N

HAL

open science

Modern Computer Arithmetic

Richard P Brent, Paul Zimmermann

» To cite this version:

Richard P Brent, Paul Zimmermann. Modern Computer Arithmetic. Licence. France. 2010.

01500109

HAL Id: cel-01500109
https://cel.hal.science/cel-01500109

Submitted on 2 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

cel-

https://cel.hal.science/cel-01500109
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Modern Computer Arithmetic

Richard P. Brent and Paul Zimmermann

Version 0.5.9 of 7 October 2010

iii
Copyright(© 2003-2010 Richard P. Brent and Paul Zimmermann

This electronic version is distributed under the terms and conditions of the
Creative Commons license “Attribution-Noncommercial-No Derivative Works
3.0". You are free to copy, distribute and transmit this book under the following
conditions:

e Attribution. You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

e Noncommercial. You may not use this work for commercial purposes.

e No Derivative Works. You may not alter, transform, or build upon this
work.

For any reuse or distribution, you must make clear to others the license terms
of this work. The best way to do this is with a link to the web page below. Any
of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

For more information about the license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/

[Contents

Contents

Prefack

Iacknowledgemets
Notatah

| o

[1.1

Representation and notations

[1.2__ Addition and subtractibn

[1.3

Multiplicatiot

[1.3.1 Naive multiplicatidn

[1.3.2 Karatsuba’s algorithm

[1.3.3 Toom-Cook multiplication

| - ; :EFT)
[bal I licatbn

[L5.6 Squaridg

[1.3.7 _ Multiplication by a constant

[L4a_ Divisiof

| - Visidh
[1.4.2 Divisor Dreconditionirllg

[1.4.3 Divide and conguer division

[L.4.4 _Newton's method

[1.4.5 Exact divisidn

[1.4.6 Only quotient or remainder warited
[1.4.7 Division by a single word

| I divisidn

[L5 Roofs

[L5.1 Square raot
[L.5.2 ki rodk

pageiv
iX

Xi

Xiii

00O U, WNEREPRFP

el
w R

14
14
16
18
21
21
22
23
24
25
25
27

Contents

[0.1 Representatibn
[2.1.1 Classical representation

2.1.3 Residue number systems

2.1.4 MSB vs LSB algorithms

[2.1.5 1ink with polynomials

(2.2 Modular addition and subtraction

i m

g

rm
[0.3.3 The Sctinhage—Strassen algorithm
[2.4 Modular multiplication

Ei% %%E%omew’s multiDIicatia)n

[2.4.4 special modili
| = . I
[2.5.1 _Several inversions at ohce

[2.6 Modular exponentiation

Ig,g,; Binary exponentiation
2.6.2 _Exponentiation with a lar se
2.6.3 _Sliding window and redundant representation
[2.7__Chinese remainder theofem
.8 Exercisds
[2.9 Notes and referentes

|3 Floating-point arithmetic|

[3.1 Representatibn

| - choide

28
29
29
32

37
37
38
39
44

47
a7
47
48
48
49
49
50
50
50
51
55
58
58
60
63
65
65
67
68
70
70

73
75
77

79
79
80

33

72

Vi

Contents

[3.1.2 Exponent ranbe

[3.1.3 Special values

[3.1.4 _Subnormal numbers

3.1.5__Encodirg

13.1.6 _Precision: local. global, operation, opefand
[3.1.7 Linkto integels

[3.1.8 Zivs algorithm and error ana]ylsis
.19 Roundidg
S

[3.1.10 Strategie
| it I - don
[3.2.1 _ Floating-point addition
[3.2.2 EIQaIing-pQ'ntsubt[acl'bn
[3.3 Multiplicatiomn
er multiplication via complex EFT
[3.3.2 The middle proddct
[3.4 Reciprocal and division

P

[3.5 Square ropt
[3.5.1 _Reciprocal square rbot
[3.6 Conversidn
B,Q,J_Elg_ali_n,g-ooint outdut
|3.ﬁ.2 Floating-point inplit
B7 _ Exercisds
3.8 Notes and references

Elementary and special function evaluation
' d
14.2.1 _Newton's method for inverse rdots

[4.2.2 Newton's method for reciprodals

[4.2.3 Newton's method for (reciprocal) square roots

[4.2.4 Newton’s method for formal power series
14.2.5 Newton's method for functional inverses
i - -li ds
4.3 Argument reduction
[43.1 Repeated use of a doubling forrhula

81
82
82
83
84
86
86
87
90
91
92
93
95
98
99
101
102
106
111
112
114
115
117
118
120

125
125
126
127
128
129
129
130
131
132
134
134
135
136

Contents Vii

4.4 Power series 136
4.4 Direct power series evaluation 140
4.4 Power series with argument redugtion 140
‘ 4.4 Rectangular series splitfing 141
/ Asymptotic expansions 144
4.6 ontinued fractionhs 150
4.7 Recurrence relatidns 152
14.7.1 _Evaluation of Bessel functions 153
Wm ers 154
ithmetic- ic mehn 158
4,.8.1 _ FElliptic integrals 158
i i ithm 159
160
162
163
163
166
167
169
171
179

185
185
185
185
186
187
187
188
189
189
190
190
191

[ndek 207

Preface

This is a book about algorithms for performing arithmetic, and their imple-
mentation on modern computers. We are concerned with software more than
hardware — we do not cover computer architecture or the design of computer
hardware since good books are already available on these topics. Instead, we
focus on algorithms for efficiently performing arithmetic operations such as
addition, multiplication, and division, and their connections to topics such
as modular arithmetic, greatest common divisors, the fast Fourier transform
(FFT), and the computation of special functions.

The algorithms that we present are mainly intended for arbitrary-precision
arithmetic. That is, they are not limited by the computer wordsiz&afr 64
bits, only by the memory and time available for the computation. We consider
both integer and real (floating-point) computations.

The book is divided into four main chapters, plus one short chapter (essen-
tially an appendix). Chapté&ll 1 covers integer arithmetic. This has, of course,
been considered in many other books and papers. However, there has been
much recent progress, inspired in part by the application to public key cryp-
tography, so most of the published books are now partly out of date or incom-
plete. Our aim is to present the latest developments in a concise manner. At the
same time, we provide a self-contained introduction for the reader who is not
an expert in the field.

Chapte[R is concerned with modular arithmetic and the FFT, and their appli-
cations to computer arithmetic. We consider different number representations,
fast algorithms for multiplication, division and exponentiation, and the use of
the Chinese remainder theorem (CRT).

Chapter[B covers floating-point arithmetic. Our concern is with high-
precision floating-point arithmetic, implemented in software if the precision
provided by the hardware (typically IEEE standasgtbit significand) is

X Preface

inadequate. The algorithms described in this chapter focuoerct round-
ing, extending the IEEE standard to arbitrary precision.

Chaptel’¥ deals with the computation, to arbitrary precision, of functions
such as sqgrt, exp, In, sin, cos, and more generally functions defined by power
series or continued fractions. Of course, the computation of special functions is
a huge topic so we have had to be selective. In particular, we have concentrated
on methods that are efficient and suitable for arbitrary-precision computations.

The last chapter contains pointers to implementations, useful web sites,
mailing lists, and so on. Finally, at the end there is a one-f@&gamary of
complexitiesvhich should be a usefalide-némoire.

The chapters are fairly self-contained, so it is possible to read them out of
order. For example, Chapter 4 could be read before Chapters 1-3, and Chap-
ter 5 can be consulted at any time. Some topics, such as Newton’s method,
appear in different guises in several chapters. Cross-references are given where
appropriate.

For details that are omitted, we give pointers in thetes and references
sections of each chapter, as well as in the bibliography. We have tried, as far
as possible, to keep the main text uncluttered by footnotes and references, so
most references are given in the Notes and references sections.

The book is intended for anyone interested in the design and implementation
of efficient algorithms for computer arithmetic, and more generally efficient
numerical algorithms. We did our best to present algorithms that are ready to
implement in your favorite language, while keeping a high-level description
and not getting too involved in low-level or machine-dependent details. An
alphabetical list of algorithms can be found in the index.

Although the book is not specifically intended as a textbook, it could be
used in a graduate course in mathematics or computer science, and for this
reason, as well as to cover topics that could not be discussed at length in the
text, we have included exercises at the end of each chapter. The exercises vary
considerably in difficulty, from easy to small research projects, but we have
not attempted to assign them a numerical rating. For solutions to the exercises,
please contact the authors.

We welcome comments and corrections. Please send them to either of the
authors.

Richard Brent and Paul Zimmermann
Canberra and Nancy
MCA@rpbrent.com
Paul.Zimmermann@inria.fr

Acknowledgements

We thank the French National Institute for Research in Computer Science and
Control (INRIA), the Australian National University (ANU), and the Aus-
tralian Research Council (ARC), for their support. The book could not have
been written without the contributions of many friends and colleagues, too nu-
merous to mention here, but acknowledged in the text and in the Notes and
references sections at the end of each chapter.

We also thank those who have sent us comments on and corrections to ear-
lier versions of this book:arg Arndt, Marco Bodrato, Wolfgang Ehrhardt
(with special thanks), Steven Galbraith, Tanj Granlund, Guillaume Han-
rot, Marc Mezzarobba, Jean-Michel Muller, Denis Roegel, Wolfgang Schmid,
Arnold Sctonhage, Sidi Mohamed Sedjelmaci, Emmanuel Teépamd Mark
Wezelenburg. Two anonymous reviewers provided very helpful suggestions.
Jeremie Detrey and Anne Rix helped us in the copy-editing phase.

TheMathematics Genealogy Projegtttp://www.genealogy.ams.
org/) and Don Knuth’sThe Art of Computer Programmi] were useful
resources for details of entries in the index.

We also thank the authors of tiEX program, which allowed us to pro-
duce this book, the authors of tjauplot program, and the authors of the
GNU MP library, which helped us to illustrate several algorithms with concrete
figures.

Finally, we acknowledge the contribution of Erin Brent, who first suggested
writing the book; and thank our wives, Judy-anne and Marie, for their patience
and encouragement.

http://www.genealogy.ams.org/
http://www.genealogy.ams.org/

Notation

set of complex numbers

set of extended complex numbé&lsJ {oo}

set of natural numbers (nonnegative integers)

set of positive integer®\ {0}

set of rational numbers

set of real numbers

set of integers

ring of residues modula

set of (real or complex) functions with continuous derivatives
in the region of interest

real part of a complex number
imaginary part of a complex number
conjugate of a complex number
Euclidean norm of a complex number
or absolute value of a scalar

Bernoulli numbersy_ -, B,2" /n! = z/(e* — 1)
scaled Bernoulli numbers;,, = Bs,,/(2n)!,

S 02 = (2/2)/ tanh(z/2)

tangent numbers,. 7,221 /(2n — 1)! = tan z
harmonic numbep_"_, 1/j (0if n < 0)

binomial coefficient “nchoosek” = n!/(k! (n — k)!)
(Oif k<0ork > n)

Xiv

a=>bmodm
q<—adivb
r «— a mod b

(a,b)
(%) or (alb)
iff

iN]

iVj

1D
<< k
P>k
a-b, axb
axb

v(n)

a(e)
¢(n)

Notation

“word” base (usually23? or 264) or “radix” (floating-point)
“precision”: number of basg digits in an integer or in a
floating-point significand, or a free variable

“machine precision’3'=" /2 or (in complexity bounds)
an arbitrarily small positive constant

smallest positive subnormal number

rounding of real numbet in precisionn (Definition[3.1)
for a floating-point numbet, one unit in the last place

time to multiplyn-bit integers, or polynomials of

degreen — 1, depending on the context

a functionf(n) such thatf(n)/M(n) — 1 asn — oo

(we sometimes lazily omit the “~” if the meaning is clear)
time to multiply anm-bit integer by am-bit integer

time to divide &n-bit integer by am-bit integer,

giving quotient and remainder

time to divide anm-bit integer by am-bit integer,

giving quotient and remainder

a is a divisor ofb, that isb = ka for somek € Z

modular equalityin|(a — b)

assignment of integer quotientd¢d0 < a — gb < b)
assignment of integer remaindert@0 < » = a — ¢b < b)
greatest common divisor afandb

Jacobi symbol (lodd and positive)

if and only if

bitwiseand of integersi andj,

or logicaland of two Boolean expressions
bitwiseor of integersi andy,

or logicalor of two Boolean expressions
bitwise exclusive-omwf integers: and;j
integeri multiplied by 2*

quotient of division of integei by 2%
product of scalars, b

cyclic convolution of vectors, b

2-valuation: largest such tha2” dividesn (v(0) = o)
length of the shortest addition chain to compate
Euler’s totient function#{m : 0 <m < n A (m,n) =1}

deg(A)
ord(A)

exp() ore®
In(z)

logb(m)

lg(z)

g(x)

g" (x)

1

0
lo

[]

Ed
]

[a,b), (a,b]
t[a,b] or [a, b]!

[a, b; c,d]

e
Pingiin i . s i g
S~—" \/\/\/3\/\/\/

2

SN

3

S—

123456 789

Notation XV

for a polynomialA, the degree oft
for a power seriesl = 3-, a;27,
ord(A) = min{j : a; # 0} (ord(0) = 400)

exponential function
natural logarithm
base-togarithmln(z)/ In(b)
base-2ogarithmln(z)/In(2)
logarithm to any fixed base
(log)"

= logy ()

ceiling functionmin{n € Z : n > =}
floor function,max{n € Z : n < z}
nearest integer functiony + 1/2]

+1ifn>0,-1ifn<0,and0if n =0
llg(n)] +1ifn>0,0ifn=0

closed intervalz € R : a < z < b} (empty ifa > b)
openintervaz € R:a < x < b} (empty ifa > b)
half-open intervalsg < x < b, a < x < b respectively

a
column vector (b)

2 x 2 matrix (a b)
c d

element of the (forward) Fourier transform of vector
element of the backward Fourier transform of vector

Je, ng such that f(n)] < cg(n) foralln > ng
e > 0,n9 such that f(n)| > cg(n) forall n > ng

f(n) = O(g(n)) andg(n) = O(f(n))

n)/g(n) — 1asn — oo

~ T

f(n)
f(n)
f(n) (n))
g(n))
fz) -

o a;/z? = o(1/z™) asx — 400

O(yg
)
g(n) — 0asn — oo
O(yg
(

/\\H

n

T

123456789 (for large integers, we may use a space after

every third digit)

XVi

a c e
b+ dt f+

Al

PV [f(z)dx

st

> <text>

O

Notation

a numberzzz.yyy written in basep;
for example, the decimal numb2&r5 is 11.015 in binary

continued fractiorm /(b + c¢/(d +e/(f +---)))
: . a b
determinant of a matrix, e.g.‘ e d

Cauchy principal value integral, defined by a limit
if f has a singularity ifja, b)

‘:ad—bc

concatenation of stringsandt
comment in an algorithm

end of a proof

1
Integer arithmetic

In this chapter, our main topic is integer arithmetic. However, we
shall see that many algorithms for polynomial arithmetic are sim-
ilar to the corresponding algorithms for integer arithmetic, but
simpler due to the lack of carries in polynomial arithmetic. Con-
sider for example addition: the sum of two polynomials of degree
n always has degree at maestwhereas the sum of twe-digit in-
tegers may have + 1 digits. Thus, we often describe algorithms
for polynomials as an aid to understanding the corresponding
algorithms for integers.

1.1 Representation and notations

We consider in this chapter algorithms working on integers. We distinguish
between the logical — or mathematical — representation of an integer, and its
physical representation on a computer. Our algorithms are intended for “large”
integers — they are not restricted to integers that can be represented in a single
computer word.

Several physical representations are possible. We consider here only the
most common one, namely a dense representation in a fixed base. Choose an
integralbases > 1. (In case of ambiguity; will be called theinternal base.)

A positive integetA is represented by the lengthand the digits:; of its base
(8 expansion

A=ap 1" 4+ a1+ ao,

where0 < a; < g — 1, anda,_; is sometimes assumed to be non-zero.
Since the bas@ is usually fixed in a given program, only the lengthand
the integers(a;)o<i<n Need to be stored. Some common choices/fare
232 on a32-bit computer, or2%* on a64-bit machine; other possible choices

2 Integer arithmetic

are respectively0? and10'Y for a decimal representation, 2t> when using
double-precision floating-point registers. Most algorithms given in this chapter
work in any base; the exceptions are explicitly mentioned.

We assume that the sign is stored separately from the absolute value. This
is known as the “sign-magnitude” representation. Zero is an important special
case; to simplify the algorithms we assume that 0 if A = 0, and we usually
assume that this case is treated separately.

Except when explicitly mentioned, we assume that all operatiorsfaliee,

i.e. all inputs (resp. outputs) are completely known at the beginning (resp. end)
of the algorithm. Different models includazy andrelaxedalgorithms, and
are discussed in the Notes and referendes](§1.9).

1.2 Addition and subtraction

As an explanatory example, here is an algorithm for integer addition. In the
algorithm,d is acarry bit.

Our algorithms are given in a language that mixes mathematical notation
and syntax similar to that found in many high-level computer languages. It
should be straightforward to translate into a language such as C. Note that
“:="indicates a definition, and “<" indicates assignment. Line numbers are
included if we need to refer to individual lines in the description or analysis of
the algorithm.

Algorithm 1.1 IntegerAddition

Input: A = 23—1 a;3%, B = 23—1 b; 3%, carry-in0 < d;,, <1

Output: C:=>"0""¢;4" and0 < d < 1 such thatd + B + dy, = d3" + C
1. d «— diy,

2: for ifrom 0ton — 1 do

3: s—a; +b;+d

4

5

(d,¢;) « (s div 8,s mod f3)
: returnC, d.

Let T be the number of different values taken by the data type representing
the coefficients:;, b;. (Clearly,5 < T, but equality does not necessarily hold,
for example = 10° andT = 232.) At step[3, the value of can be as
large as23 — 1, which is not representable if = 7. Several workarounds
are possible: either use a machine instruction that gives the possible carry of
a; + b;, or use the fact that, if a carry occursdn + b;, then the computed

1.3 Multiplication 3

sum — if performed modul@’ — equalg := a; + b, — 1" < a;; thus, comparing
t anda; will determine if a carry occurred. A third solution is to keep a bit in
reserve, taking < T'/2.

The subtraction code is very similar. Sfép 3 simply becosnesa; —b; +d,
whered € {—1,0} is theborrow of the subtraction, and-5 < s < . The
other steps are unchanged, with the invariant B + d;,, = dg" + C.

We use thearithmetic complexitymodel, wherecostis measured by the
number of machine instructions performed, or equivalently (up to a constant
factor) thetimeon a single processor.

Addition and subtraction of-word integers cosP(n), which is negligible
compared to the multiplication cost. However, it is worth trying to reduce the
constant factor implicit in thi€)(n) cost. We shall see iff..3 that “fast” mul-
tiplication algorithms are obtained by replacing multiplications by additions
(usually more additions than the multiplications that they replace). Thus, the
faster the additions are, the smaller will be the thresholds for changing over to
the “fast” algorithms.

1.3 Multiplication

A nice application of large integer multiplication is tkeonecker—Saobnhage

trick, also calledsegmentatioror substitutionby some authors. Assume we
want to multiply two polynomialsA(x) and B(z), with non-negative integer
coefficients (see Exerci§e 1.1 for negative coefficients). Assume both polyno-
mials have degree less thapand the coefficients are boundedmyNow take
apowerX = 3% > np? of the bases, and multiply the integers = A(X) and

b = B(X) obtained by evaluating andB atz = X . If C(z) = A(x)B(z) =

S izt we clearly havel(X) = 3 ¢; X*. Now since ther; are bounded by

np? < X, the coefficients; can be retrieved by simply “reading” blocks lof
words inC'(X). Assume for example that we want to compute

(625 + 62* + 423 + 922 + 2 + 3)(Ta* + 23 +22% + 2+ 7),

with degree less tham = 6, and coefficients bounded by= 9. We can take
X =103 > np?, and perform the integer multiplication

6006 004 009 001 003 x 7001 002001 007
= 42048046 085072086 042 070010 021,

from which we can read off the product

4229 + 482% + 462" + 8525 + 7225 + 862t + 4222 + 7022 + 102 + 21.

4 Integer arithmetic

Conversely, suppose we want to multiply two integers- » ;. _,, a;3
andb =}, _, b;’. Multiply the polynomialsA(z) = 3., _,, a;2* and
B(x) = 3 y<;, bjz’?, obtaining a polynomiaC’(z), then evaluate’(z) at
x = [to obtainab. Note that the coefficients @f («) may be larger thag, in
fact they may be up to abouts?. For example, withu = 123, b = 456, and
B =10, we obtainA(z) = 2? + 2z + 3, B(x) = 42 + 5z + 6, with product
C(z) = 42* + 1323 + 2822 + 27z + 18, andC(10) = 56088. These examples
demonstrate the analogy between operations on polynomials and integers, and
also show the limits of the analogy.

A common and very useful notation is to l&f(n) denote the time to mul-
tiply n-bit integers, or polynomials of degree- 1, depending on the context.
In the polynomial case, we assume that the cost of multiplying coefficients is
constant; this is known as treithmetic complexitynodel, whereas thbit
complexitymodel also takes into account the cost of multiplying coefficients,
and thus their bit-size.

1.3.1 Naive multiplication

Algorithm 1.2 BasecaseMultiply
Input: A =S"0"a;8, B=Y0""b;5
Output: C = AB =30 e F

1. C+— A-by

2: for jfrom 1ton — 1 do

3: C(—C"ﬁ‘ﬁj(AbJ)

4: returnC.

Theorem 1.1 Algorithm BasecaseMultiply computes the productAB
correctly, and use®(mn) word operations.

The multiplication by’ at sted B is trivial with the chosen dense representa-
tion; it simply requires shifting by words towards the most significant words.
The main operation in AlgorithnBasecaseMultiplyis the computation of

A - b; and its accumulation int@’ at sted B. Since all fast algorithms rely on
multiplication, the most important operation to optimize in multiple-precision
software is thus the multiplication of an arraysafwords by one word, with
accumulation of the result in another arraynoft- 1 words.

1.3 Multiplication 5

We sometimes call AlgorithrBasecaseMultiplyschoolbook multiplication
since it is close to the “long multiplication” algorithm that used to be taught at
school.

Since multiplication with accumulation usually makes extensive use of the
pipeline, it is best to give it arrays that are as long as possible, which means
that A rather thanB should be the operand of larger size (he> n).

1.3.2 Karatsuba’s algorithm

Karatsuba’s algorithm is a “divide and conquer” algorithm for multiplication
of integers (or polynomials). The idea is to reduce a multiplication of length
to three multiplications of length /2, plus some overhead that coéi$n).

In the following,ny > 2 denotes the threshold between naive multiplica-
tion and Karatsuba’s algorithm, which is used fgrword and larger inputs.
The optimal “Karatsuba thresholdi;, can vary from about ten to abow®0
words, depending on the processor and on the relative cost of multiplication
and addition (see Exercigell.6).

Algorithm 1.3 KaratsubaMultiply
Input: A =S"0"a;8, B=30""b;3
Output: C = AB := Zg”_l cn Bk
if n < ng then returnBasecaseMultiply A, B)
k«— [n/2]
(AQ,B()) = (A,B) mod ﬂk, (Al,Bl) = (A, B) div ﬁk
sa < sign(Ag — Aq), sp < sign(By — B1)
Cy «— KaratsubaMultiply (Ao, By)
C «— KaratsubaMultiply (44, By)
Cy «— KaratsubaMultiply (|4g — A1, |Bo — B1])
returnC := Cy + (Co + C1 — SASBCQ)ﬂk + Clﬂmc.

