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INTRODUCTION 

 

The title of this lecture refers to the analogy between strongly interacting many-body 

systems and elementary particle physics in the context of Quantum Field Theory (QFT). In 

fact, many-body physics has just adopted the methods of Quantum Field Theory, created at 

first to deal with the properties of elementary particles.  Anyway, the common denominator 

between these two branches of theoretical physics is the Green’s function or propagator, 

which is the key for solving specific problems. 

Here we are not concerned with the general subject of elementary particle physics, we are 

mainly concentrating on the vacuum, its excitations and its interaction with electron and 

photon fields.  

In a first introductory part we recall the basic facts of second quantization of the Klein-

Gordon and the Dirac field and discuss the resulting consequences. 

Then we define propagators for the Dirac and photon fields and use them to treat 

interactions of these fields with the vacuum. More specifically we study electron and photon 

self energies. 

We do not concern ourselves in general with collisions between elementary particles, 

although this is one of the main subjects met in Quantum Field Theory. As an exception we 

consider however electron-electron scattering because of its connection with vacuum 

polarization. 

Note finally that we rely mainly on the book of M.E.Peskin and D.V.Schroeder [3] as far as 

basic concepts and notations are concerned.   

 

 

 

1.PARTICLES AND FIELDS 

 

It is the aim of this section to recall how, in relativistic quantum physics, negative energy 

states are avoided by adopting the field viewpoint. For this purpose we chose as the simplest 

possible case that of an uncharged particle obeying the Klein-Gordon equation. The essential 

arguments developed here then apply equally to the case of more general systems.  

 

Negative energy states, causality. 

In quantum mechanics we associate a particle with a wave function  (   ) depending on 

time and space coordinates t and x respectively. The wave functions are solutions of a 

differential equation known as the Schrödinger equation. In a heuristic way this equation 

can be derived by replacing the energy and momentum of the particle by operators, 

according to the relations 

     
 

  
     and          

For a particle we then have in the non relativistic case   
  

  
   yielding 
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(1.1)   .
 

  
 

  

  
  /    

In the relativistic case we start from the relation 

              and obtain, after inserting the relevant differential operators  

(1.2)  . 
 

  

  

   
   /  

    

      

This relativistic version of the Schrödinger equation is called the Klein-Gordon equation. It is 

important to note that in contrast to the non relativistic eq.(1.1) the Klein-Gordon equation 

contains the second time derivative meaning that it allows for negative energy solutions. 

Using from now on natural units  

     ,     , we write explicitly 

(1.3)   . 
  

   
   /        

Setting 

 (   )   ( )      

Eq. (1.3) reduces to 

(1.4)   (     )        

where we have used          . 

For plane wave solutions with         , we then have the energy relations 

(1.5a)      (     )  

(1.5b)      √      

Hence there are negative energy solutions. The question arises whether these solutions 

cannot be discarded as non physical. But in that case we would not have a complete set of 

basis functions since these solutions are part of it. In actual calculations this could yield 

erroneous results. Furthermore, in a less obvious way, omitting these solutions leads to a 

violation of the principle of causality as we shall demonstrate now. 

Consider the amplitude  ( )  ⟨ |     |  ⟩ for the evolution of a free particle from an 

initial to a final position during the time interval  . Discarding negative energy states this 

amplitude would be 

(1.6)     ( )  ⟨ |    √     
|  ⟩  ∫   ⟨ | ⟩    √     

⟨ |  ⟩ 

Inserting the wave functions 

(1.7)   ⟨ | ⟩  
 

(  )   
       ;   ⟨ |  ⟩  

 

(  )   
       

we have 

(1.8)    ( )  
 

(  ) 
∫       (    )    √     

 

Using polar coordinates as follows: 

  (    )   |    |       ;                    

we arrive after integration over   at the expression 

(1.9)    ( )  
 

   |    |
∫      ( |    |) 

   √     
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For simplicity we set   |    |. With a convergence factor     √     
 ,       inserted 

the value of this integral is known [1]. Setting        its value is proportional to the 

Bessel function 

  [ (     )   ]  up to a rational function of   and  . For large values of its argument the 

Bessel function reduces essentially to the exponential    (     )
   

  [2] , leading for     

to the result 

(1.10)      √      

Given this factor in the expression of  ( )  we have a non-zero amplitude outside the light 

cone, thus violating the principle according to which space like separated events cannot be 

causally connected. Consequently violation of the causality principle occurs if only positive 

energy functions are taken into account.  

There are however other shortcomings contained in the relativistic particle theory. One 

could argue that any positive energy state must be unstable since after some time the 

particle would fall into a lower energy state, in the same way as an atomic electron in an 

excited state falls into the ground state after some short lifetime. In the case of fermions this 

can be prevented by assuming, following Dirac, that all negative energy states are occupied 

already. This situation is due to the fact that, according to the Pauli principle, each state can 

only receive one electron. The completely filled negative states constitute the Dirac sea. 

Moreover, this picture has led Dirac to the prediction of the positron, i.e. a positively 

charged electron, appearing as a hole in the Dirac sea when by some process an electron is 

removed from it.  

It is however possible to give a less artificial description of relativistic quantum particles by 

adopting the field viewpoint which will be presented now.    

Lagrangian field method 

We consider a field function   depending on the time-space vector   (   ) with 

components   , α=0,1,2,3. Distinguishing between contra- and covariant components, 

      respectively, we further have           and a similar relation with 

        (

    
     
     
     

,   the metric tensor  As usual, Greek indices belong to 

the Minkowski  four- space, Latin ones to ordinary space, with     . 

In analogy with classical mechanics, we introduce a Lagrange function, having here the 

character of a density, given by the expression    (     ) , where we have set  

        
  

    .  

Note also the complementary relation          
  

   
 . We now define an action integral 

  over a region Ω bordered by a closed surface ∑(Ω) , as follows:  

(1.11)   ( )  ∫     (     )
 

 

Varying this integral in the usual way according to the relation 
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(1.12)    ( )  ∫    2
  

  
   

  

    
    3

 
 

and using the identities 

    .
  

    
  /    .

  

    
/    

  

    
                  ;             

we arrive at 

(1.13)   ( )  ∫    2.
  

  
   

  

    
/     .

  

    
  /3

 
      

The last term in the parenthesis can be seen as the four-divergence of a four-vector 

proportional to     . Therefore with Gauss’s theorem it can be transformed into a surface 

integral over the border ∑(Ω). Since the Lagrange method postulates      at the surface, 

this term disappears. On the other hand, if the action integral   has to be an extremum,     

must vanish for any value of   . This leads to the familiar Euler-Lagrange equations 

(1.14)  
  

  
   

  

    
     

or more explicitly 

(1.15)   
  

  
 

 

   

  

 .
  

   
/
    . 

These equations apply to classical fields, e.g. one component of the electromagnetic vector 

potential, as well as to wave functions in particle quantum mechanics. 

As an example let us therefore consider the Klein-Gordon wave function. 

Setting 

(1.16)     
 

 
*(      )      + 

we write               
    and hence 

   
  

    
 

 

 
   

     
  

 

 
*     

       
 +  .

  

   
   /  

yielding with  
  

  
       the Klein-Gordon equation 

(1.17)   .
  

   
      /     

 

The Hamiltonian. 

In order to establish a link with classical mechanics, we first conceive the space coordinates 

   as a countable set, each element occupying an infinitesimal space segment    . 

Considering the classical expression of the Hamiltonian 

(1.18)     ∑    ̇     

with the canonical variable    obeying the relation 

(1.19)           ̇         

we have the correspondence 

 ̇   ̇   ;      
   

  ̇ 
             

defining the canonical variable 

(1.20)      
   

  ̇ 
  . 

With these definitions we obtain for the classical relation (1.18) the following equivalent 

expression: 
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(1.21)     ∑ (   ̇    )             

Switching now to the limit of continuous space coordinates, this result takes the form   

(1.22)     ∫   { ( ) ̇( )   (     )}  ∫    ( ) 

where   represents the Hamiltonian density 

(1.23)    ( )   ( ) ̇( )    

with  ( ) the canonical momentum given by  

(1.24)    ( )  
  

  ̇
  . 

Let us consider as an example the Klein-Gordon case. 

According to eq.(1.16) the Lagrange density can be written as 

(1.25)     
 

 
( ̇  (  )      )  . 

We then have   ( )   ̇ and hence 

(1.26)    ( )   ̇  
 

 
 ̇  

 

 
(  )  

 

 
     

 

 
( ̇  (  )      )  . 

