathbf{x}' \rrbracket = \mathbf{0}$, la condition (6.2) donne

$$\llbracket \dot{\mathbf{x}}' \rrbracket + \dot{\mathbf{S}}_o \llbracket \mathbf{x}'' \rrbracket = \mathbf{0}, \qquad \llbracket \ddot{\mathbf{x}} \rrbracket + \dot{\mathbf{S}}_o \llbracket \dot{\mathbf{x}}' \rrbracket = \mathbf{0}.$$

Il suffit de reporter la première relation dans la deuxième pour obtenir $[\![\ddot{\mathbf{x}}]\!] - \dot{\mathbf{S}}_o^2[\![\mathbf{x}'']\!] = \mathbf{0}$. Comme $\mathbf{x}' = (1 + \varepsilon)\mathbf{t}$ et que $\mathbf{t}' = (1 + \varepsilon)\mathbf{Cn}$, on obtient

$$\mathbf{x}'' = \varepsilon' \mathbf{t} + (1 + \varepsilon)^2 \mathbf{Cn}.$$

Si $\llbracket t \rrbracket = 0$, alors $\llbracket \varepsilon \rrbracket = 0$ puisque $\llbracket x' \rrbracket = 0$. Si de plus $\llbracket C \rrbracket = 0$, alors $\llbracket x'' \rrbracket = \llbracket \varepsilon' \rrbracket t$ et finalement l'expression de $\llbracket \gamma \rrbracket$ en reportant.

Description eulérienne.

La cinématique de la même onde de discontinuité est donnée par la fonction $t \mapsto \mathbf{s}_o(t)$ qui donne l'abscisse curviligne qui est "traversée" par l'onde à l'instant t. Sa dérivée $\dot{\mathbf{s}}_o(t)$ est la *la célérité* de propagation de la discontinuité par rapport à l'espace et représente la distance "réelle" parcourue dans le milieu par l'onde par unité de temps.

On peut établir des conditions de compatibilité entre les sauts et les valeurs moyennes de grandeurs eulériennes discontinues. La démarche est la même que dans le cas lagrangien et les démonstrations sont laissées à titre d'exercice. **Exercice 6.1.** Etablir les conditions de compatibilité suivantes pour une grandeur eulérienne

$$\frac{d}{dt} \llbracket \mathbf{G} \rrbracket = \dot{\mathbf{s}}_o \left[\left[\frac{\partial \mathbf{G}}{\partial s} \right] \right] + \left[\left[\frac{\partial \mathbf{G}}{\partial t} \right] \right], \qquad \frac{d}{dt} \langle \mathbf{G} \rangle = \dot{\mathbf{s}}_o \left\langle \frac{\partial \mathbf{G}}{\partial s} \right\rangle + \left\langle \frac{\partial \mathbf{G}}{\partial t} \right\rangle.$$

En déduire que si la tangente est continue, alors le saut de vitesse sur une onde de choc est tangentiel et s'exprime en fonction du saut de vitesse d'extension : $[v] = \dot{s}_o[v]t$.

Comparaison des deux descriptions.

On passe de la description lagrangienne à la description eulérienne à l'aide de l'application $(S,t) \mapsto \mathbf{s}(S,t)$ donnant l'abscisse curviligne actuelle en fonction de l'abscisse curviligne de référence :

$$\mathbf{s}_o(t) = \mathbf{s}(\mathbf{S}_o(t), t)$$

En particulier, en dérivant par rapport au temps on obtient la relation entre les deux célérités :

$$\dot{\mathbf{s}}_{o}(t) = \dot{\mathbf{S}}_{o}(t) \left(\frac{\partial \mathbf{s}}{\partial S}\right)^{\pm} (\mathbf{S}_{o}(t), t) + \left(\frac{\partial \mathbf{s}}{\partial t}\right)^{\pm} (\mathbf{S}_{o}(t), t), \tag{6.3}$$

qui fait intervenir la déformation d'extension et la vitesse d'extension du milieu (qui sont *a priori* discontinues sur une onde de choc).

FIGURE 6.1 – Cinématique d'un onde de discontinuité en représentation lagrangienne (à gauche) et eulérienne (à droite)

6.2 Le principe fondamental de la dynamique et les équations du mouvement

Pour établir les équations du mouvement nous allons suivre une démarche en tout point analogue à celle qui nous avait conduits aux équations d'équilibre au chapitre 2, en remplaçant simplement le principe fondamental de la statique par celui de la dynamique. En particulier, la définition des efforts intérieurs demeure inchangée et la classification des efforts extérieurs reste la même. Il faut seulement inclure la notion de quantité de mouvement et de moment cinétique. Ceci va faciliter l'établissement des équations du mouvement et permettre de se focaliser sur ce qui change par rapport à la statique.

6.2.1 Le principe fondamental de la dynamique

Sa formulation

Rappelons le principe pour un solide rigide avant de l'étendre à un milieu continu curviligne.

Principe fondamental de la dynamique pour un solide rigide. Le mouvement d'un solide rigide par rapport à un référentiel (galiléen ou non) est tel qu'à chaque instant :

1. la résultante des forces extérieures (en y incluant les forces d'inertie d'entrainement ou de Coriolis dans le cas d'un référentiel non galiléen) est égale à la variation de la quantité de mouvement;

2. le moment résultant des efforts extérieurs (y compris ceux dus aux forces d'inertie) est égal à la variation du moment cinétique, ces moments étant pris par rapport à un point fixe arbitraire du référentiel.

Il s'agit d'étendre ce principe aux milieux continus curvilignes déformables en exigeant, comme on l'a fait en statique, qu'il soit satisfait non seulement par l'ensemble du milieu mais aussi par toute souspartie. Ces sous-parties doivent être nécessairement des sous-ensembles *matériels* du milieu curviligne contenant le même ensemble de points matériels sur l'intervalle de temps considéré. On adopte donc le principe suivant :

D-6.2 (Principe fondamental de la dynamique (PFD) pour un milieu continu curviligne). A chaque instant, le mouvement d'un milieu continu curviligne par rapport à un référentiel (galiléen ou non) doit être tel que, pour toute sous-partie matérielle du milieu :

1. la résultante des forces extérieures (en y incluant les forces d'inertie d'entrainement ou de Coriolis dans le cas d'un référentiel non galiléen) agissant sur la sous-partie est égale à la variation de la quantité de mouvement de cette sous-partie;

2. le moment résultant des efforts extérieurs (y compris ceux dus aux forces d'inertie) agissant sur la sous-partie est égal à la variation du moment cinétique de cette sous-partie, ces moments étant pris par rapport à un point fixe arbitraire du référentiel.

Comme en statique, les efforts extérieurs auxquels est soumise une sous-partie consiste, à l'instant et dans la configuration considérés : (i) aux efforts que l'extérieur au milieu fait subir aux points matériels de cette sous-partie; (ii) aux efforts intérieurs (directs ou réciproques) au milieu curviligne aux points de coupure.

Pour pouvoir appliquer ce principe, il faut commencer par définir la quantité de mouvement et le moment cinétique d'une sous-partie matérielle d'un milieu curviligne. Ceci fait l'objet de la définition suivante qui repose sur une hypothèse fondamentale que nous commenterons après.

D-6.3 (Quantité de mouvement et moment cinétique d'un milieu curviligne). Soit $(S,t) \mapsto \mathbf{x}(S,t)$ le mouvement par rapport à un référentiel d'un milieu curviligne en description lagrangienne et $S \mapsto \varrho_R(S)$ sa densité linéique de masse dans sa configuration de référence $S \mapsto \mathbf{x}_R(S)$, $S \in \mathbb{C}_R$.

1. La quantité de mouvement du sous-ensemble $\mathbb{I}_R \subset \mathbb{C}_R$ du milieu à l'instant t est donnée par

$$\mathbf{P}(\mathbb{I}_{\!\scriptscriptstyle R},t):=\int_{\mathbb{I}_{\!\scriptscriptstyle R}}\varrho_{\scriptscriptstyle R}(S)\frac{\partial \mathbf{x}}{\partial t}(S,t)dS.$$

2. Le moment cinétique du sous-ensemble $\mathbb{I}_R \subset \mathbb{C}_R$ du milieu à l'instant t par rapport au point géométrique \mathbf{x}_0 est donné par

$$\mathcal{L}_{\mathbf{x}_0}(\mathbb{I}_{\mathbb{R}},t) := \int_{\mathbb{I}_{\mathbb{R}}} \varrho_{\mathbb{R}}(S) \big(\mathbf{x}(S,t) - \mathbf{x}_0 \big) \wedge \frac{\partial \mathbf{x}}{\partial t}(S,t) dS.$$

On notera qu'en adoptant une description lagrangienne tout sous-ensemble \mathbb{I}_{R} de \mathbb{C}_{R} indépendant du temps est automatiquement une sous-partie matérielle du milieu. L'hypothèse fondamentale qui est faite dans les définitions ci-dessus est que seules les vitesses de déplacement $\mathbf{v} = \dot{\mathbf{x}}$ des points matériels sont prises en compte, pas les vitesses de rotation $\dot{\omega}$. Autrement dit, on néglige les effets d'inertie de rotation. Ceci a des conséquences importantes sur les propriétés des équations de la dynamique qui seront obtenues et sur les phénomènes physiques dont on peut rendre compte.

Avec ces définitions de la quantité de mouvement et du moment cinétique, nous sommes en mesure de formuler de façon précise le PFD appliqué aux milieux curvilignes. Il suffit de préciser la famille de sous-parties qui doivent le respecter. Comme en statique nous nous limiterons aux sous-ensembles de \mathbb{C}_{R} suivants :

• dans le cas d'une courbe ouverte où $\mathbb{C}_R = (0, \ell_R)$, ce sont les intervalles de la forme (S, S') avec $0 \leq S < S' \leq \ell_R$;

• dans le cas d'une courbe fermée où $\mathbb{C}_{R} = [0, \ell_{R})$, il faut en plus rajouter un voisinage de la "fausse extrémité" S = 0. Ce sont donc les intervalles de la forme (S, S') avec $0 \leq S < S' \leq \ell_{R}$ auxquels on rajoute les réunions d'intervalles de la forme $[0, S) \cup (S', \ell_{R})$ avec $0 < S \leq S' < \ell_{R}$.

Par conséquent, le principe fondamental exige que, pour n'importe quel sous-ensemble \mathbb{I}_{R} de ce type, les deux conditions suivantes soient satisfaites à chaque instant t:

$$\begin{cases} \mathbf{0} = -\frac{d}{dt} \mathbf{P}(\mathbb{I}_{\mathbb{R}}, t) + \text{résultante des forces extérieures s'exerçant sur } \mathbb{I}_{\mathbb{R}} \text{ à l'instant } t \\ 0 = -\frac{d}{dt} \mathcal{L}_{\mathbf{x}_0}(\mathbb{I}_{\mathbb{R}}, t) + \text{moment résultant en } \mathbf{x}_0 \text{ des efforts extérieurs s'exerçant sur } \mathbb{I}_{\mathbb{R}} \text{ à l'instant } t \end{cases}$$

Sa mise en oeuvre

On voit que la mise en oeuvre du PFD nécessite de calculer la dérivée de la quantité de mouvement et du moment cinétique par rapport au temps. Il s'agit de dériver une intégrale dont les bornes sont fixes (pour un $\mathbb{I}_{\mathbb{R}}$ donné) et dont l'intégrande dépend du temps. Si cette intégrande est une fonction régulière du temps (continûment différentiable par exemple), cela ne présente pas de difficultés, on dérive simplement sous le signe somme. Par contre, il faut faire attention lorsque l'intégrande n'est pas régulier. C'est le cas lorsque le sous-ensemble du milieu est traversé par une *onde de choc* car la vitesse des points matériels y est alors discontinue. Dans ce cas, pour pouvoir dériver, il faut commencer par isoler ces points de discontinuité qui de plus sont dépendants du temps. En outre, la cinématique de ces ondes de choc n'étant pas connue *a priori*, elle constitue une inconnue du problème de dynamique. Comme elle peut être très complexe, pour simplifier la présentation nous n'envisagerons que le cas d'un nombre fini d'ondes de choc se propageant de façon régulière dans le milieu *sans se croiser*. Ceci fait l'objet de l'hypothèse suivante²:

C-6.4. (Hypothèse sur la cinématique des ondes de choc) Le milieu continu est parcouru par au plus un nombre fini d'ondes de choc qui sont des points dépendant du temps où la vitesse de déplacement du milieu est discontinue. Dans le cas où des ondes de choc existent, la trajectoire de l'onde d'indice $i \in \{1, \dots, n\}$ en description lagrangienne est donnée par la fonction $S_o^i : t \mapsto S_o^i(t) \in \mathbb{C}_R$, $S_o^i(t)$ représentant le point matériel où se trouve l'onde de choc à l'instant t. Chacune de ces fonctions est supposée au moins continûment différentiable par morceau, la dérivée $\dot{S}_o^i(t)$ représentant la célérité lagrangienne de l'onde de choc i à l'instant t. De plus, quand il existe plusieurs ondes, on suppose qu'elles ne se croisent pas et que la numérotation a été choisie de façon à ce que

 $\mathbf{S}_o^1(t) < \mathbf{S}_o^2(t) < \dots < \mathbf{S}_o^n(t), \quad \forall t.$

FIGURE 6.2 – Cinématique de deux ondes de choc en représentation lagrangienne : à gauche, cinématique qui respecte l'hypothèse **C-6.4**; à droite, cinématique qui ne la respecte pas.

On complète l'hypothèse C-6.4 en supposant qu'à chaque instant t:

• la vitesse est discontinue sur une onde de choc, mais admet une limite à droite et une limite à

^{2.} Cette hypothèse de non croisement est évidemment un peu trop restrictive. Il est n'est pas rare de rencontrer des cas où elle n'est pas vérifiée et il est nécessaire de préciser alors les changements à apporter à la démarche et les éventuelles conditions supplémentaires à respecter pour que le PFD soit vérifié.

gauche, ce qui permet de définir son saut :

$$\mathbf{v}^{\pm}(\mathbf{S}_{o}^{i}(t),t) := \lim_{h \downarrow 0} \dot{\mathbf{x}}(\mathbf{S}_{o}^{i}(t) \pm h, t), \qquad \llbracket \mathbf{v} \rrbracket(\mathbf{S}_{o}^{i}(t),t) = \mathbf{v}^{+}(\mathbf{S}_{o}^{i}(t),t) - \mathbf{v}^{-}(\mathbf{S}_{o}^{i}(t),t).$$

On remarquera que, quand les ondes de choc se croisent, on peut définir plus que deux limites aux points de croisement, cf la figure 6.2 où on peut définir quatre limites au point de croisement des deux ondes;

• l'accélération $\gamma(S,t) := \ddot{\mathbf{x}}(S,t)$ est définie en tout point S qui n'appartient pas à une onde de choc ou d'accélération. Sur une onde d'accélération, l'accélération admet des limites à droite et à gauche.

Moyennant ces différentes hypothèses, on peut calculer les dérivées de la quantité de mouvement et du moment cinétique en s'appuyant sur la formule de dérivation suivante dont la démonstration est omise³ et qui concerne la dérivation d'intégrale dont l'intégrande n'est que régulier par morceau :

Formule de dérivation. Soient s_0 , s_1 , t_0 et t_1 quatre réels tels que $s_0 < s_1$ et $t_0 < t_1$. Soit $t \mapsto \mathbf{S}(t)$ une fonction dérivable sur (t_0, t_1) et soit $(s, t) \mapsto \phi(s, t)$ une fonction continûment différentiable dans $(s_0, s_1) \times (t_0, t_1)$ sauf sur la courbe $\mathcal{C} = \{(\mathbf{S}(t), t) : t \in (t_0, t_1)\}$ où elle est discontinue en y admettant une limite à gauche $\phi^-(\mathbf{S}(t), t)$ et une limite à droite $\phi^+(\mathbf{S}(t), t)$. Alors on a la formule de dérivation

$$\frac{d}{dt}\int_{s_0}^{s_1}\phi(s,t)ds = \int_{s_0}^{\mathbf{S}(t)}\frac{\partial\phi}{\partial t}(s,t)ds - \llbracket\phi\rrbracket(\mathbf{S}(t),t)\frac{d\mathbf{S}}{dt}(t) + \int_{\mathbf{S}(t)}^{s_1}\frac{\partial\phi}{\partial t}(s,t)ds$$
(6.4)

qui vaut pour tout $t \in (t_0, t_1)$ et où $\llbracket \phi \rrbracket = \phi^+ - \phi^-$ désigne le saut de ϕ sur S.

En l'appliquant à $\mathbf{P}(\mathbb{I}_{\mathsf{R}}, t)$ on obtient

$$\frac{d}{dt}\mathbf{P}(\mathbb{I}_{\mathsf{R}},t) = \int_{\mathbb{I}_{\mathsf{R}} \setminus (\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}})} \varrho_{\mathsf{R}}(S)\boldsymbol{\gamma}(S,t)dS - \sum_{\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}}} \llbracket \varrho_{\mathsf{R}}\mathbf{v} \rrbracket (\mathbf{S}_{o}^{i}(t),t) \dot{\mathbf{S}}_{o}^{i}(t),$$
(6.5)

où $\mathbb{S}_{_{\mathsf{R}}}(t)$ désigne l'ensemble des points matériels traversés par l'onde de choc à l'instant t

$$\mathbb{S}_{\mathsf{R}}(t) = \{ \mathbf{S}_o^1(t), \cdots, \mathbf{S}_o^n(t) \}.$$

3. Si l'on raisonne formellement, la démonstration ne présente pas de difficulté :

(i) on décompose l'intégrale à dériver en deux morceaux :

$$\int_{s_0}^{s_1} \phi(s,t) ds = \int_{s_0}^{\mathbf{S}(t)} \phi(s,t) ds + \int_{\mathbf{S}(t)}^{s_1} \phi(s,t) ds;$$

(ii) on dérive chaque morceau en tenant compte du fait qu'une borne est variable. Par exemple,

$$\frac{d}{dt}\int_{s_0}^{\mathbf{S}(t)}\phi(s,t)ds = \int_{s_0}^{\mathbf{S}(t)}\frac{\partial\phi}{\partial t}(s,t)ds + \frac{d\mathbf{S}}{dt}(t)\phi^-(\mathbf{S}(t),t);$$

(iii) on regroupe les résultats pour arriver à (6.4).

Toutes ces étapes demandent évidemment un peu de régularité.

En l'appliquant à $L_{\mathbf{x}_0}(\mathbb{I}_{\mathsf{R}}, t)$, après avoir remarqué qu'aux points où l'accélération est définie on a

$$\frac{\partial}{\partial t} \Big((\mathbf{x}(S,t) - \mathbf{x}_0) \wedge \dot{\mathbf{x}}(S,t) \Big) = (\mathbf{x}(S,t) - \mathbf{x}_0) \wedge \boldsymbol{\gamma}(S,t),$$

on obtient

$$\frac{d}{dt} L_{\mathbf{x}_0}(\mathbb{I}_{\mathsf{R}}, t) = \int_{\mathbb{I}_{\mathsf{R}} \setminus (\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}})} \varrho_{\mathsf{R}}(S)(\mathbf{x}(S, t) - \mathbf{x}_0) \wedge \boldsymbol{\gamma}(S, t) dS - \sum_{\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}}} (\mathbf{x}(\mathbf{S}_{o}^{i}(t), t) - \mathbf{x}_0) \wedge \llbracket \varrho_{\mathsf{R}} \mathbf{v} \rrbracket (\mathbf{S}_{o}^{i}(t), t) \dot{\mathbf{S}}_{o}^{i}(t), t) dS - \sum_{\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}}} (\mathbf{x}(\mathbf{S}_{o}^{i}(t), t) - \mathbf{x}_0) \wedge \llbracket \varrho_{\mathsf{R}} \mathbf{v} \rrbracket (\mathbf{S}_{o}^{i}(t), t) \dot{\mathbf{S}}_{o}^{i}(t), t) dS - \sum_{\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}}} (\mathbf{x}(\mathbf{S}_{o}^{i}(t), t) - \mathbf{x}_0) \wedge \llbracket \varrho_{\mathsf{R}} \mathbf{v} \rrbracket (\mathbf{S}_{o}^{i}(t), t) dS - \sum_{\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}}} (\mathbf{x}(\mathbf{S}_{o}^{i}(t), t) - \mathbf{x}_0) \wedge \llbracket \varrho_{\mathsf{R}} \mathbf{v} \rrbracket (\mathbf{S}_{o}^{i}(t), t) dS - \sum_{\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}}} (\mathbf{x}(\mathbf{S}_{o}^{i}(t), t) - \mathbf{x}_0) \wedge \llbracket \varrho_{\mathsf{R}} \mathbf{v} \rrbracket (\mathbf{S}_{\mathsf{R}}^{i}(t), t) dS - \sum_{\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}}} (\mathbf{x}(\mathbf{S}_{\mathsf{R}}^{i}(t), t) - \mathbf{x}_0) \wedge \llbracket \varrho_{\mathsf{R}} \mathbf{v} \rrbracket (\mathbf{S}_{\mathsf{R}}^{i}(t), t) dS - \sum_{\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}}} (\mathbf{x}(\mathbf{S}_{\mathsf{R}}^{i}(t), t) + \mathbf{x}_0) \wedge \llbracket (\mathbf{S}_{\mathsf{R}}^{i}(t), t) dS - \sum_{\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}}} (\mathbf{x}(\mathbf{S}_{\mathsf{R}}^{i}(t), t) dS - \sum_{\mathbb{S}_{\mathsf{R}}(t) \cap \mathbb{I}_{\mathsf{R}}} (\mathbf{x}(\mathbf{S}_{\mathsf{R}}^$$

(6.6)

où l'on a tenu compte que $(S, t) \mapsto \mathbf{x}(S, t)$ est continue. Noter que la masse linéique de référence ϱ_{R} figure à l'intérieur du symbole de saut dans (6.5) et (6.6) car ϱ_{R} peut être discontinue dans un milieu hétérogène et cette interface peut être traversée par une onde de choc à l'instant t.

Si l'on compare les expressions obtenues avec celles donnant la résultante et le moment des efforts extérieurs, cf par exemple (2.4)–(2.7), on voit que $-\varrho_R \gamma$ peut être identifiée à une force répartie (par unité de longueur de référence) et $[\![\varrho_R \mathbf{v}]\!]\dot{\mathbf{S}}_o^i$ à une force ponctuelle s'exerçant sur le point matériel en $S = \mathbf{S}_o^i(t)$. On peut donc assimiler l'effet des ondes de choc à celui d'efforts ponctuels mobiles. Ces remarques permettent d'abréger l'obtention des équations du mouvement, puisqu'il suffit de reprendre la démarche suivie en statique en y introduisant ces forces réparties ou ponctuelles supplémentaires.

6.2.2 Les équations locales du mouvement

En représentation la grangienne

Comme les variations de la quantité de mouvement et du moment cinétique peuvent être assimilées à une résultante et un moment résultant de forces ponctuelles ou réparties, la démarche suivie au chapitre 2 pour montrer l'équivalence entre le principe fondamental de la statique et les équations d'équilibre locales s'applique encore. On peut donc aller directement au résultat final après avoir rappelé les principales hypothèses faites sur les efforts extérieurs. Le milieu est supposé soumis à

• des forces linéiques dépendant du temps dont la densité par rapport à l'abscisse curviligne de référence est $(S,t) \mapsto \mathbf{f}_{\mathsf{R}}(S,t)$;

• des couples linéiques dépendant du temps dont la densité par rapport à l'abscisse curviligne de référence est $(S,t) \mapsto m_{\mathsf{R}}(S,t)$;

• une force et un moment dépendant du temps à chaque extrémité (quand ces extrémités existent), soit $(\mathcal{F}_0(t), \mathcal{M}_0(t))$ en S = 0 et $(\mathcal{F}_\ell(t), \mathcal{M}_\ell(t))$ en $S = \ell_R$;

• éventuellement, une famille de forces et de couples ponctuels (extrémités exclues) dépendant du temps que l'on indexera par l'abscisse curviligne du point où ils sont appliqués, *i.e.* $(\mathcal{F}_S(t), \mathcal{M}_S(t))$ désigne la force et le moment de l'effort ponctuel appliqué au point matériel S. Pour simplifier nous supposerons que ces points matériels son toujours les mêmes, quel que soit t, bien que rien n'interdit *a priori* qu'ils changent avec le temps. En conséquence, la réunion de ces points est noté \mathbb{P}_{R} , il peut être vide mais est supposé de cardinal fini.

P-6.3 (Equations locales du mouvement en représentation lagrangienne). Le principe fondamental de la dynamique est satisfait si et seulement si la représentation lagrangienne du mouvement $(S,t) \mapsto \mathbf{x}(S,t)$ et la répartition des efforts intérieurs $(S,t) \mapsto (\mathbf{R}(S,t), M(S,t))$ sont tels qu'à chaque instant les relations suivantes avec les efforts extérieurs sont satisfaites

$$\begin{aligned} & \text{Equilibre des forces}: \left\{ \begin{array}{l} \mathbf{R}'(S,t) + \mathbf{f}_{R}(S,t) - \underline{\varrho_{R}}(S)\ddot{\mathbf{x}}(S,t) = \mathbf{0} \quad dans \ \mathbb{C}_{R} \setminus (\mathbb{P}_{R} \cup \mathbb{S}_{R}(t)) \\ & [\![\mathbf{R}]\!](S,t) + \mathcal{F}_{S}(t) + \dot{\mathbf{S}}_{o}(t)[\![\varrho_{R}\dot{\mathbf{x}}]\!](S,t) = \mathbf{0} \quad sur \ \mathbb{P}_{R} \cup \mathbb{S}_{R}(t) \\ & \text{Equilibre des moments}: \left\{ \begin{array}{l} M'(S) + \|\mathbf{x}'(S,t)\| \ T(S,t) + m_{R}(S,t) = \mathbf{0} \quad dans \ \mathbb{C}_{R} \setminus (\mathbb{P}_{R} \cup \mathbb{S}_{R}(t)) \\ & [\![M]\!](S,t) + \mathcal{M}_{S}(t) = \mathbf{0} \quad sur \ \mathbb{P}_{R} \cup \mathbb{S}_{R}(t) \\ & [\![M]\!](S,t) + \mathcal{M}_{S}(t) = \mathbf{0} \quad sur \ \mathbb{P}_{R} \cup \mathbb{S}_{R}(t) \\ & \\ & \mathbf{R}(0,t) = -\mathcal{F}_{0}(t), \quad M(0,t) = -\mathcal{M}_{0}(t) \\ & \mathbf{R}(\ell_{R},t) = \mathcal{F}_{\ell}(t), \quad M(\ell_{R},t) = \mathcal{M}_{\ell}(t) \\ \end{aligned} \right. \end{aligned}$$

où $\mathbb{P}_{R} = \{S_{1}, \dots, S_{m}\}$ désigne l'ensemble (fixe) des points matériels sur lesquels sont exercés des efforts ponctuels, $\mathbb{S}_{R}(t) = \{\mathbb{S}_{o}^{1}(t), \dots, \mathbb{S}_{o}^{n}(t)\}$ désigne l'ensemble des points traversés par les ondes de choc à l'instant t et $\dot{\mathbb{S}}_{o}(t)$ désigne la célérité de l'onde de choc qui passe au point $S \in \mathbb{S}_{R}(t)$. (Les conditions aux limites ne sont à satisfaire que dans le cas d'un milieu continu à extrémités.)

Pour lever toute ambiguité sur l'équation d'équilibre des forces sur $\mathbb{P}_{\mathsf{R}} \cup \mathbb{S}_{\mathsf{R}}(t)$, détaillons-la en distinguant les trois situations possibles :

1. Sur un point $S_i \in \mathbb{P}_R$ qui n'est pas traversé par une onde de choc à l'instant t. En ce point et à l'instant t, on écrit la même condition de saut qu'en statique :

$$\llbracket \mathbf{R} \rrbracket (S_i, t) + \mathcal{F}_{S_i}(t) = \mathbf{0}.$$

2. Sur un point $S = S_o^j(t) \in S_R(t)$ qui est traversé par la $j^{\text{ème}}$ onde de choc à l'instant t mais sur lequel n'est pas exercée de force extérieure ponctuelle. En ce point et à l'instant t, on écrit la condition de saut liée à la force ponctuelle intérieure engendrée par le passage de l'onde :

$$\llbracket \mathbf{R} \rrbracket (\mathbf{S}_o^j(t), t) + \dot{\mathbf{S}}_o^j(t) \llbracket \varrho_{\mathsf{R}} \dot{\mathbf{x}} \rrbracket (\mathbf{S}_o^j(t), t) = \mathbf{0}.$$

3. Sur un point $S_i \in \mathbb{P}_R$ qui est traversé par la $j^{e^{ime}}$ onde de choc à l'instant t. En ce point et à l'instant t, on écrit la condition de saut complète :

$$\llbracket \mathbf{R} \rrbracket(S_i, t) + \mathcal{F}_{S_i}(t) + \dot{\mathbf{S}}_o^j(t) \llbracket \varrho_{\mathsf{R}} \dot{\mathbf{x}} \rrbracket(S_i, t) = \mathbf{0} \quad \text{avec} \quad S_i = \mathbf{S}_o^j(t).$$

Si on compare les équations obtenues avec celles de la statique, on voit que seules les équations relatives à l'équilibre des forces diffèrent par rapport à la statique en y incluant les forces d'inertie. Les équations relatives à l'équilibre des moments sont par contre inchangées. Cela tient à l'hypothèse **D-6.3** faite sur la quantité de mouvement et le moment cinétique où l'on a négligé l'inertie de rotation. Si on en tenait compte, apparaitraient des termes d'inertie dans les équations relatives au moment ce qui rétablirait la "symétrie" entre les deux équations.

En représentation eulérienne

Pour obtenir les équations du mouvement en représentation eulérienne on réintroduit les densités linéiques par unité de longueur de la configuration actuelle en s'appuyant sur la conservation de la masse qui s'écrit

$$\varrho_{\rm R}(S) = \varrho(s,t) \frac{\partial {\bf s}}{\partial S}(S,t),$$

où ρ est le champ eulérien de masse linéique. Seule la condition de saut sur une onde de choc demande un peu d'attention, les autres ne présentant pas de difficultés. Remarquons d'abord que sur une onde de choc, comme la déformation est discontinue, la masse linéique ρ l'est également en vertu de la conservation de la masse. Puis, partons de (6.3) en faisant apparaître le champ eulérien de vitesse d'extension v (qui est *a priori* discontinu) pour obtenir

$$\dot{\mathbf{s}}_{o}(t) - \upsilon^{\pm}(\mathbf{s}_{o}(t), t) = \dot{\mathbf{S}}_{o}(t) \left(\frac{\partial \mathbf{s}}{\partial S}\right)^{\pm} (\mathbf{S}_{o}(t), t).$$

Multiplions cette équation par $\varrho^{\pm}(\mathbf{s}_o(t), t)\mathbf{v}^{\pm}(\mathbf{s}_o(t), t)$ où \mathbf{v} est le champ eulérien de vitesse et utilisons la conservation de la masse pour arriver à

$$\left(\dot{\mathbf{s}}_{o}(t) - \upsilon^{\pm}(\mathbf{s}_{o}(t), t)\right)\varrho^{\pm}(\mathbf{s}_{o}(t), t)\mathbf{v}^{\pm}(\mathbf{s}_{o}(t), t) = \dot{\mathbf{S}}_{o}(t)\varrho^{\pm}_{\mathsf{R}}(\mathbf{S}_{o}(t))\left(\frac{\partial\mathbf{x}}{\partial t}\right)^{\pm}(\mathbf{S}_{o}(t), t)$$

sachant que ρ_{R} peut être discontinue si l'onde de choc est sur une interface. Ceci permet d'écrire la condition de saut des forces intérieures sous la forme suivante

$$\llbracket \mathbf{R} \rrbracket (\mathbf{s}_o(t), t) + \mathcal{F}_{\mathbf{s}_o(t)} + \llbracket (\dot{\mathbf{s}}_o - \upsilon) \varrho \mathbf{v} \rrbracket (\mathbf{s}_o(t), t) = \mathbf{0}.$$

Finalement le système des équations eulériennes locales (hors conditions aux limites) s'écrit

Equilibre eulérien des forces :

$$\begin{cases} \frac{\partial \mathbf{R}}{\partial s}(s,t) + \mathbf{f}(s,t) - \varrho(s,t)\boldsymbol{\gamma}(s,t) = \mathbf{0} \quad \text{dans } \mathbb{C} \setminus (\mathbb{P}(t) \cup \mathbb{S}(t)) \\ \llbracket \mathbf{R} \rrbracket(s,t) + \boldsymbol{\mathcal{F}}_{s}(t) + \llbracket (\dot{\mathbf{s}}_{o} - v)\varrho \mathbf{v} \rrbracket(s,t) = \mathbf{0} \quad \text{sur } \mathbb{P}(t) \cup \mathbb{S}(t) \end{cases}$$

Equilibre eulérien des moments :

1

$$\begin{cases} \frac{\partial M}{\partial s}(s,t) + T(s,t) + m(s,t) = 0 & \text{dans } \mathbb{C} \setminus \mathbb{P}(t) \\ \llbracket M \rrbracket(s,t) + \mathcal{M}_s(t) = 0 & \text{sur } \mathbb{P}(t) \end{cases}$$

où $\mathbb{P}(t)$ désigne l'ensemble des points (repérés par leur abscisse curviligne s) où sont exercés des efforts ponctuels à l'instant t et $\mathbb{S}(t)$ désigne l'ensemble des points (repérés par leur abscisse curviligne s) traversés par une onde de choc à l'instant t.

6.2.3 Formulation d'un problème de dynamique

Il s'agit de formuler un problème de dynamique complet en ajoutant aux équations de la dynamique les autres conditions (conditions aux limites, conditions initiales, lois constitutives) pour en faire un problème bien posé. Il est inutile de détailler tous les points, il suffit de mettre en évidence ce qui change par rapport à un problème aux limites de statique. Nous nous plaçons dans le cas d'une représentation lagrangienne du mouvement.

• Les inconnues. Il s'agit de déterminer les champs lagrangiens $(S, t) \mapsto (\mathbf{x}(S, t), \mathbf{R}(S, t), M(S, t))$ donnant les évolutions de la position et des efforts intérieurs du milieu à partir d'un instant initial. On sera donc amené à faire des représentations de ces évolutions dans l'espace-temps $(S, t) \in \mathbb{C}_{\mathsf{R}} \times (0, \infty)$. La régularité exigée de ces champs peut varier d'un problème à l'autre suivant le type de milieu étudié. Ainsi, la configuration $(S, t) \mapsto \mathbf{x}(S, t)$ est une fonction plus régulière de S pour une tige élastique que pour un fil. Vis à vis du temps, il faut *a priori* envisager l'existence d'ondes de chocs, mais dans tous les cas $(S, t) \mapsto \mathbf{x}(S, t)$ sera au moins continue.

• Les relations géométriques et cinématiques. Les relations géométriques sont essentiellement les mêmes qu'en statique, mais il faut leur adjoindre les relations cinématiques dont en particulier les conditions de compatibilité sur une onde.

• Les équations du mouvement. Les équations d'équilibre sont à remplacer par les équations du mouvement présentées dans **P-6.3** et qui contiennent donc des termes d'inertie pour les équations relatives aux forces. De plus les efforts extérieurs peuvent dépendre du temps.

• Loi de comportement. Les relations constitutives restent les mêmes qu'en statique.