Theorem 1.2 Algorithm KaratsubaMultiply computes the productd B
correctly, usingK (n) = O(n®) word multiplications, withw = 1g 3 ~ 1.585.

Proof. Sincesa|Ag — A1l = Ao — 41 andsp|By — Bi| = By — By, we
haveSASB|A0 — A1||BO — B1| = (Ao — Al)(BO — Bl), and thusC =
AoBo+(AoB1 + A1Bo) B + A1 B 3.

SinceAy, By, |Ag— 41| and| By — By | have (at most)n /2] words, and4;
andB; have (at most)n /2| words, the numbekK () of word multiplications

6 Integer arithmetic

satisfies the recurrend€ (n) = n? for n < ng, andK (n) = 2K ([n/2]) +
K(|n/2)) for n > ng. Assume2‘~1ng < n < 2‘ng with ¢ > 1. ThenK (n)
is the sum of thred((j) values withj < 2°~!ng, so at mosB‘ K(j) with
§ < ng. Thus,K (n) < 3max(K (ng), (ng — 1)?), which givesK (n) < Cn®
with C' = 317180 max (K (ng), (no — 1)?). 0

Different variants of Karatsuba’s algorithm exist; the aatipresented here
is known as thesubtractiveversion. Another classical one is thdditivever-
sion, which usesly+A; andBy+ B; instead of Ap— A, | and| By— By |. How-
ever, the subtractive version is more convenient for integer arithmetic, since it
avoids the possible carries iy, + A; and By + By, which require either an
extra word in these sums, or extra additions.

The efficiency of an implementation of Karatsuba’s algorithm depends heav-
ily on memory usage. It is important to avoid allocating memory for the inter-
mediate resultsdy — A1, |Bo — B1|, Cy, C1, andC5, at each step (although
modern compilers are quite good at optimizing code and removing unneces-
sary memory references). One possible solution is to allow a large temporary
storage ofm words, used both for the intermediate results and for the recur-
sive calls. It can be shown that an auxiliary spacewof 2n words — or even
m = O(log n) — is sufficient (see Exercises1L.7 1.8).

Since the product’; is used only once, it may be faster to have auxiliary
routinesKaratsubaAddmul andKaratsubaSubmul that accumulate their re-
sults, calling themselves recursively, together vidratsubaMultiply (see
Exercisé_1.10).

The version presented here use$n additions (or subtractions: x (n/2)
to compute| 4y — A4| and|By — By], thenn to addC, and (4, againn to
add or subtraaf’,, andn to add(Cy + C; — s455C2) 3% to Cy + C15%F. An
improved scheme uses only7n /2 additions (see Exerci§e1.9).

When considered as algorithms on polynomials, most fast multiplication
algorithms can be viewed as evaluation/interpolation algorithms. Karatsuba'’s
algorithm regards the inputs as polynomidls+ A2 and By + B2 evaluated
atz = (¥, since their product(z) is of degree2, Lagrange’s interpolation
theorem says that it is sufficient to evaluétér) at three points. The subtrac-
tive version evaluatEsC(x) atz = 0,—1, 00, whereas the additive version
usesr = 0,+1, co.

1.3.3 Toom-Cook multiplication

Karatsuba’s idea readily generalizes to what is known as Toom—Cogky
multiplication. Write the inputs ag+- - -+a,_ 12"~ andbg+- - - +b,_ 2" 1,

L EvaluatingC'(x) atoo means computing the produdt B; of the leading coefficients.

1.3 Multiplication 7

with z = ¥, andk = [n/r]. Since their producC(z) is of degree2r — 2,

it suffices to evaluate it atr — 1 distinct points to be able to recovél(z),
and in particulaiC(3%). If r is chosen optimally, Toom—Cook multiplication
of n-word numbers takes time!+O(1/vIogn),

Most references, when describing subquadratic multiplication algorithms,
only describe Karatsuba and FFT-based algorithms. Nevertheless, the Toom—
Cook algorithm is quite interesting in practice.

Toom—Cookr-way reduces one-word product t@r — 1 products of about
n/r words, thus cost®(n”) with v = log(2r — 1)/ logr. However, the con-
stant hidden by the big-Motation depends strongly on the evaluation and
interpolation formulae, which in turn depend on the chosen points. One possi-
bility is to take—(r — 1),...,—1,0,1,...,(r — 1) as evaluation points.

The caser = 2 corresponds to Karatsuba’s algorithri (§113.2). The case
r = 3 is known as Toom—-CooR-way, sometimes simply called “the Toom—
Cook algorithm”. AlgorithmToomCook3uses the evaluation poinis1, —1,

2, oo, and tries to optimize the evaluation and interpolation formulee.

Algorithm 1.4 ToomCook3
Input: two integerd) < A, B < g"
Output: AB :=cy + c1 8% + o8 + c38%F + ¢y p*F with k = [n/3]
Require: athreshold:; > 3
1: if n < n; then returnKaratsubaMultiply (A, B)
write A = ag + a12 + asx?, B = by + bix + box? with z = 3*.
v < ToomCook3 ag, by)
V1 — ToomCOOk3(a02+a1, b02+b1) Wherea02 «— ag+taz, boa « bo+ba
V_q1 ToomCOOk3(a02 —ai, by — bl)
Vg ToomC00k3(a0 + 2a1 + 4as, by + 2b1 + 4b2)
Voo <— TOOMCO00K3 ag, bo)
t1 «— (Bvg + 2v_1 + v2)/6 — 2000, ta «— (V1 +v_1)/2
Co < Vg, Cl < V] —t1,C <ty — V) — Vo, C3 < L1 — 2, C4 — Vo.

© O N g RN

The divisions at stepl 8 are exact;dfis a power of two, the division bg
can be done using a division By- which consists of a single shift — followed
by a division by3 (see{l.4.7).
Toom-Cookr-way has to invert §2r — 1) x (2r — 1) Vandermonde matrix
with parameters the evaluation points; if we choose consecutive integer points,
the determinant of that matrix contains all primes uRito— 2. This proves
that division by (a multiple of cannot be avoided for Toom—-Codkway
with consecutive integer points. See Exer€isell.14 for a generalization of this
result.

8 Integer arithmetic

1.3.4 Use of the fast Fourier transform (FFT)

Most subquadratic multiplication algorithms can be seen as evaluation-inter-
polation algorithms. They mainly differ in the number of evaluation points, and
the values of those points. However, the evaluation and interpolation formulse
become intricate in Toom—Cookway for larger, since they involveO (r?)
scalar operations. The fast Fourier transform (FFT) is a way to perform evalu-
ation and interpolation efficiently for some special points (roots of unity) and
special values of. This explains why multiplication algorithms with the best
known asymptotic complexity are based on the FFT.

There are different flavours of FFT multiplication, depending on the ring
where the operations are performed. The@dtage—Strassen algorithm, with
a complexity ofO(nlog nloglogn), works in the ringZ/(2™ + 1)Z. Since it
is based on modular computations, we describe it in Chabter 2.

Other commonly used algorithms work with floating-point complex num-
bers. A drawback is that, due to the inexact nature of floating-point computa-
tions, a careful error analysis is required to guarantee the correctness of the im-
plementation, assuming an underlying arithmetic with rigorous error bounds.
See Theoren 3.6 in Chapfdr 3.

We say that multiplication ign the FFT rangeif n is large and the multi-
plication algorithm satisfied/ (2n) ~ 2M (n). For example, this is true if the
Schinhage—-Strassen multiplication algorithm is used, but not if the classical
algorithm or Karatsuba'’s algorithm is used.

1.3.5 Unbalanced multiplication

The subquadratic algorithms considered so far (Karatsuba and Toom—Cook)
work with equal-size operands. How do we efficiently multiply integers of dif-
ferent sizes with a subquadratic algorithm? This case is important in practice,
but is rarely considered in the literature. Assume the larger operand has size
m, and the smaller has size< m, and denote by/ (m, n) the corresponding
multiplication cost.

If evaluation-interpolation algorithms are used, the cost depends mainly on
the size of the result, i.en + n, so we haveM (m,n) < M((m +n)/2), at
least approximately. We can do better thdii(m +n)/2) if nis much smaller
thanm, for exampleM (m, 1) = O(m).

Whenm is an exact multiple of,, saym = kn, a trivial strategy is to cut the
larger operand inté pieces, givingV/ (kn,n) = kM (n) + O(kn). However,
this is not always the best strategy, see Exefcisd 1.16.

1.3 Multiplication 9
Whenm is not an exact multiple of, several strategies are possible:

¢ split the two operands into an equal number of pieces of unequal sizes;
e or split the two operands into different numbers of pieces.

Each strategy has advantages and disadvantages. We discuss each in turn.

First strategy: equal number of pieces of unequal sizes
Consider for example Karatsuba multiplication, andAgtn, n) be the num-
ber of word-products for am x n product. Take for example, = 5, n = 3.
A natural idea is to pad the smaller operand to the size of the larger one. How-
ever, there are several ways to perform this padding, as shown in the following
figure, where the “Karatsuba cut” is represented by a double column:

as | as az | ar | ao as | as az | a1 | ap a4 | a3 az | air | ao
bQ b1 bo bQ bl bo b2 bl bO
Ax B A x (BB) A x (8°B)

The left variant leads to two products of sizg.e.2K (3, 3), the middle one to
K(2,1)+K(3,2)+ K (3,3), and the right one t& (2, 2) + K (3,1) + K (3, 3),
which give respectively4, 15, 13 word-products.

However, whenevem /2 < n < m, any such “padding variant” will re-
quire K([m/2], [m/2]) for the product of the differences (or sums) of the
low and high parts from the operands, due to a “wrap-around” effect when
subtracting the parts from the smaller operand; this will ultimately lead to a
cost similar to that of am x m product. The “odd—even scheme” of Algorithm
OddEvenKaratsuba(see also Exercige TJ13) avoids this wrap-around. Here is
an example of this algorithm for, = 3 andn = 2. TakeA = asz? +a,x+ag
andB = byx + bgy. This yieldsAo = asx + ag, A1 = a1, By = by, B1 = b1;
thus,Cy = (agx + CLo)bQ, Ci = (az.’L‘ + ag + Cbl)(bo + bl), Cy = a1b;.

Algorithm 1.5 OddEvenKaratsuba
Input: A= Zgn_l a;x’, B = Zg_l bjzd,m>n>1
Output: A-B
if n=1thenreturn>0" " a;boa’
write A = Ag(2?) + xA1(2?), B = Bo(2?) + 2By (2?)
Cy «— OddEvenKaratsuba(Ay, By)
C «+ OddEvenKaratsuba(Aq + Ay, By + Bi)
Cy «— OddEvenKaratsuba(A;, By)
returnCo(z2) + z(Cy — Co — C)(x?) + 22Ca(2?).

10 Integer arithmetic

We therefore gefk'(3,2) = 2K(2,1) + K(1) = 5 with the odd—even
scheme. The general recurrence for the odd—even scheme is

K(m,n) =2K([m/2], [n/2]) + K(|m/2], [n/2]),
instead of
K(m,n) =2K([m/2],[m/2]) + K(|m/2],n — [m/2])

for the classical variant, assuming> m /2. We see that the second parameter
in K (-, -) only depends on the smaller sizdor the odd—even scheme.

As for the classical variant, there are several ways of padding with the odd—
even scheme. Consider = 5, n = 3, and write4 := asz* + asz® + as2® +
a1x + ap = vA1(2?) + Ag(2?), with Ay (z) = azr + a1, Ao(z) = asz® +
asx +ag; andB = byx? + bz + by = 2By (2?) + Bo(x?), with By (z) = by,

By () = bax+bg. Without padding, we writel B = 22 (A1 By) (2?)+z((Ao+
Al)(B() + Bl) —A1By — AoBo)(SCQ) + (AoBo)(JJQ), which giVGSK(5, 3) =
K(2,1) + 2K(3,2) = 12. With padding, we considetB = xB}(z?%) +
B{(x?), with B (z) = byx + by, B}, = byx. This givesK (2, 2) = 3 for A, B,
K(3,2) = 5for (Ag + A1)(Bj + By), andK (3,1) = 3 for AyB{, — taking
into account the fact thaB), has only one non-zero coefficient — thus, a total
of 11 only.

Note that when the variable corresponds to say = 2%, Algorithm
OddEvenKaratsuba as presented above is not very practical in the integer
case, because of a problem with carries. For example, in thedsumA; we
have|m/2] carries to store. A workaround is to consideto be say3'?, in
which case we have to store only one carry bit for ten words, instead of one
carry bit per word.

The first strategy, which consists in cutting the operands into an equal num-
ber of pieces of unequal sizes, does not scale up nicely. Assume for example
that we want to multiply a number &99 words by another number ¢b9
words, using Toom—Coadkway. With the classical variant — without padding —
and a “large” base 0833, we cut the larger operand into three piece83f
words and the smaller one into two pieces$838 words and one small piece of
33 words. This gives four fulB33 x 333 products — ignoring carries — and one
unbalanced33 x 33 product (for the evaluation at = ~o). The “odd—even”
variant cuts the larger operand into three piece338fwords, and the smaller
operand into three pieces 233 words, giving rise to five equally unbalanced
333 x 233 products, again ignoring carries.

1.3 Multiplication 11

Second strategy: different number of pieces of equal sizes

Instead of splitting unbalanced operands into an equal number of pieces —
which are then necessarily of different sizes — an alternative strategy is to split
the operands into a different number of pieces, and use a multiplication al-
gorithm which is naturally unbalanced. Consider again the example of multi-
plying two numbers 0§99 and699 words. Assume we have a multiplication
algorithm, say Toom-(2), which multiplies a number dfn words by another
number of2n words; this requires four products of numbers of abowiords.
Usingn = 350, we can split the larger number into two pieces366 words,

and one piece 0299 words, and the smaller number into one piece3sd
words and one piece 69 words.

Similarly, for two inputs 0fl000 and500 words, we can use a Toom-(2)
algorithm, which multiplies two numbers df, and2n words, withn = 250.

Such an algorithm requires five evaluation points; if we choose the same points
as for Toom3-way, then the interpolation phase can be shared between both
implementations.

It seems that this second strategy is not compatible with the “odd—even”
variant, which requires that both operands are cut into the same number of
pieces. Consider for example the “odd—even” variant mogulio writes the
numbers to be multiplied ag¢ = a(8) and B = b(3) with a(t) = ag(t?) +
tay (t3)+t2aq(t?), and similarlyb(t) = bo(t3)+tby (t3)+12b2(t3). We see that
the number of pieces of each operand is the chosen modulusj (sze Exer-
cise[1.11). Experimental results comparing different multiplication algorithms
are illustrated in Figurg_1.1.

Asymptotic complexity of unbalanced multiplication

Supposen > n andn is large. To use an evaluation-interpolation scheme,
we need to evaluate the productrat+ n points, whereas balancédby &
multiplication needg&k points. Taking: ~ (m+n)/2, we see thad/ (m,n) <
M((m+n)/2)(1+ o(1)) asn — oo. On the other hand, from the discussion
above, we havd/(m,n) < [m/n]M (n). This explains the upper bound on
M (m,n) given in theSummary of complexitiex the end of the book.

1.3.6 Squaring

In many applications, a significant proportion of the multiplications have equal
operands, i.e. are squarings. Hence, it is worth tuning a special squaring im-
plementation as much as the implementation of multiplication itself, bearing
in mind that the best possible speedup is two (see Exdrcisk 1.17).

12 Integer arithmetic

4 18 32 46 60 74 88 102 116 130 144 158
4 bc
11 bc be
18 bc bc 22
25 bc bc bc 22
32 bc bc bc bc 22
39 bc bc bc 32 32 33
46 bc bc bc 32 32 32 22
53 bc bc bc bc 32 32 32 22
60 bc bc bc bc 32 32 32 32 22
67 bc bc bc bc 42 32 32 32 33 33
74 bc bc bc bc 42 32 32 32 32 33 33
81 bc bc bc bc 32 32 32 32 32 33 33 33
88 bc bc bc bc 32 42 42 32 32 32 33 33 33
95 bc bc bc bc 42 42 42 32 32 32 33 33 33 22
102 bc bc bc bc 42 42 42 42 32 32 32 33 33 44 33
109 bc bc bc bc bc 42 42 42 42 32 32 32 33 32 44 44
116 bc bc bc bc bc 42 42 42 42 32 32 32 32 32 44 44 44
123 bc bc bc bc bc 42 42 42 42 42 32 32 32 32 44 44 44 44
130 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 44 44 44 44 44
137 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 33 33 44 33 33 33
144 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 32 32 33 44 33 33 33
151 bc bc bc bc bc 42 42 42 42 42 42 42 32 32 32 32 33 33 33 33 33 33
158 bc bc bc bc bc bc 42 42 42 42 42 42 32 32 32 32 32 33 33 33 33 33 33

Figure 1.1 The best algorithm to multiply two numberszoéind y words

for4 < x < y < 158: bc is schoolbook multiplication22 is Karatsuba’s
algorithm,33 is Toom-3,32 is Toom-(3,2), 44 is Toom-4, and}2 is Toom-
(4,2). This graph was obtained on a Core 2, with GMP 5.0.0, and GCC 4.4.2.
Note that forz < (y + 3)/4, only the schoolbook multiplication is avail-
able; since we did not consider the algorithm that cuts the larger operand into
several pieces, this explains why is best for sayr = 32 andy = 158.

For naive multiplication, Algorithrh T1BasecaseMultiplycan be modified
to obtain a theoretical speedup of two, since only about half of the products
a;b; need to be computed.

Subquadratic algorithms like Karatsuba and Toom-Cewlay can be spe-
cialized for squaring too. In general, the threshold obtained is larger than the
corresponding multiplication threshold. For example, on a mogléitit com-
puter, we can expect a threshold between the naive quadratic squaring and
Karatsuba’s algorithm in th80-word range, between Karatsuba and Toom-—
Cook 3-way in the100-word range, between Toom—Co8kwvay and Toom—
Cook4-way in the150-word range, and between Toom—Cobkvay and the
FFT in the2500-word range.

The classical approach for fast squaring is to take a fast multiplication algo-
rithm, say Toom—Cook-way, and to replace th&- — 1 recursive products by
2r—1 recursive squarings. For example, starting from AlgorifctomCook3
we obtain five recursive squaringg, (ap + a1 + a2)?, (ap — a1 + az)?,

(ao + 2a; + 4az)?, anda3. A different approach, calleasymmetric squaring,
is to allow products that are not squares in the recursive calls. For example,

1.3 Multiplication 13

mpn_mul_n
mpn_sqr -------

04 | E

02 1

0 I I I I I
1 10 100 1000 10000 100000 1e+06

Figure 1.2 Ratio of the squaring and multiplication time for the GNU MP
library, version 5.0.0, on a Core 2 processor, up to one million words.

the square ofiu 32 + a1 + ag IS caf* + ¢36% + 232 + 13 + ¢y, where
cy = a3, c3 = 2a1ag, c2 = ¢y + ¢4 — 8, ¢1 = 2a1a9, andey = a?, where
s = (ap — az + a1)(ap — a2 — ay). This formula performs two squarings,
and three normal products. Such asymmetric squaring formulae are not asymp-
totically optimal, but might be faster in some medium range, due to simpler
evaluation or interpolation phases.

Figure[1.2 compares the multiplication and squaring time with the GNU MP
library. It shows that whatever the word range, a good rule of thumb is to count
2/3 of the cost of a product for a squaring.

1.3.7 Multiplication by a constant

It often happens that the same multiplier is used in several consecutive oper-
ations, or even for a complete calculation. If this constant multiplier is small,
i.e. less than the basg not much speedup can be obtained compared to the
usual product. We thus consider here a “large” constant multiplier.

When using evaluation-interpolation algorithms, such as Karatsuba or Toom—
Cook (sedf1.3.2£1.3.B), we may store the evaluations for that fixed multiplier
at the different points chosen.

14 Integer arithmetic

Special-purpose algorithms also exist. These algorithms differ from classi-
cal multiplication algorithms because they take into accounv#tee of the
given constant multiplier, and not only its size in bits or digits. They also dif-
fer in the model of complexity used. For example, R. Bernstein’s algorithm
[@], which is used by several compilers to compute addresses in data struc-
ture records, considers as basic operation — 2z + y, with a cost assumed
to be independent of the integer

For example, Bernstein’s algorithm compu@961zx in five steps:

z; =3z = 2z —=zx
2o =93z = 2o+
rg =743z = 2319 —1
x4 = 6687 = 23154 a3
20061z = 2'ay + z4.
1.4 Division

Division is the next operation to consider after multiplication. Optimizing di-
vision is almost as important as optimizing multiplication, since division is
usually more expensive, thus the speedup obtained on division will be more
significant. On the other hand, we usually perform more multiplications than
divisions.

One strategy is to avoid divisions when possible, or replace them by multi-
plications. An example is when the same divisor is used for several consecutive
operations; we can then precompute its inverse {8e€1).

We distinguish several kinds of divisiofull division computes both quo-
tient and remainder, while in other cases only the quotient (for example, when
dividing two floating-point significands) or remainder (when multiplying two
residues modulm) is needed. We also discussact division— when the
remainder is known to be zero — and the problem of dividing by a single word.

1.4.1 Naive division

In all division algorithms, we assume that divisors are normalized. We say that
B := g—l b;/3’ is normalizedwhen its most significant wortl,_; satisfies
bn,—1 > (/2. This is a stricter condition (fof > 2) than simply requiring that
b,—1 be non-zero.

If B is not normalized, we can comput# = 2*A and B’ = 2*B so
that B’ is normalized, then dividel’ by B’ giving A’ = Q'B’ + R’. The

1.4 Division 15

Algorithm 1.6 BasecaseDivRem
Input: A =S"0"""q;5, B=30""b;3, B normalizedm > 0
Output: quotient@ and remainder of A divided by B

1. if A>pg"™Btheng,, — 1,A+— A— B elseq,, — 0

2: for j from m — 1 downto 0 do

3 qj [(an+iB + antj—1)/bn-1] > quotient selection step
4: qj — min(q}-‘,ﬁ -1

5: A—A—-qFB

6: while A < 0do

7. qj < q5 —].

8: A—A+3'B

9: return@ = > ' ¢;37, R = A.
(Note: in stefiBg; denotes theurrentvalue of theith word of A, which may
be modified at stefd 5 aqd 8.)

quotient and remainder of the division dfby B are, respectively) := Q'
andR := R'/2F; the latter division being exact.

Theorem 1.3 Algorithm BasecaseDivRentorrectly computes the quotient
and remainder of the division of by a normalizedB, in O(n(m + 1)) word
operations.

Proof. We prove that the invariamd < 371 B holds at stefp]2. This holds
trivially for j = m — 1: B being normalizedA < 25™ B initially.