 

Second quantization. 

Simply speaking, a given wave function is quantized if it is replaced by an operator. This is 

familiar in quantum electrodynamics where e.g. one component of the vector potential is 

replaced by photon creation and annihilation operators. A similar procedure can be applied 

to quantum mechanical wave functions and in this latter case one then talks of second 

quantization, since the wave functions are already obtained by a first quantization 

procedure. Note however that the term second quantization is not universally accepted. 

Here we consider again as an example the Klein-Gordon case, which constitutes the simplest 

one, as it concerns spinless particles like K or π mesons. 

Let us first switch from   space to p space by introducing the following transformations: 

(1.27a)    (   )  ∫
   

(  ) 
      (   )  . 

(1.27b)     (   )  ∫
   

(  ) 
        (   ) 

(1.27c)       ̇(   )   (   )   ∫
   

(  ) 
      (   ) 

The Hamiltonian density then takes the form 

(1.28) 

 ( )  ∫
   

(  ) 
∫

    

(  ) 
  (    )  

 

 
* ( ) (  )  (       ) ( ) (  )+ 

Since we want to quantize the system by replacing wave functions with operators in the 

Schrödinger picture, we disregard   in this expression. 

Integrating over the space coordinates, we thus arrive at the following expression for the 

Hamiltonian in terms of functions in p space: 

(1.29)    ∫    ( )  ∫
   

(  ) 
{ ( ) (  )    

  ( ) (  )} 

with 

(1.30)   
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To obtain eq.(1.29) we have made use of the relation 

 ∫     (    )     (    ) 

The parenthesis inside the integral of eq.(1.29) reminds one of the Hamiltonian 

 
 

 
(       ) of a harmonic oscillator. 

In the latter case quantization is achieved by introducing creation and destruction operators  

  ,   according to the relation 

  
 

√  
(    )  ;       √

  

 
(    )    

with the commutator ,    -    

We therefore try in eq.(1.29) the substitutions 

(1.31a)    ( )    √
  

 
(      

 ) 

(1.31b)    ( )  
 

√   
(      

 ) 

The parenthesis inside the integral in eq. (1.29) is then found to be given by the expression   

* +    (    
     

    ) 

Since complete summation over p takes place, we can disregard the minus signs of the 

indices and write  

* +    (    
    

   )     (  
    

 

 
[     

 ]* 

We thus obtain for the Hamiltonian the following result 

(1.32)    ∫
   

(  ) 
   .  

    
 

 
[     

 ]/ 

According to general rules of quantum physics, the commutation relation for canonical 

variables takes the following form in the present case: 

(1.33)   , ( )  (  )-     (    ) . 

Inserting into the commutator the transformation relations given by eq.’s (1.27a,c) we write 

(1.34)  , ( )  (  )-  ∫
   

(  ) 
∫

    

(  ) 
            , ( )  (  )-  

Substituting for  ( )  (  ) the expressions given by eq.’s (1.31a,b) we obtain after a 

lengthy but straightforward calculation 

(1.35)   , ( )  (  )-  
 

 
{[       

 ]  [       
 ]}  

Adopting the trial rule 

(1.36)   [      
 ]  (  )   (    ) 

Eq. (1.35) reduces to 

(1.37)   , ( )  (  )-   (  )   (    ) 

Substituting this result into eq.(1.34) we recover the commutation relation of eq.(1.33). This 

confirms the validity of the trial rule of eq.(1.36). 

In the field equations developed above the number of particles concerned is not specified. 

Let us now be more specific by introducing single particle states  | ⟩ assumed to constitute 

an orthonormal set in a given inertial frame. Acting with the Hamiltonian of eq.(1.32) on one 
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of these states, e.g.|  ⟩, and using eq.(1.36) for the commutator, we obtain the formal 

expression 

(1.38)  |  ⟩     
|  ⟩  .∫

   

(  ) 
 

 
  /   ( )|  ⟩ 

The second term on the r.h.s. of this equation contains the infinite quantity   ( ) and 

moreover it involves an infinite sum over energies     . Mostly this term can be considered 

as some sort of ground state energy    which cannot be detected experimentally and thus 

can be ignored.  

In order to establish the time dependence of the operators   and   one has to replace them 

by Heisenberg operators according to the relation 

  (   )             and similarly for  (   ) .  

Starting from the expressions (1.31a,b) we evaluate the corresponding Heisenberg operators 

of     and   
  as follows: 

Acting on an eigenstate | ⟩ of  , according to eq.(1.38), the infinite zero-point energy term 

cancels in the operator product since it is a c number. We are thus  

left with the expression  

       
    | ⟩          | ⟩ 

using        | ⟩  | ⟩    | ⟩ 

Similarly we have 

      
      | ⟩         

 | ⟩ 

Hence the requested operator equations are 

(1.39a)     ( )           

(1.39b)     
 ( )         

  

With eq.(1.31b) the quantized form of eq.(1.27a) becomes 

(1.40)    (   )  ∫
   

(  ) 
 

√   
(   

             
            ) 

where eq.’s (1.39a,b) have been used. 

Introducing the Lorentz invariant scalar product  

             in four space, with        and    =t , 

we obtain for the quantized field the expression 

(1.41)     (   )  ∫
   

(  ) 
 

√   
(   

        
      ) . 

 

Causality again. 

As mentioned earlier, two points x,y with space like separation (   )    are not causally 

connected. This means that in this case, which corresponds to the region outside the light 

cone, the commutator , ( )  ( )- must vanish. 

Starting from eq. (1.41) the commutator is given by the expression 

(    )  , ( )  ( )-  ∫
   

(  ) 
 

   
(     (   )      (   )) 

where the operator commutation rule of eq. (1.36) has been used. In order to obtain zero 

for this quantity, the inversion transformation      (   ) has to be applied to the 
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second integral. However, this is only legitimate if this transformation leaves the value of the 

integral invariant. This we shall discuss now. First set        (    ) , with       , 

     . Then we have 

(1.43)    (   )             ;            

Now we define a space like surface [3] 

(1.44)     
             ;       

Without loss of generality we can restrict ourselves to the plane (     ) where the surface 

of eq.(1.44) appears as the curve 

(1.45)     
    

            see Fig.1 

Now take a particular point (     ) on this curve and rotate the coordinate frame in both 

terms of eq.(1.42) from (     ) to (       ) 

One then has the relations  

(1.46)                    ;         
  

√  
    

 
 

Hence the transformed quantities are  

    ,     
 

    
  ,      ,         

yielding the following result in terms of rotated quantities: 

     (   )      (   )          
            

Now the cumbersome factor        has disappeared and the transformation        leaves 

the value of the second integral unchanged, since in this integral one can change the sign of 

the integration variable without affecting its value. The fact that for any point on a given 

curve the corresponding coordinate rotation can be made, and that this is true for any curve, 

proves the statement that the commutator vanishes at any point outside the light cone. 

Inside the light cone, i.e. for time like separations, the commutator does not vanish so that 

in this region points can be causally connected. It is however interesting to note that the 

corresponding commutator is invariant with respect to proper Lorentz transformations as 

shown e.g. in ref. [3]. 

 



 

Page 12 
 

 
Fig. 1 

 

Note finally, that in many calculations the infinite energy of the vacuum state is eliminated 

by performing normal ordering of operators. It consists in reshuffling operator products in 

such a way that destruction operators always stand on the right of creation operators. 

 

Generalizations [4]. 

Particles obeying the Klein-Gordon equation do not bear any electric charges. In order to 

treat charged particles, complex wave functions have to be introduced into the theory. Even 

more profound modifications are necessary in the case of electrons according to the Dirac 

theory. Here, due to the presence of spin, wave functions are represented by spinors 

consisting of four functions as components of a vector. An even more striking difference 

occurs if second quantization is performed. In this case, the fermion character of the particle 

is taken into account in postulating anti-commutation rules for the field operators instead of 

the commutation rules pertaining to bosons.  

However, the general idea of avoiding negative energy states by means of second 

quantization, already applied to the Klein-Gordon case, remains essentially the same in this 

and other situations.  
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2.SYMMETRY TRANSFORMATION RELATIONS 

 

An essential feature of relativistic particles and fields is their behaviour with respect to 

transformations of the Lorentz group.  

Transformation operators 

We recall that the elements of this group are three rotations in the xy, xz, and yz planes 

around the z, y and x axis respectively, completed by three pseudo- rotations belonging to 

the xt, yt and zt planes respectively. These transformations can be viewed as an infinite 

succession of infinitesimally small rotations which generate a representation of the group. 