• Les conditions aux limites. Elles ne diffèrent de la statique que par le fait qu'elles peuvent dépendre du temps.

• Les conditions initiales. Une importante nouveauté est que, comme les équations du mouvement s'écrivent en terme du champ d'accélération et donc des dérivées secondes temporelles de la position, il faut se donner la position et la vitesse du milieu curviligne à l'instant initial pour espérer déterminer l'évolution :

$$\mathbf{x}(S,0) = \mathbf{x}^0(S), \ \forall S \in \mathbb{C}_{\mathbb{R}}$$
, $\dot{\mathbf{x}}(S,0) = \mathbf{v}^0(S), \ \forall S \in \mathbb{C}_{\mathbb{R}}$ (position et vitesse initiale).

Un problème de dynamique est donc un problème aux limites avec valeurs initiales. La difficulté majeure par rapport à un problème de statique réside dans le fait qu'il faut résoudre maintenant un système d'équations aux dérivées partielles (EDP) et non plus un système d'équations différentielles (EDO). Nous allons en traiter quelques-uns dans les sections qui suivent en envisageant différents types de milieux continus curvilignes (barres inflexibles, fils inextensibles, tiges élastiques, ...) et différentes situations de chargement. L'objectif est d'illustrer à travers ces divers exemples quelques propriétés génériques de leurs comportements dynamiques qui complèteront celles mises en évidence en statique. Il sera aussi instructif de comparer, quand cela est possible, les évolutions dynamiques avec les évolutions quasi-statiques où les effets d'inertie sont négligés.

6.3 Dynamique des barres élastiques en traction-compression

6.3.1 Les équations du mouvement réduites

Nous considérons dans cette section des barres homogènes et à section homogène qui ont un comportement élastique, linéaire ou non suivant les cas, et qui sont soumises à des sollicitations telles qu'elles ne se déforment qu'en traction-compression, sans flexion. Par conséquent, si \mathbf{t} désigne leur orientation (fixe), leur mouvement est caractérisé par leur déplacement d'extension \mathbf{u} depuis la configuration de référence naturelle rectiligne :

$$\mathbf{x}(S,t) = (S + \mathbf{u}(S,t))\mathbf{t}.$$

La déformation d'extension et la vitesse d'extension s'en déduisent par dérivation :

$$\varepsilon(S,t) = \mathbf{u}'(S,t)$$
, $\upsilon(S,t) = \dot{\mathbf{u}}(S,t)$

Du fait de l'homogénéité de la barre, sa masse linéique de référence ρ_{R} et sa relation constitutive d'extension s'expriment en terme de l'aire A de la section, de la masse volumique ρ_{m} et du potentiel élastique $w_{ex}(\varepsilon)$ du matériau constitutif :

$$N = w'_{ex}(\varepsilon)A, \qquad \varrho_{R} = \rho_{m}A$$

Ce faisant, en l'absence de forces linéiques et de forces ponctuelles, les équations du mouvement exprimées en terme du déplacement d'extension u se réduisent à⁴

$$\begin{cases} \mathbf{w}_{e\mathbf{x}}''(\mathbf{u}')\mathbf{u}'' - \rho_{\mathsf{m}}\ddot{\mathbf{u}} = 0 & \text{(en dehors des ondes de choc)} \\ \llbracket \mathbf{w}_{e\mathbf{x}}'(\mathbf{u}') \rrbracket + \rho_{\mathsf{m}}\dot{\mathbf{S}}_o\llbracket \dot{\mathbf{u}} \rrbracket = 0 & \text{(sur une onde de choc)} \end{cases}$$

L'équation du mouvement en dehors des ondes de choc est donc une EDP du second ordre en terme de \mathbf{u} . Il est souvent préférable de se ramener à un système du premier ordre en prenant pour champs inconnus la déformation d'extension ε et la vitesse d'extension v. Ceci nécessite de rajouter la condition de compatibilité cinématique $\dot{\varepsilon} = v'$ exprimant que $\varepsilon = \mathbf{u}'$ et $v = \dot{\mathbf{u}}$. Avec ce nouveau couple d'inconnues, les équations du mouvement deviennent :

En dehors des ondes de choc,

$$\begin{cases} \mathbf{w}_{e\mathbf{x}}''(\varepsilon)\varepsilon' - \rho_{\mathsf{m}}\dot{\upsilon} = 0 & (\text{équilibre des forces}) \\ \upsilon' - \dot{\varepsilon} = 0 & (\text{compatibilité cinématique}) \end{cases};$$
(6.7)

Sur une onde de choc,

$$\begin{cases} \llbracket \mathbf{w}_{e\mathbf{x}}^{\prime}(\varepsilon) \rrbracket + \rho_{m} \dot{\mathbf{S}}_{o} \llbracket \upsilon \rrbracket = 0 & \text{(équilibre des forces)} \\ \llbracket \upsilon \rrbracket + \dot{\mathbf{S}}_{o} \llbracket \varepsilon \rrbracket = 0 & \text{(compatibilité cinématique)} \end{cases}.$$

Dans les paragraphes qui suivent nous allons étudier ce système d'EDP en considérant d'abord le cas le plus simple d'un comportement linéairement élastique.

^{4.} Pour simplifier la présentation nous ne singularisons pas les ondes d'accélération. Pourtant, sur une onde d'accélération, \mathbf{u}'' et $\ddot{\mathbf{u}}$ sont en général discontinus. L'équation du mouvement, telle qu'elle est écrite ici, ne vaut donc que de part et d'autre de l'onde d'accélération. Cet abus de notation sera fait systématiquement par la suite.

6.3.2 Cas d'un comportement linéairement élastique

Dans toute cette section on suppose que le potentiel élastique du matériau est quadratique :

$$\mathbf{w}_{\mathrm{ex}}(\varepsilon) = \tfrac{1}{2} \, \mathrm{E} \varepsilon^2 \; , \label{eq:wex}$$

E étant son module d'Young (qui est évidemment supposé positif). Cette hypothèse restrictive, qui n'est licite que lorsque le milieu subit des petites déformations, conduit à des équations linéaires qui jouissent de propriétés remarquables.

Propriétés générales

En reportant la relation constitutive linéaire dans l'équation du mouvement et en posant

$$\mathsf{c}_0 := \sqrt{\frac{\mathsf{E}}{\rho_\mathsf{m}}}$$

(célérité des ondes dans un milieu linéairement élastique),

on obtient

$$c_0^2 u'' - \ddot{u} = 0$$

On voit donc que le mouvement est régi par l'équation des ondes avec c_0 pour célérité. Rappelons que, dans le cadre unidimensionnel où nous sommes, la solution générale de l'équation des ondes s'écrit

$$\mathbf{u}(S,t) = f(S - \mathbf{c}_0 t) + g(S + \mathbf{c}_0 t)$$

où f et g sont deux fonctions (d'une variable) arbitraires ⁵. Les droites C_{\pm} de l'espace-temps définies par

$$\mathcal{C}_{\pm} = \{ (S,t) : S = \pm \mathsf{c}_0 t + \mathrm{cte} \},\$$

où cte est une constante (dépendant de la droite), sont appelées les *caractéristiques*. Elles correspondent à des ondes se propageant avec la célérité c_0 , soit en avant (C_+), soit en arrière (C_-). Elles "transportent" l'information comme le montre la notion suivante d'invariant de Riemann. Posons

$$\mathcal{R}_{\pm}(S,t) = \upsilon(S,t) \mp \mathsf{c}_0 \varepsilon(S,t)$$

et montrons que \mathcal{R}_+ (resp. \mathcal{R}_-) est invariant le long de la caractéristique \mathcal{C}_+ (resp. \mathcal{C}_-). En effet, sur une caractéristique l'invariant \mathcal{R}_{\pm} est une fonction du temps qui s'écrit

$$R(t) := \mathcal{R}_{\pm}(\pm \mathbf{c}_0 t + \operatorname{cte}, t) = \dot{\mathbf{u}}(\pm \mathbf{c}_0 t + \operatorname{cte}, t) \mp \mathbf{c}_0 \mathbf{u}'(\pm \mathbf{c}_0 t + \operatorname{cte}, t).$$

5. Pour établir cette propriété, on fait le changement de variables

ζ

$$_{1}=S-\mathsf{c}_{0}t,\qquad \zeta_{2}=S+\mathsf{c}_{0}t,$$

ce qui conduit aux formules de dérivation

$$\frac{\partial}{\partial S} = \frac{\partial}{\partial \zeta_1} + \frac{\partial}{\partial \zeta_2}, \qquad \frac{\partial}{\partial t} = -\mathbf{c}_0 \frac{\partial}{\partial \zeta_1} + \mathbf{c}_0 \frac{\partial}{\partial \zeta_2}$$

En reportant dans l'équation du mouvement, on en déduit $\frac{\partial^2 \mathbf{u}}{\partial \zeta_1 \partial \zeta_2} = 0$. Une première intégration donne $\frac{\partial \mathbf{u}}{\partial \zeta_2} = \phi(\zeta_2)$, puis en intégrant à nouveau on arrive au résultat.

En la dérivant par rapport au temps et en tenant compte de l'équation des ondes, il vient

$$\dot{R}(t) = \pm \mathbf{c}_0 \dot{\mathbf{u}}'(\pm \mathbf{c}_0 t + \operatorname{cte}, t) + \ddot{\mathbf{u}}(\pm \mathbf{c}_0 t + \operatorname{cte}, t) - \mathbf{c}_0^2 \mathbf{u}''(\pm \mathbf{c}_0 t + \operatorname{cte}, t) \mp \mathbf{c}_0 \dot{\mathbf{u}}'(\pm \mathbf{c}_0 t + \operatorname{cte}, t) = 0,$$

ce qui est la propriété voulue.

Ces différentes propriétés, qui ont été démontrées en supposant le mouvement régulier, restent vraies en présence d'ondes de choc. En effet, sur une onde de choc l'équilibre des forces et la condition de compatibilité cinématique donnent

$$c_0^2 [\![\mathbf{u}']\!] + \dot{\mathbf{S}}_o [\![\dot{\mathbf{u}}]\!] = 0, \qquad [\![\dot{\mathbf{u}}]\!] + \dot{\mathbf{S}}_o [\![\mathbf{u}']\!] = 0.$$

En les combinant on en déduit que $\dot{\mathbf{S}}_{o}^{2} = \mathbf{c}_{0}^{2}$, *i.e.* les ondes de choc se propagent également à la célérité $\pm \mathbf{c}_{0}$. Les ondes de choc se propageant vers l'avant (célérité $+\mathbf{c}_{0}$) sont donc des droites caractéristiques C_{+} et celles se propageant vers l'arrière (célérité $-\mathbf{c}_{0}$) des droites caractéristiques C_{-} . De plus, comme la condition de compatibilité cinématique peut s'écrire

$$0 = \llbracket \dot{\mathbf{u}} \rrbracket \pm \mathbf{c}_0 \llbracket \mathbf{u}' \rrbracket = \llbracket \upsilon \pm \mathbf{c}_0 \varepsilon \rrbracket = \llbracket \mathcal{R}_{\mp} \rrbracket,$$

on en déduit que l'invariant de Riemann \mathcal{R}_+ (resp. \mathcal{R}_-) reste constant le long de la caractéristique \mathcal{C}_+ (resp. \mathcal{C}_-) même si elle croise une onde de choc (qui est nécessairement une caractéristique de direction opposée \mathcal{C}_- (resp. \mathcal{C}_+)). On pourrait aussi montrer que n'importe quelle onde (accélération, harmonique, ...) se propage nécessairement avec la célérité c_0 , ceci est laissé à titre d'exercice.

Exercice 6.2. Montrer que, dans un milieu linéairement élastique, une onde d'accélération (et de façon générale toute onde de discontinuité) se propage nécessairement à la célérité $\pm c_0$. Vérifier que le milieu est non dispersif, i.e. que les ondes harmoniques $u(S,t) = f(kS - \Omega t)$ se propagent avec la célérité c_0 indépendamment de leur fréquence, en montrant que $\Omega/k = \pm c_0$.

Toutes ces propriétés, qui reposent de façon essentielle sur le fait que le comportement est linéaire, sont d'une grande utilité pour résoudre les problèmes de dynamique comme nous le verrons dans les prochains paragraphes. Résumons-les dans la proposition suivante :

P-6.4 (Propagation des ondes dans une barre linéairement élastique). Le mouvement d'une barre homogène et linéairement élastique est régi par l'équation des ondes avec pour célérité $c_0 = \sqrt{E/\rho_m}$ qui ne dépend que du matériau constitutif. En conséquence, tous les types d'onde se propagent avec une célérité $\pm c_0$, les caractéristiques sont des droites C_{\pm} de l'espace-temps,

$$\mathcal{C}_{\pm} = \{ (S,t) : S = \pm \mathsf{c}_0 t + cte \},\$$

le long desquelles l'invariant de Riemann correspondant \mathcal{R}_{\pm} reste constant,

$$\mathcal{R}_{\pm}(S,t) := v(S,t) \mp c_0 \varepsilon(S,t) = constante \ sur \ \mathcal{C}_{\pm}.$$

Les ordres de grandeur des célérités de propagation des ondes

La célérité des ondes est d'autant plus grande que le module d'Young du matériau est élevé et que sa masse volumique est faible. Autrement dit, plus le matériau est raide et moins il est dense, plus l'information se propage vite. Pour la grande majorité des matériaux d'usage, le module d'Young étant de l'ordre de la dizaine ou de la centaine de GPa et la densité de l'ordre de 1, la célérité des ondes élastiques est de l'ordre de quelques milliers de m/s, *i.e.* sensiblement plus élevée que la célérité du son dans l'air. Le tableau ci-dessous donne la valeur de la célérité pour quelques matériaux usuels à température ambiante. (La dépendance à la température est plus faible pour un solide élastique que pour un gaz compressible.)

matériau	acier	béton	bois	plexiglas	caoutchouc
célérité (m/s)	5000	4500	3000	1300	50

TABLE 6.3 – Célérité des ondes dans quelques matériaux à température ordinaire.

Le problème de la barre infinie soumise à une déformation initiale

1. Présentation. On considère une barre qui, à l'instant initial, est au repos mais dont la partie centrale est déformée à un niveau de déformation ε_0 alors que le reste de la barre est dans sa configuration naturelle. Nous nous intéressons au début de la dynamique de sa partie centrale, ce qui permet de traiter le problème comme si la la barre était infinie car les conditions aux limites sont sans influence tant que les ondes n'ont pas atteint les bords. Autrement dit, le problème de dynamique s'écrit ici

$$\begin{cases} \mathsf{c}_0^2 \mathsf{u}''(S,t) - \ddot{\mathsf{u}}(S,t) = 0, & S \in \mathbb{R}, \ t > 0\\ \mathsf{u}'(S,0) = \mathrm{H}(\ell_0 - |S|)\varepsilon_0, & S \in \mathbb{R}\\ \dot{\mathsf{u}}(S,0) = 0, & S \in \mathbb{R} \end{cases}$$

où H désigne la fonction d'Heavyside, *i.e.* H(x) = 1 si x > 0 et H(x) = 0 sinon.

2. Résolution. En partant de la solution générale de l'équation des ondes

$$\mathbf{u}(S,t) = f(S - \mathbf{c}_0 t) + g(S + \mathbf{c}_0 t)$$

et en écrivant les conditions initiales, on obtient :

$$\begin{cases} f'(S) + g'(S) = \mathrm{H}(\ell_0 - |S|)\varepsilon_0, & S \in \mathbb{R} \\ f'(S) - g'(S) = 0, & S \in \mathbb{R} \end{cases}$$

Par conséquent l'évolution de la déformation et de la vitesse d'extension est donnée par

$$\begin{cases} \varepsilon(S,t) = \left(\mathbf{H}(\ell_0 - |S + \mathbf{c}_0 t|) + \mathbf{H}(\ell_0 - |S - \mathbf{c}_0 t|) \right) \frac{\varepsilon_0}{2} \\ \upsilon(S,t) = \left(\mathbf{H}(\ell_0 - |S + \mathbf{c}_0 t|) - \mathbf{H}(\ell_0 - |S - \mathbf{c}_0 t|) \right) \frac{\mathbf{c}_0 \varepsilon_0}{2} \end{cases}$$

3. Interprétation. On voit sur les figures ci-contre que l'information se propage dans les deux directions à la célérité c_0 . Pour $t = t_0 > \ell_0/c_0$, deux parties (variables) de la barre de longueur $2\ell_0$ sont déformées et en mouvement, leur déformation valant $\varepsilon_0/2$ (la moitié de la déformation initiale) et leur vitesse valant $\pm c_0 \varepsilon_0/2$. La vitesse et la déformation sont discontinues aux bords de ces parties, les droites $|S \pm \mathbf{c}_0 t| = \ell_0$ sont donc des ondes de choc. D'un point de vue énergétique, il n'y a pas d'apport d'énergie de l'extérieur pour t > 0. L'énergie totale initiale $\mathcal{E}_0 =$ $\mathsf{E}\mathsf{A}\varepsilon_0^2\ell_0$ (qui correspond à l'énergie élastique de la partie déformée) est conservée au cours du mouvement. Pour $t = t_0 > \ell_0/c_0$, par symétrie, elle se partitionne de façon égale dans les deux parties de la barre en mouvement. Dans chaque partie l'énergie élastique vaut $\frac{1}{2} \mathsf{EA} \frac{\varepsilon_0^2}{4} 2\ell_0 = \mathcal{E}_0/4$ et l'énergie cinétique vaut $\frac{1}{2}\rho_{\rm m}A\frac{c_0^2\varepsilon_0^2}{4}2\ell_0 = \mathcal{E}_0/4$, il y a donc équipartition entre énergie élastique et énergie cinétique.

Le problème de la barre semi-infinie en traction simple

1. Présentation.

h

On considère une barre qui, à l'instant initial, est au repos dans sa configuration naturelle. Son extrémité S = 0 est soumise à un déplacement à vitesse contrôlée constante. Autrement dit, la condition à la limite s'écrit $\mathbf{u}(0,t) = v_0 t$ pour $t \ge 0$, $v_0 < 0$ correspondant à une traction et $v_0 > 0$ à une compression de la barre.

Nous nous intéressons au début de la dynamique, ce qui permet de traiter le problème comme si la la barre était semi-infinie car la condition à la limite à l'autre extrémité n'intervient pas tant que les ondes ne l'ont pas atteinte. (Nous traiterons dans le prochain paragraphe le problème complet.) En prenant pour inconnues la déformation et la vitesse d'extension (ε , v), le problème de dynamique s'écrit donc :

ors onde de choc :
$$\begin{cases} \mathsf{c}_0^2 \varepsilon' - \dot{\upsilon} = 0 \\ \upsilon' - \dot{\varepsilon} = 0 \end{cases}, \text{ sur une onde de choc : } \begin{cases} \mathsf{c}_0^2 \llbracket \varepsilon \rrbracket + \dot{\mathsf{S}}_o \llbracket \upsilon \rrbracket = 0 \\ \llbracket \upsilon \rrbracket + \dot{\mathsf{S}}_o \llbracket \varepsilon \rrbracket = 0 \end{cases}$$

à l'extrémité : $\upsilon(0, t) = \upsilon_0, \quad \forall t > 0$, à l'instant initial :
$$\begin{cases} \varepsilon(S, 0) = 0, \quad \forall S > 0 \\ \upsilon(S, 0) = 0, \quad \forall S > 0 \end{cases}$$

2. Résolution. Nous allons utiliser la méthode des caractéristiques en nous appuyant sur **P-6.4**. Soit $S_0 > 0$. La caractéristique C_- qui passe par le point $(S_0, 0)$ est la droite d'équation $S + \mathbf{c}_0 t = S_0$. Le long

de cette caractéristique l'invariant de Riemann $\mathcal{R}_{-} = v + c_0 \varepsilon$ reste constant. La constante est donnée par les conditions initiales et vaut donc 0. On en déduit que $v + c_0 \varepsilon = 0$ sur cette caractéristique. Le point $(0, S_0/c_0)$ se trouvant sur cette caractéristique et la vitesse y valant v_0 d'après la condition à la limite, on en déduit que la déformation y vaut $-v_0/c_0$. Comme le choix de $S_0 > 0$ est arbitraire, on a donc obtenu que l'état de vitesse et de déformation (v, ε) en tout point de l'axe (0, t > 0) vaut $(v_0, -v_0/c_0)$. On peut en déduire la valeur de l'invariant de Riemann \mathcal{R}_+ sur les caractéristiques \mathcal{C}_+ . Il faut distinguer les caractéristiques \mathcal{C}_+ qui coupent l'axe t = 0 en S > 0 de celles qui coupe l'axe S = 0 en t > 0, la caractéristique $S = c_0 t$ qui les sépare étant une onde de choc.

(a) Sur une caractéristique C_+ qui coupe l'axe t = 0 en S > 0, $v - c_0 \varepsilon$ est constant, la constante est donnée par la condition initiale et vaut 0. Par conséquent sur une telle caractéristique on a $v = c_0 \varepsilon$;

(b) Sur une caractéristique C_+ qui coupe l'axe S = 0 en t > 0, $v - c_0 \varepsilon$ est constant, la constante est donnée par les valeurs de la vitesse et de la déformation en S = 0 et donc d'après ce qui précède vaut $2v_0$. Par conséquent sur une telle caractéristique on a $v - c_0 \varepsilon = 2v_0$.

Connaissant la valeur des invariants de Riemann sur n'importe quelle caractéristique C_{\pm} (hormis sur l'onde de choc où \mathcal{R}_+ n'est pas défini), il est facile d'en déduire la valeur de (v, ε) en tout point du quadrant de l'espace-temps (S > 0, t > 0) hormis sur l'onde de choc où ils ne sont pas définis. Il faut distinguer les points suivant qu'ils se trouvent au-dessus ou en dessous de l'onde de choc.

(a) Un point (S, t) en dessous de l'onde de choc, *i.e.* un point tel que $S > c_0 t > 0$, se trouve à l'intersection d'une caractéristique C_- sur laquelle $v = -c_0 \varepsilon$ et une caractéristique C_+ sur laquelle $v = c_0 \varepsilon$. Par conséquent v = 0 et $\varepsilon = 0$ en ce point;

(b) Un point (S, t) au-dessus de l'onde de choc, *i.e.* un point tel que $c_0 t > S > 0$, se trouve à l'intersection d'une caractéristique C_- sur laquelle $v = -c_0 \varepsilon$ et une caractéristique C_+ sur laquelle $v = c_0 \varepsilon + 2v_0$. Par conséquent $v = v_0$ et $\varepsilon = -v_0/c_0$ en ce point.

(c) Sur l'onde de choc $S = c_0 t$, la vitesse et la déformation ne sont pas définies mais admettent des limites à droite (0,0)et à gauche $(v_0, -v_0/c_0)$.

par la méthode des caractéristiques

On remarquera que la solution du problème est *unique* et que la réponse dynamique est similaire en traction et en compression (seuls les signes changent).

3. Interprétation. Notons d'abord l'incompatibilité entre les conditions initiales en t = 0 et la condition à la limite en S = 0, la première donnant v = 0 et la deuxième $v = v_0$. Cette différence entre les vitesses engendre une onde de choc qui part de l'extrémité à l'instant initial et se propage à

la célérité c_0 dans la barre. Tant qu'un point matériel n'a pas été atteint par l'onde de choc, il reste au repos sans déformation. Une fois qu'il a été atteint par l'onde de choc, il se déplace avec la vitesse v_0 pour se conformer à la condition à la limite imposée en S = 0. Du fait du décalage du mouvement, cela engendre une déformation $-v_0/c_0$ qui correspond à une extension si $v_0 < 0$ et à une contraction si $v_0 > 0$.

Comme la barre est supposée infinie aucune information ne vient de la droite et comme la vitesse de chargement est constante à partir de l'instant initial aucun changement d'information n'est envoyé de la gauche après le passage de l'onde de choc.

4. Les énergies mises en jeu. D'un point de vue énergétique, la barre ne possède aucune énergie à l'instant initial. Une énergie va lui être fournie par l'extérieur qui contrôle sa vitesse de déplacement à l'extrémité. La force extérieure à exercer en S = 0 vaut $\mathcal{F}_0(t) = -N(0,t) = -\mathsf{EA}\varepsilon(0,t) = \mathsf{EA}v_0/\mathsf{c}_0$. La vitesse de son point d'application valant v_0 , sa puissance vaut $\mathsf{P}(t) = \mathcal{F}_0(t)v_0 = \mathsf{EA}v_0^2/\mathsf{c}_0$ et donc son travail est

$$\mathsf{W}(t) = \mathsf{E}\mathsf{A}\frac{v_0^2}{\mathsf{c}_0}t.$$

A l'instant t > 0, la partie de la barre $(0, \mathbf{c}_0 t)$ est en mouvement et déformée avec $v = v_0$ et $\varepsilon = -v_0/\mathbf{c}_0$ alors que le reste de la barre est encore au repos et sans déformation. L'énergie élastique $\mathcal{E}(t)$ et l'énergie cinétique $\mathcal{K}(t)$ de la barre valent donc

$$\mathcal{E}(t) = \frac{1}{2} \operatorname{EA} \varepsilon^2 \mathsf{c}_0 t = \frac{1}{2} \operatorname{EA} \frac{v_0^2}{\mathsf{c}_0} t = \frac{1}{2} \mathcal{W}(t), \qquad \mathcal{K}(t) = \frac{1}{2} \varrho_{\mathsf{R}} \mathsf{A} v_0^2 \mathsf{c}_0 t = \frac{1}{2} \operatorname{EA} \frac{v_0^2}{\mathsf{c}_0} t = \frac{1}{2} \mathcal{W}(t),$$

Il y a *équipartition* de l'énergie entre énergie élastique et énergie cinétique et de plus il y a *conservation* de l'énergie mécanique. Tout le travail des efforts extérieurs est converti en énergie élastique ou cinétique.

5. Le point de vue eulérien. Tous les résultats précédents ont été présentés dans le cadre d'une description lagrangienne du mouvement. On peut évidemment les retranscrire dans le cadre eulérien en s'aidant des définitions et des relations de passage introduites au début du chapitre. Cette transcription est laissée à titre d'exercice.

Exercice 6.3. Reconstruire la fonction $(S,t) \mapsto \mathbf{s}(S,t)$ donnant l'abscisse curviligne déformée en convenant que $\mathbf{s}(0,t) = 0 \ \forall t > 0$ et montrer qu'elle s'écrit

$$\mathbf{s}(S,t) = \begin{cases} (1 - \upsilon_0/\mathsf{c}_0)S & si & 0 \le S \le \mathsf{c}_0 t \\ S - \upsilon_0 t & si & S \ge \mathsf{c}_0 t \end{cases}.$$

En déduire que l'onde de choc décrit la demi-droite $\mathbf{s}_o(t) = (\mathbf{c}_0 - v_0)t$ avec t > 0 dans le plan (s, t) et donc que sa célérité eulérienne est $\mathbf{c}_0 - v_0$.

Le problème de la barre de longueur finie en traction simple

1. Présentation. On se propose de traiter le problème complet de traction simple en tenant compte de la finitude de la longueur de la barre. Sa longueur de référence naturelle est ℓ_{R} et son extrémité $S = \ell_{\mathsf{R}}$ est maintenue fixe alors que l'on impose toujours un déplacement à vitesse constante à l'extrémité S = 0 depuis l'instant t = 0 où la barre est au repos dans son état naturel. Les conditions aux limites et initiales s'écrivent donc

$$u(0,t) = v_0 t, \quad u(\ell_{\mathsf{R}},t) = 0 \quad \forall t > 0, \qquad u(S,0) = 0, \quad \dot{u}(S,0) = 0 \quad \forall S \in (0,\ell_{\mathsf{R}}).$$

Nous prenons pour inconnues la déformation et la vitesse d'extension (ε, v) , le déplacement u s'en déduisant par intégration en s'aidant des conditions aux limites ou initiales et de la condition de compatibilité :

$$\mathbf{u}(S,t) = -\int_{S}^{\ell_{\mathsf{R}}} \varepsilon(S^*,t) dS^* = \int_{0}^{t} \upsilon(S,t^*) dt^*.$$

Le problème de dynamique s'écrit donc

$$\begin{array}{ll} \text{hors choc}: & \begin{cases} \mathsf{c}_0^2 \varepsilon' - \dot{\upsilon} = 0 \\ \upsilon' - \dot{\varepsilon} = 0 \end{cases} , \quad \text{sur un choc}: & \begin{cases} \mathsf{c}_0^2 \llbracket \varepsilon \rrbracket + \dot{\mathsf{S}}_o \llbracket \upsilon \rrbracket = 0 \\ \llbracket \upsilon \rrbracket + \dot{\mathsf{S}}_o \llbracket \varepsilon \rrbracket = 0 \end{cases} \\ \text{aux extrémités}: & \begin{cases} \upsilon(0,t) = \upsilon_0, \quad \forall t > 0 \\ \upsilon(\ell_{\mathsf{R}},t) = 0, \quad \forall t > 0 \end{cases} , \quad \text{à l'instant initial}: & \begin{cases} \varepsilon(S,0) = 0, \quad \forall S \in (0,\ell_{\mathsf{R}}) \\ \upsilon(S,0) = 0, \quad \forall S \in (0,\ell_{\mathsf{R}}) \end{cases} \\ \end{array}$$

2. Résolution. Nous utilisons encore la méthode des caractéristiques. Du fait de la finitude de la longueur de la barre, l'espace-temps est maintenant la bande $\mathbb{Q}_{R} := (0, \ell_{R}) \times (0, \infty)$.

(a) Détermination de ε aux bords. Il s'agit dans un premier temps de déterminer l'état (v, ε) sur le bord de $\mathbb{Q}_{\mathbb{R}}$. On le connait sur les bords $(0, \ell_{\mathbb{R}}) \times \{0\}$ grâce aux conditions initiales. Sur $\{0, \ell_{\mathbb{R}}\} \times (0, \infty)$ on connait v grâce aux conditions aux limites, il reste à déterminer ε . On l'obtient par récurrence. En considérant une caractéristique C_+ partant d'un point de l'axe des temps, comme l'invariant de Riemann \mathcal{R}_+ y est constant et que la constante vaut 0 en vertu des conditions initiales, on a $v = c_0 \varepsilon$

sur cette caractéristique. Grâce à la condition à la limite en $S = \ell_{\mathsf{R}}$, on en déduit que $\varepsilon = 0$ en $S = \ell_{\mathsf{R}}$ tant que $t < \ell_{\mathsf{R}}/\mathsf{c}_0$. Par conséquent $(v, \varepsilon) = (0, 0)$ aussi bien sur le segment $(0, \ell_{\mathsf{R}}) \times \{0\}$ que sur le segment $\{\ell_{\mathsf{R}}\} \times (0, \ell_{\mathsf{R}}/\mathsf{c}_0)$.

En considérant une caractéristique C_{-} partant d'un point d'un de ces deux segments, l'invariant de Riemann \mathcal{R}_{-} y est constant et la constante vaut 0 puisque $(v,\varepsilon) = (0,0)$ au point origine. Donc $v = -\mathbf{c}_0\varepsilon$ sur cette caractéristique. Grâce à la condition à la limite $v = v_0$ en S = 0, on en déduit que $\varepsilon = -v_0/\mathbf{c}_0$ en S = 0 tant que $t < 2\ell_{\mathsf{R}}/\mathbf{c}_0$. Par conséquent $(v,\varepsilon) = (v_0, -v_0/\mathbf{c}_0)$ sur le segment $\{0\} \times (0, 2\ell_{\mathsf{R}}/\mathbf{c}_0)$.

En considérant une caractéristique C_+ partant d'un point du segment $\{0\} \times (0, 2\ell_R/c_0)$, l'invariant de Riemann \mathcal{R}_+ y vaut $v - c_0 \varepsilon = 2v_0$. On en déduit que $\varepsilon = -2v_0/c_0$ sur le segment $\{\ell_R\} \times (\ell_R/c_0, 3\ell_R/c_0)$.

En procédant par induction, on en déduit finalement que

FIGURE 6.3 – à gauche : les données du problème de dynamique ; à droite : la détermination de ε aux bords.

(b) Détermination de (v, ε) partout. Connaissant la vitesse et la déformation sur tout le bord du domaine \mathbb{Q}_{R} , il est facile de les déterminer partout dans \mathbb{Q}_{R} en s'aidant des caractéristiques. Prenons par exemple un point (S, t) se trouvant dans le secteur triangulaire IV sur la figure ci-contre. Il se trouve à l'intersection de la caractéristique \mathcal{C}_{-} où l'invariant de Riemann donne $v + c_0 \varepsilon = -2v_0$ et de la caractéristique \mathcal{C}_+ où l'invariant de Riemann donne $v - c_0 \varepsilon = 4v_0$. On en déduit donc que $(v,\varepsilon) = (v_0, -3v_0/c_0)$, ce qui correspond à l'état sur le segment du bord $\{0\} \times (2\ell_{\mathsf{R}}/\mathsf{c}_0, 4\ell_{\mathsf{R}}/\mathsf{c}_0)$. On peut procéder de même en tout point de n'importe quel secteur triangulaire délimité par un allerretour de l'onde de choc. L'état est constant dans chaque secteur et correspond à l'état au bord du secteur calculé précédemment. Notons qu'ici encore la solution du problème est *unique*.

Evolution de (v, ε) dans la barre obtenue par la méthode des caractéristiques

3. Interprétation. L'incompatibilité entre la condition initiale de vitesse nulle et la condition à la limite en S = 0 demandant que la vitesse soit v_0 engendre une onde de choc qui part du point (0,0)et qui se propage à la célérité c_0 dans la barre. Par contre, il n'y a pas d'incompatibilité entre la condition initiale et la condition à la limite en $S = \ell_{R}$, ce qui fait qu'il n'y a pas d'onde de choc partant du point $(\ell_R, 0)$. Pendant l'intervalle de temps $(0, \ell_R/c_0)$ où l'onde de choc émanant de (0, 0)se propage dans la barre avant d'atteindre l'extrémité $S = \ell_{\mathsf{R}}$, on retrouve la solution obtenue dans le paragraphe précédent où la barre était supposée infinie. A l'instant ℓ_R/c_0 où l'onde atteint le bord, tous les points de la barre ont la vitesse v_0 et une déformation $-v_0/c_0$. Cette vitesse est incompatible avec la condition à la limite de vitesse nulle, ce qui va provoquer une réflexion de l'onde de choc qui va retraverser la barre dans l'autre sens. Tant qu'un point matériel n'a pas été atteint par le retour de l'onde, il reste à son état $(v_0, -v_0/c_0)$. Mais dès qu'il est retraversé par l'onde de choc, sa vitesse s'annule pour se conformer à la condition à la limite en $S = \ell_{\mathsf{R}}$, ce qui oblige sa déformation à sauter à la valeur $-2v_0/c_0$ pour assurer l'équilibre. A l'instant $2\ell_R/c_0$, l'onde est revenue en S=0 et la barre est au repos dans l'état de déformation $-2v_0/c_0$. Comme cette vitesse nulle est incompatible avec la condition à la limite en S = 0, l'onde va repartir vers l'autre extrémité en faisant passer la vitesse des points matériels à 0 avec un saut de déformation à $-2v_0/c_0$. Ce processus d'aller-retour va continuer ainsi indéfiniment (ou du moins tant que l'on impose une vitesse v_0 en S = 0). La vitesse des points matériels va sauter de 0 à v_0 au passage d'une onde venant de S = 0, et de v_0 à 0 au passage d'une onde venant de $S = \ell_{\rm R}$, chaque passage d'onde incrémentant la déformation de $-v_0/c_0$.