First consider the casg = q;- Theng;b,—1 > anyjB+antj—1—bn—1+1,
and therefore

A—q;B< (b1 — 1)1 4 (Amod g1,

which ensures that the new,.; vanishes, andi, ;1 < b,_1; thus,
A < (3B after stedb. NowAd may become negative after s{gp 5, but, since
4jbn—1 < pnyj B+ anyj—1, We have

A— i’ B > (an4 ;B + anyj1)B" 7 = qi(bp1B" 4+ 8B
> —q; 3"

Therefore A — q; 3 B+237B > (2b,—1 —q;)3" =1 > 0, which proves that

the while-loop at stefd B}-8 is performed at most tv@[142, Theorem 4.3.1.B].
When the while-loop is entered, may increase only by’ B at a time; hence,

A < 3B at exit.

16 Integer arithmetic

In the caseq; # g¢j, i.e. ¢ > [, we have before the while-loop
A < 1B — (8 —1)3/B = (7B, thus, the invariant holds. If the while-
loop is entered, the same reasoning as above holds.

We conclude that when the for-loop ends< A < B holds, and, since
(327" 4;7)B + A'is invariant throughout the algorithm, the quoti€ptand
remainderR are correct.

The most expensive part is sfép 5, which casts) operations fog; B (the
multiplication by 37 is simply a word-shift); the total cost i©(n(m + 1)).
(Form = 0, we need)(n) work if A > B, and even ifA < B to compare the
inputs in the casel = B — 1.) 0

Here is an example of algorithnBasecaseDivRemfor the inputs
A = 766970544 842443844 and B = 862664 913, with 3 = 1000, which
gives quotient) = 889071 217 and remaindeR = 778 334 723.

A qj A—q;Bp after correction

766970544 842443844 889 61437185443844 no change
61437185443844 071 187976 620 844 no change
187976620844 218 —84330190 778334723

S =N .

Algorithm BasecaseDivRensimplifies whend < 3™ B: remove stefpll,
and changen into m — 1 in the return valu&). However, the more general
form we give is more convenient for a computer implementation, and will be
used below.

A possible variant when; > Bis to letq; = j3; thenA — q;/3’ B at stefi b
reduces to a single subtraction Bfshifted by;j + 1 words. However, in this
case the while-loop will be performed at least once, which corresponds to the
identity A — (8 —1)3’B=A— *'B + 3B.

If instead of havingB normalized, i.eb,, > /2, we haveb,, > 3/k, there
can be up td: iterations of the while-loop (and stEp 1 has to be modified).

A drawback of AlgorithmBasecaseDivRenis that the testi < 0 at line[8
is true with non-negligible probability; therefore, branch prediction algorithms
available on modern processors will fail, resulting in wasted cycles. A work-
around is to compute a more accurate partial quotient, in order to decrease the
proportion of corrections to almost zero (see Exeilcise] 1.20).

1.4.2 Divisor preconditioning

Sometimes the quotient selection — gtkp 3 of AlgoriBasecaseDivRem is
quite expensive compared to the total cost, especially for small sizes. Indeed,
some processors do not have a machine instruction for the division of two

1.4 Division 17

words by one word; one way to compuggis then to precompute a one-word
approximation of the inverse of,_, and to multiply it bya, ;5 + an+j—1.

Svoboda’s algorithm makes the quotient selection trivial, after precondition-
ing the divisor. The main idea is thatdf,_, equals the basg in Algorithm
BasecaseDivRemthen the quotient selection is easy, since it suffices to take
q; = an+;. (In addition,g; < 3 — 1is then always fulfilled; thus, stép 4 of
BasecaseDivRencan be avoided, ang replaced by;;.)

Algorithm 1.7 SvobodaDivision
Input: A = Zg+"’_1 a;3¢, B = Zg’_l b;# normalized A < g™ B,m > 1
Output: quotient@ and remainder of A divided by B
k< ["/B]
B' — kB ="+ 4+ 307 b B
: for j from m — 1 downto 1 do
qj < Gn+j > current value ofi, 4 ;
Ae—A—q;p 1B
if A< 0then
qG—q—1
A A4 pi—1p
Q=Yg R = A
- (g0, R) + (R’ div B, R' mod B) > usingBasecaseDivRem
: return@ = kQ' + qo, R.

© o N O kRN R

R
~ o

With the example off1. 4.1, Svoboda’s algorithm would give = 1160,
B’ = 1000691299 080:

j A ¢ A—q;B 3 after correction
2 766970544 842443844 766 441009747 163 844 no change
1 441009747163 844 441 —295115730436 705575568 644

We thus get)’ = 766440 and R’ = 705575 568 644. The final division of
step 10 givesk’ = 817B + 778334723, and we get) = 1160 - 766 440 +
817 = 889071217, andR = 778 334 723, as indL.41.

Svoboda’s algorithm is especially interesting when only the remainder is
needed, since then we can avoid the “deconditioniQg= kQ’ + qo. Note
that when only the quotient is needed, divididg = kA by B’ = kB is
another way to compute it.

18 Integer arithmetic

1.4.3 Divide and conquer division

The base-case division @f[.4.1 determines the quotient word by word. A
natural idea is to try getting several words at a time, for example replacing the
guotient selection step in AlgorithBasecaseDivRenby

g — {anﬂ-@ + anyj—18% 4 anyj 28+ an+j—3J
/ bnflﬂ + bn72 .

Sinceq; has then two words, fast multiplication algorithms(31.3) might speed
up the computation of; B at stef b of AlgorithnBasecaseDivRem

More generally, the most significant half of the quotient — &y, of
¢ = m — k words — mainly depends on tifemost significant words of the
dividend and divisor. Once a good approximatiorttpis known, fast multi-
plication algorithms can be used to compute the partial remaitdap, B3".
The second idea of the divide and conquer algorilRecursiveDivRemis to
compute the corresponding remainder together with the partial quatier
such a way, we only have to subtract the produabefoy the low part of the
divisor, before computing the low part of the quotient.

Algorithm 1.8 RecursiveDivRem

Input: A= 30""" a3, B=54""b;4, B normalizedn > m
Output: quotient@ and remainder of A divided by B
. if m < 2 then returnBasecaseDivRerfy, B)
.k« |m/2], By «+ Bdiv g%, By «+ B mod *

. (Q1, Ry) « RecursiveDivRen(A div %%, B;)

0 A" — Ry 3% + (Amod 3°%) — Q1 By 5"

- while A’ <0doQ; «— Q, —1,A" — A"+ 3*B

. (Qo, Ro) «— RecursiveDivRen(A’ div 8%, By)

: A" — RofB* + (A’ mod %) — Qo By

s while A” <0doQp — Qo—1,A” — A"+ B
creturn@ == Q1% + Qo, R := A”.

© 0O N O U A WN P

In Algorithm RecursiveDivRem we may replace the condition < 2 at
stepl bym < T for any integefl’ > 2. In practice,I" is usually in the range
50 to 200.

We cannot required < g™ B at input, since this condition may not be
satisfied in the recursive calls. Consider for example: 5517, B = 56 with
(8 = 10: the first recursive call will dividés5 by 5, which yields a two-digit
quotientl1. EvenA < ™ B is not recursively fulfilled, as this example shows.
The weakest possible input condition is that theost significant words aoft

1.4 Division 19

do not exceed those @, i.e. A < ™ (B + 1). In that case, the gquotient is
bounded by3™ + | (8™ — 1)/B], which yieldsg™ + 1 in the caser = m
(compare Exercide 1.119). See also Exellcisel1.22.

Theorem 1.4 AlgorithmRecursiveDivRemis correct, and useD (n+m, n)
operations, wherd(n + m,n) = 2D(n,n —m/2) + 2M(m/2) + O(n). In
particular, D(n) := D(2n,n) satisfiesD(n) = 2D(n/2)+2M (n/2)+O(n),
which givesD(n) ~ M (n)/(2¢~t — 1) for M(n) ~ n®, a > 1.

Proof. We first check the assumption for the recursive cdblsis normalized
since it has the same most significant word tfian

After step[B, we havel = (Q1B; + R1)B* + (A mod fBy); thus, after
sted#,4’ = A — Q.3 B, which still holds after stefg] 5. After stép 6, we have
A" = (QoB1 + Ro)B3* + (A’ mod 3F), and, after stepl74” = A’ — Qo B,
which still holds after stef 8. At stép 9, we hade= QB + R.

A div 3%* hasm +n — 2k words, andB; hasn — k words; thusp < Q; <
2™~ Fand0 < Ry < By < 8" k. At stegd,—-2p"t* < A’ < B*¥B. Since
B is normalized, the while-loop at stEp 5 is performed at most four times (this
can happen only when = m). At step[®, we hav® < A’ < "B, thus,
A’ div g* has at most words.

It follows 0 < Qo < 24% and0 < Ry < B; < 3" *. Hence, at step
[, —23%¢ < A" < B, and, after at most four iterations at sfdp 8, we have
0< A" < B. O

Theoreni 1K give® (n) ~ 2M (n) for Karatsuba multiplication, anB (n) ~
2.63M (n) for Toom—Cook3-way; in the FFT range, see Exercise 1.23.

The same idea as in Exerclse_1.20 applies: to decrease the probability that
the estimated quotient9; and @, are too large, use one extra word of the
truncated dividend and divisors in the recursive callRézursiveDivRem

A graphical view of AlgorithmRecursiveDivRemin the casen = n is
given in Figurd_1B, which represents the multiplicat@n B: we first com-
pute the lower left corner i (n/2) (sted8), second the lower right corner in
M (n/2) (sted?), third the upper left corner in(n/2) (sted®), and finally the
upper right corner i/ (n/2) (stedT).

Unbalanced division

The conditionn > m in Algorithm RecursiveDivRemmeans that the divi-
dendA is at most twice as large as the diviser When A is more than twice

as large a3 (m > n with the notation above), a possible strategy (see Ex-
ercise 1.2U) computes words of the quotient at a time. This reduces to the
base-case algorithm, replacigdy 5.

20 Integer arithmetic

M(g)
M(n/4)
M(g)
M(n/2)
M(%)
M(n/4)
M(%)
quotient@
M(g)
M(n/4)
M(g)
M(n/2)
M(Z)
M(n/4)
M(%)
divisor B

Figure 1.3 Divide and conquer division: a graphical view
(most significant parts at the lower left corner).

Algorithm 1.9 UnbalancedDivision
Input: A= 30"""" a3, B=34""b;#, B normalizedm > n
Output: quotient) and remaindeR of A divided by B
Q<0
while m > n do
(¢,7) < RecursiveDivRem A div g™~ ", B) > 2n by n division
Q—QF"+q
A—rfm " 4+ Amod gm "
m<«—m-—n
(¢,7) < RecursiveDivRen(4, B)
return@ := Q8™ +¢q, R :=r.

Figure[T.# compares unbalanced multiplication and divisloGNU MP.
As expected, multiplyinge words byn — = words takes the same time as
multiplying n — x words byn words. However, there is no symmetry for the
division, since dividing: words byz words forz < n/2 is more expensive,
at least for the version of GMP that we used, than dividingords byn — x
words.

1.4 Division 21

2000

1800
1600
1400
1200
1000
800
600
400

200 f}/

0 i 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000

Figure 1.4 Time inl0~° seconds for the multiplication (lower curve) af
words by1000 — x words and for the division (upper curve) t600 words
by words, with GMP 5.0.0 on a Core 2 running at 2.83GHz.

1.4.4 Newton’s method

Newton’s iteration gives the division algorithm with best asymptotic complex-
ity. One basic component of Newton’s iteration is the computation of an ap-
proximate inverse. We refer here to Chapler 4. ptaalic version of Newton’s
method, also called Hensel lifting, is usedfin4.5 for exact division.

1.4.5 Exact division

A division is exactwhen the remainder is zero. This happens, for example,
when normalizing a fraction/b: we divide bothu andb by their greatest com-
mon divisor, and both divisions are exact. If the remainder is known
a priori to be zero, this information is useful to speed up the computation
of the quotient.

Two strategies are possible:

e use MSB (most significant bits first) division algorithms, without computing
the lower part of the remainder. Here, we have to take care of rounding
errors, in order to guarantee the correctness of the final result; or

22 Integer arithmetic

e use LSB (least significant bits first) algorithms. If the quotient is known to
be less tha™, computinga/b mod 5™ will reveal it.

Subquadratic algorithms can use both strategies. We describe a least significant
bit algorithm using Hensel lifting, which can be viewed gs-adic version of
Newton’s method.

Algorithm ExactDivision uses the Karp—Markstein trick: lines[1-4 compute
1/B mod p/21, while the two last lines incorporate the dividend to obtain
A/B mod (3". Note that theniddle produc(§3.3:2) can be used in linE¥ 4 and
[, to speed up the computationlof- BC' andA — BQ, respectively.

Algorithm 1.10 ExactDivision
Input: A=30"a;6, B=50""b;
Output: quotientQ = A/B mod 3"
Require: ged(bg,) =1

1: C'«— 1/by mod /3

2: for i from [lgn] — 1 downto 1 do

3 k — [n/2%]

4 C «— C+C(1—-BC)mod *

5

6

. Q «— AC mod (*
:Q — Q+ C(A— BQ) mod g™

A further gain can be obtained by using both strategies sanatiusly: com-
pute the most significant/2 bits of the quotient using the MSB strategy, and
the least significant /2 bits using the LSB strategy. Since a division of size
is replaced by two divisions of size/2, this gives a speedup of up to two for
quadratic algorithms (see Exercise1.27).

1.4.6 Only quotient or remainder wanted

When both the quotient and remainder of a division are needed, it is best
to compute them simultaneously. This may seem to be a trivial statement;
nevertheless, some high-level languages provide datrand mod, but no
single instruction to compute both quotient and remainder.

Once the quotient is known, the remainder can be recovered by a single
multiplication asA — @ B; on the other hand, when the remainder is known,
the quotient can be recovered by an exact divisiofas R)/B (1.4.35).

However, it often happens that only one of the quotient or remainder is
needed. For example, the division of two floating-point numbers reduces to the
guotient of their significands (see Chagpter 3). Conversely, the multiplication of

1.4 Division 23

two numbers moduldV reduces to the remainder of their product after divi-
sion by N (see Chaptdi]2). In such cases, we may wonder if faster algorithms
exist.

For a dividend o2n words and a divisor of words, a significant speedup —
up to a factor of two for quadratic algorithms — can be obtained when only
the quotient is needed, since we do not need to update the leards of the
current remainder (stép 5 of AlgorithBasecaseDivRem

It seems difficult to get a similar speedup when only the remainder is re-
quired. One possibility is to use Svoboda’s algorithm, but this requires some
precomputation, so is only useful when several divisions are performed with
the same divisor. The idea is the following: precompute a muliipleof B,
having 3n/2 words, then/2 most significant words being”/2. Then re-
ducing A mod B; requires a singler/2 x n multiplication. OnceA is re-
duced toA; of 3n/2 words by Svoboda’s algorithm with cogd/ (n/2), use
RecursiveDivRemon A; and B, which costsD(n/2) + M (n/2). The to-
tal cost is thus3M (n/2) + D(n/2), instead of2M (n/2) + 2D(n/2) for a
full division with RecursiveDivRem This gives5M (n)/3 for Karatsuba and
2.04M (n) for Toom—Cook3-way, instead oM (n) and2.63M (n), respec-
tively. A similar algorithm is described if2.4.2 (Subquadratic Montgomery
Reduction) with further optimizations.

1.4.7 Division by a single word

We assume here that we want to divide a multiple precision number by a
one-word integer. As for multiplication by a one-word integer, this is an
important special case. It arises for example in Toom—Cook multiplication,
where we have to perform an exact divisiondb@I.3.3). We could of course
use a classical division algorithm{(§T.}.1). Whenrl(c, 3) = 1, Algorithm
DivideByWord might be used to compute a modular division

A+bp" = cQ,

where the “carry’d will be zero when the division is exact.

Theorem 1.5 The output of AlgDivideByWord satisfiesA + 66" = cQ.

Proof. We show that after step0 < i < n, we haved;+b5"t! = cQ;, where
A; = Z;’:O aiﬂi anin = Z;’:O qzﬁl Fori = 0, thisisag + bﬁ = ¢qo,
which is just lind¥; sincgy = ag/c mod (3, goc—ay is divisible by3. Assume
now thatA;_; 4+ b3* = cQ;_1 holds forl < i < n. We haven; —b+'3 = z,
sox + V"3 = cq;, thusA; + (b + b3 = A; 1 + B(a; +VB+V'B) =

24 Integer arithmetic

Qi1 —bB + B (x+b—bE+UE+b"B)=cQi_1+ B (x+b"p) = cQ;.

d
Algorithm 1.11 DivideByWord
Input: A =S"0""a;8,0<c< B, ged(c,f) =1
Output: @Q = 23_1 g3 and0 < b < csuch thatd 4 b3" = cQ
1: d+ 1/cmod 3 > might be precomputed

2260

3: for i from 0ton — 1do
4 if b < a; then (x,0") — (a; — b,0)
5 else(x,b') «— (a; — b+ ,1)
6: q; < dx mod (3

7V (ge—2)/8

8 b b +b"

o: return> 0" ¢; 3%, b.

REMARK: at stefi ¥/, sincé < z < 3, b” can also be obtained &g;c/j3].

Algorithm DivideByWord is just a special case of Hensel's division, which
is the topic of the next section; it can easily be extended to divide by integers
of a few words.

1.4.8 Hensel's division

Classical division involves cancelling the most significant part of the dividend
by a multiple of the divisor, while Hensel’s division cancels the least significant
part (Figurd_1b). Given a dividend of 2n words and a divisoB3 of n words,

| A | A |

| B || B |

| QB || QB |

| R | R |

Figure 1.5 Classical/MSB division (left) vs Hensel/LSB division (right).

the classical or MSB (most significant bit) division computes a quoteand
aremaindeR? such thatd = Q B+ R, while Hensel's or LSB (least significant

1.5 Roots 25

bit) division computes a LSB-quotie’ and a LSB-remaindeR’ such that
A = Q'B+ R's"™. While MSB division requires the most significant bit Bf
to be set, LSB division requireB to be relatively prime to the word bagk
i.e. B to be odd forg a power of two.

The LSB-quotient is uniquely defined b’ = A/B mod 3", with
0 < @ < g™ This in turn uniquely defines the LSB-remaindgf =
(A—Q@Q'B)p~ ", with—B < R' < ™.

Most MSB-division variants (naive, with preconditioning, divide and con-
quer, Newton'’s iteration) have their LSB-counterpart. For example, LSB pre-
conditioning involves using a multipléB of the divisor such thatkB =
1 mod 3, and Newton'’s iteration is called Hensel lifting in the LSB case. The
exact division algorithm described at the end§@f4.3 uses both MSB- and
LSB-division simultaneously. One important difference is that LSB-division
does not need any correction step, since the carries go in the direction opposite
to the cancelled bits.

When only the remainder is wanted, Hensel’s division is usually known as
Montgomery reduction (se2.4.2).

1.5 Roots

1.5.1 Square root

The “paper and pencil” method once taught at school to extract square roots is
very similar to “paper and pencil” division. It decomposes an integeaf the

form s2 + r, taking two digits ofm at a time, and finding one digit of for

each two digits ofn. It is based on the following idea. th = s% + r is the
current decomposition, then taking two more digits of the argument, we have a
decomposition of the form00m + ' = 100s% + 1007 47" with 0 < 7/ < 100.
Since(10s + t)? = 100s% + 20st + 2, a good approximation to the next digit

t can be found by dividing0r by 2s.

Algorithm SqrtRem generalizes this idea to a powgf of the internal base
close tom!/4: we obtain a divide and conquer algorithm, which is in fact an
error-free variant of Newton’s method (cf. Chagter 4):

26 Integer arithmetic

Algorithm 1.12 SgrtRem
Input: m =a,_ 18" '+ +aB+aowitha,_ 1 #0
Output: (s,7) such that? < m = s2 +7r < (s + 1)?
Require: a base-case routirBasecaseSqrtRem

0 [(n—1)/4]

if £ = 0 then returnBasecaseSqrtRerfm)

write m = as 8¢ + a2 8% + a1 8¢ + ag With 0 < as, a1, ag < 8¢

(s',r") — SqrtRem(as [+ as)

(q,u) «— DivRem(r'3* + ay, 25")

s—s'B+q

re—uf’ +ag - ¢

if » < 0then

r—r4+2s—1, s+ s—1
return(s, r).

Theorem 1.6 Algorithm SqgrtRem correctly returns the integer square root
s and remainderr of the inputm, and has complexity?(2n) ~ R(n) +
D(n) + S(n), where D(n) and S(n) are the complexities of the division
with remainder and squaring respectively. This giv&®) ~ n?/2 with naive
multiplication, R(n) ~ 4K (n)/3 with Karatsuba’s multiplication, assuming
S(n) ~2M(n)/3.

As an example, assume AlgorithBgrtRem is called onm = 123456 789
with 3 = 10. We haven = 9, ¢ = 2, a3 = 123, ao = 45, a1 = 67, and
ap = 89. The recursive call forns 3¢ + as = 12345 yields s’ = 111 and
r’ = 24. TheDivRem call yieldsq = 11 andu = 25, which givess = 11111
andr = 2468.

Another nice way to compute the integer square root of an integere.
|m!/2]|, is Algorithm Sqrtint, which is an all-integer version of Newton’s
method (E4.R).

Still with input 123 456 789, we successively get= 61 728 395, 30 864 198,
15432100, 7716053, 3858034, 1929032, 964547, 482337, 241296,
120903, 60962, 31493, 17706, 12339, 11172, 11111, 11111. Convergence
is slow because the initial value ofassigned at lingl 1 is much too large. How-
ever, any initial value greater than or equalta'/? | works (see the proof of
Algorithm RootInt below): starting froms = 12 000, we gets = 11 144, then
s =11111. See Exercise 1.28.

1.5 Roots 27

Algorithm 1.13 Sgrtint

Input: an integerm > 1

Output: s = [m!'/?]
Cue—m > any valueu > |m'/? | works
: repeat

1

2

3 S u

4 t—s+|m/s]
5 u— [t/2]
6: until uw > s

7: returns.

1.5.2 kth root

The idea of AlgorithnSqrtRem for the integer square root can be generalized
to any power: if the current decompositiorvis = m/ % + m”’ g1 + m'”,

first compute ath root of m/, saym’ = s* + r, then dividers + m" by
ks*~1 to get an approximation of the next root digjitand correct it if needed.
Unfortunately, the computation of the remainder, which is easy for the square
root, involvesO (k) terms for thekth root, and this method may be slower than
Newton's method with floating-point arithmetid (§4.P.3).

Similarly, Algorithm Sqrtint can be generalized to thgh root (see Algo-
rithm RootInt).

Algorithm 1.14 Rootint

Input: integersn > 1, andk > 2

Output: s = |m'/*|
Cu—m > any valueu > |m'/* | works
. repeat

1
2
3 S U

4: t e (k—1)s+ [m/sk1]
5 u«— [t/k]

6: until u > s

7: returns.

Theorem 1.7 Algorithm Rootint terminates and returngm!/*|.

Proof. As long asu < s in step[®, the sequence efvalues is decreasing;
thus, it suffices to consider what happens when s. First it is easy so see that
u > simpliesm > s*, because > ks and thereforék —1)s+m/s* =1 > ks.

28 Integer arithmetic

Consider now the functioffi(t) := [(k—1)t+m/t*~1]/k fort > 0; its deriva-
tive is negative fort < m!/* and positive fort > m!/*; thus,
f(t) > f(m'*) = m'/* This proves that > |m!'/*|. Together with
s < m!/*, this proves that = |m'/*| at the end of the algorithm. 0

Note that any initial value greater than or equalte'/* | works at stejy]1.
Incidentally, we have proved the correctness of Algorit&agrtint, which is
just the special case = 2 of Algorithm RootInt.