Designating the rotation operator with respect to the plane       as     , and the 

corresponding rotation parameter as     , then an infinitesimal transformation is generated 

by the operator 

(   )    .  
 

 
    

  / 

yielding for the finite Lorentz transformation operator the expression 

(   )       . 
 

 
    

  / . 

Recalling that the familiar expression for rotations in ordinary space can be generalized to 

Minkowski space as 

(2.3)       (         ) ,                    , 

we can generate a four dimensional representation of the proper Lorentz group by acting 

with this operator on the vector (    ). Using the relations 

(2.4)             ,                 we consider the example            , all other 

     equal zero. Eq.(2.1) then yields the matrix 

(2.5)     (

             
        
            
            

,     

This matrix thus corresponds to a rotation by an infinitesimal angle   in the xy plane as can 

be shown by multiplying the matrix by the vector (    ).  

As a second example we consider the Lorentz boost in the    direction by setting 

            with all others equal zero. Then the relation 

(2.6)             ,              =       
       

with     substituted into eq.(2.1) leads to the result 

(2.7)     (

          
          
          
          

, 

Note that the factor ½ in eq.(2.1) disappears because in both examples two equal terms are 

accounted for. Note also that by multiplying the matrices of eq.’s (2.5) and (2.7) by the 

column vector . 
 

 
/ one recovers the usual relations for the corresponding infinitesimal 

rotations and Lorentz boosts. 
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Applying a Lorentz transformation as expressed by the operator   of eq.(2.2) to wave 

functions  ( ), one obtains the following change: 

(2.8)   ( )   (    ) 

The criterion for the corresponding wave equations to be valid is their Lorentz invariance. 

This property can be established by proving that the Lagrange density, from which a given 

wave equation is derived, is a Lorentz scalar. We shall now demonstrate this point in the 

particular case of the Klein-Gordon equation.  

We cast the Lagrange density of eq.(1.16) in the form 

(2.9)    
 

 
2   (   )

 
     3 

with only one type of differential operator. With the transformation of eq.(2.8), i.e. 

(2.10)   ( )   (    ) 

the scalar property of    is obvious. We therefore focus on the quantity (   )
 

 and write 

(2.11)  (   )
 
    .    ( )/ (    ( ))     0(   )

  
 
   1 [(   )  

    ] 

where we have omitted on the r.h.s. the argument      of the   functions. Note also that 

the horizontal shift of the lower indices on matrix elements allows us to distinguish between 

line and column indices. Since matrix elements are c-numbers, their product can be treated 

separately. It is sufficient to do this in the limit of infinitesimal rotations. The more abstract 

general treatment can be found in the literature e.g. in ref.[3] .  

According to eq.’s (2.1) and (2.2) we write 

(2.12)     (   )
  
 (   )

  
 

    .   
 
    

 
/ (   

     
 ) 

With the defining relation 

(2.13)           

Treating only the change introduced by the transformation and given the fact that   is an 

infinitesimal quantity, we consider the expression 

(2.14)        
 
   
        

    
 

    

In the first term the indices    and   are eliminated yielding with      ,           

        
    no summation 

whereas for the second term we find with     ,             

     
 

     no summation 

Hence the final result 

(2.15)          
         

 
       no summation 

Suppose now that   and    belong both to ordinary space i.e.           then the   

elements are both equal to    , but as shown by eq.(2.5), we have    
      

  and the sum in 

eq.(2.15) is zero. In the opposite case of Lorentz boosts with e.g.      ,     we have 

        and          whereas, according to eq.(2.7)    
     

  and the sum is again zero. 

This proves the statement that Lorentz transformations do not affect the Lagrangian density 

function, except for the argument of the wave functions, and hence it is a Lorentz scalar. The 

resulting Euler-Lagrange equation, i.e. the wave function, has therefore a Lorentz invariant 

form.  
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The proof given here for infinitesimal variations is generally valid, since finite 

transformations involve an infinite succession of infinitesimal ones. As already mentioned, 

more formal proofs are found in the literature, but we thought it instructive to approach the 

problem by explicit calculations as well.   

 

Spinors. 

Having treated as an example the case of a structureless particle obeying the Klein-Gordon 

equation, we are now moving to the case of the electron, where in addition to space 

coordinates spin variables have to be considered, together with the existence of an electric 

charge.  

Introducing spin functions           , with the + - signs indicating spin variables +1/2,-1/2 

in a given frame, the wave function in four space can be written in the form 

(2.16)                        

Considering components      etc. as elements of a vector in spin space, we can also write 

(2.17)    (

  

  

  

  

,  (
  

  
*    ,     (

  

  
*       (

  

  
* 

Where the functions     etc depend on both the space and the spin variable. The column 

vector of eq.(2.17) is known as a spinor.  

Its Lorentz transformation can be expressed as follows: 

(2.18)         (    ) 

where it is understood that the operator       acts only on spin states. 

We now define operator matrix elements     by introducing for      the limiting expression 

(2.19)  .  
 

 
    

  / 

with      being the usual rotation and boost parameters. 

We now recall that spin functions transform under rotations in ordinary space according to 

the Pauli spin matrices     with 

(2.20)     .
    
    

/       .
   
         

/       .
     
   

/ 

Then clearly, ordinary space rotations occur according to the relation 

(2.21)     (
  

  
*  

 

 
(  

      
         

* (
  

  
*  

 

 
4
    

    

5  i j k in normal order 

Remark: normal order means that i j k are all different and that starting with 1 2 3 an odd 

number of permutations introduces a minus sign. One may ensure this property 

automatically by multiplying with a quantity known as the     -tensor. 

The question now arises, what happens in the case of Lorentz boosts? Without entering into 

details, we only state the answer given by Dirac’s theory according to the relation 

(2.22)     (
  

  
*  

 

 
(      

 

       
* (

  

  
*  

 

 
4
    

    

5 
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Hence the matrices of eq.’s (2.21) and (2.22) constitute a four-dimensional representation of 

the Lorentz group known as the Dirac- Pauli representation. 

 

The Weyl representation. 

The Dirac-Pauli representation is reducible since its matrices can be brought into diagonal 

form by a unitary transformation involving the matrices 

(2.23)    
 

√ 
. 
         
       

/           
 

√ 
. 
        
             

/ 

With these matrices we have  

   (      
 

       
*    =(        

         
  * 

and hence 

(2.24)      
 

 
(        
         

  * 

whereas the    matrices remain unaffected. 

Designating as left and right handed spinors     and     the spinors which now replace    

and    , we have instead of eq.’s (2.21),(2.22)  the relations 

(2.25)     (
  

  
*  

 

 
4
    

    

5    and         (
  

  
*  

 

 
4
     

       

5 

Taking as an example the values       ,        with particular figures for     and all 

other      equal 0, eq.’s(2.19) and (2.25) then yield the equation 

(2.26)  (
  

  
*  (  

 

 
 4

    

    

5  
 

 
 4

     

       

5+   , 

showing that the functions    and     , called Weyl spinors, transform independently from 

each other.  

Clearly, these relations can be generalized for arbitrary rotation and boost parameters 

described by vectors    and   respectively. This leads to the transformation relations 

(2.27a)     .    
 

 
  

 

 
/   

(2.27b)     .    
 

 
  

 

 
/    

Hence the Weyl spinors    ,     constitute the basis for two-dimensional representations of 

the Lorentz group, instead of the reducible four-dimensional representation of the Dirac-

Pauli basis.    

In order to explain the designations of       as left and right handed spinors, we consider 

the fact that they are eigenstates of the helicity operator   
 

 
 ̂ (

    
      

*  with eigenvalues 

      for left and +     for right handed spinors.  

As an example the spinors introduced in section 3 are right handed for those of 

eq.’s(3.13a,3.15a) and left handed for those of eq.’s(3.13b,3.15b). This can be shown by 

applying the helicity operator with      to these spinors. 
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Connection with wave equations. 

The wave equation for spinors   is Dirac’s equation, which can be derived from the 

Lagrange density  

(2.28)     ̅(       )   ,   ̅       

as the corresponding Euler-Lagrange equation applied to    , with the result 

(2.29)  (       ) ( )   . 

Note that for      and similar products Feynman has introduced the slash notation  /  . 