4. Comparaison avec la réponse quasi-statique. Si l'on néglige les termes d'inertie, le problème de quasi-statique s'écrit, pour tout t > 0:

$$\begin{cases} N'(S,t) = 0 \quad \forall S \in (0,\ell_{\mathsf{R}}), \\ N(S,t) = \mathsf{EAu}'(S,t) \quad \forall S \in (0,\ell_{\mathsf{R}}), \\ \mathfrak{u}(0,t) = v_0 t, \quad \mathfrak{u}(\ell_{\mathsf{R}},t) = 0. \end{cases}$$

Sa solution en terme du déplacement u_{qs} est

$$\mathbf{u}_{qs}(S,t) = \upsilon_0 t \left(1 - \frac{S}{\ell_{\mathsf{R}}} \right),$$

les vitesses et déformations associées s'écrivant

$$\upsilon_{qs}(S,t) = \upsilon_0 \left(1 - \frac{S}{\ell_{\rm R}} \right), \qquad \varepsilon_{qs}(S,t) = -\frac{\upsilon_0 t}{\ell_{\rm R}}$$

Si l'on note t_0 le temps que met une onde pour traverser la barre et ε_0 le rapport entre la vitesse de chargement et la célérité des ondes, on a

$$t_0 = \frac{\ell_{\mathsf{R}}}{\mathsf{c}_0}, \quad \varepsilon_0 = \frac{\upsilon_0}{\mathsf{c}_0}.$$

L'écart entre la déformation d'extension solution du problème de dynamique et celle solution du problème quasi-statique est, pour S donné, une fonction périodique du temps de période $2t_0$ et de moyenne nulle :

$$\varepsilon(S,t) - \varepsilon_{qs}(t) = \overline{\varepsilon}(S,t), \qquad \overline{\varepsilon}(S,t+2t_0) = \overline{\varepsilon}(S,t),$$

$$\bar{\varepsilon}(S,t) := \begin{cases} \varepsilon_0 \frac{t}{t_0} & \text{si } 0 < \frac{t}{t_0} < \frac{S}{\ell_{\mathsf{R}}} \\ \varepsilon_0 \left(\frac{t}{t_0} - 1\right) & \text{si } \frac{S}{\ell_{\mathsf{R}}} < \frac{t}{t_0} < \left(2 - \frac{S}{\ell_{\mathsf{R}}}\right) t_0 \\ \varepsilon_0 \left(\frac{t}{t_0} - 2\right) & \text{si } \left(2 - \frac{S}{\ell_{\mathsf{R}}}\right) t_0 \frac{t}{t_0} < 2 \end{cases}$$

Autrement dit la réponse dynamique oscille autour de la solution quasi-statique, ces oscillations ont une période correspondant au temps d'aller-retour d'une onde de choc et ont une amplitude qui est de l'ordre du rapport entre la vitesse de chargement et la célérité des ondes. Par conséquent, si l'on fait tendre la vitesse de chargement vers 0, l'amplitude des oscillations va tendre vers 0 comme v_0/c_0 et la solution dynamique va converger (uniformément) vers la solution quasi-statique.

FIGURE 6.4 – Comparaison entre la solution dynamique et la solution quasi-statique pour $S = \ell_R/4$: à gauche, écart durant une période; à droite, la solution quasi-statique en vert et la solution dynamique en rouge pour $\varepsilon_0 = 0.2$ et $S = \ell_R/4$.

5. Les énergies mises en jeu. Dans la solution quasi-statique la barre est à l'instant t dans l'état de déformation uniforme $-\varepsilon_0 t/t_0$ et son énergie élastique est

$$\mathcal{E}_{qs}(t):=\int_0^{\ell_{\mathsf{R}}} \tfrac{1}{2} \, \mathsf{EA} \varepsilon_{qs}(S,t)^2 dS = \tfrac{1}{2} \, \mathsf{EA} \varepsilon_0^2 \frac{t^2}{t_0^2} \ell_{\mathsf{R}}.$$

Elle croît donc de façon parabolique par rapport au chargement.

Dans la solution dynamique, aux temps $t_i = it_0$, $i \in \mathbb{N}$, la barre est dans l'état de déformation uniforme $-i\varepsilon_0$ qui est celui de la solution quasi- Evolution des différentes énergies avec le chargement statique. Par conséquent, à ces instants les énergies élastiques quasi-statique et dynamique coïncident :

Energie

 $(\varepsilon_0 = 0.2).$

$$\mathcal{E}_{dy}(t_i) := \int_0^{\ell_{\mathsf{R}}} \frac{1}{2} \operatorname{\mathsf{EA}}_{\varepsilon}(S, t_i)^2 dS = \frac{1}{2} \operatorname{\mathsf{EA}}_i^2 \varepsilon_0^2 \ell_{\mathsf{R}} = \mathcal{E}_{qs}(t_i).$$

Entre t_i et t_{i+1} , l'énergie élastique varie linéairement par rapport au temps (parce que la déformation est constante par morceau et que la longueur des morceaux évolue linéairement par rapport au temps).

En ce qui concerne l'énergie cinétique, la barre a une vitesse nulle et donc une énergie cinétique nulle aux instants t_{2i} . Aux instants t_{2i+1} , tous les points de la barre sont à la vitesse v_0 et donc l'énergie cinétique vaut

$$\mathcal{K}(t_{2i+1}) := \int_0^{\ell_{\mathsf{R}}} \frac{1}{2} \,\rho_{\mathsf{m}} \mathsf{A} \upsilon(S, t_{2i+1})^2 dS = \frac{1}{2} \,\rho_{\mathsf{m}} \mathsf{A} \upsilon_0^2 \ell_{\mathsf{R}} = \frac{1}{2} \,\mathsf{E} \mathsf{A} \varepsilon_0^2 \ell_{\mathsf{R}} := \mathcal{K}_1.$$

L'énergie cinétique croît linéairement de 0 à \mathcal{K}_1 entre les instants t_{2i} et t_{2i+1} , puis décroît linéairement de \mathcal{K}_1 à 0 entre les instants t_{2i+1} et t_{2i+2} . Autrement dit, l'énergie oscille périodiquement entre 0 et \mathcal{K}_1 alors que l'énergie élastique croît comme le carré du chargement. Par conséquent, en dehors des premiers aller-retour où les deux énergies sont comparables (il y a même équipartition lors du premier aller puisque $\mathcal{K}_1 = \mathcal{E}_{dy}(t_1)$), l'essentiel de l'énergie fournie par l'extérieur à la barre est stockée sous forme d'énergie élastique. En outre, plus la vitesse de chargement est faible et plus l'énergie cinétique est négligeable.

Les problèmes de choc

Tous les problèmes de choc comme celui du rebond d'une barre sur une paroi rigide ou du choc entre deux barres élastiques sont régis par ces mêmes équations. Il est inutile de rajouter des conditions supplémentaires relatives aux chocs comme c'est le cas lorsqu'on suppose les objets rigides. La loi constitutive de déformabilité (en l'occurrence ici la loi d'élasticité linéaire) suffit. La seule difficulté supplémentaire qui apparaît dans la résolution réside dans le fait que les chocs sont gérés par des *conditions de contact unilatéral*. Par exemple, dans le cas d'une barre qui arrive sur une paroi rigide avec une vitesse initiale uniforme v_0 et sans déformation, une onde de choc est émise au moment de l'impact, au point d'impact. La barre se déforme tout en restant en contact avec l'obstacle tant que cet onde de choc n'a pas fait un aller-retour dans la barre. À la fin de l'aller-retour de l'onde, la barre a rebondi, elle a une vitesse uniforme $-v_0$ opposée à sa vitesse initiale et est sans déformation.

Le problème du rebond d'une barre élastique sur une paroi rigide.

6.3.3 Cas d'un comportement non linéaire

Toutes les propriétés établies dans la section précédente s'appuient de façon essentielle sur le caractère linéaire de la loi de comportement. Dans le cas non linéaire où on a seulement

$$N = \mathbf{w}'_{\mathbf{ex}}(\varepsilon) \mathsf{A}$$

sans que w_{ex} soit quadratique, beaucoup de propriétés changent, voire sont perdues. Le traitement approfondi de ce cas général sort du cadre de ce cours. Notons que ce système d'équations est identique à celui que l'on rencontre en *dynamique des gaz*, *i.e.* en dynamique des fluides parfaits compressibles. Nous nous contenterons de mentionner quelques exemples de propriétés modifiées par la non-linéarité de comportement.

1. Condition de propagation d'une onde d'accélération. En utilisant l'équation du mouvement et les conditions de compatibilité cinématiques, on déduit de (6.7) que sur une onde d'accélération, comme $\llbracket u \rrbracket = \llbracket \varepsilon \rrbracket = \llbracket v \rrbracket = 0$, on doit avoir

$$\left(\mathbf{w}_{\mathtt{ex}}''(\varepsilon) - \rho_{\mathtt{m}} \dot{\mathbf{S}}_{o}^{2}\right) \left[\!\left[\varepsilon'\right]\!\right] = 0,$$

avec par définition $[\![\varepsilon']\!] \neq 0$. Par conséquent, pour que la célérité de propagation soit réelle et non nulle, il faut que $\mathbf{w}''_{ex}(\varepsilon) > 0^6$. Lorsque cette condition est vérifiée, la célérité est donnée par

$$\dot{\mathbf{S}}_{o} = \pm \sqrt{\frac{\mathbf{w}_{\text{ex}}^{\prime\prime}(\varepsilon)}{\rho_{\text{m}}}},$$

elle dépend donc de l'état de déformation de la barre au point traversé par l'onde. Si l'on veut que les ondes d'accélération puissent se propager quel que soit l'état de déformation de la barre, il faut donc que le potentiel élastique soit une fonction *strictement convexe*.

2. Condition de propagation d'une onde de choc. On peut faire le même type de raisonnement pour une onde de choc. On déduit de (6.7) que sur une onde de choc, comme $[\![u]\!] = 0$, on doit avoir

$$\llbracket \mathbf{w}'_{\mathsf{ex}}(\varepsilon) \rrbracket = \rho_{\mathsf{m}} \dot{\mathsf{S}}_o^2 \llbracket \varepsilon \rrbracket,$$

avec par définition $[\![\varepsilon]\!] \neq 0$. Par conséquent, pour que la célérité de propagation soit réelle et non nulle, il faut donc que les états de déformation avant et après passages de l'onde soient tels que $(\mathbf{w}'_{ex}(\varepsilon^+) - \mathbf{w}'_{ex}(\varepsilon^+))(\varepsilon^+ - \varepsilon^-) > 0$. Lorsque cette condition est vérifiée, la célérité est donnée par

$$\dot{\mathbf{S}}_{o} = \pm \sqrt{\frac{\mathbf{w}_{e\mathbf{x}}^{\prime}(\varepsilon^{+}) - \mathbf{w}_{e\mathbf{x}}^{\prime}(\varepsilon^{+})}{\rho_{\mathsf{m}}(\varepsilon^{+} - \varepsilon^{-})}},$$

elle dépend donc des états de déformation de la barre au point traversé par l'onde. Si l'on veut que les ondes de choc puissent se propager quel que soit les états de déformation de la barre, il faut donc que le potentiel élastique vérifie la condition de stricte croissance de sa dérivée

$$\varepsilon_2 > \varepsilon_1 \implies \mathsf{w}'_{\mathsf{ex}}(\varepsilon_2) > \mathsf{w}'_{\mathsf{ex}}(\varepsilon_1),$$

qui est équivalente à la *stricte convexité* de w_{ex} . On peut donc résumer les deux conditions en

P-6.5. Pour que les ondes de discontinuité puissent se propager dans une barre au comportement non linéairement élastique quel que soit son état de déformation, il faut que le potentiel élastique $\mathbf{w}_{ex}(\varepsilon)$ soit une fonction strictement convexe de ε . La célérité de l'onde dépend en général de l'état de déformation de la barre.

3. Méthode des caractéristiques et invariants de Riemann. On peut encore définir la notion de courbes caractéristiques et d'invariants de Riemann, mais comme la célérité des ondes n'est pas constante, cela exige de redéfinir ces concepts dans le cas non linéaire. On se place toujours dans le cas d'une barre homogène dont la dynamique est régie par (6.7), les forces linéiques extérieures

^{6.} Cette propriété est à rapprocher de **P-5.15** que l'on a obtenue dans la section 5.5.2 lorsqu'on a discuté de la stabilité des positions d'équilibre des barres non fléchies.

étant supposées nulles. On note $(S,t) \mapsto (\varepsilon(S,t), \upsilon(S,t))$ l'évolution de la déformation et de la vitesse dans la barre. Posons

$$\mathsf{c}(\varepsilon):=\sqrt{\frac{\mathtt{W}_{\mathsf{ex}}'(\varepsilon)}{\rho_{\mathsf{m}}}}\,,\qquad \mathsf{r}(\varepsilon):=\int_{0}^{\varepsilon}\mathsf{c}(\varepsilon^{*})d\varepsilon^{*}.$$

Les *courbes caractéristiques* sont les courbes de l'espace-temps dont la tangente est égale à la célérité locale des ondes d'accélération, *i.e.*

$$\mathcal{C}_{\pm} = \{ (S,t) : S = \mathbf{S}_o(t), \quad \dot{\mathbf{S}}_o(t) = \pm \mathbf{c}(\varepsilon(\mathbf{S}_o(t),t)) \},\$$

et les invariants de Riemann "associés" sont définis par

$$\mathcal{R}_{\pm}(S,t) = \upsilon(S,t) \mp \mathsf{r}(\varepsilon((S,t)))$$

Notons que dans le cas linéairement élastique on retrouve les expressions données précédemment. Vérifions que l'invariant de Riemann \mathcal{R}_+ (resp. \mathcal{R}_-) est effectivement invariant sur la courbe caractéristique \mathcal{C}_+ (resp. \mathcal{C}_-) dans la mesure où celle-ci ne rencontre pas d'onde de choc. En dérivant et en tenant compte que $\dot{\varepsilon} = v'$ et que $\mathbf{c}(\varepsilon)^2 \varepsilon' = \dot{v}$, il vient

$$\frac{d}{dt}\mathcal{R}_{\pm}(\mathbf{S}_{o}(t),t) = \upsilon'(\mathbf{S}_{o}(t),t)\dot{\mathbf{S}}_{o}(t) + \dot{\upsilon}(\mathbf{S}_{o}(t),t) \mp \mathsf{c}(\varepsilon(\mathbf{S}_{o}(t),t))\Big(\varepsilon'(\mathbf{S}_{o}(t),t)\dot{\mathbf{S}}_{o}(t) + \dot{\varepsilon}(\mathbf{S}_{o}(t),t)\Big) \\
= \Big(\upsilon'(\mathbf{S}_{o}(t),t) \mp \mathsf{c}(\varepsilon(\mathbf{S}_{o}(t),t))\varepsilon'(\mathbf{S}_{o}(t),t)\Big)\Big(\frac{\dot{\mathbf{S}}_{o}(t) \mp \mathsf{c}(\varepsilon(\mathbf{S}_{o}(t),t))}{\dot{\mathbf{S}}_{o}(t) + \dot{\varepsilon}(\mathbf{S}_{o}(t),t)}\Big) = 0,$$

d'où la propriété. Par contre quand la caractéristique croise une onde choc, l'invariant de Riemann subit en général une discontinuité car $[v] \neq \pm [r(\varepsilon)]$.

P-6.6. Dans le mouvement d'une barre non linéairement élastique, en l'absence de forces extérieures, l'invariant de Riemann \mathcal{R}_{\pm} est invariant le long d'une courbe caractéristique \mathcal{C}_{\pm} tant qu'elle ne croise pas une onde de choc.

4. Perte d'unicité et nécessité d'un critère de sélection de solution. Dans tous les problèmes de dynamique traités précédemment dans le cadre linéaire, on a obtenu (par construction) une unique solution. Cette propriété d'unicité peut d'ailleurs se démontrer de façon générale dans le cadre linéaire. Par contre, dès que l'on introduit un comportement non linéaire, on n'est plus assuré de l'unicité. L'exemple le plus simple pour mettre en évidence l'existence de plusieurs solutions est celui de la barre semi-infinie soumise à un déplacement à vitesse contrôlée constante v_0 à l'extrémité, cf section 6.3.2. Pour simplifier les calculs et l'analyse théorique, nous considérons le potentiel élastique non linéaire

$$\mathbf{w}_{\mathbf{ex}}(\varepsilon) = \mathsf{E}(\varepsilon - \log(1 + \varepsilon)),$$

qui satisfait toutes les conditions requises. Il est nul et minimal en $\varepsilon = 0$, strictement convexe, sa dérivée $w'_{ex}(\varepsilon) = E\varepsilon/(1+\varepsilon)$ croissant de $-\infty$ à E quand ε varie de -1 à $+\infty$. Les fonctions $c(\varepsilon)$ et $r(\varepsilon)$ sont alors

$$\mathsf{c}(\varepsilon) = \frac{\mathsf{c}_0}{1+\varepsilon}, \quad \mathsf{r}(\varepsilon) = \mathsf{c}_0 \log(1+\varepsilon), \quad \mathsf{c}_0 = \sqrt{\frac{\mathsf{E}}{\rho_{\mathsf{m}}}}.$$

En particulier $\varepsilon \mapsto \mathbf{c}(\varepsilon)$ est strictement décroissante de $+\infty$ à 0, propriété de monotonie qui joue un rôle crucial dans l'analyse qui suit.

Plaçons-nous dans le cas où l'on exerce une **traction**, *i.e.* $v_0 < 0$, et exhibons deux solutions au problème de dynamique avec conditions initiales nulles. (Nous nous contenterons de vérifier que les champs exhibés vérifient effectivement toutes les équations sans détailler leur construction.)

(a) Solution correspondant à une onde simple centrée. Cette solution est donnée par

$$\left(\upsilon(S,t),\varepsilon(S,t)\right) = \begin{cases} (\upsilon_0,\varepsilon_0) & \text{si } 0 \le S \le \mathsf{c}(\varepsilon_0)t\\ \left(-\mathsf{c}_0 \log \frac{\mathsf{c}_0 t}{S}, \frac{\mathsf{c}_0 t}{S} - 1\right) & \text{si } \mathsf{c}(\varepsilon_0)t \le S \le \mathsf{c}_0 t\\ (0,0) & \text{si } S \ge \mathsf{c}_0 t \end{cases}$$

où $\varepsilon_0 = \exp(-v_0/c_0) - 1$ et $c(\varepsilon_0) = c_0 \exp(v_0/c_0)$. On notera que v et ε sont continus partout, il n'y a pas d'onde de choc, mais leur dérivée première est discontinue sur les deux droites $S = c(\varepsilon_0)t$ et $S = c_0t$ qui sont donc des ondes d'accélération. On voit que la solution consiste en deux états constants séparés par ce qui est appelé une onde simple centrée où l'état varie continûment en fonction du rapport S/t. Les conditions initiales et la condition à la limité sont bien satisfaites et on vérifie facilement que l'équation du mouvement $w''_{ex}(\varepsilon)\varepsilon' = \rho_m \dot{v}$ et la condition de compatibilité $v' = \dot{\varepsilon}$ le sont aussi.

solution avec une onde simple centrée (zone verte) séparant les deux états constants.

Les courbes caractéristiques C_+ sont des droites dont la pente est donnée par l'état de déformation (la vitesse et la déformation sont constantes sur ces droites). Par contre, en normalisant les axes et en se plaçant dans le plan $(S, \mathbf{c}_0 t)$, les courbes caractéristiques C_- sont des arcs de cercle dans la zone correspondant à l'onde simple centrée. L'invariant de Riemann $\mathcal{R}_- := v + \mathbf{c}_0 \log(1+\varepsilon)$ est nul partout. Noter que l'on utilise la décroissance de $\mathbf{c}(\varepsilon)$ avec ε puisque l'on a besoin que $\varepsilon_0 > 0$ et $\mathbf{c}(\varepsilon_0) < \mathbf{c}_0$.

(b) Solution correspondant à une onde de choc. Cette solution est donnée par

$$\left(\upsilon(S,t),\varepsilon(S,t)\right) = \begin{cases} (\upsilon_0,\varepsilon_1) & \text{si } 0 \le S < \mathsf{c}_1 t \\ (0,0) & \text{si } S > \mathsf{c}_1 t \end{cases}$$

où

$$\varepsilon_1 = -\frac{v_0}{\mathsf{c}_1}, \quad \mathsf{c}_1 = \sqrt{\mathsf{c}_0^2 + \frac{v_0^2}{4}} + \frac{v_0}{2}.$$

Elle est donc faite de deux états constants séparés par une onde de choc dont la célérité c_1 est intermédiaire entre les célérités $c(\varepsilon_0)$ et c_0 des ondes d'accélération de la première solution. Elle satisfait bien les conditions initiales et la condition à la limite. On vérifie facilement qu'elle satisfait aussi les conditions de saut $0 = w'_{ex}(\varepsilon_1) + \rho_m c_1 v_0$ et $0 = v_0 + c_1 \varepsilon_1$ sur l'onde de choc.

solution avec une onde de choc séparant deux états constants.

(c) Le critère énergétique de sélection. On dispose donc d'au moins deux solutions au problème de dynamique. Pour les départager en rejetant la solution avec onde de choc, on va faire un bilan énergétique. On va montrer que dans le cas de la solution avec une onde simple centrée, il y a **conservation de l'énergie**, le travail des efforts extérieurs est intégralement converti en énergie élastique ou cinétique. Par contre, dans le cas de la solution avec une onde de choc, il n'y a plus conservation de l'énergie mais création d'énergie mécanique par l'onde de choc car l'énergie mécanique totale est supérieure au travail des efforts extérieurs. **Comme la condition physiquement raisonnable est d'exiger que les ondes de choc soient dissipatives**⁷, il faut rejeter la solution avec onde de choc. Montrons d'abord la conservation de l'énergie dans le cas de la solution avec une onde simple centrée. Pour cela, partons de l'équation du mouvement satisfaite par tout point de la barre à un instant t, multiplions-la par le champ de vitesse à cet instant et intégrons sur toute la barre. On obtient

$$0 = -\int_0^\infty (\mathbf{w}'_{\mathsf{ex}}(\varepsilon(S,t)))' \mathsf{A}\upsilon(S,t) dS + \int_0^\infty \rho_{\mathsf{m}} \mathsf{A}\dot{\upsilon}(S,t)\upsilon(S,t) dS + \int_0^\infty \rho_{\mathsf{m}} \mathsf{A}\dot{\upsilon}(S,t)\upsilon(S,t)\upsilon(S,t) dS + \int_0^\infty \rho_{\mathsf{m}} \mathsf{A}\dot{\upsilon}(S,t)\upsilon(S,t)\upsilon(S,t) dS + \int_0^\infty \rho_{\mathsf{m}} \mathsf{A}\dot{\upsilon}(S,t)\upsilon(S,$$

En intégrant par parties le premier terme, compte tenu que v(S,t) = 0 pour $S \ge c_0 t$, que $(v(0,t), \varepsilon(0,t)) = (v_0, \varepsilon_0)$ et que $v' = \dot{\varepsilon}$, il vient

$$\begin{aligned} -\mathbf{w}_{\mathsf{ex}}'(\varepsilon_0) \mathsf{A}\upsilon_0 &= \int_0^\infty \mathbf{w}_{\mathsf{ex}}'(\varepsilon(S,t)) \mathsf{A}\dot{\varepsilon}(S,t) dS + \int_0^\infty \rho_{\mathsf{m}} \mathsf{A}\dot{\upsilon}(S,t)\upsilon(S,t) dS \\ &= \frac{d}{dt} \left(\int_0^\infty \mathbf{w}_{\mathsf{ex}}(\varepsilon(S,t)) \mathsf{A} dS \right) + \frac{d}{dt} \left(\int_0^\infty \frac{1}{2} \rho_{\mathsf{m}} \mathsf{A}\upsilon(S,t)^2 dS \right) \end{aligned}$$

Comme $-\mathbf{w}'_{ex}(\varepsilon_0)\mathbf{A}$ est la force extérieure qu'il faut exercer à l'extrémité S = 0 pour imposer son déplacement, le premier membre ci-dessus représente la puissance des efforts extérieurs. On reconnait au deuxième membre la dérivée de l'énergie élastique et de l'énergie cinétique. Par conséquent, on a $\mathbf{P} = \dot{\mathcal{E}} + \dot{\mathcal{K}}$ qui est la propriété de conservation de l'énergie annoncée.

Considérons maintenant la solution avec onde de choc. On ne peut pas faire le même raisonnement à cause de la discontinuité de la vitesse et de la déformation sur l'onde de choc. On va donc calculer directement le travail des efforts extérieurs et les énergies élastique et cinétique. La force extérieure vaut $-w'_{ex}(\varepsilon_1)A$, sa puissance est donc constante et égale à $-w'_{ex}(\varepsilon_1)Av_0$. Le calcul des énergies élastique et cinétique est immédiat puisque seul l'état constant (v_0, ε_1) donne une contribution. On obtient

$$\mathsf{W}(t) = -\mathsf{w}_{\mathsf{ex}}'(\varepsilon_1)\mathsf{A}\upsilon_0 t, \quad \mathcal{E}(t) = \mathsf{w}_{\mathsf{ex}}(\varepsilon_1)\mathsf{A}\mathsf{c}_1 t, \quad \mathcal{K}(t) = \frac{1}{2}\,\rho_\mathsf{m}\mathsf{A}\upsilon_0^2\mathsf{c}_1 t.$$

Il s'agit de comparer l'énergie mécanique totale $\mathcal{E}(t) + \mathcal{K}(t)$ au travail W(t). Comme $0 = w'_{ex}(\varepsilon_1) + \rho_m c_1 v_0$ et $0 = v_0 + c_1 \varepsilon_1$, on a

$$\mathcal{E}(t) + \mathcal{K}(t) - \mathsf{W}(t) = \left(\mathsf{w}_{\mathsf{ex}}(\varepsilon_1) - \frac{1}{2} \, \mathsf{w}'_{\mathsf{ex}}(\varepsilon_1) \varepsilon_1\right) \mathsf{Ac}_1 t.$$

Posons $\varphi(\varepsilon) := 2\mathbf{w}_{ex}(\varepsilon) - \mathbf{w}'_{ex}(\varepsilon)\varepsilon$. On a $\varphi'(\varepsilon) = \mathbf{w}'_{ex}(\varepsilon) - \mathbf{w}''_{ex}(\varepsilon)\varepsilon$ et $\varphi''(\varepsilon) = -\mathbf{w}'''_{ex}(\varepsilon)\varepsilon$. Comme $\mathbf{w}''_{ex}(\varepsilon) < 0$, $\varphi''(\varepsilon) > 0$ pour $\varepsilon > 0$. Comme $\varphi'(0) = 0$, on a $\varphi'(\varepsilon) > 0$ pour $\varepsilon > 0$, et, comme $\varphi(0) = 0$, on a $\varphi(\varepsilon_1) > 0$ puisque $\varepsilon_1 > 0$. L'énergie mécanique dans la barre est donc supérieure au travail des efforts extérieurs

^{7.} En dynamique des gaz, cette condition est appelé condition entropique. On peut la déduire du second principe de la thermodynamique mais à condition d'avoir formulé le problème thermomécanique complet.

ce qui n'est pas acceptable. Notons que l'on n'a pas utilisé la forme explicite du potentiel élastique mais seulement la propriété que sa dérivée troisième est négative (et donc que $\varepsilon \mapsto c(\varepsilon)$ est décroissante). Pour finir sur cet exemple, on remarquera que si on inverse le signe du chargement et si on impose une compression avec $v_0 > 0$, alors on ne plus construire une solution avec une onde simple centrée. Par contre la solution avec une onde de choc devient admissible car elle est dissipative (les expressions de ε_1 et c_1 sont différentes de celles que l'on a donné ci-dessus, en particulier on a $\varepsilon_1 < 0$). On voit donc une autre propriété remarquable due à la non linéarité qui est la **dissymétrie des réponses dynamiques en traction et compression**.

6.4 Dynamique des fils inextensibles

Nous ne considérerons que des fils homogènes inextensibles. L'hypothèse d'homogénéité n'est pas vraiment restrictive et permet de simplifier la présentation tout en préservant l'essentiel des phénomènes. De même la condition d'inextensibilité, qui n'est évidemment qu'une approximation de la réalité, simplifie l'analyse et permet de faire ressortir "à moindre frais" les propriétés dynamiques essentielles des fils. Elle induit toutefois un certain nombre de phénomènes "parasites" comme par exemple la transmission instantanée de certaines informations à l'ensemble du milieu, phénomènes non physiquement corrects et que l'on ne peut corriger qu'en réintroduisant l'extensibilité.

6.4.1 Formulation et propriétés générales

Formulation

Par définition dans un fil inextensible le moment fléchissant et la déformation d'extension sont identiquement nuls. Par conséquent, les abscisses curvilignes de la configuration déformée et de la configuration de référence coïncident : S = s, les descriptions lagrangienne et eulérienne sont confondues⁸. Si de plus la densité linéique de couples m est nulle, alors l'effort tranchant est identiquement nul et le seul effort intérieur non nul est l'effort normal. Les équations du mouvement se réduisent à

$$\begin{cases} \frac{\partial}{\partial s} \left(N \frac{\partial \mathbf{x}}{\partial s} \right) + \mathbf{f} - \varrho_{\mathsf{R}} \frac{\partial^2 \mathbf{x}}{\partial t^2} = \mathbf{0} & \text{(hors onde de choc et force ponctuelle),} \\ \\ \begin{bmatrix} N \frac{\partial \mathbf{x}}{\partial s} \end{bmatrix} + \mathcal{F} + \varrho_{\mathsf{R}} \dot{\mathbf{s}}_o \begin{bmatrix} \frac{\partial \mathbf{x}}{\partial t} \end{bmatrix} = \mathbf{0} & \text{(sur une onde de choc ou une force ponctuelle),} \end{cases}$$

où **f** est la densité linéique de forces extérieures, \mathcal{F} est la force ponctuelle et $\dot{\mathbf{s}}_o = \dot{\mathbf{S}}_o$ est la célérité locale de l'onde de choc. Il faut rajouter à ce système d'équations la condition d'inextensibilité. De plus, comme en statique, on ne cherche que des solutions où le fil est en tension. Par conséquent $(s,t) \mapsto (\mathbf{x}(s,t), N(s,t))$ doivent aussi vérifier

$$\forall (s,t), \qquad \begin{cases} N(s,t) \ge 0 & (\text{condition de stabilité}), \\ \\ \left\| \frac{\partial \mathbf{x}}{\partial s}(s,t) \right\| = 1 & (\text{condition d'inextensibilité}). \end{cases}$$

^{8.} Ceci va nous permettre de paramétriser tous les champs par s. De plus les célérités $\dot{\mathbf{S}}_o$ et $\dot{\mathbf{s}}_o$ sont égales.

Les conditions aux limites varient d'un problème à l'autre. Comme en statique, on ne peut pas imposer la rotation et les conditions aux limites portent sur la force intérieure ou la position. Par exemple,

$$\forall t > 0, \qquad \begin{cases} \mathbf{x}(0,t) = \mathbf{x}_0(t) & \text{(position imposée en } s = 0), \\ \\ N(\ell,t) \frac{\partial \mathbf{x}}{\partial s}(\ell,t) = \mathcal{F}_{\ell}(t) & \text{(force imposée en } s = \ell), \end{cases}$$

où la force et la position imposées peuvent dépendre du temps.

Les *conditions initiales* portent sur la position et la vitesse comme pour n'importe quel milieu continu :

$$\forall s \in (0, \ell), \qquad \begin{cases} \mathbf{x}(s, 0) = \mathbf{x}^0(s) & \text{(position initiale)}, \\\\ \frac{\partial \mathbf{x}}{\partial t}(s, 0) = \mathbf{v}^0(s) & \text{(vitesse initiale)}. \end{cases}$$

Toutefois, la condition d'inextensibilité peut exiger une compatibilité entre les conditions aux limites et les conditions initiales. Pour s'en convaincre, il suffit de considérer le cas élémentaire suivant :

Un fil inextensible de longueur ℓ est à l'instant initial au repos dans une configuration rectiligne :

$$\mathbf{x}^0(s) = s\mathbf{e}_1, \quad \mathbf{v}^0(s) = \mathbf{0}, \quad \forall s \in (0, \ell).$$

Si à partir de cet instant, on impose la position $\mathbf{x}_0(t)$ à l'extrémité s = 0 et la force $N_0 \mathbf{e}_1$ en l'extrémité $s = \ell$, il faut nécessairement que $\mathbf{x}_0(0) = 0$ et $\dot{\mathbf{x}}_0(0) = 0$ si l'on veut que les conditions initiales soient respectées. En particulier un déplacement imposé à vitesse constante $\mathbf{x}_0(t) = -v_0 t$ n'est pas compatible.

l'inextensibilité.

Cette pathologie est inhérente à l'hypothèse d'inextensibilité. En effet, dans le cas d'un déplacement imposé à vitesse constante, l'inextensibilité fait que le seul mouvement possible est $\mathbf{x}(s,t) = (s-v_0t)\mathbf{e}_1$, mais ce mouvement ne respecte pas la condition initiale de repos. Si l'on réintroduit l'extensibilité, le problème est identique à celui d'une barre élastique en traction simple où une extrémité est soumise à un déplacement contrôlé à vitesse constante. On a vu dans la section dédiée à la dynamique des barres linéairement élastiques que l'on trouve une solution unique qui respecte les conditions initiales. Une onde de choc de célérité finie $\mathbf{c}_0 = \sqrt{\mathsf{E}/\rho_{\mathsf{m}}}$ démarre de l'extrémité à l'instant initial, le milieu est progressivement informé de la condition à la limite. Le cas inextensible correspond au cas limite où $\mathsf{E} = +\infty$, la célérité est infinie, tout le milieu est informé instantanément. On notera en outre que cette mise en vitesse instantanée nécessite une *impulsion* à l'instant initial si l'on veut que le principe fondamental de la dynamique soit respecté.

Pour finir la formulation d'un problème de dynamique d'un fil inextensible indiquons la régularité minimale que l'on doit exiger des solutions.