1.5.3 Exact root

When akth root is known to be exact, there is of course no need to compute
exactly the final remainder in “exact root” algorithms, which saves some com-
putation time. However, we have to check that the remainder is sufficiently
small that the computed root is correct.

When a root is known to be exact, we may also try to compute it starting
from the least significant bits, as for exact division. Indeed’if= m, then
s = m mod ¢ for any integer’. However, in the case of exact division, the
equationa = ¢b mod ¢ has only one solutio as soon a$ is relatively
prime to3. Here, the equatios” = m mod ¢ may have several solutions,
so the lifting process is not unique. For exampté, = 1 mod 2% has four
solutionsl, 3,5, 7.

Suppose we hawe® = m mod 3¢, and we want to lift tg3* 1. This implies
(s +)% = m +m/B* mod B+, where0 < t,m’ < 3. Thus

mek

3t
This equation has a unique solutiorwhen k is relatively prime tog. For
example, we can extract cube roots in this wayda power of two. Wherk

is relatively prime tg3, we can also compute the root simultaneously from the
most significant and least significant ends, as for exact division.

kt=m'+

mod S.

Unknown exponent

Assume now that we want to check if a given integelis an exact power,
without knowing the corresponding exponent. For example, some primality
testing or factorization algorithms fail when given an exact power, so this has
to be checked first. AlgorithiisPower detects exact powers, and returns the
largest corresponding exponent {aif the input is not an exact power).

To quickly detect non-th powers at stelp 2, we may use modular algorithms
whenk is relatively prime to the base (see above).

1.6 Greatest common divisor 29

Algorithm 1.15 IsPower

Input: apositive integerm

Output: k& > 2 whenm is an exackth power,1 otherwise
1: for k from |lgm| downto 2 do
2: if m is akth powerthen returnk

3: returnl.

REMARK: in Algorithm IsPower, we can limit the search to prime exponents

k, but then the algorithm does not necessarily return the largest exponent, and
we might have to call it again. For example, taking= 117649, the modified
algorithm first returns because 17649 = 493, and when called again with

m = 49, it returns2.

1.6 Greatest common divisor

Many algorithms for computing gcds may be found in the literature. We can
distinguish between the following (non-exclusive) types:

e Left-to-right (MSB) versus right-to-left (LSB) algorithms: in the former the
actions depend on the most significant bits, while in the latter the actions
depend on the least significant bits.

¢ Naive algorithms: thes® (n?) algorithms consider one word of each operand
at atime, trying to guess from them the first quotients —we count in this class
algorithms considering double-size words, namely Lehmer’s algorithm and
Sorenson’s:-ary reduction in the left-to-right and right-to-left cases respec-
tively; algorithms not in this class consider a number of words that depends
on the input sizen, and are often subquadratic.

e Subtraction-only algorithms: these algorithms trade divisions for subtrac-
tions, at the cost of more iterations.

e Plain versus extended algorithms: the former just compute the gcd of the
inputs, while the latter express the gcd as a linear combination of the inputs.

1.6.1 Naive GCD

For completeness, we mention Euclid’s algorithm for finding the gcd of two
non-negative integers, v.

Euclid’s algorithm is discussed in many textbooks, and we do not recom-
mend it in its simplest form, except for testing purposes. Indeed, it is usually a

30 Integer arithmetic

slow way to compute a gcd. However, Euclid’s algorithm does show the con-
nection between gcds and continued fractions./If has a regular continued
fraction of the form

1 1 1

U/fv=qo+ —— —— —— ",
/ q1+ g2+ g3+

then the quotientsg,, ¢, . . . are precisely the quotientsdiv v of the divisions
performed in Euclid’'s algorithm. For more on continued fractions,§de@

Algorithm 1.16 EuclidGed
Input: u, v nonnegative integers (not both zero)
Output: ged(u,v)
while v £ 0 do
(u,v) «— (v,u mod v)

returnu.

Double-Digit Ged. A first improvement comes from Lehmer’s observation:
the first few quotients in Euclid’s algorithm usually can be determined from
the most significant words of the inputs. This avoids expensive divisions that
give small quotients most of the time (SMIM,S.S]). Consider for exam-

ple a = 427419669081 andb = 321110693 270 with 3-digit words. The

first quotients aré, 3,48, ... Now, if we consider the most significant words,
namely 427 and 321, we get the quotients$, 3,35, ... If we stop after the
first two quotients, we see that we can replace the initial inputs byb and

—3a + 4b, which gives106 308 975811 and2 183 765 837.

Lehmer’s algorithm determines cofactors from the most significant words
of the input integers. Those cofactors usually have size only half a word. The
DoubleDigitGed algorithm — which should be called “double-word” — uses
thetwo most significant words instead, which gives cofactois v, w of one
full-word each, such thajcd(a, b) = ged(ta+ub, va+wb). This is optimal for
the computation of the four produdts, ub, va, wb. With the above example,
if we consider427 419 and321 110, we find that the first five quotients agree,
so we can replace, b by —148a + 197b and441a — 587b, i.e.695 550 202 and
97115 231.

The subroutineHalfBezout takes as input tw@-word integers, performs
Euclid’s algorithm until the smallest remainder fits in one word, and returns
the corresponding matrix, u; v, w).

Binary Ged. A better algorithm than Euclid’s, though also 6fn?) com-
plexity, is thebinary algorithm. It differs from Euclid’s algorithm in two ways:

1.6 Greatest common divisor 31

Algorithm 1.17 DoubleDigitGed
|npUt: a = an,lﬂ”ﬂ + -+ ag, b= bmflﬂmil + -+ b()
Output: ged(a, b)
if b = 0 thenreturna
if m < 2 thenreturnBasecaseGcdy, b)
if a < born > m thenreturnDoubleDigitGed(b, ¢ mod b)
(t, u,v, w) — HaIfBezout(an,lﬁ + ap—2, bnflﬁ + bn,Q)
returnDoubleDigitGed(|ta + ubl, |[va + wb)).

it consider least significant bits first, and it avoids divispexcept for divi-
sions by two (which can be implemented as shifts on a binary computer). See
Algorithm BinaryGcd. Note that the first three “while” loops can be omitted

if the inputsa andb are odd.

Algorithm 1.18 BinaryGced
Input: a,b >0
Output: ged(a, b)
t—1
while ¢ mod 2 = b mod 2 = 0do
(t,a,b) «— (2t,a/2,b/2)
while ¢ mod 2 = 0 do
a<—a/2
while b mod 2 = 0 do
b« b/2 > now a andb are both odd
while a # b do
(a,b) < (Ja — b], min(a, b))
a — a/2"(@ > v(a) is the2-valuation ofa

returnta.

Sorenson’sk-ary reduction
The binary algorithm is based on the fact that &ndb are both odd, thea—b
is even, and we can remove a factor of two sigeé(a, b) is odd. Sorenson’s
k-ary reduction is a generalization of that idea: giveandb odd, we try to
find small integers:, v such that.a — vb is divisible by a large power of two.

Theorem 1.8 [@] If a,b > 0, m > 1 with ged(a,m) = ged(b,m) = 1,
there existu, v, 0 < |ul,v < y/m such thatua = vb mod m.

32 Integer arithmetic

Algorithm ReducedRatModfinds such a paifu, v). It is a simple variation of
the extended Euclidean algorithm; indeed,hare quotients in the continued
fraction expansion of/m.

Algorithm 1.19 ReducedRatMod

Input: a,b > 0, m > 1with gcd(a,m) = ged(b,m) =1
Output: (u,v) suchthad) < |u|,v < v/m andua = vb mod m
¢ — a/bmod m

(u1,01) < (0,m)

(ug,v) — (1,¢)

: while vy > y/m do

q « |v1/v2]

(w1, u2) — (uz,ur — quz)

(v1,02) < (v2,v1 — qua)

return(us, va).

© N R DR

Whenm is a prime power, the inversidryb mod m at stef L of Algorithm
ReducedRatModcan be performed efficiently using Hensel lifting (§2.5).

Given two integers:, b of sayn words, AlgorithmReducedRatModwith
m = (32 returns two integers, v such thatb — ua is a multiple of 3. Since
u, v have at most one word eaatf,= (vb—ua)/3? has at most — 1 words —
plus possibly one bit — therefore with = b mod o’ we obtainged(a,b) =
ged(a’, V'), where bothe’ andb’ have about one word less tharax(a, b). This
gives an LSB variant of the double-digit (MSB) algorithm.

1.6.2 Extended GCD

Algorithm ExtendedGcdsolves theextendedgreatest common divisor prob-
lem: given two integers andb, it computes their gcg, and also two integers
u andv (calledBézout coefficientsr sometimegofactorsor multipliers) such
thatg = ua + vb.

If ag andby are the input numbers, andb the current values, the following
invariants hold at the start of each iteration of the while loop and after the while
loop: a = uag + vby, andb = wagy + xby. (See Exercise_1.80 for a bound on
the cofacton:.)

An important special case is modular inversion (see Chapter 2): given an
integern, we want to computé/a mod n for a relatively prime tor. We then
simply run AlgorithmExtendedGcdwith inputa andb = n; this yieldsu and
v with ua +vn = 1, and thusl /a = v mod n. Sincev is not needed here, we
can simply avoid computing andz, by removing steps] 2 ahdl 7.

1.6 Greatest common divisor 33

Algorithm 1.20 ExtendedGcd

Input: positive integers: andb

Output: integers(g, u, v) such thay = ged(a,b) = ua + vb
1: (u,w) < (1,0)
2: (v,2) « (0,1)

3: while b # 0 do

4: (¢,7) < DivRem(a, b)
5: (a,b) « (b,7)

6: (u, w) «— (w,u — quw)
7: (v,2) « (z,v — qx)
8: return(a, u,v).

It may also be worthwhile to compute onlyin the general case, as the
cofactorv can be recovered from = (g — ua)/b, this division being exact
(seefl.4.5).

All known algorithms for subquadratic gcd rely on an extended gcd
subroutine, which is called recursively, so we discuss the subquadratic
extended gcd in the next section.

1.6.3 Half binary GCD, divide and conquer GCD

Designing a subquadratic integer gcd algorithm that is both mathematically
correct and efficient in practice is a challenging problem.

A first remark is that, starting from-bit inputs, there aré®(n) terms in the
remainder sequeneg = a,r; = b, ...,r;41 = r;_1 mod r;, ..., and the size
of r; decreases linearly with Thus, computing all the partial remaindess
leads to a quadratic cost, and a fast algorithm should avoid this.

However, the partial quotients = r;_; div r; are usually small; the main
idea is thus to compute them without computing the partial remainders. This
can be seen as a generalization of BrmubleDigitGed algorithm: instead of
considering a fixed bas@, adjust it so that the inputs have four “big words”.
The cofactor-matrix returned by th#alfBezout subroutine will then reduce
the input size to aboutn/4. A second call with the remaining two most
significant “big words” of the new remainders will reduce their size to half
the input size. See Exercise 1.31.

The same method applies in the LSB case, and is in fact simpler to turn
into a correct algorithm. In this case, the termsform abinary remainder
sequence, which corresponds to the iteration ofBimaryDivide algorithm,

34 Integer arithmetic

with starting values, b. The integey; is thebinary quotientof « andb, andr
is thebinary remainder.

Algorithm 1.21 BinaryDivide
Input: a,b € Zwithv(b) —v(a) =35 >0
Output: |¢| < 27 andr = a + ¢277b such that(b) < v(r)
b — 277
q «— —a/b' mod 29+!
if ¢ > 2/ thenq « q — 27!
returng,r = a + q2~7b.

This right-to-left division defines a right-to-left remardsequence, = a,
a; = b, ..., wherea;; = BinaryRemainder (a;_1,a;), andv(a;+1) <
v(a;). It can be shown that this sequence eventually reachgs= 0 for some
indexi. Assumingv(a) = 0, thenged(a, b) is the odd part ofi;. Indeed, in
Algorithm BinaryDivide, if some odd prime divides bothhandb, it certainly
divides2~7b, which is an integer, and thus it dividest ¢2~7b. Conversely, if
some odd prime divides bothandr, it divides als®2~7b, and thus it divides
a = r—q277b; this shows that no spurious factor appears, unlike in some other
gcd algorithms.

EXAMPLE: leta = a9 = 935 andb = a; = 714, sov(b) = v(a) + 1.
Algorithm BinaryDivide computes’ = 357, ¢ = 1, anday = a + ¢277b =

1292. The next step givess = 1360, thenay = 1632, a5 = 2176,

ag = 0. Since2176 = 27 - 17, we conclude that the gcd 685 and714 is

17. Note that the binary remainder sequence might contain negative terms and
terms larger tham, b. For example, starting from = 19 andb = 2, we get
19,2,20, —8, 16, 0.

An asymptotically fast GCD algorithm with complexiy(M (n) logn) can
be constructed with AlgorithralalfBinaryGced .

Theorem 1.9 Givena,b € Z with v(a) = 0 andrv(b) > 0, and an integer
kE > 0, AlgorithmHalfBinaryGed returns an integef) < j < k and a matrix
R such that, ifc = 22 (Rl,la + Rl}gb) andd = 2_2j(R271a + R272b):

1. candd are integers with/(¢) = 0 andv(d) > 0;
2. ¢* = 2icandd* = 27d are two consecutive terms from the binary remain-
der sequence af, b with v(c*) < k < v(d*).

Proof. We prove the theorem by induction énIf £ = 0, the algorithm re-
turnsj = 0 and the identity matrix, thus we have= a andd = b, and the

1.6 Greatest common divisor 35

Algorithm 1.22 HalfBinaryGced

Input: a,b € Zwith 0 = r(a) < v(b), a non-negative integér

Output: an integerj and a2 x 2 matrix R satisfying Theorerf 119
1: if v(b) > k then

1 0
return
u O’(O 1)

sk — |_k;/2J

a1 — amod 22M1+1 b pmod 22k1+1

: j1, R — HalfBinaryGed(a1, b1, k1)

pal = 272 (Ryja+ Rigb), b = 27%(Ry1a + Ropb)
: Jo — v(b')

2 if jo 4+ j1 > kthen

returnj;, R

10: ¢, < BinaryDivide(a’,b")

11 kg <k — (jo + j1)

12: ay « b/ /270 mod 2%k2+1 by «— /270 mod 22k2+1
13: jo, S « HalfBinaryGed(as, ba, k)

0 20
14: returnjy + jo + jo, S % X R.
q

N

© © N O U A W

2Jo

statement is true. Now suppoke> 0, and assume that the theorem is true up
tok — 1.

The first recursive call usds < k, sincek; = |k/2] < k. After ste b, by
induction,a’1 =272 (R171a1 +R172b1) andb’l =922 (R271a1 —|—R272b1) are
integers withv(a}) = 0 < v(b}), and2/1a}, 2714, are two consecutive terms
from the binary remainder sequenceugf b;. Lemma 7 of] says that the
guotients of the remainder sequence:df coincide with those ofi;, b; up to
271q’ and2/1b’. This proves tha2’ia’, 2711’ are two consecutive terms of the
remainder sequence afb. Sincea anda; differ by a multiple of22*1+1, o/
anda) differ by a multiple of22%1+1-2i1 > 2 sincej; < k; by induction. It
follows thatv(a’) = 0. Similarly, b’ andd] differ by a multiple of2, and thus
Jo = V(b/) > 0.

The second recursive call usks < k, since by inductiorj; > 0 and we
just showedj, > 0. It easily follows thatj; + jo + j2 > 0, and thusj > 0. If
we exit at stefl9, we have= j; < k; < k. Otherwisej = j; + jo + jo =
k — ko + jo < k by induction.

If jo +j1 > k, we haver(271b') = jo + j1 > k, we exit the algorithm, and
the statement holds. Now assurme+ j; < k. We compute an extra term

36 Integer arithmetic

of the remainder sequence frart) &', which, up to multiplication by’ , is an
extra term of the remainder sequenceof. Sincer = a’ + ¢277°b, we have

v _ 9—io 0 270 a .
r 200 ¢ v

The new terms of the remainder sequenceéai®® andr /27, adjusted so that
v(b'/27°) = 0. The same argument as above holds for the second recursive
call, which stops when the-valuation of the sequence starting fram, by
exceedss; this corresponds to Zxvaluation larger thany + j; + ko = k for

thea, b remainder sequence. 0

Given twon-bit integersa andb, andk = n/2, HalfBinaryGed yields two
consecutive elements, d* of their binary remainder sequence with bit-size
aboutn/2 (for their odd part).

EXAMPLE: leta = 1889826 700 059 andb = 421 872 857 844, with k£ = 20.
The first recursive call witly; = 1243931, by = 1372916, k; = 10 gives

j1 = 8andR = (oo) which corresponds ta’ = 11952871 683

andd’ = 10027328112, with jo = 4. The binary division yields the new
termr = 8819331648, and we haveiy, = 8, as = 52775, by = 50468.
The second recursive call givgs= 8 and.S = (oy) which finally

i - ; 1444544 1086512 i
givesj = 20 and the matr|>< 319084 1093711) which corresponds to the

remainder termsg = 2899 749 - 27, rg = 992790 - 27. With the samex, b
values, but witht = 41, which corresponds to the bit-size of we get as
final values of the algorithm;5 = 3 - 24! andr,s = 0, which proves that
ged(a, b) = 3.

Let H(n) be the complexity oHalfBinaryGed for inputs ofn bits and
k = n/2; a; andb, have~n/2 bits, the coefficients oR have~n /4 bits, and
a’, ' have~3n/4 bits. The remainders,, b» have~n/2 bits, the coefficients
of S have~n/4 bits, and the final values d have~n/2 bits. The main costs
are the matrix—vector product at sfép 6, and the final matrix—matrix product.
We obtainH (n) ~ 2H(n/2) + 4M(n/4,n) + 7TM(n/4), assuming we use
Strassen’s algorithm to multiply twdx 2 matrices with7 scalar products, i.e.
H(n) ~ 2H(n/2) + 17M (n/4), assuming that we compute eabh(n /4, n)
product with a single FFT transform of widfin/4, which gives cost about
M(5n/8) ~ 0.625M (n) in the FFT range. Thugf (n) = O(M (n)logn).

For the plain gcd, we callalfBinaryGed with &k = n, and instead of com-
puting the final matrix product, we multiply—2/2S by (v',r) — the compo-
nents have-n/2 bits — to obtain the finad, d values. The first recursive call
has a,,b; of size n with k; =~ n/2, and corresponds td{(n); the

1.7 Base conversion 37

matrix R andd’, ' haven /2 bits, andks ~ n /2, and thus the second recursive
call corresponds to a plain gcd of sizg¢2. The costG(n) satisfiesG(n) =
H(n)+G(n/2)+4M(n/2,n)+4M(n/2) ~ H(n)+G(n/2)+10M (n/2).
Thus,G(n) = O(M(n)logn).

An application of the half-gcg@er sein the MSB case is thetional recon-
structionproblem. Assume we want to compute a rationa}, wherep andg
are known to be bounded by some constaihistead of computing with ratio-
nals, we may perform all computations modulo some integer 2. Hence,
we will end up withp/q = m mod n, and the problem is now to find the un-
known p and ¢ from the known integefm. To do this, we start an extended
gcd fromm andn, and we stop as soon as the currerndu values — as in
ExtendedGcd— are smaller than: since we have = um + wvn, this gives
m = a/u mod n. This is exactly what is called a half-gcd; a subquadratic
version in the LSB case is given above.

1.7 Base conversion

Since computers usually work with binary numbers, and human prefer decimal
representations, input/output base conversions are needed. In a typical com-
putation, there are only a few conversions, compared to the total number of
operations, so optimizing conversions is less important than optimizing other
aspects of the computation. However, when working with huge numbers, naive
conversion algorithms may slow down the whole computation.

In this section, we consider that numbers are represented internally in base
(6 — usually a power of — and externally in basB — say a power of ten. When
both bases areommensurable, i.e. both are powers of a common integer, such
asf = 8 and B = 16, conversions of:-digit numbers can be performed
in O(n) operations. We assume here tliaand B are not commensurable.
We might think that only one algorithm is needed, since input and output are
symmetric by exchanging basgsand B. Unfortunately, this is not true, since
computations are done only in badésee Exercisg 1.87).

1.7.1 Quadratic algorithms

Algorithms Integerinput and IntegerOutput, respectively, read and write
n-word integers, both with a complexity 6f(n?).

38 Integer arithmetic

Algorithm 1.23 Integerinput
Input: astringS = s,,_1 ... 8150 of digits in baseB
Output: the valueA in baseg of the integer represented I8y

A+—0
for ¢ from m — 1 downto 0 do

A« BA+ val(s;) > val(s;) is the value of; in bases
return A.

Algorithm 1.24 IntegerOutput
Input: A = ngl a;5* >0
Output: a stringS of characters, representingin baseB
m <« 0
while A # 0 do
$m — char(Amod B) 1 s,,: character corresponding tbmod B
A«— Adiv B
m<«—m+1
returnS = s,,,_1...5150.

1.7.2 Subquadratic algorithms

Fast conversion routines are obtained using a “divide and conquer” strategy.
Given two stringss andt, we lets || ¢ denote the concatenation oandt. For
integer input, if the given string decomposessas- Sy; || Si, whereS), has

k digits in baseB, then

Input(S, B) = Input(S;, B) B* 4 Input(S,, B),

whereInput(S, B) is the value obtained when reading the strifign the
external base3. Algorithm Fastintegerinput shows one way to implement
this: if the outputA hasn words, AlgorithmFastintegerinput has complexity
O(M (n)logn), more precisely~ M (n/4)lgn for n a power of two in the
FFT range (see Exercibe 1134).

For integer output, a similar algorithm can be designed, replacing multipli-
cations by divisions. Namely, it = A,; B¥ + Ay, then

Output(A, B) = Output(Api, B) || Output (4., B),

whereOutput(A, B) is the string resulting from writing the integer in the
external base3, and it is assumed th&utput(A,,, B) has exactlyk digits,
after possibly padding with leading zeros.

If the input A hasn words, AlgorithmFastintegerOutput has complexity

1.8 Exercises 39

Algorithm 1.25 Fastintegerinput
Input: astringS = s,,_1 ... 8150 of digits in baseB
Output: the valueA of the integer represented I8y
£« [val(sg),val(s1),...,val(sm—1)]
(b, k) — (B,m) > Invariant:¢ hask elementd, ..., {51
while £ > 1 do
if &k eventhen? «— [60 4+ bly, by +bls, ... 0l o+ bgk-_ﬂ
elsel «— [éo + 001,05+ bls, . .. ,ék_ﬂ
(b, k) — (8, Tk/2])
returnfg.

Algorithm 1.26 FastintegerOutput
Input: A = 23‘_1 a; 3
Output: a stringsS of characters, representingin baseB
if A< Bthen
returnchar(A)
else
find k such thatB?*—2 < A < B?F
(Q, R) +— DivRem(A, B¥)
r « FastintegerOutput(R)
returnFastintegerOutput(Q) || 0# (") || .,

O(M (n)logn), more precisely~ D(n/4)1gn for n a power of two in the
FFT range, wherd(n) is the cost of dividing &n-word integer by am-
word integer. Depending on the cost ratio between multiplication and division,
integer output may thus be from two to five times slower than integer input;
see however Exerci§e 1]35.