The    matrices entering the Lagrange density are of vital importance, since in choosing 

them in an appropriate way, one meets the condition that    has to be a Lorentz scalar, 

necessary for the corresponding wave function to be valid. As a consequence, there is clearly 

a connection between these matrices and the Lorentz transformation properties of the 

spinors. The corresponding relations are derived in many textbooks and will be given here 

only in their final form. According to Dirac, the following equations hold: 

(2.30)      
 

 
,     -   

(2.31)  ,     -       

where the + index indicates an anticommutator. Note that later in this text the 

anticommutator will be designated by the symbol * +. 

Given the fact that the matrices     are different in the Dirac and the Weyl representation, 

one would expect a similar difference in the   matrices. Substituting in eq.’s (2.30),(2.31) the 

special values     ,     , one obtains 

(2.32)       
 

 
     and      

 

 
(  )       

Making the guess that    is equal in both the Dirac and the Weyl representation, i.e. for 

    (      
 

      
*  Dirac   and      (      

        
*  Weyl 

one obtains the result 

(2.33)     (           
 

        
*   

By setting 

(2.34)     (  )   .
       
    

/    Dirac       

(2.35)     (  )   .
      
       

/     Weyl 

one then obtains the following relations: 

    (
  

  
*         4

    

     

5 

The Dirac equation, given in its general form by eq.(2.29), then takes in the case of the Weyl 

representation the form of the following two coupled equations: 

(2.36a)    (      )         

(2.36b)   (      )         

written in matrix form as 
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(2.37)   (
                       (      )

  (      )                   
  

+ (

  

  

+  

As can be seen from these equations, the mixing of the two Lorentz group representations 

    and     occurs because of the mass term in the Dirac equation. 

 

Noether currents. 

Let us now consider some continuous symmetry transformations on the wave functions, 

which leave the Lagrangian density invariant. In the infinitesimal limit we then write 

(2.38)   ( )   ( )     

The corresponding change in the Lagrange density  (     )  is then represented by the 

expression 

(2.39)     
  

  
   

  

 (   )
 (   ) 

With the obvious relation 

(2.40)   (   )       

we then have 

(2.41)     
  

  
   

  

 (   )
     

Using the identity 

  (
  

 (   )
  *    (

  

 (   )
*   

  

 (   )
      

the second term on the r.h.s. of eq.(2.41) can be rewritten with the result 

(2.42)       (
  

 (   )
  *  {

  

  
   (

  

 (   )
*}   

Now the second term of this equation, set equal to zero, represents the Euler-Lagrange 

equation as given by eq.(1.14). For     , according to the invariance condition of the 

Lagrange density, we then write   

(2.43)     (
  

 (   )
  *    

Introducing Noether currents by the defining relation 

(2.44)      (
  

 (   )
  *, 

eq.(2.43) involves the four-divergence of this quantity for which we thus have 

(2.45)     
    

Integrating this expression over the entire ordinary space, and applying Gauss’ theorem to 

the corresponding three-divergence, with vanishing contribution at the infinite surface, we 

are left with the expression 

(2.46)    ∫        
         

 . 

Hence the space integral ∫      
         

 is a conserved quantity. 

In order to interpret this quantity, let us consider the Dirac equation. The corresponding 

Lagrange density function is given by eq.(2.28). This equation is invariant under the phase 

transformation          , or in infinitesimal form 
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(2.47)          

For Noether’s current we then have, according to eq.(2.44) 

(2.48)       ̅   (   )  

and 

(2.49)           

where we have used the fact that in any representation (  )    . As can be seen,    

represents the probability density, which multiplied by the electron charge, constitutes the 

charge density. Hence eq.(2.46) expresses the fact that the electric charge of the electron is 

a conserved quantity. 

 

 

 

3.THE DIRAC FIELD 

 

As an entrance door to the Dirac field let us consider free particle solutions of the Dirac 

equation (2.29). These solutions can be viewed as superpositions of plane waves of the form 

(3.1)    ( )   ( )          with           

Plugging this expression into eq.(2.29), yields the equation 

(3.2)  (      ) ( )    

This equation is most easily solved in the rest frame, where only the component       is 

different from zero, so that we have 

(3.3)  (     ) ( )   .
      
      

/ (  )    

where for     the Weyl expression (2.35) has been used.  

Introducing two-component spinors  , the solution is 

(3.4)   (  )  √ (
 
 
* 

where the factor √   has been chosen for future convenience. 

Let us now look for a more general solution with two components       and       and  

      becoming 

(3.5)     (  )     

This solution can be obtained by performing a Lorentz boost on the previous one, which in 

infinitesimal form can be written as 

(3.6)  (
 
  *  0   .

    
    

/1 .
 
 
/  

This relation can be deduced by analogy from the matrix of eq.(2.7) noticing that all spatial 

directions are equivalent whereas the infinitesimal parameter   , called rapidity, replaces 

the previous  .   

For finite values of   we therefore have 

(3.7)  (
 
  *     0 .

    
    

/1 .
 
 
/  0     .

    
    

/       .
    
    

/1 .
 
 
/  (

      
      

* 
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The second expression on the r.h.s. is obtained by expanding the exponential and noticing 

that even powers of the matrix .
    
    

/ yield the unit matrix, whereas odd ones leave this 

matrix unchanged. 

Now we apply the same boost to the amplitude  ( ) of eq.(3.1) and write 

(3.8)   ( )      √ (
 
 
* 

From the infinitesimal operator as given by eq.(2.24) with I = 3, we deduce the relevant 

Lorentz transformation operator 

(3.9)          0 
 

 
 .        

     /1 

Considering the matrix    .
       
    

/ , with (  )  the unit matrix, an even power of the 

matrix in the exponent of eq.(3.9) yields the unit matrix, whereas an odd one yields this 

same matrix. The series expansion of the exponential operator of eq.(3.9) therefore leads to 

the following matrix expression: 

(3.10)       .
     
     

/     .
 

 
 /  .        

     /     .
 

 
 / 

Explicitating    and adding all matrices, a lengthy but straightforward calculation yields the 

following diagonal matrix 

(3.11)   

 

 
 

√ 

(

  
 

√       

 √      

  √     

   √    )

  
 

 

where the relation  

(3.12)      .
 

 
 /       .

 

 
 /        

√    

√ 
 

has been used. 

We now go back to eq.(3.8) and calculate the amplitude  ( ) for two special spinors 

  .
 
 
/ and   .

 
 
/ , corresponding to spins oriented in the positive and negative     

direction respectively. The matrix of eq.(3.11) then immediately yields the results 

(3.13a)  u(p)=(
√     .

 
 
/

√     .
 
 
/
) 

(3.13b)  u(p)=(
√     .

 
 
/

√     .
 
 
/
) 

So far we have put the minus sign on the exponent of the defining relation given by eq.(3.1). 

Consider now the case of a plus sign with 

(3.14)   ( )   ( )      

We choose however to maintain       and hence      . Despite this choice this case 

corresponds to the negative energy solutions which constitute the famous Dirac sea. This is 
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only apparent if e.g. the Hamilton density is calculated. At this stage we take it only as a 

known fact.  

We are not repeating a calculation similar to the previous one, but indicate only the relations 

replacing eq.’s(3.13a,b). For these special situations one finds 

(3.15a)  v(p)=(
 √    .

 
 
/

 √     .
 
 
/
) 

(3.15b)  v(p)=(
√     .

 
 
/

 √     .
 
 
/
) 

Defining as usual  ̅          and  ̅        , it is instructive to calculate the products 

  ̅ ,  ̅   and                                               (     )        

   .√    (   ) √    (   )/  

 ̅   .√    (   ) √    (   )/  

With    given by eq.(13a) we thus obtain 

(3.16)   ̅   √       =2m ,           

A similar calculation for the case of eq.(3.15b) yields the result 

(3.17)   ̅                

For the case of an arbitrary spin orientation axis we introduce the notations       with 

      designating the two opposite spin directions. Then the relations (3.16), (3.17) have 

to be completed as follows: 

(3.18)   ̅                                 

(3.19)   ̅                             . 

Furthermore we have the relations 

(3.20)     ( )  (  )      ,      (  )  ( )    

 

The Hamiltonian. 

Starting from the expression (2.28) of the Lagrangian density 

   ̅(       )        ̅       

and from the expression of the conjugate variable    
  

  ̇
  , 

the Hamiltonian density is given, according to eq.(1.23) by the expression 

    ̇     

More explicitly we then have with      ̇    and (  )    

(3.21)        ̇      (      )     ,   

       

In the expression of   the term   ̇  thus cancels the first term in eq.(3.21) and we are left 

with the result 

(3.22)      (           )  

Involving the single particle Hamiltonian 



 

Page 22 
 

(3.23)                              

The amplitudes  ( ) and  ( ) of eq.’s (3.1) and (3.14)  are  eigenfunctions of this 

Hamiltonian with eigenvalues    and –   respectively. To see this, multiply the Dirac 

equation (2.29) by  

    and write 

(3.24)  (               )      

remembering that (  )   .  

