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1 Introduction

Engineers who are familiar with finite elements very often ask why it is necessary to
develop yet another computational technique. The answer is that finite elements have
been proved to be inadequate or inefficient in many engineering applications and what
is perhaps more important is in many cases cumbersome to use and hence difficult to
implement in Computer Aided Engineering systems. Finite Element (FE) analysis is still
a comparatively slow process due to the need to define and redefine meshes in the piece
or domain under study.

Boundary elements (BE) have emerged as a powerful alternative to finite elements
particularly in cases where better accuracy is required due to problems such as stress
concentration or where the domain extends to infinity. The most important feature of
boundary elements, however, is that different to the finite domain methods as, e.g., the
finite difference method or the finite element method, the methodology of formulating
boundary value problems as boundary integral equations describes problems only by equa-
tions with known and unknown boundary states.Hence, it only requires discretization of
the surface rather than the volume, i.e., the dimension of problems is reduced by one.
Consequently, the necessary discretization effort is mostly much smaller and , moreover,
meshes can easily be generated and design changes do not require a complete remeshing.

The BE method is especially advantageous in the case of problems with infinite or
semi-infinite domains, e.g., so-called exterior domain problems: there, although only the
finite surface of the infinite domain has to be discretized, the solution at any arbitrary
point of the domain can be found after determining the unknown boundary data.

To be objective, the features of the BE method should be compared to its main rival,
the FE method. Its advantages and disadvantages can be summarized as follows

1.1 Advantages of the Boundary Element Method

1. Less data preparation time: This is adirect result of the ’surface-only’ modelling. Thus,
the analyst’s time required for data preparation and data checking for a given problem
should be greatly reduced. Furthermore, subsequent changes in meshes are made easier.

2. High resolution of stress : Stresses are accurate because no further approximation
is imposed on the solution at interior points, i.e., solution is exact and fully continuous
inside the domain.

3. Less computer time and storage: For the same level of accuracy, the BE method
uses a lesser number of nodes and elements (but a fully populated matrix), i.e., to achieve
comparable accuracy in stress values, FE meshes would need more boundary divisions
than the equivalent BE meshes.

4. Less unwanted information: In most engineering problems, the ’worst’ situation
(such as fracture, stress concentration, thermal shocks a.s.o.) usually occur on the surface.
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2 1 Introduction

Thus, modelling an entire three-dimensional body with finite elements and calculating
stress (or other states) at every nodal point is very inefficient because only a few of these
values will be incorporated in the design analysis. Therefore, using boundary elements is
a very effective use of computing resources, and, furthermore, since internal points in BE
solutions are optional, the user can focus on a particular interior region rather than the
whole interior.

1.2 Disadvantages of the BE method

1. Unfamiliar mathematics : The mathematics used in BE formulations may seem unfa-
miliar to engineers (but not difficult to learn). However, many FE numerical procedures
are directly applicable to BE solutions (such as numerical integration, surface approxi-
mation, treatment of boundary conditions).

2. In non-linear problems, the interior must be modelled : Interior modelling is un-
avoidable in non-linear material problems. However, in many non-linear cases (such as
elastoplasticity) interior modelling can be restricted to selected areas such as the region
around a crack tip.

3. Fully populated and unsymmetric solution matrix : The solution matrix resulting
from the BE formulation is unsymmetric and fully populated with non-zero coefficients,
whereas the FE solution matrices are usually much larger but sparsely populated. This
means that the entire BE solution matrix must be saved in the computer core memory.
However, this is not a serious disadvantage because to obtain the same level of accuracy
as the FE solution, the BE method needs only a relatively modest number of nodes and
elements.

4. Poor for thin structures (shell) three-dimensional analyses : This is because of the
large surface/volume ratio and the close proximity of nodal points on either side of the
structure thickness. This causes inaccuracies in the numerical integrations.

1.3 Choosing BE or FE?

To decide whether BE or FE solutions are more suitable for a particular problem, three
factors must be taken into consideration:

1. The type of problem (linear, non-linear, shell-like analysis, etc.)
2. The degree of accuracy required
3. The amount of time to be spent in preparing and interpreting data.
Both techniques should be made available to engineers, because in certain types of

applications one of them may display a distinct advantage over the other. Considering
the advantages and disadvantages of the BE method listed above, the following points
may help in deciding which technique to use:

a) The BE method is suitabable and more accurate for linear problems, particularly
for three-dimensional problems with rapidly changing variables such as fracture or contact
problems



1.3 Choosing BE or FE? 3

b) Because of the much reduced time needed to model a particular problem, the
BE method is suitable for preliminary design analyses where geometry and loads can
be subsequently modified with minimal effort. This gives designers more freedom in
experimenting with new shapes and geometries.

c) The FE method is more established and more commercially developed, particularly
for complex non-linear problems where thorough tests to establish its reliability have been
performed. The temptatipn for engineers is to use a well-established computer program
rather than venture into new methods.

d) Mesh generators and plotting routines developed for FE applications are directly
applicable to BE problems. It should not be a difficult task to write ’translator’ programs
to interface with commercial FE packages. Furthermore, many load incrementation and
iterative routines developed for FE applications in non-linear problems are also directly
applicable in BE algorithms.



2 Mathematical Preliminaries

For an easy understanding of the boundary integral equation derivation, some mathemat-
ical techniques are important. They will be used time and time again to transform the
differential equations governing continuum mechanic problems into equivalent boundary
integral equations. Moreover, some notations, definitions and useful formulas should be
familiar to the reader in order to feel confident about their subsequent use. Proofs for
these formulas and results can be found in textbooks on calculus and analysis.

2.1 Some notations and definitions

Here, the notations used in the following text are introduced and some definitions are
given.

2.1.1 Indicial and symbolic notation

The components of a tensor of any order may be represented clearly by the use of the
indicial notation, i.e., letter indices as subscripts are appended to the generic letter repre-
senting the tensor quantity of interest. Dependent on the number these indices, a tensor
of first order, mostly called vector, bears one free index, a second-order tensor, sometimes
called dyadic, has two free indices, a.s.o. Hence, a symbol such as λ which has no indices
attached, represents a scalar or tensor of zero order.

When an index appears twice in a term, that index is understood to take on all the
values of its range, and the resulting terms summed. In this so-called Einstein summation
convention, repeated indices are often referred to as dummy indices, since their replace-
ment by any other letter not appearing as a free index does not change the meaning of the
term in which they occur. In ordinary physical space, the range of the indices is 1, 2, 3.

The representation of a vector and a tensor in the symbolic notation is designated by
bold-faced letters, e.g., a and D, respectively, where unit vectors êi are further distin-
guished by a caret placed over the bold-faced letter. There, the summation convention is
often also employed in connection with indexed base vectors êi, i.e., for a vector

v = viêi = v1ê1 + v2ê2 + v3ê3 (2.1)

and similarly for an arbitrary dyadic

D = Dij êiêj (2.2)

A special operational vector is ∇, the so-called Nabla vector, containing differentiations
with respect to all coordinate axis, e.g., for Cartesian coordinates x1, x2, x3

∇ =
∂

∂x1

ê1 +
∂

∂x2

ê2 +
∂

∂x3

ê3 =
∂

∂xi
êi , ∂i (2.3)

4



2.1 Some notations and definitions 5

2.1.1.1 Exercise 1: Nabla vector

Derive the Nabla vector for the Polar coordinates r and ϕ where the relations between
the unit vectors êr and êϕ of the Polar coordinate system and the unit vecors ê1and ê2

of theCartesian coordinate system are

ê1 = êr cosϕ− êϕ sinϕ

ê2 = êr sinϕ+ êϕ cosϕ

2.1.2 Contraction and different products of tensors

The outer product of two tensors is the tensor whose components are formed by multiply-
ing each component of one of the tensors by every component of the other, i.e., a dyad is
formed from two vectors by this very product

Indicial Notation Symbolic Notation
aibj = Tij ab = T

(2.4)

where the symbols ai and bjcan be in any order. Also, one obtains, e.g.,

σijnk = sijk, σijεkl = Eijkl

Contraction of a tensor with respect to two free indices is the operation of assigning to
both indices the same letter subscript, i.e., changing them to dummy indices, and, hence,
performing the summation convention, e.g.,

Tii = T11 + T22 + T33 = a1b1 + a2b2 + a3b3 = aibi

σijnj = pi

An inner product or scalar product of two tensors of arbitrary order is the result of a
contraction, involving one index from each tensor, performed on the outer product of the
two tensors, e.g.,

Indicial Notation Symbolic Notation
aibi = λ a · b = λ
Dijnj = pi D · n = p
Dijni = fj n ·D = f

(2.5)

Example: The directional derivative of a scalar function f(x1, x2, x3) in the direction of
a unit vector, e.g., the unit normal vector n is defined by the scalar product of this unit
vector n with gradf = ∇f :

∂f

∂n
= ∇f · n =

∂f

∂xi
ni (2.6)
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2.1.2.1 Exercise 2: Laplace operator

Determine the Laplace operator, i.e., the scalar product of the nabla vector with itself in
Polar coordinates.

In order to express the cross products in the indicial notation, the third order tensor
εijk, known as the permutation symbol, must be introduced:

εijk =

1
if the values of i, j, k are an even permutation of 1, 2, 3
(i.e. if they appear in sequence as in the arrangement 12312...)

−1
if the values of i, j, k are an odd permutation of 1, 2, 3
(i.e. if they appear in sequence as in the arrangement 32132...)

0
if the values of i, j, k are not a permutation of 1, 2, 3
(i.e. if two or all three of the indices have the same value)

(2.7)

From this definition, the indicial notation of cross products is written by, e.g.

a× b = c, εijkajbk = ci (2.8)

∇× E = D, εijk∂jEkl = Dil (2.9)

D×∇ = N, Dil∂mεnlm = Nin (2.10)

Example: The coss product of of two vectors a and b may also be expanded as

a× b =

∣∣∣∣∣∣
ê1 ê2 ê3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
= ê1

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− ê2

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ ê3

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ (2.11)

2.1.3 The Euclidian distance r and its derivatives

Considering two points x and ξ with its Cartesian coordinates (x1, x2, x3) and (ξ1, ξ2, ξ3),
respectively, their Euclidian distance r is defined as

r = | x− ξ |=
√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2 (2.12)

Using the summation convention, r may be written in the indicial notation form as

r =
√
δij(xi − ξi)(xj − ξj) =

√
(xi − ξi)(xi − ξi) = [(xi − ξi)(xi − ξi)]1/2 (2.13)

where δij is the so-called Kronecker delta meaning

δij =
{

0 for i6=j
1 for i=j (2.14)

The first derivative of r with respect to xj follows from (2.13) to be

∂r

∂xj
= r,j =

1

2
[(xi − ξi)(xi − ξi)]−1/2 2(xj − ξj) =

(xj − ξj)
r

(2.15)
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where, here, the comma is used to denote partial derivatives with respect to the coordi-
nates of the point x. The first derivative of r in special directions, e.g., in the direction
of a normal vector ni or a tangential vector ti is simply

r,n = r,ini and r,t = r,iti (2.16)

In R1, this first derivatives of r may also be expressed as

r,1 =
(x1 − ξ1)

| x1 − ξ1 |
= sign(x1 − ξ1) = 2H(x1 − ξ1)− 1 (2.17)

where sign(x1−ξ1) gives the sign of (x1−ξ1) and H(x1−ξ1) means the Heaviside function.
Hence, as shown above , in R1, the second derivative of r is

r,11 = 2δ(x1 − ξ1) (2.18)

This is different in R2 and R3. There, since ∂(xj − ξj)/∂xk = δjk, the second derivative
is obtained to be (j, k = 1, 2 and j, k = 1, 2, 3 in R2 and R3, respectively)

r,jk =
∂2r

∂xj∂xk
=
δjk
r
− (xj − ξj)

r2

∂r

∂xk
=
δjk − r,j r,k

r
(2.19)

Examples: If the summation rule is applied, one obtains

δii =
{

2 in R2

3 in R3

and, in R1, R2, and in R3

r,j r,j = 1

whereas

r,11 = 2δ(x1 − ξ1) in R1

r,jj = r,11 +r,22 =
1

r
in R2

r,jj = r,11 +r,22 +r,33 =
2

r
in R3

Remark: In general, i.e., when the normal vector ni is defined at a curved boundary, it
holds

r,in = r,ijnj 6= r,ni = (r,jnj),i = r,jinj + r,jnj,i

Since with the curvature radius ρ of the boundary

nj,t =
1

ρ
tj and nj,n = 0

one finds

nj,i = nj,tti + nj,nni

=
1

ρ
tjti

it holds

r,ni = (r,jnj),i = r,jinj + r,jnj,i = r,jinj +
1

ρ
tjti
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2.2 The Gauss theorems

The Gauss-Green theorem is a fundamental identity that relates a domain integral of a
derivative of a tensorial function to an integral of that function around the boundary
of that domain. The only requirement is that the integrand of the domain integral is a
derivative, i.e., may be expressed as a product (inner, outer or cross) of the Nabla-vector
∇ with a tensorial function.

Let Ω be a finite domain in Rn bounded by a piecewise smooth orientable surface Γ
with the outward normal vector n at a point on Γ. Dependent on the order of the tensorial
function, following special theorems are known.

2.2.1 The gradient theorem

When F is a scalar function, the following identity holds∫
Ω

∇F dΩ =

∮
Γ

nF dΓ (2.20)

where, obviously, the integrand of the surface integral is obtained by simply exchanging
the Nabla-vector ∇ by the normal vector n.

2.2.2 The divergence theorem

When a is a vector function and the Nabla-vector ∇ is multiplied via the inner product
with this function, the divergence theorem holds∫

Ω
∇ · a dΩ =

∮
Γ

n · a dΓ or
∫

Ω
∂iai dΩ =

∮
Γ
niai dΓ =

∮
Γ
an dΓ (2.21)

which is also known as Gauss theorem. Similarly, when S is a dyadic function, one obtains∫
Ω
∇ · S dΩ =

∮
Γ

n · S dΓ or
∫

Ω
∂iSij dΩ =

∮
Γ
niSij dΓ =

∮
Γ
tj dΓ (2.22)

2.2.3 Generalized Gauss theorems

Not often used, but nevertheless valid are generalizations where the cross product or the
outer product is applied for multiplication:∫

Ω
∇× a dΩ =

∮
Γ

n× a dΓ or
∫

Ω
εijk∂jak dΩ =

∮
Γ
εijknjak dΓ (2.23)∫

Ω
∇u dΩ =

∮
Γ

nu dΓ or
∫

Ω
∂iuj dΩ =

∮
Γ
niuj dΓ (2.24)

Example 1.1
The realization of formula (2.20) in R1 gives a well known result, when one notices that

in this special case the domain Ω is simply an intervall [a, b], the boundary Γ means here
only the two points x1 = a and x1 = b and, hence, boundary integration is summation at
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these two points. Since, moreover, the outward normal vector at these points is n1(a) = −1
and n1(b) = 1,respectively, one obtains∫

Ω

∇F dΩ =

∮
Γ

nF dΓ

b∫
a

d

dx1

F (x1)dx1 = n1(a)F (a) + n1(b)F (b) = [F (x1)]x1=b
x1=a (2.25)

exactly as one knows it from basic calculus.

2.3 Integration by parts - Green’s identities

By applying the above Gauss theorems, one can easily perform integrations by part. When
the Laplace operator ∆ = ∇2 = ∇ · ∇ acts on the scalar function v and this result is
multiplied with the scalar function u, one obtains in symbolic notation∫

Ω

(∇ · ∇v)u dΩ =

∫
Ω

[∇· ((∇v)u)− (∇v) · (∇u)] dΩ

=

∮
Γ

n·(∇v) udΓ−
∫

Ω

(∇v) · (∇u) dΩ (2.26)

or in indicial notation∫
Ω

∂2v

∂xi∂xi
u dΩ =

∫
Ω

[
∂

∂xi

(
∂v

∂xi
u

)
− ∂v

∂xi

∂u

∂xi

]
dΩ

=

∮
Γ

ni
∂v

∂xi
udΓ−

∫
Ω

∂v

∂xi

∂u

∂xi
dΩ (2.27)

Changing the sequence of these terms, this is the so-called Green’s first identity∫
Ω

[(∇ · ∇v)u+ (∇v) · (∇u)] dΩ =

∮
Γ

n·(∇v) udΓ (2.28)

When the remaining domain integral in (2.26) is integrated by parts a second time∫
Ω

(∇v) · (∇u) dΩ =

∫
Ω

[∇· (v (∇u))− v (∇ · ∇u)] dΩ

=

∮
Γ

n· (v (∇u)) dΓ−
∫

Ω

v (∇ · ∇u) dΩ (2.29)

the final result is an additional boundary integral and a domain integral where all diffen-
tiations are shifted from v to u:∫

Ω

(∇ · ∇v)u dΩ =

∮
Γ

[n·(∇v) u− v n·(∇u)] dΓ +

∫
Ω

v (∇ · ∇u) dΩ∫
Ω

∂2v

∂xi∂xi
u dΩ =

∮
Γ

[
∂v

∂n
u− v ∂u

∂n

]
dΓ +

∫
Ω

v
∂2u

∂xi∂xi
dΩ (2.30)
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This is exactly the transformation which one needs for deriving an integral representation
of the Laplace equation. In the form∫

Ω

[
(∇2v)u− v (∇2u)

]
dΩ =

∮
Γ

[n·(∇v) u− v n·(∇u)] dΓ (2.31)

the relation (2.30) is known as Green’s second identity.

The above demonstrated steps of integration by parts are naturally possible also for
vectorial and tensorial states, e.g. with ∇u , ∂iuj = uj,i and σ ,σij∫

Ω

(∇u) · ·σ dΩ ,
∫

Ω

uj,i σij dΩ

=

∫
Ω

[(uj σij),i − uj σij,i] dΩ

=

∮
Γ

uj σijni dΓ−
∫

Ω

uj σij,i dΩ

=

∮
Γ

(n · σ) · u dΓ−
∫

Ω

(∇ · σ) · u dΩ (2.32)

Example 1.2

Again, the realization in R1, here of formula (2.27), gives a well known result, when
one notices that in this special case the domain Ω is simply an intervall [a, b], the boundary
Γ means here only the two points x1 = a and x1 = b and, hence, boundary integration
is summation at these two points. Since, moreover, the outward normal vector at these
points is n1(a) = −1 and n1(b) = 1, respectively, one obtains from (2.27) ( df

dx
= f ′)

b∫
a

f ′′(x1)g(x1)dx1 = [n1(a)f ′(a)g(a) + n1(b)f ′(b)g(b)]−
b∫

a

f ′(x1)g′(x1)dx1

= [f ′(x1)g(x1)]
x1=b
x1=a −

b∫
a

f ′(x1)g′(x1)dx1 (2.33)

exactly what one knows from basic calculus.

2.3.0.1 Exercise 3: Integration by parts

Evaluate by integrations by parts the following integrals

a) in R1 on the intervall a < x < b :

b∫
a

xn ln(x)dx
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b) in R2 on the circular domain Ω =
{

(x1, x2) | r =
√
x2

1 + x2
2 ≤ R

}
:

R∫
0

rn ln(r)dΩ

2.4 Fundamental solutions of differential equations

Let Rn denote the the Euclidian n-space and the ordered n-tuple k = (k1, k2, ..., kn) with
non-negative integers k1, ..., kn be a multi-index of dimension n. If we let | k |= k1+....+kn,
then the k-th (partial) differential operator is defined by

Dk =
∂|k|

∂xk11 · · · ∂xknn
=

∂k1+....+kn

∂xk11 · · · ∂xknn
, x = (x1, ..., xn) ∈ Rn (2.34)

such that if any component of k is zero, the partial derivative with respect to that variable
is omitted. Moreover,

Dku(x) =
∂|k|u(x1, ..., xn)

∂xk11 · · · ∂xknn
, D0u(x) =u(x) (2.35)

D = (D1, D2, ..., Dn) with Di = ∂i =
∂

∂xi
, i = 1, 2, ..., n. (2.36)

An arbitrary linear differential operator L of order p in n independent variables x1, ..., xn
is denoted by

L ≡L(D) =
∑
|k|≤p

ak(x)Dk (2.37)

where the coefficients ak(x) = a(k1,k2,...,kn)(x1, ..., xn) are arbitrary functions.

2.4.1 Adjoint and self-adjoint operators

For the arbitrary linear differential operator L (2.37), the so-called adjoint operator L∗ is
formally defined by

L∗v =
∑
|k|≤p

(−1)kDk(akv). (2.38)

If ak(x) = ak are constant, then L∗(D) = L(−D). An operator is said to be self-adjoint
if L = L∗.

Considering the boundary value problem

L(D)u(x) = f(x) in Ω ⊂ Rn, (2.39)

B(u) = 0 on ∂Ω = Γ (2.40)
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where the Eq (2.40) represents linear boundary conditions, and introducing the inner
product 〈f1, f2〉 of two functions f1 and f2 in the euclidean space Ω ⊂ Rn as

〈f1, f2〉 =

∫
Ω

f1(x)f1(x)dΩx (2.41)

are more specific definition of L∗ can be formulated:
Through integrations by part, i.e., by shifting all differentiations acting in Ω on the

functions u to the functions w, one obtains

〈Lu,w〉 = 〈u, L∗w〉+

∫
Γ

{E(w)N(u)−N(u)E(w)} dΓ (2.42)

Here, again, the operator L∗ is adjoint to L, and, if L∗ = L, then L is said to be self-
adjoint.

The formula (2.42) represents the variational formulation for the equation (2.39),
where E(u) generates essential boundary conditions ( which must be enforced at some
points so as to have a unique solution), while N(u) generates non-essential boundary con-
ditions, also called the natural boundary conditions, depending on the degree of derivatives
that appear in the operators E and N that respectively define them.

Then, the fundamental solution u∗(x, ξ) is the solution of (2.39) for the special case
when f(x) is replace by δ(x, ξ), the so-called Dirac δ-function (whose exact mathematical
definition is only possible considering the theory of distributions, see, e.g., [4])

L(D)u∗(x, ξ) = δ(x, ξ) (2.43)

The function u∗(x, ξ) is unique only up to a function w∗(x, ξ) which is the solution of
the homogeneous equation L(D)w∗ = 0, i.e., the function u∗ + w∗ is also a fundamental
solution for the operator L(D):

L(D) (u∗(x, ξ) + w∗(x, ξ)) = L(D)u∗(x, ξ) + L(D)w∗(x, ξ) = δ(x, ξ) (2.44)

2.4.2 The Dirac δ-function

This symbolic function or distribution has the following basic properties:

δ(x, ξ) = 0 for x 6= ξ (2.45)

where, in general, it is only a function of the distance between the two points x and ξ,
i.e.,

δ(x, ξ) = δ(x− ξ) = δ(x1 − ξ1)δ(x2 − ξ2) · · · δ(xn − ξn) (2.46)∫
Ω

Φ(x)δ(x, ξ) dΩx = Φ(ξ) for ξ ∈Ω (2.47)

for all sufficiently ’smooth’, i.e., continous functions Φ(x). (2.47) is the selection property
which means that the δ-function, when involved in an integration process with another
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function, selects the value of the other function at the point where the δ-function δ(x− ξ)
has a zero argument, i.e., at x = ξ. For the special case Φ(x) ≡ 1, (2.47) gives∫

Ω

δ(x, ξ) dΩx =

∫
Ω

δ(x− ξ) dΩx = 1 for ξ ∈Ω (2.48)

Example 1.3
For a rectangular plane domain Ω, i.e., x1 ∈ [a1, b1], x2 ∈ [a2, b2], the postulate (2.47)

gives with (2.46)∫
Ω

δ(x− ξ) dΩx =

∫
Ω

δ(x1 − ξ1)δ(x2 − ξ2) dΩx

=

b1∫
a1

δ(x1 − ξ1)dx1

b2∫
a2

δ(x2 − ξ2)dx2 = 1 for ξ ∈Ω

or

bi∫
ai

δ(xi − ξi)dxi = 1 for ξi ∈ [ai, bi], i = 1, 2 (2.49)

The expression for the δ-function becomes more complicated when one introduces curvilin-
ear co-ordinates, i.e., the considered differential equations are formulated using curvilinear
co-ordinates.

Example 1.4
The transformation from rectangular Cartesian x1, x2 to plane polar co-ordinates r, ϕ.

The transformation is given by

x1 = u(r, ϕ) = r cosϕ, x2 = v(r, ϕ) = r sinϕ

and the Jacobian J of the transformation is J = r which yields

dΩx , r drdϕ

Then, the integral statement (2.48), e.g., for a circular domain with radius R around
ξ = 0, becomes due to the fact that the δ-function is only a function of the distance
r =| x− ξ | and not of the angle ϕ

∫
Ω

δ(x) dΩx =

∫
Ω

δ(x1)δ(x2) dΩx =

R∫
0

2π∫
0

δ(r, ϕ) r drdϕ

=

R∫
0

δ(r, ϕ) r dr

2π∫
0

dϕ =

R∫
0

δ(r, ϕ) r dr2π = 1

and postulates

δ(r, ϕ) =
δ(r)

2πr
(2.50)
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Hence, if a partial differential equation is formulated in polar co-ordinates, the adequate
fundamental solution has to satisfy

L(D)u∗(r, ϕ) =
δ(r)

2πr

and, correspondingly, using in R3 spherical co-ordinates r, ϕ and ϑ

L(D)u∗(r, ϕ, ϑ) =
δ(r)

4πr2
(2.51)

2.4.2.1 The δ-function in R1 and the Heaviside function

In R1, it can be shown that the δ-function can be handled algebraically as if it were an
ordinary function, but one must always interpret any equation involving δ(x) as follows:
if the equation is multiplied throughout by an arbitrary continuous function f(x), and
integrated over an intervall [a, b] by using the δ-function’s selection property, i.e.

b∫
a

δ(x− ξ)f(x)dx = f(ξ) for ξ ∈ [a, b] (2.52)

= 0 for ξ /∈ [a, b]

then the resulting equation is correct and involves only ordinary functions.
For example

(x− ξ)δ(x− ξ) = 0 (2.53)

because for any arbitrary continuous function f(x) one obtains with g(x) = (x− ξ)f(x)

b∫
a

δ(x− ξ)g(x)dx = g(ξ) = 0 for ξ ∈ [a, b]

Similarly, one can state

w(x)δ(x− ξ) = 0 if w(x = ξ) = 0 (2.54)

Moreover, the familiar techniques of integration, such as integration by parts and substi-
tution, can be shown to apply to integrals involving δ-functions. As an example, consider
the integral

I =

∞∫
−∞

δ(g(x)) f(x)dx

where f(x) is an arbitrary continuous function and g(x) is a monotonic function of x
which vanishes when x = ξ. Write y = g(x) and it follows that dy = g′(x)dx. The
integral then becomes

I =

∞∫
−∞

δ(g(x)) f(x)dx =

∞∫
−∞

δ(y) ψ(y)dy = ψ(0) =
f(ξ)

| g′(ξ) |
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with ψ(y) = f(x)/ | g′(x) |, where the modulus sign is to ensure that the integration is
always from −∞ to ∞. Consequently, it follows if g(x = ξ) = 0 that

δ(g(x)) =
δ(x− ξ)
| g′(ξ) |

(2.55)

As a special case of (2.55) one obtains

∞∫
−∞

δ(ax− b) f(x)dx =
f( b

a
)

| a |
(2.56)

And, again by integration by parts, one obtains

b∫
a

∂δ(x− ξ)
∂x

f(x)dx = −
b∫

a

δ(x− ξ) f ′(x)dx = −f ′(ξ) for ξ ∈ [a, b] (2.57)

Besides, in R1, the Dirac function can be considered to be the derivative of the Heaviside
unit function H defined as (see, e.g., [3], p. 147)

H(x− ξ) = 1 for x > ξ (2.58)

= 0 for x < ξ

To see this, we integrate by parts (a < ξ < b)

b∫
a

∂H(x− ξ)
∂x

f(x)dx = [H(x− ξ)f(x)]x=b
x=a −

b∫
a

H(x− ξ)f ′(x)dx

= f(b)−
b∫
ξ

f ′(x)dx

= f(b)− (f(b)− f(ξ)) = f(ξ)

which yields by comparison with (2.52)

∂H(x− ξ)
∂x

= δ(x− ξ) (2.59)

2.4.2.2 The δ-function in Rn with n ≥ 2

In Cartesian co-ordinates, the δ-function in a n-dimensional geometric space is the product
of n one-dimensional δ-functions, e.g., in R3

δ(x− ξ) = δ(x1 − ξ1)δ(x2 − ξ2)δ(x3 − ξ3). (2.60)
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The expressions for the δ-functions become much more complicated when one introduces
curvilinear coordinates. To find corresponding forms, we will, for simplicity, confine our-
selves to two-dimensional space. Suppose that we transform from Cartesian co-ordinates
x1, x2 to curvilinear co-ordinates ξ1, ξ2 by means of the relations

x1 = u(ξ1, ξ2), x2 = v(ξ1, ξ2) (2.61)

where u and v are single-valued, continously differentable functions of their arguments.
Supposing that under this transformation ξ1 = β1 and ξ2 = β2 correspond to x1 = α1 and
x2 = α2, respectively.

If one changes the co-ordinates according to (2.61), the equation∫ ∫
Φ(x1, x2)δ(x1 − α1)δ(x2 − α2)dx1dx2 = Φ(α1, α2)

becomes ∫ ∫
Φ(u, v)δ [u(ξ1, ξ2)− α1)] δ [v(ξ1, ξ2)− α2)] |J | dξ1dξ2 = Φ(α1, α2)

where J = ∂(u, v)/∂(ξ1, ξ2) is the Jacobian of (2.61).
Correspondingly, we may write

δ [u(ξ1, ξ2)− α1)] δ [v(ξ1, ξ2)− α2)] |J | = δ(ξ1 − β1)δ(ξ2 − β2)

or, provided J 6= 0

δ(x1 − α1)δ(x2 − α2) =
δ(ξ1 − β1)δ(ξ2 − β2)

|J |
(2.62)

Example: Transformation from rectangular Cartesian co-ordinates x, y to plane polar
co-ordinates r, θ:

x = r cos θ, y = r sin θ

Since the Jacobian of this transformation is

J =

∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r
(
cos2 θ + sin2 θ

)
= r

one obtains the relation

δ(x− x0)δ(y − y0) =
δ(r − r0)δ(θ − θ0)

r

if x0 = r0 cos θ0 and y0 = r0 sin θ0.
For the event that J = 0 at some so-called singular point, the considered transfor-

mation is no longer one-to-one and, moreover, some co-ordinate , then called ignorable
co-ordinate, is either many-valued or has no determinate value at such a singular point of
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the transformation. When, for example, the co-ordinate ξ2 is ignorable, the Jacobian has
to be integrated with respect to this co-ordinate (see, [3], p.219)

J1 =

∫
|J | dξ2

and, consequently, in this case when J = 0 for x1 = α1, we have the relation, e.g., in R2

δ(x1 − α1)δ(x2 − α2) =
δ(ξ1 − β1)

|J1|
Example (see also Example 1.4): In the case of the transformation x = r cos θ, y =
r sin θ, the Jacobian J = r vanishes at x = 0, y = 0 or r = 0 which means that θ may
take on any value at this point, i.e., is ignorable. It follows that

J1 =

2π∫
0

rdθ = 2πr

and, hence,

δ(x)δ(y) =
δ(r)

2πr

2.4.3 Green’s functions of boundary value problems

As explained above, a boundary value problem is described by a differential equation

L(D)u(x) = f(x) in Ω ⊂ Rn, (2.63)

and associated prescribed boundary conditions, e.g., on Γ = Γ1 ∪ Γ2

E(u(x)) = ū(x) for x ∈Γ1 (2.64)

N(u(x)) = q̄(x) for x ∈Γ2 (2.65)

Consequently, besides the unknown solution u(x) in the interior Ω, there are also unknown
boundary reactions E(u(x)) = u(x) on Γ2 and N(u(x)) = q(x) on Γ1 which are, in general,
not zero along the respective boundary.