1.8 Exercises

Exercise 1.1 Extend the Kronecker—Sohhage trick mentioned at the begin-
ning of 1.3 to negative coefficients, assuming the coefficients are in the range
[=p, pl.

Exercise 1.2 (Harvey[@]) For multiplying two polynomials of degree less
than n, with non-negative integer coefficients bounded abovepbythe
Kronecker—Sctinhage trick performs one integer multiplication of size about
2nlg p, assuminge is small compared tp. Show that it is possible to perform

40 Integer arithmetic

two integer multiplications of size lg p instead, and even four integer multi-
plications of sizgn/2) g p.

Exercise 1.3 Assume your processor provides an instrucfimaa(a, b, ¢, d)
returningh, ¢ such thatub + ¢ + d = h3 + ¢, where0 < a,b,c,d,l,h < 3.
Rewrite AlgorithmBasecaseMultiplyusingfmaa.

Exercise 1.4 (Harvey, Khachatrianet al.[@]) For A = Z;L:_ol ;3 and
B =Y~ b3, prove the formula

n—11—1 ne1 1 —
AB =" (ai+a;)(bi + b)) + 2> aibif =D B a;b; A
i=1 j—=0 = par il

Deduce a new algorithm for schoolbook multiplication.

Exercise 1.5 (Hanrot) Prove that the numbék (n) of word-products (as de-
fined in the proof of Thm[_1]2) in Karatsuba's algorithm is non-decreasing,
providedn, = 2. Plot the graph of< (n)/n!# 3 with a logarithmic scale fon,

for 27 < n < 219, and find experimentally where the maximum appears.

Exercise 1.6 (Ryde)Assume the basecase multiply codfgn) = an? + bn,
and that Karatsuba’s algorithm codt§n) = 3K (n/2) 4 cn. Show that divid-
ing a by two increases the Karatsuba threshajcby a factor of two, and on
the contrary decreasirigandc decreases.

Exercise 1.7 (Maedel[lﬁ], Thome [@]) Show that an auxiliary memory
of 2n + o(n) words is enough to implement Karatsuba’s algorithm in-place,
for ann-word xn-word product. In the polynomial case, prove that an auxiliary
space ofn coefficients is enough, in addition to thet+ n coefficients of the
input polynomials, and th2n — 1 coefficients of the product. [You can use the
2n result words, but must not destroy ther n input words.]

Exercise 1.8 (Roch@]) If Exercise[1.Y was too easy for you, design a
Karatsuba-like algorithm using onty(log n) extra space (you are allowed to
read and write in then output words, but the +n input words are read-only).

Exercise 1.9 (Quercia, McLaughlinModify Algorithm KaratsubaMultiply
to use only~7n/2 additions/subtractions. [Hint: decompose eaclCgf Cy
andCs into two parts.]

Exercise 1.10Design an in-place version d&faratsubaMultiply (see Exer-
cise[1.7) that accumulates the resultin. . ., c,,_1, and returns a carry bit.

1.8 Exercises 41

Exercise 1.11 (Vuillemin) Design an algorithm to multiply,z2+a, x+4-ag by
bix + b using4 multiplications. Can you extend it toGax 6 product using.6
multiplications?

Exercise 1.12 (Weimerskirch, Paar)Extend the Karatsuba trick to compute
ann x n product inn(n + 1)/2 multiplications. For whichn does this win
over the classical Karatsuba algorithm?

Exercise 1.13 (Hanrot) In Algorithm OddEvenKaratsuba, if both m andn
are odd, we combine the larger patg and B, together, and the smaller parts
A; and B; together. Find a way to get instead

K(m,n) = K([m/2],[n/2]) + K([m/2], [n/2]) + K([m/2], [n/2]).

Exercise 1.14Prove that if five integer evaluation points are used for Toom—
Cook3-way (§1.3:3), the division by (a multiple of) three can not be avoided.
Does this remain true if only four integer points are used togetherawith

Exercise 1.15 (Quercia, Harvey)In Toom-Cook3-way ({1.3.3), take as eval-
uation point2” instead of2, wherew is the number of bits per word (usually
w = 32 or 64). Which division is then needed? Similarly for the evaluation
point2%/2,

Exercise 1.16 For an integek > 2 and multiplication of two numbers of size
kn andn, show that the trivial strategy which performasnultiplications, each
n x n, is not the best possible in the FFT range.

Exercise 1.17 (Karatsuba, Zuras[@]) Assuming the multiplication has
superlinear cost, show that the speedup of squaring with respect to multipli-
cation can not significantly exce@d

Exercise 1.18 (Thong, Quercia) Consider two setsA = {a,b,c,...} and

U ={u,v,w,...},and a setX = {z,y,z2,...} of sums of products of el-
ements ofA and U (assumed to be in some field). We can ask “what is
the least number of multiplies required to compute all element& ®f. In
general, this is a difficult problem, related to the problem of computing tensor
rank, which is NP-complete (see for examplésthd |LT.’I.|9] and the book by
Blrgissetret al. [@]). Special cases include integer/polynomial multiplication,
the middle product, and matrix multiplication (for matrices of fixed size). As a
specific example, can we compute= au + cw, y = av+ bw, z = bu+ cvin
fewer than six multiplies? Similarly for = au—cw, y = av—bw, z = bu—cuv.

Exercise 1.191In Algorithm BasecaseDivRen{1.4.1), prove thag* < 3-+1.
Can this bound be reached? In the case> 3, prove that the while-loop at

42 Integer arithmetic

stepd BB is executed at most once. Prove that the same holds for Svoboda’s
algorithm, i.e. thatd > 0 after stefy B of Algorithn8vobodaDivision(§1.4.2).

Exercise 1.20 (Granlund, Mdller) In Algorithm BasecaseDivRemestimate
the probability thatd < 0 is true at stepl6, assuming the remaindeirom the
division of a,, 1 j 8 + an4j—1 by b,—1 is uniformly distributed in0, b, — 1],

A mod 3"+~ is uniformly distributed irf0, 377~ — 1], andB mod 3" !

is uniformly distributed irff0, 5"~ —1]. Then replace the computationgfby

a division of the three most significant words 4ty the two most significant
words of B. Prove the algorithm is still correct. What is the maximal number
of corrections, and the probability thdt< 0?

Exercise 1.21 (Montgomer;{lﬂ]) LetO < b < B,and0 < ay,...,ap < f.
Prove thatz,(3* mod b) + - - - + a1 (3 mod b) + ag < 32, providedb < 3/3.
Use this fact to design an efficient algorithm dividiAg= a,,—1 37" '+ - -+ag
by b. Does the algorithm extend to division by the least significant digits?

Exercise 1.221n Algorithm RecursiveDivRem find inputs that requirg, 2, 3
or 4 corrections in stefpl8. [Hint: considgr= 2.] Prove that whem = m and
A < f™(B + 1), at most two corrections occur.

Exercise 1.23Find the complexity of AlgorithmRecursiveDivRemin the
FFT range.

Exercise 1.24Consider the division ofl of kn words byB of n words, with
integerk > 3, and the alternate strategy that consists of extending the divisor
with zeros so that it has half the size of the dividend. Show that this is al-
ways slower than AlgorithrnbalancedDivision(assuming that division has
superlinear cost).

Exercise 1.25An important special base of division is when the divisor is of
the formb*. For example, this is useful for an integer output routife {§1.7).
Can a fast algorithm be designed for this case?

Exercise 1.26 (SedoglavicDoes the Kronecker—Sohhage trick to reduce
polynomial multiplication to integer multiplication[(§1.3) also work — in an
efficient way — for division? Assume that you want to divide a degrepaly-
nomial A(x) by a monic degree-polynomial B(z), both polynomials having
integer coefficients bounded lpy

Exercise 1.27Design an algorithm that performs an exact division dhebit
integer by &n-bit integer, with a quotient din bits, using the idea mentioned
in the last paragraph &fL.4.3. Prove that your algorithm is correct.

1.8 Exercises 43

Exercise 1.28Improve the initial speed of convergence of Algoritiagrtint
(4.53) by using a better starting approximation at Etep 1. Your approximation
should be in the interval /m]|, [2/m]].

Exercise 1.29 (Luschny)Devise a fast algorithm for computing the binomial

coefficient
n n!
Cln, k) = (k:) = Kl — k)

forintegersn, k, 0 < k < n. The algorithm should use exact integer arithmetic
and compute the exact answetr.

Exercise 1.30 (Shoup)Show that in AlgorithmExtendedGcd if a > b > 0,
andg = ged(a, b), then the cofacton satisfies—b/(2g) < u < b/(2g).

Exercise 1.31(a) Devise a subquadratic GCD algorithalfGed along the
lines outlined in the first three paragraphgfdf6.3 (most-significant bits first).
The input is two integera > b > 0. The output is & x 2 matrix R and
integersd’, b’ such thafa’ v']* = R[a b]'. If the inputs have size bits, then the
elements ofk should have at most/2+O(1) bits, and the outputs , b’ should
have at mos8n/4 + O(1) bits. (b) Construct a plain GCD algorithm which
callsHalfGced until the arguments are small enough to call a naive algorithm.
(c) Compare this approach with the useH#lfBinaryGed in 1.6.3.

Exercise 1.32 (Galbraith, Sclinhage, Steh¢) The Jacobi symbdk|b) of an
integera and a positive odd integérsatisfies(a|b) = (a mod b|b), the law
of quadratic reciprocitya|b)(bla) = (—1)(@=D(®=1/4 for ¢ odd and posi-
tive, together with(—1|b) = (—1)¢=Y/2 and (2)p) = (—1)**~D/8. This
looks very much like the gcd recurrenggid(a,b) = ged(a mod b,b) and
ged(a,b) = ged(b,a). Design anO(M (n)logn) algorithm to compute the
Jacobi symbol of twar-bit integers.

Exercise 1.33Show thatB and/3 are commensurable, in the sense defined in

g1.7, iff In(B)/In(8) € Q.

Exercise 1.34Find a formulaZ’(n) for the asymptotic complexity of Algo-
rithm Fastintegerinput whenn = 2* (§1.7.2). Show that, for general the
formula is within a factor of two of '(n). [Hint: consider the binary expansion
of n.]

Exercise 1.35Show that the integer output routine can be made as fast (asymp-
totically) as the integer input routinBastintegerinput. Do timing experi-
ments with your favorite multiple-precision software. [Hint: use D. Bernstein’s
scaled remainder tre21] and the middle product.]

44 Integer arithmetic

Exercise 1.361f the internal bas¢@ and the external bage share a nontrivial
common divisor — as in the cage= 2¢ and B = 10 — show how we can
exploit this to speed up the subquadratic input and output routines.

Exercise 1.37 Assume you are given twe-digit integers in base ten, but you
have implemented fast arithmetic only in base two. Can you multiply the inte-
gers in timeO(M (n))?

1.9 Notes and references

“On-line” (as opposed to “off-line”) algorithms are considered in many books
and papers, see for example the book by Borodin and El-Yanil [33].
“Relaxed” algorithms were introduced by van der Hoeven. For references and

a discussion of the differences between “lazy”, “zealous”, and “relaxed” algo-
rithms, see4].

An example of an implementation with “guard bits” to avoid overflow prob-
lems in integer addition [£11.2) is the block-wise modular arithmetic of Lenstra
and Dixon on the MasPar [87]. They uséd= 230 with 32-bit words.

The observation that polynomial multiplication reduces to integer multi-
plication is due to both Kronecker and Scthage, which explains the name
“Kronecker—Schinhage trick”. More precisely, Kroneck46, pp. 941-942]
(also ,§4]) reduced the irreducibility test for factorization of multivariate
polynomials to the univariate case, and 6r¢hage6] reduced the univari-
ate case to the integer case. The Kroneckeréfithge trick is improved in
Harve] (see Exercige1.2), and some nice applications of it are given in
Steel].

Karatsuba'’s algorithm was first puinshedﬁll%]. Very little is known about
its averagecomplexity. What is clear is that no simple asymptotic equivalent
can be obtained, since the rafign) /n® does not converge (see Exerdisd 1.5).

Andrei Toom Iﬂﬂ discovered the class of Toom—Cook algorithms, and they
were discussed by Stephen Cook in his th&ls [76, pp. 51-77]. A very good de-
scription of these algorithms can be found in the book by Crandall and Pomer-
ance [[_—S_h,§9.5.1]. In particular, it describes how to generate the evaluation and
interpolation formulee symbolically. Zura@BS] considers 4hway and5-
way variants, together with squaring. Bodrato and Zar@i [31] show that the
Toom—Cook3-way interpolation scheme @f[.3.3 is close to optimal for the
points 0,1, —1, 2, oo; they also exhibit efficientt-way and5-way schemes.
Bodrato and Zanoni also introduced the Toori-@nd Toom-35 notations for
what we call Toom-(32) and Toom-(43), these algorithms being useful for

1.9 Notes and references 45

unbalanced multiplication using a different number of pieces. They noticed
that Toom-(42) only differs from Toom3-way in the evaluation phase, thus
most of the implementation can be shared.

The Sclibnhage—Strassen algorithm first appearem [199], and is described
in §2.3.3. Algorithms using floating-point complex numbers are discussed in
Knuth's cIassic|_LTA|2§4.3.3.C]. See als§3.3.1.

The odd—-even scheme is described in Hanrot and Zimmerrjnzdn [112], and
was independently discovered by Andreas Enge. The asymmetric squaring for-
mula given ind1.3.6 was invented by Chung and Hasan (see their p@er [66]
for other asymmetric formulae). Exerc[sell.4 was suggested by David Harvey,
who independently discovered the algorithm of Khachateizal.].

See Lekvre] for a comparison of different algorithms for the problem
of multiplication by an integer constant.

Svoboda'’s algorithm was introduced mll]. The exact division algorithm
starting from least significant bits is due to Jebel@[l%]. Jebelean and
Krandick invented the “bidirectional” aIgorithn@M]. The Karp—Markstein
trick to speed up Newton'’s iteration (or Hensel lifting oyeadic numbers)
is described inl[137]. The “recursive division” §L.4.3 is from Burnikel and
Ziegler [61], although earlier but not-so-detailed ideas can be found in Jebe-
lean], and even earlier in Moenck and Boro@l% . The definition of
Hensel's division used here is due to Shand and Vuille [201], who also
point out the duality with Euclidean division.

Algorithm SqrtRem (§1.5.3) was first described in Zimmerma@%], and
proved correct in Bertogt al. [29]. Algorithm Sqrtint is described in Cohen
[E]; its generalization téth roots (AlgorithmRootint) is due to Keith Briggs.
The detection of exact powers is discussed in Bernstein, Lenstra, anﬁﬁ’ila [23]
and earlier in Bernsteirﬁh?] and Coh[73]. It is necessary, for example, in
the AKS primality test of Agrawal, Kayal, and Saerb [2].

The classical (quadratic) Euclidean algorithm has been considered by many
authors —a good reference is Knl@MZ]. The Gauss—Kuz'min th&gims
the distribution of quotients in the regular continued fraction of almost all real
numbers, and hence is a good guide to the distribution of quotients in the Eu-
clidean algorithm for large, random inputs. Lehmer’s original algorithm is de-
scribed in |LT§|4]. The binary gcd is almost as old as the classical Euclidean
algorithm — Knuth @2] has traced it back to a first-century AD Chinese text
Chiu Chang Suan Sh(see also Mikami|m5]). It was rediscovered several
times in the 20th century, and it is usually attributed to s@[zog]. The bi-
nary gcd has been analysed by Brent @ 50], Knluthl [142], Mazé [159], and

2 According to the Gauss—Kuz’'min theoreim [1139], the probability of a quotieptN* is
lg(1+1/q) —1g(1+1/(g + 1)).

46 Integer arithmetic

Vallée]. A parallel (systolic) version that runsdi{n) time usingO(n)
processors was given by Brent and Ku@ 53].

The double-digit gcd is due to JebeleﬁlBl]. Thary gcd reduction is
due to Sorenso 5], and was improved and implemented in GNU MP by
Weber. Weber also invented AlgorithReducedRatMod [@], inspired by
previous work of Wang.

The first subquadratic gcd algorithm was published by Kriuth! [141], but his
complexity analysis was suboptimal — he g&ve: log® nloglog n). The cor-
rect complexityO (n log® n loglog n) was given by SohnhageﬁS]; for this
reason the algorithm is sometimes called the Knuthé8khge algorithm.

A description for the polynomial case can be found in Aho, Hopcroft, and
UIImag], and a detailed (but incorrect) description for the integer case in
Yap]. The subquadratic binary gcd givendh6.3 is due to Stekland
Zimmermann@S]. Ndller @] compares various subquadratic algorithms,
and gives a nice algorithm without “repair steps”.

Several authors mention & n log” nloglogn) algorithm for the compu-
tation of the Jacobi symbol: e.g. Eikenberry and Sorer@n [89] and Shallit and
SorensonO]. The earliest reference that we know is a paper by Each [8],
which gives the basic idea (due to Ga@lOl, p. 509]). Details are given in
the book by Bach and ShaIIE|[9, Solution of Exercise 5.52], where the algo-
rithm is said to be “folklore”, with the ideas going back to Bachm [10]
and Gauss. The existence of such an algorithm is mentioned iin8abe’s
book @@7.2.3], but without details. See also Brent and Zimmermann [57]
and ExercisE 1.32.

2
Modular arithmetic and the FFT

In this chapter our main topic is modular arithmetic, i.e. how
to compute efficiently modulo a given integat. In most appli-
cations, the modulug/ is fixed, and special-purpose algorithms
benefit from some precomputations, depending onlyNanto
speed up arithmetic moduly.

There is an overlap between Chaygikr 1 and this chapter. For ex-
ample, integer division and modular multiplication are closely re-
lated. In Chaptdrll we present algorithms where no (or only a few)
precomputations with respect to the moduNigre performed. In
this chapter, we consider algorithms which benefit from such pre-
computations.

Unless explicitly stated, we consider that the modwusccupies

n words in the word-basg, i.e. f"~! < N < g".

2.1 Representation

We consider in this section the different possible representations of residues
moduloN. As in Chapte[1l, we consider mainly dense representations.

2.1.1 Classical representation

The classical representation stores a residue (clessan integed < a < N.
Residues are thus always fully reduced, i.ecanonicalform.

Another non-redundant form consists in choosing a symmetric representa-
tion, say—N/2 < a < N/2. This form might save some reductions in addi-
tions or subtractions (s¢.2). Negative numbers might be stored either with
a separate sign (sign-magnitude representation) or with a two’s-complement
representation.

48 Modular arithmetic and the FFT

Since N takesn words in base3, an alternativeedundantrepresentation
choosed) < a < 3" to represent a residue class. If the underlying arithmetic
is word-based, this will yield no slowdown compared to the canonical form.
An advantage of this representation is that, when adding two residues, it suf-
fices to compare their sum @ in order to decide whether the sum has to
be reduced, and the result of this comparison is simply given by the carry bit
of the addition (see Algorithm 1.IhtegerAddition), instead of by comparing
the sum withN. However, in the case that the sum has to be reduced, one or
more further comparisons are needed.

2.1.2 Montgomery’s form

Montgomery'’s form is another representation widely used when several mod-
ular operations have to be performed modulo the same inf¥€g@dditions,
subtractions, modular multiplications). It implies a small overhead to convert —
if needed — from the classical representation to Montgomery’s and vice-versa,
but this overhead is often more than compensated by the speedup obtained in
the modular multiplication.

The main idea is to represent a residuédy o’ = aR mod N, where
R = ", and N takesn words in bases. Thus Montgomery is not concerned
with the physicalrepresentation of a residue class, but with tieaningas-
sociated to a given physical representation. (As a consequence, the different
choices mentioned above for the physical representation are all possible.) Ad-
dition and subtraction are unchanged, but (modular) multiplication translates
to a different, much simpler, algorithMontgomeryMul (seef2.4.2).

In most applications using Montgomery’s form, all inputs are first converted
to Montgomery’s form, using’ = aR mod N, then all computations are per-
formed in Montgomery'’s form, and finally all outputs are converted back — if
needed — to the classical form, using= a’/R mod N. We need to assume
that(R, N) = 1, or equivalently thaf3, N) = 1, to ensure the existence of
1/R mod N. This is not usually a problem becauseés a power of two and
N can be assumed to be odd.

2.1.3 Residue number systems

In a residue number systefRNS), a residue: is represented by a list of
residues:; moduloN;, where the moduliV; are coprime and their product is
N. The integers; can be efficiently computed fromusing a remainder tree,
and the unique integér< a < N = N1 N, - - - is computed from the; by an

2.1 Representation 49

explicit Chinese remainder theoreri (§2.7). The residue number system is inter-
esting since addition and multiplication can be performed in parallel on each
small residuez;. This representation requires thit factors into convenient
moduli N1, Ny, ..., which is not always the case (see howe{&8). Conver-

sion to/from the RNS representation coSts\/ (n) log n), see§2.14.

2.1.4 MSB vs LSB algorithms

Many classical (most significant bits first or MSB) algorithms hayeaadic

(least significant bits first or LSB) equivalent form. Thus several algorithms in
this chapter are just LSB-variants of algorithms discussed in CHapter 1 — see
Table[Z1 below.

classical (MSB) p-adic (LSB)
Euclidean division Hensel division, Montgomery reduction
Svoboda’s algorithm Montgomery—Svoboda
Euclidean gcd binary gcd
Newton'’s method Hensel lifting

Table 2.1 Equivalence between LSB and MSB algorithms.

2.1.5 Link with polynomials

As in ChaptefL, a strong link exists between modular arithmetic and arith-
metic on polynomials. One way of implementing finite fieljswith ¢ = p™
elements is to work with polynomials i, [x], which are reduced modulo a
monic irreducible polynomiaf (z) € F,[z] of degreen. In this case, modular
reduction happens both at the coefficient levelKj) and at the polynomial
level (modulof (x)).

Some algorithms work in the rin@Z./NZ)|x], whereN is a composite in-
teger. An important case is the Stthage—Strassen multiplication algorithm,
whereN has the forn2¢ + 1.

In both domainsF,[z] and (Z/NZ)[z], the Kronecker-Sdnhage trick
(d1.3) can be applied efficiently. Since the coefficients are known to be bounded,
by p and N respectively, and thus have a fixed size, the segmentation is quite
efficient. If polynomials have degreé and coefficients are bounded by,
the product coefficients are boundeddy?, and we have) (M (dlog(Nd)))
operations, instead @ (M (d)M (log N)) with the classical approach. Also,
the implementation is simpler, because we only have to implement fast

50 Modular arithmetic and the FFT

arithmetic for large integers instead of fast arithmetic at both the polynomial
level and the coefficient level (see also Exercisek 1.2 and 2.4).

2.2 Modular addition and subtraction

The addition of two residues in classical representation can be done as in
Algorithm ModularAdd .

Algorithm 2.1 ModularAdd
Input: residues:;, b with0 < a,b < N
Output: ¢=a+bmod N
c—a+b
if ¢ > N then
c«—c— N.

Assuming that: and b are uniformly distributed irZ N [0, N — 1], the sub-
tractionc «— ¢ — N is performed with probability1 — 1/N)/2. If we use
instead a symmetric representation[#N/2, N/2), the probability that we
need to add or subtradf drops tol /4 + O(1/N?) at the cost of an additional
test. This extra test might be expensive for smaH- say one or two words —
but should be relatively cheap ¥ is large enough, say at least ten words.