Régularité des solutions. Comme en statique, l'absence de rigidité à la flexion fait que le vecteur tangent peut être discontinu (en espace et en temps), la configuration déformée peut contenir des points anguleux (se déplaçant éventuellement au cours du temps s'il y a des ondes de choc). La solution d'un problème de dynamique de fil doit donc être cherchée avec les conditions de régularité suivantes :

 $\begin{cases} (s,t) \mapsto \mathbf{x}(s,t) & \text{ continue partout et différentiable par morceau,} \\ (s,t) \mapsto N(s,t) & \text{ continue par morceau.} \end{cases}$

Propriétés générales sur les ondes de discontinuité

Dans le reste de cette section, la dérivée par rapport à s est indiquée par un prime et celle par rapport à t par un point :

$${\tt G}'=rac{\partial {\tt G}}{\partial s}, \qquad \dot {\tt G}=rac{\partial {\tt G}}{\partial t}.$$

1. Cas des ondes d'accélération. Comme $\llbracket v \rrbracket = \llbracket \dot{x} \rrbracket = 0$ par définition, la compatibilité cinématique impose que $\llbracket t \rrbracket = \llbracket x' \rrbracket = 0$ et donc $\llbracket n \rrbracket = e_3 \land \llbracket t \rrbracket = 0$. De même comme $\llbracket \ddot{x} \rrbracket \neq 0$ par définition et que la condition de compatibilité **P-6.2** impose que $\llbracket \ddot{x} \rrbracket = \dot{s}_o^2 \llbracket x'' \rrbracket$, on a $\llbracket x'' \rrbracket \neq 0$. Mais comme x'' = t' = Cnet que $\llbracket n \rrbracket = e_3 \land \llbracket t \rrbracket = 0$, on a $\llbracket x'' \rrbracket = \llbracket C \rrbracket n$ et donc $\llbracket C \rrbracket \neq 0$, *i.e.* la courbure est discontinue. Ce faisant, les équations du mouvement donnent $\llbracket N \rrbracket t + \mathcal{F} = 0$. Par conséquent, $\llbracket N \rrbracket = 0$ si l'onde d'accélération ne traverse pas un point où est exercée une force ponctuelle. D'autre part, en développant l'équation du mouvement hors onde de choc on obtient

$$N'\mathbf{t} + N\mathbf{x}'' + \mathbf{f} - \varrho_{\mathsf{R}}\ddot{\mathbf{x}} = \mathbf{0},$$

qui doit être vraie de part et d'autre de l'onde d'accélération. En prenant son saut il vient

$$\llbracket N' \rrbracket \mathbf{t} + N \llbracket \mathbf{x}'' \rrbracket + \llbracket \mathbf{f} \rrbracket - \varrho_{\mathsf{R}} \llbracket \ddot{\mathbf{x}} \rrbracket = \mathbf{0}.$$

En utilisant $[\![\ddot{\mathbf{x}}]\!] = \dot{\mathbf{s}}_o^2 [\![\mathbf{x''}]\!]$, la condition de saut devient

$$\llbracket N' \rrbracket \mathbf{t} + (N - \varrho_{\mathsf{R}} \dot{\mathbf{s}}_{o}^{2}) \llbracket \mathsf{C} \rrbracket \mathbf{n} + \llbracket \mathbf{f} \rrbracket = \mathbf{0}.$$

Par conséquent si les forces linéiques extérieures sont continues sur l'onde d'accélération, on déduit des équations du mouvement que $[\![N']\!] = 0$ et $N = \rho_R \dot{\mathbf{s}}_o^2$. En résumé, on a obtenu les propriétés suivantes

P-6.7 (**Propriétés des ondes d'accélération dans un fil**). Sur une onde d'accélération, le vecteur tangent et le vecteur normal sont continus, mais la courbure est discontinue :

$$\llbracket \mathbf{t} \rrbracket = \llbracket \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket \mathtt{C} \rrbracket \neq 0.$$

De plus, en dehors des points où sont exercées des forces ponctuelles et ceux où les forces réparties sont discontinues, l'effort normal et sa dérivée spatiale sont également continus et la célérité de l'onde est donnée par l'état local de tension du fil :

$$\llbracket N \rrbracket = \llbracket N' \rrbracket = 0, \qquad \dot{\mathbf{s}}_o = \pm \sqrt{\frac{N}{\varrho_R}} \qquad sur \ une \ onde \ d'accélération \ où \ \boldsymbol{\mathcal{F}} = \mathbf{0} \ et \ \llbracket \mathbf{f} \rrbracket = \mathbf{0}.$$

Notons que la condition de stabilité d'effort normal positif est aussi une condition pour que les ondes d'accélération puissent se propager.

2. Cas des ondes de choc. On suppose maintenant que $[\![\mathbf{x}]\!] = \mathbf{0}$ mais que $[\![\dot{\mathbf{x}}]\!] \neq \mathbf{0}$. La condition de compatibilité cinématique donne $[\![\dot{\mathbf{x}}]\!] = -\dot{\mathbf{s}}_o[\![\mathbf{x}']\!]$ et donc $[\![\mathbf{x}']\!] = [\![\mathbf{t}]\!] \neq \mathbf{0}$, le vecteur tangent est nécessairement discontinu. Plaçons-nous à un instant où l'onde de choc traverse un point sans force ponctuelle. Comme $\mathcal{F} = \mathbf{0}$, l'équation du mouvement donne

$$\mathbf{0} = \llbracket N\mathbf{t} \rrbracket - \varrho_{\mathsf{R}} \dot{\mathbf{s}}_{o}^{2} \llbracket \mathbf{t} \rrbracket = \left(\langle N \rangle - \varrho_{\mathsf{R}} \dot{\mathbf{s}}_{o}^{2} \right) \llbracket \mathbf{t} \rrbracket + \llbracket N \rrbracket \langle \mathbf{t} \rangle, \tag{6.8}$$

où on s'est servi de la formule du saut d'un produit :

$$\llbracket \phi \varphi \rrbracket = \llbracket \phi \rrbracket \langle \varphi \rangle + \langle \phi \rangle \llbracket \varphi \rrbracket,$$

 $\langle \cdot \rangle$ dénotant la valeur moyenne, cf (5.4). Remarquons que $[t] \cdot \langle t \rangle = 0$. En effet

$$\mathbf{t}^+ = \left< \mathbf{t} \right> + \tfrac{1}{2} \, [\![\mathbf{t}]\!], \qquad \mathbf{t}^- = \left< \mathbf{t} \right> - \tfrac{1}{2} \, [\![\mathbf{t}]\!].$$

Comme $\|\mathbf{t}^+\| = \|\mathbf{t}^-\| = 1$, il vient $0 = \mathbf{t}^+ \cdot \mathbf{t}^+ - \mathbf{t}^- \cdot \mathbf{t}^- = 2\langle \mathbf{t} \rangle \cdot [\![\mathbf{t}]\!]$ et donc $\langle \mathbf{t} \rangle$ est orthogonal à $[\![\mathbf{t}]\!]$. En faisant le produit scalaire par $[\![\mathbf{t}]\!] \neq \mathbf{0}$ dans (6.8), on obtient

$$\dot{\mathbf{s}}_o^2 = rac{ig \langle N ig
angle}{arrho_{\mathsf{R}}}, \qquad \llbracket N
rbracket ig \langle \mathbf{t} ig
angle = \mathbf{0}.$$

Par conséquent $[\![N]\!] = 0$ et $\dot{\mathbf{s}}_o^2 = N/\rho_{\mathsf{R}}$ sauf si $\langle \mathbf{t} \rangle = \mathbf{0}$. Le cas où $\langle \mathbf{t} \rangle = \mathbf{0}$ correspond à la situation où $\mathbf{t}^+ = -\mathbf{t}^-$, *i.e.* le cas où le fil fait un pli, l'angle tangent variant de 180° après passage de l'onde de choc. Dans ce cas, l'effort normal peut être discontinu et la célérité fait intervenir sa valeur moyenne. On peut résumer l'ensemble des résultats obtenus par la propriété suivante

P-6.8 (**Propriétés des ondes de choc dans un fil**). Sur une onde de choc le vecteur tangent et le vecteur normal sont discontinus :

$$\llbracket t \rrbracket \neq 0, \quad \llbracket n \rrbracket \neq 0.$$

De plus, en dehors des points où sont exercés des forces ponctuelles et ceux où le fil fait un pli, l'effort normal est continu et fixe la valeur de la célérité locale de l'onde :

$$\llbracket N \rrbracket = 0, \quad \mathbf{t}^+ + \mathbf{t}^- \neq \mathbf{0}, \qquad \dot{\mathbf{s}}_o = \pm \sqrt{\frac{N}{\varrho_R}} \qquad sur \ une \ onde \ de \ choc \ hors \ pli \ et \ où \ \boldsymbol{\mathcal{F}} = \mathbf{0}.$$

Lorsque l'onde de choc provoque un pli, l'effort normal peut être discontinu et la célérité de propagation du pli dépend de sa valeur moyenne :

$$\mathbf{t}^+ + \mathbf{t}^- = \mathbf{0}, \qquad \dot{\mathbf{s}}_o = \pm \sqrt{\frac{N^+ + N^-}{2\varrho_R}} \qquad sur \ un \ pli \ mobile.$$

6.4.2 La dynamique des cordes vibrantes

Les équations de la dynamique des fils sont par nature non linéaires, ce qui rend leur résolution difficile. Il existe très peu de solutions analytiques exactes et leurs propriétés générales ne sont pas encore clairement établies. Par contre, si l'on ne s'intéresse qu'aux petits mouvements à partir d'une configuration d'équilibre rectiligne, alors en linéarisant les équations on obtient un système d'équations beaucoup plus facile à traiter tant d'un point de vue théorique que numérique. Cette section est dédiée à l'étude de ces petits mouvements qui constitue ce que l'on appelle couramment le *modèle des cordes vibrantes*.

Hypothèses sur l'équilibre et les petits mouvements autour de l'équilibre

On part d'une situation où le fil inextensible est en équilibre sous l'action d'efforts extérieurs dans une configuration rectiligne⁹ en se limitant au cas où il n'y a que des forces réparties et pas de forces ponctuelles. On note $s \mapsto \mathbf{x}_{eq}(s)$ la configuration d'équilibre, $s \mapsto N_{eq}(s)$ la répartition de l'effort normal à l'équilibre et $s \mapsto \mathbf{f}_{eq}(s)$ la densité des forces linéiques extérieures correspondantes. Moyennant un choix du repère, on peut supposer que la direction d'équilibre est \mathbf{e}_1 et mettre \mathbf{x}_{eq} et \mathbf{f}_{eq} sous la forme suivante

$$\mathbf{x}_{eq}(s) = s\mathbf{e}_1, \quad \mathbf{f}_{eq}(s) = \mathbf{f}_1(s)\mathbf{e}_1,$$

car les forces linéiques sont nécessairement longitudinales pour que l'équilibre rectiligne soit possible. Les équations d'équilibre s'écrivent alors

$$N_{eq}'(s) + \mathbf{f}_1(s) = 0,$$

^{9.} Le fait de supposer la configuration d'équilibre rectiligne simplifie beaucoup le traitement ultérieur. Mais on pourrait évidemment suivre la même démarche de linéarisation dans le cas d'une configuration d'équilibre courbe.

les conditions aux limites permettant de déterminer la constante d'intégration. On perturbe cette configuration en modifiant les efforts extérieurs ou en se donnant des conditions initiales incompatibles avec l'équilibre ce qui va obliger le fil à se mettre en mouvement. On note $(s,t) \mapsto \mathbf{x}(s,t)$ ce mouvement, $(s,t) \mapsto N(s,t)$ la répartition dynamique de l'effort normal et $(s,t) \mapsto \mathbf{f}(s,t)$ les forces linéiques extérieures durant ce mouvement. En introduisant les écarts par rapport à l'équilibre, on pose

$$\begin{cases} \mathbf{x}(s,t) = s\mathbf{e}_1 + \mathbf{u}(s,t)\mathbf{e}_1 + \mathbf{w}(s,t)\mathbf{e}_2, \\ N(s,t) = N_{eq}(s) + \overline{N}(s,t), \\ \mathbf{f}(s,t) = \mathbf{f}_1(s)\mathbf{e}_1 + \overline{\mathbf{f}_1}(s,t)\mathbf{e}_1 + \overline{\mathbf{f}_2}(s,t)\mathbf{e}_2, \end{cases}$$

où \mathbf{u} et \mathbf{w} représentent le déplacement d'extension et la déflexion par rapport à la configuration d'équilibre. On fait de même pour les conditions initiales en posant

$$\begin{cases} \mathbf{x}^0(s) = s\mathbf{e}_1 + \mathbf{u}^0(s)\mathbf{e}_1 + \mathbf{w}^0(s)\mathbf{e}_2, \\ \mathbf{v}^0(s) = v_1^0(s)\mathbf{e}_1 + v_2^0(s)\mathbf{e}_2, \end{cases}$$

ces données devant être compatibles avec la condition d'inextensibilité et les conditions aux limites.

On suppose que les modifications des efforts extérieurs sont suffisamment faibles et que les conditions initiales sont telles que le fil ne s'écarte jamais beaucoup de sa configuration d'équilibre. Autrement dit, on va adopter le cadre HPP des petites perturbations, cf 1.3, en supposant *a priori* que les variables d'écart sont des infiniment petits ainsi que leurs dérivées. Rappelons qu'en pratique cette notion de petitesse reste à l'appréciation du modélisateur. Nous l'utilisons ici comme procédé formel pour linéariser les équations en négligeant les termes d'ordre supérieur à 1.

Linéarisation des équations

Hors onde de choc, les équations du mouvement complètes s'écrivent

$$\mathbf{0} = (N\mathbf{x}')' + \mathbf{f} - \varrho_{\mathsf{R}}\ddot{\mathbf{x}}.$$

En les projetant sur \mathbf{e}_1 et \mathbf{e}_2 on obtient

$$\begin{cases} 0 = ((N_{eq} + \overline{N})(1 + \mathbf{u}'))' + \mathbf{f}_1 + \overline{\mathbf{f}_1} - \varrho_{\mathsf{R}} \ddot{\mathbf{u}} \\ 0 = ((N_{eq} + \overline{N})\mathbf{w}')' + \overline{\mathbf{f}_2} - \varrho_{\mathsf{R}} \ddot{\mathbf{w}} \end{cases}$$

En développant celle qui provient de la projection sur \mathbf{e}_2 , il vient

$$0 = N_{eq} \mathbf{w}'' + N_{eq}' \mathbf{w}' + (\overline{N} \mathbf{w}')' + \overline{\mathbf{f}_2} - \varrho_{\mathsf{R}} \ddot{\mathbf{w}}.$$

Si l'on considère que \mathbf{w} (et ses dérivées), \overline{N} et $\overline{f_2}$ sont des infiniment petits du premier ordre, le terme $(\overline{N}\mathbf{w}')'$ est d'ordre supérieur et on peut le négliger. En tenant compte des équations d'équilibre qui donnent $N'_{eq} = -f_1$, l'équation du mouvement suivant \mathbf{e}_2 devient alors

$$0 = N_{eq}\mathbf{w}'' - \mathbf{f}_1\mathbf{w}' + \overline{\mathbf{f}_2} - \varrho_{\mathsf{R}}\mathbf{\ddot{w}},\tag{6.9}$$

elle est donc linéaire en les variables d'écart. Notons que, si nous supposons connu $\overline{f_2}$, c'est une équation qui ne porte que sur le mouvement de la déflexion w.

En développant celle qui provient de la projection sur e_1 , il vient

$$0 = N'_{eq} + N_{eq} \mathbf{u}'' + N'_{eq} \mathbf{u}' + \overline{N}' + (\overline{N}\mathbf{u}')' + \mathbf{f}_1 + \overline{\mathbf{f}_1} - \varrho_{\mathsf{R}} \mathbf{\ddot{u}}$$

En tenant compte de l'équilibre $N'_{eq} + f_1 = 0$, les termes d'ordre 0 disparaissent. En négligeant le terme $(\overline{N}\mathbf{u}')'$, l'équation devient

$$0 = N_{eq}\mathbf{u}'' - \mathbf{f}_1\mathbf{u}' + \overline{N}' + \overline{\mathbf{f}_1} - \varrho_{\mathsf{R}}\ddot{\mathbf{u}}.$$
(6.10)

C'est donc une équation linéaire en les variables d'écart qui couple \overline{N} et u.

Procédons de même pour les conditions de saut sur une onde de choc, en rappelant que l'on suppose qu'il n'y a pas de forces ponctuelles et donc que N_{eq} est continu :

$$\begin{aligned} \mathbf{0} &= [\![N\mathbf{x}']\!] + \varrho_{\mathsf{R}} \dot{\mathbf{s}}_0 [\![\dot{\mathbf{x}}]\!] \\ &= [\![(N_{eq} + \overline{N})((1 + \mathbf{u}')\mathbf{e}_1 + \mathbf{w}'\mathbf{e}_2]\!] + \varrho_{\mathsf{R}} \dot{\mathbf{s}}_0 [\![\dot{\mathbf{u}}\mathbf{e}_1 + \dot{\mathbf{w}}\mathbf{e}_2]\!] \\ &= \left(N_{eq} [\![\mathbf{u}']\!] + [\![\overline{N}]\!] + [\![\overline{N}]\!] + [\![\overline{N}]\!\mathbf{u}']\!] + \varrho_{\mathsf{R}} \dot{\mathbf{s}}_0 [\![\dot{\mathbf{u}}]\!] \right) \mathbf{e}_1 + \left(N_{eq} [\![\mathbf{w}']\!] + [\![\overline{N}]\!\mathbf{w}']\!] + \varrho_{\mathsf{R}} \dot{\mathbf{s}}_0 [\![\dot{\mathbf{w}}]\!] \right) \mathbf{e}_2. \end{aligned}$$

En négligeant les termes d'ordre supérieur $[\overline{N}u']$ et $[\overline{N}w']$ et en projetant, on obtient finalement

$$\begin{cases} 0 = N_{eq} \llbracket \mathbf{u}' \rrbracket + \llbracket \overline{N} \rrbracket + \varrho_{\mathsf{R}} \dot{\mathbf{s}}_0 \llbracket \dot{\mathbf{u}} \rrbracket \\ 0 = N_{eq} \llbracket \mathbf{w}' \rrbracket + \varrho_{\mathsf{R}} \dot{\mathbf{s}}_0 \llbracket \dot{\mathbf{w}} \rrbracket. \end{cases}$$

Ecrivons maintenant la condition d'inextensibilité,

$$0 = \|\mathbf{x}'\|^2 - 1 = (1 + \mathbf{u}')^2 + \mathbf{w}'^2 - 1 = 2\mathbf{u}' + \mathbf{u}'^2 + \mathbf{w}'^2.$$

Elle montre que \mathbf{u}' est en fait du second ordre, $\mathbf{u}' \approx -\frac{1}{2} \mathbf{w}'^2$, ce qui va nous permettre de le négliger dans les équations du mouvement. Au premier ordre, comme $\mathbf{u}' = 0$, \mathbf{u} est uniquement une fonction du temps, *i.e.*

$$\mathbf{u}(s,t) = \mathbf{u}_0(t),$$

cette fonction du temps étant déterminée par les conditions aux limites dès lors que le déplacement d'une des deux extrémités est contrôlé. En reportant dans (6.10), on obtient

$$\overline{N}' + \overline{f_1} - \varrho_R \ddot{u}_0 = 0$$
 hors onde de choc.

Comme $\llbracket \mathbf{u}' \rrbracket = \llbracket \dot{\mathbf{u}} \rrbracket = 0$ au premier ordre, la condition de saut sur une onde de choc projetée suivant \mathbf{e}_1 donne

 $\llbracket \overline{N} \rrbracket = 0$ sur une onde de choc.

Ces deux équations permettent de déterminer $\overline{N}(s,t)$ pour tout (s,t) dès lors que la tension est contrôlée à une extrémité.

La condition initiale sur la position doit satisfaire la condition d'inextensibilité et donc

$$2\frac{d\mathbf{u}^0}{ds} + \left(\frac{d\mathbf{u}^0}{ds}\right)^2 + \left(\frac{d\mathbf{w}^0}{ds}\right)^2 = 0.$$

En supposant que $d\mathbf{w}^0/ds$ est un infiniment petit, $d\mathbf{u}^0/ds$ est nécessairement du deuxième ordre. On a donc au premier ordre $\mathbf{u}^0(s) =$ cte et pour qu'il ait compatibilité avec les conditions aux limites il
faut que $\mathbf{u}^0(s) = \mathbf{u}_0(0)$. En terme des vitesses la condition d'inextensibilité exige que $\dot{\mathbf{x}}'$ soit suivant la normale. En effet comme $\|\mathbf{x}'\| = 1$, en dérivant par rapport au temps, on obtient $\dot{\mathbf{x}}' \cdot \mathbf{x}' = 0$ et donc $\dot{\mathbf{x}}'$ est orthogonal au vecteur tangent. A l'instant initial cette condition d'orthogonalité (complète) s'écrit

$$0 = \left(\frac{dv_1^0}{ds}\mathbf{e}_1 + \frac{dv_2^0}{ds}\mathbf{e}_2\right) \cdot \left(\left(1 + \frac{d\mathbf{u}^0}{ds}\right)\mathbf{e}_1 + \frac{d\mathbf{w}^0}{ds}\mathbf{e}_2\right) = \frac{dv_1^0}{ds} + \frac{dv_1^0}{ds}\frac{d\mathbf{u}^0}{ds} + \frac{dv_2^0}{ds}\frac{d\mathbf{w}^0}{ds}.$$

En supposant que les dérivées des vitesses initiales sont des infiniment petits et en ne retenant que les termes du premier ordre, il ne reste que

$$\frac{dv_1^0}{ds} = 0$$

Par conséquent $v_1^0(s) =$ cte. Pour qu'il y ait compatibilité avec les conditions aux limites, il faut que $v_1^0(s) = \dot{u}_0(0)$. On voit donc que la condition d'inextensibilité et la compatibilité avec les conditions aux limites fixent le déplacement initial longitudinale et la vitesse initiale longitudinale, mais laissent le déplacement initial transversal et la vitesse initiale transversale arbitraires.

Nous avons donc finalement obtenu l'ensemble des équations linéarisées qui constituent le modèle des cordes vibrantes. Résumons-les (sans rappeler toutes les notations)

P-6.9 (Le modèle linéarisé des cordes vibrantes). Les petits mouvements d'un fil homogène inextensible autour d'une configuration d'équilibre rectiligne sont régis par le système linéaire suivant :

1. La répartition de l'effort normal à l'équilibre vérifiant

$$N_{eq}'(s) + \mathbf{f}_1(s) = 0,$$

le mouvement $(s,t) \mapsto w(s,t)$ de la déflexion est donné par

$$\begin{cases} N_{eq}(s)\mathbf{w}''(s,t) - \mathbf{f}_1(s)\mathbf{w}'(s,t) + \overline{\mathbf{f}_2}(s,t) - \varrho_R \ddot{\mathbf{w}}(s,t) = 0 & \text{hors onde de choc} \\ N_{eq}(\mathbf{s}_0(t))[\![\mathbf{w}']\!](\mathbf{s}_0(t),t) + \varrho_R \dot{\mathbf{s}}_0(t)[\![\dot{\mathbf{w}}]\!](\mathbf{s}_0(t),t) = 0 & \text{sur une onde de choc} \end{cases}$$

avec les conditions initiales $\mathbf{w}(s,0) = \mathbf{w}^0(s)$ et $\dot{\mathbf{w}}(s,0) = v_2^0(s)$ et les éventuelles conditions aux limites portant sur $\mathbf{w}(s,t)$ ou $\mathbf{w}'(s,t)$ en s = 0 ou $s = \ell$;

2. En première approximation le déplacement d'extension u n'est qu'une fonction du temps,

$$\mathbf{u}(s,t) = \mathbf{u}_0(t),$$

fonction qui est donnée par les conditions aux limites, les conditions initiales devant s'en déduire pour être compatibles ;

3. L'écart d'effort normal $(s,t) \mapsto \overline{N}(s,t)$ par rapport à l'équilibre est donné par

$$\begin{cases} \overline{N}'(s,t) = -\overline{f_1}(s,t) + \varrho_{\mathsf{R}} \ddot{\mathbf{u}}_0(t) & \text{hors onde de choc} \\ [\![\overline{N}]\!](\mathbf{s}_0(t),t) = 0 & \text{sur une onde de choc} \end{cases}$$

et les éventuelles conditions aux limites portant sur $\overline{N}(s,t)$ en s = 0 ou $s = \ell$.

Propriétés générales

Avant d'étudier de façon plus approfondie un exemple de mouvement régi par le modèle des cordes vibrantes, dégageons quelques propriétés générales de ces équations en distinguant le cas d'une tension d'équilibre uniforme du cas général.

1. Cas d'une tension d'équilibre uniforme : $N_{eq}(s) = N_0$. Lorsque les forces linéiques d'équilibre f_1 sont nulles, la tension d'équilibre est uniforme dans le fil. Dans ce cas, le mouvement de la déflexion est régi par l'équation des ondes

$$\begin{cases} N_0 \mathbf{w}'' + \overline{\mathbf{f}_2} - \varrho_{\mathsf{R}} \ddot{\mathbf{w}} = 0 & \text{hors onde de choc,} \\ N_0 \llbracket \mathbf{w}' \rrbracket + \varrho_{\mathsf{R}} \dot{\mathbf{s}}_o \llbracket \dot{\mathbf{w}} \rrbracket = 0 & \text{sur une onde de choc.} \end{cases}$$

Par conséquent toutes les ondes (chocs compris) se propagent avec la célérité c_0 donnée par la valeur de la tension

$$\mathbf{c}_0 = \sqrt{\frac{N_0}{\rho_{\mathsf{R}}}}$$
 (célérité des ondes dans le cas d'une tension uniforme). (6.11)

On peut utiliser toutes les propriétés établies pour les barres linéairement élastiques en tractioncompression en remplaçant le déplacement d'extension par la déflexion. En particulier, on peut utiliser la méthode des caractéristiques pour résoudre les problèmes de dynamique.

2. Cas d'une tension d'équilibre non uniforme. Lorsque les forces linéiques d'équilibre f_1 sont non nulles, la tension dans le fil à l'équilibre est non uniforme. Les équations du mouvement de la déflexion ne se simplifient pas. Rappelons-les :

$$\begin{cases} N_{eq}\mathbf{w}'' - f_1\mathbf{w}' + \overline{f_2} - \varrho_{\mathsf{R}}\mathbf{\ddot{w}} = 0 & \text{hors onde de choc,} \\ N_{eq}[\![\mathbf{w}']\!] + \varrho_{\mathsf{R}}\mathbf{\dot{s}}_o[\![\mathbf{\dot{w}}]\!] = 0 & \text{sur une onde de choc.} \end{cases}$$

Sur une onde de choc, comme $\llbracket \mathbf{w} \rrbracket = 0$, la condition de compatibilité cinématique donne $\dot{\mathbf{s}}_o \llbracket \mathbf{w}' \rrbracket + \llbracket \dot{\mathbf{w}} \rrbracket = 0$. En reportant dans la condition de saut pour le mouvement, on en déduit que la célérité de l'onde de choc dépend du point :

$$\dot{\mathbf{s}}_o = \pm \sqrt{\frac{N_{eq}(s)}{\varrho_{\mathsf{R}}}} \qquad \text{(célérité des ondes dans le cas d'une tension non uniforme).} \tag{6.12}$$

Sur une onde d'accélération, comme $\llbracket \mathbf{w} \rrbracket = \llbracket \mathbf{w}' \rrbracket = \llbracket \mathbf{\dot{w}} \rrbracket = 0$, les conditions de compatibilité cinématiques donnent $\llbracket \mathbf{\ddot{w}} \rrbracket = \mathbf{\dot{s}}_o^2 \llbracket \mathbf{w}'' \rrbracket$. Par conséquent, si on suppose que $\llbracket f_2 \rrbracket = \llbracket \overline{f_2} \rrbracket = 0$, alors l'équation du mouvement dit également que la célérité de l'onde est donnée par (6.12).

Exemple : oscillations verticales d'un câble pesant

Considérons un câble inextensible qui est placé dans un champ de pesanteur uniforme vertical $\mathbf{g} = -g\mathbf{e}_2$. A l'instant initial il repose sans vitesse sur un support horizontal (la réaction verticale du support compensant le poids du câble) :

$$\mathbf{x}^0(s) = s\mathbf{e}_1, \qquad \mathbf{v}^0(s) = \mathbf{0}.$$

FIGURE 6.5 – Configuration du câble sur son support (en haut), puis soumis à la pesanteur (en bas).

Il est attaché au point **O** en son extrémité s = 0 alors que l'extrémité $s = \ell$ est soumise à une condition d'appui simple sur un support horizontal :

$$\mathbf{x}(\ell,t) \cdot \mathbf{e}_2 = \mathbf{w}(\ell,t) = 0, \qquad \mathbf{R}(s,t) \cdot \mathbf{e}_1 = N(s,t)(1 + \mathbf{u}'(\ell,t)) = \mathcal{F} > 0,$$

l'intensité \mathcal{F} de la force étant maintenue constante. A l'instant t = 0, on enlève le support horizontal et dès lors le câble va être soumis à la pesanteur seule. On se propose d'étudier le mouvement du câble à partir de cet instant. Pour cela, on suppose que la force \mathcal{F} exercée à l'extrémité $s = \ell$ est grande vis à vis du poids $\mathcal{P} = \varrho_{\mathsf{R}} g\ell$ du câble :

$$\mathcal{F} \ll \mathcal{P} = \varrho_{\mathsf{R}} g \ell$$
 (la condition justifiant le cadre HPP).

Intuitivement, la force étant grande vis à vis du poids, le câble ne devrait jamais s'écarter beaucoup de sa configuration initiale horizontale. Sous cette condition, nous adoptons donc *a priori* le cadre HPP conduisant aux équations linéarisées des cordes vibrantes et nous vérifierons *a posteriori* sa pertinence. Comme $f_1 = 0$, la tension d'équilibre est égale à la force \mathcal{F} . Comme $\overline{f_2} = -\varrho_R g$, le système linéarisé régissant le mouvement de la déflexion s'écrit ici :

équation du mouvement hors onde de choc : $c_0^2 \mathbf{w}'' - g - \ddot{\mathbf{w}} = 0$ où $c_0 = \sqrt{\mathcal{F}/\varrho_R}$,

conditions aux limites : $|\mathbf{w}(0,t) = \mathbf{w}(\ell,t) = 0|$, conditions initiales : $|\mathbf{w}(s,0) = \dot{\mathbf{w}}(s,0) = 0|$.

Une fois que le support est enlevé la configuration rectiligne horizontale n'est plus configuration d'équilibre. La nouvelle configuration d'équilibre caractérisée par sa déflexion $s \mapsto w_*(s)$ s'obtient en résolvant le système précédent sans les termes d'inertie et les conditions initiales, soit

$$\mathcal{F}\mathbf{w}_*''(s) - \varrho_{\mathsf{R}}g = 0 \quad \forall s \in (0,\ell), \qquad \mathbf{w}_*(0) = \mathbf{w}_*(\ell) = 0.$$

C'est donc l'arc de parabole

$$\mathbf{w}_*(s) = -\frac{\varrho_{\mathsf{R}}g}{2\mathcal{F}}s(\ell-s),$$

qui n'est rien d'autre que la version linéarisée de l'arc de chaînette obtenu dans la section 4.3.3 du chapitre 4. Si on introduit l'écart

$$\bar{\mathbf{w}}(s,t) := \mathbf{w}(s,t) - \mathbf{w}_*(s)$$

290

à cette nouvelle configuration d'équilibre, cet écart vérifie

$$\begin{cases} \mathbf{c}_0^2 \bar{\mathbf{w}}'' - \ddot{\mathbf{w}} = 0 & \text{hors onde de choc,} \\ \bar{\mathbf{w}}(0,t) = \bar{\mathbf{w}}(\ell,t) = 0, & \forall t \ge 0, \\ \hline \bar{\mathbf{w}}(s,0) = -\mathbf{w}_*(s) & \dot{\mathbf{w}}(s,0) = 0, & \forall s \in (0,\ell). \end{cases}$$

Comme $\bar{\mathbf{w}}$ vérifie l'équation des ondes homogène, on peut le déterminer à l'aide de la méthode des caractéristiques. Indiquons les principaux aspects de la solution, le détail des calculs étant laissé à titre d'exercice.

1. Périodicité du mouvement. Le mouvement du câble est périodique, la période T correspondant au temps d'aller-retour d'une onde, *i.e.*

$$T = \frac{2\ell}{\mathsf{c}_0}.$$

Durant le premier quart de période le câble descend, passant de la position horizontale à la position d'équilibre $s \mapsto w_*(s)$. Quand il passe par la position d'équilibre à la fin du premier quart de période, tous les points du câble ont une vitesse verticale négative et donc le câble continue de descendre. A la fin de la demi-période il atteint sa position la plus basse correspondant à $s \mapsto 2w_*(s)$, il a alors une vitesse nulle. Mais comme ce n'est pas une position d'équilibre, il a une accélération positive et commence à remonter. A la fin du troisième quart de période il repasse par la position d'équilibre, mais avec une vitesse opposée à celle qu'il avait à T/4. Il finit sa remontée et retrouve à la fin de la période la position horizontale avec une vitesse nulle et une accélération négative. Comme l'extrémité s = 0 est fixée, les déplacements horizontaux sont du second ordre et donc négligés dans l'approche linéarisée. (On peut calculer le terme du deuxième ordre à partir de la condition d'inextensibilité, $\mathbf{u}' = -\frac{1}{2} \mathbf{w}'^2$. Il est lui aussi périodique de période T.) De même, comme $\overline{f_1} = 0$, l'effort normal est égal à \mathcal{F} au second ordre près, $\overline{N}(s, t) = 0$.

FIGURE 6.6 – Oscillations périodiques du câble

2. Mouvement du point milieu $s = \ell/2$. Son mouvement durant une période est donné par

$$\mathbf{w}(\ell/2,t) = \begin{cases} -\frac{1}{2} g t^2 & \text{si } 0 \le t \le T/4 \\ -\frac{1}{16} g T^2 + \frac{1}{2} g (t - T/2)^2 & \text{si } T/4 \le t \le 3T/4 \\ -\frac{1}{2} g (2T - t)^2 & \text{si } 3T/4 \le t \le T \end{cases}$$

Durant le premier quart de période, sa vitesse est la vitesse de chute libre. A t = T/4, le point est informé par les ondes partant des extrémités que les extrémités sont bloquées verticalement. Ceci a pour effet d'arrêter sa chute libre, le point est alors dans sa position d'équilibre $\mathbf{w}_*(\ell/2) = -\mathcal{P}\ell/8\mathcal{F}$ avec une accélération positive. Sa vitesse (négative et décroissante jusque là) va augmenter pour passer par 0 quand le point atteint sa position la plus basse à t = T/2. Puis le point va remonter, sa vitesse devenant positive. Il repasse par sa position d'équilibre à t = 3T/4 pour revenir avec une vitesse nulle à sa position initiale $\mathbf{w} = 0$.

FIGURE 6.7 – Mouvement du milieu du câble durant une période représenté par sa déflexion $w(\ell/2, t)$.

Exercice 6.4. Calculer la réponse dynamique du câble pesant et justifier tous les résultats annoncés ci-dessus. On utilisera pour cela la méthode des caractéristiques au problème posé en terme de \bar{w} .

3. Justification a posteriori de la linéarisation. Les équations linéarisées prédisent un mouvement périodique dont l'amplitude relative (par rapport à la longueur du câble) \mathbf{w}/ℓ est de l'ordre du rapport \mathcal{P}/\mathcal{F} . De même la rotation $\omega \approx \mathbf{w}'$ et les vitesses comparées à la vitesse des ondes $\dot{\mathbf{w}}/\mathbf{c}_0$ sont partout et toujours de l'ordre \mathcal{P}/\mathcal{F} . Par conséquent, dans la mesure où la force \mathcal{F} est grande vis à vis du poids du câble, le cadre HPP est légitime.

6.5 Vibrations des tiges élastiques

L'étude de la dynamique des tiges ou arcs élastiques possédant une rigidité à la flexion est sensiblement plus difficile que celle des fils ou des barres en traction-compression. Nous nous contenterons d'étudier les mouvements particuliers que sont les (petites) vibrations autour d'une configuration naturelle ou une configuration d'équilibre rectilignes.