This equation can be expressed in the form 

(3.25) (      )     

Replacing   by the free-particle expressions of eq.’s (3.1) and (3.14) we then have 

(3.26a)          ( ) 
      

(3.26b)           ( ) 
     

Introducing these expressions into eq.(3.25) yields the eigenvalue relations stated above 

(3.27)     ( )     ( )  ,    ,     ( )      ( )   

with         Hence the amplitudes  ( )  correspond to negative energy solutions 

which constitute the famous Dirac sea. As in the Klein-Gordon case, this inconvenience is 

circumvented by means of a fully quantized treatment. 

 

Second quantization. 

In replacing the wave function  ( ) by an operator, we first consider the time-independent 

Schroedinger operator  ( )  which, in analogy with eq.(1.40), we write in the form 

(summation rule with s=1,2) 

(3.28)   ( )  ∫
   

(  ) 
 

√   
(  

   ( )        
   ( )      )   

or equivalently 

(3.29)    ( )  ∫
   

(  ) 
 

√   
     .  

   ( )    
   (  )/ 

Defining an empty state| ⟩ it is understood that we must have   
 | ⟩    

 | ⟩    

Introducing the total Hamiltonian   ∫     we obtain using eq.(3.22) in the Schoedinger 

picture 

(3.30)    ∫         

After substituting the expression (3.29) and its adjoint we write 

(3.31)  H=∫   ∫
      

(  ) 
 

√   √   
  (   )   

 .  
     ( )     

     (  )/ (    
   ( )       

   (  )) 

Inverting the order of integration, we take advantage of the relation 

∫     (   )   (  )   (   )  

and notice that, according to eq.(3.20), the cross terms in the product of the integrand in 

eq.(3.31) disappear. We are thus left with the expression  

(3.32)    ∫
   

(  ) 
 

   
(    

    
    ( )  ( )      

    
    ( )  ( )) 

where, given the integration over all values of  , the replacement       has been made. 
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Eliminating the amplitudes by means of the relations (3.18), (3.19), we thus arrive at the final 

expression 

(3.33)      ∫
   

(  ) 
(    

    
      

    
 ) 

At this stage it has to be reminded that in the present case of fermions the operators obey 

anti-commutation relations, which in contrast to the boson relations (1.37), are of the form 

(3.34)  {      
 }       

   
  
    (  )   (    )  

This relation allows us to deal with the embarrassing negative energy term in the integrand 

of eq.(3.33). 

Writing by means of the rule stated by eq.(3.34) 

(3.35)  )    ∫
   

(  ) 
(    

    
      

    
 )  ∫         

we have cast the negative energy into an infinite constant term which can be ignored if the 

origin of the energy scale is shifted adequately.  

A next step consists in interchanging the order of   
   and   

  .This is a trick justified in detail 

in ref.[3]. Here we indicate only that it has to do with the fact that in the one-particle case, 

according to the Pauli principle, we have   | ⟩     so that by interchanging       , 

| ⟩  | ⟩we recover the fundamental relation | ⟩    . 

Normal ordering 

A procedure of eliminating negative energy terms in the Hamiltonian consists in what is 

called normal ordering. It means that all operator products are reshuffled in such a way that 

annihilation operators stand always on the right of creation operators. These operations are 

symbolically expressed by the letter   in front of the products.  

Applying this convention to the expression (3.22), supposed second quantized, we thus write 

(3.36)    ∫    * ̅(       )  + 

Where  ̅    are time-dependent Heisenberg operators given by the expressions, similar to 

eq.(3.28) and its conjugate 

(3.37a)   ( )  ∫
   

(  ) 
 

√   
(  

   ( )         
    ( )     ) 

(3.37b)  ̅( )  ∫
   

(  ) 
 

√   
(  

  ̅ ( )         
   ̅ ( )     )  

Here the time dependence of the operators has been absorbed into the exponential factors. 

Moreover, the interchange   
    

  discussed above, has been taken into account.  

A calculation similar to that developed above, with only the cross terms contributing, then 

leads to the expression 

(3.38)    ∫
   

(  ) 
   (  

    
    

   
  )  ∫

   

(  ) 
  (  

    
    

    
 ) 

This is exactly the result obtained previously if in eq.(3.35) the infinite negative energy term 

is ignored and if the operator and state changes discussed there, are accomplished. Thus 

clearly normal ordering merely integrates these facts.  
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4.PROPAGATORS 

 

The retarded Green’s function. 

Let us first consider propagation amplitudes given by the expressions 

(4.1.a)  ⟨ |  ( ) ̅ ( )| ⟩  ∫
   

(  ) 
 

   
∑   

 ( ) ̅ 
 ( )     (   ))

  

 

(4.1b)  ⟨ | ̅ ( )  ( )| ⟩  ∫
   

(  ) 
 

   
∑   

 ( ) ̅ 
 ( )     (   ))

  

These expressions are obtained by using the fact that in the product of the wave functions of 

eq’s (3.37a,b) only cross terms contribute. This is because in the other terms annihilation 

operators are on the right and therefore eliminate these terms in the mean values of eq.’s 

(4.1a,b). Furthermore the operator relation (3.34) has been accounted for. 

We now evaluate the spin sums appearing in eq.’s (4.1a,b). Using eq.’s (3.13a,b) and 

(3.15a,b) we obtain the following tensor products: 

   ̅  =

(

 

√    

 

√    

 )

 (√        √       )  (

  
  

     
  

     
  

  
  

, 

where the relation √   (  )    has been used. 

A similar calculation yields 

   ̅   (

  
  

  
     

  
     

  
  

,  

For the spin sum we therefore arrive at the result 

(4.2)  ∑   
  ̅ 

       
  ̅ 

    
  ̅ 

  

(

 
 

  
  

     

     

     

     
  
  )

 
 
    

It is now an easy matter to show that this matrix is identical with the expression 

             or by extension         . Consequently we obtain 

(4.3a)   ∑   
  ̅ 

            

with after a similar calculation 

(4.3b)  ∑   
  ̅ 

      (       ) 

Making these replacements in the expressions (4.1a,b) and adding them afterwards, we 

obtain an anticommutator of the form 

(4.4) ⟨ |*  ( )  ̅ ( )+| ⟩  ∫
   

(  ) 
 

   
.(      )     (   )  (       )    (   )/ 

with          and hence 

(4.5)   (   )    ( 
    )    ( 

    )    ( 
    )    (   ) 
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We now want to link the above commutator to an integral in four space. For this purpose we 

introduce a quantity defined by the relation 

(4.6)    
  (   )  ∫

   

(  ) 
 

  
    

 ( 
     )     (   )   

∫
   

(  ) 
    (   ) ∫

   

   

 

  
    

 
(      )   (  ( 

    ) 

where    has now become an integration variable. The    integral can be evaluated by 

considering a closed circuit in the complex plane with two singularities at        as 

shown on Fig.2a. The corresponding residua are 

for                    
( )

 
 

  

 

   
(           )     ( 

    ) 

for                  
( )

 
 

  

  

   
(            )    ( 

    ) 

for the lower clockwise circuit, corresponding to        , we therefore obtain for the 

integral the value  

(4.7)  ∮      ∑     
 

   
(

(           )     ( 
    )

 (            )    ( 
    )

+  

whereas for the upper circuit, corresponding to        , the integral is zero. 

Inserting the value given by eq.(4.7) into the complete integral given by eq.(4.6) we can, 

without loss of generality, replace in the second term    by      and in this way we obtain 

for       

(4.8a)    
  (   )  ∫

   

(  ) 
 

   
.(      )     (   )  (       )   (   /  

and for       

(4.8b)    
  (   )    

Comparing with eq.(4.4) we thus find 

(4.9)   (     )⟨ |*    ̅ ( )+| ⟩ 

where  (     )  is the Heaviside step function. 