2.3 The Fourier transform

In this section, we introduce the discrete Fourier transform (DFT). An impor-
tant application of the DFT is in computing convolutions via @anvolution
Theorem. In general, the convolution of two vectors can be computed using
three DFTs (for details se€f2.9). Here we show how to compute the DFT ef-
ficiently (via thefast Fourier transformor FFT), and show how it can be used

to multiply two n-bit integers in timeO(nlognloglogn) (the Scldnhage—
Strassen algorithm, s¢2.3.3).

2.3.1 Theoretical setting

Let R be aring,K > 2 an integer, andv a principal K'th root of unity in
R, ie. suchthat® = 1 andy ("' w = 0for 1 < i < K. TheFourier
transform(or forward (Fourier) transform) of a vectai = [ag, a1, . . ., ax 1]

2.3 The Fourier transform 51

of K elements fronR is the vectod = [ap, a1, . ..,ax—1] such that
K—1
a; = Z wa;. (2.1)
j=0

If we transform the vectoa twice, we get back to the initial vector, apart
from a multiplicative factor’ and a permutation of the elements of the vector.
Indeed, for0 <i < K

K1 K-1 K-1 K1 K—1
a; = E wa g W g whay = g ap g w(t07
J=0 j=0 (=0 (=0 j=0

LetT = w . If i+ # 0 mod K, i.e. ifi+¢is not0 or K, the sumz LT
vanishes since is principal. Fori + ¢ € {0, K'}, we haver = 1 and the sum
equalsK. It follows that

=K Z Qg = —i) mod K+
z+i€{0 K}
Thus, we have = Klag, ax—1,aK—2,...,a02,a01].

If we transform the vectoa twice, but usev~! instead ofv for the second
transform (which is then calledzackward transform), we get

K-1 K-1 K-1 K-1 K-1
ai = E w_ljaj = E w Y E w]éaz = E ay E w(f—z)]
j=0 Jj=0 =0 =0 j=0

The sumz

Thus, we havei = Ka,. Apart from the multiplicative factok’, the backward
transform is the inverse of the forward transform, as might be expected from
the names.

=0 ' w(t=9i vanishes unlesé = 4, in which case it equals’.

2.3.2 The fast Fourier transform

If evaluated naively, Eqn[{2.1) requiré¥ K2) operations to compute the
Fourier transform of a vector ok elements. Thdast Fourier transformor
FFT is an efficient way to evaluate Eqh.{2.1) using o@lyK log K) oper-
ations. From now on we assume tHdtis a power of two, since this is the
most common case and simplifies the description of the FFT{&&efor the
general case).

52 Modular arithmetic and the FFT

Let us illustrate the FFT fof{ = 8. Sincew® = 1, we have reduced the
exponents modul8 in the following. We want to compute

ap = ao +ay +az +az +as +as + as + ar,

a1 = ag +way + w2a2 + w3a3 + w4a4 + w5a5 + w6a6 + w7a7,
as = ag + w2a1 + w4a2 + wﬁag + a4 + w2a5 + w4a6 + w6a7,
az = ag + w3a1 + w6a2 + was + w4a4 + w7a5 + w2a6 + w5a7,
a4y = ag + w4a1 +as + w4a3 + a4 + w4a5 + ag + w4a7,

=ag + w5a1 + w2a2 + w7a3 + w4a4 “+ was + w6a6 + w3a7,
ag = ag + w6a1 + w4a2 + w2a3 + a4 + w6a5 + w4a6 + w2a7,
ay = ag + w7a1 + w6a2 + w5a3 + w4a4 + w3a5 + w2a6 + wary.

We see that we can share some computations. For example, th&,stn,
appears in four places: i@y, az, @4, andag. Let us definezg s = ag + a4,
ais = a1+ as, aze = az + ag, azy = az + ar, asg = ag + w'ay, a5y =
ar +wias, aga = az +wlag, ar 3 = az +wa;. Then we have, using the fact
thatw® =1

ap = ao,4 +a1,5 + aze + as,7, a1 = a4,0 +was;1 +was2 +w’ar s,
~ 2 4 6 ~ 3 6

a2 = o4 +wars +waze +w asy, a3 =aso+w’as1 +w asz2 +wars,
~ 4 4 ~ 5 2 7

a4 = G044 +w ais+aze+w asrz, as = a4,0 +w as1 +was2 +w ars,

~ 6 4 2 ~ 7 6 5
ag = ap4 +w ais +waze t+waszr, ar =a40+was1+w as2+w ars.

Now the surmg 4 + a2 ¢ appears at two different places. L@ty 2.6 = a4 +
4 4
2,6, 01,5,3,7 = a1,5+a3,7,02,6,04 = G0,4 +W A26,03,7,1,5 = G415 +wW asr,
2 2 6
a4,0,6,2 = Q4,0 + W7a62, G5,1,7,3 = 5,1 + W73, G462,4,0 = Q4,0 + W 06,2,
ar3,51 = G5,1 + w6a773. Then we have

Ay = G0426+ 1,537, ay = G4062 T was1,73,

ay = ag6,04+ w2a3,7,1,57 as = agz240 + w3a7,3,5,17
Gy = aouze+wlarssr, a5 = as062+was17s,
g = a26,04+ w6a3,7,1,5, a7 = ag240 + w7a7,3,5,1~

In summary, after a first stage where we have computed eight intermediary
variablesag 4 t0 a7 3, and a second stage with eight extra intermediary vari-
ablesug 42,6 toaz 3 5,1, we are able to compute the transformed vector in eight
extra steps. The total number of steps is tlis= 81g 8, where each step has
the forma «— b+ wc.

If we take a closer look, we can group operations in paira’), which have
the forma = b + w/c anda’ = b + w/**c. For example, in the first stage we
havea; s = a; + a5 andas; = a; + w'as; in the second stage we have
a4,0,6,2 = 44,0 +w2a6’2 anda6}2,4,0 = a4,0 +w6a6’2. Sincew?* = —1, this can

2.3 The Fourier transform 53

also be writter(a, a’) = (b + w’c, b — w’c), wherew ¢ needs to be computed
only once. A pair of two such operations is calleduterflyoperation.

The FFT can be performenh place. Indeed, the result of the butterfly
betweeruy anday, i.€ (ag 4, a4,0) = (ao+a4, ap—aq), can overwritgao, as),
since the values afy, anda, are no longer needed.

Algorithm ForwardFFT is a recursive and in-place implementation of the
forward FFT. It uses an auxiliary functidsitrev(j, K'), which returns théit-
reversalof the integerj, considered as an integer lpf K' bits. For example,
bitrev(j, 8) gives0,4,2,6,1,5,3,7forj =0,...,7.

Algorithm 2.2 ForwardFFT

Input: vectora = [ag, a1, ...,ax_1], w principal K'th root of unity, X' = 2*
Output: in-place transformed vectar, bit-reversed

1: if K =2then

2 [ag, a1] < [ap + a1, a0 — a1]

3: else

4: [ao, ag, ..., (J,K,Q] — For\NardFFT([am ag, ..., aK,g], w27 K/2)

5: [al, as, ..., (J,Kfl] — For\NardFFT([al, as, ..., aK,l], w27 K/2)

6: for j from 0to K/2 — 1 do

7: [GZj,(l2j+1} - [a2j + wbitrev(j,K/2)a2j+17 asj — u)bitrev(j’K/2>a2j+1].
Theorem 2.1 Given an input vectora = |[ag,aq,...,ax—1], Algorithm

ForwardFFT replaces it by its Fourier transform, in bit-reverse order, in
O(K log K) operations in the ringR.

Proof. We prove the statement by induction &1 = 2*. For K = 2, the
Fourier transform ofag, a1] is [ap + a1, ap + wa1], and the bit-reverse order
coincides with the normal order; since= —1, the statement follows. Now
assume the statement is true f@y2. Let0 < j < K/2, and writej’ :=
bitrev(j, K/2). Letb = [bo, ..., bk /2_1] be the vector obtained at step 4, and
c = [co, .-, ¢k /2—1] b€ the vector obtained at sfelp 5. By induction

K/2—-1 K/2—-1
2
bj = E w bag,, ¢ § W age, .
=0

Sinceb; is stored atio; andc; atag;11, we compute at stédg 7

K/2—1 K/2—1

v 20 -7
as; = bj+w’ ¢; = E w Yagptw? g W't Qopy1 = E wj ag = aj.
— =0

54 Modular arithmetic and the FFT

Similarly, since—w?’ = w&/2+5'

K/2—1 K/2—1

25’0 K/2+j' 25'¢
asji1 = Z wi b agy + Wi/ Z w™ Caget1

=0 =0

K—-1
K/2+5)¢ o~

= w0y =Gy
=0
where we used the fact that?’’ = w2’ +5/2) Sincebitrev(2j, K) =

bitrev(j, K/2) andbitrev(2j + 1, K') = K /2 + bitrev(j, K/2), the first part
of the theorem follows. The complexity bound follows from the fact that the
costT'(K) satisfies the recurren@ K) < 2T'(K/2) + O(K). 0

Algorithm 2.3 BackwardFFT

Input: vectora bit-reversedyw principal K'th root of unity, K’ = 2*
Output: in-place transformed vectar, normal order

1: if K =2then

2: [ao,al] — [ao +ay, a9 — al]

3: else

4: [a(), ~~~vaK/2—1] — BaCkW&rdFFT([(L(), . CLK/Q_l],w2, K/2)

5: lak /2, ..., ax—1] < BackwardFFT([ak /2, e ag_1],w? K/2)

6: for jfrom 0to K/2 —1do pw ™ =wK=i
7 laj, a/a4j] — la; + w‘jaK/2+j,aj - w_jaK/2+j].

Theorem 2.2 Given an input vectoa = [ag, ak 2, . . . ,ax 1] in bit-reverse
order, AlgorithmBackwardFFT replaces it by its backward Fourier trans-
form, in normal order, iND(K log K') operations inR.

Proof. The complexity bound follows as in the proof of Theorem] 2.1. For
the correctness result, we again use inductionkor= 2*. For K = 2, the
backward Fourier transfor@ = [ag + a1, a0 + w™'a;] is exactly what the
algorithm returns, since = w~' = —1 in that case. Assume noW > 4,

a power of two. The first half, saly, of the vectora corresponds to the bit-
reversed vector of the even indices, sinderev(2j, K) = bitrev(j, K/2).
Similarly, the second half, say, corresponds to the bit-reversed vector of the
odd indices, sincbitrev(2j + 1, K) = K/2 + bitrev(j, K/2). Thus, we can
apply the theorem by induction te® andc. It follows thatb is the backward
transform of lengthK’/2 with w? for the even indices (in normal order), and

2.3 The Fourier transform 55

similarly c is the backward transform of lengfi/2 for the odd indices

K/2—1 K/2—1
—2j5¢
bj = E w P ag, ¢ E w M ag .
=0

Sinceb; is stored ina; andc; in ag /24 ;, we have

K/2—1 K/2—1
aj =bj+wlc; = § w2 oy + w I E w™]a24+1

K-
E w_]eag =aj,
=0

and similarly, using-w =7 = w=5/277 andw =% = w—2(K/2+J)

K/2-1 K/2-1
—2j¢ —K/2—j —2j¢
aKjo4j = E w2 gy 4+ K270 E w T agpaq
=0 =0
K-1
_ —(K/2+45)¢,, _
_§ w— (K/2+7) ar = ax /oy j-
£=0

2.3.3 The Sclinhage—Strassen algorithm

We now describe the Sohhage—Strassef(n lognloglogn) algorithm to
multiply two integers of: bits. The heart of the algorithm is a routine to mul-
tiply two integers modul@”™ + 1.

Theorem 2.3 Given0 < A, B < 2™ + 1, Algorithm FFTMulMod correctly
returnsA - B mod (2" + 1), and it cost3)(n log n log log n) bit-operations if

K = 6(y/n).

Proof. The proof is by induction on, because at stép 8 we call FFTMulMod
recursively, unless’ is sufficiently small that a simpler algorithm (classical,
Karatsuba or Toom—Cook) can be used. There is no difficulty in starting the
induction.

With awb the values at stefs 1 aﬂ 2, we have= E < a;27M and

B = Z o b;27M: thus,A - B = Zj o' ¢;27M mod (2" + 1) with

K-1 K-1
Cj = Z aébm - Z a'ebm- (22)
£,m=0 £,m=0

L+m=j L4m=K+j

56 Modular arithmetic and the FFT

Algorithm 2.4 FFTMulMod
Input: 0 < A, B < 2" + 1, an integerk’ = 2* such that = MK
Output: C = A- B mod (2" + 1)
1: decompose A = Zf:’ol a; 2™ with 0<a; <2M, except that
0<ag_1<2M

2: decompose3 similarly

3: choosen’ > 2n/K + k, n’ multiple of K; let§ = 27'/K o = 62

4; for j from 0to K — 1 do

5: (aj,bj) — (#7a;,09b;) mod (2 + 1)

6: a «— ForwardFFT(a,w, K), b « ForwardFFT(b,w, K)

7: for jfrom 0to K — 1 do > call FFTMulMod

8 ¢« ajbjmod (2" +1) > recursively ifn’ is large
9: ¢ « BackwardFFT(c,w, K)

10: for j from 0to K — 1 do

11 ¢j — ¢j/(K67) mod (2% +1)
12 if¢; > (j + 1)22M then

13: Cj < Cj — (Qn, =+].)

[N
~

K—-1 iM
. — 97
C=> j=o G2

We have(j + 1 — K)22M < ¢; < (j + 1)22M, since the first sum contains
j + 1 terms, the second suii — (j + 1) terms, and at least one of andb,,
is less thar2™ in the first sum.

Let o/ be the value ofz; after stef b = 67a; mod (2" + 1), and
similarly for ¥. Using Theoreni 211, after stép 6 we havgcv(j,x) =

ot wha) mod (27 4 1), and similarly forb. Thus at stepl8

K-1 K—1
g 1 i1/
Chitrev(j,K) = Z way Z w™b .
£=0

m=0
After sted®, using Theorem 2.2
K

-1 K-1 K—1
c w™ Y E w'al, E W™
=0 {=0 m=0

J

K-1 K-1

K Z aghl, + K Z aybl,.

£,m=0 £,m=0
f+m=i Ltm=K+i

The first sum equalé’ Y, _; acb,,; the second i#"+ 5", . aby,.

2.3 The Fourier transform 57

Sinced” = —1mod (2" + 1), after stefi Il we have

K—1 K-1
’
;= E agb,y, — E agb,, mod (2" +1).
£,m=0 £,m=0
L4m=i L4m=K+i

The correction at stdp 13 ensures thdtes in the correct interval, as given by
Eqn. [2.2).

For the complexity analysis, assume that = O(y/n). Thus, we have
n’ = O(y/n). Stepd]l anfll2 cogb(n); stepd also cost®(n) (counting the
cumulated cost for all values gf). Step[® cost®)(K log K) times the cost
of one butterfly operation mo@®" + 1), which is O(n’), thus a total of
O(Kn'log K) = O(nlogn). Step8, using the same algorithm recursively,
costs O(n'logn'loglogn’) per value ofj by the induction hypothesis,
giving a total of O(nlognloglogn). The backward FFT cost9(nlogn)
too, and the final steps coék(n), giving a total cost ofD(nlognloglogn).
The loglogn term is the depth of the recursion, each level reducintp

n' = O(y/n). .

EXAMPLE: to multiply two integers modul@2! %4#576 + 1), we can takek =
210 = 1024, andn’ = 3072. We recursively comput&024 products modulo
(23072 4 1). Alternatively, we can take the smaller valke = 512, with 512
recursive products modul@*%%® + 1).

REMARK 1: the “small” products at stép 8 (m@2*°™>+1) or mod(246%% + 1)

in our example) can be performed by the same algorithm applied recursively,
but at some point (determined by details of the implementation) it will be more
efficient to use a simpler algorithm, such as the classical or Karatsuba algo-
rithm (seeJI1.3). In practice, the depth of recursion is a small constant, typi-
cally 1 or 2. Thus, for practical purposes, thes logn term can be regarded

as a constant. For a theoretical way of avoiding lielog n term, see the
comments on &rer’s algorithm in§Z.9.

REMARK 2: if we replaced by 1 in Algorithm FFTMulMod , i.e. remove
stef, replace st€pll1 by — ¢;/K mod (2" +1), and replace the condition
at ste IR by; > K -22M then we comput€’ = A- B mod (2" — 1) instead
of mod (2" + 1). This is useful in McLaughlin’s algorithm[(§2.4.3).

Algorithm FFTMulMod enables us to multiply two integers modyls* +
1) in O(nlognloglogn) operations, for a suitableand a corresponding FFT
lengthK = 2*. Since we should hav& ~ /n and K must dividen, suitable
values ofn are the integers with the low-order half of their bits zero; there is
no shortage of such integers. To multiply two integers of at naolsits, we
first choose a suitable bit size > 2n. We consider the integers as residues

58 Modular arithmetic and the FFT

modulo (2™ + 1), then AlgorithmFFTMulMod gives their integer product.
The resulting complexity i€ (n log n log log n), sincem = O(n). In practice,
thelog log n term can be regarded as a constant; theoretically, it can be replaced
by an extremely slowly growing function (see Remar&bove).

In this book, we sometimes implicitly assume thabit integer multiplica-
tion costs the same as three FFTs of leriygthsince this is true if an FFT-based
algorithm is used for multiplication. The constant “three” can be reduced if
some of the FFTs can be precomputed and reused many times, for example if
some of the operands in the multiplications are fixed.

2.4 Modular multiplication

Modular multiplication means computing - B mod N, whereA and B are
residues moduldv. Of course, once the product= A- B has been computed,

it suffices to perform anodular reductionC' mod N, which itself reduces to

an integer division. The reader may ask why we did not cover this topic in
g1.4. There are two reasons. First, the algorithms presented below benefit from
some precomputations involviny, and are thus specific to the case where
several reductions are performed with the same modulus. Second, some algo-
rithms avoid performing the full produet’ = A - B; one such example is
McLaughlin’s algorithm §2.413).

Algorithms with precomputations include Barrett’s algorithin (§2.4.1), which
computes an approximation to the inverse of the modulus, thus trading division
for multiplication; Montgomery’s algorithm, which corresponds to Hensel’s
division with remainder only [§1.418), and its subquadratic variant, which is
the LSB-variant of Barrett’s algorithm; and finally McLaughlin’s algorithm
(§2.4.3). The cost of the precomputations is not taken into account; it is
assumed to be negligible if many modular reductions are performed. How-
ever, we assume that the amount of precomputed data uses only linear, i.e.
O(log N), space.

As usual, we assume that the moduNidrasn words in base?, that A and
B have at most, words, and in some cases that they are fully reduced, i.e.
0<A B<N.

2.4.1 Barrett’s algorithm

Barrett’s algorithm is attractive when many divisions have to be made with
the same divisor; this is the case when we perform computations modulo a
fixed integer. The idea is to precompute an approximation to the inverse of

2.4 Modular multiplication 59

the divisor. Thus, an approximation to the quotient is obtained with just one
multiplication, and the corresponding remainder after a second multiplication.
A small number of corrections suffice to convert the approximations into exact
values. For the sake of simplicity, we describe Barrett's algorithm in Base
wheres might be replaced by any integer, in particut&ror 5.

Algorithm 2.5 BarrettDivRem
Input: integersd, Bwith0 < A < 32,8/2< B < f3
Output: quotient@ and remaindeR of A divided by B

. [— |3?/B] > precomputation
:Q — |AT/3] whereA = A1+ Agwith0 < Ay < 3
:R—A-QB

: while R > B do
return(@, R).

o U b WwN P

Theorem 2.4 Algorithm BarrettDivRem is correct and stefa]5 is performed
at most three times.

Proof. SinceA = QB + R is invariant in the algorithm, we just need to prove
that0 < R < B at the end. We first consider the value@f R before the
while-loop. Since3/2 < B < 3, we have3 < (/B < 28; thus,3 <

I < 23. We haveQ < A1/ < A;3/B < A/B. This ensures thaR is
non-negative. Now > 3?/B — 1, which gives

IB > 3* - B.
Similarly, @ > A1I/5 — 1 gives

pQ > Al — .

This yields3QB > A1IB — 3B > A(8%* — B) — 8B = B(A — Ap) —
B(B+ A1) > BA—48B sinceA, < < 2B andA; < 3. We conclude that
A < B(Q + 4); thus, at most three corrections are needed. 0

The bound of three corrections is tight: it is attained foe= 1980, B = 36,
(8 = 64. In this example]/ = 113, 4; = 30, Q =52, R = 108 = 3B.

The multiplications at stefp$ 2 ahd 3 may be replaced by short products, more
precisely the multiplication at stép 2 by a high short product, and that dflstep 3
by a low short product (sef8.3).

Barrett’s algorithm can also be used for an unbalanced division, when divid-
ing (k + 1)n words byn words fork > 2, which amounts td: divisions of

60 Modular arithmetic and the FFT

2n words by the same-word divisor. In this case, we say that the divisor is
implicitly invariant.

Complexity of Barrett’s algorithm

If the multiplications at stepEl2 ardd 3 are performed using full products,
Barrett's algorithm cost&@M (n) for a divisor of sizen. In the FFT range,
this cost might be lowered th5M (n) using the “wrap-around trick” (§3.4.1);
moreover, if the forward transforms éfand B are stored, the cost decreases
to M (n), assumingV/ (n) is the cost of three FFTs.

2.4.2 Montgomery’s multiplication

Montgomery’s algorithm is very efficient for modular arithmetic modulo a
fixed modulusN. The main idea is to replace a residdenod N by A’ =

AA mod N, whereA’ is the “Montgomery form” corresponding to the residue
A, with X an integer constant such thaid(N, A) = 1. Addition and subtrac-
tion are unchanged, sincel + AB = A(A + B) mod N. The multiplication

of two residues in Montgomery form does not give exactly what we want:
(M) (AB) # MAB) mod N. The trick is to replace the classical modular
multiplication by “Montgomery’s multiplication”

v

MontgomeryMul (A", B) mod N.

For some values ok, MontgomeryMul (4’, B’) can easily be computed, in
particular forA = 3", where N usesn words in base3. Algorithm[2.8 is
a quadratic algorithm (REDC) to compudontgomeryMul (A, B’) in this
case, and a subquadratic reduction (FastRERZjiven in Algorithn[2.7.

Another view of Montgomery’s algorithm fox = g is to consider that it
computes the remainder of Hensel’s division (§1.4.8).

Algorithm 2.6 REDC (quadratic non-interleaved version). Theform the
current base-g@ecomposition of’, i.e. they are defined by = 2(2)"_1 ¢t .
Input: 0<C <B?,N<pB" pu+——N"1mod§g, (8,N)=1
Output: 0 < R < " suchthatR = CS~"™ mod N

1: for i from 0ton — 1 do

2: q; «— pc; mod f3 > quotient selection
3: C—C+ quﬂz
4: R« Cp™ > trivial exact division

5. if R > g™ thenreturnR — N elsereturnR.

2.4 Modular multiplication 61

Theorem 2.5 AlgorithmREDC is correct.

Proof. We first prove that? = C'3~" mod N: C is only modified in stepl3,
which does not chang@ mod N; thus, at stepl4 we havie = C3~" mod N,
and this remains true in the last step.