The so-called Green’s function G∗(x, ξ) of such a boundary value problem is defined
as being a special fundamental solution, i.e.,

L(D)G∗(x, ξ) = δ(x, ξ) (2.66)

which satisfies homogeneous conditions for those boundary states which are prescribed in
the actual problem, i.e.,

E(G∗(x, ξ)) = 0 for x ∈Γ1 (2.67)

N(G∗(x, ξ)) = 0 for x ∈Γ2 (2.68)

When such Green’s function of a boundary value problem is available - in general, it is
difficult to construct it -the problem’s solution can be formulated in an integral form
which contains no unknown terms (see, section 3.1.3).
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2.4.4 Ordinary differential equations with constant coefficients

The fundamental solution of an ordinary differential equation of n-th order with constant
coefficients satisfies

L(D)u∗(x, ξ) =
dnu∗

dxn
+ a1

dn−1u∗

dxn−1
+ · · ·+ an−1

du∗

dx
+ anu

∗ = δ(x, ξ) (2.69)

and is given by
u∗(x, ξ) = H(x− ξ)w(x, ξ) (2.70)

where w(x, ξ) ∈ Cn(R1) satisfies the homogeneous equation L(D)w(x, ξ) = 0 with the
conditions

w(x = ξ) =
dw

dx

∣∣∣∣
x=ξ

= · · · = dn−2w

dxn−2

∣∣∣∣
x=ξ

= 0,
dn−1w

dxn−1

∣∣∣∣
x=ξ

= 1 (2.71)

Since, in view of (2.59) and (2.54),

du∗(x, ξ)

dx
= H(x− ξ)w′(x, ξ), ...., d

n−1u∗(x, ξ)

dxn−1
= H(x− ξ)w(n−1)(x, ξ)

and
dnu∗(x, ξ)

dxn
= δ(x− ξ) +H(x− ξ)w(n)(x, ξ),

one finds with L(D)w(x, ξ) = 0 that

L(D)u∗(x, ξ) = δ(x− ξ)
+H(x− ξ)

[
w(n)(x, ξ) + a1w

(n−1)(x, ξ) + · · ·+ anw(x, ξ)
]

= δ(x− ξ) +H(x− ξ)L(D)w(x, ξ)

= δ(x− ξ)

Example 1.5
From the above rule (2.70) with the conditions (2.71) follows that the fundamental

solutions for the operators L1 = d
dx

+ a, L2 = d2

dx2
+ a2, and L3 = d2

dx2
− a2 are given by

(see, [4], p.40)
u∗1(x, ξ) = H(x− ξ)e−a(x−ξ) (2.72)

where, here for n = 1, w1(x, ξ) = e−a(x−ξ) and satisfies the homogeneous differential

equation dw
dx

+ aw = 0 and the condition d0w
dx0

∣∣∣
x=ξ

= w(x = ξ) = 1, while for n = 2 the

fundamental solutions are

u∗2(x, ξ) = H(x− ξ)sin a(x− ξ)
a

(2.73)

u∗3(x, ξ) = H(x− ξ)sinh a(x− ξ)
a

(2.74)
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where the function w2(x, ξ) = 1
a

sin a(x − ξ) and w3(x, ξ) = 1
a

sinh a(x − ξ), respectively,
satisfies again the related homogeneous differential equation and the conditions w(x =
ξ) = 0 and dw

dx

∣∣
x=ξ

= 1.

When the constant a in the operator L2 and L3 tends to zero, one obtains the operator
Lbar of the bar equation for constant stiffness EA (which also represents the potential
equation in R1)

Lbaru(x) =
d2u(x)

dx2
=
p(x)

EA
= f(x) (2.75)

whose fundamental solution, i.e., the solution for f(x) = δ(x− ξ) is found by considering
the limit of (2.73) for a→ 0:

u∗(x, ξ) = H(x− ξ) lim
a→0

sin a(x− ξ)
a

= (x− ξ)H(x− ξ) (2.76)

But, as expressed in (2.44), this function u∗(x, ξ) is unique only up to a function w∗(x, ξ)
which is the solution of the homogeneous equation Lbarw

∗ = 0, i.e., the function u∗ + w∗

with w∗ = −1
2
(x− ξ) is also a fundamental solution for the operator LBar

u∗bar(x, ξ) = (x− ξ)H(x− ξ)− 1

2
(x− ξ) =

1

2
(x− ξ) [2H(x− ξ)− 1]

=
1

2
(x− ξ)sign(x− ξ) =

| x− ξ |
2

=
r

2
(2.77)

where sign(x− ξ) = 1 for x > ξ and sign(x− ξ) = −1 for x < ξ. This is obviously correct
since (x− ξ)δ(x− ξ) = 0 and

∂

∂x
u∗bar(x, ξ) =

1

2

∂r

∂x
= H(x− ξ)− 1

2
+

1

2
(x− ξ) [2δ(x− ξ)]

= H(x− ξ)− 1

2
=

1

2
sign(x− ξ) (2.78)

∂2

∂x2
u∗(x, ξ) = δ(x− ξ) (2.79)

Correspondingly, a fundamental solution of the basic differential equation for an elastic
beam with constant flexural rigidity EI

Lbeamu(x) =
d4u(x)

dx4
=
q(x)

EI
= f(x) (2.80)

can easily found by integrating the solution (2.77)of (2.75) twice:

u∗beam(x, ξ) =
r3

12
(2.81)
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2.4.5 Scalar partial differential equations with constant coeffi-
cients

The fundamental solution for the three-dimensional Laplace equation

−∆u∗(x, ξ) = δ(x, ξ) (2.82)

can be obtained directly as follows ([4], page 79):
Since the operator ∆ = ∇ · ∇ is invariant under a rotation of coordinate axes, we shall

seek a solution that depends only on the distance r =| x− ξ |. For r > 0, u∗(x, ξ) = u∗(r)
will satisfy the homogeneous equation ∆u∗ = 0, i.e., in spherical coordinates

1

r

∂

∂r

(
r2∂u

∗

∂r

)
= 0, (2.83)

which has a solution u∗ = A
r

+ B. If one requires the solution u∗ to vanish at infinity,
then B = 0. In order to determine A, one has to take into account the magnitude of the
source at x = ξ. Integrating (2.82) over a small sphere Ωε of radius ε and center at x = ξ,
one obtains

−
∫
Ωε

∇ · ∇u∗(x, ξ)dΩx =

∫
Ωε

δ(x, ξ)dΩx = 1 (2.84)

which, by using the divergence theorem (2.21), gives

−
∫
Γε

n · ∇u∗(x, ξ)dΓx = −
∫
Γε

∂u∗(x, ξ)

∂n
dΓx = −

∫
Γε

∂u∗(x, ξ)

∂r
dΓx = 1 (2.85)

where Γε = ∂Ωε is the surface of the sphere Ωε and dΓx = r2 sin θ dθdϕ with 0 ≤ θ ≤ π
and −π ≤ ϕ ≤ π. Now, substituting u∗ = A/r, i.e., ∂u∗/∂r = −A/r2 in (2.85) yields

π∫
−π

π∫
0

A

r2
r2 sin θ dθdϕ = A

π∫
−π

dϕ

π∫
0

sin θ dθ = A2π [− cos θ]π0 = 4πA = 1

i.e., A = 1/(4π). Hence, the fundamental solution for the three-dimensional Laplace
equation is

u∗(x, ξ) = u∗(r) =
1

4πr
(2.86)

Correspondingly, the homogeneous two-dimensional Laplace equation in polar coordinates

1

r

∂

∂r

(
r
∂u∗

∂r

)
= 0, (2.87)

has for r > 0 the solution u∗ = C ln(r/a) + D. Arbitrarily setting D = 0 and applying
the same steps as above in (2.84) and (2.85), determines C = −1/(2π), and hence the
fundamental solution of the two-dimensional Laplace equation is

u∗(x, ξ) = u∗(r) =
−1

2π
ln(

r

a
) =

1

2π
ln(

a

r
) (2.88)
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where a > 0 is an arbitrary real constant making the ratio r/a dimensionless.
Similarly (see, e.g., [5] or [4]), one can determine the fundamental solutions for the

Helmholtz equations in Rn, n = 1, 2, 3

(∆ + k2)u∗(x, ξ) = δ(x, ξ) (2.89)

where k 6= 0, real, is the so-called wave number. One gets

for n = 3: u∗(x, ξ) = u∗(r) = − 1

4πr
e−ikr (2.90)

for n = 2: u∗(x, ξ) = u∗(r) =
i

4
H

(2)
0 (kr) (2.91)

for n = 1: u∗(x, ξ) = u∗(r) =
1

2k
sin(kr) (2.92)

where H
(2)
0 (kr) is a Hankel function. With h = −ik or k = ih, the operator (2.89) changes

to
(∆− h2)u∗(x, ξ) = δ(x, ξ) (2.93)

and the fundamental solutions become

for n = 3: u∗(x, ξ) = u∗(r) = − 1

4πr
eihr (2.94)

for n = 2: u∗(x, ξ) = u∗(r) = − 1

2π
K0(hr) (2.95)

for n = 1: u∗(x, ξ) = u∗(r) = − 1

2h
sinh(hr) (2.96)

where K0(hr) is a modified Besselfunction. Note that here lim
r→∞

u∗(r) = ∞, i.e., these

fundamental solutions represent wave forms that diverge to infinity.
Remark 1: The R1 fundamental solutions given in (2.92) and (2.73) for the operator

(2.89) as well as in (2.96) and (2.74) for the operator (2.93) are different, but, as one can
easily check, both versions are correct, i.e., give the typical filtering effect of the Dirac δ-
function. For example, gives the fundamental solution (2.92) u∗(x, ξ) = u∗(r) = 1

2k
sin(kr)

of the equation (2.89)(note that r,x = ∂r/∂x = 2H(x− ξ)− 1 and (r,x)
2 = 1)

b∫
a

(∆ + k2)u∗(x, ξ)dx =

b∫
a

cos(kr)δ(x, ξ)dx = 1 for ξ ∈ [a, b]

while the fundamental solution (2.74) u∗2(x, ξ) = H(x− ξ) sin k(x−ξ)
k

for the same equation
results in

b∫
a

(∆ + k2)u∗2(x, ξ)dx =

b∫
a

cos(k(x− ξ))δ(x, ξ)dx = 1 for ξ ∈ [a, b]
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The essential difference of both versions is that the forms (2.73) and (2.73) contain the
Heaviside function H(x − ξ) and, therefore, are cut off (zero) for x < ξ, while the other
versions (2.92) and (2.96) are due to their dependence on r = |x− ξ| symmetric to x = ξ.

Remark 2: In R1, it is also possible to use instead of the divergent form (2.96)

u∗(x, ξ) = u∗(r) = − 1

2h
e−hr (2.97)

This form is convergent, i.e., lim
r→∞

u∗(r) = 0, and has, as easily can be checked, the essential

behaviour of a fundamental solution:
b∫

a

(∆− h2)u∗(x, ξ)dx =

b∫
a

e−hrδ(x, ξ)dx = 1 for ξ ∈ [a, b] (2.98)

Remark 3: When taking into account that u∗(r) = 1/4πr is the fundamental solution
of the Laplace operator in R3, i.e.,

∆(
1

r
) = ∇2(

1

r
) = −4πδ(x, ξ)

the check that u∗ = − 1
4πr
e−ikr is really the fundamental solution of the Helmholtz equation

(2.89) in R3 is straight-forward by applying the Leibniz formula∇2(af) = f∇2(a)+2∇(a)·
∇(f) + a∇2(f), i.e. here,

(∆ + k2)u∗ = − 1

4π

{
e−ikr∇2(

1

r
) + 2∇(

1

r
) · ∇(e−ikr) +

1

r
∇2(e−ikr)

}
+ k2u∗

Since differentiations give ( ∂
∂xi

=,i)

∇(
1

r
) =

∂

∂xi
(
1

r
) = − 1

r2
r,i = −(xi − ξi)

r3

∇(e−ikr) =
∂

∂xi
(e−ikr) = −ikr,ie−ikr = −ik (xi − ξi)

r
e−ikr

∇2(e−ikr) =
∂

∂xi
(−ik (xi − ξi)

r
e−ikr) = −(

2ik

r
+ k2)e−ikr

one obtains finally

(∆ + k2)u∗ = − 1

4π

{
−e−ikr4πδ(x, ξ) + 2 (xi−ξi)

r3
ik (xi−ξi)

r
e−ikr

−1
r
(2ik
r

+ k2)e−ikr)

}
− k2

4πr
e−ikr

= e−ikrδ(x, ξ) = δ(x, ξ)

Certainly, one should know that

∂2

∂xi∂xj
(e−ikr) =

∂

∂xj
(−ikr,ie−ikr) = −ik

(
r,ije

−ikr + r,i(−ikr,j)e−ikr
)

= −ik (r,ij − ikr,ir,j)) e−ikr

with

r,ij =
∂

∂xj

(
(xi − ξi)

r

)
=
δij
r
− (xi − ξi)r,j

r2
=

1

r
(δij − r,ir,j)
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2.5 Singular integrals

Singular integrals are those whose integrands reach an infinite value at some points on
the integration domain Ω. They are, in general, defined by eliminating a small space
(initially arbitrary) including the singular point, and obtaining the limit when this small
space tends to disappear∫

Ω

f(x, ξ)dΩx = lim
ε→0

∫
Ω−Ωε

f(x, ξ)dΩx with ξ ∈ Ωε (2.99)

Ωε can be a ball of radius ε in 3D, a circle of radius ε in 2D, and in 1D, i.e. on a line a
segment of dimension ε at each side of the point where the singularity is located.

2.5.1 Weak singularities - improper integrals

If the limit of (2.99) exists independently of how ε tends to zero, it is said that this integral
exists as improper and the singularity is said to be weak.

In R1, a representative example is the integral

b∫
a

ln | x− ξ | dx, a < ξ < b (2.100)

which can evaluated as
b∫

a

ln |x− ξ| dx = lim
ε1→0,ε2→0

 ξ−ε1∫
a

ln(ξ − x)dx+

b∫
ξ+ε2

ln(x− ξ)dx


= lim

ε1→0
[−(ξ − x)[ln(ξ − x)− 1]]ξ−ε1a + lim

ε2→0
[(x− ξ)[ln(x− ξ)− 1]]bξ+ε2

= lim
ε1→0

(−ε1[ln(ε1)− 1]) + (ξ − a)[ln(ξ − a)− 1]

+(b− ξ)[ln(b− ξ)− 1]− lim
ε2→0

(ε2[ln(ε2)− 1])

= (a− b) + (ξ − a) ln(ξ − a) + (b− ξ) ln(b− ξ) (2.101)

obviously exists, since from the rule of Bernoulli-de l’Hospital

lim
ε→0

(ε ln(ε)) = lim
ε→0

(
ln(ε)

ε−1

)
= lim

ε→0

(
ε−1

−ε−2

)
= lim

ε→0
(−ε) = 0 (2.102)

follows that all ε-terms disappear independently from each other.
Physically, this fact implies that the area under the function at any side if the singular

point has a finite value.
Remark: The following integrals also exist as improper integrals

I =

b∫
a

dx

|x− ξ|k
for 0 < k < 1
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2.5.2 The Cauchy Principal Value of strongly singular integrals

When one evaluates the integral

b∫
a

dx

x− ξ
, a < ξ < b (2.103)

as an improper integral

b∫
a

dx

x− ξ
= lim

ε1→0,ε2→0

− ξ−ε1∫
a

dx

ξ − x
+

b∫
ξ+ε2

dx

x− ξ

 = ln
b− ξ
ξ − a

+ lim
ε1→0,ε2→0

ln
ε1

ε2

(2.104)

the limit of the last expression obviously depends on the way in which ε1 and ε2 tend
to zero. Hence, the improper integral does not exist. This integral is called a strongly
singular integral. However, this integral can be assigned a meaning if we assume that
there is some relationship between ε1 and ε2, e.g., if the deleted intervall is symmetric
with respect to the point ξ, i.e., ε1 = ε2 = ε. Then, one obtains

b∫
a

dx

x− ξ
= lim

ε→0

− ξ−ε∫
a

dx

ξ − x
+

b∫
ξ+ε

dx

x− ξ

 = ln
b− ξ
ξ − a

(2.105)

the so-called Cauchy principal value (CPV) of a singular integral.
Remark: Evaluating weakly singular integrals as Cauchy principal value gives obvi-

ously the same result.
Now, consider the more general integral

b∫
a

ϕ(x)

x− ξ
dx, a < ξ < b (2.106)

where ϕ(x), x ∈ [a, b] is a function satisfying the Hölder condition, i.e., for any two points
t1 and t2 on a smooth curve L and for positive constants A and λ with 0 < λ ≤ 1 holds

| ϕ(t2)− ϕ(t1) |< A | t2 − t1 |λ (2.107)

which means that ϕ(t) is differentiable and has a bounded derivative. The Hölder condi-
tion is sometimes referred to as an intermediate situation between continuity and deriv-
ability, establishing in fact a division in the set of continuous non-derivable functions (see,
Paris and Canas [6], p. 14)

Let us understand this integral (2.106) in the sense of the Cauchy principal value
(CPV) as

b∫
a

ϕ(x)

x− ξ
dx = lim

ε→0

 ξ−ε∫
a

ϕ(x)

x− ξ
dx+

b∫
ξ+ε

ϕ(x)

x− ξ
dx

 (2.108)
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and take the identity

b∫
a

ϕ(x)

x− ξ
dx =

b∫
a

ϕ(x)− ϕ(ξ)

x− ξ
dx+ ϕ(ξ)

b∫
a

dx

x− ξ
(2.109)

Now, one can see that the first integral on the right-hand side of (2.109) is convergent as
an improper integral, because it follows from the Hölder condition that

| ϕ(x)− ϕ(ξ)

x− ξ
|< A

| x− ξ |1−λ
, 0 < λ ≤ 1 (2.110)

and the second integral coincides with (2.105). Thus, if ϕ(x) satisfies the Hölder condition,
the singular integral (2.106) exists in the sense of the Cauchy principle value (CVP)and
is equal to

b∫
a

ϕ(x)

x− ξ
dx =

b∫
a

ϕ(x)− ϕ(ξ)

x− ξ
dx+ ϕ(ξ) ln

b− ξ
ξ − a

(2.111)

Remark: The following integral does not exist, neither as improper integral nor as Cauchy
Principal Value:

I =

b∫
a

dx

|x− ξ|

Example: Determine the CVP of the following integral (a < ξ < b):

b∫
a

dx

sin(x− ξ)
=

ξ−ε∫
a

dx

− sin(ξ − x)
+

b∫
ξ+ε

dx

sin(x− ξ)

=

ε∫
y=ξ−a

dy

sin(y)
+

b−ξ∫
ε

dy

sin(y)

=
[
ln
(

tan(
y

2
)
)]ε

ξ−a
+
[
ln
(

tan(
y

2
)
)]b−ξ

ε

= ln

(
tan( b−ξ

2
)

tan( ξ−a
2

)

)

2.5.3 Cauchy Principal Value integrals in boundary integral equa-
tions

In boundary integral equations, the integrands contain often singularities of inverse powers
of r =| x− ξ | multiplied by certain bounded functions, i.e., have the general structure

I =

∫
Γ

ϕ(x, ξ)

| x− ξ |k
u(x)dΓx
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where the so-called characteristic ϕ(x, ξ) does not include any singularity, the singular
kernel ϕ(x, ξ)/rk results from the fundamental solution while the so-called density u(x)
usually represents boundary values of the considered problem.

2.5.3.1 Conditions for the existence of a CPV of a singular curvilinear line
integral

Let Γ be a smooth contour, x and ξ be coordinates of its points, and xa and xb be the
endpoints of Γ. Consider the singular curvilinear integral where the contour points are
expressed in terms of a parameter, e.g., the arc length s, so that x = x(s) and sa, sb are
the values of the parameter s corresponding to the endpoints of Γ:

∫
Γ

ϕ(x, ξ)

| x− ξ |
u(x)dΓx =

sb∫
sa

ϕ(x(s), ξ)

| x(s)− ξ |
u(x(s))

dΓx

ds
ds =

sb∫
sa

ϕ(x(s), ξ)

| x(s)− ξ |
u(x(s))J(s)ds

(2.112)
where J(s) is a Jacobian associated with the change of variable from x = (x1, x2) to s

J(s) =
dΓx

ds
=

√(
dx1

ds

)2

+

(
dx2

ds

)2

(2.113)

Let us take a circle of some radius ε centered at the point ξ on the contour, ξ+ = ξ + xε
and ξ− = ξ − xε be the points of intersection of this circle with the curve, and assume
that the radius is so small that the circle has no other points of intersection with Γ. Let
Γε be the part of the contour Γ cut out by the circle and consider the integral over the
remaining arc. Then, its limit for ε → 0 is the principal value of the singular integral
(2.112).

∫
Γ

ϕ(x, ξ)

| x− ξ |
u(x)dΓx = lim

ε→0

∫
Γ−Γε

ϕ(x, ξ)

| x− ξ |
u(x)dΓx

=

∫
Γ

ϕ(x, ξ)

| x− ξ |
[u(x)−u(ξ)] dΓx + u(ξ)

∫
Γ

ϕ(x, ξ)

| x− ξ |
dΓx(2.114)

where, if u(x) satisfies the Hölder condition for points x being placed in the neighbourhood
of ξ, the first integral exists. The second integral is, e.g., along a straight line contour
of length ∆s = sb − sa where with x = x(s) and ξ = x(s̄) the distance r =| x − ξ | is
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r =| s− s̄ | and J(s) = 1

xb∫
xa

ϕ(x, ξ)

| x− ξ |
dΓx = lim

ε→0

 s̄−ε∫
sa

ϕ(x(s),x(s̄))

|s− s̄ |
ds+

sb∫
s̄+ε

ϕ(x(s),x(s̄))

|s− s̄ |
ds

 (2.115)

= lim
ε→0

 s̄−ε∫
sa

ϕ(x(s),x(s̄))

s̄− s
ds+

sb∫
s̄+ε

ϕ(x(s),x(s̄))

s− s̄
ds


= lim

ε→0

 sa∫
s̄−ε

ϕ(x(s),x(s̄))

s− s̄
ds+

sb∫
s̄+ε

ϕ(x(s),x(s̄))

s− s̄
ds


= I1 + I2

Remark: In many discretizations, the boundary line of a domain is approximated by a
polygon, i.e., by elementwise straight lines.

Evaluating I1 by integration by parts gives

I1 = lim
ε→0

sa∫
s̄−ε

ϕ(x(s),x(s̄))

s− s̄
ds

= lim
ε→0

 ln(|s− s̄ |)ϕ(x(s),x(s̄))|sas̄−ε −
sa∫

s̄−ε

ln(|s− s̄ |)dϕ(x(s),x(s̄))

ds
ds


= lim

ε→0
[ln(|sa − s̄ |)ϕ(x(sa),x(s̄))− ln(ε)ϕ(x(s̄− ε),x(s̄))− I12]

The integral I12 and the corresponding integral from I2 exists if dϕ/dx takes finite values
along the integration zone outside r = 0 while the first evaluated terms of I1 and the
corresponding ones from I2 lead to

lim
ε→0

[
ln(|sa − s̄ |)ϕ(x(sa),x(s̄))− ln(ε)ϕ(x(s̄− ε),x(s̄))

+ ln(|sb − s̄ |)ϕ(x(sb),x(s̄))− ln(ε)ϕ(x(s̄+ ε),x(s̄))

]
Hence, if

lim
ε→0
{ln(ε) [ϕ(x(s̄− ε),x(s̄)) + ϕ(x(s̄+ ε),x(s̄))]} = 0

and dϕ/dx takes finite values along the integration zone outside r = 0, the integral I1 +I2

would have a finite value:

lim
ε→0

 s̄−ε∫
sa

ϕ(x(s),x(s̄))

|s− s̄ |
ds+

sb∫
s̄+ε

ϕ(x(s),x(s̄))

|s− s̄ |
ds

 = ln(|sa − s̄ |)ϕ(x(sa),x(s̄))

+ ln( | sb − s̄ |)ϕ(x(sb),x(s̄))

−

 sa∫
s̄−ε

+

sb∫
s̄+ε

 ln( | s− s̄ |)dϕ(x(s),x(s̄))

ds
ds(2.116)
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This condition is satisfied by a function ϕ if in the neighbourhood of ξ = x(s̄) it holds
that

|ϕ(x(s̄− ε),x(s̄)) + ϕ(x(s̄+ ε),x(s̄))| ≤ Aεα; A > 0; 0 < α ≤ 1; ε > 0 (2.117)

2.5.3.2 Conditions for the existence of a CPV of a singular surface integral

For a study of singular integrals in R2 where singularities of order two (1/r2) can have
a Cauchy Principal Value, let us consider the integral on a domain Ω2 in R2, here, in
general, a surface domain of three-dimensional areas

I(ξ) =

∫
Ω2

ϕ(ξ, θ)

r2
u(x)dΩx (2.118)

where r =| x− ξ | and θ represents the angle formed by r with respect to the coordinate
axes. This integral can be divided in the following manner:∫

Ω2

ϕ(ξ, θ)

r2
u(x)dΩx =

∫
Ω2∩(r≥ρ)

ϕ(ξ, θ)

r2
u(x)dΩx +

∫
r<ρ

ϕ(ξ, θ)

r2
[u(x)− u(ξ)] dΩx + u(ξ)

∫
r<ρ

ϕ(ξ, θ)

r2
dΩx (2.119)

where ρ is a fixed distance sufficiently small to guarantee that the points x : |x− ξ| < ρ
belong to Ω2.

The first integral of (2.119) is defined and the second exists if the Hölder condition is
satisfied:

|u(x)− u(ξ)| ≤ Arα(x, ξ); A > 0; 0 < α ≤ 1. (2.120)

The third integral of (2.119) is specified as∫
r<ρ

ϕ(ξ, θ)

r2
dΩx = lim

ε→0

∫
ε<r<ρ

ϕ(ξ, θ)

r2
dΩx (2.121)

and polar coordinates, i.e., dΩx = rdθdr are introduced which yields

lim
ε→0

∫
ε<r<ρ

ϕ(ξ, θ)

r2
rdθdr = lim

ε→0

ρ∫
ε

1

r
dr

2π∫
0

ϕ(ξ, θ)dθ = lim
ε→0

ln(
ρ

ε
)

2π∫
0

ϕ(ξ, θ)dθ

The condition for this integral to exist is then:

2π∫
0

ϕ(ξ, θ)dθ = 0 (2.122)

Hence, if the integral of the characteristic ϕ(ξ, θ) on the surface around the pole x = ξ
is zero and the density u(x) satisfies the Hölder condition, the integral (2.118) with a
singularity of order two in the two-dimensional space has a Cauchy Principal value.



3 Transformation of Differential Equations
to Integral Equations

There exist several methods for transforming differential equations decribing a boundary
value problem or an initial/boundary value problem to an equivalent representation by
integral equations. Two are essentially different when regarding their basic ideas and
result also in quite different formulations: the so-called direct boundary integral equation
method and the indirect boundary integral equation method. Both derivations will be
described by some representative examples.

3.1 Introductary 1-d problems: Transformation of

ordinary differential equations

In R1, not only the transformation of the considered differential equations to an integral
equation representation, but also their solution can be found in many cases analytically
exact. Hence, it makes sense to consider some typical examples in order to clarify some es-
sentials, e.g., the importance of the fundamental solution of the analysed basic differential
equations.

3.1.1 Integral equations by direct integration

Here, some simple integral equations are derived by performing straightforward integra-
tions in order to show the equivalence of the formulations and to point-out the importance
of the respective fundamental solution for these integral equation representations.

3.1.1.1 First order ordinary differential equation.

The most simple differential equation is certainly

d

dx
y(x) = f(x) (3.1)

where f(x) is given, and the solution is unique by the initial condition y(a) = y0 in an
arbitrary point x = a and shall be considered to be defined in a certain intervall [a, b].
Integrating of both sides of the equation (3.1) gives

y(x) =

[∫
f(x̄)dx̄

]
x̄=x

+ c (3.2)

29
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When one satisfies the prescribed initial condition, i.e.,

y(a) = y0 =

[∫
f(x̄)dx̄

]
x̄=a

+ c (3.3)

one finds the constant c as

c = y0 −
[∫

f(x̄)dx̄

]
x̄=a

(3.4)

and the ’solution’ of the first order ordinary differential equation (3.1) with the initial
condition y(a) = y0 to be

y(x) =
x

∫
a
f(x̄)dx̄+ y0 (3.5)

This example looks trivial. But, taking additionally into account that x is restricted to
a one-dimensional domain whose boundary consists of the two endpoints of the closed
intervall [a, b], and introducing the Heaviside function H(x− x̄) (see (2.58))

H(x− ξ) =

{
1
0

für
x > x̄
x < x̄

(3.6)

the solution (3.5) may also be written as an integral over the whole definition domain
Ω = [a, b]:

y(x) =

b∫
a

H(x− x̄)f(x̄)dx̄+ y0 (3.7)

The kernelH(x−x̄) of the above integral operator is obviously (see (2.59)) the fundamental
solution y∗(x, x̄) of the considered differential equation (3.1).

3.1.1.2 Second order ordinary differential equations.

Transfering the idea of the integral equation formulation (3.7) to the differential equation
of second order

d2

dx2
y(x) = f(x) (3.8)

with the two initial conditions

y(a) = y0 and
d

dx
y(x)

∣∣∣∣
x=a

= y
′
(a) = y

′

0 (3.9)

and defined on the domain Ω = [a, b], its solution should be given with its fundamental
solution y∗(x, x̄) and the initial conditions (3.9) as

y(x) =

b∫
a

y∗(x, x̄)f(x̄)dx̄+ y0 + y
′

0(x− a) (3.10)
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Certainly, one has to know the adequate fundamental solution of the differential equation
(3.8). Since the fundamental solution of the first order differential equation (3.1) is the
Heaviside function H(x − x̄), one has only to know what is the result of integrating
H(x − x̄). For this purpose, it advantageous to represent the Heaviside function as ’cut
polynomial’ of zero degree:

H(x− x̄) = [x− x̄]0+ (3.11)

In this form, it is easy to integrate the Heaviside function and to find the fundamental
solution of (3.8):

y∗(x, x̄) = [x− x̄]1+ = (x− x̄)H(x− x̄) (3.12)

This is known as fundamental solution of the bar equation (2.75). Another possible
fundamental solution is (2.77)

y∗(x, x̄) =
r

2
=
| x− x̄ |

2
=

1

2
(x− x̄)sign(x− x̄) (3.13)

=
1

2
(x− x̄) [2H(x− x̄)− 1] = (x− x̄)H(x− x̄)− 1

2
(x− x̄)

because the additional linear term −1
2
(x− x̄) is only a trivial solution of the homogeneous

differential equation (3.8).
It is not easy to recognize that the expression (3.10) is really the solution of the

differential equation (3.8), but this can be shown by two straightforward integrations and
a little more trickery transformation of the double integral into a single integral.

One integration of both sides of the differential equation (3.8) gives

dy(x)

dx
= y

′

0 +

x∫
a

f(x̄)dx̄ (3.14)

satisfying the initial condition y
′
(a) = y

′
0, and a second produces

y(x) = y0 + (x− a)y
′

0 +

x∫
a

 s∫
a

f(x̄)dx̄

 ds (3.15)

the further constant of integration having been taken so that y(a) = y0.
Simplification of the double integral in (3.15) follows on using the result of the more

general formula
x∫
a

 s∫
a

G(x̄, s)dx̄

 ds =

x∫
a

 x∫
x̄

G(x̄, s)ds

 dx̄ (3.16)

for which it is sufficient that G(x̄, s) be a continous function of both variables. To establish
(3.16) note that the repeated integral on the left hand side is evaluated over a triangular
region of the x̄ − s plane, first the inner integral at a fixed s from x̄ = a to x̄ = s and
the outer integral then runs from s = a to s = x. On reversing the integration order, the
same triangular region must be covered. This is achieved by integrating from s = x̄ to
s = x at a fixed x̄, followed by integration with respect to x̄ from x̄ = a to x̄ = x.
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3.1.1.3 Exercise 4: Reversed order integrations

a) Check the formula (3.16) for the integrand G(x̄, s) = x̄3s.
b) Derive a reversed order integration form for the double integral

x

∫
a

[
b

∫
s
G(x̄, s)dx̄

]
ds, x ∈ [a, b],

and check it for the integrand G(x̄, s) = x̄3s.
Applying the formula (3.16) to the double integral in (3.15) gives

x

∫
a

[
s

∫
a
f(x̄)dx̄

]
ds =

x

∫
a

[
x

∫
x̄
f(x̄)ds

]
dx̄ =

x

∫
a
f(x̄)

[
x

∫
x̄
ds

]
dx̄ =

x

∫
a
f(x̄)(x− x̄)dx̄

and the integral representation (3.15) is simplified to

y(x) = y0 + (x− a)y
′

0 +
x

∫
a
(x− x̄)f(x̄)dx̄ (3.17)

or, by introducing the Heaviside function to correctly perform the integration over the
whole intervall

y(x) = y0 + (x− a)y
′

0 +
b

∫
a
(x− x̄)H(x− x̄)f(x̄)dx̄ (3.18)

This is obviously the same solution as given in (3.10).

3.1.1.4 Exercise 5: Integral equation by straightforward integrations

The second order differential equation (3.8) has to satisfy the two boundary conditions

y(a) = y0 and
d

dx
y(x)

∣∣∣∣
x=b

= y
′
(b) = y

′

1

Derive the solution of the boundary value problem by straightforward integrations and
transform the resulting double integral into single integrals applying the formula derived
in Exercise 2.

3.1.2 Direct integral equations by the method of weighted resid-
uals

In general, the above described proceeding of transforming differential equations into in-
tegral equations by straightforward integrations is not applicable. Therefore, a general
methodology - the method of weighted residuals - is now introduced where, for a bet-
ter understanding, the same simple second order ordinary differential equation (3.8) is
considered again first.

The idea of this method is as follows: One considers the residual which
remains when an approximative solution is inserted in the differential equa-
tion, multiplies this residual with certain (known) weighting functions, and
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demands that the integral of this product over the problem domain disap-
pears, i.e., is zero.

Then, all differentiations acting on the unknown states of the differential
equation are shifted through integration by parts to act on the known weight-
ing functions. If the chosen weighting function is the fundamental solution of
the actually considered differential equation, one obtains an equivalent inte-
gral equation formulation of the boundary value problem.

It can be used to determine the unknown boundary reactions of the problem, and,
when these are found, also the sought solution of the considered differential equation at
any arbitrary interior point.

3.1.2.1 Transformation of Poisson or Laplace equations

The second order ordinary differential equation (3.8) is the one-dimensional representation
of the so-called Poisson’s or Laplace equation which has, as shown above (see (3.12) and
(3.13)), the fundamental solution (ξ − x)H(ξ − x) or equivalently 1

2
r = 1

2
| x − ξ |.

As physically meaningful examples, the equations from Euler-Bernoulli’ theory of elastic
beams are considered.