6.5.1 Vibrations propres autour d'une configuration naturelle rectiligne

Hypothèses et définitions

On considère une tige élastique et homogène dont la configuration naturelle est rectiligne. Sa longueur naturelle est ℓ_{R} , sa masse linéique naturelle est ϱ_{R} et les axes sont choisis de façon à ce que la configuration naturelle prise pour référence soit

$$\mathbf{x}_{\mathsf{R}}(S) = S\mathbf{e}_1, \quad S \in (0, \ell_{\mathsf{R}}).$$

On s'intéresse aux (petits) mouvements *propres* de la tige autour de cette configuration naturelle, *i.e.* les mouvements qui satisfont les équations du mouvement en l'absence d'efforts extérieurs linéiques

ou ponctuels, des conditions aux limites cinématiques ou statiques homogènes et où tous les points se déplacent en phase. On introduit donc la définition suivante

D-6.5 (Mouvements propres). On appelle **petit mouvement propre** d'une tige élastique autour de sa configuration rectiligne naturelle un mouvement caractérisé par $(S,t) \mapsto \mathbf{x}(S,t)$ tel que

1. tous les points bougent en phase, i.e.

 $\mathbf{x}(S,t) = S\mathbf{e}_1 + \boldsymbol{\xi}(S,t)$ avec $\boldsymbol{\xi}(S,t) = \varphi(t)\overline{\boldsymbol{\xi}}(S),$

où $t \mapsto \varphi(t)$ est la fonction propre (non identiquement nulle) de phase et $S \mapsto \overline{\xi}(S)$ est le mode propre (non identiquement nul) de déplacement;

2. ce mouvement satisfait les équations linéarisées du mouvement en l'absence d'efforts linéiques et ponctuels;

3. ce mouvement satisfait des conditions aux limites **homogènes**, i.e. des conditions aux limites cinématiques ou statiques qui sont satisfaites par la configuration de référence naturelle.

Chaque item de cette définition a son importance :

1. Le fait que tous les points bougent en phase est essentiel, car comme nous le verrons cela force à ce que les mouvements soient harmoniques et cela conduit à la notion de pulsation propre et de mode propre de vibration;

2. Les propriétés que nous allons obtenir ne valent que parce que l'on raisonne sur les équations linéarisées. La théorie sur les modes de vibration non linéaire est beaucoup moins avancée. Ces mouvements propres qui satisfont les équations du mouvement en l'absence d'efforts extérieurs sont donc des mouvements qui s'auto-entretiennent sans apport extérieur d'énergie.

3. Ces mouvements propres, que ce soit les modes propres ou les fréquences propres de vibration, dépendent des conditions aux limites. Nous le mettrons en évidence sur quelques exemples.

La mise en équation

Le déplacement propre $\overline{\xi}(S)$ peut se décomposer en déplacement d'extension propre et déflexion propre

$$\boldsymbol{\xi}(S) = \overline{\mathbf{u}}(S)\mathbf{e}_1 + \overline{\mathbf{w}}(S)\mathbf{e}_2.$$

Ces déplacements étant supposés petits, on adopte les expressions linéarisées de la rotation et des déformations associées :

$$\varepsilon(S,t) = \varphi(t)\overline{\mathbf{u}}'(S), \qquad \omega(S,t) = \varphi(t)\overline{\mathbf{w}}'(S), \qquad \kappa(S,t) = \varphi(t)\overline{\mathbf{w}}''(S).$$

De même, les déformations étant petites, on suppose que le comportement est linéairement élastique et comme la tige est homogène on adopte les relations constitutives suivantes :

$$N(S,t) = \mathsf{EA}\varepsilon(S,t), \qquad M(S,t) = \mathsf{EI}\kappa(S,t).$$

Les équations du mouvement en l'absence d'efforts linéiques s'écrivent

$$\begin{cases} \mathbf{R}'(S,t) - \varrho_{\mathsf{R}} \ddot{\mathbf{x}}(S,t) = \mathbf{0}, \\ M'(S,t) + \|\mathbf{x}'(S,t)\| T(S,t) = 0, \end{cases}$$

qui sont à satisfaire pour tout $S \in (0, \ell_R)$ et tout t. On linéarise l'équation d'équilibre des moments en assimilant $\|\mathbf{x}'\|$ à 1. Ce faisant, on a

$$T(S,t) = -M'(S,t) = -\mathsf{EI}\varphi(t)\overline{\mathbf{w}}'''(S).$$

En reportant dans les équations d'équilibre des forces, en tenant compte des relations constitutives linéarisées et en projetant on obtient le système différentiel

$$\begin{cases} \mathsf{EA}\varphi(t)\overline{\mathbf{u}}''(S) - \varrho_{\mathsf{R}}\ddot{\varphi}(t)\overline{\mathbf{u}}(S) = 0, \\ \mathsf{EI}\varphi(t)\overline{\mathbf{w}}''''(S) + \varrho_{\mathsf{R}}\ddot{\varphi}(t)\overline{\mathbf{w}}(S) = 0. \end{cases}$$
(6.13)

Il faut le compléter par les conditions aux limites. Pour fixer les idées, considérons le cas où la tige est fixée avec rotation libre en S = 0 et sur appui simple en $S = \ell_{\mathsf{R}}$, les autres cas feront l'occasion d'exercices.

FIGURE 6.8 – Conditions aux limites d'articulation en 0 et d'appui simple en ℓ_R .

Dans le cas *articulation-appui simple*, en tenant compte des expressions linéarisées des déformations et du comportement, les conditions aux limites s'écrivent

$$\begin{cases} \text{fixation avec rotation libre en } 0: \quad \varphi(t)\overline{\mathbf{u}}(0) = 0, \quad \varphi(t)\overline{\mathbf{w}}(0) = 0, \quad \varphi(t)\overline{\mathbf{w}}''(0) = 0; \\ \text{appui simple en } \ell: \quad \varphi(t)\overline{\mathbf{u}}'(\ell_{\mathsf{R}}) = 0, \quad \varphi(t)\overline{\mathbf{w}}(\ell_{\mathsf{R}}) = 0, \quad \varphi(t)\overline{\mathbf{w}}''(\ell_{\mathsf{R}}) = 0. \end{cases}$$
(6.14)

En résumé, (6.13) et (6.14) constitue le système d'équations régissant les petits mouvements propres dans le cas de conditions aux limites *articulation-appui simple*.

Résolution

La résolution se fait en plusieurs étapes, chacune fournissant une propriété remarquable.

1. La fonction propre de phase $t \mapsto \varphi(t)$ est nécessairement sinusoïdale. La démonstration de cette propriété se fait elle-même en plusieurs étapes.

(a) Remarquons d'abord que l'on ne peut pas avoir $\ddot{\varphi}(t) = 0$, $\forall t$. En effet, sinon on tirerait de (6.13) que $\overline{\mathfrak{u}}''(S) = 0$ et $\overline{\mathfrak{w}}'''(S) = 0$ pour tout $S \in (0, \ell_{\mathsf{R}})$ puisque $\varphi \neq 0$. Mais les conditions aux limites donneraient alors $\overline{\mathfrak{u}}(S) = \overline{\mathfrak{w}}(S) = 0$ pour tout $S \in (0, \ell_{\mathsf{R}})$, ce qui n'est pas autorisé. Donc $\ddot{\varphi} \neq 0$.

(b) Montrons maintenant qu'il existe $k \neq 0$ tel que

$$\ddot{\varphi}(t) + \mathsf{k}\varphi(t) = 0, \quad \forall t. \tag{6.15}$$

Comme $\overline{\boldsymbol{\xi}} \neq \mathbf{0}$, au moins un des deux champs $\overline{\mathbf{u}}$ ou $\overline{\mathbf{w}}$ est non nul. Supposons que $\overline{\mathbf{u}} \neq 0$. Il existe donc S_0 tel que $\overline{\mathbf{u}}(S_0) \neq 0$. En posant

$$\mathsf{k} := -\frac{\mathsf{E}\mathsf{A}\overline{\mathsf{u}}''(S_0)}{\varrho_{\mathsf{R}}\overline{\mathsf{u}}(S_0)},$$

on obtient $\ddot{\varphi}(t) + \mathsf{k}\varphi(t) = 0$ pour tout t. Notons que $\mathsf{k} \neq 0$ et donc $\overline{\mathfrak{u}}''(S_0) \neq 0$ puisque $\ddot{\varphi} \neq 0$. Si $\overline{\mathfrak{u}} \equiv 0$ alors $\overline{\mathfrak{w}} \neq 0$ et il existe S_0 tel que $\overline{\mathfrak{w}}(S_0) \neq 0$. En posant

$$\mathsf{k} := \frac{\mathsf{E}\mathsf{I}\overline{\mathsf{w}}'''(S_0)}{\varrho_{\mathsf{R}}\overline{\mathsf{w}}(S_0)},$$

on obtient $\ddot{\varphi}(t) + \mathsf{k}\varphi(t) = 0$ pour tout t, et $\mathsf{k} \neq 0$ puisque $\ddot{\varphi} \not\equiv 0$. Donc dans tous les cas φ vérifie (6.15).

(c) Puisque $\ddot{\varphi}(t) = -k\varphi(t)$, les équations du mouvement (6.13) peuvent s'écrire

$$0 = \varphi(t) \Big(\mathsf{E} \mathsf{A} \overline{\mathfrak{u}}''(S) + \varrho_{\mathsf{R}} \mathsf{k} \overline{\mathfrak{u}}(S) \Big), \qquad 0 = \varphi(t) \Big(\mathsf{E} \mathsf{I} \overline{\mathfrak{w}}'''(S) - \varrho_{\mathsf{R}} \mathsf{k} \overline{\mathfrak{w}}(S) \Big),$$

qui doivent être satisfaites pour tout t et tout $S \in (0, \ell_R)$. Mais comme $\varphi \neq 0$, il existe t_0 tel que $\varphi(t_0) \neq 0$. En considérant les équations ci-dessus et les conditions aux limites à l'instant t_0 , on en déduit que $\overline{u}, \overline{w}$ et k doivent satisfaire

$$\begin{cases} \mathsf{E}\mathsf{A}\overline{\mathfrak{u}}''(S) + \varrho_{\mathsf{R}}\mathsf{k}\overline{\mathfrak{u}}(S) = 0, \quad \forall S \in (0,\ell_{\mathsf{R}}), \\ \overline{\mathfrak{u}}(0) = 0, \quad \overline{\mathfrak{u}}'(\ell_{\mathsf{R}}) = 0, \end{cases}$$
(6.16)

 et

$$\begin{cases} \mathsf{E}\mathsf{I}\overline{\mathsf{w}}^{\prime\prime\prime\prime}(S) - \varrho_{\mathsf{R}}\mathsf{k}\overline{\mathsf{w}}(S) = 0, \quad \forall S \in (0, \ell_{\mathsf{R}}), \\ \overline{\mathsf{w}}(0) = 0, \quad \overline{\mathsf{w}}^{\prime\prime}(0) = 0, \quad \overline{\mathsf{w}}(\ell_{\mathsf{R}}) = 0, \quad \overline{\mathsf{w}}^{\prime\prime}(\ell_{\mathsf{R}}) = 0. \end{cases}$$
(6.17)

On peut déjà voir qu'il s'agit de problèmes découplés donnant les mouvements propre d'extension d'une part et de flexion d'autre part.

(d) Montrons que k > 0. Pour cela, multiplions l'équation différentielle de (6.16) par $\overline{u}(S)$ et celle de (6.17) par $\overline{w}(S)$, puis intégrons sur $(0, \ell_R)$ pour obtenir

$$0 = \int_0^{\ell_{\mathsf{R}}} \Big(-\mathsf{E}\mathsf{A}\overline{\mathfrak{u}}''(S)\overline{\mathfrak{u}}(S) + \mathsf{E}\mathsf{I}\overline{\mathfrak{w}}'''(S)\overline{\mathfrak{w}}(S) \Big) dS - \mathsf{k} \int_0^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}} \Big(\overline{\mathfrak{u}}(S)^2 + \overline{\mathfrak{w}}(S)^2 \Big) dS.$$
(6.18)

Intégrons par parties le terme en $\overline{\mathbf{u}}''\overline{\mathbf{u}}$,

$$-\int_0^{\ell_{\mathsf{R}}}\mathsf{E}\mathsf{A}\overline{\mathfrak{u}}''(S)\overline{\mathfrak{u}}(S)dS = +\int_0^{\ell_{\mathsf{R}}}\mathsf{E}\mathsf{A}\overline{\mathfrak{u}}'(S)^2dS - \left[\mathsf{E}\mathsf{A}\overline{\mathfrak{u}}'(S)\overline{\mathfrak{u}}(S)\right]_0^{\ell_{\mathsf{R}}}.$$

Grâce aux conditions aux limites, les termes de bord disparaissent. De même en intégrant deux fois par parties le terme en $\overline{w}^{\prime\prime\prime\prime}\overline{w}$, il vient

$$\begin{split} \int_{0}^{\ell_{\mathsf{R}}} \mathsf{E} \mathsf{I} \overline{\mathsf{w}}^{\prime\prime\prime\prime}(S) \overline{\mathsf{w}}(S) dS &= -\int_{0}^{\ell_{\mathsf{R}}} \mathsf{E} \mathsf{I} \overline{\mathsf{w}}^{\prime\prime\prime}(S) \overline{\mathsf{w}}^{\prime}(S) dS + \left[\mathsf{E} \mathsf{I} \overline{\mathsf{w}}^{\prime\prime\prime}(S) \overline{\mathsf{w}}(S)\right]_{0}^{\ell_{\mathsf{R}}} \\ &= +\int_{0}^{\ell_{\mathsf{R}}} \mathsf{E} \mathsf{I} \overline{\mathsf{w}}^{\prime\prime}(S)^{2} dS + \left[\mathsf{E} \mathsf{I} \overline{\mathsf{w}}^{\prime\prime\prime}(S) \overline{\mathsf{w}}(S)\right]_{0}^{\ell_{\mathsf{R}}} - \left[\mathsf{E} \mathsf{I} \overline{\mathsf{w}}^{\prime\prime}(S) \overline{\mathsf{w}}^{\prime}(S)\right]_{0}^{\ell_{\mathsf{R}}}. \end{split}$$

Là encore, les termes de bord disparaissent grâce aux conditions aux limites. En reportant le résultat des deux intégrations par partie dans (6.18), on obtient

$$0 = \int_0^{\ell_{\mathsf{R}}} \Big(\mathsf{E}\mathsf{A}\overline{\mathfrak{u}}'(S)^2 + \mathsf{E}\mathsf{I}\overline{\mathfrak{w}}''(S)^2 \Big) dS - \mathsf{k} \int_0^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}} \Big(\overline{\mathfrak{u}}(S)^2 + \overline{\mathfrak{w}}(S)^2 \Big) dS.$$

Par conséquent, si k était négatif, on en déduirait que $\overline{u} = \overline{w} = 0$, ce qui est interdit. Donc k > 0.

(e) On pose $k = \Omega^2$ avec $\Omega > 0$. En reportant dans (6.15), on en déduit

$$\varphi(t) = \mathsf{A}\sin(\Omega t + \varphi_0),$$

où $A \neq 0$ et φ_0 sont arbitraires. Mais on a bien obtenu que les mouvements propres sont harmoniques et Ω représente la *pulsation propre de vibration*.

Cette propriété fondamentale nous permet de reformuler le problème des mouvements propres de la façon suivante :

P-6.10 (Les problèmes de vibration propre). La recherche des petits mouvements propres d'une tige élastique de configuration de référence naturelle rectiligne se ramène à la résolution de deux problèmes aux valeurs propres découplés, l'un donnant les modes d'extension propres $S \mapsto \overline{u}(S)$ et les pulsations propres associées Ω_{ex} , l'autre les modes propres de flexion $S \mapsto \overline{w}(S)$ et les pulsations propres associées Ω_{f1} . De façon précise, dans le cas de conditions aux limites de type articulation-appui simple,

(a) les mouvements propres d'extension sont solutions de

$$\begin{cases} \overline{\mathbf{u}} \not\equiv 0, \quad \Omega_{\mathrm{ex}} > 0, \\ \mathsf{E}\mathsf{A}\overline{\mathbf{u}}''(S) + \varrho_{\mathrm{R}}\Omega_{\mathrm{ex}}^{2}\overline{\mathbf{u}}(S) = 0, \quad \forall S \in (0, \ell_{\mathrm{R}}), \\ \overline{\mathbf{u}}(0) = 0, \quad \overline{\mathbf{u}}'(\ell) = 0; \end{cases}$$

(b) les mouvements propres de flexion sont solutions de

 $\begin{cases} \overline{\mathbf{w}} \neq 0, \quad \Omega_{\texttt{fl}} > 0, \\ \mathsf{El}\overline{\mathbf{w}}'''(S) - \varrho_{\mathsf{R}}\Omega_{\texttt{fl}}^{2}\overline{\mathbf{w}}(S) = 0, \quad \forall S \in (0, \ell_{\mathsf{R}}), \\ \overline{\mathbf{w}}(0) = \overline{\mathbf{w}}''(0) = 0, \quad \overline{\mathbf{w}}(\ell) = \overline{\mathbf{w}}''(\ell) = 0. \end{cases}$

2. Les vibrations propres d'extension. Leur détermination ne présente pas de difficulté. On déduit de l'équation différentielle $\mathsf{EA}\overline{\mathfrak{u}}'' + \varrho_{\mathsf{R}}\Omega_{\mathsf{ex}}^2\overline{\mathfrak{u}} = 0$ que $\overline{\mathfrak{u}}$ se met sous la forme

$$\overline{\mathbf{u}}(S) = A \cos\left(\frac{\Omega_{\mathsf{ex}}S}{\mathsf{c}_0}\right) + B \sin\left(\frac{\Omega_{\mathsf{ex}}S}{\mathsf{c}_0}\right),$$

où $c_0 = \sqrt{\mathsf{EA}/\varrho_{\mathsf{R}}}$ désigne la célérité des ondes de traction-compression. La condition de fixation en 0 donne A = 0 alors que la condition d'effort normal nul en ℓ_{R} donne

$$B\sin\left(\frac{\Omega_{\mathsf{ex}}\ell_{\mathsf{R}}}{\mathsf{c}_0}\right) = 0.$$

Comme $\overline{\mathbf{u}} \neq 0$, on a $B \neq 0$ et par conséquent c'est le sinus qui doit s'annuler. On en déduit que $\Omega_{\mathbf{ex}} = n\pi \mathbf{c}_0 / \ell_{\mathsf{R}}$ avec $n \in \mathbb{N}^*$. Ceci nous permet de conclure

P-6.11 (Les vibrations propres d'extension). Dans le cas de conditions aux limites de type articulation-appui simple, il existe une infinité dénombrable de mouvements propres d'extension $(\bar{\mathbf{u}}_n, \Omega_{exn}), n \in \mathbb{N}^*$, qui sont donnés par

$$\overline{\mathbf{u}}_n(S) = \mathsf{U}_n \sin\left(n\pi \frac{S}{\ell_{\scriptscriptstyle R}}\right), \qquad \Omega_{\mathtt{ex}n} = n\pi \sqrt{\frac{\mathsf{E}\mathsf{A}}{\varrho_{\scriptscriptstyle R}\ell_{\scriptscriptstyle R}^2}}$$

où l'amplitude U_n est arbitraire.

3. Les vibrations propres de flexion. Leur détermination est également aisée pour le type de conditions aux limites envisagé (les calculs sont plus longs dans la plupart des autres cas). On tire de l'équation différentielle du quatrième ordre en \overline{w} que le mode propre de flexion peut se mettre sous la forme

$$\overline{\mathbf{w}}(S) = A\cos(\mathbf{k}S) + B\sin(\mathbf{k}S) + C\operatorname{ch}(\mathbf{k}S) + D\operatorname{sh}(\mathbf{k}S) \quad \operatorname{avec} \quad \mathbf{k} = \left(\frac{\varrho_{\mathsf{R}}\Omega_{\mathtt{fl}}^2}{\mathsf{El}}\right)^{1/4}$$

Les conditions de fixation avec rotation libre en 0 donnent

$$A + C = 0$$
 et $-A + C = 0$.

Par conséquent on a A = C = 0. Ce faisant, les conditions d'appui simple en ℓ_{R} donnent

$$B\sin(\mathsf{k}\ell_{\mathsf{R}}) + D\operatorname{sh}(\mathsf{k}\ell_{\mathsf{R}}) = 0 \quad \text{et} \quad -B\sin(\mathsf{k}\ell_{\mathsf{R}}) + D\operatorname{sh}(\mathsf{k}\ell_{\mathsf{R}}) = 0.$$

Comme k > 0, on en déduit que D = 0. Comme on cherche une solution non triviale, on a $B \neq 0$ et il faut donc que $\sin(k\ell_R) = 0$. On en déduit que $k = n\pi/\ell_R$ avec $n \in \mathbb{N}^*$. Ceci nous permet de conclure

P-6.12 (Les vibrations propres de flexion). Dans le cas de conditions aux limites de type articulation-appui simple, il existe une infinité dénombrable de mouvements propres de flexion $(\overline{w}_n, \Omega_{fln}), n \in \mathbb{N}^*$, qui sont donnés par

$$\overline{\mathbf{w}}_n(S) = \mathsf{W}_n \sin\left(n\pi \frac{S}{\ell_R}\right), \qquad \Omega_{\mathtt{fl}n} = n^2 \pi^2 \sqrt{\frac{\mathsf{EI}}{\varrho_R \ell_R^4}},$$

où l'amplitude W_n est arbitraire.

4. Commentaires. Les résultats précédents méritent quelques commentaires.

• Comme dans tout problème de valeur propre, les vecteurs propres (ici, les modes propres de vibration) sont déterminés à des constantes multiplicatives près. Plus précisément, les modes propres associés à une pulsation propre constituent un espace vectoriel. Ici, pour ce jeu de conditions aux limites, ces espaces vectoriels sont de dimension 1 ou 2. Ils sont de dimension 2 quand une pulsation est à la fois pulsation propre d'extension et de flexion. Ils sont de dimension 1 sinon.

• Les vibrations propres sont donc des fonctions périodiques du temps. On peut noter en particulier que la période du mode propre fondamental d'extension (correspondant à n = 1) est donnée par

$$T_{\mathrm{ex1}} = \frac{2\pi}{\Omega_{\mathrm{ex1}}} = \frac{2\ell_{\mathrm{R}}}{\mathsf{c}_{0}}.$$

Il correspond au temps d'aller-retour d'une onde élastique dans la tige. De façon générale, la période des modes propres d'extension est proportionnelle à la longueur de la tige, alors que la période des modes propres de flexion est proportionnelle au carré de la longueur de la tige. Si l'on compare la pulsation du $n^{\text{ème}}$ mode d'extension à celle du $n^{\text{ème}}$ mode de flexion, on a

$$\frac{\Omega_{\texttt{fl}n}}{\Omega_{\texttt{ex}n}} = n\pi \sqrt{\frac{\mathsf{I}}{\mathsf{A}\ell_{\mathsf{R}}^2}}.$$

Par conséquent, en désignant par D le diamètre de la section de la tige, comme $I \sim D^4$ et $A \sim D^2$, on a

$$\frac{\Omega_{\texttt{fl}n}}{\Omega_{\texttt{ex}n}} \sim n \frac{D}{\ell_{\texttt{R}}}.$$

Comme la tige est supposée élancée le rapport D/ℓ_{R} est petit devant 1 et donc les premières pulsations propres de flexion sont (nettement) plus basses que les premières pulsations propres d'extension. Par contre la tendance s'inverse quand n devient de l'ordre de ℓ_{R}/D .

• Lors d'une période de vibration correspondant au $n^{\text{ème}}$ mode propre, les points situés en $S = i\ell_{\text{R}}/n$ avec $i \in \{0, \dots, n\}$ ne bougent pas, ce sont des *noeuds*; les points situés en $S = (2i+1)\ell_{\text{R}}/2n$ avec $i \in \{0, \dots, n-1\}$ ont toujours une déflexion maximale (en valeur absolue), ce sont des *ventres*.

FIGURE 6.9 – Deuxième mode propre de flexion (n = 2) de la tige dans le cas de conditions aux limites articulation-appui simple. Les points S = 0, $\ell_{\rm R}/2$ et $\ell_{\rm R}$ sont des noeuds, les points $S = \ell_{\rm R}/4$ et $3\ell_{\rm R}/4$ des ventres.

La dépendance aux conditions aux limites

La démarche précédente peut être suivie pour déterminer les mouvements propre d'une tige dans le cas de conditions aux limites quelconques. Les seules choses à modifier dans la formulation des problèmes de vibration propre de **P-6.10** sont les conditions que doivent vérifier $\overline{\mathbf{u}}$ et $\overline{\mathbf{w}}$ en S = 0 et $S = \ell_{\mathsf{R}}$. Le tableau suivant donne les conditions à satisfaire pour les principales conditions aux limites

encastrement	articulation	appui simple	libre
$\overline{u} = 0$	$\overline{u} = 0$	$\overline{\mathbf{u}}' = 0$	$\overline{\mathbf{u}}' = 0$
$\overline{\mathbf{w}} = 0$	$\overline{\mathbf{w}} = 0$	$\overline{\mathbf{w}}=0$	$\overline{\mathbf{w}}^{\prime\prime\prime}=0$
$\overline{\mathbf{w}}' = 0$	$\overline{\mathbf{w}}'' = 0$	$\overline{\mathbf{w}}'' = 0$	$\overline{\mathbf{w}}'' = 0$

TABLE 6.4 – Tableau des principales conditions aux limites.

Suivant le jeu de conditions aux limites adoptées en S = 0 et $S = \ell_R$, on obtient des familles de pulsations propres et de modes propres d'extension ou de flexion différentes. A titre d'exercice, on propose de les trouver dans le cas *encastrée-libre*.

Exercice 6.5. (Vibrations propres dans le cas encastrée-libre.) Montrer que les pulsations propres et les modes propres d'extension sont les mêmes que dans le cas articulation-appui simple. Montrer que, par contre, les pulsations propres et les modes propres de flexion sont différents en établissant en particulier que les pulsations propres de flexion Ω_{fl} sont les solutions (strictement positives) de l'équation transcendante

$$\cos(\mathsf{k}\ell_{\mathsf{R}})\operatorname{ch}(\mathsf{k}\ell_{\mathsf{R}}) = 1 \quad o\dot{u} \quad \mathsf{k} = \left(\frac{\varrho_{\mathsf{R}}\Omega_{\mathtt{f}1}^2}{\mathsf{EI}}\right)^{1/4}$$

En déduire qu'il existe une infinité dénombrable de pulsations propres de flexion et donner la forme des modes propres associés.

6.5.2 Les vibrations forcées et le phénomène de résonance

L'étude des vibrations propres présente plusieurs intérêts dont on peut dégager les deux suivants :

(i) tout mouvement d'une tige élastique peut s'écrire comme une combinaison des modes propres. Ce résultat théorique fondamental communément appelé *théorème spectral* conduit à une méthode pratique intitulée *décomposition modale*;

(ii) si l'on excite une tige élastique sur une de ses fréquences propres, alors cela peut donner lieu à un phénomène de résonance qui voit l'amplitude des vibrations de la tige s'amplifier au cours du temps pour finalement conduire à la rupture.

Nous allons illustrer cette méthode de décomposition modale et ce phénomène de résonance sur un exemple simple.

Présentation du problème

On considère une tige élastique homogène de longueur naturelle ℓ_{R} et de masse linéique naturelle ϱ_{R} , fixée par une articulation parfaite en S = 0 et sur appui simple en $S = \ell_{\mathsf{R}}$. Etant au repos dans sa configuration naturelle rectiligne $\mathbf{x}_{\mathsf{R}}(S) = S\mathbf{e}_1$ à l'instant initial, on la soumet à une densité uniforme de forces linéiques transversales dépendant du temps suivant la fréquence fondamentale de vibration propre de flexion de la tige, *i.e.*

FIGURE 6.10 – Les données du problème de vibration forcée de la tige.

L'objectif est de montrer que, du fait de cette excitation sur une fréquence propre (le fait que ce soit la première n'est pas essentiel), la tige va se mettre en résonance, sa déflexion augmentant progressivement au cours du temps. On ne va s'intéresser qu'au début du phénomène, ce qui va nous permettre de n'envisager que des petits mouvements autour de la configuration de référence et donc de linéariser les équations. Cette étude linéarisée a ses limites que nous discuterons à la fin.

Mise en équation

Comme le chargement est transversal et que l'on ne s'intéresse qu'au début du mouvement, les déplacements d'extension peuvent être négligés et il s'agit donc de trouver le mouvement de la déflexion,

$$\mathbf{x}(S,t) = S\mathbf{e}_1 + \mathbf{w}(S,t)\mathbf{e}_2, \qquad (S,t) \in (0,\ell_{\mathsf{R}}) \times (0,\infty),$$

qui doit satisfaire

- les équations du mouvement : $\forall S \in (0, \ell_{\mathsf{R}}), \ \forall t > 0,$
- la relation constitutive : $\forall S \in (0, \ell_{\mathsf{R}}), \ \forall t > 0, \ M(S, t) = \mathsf{Elw}''(S, t)$
- les conditions aux limites : $\forall t > 0,$

• les conditions initiales :
$$\forall S \in (0, \ell_{\mathsf{R}}),$$

La linéarisation est intervenue à plusieurs endroits :

- 1. en négligeant a priori les déplacements d'extension;
- 2. en assimilant $\|\mathbf{x}'(S,t)\|$ à 1 dans l'équation d'équilibre des moments;

3. en n'envisageant qu'une loi d'élasticité linéaire et en prenant l'expression linéarisée de la déformation de flexion dans la relation constitutive.

 $\begin{cases} T'(S,t) + q\sin(\Omega_1 t) - \varrho_{\rm R} \ddot{\mathbf{w}}(S,t) = 0\\ M'(S,t) + T(S,t) = 0 \end{cases}$

 $\begin{cases} \mathsf{w}(0,t)=0, & M(0,t)=0\\ \mathsf{w}(\ell_{\mathsf{R}},t)=0, & M(\ell_{\mathsf{R}},t)=0 \end{cases}$

 $w(S,0) = 0, \quad \dot{w}(S,0) = 0.$

Noter que nous n'avons pas envisagé d'ondes de choc. En fait ceci n'est pas une hypothèse, mais une conséquence de la rigidité à la flexion. En effet, du fait de cette rigidité à la flexion, la déflexion \mathbf{w} et la rotation $\boldsymbol{\omega} \approx \mathbf{w}'$ sont nécessairement continues (en terme énergétique, une discontinuité de la rotation conduirait à une énergie de flexion infinie) :

$$\llbracket w \rrbracket = \llbracket w' \rrbracket = 0.$$

Par conséquent, en vertu des conditions de compatibilité cinématiques 6.2, la vitesse de déflexion est également continue

d'où la propriété remarquable

P-6.13. Dans une tige élastiquement flexible, du fait de sa rigidité à la flexion, la déflexion \mathbf{w} et ses dérivées premières \mathbf{w}' et $\dot{\mathbf{w}}$ sont nécessairement continues. Il ne peut donc y avoir d'onde de choc de flexion.

Du fait de la linéarisation, le système d'équations précédent peut se formuler en terme de la déflexion w seule. Cela conduit au système suivant

$$\begin{cases} \mathsf{EIw}'''(S,t) + \varrho_{\mathsf{R}} \ddot{\mathsf{w}}(S,t) = q \sin(\Omega_{1}t), & \forall S \in (0,\ell_{\mathsf{R}}), \ \forall t > 0, \\ \mathsf{w}(0,t) = \mathsf{w}''(0,t) = \mathsf{w}(\ell_{\mathsf{R}},t) = \mathsf{w}''(\ell_{\mathsf{R}},t) = 0, & \forall t > 0, \\ \mathsf{w}(S,0) = \dot{\mathsf{w}}(S,t) = 0, & \forall S \in (0,\ell_{\mathsf{R}}). \end{cases}$$
(6.19)

Ce qui le distingue du problème de mouvement propre de flexion est : (i) la présence d'une force linéique; (ii) l'introduction de conditions initiales; (iii) l'absence d'hypothèse *a priori* sur la dépendance en temps du mouvement.

Décomposition modale

La résolution va s'appuyer sur le théorème spectral (dont l'énoncé précis et la démonstration sortent du cadre de ce cours) qui dit que toute fonction "régulière" $s \mapsto \phi(s)$ peut s'écrire comme une combinaison linéaire des modes propres de vibration de flexion du cas articulation-appui simple, *i.e.* il existe une famille de réels $\{a_n\}_{n\in\mathbb{N}_*}$ tels que $\phi(S)$ s'écrive

$$\phi(S) = \sum_{n=1}^{\infty} \mathsf{a}_n \sin\left(n\pi \frac{S}{\ell_{\mathsf{R}}}\right).$$

La famille des coefficients a_n caractérise la fonction. Réciproquement, quand on connaît la fonction $s \mapsto \phi(s)$, les coefficients a_n s'obtiennent en utilisant les propriétés d'orthogonalité des modes propres. De façon précise, on a

$$\mathbf{a}_{n} = \frac{\int_{0}^{\ell_{\mathsf{R}}} \phi(S) \sin\left(n\pi \frac{S}{\ell_{\mathsf{R}}}\right) dS}{\int_{0}^{\ell_{\mathsf{R}}} \sin^{2}\left(n\pi \frac{S}{\ell_{\mathsf{R}}}\right) dS} = \frac{2}{\ell_{\mathsf{R}}} \int_{0}^{\ell_{\mathsf{R}}} \phi(S) \sin\left(n\pi \frac{S}{\ell_{\mathsf{R}}}\right) dS.$$
(6.20)

On peut appliquer ce théorème à la solution $(S, t) \mapsto w(S, t)$ du problème de vibration forcée à chaque instant t du mouvement. On pose donc

$$\mathbf{w}(S,t) = \sum_{n=1}^{\infty} \mathsf{W}_n(t) \sin\left(n\pi \frac{S}{\ell_{\mathsf{R}}}\right),$$

les coefficients W_n dépendant *a priori* du temps. Les conditions aux limites sont ainsi automatiquement vérifiées. En admettant que l'on peut dériver terme à terme, on en déduit

$$\mathsf{EIw}''''(S,t) + \varrho_{\mathsf{R}} \ddot{\mathsf{w}}(S,t) = \sum_{n=1}^{\infty} \varrho_{\mathsf{R}} \left(\Omega_n^2 \mathsf{W}_n(t) + \ddot{\mathsf{W}}_n(t) \right) \sin \left(n \pi \frac{S}{\ell_{\mathsf{R}}} \right),$$

sachant que $\Omega_n = n^2 \Omega_1$. On peut aussi décomposer la fonction constante $S \mapsto q \sin(\Omega_1 t)$ sur la base des modes propres et les coefficients s'obtiennent à l'aide de (6.20). Comme

$$\int_0^{\ell_{\mathsf{R}}} \sin\left(n\pi \frac{S}{\ell_{\mathsf{R}}}\right) dS = \frac{\ell_{\mathsf{R}}}{n\pi} (1 - (-1)^n),$$

on obtient

$$q\sin(\Omega_1 t) = \sum_{n=1}^{\infty} \frac{2(1-(-1)^n)q}{n\pi} \sin(\Omega_1 t) \sin\left(n\pi \frac{S}{\ell_{\mathsf{R}}}\right).$$

En identifiant les décompositions, le système (6.19) devient la famille d'équations différentielles linéaires régissant les fonctions $t \mapsto W_n(t)$ pour $n \in \mathbb{N}_*$:

$$\begin{cases} n^{4}\Omega_{1}^{2} W_{n}(t) + \ddot{W}_{n}(t) = \frac{2(1 - (-1)^{n})q}{n\pi\varrho_{\mathsf{R}}} \sin(\Omega_{1}t), \quad \forall t > 0, \\ W_{n}(0) = \dot{W}_{n}(0) = 0. \end{cases}$$
(6.21)

Résolution

Il est facile de voir que tous les termes pairs $W_{2n}(t)$, $n \in \mathbb{N}_*$, sont nuls puisque le second membre et les conditions initiales le sont. Pour les termes impairs, il faut distinguer le premier des suivants. Commençons par les suivants, *i.e.* cherchons $W_{2n+1}(t)$ pour $n \ge 1$. En remarquant qu'une solution particulière de l'équation avec second membre est $c_n \sin(\Omega_1 t)$ avec c_n donné par

$$((2n+1)^4 - 1)\mathbf{c}_n = \frac{4q}{(2n+1)\pi\varrho_{\mathsf{R}}\Omega_1^2},$$

on en déduit que $W_{2n+1}(t)$ est de la forme

$$W_{2n+1}(t) = a_n \cos((2n+1)^2 \Omega_1 t) + b_n \sin((2n+1)^2 \Omega_1 t) + c_n \sin(\Omega_1 t) + c_$$

les coefficients a_n et b_n étant donnés par les conditions initiales. On trouve finalement

Pour
$$n \in \mathbb{N}_*$$
: $W_{2n+1}(t) = \frac{4q}{((2n+1)^4 - 1)(2n+1)\pi\varrho_{\mathsf{R}}\Omega_1^2} \left(\sin(\Omega_1 t) - \frac{\sin((2n+1)^2\Omega_1 t)}{(2n+1)^2}\right).$

Toutes ces fonctions sont donc bornées et même des fonctions oscillantes du temps avec une amplitude qui varie avec n comme $1/n^5$.