Going back to eq.(4.6) we notice that the denominator   
    

  can be written as 

    
              . One can also prove that    (    )

 
  so that in the end we 

have 

(4.10)    
   ∫

   

(  ) 

 (      )

(    )
 
   

     (   ) 

Written in the form 

(4.11)    
   ∫

   

(  ) 
 ̃ 
       (   ) 

this quantity can be regarded as the Fourier transform of 

(4.12)  ̃ 
   

 (      )

(    )
 
   

   

or in Feynman slash notation 

(4.12’)  ̃ 
   

 (     *
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This expression is known as the Dirac propagator. Its Fourier transform represented by 

eq.(4.10) is a Green’s function of the Dirac operator defined in eq.(2.29). To see this, we first 

notice that for plane wave states this operator can be written as        . Acting with it 

on the expression given by eq.(4.10) the denominator cancels and we obtain  

(4.13)  (       )  
   i∫

   

(  ) 
     (   )     (   ) 

thus proving the Green’s function relation stated above.  

Note however that the integral in eq.(4.10) can be evaluated along different paths. The way 

chosen so far yields the particular expression (4.9), called the retarded Green’s function. This 

is because it is only non zero during the time period      . 

 

 

The Feynman propagator. 

 

A different path for evaluating the integral of eq.(4.6) is that shown on Fig.2b. Designating by 

∮( ) the lower circuit, i.e.       and by ∮( ) the upper one, i.e.       , the theorem of 

residua then yields, instead of eq.(4.7)  the following two contributions: 

(4.14a)  ∮( )          
( )

 
 

   
(           )     ( 

    ) 

(4.14b)  ∮( )         
( )

 
 

   
(            )    ( 

    ) 

Inserting these expressions into eq.(4.6) we obtain the Feynman Green’s function  

(4.15a)     ∫
   

(  ) 
 

   
(      )     (   )                

(4.15b)     ∫
   

(  ) 
 

   
(       )    (   )               

where again in the second line        . 

Comparing these expressions with eq.(4.4) we see that we have 

(4.16)     {
⟨ |  ( ) ̅ ( )| ⟩       

                           

 ⟨ | ̅ ( )  ( )| ⟩      
                             

 

This can also be written as 

(4.17)     ⟨ |   ( ) ̅ ( )| ⟩ 

where   is the time ordering operator which ensures that the earlier time always stands on 

the right, with the additional condition of a minus sign if the operators are interchanged. 

In the Feynman case the integration paths can be slightly modified with respect to those of 

Fig 2b if we replace eq.(4.10) by the expression 

(4.18)     ∫
   

(  ) 

 (      )

(    )
 
      

     (   ) 

With the denominator equal to   
    

    ,  the singularities are now shifted away from 

the real axis to        
  

   
   so that this axis is now entirely part of the integration 

paths.  



 

Page 27 
 

 
Fig. 2a    Fig. 2b 

 

 

Interpreting eq.(4.18) as a Fourier integral we thus obtain for the Feynman propagator the 

expression 

(4.19)    ̃  
 (      )

(    )
 
      

  

or in slash notation 

(4.19’)   ̃  
 (     *

        
 

These expressions are basic elements in Many-Body type calculations. 

 

The photon propagator. 

In analogy with eq.’s (4.16) and (4.17) representing the Feynman propagator in the Dirac 

case, we define a photon propagator by the relations 

(4.20)  {
⟨ |  ( )  ( )| ⟩      

    

⟨ |  ( )  ( )| ⟩      
    

 

Corresponding to the time-ordered product 

(4.21)      ⟨ |   ( )  ( )| ⟩ 

Here   ( ),   ( )  are operators of the quantized vector potential according to the 

expression 

(4.22)    ( )  ∫
   

(  ) 
 

√   
∑ (  

   
 ( )        

    
  ( )    ) 

    

The quantities   
 ( ) and   

     are polarization vectors labeled by the index    in a chosen 

basis. Let us first consider the product 

(4.23)  ∫
   

(  ) 
∫

    

(  ) 
 

√   √   
∑ ∑   

  
  
     

 ( )  
   (  )           

    
 
    

Postulating the rule 

(4.24)    
  

  
    (  )  (    )     

This expression reduces to 
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(4.25)  ∫
   

(  ) 
 

   
   ( ) 

   (   ) 

with 

(4.26)     ( )  ∑   
 ( )  

  ( ) 
    

The value of the quantity    ( )  depends on the choice of a particular gauge. In the case of 

the Lorentz-Feynman gauge this value reduces to the metric tensor     , as shown in 

standard textbooks.  

As in the Dirac case we now link the expression (4.25) to an integral in 4 dimensional space  

of the following form: 

(4.27)  ∫
   

(  ) 

   

  
    

  
   (   )  ∫

   

(  ) 
    

  (   ) ∫
   

   

 

  
    

  
    ( 

    )  

Performing the integration over    along the paths indicated on Fig2b we obtain the two 

expressions 

(4.28a)  ∫
   

(  ) 

   

   
    (   )           

(4.28b)  ∫
   

(  ) 

   

   
   (   )              

Comparing this with eq.(4.20) we see that the two integrals correspond to the expressions 

defining the propagator     . Finally, as in the Dirac case, the expressions (4.28a,b) can be 

obtained by replacing the integral (4.27) by the modified expression  

(4.29)   ∫
   

(  ) 

     

  
    

    
    (   )  

Setting   
    

    
         we therefore obtain the expression for the propagator in 

momentum space  

(4.30)   ̃   
     

     
 

as the final result for the photon propagator in the Lorentz-Feynman gauge. 

 

 

 

5.INTERACTING FIELDS: THE RADIATIVE ELECTRON MASS SHIFT 

Introduction. 

Consider an electron in the form of a point charge –e, then the surrounding static electric 

field possesses the energy 

(5.1)    
 

 
∫   .

 

    /
 

 
 

 
∫

  

       

with   
  

  
 

 

   
  the Sommerfeld fine structure constant. Recall that throughout this 

treatise we use natural units setting        
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In order to make the integral in eq.(5.1) finite, a lower cut-off radius        has to be 

introduced yielding the value for the energy  

(5.2)   
 

 
         

In this way the energy tends linearly towards infinity with the cut-off parameter  . Applying 

in a naïve manner Einstein’s relation       or in our units    , we see that the 

electromagnetic mass of the electron appears as a linearly diverging quantity. 

Attempts have been made to improve things by applying the formalism of quantum field 

theory to this problem. In this treatise we present a slightly renewed version of these 

calculations. As a result the linear divergence of the semi-classical theory is brought to the 

form of a logarithmic one however with no quantitative solution at the end. 

The propagators. 

Preliminary remark: as is customary in quantum field theory we designate vectors and 

indices in 4 dimensional Minkowski space by ordinary letters and l.c. greek letters 

(e.g.          ) respectively and the corresponding objects in 3 dimensional Euclidean 

space by bold letters and l.c. latin letters (e.g. i=1,2,3), respectively. Moreover, summation 

over repeated indices is assumed and furthermore    are Dirac’s gamma matrices 

We now consider an electron moving freely through vacuum and define a correlation 

function by the expression 

(5.3) ⟨ |  ( ) ̅( )| ⟩  

where  ( )  and  ̅( )    ( )   are operators replacing in second quantized theory the 

usual wave functions. 

In expression (5.3) the Dyson operator   stands for the time ordered product. 

The presence of ground states | ⟩ instead of zero electron states | ⟩  indicates that we are 

considering interaction of the moving electron with the surrounding electromagnetic 

vacuum field. 

The easiest way for evaluating the correlation function (5.3) consists in applying Feynman 

rules according to the Feynman diagram of the figure below which shows that the electron-

vacuum interaction can be conceived as the emission and reabsorption of a virtual photon 

visualized by the wavy line. 
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Fig. 3 

The elements of this diagram correspond to Feynman propagators in momentum space 

given by the expressions 

(5.4)   
 (     *

        
     ,  

 (     *

        
 

for the electron of mass m in momentum state p and k respectively and the propagator 

expression 

(5.5)    
     

(   )    
   

for the photon.  

In this way during the process the total momentum of the system is conserved at every step. 

In addition the expressions 

(5.6)        ,       

describing the electron-photon interaction have to be inserted at the vertices.  

In these expressions the Feynman slash notation abbreviates the sums      and      , 

whereas      is the metric tensor represented by a 4 dimensional diagonal matrix with 

      ,      etc    .   

Assembling these relations, known as the Feynman rules, we see that the above diagram 

corresponds to the product 

(5.7)  
 (     *

     
(   )   

 (     *

        
  

  

(   )    

 (     *

       

where the relation     
      has been used. Noticing that in both the Weyl and the Dirac 

representation the sum       is equal to 4 times the unit matrix, we condense the 

expression (5.7) into the form 

(5.8)    
 (     *

     
(    ( )))  

 (     *

      

where the central part is given by the expression 
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(5.9)      ( )   (   ) ∫
   

(  ) 

 (     *

        

  

(   )    
 

after adding an integration over all possible intermediate 4 momenta. 