3.1.2.1.1 Bending deflection of elastic beams The deflection w(x) of an elastic
beam under a prescribed bending moment distribution M(x) has to satisfy the inhomo-
geneous differential equation of second order:

d2

dx2
w(x) = −M(x)

EI
, Ω = { x |x ∈ [a, b], a− b = l} (3.19)

Following the above advices, this equation is multiplied with the fundamental solution
w∗(x, ξ) = 1

2
r as adequate weighting function, integrated over the problem domain, i.e.,

over the beam length l from x = a to x = b, and the result is demanded to be zero:

b∫
a

(
d2w(x)

dx2
+
M(x)

EI

)
w∗(x, ξ)dx = 0 (3.20)

or
b∫

a

d2w(x)

dx2
w∗(x, ξ)dx = −

b∫
a

M(x)

EI
w∗(x, ξ)dx (3.21)

Now, the left hand side of (3.21) has to be integrated by parts twice in order to shift
the two differentiation in the ’domain’ integral from the unknown w(x) to the known
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fundamental solution w∗(x, ξ):

b∫
a

d2w(x)

dx2
w∗(x, ξ)dx =

[
dw(x)

dx
w∗(x, ξ)

]b
a

−
b∫

a

dw(x)

dx

∂w∗(x, ξ)

∂x
dx

=

[
dw(x)

dx
w∗(x, ξ)− w(x)

∂w∗(x, ξ)

∂x

]b
a

+

b∫
a

w(x)
∂2w∗(x, ξ)

∂x2
dx (3.22)

Since the second derivative of the fundamental solution (2.77) w∗(x, ξ) = 1
2
r = 1

2
| x− ξ |

gives the Dirac function δ(x, ξ), the result of the respective domain integral is with ξ ∈
[a, b] simply the value of w at ξ (see (2.52)):

b∫
a

w(x)
∂2w∗(x, ξ)

∂x2
dx =

b∫
a

w(x)δ(x, ξ)dx = w(ξ) (3.23)

Hence, with (3.23) and (3.22), the equation (3.21) is transformed into the boundary
integral representation

w(ξ) = −
[
dw(x)

dx
w∗(x, ξ)− w(x)

∂w∗(x, ξ)

∂x

]b
a

−
b∫

a

M(x)

EI
w∗(x, ξ)dx (3.24)

Explicitly, with (2.78), i.e.,

∂w∗(x, ξ)

∂x
= H(x− ξ)− 1

2
=

1

2
sign(x− ξ) (3.25)

the evaluation of (3.22) gives:

l∫
0

d2w(x)

dx2
w∗(x, ξ)dx = w

′
(b)
| b− ξ |

2
− w(b)

1

2
sign(b− ξ)

−w′(a)
| a− ξ |

2
+ w(a)

1

2
sign(a− ξ) + w(ξ)

= w
′
(b)

(b− ξ)
2

− w(b)
1

2
− w′(a)

ξ − a
2
− w(a)

1

2
+ w(ξ)(3.26)

Hence, the equation (3.24), the integral representation of the differential equation (3.19),
can also be expressed as:

w(ξ) =
1

2
w(a) +

ξ − a
2

w
′
(a) +

1

2
w(b)− (b− ξ)

2
w
′
(b)−

l∫
0

M(x)

EI

1

2
| x− ξ | dx (3.27)
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It is valid for all interior points ξ ∈ [a, b] and all combinations of boundary conditions,
but, before it is possible to evaluate this expression, all unknown boundary reactions must
be determined.

For this purpose, the point ξ has to be shifted on the boundary, i.e. here, at the two
boundary points ξ = a and ξ = b, to obtain two equations for the two unknown boundary
values. This gives the following equation system (b− a = l):

1

2

[
1 0 −1 l
−1 −l 1 0

]
w(a)
w
′
(a)

w(b)
w
′
(b)

 = − 1

2EI

b∫
a

[
(x− a)M(x)
(b− x)M(x)

]
dx (3.28)

Dependent on the actually prescribed boundary conditions, the corresponding colums
have to be multiplied with the respective known values and transfered to the right hand
side. The solution of the resulting system delivers the unknown boundary reactions which
are necessary for the evaluation of the integral representation (3.27).

In order to compare with the already solved problem, the initial value problem with
the conditions (3.9)

w(a) = w0 and w
′
(a) = w

′

0 (3.29)

and f(x) = −M(x)/EI is considered here again. Then, the actual algebraic equation
system is

[
−1 l
1 0

] [
w(b)
w
′
(b)

]
=

l∫
0

[
(x− a)f(x)
(b− x)f(x)

]
dx−

[
1 0
−1 −l

] [
w0

w
′
0

]
(3.30)

from which one obtains

w(b) =

b∫
a

(b− x)f(x)dx+ w0 + lw
′

0 (3.31)

w
′
(b) =

1

l

 b∫
a

(x− a)f(x)dx− w0 + w(b)


=

b∫
a

f(x)dx+ w
′

0 (3.32)
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Inserting these boundary reactions in the integral representation (3.27) of the solution

w(ξ) =
1

2
w0 +

ξ − a
2

w
′

0 +
1

2
w(b)− (b− ξ)

2
w
′
(b) +

l∫
0

f(x)
| x− ξ |

2
dx

=
1

2
w0 +

ξ − a
2

w
′

0 +
1

2

 l∫
0

(b− x)f(x)dx+ w0 + lw
′

0


−(b− ξ)

2

 l∫
0

f(x)dx+ w
′

0

+

l∫
0

f(x)
| x− ξ |

2
dx

= w0 + (ξ − a)w
′

0 +

l∫
0

f(x)
1

2
(ξ − x+ | x− ξ |) dx

= w0 + (ξ − a)w
′

0 +

l∫
0

f(x)(ξ − x)H(ξ − x)dx (3.33)

where the equality of 1
2

(ξ − x+ | x− ξ |)and (ξ−x)H(ξ−x) has been taken into account.
The final line in (3.33) is exactly the same expression for the solution of the initial value
problem as given in (3.18) when one recognizes that ξ and x are there x and x̄, respectively.

Remark: An essential difference of the direct boundary integral formulation obtain
via the method of weighted residuals in comparison to the integral solution by straight-
forward integrations is that one has to determine first the unknown boundary reactions
before one can evaluate the expression for the solution at arbitrary interior points.

3.1.2.1.2 Exercise 6: Beam deflection under prescribed moments Use the
above system (3.28) to solve the boundary value problem with the prescribed conditions
w(a) = w0 and w

′
(b) = w

′
1 which corresponds with y , w and f(x) = −M(x)/EI to the

problem of Exercise 3.

3.1.2.1.3 Exercise 7: Bending moment of an elastic beams under transversal
loading Transfer the above solution (3.27) and the system (3.28) for determining the
boundary reactions to the differential equation for the bending moment M(x) of an elastic
beam under the prescribed transversal loading q(x):

d2M(x)

dx2
= −q(x) (3.34)

Note that the shear force Q(x)is the first derivative of the bending moment, i.e., Q(x) =
M
′
(x) = dM(x)/dx.
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3.1.2.1.4 Exercise 8: Axial displacement of an elastic bar Transfer the above
solution (3.27) and the system (3.28) for determining the boundary reactions to the differ-
ential equation for the axial displacement u(x) of an elastic bar of length l with sectional
area A and Young’s modulus E under the prescribed axial loading p(x):

d2u(x)

dx2
= −p(x)

EA
(3.35)

Note that the resultant axial force N(x) is related to the axial displacement u(x) via
N(x) = EAu

′
(x).

3.1.2.1.5 Exercise 9: Bar stretching under axial loadings Solve the stretching
problem of an elastic bar, which is fixed at x = a = 0, i.e, u(0) = 0 and has a free ending
at x = b = l, i.e., N(l) = 0, with the integral equation system and the solution expression
determined in Exercise 8. The prescribed axial loading is p(x) = p0

x
l
.

3.1.2.2 Transformation of Helmholtz equations

The till now considered differential equations contained only first or second order deriva-
tives of the sought solution. When the sought solution function multiplied by a constant
factor is added to or substracted from the second derivative term, e.g.,

d2w(x)

dx2
+ k2w(x) = f(x) or

d2w(x)

dx2
− h2w(x) = f(x) (3.36)

this differential equation is called of Helmholtz type. When one prefers symmetric forms,
the respective fundamental solutions are (see, (2.89) and (2.93), respectively, and corre-
sponding Remark 1 there)

w∗(x, ξ) = w∗(r) =
1

2k
sin(kr) with k 6= 0, real, r = |x− ξ| (3.37)

w∗(x, ξ) = w∗(r) =
1

2h
sinh(hr) with h 6= 0, real, r = |x− ξ| (3.38)

or, instead of the for r →∞ divergent form (3.38), the convergent one (2.97)

u∗(x, ξ) = u∗(r) =
−1

2h
e−hr (3.39)

3.1.2.2.1 Stationary longitudinal waves in an elastic bar The dynamic equi-
librium of a bar element with the cross section A and material density ρ under an axial
loading p(x, t) and a londitudinal accelleration ü(x) = ∂2u(x, t)/∂t2 is described by

∂N(x, t)

∂x
= −p(x, t) + ρA

∂2u(x, t)

∂t2
(3.40)
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where the axial resultant force N(x, t) is related to the longitudinal displacement u(x, t)
by

N(x, t) = EA
∂u(x, t)

∂x
= EAu′(x, t) (3.41)

Connecting both equations and assuming constant cross section A and modulus of elas-
ticity E yields the basic differential equation

EA
∂2u(x, t)

∂x2
= −p(x, t) + ρA

∂2u(x, t)

∂t2
(3.42)

or, introducing the longitudinal wave speed cL =
√
E/ρ,

∂2u(x, t)

∂x2
− 1

c2
L

∂2u(x, t)

∂t2
= −p(x, t)

EA
(3.43)

For time-harmonic loadings with the excitation frequency ω

p(x, t) = p(x)eiωt (3.44)

the response can also be assumed to be time-harmonic:

u(x,t) = u(x)eiωt (3.45)

The result is an equation which is not longer time-dependent and is of Helmholtz type

d2u(x)

dx2
+ κ2u(x) = −p(x)

EA
(3.46)

The ratio κ = ω/cL is the so-called wave number.
As we already know, the transformation of this differential equation (3.46) to an

equivalent integral equation may be performed by integrations by parts of the integral of
the weighted residual over the problem domain, i.e. here, over the bar length l:

l∫
0

[
d2u(x)

dx2
+ κ2u(x) +

p(x)

EA

]
u∗(x, ξ)dx = 0 (3.47)

where the fundamental solution u∗(x, ξ) of the differential equation is taken as special
weigthing function.

The two integrations by parts of the first term in (3.47) gives

l∫
0

d2u(x)

dx2
u∗(x, ξ)dx = [u′(x)u∗(x, ξ)]

l
0 −

l∫
0

u′(x)
∂u∗(x, ξ)

∂x
dx

=

[
u′(x)u∗(x, ξ)− u(x)

∂u∗(x, ξ)

∂x

]l
0

+

l∫
0

u(x)
∂2u∗(x, ξ)

∂x2
dx(3.48)
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such that the complete transformation of (3.47) becomes

[
u′(x)u∗(x, ξ)− u(x)

∂u∗(x, ξ)

∂x

]l
0

+

l∫
0

[
∂2u∗(x, ξ)

∂x2
+ κ2u∗(x, ξ)

]
u(x)dx = −

l∫
0

p(x)

EA
u∗(x, ξ)dx

(3.49)
Here, the adequate fundamental solution is (see (3.38)

u∗(x, ξ) = u∗(r) =
1

2k
sin(kr) (3.50)

Its first and second derivative, respectively, is (2H(x− ξ)− 1 =sign(x− ξ))

∂u∗(x, ξ)

∂x
=

1

2
cos(kr)

∂r

∂x
=

1

2
cos(kr)[2H(x− ξ)− 1] (3.51)

∂2u∗(x, ξ)

∂x2
= −k

2
sin(kr) + cos(kr)δ(x− ξ) (3.52)

such that

l

∫
0

[
∂2u∗(x, ξ)

∂x2
+ κ2u∗(x, ξ)

]
u(x)dx =

l∫
0

cos(kr)δ(x− ξ)u(x)dx = u(ξ) for ξ ∈ [0, l]

Thus, the final result of (3.49) is the following integral expression for the axial displace-
ment at an arbitrary point ξ ∈ [0, l]:

u(ξ) = −
[
u′(x)u∗(x, ξ)− u(x)

∂u∗(x, ξ)

∂x

]l
0

−
l∫

0

p(x)

EA
u∗(x, ξ)dx

= − 1

2k
sink(l − ξ)u′(l) +

1

2
cosk(l − ξ)sign(l − ξ)u(l)

+
1

2k
sin(kξ)u′(0)− 1

2
cos(kξ)sign(−ξ)u(0)−

l

∫
0

p(x)

EA
u∗(x, ξ)dx

= − 1

2EAk
sink(l − ξ)N(l) +

1

2
cosk(l − ξ)u(l)

+
1

2EAk
sin(kξ)N(0) +

1

2
cos(kξ)u(0)−

l∫
0

p(x)

EA

1

2k
sin(kr)dx (3.53)

where the relation N(x) = EAu′(x) was applied in order to introduce the adequate
boundary state N(x).

Since two of the four boundary values are unknown, one needs two equation to deter-
mine their values. They are obtain by collocation, i.e., evaluation of the equation (3.53)
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at the two boundary points (both equations have been multiplied by 2):

ξ = 0 : u(0)− cos(kl)u(l) +
1

EAk
sin(kl)N(l) = −

l∫
0

p(x)

EAk
sin(kx)dx

ξ = l : −cos(kl)u(0) + u(l)− 1

EAk
sin(kl)N(0) = −

l∫
0

p(x)

EAk
sink(l − x)dx(3.54)

or in matrix notation

[
1 0 −cos(kl) sin(kl)
−cos(kl) −sin(kl) 1 0

]
u(0)
N(0)
EAk

u(l)
N(l)
EAk

 = − 1

EAk

l∫
0

[
p(x)sin(kx)
p(x)sink(l − x)

]
dx

(3.55)

3.1.2.2.2 Exercise 10: Torsional twist of an elastic bar Transfer the above
integral form (3.53) of the solution and the equation system (3.54) for determining the
boundary reactions to the differential equation for the angular twist change ϑ(x) = dθ/dx
of an elastic bar of length l under a torsional moment MT (x):

d2ϑ(x)

dx2
− h2ϑ(x) = −MT (x)

ECT
(3.56)

The constant factor h2 = GIT
ECT

is the ratio of the torsional stiffness GIT and the warping
resistance ECT .

3.1.2.3 Transformation of a Bilaplacian equation

When the 1-d form of the Laplace operator ∆ =d2/dx2 is applied twice to a sought
function w(x), the so-called Bilaplacian or Biharmonic equation is obtained:

L(w) =
d2

dx2
(

d2

dx2
w(x)) = f(x) (3.57)

Its fundamental solution is found by integrating two times the fundamental solution
w∗(x, ξ) = 1

2
r of the Poisson equation (2.76) which gives

w∗(x, ξ) =
1

12
r3 (3.58)
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This can easily be checked by straight-forward differentiations

∂w∗(x, ξ)

∂x
=

1

4
r2 ∂r

∂x
=

1

4
r2 (2H(x− ξ)− 1) (3.59)

∂2w∗(x, ξ)

∂x2
=

1

2
r

(
∂r

∂x

)2

+
1

2
r2δ(x− ξ) =

1

2
r (3.60)

∂3w∗(x, ξ)

∂x3
=

1

2

∂r

∂x
= H(x− ξ)− 1

2
(3.61)

∂4w∗(x, ξ)

∂x4
= δ(x− ξ) (3.62)

Remark: The term 1
2
r2δ(x− ξ) in the second derivative can be neglected since it is zero

due to r = 0 for x = ξ.
Now, this most simple form of a 4th order differential equation will be tranformed into

an integral formulation for its solution w(x) and for other related states, e.g., w
′
(x).

3.1.2.3.1 The Euler-Bernoulli beam In the Euler-Bernoulli theory for the bending
of elastic beams, the deflection w(x) is described by the 4th order differential equation

EI
d4w(x)

dx4
= q(x) (3.63)

where EI means its bending stiffness. For a unique solution, four boundary conditions
have to be prescribed where at each boundary point two boundary values are known
corresponding to the actual support while the other two are unknown reactions, e.g.,

for clamped endings w = 0 w
′
= 0

for a free ending M = 0 Q = 0
for a simple support w = 0 M = 0

(3.64)

Integral equation for the beam deflection The method of weighted residual
postulates

l∫
0

(
EI

d4w(x)

dx4
− q(x)

)
w∗(x, ξ)dx = 0 (3.65)

or
l∫

0

EI
d4w(x)

dx4
w∗(x, ξ)dx =

l∫
0

q(x)w∗(x, ξ)dx (3.66)

where the weighting function w∗(x, ξ) has to be the fundamental solution of the differential
equation (3.63). This is obviously obtained from (3.58) by simply dividing by EI

w∗(x, ξ) =
r3

12EI
(3.67)
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Its derivatives differ from (3.59) to (3.62) only by the factor 1/EI, e.g.,

∂3w∗(x, ξ)

∂x3
=

1

2EI

∂r

∂x
=

1

2EI
[2H(x− ξ)− 1] (3.68)

The procedure for deriving the boundary integral form is analogous to that in the case
of the differential equations of second order: one has only to integrate by parts four times
instead of two times. Having in mind that

EI
d2w(x)

dx2
= −M(x), EI

d3w(x)

dx3
= −Q(x) (3.69)

one obtains by the first integration by parts

l∫
0

EI
d4w(x)

dx4
w∗(x, ξ)dx =

[
EI

d3w(x)

dx3
w∗(x, ξ)

]l
0

−
l∫

0

EI
d3w(x)

dx3

∂w∗(x, ξ)

∂x
dx

by two integrations by parts

l∫
0

EI
d4w(x)

dx4
w∗(x, ξ)dx =

[
−Q(x)w∗(x, ξ)− EI d

2w(x)

dx2

∂w∗(x, ξ)

∂x

]l
0

+

l∫
0

EI
d2w(x)

dx2

∂2w∗(x, ξ)

∂x2
dx

by three integrations by parts

l∫
0

EI
d4w(x)

dx4
w∗(x, ξ)dx =

[
−Q(x)w∗(x, ξ) +M(x)w∗

′
(x, ξ)− w′(x)M∗(x, ξ)

]l
0

−
l∫

0

EI
dw(x)

dx

∂3w∗(x, ξ)

∂x3
dx

and by the last forth integration by parts

l∫
0

EI
d4w(x)

dx4
w∗(x, ξ)dx =

[
−Q(x)w∗(x, ξ) +M(x)w∗

′
(x, ξ)− w′(x)M∗(x, ξ)

]l
0

−
[
EIw(x)

∂3w∗(x, ξ)

∂x3

]l
0

+

l∫
0

EIw(x)
∂4w∗(x, ξ)

∂x4
dx

=

[
−Q(x)w∗(x, ξ) +M(x)w∗

′
(x, ξ)

−w′(x)M∗(x, ξ) + w(x)Q∗(x, ξ)

]l
0

+

l∫
0

EIw(x)
δ(x− ξ)
EI

dx
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Hence, taking the ’filtering’ effect of the Dirac function into account, one gets

w(ξ) =
[
Q(x)w∗(x, ξ)−M(x)w∗

′
(x, ξ) + w

′
(x)M∗(x, ξ)− w(x)Q∗(x, ξ)

]l
0

+
l

∫
0
q(x)w∗(x, ξ)dx (3.70)

or explicitly

w(ξ) = Q(l)w∗(l, ξ)−Q(0)w∗(0, ξ)− w(l)Q∗(l, ξ) + w(0)Q∗(0, ξ)

−M(l)w∗
′
(l, ξ) + w

′
(l)M∗(l, ξ) +M(0)w∗

′
(0, ξ)− w′(0)M∗(0, ξ)

+

l∫
0

q(x)w∗(x, ξ)dx (3.71)

In this equation, four of the eight boundary values are known and the other four are
unknown reactions. Evaluating this equation at the two boundary points, i.e., at ξ = 0+ε
and ξ = l − ε gives the two boundary ’integral’ equations

1

2
w(0)− 1

2
w(l)−Q(l)

l3

12EI
+M(l)

l2

4EI
+ w

′
(l)
l

2
=

l∫
0

q(x)
x3

12EI
dx (3.72)

−1

2
w(0) +

1

2
w(l) +Q(0)

l3

12EI
+M(0)

l2

4EI
− w′(0)

l

2
= −

l∫
0

q(x)
(x− l)3

12EI
dx (3.73)

where the evaluation of the fundamental solution has given (ε→ 0)

w∗(l, 0) =
l3

12EI
, w∗(0, 0) = 0, w∗(l, l) = 0, w∗(0, l) =

l3

12EI
(3.74)

and for the related fundamental states

w∗
′
(l, 0) =

l2

4EI
, w∗

′
(0, 0) = 0, w∗

′
(l, l) = 0, w∗

′
(0, l) = − l2

4EI
(3.75)

M∗(l, 0) = −EIw∗′′(l, 0) = − l
2

, M∗(0, 0) = 0, M∗(l, l) = 0, M∗(0, l) = − l
2

(3.76)

Q∗(l, 0) = −1

2
, Q∗(0, 0) =

1

2
, Q∗(l, l) = −1

2
, Q∗(0, l) =

1

2
(3.77)

Now, we obtained two boundary integral equations but one needs two equations more.
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Integral equation for the beam slope Obviously, one gets a new integral equation
for the beam slope w

′
(ξ), which means a rotation about the y-axis, when one differentiates

the integral equation (3.70) with respect to the variable ξ. Since the equation (3.70) was
obtained by integration by parts of the weighted residual (3.66) of the differential equation
(3.63), it is clear that one can perform the differentiation with respect to ξ also directly
to the weighted residual:

l∫
0

EI
d4w(x)

dx4

∂w∗(x, ξ)

∂ξ
dx =

l∫
0

q(x)
∂w∗(x, ξ)

∂ξ
dx (3.78)

Hence, the relation (3.78) is also a weighted residual form of the beam equation (3.63)
where only another weighting function is applied, namely

w∗2(x, ξ) =
∂w∗(x, ξ)

∂ξ
= −∂w

∗(x, ξ)

∂x
= − 1

4EI
(x− ξ)2sgn(x− ξ) (3.79)

with

∂w∗2(x, ξ)

∂x
= −∂

2w∗(x, ξ)

∂x2
= − r

2EI
∂2

∂x2
w∗2(x, ξ) =

−1

2EI

∂r

∂x
=
−1

2EI
[2H(x− ξ)− 1]

∂3

∂x3
w∗2(x, ξ) =

−1

EI
δ(x− ξ)

Then, integration by parts yields at first

l∫
0

EI
d4w(x)

dx4
w∗2(x, ξ)dx =

[
EI

d3w(x)

dx3
w∗2(x, ξ)

]l
0

−
l∫

0

EI
d3w(x)

dx3

∂w∗2(x, ξ)

∂x
dx

= [−Q(x)w∗2(x, ξ)]l0 −
l∫

0

EI
d3w(x)

dx3

∂w∗2(x, ξ)

∂x
dx (3.80)

by the second integration

l∫
0

EI
d4w(x)

dx4
w∗2(x, ξ)dx =

[
−Q(x)w∗2(x, ξ)− EI d

2w(x)

dx2

∂w∗2(x, ξ)

∂x

]l
0

+

l∫
0

EI
d2w(x)

dx2

∂2w∗2(x, ξ)

∂x2
dx

=

[
−Q(x)w∗2(x, ξ) +M(x)

∂w∗2(x, ξ)

∂x

]l
0

+

l∫
0

EI
d2w(x)

dx2

∂2w∗2(x, ξ)

∂x2
dx
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and finally already by the third integration by parts (M∗
2 (x, ξ) = −EI∂2w∗2(x, ξ)/∂x2)

l∫
0

EI
d4w(x)

dx4
w∗2(x, ξ)dx =

[
−Q(x)w∗2(x, ξ) +M(x)

∂w∗2(x, ξ)

∂x
+ EI

dw(x)

dx

∂2w∗2(x, ξ)

∂x2

]l
0

−
l∫

0

EI
dw(x)

dx

∂3w∗2(x, ξ)

∂x3
dx

=

[
−Q(x)w∗2(x, ξ) +M(x)

∂w∗2(x, ξ)

∂x
− dw(x)

dx
M∗

2 (x, ξ)

]l
0

+

l∫
0

dw(x)

dx
δ(x, ξ)dx

=

[
−Q(x)w∗2(x, ξ) +M(x)

∂w∗2(x, ξ)

∂x
− dw(x)

dx
M∗

2 (x, ξ)

]l
0

+
dw(x)

dx

∣∣∣∣
x=ξ

Consequentyl, the integral equation for w
′
(ξ) at interior points ξ ∈ (0, l) reads as

w
′
(ξ) =

[
Q(x)w∗2(x, ξ)−M(x)

∂w∗2(x, ξ)

∂x
+
dw(x)

dx
M∗

2 (x, ξ)

]l
0

+

l∫
0

q(x)w∗2(x, ξ)dx (3.81)

The evaluation of this equation at the two boundary points gives the two extra equations
for the determination of the four unknown boundary reactions:

for ξ = 0 + ε (ε→ 0):

w
′
(0)−

[
Q(x)w∗2(x, ε)−M(x)

∂w∗2(x, ε)

∂x
+
dw(x)

dx
M∗

2 (x, ε)

]l
0

=

l∫
0

q(x)w∗2(x, 0)dx (3.82)

for ξ = l − ε (ε→ 0):

w
′
(l)−

[
Q(x)w∗2(x, l − ε)−M(x)

∂w∗2(x, l − ε)
∂x

+
dw(x)

dx
M∗

2 (x, l − ε)
]l

0

=

l∫
0

q(x)w∗2(x, l)dx

(3.83)
When the respective function values (with ε → 0) of this weighting function and of its
derivatives, respectively,

w∗2(l, ε) = − l2

4EI
, w∗2(0, ε) = 0, w∗2(l, l − ε) = 0, w∗2(0, l − ε) =

l2

4EI
(3.84)
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w∗
′

2 (l, ε) = − l

2EI
, w∗

′

2 (0, ε) = 0, w∗
′

2 (l, l − ε) = 0, w∗
′

2 (0, l − ε) = − l

2EI
(3.85)

M∗
2 (l, ε) =

1

2
, M∗

2 (0, ε) = −1

2
, M∗

2 (l, l − ε) =
1

2
, M∗

2 (0, l − ε) = −1

2
(3.86)

are introduced, one obtains the two equations:

for ξ = 0:

1

2
[w
′
(0)− w′(l)] +Q(l)

l2

4EI
−M(l)

l

2EI
= −

l∫
0

q(x)
x2

4EI
dx (3.87)

for ξ = l:

1

2
[w
′
(l)− w′(0)] +Q(0)

l2

4EI
+M(0)

l

2EI
=

l∫
0

q(x)
(x− l)2

4EI
dx (3.88)

3.1.2.3.2 The complete system of integral equations for the deflection and the
slope Althogether, the equations (3.72), (3.73), (3.87), and (3.88) result the following
system (in matrix-vector notation)


1
2

0 0 0 −1
2

l
2

l2

4EI
−l3

12EI
−1
2

−l
2

l2

4EI
l3

12EI
1
2

0 0 0

0 1
2

0 0 0 −1
2

−l
2EI

l2

4EI

0 −1
2

l
2EI

l2

4EI
0 1

2
0 0





w(0)
w
′
(0)

M(0)
Q(0)
w(l)
w
′
(l)

M(l)
Q(l)


=

l∫
0


q(x) x3

12EI

−q(x) (x−l)3
12EI

−q(x) x2

4EI

q(x) (x−l)2
4EI

 dx

(3.89)
A rearrangement of these equations, i.e., an interchanging of the first and forth line, gives
a more systematic order of the coefficient matrix::


0 −1

2
l

2EI
l2

4EI
0 1

2
0 0

−1
2

−l
2

l2

4EI
l3

12EI
1
2

0 0 0

0 1
2

0 0 0 −1
2

−l
2EI

l2

4EI
1
2

0 0 0 −1
2

l
2

l2

4EI
−l3

12EI





w(0)
w
′
(0)

M(0)
Q(0)
w(l)
w
′
(l)

M(l)
Q(l)


=

l∫
0


q(x) (x−l)2

4EI

−q(x) (x−l)3
12EI

−q(x) x2

4EI

q(x) x3

12EI

 dx

(3.90)



3.1 Introductary 1-d problems: Transformation of ordinary differential equations 47

3.1.3 Integral formulation with Green’s functions

As described in section 2.4.3, Green’s functions are special fundamental solutions which
additionally satisfy certain homogeneous boundary conditions, or more exactly, those
boundary states of the Green’s function have to be zero which are prescribed in the
actual problem.