Il en va par contre tout autrement pour le premier terme $W_1(t)$. En effet, comme il vérifie

$$\begin{cases} \Omega_1^2 \ \mathsf{W}_1(t) + \ddot{\mathsf{W}}_1(t) = \frac{4q}{\pi \varrho_{\mathsf{R}}} \sin(\Omega_1 t), & \forall t > 0, \\ \\ \mathsf{W}_1(0) = \dot{\mathsf{W}}_1(0) = 0, \end{cases}$$

le second membre de l'équation différentielle est également solution de l'équation sans second membre.

Ce faisant, une solution particulière de l'équation avec second membre est de la forme $c_0 t \cos(\Omega_1 t)$ et c_0 est donné par

$$\mathsf{c}_0 = -\frac{2q}{\pi \varrho_{\mathsf{R}} \Omega_1}.$$

Par conséquent $W_1(t)$ est de la forme

$$\mathsf{W}_{1}(t) = \mathsf{a}_{0}\cos(\Omega_{1}t) + \mathsf{b}_{0}\sin(\Omega_{1}t) - \frac{2q}{\pi\varrho_{\mathsf{R}}\Omega_{1}}t\cos(\Omega_{1}t),$$

les coefficients a_0 et b_0 étant donnés par les conditions initiales. Finalement la solution est

$$\mathsf{W}_1(t) = \frac{2q}{\pi \varrho_{\mathsf{R}} \Omega_1^2} \left(\sin(\Omega_1 t) - \frac{\Omega_1 t \cos(\Omega_1 t)}{\Omega_1 t \cos(\Omega_1 t)} \right).$$

Evolution avec le temps du coefficient $W_1(t)$ associé au premier mode propre. La constante de temps

 $T_1 = 2\pi/\Omega_1$ est la période du premier mode propre.

Conclusion

On voit que l'amplitude croît de façon linéaire avec le temps, la constante de temps étant donnée par la période $T_1 = 2\pi/\Omega_1$ du premier mode propre. Par conséquent, même si l'intensité q de la force linéique appliquée est faible, l'amplitude de la réponse va rapidement croître avec le temps du simple fait que la périodicité de l'excitation correspond à une pulsation propre. La croissance linéaire avec le temps (et donc non bornée) est une conséquence du modèle linéarisé adopté. Bien sûr, au bout de quelques périodes, lorsque l'amplitude sera devenue grande, le cadre HPP n'est plus licite. On ne peut plus négliger certains termes dont en particulier le couplage avec les déplacements d'extension. L'amplitude des mouvements restera finie, mais le risque encouru est qu'elle soit suffisamment importante pour provoquer un endommagement irréversible. Il vaut donc mieux évider d'exciter la tige sur une de ses fréquences propres.

Annexe A

Quelques rappels de mécanique

A.1 L'espace-temps et ses référentiels

A.1.1 Les changements de référentiels

Les différents référentiels

En mécanique classique, l'espace-temps est un espace affine à quatre dimensions, il est "plat". Ses points sont des *évènements* et un référentiel \mathcal{R} est une application qui à un évènement \mathbf{e} associe la paire (\mathbf{X}, T) donnant sa position \mathbf{X} et son instant T. Les positions varient dans un espace affine tridimensionnel et le temps dans un espace affine unidimensionnel. Moyennant un choix de l'origine \mathbf{O} des positions et de l'origine T_0 des instants, on peut identifier un évènement par son vecteur position \mathbf{x} et son temps t:

$$\mathbf{X} = \mathbf{O} + \mathbf{x}, \qquad T = T_0 + t.$$

C'est ce que nous ferons désormais et nous supposerons de plus que les origines \mathbf{O} et T_0 sont fixées une fois pour toutes, quel que soit le référentiel envisagé. Dans un autre référentiel \mathcal{R}^* , le même évènement e sera représenté par une autre paire (\mathbf{x}^*, t^*). Se donner un changement de référentiel, c'est se donner les applications

$$(\mathbf{x}, t) \mapsto \mathbf{x}^* = \boldsymbol{\chi}(\mathbf{x}, t) \quad \text{et} \quad (\mathbf{x}, t) \mapsto t^* = \tau(\mathbf{x}, t)$$

qui donnent les relations entre les paires de représentation d'un même évènement. Si l'on veut que la notion de simultanéité soit conservée, il faut que tous les évènements qui ont le même t dans le premier référentiel aient le même t^* dans le deuxième. Ce n'est donc possible que si $t^* = \tau(t)$. Si l'on veut de plus que l'intervalle de temps soit conservé, autrement dit que deux évènements séparés d'une seconde dans un référentiel le soient aussi d'une seconde dans l'autre, il faut que $\tau(t) = \tau_0 + t$. Autrement dit les deux référentiels de temps ne diffèrent que par un décalage horaire correspondant à des choix différents de l'origine des temps. En terme de positions, si l'on veut que les distances soient conservées, il faut que

$$\|\mathbf{y}^* - \mathbf{x}^*\| := \|\boldsymbol{\chi}(\mathbf{y}, t) - \boldsymbol{\chi}(\mathbf{x}, t)\| = \|\mathbf{y} - \mathbf{x}\|, \quad \forall \mathbf{x}, \forall \mathbf{y}, \forall t,$$

où $\|\cdot\|$ désigne la norme euclidienne, *i.e.* $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$. Or ceci n'est possible que si la transformation $\boldsymbol{\chi}$ est une isométrie à chaque instant, *i.e.* $\boldsymbol{\chi}(\mathbf{x},t) = \mathbf{a}(t) + \mathbf{Q}(t)\mathbf{x}$ où $\mathbf{Q}(t)$ est une matrice orthogonale (translation ou symétrie) et le vecteur $\mathbf{a}(t)$ correspond à la translation de l'origine.

En résumé, les changements de référentiels qui préservent la simultanéité, l'intervalle de temps et les distances sont de la forme

$$\begin{cases} \mathbf{x}^* := \boldsymbol{\chi}(\mathbf{x}, t) &= \mathbf{a}(t) + \mathbf{Q}(t)\mathbf{x} \\ t^* := \tau(\mathbf{x}, t) &= \tau_0 + t \end{cases} \quad \text{avec} \quad \mathbf{Q}(t)\mathbf{Q}(t)^T = \mathbf{I}.$$
(A.1)

On peut donc les voir comme des mouvements de corps rigide avec un décalage horaire possible. On peut distinguer parmi eux, ceux qui préservent l'orientation de l'espace : ce sont les isométries directes, autrement dit ceux dont $\mathbf{Q}(t)$ est à chaque instant t une matrice de rotation et non une symétrie. On les caractérise par le fait qu'elles ont un déterminant positif (et donc égal à +1). Nous ne considérerons que de tels changements de référentiels.

Mais ceci ne définit que la famille¹ de référentiels envisagés à partir d'un référentiel particulier. Il reste à préciser comment on choisit ce ou ces référentiels particuliers dont on déduit toute la famille. C'est la loi fondamentale de la dynamique qui le fait en introduisant la notion de référentiel Galiléen.

La représentation du mouvement dans différents référentiels

Considérons un point matériel dont le mouvement dans le référentiel \mathcal{R} est défini par la fonction position $t \mapsto \mathbf{x}(t)$. Sa vitesse $\mathbf{v}(t)$ et son accélération $\gamma(t)$ dans ce référentiel à l'instant t sont donc respectivement

$$\mathbf{v}(t) = \dot{\mathbf{x}}(t), \qquad \boldsymbol{\gamma}(t) = \dot{\mathbf{v}}(t) = \ddot{\mathbf{x}}(t),$$

le point désignant la dérivée par rapport au temps. Dans le référentiel \mathcal{R}^* , ce même mouvement du point matériel sera décrit par la fonction position $t^* \mapsto \mathbf{x}^*(t^*)$:

$$\mathbf{x}^*(t^*) = \mathbf{a}(t) + \mathbf{Q}(t)\mathbf{x}(t) \quad \text{avec} \quad t^* = \tau_0 + t.$$

Sa vitesse sera donnée par

$$\mathbf{v}^*(t^*) := \frac{d\mathbf{x}^*}{dt^*}(t^*) = \dot{\mathbf{a}}(t) + \dot{\mathbf{Q}}(t)\mathbf{x}(t) + \mathbf{Q}(t)\dot{\mathbf{x}}(t) = \dot{\mathbf{a}}(t) + \dot{\mathbf{Q}}(t)\mathbf{Q}(t)^T(\mathbf{x}^*(t^*) - \mathbf{a}(t)) + \mathbf{Q}(t)\dot{\mathbf{x}}(t).$$

(On omet désormais la référence au temps t où sont évaluées les quantités.) Comme \mathbf{Q} est une matrice orthogonale, $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}$ et $\mathbf{W} := \dot{\mathbf{Q}}\mathbf{Q}^T$ est une matrice antisymétrique. On peut lui associer un vecteur vitesse de rotation $\mathbf{\Omega}$ tel que $\mathbf{W}\mathbf{u} = \mathbf{\Omega} \wedge \mathbf{u}$, $\forall \mathbf{u}$. La vitesse \mathbf{v}^* peut donc se décomposer en

$$\mathbf{v}^* = \mathbf{v}_e^* + \mathbf{v}_r^* \quad \text{avec} \quad \mathbf{v}_e^* = \dot{\mathbf{a}} + \mathbf{W}(\mathbf{x}^* - \mathbf{a}) = \dot{\mathbf{a}} + \mathbf{\Omega} \wedge (\mathbf{x}^* - \mathbf{a}), \qquad \mathbf{v}_r^* = \mathbf{Q} \mathbf{v}_r$$

 \mathbf{v}_{e}^{*} étant la vitesse d'entrainement et \mathbf{v}_{r} la vitesse relative.

En dérivant la vitesse \mathbf{v}^* par rapport à t^* , on obtient l'accélération γ^* dans le référentiel \mathcal{R}^* :

$$egin{array}{rcl} m{\gamma}^* &=& \ddot{\mathbf{a}} + \mathbf{W}(\mathbf{x}^* - \mathbf{a}) + \mathbf{W}(\mathbf{v}^* - \dot{\mathbf{a}}) + \mathbf{Q}\mathbf{v} + \mathbf{Q}m{\gamma} \ &=& \ddot{\mathbf{a}} + (\dot{\mathbf{W}} + \mathbf{W}^2)(\mathbf{x}^* - \mathbf{a}) + 2\mathbf{W}\mathbf{v}_r^* + \mathbf{Q}m{\gamma}. \end{array}$$

En remarquant que $\mathbf{W}^2 = \mathbf{\Omega} \mathbf{\Omega}^T - \mathbf{\Omega} \cdot \mathbf{\Omega} \mathbf{I}$, l'accélération peut se décomposer en les 3 termes

$$oldsymbol{\gamma}^* = oldsymbol{\gamma}^*_e + oldsymbol{\gamma}^*_c + oldsymbol{\gamma}^*_r$$

^{1.} Cette famille de référentiels, construite à partir d'un référentiel donné et la règle de changement (A.1), constitue un groupe vis à vis de la loi de composition des applications.

avec

$$oldsymbol{\gamma}_{e}^{*}=\ddot{\mathbf{a}}+\dot{\mathbf{\Omega}}_{\wedge}(\mathbf{x}^{*}-\mathbf{a})+\mathbf{\Omega}\cdot(\mathbf{x}^{*}-\mathbf{a}) \,\,\mathbf{\Omega}-\|\mathbf{\Omega}\|^{2}\,(\mathbf{x}^{*}-\mathbf{a}),\quad oldsymbol{\gamma}_{c}^{*}=2\mathbf{\Omega}\wedge\mathbf{v}_{r}^{*},\quad oldsymbol{\gamma}_{r}^{*}=\mathbf{Q}oldsymbol{\gamma}$$

Le premier γ_e^* est l'accélération d'entrainement, le deuxième γ_c^* l'accélération de Coriolis et le troisième γ_r^* l'accélération relative.

A.1.2 Grandeurs objectives et grandeurs non objectives

On dit qu'une grandeur physique est objective si sa représentation est la même dans tous les référentiels. Pour préciser cette notion, il faut distinguer les grandeurs scalaires, des grandeurs vectorielles ou multilinéaires.

1. Scalaires. Une grandeur scalaire ℓ est objective si elle est invariante, *i.e.* si

2. Vecteurs. Comme un vecteur \mathbf{u} est transformé en $\mathbf{u}^* = \mathbf{Q}(t)\mathbf{u}$ quand on passe du référentiel \mathcal{R} au référentiel \mathcal{R}^* , une grandeur vectorielle \mathbf{q} est dite objective si elle se transforme suivant la même règle, *i.e.* si

 $\mathbf{q}^* = \mathbf{Q}(t)\mathbf{q}$ (vecteur objectif).

3. Applications linéaires. Les grandeurs matricielles vues comme des applications linéaires sont objectives si elles transforment des vecteurs objectifs en vecteurs objectifs. Par conséquent, pour qu'une grandeur matricielle \mathbf{M} soit objective, il faut que \mathbf{M}^* soit telle que

$$\mathbf{M}^* \mathbf{u}^* = \mathbf{M}^* \mathbf{Q}(t) \mathbf{u} = \mathbf{Q}(t) \mathbf{M} \mathbf{u}, \quad \forall \mathbf{u}.$$

On en déduit immédiatement que cela exige que

 $\mathbf{M}^* = \mathbf{Q}(t)\mathbf{M}\mathbf{Q}(t)^T$ (application linéaire objective)

On pourrait en procédant ainsi définir la condition d'objectivité de n'importe quelle grandeur multilinéaire.

L'objectivité ou la non objectivité de certaines grandeurs physiques peut se démontrer, c'est le cas des grandeurs géométriques ou cinématiques. Par contre elle doit être postulée pour d'autres et la vérification est alors nécessairement expérimentale, c'est le cas par exemple pour la masse ou la température.

• Exemples de grandeurs dont on montre l'objectivité. Les changements de référentiel conservant les distances, toutes les grandeurs géométriques afférentes sont objectives : c'est le cas des longueurs de courbe, des aires de surface ou des volumes de domaine.

• Exemples de grandeurs dont on montre la non objectivité. Les grandeurs cinématiques comme la vitesse \mathbf{v} ou l'accélération γ attachées au mouvement d'un point matériel ne sont pas objectives, comme le montrent les relations que nous avons obtenues dans le paragraphe précédent.

Dans le cas de milieux curvilignes plans, démontrons l'objectivité ou la non objectivité de quelques grandeurs géométriques ou cinématiques. Pour cela, notons que la configuration de référence $S \mapsto \mathbf{x}_{\mathsf{R}}(S)$ et le mouvement d'un milieu curviligne en description lagrangienne $(S,t) \mapsto \mathbf{x}(S,t)$ sont transformés, dans un changement de référentiel qui conserve l'orientation de l'espace, en $S^* \mapsto \mathbf{x}_{\mathsf{R}}^*(S^*)$ et $(S^*,t^*) \mapsto \mathbf{x}^*(S^*,t^*)$ donnés par

$$\mathbf{x}_{\mathsf{R}}^{*}(S^{*}) = \mathbf{a}(0) + \mathbf{Q}(0)\mathbf{x}_{\mathsf{R}}(S), \quad \mathbf{x}^{*}(S^{*}, t^{*}) = \mathbf{a}(t) + \mathbf{Q}(t)\mathbf{x}(S, t) \quad \text{avec} \quad t^{*} = \tau_{0} + t$$

où $\mathbf{Q}(t)$ est une matrice de rotation et où on a choisi le temps t = 0 pour représenter l'image de la configuration de référence dans le nouveau référentiel (mais ce choix particulier n'a aucune conséquence).

1. Les abscisses curvilignes S et s sont, comme toutes les longueurs, conservées dans la transformation (à condition de conserver l'origine). En effet, on a

$$1 = \left\| \frac{d\mathbf{x}_{\mathsf{R}}}{dS} \right\| = \left\| \mathbf{Q}(0)^T \frac{d\mathbf{x}_{\mathsf{R}}^*}{dS^*} \right\| \frac{dS^*}{dS} = \frac{dS^*}{dS},$$

dont on déduit $S^* = S$ (à une constante près). En procédant de même avec \mathbf{x} et \mathbf{x}^* , on obtient $ds^* = ds$ et donc $s^* = s$ (à une constante près). Par conséquent $\varepsilon^* = ds^*/dS^* - 1 = ds/dS - 1 = \varepsilon$, la déformation d'extension est objective.

2. Le vecteur tangent \mathbf{t} est transformé en $\mathbf{t}^* = \mathbf{Q}(t)\mathbf{t}$ et est donc objectif. Comme $\mathbf{e}_3^* = \mathbf{Q}(t)\mathbf{e}_3$ et que $\mathbf{Q}(t)$ est une rotation, on a $\mathbf{n}^* := \mathbf{e}_3^* \wedge \mathbf{t}^* = \mathbf{Q}(t)\mathbf{n}$ et donc est le vecteur normal est également objectif. C'est également vrai pour les vecteurs tangent et normal de la configuration de référence. (On voit là l'importance de ne considérer que des rotations et pas les symétries.)

3. Comme $\mathbf{e}_1^* = \mathbf{Q}(t)\mathbf{e}_1$, les angles tangents sont conservés : $\alpha_R^* = \alpha_R$ et $\alpha^* = \alpha$. Ils sont donc objectifs. Par différence, la rotation l'est également, $\omega^* = \omega$, et par dérivation c'est encore vrai pour les courbures et donc pour la déformation de flexion : $C_R^* = C_R$, $C^* = C$, $\kappa^* = \kappa$.

4. Pour les grandeurs cinématiques, toutes les dérivées par rapport au temps des scalaires objectifs sont elles mêmes objectives. Ainsi, la vitesse de déformation d'extension $\dot{\varepsilon}$, la vitesse de rotation $\dot{\omega}$ et la vitesse de déformation de flexion $\dot{\kappa}$ sont objectives.

5. Par contre, les dérivées par rapport au temps de grandeurs vectorielles objectives ne sont pas en général objectives. Ainsi le vecteur tangent \mathbf{t} est objectif, sa dérivée par rapport au temps est le vecteur $\dot{\mathbf{t}} = \dot{\omega}\mathbf{n}$ dont le transformé est $\dot{\omega}\mathbf{Q}(t)\mathbf{n}$ alors que la dérivée par rapport au temps de \mathbf{t}^* est $\dot{\omega}\mathbf{Q}(t)\mathbf{n} + \dot{\mathbf{Q}}(t)\mathbf{t}$.

Enfin, pour ce qui est des efforts intérieurs, on fait l'hypothèse (comme c'est toujours le cas pour les efforts de contact) qu'ils sont objectifs, hypothèse qui revient à supposer que le travail de déformation est objectif.

D-A.1 (Objectivité des efforts intérieurs). On fait l'hypothèse que la force intérieure \mathbf{R} et le moment fléchissant M sont objectifs, i.e.

$$\mathbf{R}^* = \mathbf{Q}(t)\mathbf{R}, \qquad M^* = M \,.$$

Comme la tangente et la normale sont des vecteurs objectifs, on en déduit que l'effort normal et l'effort tranchant sont aussi objectifs,

 $N^* = N, \qquad T^* = T.$

A.2 Puissance, travail et énergie potentielle

A.2.1 Puissance et travail d'une force ou d'un couple

Puissance et travail d'une force

La puissance est une notion instantanée où on considère des mouvements infinitésimaux. Ainsi, à un instant donné t la puissance P(t) d'une force $\mathcal{F}(t)$ dans la vitesse de déplacement $\mathbf{v}(t)$ de son point d'application est par définition le produit scalaire du vecteur force et du vecteur vitesse :

$$\mathsf{P}(t) = \mathcal{F}(t) \cdot \mathbf{v}(t). \tag{A.2}$$

Par contre, le travail sous-entend la notion de durée et considère des mouvements finis. Ainsi, le travail d'une force (pouvant dépendre du temps) dans le déplacement de son point d'application durant un intervalle de temps (t_0, t_1) est par définition l'intégrale de la puissance instantanée,

$$\mathsf{W} = \int_{t_0}^{t_1} \mathsf{P}(t) dt = \int_{t_0}^{t_1} \boldsymbol{\mathcal{F}}(t) \cdot \mathbf{v}(t) dt.$$
(A.3)

Par extension, même si t ne désigne pas le temps physique mais un paramètre servant à décrire l'évolution d'un système et si $\mathbf{v}(t)$ représente la dérivée de la position du point d'application de la force $\mathcal{F}(t)$ par rapport au paramètre t, on continue à appeler *puissance* la quantité $\mathsf{P}(t)$ donnée par (A.2) et travail son intégrale (A.3). Ainsi, si on applique une force ponctuelle \mathcal{F}_{s_i} en un point s_i d'un milieu curviligne et si on envisage un mouvement virtuel tel que la vitesse virtuelle du point s_i soit $\boldsymbol{\xi}(s_i)$, la puissance (virtuelle) de cette force est

$$\mathsf{P} = \boldsymbol{\mathcal{F}}_{s_i} \cdot \boldsymbol{\xi}(s_i).$$

La puissance et le travail sont des grandeurs extensives, la puissance ou le travail d'un ensemble de forces est la somme des puissances ou des travaux de chacune de ces forces. Ainsi, la puissance des forces linéiques et des forces ponctuelles agissant sur un milieu curviligne dans un mouvement virtuel de ce milieu s'écrit

$$\mathsf{P} = \int_{\mathbb{C}}^{*} \mathbf{f}(s) \cdot \overset{*}{\boldsymbol{\xi}}(s) ds + \sum_{s_i \in \mathbb{P}}^{*} \mathcal{F}_{s_i} \cdot \overset{*}{\boldsymbol{\xi}}(s_i).$$

Puissance et travail d'un couple

Les notions précédentes s'étendent aux couples sachant que les couples travaillent dans les rotations. Ainsi, la puissance d'un couple de moment \mathcal{M}_{s_i} appliqué au point s_i d'un milieu curviligne dont la vitesse virtuelle de rotation en ce point est $\overset{*}{\omega}(s_i)$ est donnée par

$$\mathsf{P} = \mathcal{M}_{s_i} \overset{*}{\omega}(s_i).$$

De même, si l'on exerce sur une tige rigide un couple dont le moment à l'instant t est $\mathcal{M}(t)$ et si la tige a un mouvement de rotation caractérisé par l'évolution $t \mapsto \alpha(t)$ de son angle tangent, alors le travail du couple durant l'intervalle de temps (t_0, t_1) est donné par

$$\mathsf{W} = \int_{t_0}^{t_1} \mathcal{M}(t) \dot{\alpha}(t) dt.$$

A.2.2 Les champs de forces dépendant de la position et leurs circulations

Une situation fréquente est celle où les points matériels (d'un milieu discret ou continu) sont soumis à des forces extérieures qui peuvent dépendre de la position du point matériel mais pas de sa vitesse. Dans ce cas, on peut définir un champ de forces $\mathbf{y} \mapsto \mathsf{F}(\mathbf{y})$ qui associe à la position \mathbf{y} du point matériel la force $\mathsf{F}(\mathbf{y})$ qu'il subit. Si l'on déplace le point matériel le long d'un chemin (chemin que l'on identifie à une courbe paramétrée $t \mapsto \mathbf{y}(t)$ de l'espace où le paramètre t, qui n'est pas forcément le temps, varie de t_0 à t_1) qui le fait passer du point $\mathbf{y}_0 = (t_0)$ au point $\mathbf{y}_0 = (t_0)$, la *circulation* du champ de forces le long de ce chemin est par définition

$$\mathsf{W} = \int_{t_0}^{t_1} \mathsf{F}(\mathbf{y}(t)) \cdot \frac{d\mathbf{y}}{dt}(t) dt$$

Elle est indépendante du paramétrage choisi pour décrire le chemin et a la dimension d'un travail. Mais a priori ce travail dépend du point initial, du chemin suivi et du point final. Pour qu'il ne dépende que des points initial et final, mais pas du chemin, il faut et il suffit que le champ de forces soit un champ de gradient², *i.e.* qu'il existe un champ scalaire $\mathbf{y} \mapsto \Phi(\mathbf{y})$ tel que

$$\mathsf{F}(\mathbf{y}) = -\nabla\Phi(\mathbf{y}).\tag{A.4}$$

Lorsque cette condition est vérifiée, le champ de forces est dit *conservatif.* Cette terminologie vient du fait que, le travail étant indépendant du chemin suivi, si l'on ramène le point matériel à sa position initiale, alors il n'y aura eu aucun échange d'énergie avec l'extérieur, l'énergie est *conservée*. Le signe moins dans (A.4) est introduit de façon à ce que $\Phi(\mathbf{y})$ représente l'énergie potentielle du point matériel lorsqu'il a été amené à la position \mathbf{y} . En effet, si on fixe une fois pour toutes le point origine \mathbf{y}_0 (le choix de ce point est arbitraire), alors la circulation du champ de forces le long du chemin faisant passer le point matériel de \mathbf{y}_0 à \mathbf{y} est égal à $-\Phi(\mathbf{y}) + \Phi(\mathbf{y}_0)$ et comme le potentiel Φ est défini à une constante près on peut fixer la constante en prenant $\Phi(\mathbf{y}_0) = 0$. Moyennant ces choix, la circulation vaut $W = -\Phi(\mathbf{y})$. Quand W > 0 le système "point matériel-champ de forces" fournit de l'énergie à

^{2.} Ceci est un résultat classique. Pour le démontrer, on peut suivre la démonstration qui est donnée au chapitre 3 pour montrer l'existence d'un potentiel élastique à partir du postulat sur le travail de déformation.

l'extérieur, alors que quand W < 0 le système reçoit de l'énergie. Par conséquent, on peut considérer que $\Phi(\mathbf{y})$ représente *l'énergie potentielle* (due au champ de forces F) du point matériel dans sa position \mathbf{y} .

Quelques exemples de forces conservatives et de forces non conservatives.

• Les charges mortes sont conservatives. Lorsque l'on soumet un point matériel une force \mathcal{F} dont la direction et l'intensité sont invariables, on dit que cette charge est *morte*. Cette force est évidemment conservative, elle dérive du potentiel (défini à une constante près que l'on peut fixer arbitrairement)

$$\Phi_{\mathcal{F}}(\mathbf{y}) = -\mathcal{F} \cdot \mathbf{y}.$$

• Les charges gravitationnelles sont conservatives. Comme ces forces sont des forces massiques, nous les étudierons dans la prochaine section.

• Les forces suiveuses sont non conservatives. Considérons une tige rigide, de longueur ℓ dont l'extrémité $s = \ell$ est soumise à une force d'intensité fixe mais dont la direction suit toujours l'orientation de la tige, *i.e.*

$$\boldsymbol{\mathcal{F}}_t = \boldsymbol{\mathcal{F}} \mathbf{t}_t,$$

où \mathbf{t}_t désigne la direction de la tige à l'instant t. Pour montrer que cette force suiveuse est non conservative, nous allons imaginer deux mouvements différents où la tige part de la même configuration $s \mapsto s\mathbf{e}_1$ et arrive à la même configuration $s \mapsto -s\mathbf{e}_1$, mais au cours desquels le travail de la force suiveuse est différent. Le premier mouvement est la rotation d'angle $t \in [0, \pi]$ autour de l'origine. Autrement dit la configuration de la tige à "l'instant" t est $\mathbf{x}_t(s) = s \cos t\mathbf{e}_1 + s \sin t\mathbf{e}_2$. Comme $\dot{\mathbf{x}}_t(\ell)$ est orthogonal à $\mathbf{t}_t = \cos t\mathbf{e}_1 + \sin t\mathbf{e}_2$, la force suiveuse ne travaille pas le long de ce chemin, $\mathbf{W} = 0$. Le deuxième mouvement se fait en deux temps : (i) on translate d'abord la tige du vecteur $-2t\ell\mathbf{e}_1$ avec $t \in [0,1]$; (ii) puis on fait tourner la tige autour de $-\ell\mathbf{e}_1$ d'un angle t - 1 avec $t \in [1, 1 + \pi]$. Autrement dit, lors de ce deuxième mouvement la configuration de la tige à l'instant t est

$$\mathbf{x}_{t}(s) = \begin{cases} (s - 2t\ell)\mathbf{e}_{1} & \text{si } 0 \le t \le 1\\ -\ell \mathbf{e}_{1} + (s - \ell)\big(\cos(t - 1)\mathbf{e}_{1} + \sin(t - 1)\mathbf{e}_{2}\big) & \text{si } 1 \le t \le 1 + \pi \end{cases}$$

Durant la phase de rotation, la force suiveuse ne travaille pas (car son point d'application est fixe). Par contre durant la phase de translation, comme $\mathbf{t}_t = \mathbf{e}_1$ et $\dot{\mathbf{x}}_t(\ell) = -2\ell \mathbf{e}_1$, la force suiveuse vaut $\mathcal{F}_t = \mathcal{F}\mathbf{e}_1$ et son travail est $W = -2\mathcal{F}\ell$. Par conséquent, le travail dépend du chemin, la force suiveuse n'est pas conservative. • Autre exemple de forces non conservatives. Le champ $\mathbf{y} \mapsto \mathbf{e}_3 \wedge \mathbf{y}$ ne dérive pas d'un potentiel. En effet son rotationnel n'étant pas nul, il ne peut pas être un gradient.

A.2.3 Les forces massiques conservatives et leur potentiel associé

Une majorité des forces à distance sont des forces massiques, *i.e.* des forces qui agissent proportionnellement à la masse des points matériels. Elles sont définies par leur densité massique (qui a la dimension d'une accélération). On donne ci-dessous quelques exemples de telles forces qui sont conservatives.

• **Pesanteur uniforme.** Le champ de pesanteur uniforme **g** dérive du potentiel (défini à une constante près)

 $\Phi_q(\mathbf{y}) = -\mathbf{g} \cdot \mathbf{y}$ (potential du champ de pesanteur uniforme).

• Pesanteur non uniforme. Le champ de pesanteur, associé à la loi de gravitation universelle, engendré par une masse M placée en \mathbf{y}_0 est donné par

$$\mathbf{g}(\mathbf{y}) = -M G \frac{\mathbf{y} - \mathbf{y}_0}{\|\mathbf{y} - \mathbf{y}_0\|^3},$$

où G est la constante de gravitation. Il dérive du potentiel

$$\Phi_G(\mathbf{y}) = -\frac{MG}{\|\mathbf{y} - \mathbf{y}_0\|} \qquad \text{(potential du champ de gravitation)}.$$

• Forces centrales. De façon générale tout champ de forces centrales, *i.e.* de la forme

$$\mathbf{g}(\mathbf{y}) = \varphi(\|\mathbf{y} - \mathbf{y}_0\|)(\mathbf{y} - \mathbf{y}_0),$$

où φ est une fonction scalaire, dérive d'un potentiel :

$$\Phi_{\varphi}(\mathbf{y}) = -\int_{r_0}^{\|\mathbf{y}-\mathbf{y}_0\|} r\varphi(r)dr \qquad \text{(potential de forces centrales)},$$

où $r_0 > 0$ peut être choisi arbitrairement pour fixer la constante.

• Forces centrifuges. Dans le cas d'un référentiel non galiléen tournant à vitesse angulaire uniforme Ω autour de l'axe \mathbf{e}_3 par rapport à un référentiel galiléen, le champ de forces massiques d'inertie centrifuges engendrées par cette rotation

$$\mathbf{g}(\mathbf{y}) = \Omega^2 (y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2)$$

dérive du potentiel

$$\Phi_{\Omega}(\mathbf{y}) = -\frac{1}{2} \Omega^2 (y_1^2 + y_2^2) \qquad \text{(potential de forces centrifuges)}.$$

Par conséquent un point matériel de masse m placé au point de l'espace y où règne un champ de forces massiques conservatives dérivant du potentiel Φ aura pour énergie potentielle m $\Phi(\mathbf{y})$.

Annexe B

Quelques notions de Calcul des Variations

B.1 Les fonctionnelles et leurs dérivées

B.1.1 La notion de fonctionnelle

Les fonctionnelles sont des fonctions de fonctions à valeur dans \mathbb{R} . Nous nous limitons ici au cas où les fonctions entrant dans la définition de la fonctionnelle sont des fonctions d'une variable : typiquement, la fonction sera la configuration $S \mapsto \mathbf{x}(S)$, l'angle tangent $S \mapsto \alpha(S)$, le déplacement d'extension $S \mapsto \mathbf{u}(S)$ ou la déflexion $S \mapsto \mathbf{w}(S)$ du milieu curviligne (ce peut donc être une fonction vectorielle d'une variable) et la fonctionnelle sera une énergie (potentielle ou élastique) $\mathcal{P}(\mathbf{x}), \mathcal{P}(\alpha), \mathcal{P}(\mathbf{u})$ ou $\mathcal{P}(\mathbf{w})$ associée à cette configuration. L'ensemble \mathcal{C}_{ad} (ou \mathcal{C}_{ad}) où vit la fonction \mathbf{x} (ou α, \ldots) pour que $\mathcal{P}(\mathbf{x})$ soit définie (et finie) peut être de nature géométrique très variée : ce peut être un espace vectoriel, un espace affine ou une variété différentielle. En général la fonctionnelle fait intervenir des intégrales sur un intervalle de la variable où l'intégrande dépend de la valeur de la fonction et de ses dérivées.

Exemple B.1. Dans le problème du flambement d'Euler où l'elastica est supposé inextensible on a

$$\mathcal{P}(\alpha) = \int_0^{\ell_R} \left(\frac{1}{2} \operatorname{El}\alpha'(S)^2 + \mathcal{F} \cos \alpha(S) \right) dS,$$

et C_{ad} est l'ensemble des fonctions $S \mapsto \alpha(S)$ donnant l'angle tangent en tout point du milieu qui sont régulières et qui vérifient la condition d'encastrement $\alpha(0) = 0$. Si l'on ne retient que les fonctions telles que $\mathcal{P}(\alpha) < +\infty$, alors \mathcal{C}_{ad} est l'espace vectoriel des fonctions de carré intégrale et dont les dérivées sont de carré intégrale sur $(0, \ell_R)$. C'est l'espace de Sobolev $H^1(0, \ell_R)$ qui contient les fonctions continues sur $[0, \ell_R]$.