Assume that, for a giveiy we haveC = 0 mod /3* when entering stelg 2.
Sinceq; = —c¢;/N mod 3, we haveC + ¢;N3* = 0 mod 3+! at the next
step, so the next value of is 0. Thus, on exiting the for-loog, is a multiple
of ", andR is an integer at stdf 4.

Still at step(#, we have’ < %" + (B —)N(1+ B+ -+ p"71) =
B?" + N(B" — 1);thus,R < " + N andR — N < 3". 0

Compared to classical division (Algorithm 1BasecaseDivRen Mont-
gomery’s algorithm has two significant advantages: the quotient selection is
performed by a multiplication modulo the word basewhich is more effi-
cient than a division by the most significant wdrgl_; of the divisor as in
BasecaseDivRem; and there is no repair stegidethe for-loop — the repair
step is at the very end.

For example, with input€’ = 766 970 544 842 443 844, N = 862 664 913,
andg = 1000, Algorithm REDC precomputeg = 23; then we have, = 412,
which yieldsC — C + 412N = 766970900 260 388 000; thenq; = 924,
which yieldsC' «— C + 924N g = 767768 002 640 000 000; thengy = 720,
which yieldsC «— C + 720N3? = 1388886 740000000 000. At step[4,

R = 1388886 740, and sinceR > 3%, REDC returnsR — N = 526221 827.

Since Montgomery'’s algorithm —i.e. Hensel's division with remainder only —
can be viewed as an LSB variant of classical division, Svoboda’s divisor pre-
conditioning (E1.4.R) also translates to the LSB context. More precisely, in Al-
gorithmREDC, we want to modify the divisolN so that the quotient selection
q «— pc; mod 3 at sted R becomes trivial. The multipligrused in Svoboda
division is simply the parameterin REDC. A natural choice i = 1, which
corresponds taV = —1 mod S. This motivates the Montgomery—Svoboda
algorithm, which is as follows:

1. first computeN’ = uN, with N’ < 871, wherey = —1/N mod £3;

2. perform then — 1 first loops ofREDC, replacingu by 1, andN by N’;

3. perform a final classical loop with and N, and the last stepEl(@-5) from
REDC.

Quotient selection in the Montgomery—Svoboda algorithm simply involves
“reading” the word of weigh3’ in the divisorC.

For the example above, we gt = 19841292 999; qq is the least signifi-
cantword ofC, i.e. gg = 844, s0C +— C+844N’ = 766 987 290 893 735 000;

62 Modular arithmetic and the FFT

theng; = 735 andC «— C + 735N’ = 781570641 248 000 000. The last
step givesyy = 704 andC « C + 704N 3% = 1388886 740 000 000 000,
which is what we found previously.

Subquadratic Montgomery reduction
A subquadratic versioRastREDC of Algorithm REDC is obtained by taking
n = 1, and consideringd as a “giant base” (alternatively, replageby 5"
below):

Algorithm 2.7 FastREDC (subquadratic Montgomery reduction)
Input: 0<C < B2 N < B, 1+ —1/Nmod f3
Output: 0 < R < @suchthat? = C/8 mod N

1 @ <« puC mod

22 R— (C+QN)/p

3. if R > fthenreturnR — N elsereturnR.

This is exactly the2-adic counterpart of Barrett’s subquadratic algorithm;
steps IER might be performed by a low short product and a high short product,
respectively.

When combined with Karatsuba’s multiplication, assuming the products
of stepdIER are full products, the reduction requires two multiplications of
sizen, i.e. six multiplications of size./2 (n denotes the size a¥, 3 being a
giant base). With some additional precomputation, the reduction might be
performed with five multiplications of size/2, assumingn is even. This is
simply the Montgomery—Svoboda algorithm with having two big words in
base3"/2. The cost of the algorithm i8/(n,n/2) to computegy N’ (even if
N’ has in principle3n /2 words, we know\N’ = H3"/? —1 with H < 3", and
thus it suffices to multiplyyo by H), M (n/2) to computeuC mod 3"/2, and

Algorithm 2.8 MontgomerySvoboda
Input: 0<C < (%", N < 3", u«— —1/N mod "2, N’ = uN
Output: 0 < R < " such thatR = C/8™ mod N

1: go < C mod "/?

2 C — (C+qN')/5"/?

3: q1 — pC mod /2

4 R «— (C+q1N)/ﬁ"/2

5. if R > 8™ thenreturnR — N elsereturnR.

2.4 Modular multiplication 63

againM (n,n/2) to computep N; thus, a total ob M (n/2) if eachn x (n/2)
product is realized by twén/2) x (n/2) products.

The algorithm is quite similar to the one described at the e§d.df8, where
the costwag M (n/2)+D(n/2) for a division of2n by n with remainder only.
The main difference here is that, thanks to Montgomery’s form, the last classi-
cal division D(n/2) in Svoboda’s algorithm is replaced by multiplications of
total cost2M (n/2), which is usually faster.

Algorithm MontgomerySvobodacan be extended as follows. The vallle
obtained after stefd 2 hads/2 words, i.e. an excess af/2 words. Instead of
reducing that excess wWitREDC, we could reduce it using Svoboda’s tech-
nique withy’ = —1/N mod p™/*, and N” = y/N. This would reduce the
low n/4 words fromC' at the cost of\/ (n,n/4), and a lasREDC step would
reduce the final excess of/4, which would giveD(2n,n) = M (n,n/2) +
M(n,n/4)+M (n/4)+M (n,n/4). This “folding” process can be generalized
to D(2n,n) = M(n,n/2) + -+ + M(n,n/2%) + M(n/2%) + M(n,n/2%).

If M (n,n/2%) reduces t@* M (n/2%), this gives

D(n) = 2M (n/2)+4M (n/4)+- - -+25" M (n/28 =)+ (281 4-1) M (n/25).

Unfortunately, the resulting multiplications become more and more unbal-
anced, and we need to stdrgorecomputed multipled’’, N” | ... of N, each
requiring at least: words. Tabl€Z]2 shows that the single-folding algorithm is
the best one.

Algorithm | Karatsuba Toom-Cookway Toom—-Cookl-way

D(n) 2.00M (n) 2.63M (n) 3.10M (n)
1-folding 1.67M(n) 1.81M (n) 1.89M (n)
2-folding | 1.67M(n) 1.91M (n) 2.04M (n)
3-folding 1.74M (n) 2.06M (n) 2.25M (n)

Table 2.2 Theoretical complexity of subquadratic REDC with2- and
3-folding, for different multiplication algorithms.

Exercisd 2.6 discusses further possible improvements in the Montgomery—
Svoboda algorithm, achievin®(n) ~ 1.58M(n) in the case of Karatsuba
multiplication.

2.4.3 McLaughlin’s algorithm

McLaughlin’s algorithm assumes we can perform fast multiplication modulo
both2™ — 1 and2™ + 1, for sufficiently many values af. This assumption is

64 Modular arithmetic and the FFT

true for example with the Sémhage—Strassen algorithm: the original version
multiplies two numbers modul®™ + 1, but discarding the “twist” operations
before and after the Fourier transforms computes their product motiua .

(This has to be done at the top level only: the recursive operations compute
modulo2™ + 1 in both cases. See Remark 2 on page 57.)

The key idea in McLaughlin’s algorithm is to avoid the classical “multiply
and divide” method for modular multiplication. Instead, assuming f{ias
relatively prime to2” — 1, it determinesAB /(2" — 1) mod N with convo-
lutions modulo2™ + 1, which can be performed in an efficient way using the
FFT.

Algorithm 2.9 MultMcLaughlin

Input: A,Bwith0 < A,B< N < 2" u=—N"1mod (2" — 1)
Output: AB/(2" — 1) mod N

: m«— ABpmod (2" — 1)

S «— (AB+mN) mod (2" + 1)

w «— —S mod (2" 4+ 1)

if 2|w then s «— w/2 elses «— (w + 2" 4+ 1)/2

if AB+mN =smod2thent « selset «— s+2" +1

if £ < N thenreturnt elsereturnt — N.

o a M whR

Theorem 2.6 Algorithm MultMcLaughlin computesAB /(2" — 1) mod N
correctly, in~ 1.5M (n) operations, assuming multiplication modud + 1
costs~ M (n/2), or the same a8 Fourier transforms of size.

Proof. Stef1 is similar to stdd 1 of AlgorithifastREDC, with 3 replaced by
2" — 1. Itfollows thatAB +mN = 0 mod (2" — 1), therefore we havel B +
mN = k(2" —1) with0 < k < 2N. Sted2 computeS = —2k mod (2" +1),
then stefB gives) = 2k mod (2" + 1), ands = k mod (2" + 1) in step4.
Now, since0 < k < 2"*1, the values does not uniquely determirie whose
missing bit is determined from the least significant bit frdiB +m N (stefd®).
Finally, the last step reduceés= k£ moduloN.

The cost of the algorithm is mainly that of the four multiplicatioh® mod
(2" +1), (AB)p mod (2" —1) andmN mod (2" + 1), which cosM (n/2)
altogether. However, ifAB)u mod (2" — 1) andmN mod (2" + 1), the
operandg: and N are invariant, therefore their Fourier transforms can be pre-
computed, which savex\/ (n/2)/3 altogether. A further saving d¥f (n/2)/3
is obtained since we perform only one backward Fourier transform il ktep 2.
Accounting for the savings gives — 2/3 — 1/3)M (n/2) = 3M(n/2) ~
1.5M(n). O

2.5 Modular division and inversion 65

The~1.5M (n) cost of McLaughlin’s algorithm is quite surprising, since it
means that a modular multiplication can be performed faster than two multi-
plications. In other words, since a modular multiplication is basically a mul-
tiplication followed by a division, this means that (at least in this case) the
“division” can be performed for half the cost of a multiplication!

2.4.4 Special moduli

For special moduliV faster algorithms may exist. The ideal caseNis=
6™ £ 1. This is precisely the kind of modulus used in the &uiage—Strassen
algorithm based on the fast Fourier transform (FFT). In the FFT range, a mul-
tiplication modulos™ + 1 is used to perform the product of two integers of
at mostn /2 words, and a multiplication modul@™ + 1 costs~ M (n/2) ~

For example, in elliptic curve cryptography (ECC), we almost always use a
special modulus, for example a pseudo-Mersenne prime2like— 264 — 1
or 2256 9224 4 9192 4 996 _ 1 However, in most applications the modulus
can not be chosen, and there is no reason for it to have a special form.

We refer to§2.9 for further information about special moduli.

2.5 Modular division and inversion

We have seen above that modular multiplication reduces to integer division,
since to computeb mod N, the classical method consists of dividiagby NV
to obtainab = gN +r, thenab = r mod N. Inthe same vein, modular division
reduces to an (extended) integer gcd. More precisely, the divisibmod N
is usually computed as- (1/b) mod N, thus a modular inverse is followed by
a modular multiplication. We concentrate on modular inversion in this section.
We have seen in Chaptér 1 that computing an extended gcd is expensive,
both for small sizes, where it usually costs the same as several multiplications,
and for large sizes, where it cost§ M (n) logn). Therefore, modular inver-
sions should be avoided if possible; we explain at the end of this section how
this can be done.
Algorithm[ZI0 (Modularinverse) is just AlgorithmExtendedGcd(41.6.2),
with (a,b) — (b, N) and the lines computing the cofactors/éfomitted.
Algorithm Modularinverse is the naive version of modular inversion, with
complexity O(n?) if N takes n words in base3. The subquadratic
O(M (n)logn) algorithm is based on thealfBinaryGed algorithm (§1.6.B).
When the modulusV has a special form, faster algorithms may exist. In
particular forN = p*, O(M(n)) algorithms exist, based on Hensel lifting,

66 Modular arithmetic and the FFT

Algorithm 2.10 Modularinverse
Input: integers andN, b prime toN
Output: integeru = 1/b mod N
(u,w) «— (1,0),c — N
while ¢ #£ 0 do
(¢,r) < DivRem(b, ¢)
(b,¢) — (c,r)

(u, w) — (w,u — qu)

returnu.

which can be seen as theadic variant of Newton’s method(£4.2). To compute
1/b mod N, we use a-adic version of the iteratiofl (4.5)

i1 = x; +2;(1 — bx;j) mod k. (2.3)

Assumez; approximated /b to “p-adic precision™, i.e. bz; =1+ ept, and
k = 2¢. Then, modul@”: bz ;1 = bxj(2 — bx;) = (1 +ep’)(1 —ep’) =
1—e2p*. Therefore; ;1 approximates /b to double precision (in the-adic
sense).

As an example, assume we want to compute the inverse of an odd ihteger
modulo232. The initial approximationr, = 1 satisfiestg = 1/b mod 2, thus
five iterations are enough. The first iteratiomis«— x+x¢(1—bzg) mod 22,
which simplifies tox; < 2 — b mod 4 sincexzy = 1. Now, whetherh = 1
mod4 orb = 3 mod 4, we have2 — b = b mod 4; we can therefore start the
second iteration with:; = b implicit

x9 « b(2 — b?) mod 24, T3 « x9(2 — bry) mod 28,
x4« 23(2 — bwz) mod 26, x5 « 24(2 — bxy) mod 232,

Consider for examplé = 17. The above algorithm yields, = 1, z3 = 241,
ry = 61681 andxs = 4042322 161. Of course, any computation mgd
might be computed modulg® for k£ > ¢. In particular, all the above compu-
tations might be performed modufs?. On a32-bit computer, arithmetic on
basic integer types is usually performed modil®, thus the reduction comes
for free, and we can write in the C language (usimgigned variables and
the same variable for xo, ..., x5)

X = b*(2-b *b); x *= 2-b*x; X *= 2-b*x; X *= 2-b xX;

Another way to perform modular division when the modulus has a special
form is Hensel's division (§1.418). For a modulds = 3™, given two integers

2.5 Modular division and inversion 67

A, B, we compute) and R such that
A=QB+ Rg"™

Therefore, we havel/B = @ mod . While Montgomery’s modular mul-
tiplication only computes the remaind&rof Hensel's division, modular divi-
sion computes the quotie}; thus, Hensel’s division plays a central role in
modular arithmetic modulg™.

2.5.1 Several inversions at once

A modular inversion, which reduces to an extended gEd (81.6.2), is usually
much more expensive than a multiplication. This is true not only in the FFT
range, where a gcd takes ting M (n) log), but also for smaller numbers.
When several inversions are to be performed modulo the same number, Algo-
rithm MultipleInversion is usually faster.

Algorithm 2.11 Multiplelnversion

Input: 0 < xy,...,2p, <N

Output: y; = 1/%‘1 mod N,...,yp = 1/Jfk mod N
Z1 < X1

: for i from 2to k do

zi < zi—1x; mod N

:q <« 1/zp mod N

: for i from k& downto 2 do

Yi < qzi—1 mod N

q < qx; mod N

Y1 — (-

Theorem 2.7 Algorithm Multiplelnversion is correct.

Proof. We havez; = x125 ... x; mod N; thus, at the beginning of stép 6 for
agiveni, g = (z1...2;)~! mod N, which givesy; = 1/x; mod N. 0

This algorithm uses only one modular inversion (§fep 4),3#d- 1) modular
multiplications. Thus, it is faster thaninversions when a modular inversion is
more than three times as expensive as a product. Higdre 2.1 shows a recursive
variant of the algorithm, with the same number of modular multiplications: one
for each internal node when going up the (product) tree, and two for each in-
ternal node when going down the (remainder) tree. The recursive variant might
be performed in parallel i®(log k) operations usin@(k/ log k) processors.

68 Modular arithmetic and the FFT

1/($1$2{E3$4)

1/(z122) 1/(w3z4)

1/:51 1/.%‘2 1/1’3 1/.T4

Figure 2.1 A recursive variant of AlgorithrMultiplelnversion. First go

up the tree, buildingrix2 mod N from z; and z» in the left branch,
xsx4 mod N in the right branch, and;zsz3z4 mod N at the root of the
tree. Then invert the root of the tree. Finally, go down the tree, multiplying
1/(z1x22324) by the stored valuesx, to getl/(xz122), and so on.

A dual case is when there are several moduli but the number to invert is
fixed. Say we want to compute/z mod Ny, ..., 1/x mod N;. We illustrate
a possible algorithm in the cage= 4. First computeN = N; ... N using
a product tree like that in Figuie 2.1. For example, first compyit&/s and
N3Ny, then multiply both to gefvV = (N;N3)(N3N4). Then compute =
1/x mod N, and go down the tree, while reducing the residue at each node. In
our example, we compute= y mod (N; N») in the left branch, them mod
N; yields1/2 mod N;. An important difference between this algorithm and
the algorithm illustrated in Figule_2.1 is that here the numbers grow while
going up the tree. Thus, depending on the sizesarid the/V;, this algorithm
might be of theoretical interest only.

2.6 Modular exponentiation

Modular exponentiation is the most time-consuming mathematical operation
in several cryptographic algorithms. The well-known RSA public-key cryp-
tosystem is based on the fact that computing

c=a®mod N (2.4)

is relatively easy, but recoveringfrom ¢, e and V is difficult when N has

at least two (unknown) large prime factors. The discrete logarithm problem is
similar: herec, a and N are given, and we look far satisfying Eqn.[(Z]4). In

this case, the problem is difficult whe¥ has at least one large prime factor
(for example,N could be prime). The discrete logarithm problem is the basis
of the EI Gamal cryptosystem, and a closely related problem is the basis of the
Diffie—-Hellman key exchange protocol.

2.6 Modular exponentiation 69

When the exponent is fixed (or known to be small), an optimal sequence
of squarings and multiplications might be computed in advance. This is related
to the classicahddition chainproblem: What is the smallest chain of additions
to reach the integer, starting froml? For example, it = 15, a possible chain
is

L14+41=21+2=31+3=4,34+4="7,7+7=14,1+ 14 = 15.

The length of a chain is defined to be the number of additions needed to com-
pute it (the above chain has length An addition chain readily translates to a
multiplication chain

a,a-a=ad%a-a>=aa-a®>=a*,a® a* =d",d"-a" = a'*, a-a'* = a'®.

A shorter chain foe = 15 is
1,1+1=2,142=3,2+3=5,5+5=10,5+ 10 = 15.

This chain is the shortest possible fo= 15, so we writes(15) = 5, where in
generalbr(e) denotes the length of the shortest addition chairefdn the case
wheree is small, and an addition chain of shortest length) is known fore,
computinga® mod N may be performed ia(e) modular multiplications.

Whene is large and(a, N) = 1, thene might be reduced modulg(NV),
where¢(N) is Euler’s totient function, i.e. the number of integerdinNV]
which are relatively prime tdV. This is because?™) = 1 mod N whenever
(a, N) =1 (Fermat's little theorem).

Since¢(N) is a multiplicative function, it is easy to compuéN) if we
know the prime factorization aV. For example

$(1001) = ¢(7-11-13) = (7 — 1)(11 — 1)(13 — 1) = 720,

and2009 = 569 mod 720, s0172°%9 = 17569 mod 1001.

Assume now that is smaller tharp(V). Since a lower bound on the length
o(e) of the addition chain foe is 1g e, this yields a lower boundlg e) M (n)
for modular exponentiation, whereis the size ofN. Whene is of sizek, a
modular exponentiation cost(kM (n)). Fork = n, the costO(nM (n)) of
modular exponentiation is much more than the cost of operations considered in
ChaptefdL, withO (M (n) log n) for the more expensive ones there. The differ-
ent algorithms presented in this section save only a constant factor compared
to binary exponentiation[§2.8.1).

REMARK: whena fits in one word butV does not, the shortest addition chain
for e might not be the best way to computémod N, since in this case com-
putinga - @’ mod N is cheaper than computing - o/ mod N for i > 2.

70 Modular arithmetic and the FFT

2.6.1 Binary exponentiation

A simple (and not far from optimal) algorithm for modular exponentiation is
binary (modular) exponentiation. Two variants exist: left-to-right and right-to-
left. We give the former in AlgorithnieftToRightBinaryExp and leave the
latter as an exercise for the reader.

Algorithm 2.12 LeftToRightBinaryExp

Input: a, e, N positive integers

Output: = = a® mod N

. let(eges—q - . . e1¢0) be the binary representation @fwith e, = 1
Xr < a

: for 7 from ¢ — 1 downto 0 do

z «— z2 mod N

if e, = 1thenz < ax mod N.

a R DR

Left-to-right binary exponentiation has two advantagesr aight-to-left
exponentiation:

e it requires only one auxiliary variable, instead of two for the right-to-left
exponentiation: one to store successive values*afand one to store the
result;

e inthe case where is small, the multiplicationax at steg’b always involve
a small operand.

If e is a random integer of + 1 bits, stefi’b will be performed on average
times, giving average co8tM (n)/2.

ExamPLE: for the exponent = 3499211612, which is
(11010000100100011011 101101011 100)s

in binary, AlgorithmLeftToRightBinaryExp performs31 squarings and5
multiplications (one for each-bit, except the most significant one).

2.6.2 Exponentiation with a larger base

Compared to binary exponentiation, ba2e exponentiation reduces the
number of multiplicationsux mod N (Algorithm LeftToRightBinaryExp ,
sted®). The idea is to precompute small powers afod N:

The precomputation cost {2* — 2)M (n), and if the digitse; are random
and uniformly distributed irZ N [0,2%), then the modular multiplication at
sted® oBaseKExpis performed with probability — 2. If e hasn bits, the

2.6 Modular exponentiation 71

Algorithm 2.13 BaseKExp

Input: a, e, N positive integers

Output: = = a® mod N
1: precomputé[i] := a’ mod N for 1 <i < 2F
2: let (egeq_1 . . . e1eg) be the baseé” representation of, with e, # 0
3 x — tle]

4: for ¢ from ¢ — 1 downto 0 do

5

6

z — 22 mod N
if e; # 0thenx — t[e;]Jz mod N.

number of loops is about/k. Ignoring the squares at step 5 (their total cost
depends o/ ~ n so is independent df), the total expected cost in terms of
multiplications modulaV is

2F —2 4 n(1 —27%)/k.

Fork = 1, this formula gives:/2; for k = 2, it gives3n/8 + 2, which is faster

for n > 16; for k = 3, it gives 7n/24 + 6, which is faster than thé = 2
formula forn > 48. Whenn is large, the optimal value of satisfiesk?2* ~
n/In2. A minor disadvantage of this algorithm is its memory usage, since
O(2*) precomputed entries have to be stored. This is not a serious problem if
we choose the optimal value bf(or a smaller value), because then the number
of precomputed entries to be stored{s).

EXAMPLE: consider the exponemt= 3499 211 612. Algorithm BaseKExp
performs31 squarings independently &f we therefore count multiplications
only. Fork = 2, we havee = (3100210 123 231 130)4: Algorithm BaseKExp
performs two multiplications to precomputé anda?, and11 multiplications
for the non-zero digits of in base4 (except for the leading digit), i.e. a total
of 13. Fork = 3, we havee = (32044 335 534)s, and the algorithm performs
six multiplications to precompute?, a3, ..., a”, and nine multiplications in
sted®, i.e. atotal of5.