3.1.3.1 Stretching of bars

As derived in section 3.1.1.2 for general Laplace equations and explicitly given for bars in
the solution of Exercise 7, the direct form of the integral equation for the axial displace-
ment of an elastic bar of length l = b− a is

u(ξ) = −
[
N(x)

EA
u∗(x, ξ)− u(x)

N∗(x, ξ)

EA

]b
a

−
b∫

a

p̄(x)

EA
u∗(x, ξ)dx (3.91)

There, the fundamental solution is (see, (2.77))

u∗(x, ξ) =
1

2
r =

1

2
| x− ξ | (3.92)

and satisfies the 1-dimensional Laplace equation

d2u∗(x, ξ)

dx2
= δ(x, ξ) (3.93)

When an actual boundary value problem is, e.g.,

d2u(x)

dx2
= − p̄(x)

EA
(3.94)

with the boundary conditions

u(x = a) = ū0 and N(x = b) = EA
du(x)

dx

∣∣∣∣
x=b

= N̄l (3.95)

the adequate Green’s function GuN(x, ξ) of this problem has to satisfy the equation (3.93),
i.e., has to be a fundamental solution, but has additionally to fulfill the homogeneous
conditions

GuN(x = a, ξ) = 0 and EA
∂GuN(x, ξ)

∂x

∣∣∣∣
x=b

= 0 (3.96)

Hence, as easily can be found, this special Green’s function is given as

GuN(x, ξ) = u∗(x, ξ)− u∗(a, ξ)− ∂u∗(x, ξ)

∂x

∣∣∣∣
x=b

(x− a) (3.97)

Now, applying in the integral equation (3.91) instead of u∗(x, ξ) the adequate Green’s
function (3.97) and taking the actual boundary conditions (3.95) and the corresponding
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homogeneous boundary conditions of the Green’s function (3.96) into account, the solution
of the boundary value problem, the axial displacement at any interior point ξ (a ≤ ξ ≤ b)
is directly found to be

u(ξ) = − N̄l

EA
GuN(b, ξ)− ū0

∂GuN(x, ξ)

∂x

∣∣∣∣
x=a

−
b

∫
a

p̄(x)

EA
GuN(x, ξ)dx (3.98)

Since with a≤ ξ ≤ b

GuN(b, ξ) = u∗(b, ξ)− u∗(a, ξ)− ∂u∗(x, ξ)

∂x

∣∣∣∣
x=b

(b− a)

=
1

2
| b− ξ | −1

2
| a− ξ | −1

2
sign(b− ξ)l

=
1

2
(b− ξ − ξ + a− l)

= a− ξ (3.99)

and

∂GuN(x, ξ)

∂x

∣∣∣∣
x=a

=
∂u∗(x, ξ)

∂x

∣∣∣∣
x=a

− ∂u∗(x, ξ)

∂x

∣∣∣∣
x=b

=
1

2
sign(a− ξ)− 1

2
sign(b− ξ)

= −1 (3.100)

the solution (3.98) is explicitly

u(ξ) = − N̄l

EA
(a− ξ) + ū0 −

b∫
a

p̄(x)

EA

1

2
(| x− ξ | − | a− ξ | −sign(b− ξ)(x− a)) dx

=
N̄l

EA
(ξ − a) + ū0 −

b∫
a

p̄(x)

EA

1

2
(| x− ξ | −(ξ − a)− (x− a)) dx

=
N̄l

EA
(ξ − a) + ū0 −

ξ∫
a

p̄(x)

EA

1

2
(ξ − x− ξ + 2a− x) dx

−
b∫
ξ

p̄(x)

EA

1

2
(x− ξ − ξ + 2a− x) dx

=
N̄l

EA
(ξ − a) + ū0 −

ξ∫
a

p̄(x)

EA
(−x+ a) dx−

b∫
ξ

p̄(x)

EA
(−ξ + a) dx (3.101)
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e.g., for p̄(x) = p0 =const. and with a = 0 and b = l

u(ξ) =
N̄l

EA
ξ + ū0 −

p0

EA

 ξ∫
0

(−x) dx+

l∫
ξ

(−ξ)dx


=

N̄l

EA
ξ + ū0 −

p0

EA

(
−
[
x2

2

]ξ
0

− ξ(l − ξ)

)

=
N̄l

EA
ξ + ū0 −

p0

EA

(
−ξ

2

2
− ξ(l − ξ)

)
=

N̄l

EA
ξ + ū0 +

p0

EA

(
−ξ

2

2
+ ξl

)
(3.102)

As easily can be checked, this is the exact solution of the problem.
Remark: The Green’s functions for bar problems where
a) at x = a a prescribed force N̄0 is acting and at x = b the axial displacement is

prescribed, i.e.,

N(x = a) = EA
du(x)

dx

∣∣∣∣
x=a

= N̄0 and u(x = b) = ūl (3.103)

is given by

GNu(x, ξ) = u∗(x, ξ)− u∗(b, ξ)− ∂u∗(x, ξ)

∂x

∣∣∣∣
x=a

(x− b) (3.104)

b) at x = a and at x = b displacements are prescribed, i.e.,

u(x = a) = ū0 and u(x = b) = ūl (3.105)

is given by

Guu(x, ξ) = u∗(x, ξ)− u∗(a, ξ)b− x
b− a

− u∗(b, ξ)x− a
b− a

(3.106)

3.1.3.2 Bending of beams

As given in (3.71), the direct form of the integral equation for the deflection of an elastic
beam of length l is

w(ξ) = Q(l)w∗(l, ξ)−Q(0)w∗(0, ξ)− w(l)Q∗(l, ξ) + w(0)Q∗(0, ξ)

−M(l)w∗
′
(l, ξ) + w

′
(l)M∗(l, ξ) +M(0)w∗

′
(0, ξ)− w′(0)M∗(0, ξ)

+

l∫
0

q̄(x)w∗(x, ξ)dx (3.107)

where, the fundamental solution (see, (3.67))

w∗(x, ξ) =
r3

12EI
(3.108)
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satisfies the 1-dimensional Bi-potential equation

∂4w∗(x, ξ)

∂x4
=
δ(x, ξ)

EI
(3.109)

Considering as an actual problem

d4w(x)

dx4
=
q̄(x)

EI
(3.110)

with the boundary conditions

w(x = 0) = 0 and w
′
(x = 0) = 0 (3.111)

w(x = l) = w̄l and M(x = l) = 0 (3.112)

i.e., a beam with a clamped boundary at x = 0 and with a pinned support at x = l which
has suffered a vertical settlement of w(x = l) = w̄l, the above integral equation reads as

w(ξ) = Q(l)w∗(l, ξ)−Q(0)w∗(0, ξ) + w
′
(l)M∗(l, ξ) +M(0)w∗

′
(0, ξ)

−w̄lQ∗(l, ξ) +

l∫
0

q̄(x)w∗(x, ξ)dx (3.113)

The adequate Green’s functionGcs(x, ξ) of this problem has to satisfy the equation (3.109),
i.e., has to be a fundamental solution, but has additionally to fulfill the homogeneous
conditions

Gcs(l, ξ) = 0 and Gcs(0, ξ) = 0 (3.114)

M∗(Gcs(x, ξ))|x=l = −EI ∂
2Gcs(x, ξ)

∂x2

∣∣∣∣
x=l

= 0 (3.115)

∂Gcs(x, ξ)

∂x

∣∣∣∣
x=0

= 0 (3.116)

Then, the deflection w(ξ) at an arbitrary point solution ξ is simply

w(ξ) = −w̄l Q∗(Gcs(x, ξ))|x=l +

l∫
0

q̄(x)Gcs(x, ξ)dx (3.117)

The derivation of the Green’s function Gcs(x, ξ) of the above defined problem can start
with an ’ansatz’ which combines the fundamental solution w∗(x, ξ) and its derivatives,
respectively, with unknown polynomials h1(x), h2(x), h3(x), and h4(x) adequately

Gcs(x, ξ) = w∗(x, ξ)− w∗(0, ξ)h1(x)− w∗(l, ξ)h2(x)

− ∂w∗(x, ξ)

∂x

∣∣∣∣
x=0

h3(x)− ∂2w∗(x, ξ)

∂x2

∣∣∣∣
x=l

h4(x) (3.118)
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These polynomials have to be cubic and, as follows from the conditions (3.114) to (3.116)
must satisfy the conditions

h1(0) = 1, h1(l) = 0, h
′

1(0) = 0, h
′′

1(l) = 0

h2(0) = 0, h2(l) = 1, h
′

2(0) = 0, h
′′

2(l) = 0

h3(0) = 0, h3(l) = 0, h
′

3(0) = 1, h
′′

3(l) = 0

h4(0) = 0, h4(l) = 0, h
′

4(0) = 0, h
′′

4(l) = 1 (3.119)

Some simple analysis gives

h1(x) = 1− 3

2

(x
l

)2

+
1

2

(x
l

)3

(3.120)

h2(x) =
3

2

(x
l

)2

− 1

2

(x
l

)3

(3.121)

h3(x) = l

[(x
l

)
− 3

2

(x
l

)2

+
1

2

(x
l

)3
]

(3.122)

h3(x) =
l2

4

[
−
(x
l

)2

+
(x
l

)3
]

(3.123)

Then, introducing for 0 ≤ ξ ≤ l with ∂r/∂x =sign(x− ξ) and r2δ(x− ξ) = 0

w∗(0, ξ) =
ξ3

12EI
, w∗(l, ξ) =

(l − ξ)3

12EI
,

∂w∗(x, ξ)

∂x

∣∣∣∣
x=0

= − ξ2

4EI
,
∂2w∗(x, ξ)

∂x2

∣∣∣∣
x=l

=
(l − ξ)
2EI

(3.124)

one obtains after some re-arrangements the Green’s function explicitly as (r3 = |x− ξ|3 =
(x− ξ)3sign(x− ξ))

Gcs(x, ξ) =
1

12EI

{
r3 + 3xξ2 − ξ3 + 3(ξ3 − 3ξ2l + ξl2)

(
x
l

)2

−(ξ3 − 3ξ2l + l3)
(
x
l

)3

}
(3.125)

Remark: It should be mentioned that the same result can be found by starting with the
general polynomial ’ansatz’

Gcs(x, ξ) =
1

12EI

{
r3 + c1x

3 + c2x
2 + c3x+ c4

}
(3.126)

and determing the four constants c1, c2, c3, and c4 via the four homogeneous boundary
conditions (3.114) to (3.116).

Example: .By using the above Green’s function, the deflection function w(ξ) of a
beam with a clamped boundary at x = 0 and with a pinned support at x = l which has
a vertical settlement at x = l of w(x = l) = w̄l and is continuously loaded by q̄(x) = q0 is
given as (see, (3.117))

w(ξ) = −w̄l Q∗(Gcs(x, ξ))|x=l + q0

l∫
0

Gcs(x, ξ)dx
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i.e., one has to evaluate at x = l (r,x =sign(x− ξ))

Q∗(Gcs(x, ξ)) = −EI ∂
3

x3
Gcs(x, ξ)

= − 1

12

{
6r,x − (ξ3 − 3ξ2l + l3)

6

l3

}
,

i.e.

Q∗(Gcs(x, ξ))|x=l = −1

2

{
1−

(
ξ

l

)3

+ 3

(
ξ

l

)2

− 1

}

=
1

2

(
ξ

l

)2{
ξ

l
− 3

}
and to integrate Gcs(x, ξ) along the beam

l∫
0

Gcs(x, ξ)dx =
1

12EI

l∫
0

{
r3 + 3xξ2 − ξ3 + 3(ξ3 − 3ξ2l + ξl2)

(
x
l

)2

−(ξ3 − 3ξ2l + l3)
(
x
l

)3

}
dx

=
1

12EI


1
4

(ξ4 + (l − ξ)4) +
[
3x

2

2
ξ2 − xξ3

]l
0

+3(ξ3 − 3ξ2l + ξl2)
[
l
3

(
x
l

)3
]l

0

−(ξ3 − 3ξ2l + l3)
[
l
4

(
x
l

)4
]l

0


=

1

12EI

{
1
4

(ξ4 + (l − ξ)4) + 3
2
l2ξ2 − lξ3

+(ξ3 − 3ξ2l + ξl2)l − (ξ3 − 3ξ2l + l3) l
4

}
=

1

48EI

{
2ξ4 − 5lξ3 + 3l2ξ2

}
Remark: For 0 ≤ ξ ≤ l, one has to integrate r3 = |x− ξ|3 as follows

l∫
0

r3dx =

l∫
0

|x− ξ|3 dx

=

ξ∫
0

(ξ − x)3dx+

l∫
ξ

(x− ξ)3dx

=

[
−(ξ − x)4

4

]ξ
0

+

[
(x− ξ)4

4

]l
ξ

=
1

4

(
ξ4 + (l − ξ)4

)
Finally, one finds the deflection for any position ξ ∈ [0, l] to be

w(ξ) = −w̄l
1

2

(
ξ

l

)2{
ξ

l
− 3

}
+

q0

48EI

{
2ξ4 − 5lξ3 + 3l2ξ2

}
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which is, as easily can be checked, the exact solution for these boundary conditions and
the constant loading.

3.1.3.3 Exercise 11: Green’ functions for beam problems

Determine the adequate Green’s function for a beam which has
a) a clamped support at both endings
b) a clamped support at x = 0 while the other ending is free:

3.1.4 Indirect integral formulations: the singularity method

One important feature of the indirect method is that the physical variables of the boundary
value problems, the unknown boundary reactions, do not remain the unknown quantities
of the integral equation: Intermediary unknowns - unknown intensities of certain
singularity layers - are introduced instead. For these singularities, so-called
influence functions, i.e., the complete response to the action of a singularity
(e.g., a unit point force) must be known everywhere in the considered material.
Then, these singularity layers are distributed on a ’fictitious’ boundary Γ+ in
a certain small distance dε from the real boundary Γ outside the domain Ω
and their intensities have to be determined such that the integrated response
is equal to the prescribed boundary values on the real boundary Γ.

Since it is difficult to choose an optimal size of this small distance dε, it is the best
choice to use dε = 0, i.e., let the fictitious boundary Γ+ coincide (in the limit from outside)
with the real boundary Γ.

3.1.4.1 Representation of Poisson equation problems: Stretching of bars

The differential equation for the axial displacement u(x) of an elastic bar with sectional
area A and modulus of elasticity E under the prescribed axial loading p(x) is by (see
(3.35), Example 6):

d2u(x)

dx2
= −p(x)

EA
(3.127)

and we know (see (2.79)) the fundamental solution u∗(x, ξ) = r/2 of the Poisson equation

∂2u∗(x, ξ)

∂x2
= δ(x, ξ)

Comparing both equations, it is obvious that from its physical meaning

(up) (x, ξ) = −u
∗(x, ξ)

EA
= − r

2EA
(3.128)

gives the axial displacement at the point x due to a axial unit point force at point ξ, i.e.,
is the influence function of a point force with intensity 1 for the axial displacement in the
bar stretching problem.
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Since the resultant axial force N(x) is related to the axial displacement u(x) via
N(x) = EAu

′
(x), the corresponding influence function for this state is obtained by ap-

plying this definition to (3.128) as

(Np) (x, ξ) = EA
∂ (up) (x, ξ)

∂x
= −1

2

∂r

∂x
= −1

2
[2H(x− ξ)− 1] = −1

2
sgn(x− ξ) (3.129)

Following the above described idea of the indirect method, one has to in-
troduce at the points ξ on the fictitious boundary Γ+ (which is either enclosing
the real boundary Γ with a certain distance dε or both boundaries coincide
with each other) the intensity p∗(ξ) of an adequate singularity, here, of a point
forces, as new unknown function. Then, this intensity p∗(ξ) of the singularity
layers must take such a distribution that all prescribed boundary conditions
on the real boundary Γ will be satisfied, either pointwise or in some other
sense (certain norm).

For demonstrating this idea, the stretching of an elastic bar of length l = b − a with
sectional area A and Young’s modulus E under the prescribed axial loading p̄(x) (see,
Exercise 6) is considered with mixed boundary conditions: the bar shall be fixed at the
boundary point x = a, i.e., u(x = a) = 0, and shall have a free ending at the other
boundary point x = b, i.e., N(x = b) = 0.

The prescribed axial loading p̄ has to be considered as a point force singu-
larity layer with prescribed intensity p̄(ξ) in the interior of the bar’s domain
Ω = (a, b).

The axial displacement u at the point x caused by the point force distribution with
unknown intensity p∗(ξ) on the fictitiuos boundary Γ+with an arbitrary small distance dε
from the boundary points x = a and x = b, i.e., at ξ = a − dε and at ξ = b + dε, and
by the axial loading in the bar’s interior (a, b) with the prescribed intensity p̄(ξ) may be
expressed applying the influence function (up) (x, ξ) as

u(x) = [(up) (x, ξ)p∗(ξ)]ξ=b+dεξ=a−dε +
b

∫
a

(up) (x, ξ) p̄(ξ)dξ (3.130)

Correspondingly, using the influence function (Np) (x, ξ), the resultant axial force N(x)
may be expressed as:

N(x) = [(Np) (x, ξ)p∗(ξ)]ξ=b+dεξ=a−dε +
b

∫
a

(Np) (x, ξ)p̄(ξ)dξ (3.131)

These two boundary ’integral’ equations give the boundary value problem solution at all
points x in the closed domain a ≤ x ≤ b if the intensities p∗(a − dε) and p∗(b + dε) are
determined so that the prescribed boundary conditions are satisfied, i.e.:

ū(a) = 0 = [(up) (a, ξ)p∗(ξ)]ξ=b+dεξ=a−dε +
b

∫
a

(up) (a, ξ)p̄(ξ)dξ (3.132)
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N̄(b) = 0 = [(Np) (b, ξ)p∗(ξ)]ξ=b+dεξ=a−dε +
b

∫
a

(Np) (b, ξ)p̄(ξ)dξ (3.133)

or, more detailed, by inserting the above defined influence functions (r = |x− ξ|, l = b−a,
dε > 0)

−|a− b− dε|
2EA

p∗(b+ dε) +
|a− a+ dε|

2EA
p∗(a− dε) =

b

∫
a

|a− ξ|
2EA

p̄(ξ)dξ

−(l + dε) p
∗(b+ dε) + dε p

∗(a− dε) =
b

∫
a
(ξ − a)p̄(ξ)dξ (3.134)

−sgn(b− b− dε)
2

p∗(b+ dε) +
sgn(b− a+ dε)

2
p∗(a− dε) =

b

∫
a

sgn(b− ξ)
2

p̄(ξ)dξ

p∗(b+ dε) + p∗(a− dε) =
b

∫
a
p̄(ξ)dξ (3.135)

For demonstrating the correctness of these two indirect boundary integral forms, an ex-
ample shall be solved explicitly and compared with the exact analytical solution.

3.1.4.1.1 Example: Fixed-free bar under linear axial loading The above equa-

tions (3.134) and (3.135) are for a prescribed axial loading p̄(x) = p0
x−a
l

:

−(l + dε) p
∗(b+ dε) + dε p

∗(a− dε) =
b

∫
a
(ξ − a)p0

ξ − a
l

dξ =
p0l

2

3
(3.136)

and

p∗(b+ dε) + p∗(a− dε) =
b

∫
a
p0
ξ − a
l

dξ = p0
l

2
(3.137)

These two equations give the sought intensities

p∗(a− dε) =
p0l

6

5l + 3dε
l + 2dε

and p∗(b+ dε) = −p0l

6

2l − 3dε
l + 2dε

(3.138)

For the special case dε = 0, i.e., for choosing the fictitious boundary to be identic with the real

boundary, i.e., for Γ+ = Γ, the result is simplified to

p∗(a) =
5

6
p0l and p∗(b) = −1

3
p0l (3.139)

With the intensities (3.138) the indirect integral equations (3.130) can be evaluated for any
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arbitrary interior point x as

u(x) =

[
−|x− ξ|

2EA
p∗(ξ)

]ξ=b+dε
ξ=a−dε

−
b

∫
a

|x− ξ|
2EA

p0
ξ − a
l

dξ

=
p0l

12EA

(
(b+ dε − x)

2l − 3dε
l + 2dε

+ (x− a+ dε)
5l + 3dε
l + 2dε

)
− 1

2EA

p0

l

(
x

∫
a
−

b

∫
x

)
(x− ξ)(ξ − a)dξ

=
p0l

12EA(l + 2dε)
(3xl + 2bl − 5al + dε(6x− 3a− 3b+ 7l))

− p0

2EAl

(
(x− a)3

3
− (x− a)l2

2
+
l3

3

)
(3.140)

At first, this solution does not look like the exact solution which easily can be determined by

direct integrations to be

uexact(x) = − p0

EA

(x− a)

6l

[
(x− a)2 − 3l2

]
(3.141)

but eliminating b in (3.140) by b = a+ l shows that one can cancel the term (l + 2dε) in

p0l (3xl + 2bl − 5al + dε(6x− 3a− 3b+ 7l))

12EA(l + 2dε)
=

p0l (3l(x− a) + 2l2 + dε(6(x− a) + 4l))

12EA(l + 2dε)

=
p0l

12EA(l + 2dε)
(3(x− a) + 2l) (l + 2dε)

=
p0l

12EA
(3(x− a) + 2l) (3.142)

Obviously , this term, i.e., the result of the boundary ’integral’ on the fictitious boundary Γ+, is

independent on the distance dε. Now, subtracting from (3.142) the result of the domain integral

u(x) =
p0l

12EA
(3(x− a) + 2l)− p0

2EAl

(
(x− a)3

3
− (x− a)l2

2
+
l3

3

)
=

p0

12EAl

(
3l2(x− a) + 2l3 − 2(x− a)3 + 3(x− a)l2 − 2l3

)
=

p0(x− a)

6EAl

(
3l2 − (x− a)2

)
the exact solution (3.141) is obtained. Evaluating in the same way the indirect integral equation
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(3.131) for the resultant axial force

N(x) =

[
−1

2
sgn(x− ξ)p∗(ξ)

]ξ=b+dε
ξ=a−dε

−
b

∫
a

1

2
sgn(x− ξ)p0

ξ − a
l

dξ

=

[
−1

2

p0l

6

2l − 3dε
l + 2dε

+
1

2

p0l

6

5l + 3dε
l + 2dε

]
− p0

2l

(
x

∫
a
−

b

∫
x

)
(ξ − a)dξ

=
p0l

12

3l + 6dε
l + 2dε

− p0

2l

(
(x− a)2 − l2

2

)
=
p0l

12
3− p0

2l

(
(x− a)2 − l2

2

)
=

p0

2l

(
l2 − (x− a)2

)
(3.143)

gives again the exact solution.

Remark: Obviously, for one-dimensional problems where no approximation errors (no
discretization of the boundary, no ansatz functions for the state functions, no numerical
integration, no point collocation, and no numerical equation solver) occur, the exact
solution is always obtained and the distance dε of the fictitious boundary Γ+ does not
influence the solution.

3.2 2-d and 3-d problems: Transformation of partial

differential equations

In the case of two- and three-dimensional problems, a direct analytical integration of the
partial differential equations is not possible. It is necessary to transform the differential
equation either by the method of weighted residuals or by the so-called singularity method
in integral equations. Their solution is generally possible only by using discretization
techniques.

3.2.1 Direct integral equations by the method of weighted resid-
uals

The Poisson or Laplace equation is a partial differential equation for a scalar function
and can, therefore, be handled relatively simple. Hence, the transformation of a partial
differential equation to an integral equation shall be demonstrated for this case first.
Problems governed by this equation appear in different fields. Without aiming to be
exhaustive a certain number of them have been summarized in the following table.
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Problems
∆Φ = 0

Scalar function
Φ

Boundary
Φ = Φ̄

conditions
q̄ = K ∂Φ

∂n

Constants
(K)

Heat transfer
Temperature
(T ≡ Deg.)

T = T̄
Heat flow
q̄ = −λ∂T

∂n

Thermal
conductivity
(λ)

Ideal fluid flow
Stream function
(Φ ≡ m2s−1)

Φ = Φ̄ q̄ = ∂Φ
∂n

Groundwater
flow

Hydraulic head
(Φ ≡ m)

Φ = Φ̄ q̄ = K ∂Φ
∂n

Permeability
(K)

Hydrodynamic
pressure on
moving surfaces

Pressure
(P ≡ Nm−2)

P = P̄
free surface:
P = 0

q̄ = −ρan
(an normal accel.)

Density
(ρ)

Electrostatic
Field potential
(V ≡ volt)

V = V̄ q̄ = −ε∂V
∂n

Permittivity
(ε)

Electric
conduction

Electropotential
(E ≡ volt)

E = Ē q̄ = 1
k
∂E
∂n

Resistivity
(k)

Magnetostatic
Magnetic Potential
(M ≡ amp)

M = M̄ B̄ = −µ∂M
∂n

Magnetic
Permeability
(µ)

3.2.1.1 Stationary heat conduction - a Poisson equation

In the case of a homogeneous isotropic body with constant thermal conductivity λ0, the
stationary (not longer changing with time) temperature field Θ(x) is governed by the
scalar Poisson equation

∆Θ(x) = − 1

λ0

Wq(x) (3.144)

where Wq(x) represents the heat source generation rate. Associated boundary conditions
may involve either a fixed given temperature (a so-called Dirichlet boundary condition)
at a part of the boundary Γ

Θ(x) = Θ̄(x) for x ∈Γ (3.145)

or a prescribed heat flux through a boundary part (a so-called Neumann boundary con-
dition):

qn(x) = λ0
∂Θ(x)

∂n(x)
= q̄n(x) für x ∈Γ (3.146)

where n(x) is the outward normal unit vector. This heat flux can be zero when the
boundary is insulated.

Almost no real problems have purely temperature or flux specified boundary condi-
tions, so it is necessary to consider mixed boundary conditions from the beginning, i.e.,
one has on one boundary part Γ1 the condition (3.145) and on the remaining part Γ2 the
condition (3.146).
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Now, as in the above discussed one-dimensional problems, the weighted residual of the
considered differential equation (3.144) is integrated over the domain Ω of the problem
and set to be zero:

∫
Ω

[
∆Θ(x) +

Wq(x)

λ0

]
Θ∗(x, ξ)dΩx = 0 (3.147)

where the fundamental solution Θ∗(x, ξ) of the respective differential equation is taken as
special weighting function.

The respective fundamental solutions are known (see, (2.88) and (2.86)) to be (r =|
x− ξ |):

Θ∗(x, ξ) =
−1

2π
ln(

r

c
) =
−1

2π
[ln(r)− ln(c)] in R2 (3.148)

Θ∗(x, ξ) = Θ∗(r) =
1

4πr
in R3 (3.149)

where c > 0 is an arbitrary real constant making the ratio r/a dimensionless, e.g., in the
case of a numerical solution procedure, taken as the smallest geometrical dimension of
the discretization.

Now, following the above introduced rules for deriving an equivalent integral equation
representation by the method of weighted residuals, the first differential operator term in
(3.147) has to integrated by parts till all differentiations are transfered from the unknown
function Θ(x) to the known weighting function, the fundamental solution Θ∗(x, ξ). This
gives ( ∂

∂xi
=,i) for ξ ∈ Ω:∫

Ω

∆Θ(x)Θ∗(x, ξ)dΩx =

∫
Ω

[Θ(x)],iiΘ
∗(x, ξ)dΩx

=

∫
Ω

(
{[Θ(x)],iΘ

∗(x, ξ)},i − [Θ(x)],i[Θ
∗(x, ξ)],i

)
dΩx

= ∫
Γ
[Θ(x)],iΘ

∗(x, ξ)ni(x)dΓx −
∫
Ω

[Θ(x)],i[Θ
∗(x, ξ)],idΩx

= ∫
Γ

1

λ0

qn(x)Θ∗(x, ξ)dΓx

−
∫
Ω

(
{Θ(x)[Θ∗(x, ξ)],i},i −Θ(x)[Θ∗(x, ξ)],ii

)
dΩx

= ∫
Γ

1

λ0

qn(x)Θ∗(x, ξ)dΓx − ∫
Γ
Θ(x)[Θ∗(x, ξ)],ini(x)dΓx

+

∫
Ω

Θ(x)δ(x, ξ)dΩx

= ∫
Γ

1

λ0

[qn(x)Θ∗(x, ξ)−Θ(x)q∗n(x, ξ)] dΓx −Θ(ξ) (3.150)
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where, as defined in (3.146), the heat flux qn(x) was introduced as second boundary
state. Combining this transformed expression with the other terms of (3.147) delivers the
following integral equation for the temperature at an arbitrary interior point ξ ∈ Ω:

Θ(ξ) = ∫
Γ

1

λ0

(qn(x)Θ∗(x, ξ)−Θ(x)q∗n(x, ξ)) dΓx + ∫
Ω

Wq(x)

λ0

Θ∗(x, ξ)dΩx (3.151)

where

q∗n(x, ξ) = λ0[Θ∗(x, ξ)],ini(x)

=
−λ0

2π

1

r

∂r

∂xi
ni(x) =

−λ0

2π

(xi − ξi)
r2

ni(x) in R2 (3.152)

=
−λ0

4πr2

∂r

∂xi
ni(x) =

−λ0

4π

(xi − ξi)
r3

ni(x) in R3 (3.153)

This integral equation (3.151) contains unknown boundary terms: the heat flux, where
the temperature is prescribed, and the temperature, where the flux is prescribed. In
order to obtain equations which are only dependent on boundary values and can be used
to determine the unknown boundary reactions, the point ξ has to be shifted from the
interior to the boundary Γ.

Then, the kernel Θ∗(x, ξ) and q∗n(x, ξ) in the boundary integral becomes weakly and
strongly singular, respectively, when integration points x coincide with ξ, and, hence, it
is necessary to avoid this. For this purpose, in the two-(three-)dimensional case, a small
ε-intervall Γε ahead and behind (circular region of radius ε around) ξ is cut out on the
boundary line (surface) Γ, and the integration around ξ is performed along a circle line
(on a spherical surface) Γ∗ε with radius ε (with lim ε→ 0):

Θ(ξ) =

∫
Γ−Γε+Γ∗ε

1

λ0

[qn(x)Θ∗(x, ξ)−Θ(x)q∗n(x, ξ)] dΓx +

∫
Ω′

Wq(x)

λ0

Θ∗(x, ξ)dΩx (3.154)

where Ω
′
= Ω− Ωε with Ωε = {x ∈Ω : | x− ξ |≤ε}.

The integrals with the weakly singular kernel Θ∗(x, ξ) can be evaluated as improper
integrals, while those with the strongly singular kernel q∗n(x, ξ) can be determined on
Γ− Γε as Cauchy principal values (see, above the respective section), and on Γ∗ε, one has
to consider two integrals∫

Γ−Γε+Γ∗ε

1

λ0

Θ(x)q∗n(x, ξ)dΓx =

∫
Γ−Γε

1

λ0

Θ(x)q∗n(x, ξ)dΓx + Θ(ξ)
1

λ0

∫
Γ∗ε

q∗n(x, ξ)dΓx

+

∫
Γ∗ε

1

λ0

[Θ(x)−Θ(ξ)]q∗n(x, ξ)dΓx (3.155)

where the second exists as an improper integral delivering zero since the temperature
field is continous while the first one can directly be evaluated. One obtains in R2 with
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∂r/∂n = 1 and dΓx = rdϕ and in R3 with ni(x)dΓx = r,ϕ×r,θdϕdθ (see [1], p.37)

1

λ0

∫
Γ∗ε

q∗n(x, ξ)dΓx =
−1

2π

ϕ2

∫
ϕ1

1

r

∂r

∂n
rdϕ = −ϕ2 − ϕ1

2π
in R2 (3.156)

1

λ0

∫
Γ∗ε

q∗n(x, ξ)dΓx =
−1

4π

∫
Γ∗ε

(xi − ξi)
r3

ni(x)dΓx =
−1

4π

∫ ∫
sinϕdϕdθ in R3(3.157)

where, in R2, ϕ2−ϕ1 means the ’external angle’ of the boundary Γ at the point ξ, i.e., the
difference of the outer normal direction at the beginning and at the end of Γ∗ε. Finally,
one obtains from (3.154) the following boundary integral equation:

∆Ω(ξ)

2π
Θ(ξ) =

∫
Γ−Γε

1

λ0

[qn(x)Θ∗(x, ξ)−Θ(x)q∗n(x, ξ)] dΓx +

∫
Ω′

Wq(x)

λ0

Θ∗(x, ξ)dΩx

(3.158)
where for Ω in R2, ∆Ω(ξ) = 2π − (ϕ2 − ϕ1) means the internal angle of Γ at the point ξ,
i.e., ∆Ω(ξ) = π for all points ξ besides for corner points while for Ω in R3, ∆Ω(ξ) means
the inner solid angle, i.e., ∆Ω(ξ) = 2π for all points ξ besides for points at corners and
edges.

3.2.1.2 Stationary sound radiation - a Helmholtz equation

Adding to (or subtracting from) the Laplace operator ∆ a constant factor κ2 gives the
so-called Helmholtz operator, e.g., for the stationary sound radiation problem

∆p(x) + κ2p(x) = −b(x) = +icκρ0a(x) (3.159)

where p(x) is the sound pressure distribution when considering time-harmonic processes,
the so-called wave number κ = ω/c with the excitation frequency ω and the sound speed
c in the considered medium (air, water, a.s.o) with the density ρ0, and a(x) is the sound
source intensity distribution.

Remark: In general, the Helmholtz equation is the result of a resolution in the Fourier
domain or in the Laplace domain of a transient dynamical problem, or is decribing the
response to steady-state excitations assuming that a permanent regime has been reached.
In any case, the field variables are time-harmonic with a fixed angular frequency ω, i.e.,
of the form

p(x, t) = R[p̂(x)e−iωt] (3.160)

where p̂(x) is a complex-valued function which encodes amplitude and phase information.
In the sequel, following the traditional convention, the factor eiωt is systematically omitted
and the notation p(x) is used instead of p̂(x).

Associated boundary conditions may involve either a fixed given sound pressure (a
so-called Dirichlet boundary condition) at a part of the boundary Γ

p(x) = p̄(x) for x ∈Γ1 (3.161)



62 3 Transformation of Differential Equations to Integral Equations

or a prescribed sound flux through a boundary part (a so-called Neumann boundary
condition):

q(x) =
∂p(x)

∂n(x)
= q̄(x) für x ∈Γ2 (3.162)

where n(x) is the outward normal unit vector, or a certain connexion between both can
be described.

The boundary condition p = 0 models a ’free’ surface, e.g., the free surface of a water
domain when gravity waves are neglected, while q = 0 describes the complete reflexion
of an incoming pressure wave. A boundary condition q(x) = q̄(x) 6= 0 means a ’sound
production’ with a prescribed spatial change of intensity.

A partial reflexion, i.e., a damped reflexion of waves may be described by (i2 = −1)

q(x) = iωAp(x) = iω
1− α
1 + α

1

c
p(x) (3.163)

where the damping coefficient A depends on the reflexion coefficient −1 ≤ α ≤ 1, who
describes the ratio of reflected to incoming pressure wave, i.e., α = 0 means no reflexion
and | α |= 1 a complete reflexion, either symmetric or antimetric corresponding to the
sign of α.

The weighed residual of the Helmholtz equation (3.159) is similar to that of the Poisson
equation (3.147)

∫
Ω

[
∆p(x) + κ2p(x) + b(x)

]
p∗(x, ξ)dΩx = 0 (3.164)

The adequate fundamental soution p∗(x, ξ) is for a real κ (see (2.90) and (2.91))

p∗(x, ξ) = p∗(r) =
1

4πr
e−iκr in R3 (3.165)

p∗(x, ξ) = p∗(r) = − i
4
H

(2)
0 (κr) =

1

2π
K0(iκr) in R2 (3.166)

where H
(2)
0 (kr) is a Hankel function of second kind and order zero, while K0(iκr) is a

modified Besselfunction of order zero (Macdonald function).
Remarks: The derivatives of this Besselfunction are obtained by the following rules (r,k =

∂r/∂xk):

∂K0(iκr)

∂xk
= −iκK1(iκr)

∂r

∂xk
(3.167)

∂2K0(iκr)

∂xk∂xj
= −κ2K0(iκr)r,kr,j +

iκ

r
K1(iκr) {2r,kr,j − δkj} (3.168)

such that with (r,1)2 + (r,2)2 = 1 and δ11 + δ22 = 2 the homogeneous Helmholtz equation is

shown to be satisfied for x 6= ξ:

∆K0(iκr) =
∂2K0(iκr)

∂x2
1

+
∂2K0(iκr)

∂x2
2

= −κ2K0(iκr)
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For (3.168), the following recursion formula have been used:

−2
d

dy
Kn(y) = Kn−1(y) +Kn+1(y)

−2n

y
Kn(y) = Kn−1(y)−Kn+1(y)

which gives by eliminating Kn+1(y)

d

dy
Kn(y) = −Kn−1(y)− n

y
Kn(y),

i.e.,
d

dy
K1(y) = −(K0(y) +

1

y
K1(y))

Hence, one obtains with y =iκr

∂

∂xk
K1(iκr) =

d

dy
K1(y)

∂y

∂xk

= −(K0(y)− 1

y
K1(y))iκr,k

= −(iκK0(iκr)− 1

r
K1(iκr))r,k

The integration by parts of the first integral term in (3.164) is formally identic to
that in the case of the Poisson equation in (3.150) and can, therefore, be transfered (only
the constant factor λ0 has to be taken as 1). Hence, one obtains the following integral
transformation of (3.164)∫

Ω

[
∆p(x) + κ2p(x) + b(x)

]
p∗(x, ξ)dΩx =

∫
Γ

[qn(x)p∗(x, ξ)− p(x)q∗n(x, ξ)] dΓx

+

∫
Ω

p(x)
[
∆p∗(x, ξ) + κ2p∗(x, ξ)

]
dΩx

+

∫
Ω

b(x)p∗(x, ξ)dΩx (3.169)

or, since ∆p∗(x, ξ) + κ2p∗(x, ξ) = −δ(x, ξ) due to the filtering effect of the δ-function

p(ξ) =

∫
Γ

[qn(x)p∗(x, ξ)− p(x)q∗n(x, ξ)] dΓx +

∫
Ω

b(x) p∗(x, ξ)dΩx (3.170)

where the normal derivative of the fundamental solution q∗n(x, ξ) is (see, for R2, (3.167))

q∗n(x, ξ) =
∂p∗(x, ξ)

∂xk
nk(x) = − r,k

4πr2
[1 + iκr] e−iκr in R3 (3.171)

q∗n(x, ξ) =
∂p∗(x, ξ)

∂xk
nk(x) = − iκ

2π
K1(iκr)r,knk(x) in R2 (3.172)
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Since the integral equation (3.170) for the sound pressure at interior points ξ ∈ Ω
contains unknown boundary reaction terms, one needs a boundary integral equation for
their determination. Hence, as for the Poisson equation analysis, ξ has to be shifted on
the boundary Γ, whereby the integral kernels p∗(x, ξ) and q∗n(x, ξ) become weakly and
strongly singular, respectively, for x→ ξ as well in R3 due to the 1/r and 1/r2 behaviour
as in R2 since K0(z)→ − ln(z) and K1(z)→ 1/z.