Exemple B.2. Dans le problème du fil pesant extensible fixé au point \mathbf{x}_0 on a

$$\mathcal{P}(\mathbf{x}) = \int_0^{\ell_R} \left(\frac{1}{2} \mathsf{EA}(\|\mathbf{x}'(S)\| - 1)^2 + \rho_\mathsf{m} \mathsf{A} g x_2(S) \right) dS - \mathcal{F} \cdot \mathbf{x}(\ell_R)$$

et \mathcal{C}_{ad} est l'ensemble des fonctions $\mathbf{x} : (0, \ell_R) \to \mathbb{R}^2$ qui vérifient la condition de fixation $\mathbf{x}(0) = \mathbf{x}_0$. Ici encore les fonctions d'énergie finie sont celles dont les deux composantes $S \mapsto x_1(S)$ et $S \mapsto x_2(S)$ sont dans $H^1(0, \ell_R)$. Donc

$$\mathcal{C}_{ad} = \{ \mathbf{x} = (x_1, x_2) \in H^1(0, \ell_R)^2 : \mathbf{x}(0) = \mathbf{x}_0 \}.$$

C'est un espace affine et l'espace vectoriel associé est

$$\mathcal{V}_{ad} = \{ \overset{*}{\mathbf{x}} = (\overset{*}{x}_{1}, \overset{*}{x}_{2}) \in H^{1}(0, \ell_{R})^{2} : \overset{*}{\mathbf{x}}(0) = \mathbf{0} \}.$$

Exemple B.3. Si l'on considère le fil inextensible, alors l'énergie s'écrit

$$\mathcal{P}(\mathbf{x}) = \int_0^{\ell_R} \rho_{\mathsf{m}} \mathsf{A} g x_2(S) dS - \mathcal{F} \cdot \mathbf{x}(\ell_R).$$

Son ensemble de définition \mathcal{C}_{ad} doit maintenant contenir la condition d'inextensibilité et devient

$$\mathcal{C}_{ad} = \{ \mathbf{x} : (0, \ell_R) \to \mathbb{R}^2 : \mathcal{P}(\mathbf{x}) < +\infty, \quad \mathbf{x}(0) = \mathbf{x}_0, \quad \left\| \mathbf{x}'(S) \right\| = 1 \quad \forall S \in (0, \ell_R) \}.$$

Ce n'est plus un espace affine mais une variété différentiable. On peut définir l'espace vectoriel tangent $\mathcal{V}_{ad}(\mathbf{x})$ en tout point \mathbf{x} de \mathcal{C}_{ad} ,

$$\boldsymbol{\mathcal{V}}_{ad}(\mathbf{x}) := \{ \mathbf{\hat{x}}: (0, \ell_{\mathcal{R}}) \to \mathbb{R}^2 : \text{``régulière''}, \quad \mathbf{\hat{x}}(0) = 0, \quad \mathbf{x}'(S) \cdot \mathbf{\hat{x}}'(S) = 0 \quad \forall S \in (0, \ell_{\mathcal{R}}) \}.$$

B.1.2 Les dérivées directionnelles d'une fonctionnelle

La dérivée directionnelle d'une fonctionnelle généralise celle de dérivée partielle pour une fonction de plusieurs variables. Dans le cas où la fonctionnelle est définie sur un espace affine, la définition la dérivée directionnelle est la suivante

D-B.1 (Dérivée directionnelle d'une fonctionnelle quand \mathcal{C}_{ad} est affine). Soit $\mathcal{P} : \mathcal{C}_{ad} \to \mathbb{R}$ une fonctionnelle définie sur l'espace affine \mathcal{C}_{ad} dont l'espace vectoriel associé est \mathcal{V}_{ad} . Soient $\mathbf{x} \in \mathcal{C}_{ad}$ et $\overset{*}{\mathbf{x}} \in \mathcal{V}_{ad}$. Si la dérivée par rapport à h en h = 0 de $\mathcal{P}(\mathbf{x} + h \overset{*}{\mathbf{x}})$ existe et dépend linéairement et continument de $\overset{*}{\mathbf{x}}$, alors on appelle dérivée directionnelle (ou dérivée de Gâteaux) de \mathcal{P} en \mathbf{x} la forme linéaire $\mathcal{P}'(\mathbf{x})$ définie sur \mathcal{V}_{ad} par

$$\mathbf{x}^* \mapsto \mathcal{P}'(\mathbf{x})(\mathbf{x}^*) := \left. \frac{d}{dh} \Big(\mathcal{P}(\mathbf{x} + h \mathbf{x}) \Big) \right|_{h=0}.$$

Le nombre réel $\mathcal{P}'(\mathbf{x})(\overset{*}{\mathbf{x}})$ est appelé dérivée de \mathcal{P} en \mathbf{x} dans la direction $\overset{*}{\mathbf{x}}$.

En itérant il est possible de définir ainsi des dérivées de n'importe quel ordre. Nous n'aurons besoin d'aller que jusqu'à l'ordre 2. Dans le cas où \mathcal{C}_{ad} est un espace affine, la dérivée seconde directionnelle est la forme quadratique $\mathcal{P}''(\mathbf{x})$ définie sur \mathcal{V}_{ad} par

$$\mathcal{P}''(\mathbf{x})(\mathbf{\hat{x}}) = \left. \frac{d^2}{dh^2} \Big(\mathcal{P}(\mathbf{x}+h\mathbf{\hat{x}}) \Big) \right|_{h=0} = \left. \frac{d}{dh} \Big(\mathcal{P}'(\mathbf{x}+h\mathbf{\hat{x}})(\mathbf{\hat{x}}) \Big) \right|_{h=0}.$$

On peut étendre la notion de dérivée directionnelle au cas où la fonctionnelle n'est définie que sur une variété différentiable \mathcal{C}_{ad} . Il faut pour cela construire un chemin $h \mapsto \mathbf{x}_h \in \mathcal{C}_{ad}$ sur la variété passant par \mathbf{x} en h = 0 et dont la dérivée en h = 0 est un élément \mathbf{x} de l'espace tangent $\mathcal{V}_{ad}(\mathbf{x})^1$, *i.e.*

$$\mathbf{x}_h(S)|_{h=0} = \mathbf{x}(S), \quad \mathbf{x}(S) = \left. \frac{d(\mathbf{x}_h(S))}{dh} \right|_{h=0}.$$

La dérivée directionnelle de la fonctionnelle s'obtient alors en calculant la dérivée par rapport à h en h = 0 de $\mathcal{P}(\mathbf{x}_h)$. Cela conduit à la définition

D-B.2 (Dérivée directionnelle d'une fonctionnelle quand \mathcal{C}_{ad} est une variété). Soit $\mathcal{P} : \mathcal{C}_{ad} \to \mathbb{R}$ une fonctionnelle définie sur la variété différentiable \mathcal{C}_{ad} . Soient $\mathbf{x} \in \mathcal{C}_{ad}$ et $h \mapsto \mathbf{x}_h$ un chemin défini sur \mathcal{C}_{ad} , passant par \mathbf{x} en h = 0 et dont la dérivée \mathbf{x} en h = 0 est un élément de l'espace vectoriel tangent $\mathcal{V}_{ad}(\mathbf{x})$ à \mathcal{C}_{ad} en \mathbf{x} . Si la dérivée par rapport à h en h = 0 de $\mathcal{P}(\mathbf{x}_h)$ existe et dépend linéairement et continument de \mathbf{x} , alors on appelle dérivée directionnelle (ou dérivée de Gâteaux) de \mathcal{P} en \mathbf{x} la forme linéaire $\mathcal{P}'(\mathbf{x})$ définie sur $\mathcal{V}_{ad}(\mathbf{x})$ par

$$\overset{*}{\mathbf{x}} \mapsto \mathcal{P}'(\mathbf{x})(\overset{*}{\mathbf{x}}) := \left. \frac{d}{dh} \Big(\mathcal{P}(\mathbf{x}_h) \Big) \right|_{h=0}.$$

Le nombre réel $\mathcal{P}'(\mathbf{x})(\overset{*}{\mathbf{x}})$ est appelé dérivée de \mathcal{P} en \mathbf{x} dans la direction $\overset{*}{\mathbf{x}}$.

Exemple B.4. Pour le problème du flambement d'Euler, les dérivées première et seconde de \mathcal{P} sont définies sur \mathcal{C}_{ad} et s'écrivent

$$\begin{cases} \mathcal{P}'(\alpha)(\overset{*}{\omega}) &= \int_{0}^{\ell_{R}} \left(\mathsf{El}\alpha'(S) \overset{*}{\omega}'(S) - \mathcal{F}\sin\alpha(S) \overset{*}{\omega}(S) \right) dS \\ \mathcal{P}''(\alpha)(\overset{*}{\omega}) &= \int_{0}^{\ell_{R}} \left(\mathsf{El} \overset{*}{\omega}'(S)^{2} - \mathcal{F}\cos\alpha(S) \overset{*}{\omega}(S)^{2} \right) dS \end{cases}$$

Pour le problème du fil pesant extensible, la dérivée première de \mathcal{P} est définie sur \mathcal{V}_{ad} et s'écrit

$$\mathcal{P}'(\mathbf{x})(\mathbf{x}) = \int_0^{\ell_R} \left(\mathsf{EA}\left(\left\| \mathbf{x}'(S) \right\| - 1 \right) \frac{\mathbf{x}'(S)}{\left\| \mathbf{x}'(S) \right\|} \cdot \mathbf{x}'(S) + \rho_{\mathsf{m}} \mathsf{A}g \, \mathbf{x}_2(S) \right) dS - \mathcal{F} \cdot \mathbf{x}(\ell_R),$$

alors que pour le fil inextensible la dérivée directionnelle de \mathcal{P} en \mathbf{x} est définie sur l'espace vectoriel tangent $\mathcal{V}_{ad}(\mathbf{x})$ par

$$\mathcal{P}'(\mathbf{x})(\mathbf{\dot{x}}) = \int_0^{\ell_R} \rho_{\mathsf{m}} \mathsf{A}g \ \dot{x}_2(S) dS - \mathcal{F} \cdot \mathbf{\dot{x}}(\ell_R).$$

^{1.} En mécanique, cela correspond à la notion de mouvement virtuel, $\mathbf{\dot{x}}$ étant le champ de vitesse virtuelle.

B.2 La minimisation d'une fonctionnelle

B.2.1 Propriétés générales

Une question centrale du Calcul des Variations est de minimiser la fonctionnelle sur son ensemble de définition. Il s'agit donc de

Trouver
$$\mathbf{x} \in \boldsymbol{\mathcal{C}}_{ad}$$
 tel que $\mathcal{P}(\mathbf{x}) \leq \mathcal{P}(\tilde{\mathbf{x}}) \quad \forall \tilde{\mathbf{x}} \in \boldsymbol{\mathcal{C}}_{ad}.$

Lorsque l'ensemble de définition \mathcal{C}_{ad} est un espace affine et la fonctionnelle est différentiable on en déduit immédiatement que les minimiseurs (en supposant qu'il en existe) sont à chercher parmi les points stationnaires de la fonctionnelle, *i.e.* les $\mathbf{x} \in \mathcal{C}_{ad}$ où la dérivée directionnelle est nulle :

Si $\mathbf{x} \in \mathcal{C}_{\mathrm{ad}}$ et $\mathcal{P}(\mathbf{x}) \leq \mathcal{P}(\tilde{\mathbf{x}}) \quad \forall \tilde{\mathbf{x}} \in \mathcal{C}_{\mathrm{ad}} \quad \mathrm{alors} \quad \mathcal{P}'(\mathbf{x})(\overset{*}{\mathbf{x}}) = 0, \quad \forall \overset{*}{\mathbf{x}} \in \mathcal{V}_{\mathrm{ad}}.$

En effet, en prenant $\tilde{\mathbf{x}} = \mathbf{x} + h \overset{*}{\mathbf{x}}$ où \mathbf{x} est un minimiseur, $\overset{*}{\mathbf{x}} \in \mathcal{V}_{ad}$ et h > 0, on obtient l'inégalité

$$\mathcal{P}(\mathbf{x} + h \mathbf{x}) - \mathcal{P}(\mathbf{x}) \ge 0.$$

En divisant par h et en passant à la limite quand $h \to 0$, on obtient par définition de la dérivée :

$$\mathcal{P}'(\mathbf{x})(\mathbf{x}) \ge 0.$$

Comme \mathcal{V}_{ad} est un espace vectoriel, on peut changer $\mathbf{\dot{x}}$ en $-\mathbf{\dot{x}}$ pour obtenir l'inégalité inverse et donc finalement l'égalité. La réciproque (à savoir que si \mathbf{x} est un point stationnaire, alors c'est un minimiseur) n'est pas vraie en général. Elle l'est lorsque \mathcal{P} est une fonction convexe (la démonstration est omise, elle peut être trouvée dans tout cours d'optimisation convexe).

P-B.1 (Minimisation des fonctionnelles convexes et différentiables sur un espace affine). Si $\mathcal{P} : \mathcal{C}_{ad} \to \mathbb{R}$ est convexe et différentiable sur l'espace affine \mathcal{C}_{ad} , alors $\mathbf{x} \in \mathcal{C}_{ad}$ est un minimiseur si et seulement s'il est un point stationnaire.

En l'absence de convexité de \mathcal{P} ou bien si \mathcal{C}_{ad} est seulement une variété différentiable, il est facile de construire des exemples où les points stationnaires sont des maxima ou bien seulement des minima locaux.

B.2.2 Un problème-type

Le problème-type du Calcul des Variations est celui où il s'agit de minimiser la fonctionnelle définie par

$$\mathcal{P}(\alpha) := \int_{S_0}^{S_1} \mathcal{L}(S, \alpha(S), \alpha'(S)) dS$$

sur l'espace affine

$$\mathcal{C}_{\mathrm{ad}} = \{ \alpha : (S_0, S_1) \to \mathbb{R} : \text{``régulier''}, \alpha(S_0) = \alpha_0 \}$$

où l'intégrande \mathcal{L} , appelé le Lagrangien, est une fonction régulière de ses trois arguments notés génériquement (S, α, α') . Le problème s'écrit donc

$$\min_{\alpha \in \mathcal{C}_{ad}} \int_{S_0}^{S_1} \mathcal{L}(S, \alpha(S), \alpha'(S)) dS$$

La méthode classique pour déterminer le ou les minimiseurs consiste à chercher d'abord les points stationnaires avant de sélectionner ceux qui sont effectivement des minimiseurs. En utilisant les définitions et propriétés précédentes, les points stationnaires sont les éléments $\alpha \in C_{ad}$ tels que

$$\mathcal{P}'(\alpha)(\overset{*}{\omega}) = 0, \qquad \forall \overset{*}{\omega} \in \mathcal{V}_{ad} = \{ \overset{*}{\omega} : (S_0, S_1) \to \mathbb{R} : \text{réguliers}, \overset{*}{\omega}(S_0) = 0 \}.$$

Par conséquent en dérivant la fonctionnelle on obtient l'équation variationnelle

$$0 = \int_{S_0}^{S_1} \left(\frac{\partial \mathcal{L}}{\partial \alpha}(S, \alpha(S), \alpha'(S)) \, \overset{*}{\omega}(S) + \frac{\partial \mathcal{L}}{\partial \alpha'}(S, \alpha(S), \alpha'(S)) \, \overset{*}{\omega}'(S) \right) dS, \quad \forall \stackrel{*}{\omega} \in \mathcal{V}_{\mathrm{ad}}.$$

En supposant que α et \mathcal{L} sont suffisamment réguliers, en dérivant par partie le deuxième terme sous l'intégrale et en utilisant le fait que $\overset{*}{\omega}(S_0) = 0$, on obtient $\forall \overset{*}{\omega} \in \mathcal{V}_{ad}$:

$$0 = \int_{S_0}^{S_1} \left(\frac{\partial \mathcal{L}}{\partial \alpha}(S, \alpha(S), \alpha'(S)) - \frac{d}{dS} \left(\frac{\partial \mathcal{L}}{\partial \alpha'}(S, \alpha(S), \alpha'(S)) \right) \right) \overset{*}{\omega}(S) dS + \frac{\partial \mathcal{L}}{\partial \alpha'}(S_1, \alpha(S_1), \alpha'(S_1)) \overset{*}{\omega}(S_1).$$

On s'appuie ensuite sur la propriété suivante qui est couramment appelée Lemme Fondamental du Calcul des Variations² et qui permet de passer d'une propriété variationnelle à une propriété locale :

Lemme Fondamental du Calcul des Variations. Soit f une fonction continue sur l'intervalle (a, b) et $\mathcal{D}(a, b)$ l'ensemble des fonctions indéfiniment continument différentiables et à support compact dans (a, b). Alors, on a l'équivalence suivante

$$\int_{a}^{b} f(x)\varphi(x)dx = 0, \quad \forall \varphi \in \mathcal{D}(a,b) \quad \Longleftrightarrow \quad f(x) = 0, \quad \forall x \in (a,b).$$

On raisonne en deux temps.

1. En prenant d'abord $\overset{*}{\omega}$ dans $\mathcal{D}(S_0, S_1)$, le terme de bord en S_1 s'annule puisque $\overset{*}{\omega}(S_1) = 0$. On peut alors utiliser le Lemme fondamental pour obtenir l'équation différentielle appelée **équation d'Euler-Lagrange** :

$$-\frac{d}{dS}\left(\frac{\partial \mathcal{L}}{\partial \alpha'}(S,\alpha(S),\alpha'(S))\right) + \frac{\partial \mathcal{L}}{\partial \alpha}(S,\alpha(S),\alpha'(S)) = 0 \qquad \forall S \in (S_0, S_1).$$
(B.1)

2. En reportant ensuite cette équation dans l'égalité variationnelle, celle-ci se réduit à

$$\frac{\partial \mathcal{L}}{\partial \alpha'}(S_1, \alpha(S_1), \alpha'(S_1)) \overset{*}{\omega}(S_1) = 0, \qquad \forall \overset{*}{\omega} \in \mathcal{V}_{\mathrm{ad}}.$$

Comme $\overset{*}{\omega}(S_1)$ peut être choisi arbitrairement, on obtient la condition à la limite appelée **condition** à la limite naturelle :

$$\frac{\partial \mathcal{L}}{\partial \alpha'}(S_1, \alpha(S_1), \alpha'(S_1)) = 0.$$
(B.2)

^{2.} La démonstration du Lemme Fondamental sous cette forme ne présente pas de difficulté et est omise. Ce lemme admet de nombreuses variantes suivant le degré de régularité supposé de la fonction f et des fonctions "tests" φ .

On a donc finalement obtenu que, sous réserve d'une régularité suffisante pour que toutes les opérations précédentes aient un sens, les minimiseurs de la fonctionnelle \mathcal{P} sont à chercher parmi les fonctions de C_{ad} qui vérifient l'équation d'Euler-Lagrange (B.1) et la condition à la limite naturelle (B.2). Il s'agit ensuite de sélectionner les solutions de ce système différentiel du second ordre qui sont réellement des minimiseurs. Si \mathcal{L} et donc \mathcal{P} possèdent des propriétés de convexité, on peut conclure directement ; sinon, il faut raisonner au cas par cas.

On peut s'aider de la structure particulière des équations d'Euler-Lagrange pour résoudre cette équation différentielle du second ordre. En particulier lorsque le Lagrangien ne dépend pas explicitement de la variable S ou de la valeur de la fonction α , on peut se ramener à une équation différentielle du premier ordre grâce à la notion d'*intégrale première*.

1. Cas où \mathcal{L} ne dépend pas de α . Dans ce cas l'équation d'Euler-Lagrange se réduit à

$$0 = \frac{d}{dS} \left(\frac{\partial \mathcal{L}}{\partial \alpha'}(S, \alpha'(S)) \right), \quad \forall S \in (S_0, S_1).$$

On en déduit en utilisant la condition à la limite naturelle que

$$\frac{\partial \mathcal{L}}{\partial \alpha'}(S, \alpha'(S)) = \operatorname{cte} = \frac{\partial \mathcal{L}}{\partial \alpha'}(S_1, \alpha'(S_1)) = 0,$$

ce qui fournit une équation implicite en $\alpha'(S)$. (En l'absence de condition à la limite naturelle, ce qui advient lorsque $\alpha(S_1)$ est donné, la constante d'intégration cte reste à déterminer.)

2. Cas où \mathcal{L} ne dépend pas de S. Là encore, il existe une intégrale première. En effet, en multipliant l'équation d'Euler-Lagrange par $\alpha'(S)$ on obtient

$$0 = \frac{d}{dS} \left(\frac{\partial \mathcal{L}}{\partial \alpha'} (\alpha(S), \alpha'(S)) \right) \alpha'(S) - \frac{\partial \mathcal{L}}{\partial \alpha} (\alpha(S), \alpha'(S)) \alpha'(S)$$

$$= \frac{d}{dS} \left(\alpha'(S) \frac{\partial \mathcal{L}}{\partial \alpha'} (\alpha(S), \alpha'(S)) \right) - \frac{\partial \mathcal{L}}{\partial \alpha'} (\alpha(S), \alpha'(S)) \alpha''(S) - \frac{\partial \mathcal{L}}{\partial \alpha} (\alpha(S), \alpha'(S)) \alpha'(S)$$

$$= \frac{d}{dS} \left(\alpha'(S) \frac{\partial \mathcal{L}}{\partial \alpha'} (\alpha(S), \alpha'(S)) \right) - \frac{d}{dS} \left(\mathcal{L} (\alpha(S), \alpha'(S)) \right).$$

Par conséquent $\alpha' \frac{\partial \mathcal{L}}{\partial \alpha'} - \mathcal{L}$ ne dépend pas de S, ce qui permet de se ramener à une équation différentielle du premier ordre

$$\alpha'(S)\frac{\partial \mathcal{L}}{\partial \alpha'}(\alpha(S), \alpha'(S)) - \mathcal{L}(\alpha(S), \alpha'(S)) = \text{cte} \qquad (\text{intégrale première})$$

où la constante reste à déterminer.

Il existe de nombreuses variantes de ce problème-type : par exemple, la fonction inconnue peut être vectorielle : $\mathbf{x}(S) = (x_1(S), \dots, \mathbf{x}_n(S))$; l'intégrande peut dépendre des dérivées de la fonction jusqu'à l'ordre $n : \mathcal{L}(S, \alpha(S), \alpha'(S), \dots, d^n \alpha/dS^n(S))$; etc. Mais on peut suivre toujours la même démarche pour obtenir le système d'équations différentielles que doit vérifier tout minimiseur. Dans le cas où la fonction inconnue est vectorielle, on obtient un système de n équations différentielles du second ordre, alors que quand la fonctionnelle fait intervenir les dérivées d'ordre supérieur on obtient une équation différentielle d'ordre 2n. Il est également fréquent que la minimisation se fasse sous contrainte (contrainte ponctuelle ou contrainte intégrale). Dans ce cas, on peut avoir recours à la notion de multiplicateur de Lagrange pour s'affranchir de ces contraintes.

B.3 Les multiplicateurs de Lagrange et leur usage

Voici une version du théorème des multiplicateurs de Lagrange qui s'applique au cas où le système contient un nombre *fini* de liaisons. On en trouvera une démonstration dans [6][Lemme III.2, p. 41].

P-B.2 (Le théorème des multiplicateurs de Lagrange). Soient \mathcal{V} un espace vectoriel et (L_0, L_1, \dots, L_n) n+1 formes linéaires définies sur \mathcal{V} , i.e. des applications linéaires de \mathcal{V} dans \mathbb{R} . Si ces formes linéaires sont telles que

$$L_0(\mathbf{v}) = 0, \quad \forall \mathbf{v} \in \mathcal{V} \text{ tels que } L_1(\mathbf{v}) = \cdots = L_n(\mathbf{v}) = \mathbf{0},$$

alors L_0 est une combinaison linéaire des n formes (L_1, \dots, L_n) , i.e. il existe n réels $(\lambda_1, \dots, \lambda_n)$ tels que

$$L_0(\mathbf{v}) = \sum_{i=1}^n \lambda_i L_i(\mathbf{v}), \quad \forall \mathbf{v} \in \mathcal{V}.$$

Le réel λ_i est appelé multiplicateur de Lagrange associé à la liaison $L_i(\mathbf{v}) = \mathbf{0}$.

Il est d'usage fréquent dans l'approche variationnelle car il permet de se libérer de contraintes de liaisons en introduisant un multiplicateur de Lagrange, cf section 5.4.1. On peut également l'étendre sous certaines conditions au cas où il y a une infinité de contraintes de liaisons, cf 5.4.4. Annexe C

Fiches de synthèse

Géométrie

##
Déformation II

• Déplacement, rotation, déformations $' = dérivée \ par \ rapport \ a \ S$					
\star Déplacement et rotation :					
vecteur déplacement $\pmb{\xi}(S)$: $\boldsymbol{\xi}(S) = \mathbf{x}(S) - \mathbf{x}_{R}(S)$				
déplacement d'extension $u(S)$: $u(S) = \boldsymbol{\xi}(S) \cdot \mathbf{t}_{R}(S)$				
déflexion $w(S)$: $w(S) = \boldsymbol{\xi}(S) \cdot \mathbf{n}_{R}(S)$				
rotation $\omega(S)$: $\omega(S) = \alpha(S) - \alpha_{R}(S)$				
* Déformations :					
déformation d'extension $\varepsilon(S)$: $\varepsilon(S) = \mathbf{s}'(S) - 1$				
déformation de flexion $\kappa(S)$: $\kappa(S) = \omega'(S)$				
• Relations déformations, déplacements et positions $' = dérivée \ par \ rapport \ a S$					
★ Relations entre la rotation, les déformations et les dérivées des positions :					
rotation $\omega(S)$: $\cos \omega(S) = \frac{\mathbf{x}'(S) \cdot \mathbf{t}_{R}(S)}{\ \mathbf{x}'(S)\ }, \sin \omega(S) = \frac{\mathbf{x}'(S) \cdot \mathbf{n}_{R}(S)}{\ \mathbf{x}'(S)\ }$				
déformation d'extension $\varepsilon(S)$: $\varepsilon(S) = \ \mathbf{x}'(S)\ - 1$				
déformation de flexion $\kappa(S)$: $\kappa(S) = rac{(\mathbf{e}_3 \wedge \mathbf{x}'(S)) \cdot \mathbf{x}''(S)}{\ \mathbf{x}'(S)\ ^2} - C_{R}(S)$				

 \star Relations entre la rotation ou les déformations et les déplacements :

$$\operatorname{rotation} \omega = \begin{cases} \frac{1 + \boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}}}{\sqrt{1 + 2\boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}} + \boldsymbol{\xi}' \cdot \boldsymbol{\xi}'}} \\ \frac{1 + \mathbf{u}' - \mathsf{C}_{\mathsf{R}} \mathbf{w}}{\sqrt{(1 + \mathbf{u}' - \mathsf{C}_{\mathsf{R}} \mathbf{w})^2 + (\mathbf{w}' + \mathsf{C}_{\mathsf{R}} \mathbf{u})^2}} \end{cases}$$

$$\operatorname{sin} \omega = \begin{cases} \frac{\boldsymbol{\xi}' \cdot \mathbf{n}_{\mathsf{R}}}{\sqrt{1 + 2\boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}} + \boldsymbol{\xi}' \cdot \boldsymbol{\xi}'}} \\ \frac{\mathbf{w}' + \mathsf{C}_{\mathsf{R}} \mathbf{u}}{\sqrt{(1 + \mathbf{u}' - \mathsf{C}_{\mathsf{R}} \mathbf{w})^2 + (\mathbf{w}' + \mathsf{C}_{\mathsf{R}} \mathbf{u})^2}} \end{cases}$$

$$\operatorname{déformation} d'extension \varepsilon \qquad : \quad \varepsilon = \begin{cases} \sqrt{1 + 2\boldsymbol{\xi}' \cdot \mathbf{t}_{\mathsf{R}} + \boldsymbol{\xi}' \cdot \boldsymbol{\xi}'} - 1 \\ \sqrt{(1 + \mathbf{u}' - \mathsf{C}_{\mathsf{R}} \mathbf{w})^2 + (\mathbf{w}' + \mathsf{C}_{\mathsf{R}} \mathbf{u})^2} - 1 \end{cases}$$

Modélisation des efforts et conditions d'équilibre • Efforts extérieurs et intérieurs $s = abscisse \ curviligne \ de \ la \ configuration \ s \mapsto \mathbf{x}(s)$ * Efforts extérieurs : : $\mathbf{f}(s) = f_1(s)\mathbf{e}_1 + f_2(s)\mathbf{e}_2 = f_t(s)\mathbf{t}(s) + f_n(s)\mathbf{n}(s)$ densité linéique de forces : m(s)densité linéique de couples : $\boldsymbol{\mathcal{F}}_{s_i}, \mathcal{M}_{s_i}$ force et moment ponctuels en s_i : $\mathcal{F}_0, \mathcal{M}_0, \quad \mathcal{F}_\ell, \mathcal{M}_\ell$ force et moment aux extrémités * Efforts intérieurs : $\mathbf{n}(\mathbf{s})$ $M^r(s)$ $\mathbf{R}^{r}(s)$ $\mathbf{R}(s)$ M(s): $\mathbf{R}(s)$ force intérieure directe : $\mathbf{R}(s) = N(s)\mathbf{t}(s) + T(s)\mathbf{n}(s)$ effort normal et effort tranchant : M(s)moment fléchissant : $\mathbf{R}^r(s), M^r(s)$ efforts intérieurs réciproques • Equations d'équilibre locales $s = abscisse \ curviligne \ de \ la \ configuration \ d'équilibre$ $\mathbb{P} = \{s_1, \cdots, s_n\} = ensemble \ des \ points \ où \ sont \ exercés \ des \ efforts \ ponctuels$ $\mathbb{C} = (0, \ell)$ pour un milieu avec des extrémités, $\mathbb{C} = [0, \ell)$ pour un milieu sans extrémité : $\lim_{s \to 0} \mathbf{R}(s) = -\mathcal{F}_0$ et $\lim_{s \to 0} M(s) = -\mathcal{M}_0$, conditions en s = 0

		-0)
équilibre des forces dans $\mathbb{C} \setminus \mathbb{P}$: $\frac{d\mathbf{R}}{ds}(s) + \mathbf{f}(s) = 0$	
équilibre des moments dans $\mathbb{C} \setminus \mathbb{P}$	$: \frac{dM}{ds}(s) + T(s) + m(s) = 0$	
équilibre des forces sur $\mathbb P$: $\llbracket \mathbf{R} rbracket(s_i) + \boldsymbol{\mathcal{F}}_{s_i} = 0$	
équilibre des moments sur $\mathbb P$	$: \llbracket M \rrbracket(s_i) + \mathcal{M}_{s_i} = 0$	
conditions en $s = \ell$: $\lim_{s\uparrow\ell} \mathbf{R}(s) = \mathcal{F}_{\ell}$ et $\lim_{s\uparrow\ell} M(s) = \mathcal{M}_{\ell}$	

Les conditions en s = 0 et $s = \ell$ ne sont à écrire que pour un milieu avec des extrémités.