The index on     indicates that the application of the above diagram represents in fact a 

limitation to second order of a perturbation expansion. An extension to all orders under 

special conditions will be discussed below. 

The integration procedure. 

Before starting the integration in the expression for    we use Feynman’s trick based on the 

identity 

 

  
 ∫   

 

*    (   )+ 

 

 
  

Comparing with eq.(5.9) we thus write the   integral in the form 

(5.10)  ∫   ∫
   

(  ) 

     

*,(   )    -  (        )(   )+ 

 

 
 

Following a common procedure we now change variables according to the relation  

(5.11)         

Then the parenthesis in the denominator of the integrand takes the form 

(5.12)     (   )(      )     

An essential simplification arises if we restrict ourselves to the zero’th order contribution in  

    with 

(5.13)                

The integral in (5.10) then reduces to 

(5.14)  ∫   ∫
   

(  ) 

     (   )

*     (   )    + 

 

 
 

Separating the    part from the space part   and extending the integral over   components 

from     to    , the     term in the numerator does not contribute and we are left with the 

expression 

(5.15)   ∫   (   ) ∫
   

(  ) 
∫

   

  

  

  

 

 

 

*(  )       (   )    + 
 

The evaluation of the second integral is presented in the appendix leading to the result 
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(5.16)  
 

 
 ∫   (   )

 

 ∫
   

(  ) 
,     (   ) -     

Setting            and introducing an upper limit cut-off we replace the expression 

(5.16) by the following integral 

(5.17)  
 

 

 

   

 

 
 ∫     ,     (   ) -     

 
 

Introducing the dimensionless variable   | |    we also have  

(5.18)  
 

    

 

 
 ∫     ,   (   ) -     

   

 
  

 

    

 

 
 ∫

  

 
 

   

 
  

 

    

 

 
    

 

 
 

where we have assumed that the cut-off value     is large as compared to unity. 

Plugging this result into eq.(5.9) we thus arrive at the final expression 

(5.19)            

       
 

 
 

Renormalization. 

Let us suppose that the change in the correlation function represented by the resulting 

expression (5.19) can be reproduced by renormalizing the mass in the free electron 

propagator, i.e. by adding a correction    to the initial mass. Assuming this correction 

sufficiently small we then consider the expansion 

(5.20)  
 (     *

   (    ) 
 

 (     *

     .  
    

     / 

Equating the correction term with the expression (5.8) with the expression (5.19) for 

     inserted, we have 

(5.21)  
 (     *    

,     - 
 

 (     *

     

   

    
     

 

 

 (     *

      

Approximating on the r.h.s. (     )(     ) by its dominant part   (     ) eq.(5.21) 

yields the result  [6,7] 

(5.22)     
 

    
     

 

 
 

 

  
     

 

 
 

This is the result derived in the literature by various methods, showing that the fully 

quantized theory reduces the linear convergence of the classical expression (5.2) to a 

logarithmic  one. 
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Discussion. 

There seems to be no indication how to estimate the cut-off parameter     Clearly the 

logarithmic divergence makes the mass shift less sensitive to the value of this parameter. 

Moreover it can be argued that a large mass shift should show up in experiments. 

Nevertheless, in order to get a number out of the calculations, one could for instance 

consider the fact that the proton mass constitutes a natural upper limit on the mass scale of 

conventional particles. Identifying it with   would lead to the result: 
 

 
                

  

 
 

  

  
   

 

 
       

a number that seems realistic. Naturally this estimation has to be taken merely as an 

example among others that one could imagine. 

However, despite the fact that the true numerical value of the electromagnetic electron 

mass shift is as yet unknown, its correct qualitative evaluation, as reviewed in this section 

undoubtedly constitutes an important fact.  

 

Appendix. 

Evaluation of the integral 

(5.A1)    ∫
   

*(  )       (   )    + 

  

  
 

Setting      (   )        we write 

(5.A2)    
 

  
∫

   

(  )      

  

  
  

With the change of variables 

(5.A3)  (  )            
 

 

  

√ 
   

The integral in (5.A2) takes the form 

(5.A4)  
 

 
∫

  

√ (      )
  

Where we have deliberately not specified the integration limits. 

Introducing the identity 
 

      
  

 

   
    (   )  

we ignore the principal value which in a more detailed treatment can be proven to yield 

zero. With the delta function inserted the expression (5.A4) then reduces to 

(5.A5)     
 

 

 

√ 
  

Performing the derivation as indicated in eq.(5.A2) and replacing the intermediate 

parameter   by its value leads to the desired result 

(5.A6)     
 

 
,     (   ) -     
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6.THE ELECTRON-ELECTRON SCATTERING (M LLER) AMPLITUDE 

 

Consider scattering involving two particles and introduce a scattering matrix in the form 

(6.1)          

where the second term describes the scattering process.  

Assuming that the particles have incident momenta   and   respectively and outgoing 

momenta    and   , momentum conservation demands that matrix elements of     satisfy 

the relation 

(6.2)  ⟨     |  |   ⟩  (  )   ,      (   )-  Where     is the scattering 

amplitude which is of interest here. In the fully quantized theory interaction takes place by 

means of the exchange of a virtual particle of momentum q. 

We specialize now to the case of two colliding electrons schematically represented by the 

Feynman diagram below.  

 
Fig. 4 

We write the Hamiltonian of the system in the form 

(6.3)            

where    is the part belonging to the free electrons and       that of the interaction during 

the scattering. In second quantized Dirac theory this latter part is given by the expression 

(6.4)       ∫     ̅       

with  ̅,  the electron field operators in the Heisenberg picture and    the vector potential 

operator of the electromagnetic field present in the system. 

The relevant contribution here is the second order term in the perturbation expansion of the 

  matrix involving the quantity      
  . 

Given the interaction Hamiltonian of eq.(6.4) this term contains the time-ordered product 

(6.5)   (   )∫   ( ̅   )   ( )(   ) ∫    ( ̅   )   ( ) 

with   the familiar time ordering operator. Note that a factor 1/2 from the exponential 

expansion is left out since it is compensated for by adding identical expressions with   and   

interchanged. In order to evaluate the above product we apply Wick’s theorem *3+ reducing 

it to a product of the contracted e-m field operators with the remaining factors put into 

normal order. Thus we write 

 

(6.6)     ∫        [( ̅   ) ( ̅   ) ]  ( )  ( ) 

Substituting into the parenthesis the expressions derived in section (3) for  ̅  and    we 

obtain an operator product of the form 

(6.7)  ∫
   ̃

(  ) 
∫

   ̃ 

(  ) 
 

√   ̃

 

√   ̃ 
 
 ̃ 
   ̃ ̅( ̃

 ) ( ̃)   ̃      ̃  

   ∫
   ̃

(  ) 
∫

   ̃ 

(  ) 
 

√   ̃

 

√   ̃ 

 
 ̃ 
   ̃ ̅( ̃ ) ( ̃) 

  ̃      ̃  
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At this stage we suppress for simplicity spin labels on the operators and functions. 

Putting in the expression (6.7) the operators in normal order we make the replacement 

(6.8)     ̃
   ̃   ̃

   ̃     ̃
  

  ̃
   ̃  ̃ 

We now take matrix elements between states 

(6.9a)  |  ⟩  √   √     
   

 | ⟩ 

(6.9b)  ⟨    |  √    √    ⟨ ⌋       

Together with the preceding sequence of eq.(6.8)this generates the new operator sequence 

(6.10)           ̃
  

  ̃
   ̃  ̃  

   
   

We now make use of operator commutation relations which yield the equations 

(6.11)  ⟨0│      ̃
 │0⟩ (  )   (     ̃)  similarly for      ̌ etc i.e. 4 equations 

 Now after integrating in eq.(6.7) over the variables   ̃    ̃   ̃   ̃ the   and    factors disappear 

and we are left with the expression 

(6.12)   (  )   ( ) (  )   ( )   (    )    (    )  

Going back to eq.(6.6) and recalling that the contraction of vector potential operators is 

equivalent with the propagator expression 

 

(6.13)    ( )  ( )  ∫
   

(  ) 

     

     
    (   )  

we obtain the matrix element in the form 

(6.14)   (  )  ̅(  )   ( ) ̅(  )   ( ) ∫
   

(  ) 

     

     
∫      (      )  ∫       (      )   

Identifying the      integrals as (  )   times delta functions so that      (    ) , the 

expression (6.14) reduces to 

(6.15)  (  ) (   )  ̅(  )   ( ) ̅(  )   ( )
     

(    ) 
  ,    (     )- 

Comparing this expression with the defining relation (6.2) we find for the electron-electron 

scattering amplitude the formal expression 

(6.16)     (   )  ̅(  )   ( )
     

(    ) 
 ̅(  )   ( ) 

 

The non-relativistic limit. 