As already explained in detail in the derivation of (3.158), the weakly singular integral
in (3.170) exists as improper integral while the integral with the strongly singular kernel
q∗n(x, ξ)

∫
Γ−Γε+Γ∗ε

p(x)q∗n(x, ξ)dΓx = ∫
Γ−Γε

p(x)q∗n(x, ξ)dΓx + p(ξ) ∫
Γ∗ε

q∗n(x, ξ)dΓx (3.173)

exists on Γ− Γε as Cauchy principal value, and can be evaluated on Γ∗ε explicitly giving
the same factors as in the Poisson equation case, e.g.:

∫
Γ∗ε

q∗n(x, ξ)dΓx = −∫
Γ∗ε

iκ

2π
K1(iκr)

∂r

∂n
dΓx = − iκ

2π

ϕ2

∫
ϕ1

1

iκε
εdϕ = −ϕ2 − ϕ1

2π
in R2

Finally, one obtains from (3.170) with b(x) = −icκρ0a(x) the boundary integral equation

c(ξ)p(ξ) = ∫
Γ−Γε

[qn(x)p∗(x, ξ)− p(x)q∗n(x, ξ)] dΓx − ∫
Ω′
icκρ0a(x) p∗(x, ξ)dΩx (3.174)

with

c(ξ) =
∆ϕ(ξ)

2π
= 1− ϕ2 − ϕ1

2π
in R2

which is, besides the use of different fundamental solutions, formally almost identic
to(3.158). The main difference to the scalar integral equation for the Poisson equation is
the necessity of calculating with complex numbers.

3.2.1.3 Linear elastostatics - the Navier equations

When the state variables are vectorial states, boundary value problems are described
by systems of partial differential equations. As a representative example, the Navier
equations describing the deformation displacements u(x) of an linearly elastic body under
body forces b(x) are considered here:

µ∆u(x)+(λ+ µ)∇∇ · u(x) = −b(x) (3.175)

where the Lamé constants µ, ν are related to the Young’s modulus E and the Poisson’s
ratio ν by µ = G = E

2(1+ν)
and λ = νE

(1−2ν)(1+ν)
for three-dimensional and plane strain

states and λ = νE
1−ν2 for plane stress states, respectively.

The weighted residual for (3.175) is in indicial notation∫
Ω

[
µ
∂2ui(x)

∂xj∂xj
+(λ+ µ)

∂2uj(x)

∂xj∂xi
+ bi(x)

]
u

(k)
i (x, ξ)dΩx = 0 (3.176)
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where the adequate fundamental solution, the so-called Kelvin solution u
(k)
i (x, ξ) repre-

senting the response to a unit point force b∗i (x) = δ(x− ξ)e(k)
i applied at a given fixed

point ξ ∈ Ω along the k-direction, is given by (note the different definitions of λ in R2

and in R3)

u
(k)
i (x, ξ) =

1

4π

1

2µ+ λ

[
−(3 +

λ

µ
)δik ln r + (1 +

λ

µ
)r,ir,k

]
in R2 (3.177)

=
1

8π

1

2µ+ λ

1

r

[
(3 +

λ

µ
)δik + (1 +

λ

µ
)r,ir,k

]
in R3 (3.178)

For the integration by parts, it is helpful to substitute the Navier equations, which are the
displacement representation of the interior equilibrium to the body forces, by its original
stress-based form

µ
∂2ui(x)

∂xj∂xj
+(λ+ µ)

∂2uj(x)

∂xj∂xi
=
∂σik(x)

∂xk
= −bi(x) (3.179)

since, then, it is easy to perform the first integration by parts:

∫
Ω

∂σij(x)

∂xj
u

(k)
i (x, ξ)dΩx =

∫
Ω

[
[σij(x)u

(k)
i (x, ξ)],j − σij(x)[u

(k)
i (x, ξ)],j

]
dΩx

=

∫
Γ

σij(x)u
(k)
i (x, ξ)nj(x)dΓx −

∫
Ω

σij(x)
∂u

(k)
i (x, ξ)

∂xj
dΩx

=

∫
Γ

Ti(x)u
(k)
i (x, ξ)dΓx −

∫
Ω

σij(x)
∂u

(k)
i (x, ξ)

∂xj
dΩx (3.180)

where Ti = σijnj is the so-called traction vector.

From the definition of the strain tensor εij = 0.5(ui,j + uj,i), one obtains due to
the symmetry of the stress tensor σij, the symmetry of the elastic constitutive law for
isotropic material σij = 2µεij+λδijεll, and the reciprocity with its inverse form εij = (σij−
λδijσll/(2µ + 3λ))/2µ and εij = (σij − λδijσll/(2µ + 2λ))/2µ in 3D and 2D, respectively,
i.e., σ∗ijεij = ε∗ijσij

σij(x)
∂u

(k)
i (x, ξ)

∂xj
= σij(x)

1

2

(
∂u

(k)
i (x, ξ)

∂xj
+
∂u

(k)
j (x, ξ)

∂xi

)
= σij(x)ε

(k)
ij (x, ξ)

= εij(x)σ
(k)
ij (x, ξ) =

∂ui(x)

∂xj
σ

(k)
ij (x, ξ) (3.181)



66 3 Transformation of Differential Equations to Integral Equations

which allows the second integration by parts of the remaining domain integral∫
Ω

∂ui(x)

∂xj
σ

(k)
ij (x, ξ) dΩx =

∫
Ω

[
[ui(x)σ

(k)
ij (x, ξ)],j − ui(x)[σ

(k)
ij (x, ξ)],j

]
dΩx

=

∫
Γ

ui(x)σ
(k)
ij (x, ξ)nj(x)dΓx −

∫
Ω

ui(x)[σ
(k)
ij (x, ξ)],j dΩx

=

∫
Γ

ui(x)T
(k)
i (x, ξ)dΓx +

∫
Ω

ui(x)δ(x− ξ)e(k)
i dΩx (3.182)

Taking (3.181) into account when substituting (3.182) in (3.180) and in the equivalent
weighted residual form (3.176), respectively, yields with the filtering effect of the δ-function
the integral equation for the displacements at arbitrary interior points ξ ∈ Ω:

uk(ξ) =

∫
Γ

[
Ti(x)u

(k)
i (x, ξ)− ui(x)T

(k)
i (x, ξ)

]
dΓx +

∫
Ω

bi(x)u
(k)
i (x, ξ)dΩx (3.183)

The boundary traction vector T
(k)
i (x, ξ) of the fundamental solution may be determined

by differentiating the fundamental solution (3.177) and (3.178), respectively, via the def-
inition of the strain tensor and the constitutive relations as:

T
(k)
i =

1

2π

1

2µ+ λ

nj
r

(µ(r,kδij − r,iδjk − r,jδik)− 2(µ+ λ)r,ir,jr,k) in R2 (3.184)

=
1

4π

1

2µ+ λ

nj
r2

(µ(r,kδij − r,iδjk − r,jδik)− 3(µ+ λ)r,ir,jr,k) in R3 (3.185)

3.2.1.4 Exercise 12: Strain tensor of the elastostatic fundamental solution

Determine the strain tensor ε
(k)
ij (x, ξ) of the fundamental solution u

(k)
i (x, ξ) (3.178) in R3.

Since the displacement integral equations (3.183) contain unknown boundary reactions
(at each boundary point two and three in R2 and R3, respectively), the arbitrary source
point ξ is placed on the boundary Γ to obtain equations which connects, besides the
known body force domain integral, only boundary terms with each other. Then, the
integral kernels u

(k)
i (x, ξ) and T

(k)
i (x, ξ) become weakly and stronly singular for x = ξ,

respectively, and, similarly, but not identically (see [1], page 71) to the above considered
scalar problems, the weakly singular integrals exists as improper integrals, while the those
with the strongly singular kernel T

(k)
i (x, ξ) produces two contributions: the first are their

Cauchy principal values on Γ−Γε (the remaining part of the boundary contour (surface)
Γ from which the part Γε was cut out by a circle (sphere) of some radius ε, centered at

ξ) and the second is an integral over the singular traction T
(k)
i (x, ξ) itself on Γ∗ε, i.e., on

the outer (outside the domain Ω) part of the contour (surface) of that circle (sphere) with
radius ε which was used for the Cauchy principal value cut-out:

∫
Γ−Γε+Γ∗ε

ui(x)T
(k)
i (x, ξ)dΓx = ∫

Γ−Γε

ui(x)T
(k)
i (x, ξ)dΓx + ui(ξ) ∫

Γ∗ε

T
(k)
i (x, ξ)dΓx (3.186)



3.2 2-d and 3-d problems: Transformation of partial differential equations 67

Since on Γ∗ε the components ni of the outward normal unit vector and those of the deriva-
tive of r are identic, i.e., ni = r,i and, therefore, ∂r/∂n = 1, one obtains in R2 where
(r,1, r,2) = (cosϕ, sinϕ) and dΓx = rdϕ

cki(ξ) = ∫
Γ∗ε

T
(k)
i (x, ξ)dΓx =

−1

2π

1

2µ+ λ
∫
Γ∗ε

1

r
[µδik + 2(µ+ λ)r,ir,k] dΓx

=
−1

2π

1

2µ+ λ

ϕ2

∫
ϕ1

[
µ+ 2(µ+ λ) cos2 ϕ 2(µ+ λ) sinϕ cosϕ
2(µ+ λ) sinϕ cosϕ µ+ 2(µ+ λ) sin2 ϕ

]
dϕ

=
−1

2π


(ϕ2 − ϕ1)δki

+ µ+λ
2µ+λ

1
2

[
sin 2ϕ2 − sin 2ϕ1 − cos 2ϕ2 + cos 2ϕ1

− cos 2ϕ2 + cos 2ϕ1 − sin 2ϕ2 + sin 2ϕ1

]  (3.187)

while in R3 with (r,1, r,2, r,3) = (cosϕ sinϑ, sinϕ sinϑ, cosϑ) and dΓx = r2 sinϑdϑdϕ

cki(ξ) = ∫
Γ∗ε

T
(k)
i (x, ξ)dΓx =

−1

2π

1

2µ+ λ
∫
Γ∗ε

1

r2
[µδik + 3(µ+ λ)r,ir,k] dΓx

=
−1

2π

1

2µ+ λ

ϕ2∫
ϕ1

ϑ2∫
ϑ1

[µδik + 3(µ+ λ)r,ir,k] sinϑdϑdϕ (3.188)

In general, the actual values of these factors dependent on the shape of the actually
considered boundary. But, when the position of ξ is on a smooth boundary region, i.e.,
ϕ2−ϕ1 = π in R2 and ϕ2−ϕ1 = 2π with ϑ2−ϑ1 = π

2
in R3, both above integrals (3.187)

and (3.188) become simply

cki(ξ) =
−1

2
δki (3.189)

Finally, the boundary integral equations for determining unknown boundary reactions
read as (k = 1, 2 in R2 and k = 1, 2, 3 in R3)

[δki + cki(ξ)]ui(ξ) = ∫
Γ−Γε

[
Ti(x)u

(k)
i (x, ξ)− ui(x)T

(k)
i (x, ξ)

]
dΓx + ∫

Ω′
bi(x)u

(k)
i (x, ξ)dΩx

(3.190)

3.2.2 Indirect integral formulations: the singularity method

As already explain for one-dimensional problems, the basic idea of this indirect method is
to introduce intermediary unknowns - unknown intensities of certain singularity
layers. For these singularities, so-called influence functions, i.e., the complete
response to the action of a singularity (e.g., a unit point force) must be known
everywhere in the considered material. Then, these singularity layers are dis-
tributed on a ’fictitious’ boundary Γ+ in a certain small distance dε from the
real boundary Γ outside the domain Ω and their intensities have to be deter-
mined such that the integrated response is equal to the prescribed boundary
values on the real boundary Γ.
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In a second step, when these intensities of the singularities are determined,
the unknown physical boundary reaction as well as corresponding interior
states can easily be found by the same integral equation used in the first step
to find the singularity intensities.

3.2.2.1 Sound pressure and sound flux in stationary acoustics (Helmholtz
equation)

As known, the stationary sound radiation problem is described by the Helmholtz equation
(see (3.159))

∆p(x) + κ2p(x) = −b(x) = +icκρ0a(x) (3.191)

for the sound pressure distribution p(x) and the fundamental solution solving the equation

∆p∗(x, ξ) + κ2p∗(x, ξ) = −δ(x, ξ)

is in R2 (siehe (3.166))

p∗(x, ξ) =
1

2π
K0(iκr) (3.192)

Hence, the influence function decribing the sound pressure at a point x due to a unit point
sound source a(x) = δ(x, ξ) at point ξ is found by comparison to be

(pa) (x, ξ) = −icκρ0
1

2π
K0(iκr) (3.193)

Since the sound flux qn(x) in the direction of the normal vector nk(x) is defined as the
normal derivative of the sound pressure, the corresponding influence function for the
sound flux is determined by (r = |x− ξ|)

(qna) (x, ξ) =
∂ (pa) (x, ξ)

∂xk
nk(x) = −cκ2ρ0

1

2π
K1(iκr)

∂r

∂xk
nk(x) (3.194)

Following the above described idea of the indirect integral equation method, at points
ξ on a fictitious boundary Γ+, which is either enclosing with a certain distance dε the
real boundary Γ or is coincident to Γ, layers of point sources are introduced with such
an intensity a∗(ξ) that the prescribed boundary conditions on the real boundary Γ are
satisfied.

For a sound radiation problem where on one part of the boundary Γ1 the sound pressure
p(x) = p̄(x) and on the remaining part Γ2 the sound flux qn(x) = q̄n(x) is prescribed, and,
moreover, a sound source density ā(x) is acting in the interior of the considered domain
Ω, the two indirect integral equations for determining the unknown point source layer
intensity a∗(ξ) are simply given by

∫
Γ+

(pa) (x, ξ)a∗(ξ)dΓξ + ∫
Ω

(pa) (x, ξ)ā(ξ)dΩξ = p̄(x) for x ∈Γ1

∫
Γ+

(qna) (x, ξ)a∗(ξ)dΓξ + ∫
Ω

(qna) (x, ξ)ā(ξ)dΩξ = q̄n(x) for x ∈Γ2
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which is explicitly

∫
Γ+

K0(iκr)a∗(ξ)dΓξ + ∫
Ω
K0(iκr)ā(ξ)dΩξ =

2πi p̄(x)

cκρ0

for x ∈Γ1(3.195)

nk(x)

[
∫

Γ+

iκK1(iκr)
∂r

∂xk
a∗(ξ)dΓξ + ∫

Ω
iκK1(iκr)

∂r

∂xk
ā(ξ)dΩξ

]
= −2πi q̄n(x)

cκρ0

for x ∈Γ2(3.196)

Since the size of the distance dε of the fictitious boundary Γ+ from the real boundary Γ
has a large effect on the solution if these integral equations have to be solved numerically,
it is mostly better to transfer the fictitious boundary into the real boundary, i.e., dε → 0.
In this case, the influence function (pb) (x, ξ) becomes with K0(iκr) → − ln(iκr) weakly
singular and (qnb) (x, ξ) with K1(iκr)→ 1/(iκr) strongly singular for ξ → x.

Hence, similarly to direct integral equation method, the singular point x = ξ has to
be avoided in the integration on Γ+ → Γ, but different to the handling there, the integral
on Γ+ is only to split into one on Γ+ − Γ+

ε and one on Γ+
ε (while the integration on the

ε-circular arc Γ+∗
ε is dropped here), and, for both contributions, the limit towards Γ− Γε

and Γε is performed.

In the case of the weakly singular integral equation (3.195) for the sound pressure,
the integral on Γ+

ε → Γε gives no contribution such that the equation remains formally
unchanged:

∫
Γ−Γε

K0(iκr)a∗(ξ)dΓξ + ∫
Ω
K0(iκr)ā(ξ)dΩξ =

2πi p̄(x)

cκρ0

for x ∈Γ1 (3.197)

The integral with the strongly singular kernel in the equation (3.196) for the sound flux

nk(x) ∫
Γ+

iκK1(iκr)
∂r

∂xk
a∗(ξ)dΓξ = nk(x) ∫

Γ+−Γ+
ε

iκK1(iκr)
∂r

∂xk
a∗(ξ)dΓξ

+nk(x)a∗(x) ∫
Γ+
ε

iκK1(iκr)
∂r

∂xk
dΓξ

+nk(x) ∫
Γ+
ε

[a∗(ξ)− a∗(x)]iκK1(iκr)
∂r

∂xk
dΓξ(3.198)

is split in three parts where that on Γ+ − Γ+
ε → Γ− Γε exists as Cauchy principal value,

that on Γ+
ε can be analytically integrated while the third one on Γ+

ε → Γε gives zero
assuming at x = ξ a continous intensity a∗(ξ).

Since here, different to the direct integral equations, the normal vector nk(x) ,
(cosϕ, sinϕ) is not that of the integration point ξ, and is only on a smooth boundary
uniquely defined, for the evaluation on Γ+

ε , a smooth boundary Γ+ is assumed which is
in a distance dε parallel to the real boundary Γ. Denoting the distance of the projection
of x on Γ+ from ξ with s, one can express the distance r between x ∈ Γ and ξ ∈ Γ+

by r =
√
s2 + d2

ε and r,i = r,nni + r,sti can be described by (ϕ is the angle between the
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normal direction and the x1-axis)[
r,1
r,2

]
=

1

r

[
x1 − ξ1

x2 − ξ2

]
=

1

r

[
−dε cosϕ− s sinϕ
−dε sinϕ+ s cosϕ

]
= −dε

r

[
n1(x)
n2(x)

]
+
s

r

[
t1(x)
t2(x)

]
(3.199)

Applying this and the approximation of K1(iκr) ≈ 1/(iκr) for small distances r, gives,
since nk(x)nk(x) = 1 and nk(x)tk(x) = 0

nk(x)a∗(x) lim
dε→0

∫
Γ+
ε

iκK1(iκr)
∂r

∂xk
dΓξ = a∗(x)nk(x) lim

dε→0

ε

∫
−ε

{
iκ

1

iκr

{
−dε

r
nk(x)

+ s
r
tk(x)

}}
ds

= −a∗(x) lim
dε→0

{
ε

∫
−ε

dε
s2 + d2

ε

ds

}
= −a∗(x) lim

dε→0

[
arctan

s

dε

]ε
−ε

= −a∗(x) lim
dε→0

[
arctan

ε

dε
− arctan

−ε
dε

]
= −πa∗(x) (3.200)

Finally, the following singular version of (3.196) for satisfying prescribed sound flux con-
ditions is obtained

a∗(x)

2
− nk(x)

2π

[
∫

Γ−Γε

iκK1(iκr)
∂r

∂xk
a∗(ξ)dΓξ + ∫

Ω
iκK1(iκr)

∂r

∂xk
ā(ξ)dΩξ

]
=

iq̄n(x)

cκρ0

for x ∈Γ2

(3.201)
When by solving the two equations (3.197) and (3.201) the adequate intensities a∗(ξ) are
found to represent the prescribed boundary values, the same two equations can be used to
find the unknown boundary reactions p(x) on Γ2 and qn(x) on Γ1 , and the two equations
(3.195) and (3.196) (due to Γ+ → Γ by integration on Γ) for finding the sound pressure
and the sound flux at any interior point x.

3.2.2.2 Displacements and stresses in elastostatics (Navier equations)

The Navier equations (3.175)

µ
∂2ui(x)

∂xj∂xj
+(λ+ µ)

∂2uj(x)

∂xj∂xi
= −bi(x) (3.202)

describe the displacements of an elastic body under its dead weight bi(x) and as a result of
prescribed displacements ui(x) =ūi(x) on a part of the boundary Γ1 and/or of prescribed
boundary tractions Ti(x) = T̄i(x) on the remaining boundary part Γ2.

Besides these, other dynamic or geometric states, e.g., point forces, single moments,
or dislocations, may occur and produce displacements and deformations.

The solutions u
(k)
i (x, ξ) of the equations

µ
∂2u

(k)
i (x, ξ)

∂xj∂xj
+(λ+ µ)

∂2u
(k)
j (x, ξ)

∂xj∂xi
= −b∗i (x, ξ) = −δ(x− ξ)e(k)

i (3.203)
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i.e., the displacements (see (3.177))

u
(k)
i (x, ξ) =

1

4π

1

2µ+ λ

[
−(3 +

λ

µ
)δik ln r + (1 +

λ

µ
)r,ir,k

]
in R2 (3.204)

are the reactions at a point x on a unit point force b∗i (x, ξ) = Fi(x, ξ) = δ(x− ξ)e(k)
i

applied at a given fixed point ξ ∈ Ω along the k-direction. Hence, this fundamental
solution is also a influence function representing displacements due to unit point forces

(uF )i.k (x, ξ) = u
(k)
i (x, ξ) (3.205)

Then, following the idea of the indirect integral equation method, point force layers with
unknown intensity F ∗k (ξ) along the k-direction at points ξ on a fictitious boundary Γ+

enclosing with a distance dε the real boundary Γ are introduced which produce together
with the known prescribed dead weight loading b̄k(ξ), ξ ∈Ω, displacements at points x

ui(x) = ∫
Γ+

(uF )i.k (x, ξ)F ∗k (ξ)dΓξ + ∫
Ω

(uF )i.k (x, ξ)b̄k(ξ)dΩξ (3.206)

For representing prescribed displacements ūi(x) on a part Γ1 of the real boundary Γ, the
intensities F ∗k (ξ) have to satisfy the indirect boundary integral equation:

∫
Γ+

(uF )i.k (x, ξ)F ∗k (ξ)dΓξ + ∫
Ω

(uF )i.k (x, ξ)b̄k(ξ)dΩξ = ūi(x) for x ∈Γ1 (3.207)

When on the remaining part Γ2 = Γ− Γ1 boundary tractions T̄i(x) are prescribed, influ-
ence functions representing boundary tractions are needed which can be determined by
differentiating the displacement influence function (3.205), respectively (3.204), via the
definition of the strain tensor and the constitutive relations (see (3.184))

(TF )i.k (x, ξ) = σ
(k)
ij (x, ξ)nj(x) =

(
2µε

(k)
ij (x, ξ) + λδijε

(k)
ll (x, ξ)

)
nj(x)

=
1

2π

µ

2µ+ λ

1

r

[
r,kδij − r,iδjk − r,jδik
−2(1 + λ

µ
)r,ir,jr,k

]
nj(x) (3.208)

This gives the indirect boundary integral equations for representing boundary tractions
as

∫
Γ+

(TF )i.k (x, ξ)F ∗k (ξ)dΓξ + ∫
Ω

(TF )i.k (x, ξ)b̄k(ξ)dΩξ = T̄i(x) for x ∈Γ2 (3.209)

In this regular version of the indirect boundary equations (3.207) und (3.209) for a
mixed elastostatic boundary value problem, the distance dε between the fictitious bound-
ary Γ+ and the real boundary Γ has a large effect on a numerically determined solution.

Therefore, it is advantageous to shift with dε → 0 the fictitious boundary Γ+ towards
the real boundary Γ. Then, the integral kernels (uF )i.k (x, ξ) and (TF )i.k (x, ξ) become
for ξ → x weakly singular and strongly singular, as ln r and 1/r, respectively.
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Hence, similarly to direct integral equation method, the singular point x = ξ has to
be avoided in the integration on Γ+ → Γ, but different to the handling there, the integral
on Γ+ is only to split into one on Γ+ − Γ+

ε and one on Γ+
ε (while the integration on a

ε-circular arc Γ+∗
ε , equivalent to Γ∗ε in the diect method, is dropped here), and, for both

contributions, the limit towards Γ− Γε and Γε is performed.

In the case of the weakly singular integral equation (3.207) for the displacements,
the integral on Γ+

ε → Γε gives no contribution such that the equation remains formally
unchanged:

∫
Γ−Γε

(uF )i.k (x, ξ)F ∗k (ξ)dΓξ + ∫
Ω

(uF )i.k (x, ξ)b̄k(ξ)dΩξ = ūi(x) for x ∈Γ1 (3.210)

The integral with the strongly singular kernel in the equation (3.209) for the boundary
tractions

∫
Γ+

(TF )i.k (x, ξ)F ∗k (ξ)dΓξ =
nj(x)

2π

µ

2µ+ λ
∫

Γ+

1

r

[
r,kδij − r,iδjk − r,jδik
−2(1 + λ

µ
)r,ir,jr,k

]
F ∗k (ξ)dΓξ(3.211)

= ∫
Γ+−Γ+

ε

(TF )i.k (x, ξ)F ∗k (ξ)dΓξ

+F ∗k (x) ∫
Γ+
ε

(TF )i.k (x, ξ)dΓξ

+ ∫
Γ+
ε

[F ∗k (ξ)− F ∗k (x)] (TF )i.k (x, ξ)dΓξ (3.212)

is split in three parts where that on Γ+ − Γ+
ε → Γ− Γε exists as Cauchy principal value,

that on Γ+
ε can be analytically integrated while the third one on Γ+

ε → Γε gives zero
assuming at x = ξ a continous intensity F ∗k (ξ).

Since here, different to the direct integral equations, the normal vector nk(x) ,
(cosϕ, sinϕ) is not that of the integration point ξ, and is only on a smooth boundary
uniquely defined, for the evaluation on Γ+

ε , a smooth boundary Γ+ is assumed which is
in a distance dε parallel to the real boundary Γ. Denoting the distance of the projection
of x on Γ+ from ξ with s, one can express the distance r between x ∈ Γ and ξ ∈ Γ+ by
r =

√
s2 + d2

ε and r,i = r,nni + r,sti can be described by (see (3.199))

r,i = −dε
r
ni(x)− s

r
ti(x) (3.213)

Following the evaluation in (3.200), one obtains for the essential singular part

lim
dε→0

∫
Γ+
ε

1

r

∂r

∂xk
dΓξ = lim

dε→0

ε

∫
−ε

{
−1

r

[
dε
r
nk(x) +

s

r
tk(x)

]}
ds = −πnk(x) (3.214)
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and with limdε→0 for

∫
Γ+
ε

1

r

∂r

∂xi

∂r

∂xj

∂r

∂xk
dΓξ =

ε

∫
−ε

{
−1

r

[
dε
r
ni(x)

+ s
r
ti(x)

] [
dε
r
nj(x)

+ s
r
tj(x)

] [
dε
r
nk(x)

+ s
r
tk(x)

]}
ds

=
ε

∫
−ε

{
−1

r4

[
d3
εninjnk + d2

εs (ninjtk + nitjnk + tinjnk)
+dεs

2 (nitjtk + tinjtk + titjnk) + s3titjtk

]}
ds

= −



[
sdε

2(d2ε+δ2)
+ 1

2
arctan s

dε

]ε
−ε
ninjnk

+
[
−d2ε
s2+d2ε

]ε
−ε

(ninjtk + nitjnk + tinjnk)

+
[
−sdε

2(s2+d2ε)
+ 1

2
arctan s

dε

]ε
−ε

(nitjtk + tinjtk + titjnk)

+
[

d2ε
s2+d2ε

+ 1
2

ln(s2 + d2
ε)
]ε
−ε
titjtk


= −π

2
{ninjnk + nitjtk + tinjtk + titjnk} for dε → 0 (3.215)

This yields with njnj = 1, tjnj = 0, and nink + titk = δik for

lim
dε→0

∫
Γ+
ε

(TF )i.k (x, ξ)dΓξ =
1

2π

µ

2µ+ λ

{
−π(nkni − nink − njδiknj)

+2(1 + λ
µ
)π

2
(ninjnk + nitjtk + tinjtk + titjnk)nj

}
=

1

2

µ

2µ+ λ

{
δik + (1 +

λ

µ
)(nink + titk)

}
=

1

2
δik (3.216)

Finally, the singular version of the indirect boundary integral equation for the boundary
tractions is obtained to be

1

2
F ∗i (x) + ∫

Γ−Γε

(TF )i.k (x, ξ)F ∗k (ξ)dΓξ + ∫
Ω

(TF )i.k (x, ξ)b̄k(ξ)dΩξ = T̄i(x) for x ∈Γ2

(3.217)
Are the singularity layer intensities F ∗k (ξ) determined by solving the integral equations
(3.210) and (3.217), in a second step, the unknown boundary reactions, i.e., ui(x) for
x ∈Γ2 and Ti(x) for x ∈Γ1 can easily found be evaluating the integral equations (3.210)
and (3.217), respectively.

Then, it is also possible to analyse the stresses at interior points by evaluating with
the determined intensities F ∗k (ξ) the integral relation

σij(x) = ∫
Γ

(σF )ij.k (x, ξ)F ∗k (ξ)dΓξ + ∫
Ω

(σF )ij.k (x, ξ)b̄k(ξ)dΩξ for x ∈Ω (3.218)

where the influence function (σF )ij.k (x, ξ) for the stresses is easily found from that of the
boundary tractions (3.208) to be

(σF )ij.k (x, ξ) =
1

2π

µ

2µ+ λ

1

r

(
r,kδij − r,iδjk − r,jδik − 2(1 +

λ

µ
)r,ir,jr,k

)
. (3.219)
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3.2.3 Integral formulation with Green’s functions

As defined above, the so-called Green’s function G∗(x, ξ) of a boundary value problem is
a special fundamental solution, i.e.,

L(D)G∗(x, ξ) = δ(x, ξ)

which satisfies homogeneous conditions for those boundary states which are prescribed in
the actual problem, i.e.,

E(G∗(x, ξ)) = 0 for x ∈Γ1

N(G∗(x, ξ)) = 0 for x ∈Γ2

The meaning of this definition shall now be demonstrated for some explicit problems.

3.2.3.1 Temperature distribution in stationary heat conduction

As described above in equation (3.158), the direct form of the integral equation for the
temperature Θ(ξ) on the boundary, i.e., for ξ ∈ Γ, reads

∆Ω(ξ)

2π
Θ(ξ) = −

∫
Γ−Γε

1

λ0

[qn(x)Θ∗(x, ξ)−Θ(x)q∗n(x, ξ)] dΓx −
∫
Ω

Wq(x)

λ0

Θ∗(x, ξ)dΩx

(3.220)
while it is given in the interior, i.e., at points ξ ∈ Ω (see equation (3.151)) by

Θ(ξ) = −
∫
Γ

1

λ0

(qn(x)Θ∗(x, ξ)−Θ(x)q∗n(x, ξ)) dΓx −
∫
Ω

Wq(x)

λ0

Θ∗(x, ξ)dΩx (3.221)

When the actual boundary value problem is defined by a prescribed temperature Θ(x) =Θ̄(x)
on a part of the boundary Γ1 and/or of prescribed temperature flux qn(x) = q̄n(x) on the
remaining boundary part Γ2, the more detailed form of (3.226)

Θ(ξ) = −
∫
Γ1

1

λ0

[
qn(x)Θ∗(x, ξ)− Θ̄(x)q∗n(x, ξ)

]
dΓx −

∫
Γ2

1

λ0

[q̄n(x)Θ∗(x, ξ)−Θ(x)q∗n(x, ξ)] dΓx

−
∫
Ω

Wq(x)

λ0

Θ∗(x, ξ)dΩx (3.222)

shows explicitly the unknown boundary reactions qn(x) on Γ1 and Θ(x) on Γ2. Hence,
it is obvious that the temperature Θ(ξ) could directly be determined by this integral if
the respective integrands containing unknowns would be zero, i.e., if one finds a special
fundamental solution G(x, ξ) which satisfies additionally the conditions

G(x, ξ) = 0 for x ∈Γ1 and qn(G(x, ξ)) = 0 for x ∈Γ2 (3.223)
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Then, the temperature at any interior point ξ ∈ Ω is expressed by

Θ(ξ) =

∫
Γ1

1

λ0

Θ̄(x)qn(G(x, ξ))dΓx−
∫
Γ2

1

λ0

q̄n(x)G(x, ξ)dΓx−
∫
Ω

Wq(x)

λ0

G(x, ξ)dΩx (3.224)

without determining first the unknown boundary reactions by solving the boundary inte-
gral equation (3.225).