Comportement

déformabilité	inextensible $\varepsilon = 0$	élastiquement extensible
	milieu rigide	barre élastique
inflexible	$\int \varepsilon = 0$	$\int N = N_{ex}(\varepsilon)$
$\kappa = 0$	$\kappa = 0$	$\int \kappa = 0$
	(N et M arbitraires)	(M arbitraire)
	tige inextensible	tige élastique
élastiquement florible	$\int \varepsilon = 0$	$\int N = \mathbf{N}_{\mathbf{e}}(\varepsilon, \kappa)$
	$M = M_{fl}(\kappa)$	$M = \mathbf{M}_{\mathbf{e}}(\varepsilon, \kappa)$
	(N arbitraire)	
	fil inextensible	fil élastique
parfaitement flexible	$\int \varepsilon = 0$	$\int N = \mathbf{N}_{ex}(\varepsilon)$
M = 0	M = 0	$\int M = 0$
	(N arbitraire)	

• Comportement élastique

E = module d'Young du matériau constitutif

A et l = aire et moment d'inertie géométrique de la section

 \star Relations constitutives des tiges élastiques : potentiel élastique de flexion-extension $W_{e}(\varepsilon,\kappa)$

cas général

$$N = \frac{\partial \mathbf{W}_{\mathbf{e}}}{\partial \varepsilon}(\varepsilon, \kappa), \quad M = \frac{\partial \mathbf{W}_{\mathbf{e}}}{\partial \kappa}(\varepsilon, \kappa)$$

cas d'une section homogène et d'un matériau linéairement élastique

:
$$W_{\mathbf{e}}(\varepsilon,\kappa) = \frac{1}{2} \mathbf{E} \mathbf{A} \varepsilon^2 + \frac{1}{2} \mathbf{E} \mathbf{I} \kappa^2, \quad N = \mathbf{E} \mathbf{A} \varepsilon, \quad M = \mathbf{E} \mathbf{I} \kappa$$

* Relations constitutives des fils ou barres élastiques : potentiel élastique d'extension $W_{ex}(\varepsilon)$

cas général	:	$N=\mathtt{W}_{\mathtt{ex}}'$	(ε)			
cas d'une section homogène et d'un matériau linéairement élastique	:	$\mathtt{W}_{\mathtt{ex}}(\varepsilon) =$	$\frac{1}{2}$ EA ε	2,	N =	EAε
						,

:

 \star Relations constitutives des tiges inextensibles : potentiel élastique de flexion $\mathtt{W}_{\mathtt{fl}}(\kappa)$

cas général	:	$M=\mathtt{W'_{fl}}(\kappa)$	
cas d'une section homogène et d'un matériau linéairement élastique	:	$W_{fl}(\kappa) = \frac{1}{2} \operatorname{El} \kappa^2,$	$M=EI\kappa$

Statique I

Statique II

• Formulation générale d'un problème aux limites de statique

 $S \mapsto \mathbf{x}_{R}(S) = configuration \ de \ référence$ $S = abscisse \ curviligne \ de \ référence$

 $\mathbb{C}_{R} = (0, \ell_{R})$ si le milieu a des extrémités, $\mathbb{C}_{R} = [0, \ell_{R})$ si le milieu n'a pas d'extrémité

 $\mathbb{P}_{R} = \{S_{0}, \cdots, S_{n}\} = ensemble des points matériels repérés par leur abscisse curviligne de référence où sont imposés des efforts ponctuels$

Les inconnues	$S\mapsto \mathbf{x}(S), S\mapsto (\mathbf{R}(S), M(S))$ (leur régularité dépend du comportement du milieu)
	Les équations (le prime indique la dérivée par rapport à S)
Les relations géométriques	$\begin{cases} \mathbf{t}(S) = \frac{\mathbf{x}'(S)}{\ \mathbf{x}'(S)\ } = \cos \alpha(S)\mathbf{e}_1 + \sin \alpha(S)\mathbf{e}_2\\ \mathbf{n}(S) = \mathbf{e}_3 \wedge \mathbf{t}(S) = -\sin \alpha(S)\mathbf{e}_1 + \cos \alpha(S)\mathbf{e}_2\\ \varepsilon(S) = \ \mathbf{x}'(S)\ - 1\\ \kappa(S) = \frac{\mathbf{x}'(S) \wedge \mathbf{x}''(S)}{\ \mathbf{x}'(S)\ ^2} - C_{R}(S) = \alpha'(S) - \alpha'_{R}(S) \end{cases}$
La décomposition des efforts intérieurs	$\mathbf{R}(S) = N(S)\mathbf{t}(S) + T(S)\mathbf{n}(S)$
Les équations d'équilibre (les densités linéiques \mathbf{f}_{R} et m_{R} sont par unité de longueur de la configuration de référence) conservation de la masse : $\varrho_{R}(S) = (1 + \varepsilon(S))\varrho \circ \mathbf{s}(S)$	$\begin{cases} \mathbf{R}'(S) + \mathbf{f}_{R}(S) = 0 & \text{dans } \mathbb{C}_{R} \setminus \mathbb{P}_{R} \\ M'(S) + \ \mathbf{x}'(S)\ \ T(S) + m_{R}(S) = 0 & \text{dans } \mathbb{C}_{R} \setminus \mathbb{P}_{R} \\ \ \mathbf{R}\ (S_i) + \mathcal{F}_{S_i} = 0 & \text{sur } \mathbb{P}_{R} \\ \ M\ (S_i) + \mathcal{M}_{S_i} = 0 & \text{sur } \mathbb{P}_{R} \end{cases}$
Les conditions aux limites (à n'écrire que quand le milieu a des extrémités)	$\begin{pmatrix} \mathbf{R} \\ M \end{pmatrix} \longleftrightarrow \begin{pmatrix} \mathbf{x} \\ \alpha \end{pmatrix} \text{ en } S = 0 \text{ et } S = \ell_{R}$ 3 conditions complémentaires par extrémité (force ou position, moment ou orientation)
Les relations constitutives	$\left(\begin{array}{c} N(S) \\ M(S) \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \varepsilon(S) \\ \kappa(S) \end{array}\right) \qquad \text{dans } \mathbb{C}_{R}$

Statique III

• Formulation générale d'un problème aux limites de statique de fil				
$S \mapsto \mathbf{x}_{R}(S) = configuration \ de \ référence$ $S = abscisse \ curviligne \ de \ référence$ $\mathbb{C}_{R} = (0, \ell_{R}) \ si \ le \ fil \ a \ des \ extrémités, \ \mathbb{C}_{R} =$ $\mathbb{P}_{R} = \{S_{0}, \cdots, S_{n}\} = ensemble \ des \ points$ où sont imposés des efforts ponctuels	$[0, \ell_R)$ si le fil n'a pas d'extrémité matériels repérés par leur abscisse curviligne de référence			
Les inconnues	$S \mapsto \mathbf{x}(S), S \mapsto N(S)$ $\mathbf{x} = continu \ partout, \ dérivable \ par \ morceau$ $N = continu \ par \ morceau, \ dérivable \ par \ morceau$			
	Les équations (le prime indique la dérivée par rapport à S)			
Les relations géométriques	$\begin{cases} \mathbf{t}(S) = \frac{\mathbf{x}'(S)}{\ \mathbf{x}'(S)\ }, & \mathbf{n}(S) = \mathbf{e}_3 \wedge \mathbf{t}(S), \\ \varepsilon(S) = \ \mathbf{x}'(S)\ - 1 & \text{dans } \mathbb{C}_{R} \end{cases}$			
Les équations d'équilibre (la densité linéique \mathbf{f}_{R} est par unité de longueur de référence) conservation de la masse : $\varrho_{R}(S) = (1 + \varepsilon(S))\varrho \circ \mathbf{s}(S)$	$\begin{cases} (N\mathbf{t})'(S) + \mathbf{f}_{R}(S) = 0 & \text{dans } \mathbb{C}_{R} \setminus \mathbb{P}_{R} \\ [\![N \mathbf{t}]\!](S_i) + \mathcal{F}_{S_i} = 0 & \text{sur } \mathbb{P}_{R} \end{cases}$			
Les conditions aux limites (à n'écrire que quand le milieu a des extrémités)	$N \mathbf{t} \longleftrightarrow \mathbf{x}$ en $S = 0$ et $S = \ell_{R}$ deux conditions complémentaires par extrémité (composantes de la force ou de la position)			
La relation constitutive	$\begin{cases} \varepsilon = 0 & \text{si le fil est inextensible} \\ N = W'_{ex}(\varepsilon) & \text{si le fil est élastique} \end{cases}$			
La condition de stabilité	$N(S) \ge 0$ dans \mathbb{C}_{R}			

Statique IV

• Problème de statique linéarisé

chargement faible \implies petits déplacements et petites déformations par rapport à une configuration de référence naturelle \implies cadre HPP \implies problème linéaire

* Choix de la configuration de référence naturelle : la donnée de $S \mapsto C_R(S)$ détermine $\mathbf{x}_R(S)$ à une translation \mathbf{x}^0 et une rotation α^0_R près

$$\begin{cases} \alpha_{\mathsf{R}}(S) = \alpha_{\mathsf{R}}^{0} + \int_{0}^{S} \mathbf{C}_{\mathsf{R}}(\tilde{S}) d\tilde{S} \\ \mathbf{x}_{\mathsf{R}}(S) = \mathbf{x}_{\mathsf{R}}^{0} + \int_{0}^{S} \cos \alpha_{\mathsf{R}}(\tilde{S}) d\tilde{S} \mathbf{e}_{1} + \int_{0}^{S} \sin \alpha_{\mathsf{R}}(\tilde{S}) d\tilde{S} \mathbf{e}_{2} \end{cases}$$

fixation de α_{R}^0 et \mathbf{x}^0 à l'aide des conditions aux limites (ou en résolvant le problème rigide associé)

* Linéarisation des équations d'équilibre : la configuration d'équilibre est assimilée à la configuration de référence, les efforts extérieurs sont calculés en supposant que $\mathbf{x}(S) = \mathbf{x}_{\mathsf{R}}(S)$

masse linéique et abscisse curviligne	:	$\varrho(s)=\varrho_{\rm R}(S),\qquad ds=dS$	
décomposition des efforts intérieurs	:	$\mathbf{R}(S) = N(S)\mathbf{t}_{R}(S) + T(S)\mathbf{n}_{R}(S)$	S)
équations d'équilibre linéarisées	:	$\begin{cases} \mathbf{R}'(S) + \mathbf{f}_{R}(S) = 0 \\ M'(S) + T(S) + m_{R}(S) = 0 \\ \llbracket \mathbf{R} \rrbracket(S_i) + \mathcal{F}_{S_i} = 0 \\ \llbracket M \rrbracket(S_i) + \mathcal{M}_{S_i} = 0 \end{cases}$	$\begin{array}{l} \operatorname{dans} \mathbb{C}_{R} \setminus \mathbb{P}_{R} \\ \operatorname{dans} \mathbb{C}_{R} \setminus \mathbb{P}_{R} \\ \operatorname{sur} \mathbb{P}_{R} \\ \operatorname{sur} \mathbb{P}_{R} \end{array}$

* Linéarisation des conditions aux limites : exemples de conditions aux limites linéarisées en S = 0en supposant que la configuration de référence satisfait les conditions aux limites cinématiques

encastrement : $\mathbf{u}(0) = 0$, $\mathbf{w}(0) = 0$, $\mathbf{w}'(0) = 0$ appui simple quand $\mathbf{t}_c = \mathbf{t}_{\mathsf{R}}(0)$: N(0) = 0, $\mathbf{w}(0) = 0$, M(0) = 0

* Linéarisation des relations déformations-déplacements : cadre HPP : $|\mathbf{u}'| \ll 1, |\mathbf{w}'| \ll 1, |C_R \mathbf{u}| \ll 1, |C_R \mathbf{w}| \ll 1$

déformation d'extension linéarisée	:	$arepsilon = oldsymbol{\xi}' \cdot \mathbf{t}_{R} = \mathtt{u}' - \mathtt{C}_{R} \mathtt{w}$
rotation linéarisée	:	$\omega = {oldsymbol{\xi}}' \cdot {f n}_{ m R} = {f w}' + {f C}_{ m R} {f u}$
déformation de flexion linéarisée	:	$\kappa = (\boldsymbol{\xi}' \cdot \mathbf{n}_{R})' = \mathtt{w}'' + (\mathtt{C}_{R}\mathtt{u})'$

* Linéarisation des relations constitutives : potentiel élastique W_e quadratique en (ε, κ)

section hétérogène et dissymétrique : $N = \overline{\mathsf{EA}}\varepsilon + \overline{\mathsf{EC}}\kappa$, $M = \overline{\mathsf{EC}}\varepsilon + \overline{\mathsf{EI}}\kappa$ section homogène : $N = \mathsf{EA}\varepsilon$, $M = \mathsf{EI}\kappa$

Variationnel I

• Mouvements virtuels

 $s \mapsto \mathbf{x}(s)$: configuration à partir de laquelle se fait le mouvement virtuel s, t, n: abscisse curviligne, vecteur tangent et vecteur normal à xmouvement virtuel : $(h, s) \mapsto \mathbf{x}_h(s), h \in (-h, h), s \in \mathbb{C}$ le mouvement virtuel passe par \mathbf{x} en h = 0 : $\mathbf{x}_{h=0}(s) = \mathbf{x}(s)$

* Vitesses virtuelles : $\overset{*}{\mathsf{G}} := \left. \frac{d\mathsf{G}_h}{dh} \right|_{h=0}$ (dérivée par rapport à h en h = 0)

: $\boldsymbol{\xi}(s) = \mathbf{x}(s) = \frac{d(\mathbf{x}_h(s))}{dh}\Big|_{h=0}$ vites se virtuelle de déplacement $s\mapsto \stackrel{*}{\pmb{\xi}}(s)$: $\overset{*}{\omega}(s) = \frac{d\overset{*}{\boldsymbol{\xi}}}{ds}(s) \cdot \mathbf{n}(s)$

vitesse virtuelle de rotation $s \mapsto \overset{*}{\omega}(s)$

vitesse virtuelle de déformation d'extension $s \mapsto \overset{*}{\varepsilon}(s)$: $\overset{*}{\varepsilon}(s) = \frac{d\overset{*}{\boldsymbol{\xi}}}{ds}(s) \cdot \mathbf{t}(s)$: $\overset{*}{\kappa}(s) = \frac{d}{ds} \left(\frac{d \boldsymbol{\xi}}{ds}(s) \cdot \mathbf{n}(s) \right)$

vites se virtuelle de déformation de flexion $s\mapsto \stackrel{*}{\kappa}\!\!(s)$

• Principe des Puissances Virtuelles

 \mathbb{S}^* : points $s \in \mathbb{C}$ où $\overset{*}{\boldsymbol{\xi}}$ et $\overset{*}{\omega}$ sont discontinus \mathbb{P} : points $s \in \mathbb{C}$ où sont exercés des efforts ponctuels saut : $\llbracket G \rrbracket(s) = G^+(s) - G^-(s)$, valeur moyenne : $\langle G \rangle(s) = \frac{1}{2} (G^+(s) + G^-(s))$ $\mathcal{V}_{tot}(\mathbf{x}) = ensemble \ des \ vitesses \ virtuelles \ (à \ partir \ de \ la \ configuration \ \mathbf{x}) \ régulières \ par \ morceaux$

* Puissance virtuelle de déformation des efforts intérieurs :

$$\mathsf{P}_{\mathsf{def}}[\mathbf{R}, M](\overset{*}{\boldsymbol{\xi}}) := \int_{\mathbb{C}\backslash\mathbb{S}^*} \left(N(s) \overset{*}{\varepsilon}(s) + M(s) \overset{*}{\kappa}(s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\omega}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\omega}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\omega}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\omega}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\omega}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\omega}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) + \langle M \rangle(s) [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*} \left(\langle \mathbf{R} \rangle(s) \cdot [\![\overset{*}{\boldsymbol{\xi}}]\!](s) \right) ds + \sum_{\mathbb{S}^*}$$

* Puissance virtuelle des efforts extérieurs :

$$\begin{aligned} \mathsf{P}_{\mathsf{ext}}[\boldsymbol{\mathcal{F}}_{0}, \mathcal{M}_{0}, \cdots](\overset{*}{\boldsymbol{\xi}}) &= \boldsymbol{\mathcal{F}}_{0} \cdot \overset{*}{\boldsymbol{\xi}}^{+}(0) + \mathcal{M}_{0} \overset{*}{\omega}^{+}(0) + \int_{\mathbb{C} \setminus \mathbb{S}^{*}} \left(\mathbf{f}(s) \cdot \overset{*}{\boldsymbol{\xi}}(s) + m(s) \overset{*}{\omega}(s)\right) ds \\ &+ \sum_{s_{i} \in \mathbb{P}} \left(\boldsymbol{\mathcal{F}}_{s_{i}} \cdot \left\langle \overset{*}{\boldsymbol{\xi}} \right\rangle(s_{i}) + \mathcal{M}_{s_{i}} \left\langle \overset{*}{\omega} \right\rangle(s_{i})\right) + \boldsymbol{\mathcal{F}}_{\ell} \cdot \overset{*}{\boldsymbol{\xi}}^{-}(\ell) + \mathcal{M}_{\ell} \overset{*}{\omega}^{-}(\ell) \end{aligned}$$

Les termes en s = 0 et $s = \ell$ ne figurent que pour un milieu avec des extrémités.

* PPV : Les efforts intérieurs vérifient les équations d'équilibre locales si et seulement si

 $\mathsf{P}_{\mathsf{def}}[\mathbf{R},M](\overset{*}{\boldsymbol{\xi}}) = \mathsf{P}_{\mathsf{ext}}(\overset{*}{\boldsymbol{\xi}}), \quad \forall \overset{*}{\boldsymbol{\xi}} \in \boldsymbol{\mathcal{V}}_{\mathrm{tot}}(\mathbf{x})$

Variationnel II

• Systèmes conservatifs et énergie potentielle

force morte = force appliquée dont la direction et l'intensité ne dépendent pas de la position du point d'application

moment mort = moment appliqué dont l'intensité ne dépend ni de la position du point d'application ni de l'orientation du milieu

* Potentiel de forces conservatives : $\mathbf{y} \mapsto \Phi(\mathbf{y})$, champ de forces associé $\mathsf{F}(\mathbf{y}) = -\nabla \Phi(\mathbf{y})$

force morte \mathcal{F} : $\Phi(\mathbf{y}) = -\mathcal{F} \cdot \mathbf{y}$ masse unité sous pesanteur uniforme \mathbf{g} : $\Phi(\mathbf{y}) = -\mathbf{g} \cdot \mathbf{y}$ masse unité sous force centrifuge $\Omega^2(y_1\mathbf{e}_1 + y_2\mathbf{e}_2)$: $\Phi(\mathbf{y}) = -\frac{1}{2}\Omega^2(y_1^2 + y_2^2)$

* Energie potentielle du milieu dans la configuration \mathbf{x} due aux charges conservatives : $\mathcal{P}_{\mathsf{ext}}(\mathbf{x})$ $S \mapsto \mathbf{x}(S) = \text{configuration du milieu}, S = \text{abscisse curviligne de la configuration de référence}$ $S \mapsto \varrho_{\mathsf{R}}(S)$ et $\ell_{\mathsf{R}} = \text{masse linéique et longueur de référence du milieu}$

contribution de forces massiques conservatives : $\int_{0}^{\ell_{\mathsf{R}}} \varrho_{\mathsf{R}}(S) \Phi(\mathbf{x}(S)) dS \longrightarrow \mathcal{P}_{\mathsf{ext}}(\mathbf{x})$ contribution d'une force morte \mathcal{F} appliquée en S_i : $-\mathcal{F} \cdot \mathbf{x}(S_i) \longrightarrow \mathcal{P}_{\mathsf{ext}}(\mathbf{x})$ contribution d'un moment mort \mathcal{M} appliqué en S_i : $-\mathcal{M} \alpha(S_i) \longrightarrow \mathcal{P}_{\mathsf{ext}}(\mathbf{x})$

énergie potentielle des efforts extérieurs conservatifs $\mathcal{P}_{ext}(\mathbf{x})$ = somme de toutes les contributions

 \star Energie de déformation d'un milieu dans la configuration $\mathbf{x} : \mathcal{P}_{ela}(\mathbf{x})$

 $S \mapsto \varepsilon(S) = d\acute{e}$ formation d'extension, $S \mapsto \kappa(S) = d\acute{e}$ formation de flexion

 $\begin{array}{ll} \text{énergie élastique d'une tige élastiquement flexible et} \\ \text{extensible} \end{array} : \quad \mathcal{P}_{\texttt{ela}}(\mathbf{x}) = \int_{0}^{\ell_{\mathsf{R}}} \mathbb{W}_{\texttt{e}}(\varepsilon(S), \kappa(S)) dS \\ \text{énergie élastique (de flexion) d'une tige inextensible} \\ \text{energie élastique (d'extension) d'une barre inflexible} \\ \text{ou d'un fil élastique} \end{array} : \quad \mathcal{P}_{\texttt{ela}}(\mathbf{x}) = \int_{0}^{\ell_{\mathsf{R}}} \mathbb{W}_{\texttt{ex}}(\varepsilon(S)) dS \\ \text{énergie de déformation d'un fil inextensible} \\ \text{energie de déformation d'un milieu rigide} } : \quad \mathcal{P}_{\texttt{ela}}(\mathbf{x}) = 0 \\ \text{énergie de déformation d'un milieu rigide} \end{array} : \quad \mathcal{P}_{\texttt{ela}}(\mathbf{x}) = 0 \\ \end{array}$

 \star Energie potentielle totale du milieu dans la configuration \mathbf{x} : $\mathcal{P}_{\mathsf{tot}}(\mathbf{x})$

$$\mathcal{P}_{\texttt{tot}}(\mathbf{x}) = \mathcal{P}_{\texttt{ela}}(\mathbf{x}) + \mathcal{P}_{\texttt{ext}}(\mathbf{x})$$

Variationnel III

• Propriétés énergétiques des systèmes conservatifs

* Configurations et vitesses virtuelles cinématiquement admissibles : conditions que vérifie une configuration $S \mapsto \mathbf{x}(S)$ cinématiquement admissible

 $\begin{cases} \mathbf{x} \text{ est d'énergie potentielle finie} : \mathcal{P}_{\texttt{tot}}(\mathbf{x}) < \infty \\ \mathbf{x} \text{ vérifie les conditions aux limites cinématiques} \\ \mathbf{x} \text{ vérifie les éventuelles contraintes cinématiques d'inextensibilité ou d'inflexibilité} \end{cases}$

 \mathcal{C}_{ad} : ensemble des configurations cinématiquement admissibles. Si \mathcal{C}_{ad} est un espace affine, alors l'ensemble des vitesses virtuelles cinématiquement admissibles \mathcal{V}_{ad} est l'espace vectoriel associé à \mathcal{C}_{ad}

* Variation des énergies dans un mouvement virtuel admissible : cas où \mathcal{C}_{ad} est un espace affine

 $S \in (0, \ell_{\mathsf{R}})$: abscisse curviligne de référence, $s \in (0, \ell)$: abscisse curviligne déformée, $s = \mathfrak{s}(S)$ $S \mapsto \mathbf{x}(S)$: configuration cinématiquement admissible, $\mathbf{x} \in \boldsymbol{\mathcal{C}}_{ad}$

 $S \mapsto \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}(S)$: vitesse virtuelle cinématiquement admissible (paramétrée par S), $\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \mathcal{V}_{ad}$ $\mathcal{P}: \mathcal{C}_{ad} \to \mathbb{R}, \ \mathbf{x} \mapsto \mathcal{P}(\mathbf{x})$: fonctionnelle énergie élastique ou potentielle d'une configuration

dérivée directionnelle de \mathcal{P} en \mathbf{x}

variation de l'énergie potentielle de forces massiques conservatives

variation de l'énergie potentielle d'une force morte $\boldsymbol{\mathcal{F}}$ et d'un moment

mort \mathcal{M} appliqués en S_i

$$: \mathcal{P}'(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) := \frac{d}{dh} \Big(\mathcal{P}(\mathbf{x} + \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) \Big) \Big|_{h=0}$$
$$: \mathcal{P}'_{\mathtt{ext}}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) = -\int_{0}^{\ell} \mathbf{f}(s) \cdot \overset{*}{\boldsymbol{\xi}}(s) ds,$$
$$\mathbf{f}(s) = -\varrho(s) \nabla \Phi(\mathbf{x}(S)), \quad s = \mathbf{s}(S)$$

$$\mathcal{P}_{\mathsf{ext}}^{\prime}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) = -\boldsymbol{\mathcal{F}} \cdot \overset{*}{\boldsymbol{\xi}}(s_i) - \mathcal{M} \cdot \overset{*}{\boldsymbol{\omega}}(s_i), \quad s_i = \mathbf{s}(S_i)$$

*

 \mathbf{x}

variation de l'énergie élastique d'une tige élastiquement flexible et exten-: sible

variation de l'énergie de flexion d'une tige inextensible (s = S)

variation de l'énergie d'extension d'une barre inflexible ou d'un fil élastique

$$\begin{aligned} \mathcal{P}'_{\texttt{ela}}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) &= \int_{0}^{\ell} \left(N(s) \overset{*}{\boldsymbol{\varepsilon}}(s) + M(s) \overset{*}{\boldsymbol{\omega}}(s) \right) ds \\ \mathcal{P}'_{\texttt{ela}}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}}) &= \int_{0}^{\ell_{\mathsf{R}}} M(S) \overset{*}{\boldsymbol{\omega}}(S) dS \\ \mathcal{P}'_{\texttt{ela}}(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) &= \int_{0}^{\ell} N(s) \overset{*}{\boldsymbol{\varepsilon}}(s) ds \end{aligned}$$

* Théorème de l'énergie potentielle : (cas où \mathcal{C}_{ad} est un espace affine)

:

:

$$\mathbf{x} \text{ configuration d'équilibre } \iff \begin{cases} \mathbf{x} \in \mathcal{C}_{ad} \\ \mathcal{P}_{\mathsf{tot}}'(\mathbf{x})(\overset{*}{\boldsymbol{\xi}} \circ \mathbf{s}) = 0, \quad \forall \ \overset{*}{\boldsymbol{\xi}} \circ \mathbf{s} \in \mathcal{V}_{ad} \end{cases}$$

Dynamique

• Equations du mouvement d'un milieu curviligne

* Cinématique du milieu continu : (en représentation lagrangienne) $S \in \mathbb{C}_{R}$: abscisse curviligne de la configuration de référence $S \mapsto \mathbf{x}_{R}(S)$ $t \geq 0$: le temps

 $\begin{array}{ll} \text{représentation lagrangienne de } \mathbf{G} & : & (S,t) \mapsto \mathbf{G}(S,t), \qquad \mathbf{G}' = \frac{\partial \mathbf{G}}{\partial S}, \qquad \dot{\mathbf{G}} = \frac{\partial \mathbf{G}}{\partial t} \\ \text{position des points matériels} & : & \mathbf{x}(S,t) \\ \text{vitesse des points matériels} & : & \mathbf{v}(S,t) = \dot{\mathbf{x}}(S,t) = \dot{\boldsymbol{\xi}}(S,t) \\ \text{accélération des points matériels} & : & \gamma(S,t) = \dot{\mathbf{x}}(S,t) = \ddot{\boldsymbol{x}}(S,t) = \ddot{\boldsymbol{\xi}}(S,t) \\ \end{array}$

* Cinématique des ondes de discontinuité : (en représentation lagrangienne)

 $\mathbf{S}_o(t)$: point matériel traversé par l'onde à l'instant t $\dot{\mathbf{S}}_o(t)$: célérité de l'onde à l'instant tsaut de \mathbf{G} sur une onde de discontinuité :

$$\llbracket \mathbf{G} \rrbracket(t) := \mathbf{G}^+(\mathbf{S}_o(t), t) - \mathbf{G}^-(\mathbf{S}_o(t), t)$$

condition de compatibilité cinématique :

$$\frac{d}{dt} \llbracket \mathbf{G} \rrbracket(t) = \dot{\mathbf{S}}_o(t) \llbracket \mathbf{G}' \rrbracket(t) + \llbracket \dot{\mathbf{G}} \rrbracket(t)$$

* Equations locales du mouvement : (en négligeant l'inertie de rotation) $\mathbb{P}_{\mathsf{R}} = \{S_1, \cdots, S_n\}$: points matériels où sont exercés des efforts ponctuels $\mathbb{S}_{\mathsf{R}}(t) = \{\mathbf{S}_o^1(t), \cdots, \mathbf{S}_o^n(t)\}$: points matériels traversés par une onde de choc à l'instant t $\dot{\mathbf{S}}_o(t)$: célérité d'une onde de choc à l'instant t

$$\begin{split} & \text{équilibre des forces dans } \mathbb{C}_{\mathsf{R}} \setminus (\mathbb{P}_{\mathsf{R}} \cup \mathbb{S}_{\mathsf{R}}(t)) & : \quad \mathbf{R}' + \mathbf{f}_{\mathsf{R}} - \varrho_{\mathsf{R}} \ddot{\mathbf{x}} = \mathbf{0} \\ & \text{équilibre des moments dans } \mathbb{C}_{\mathsf{R}} \setminus (\mathbb{P}_{\mathsf{R}} \cup \mathbb{S}_{\mathsf{R}}(t)) & : \quad M' + \|\mathbf{x}'\| \ T + m_{\mathsf{R}} = 0 \\ & \text{équilibre des forces sur } \mathbb{P}_{\mathsf{R}} \cup \mathbb{S}_{\mathsf{R}}(t) & : \quad [\![\mathbf{R}]\!] + \mathcal{F} + \dot{\mathbf{S}}_o[\![\varrho_{\mathsf{R}} \dot{\mathbf{x}}]\!] = \mathbf{0} \\ & \text{équilibre des moments sur } \mathbb{P}_{\mathsf{R}} \cup \mathbb{S}_{\mathsf{R}}(t) & : \quad [\![M]\!] + \mathcal{M} = 0 \end{split}$$

ces conditions sont à écrire à chaque instant.

* Problème de dynamique :

on rajoute des conditions initiales :
$$\mathbf{x}(S,0) = \mathbf{x}^0(S), \quad \dot{\mathbf{x}}(S,0) = \mathbf{v}^0(S) \quad \forall S \in \mathbb{C}_R$$

Notations

A	quantité en italique = scalaire	9
\mathbf{A}	quantité en gras = vecteur (A_i) ou matrice (A_{ij})	9
$\mathbf{A}^T, \mathbf{A}^{-1}$	transposée de la matrice \mathbf{A} , inverse de la matrice \mathbf{A}	18
$\mathbf{u} \cdot \mathbf{v}$	produit scalaire des vecteurs u et $\mathbf{v} = \sum_{i=1}^{n} u_i v_i$	22
$\ \mathbf{u}\ $	norme euclidienne du vecteur $\mathbf{u} = \sqrt{\mathbf{u} \cdot \mathbf{u}}$	11
$\mathbf{u} \wedge \mathbf{v}$	produit vectoriel des vecteurs \mathbf{u} et \mathbf{v}	11
$\mathbf{u} \wedge \mathbf{v}$	produit mixte = $(\mathbf{u} \wedge \mathbf{v}) \cdot \mathbf{e}_3$	31
G^+, G^-	limites à droite et à gauche de G	50
[[G]]	saut de G en un point de discontinuité = $G^+ - G^-$	50
$\langle G \rangle$	valeur moyenne de G en un point de discontinuité $=\frac{1}{2}(G^+ + G^-)$	201
Ĝ	moyenne de G sur son ensemble de définition	208
Ġ	dérivée par rapport au temps de G	27
* G	vitesse virtuelle de G	196
Ĝ	dérivée seconde par rapport au temps de ${\tt G}$	28
А	aire de la section	67
α	angle tangent de la configuration déformée	11
$lpha_{R}$	angle tangent de la configuration de référence	16
\mathbb{C}	intervalle de définition de l'abscisse curviligne déformée	10
${\cal C}_{ m ad}, {\cal C}_{ m ad}$	ensemble des configurations cinématiquement admissibles	219
\mathcal{C}	courbe caractéristique	264
\mathbb{C}_{R}	intervalle de définition de l'abscisse curviligne de référence	107
C	courbure de la configuration déformée	12
C _R	courbure de la configuration de référence	16
c_0	célérité des ondes dans un milieu linéairement élastique	264
E	module de Young	68
$\dot{\varepsilon}$	vitesse de déformation d'extension	28
\mathbf{e}_i	i-ème vecteur de base	9
ε	déformation d'extension	19
${\mathcal E}$	énergie élastique	266

$ \boldsymbol{\mathcal{F}}, \boldsymbol{\mathcal{F}} \\ \mathbf{f}, \mathbf{f}_t, \mathbf{f}_n, \mathbf{f}_1, \mathbf{f}_2 $	force ponctuelle densité linéique de forces extérieures par unité de longueur de la configuration déformée (vecteur ou composante)	$\frac{31}{32}$
$\mathbf{f}_{R},\mathrm{f}_{R}$	densité linéique de forces extérieures par unité de longueur de la configuration de référence	101
$oldsymbol{\gamma} \mathbf{g}, g$	vecteur accélération vecteur pesanteur, intensité de la pesanteur	$\begin{array}{c} 28\\ 32 \end{array}$
I	moment d'inertie géométrique de la section	90
\mathcal{K}_{κ}	énergie cinétique déformation de flexion	269 19
$\begin{array}{l} L_{\mathbf{x}_0}(\mathbb{I}_{R},t) \\ \ell \\ \ell_{R} \end{array}$	moment cinétique au point \mathbf{x}_0 de la partie \mathbb{I}_{R} du milieu à l'instant t longueur de la configuration déformée longueur de la configuration de référence	$255 \\ 12 \\ 66$
M, M^r \mathcal{M} M_e m	moment fléchissant, moment fléchissant réciproque moment extérieur ponctuel fonction d'élasticité pour le moment fléchissant densité linéique de moment extérieur par unité de longueur de la configuration déformée	37 35 77 33
N N _e n n _R	effort normal fonction d'élasticité pour l'effort normal vecteur normal à la configuration déformée vecteur normal à la configuration de référence	37 77 11 16
ω	angle de rotation	17
$\mathcal{P}_{P_{def}}[\mathbf{R}, M](\boldsymbol{\xi})$ \mathcal{P}_{ela} $P_{evt}(\boldsymbol{\xi})$	poids du milieu curviligne puissance virtuelle de déformation des efforts intérieurs énergie potentielle élastique puissance virtuelle des efforts extérieurs	124 201 218 202
$\Phi_{\rm ext}(\mathbf{S})$ $\Phi_{\rm P}$ $\mathbb{P}_{\rm R}$ $\mathcal{P}_{\rm tot}$ P $\mathcal{P}_{\rm ext}$ $\mathbf{P}(\mathbf{I}, t)$	potentiel d'un champ de forces massiques conservatives ensemble des points de \mathbb{C} soumis à des efforts ponctuels ensemble des points de \mathbb{C}_{R} soumis à des efforts ponctuels énergie potentielle totale puissance des efforts extérieurs énergie potentielle des forces conservatives enventité de mouvement de la partie \mathbb{L} du reilieu à l'instant t	202 308 41 107 218 269 218
$\mathbf{\Gamma}(\mathbb{I}_{R},t)$	quantité de mouvement de la partie $\mathbb{1}_R$ du mineu à l'instant t	255

Q	matrice orthogonale	18
$\mathbb{R} \\ \mathcal{R} \\ \mathbf{R}, \mathbf{R}^r \\ \varrho \\ \varrho_{R} \\ \rho_{m} $	ensemble des nombres réels invariant de Riemann force intérieure (directe), force intérieure réciproque masse lineïque de la configuration déformée masse lineïque de la configuration de référence masse volumique du matériau constitutif	$18 \\ 267 \\ 37 \\ 106 \\ 106 \\ 127$
\dot{s}_{o} \dot{s}_{o} s s(S) σ S	célérité lagrangienne d'une onde de discontinuité célérité eulérienne d'une onde de discontinuité abscisse curviligne de la configuration déformée abscisse curviligne déformée en fonction de l'abscisse curviligne de référence contrainte uniaxiale, contrainte normale abscisse curviligne de la configuration de référence	$254 \\ 253 \\ 12 \\ 12 \\ 67 \\ 16$
T t \mathbf{t}_{R}	effort tranchant vecteur tangent à la configuration déformée vecteur tangent à la configuration de référence	$37 \\ 11 \\ 16$
ξ u	vecteur déplacement déplacement d'extension	17 18
$oldsymbol{\mathcal{V}}_{ m ad},oldsymbol{\mathcal{V}}_{ m ad}({f x})$ $arcup v$ $oldsymbol{v}$	ensemble des champs de vitesse virtuelle cinématiquement admissibles (à partir de la configuration \mathbf{x}) vitesse d'extension vecteur vitesse de déplacement	220 29 27
W _{def} W W _{ex} W _e W _{ex} W _e *	travail de déformation travail des efforts extérieurs densité volumique d'énergie d'extension déflexion potentiel élastique ou densité linéique d'énergie élastique densité linéique d'énergie d'extension potentiel élastique dual	81 78 84 18 82 215 92
\mathbf{x}, x_1, x_2 $\mathbf{x}_h, \mathbf{x}_h \circ \mathbf{s}$ \mathbf{x}_R	vecteur position et ses composantes cartésiennes de la configuration déformée mouvement virtuel autour de \mathbf{x} vecteur position de la configuration de référence	$15 \\ 196 \\ 16$

Bibliographie

- [1] G. Allaire. Analyse numérique et optimisation. Editions Ellipses, 2005.
- [2] S. S. Antman. Non linear problems of elasticity. Applied Mathematical Sciences vol. 107. Springer-Verlag, New York, 1995.
- [3] B. Audoly and Y. Pomeau. *Elasticity and geometry*. Oxford University Press, 2010.
- [4] Y. Bamberger Mécanique de l'ingénieur I. Systèmes de corps rigides. II. Milieux déformables. Hermann, Paris, 1981.
- [5] Y. Bamberger et F. Voldoire Mécanique des structures— Initiations, approfondissements, applications. Presses des Ponts et Chaussées, 2008.
- [6] H. Brezis. Analyse fonctionnelle. Théorie et applications. Masson, Paris, 1987 (2ème tirage).
- [7] B. Dacorogna. Introduction au calcul des variations. Cahiers mathématiques de l'Ecole Polytechnique Fédérale de Lausanne. Presses polytechniques et universitaires romandes, Lausanne, 1991.
- [8] I. Ekeland and R. Temam. Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976.
- [9] Galilée. Discours concernant deux sciences nouvelles. Traduction de M. Clavelin (2ème édition). Presses Universitaires de France "Épiméthée", 1995.
- [10] P. Germain. Mécanique des Milieux Continus. Masson, Paris, 1962.
- [11] K. F. Graff. Wave motion in elastic solids. Dover Publications, New York, 1991.
- [12] J. Lelong-Ferrand et J.-M. Arnaudiès. Cours de mathémathiques. Tome 1 : Algèbre. Tome 2 : Analyse. Tome 3 : Géométrie et cinématique. Tome 4 : Equations différentielles, intégrales multiples. Dunod Université, Paris, 1977.
- [13] P. Le Tallec. Modélisation et calcul des milieux continus. Les Editions de l'Ecole Polytechnique, 2009.
- [14] J. Salençon. Mécanique des milieux continus Tome I : Concepts généraux. Collections Ellipses, 2005.
- [15] J. Salençon. Mécanique des milieux continus Tome II : Thermoélasticité. Collections Ellipses, 2007.
- [16] S. P. Timoshenko. *History of strength of materials*. Dover Publications, New York, 1983.