In the non relativistic limit where it is assumed that the kinetic energy of the electrons is 

small as compared to    , i.e. to   , the spinors derived in section 3 reduce to the simple 

form 

(6.17)    √ (
 
 
*    ,        √ (     ) 

with      equal to .
 
 
/ (   )  or   .

 
 
/ (   ) 

Then for      we have 

(6.18)   ̅            ,     ̅              

with       and, in the Weyl representation,  
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     .
  
  

/  (    

    
*  (    

   
*  

The products in eq.(6.16) are 

(6.19a)   ̅(  )   ( )    (  ) ( )   (       )  (
 
 
*           

(6.19b)  ̅(  )   ( )   (       )  (    
   

*  (
 
 
*     

Furthermore we have in this approximation with      

(6.20)  (    )   |    |  

Thus the amplitude of eq.(6.16) reduces to 

(6.21)     (   ) (      ) 
     

|    | 
(      )  

Now clearly, labeling the spins by   in the   term and by   in the    term, the products         

reduce to the Kronecker symbol        and       respectively, meaning that the spin is 

conserved during the process. therefore Ignoring the spin labels and setting       we 

write for the scattering amplitude 

(6.22)       (  ) 
 

|    | 
 

Consider now the electrostatic potential  ( ) of the system and its Fourier transform 

defined by the relation 

(6.23)   (    )  ∫     ( )  (    )   

In the case of a Coulomb potential 

(6.24)   ( )  
 

 
 

An elementary integration yields the result 

(6.25)   (    )  
   

|    | 
 

Comparing this result with eq.(6.22) one sees that the amplitude factor    is proportional to 

the Coulomb potential in the   representation. This shows that it is equivalent to the 

ordinary quantum mechanical solution of the scattering problem in the Born approximation.  

For the sake of completeness we indicate the link between the amplitude    and the 

differential cross section . In the center of mass frame the following relation holds: 

(6.26)  
  

  
 

  

(  ) 
  

Substituting for    the expression (6.22) we thus obtain 

(6.27)  
  

  
 .

    

  /
 

 

Note that up to a numerical factor this expression is equal to the celebrated Rutherford 

formula which applies to scattering of a particle in a static Coulomb field. 
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7.VACUUM POLARIZATION 

 

The photon self energy. 

 

Consider a photon propagating  freely in vacuum. If its interaction with the vacuum field is 

taken into account, a situation represented by the Feynman diagram below will be present. 

During the propagation there will be emission/absorption of a virtual electron/positron pair  

at one vertex and afterwards the inverse process will occur at the other vertex. 

 

 
Fig. 5 

 

The difference with respect to the case without  interaction  involves a tensor which in 

second order will be written as    
  ( ) with   the four momentum of the photon. For this 

tensor, by applying Feynman rules, in [3] the following expression has been derived: 

(7.1)     
  ( )      ∫

   

(  ) 

  (   )    (   )     (  (   )   )

(     )((   )    )
 

Applying, as in the electron case, the Feynman trick and setting afterwards 

(7.2)         

one arrives at the expression 

(7.3)     
  ( )      ∫   ∫

   

(  ) 

              (   )        (    (   )  )

(    (   )     ) 

 

 
 

where terms linear in   have been omitted.  

In [3] a Wick rotation has been applied to this integral with the result 

(7.4)     
       ∫   ∫

    

(  ) 

 
 

 
     

       
    (   )        (    (   )  )

(  
   )

 

 

 
 

with 

(7.5)        (   )   

This integral is ultraviolet diverging . It can be simplified by using the tensorial relation 

(7.6)   
  ( )  (          ) (  )  

involving the scalar quantity  (  )  Comparing for     eq.’s(7.6) and (7.4) we obtain for 

this quantity the expression 

(7.7)   (  )     ∫   ∫
    

(  ) 
   (   )

(  
   )

 

 

 
 

Assuming now       , making in (7.5) the approximation      and performing the 

integration over   we find 

(7.8)    (  )   
 

 
  ∫

    

(  ) 
 

(  
    )

  

For the integral on the r.h.s. we have, according to [3], the expression 
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(7.9)  ∫
    

(  ) 
 

(  
    )

   
   

(  ) 
∫    

  
 

(  
    )

 

 

 
 

The remaining integral is logarithmically ultraviolet diverging. Let us calculate it however 

formally as follows: 

 

 
∫       

  
       

(  
    ) 

 
 

 

 

 

|   (  
    )  

  

  
    

|
 

 

 

 

Pauli-Villars regularization. 

The Pauli-Villars regularization consists in making the integral convergent by subtracting the 

same expression but with    replacing    and       . This immediately yields  

(7.10)  ∫    
  
 

(  
    )

 

 

 
 

 

 
   

  

   

The integral of eq.(7.9) thus becomes 

(7.11) ∫
    

(  ) 
 

(  
    )

  
 

       
  

   

For the quantity of interest we therefore find 

(7.12)   (  )  
   

       
  

   

Considering    as a cutoff value, designated from now on as   , we finally obtain [6,7] 

(7.13)     (  )  
   

      
 

 
  

  

  
   

 

 
 

with    
  

  
  the fine structure constant. 

 

Charge renormalization. 

Going back to the electron-electron scattering problem clearly the photon self-energy effect 

just discussed, will manifest itself as a modification of the photon propagator represented by 

the wavy line in Fig4 , which therefore has to be replaced by the configuration  of  Fig5. One 

then expects that the global effect corresponds to the scalar quantity  (  )  which, with the 

approximations made,  takes a constant value given by eq.(7.13). Designating this value by 

the letter    , then in the case of non-relativistic electron-electron scattering the amplitude is 

reduced by a factor      . Obviously this is equivalent to a renormalization of the electric 

charge which is thus diminished by a factor √    . Due to this effect the vacuum behaves 

like a polarizable medium capable of producing what is known as vacuum polarization.  Note  

that a vacuum  containing  electron-positron pairs represents an analogy with ordinary 

dipole polarizable media. 

 

The amended Coulomb potential 

 

Having treated the diverging expression in (7.7) by means of a regularization procedure,we 

are now going to extract from this expression a term which is independent of any cut-off 

parameter. For this purpose we make the following first order expansion: 

(7.14)  
 

(  
   )

  
 

(     ) 
 

 

  
.  

   

  
/ 
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where we have set 

(7.15)       
     ,      (   )    

assuming        in accordance with the previous condition         Focussing on the 

second term inside the parenthesis in eq.(7.14) , which yields the non diverging contribution, 

we replace eq.(7.7) by the expression 

(7.16)    (  )   
   

  ∫    (   )∫      
    

  

 

 

 

 
 

where the equivalence ∫         ∫      
  

 
  has been used. 

Expliciting now   and     according to eq.(7.15), we write 

(7.17)    (  )   
     

  ∫     (   ) ∫     
     

  

 

 

 

 
  

With the values of the integrals equal respectively to  
 

  
  and  

 

     we thus find 

(7.18)  i (  )   
 

    

    

    
 

   

   

    

which is indeed the value found in the literature. 

 

Atomic energy level shift 

 

Consider now the Coulomb potential as given in    space by eq.(6.25). Its modification due to 

vacuum polarization produces a relative change  equal to  (  ) so that according to 

eq.(7.18) we have 

‘7.19)   ( )  
   

| | 
.  

 

   

   

  /  

Taking the inverse Fourier transform yields for the amended potential in   space the 

expression 

(7.20)   ( )  
 

 
  

 

  

 

   
 ( ) 

Applying this potential to electrons inside an atom will lead to a shift of energy levels 

obtained by multiplying the correction term with the electron density function and space 

integration. The effect then becomes proportional to | ( )|   showing that only s levels will 

be affected. In the case of hydrogen the effect represents a small part of the Lamb shift. 

Larger effects can be predicted in the case of muonic atoms, i.e. atoms where the electrons 

are replaced by    mesons [8]. 

For numerical values of the expected or measured shifts we are referring  to the abundant 

literature on this subject. 
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