3.2.3.2 Sound pressure in stationary acoustics

As described above in equation (3.174), the direct form of the integral equation for the
sound pressure p(ξ) on the boundary, i.e., for ξ ∈ Γ, reads

∆ϕ(ξ)

2π
p(ξ) =

∫
Γ−Γε

[qn(x)p∗(x, ξ)− p(x)q∗n(x, ξ)] dΓx + ∫
Ω
b(x) p∗(x, ξ)dΩx (3.225)

while it is given in the interior, i.e., at points ξ ∈ Ω (see equation (3.170)) by

p(ξ) =

∫
Γ

[qn(x)p∗(x, ξ)− p(x)q∗n(x, ξ)] dΓx +

∫
Ω

b(x) p∗(x, ξ)dΩx (3.226)

When the actual boundary value problem is defined by a prescribed pressure p(x) =p̄(x)
on a part of the boundary Γ1 and/or of prescribed sound flux qn(x) = q̄n(x) on the
remaining boundary part Γ2, the more detailed form of (3.226)

p(ξ) =

∫
Γ1

[qn(x)p∗(x, ξ)− p̄(x)q∗n(x, ξ)] dΓx +

∫
Γ2

[q̄n(x)p∗(x, ξ)− p(x)q∗n(x, ξ)] dΓx

+

∫
Ω

b(x) p∗(x, ξ)dΩx (3.227)

shows explicitly the unknown boundary reactions qn(x) on Γ1 and p(x) on Γ2. Hence, it
is obvious that the sound pressure p(ξ) could directly be determined by this integral if
the respective integrands containing unknowns would be zero, i.e., if one finds a special
fundamental solution G(x, ξ) which satisfies additionally the conditions

G(x, ξ) = 0 for x ∈Γ1 and qn(G(x, ξ)) = 0 for x ∈Γ2 (3.228)

Then, the sound pressure at any interior point ξ ∈ Ω is expressed by

p(ξ) = −∫
Γ1

p̄(x)qn(G(x, ξ))dΓx + ∫
Γ2

q̄n(x)G(x, ξ)dΓx + ∫
Ω
b(x)G(x, ξ)dΩx (3.229)

without determining first the unknown boundary reactions by solving the boundary inte-
gral equation (3.225).
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3.2.3.3 Displacements in elastic bodies

As described above in equation (3.190), the direct form of the integral equation for dis-
placements ui(ξ) on the boundary, i.e., for ξ ∈ Γ, reads

[δki + cki(ξ)]ui(ξ) = ∫
Γ−Γε

[
Ti(x)u

(k)
i (x, ξ)− ui(x)T

(k)
i (x, ξ)

]
dΓx + ∫

Ω′
bi(x)u

(k)
i (x, ξ)dΩx

(3.230)
while for interior displacements ui(ξ) with ξ ∈ Ω holds (see equation (3.183))

uk(ξ) =∫
Γ

[
Ti(x)u

(k)
i (x, ξ)− ui(x)T

(k)
i (x, ξ)

]
dΓx + ∫

Ω
bi(x)u

(k)
i (x, ξ)dΩx (3.231)

When the boundary value problem is defined by prescribed displacements ui(x) =ūi(x)
on a part of the boundary Γ1 and/or of prescribed boundary tractions Ti(x) = T̄i(x) on
the remaining boundary part Γ2, the more detailed form of (3.183)

uk(ξ) = ∫
Γ1

[
Ti(x)u

(k)
i (x, ξ)− ūi(x)T

(k)
i (x, ξ)

]
dΓx + ∫

Γ2

[
T̄i(x)u

(k)
i (x, ξ)− ui(x)T

(k)
i (x, ξ)

]
dΓx

+∫
Ω
bi(x)u

(k)
i (x, ξ)dΩx (3.232)

shows the unknown boundary reactions Ti(x) on Γ1 and ui(x) on Γ2. Hence, it is obvious
that the displacements uk(ξ) could directly be determined by these integrals if the respec-
tive integrands containing unknowns would be zero, i.e., if one finds a special fundamental
solution G

(k)
i (x, ξ) which satisfies additionally the conditions

G
(k)
i (x, ξ) = 0 for x ∈Γ1 and Ti(G

(k)
j (x, ξ)) = 0 for x ∈Γ2 (3.233)

Then, the displacement at any position ξ ∈ Ω is determined by

uk(ξ) = −∫
Γ1

ūi(x)Ti(G
(k)
j (x, ξ))dΓx + ∫

Γ2

T̄i(x)G
(k)
i (x, ξ)dΓx

+∫
Ω
bi(x)G

(k)
i (x, ξ)dΩx (3.234)



4 Numerical solution of boundary integral
equations: The boundary element method

In the case of two- and three-dimensional problems, in general, boundary integral equa-
tions can only approximatively be solved, i.e., approximations have to be introduced for
the boundary and/or the state functions, integrations are performed numerically and not
analytically, the integral equations are satisfied only pointwise (i.e., point collocation ),
and, finally, the resulting system of algebraic equations is solved also only numerically
either by a direct solver (Gauss elimination) or iteratively.

These steps are explained in the following sections.

4.1 Approximation of the boundary and of boundary

states

The first discretization step is the partition of the boundary curve Γ in non-intersecting
so-called boundary elements Γe (e = 1, ..,m) by introducing on the boundary so-called
node points xle (l = 1, .., n) where the nodes on the interface between two neighbour
elements Γe and Γe+1 have the same coordinates but different node indices, e.g., xne =
x1e+1 in R2.

Inside these elements, both the boundary curve (if it is not straight) and the state
functions of the boundary value problem have to be approximated usually by polynoms
as exact as wanted or needed. The polynomial order for approximating the geometry and
the boundary states may be different; if these orders are chosen to be equal, one uses a
so-called isoparametric concept.

Remark: Of course, exactly the same considerations led in past to the concepts and tech-

niques now commonly used in finite element methods. The usual concept of boundary elements

is a mere transposition of that of a finite element and, hence, based on the use of nodes and

shape functions.

4.1.1 On boundary curves in R2

For the geometric approximation of the boundary, usually a mapping of each physical
boundary element Γe onto a parent element ∆e in a parameter space is introduced where
the parent element assumes a simple shape, i.e., a line segment η ∈ [0, 1] or η ∈ [−1, 1]:

η ∈ ∆e → xe(η) =
n∑
l=1

xleNn
l (η) with 0 ≤ η ≤ 1 (4.1)

77
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where the index l (1 ≤ l ≤ n) defines the local numbering of the nodes on element e.
The n shape functions, usually of polynomial type and at least linear, since the boundary
approximation should be continous, are subjected to the following restrictions:

Nn
p (ηq) = δpq and

n∑
l=1

Nn
l (η) = 1 ∀η ∈ ∆e (4.2)

where ηq ∈ ∆e is the antecedent of the physical node xqe. Of course, the specific choice of
shape functions and the number n of nodes defining the element are related, e.g.,

for a linear approximation is n = 2 with initial and end node x1e and x2e, respectively,
the shape functions are defined as

N2
1 (η) = 1− η; N2

2 (η) = η for η ∈ ∆e = [0, 1] (4.3)

and the boundary element is approximated by

xe(η) = x1e(1− η) + x2eη (4.4)

for a quadratic approximation is n = 3 with initial, middle, and end node x1e
i , x2e

i

and x3e
i , respectively, the shape functions are

N3
1 (η) = (1− η)(1− 2η);

N3
2 (η) = 4η(1− η);

N3
3 (η) = η(2η − 1) for η ∈ ∆e = [0, 1] (4.5)

and the boundary element is approximated by

xe(η) = x1e(1− η)(1− 2η) + x2e4η(1− η) + x3eη(2η − 1) (4.6)

Remark: It should be mentioned that on a straight boundary element when x2e
i is taken

to be the central node, i.e., is taken as the arithmetic mean of the initial and the end
node coordinates, x2e = 0.5(x1e + x3e), the quadratic approximation (4.6) is reduced to

xe(η) = x1e(1− η)(1− 2η) + 0.5(x1e + x3e)4η(1− η) + x3eη(2η − 1)

= x1e(1− η) + x3eη

i.e., to the linear approximation (4.4)

4.1.1.1 Exercises 13: Shape functions with the local coordinate −1 ≤ η ≤ 1

Determine the linear and the quadratic shape functions (corresponding to (4.3) and (4.5),
respectively) when the local coordinate η is defined in the range −1 ≤ η ≤ 1.

In the same way, the boundary states of the problem can be approximated by
shape functions in the local coordinate η, but, here, it is not necessary to guarantee a
continuous approximation across the elements; sometimes it is even necessary to simulate
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discontinuities, e.g., when one element is loaded by constant tractions and the next is
unloaded. Hence, besides the above introduced linear and quadratic shape functions (4.3)
and (4.5), respectively, a single middle node x1e

i and the constant shape function (n = 1)

N1
1 (η) = 1 (4.7)

can be used to approximate a boundary state Φ(x).
This means that a boundary state Φ(xi) may be approximated in a boundary element

Γe as

Φ(xei (η)) = Φe(η) =
n∑
l=1

ΦleNn
l (η) with 0 ≤ η ≤ 1. (4.8)

where n indicates the number of applied nodes per element.

4.1.2 On boundary surfaces in R3

Again, the first step is to divide the boundary surface Γ into m, in general, curved either
quadrilateral or triangular surface elements Γe by introducing on the boundary surface
node points xle (l = 1, ..., n) where l defines the local numbering of the nodes on the
element. The position of a point on Γe is expressed by

xe(η1, η2) =
n∑
l=1

xleNn
l (η1, η2) (4.9)

with the given nodal position vectors xle multiplied by appropriate shape functionsNn
l (η1, η2)

with local coordinates (η1, η2) lying in the range (−1, 1) or (0, 1). Every shape function
has unit value at its associated node and zero value at all other nodes.

Remark: These shape functions have been developed in the Finite Element Method
and taken over into the Boundary Element Method.

The parameters (η1, η2) define a plane and the curved element is thus mapped, for
quadrilateral elements onto a square in this plane. An element represented linearly in each
of the local coordinates η1 and η2 is specified by four given nodal values xle (l = 1, ..., 4)
each of which has an associated shape function N4

l (η1, η2). The following Table shows the
shape functions for the four node so-called serendipity element in the range (−1, 1):

xle (η1, η2) N4
l (η1, η2)

x1e (1, 1) (1 + η1)(1 + η2)/4
x2e (−1, 1) (1− η1)(1 + η2)/4
x3e (−1,−1) (1− η1)(1− η2)/4
x4e (1,−1) (1 + η1)(1− η2)/4

(4.10)

It can easily be seen that, e.g., N4
1 (η1, η2) is 1 when η1 = 1 and η2 = 1, that is at node

x1e, while N4
1 (η1, η2) = 0 when either η1 = −1 or η2 = −1, and hence it is zero at nodes

x2e, x3e, and x4e.
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When the variation with respect to each of the local coordinates shall be quadratic,
one needs eight nodes, i.e.,

xe(η1, η2) =
8∑
l=1

xleN8
l (η1, η2) (4.11)

and the following shape functions in the range (−1, 1)

xle (η1, η2) N8
l (η1, η2)

x1e (1, 1) (1 + η1)(1 + η2)(η1 + η2 − 1)/4
x2e (−1, 1) (1− η1)(1 + η2)(η1 − η2 − 1)/4
x3e (−1,−1) −(1− η1)(1− η2)(η1 + η2 + 1)/4
x4e (1,−1) −(1 + η1)(1− η2)(η1 − η2 + 1)/4
x5e (1, 0) (1 + η1)(1− η2

2)/2
x6e (0, 1) (1− η2

1)(1 + η2)/2
x7e (−1, 0) (1− η1)(1− η2

2)/2
x8e (0,−1) (1− η2

1)(1− η2)/2

(4.12)

Checks confirm the wanted shape function properties, that is of having unit value at their
’own’ node and zero at other nodes. e.g., the shape function N8

3 (η1, η2) associated with
the node x3e gives at (−1,−1)

N8
3 (−1,−1) = −(1 + 1)(1 + 1)(−1− 1 + 1)/4 = 1

and evaluated at (1, 1)

N8
3 (1, 1) = −(1− 1)(1− 1)(1 + 1 + 1)/4 = 0

Similarly, the values of N8
3 at the remaining nodes are all zero.

An approximation using triangular elements and being linear in each of the local
coordinates η1 and η2 needs only three nodes, the three corner nodes of the triangle

xe(η1, η2) =
3∑
l=1

xleN3
l (η1, η2) (4.13)

where the shape functions associated with these corner nodes are dependent on the range
(−1,+1) or (0,+1) of the local coordinates (η1, η2) defined as

xle (η1, η2) N3
l (η1, η2)

x1e (1,−1) (1 + η1)/2
x2e (−1, 1) (1 + η2)/2
x3e (−1,−1) −(η1 + η2)/2

or

xle (η1, η2) N3
l (η1, η2)

x1e (1, 0) η1

x2e (0, 1) η2

x3e (0, 0) 1− η1 − η2

(4.14)

Obviously, this simple three node triangular element produces planar approximations.
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For curved surfaces, six node triangular elements with the associated quadratic shape
functions N6

l (η1, η2), (l = 1, 2, ..., 6) on the range (−1,+1)

xle (η1, η2) N6
l (η1, η2)

x1e (1,−1) η1(1 + η1)/2
x2e (−1, 1) η2(1 + η2)/2
x3e (−1,−1) (η1 + η2)(η1 + η2 + 1)/2
x4e (0, 0) (1 + η1)(1 + η2)
x5e (−1, 0) −(1 + η2)(η1 + η2)
x6e (0,−1) −(η1 + 1)(η1 + η2)

(4.15)

are more appropriate.
In the same way as the element surface, the boundary states of the problem can be

approximated by shape functions in the local coordinates η1 and η2, but, here, it is not
necessary to guarantee a continuous approximation across the elements; sometimes it is
even necessary to simulate discontinuities, e.g., when one element is loaded by constant
tractions and the next is unloaded. Hence, besides the above introduced bilinear and
biquadratic shape functions (4.10) and (4.12), respectively, for quadrilateral elements and
(4.14) and (4.15), respectively, for triangular elements, a single middle node x1e

i and the
constant shape function (n = 1)

N1
1 (η1, η2) = 1 (4.16)

can be used to approximate a boundary state Φ(x).
Remark: It should be mentioned that, as in the Finite Element Method, also higher

order discontinuous elements are possible, e.g., a four-node discontinuous quadrilateral
element with the shape functions (for more details, see [9])

xle (η1, η2) N4
l (η1, η2)

x1e (1
2
, 1

2
) (1 + 2η1)(1 + 2η2)/4

x2e (−1
2
, 1

2
) (1− 2η1)(1 + 2η2)/4

x3e (−1
2
,−1

2
) (1− 2η1)(1− 2η2)/4

x4e (1
2
,−1

2
) (1 + 2η1)(1− 2η2)/4

(4.17)

Hence, a boundary state Φ(xi) may be approximated in a boundary element Γe as

Φ(xei (η1, η2)) = Φe(η1, η2) =
n∑
l=1

ΦleNn
l (η1, η2) (4.18)

where n indicates the number of applied nodes.

4.2 Integration over boundary elements

After the first step, the discretization of the boundary in boundary elements, the integrals
over the whole boundary Γ are decomposed into a sum of m integrals over single elements
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Γe. As a consequence of the next steps, the elementwise approximation of the boundary
geometry and of the boundary states, the integration over the boundary elements has to
take into account the actually applied approximation schemes. This will be described in
the following sections.

4.2.1 Elements on boundary curves

When integrating along the boundary curve Γ, in each boundary element Γe, the mapping
between the global physical coordinates x and the local coordinate η has to be taken into
account by

dΓx =

√
(
dxe1
dη

)2 + (
dxe2
dη

)2dη = | J(η) | dη (4.19)

where | J(η) | is the so-called Jacobian. For a straight boundary element with linear
approximation is

dxei
dη

= x1e
i (−1) + x2e

i (+1) = x2e
i − x1e

i (4.20)

which results with the element length le

| J(η) | =
√

(x2e
1 − x1e

1 )2 + (x2e
2 − x1e

2 )2 = le

so that in this case
dΓx = ledη (4.21)

For a parabolic boundary element with quadratic boundary approximation (4.5) is

dxei
dη

= x1e
i (−3 + 4η) + x2e

i (4− 8η) + x3e
i (−1 + 4η) (4.22)

and, hence, the Jacobian | J(η) | (see, (4.19)) becomes rather complicated and analytical
integration are rarely possible.

When a boundary element Γe of a two-dimensional domain is circular with a curvature
radius Re and the coordinates’ center of the circumference xei0, the coordinates of a generic
point along the element can be expressed by means of these 3 parameters as a function
of the angle ϕ (between the x1-axis and the radial vector xe − xe0) in the form

xe1 = Re cosϕ+ xe10 (4.23)

xe2 = Re sinϕ+ xe20 (4.24)

Representing the angle ϕ by quadratic shape functions in the local coordinate η

ϕ(η) = N3
1 (η)ϕe1 +N3

2 (η)ϕe2 +N3
3 (η)ϕe3 (4.25)

where ϕ1, ϕ2,and ϕ3 is the angle of the initial node, of an inner node, and of the end node,
respectively, on the circular element, gives the quadratic expression

ϕ(η) = De
3η

2 + Ee
3η + F e

3 (4.26)
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Dependent on the definition range of η, these coefficients are

De
3 = 2(ϕe1 − 2ϕe2 + ϕe3), Ee

3 = −3ϕe1 + 4ϕe2 − ϕe3, F e
3 = ϕe1 for 0 ≤ η ≤ 1 (4.27)

De
3 = 0.5(ϕe1 − 2ϕe2 + ϕe3), Ee

3 = 0.5(ϕe3 − ϕe1), F e
3 = ϕe2 for − 1 ≤ η ≤ 1 (4.28)

The quadratic relation (4.26) between ϕ and η allows also an explicit definition of η as a
function of ϕ

η =

{
1

2D3

(
−E3 +

√
E2

3 − 4D3(F3 − ϕ)
)

for D3 6= 0
1
E3

(ϕ− F3) for D3 = 0
(4.29)

where D3 = 0 means ϕ2 = 0.5(ϕ1 + ϕ3), i.e., the node with the angle ϕ2 has the same
distance to the initial node of the circular element with the angle ϕ1 and to the end node
with the angle ϕ3.

The Jacobian of this transformation is calculated via

dxe1
dη

=
dxe1
dϕ

dϕ

dη
= −Re sinϕ (2De

3 + Ee
3)

dxe2
dη

=
dxe2
dϕ

dϕ

dη
= Re cosϕ (2De

3 + Ee
3)

to be

J(η) =

√
(
dxe1
dη

)2 + (
dxe2
dη

)2 = Re (2De
3 + Ee

3) for D3 6= 0 (4.30)

= ReEe
3 for D3 = 0 (4.31)

Hence, when D3 = 0, the Jacobian is simply equal to the length of the circular element:
J(η) = ∆se = Re(ϕe3−ϕe1) for 0 ≤ η ≤ 1, or to the half of it: J(η) = 1

2
∆se = Re 1

2
(ϕe3−ϕe1)

for −1 ≤ η ≤ 1.
When the angle ϕ is represented by linear shape functions in the local coordinate η

ϕ(η) = N2
1 (η)ϕe1 +N2

2 (η)ϕe2 (4.32)

where ϕ1 and ϕ2 is the angle between the outer normal vector at the initial node, at an
inner node, and at the end node, respectively, on the circular element and the x1-axis,
this linear expression is

ϕ(η) = Ee
2η + F e

2 (4.33)

with

Ee
2 = ϕe2 − ϕe1, F e

2 = ϕe1 for 0 ≤ η ≤ 1

Ee
2 = 0.5(ϕe2 − ϕe1), F e

2 = 0.5(ϕe2 + ϕe1) for − 1 ≤ η ≤ 1

From (4.33) one obtains

η =
ϕ− F e

2

Ee
2
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and the Jacobian of this linear transformation with

dxe1
dη

=
dxe1
dϕ

dϕ

dη
= −Re sinϕEe

2,
dxe2
dη

=
dxe2
dϕ

dϕ

dη
= Re cosϕEe

2

as
J(η) = ReEe

2 (4.34)

Hence, as in the case of the quadratic approximation for the choice D3 = 0, the Jacobian
is simply equal to the length of the circular element: J(η) = ∆se = Re(ϕe2 − ϕe1) for
0 ≤ η ≤ 1, or to the half of it: J(η) = 1

2
∆se = Re 1

2
(ϕe2 − ϕe1) for −1 ≤ η ≤ 1.

A boundary integral with the kernel g(x, ξ) and the state variable Φ(x) over a boundary
element Γe is then transformed into an integral over the local coordinate η as:

∫
Γe

g(x, ξ)Φ(x)dΓx =
1

∫
η=0

g(xe(η), ξ)
n∑
l=1

ΦleNn
l (η) | J(η) | dη

=
n∑
l=1

Φle

{
1

∫
η=0

g(xe(η), ξ)Nn
l (η) | J(η) | dη

}
(4.35)

For points ξ in a different boundary element Γe
′
, e
′ 6= e, the integrand of (4.35) is regular

for all possible kernels g(x, ξ) so that those integrals can be numerically evaluated by a
Gaussian quadrature formula

1

∫
η=0

g(xe(η), ξ)Nn
l (η) | J(η) | dη =

1

∫
η=0

fnel (η)dη =
∑
p

fnel (ηp)wp (4.36)

The number of Gaussian points with the abscissae ηp and the weights wp is dependent on
the distance of the point ξ from the integration element Γe, generally, between 4 and 10
Gaussian points are taken.

Coincides the point ξ with one of the nodes xle of the considered boundary element Γe,
most of the integral kernels become either weakly singular or strongly singular, some even
hypersingular. Such integrals should be integrated analytically if possible (see Appendix
B).

4.2.2 Elements on boundary surfaces

When integrating over a boundary surface Γ, in each boundary element Γe, the mapping
between the global physical coordinates x and the local coordinates η1 and η2 has to be
taken into account by the surface Jacobian which relates the element of area dΓx on the
surface to the element of area dη1dη2 in the local parameter domain

dΓx =| J(η1, η2) | dη1dη2 (4.37)

The surface will contain lines corresponding to constant values of the local coordinates η1

and η2. Moving along the constant η1-coordinate line from (η1, η2) to (η1, η2 +dη2) results
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in a point x(η1, η2 + dη2) with the approximative position vector

x(η1, η2 + dη2) = x(η1, η2) +
∂x

∂η2

dη2 +O((dη2)2)

and similarly, moving along a constant η2-coordinate line gives

x(η1 + dη1, η2) = x(η1, η2) +
∂x

∂η1

dη1 +O((dη1)2)

Hence, the vectors along the sides of the surface element of area dΓx are

x(η1, η2 + dη2)− x(η1, η2) =
∂x

∂η2

dη2 +O((dη2)2)

x(η1 + dη1, η2)− x(η1, η2) =
∂x

∂η1

dη1 +O((dη1)2)

To the first order, the surface area will be plane and dΓx is thus given by the formula from
vector calculus relating the area of a plane rectangle to the cross product of the vectors
on its sides:

dΓx = | ∂x

∂η1

dη1×
∂x

∂η2

dη2 | = | ∂x

∂η1

× ∂x

∂η2

| dη1dη2 (4.38)

By comparison with (4.37), the surface Jacobian is

| J(η1, η2) | = | ∂x

∂η1

× ∂x

∂η2

| (4.39)

Since the cross product may be expanded as (see (2.11)

∂x

∂η1

× ∂x

∂η2

= ê1

∣∣∣∣∣ ∂x2
∂η1

∂x3
∂η1

∂x2
∂η2

∂x3
∂η2

∣∣∣∣∣− ê2

∣∣∣∣∣ ∂x1
∂η1

∂x3
∂η1

∂x1
∂η2

∂x3
∂η2

∣∣∣∣∣+ ê3

∣∣∣∣∣ ∂x1
∂η1

∂x2
∂η1

∂x1
∂η2

∂x2
∂η2

∣∣∣∣∣
= ê1m11 + ê2m12 + ê3m13

where mij are the minors of ∂x
∂η1
× ∂x
∂η2

. Thus

| J(η1, η2) | = | ∂x

∂η1

× ∂x

∂η2

| =
√
m2

11 +m2
12 +m2

13 (4.40)

A boundary integral with the kernel g(x, ξ) and the state variable Φ(x) over a boundary
element Γe is then transformed into an integral over the local coordinates η1 and η2, e.g.,
with the range −1 ≤ η1, η2 ≤ 1 as:

∫
Γe

g(x, ξ)Φ(x)dΓx =
1

∫
η1=−1

1

∫
η2=−1

g(xe(η1, η2), ξ)
n∑
l=1

ΦleNn
l (η1, η2) | J(η1, η2) | dη1dη2

=
n∑
l=1

Φle

{
1

∫
η1=−1

1

∫
η2=−1

g(xe(η1, η2), ξ)Nn
l (η1, η2) | J(η1, η2) | dη1dη2

}
(4.41)
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For points ξ in a different boundary element Γe
′
, e
′ 6= e, the integrand of (4.41) is regular

for all possible kernels g(x, ξ) so that those integrals can be numerically evaluated by a
Gaussian quadrature formula

1

∫
η1=−1

1

∫
η2=−1

g(xe(η1, η2), ξ)Nn
l (η1, η2) | J(η1, η2) | dη1dη2 =

1

∫
η1=−1

1

∫
η2=−1

fnel (η1, η2)dη1dη2

=
∑
p

∑
q

fnel (ap, aq)wpwq (4.42)

The number of Gaussian points with the abscissae ap and the weights wp as well as with
the abscissae aq and the weights wq is dependent on the distance of the point ξ from the
integration element Γe, generally, between 4 and 10 Gaussian points are taken.

Coincides the point ξ with one of the nodes xle of the considered boundary element Γe,
most of the integral kernels become either weakly singular or strongly singular, some even
hypersingular. Such integrals should be integrated analytically if possible (see Appendix
B).

4.3 Boundary element equations by point collocation

A ’direct’ integral equation, e.g., in the case of a scalar boundary value problem (see, e.g.,
(3.158))

c(ξ)Φ(ξ) + ∫
Γ
g(x, ξ)Φ(x)dΓx = ∫

Γ
h(x, ξ)Ψ(x)dΓx (4.43)

with a weakly singular and a strongly singular kernel h(x, ξ) and g(x, ξ), respectively,
will be transformed by partitioning the boundary Γ into elements Γe (e = 1, ...,m), i.e.,
decomposing the integrals over the whole boundary Γ into a sum of m integrals over single
elements Γe

∫
Γ

[....] dΓx =
m∑
e=1

∫
Γe

[....] dΓx (4.44)

and by the approximation of the boundary, i.e., of the boundary coordinates xei (see,
(4.1)), and of the boundary states Φ(x) and Ψ(x) (see (4.8)), as it is shown in (4.35)),
into the following approximate equation

c(ξ)Φ(ξ) = −
m∑
e=1

n∑
l=1

Φle

{
1

∫
η=0

g(xe(η), ξ)Nn
l (η) | J(η) | dη

}
+

m∑
e=1

n∑
l=1

Ψle

{
1

∫
η=0

h(xe(η), ξ)Nn
l (η) | J(η) | dη

}
(4.45)

Remark: In many physical boundary value problems, the state variable Φ(x) is continous

along the whole boundary (e.g., the temperature in the case of heat conduction problems) while

the state Ψ(x) is discontinuous since it is often related to the normal vector which jumps at

corner points. Such discontinuities have to be taken into account in approximating this state.
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The number of unknown node values Φle or Ψle of the shape functions of Φ(x) and
Ψ(x), respectively, in this single equation (4.7) is dependent on the grade (n − 1) of the
applied shape functions: - for constant shape functions, i.e., n = 1, as well as for linear
shape functions, i.e., n = 2, one has m unknowns in the case of a closed smooth contour
(i.e., in the linear case assuming along the whole boundary a continous approximation)
and 2m unknowns for quadratic shape functions, i.e., n = 3, ( again assuming a continous
approximation). Hence, one need m and 2m, respectively, equations for their unique
determination.

The most simple and mostly used way is to evaluate this equation (4.45) at as many
points ξ = xj as one needs where it is advisable and useful to choose for this purpose,
i.e., as these collocation points, the node points xle of the shape functions:

c(xj)Φ(xj) = −
m∑
e=1

n∑
l=1

Φle

{
1

∫
η=0

g(xe(η),xj)Nn
l (η) | J(η) | dη

}
+

m∑
e=1

n∑
l=1

Ψle

{
1

∫
η=0

h(xe(η),xj)Nn
l (η) | J(η) | dη

}
(4.46)

Since for linear and all higher grade approximations (n = 2) the end node of an element
Γe is also the initial node of the sequent element Γe+1, i.e., xne = x1e+1, it is helpful to
introduce a global node numbering xj, j = 1, 2, ..., N , as follows

for n = 2, i.e. N = m : x1 = x11 = x2m, x2 = x21 = x12, x3 = x22 = x13, ...

for n = 3, i.e. N = 2m : x1 = x11 = x3m, x2 = x21, x3 = x31 = x12, ...

4.3.1 Approximation by constant shape functions

Physically not realistic but most simple is an approximation of the state functions by
constant shape functions (n = 1) and collocation at the middle node x1e = xe of each
element Γe.

With N1
1 (η) = 1 one has only one representative value Φ1e = Φe and Ψ1e = Ψe for

the boundary states in each element and (4.46) yields with a linear approximation of the
boundary Γ (i.e., | J(η) |= le)

1

2
Φj =

1

2
Φ(xj) = −

m∑
e=1

Φe

{
1

∫
η=0

g(xe(η),xj)le dη

}
+

m∑
e=1

Ψe

{
1

∫
η=0

h(xe(η),xj)le dη

}
(4.47)

where, due to the collocation at the middle nodes xj of the straight and, therefore, smooth
boundary elements, the factor c(xj) is always c(xj) = 1/2. Finally, one obains with the
matrices

Gje =
1

∫
η=0

g(xe(η),xj)le dη and Hje =
1

∫
η=0

h(xe(η),xj)le dη (4.48)

the following system of m equations for m unknown boundary values
m∑
e=1

(
1

2
δje +Gje

)
Φe =

m∑
e=1

HjeΨ
e for j = 1, 2, ...,m (4.49)
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4.3.1.1 Example: Stationary heat conduction

In the case of a stationary heat conduction problem, the boundary states in (4.49) are
the temperature Θ and the heat flux qn, i.e., Φe , Θe and Ψe , qen , and the kernels
g(xe(η), ξ) , −q∗n(x, ξ)/λ0 = −1

2π
r,n/r and h(xe(η),xj) , −Θ∗(x, ξ)/λ0 = −1

2πλ0
ln(r/c)

(see, (3.152) and (3.148)). Hence, one has to evaluate the following expressions for the
matrices Gje and Hje, respectively, (r1ej = x1e − xj):

Gje =
−1

2π

1

∫
η=0

1

rje(η)

∂rje(η)

∂xi
nei ledη =

len
e
i

2π

1

∫
η=0

x1e
i (1− η) + x2e

i η − x
j
i

r2
je(η)

dη

=
−le
2π

1

∫
η=0

nei (x
1e
i − x

j
i ) + η(x2e

i − x1e
i )nei

r2
je(η)

dη (4.50)

=
−le
2π

ne · r1ej
1

∫
η=0

dη

l2eη
2 + 2r1ej · teleη+ | r1ej |2

(4.51)

Hje =
−le

4πλ0

1

∫
η=0

ln

(
r2
je(η)

l20

)
dη

=
−le

4πλ0

1

∫
η=0

ln

(
l2eη

2 + 2r1ej · teleη+ | r1ej |2

l20

)
dη

=
−le

4πλ0

1

∫
η=0

{
ln

(
η2 +

2

le
r1ej · teη +

| r1ej |2

l2e

)
+ ln

(
l2e
l20

)}
dη (4.52)

where the constant reference value c in Θ∗ has been taken as the length of the shortest
element Γe, i.e., l0 = min {le | e = 1, ...,m} and, moreover, the following relations hold for
a linear boundary approximation

r2
je(η) =

[
x1e

1 (1− η) + x2e
1 η − x

j
1

]2
+
[
x1e

2 (1− η) + x2e
2 η − x

j
2

]2
= l2eη

2 + 2(x1e
i − x

j
i )let

e
iη + (x1e

i − x
j
i )(x

1e
i − x

j
i )

= l2eη
2 + 2r1ej · teleη+ | r1ej |2 (4.53)

(x2e
i − x1e

i ) = let
e
i → (x2e

i − x1e
i )nei = let

e
in

e
i = 0 (4.54)

For the singular elements, i.e., for a collocation at the middle node xji = 0, 5(x2e
i + x1e

i )
of the considered element Γe, one obtains

r1ej , x1e
i − x

j
i = −0, 5(x2e

i − x1e
i ) = −0, 5let

e
i

so that
ne · r1ej , nei (x

1e
i − x

j
i ) = −0, 5len

e
i t
e
i = 0

and, hence, one obtains from (4.50) regarding also (4.54)

Gee = 0.
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The reason is ∂r/∂n = 0 for this middle node collocation point.

For a collocation at this middle node is due to

te · r1ej , tei (x
1e
i − x

j
i ) = −0, 5let

e
i t
e
i = −0, 5le

r1ej · r1ej , (x1e
i − x

j
i )(x

1e
i − x

j
i ) = 0.25l2e

the respective singular element in the H-matrix (for details about the evaluation of this
improper integral, see Appendix B, 4.5.1)

Hee =
−le

4πλ0

1

∫
η=0

{
ln

(
η − 1

2

)2

+ ln

(
l2e
l20

)}
dη

=
−le

4πλ0

lim
ε→0

[
1
2
−ε
∫
η=0

ln

(
η − 1

2

)2

dη +
1

∫
η= 1

2
+ε

ln

(
η − 1

2

)2

dη + ln

(
l2e
l20

)]

=
le

2πλ0

[1 + ln(2)− ln (le/l0)] (4.55)

For all other collocation points (where nei (x
1e
i − x

j
i ) = ne · r1ej 6= 0) holds

Gje =
−le
2π

ne · r1ej

[
2

2le | ne · r1ej |
arctan

leη + te · r1ej

| ne · r1ej |

]η=1

η=0

=
−1

2π
sign

(
ne · r1ej

){
arctan

le + te · r1ej

| ne · r1ej |
− arctan

te · r1ej

| ne · r1ej |

}
(4.56)

Hje =
−1

4πλ0


(le + te · r1ej) ln

(
1 + 2

le
te · r1ej + |r1ej |2

l2e

)
−te · r1ej ln

(
|r1ej |2
l2e

)
− 2le + le ln

(
l2e
l20

)
+2 | ne · r1ej |

[
arctan le+te·r1ej

|ne·r1ej | − arctan te·r1ej
|ne·r1ej |

]
 (4.57)

Remarks:

a) There holds the following separation of components for length of the distance vector

between the collocation point xji and the initial node x1e
i of the element Γe∣∣r1ej

∣∣2 = (x1e
i − x

j
i )(x

1e
i − x

j
i ) =

[
nei (x

1e
i − x

j
i )
]2

+
[
tei (x

1e
i − x

j
i )
]2

where nei and tei means the unit normal vector and unit tangential vecor, respectively, in the

straight element Γe.

b) In the above evaluation of Gje, the following integral was applied (for 4b− a2 > 0):

∫ ln(η2 + aη + b) dη = (η +
a

2
) ln(η2 + aη + b)− 2η +

√
4b− a2 arctan

2η + a√
4b− a2
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4.3.1.2 Exercise 14: Stationary heat conduction in a rectangular domain-
constant shape functions

In a rectangular domain Ω = {(x1, x2) | 0 ≤ x1 ≤ l1 = 1m, 0 ≤ x2 ≤ l2 = 2m}, the tem-
perature is prescribed at two opposite sides x2 = 0 and x2 = l2 to be Θ(x1, 0) = 0 and
Θ(x1, l2) = Θ > 0 while at the other two sides x1 = 0 and x1 = l1 the heat flux is stopped,
i.e., qn = 0. For this problem (see [2]), the exact temperature distribution is known to
be Θ(x1, x2) = Θ x2/l2 from which one can determine via (3.146) the heat flux across the
boundary to be as qn(x1, x2) = λ0ni(x1, x2)∂Θ(x1, x2)/∂xi = λ0n2(x1, x2)Θ /l2.

Solve this problem applying the above given boundary element approximation by taken
each of the four sides as a boundary element and compare with the known exact solution.

4.3.2 Approximation by linear and higher grade shape functions

Continous state functions Φ(x) and Ψ(x), which are approximated by shape functions
with n (= 2) nodes per element, have in successive boundary elements Γe und Γe+1 the
same node value, i.e., Φne = Φ1e+1 and Ψne = Ψ1e+1, respectively, and, hence, an equal
global node value numbering Φi and Ψi, respectively. Therefore, for each collcation point
xj, the elements in one line of the matrices G and H related to the boundary state node
values Φi and Ψi, respectively, read as:

Gji =


1

∫
η=0

g(xe(η),xj)Nn
n (η) | J(η) | dη +

1

∫
η=0

g(xe+1(η),xj)Nn
1 (η) | J(η) | dη

for Φi = Φne = Φ1e+1

1

∫
η=0

g(xe(η),xj)Nn
l (η) | J(η) | dη for Φi = Φle if l 6= 1, n (n > 2)

(4.58)

Hji =


1

∫
η=0

h(xe(η),xj)Nn
n (η) | J(η) | dη +

1

∫
η=0

h(xe+1(η),xj)Nn
1 (η) | J(η) | dη

for Ψi = Ψne = Ψ1e+1

1

∫
η=0

h(xe(η),xj)Nn
l (η) | J(η) | dη for Ψi = Ψle if l 6= 1, n (n > 2)

(4.59)

With that, for continous state functions on a smooth boundary of a 2d-body, the following
system of equations for the N (for n = 2 is N = m and for n = 3 is N = 2m) unknown
node values is given (cj = c(xj) and Φj = Φ(xj))

N∑
i=1

(
cjδji +Gji

)
Φi =

N∑
i=1

HjiΨ
i for j = 1, 2, .., N (4.60)

Remark: For a linear approximation of the boundary Γ and linear shape functions in each

boundary element Γe for a continous state function Φ the elements (4.58) are explicitly:

for i = 2 : Gji =
1

∫
η=0

g(xe(η),xj)ηle dη +
1

∫
η=0

g(xe+1(η),xj)(1− η)le+1 dη with i = e+ 1

for i = 1 : Gj1 =
1

∫
η=0

g(xm(η),xj)ηlm dη +
1

∫
η=0

g(x1(η),xj)(1− η)l1 dη at x1 = xm+1
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At corners of the boundary approximation, the direction of the normal vector jumps
and, hence, a boundary state, e.g., Ψ(x), which is dependent on the normal vector, is
also discontinous there, i.e., Ψne 6= Ψ1e+1 when the boundary elements Γe and Γe+1 form
a corner. But also at a point on a smooth boundary, the prescribed boundary state
function Ψ(x) itself can be discontinous, e.g., in a heat conduction problem when the
permeability and consequently the heat flux changes suddenly. For the case that such
discontinuities Ψne 6= Ψ1e+1 are assumed at the transition points between all elements
increase the number of node values Ψi, e.g., for n = 2 from N = m to N

′
= 2m and for

n = 3 from N = 2m to N
′
= 3m:

m∑
i=1

(
cjδji +Gji

)
Φi =

m∑
e=1

n∑
l=1

H l
jeΨ

le für j = 1, 2, ..,m (4.61)

where, different to (4.59), the coefficients of Ψle, i.e., the elements of H are defined as

H l
je =

1

∫
η=0

h(xe(η),xj)Nn
l (η) | J(η) | dη

with j = 1(1)m and l = 1(1)n, e = 1(1)m (n > 2) (4.62)

It should be mentioned that in spite of those discontinuities, Ψne 6= Ψ1e+1, for the most
types of boundary conditions, the system (4.61) obtained by collocation at the nodes of
the shape functions allows to determine all unknown nodal values uniquely since:

• at a node on a smooth boundary, a discontinuity of Ψ(x) appears only when it is
prescibed, i.e., only the nodal value of the continous state Φ(x) is unknown at those nodes,

• at a corner node, almost all combinations of boundary conditions ’ahead’ and ’be-
hind’ a corner produce only one unknown nodal value, e.g.,

-when ahead Ψne and behind Ψ1e+1 is prescribed: Φne = Φ1e+1 is the single unknown,

- when ahead Ψne and behind Φ1e+1 (= Φne) is prescribed: Ψ1e+1 is the single unknown,

- when ahead Φne (= Φ1e+1) and behind Ψ1e+1 is prescribed: Ψne is the single unknown,

Only for the case

- when ahead Φne and behind Φ1e+1 = Φne is prescribed, the two values Ψne and Ψ1e+1

are both unknown and, since the collocation at the corner node delivers only one equation,
one equation is missing.

Often, these needed two equations (instead of only one) are produced by using the
’double node concept’ (for more details see [6], pp. 87), i.e., two collocation points (instead
of the one at the corner) located ’near’ the corner in the element ahead and behind,
respectively, in the case of linear shape functions often in a distance of le/3 from the
corner.

If the discontinuity at a corner x = xE is only produced by the jump of the normal
vector ahead and behind the corner, i.e., n−(xE) 6= n+(xE), sometimes a physically based
extra condition can be found and the ’double nodes’ at the corner can be avoided (see the
following example).
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4.3.2.1 Example: Stationary heat conduction

In the stationary heat conduction problem, the state Ψ(x) means the heat flux qn(x) which
is defined on the boundary Γ as qn(x) = λ0ni(x)∂Θ(x)/∂xi and, hence, is dependent on
the normal vector ni(x). Since the gradient of the temperature is continous also at a
corner xE of the boundary, the following relations hold for the normal and tangential
components of this temperature gradient ahead and behind a corner

∂Θ(x)

∂n−
n−i +

∂Θ(x)

∂t−
t−i =

∂Θ(x)

∂xi
=
∂Θ(x)

∂n+
n+
i +

∂Θ(x)

∂t+
t+i (4.63)

where n− = (cosϕ−, sinϕ−), t− = (− sinϕ−, cosϕ−) and n+ = (cosϕ+, sinϕ+), t+ =
(− sinϕ+, cosϕ+) are the normal and tangential unit vectors, respectively, ahead and be-
hind the corner. With that, the above mentioned extra equation (which is only necessary
when ahead and behind a corner the temperature is prescribed and, consequently, the
tangential derivatives ahead ∂Θ(x)/∂t− and behind ∂Θ(x)/∂t+ are known) at a corner
with internal angle ∆ϕ = π − ϕ+ + ϕ− can be given as the following relation between
the heat flux q−n (x) and q+

n (x) ahead and behind the corner, respectively:

q+
n (x) = λ0

∂Θ(x)

∂n+
= λ0 sin ∆ϕ

∂Θ(x)

∂t−
− cos ∆ϕq−n (x) (4.64)

or equivalently

q−n (x) = λ0
∂Θ(x)

∂n−
= − cos ∆ϕq+

n (x)− λ0 sin ∆ϕ
∂Θ(x)

∂t+
(4.65)

Applying a linear approximation for the boundary and linear shape functions for Θ(x)
and qn(x), one obtains for heat conduction problems without interior heat sources, i.e.,
with Wq(x) = 0, from (3.158) the following integral equation for the temperature at a
point xj

c(xj)Θ(xj) =
m∑
e=1


q1e
n

1

∫
η=0

Θ∗(xe(η),xj)(1− η)le dη

+q2e
n

1

∫
η=0

Θ∗(xe(η),xj)ηle dη


−

m∑
e=1


Θ1e

1

∫
η=0

q∗n(xe(η),xj)(1− η)le dη

+Θ2e
1

∫
η=0

q∗n(xe(η),xj)ηle dη

 (4.66)

with

c(xj) =

{
∆ϕ(xj)

2π
for boundary points xj

1 for interior points xj
(4.67)

or corresponding (4.61) in a matrix notation (Θe = Θ1e with Θ2e = Θ1e+1)

c(xj)Θ(xj) =
m∑
e=1

{
H1
jeq

1e
n +H2

jeq
2e
n

}
−

m∑
e=1

GjeΘ
e für j = 1, 2, ..,m (4.68)
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where ∆ϕ(xj) = 2π − (ϕ2 − ϕ1) means the internal angle at a boundary point xj.
Related to the everywhere continous temperture nodal value Θk = Θ2e = Θ1e+1,

k = e + 1, e = 1(1)m (Θm+1 = Θ1 = Θ1m+1 means that the boundary contour is closed)
one obtains from (3.152) explicitly the following expressions for the matrix coefficients
Gjk (r1ej

i = x1e
i − x

j
i ):

for xji = x1e+1
i = x2e

i and each k = 1(1)m (even when the collocation point xji is at
a corner of the linearly approximated boundary):

Gjk = 0,

for xji 6= x1e+1
i = x2e

i and k = e+1 > 1 and nei (x
1e
i −x

j
i ) = ne ·r1ej 6= 0 or ne+1 ·r1e+1j

6= 0 (for ne · r1ej = 0 or ne+1 · r1e+1j = 0, the respective integrals with those factors
disappear):

Gjk =
−le
2π

ne · r1ej
1

∫
η=0

ηdη

l2eη
2 + 2te · r1ejleη+ | r1ej |2

− le+1

2π
ne+1 · r1e+1j

1

∫
η=0

(1− η)dη

l2e+1η
2 + 2te+1 · r1e+1jle+1η+ | r1e+1j |2

=
−ne · r1ej

2πle


1
2

ln
(

1 + 2 let
e·rej
|r1ej |2 + l2e

|r1ej |2

)
− te·rej
|ne·rej |

(
arctan le+te·r1ej

|ne·r1ej | − arctan te·r1ej
|ne·r1ej |

) 
+

ne+1 · r1e+1j

2πle+1


1
2

ln
(

1 + 2 le+1te+1·r1e+1j

|r1e+1j |2 +
l2e+1

|r1e+1j |2

)
− le+1+te+1·r1e+1j

|ne+1·r1e+1j |

(
arctan le+1+te+1·r1e+1j

|ne+1·r1e+1j |
− arctan te+1·r1e+1j

|ne+1·r1e+1j |

)  (4.69)

for xji 6= x11
i = x1m+1

i = x2m
i and k = 1 as well as nmi (x1m

i − x
j
i ) 6= 0 or n1

i (x
11
i − x

j
i )

6= 0 (for nmi (x1m
i − x

j
i ) = 0 or n1

i (x
11
i − x

j
i ) = 0, the respective integrals with those factors

disappear):

Gj1 =
−nmi (x1m

i − x
j
i )

2πlm


1
2

ln
(

1 + 2
lm(x1mi −x

j
i )tmi

|x1m−xj |2 + l2m
|x1m−xj |2

)
− (x1mi −x

j
i )tmi

|nm
i (x1mi −x

j
i )|

(
arctan

lm+(x1mi −x
j
i )tmi

|nm
i (x1mi −x

j
i )|
− arctan

(x1mi −x
j
i )tmi

|nm
i (x1mi −x

j
i )|

) 
+
n1
i (x

11
i − x

j
i )

2πl1


1
2

ln
(

1 + 2
l1(x11i −x

j
i )t1i

|x11−xj |2 +
l21

|x11−xj |2

)
− l1+(x11i −x

j
i )t1i

|n1
i (x11i −x

j
i )|

 arctan
l1+(x11i −x

j
i )t1i

|n1
i (x11i −x

j
i )|

− arctan
(x11i −x

j
i )t1i

|n1
i (x11i −x

j
i )|


 (4.70)

Related to the heat fluxes q1e
n and q2e

n respectively, at xji one obtains from (3.148) the both
contributions from the adjacent elements Γe and Γe+1

H2
je = − le

4πλ0

1

∫
η=0

η

{
ln

(
η2 +

2

le
te · r1ejη +

| r1ej |2

l2e

)
+ ln

(
l2e
l20

)}
dη (4.71)

H1
je+1 = − le+1

4πλ0

1

∫
η=0

(1− η)

{
ln

(
η2 +

2

le+1

te+1 · r1e+1jη +
| r1e+1j |2

l2e+1

)
+ ln

(
l2e+1

l20

)}
dη(4.72)
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where these two contributions are only added to Hjk = H2
je + H1

je+1, k = e + 1, if qkn is
continous at this point. This gives explicitly:

for xji = x1e+1
i = x2e

i

i.e., x1e
i − x

j
i = x1e

i − x2e
i = −letei → te · r1ej = tei (−letei ) = −le and | r1ej |= le

and x1e+1
i − xji = x1e+1

i − x2e
i = 0 → te+1 · r1e+1j = 0 and | r1e+1j |= 0

H2
je = − le

4πλ0

lim
ε→0

1−ε
∫
η=0

η

{
ln
(
η2 − 2η + 1

)
+ ln

(
l2e
l20

)}
dη =

le
8πλ0

{
3− ln

(
l2e
l20

)}
(4.73)

H1
je+1 = − le+1

4πλ0

lim
ε→0

1

∫
η=ε

(1− η)

{
ln
(
η2
)

+ ln

(
l2e+1

l20

)}
dη =

le+1

8πλ0

{
3− ln

(
l2e+1

l20

)}
(4.74)

for xji = x1e
i

i.e., x1e
i − x

j
i = 0

H2
je = − le

4πλ0

lim
ε→0

1

∫
η=ε
η

{
ln
(
η2
)

+ ln

(
l2e
l20

)}
dη =

le
8πλ0

{
1− ln

(
l2e
l20

)}
(4.75)

for xji = x2e+1
i

i.e., x1e+1
i − xji = x1e+1

i − x2e+1
i = −le+1t

e+1
i → te+1 · r1e+1j = te+1

i (−le+1t
e+1
i ) = −le+1

and | r1e+1j |= le+1

H1
je+1 = − le+1

4πλ0

lim
ε→0

1−ε
∫
η=0

(1−η)

{
ln
(
η2 − 2η + 1

)
+ ln

(
l2e+1

l20

)}
dη =

le+1

8πλ0

{
1− ln

(
l2e+1

l20

)}
(4.76)

for xji 6= x1e
i and xji 6= x2e

i = x1e+1
i and nel (x

1e
l − x

j
l ) = ne · r1ej 6= 0 :

H2
je =

−le
8πλ0



(
|ne·r1ej |2

l2e

− |t
e·r1ej |2
l2e

)
ln
(

1 + 2 let
e·r1ej
|r1ej |2 + l2e

|r1ej |2

)
+ ln

(
l2e
l20

)
+ ln

(
1 + 2

le
te · r1ej + |r1ej |2

l2e

)
+ 2

le
te · r1ej − 1

− 4
l2e

te · r1ej | ne · r1ej |

(
arctan le+te·r1ej

|ne·r1ej |
− arctan te·r1ej

|ne·r1ej |

)


(4.77)

for xji 6= x1e+1
i and ne+1

l (x1e+1
l − xjl ) = ne+1 · r1e+1j 6= 0 with e+ 1 = k

H1
jk =

−lk
8πλ0




2
lk

tk · r1kj

− |n
k·r1kj |2
l2k

+ |t
k·r1kj |2
l2k

 ln
(

1 + 2 lkt
k·r1kj
|r1kj |2 +

l2k
|r1kj |2

)
+ ln

(
l2k
l20

)
+ ln

(
1 + 2

lk
tk · r1kj + |r1kj |2

l2k

)
− 2

lk
tk · r1kj − 3

+ 4
lk

(
1+

1
lk

tk · r1kj

)
| nk · r1kj |

(
arctan lk+tk·r1kj

|nk·r1kj |

− arctan tk·r1kj
|nk·r1kj |

)


(4.78)
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Remark:
a) Integration by parts yields the following result which was important for the integration

of Gje (for 4b− a2 > 0):

∫ ln(η2 + aη + b) dη =
(η + a

2
) ln(η2 + aη + b)− 2η

+
√

4b− a2 arctan 2η+a√
4b−a2

∫η ln(η2 + aη + b) dη =
1

2

[
(η2 + b− a2

2
) ln(η2 + aη + b) + aη − η2

−a
√

4b− a2 arctan 2η+a√
4b−a2

]
b) In evaluating the integrals, one obtains the following difference of two ln-terms which can

be assembled as follows:

ln

(
1 +

2

le
te · r1ej +

| r1ej |2

l2e

)
− ln

(
| r1ej |2

l2e

)
= ln

(
1 + 2

let
e · r1ej

| r1ej |2
+

l2e
| r1ej |2

)
c) It is well known that the scalar product of a directional unit vector with an arbitrary

vector gives the vector’s component in the direction of the unit vector. Hence, for the unit

vectors te and ne, which are orthogonal to each other, holds (see Fig. )

| r1ej |2=| te · r1ej |2 + | ne · r1ej |2

4.3.2.2 Exercise 15: Stationary heat conduction in a rectangular domain-
linear shape functions

In a rectangular domain Ω = {(x1, x2) | 0 ≤ x1 ≤ l1 = 1m, 0 ≤ x2 ≤ l2 = 2m}, the tem-
perature is prescribed at two opposite sides x2 = 0 and x2 = l2 to be Θ(x1, 0) = 0 and
Θ(x1, l2) = Θ > 0 while at the other two sides x1 = 0 and x1 = l1 the heat flux is stopped,
i.e., qn = 0. For this problem (see [2]), the exact temperature distribution is known to
be Θ(x1, x2) = Θ x2/l2 from which one can determine via (3.146) the heat flux across the
boundary to be as qn(x1, x2) = λ0ni(x1, x2)∂Θ(x1, x2)/∂xi = λ0n2(x1, x2)Θ /l2.

Solve this problem applying the above given linear boundary element approximation
by taken each of the four sides as a boundary element and compare with the known exact
solution
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5.1 A: Exercise Solutions

5.1.0.3 Exercise 1: Nabla Vector

gradU =
∂U

∂x1

ê1 +
∂U

∂x2

ê2

=

(
∂U

∂r

∂r

∂x1

+
∂U

∂ϕ

∂ϕ

∂x1

)
(êr cosϕ− êϕ sinϕ)

+

(
∂U

∂r

∂r

∂x2

+
∂U

∂ϕ

∂ϕ

∂x2

)
(êr sinϕ+ êϕ cosϕ)

Since

r =
√
x2

1 + x2
1 →

∂r

∂x1

=
x1

r
= cosϕ,

∂r

∂x2

=
x2

r
= sinϕ

ϕ = arctan(
x2

x1

)→ ∂ϕ

∂x1

=
−x2

r2
= −sinϕ

r
,
∂ϕ

∂x2

=
x1

r2
=

cosϕ

r

the above expression for gradU may be expressed as

gradU =

(
∂U

∂r
cosϕ+

∂U

∂ϕ
(−sinϕ

r
)

)
(êr cosϕ− êϕ sinϕ)

+

(
∂U

∂r
sinϕ+

∂U

∂ϕ

cosϕ

r

)
(êr sinϕ+ êϕ cosϕ)

=
∂U

∂r
êr +

1

r

∂U

∂ϕ
êϕ

= (êr
∂

∂r
+ êϕ

1

r

∂

∂ϕ
)U

5.1.0.4 Exercise 2: Laplace operator

∆U = (êr
∂

∂r
+ êϕ

1

r

∂

∂ϕ
) · (êr

∂

∂r
+ êϕ

1

r

∂

∂ϕ
)U

The scalar product is only ’working’ between unit vectors, i.e., êr · êr = êϕ · êϕ = 1 and
êr · êϕ = 0, but the differentiations have to be performed following the chain rule, i.e.,

∂

∂r
(êr

∂

∂r
+ êϕ

1

r

∂

∂ϕ
) =

∂êr
∂r

∂

∂r
+ êr

∂2

∂r2
+
∂êϕ
∂r

1

r

∂

∂ϕ
+ êϕ(− 1

r2

∂

∂ϕ
+

1

r

∂2

∂ϕ∂r
)

∂

∂ϕ
(êr

∂

∂r
+ êϕ

1

r

∂

∂ϕ
) =

∂êr
∂ϕ

∂

∂r
+ êr

∂2

∂r∂ϕ
+
∂êϕ
∂ϕ

1

r

∂

∂ϕ
+ êϕ

1

r

∂2

∂ϕ2

96
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For the differentiations of the unit vectors of the Polar coordinate system holds

∂êr
∂r

=
∂êϕ
∂r

= 0,
∂êr
∂ϕ

= êϕ,
∂êϕ
∂ϕ

= −êr

which reduces the above results to

∂

∂r
(êr

∂

∂r
+ êϕ

1

r

∂

∂ϕ
) = êr

∂2

∂r2
+ êϕ(− 1

r2

∂

∂ϕ
+

1

r

∂2

∂ϕ∂r
)

∂

∂ϕ
(êr

∂

∂r
+ êϕ

1

r

∂

∂ϕ
) = êϕ

∂

∂r
+ êr

∂2

∂r∂ϕ
− êr

1

r

∂

∂ϕ
+ êϕ

1

r

∂2

∂ϕ2

Now, performing the scalar product of the first line result with êr and of the second one
with êϕ

1
r

gives finally

∆U = (
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
)U

5.1.0.5 Exercise 3: Integration by parts

a) in R1 on the intervall a < x < b :

b∫
a

xn ln(x)dx =

[
xn+1

n+ 1
ln(x)

]x=b

x=a

−
b∫

a

xn+1

n+ 1

1

x
dx

=

[
xn+1

n+ 1
ln(x)− xn+1

(n+ 1)2

]x=b

x=a

b) in R2 on the circular domain Ω =
{

(x1, x2) | r =
√
x2

1 + x2
2 ≤ R

}
:

∫
Ω

rn ln(r)dΩ =

2π∫
0

R∫
0

rn ln(r)rdrdϕ = 2π

R∫
0

rn+1 ln(r)dr

= 2π

[
rn+2

n+ 2
ln(r)

]R
0

− 2π

R∫
0

rn+2

n+ 2

1

r
dr

= 2π

[
rn+2

n+ 2
ln(r)− rn+2

(n+ 2)2

]R
0

=
2π

n+ 2
Rn+2

(
ln(R)− 1

n+ 2

)
5.1.0.6 Exercise 4: Reversed order integrations

a)
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x

∫
a

[
s

∫
a
x̄3s dx̄

]
ds =

x

∫
a

[
x̄4

4
s

]x̄=s

x̄=a

ds =
x

∫
a

[
s5

4
− a4

4
s

]
ds =

[
s6

24
− a4

8
s2

]s=x
s=a

=
x6

24
− 1

8
a4x2 − a6

24
+
a6

8
=

1

24
(x6 − 3a4x2 + 2a6)

x

∫
a

[
x

∫
x̄
x̄3s ds

]
dx̄ =

x

∫
a

[
x̄3 s

2

2

]s=x
s=x̄

dx̄ =
x

∫
a

[
x̄3x

2

2
− x̄5

2

]
dx̄ =

[
1

8
x̄4x2 − x̄6

12

]x̄=x

x̄=a

=
x6

8
− x6

12
− 1

8
a4x2 +

a6

12
=

1

24
(x6 − 3a4x2 + 2a6)

b)

x

∫
a

[
b

∫
s
G(x̄, s)dx̄

]
ds =

x

∫
a

[
x

∫
s
G(x̄, s)dx̄

]
ds+

x

∫
a

[
b

∫
x
G(x̄, s)dx̄

]
ds

=
x

∫
a

[
x̄

∫
a
G(x̄, s)ds

]
dx̄+

b

∫
x

[
x

∫
a
G(x̄, s)ds

]
dx̄ (5.1)

x

∫
a

[
b

∫
s
x̄3s dx̄

]
ds =

x

∫
a

[
x̄4

4
s

]x̄=b

x̄=s

ds =
x

∫
a

[
b4s

4
− s5

4

]
ds =

[
b4s2

8
− s6

24

]s=x
s=a

=
b4x2

8
− x6

24
− b4a2

8
+
a6

24
=

1

24
(3b4x2 − x6 − 3b4a2 + a6)

x

∫
a

[
x̄

∫
a
x̄3s ds

]
dx̄+

b

∫
x

[
x

∫
a
x̄3s ds

]
dx̄ =

x

∫
a

[
x̄3 s

2

2

]s=x̄
s=a

dx̄+
b

∫
x

[
x̄3 s

2

2

]s=x
s=a

dx̄

=
x

∫
a

[
x̄5

2
− x̄3a

2

2

]
dx̄+

b

∫
x

[
x̄3x

2

2
− x̄3a

2

2

]
dx̄

=

[
x̄6

12
− x̄4

4

a2

2

]x̄=x

x̄=a

+

[
x̄4

4
(
x2

2
− a2

2
)

]x̄=b

x̄=x

= [
x6

12
− x4a2

8
− a6

12
+
a6

8
] + [

b4

4
(
x2

2
− a2

2
)− x4

4
(
x2

2
− a2

2
)]

=
1

24
(3b4x2 − x6 − 3b4a2 + a6)

5.1.0.7 Exercise 5: Integral equation by straightforward integrations

One integration of both sides of the differential equation (3.8) gives

dy(x)

dx
=

[∫
f(x̄)dx̄

]
x̄=x

+ c0
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and satisfying the boundary condition y
′
(b) = y

′
1

dy(x)

dx
= y

′

1 −
b∫

x

f(x̄)dx̄

Then, a second produces

y(x) = y
′

1x−

∫  b∫
s

f(x̄)dx̄

 ds


s=x

+ c1

and finally

y(x) = y0 + (x− a)y
′

1 −
x

∫
a

[
b

∫
s
f(x̄)dx̄

]
ds

when the further constant of integration c1 having been taken so that y(a) = y0. Applying
the formula (5.1), derived in Exercise 2, to the above double integral gives

x

∫
a

[
b

∫
s
f(x̄)dx̄

]
ds =

x

∫
a

[
x̄

∫
a
f(x̄)ds

]
dx̄+

b

∫
x

[
x

∫
a
f(x̄)ds

]
dx̄

=
x

∫
a
(x̄− a)f(x̄)dx̄+

b

∫
x
(x− a)f(x̄)dx̄

and the final simplified expression for the solution of the boundary value problem:

y(x) = y0 + (x− a)y
′

1 −
x

∫
a
(x̄− a)f(x̄)dx̄− (x− a)

b

∫
x
f(x̄)dx̄. (5.2)

5.1.0.8 Exercise 6: Beam deflection under prescribed moments

When in (3.28) the prescribed boundary conditions are taken into account and the system
is reordered, one obtains[

0 −1
−l 1

] [
w
′
(a)

w(b)

]
= − 1

EI

b

∫
a

[
(x− a)M(x)
(b− x)M(x)

]
dx−

[
1 l
−1 0

] [
w0

w
′
1

]
which has the solutions (b− a = l)

w(b) =
1

EI

b

∫
a
(x− a)M(x)dx+ w0 + lw

′

1

w
′
(a) =

1

l

(
1

EI

b

∫
a
(b− x)M(x)dx− w0 + w(b)

)
=

1

l

(
1

EI

b

∫
a
(b− x)M(x)dx− w0 +

1

EI

b

∫
a
(x− a)M(x)dx+ w0 + lw

′

1

)
=

1

l

(
1

EI

b

∫
a
(b− a)M(x)dx+ lw

′

1

)
=

1

EI

b

∫
a
M(x)dx+ w

′

1
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With these boundary reactions and the prescribed boundary values, the solution (3.27)
becomes

w(ξ) =
1

2
w(a) +

ξ − a
2

w
′
(a) +

1

2
w(b)− (b− ξ)

2
w
′
(b)−

b

∫
a

M(x)

EI

1

2
| x− ξ | dx

=
1

2
w0 +

ξ − a
2

(
1

EI

b

∫
a
M(x)dx+ w

′

1

)
+

1

2

(
1

EI

b

∫
a
(x− a)M(x)dx+ w0 + lw

′

1

)
−(b− ξ)

2
w
′

1 −
b

∫
a

M(x)

EI

1

2
|x− ξ| dx

= w0 + (ξ − a)w
′

1 +
1

2

1

EI

b

∫
a

(ξ − 2a+ x− |x− ξ|)M(x)dx

= w0 + (ξ − a)w
′

1 +
1

2

1

EI

ξ

∫
a

(2x− 2a)M(x)dx+
1

2

1

EI

b

∫
ξ

(2ξ − 2a)M(x)dx

= w0 + (ξ − a)w
′

1 +
1

EI

ξ

∫
a

(x− a)M(x)dx+
1

EI
(ξ − a)

b

∫
ξ
M(x)dx

This is exactly the solution (5.2) when one recognizes that ξ and x are there x and x̄,
respectively, and f = −M/EI.

5.1.0.9 Exercise 7: Bending moment of an elastic beams under transversal
loading

By formally setting M , Q, and q instead of w, w
′
, and M/EI, respectively, the solution

is directly obtained from (3.27) as

M(ξ) =
1

2
M(a) +

ξ − a
2

Q(a) +
1

2
M(b)− (b− ξ)

2
Q(b)−

b

∫
a
q(x)

1

2
| x− ξ | dx (5.3)

while the algebraic system (3.28) to determine the unknown boundary reactions becomes
(b− a = l): [

1 0 −1 l
−1 −l 1 0

]
M(a)
Q(a)
M(b)
Q(b)

 = −
b

∫
a

[
(x− a)q(x)
(b− x)q(x)

]
dx (5.4)

5.1.0.10 Exercise 8: Axial displacement of elastic bars

By formally setting u, N/EA, and p/EA instead of w, w
′
, and M/EI, respectively, the

solution is directly obtained from (3.24)

u(ξ) = −
[
du(x)

dx
u∗(x, ξ)− u(x)

∂u∗(x, ξ)

∂x

]b
a

−
b

∫
a

p(x)

EA
u∗(x, ξ)dx (5.5)
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and with N(x) = EAu′(x)

u(ξ) = −
[
N(x)

EA
u∗(x, ξ)− u(x)

N∗(x, ξ)

EA

]b
a

−
b

∫
a

p(x)

EA
u∗(x, ξ)dx (5.6)

or in detail with (3.27) as

u(ξ) =
1

2
u(a) +

ξ − a
2

N(a)

EA
+

1

2
u(b)− (b− ξ)

2

N(b)

EA
−

b

∫
a

p(x)

EA

1

2
| x− ξ | dx (5.7)

Then, the algebraic system (3.28) to determine the unknown boundary reactions becomes
(b− a = l):

[
1 0 −1 l
−1 −l 1 0

]
u(a)
N(a)
EA

u(b)
N(b)
EA

 = − 1

EA

b

∫
a

[
(x− a)p(x)
(b− x)p(x)

]
dx (5.8)

5.1.0.11 Exercise 9: Bar stretching under axial loadings

The system (5.8) becomes for this case[
0 −1
−l 1

] [
N(0)
EA

u(l)

]
= − 1

EA

l

∫
0

[
x p0

x
l

(l − x)p0
x
l

]
dx = − p0

EA

[
l2

3
l2

6

]
and its solutions are

u(l) =
p0

EA

l2

3

N(0) = p0
l

6
+
EA

l
u(l) = p0

(
l

6
+
l

3

)
= p0

l

2

Inserting the prescribed boundary conditions and these boundary reaction in the solution
(5.7) gives

u(ξ) =
ξ

2

N(0)

EA
+

1

2
u(l)−

l

∫
0

p0

EA

x

l

1

2
| x− ξ | dx

=
ξ

2

p0l

2EA
+

1

2

p0

EA

l2

3
−

ξ

∫
0

p0

EA

x

l

1

2
(ξ − x)dx−

l

∫
ξ

p0

EA

x

l

1

2
(x− ξ)dx

=
p0

EA

(
ξl

4
+
l2

6
− ξ3

12l
− 1

12l
(2l3 − 3ξl2 + ξ3)

)
=

p0

6EA

(
3ξl − ξ3

l

)



102 5 Appendices

5.1.0.12 Exercise 10: Torsional twist of an elastic bar

The adequate fundamental solution of this Helmholtz type equation is (3.39)

ϑ∗(x, ξ) = ϑ∗(r) =
−1

2h
e−hr

which has the first derivative

∂ϑ∗(x, ξ)

∂x
=

1

2
e−hr

∂r

∂x
=

1

2
e−hrsign(x− ξ)

Hence, substituting the corresponding fundamental solution terms and introducing the
actual state variables ϑ(x) and ϑ

′
(x) in the integral form of the solution (3.53) yields

ϑ(ξ) =
1

2h
e−h(l−ξ)ϑ′(l) +

1

2
e−h(l−ξ)ϑ(l)− 1

2h
e−hξϑ′(0) +

1

2
e−hξϑ(0) +

l

∫
0

MT (x)

ECT2h
e−h|x−ξ|dx

and, correspondingly, one obtains from (3.55)

[
1 1 −e−hl −e−hl

−e−hl e−hl 1 −1

]
ϑ(0)
1
h
ϑ′(0)
ϑ(l)
1
h
ϑ′(l)

 =
1

ECTh

l

∫
0

[
MT (x)e−hx

MT (x)e−h|x−ξ|

]
dx

5.1.0.13 Exercise 11: Green’ functions for beam problems

a) When the beam has a clamped support at both endings, the boundary conditions for
the Green’s function of this boundary value problem are

Gcc(0, ξ) = 0 and Gcc(l, ξ) = 0

∂Gcc(x, ξ)

∂x

∣∣∣∣
x=0

= 0 and
∂Gcc(x, ξ)

∂x

∣∣∣∣
x=l

= 0

With the polynomial ’ansatz’

Gcc(x, ξ) =
1

12EI

{
r3 + c1x

3 + c2x
2 + c3x+ c4

}
one easily finds the following conditions for the four free constants c1, c2, c3, and c4

(r = |x− ξ|, 0 ≤ ξ ≤ l)

Gcc(0, ξ) = 0 = ξ3 + c4

Gcc(l, ξ) = 0 = (l − ξ)3 + c1l
3 + c2l

2 + c3l + c4

∂Gcc(x, ξ)

∂x

∣∣∣∣
x=0

= 0 = 3r2sign(x− ξ)
∣∣
x=0

+ c3

= −3ξ2 + c3

∂Gcc(x, ξ)

∂x

∣∣∣∣
x=l

= 0 = 3r2sign(x− ξ)
∣∣
x=l

+ 3c1l
2 + 2c2l + c3

= 3(l − ξ)2 + 3c1l
2 + 2c2l + c3
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Solving these four equations gives

c1 = −1 + 6

(
ξ

l

)2

− 4

(
ξ

l

)3

, c2 = 3ξ

[
1− 4

(
ξ

l

)
+ 2

(
ξ

l

)2
]
c3 = 3ξ2 c4 = −ξ3

and, finally, the following Green’s function

Gcc(x, ξ) =
1

12EI

 r3 +
[
−1 + 6

(
ξ
l

)2 − 4
(
ξ
l

)3
]
x3

+
[
1− 4

(
ξ
l

)
+ 2

(
ξ
l

)2
]

3ξx2 + 3ξ2x− ξ3


=

1

12EI

{
r3 − x3 + 3ξx2 + 3ξ2x− ξ3 + [6lξ2 − 4ξ3]

(
x
l

)3

+ [2ξ2 − 4lξ] 3ξ
(
x
l

)2

}

b) For the Green’s function of a beam with a clamped support at x = 0 while the
other ending is free, one starts again with the polynomial ’ansatz’

Gcf (x, ξ) =
1

12EI

{
r3 + c1x

3 + c2x
2 + c3x+ c4

}
There, the following conditions hold

Gcf (0, ξ) = 0 = ξ3 + c4

∂Gcf (x, ξ)

∂x

∣∣∣∣
x=0

= 0 = 3r2sign(x− ξ)
∣∣
x=0

+ c3

= −3ξ2 + c3

M(Gcf (x, ξ))
∣∣
x=l

= 0→
∂2Gcf (x, ξ)

∂x2

∣∣∣∣
x=l

= 0 = 6r|x=l + 6c1l + 2c2

= 6(l − ξ) + 6c1l + 2c2

Q(Gcf (x, ξ))
∣∣
x=l

= 0→
∂3Gcf (x, ξ)

∂x3

∣∣∣∣
x=l

= 0 = 6sign(x− ξ)|x=l + 6c1

= 6 + 6c1

One easily gets

c1 = −1, c2 = 3ξ, c3 = 3ξ2, c4 = −ξ3

and hence, the following Green’s function

Gcf (x, ξ) =
1

12EI

{
r3 − x3 + 3ξx2 + 3ξ2x− ξ3

}
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5.1.0.14 Exercise 12: Strain tensor of the elastostatic fundamental solution

Since differentiating the distance r = |x− ξ| with respect to the coordinates xi gives in
R2 and in R3

∂r

∂xi
= r,i =

xi − ξi
r

,
∂2r

∂xi∂xj
= r,ij =

1

r
(δij − r,i r,j )

it is easy to determine

∂u
(k)
i (x, ξ)

∂xj
=

1

8π

1

2µ+ λ

1

r2

[
−(3 +

λ

µ
)δikr,j +(1 +

λ

µ
) (δijr,k +δkjr,i−3r,i r,j r,k )

]
in R3

and then via the definition of the strain tensor

ε
(k)
ij (x, ξ) =

1

2

(
∂u

(k)
i (x, ξ)

∂xj
+
∂u

(k)
j (x, ξ)

∂xi

)

=
1

8π

1

2µ+ λ

1

r2

[
− (δikr,j +δjkr,i ) + (1 +

λ

µ
) (δijr,k−3r,i r,j r,k )

]
in R3

5.1.0.15 Exercise 13: Shape functions with the local coordinate −1 ≤ η ≤ 1

Since the restrictions (4.2) hold, the linear shape functions

N2
1 (η) = a1η + b1, N2

2 (η) = a2η + b2

are defined by the two conditions for each of the shape functions

N2
1 (−1) = −a1 + b1 = 1, N2

1 (+1) = a1 + b1 = 0

N2
2 (−1) = −a2 + b2 = 0, N2

2 (+1) = a2 + b2 = 1

This gives easily for −1 ≤ η ≤ 1

N2
1 (η) =

1

2
(1− η), N2

2 (η) =
1

2
(1 + η)

For the three quadratic shape functions

N3
1 (η) = a1η

2 + b1η + c1, N
3
2 (η) = a2η

2 + b2η + c2, N
3
3 (η) = a3η

2 + b3η + c3

the restrictions (4.2) give three conditions for each of them

N3
1 (−1) = a1 − b1 + c1 = 1, N3

1 (0) = c1 = 0, N3
1 (1) = a1 + b1 + c1 = 0

N3
2 (−1) = a2 − b2 + c2 = 0, N3

2 (0) = c2 = 1, N3
2 (1) = a2 + b2 + c2 = 0

N3
3 (−1) = a3 − b3 + c3 = 0, N3

3 (0) = c3 = 0, N3
3 (1) = a3 + b3 + c3 = 1

and one obtains for −1 ≤ η ≤ 1

N3
1 (η) =

1

2
η(η − 1), N3

2 (η) = 1− η2, N3
3 (η) =

1

2
η(η + 1)
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5.1.0.16 Exercise 14: Stationary heat conduction in a rectangular domain-
constant shape functions

For the simplest discretization of the boundary, i.e., each side of the quadrilateral domain
as an element, collocations at the middle nodes of these four elements, at x1 = (l1/2, 0),
x2 = (l1, l2/2), x3 = (l1/2, l2), and x4 = (0, l2/2) yield from (4.55), (4.56), and (4.57),
respectively, the following matrix elements of the algebraic systemrixelemente (4.49):

G11 = G22 = G33 = G44 = 0

G12 = G14 = G32 = G34 = − 1

2π
arctan(4) ≈ −0.2110

G13 = G31 = − 1

π
arctan(

1

4
) ≈ −0.07798

G21 = G23 = G41 = G43 = −0.125 und G24 = G42 = −0.25

H11 = H33 =
1

2
H22 =

1

2
H44 =

1

2πλ0

(1 + ln(2)) ≈ 0.269473

λ0

H12 = H14 = H32 = H34 =
1

4πλ0

{
4− 2 ln(

17

16
)− arctan(4)

}
≈ 0.203156

λ0

H13 = H31 =
1

4πλ0

{
2− ln(

17

4
)− 8 arctan(

1

4
)

}
≈ −0.1119454

λ0

H21 = H23 = H41 = H43 =
1

4πλ0

{
2− ln(2)− π

2

}
≈ −0.0210

λ0

H24 = H42 =
1

4πλ0

{4 + 2 ln(2)− π} ≈ 0.178627

λ0

Taking the boundary conditions Θ1 = 0, Θ3 = Θ, and q2
n = q4

n = 0 into account, and
reordering the system with respect to known and unknown node values, gives the system

G12 G12 −H11 −H13

0.5 G24 −H21 −H21

G12 G12 −H13 −H11

G24 0.5 −H21 −H21




Θ2

Θ4

q1
n

q3
n

 = Θ


−G13

−G23

−0.5
−G23


Subtraction of the forth from the second equationt gives Θ2 = Θ4 and then by adding
these two equations

Θ2 = Θ4 =
−G23

0.5 +G24

Θ +
H21

0.5 +G24

(q1
n + q3

n) =
1

2
Θ + 4H21(q1

n + q3
n)

Finally, subtracting and adding the first and third equation and taking the above result
for Θ2 = Θ4 into account gives

q1
n − q3

n =
0.5−G13

H13 −H11

Θ and q1
n + q3

n =
0.5 +G13 + 2G12

H11 +H13 − 16G12H12

Θ̄
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Since G13 + 2G12 = − 1
π

arctan(1
4
)− 2 1

2π
arctan(4) = − 1

π
(arctan(1

4
) + arctan(4)) = − 1

π
π
2

=
−0.5, the nominator 0.5 +G13 + 2G12 = 0 and, hence, q1

n = −q3
n. This yields

Θ2 = Θ4 =
1

2
Θ

q1
n − q3

n = 2q1
n =

0.5−G13

H13 −H11

Θ =⇒ q1
n = −q3

n =
0.5−G13

2(H13 −H11)
≈ −0.757λ0Θ

The exact solution gives for these node points the same value for the temperature Θ(l1, l2/2)
= Θ(0, l2/2) = 0.5Θ, while with n2(l1/2, 0) = −1, n2(l1/2, 0) = 1, and l2 = 2m the heat
flux is there exactly q1

n = qn(l1/2, 0) = −λ0Θ̄/l2 = −0.5λ0Θ = −q3
n = −qn(l1/2, l2) which

means about 50% error. This not at all astonishing since physically wrong elementwise
constant approximations have been used to model the correctly continous temperature
field.

5.1.0.17 Exercise 15: Stationary heat conduction in a rectangular domain-
linear shape functions

When applying the simplest possible discretization of the boundary, i.e., taking each of the
4 sides of the rectangular domain as one boundary element, using linear shape functions
for the temperature Θ and the heat flux qn, and performing collocation at the nodes
x1 = (0, 0), x2 = (l1, 0), x3 = (l1, l2), and x4 = (0, l2), (here, the 4 corners of the domain),
one obtains the system

4∑
e=1

(
1

4
δje +Gje

)
Θe =

4∑
e=1

(
H2
jeq

2e
n +H1

jeq
1e
n

)
(5.9)

where here, since all node points are corner points, q2e
n 6= q1e+1

n for all 4 elemente Γe.

From (4.69) and (4.70), respectively, result the following matrix elements

G11 = G22 = G33 = G44 = 0

G21 = G12 = G34 = G43 =
1

8π
[ln(5)− 4 arctan(2)]

G31 = G13 = G24 = G42 =
1

8π
[4 ln(4)− 5 ln(5)]

G41 = G14 = G23 = G32 =
1

2π

[
ln(

5

4
)− arctan(

1

2
)

]

while from (4.71) and (4.72), respectively, the elements of H1
je and H2

je can be evaluated

corresponding to the location of the collocation point xji from (4.73) to (4.76) and (4.78)
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to (4.77),respectively: (l1 = l3 = l = 1m, l2 = l4 = 2l = 2m)

H1
11 = H1

33 =
3l1

8πλ0

, H1
22 = H1

44 =
3l2

4πλ0

H1
21 = H1

43 =
l1

8πλ0

; H1
12 = H1

34 =
−l2

32πλ0

[3 ln(5)− 4 ln(4)− 12 + 8 arctan(2)]

H1
31 = H1

13 =
−l1

8πλ0

[5 ln(5)− 4 ln(4)− 1] ; H1
24 = H1

42 =
−l2

32πλ0

[5 ln(5)− 4 ln(4)− 4]

H1
41 = H1

23 =
−l1

8πλ0

[
4 ln(4)− 3 ln(5)− 3 + 8 arctan(

1

2
)

]
; H1

14 = H1
32 =

l2
8πλ0

H2
11 = H2

33 = H1
21, H2

22 = H2
44 = H1

14

H2
21 = H2

43 = H1
11; H2

12 = H2
34 = H1

24

H2
31 = H2

13 = H1
41; H2

24 = H2
42 = H1

34

H2
41 = H2

23 = H1
13; H2

14 = H2
32 = H1

22

With that, and using the abbreviations h1 = 2 ln(4)+2− 5
2

ln(5), h2 = −4 ln(4)+3 ln(5)+
3 − 8 arctan(1

2
), h3 = 4 ln(4) + 1 − 5 ln(5), h4 = −3

2
ln(5) + 2 ln(4) + 6 − 4 arctan(2) and

g1 = 1
4

ln(5) − arctan(2), g2 = ln(4) − 5
4

ln(5), g3 = ln(5
4
) − arctan(1

2
) the system (5.9)

becomes

l

8πλ0




1 h1 h2 6
3 2 h3 h4

h2 6 1 h1

h3 h4 3 2



q21
n

q22
n

q23
n

q24
n

+


3 h4 h3 2
1 6 h2 h1

h3 2 3 h4

h2 h1 1 6



q11
n

q12
n

q13
n

q14
n


 =

=
1

2π


π
2

g1 g2 g3

g1
π
2

g3 g2

g2 g3
π
2

g1

g3 g2 g1
π
2




Θ1

Θ2

Θ3

Θ4


Now, incorporating the actual boundary conditions of the problem, i.e.,

Θ1 = Θ2 = 0 and Θ3 = Θ4 = Θ̄

and
q22
n = q24

n = q12
n = q14

n = 0

reduces the system to:

l

8πλ0


3 1 h3 h2

1 3 h2 h3

h3 h2 3 1
h2 h3 1 3



q11
n

q21
n

q13
n

q23
n

 =
Θ̄

2π


g2 + g3

g2 + g3
π
2

+ g1
π
2

+ g1


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Subtraction of the second from the first and of the forth from the third equation yield
q11
n = q21

n and q13
n = q23

n , so that only two equations remain

q11
n +

[
1− 1

2
ln(5)− 2 arctan(

1

2
)

]
q13
n = − Θ̄

4l
λ0

[
ln(5) + 4 arctan(

1

2
)

]
[
1− 1

2
ln(5)− 2 arctan(

1

2
)

]
q11
n + q13

n =
Θ̄

4l
λ0 [2π + ln(5)− 4 arctan(2)]

From that, one obtains with arctan(1
2
) + arctan(2) = π

2
the exact boundary values for the

heat flux

q13
n = q23

n =
Θ̄

2l
λ0 and q11

n = q21
n = − Θ̄

2l
λ0

The temperature distribution is by the linear shape function on the element Γ2,i.e., on x1

= x12
1 = x22

1 = l1, 0 = x12
2 ≤ x2 ≤ x22

2 = l2, with η = x2/l2 and the boundary conditions
Θ12 = 0 and Θ22 = Θ exactly described

Θ(x2
i (η)) = Θ12(1− η) + Θ22η = Θ̄

x2

l2

This is also true on Γ4, i.e., x1 = x14
1 = x24

1 = 0, 0 = x24
2 ≤ x2 ≤ x14

2 = l2, with η = x2−l2
l2

and the boundary conditions Θ24 = 0 and Θ14 = Θ̄ by

Θ(x4
i (η)) = Θ14(1− η) + Θ24η = Θ̄(1− x2 − l2

l2
) = Θ̄

x2

l2
.

From (4.66), the temperature at internal points xj is in this case , i.e., with the prescribed
boundary values Θ1 = Θ11 = Θ24 = 0, Θ2 = Θ12 = Θ21 = 0 , Θ3 = Θ22 = Θ13 = Θ̄ ,
Θ4 = Θ23 = Θ14 = Θ , and q22

n = q24
n = q12

n = q14
n = 0 and the just determined boundary

reactions q13
n = q23

n = Θ
2l
λ0 and q11

n = q21
n = − Θ̄

2l
λ0 given by

Θ(xj) =
Θ̄

2l
λ0

1

∫
η=0

{
Θ∗(x3(η),xj)(1− η)l3 −Θ∗(x1(η),xj)(1− η)l1

+Θ∗(x3(η),xj)ηl3 −Θ∗(x1(η),xj)ηl1

}
dη

−Θ̄
1

∫
η=0

{
[q∗n(x3(η),xj)l3 + q∗n(x4(η),xj)l4] (1− η)

+ [q∗n(x2(η),xj)l2 + q∗n(x3(η),xj)l3] η

}
dη

=
Θ̄

2l
λ0

1

∫
η=0

{
Θ∗(x3(η),xj)l3 −Θ∗(x1(η),xj)l1

}
dη

−Θ̄
1

∫
η=0

{
[q∗n(x3(η),xj)l3 + q∗n(x4(η),xj)l4]

+ [q∗n(x2(η),xj)l2 − q∗n(x4(η),xj)l4] η

}
dη (5.10)

where as in (4.57)

1

∫
η=0

Θ∗(xe(η),xj)le dη =
−1

4πλ0

[
(leη + rej · te) ln

(
η2 + 2

le
rej · teη + |x1e−xj |2

l2e

)
−2leη + 2 | rej · ne | arctan leη+rej ·te

|rej ·ne|

]1

η=0

(5.11)
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and rej =| x1e − xj | means the distance between the observation point xj and the
initial point x1e of the element Γe. With the angle αej = ^(rej, te), between rej and the
tangential unit vector te along this element holds

(x1e
i − x

j
i )t

e
i = −rej cosαej, nei (x

1e
i − x

j
i ) = rej sinαej

l2e + r2
ej − 2lerej cosαej = r2

e+1,j (5.12)

where for rectangular domains, as here, is especially

le − rej cosαej = re+1,j sinαe+1,j

re+1,j cosαe+1,j = rej sinαej für e = 1, 2, 3, 4 mit e = 5 , 1 (5.13)

With that, the following integral can be evaluated as

1

∫
η=0

Θ∗(xe(η),xj)le dη =
−1

4πλ0

 re+1,j sinαe+1,j ln
(
r2e+1,j

l2e

)
− 2le + rej cosαej ln

(
r2e,j
l2e

)
+2rej sinαej

(
arctan

re+1,j sinαe+1,j

rej sinαej
+ arctan(cotαej)

) 
=

−1

4πλ0

[
re+1,j sinαe+1,j ln

(
r2e+1,j

l2e

)
− 2le + rej cosαej ln

(
r2e,j
l2e

)
+2rej sinαej

(
αe+1,j + π

2
− αej

) ]
From (4.56) is

1

∫
η=0

q∗n(xe(η),xj)le dη =
−1

2π
sign

(
ne · rej

){
arctan

le + te · rej

| ne · rej |
− arctan

te · rej

| ne · rej |

}
=
−1

2π
sign

(
ne · rej

){
arctan

re+1,j sinαe+1,j

rej sinαej
− arctan(cotαej)

}
and, especially for the actual rectangular domain with αej ≤ 0.5π

1

∫
η=0

q∗n(xe(η),xj)le dη =
−1

2π

{
αe+1,j +

π

2
− αej

}
and, moreover, from (4.69)

1

∫
η=0

q∗n(xe(η),xj)ηle dη =
−ne · rej

2πle


1
2

ln
(

1 + 2 lete·rej
|x1e−xj |2 + l2e

|x1e−xj |2

)
− te·rej
|ne·rej |

(
arctan le+te·rej

|ne·rej | − arctan te·rej
|ne·rej |

) 
=
−1

2πle


1
2
rej sinαej ln

(
r2e+1,j

r2e,j

)
+

sign (ne · rej) rej cosαej

(
arctan

re+1,j sinαe+1,j

rej sinαej

+π
2
− αej

)


and especially for rectangular domains

1

∫
η=0

q∗n(xe(η),xj)ηle dη =
−1

2πle

{
1

2
rej sinαej ln

(
r2
e+1,j

r2
e,j

)
+ rej cosαej

(
αe+1,j +

π

2
− αej

)}
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Finally, one obtains for (5.10) in the actual rectangular domain with l1 = l3 = l and
l2 = l4 = 2l

Θ(xj) =
−Θ̄

8πl



[
r4j sinα4j ln

(
r24j
l2

)
− 2l + r3j cosα3j ln

(
r23j
l2

)
+2r3j sinα3j

(
α4j + π

2
− α3j

) ]

−

[
r2j sinα2j ln

(
r22j
l2

)
− 2l + r1j cosα1j ln

(
r21j
l2

)
+2r1j sinα1j

(
α2j + π

2
− α1j

) ]


+
Θ̄

2π


[
α4j + π

2
− α3j

]
+
[
α1j + π

2
− α4j

]
+ 1

2l

[
1
2
r2j sinα2j ln

(
r23j
r22j

)
+ r2j cosα2j

(
α3j + π

2
− α2j

)]
− 1

2l

[
1
2
r4j sinα4j ln

(
r21j
r24j

)
+ r4j cosα4j

(
α1j + π

2
− α4j

)]


Taking into account that xj2 = r1j sinα1j and 2l − xj2 = r3j sinα3j as well as (5.13) hold,
this is reduced to

Θ(xj) =
Θ̄

2l
xj2

the exact solution for internal points.

5.2 B: Analytic integration of singular boundary in-

tegrals

5.2.1 Analytic integration in the case of logarithmic kernels

In R2, kernels containing ln(r/c) are weakly singular and can be represented on a straight
boundary element modelled by the linear approximation (4.1) xei (η) = x1e

i (1 − η) + x2e
i η

as

ln(
r

c
) =

1

2
ln
[(
x1e

1 (1− η) + x2e
1 η − ξ1

)2
+
(
x1e

2 (1− η) + x2e
2 η − ξ2

)2
]
− ln(c) (5.14)

For an approximation of the boundary state Φ(x) in Γe by a constant value Φ(xei (η)) = Φe

and a collocation at its respective node, i.e., at the middle of the element ξi = 1
2
(x1e

i +x2e
i ),

an integral with a logarithmically singular kernel over this element can be evaluated
exactly

∫
Γe

ln(
r(x, ξ)

c
)Φ(x)dΓx = Φe

[
le
2

1

∫
η=0

ln

{
(
1

2
− η)2

[
(x2e

1 − x1e
1 )2 + (x2e

2 − x1e
2 )2
]}

dη − le ln(c)

]
= Φe

[
le
2

1

∫
η=0

{
ln(

1

2
− η)2 + ln l2e

}
dη − le ln(c)

]
= Φe

[
le
2

{
2(ln

1

2
− 1) + 2 ln le

}
− le ln(c)

]
= Φele

{
ln(

le
2c

)− 1

}
(5.15)

= −Φele(ln 2 + 1) for c = le (see the Remark below) (5.16)
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Remark: The argument of the ln-function has to be dimensionless and, hence, the constant

factor c in the above integral kernel has to represent a distance, but can be arbitrarily chosen.

In order to avoid that for smaller elements, i.e., le → 0, the term ln( le
2c

) becomes dominant due

to limle→0

{
ln( le

2c
)
}
→ −∞, the factor c should be chosen problem orientated, e,g., as c = le.

When the state function is linearly approximated

Φ(xei (η)) = Φ1e(1− η) + Φ2eη

and the collocation point ξ is placed at the initial node of the element, i.e., ξi = x1e
i ,

the square of the distance between this collocation point and the integration points is
r2 = l2eη

2. Then, the integral with a logarithmic kernel becomes (c is an arbitrary constant
distance, e.g., c = le)

∫
Γe

ln(
r(x, ξ)

c
)Φ(x)dΓx = le

1

∫
η=0

{[
ln η + ln(

le
c

)

] [
Φ1e(1− η) + Φ2eη

]}
dη

=
le
4

{
Φ1e(2 ln(

le
c

)− 3) + Φ2e(2 ln(
le
c

)− 1)

}
= − le

4

{
3Φ1e + Φ2e

}
for c = le (5.17)

while for a collocation at the end node of the element, i.e., at ξi = x2e
i , the square of the

distance between this collocation point and the integration points is r2 = l2e(1 − η)2 and
the integral becomes

∫
Γe

ln(
r(x, ξ)

c
)Φ(x)dΓx = le

1

∫
η=0

{[
ln(1− η) + ln(

le
c

)

] [
Φ1e(1− η) + Φ2eη

]}
dη

=
le
4

{
Φ1e

[
2 ln(

le
c

)− 1

]
+ Φ2e

[
2 ln(

le
c

)− 3

]}
= − le

4

{
Φ1e + 3Φ2e

}
for c = le (5.18)

In the case of a quadratic approximation of the state function

Φ(xei (η)) = Φ1e(1− 3η + 2η2) + Φ2e(4η − 4η2) + Φ3e(2η2 − η)

and collocation at the initial node of the element, i.e., at ξi = x1e
i , the square of the

distance between this collocation point and the integration points is r2 = l2eη
2 and the

integral becomes

∫
Γe

ln(
r(x, ξ)

c
)Φ(x)dΓx = le

1

∫
η=0


[
ln η + ln(

le
c

)

] Φ1e(1− 3η + 2η2)+
Φ2e(4η − 4η2)
+Φ3e(2η2 − η)

 dη

=
le
6

{
Φ1e(ln(

le
c

)− 17

6
) + Φ2e(4 ln(

le
c

)− 10

3
) + Φ3e(ln(

le
c

) +
1

6
)

}
= − le

36

{
17Φ1e + 20Φ2e − Φ3e

}
for c = le (5.19)
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while for collocation at the middle point, i.e., at ξi = x2e
i gives r2 = l2e(

1
2
− η)2and

∫
Γe

ln(
r(x, ξ)

c
)Φ(x)dΓx =

le
2

1

∫
η=0


[
ln(

1

2
− η)2 + 2 ln(

le
c

)

] Φ1e(1− 3η + 2η2)+
Φ2e(4η − 4η2)
+Φ3e(2η2 − η)

 dη

=
le
6

{(
Φ1e + Φ3e

)
(ln(

le
2c

)− 1

3
) + 4Φ2e(ln

le
2c
− 4

3
)

}
(5.20)

= − le
6

{(
Φ1e + Φ3e

)
(ln 2 +

1

3
) + 4Φ2e(ln 2 +

4

3
)

}
for c = le

and for collokation at the end point of the element, i.e., at ξi = x3e
i gives r2 = l2e(1− η)2

and results in

∫
Γe

ln(
r(x, ξ)

c
)Φ(x)dΓx = le

1

∫
η=0


[
ln(1− η) + ln(

le
c

)

] Φ1e(1− 3η + 2η2)+
Φ2e(4η − 4η2)
+Φ3e(2η2 − η)

 dη

=
le
6

{
Φ1e

[
ln(

le
c

) +
1

6

]
+ Φ2e

[
4 ln(

le
c

)− 10

3

]
+ Φ3e

[
ln(

le
c

)− 17

6

]}
= − le

36

{
−Φ1e + 20Φ2e + 17Φ3e

}
for c = le (5.21)

5.2.2 Analytic integration in the case of (1/r)- kernels

In many cases, integral kernels contain r,s/r which are strongly singular and, hence, the
respective boundary integral has to be evaluated in the Cauchy principal value sense.

For a linear geometric approximation (4.1), i.e., for a straight boundary element with
xei (η) = x1e

i (1− η) + x2e
i η, the tangential unit vector is given as

ti =
dxei
ds

/ | dx
e
i

ds
|= dxei

dη
/ | dx

e
i

dη
|= x2e

i − x1e
i

le
(5.22)

so that the distance between a collocation point ξ and the integration point on the element

r =

√
[x1e

1 (1− η) + x2e
1 η − ξ1]

2
+ [x1e

2 (1− η) + x2e
2 η − ξ2]

2
(5.23)

is found to have as tangential derivative

r,s = r,iti =
[x1e

1 (1− η) + x2e
1 η − ξ1, x

1e
2 (1− η) + x2e

2 η − ξ2]√
[x1e

1 (1− η) + x2e
1 η − ξ1]

2
+ [x1e

2 (1− η) + x2e
2 η − ξ2]

2
· 1

le

[
x2e

1 − x1e
1

x2e
2 − x1e

2

]
(5.24)

This allows to represent the singular kernel as

r,s
r

=
[x1e

1 (1− η) + x2e
1 η − ξ1, x

1e
2 (1− η) + x2e

2 η − ξ2]

[x1e
1 (1− η) + x2e

1 η − ξ1]
2

+ [x1e
2 (1− η) + x2e

2 η − ξ2]
2 ·

1

le

[
x2e

1 − x1e
1

x2e
2 − x1e

2

]
(5.25)
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and gives with a constant shape function for the state function and, accordingly, a col-
location at the middle node of the element, i.e., at ξi = 1

2
(x1e

i + x2e
i ), as distance (5.23)

between the collocation point and the integration points r = le | 1
2
− η |. Finally, the

strongly singular boundary integral can be evaluated to

∫
Γe

r,s
r

Φ(x)dΓx = Φele lim
ε→0

(
1
2
−ε
∫
η=0

+
1

∫
η= 1

2
+ε

)
[x1e

1 − x2e
1 , x

1e
2 − x2e

2 ] (1
2
− η)

l2e | 1
2
− η |2

1

le

[
x2e

1 − x1e
1

x2e
2 − x1e

2

]
dη

= Φe lim
ε→0

(
1
2
−ε
∫
η=0

+
1

∫
η= 1

2
+ε

)
1

η − 1
2

dη

= Φe lim
ε→0

(
ln ε− ln

1

2
+ ln

1

2
− ln ε

)
= 0 (5.26)

For a linear approximation of the state function

Φ(xei (η)) = Φ1e(1− η) + Φ2eη

and collocation at the initial node of the element, i.e., at ξi = x1e
i one obtains for the

distance between the integration points on the element Γe and that collocation point
re = leη. At the same time, that collocation point also coincides with the end point
of the neighbour element Γe−1, i.e., ξi = x2e−1

i , which gives for the respective distance
re−1 = le−1(1 − η). In this case, the Cauchy principal value has to be evaluated with
limε→0 by considering both neighbour elements Γe−1 and Γe (regarding that Φ2e−1 = Φ1e):

(
∫

Γe−1

+ ∫
Γe

)
r,s
r

Φ(x)dΓx =

1−ε
∫
η=0

[x1e−1
1 −x2e−1

1 ,x1e−1
2 −x2e2 ]

l2e−1(1−η)

[
x2e−1

1 − x1e−1
1

x2e−1
2 − x1e−1

2

](
Φ1e−1(1− η)

+Φ2e−1η

)
dη

+
1

∫
η=ε

[x2e1 −x1e1 ,x2e2 −x1e2 ]η
l2eη

2

[
x2e

1 − x1e
1

x2e
2 − x1e

2

](
Φ1e(1− η)

+Φ2eη

)
dη

=
1−ε
∫
η=0

−1

1− η
[
Φ1e−1(1− η) + Φ2e−1η

]
dη

+
1

∫
η=ε

1

η

[
Φ1e(1− η) + Φ2eη

]
dη

= −Φ1e−1 − Φ2e−1
1−ε
∫
η=0

η

1− η
dη + Φ1e

1

∫
η=ε

(1− η)

η
dη + Φ2e

= Φ2e − Φ1e−1 + Φ2e−1
ε

∫
η′=1

(1− η′)
η′

dη′ + Φ1e
1

∫
η=ε

(1− η)

η
dη

= Φ2e − Φ1e−1 (5.27)

The unit normal vector is for straight boundary elements

n =
1

le

[
−x2e

2 + x1e
2

x2e
1 − x1e

1

]
(5.28)



114 5 Appendices

from which due to the linear approximation of this element at all collocation points, e.g.,
at the initial point ξi = x1e

i

r,n = r,ini =
− [x1e

1 − x2e
1 , x

1e
2 − x2e

2 ] η

leη
· 1

le

[
−x2e

2 + x1e
2

x2e
1 − x1e

1

]
= 0 (5.29)

at the middle point ξi = 1
2
(x1e

i + x2e
i )

r,n = r,ini =
[x1e

1 − x2e
1 , x

1e
2 − x2e

2 ] (1
2
− η)

le | 1
2
− η |

· 1

le

[
−x2e

2 + x1e
2

x2e
1 − x1e

1

]
= 0 (5.30)

and also at the end point ξi = x2e
i

r,n = r,ini =
[x1e

1 − x2e
1 , x

1e
2 − x2e

2 ] (1− η)

le | 1− η |
· 1

le

[
−x2e

2 + x1e
2

x2e
1 − x1e

1

]
= 0 (5.31)

follows that the normal derivative r,n = 0 on straight elements for all types of shape
functions, i.e., an integral containing r,n gives zero on straight boundary parts.
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