The last example illustrates two facts. First, if some digits (lbeard7) do
not appear in the basé-2epresentation of, then we do not need to precom-
pute the corresponding powersafSecond, when a digit is even, say= 2,
instead of doing three squarings and multiplyingBywe could do two squar-
ings, multiply bya, and perform a last squaring. These considerations lead to
Algorithm BaseKExpOdd

The correctness of stepd 7-9 follows from:

x2ka2md _ (ka—nl ad)zm)

72 Modular arithmetic and the FFT

Algorithm 2.14 BaseKExpOdd

Input: a, e, N positive integers

Output: = = a® mod N

. precompute:? thent|[i] := a’ mod N foriodd,1 <i < 2*
- let (egeq_1 ... e1e0) be the base* representation aof, with e, # 0
: write e, = 2™d with d odd

cx—tld, 2z« 2" mod N

: for i from ¢ — 1 downto 0 do

write e; = 2"d with d odd (if e; = 0 thenm = d = 0)
22" mod N

if e; # 0thenx «— t[d]z mod N

z — 22" mod N.

On the previous example, with = 3, this algorithm performs only four
multiplications in stefp]l (to precomputé thena?, ¢, a”), then nine multi-
plications in stepl8.

2.6.3 Sliding window and redundant representation

The “sliding window” algorithm is a straightforward generalization of
Algorithm BaseKExpOdd Instead of cutting the exponent into fixed parts
of k bits each, the idea is to divide it into windows, where two adjacent win-
dows might be separated by a block of zero or niplets. The decomposition
starts from the least significant bits. For example, wits 3499211612, or
in binary

1 101 00 001 001 00011 011 101 101 0 111 00.
A N e e e Vg

€g er €6 €5 €q €3 €2 €1 €0

Here there are nine windows (indicated &y ..., eo above) and we perform
only eight multiplications, an improvement of one multiplication over Algo-
rithm BaseKExpOdd On average, the sliding window ba®ealgorithm leads

to aboutn/(k + 1) windows instead of./k with fixed windows.

Another improvement may be feasible when division is feasible (and cheap)
in the underlying group. For example, if we encounter three consecutive ones,
say 111, in the binary representation ef we may replace some bits byl,
denoted byl, as in1001. We have thus replaced three multiplications by one
multiplication and one division, in other word$ = z® - =—!. For our running
example, this gives

e = 11010000 100 100 100 100 010 010 100 100,

2.7 Chinese remainder theorem 73

which has only ten non-zero digits, apart from the leading one, instead of
15 with bits 0 and1 only. The redundant representation with bfits 1,1} is
called theBooth representation. It is a special case ofAweienis signed-digit
redundant representation. Signed-digit representations exist in any base.

For simplicity, we have not distinguished between the cost of multiplica-
tion and the cost of squaring (when the two operands in the multiplication are
known to be equal), but this distinction is significant in some applications (e.g.
elliptic curve cryptography). Note that, when the underlying group operation
is denoted by addition rather than multiplication, as is usually the case for
abelian groups (such as groups defined over elliptic curves), then the discus-
sion above applies with “multiplication” replaced by “addition”, “division” by
“subtraction”, and “squaring” by “doubling”.

2.7 Chinese remainder theorem

In applications where integer or rational results are expected, it is often worth-
while to use a “residue number system” (agfZal.3) and perform all compu-
tations modulo several small primes (or pairwise coprime integers). The final
result can then be recovered via the Chinese remainder theorem (CRT). For
such applications, it is important to have fast conversion routines from integer
to modular representation, and vice versa.

The integer to modular conversion problem is the following: given an integer
x, and several pairwise coprime moduli, 1 < i < k, how do we efficiently
computer; = x mod m;, for1 < ¢ < k? This is the remainder tree problem of
Algorithm IntegerToRNS, which is also discussed {2.5.1 and Exercide 1.B5.

Algorithm 2.15 IntegerTORNS
Input: integerz, modulimy, ma, ..., m pairwise coprimek > 1
Output: x; =z mod m; for1 <i <k
1. if £ < 2then
2 returnz; = x mod mq, ...,xr = x mod my,
30— Lk/?J
4 My — mimg---my, Mo mypyq---my > might be precomputed
5
6

D21, ..., 20 — IntegerToRNS (z mod My, my, ..., my)
D Tpgt, ..., xp < IntegerTORNS(x mod Ma, mypyq, ..., my).

If all moduli m; have the same size, and if the sizef x is comparable to
that of the productnyms - - - my, the costl’(k) of Algorithm IntegerTORNS

74 Modular arithmetic and the FFT

satisfies the recurren@®(n) = 2D(n/2) + 2T'(n/2), which yieldsT'(n) =
O(M (n)logn). Such a conversion is therefore more expensive than a multipli-
cation or division, and is comparable in complexity terms to a base conversion
oragcd.

The converséCRT reconstructiorproblem is the following: given the;,
how do we efficiently reconstruct the unique integed < = < mims - - - my,
such thatr = z; mod m;, for1 < i < k? AlgorithmRNSTolntegerperforms
that conversion, where the values at stefi ¥ might be precomputed if several
conversions are made with the same moduli, and[siep 11 ensures that the final
resultz lies in the interval0, M; M,).

Algorithm 2.16 RNSTolnteger
Input: residues;, 0 < z; < m; for 1 < i < k, m; pairwise coprime
Output: 0 <z < myimg---my With x = 2; mod m;

1. if k= 1then

2: returnz,

30— |k/2]

4: My «— mymo---my, Mo« myyq---my >might be precomputed
5: X, < RNSTolnteger([ry, ...,z [m1,...,my])

6: Xo «— RNSTolnteger(fxs+1,- .., xk], [Met1, ..., mg])

7. computeu, v such thatuM; + vMs =1 > might be precomputed
8: A\ «— uXy mod Ms, Ay« vX; mod M;

9: & — A\ My + A\ M>

10: if x > MM, then

11: T «— x — M Ms.

To see that AlgorithnRNSTolnteger is correct, consider an integérl <
i < k, and show that = z; mod m;. If kK = 1, itis trivial. Assumek > 2,
and without loss of generality < ¢ < /. SinceM; is a multiple ofm;, we
havez mod m; = (z mod M;) mod m;, where

x mod M1 = /\QMQ mod M1 = UXlMg mod M1 = X1 mod Ml,

and the result follows from the induction hypothesis tRat= z; mod m;.

Like IntegerToRNS, Algorithm RNSTolnteger costsO(M (n) logn) for
M = myms - - - my, Of sizen, assuming that the; are of equal sizes.

The CRT reconstruction problem is analogous to the Lagrange polynomial
interpolation problem: find a polynomial of minimal degree interpolating given
valuesz; atk pointsm.

2.8 Exercises 75

A “flat” variant of the explicit Chinese remainder reconstruction is the
following, taking for exampld: = 3

T = A1x1 + Aox2 + Azx3,

where); = 1 mod m;, and\; = 0 mod m; for j # . In other words\; is
the reconstruction afy = 0,..., 2,1 = 0,2; = 1, 2,41 = 0,..., 2, = 0.
For example, withn; = 11, ms = 13 andms = 17, we get

x = 221x, 4+ 149625 + 7T15x3.

To reconstruct the integer correspondingito = 2, x5 = 3, 3 = 4, we
getxr = 221 -2+ 1496 - 3 + 715 - 4 = 7790, which after reduction modulo
111317 = 2431 gives497.

2.8 Exercises

Exercise 2.1In §2.1.3 we considered the representation of non-negative inte-
gers using a residue number system. Show that a residue number system can
also be used to represent signed integers, provided their absolute values are not
too large. (Specifically, if relatively prime modutiy, mo, ..., m; are used,

andB = myms - - - my, the integers: should satisfyz| < B/2.)

Exercise 2.2 Suppose two non-negative integer@&ndy are represented by
their residues modulo a set of relatively prime moduli, ms, ..., my as in
§2.1.3. Consider theomparison problem: is < y? Is it necessary to convert

x andy back to a standard (non-CRT) representation in order to answer this
question? Similarly, if a signed integeris represented as in Exercise]2.1,
consider thesign detection problem: is < 0?

Exercise 2.3 Consider the use of redundant moduli in the Chinese remainder
representation. In other words, using the notation of Exelci$e 2.2, consider the
case that could be reconstructed without using all the residues. Show that this
could be useful for error detection (and possibly error correction) if arithmetic
operations are performed on unreliable hardware.

Exercise 2.4 Consider the two complexity boundS(M (dlog(Nd))) and
O(M(d)M (log N)) given at the end ofZ.1.5. Compare the bounds in three
cases: (&) < N; (b)d ~ N; (c)d > N. Assume two subcases for the mul-
tiplication algorithm: ()M (n) = O(n?); (i) M(n) = O(nlogn). (For the
sake of simplicity, ignore anlpg log factors.)

76 Modular arithmetic and the FFT

Exercise 2.5 Show that, if a symmetric representatiorfV/2, N/2) is used

in Algorithm ModularAdd (§2.2), then the probability that we need to add or
subtractN is 1/4 if N is even, and1 — 1/N?)/4 if N is odd (assuming in
both cases that andb are uniformly distributed).

Exercise 2.6 Write down the complexity of the Montgomery—Svoboda algo-
rithm (Y2.4.2, page 61) fok steps. Fok = 3, use van der Hoeven’s relaxed
Karatsuba multiplicatio4] to save oné(n/3) product.

Exercise 2.7 Assume you have an FFT algorithm computing products modulo
2" 4+ 1. Prove that, with some preconditioning, you can perform a division with
remainder of &n-bit integer by am-bit integer as fast ak.5 multiplications

of n bits byn bits.

Exercise 2.8 Assume you know(z) mod (z"* —1) andp(x) mod (z"2—1),
wherep(z) € F[z] has degree—1, andn; > ny, andF is a field. Up to which
value ofn can you uniquely reconstrug®? Design a corresponding algorithm.

Exercise 2.9 Consider the problem of computing the Fourier transform of a
vectora = [ag, a1, - . .,ax_1], defined in Eqn[{2]1), when the si#éis not a
power of two. For examples might be an odd prime or an odd prime power.
Can you find an algorithm to do this M(K log K) operations?

Exercise 2.10Consider the problem of computing the cyclic convolution of
two K-vectors, whereX is not a power of two. (For the definition, witR'
replaced by, seed3.3.1.) Show that the cyclic convolution can be computed
using FFTs or2* points for some suitablg, or by using DFTs ork points
(see Exercise2.9). Which method is better?

Exercise 2.11Devise a parallel version of Algorithivlultiplelnversion as
outlined in§2.5.1. Analyse its time and space complexity. Try to minimize the
number of parallel processors required while achieving a parallel time com-
plexity of O(log k).

Exercise 2.12Analyse the complexity of the algorithm outlined at the end
of .53 to computd /z mod Ny,...,1/z mod Ni, when all theN; have
sizen, andx has sizel. For which values o, ¢ is it faster than the naive
algorithm which computes all modular inverses separately? [Assuifie) is
quasi-linear, and neglect multiplicative constants.]

Exercise 2.13Write aRightToLeftBinaryExp algorithm and compare it with
Algorithm LeftToRightBinaryExp of §2.6.1.

2.9 Notes and references 77

Exercise 2.14Investigate heuristic algorithms for obtaining close-to-optimal
addition (or multiplication) chains when the cost of a general additiend

(or multiplicationa - b) is A times the cost of duplication + a (or squaring

a - a), and\ is some fixed positive constant. (This is a reasonable model for
modular exponentiation, because multiplicatiand N is generally more ex-
pensive than squaringiod N. It is also a reasonable model for operations in
groups defined by elliptic curves, since in this case the formulee for addition
and duplication are usually different and have different costs.)

2.9 Notes and references

Several number-theoretic algorithms make heavy use of modular arithmetic, in
particular integer factorization algorithms (for example: Pollapdagorithm
and the elliptic curve method).

Another important application of modular arithmetic in computer algebra
is computing the roots of a univariate polynomial over a finite field, which
requires efficient arithmetic ovér,[x]. See for example the excellent book
“MCA" by von zur Gathen and GerharmOO].

We say in§2.1.3 that residue number systems can only be used \ihen
factors intoN, Vs . . .; this is not quite true, since Bernstein and Sorenson show
in [@] how to perform modular arithmetic using a residue number system.

For notes on the Kronecker—Sithage trick, se¢1.9.

Barrett's algorithm is described in_[14], which also mentions the idea of
using two short products. The original description of Montgomery’s REDC al-
gorithm is @]. It is now widely used in several applications. However, only
a few authors considered using a reduction factor which is not of the form
(£, among them McLaughIiO] and Mihaile564]. The Montgomery—
Svoboda algorithm [§2.4.2) is also called “Montgomery tail tayloring” by
Hars @], who attributes Svoboda’s algorithm — more precisely its variant
with the most significant word being — 1 instead of — to Quisquater. The
folding optimization of REDC described §2.4.2 (Subquadratic Montgomery
Reduction) is an LSB-extension of the algorithm described in the context of
Barrett’s algorithm by Hasenplaugh, Gaubatz, and GM [118]. Amongst the
algorithms not covered in this book, we mention the “bipartite modular multi-
plication” of Kaihara and Takadj_L_;LiM], which involves performing both MSB-
and LSB-division in parallel.

The description of McLaughlin’s algorithm i#2.4.3 follows |L1_§_b Varia-
tion 2]; McLaughlin’s algorithm was reformulated in a polynomial context by
Mihailescu].

78 Modular arithmetic and the FFT

Many authors have proposed FFT algorithms, or improvements of such al-
gorithms, and applications such as fast computation of convolutions. Some
references are Aho, Hopcroft, and Ullman [3]; Nussbaur@[l?G; Borodin
and Munro [[EE], who describe the polynomial approach; Van L [222] for
the linear algebra approach; and PoIIElSS] for the FFT over finite fields.
Rader[Ll_&|7] considered the case where the number of data points is a prime,
and WinogradﬁO] generalized Rader’s algorithm to prime powers. Bluestein’s
algorithm Eﬁb] is also applicable in these cases. In Berns@w q23] the
reader will find some historical remarks and several nice applications of the
FFT.

The Sclbnhage—Strassen algorithm first appeared |£| [199]. Recently,
Furer @] has proposed an integer multiplication algorithm that is asymptoti-
cally faster than the Sémhage—Strassen algorithniirer's algorithmalmost
achieves the conjectured best possi(e log n) running time.

Concerning special moduli, Percival consideriﬂlBS] the @ase a + b,
where botha andb are highly composite; this is a generalization of the case
N = 3" £ 1. The pseudo-Mersenne primes 4.4 are recommended in
the National Institute of Standards and Technology (NIBigital Signature
Standarc{@]. See also the book by Hankerson, Menezes, and Van@e [110].

Algorithm Multiplelnversion — also known as “batch inversion” — is due
to Montgomery]. The application of Barrett’s algorithm for an implicitly
invariant divisor was suggested by Granlund.

Modular exponentiation and cryptographic algorithms are described in much
detail in the book by Menezes, van Oorschot, and Vansioné [161, Chapter 14].
A detailed description of the best theoretical algorithms, with references, can
be found in Bernsteiﬂ__[_iS]. When both the modulus and base are invariant,
modular exponentiation witlk-bit exponent and:.-bit modulus can be per-
formed in timeO((k/log k)M (n)), after a precomputation ab(k/log k)
powers in timeO (kM (n)). Take for examplé = 2*/! in Note 14.112 and
Algorithm 14.109 of [[161], withtlogt ~ k, where the powerabi mod N
for 0 < ¢ < t are precomputed. An algorithm of same complexity using a
DBNS (Double-Base Number System) was proposed by Dimitrov, Jullien, and
Miller [@], however with a larger table ¢d(k?) precomputed powers.

Original papers on Booth recoding, SRT division, etc., are reprinted in the
book by Swartzlande@Z].

A quadratic algorithm for CRT reconstruction is discussed in CoEn [73];
Moller gives some improvements in the case of a small number of small moduli
known in advancdﬂ?]. AlgorithrmtegerToRNS can be found in Borodin
and Moenck|_[T3|4]. The explicit Chinese remainder theorem and its applications
to modular exponentiation are discussed by Bernstein and SorenEo?h in [24].

3
Floating-point arithmetic

This chapter discusses the basic operations — addition, subtrac-
tion, multiplication, division, square root, conversion — on arbi-
trary precision floating-point numbers, as Chapier 1 does for ar-
bitrary precision integers. More advanced functions such as el-
ementary and special functions are covered in Chdpter 4. This
chapter largely follows the IEEE 754 standard, and extends it in
a natural way to arbitrary precision; deviations from IEEE 754
are explicitly mentioned. By default, IEEE 754 refers to the 2008
revision, known as IEEE 754-2008; we write IEEE 754-1985
when we explicitly refer to the 1985 initial standard. Topics
not discussed here include: hardware implementations, fixed-
precision implementations, special representations.

3.1 Representation

The classical non-redundant representation of a floating-point numier
radix 3 > 1 is the following (other representations are discussefi):

= (<1)* m- B, (3.1)

where(—1)%, s € {0, 1}, is thesign,m > 0 is thesignificand and the integer
e is theexponenof z. In addition, a positive integer defines therecisionof
x, which means that the significama contains at most significant digits in
radix (.

An important special case is = 0 representing zero. In this case, the sign
s and exponent are irrelevant and may be used to encode other information
(see for examplg3.1.3).

Form # 0, several semantics are possible; the most common ones are:

80 Floating-point arithmetic

e 371 <m < 1,thenp~! < |z| < . In this casem is an integer multiple
of 5~". We say that theinit in the last placeof = is 5=, and we write
ulp(z) = g¢~". For examplex = 3.1416 with radix 5 = 10 is encoded
by m = 0.31416 ande = 1. This is the convention that we will use in this
chapter.

e 1 <m < 3 thens® < |z| < g, andulp(z) = BT, With radix ten
the numbern: = 3.1416 is encoded byn = 3.1416 ande = 0. This is the
convention adopted in the IEEE 754 standard.

e We can also use an integer significadftl ! < m < 37, thenget"—1 <
lz| < pet™, andulp(xz) = 3. With radix ten the number = 3.1416 is
encoded byn = 31416 ande = —4.

Note that in the above three cases, there is only one possible representation of
a non-zero floating-point number: we havesaonicalrepresentation. In some
applications, it is useful to relax the lower bound on non-zeravhich in the

three cases above gives respectively m < 1,0 < m < 3, and0 < m <

8", with m an integer multiple ofs*=", ¢+!=", and1 respectively. In this

case, there is no longer a canonical representation. For example, with an integer
significand and a precision of five digits, the numB&ari00 might be encoded

by (m = 31400,e = —4), (m = 03140,e = —3), or (m = 00314,e = —2).

This non-canonical representation has the drawback that the most significant
non-zero digit of the significand is not known in advance. The unigue encoding
with a non-zero most significant digit, i.en = 31400, e = —4) here, is called
thenormalized- or simplynormal— encoding.

The significand is also sometimes called thentissaor fraction. The above
examples demonstrate that the different significand semantics correspond to
different positions of the decimal (or radi® point, or equivalently to different
biasesof the exponent. We assume in this chapter that both the fadind the
significand semantics are implicit for a given implementation, and thus are not
physically encoded.

The words “base” and “radix” have similar meanings. For clarity, we reserve
“radix” for the constani3 in a floating-point representation, such[as](3.1). The
significandm and exponent might be stored in a different base, as discussed
below.

3.1.1 Radix choice

Most floating-point implementations use radix = 2 or a power of two,
because this is convenient and efficient on binary computers. For afadix
which is not a power o2, two choices are possible:

3.1 Representation 81

e Store the significand in bagg or more generally in basg* for an integer
k > 1. Each digit in basg* requires|k lg 3] bits. With such a choice, indi-
vidual digits can be accessed easily. With= 10 andk = 1, this is the “Bi-
nary Coded Decimal” or BCD encoding: each decimal digit is represented
by four bits, with a memory loss of about 17% (sirigél0)/4 ~ 0.83). A
more compact choice is radiX?, where three decimal digits are stored in
ten bits, instead of in2 bits with the BCD format. This yields a memory
loss of only 0.34% (sinck(1000)/10 =~ 0.9966).

e Store the significand in binary. This idea is used in Intel’s Binary-Integer
Decimal (BID) encoding, and in one of the two decimal encodings in IEEE
754-2008. Individual digits can not be accessed directly, but we can use effi-
cient binary hardware or software to perform operations on the significand.

A drawback of the binary encoding is that, during the addition of two arbitrary-
precision numbers, it is not easy to detect if the significand exceeds the max-
imum values™ — 1 (when considered as an integer) and thus if rounding is
required. Eithep3” is precomputed, which is only realistic if all computations
involve the same precisiom, or it is computed on the fly, which might result

in increased complexity (see Chagier 1 §8d.1).

3.1.2 Exponent range

In principle, we might consider an unbounded exponent. In other words, the
exponent might be encoded by an arbitrary-precision integer (see CHapter 1).
This would have the great advantage that no underflow or overflow could occur
(see below). However, in most applications, an exponent encodidhits is
more than enough: this enables us to represent values up tolal§#tt>s 29
for 5 = 2. A result exceeding this value most probably corresponds to an error
in the algorithm or the implementation. Using arbitrary-precision integers for
the exponent induces an extra overhead that slows down the implementation in
the average case, and it usually requires more memory to store each number.
Thus, in practice the exponent nearly always has a limited rapge <
e < emax- We say that a floating-point numberrispresentabléf it can be
represented in the forr—1)° - m - 3° with epin < e < epax. The set of
representable numbers clearly depends on the significand semantics. For the
convention we use here, i,67! < m < 1, the smallest positive representable
floating-point number ige=i=—1 and the largest one j§max (1 — 37™).
Other conventions for the significand yield different exponent ranges. For
example, the double-precision format — calbédary64 in IEEE 754-2008 —
hasenin = —1022, emax = 1023 for a significand if1, 2); this corresponds to

82 Floating-point arithmetic

emin = —1021, emax = 1024 for a significand in1/2, 1), ande,i, = —1074,
emax = 971 for an integer significand if2°2, 2°%).

3.1.3 Special values

With a bounded exponent range, if we want a complete arithmetic, we need
some special values to represent very large and very small values. Very small
values are naturally flushed to zero, which is a special number in the sense that
its significand ism = 0, which is not normalized. For very large values, it
is natural to introduce two special valueso and+oo, which encode large
non-representable values. Since we have two infinities, it is natural to have two
zeros—0 and+-0, for examplel /(—oc0) = —0 and1/(+oc0) = +0. This is the
IEEE 754 choice. Another possibility would be to have only one infinity and
one zerd), forgetting the sign in both cases.

An additional special value Mot a NumbeKNaN), which either represents
an uninitialized value, or is the result of amvalid operation likey/—1 or
(4+00) — (+00). Some implementations distinguish between different kinds of
NaN, in particular IEEE 754 definessgnalingandquietNaNs.

3.1.4 Subnormal numbers

Subnormal numberare required by the IEEE 754 standard, to allow what is
called gradual underflonbetween the smallest (in absolute value) non-zero
normalized numbers and zero. We first explain what subnormal numbers are;
then we will see why they are not necessary in arbitrary precision.

Assume we have an integer significand]i¥ !, 3"), wheren is the pre-
cision, and an exponent ifBmin, €max). Write n = g¢min. The two smallest
positive normalized numbers ate = 3"~'n andy = ("' + 1)n. The
differencey — x equalsn, which is tiny compared ta. In particular,y — x
can not be represented exactly as a normalized number (ass@fing> 1)
and will be rounded to zero in “rounding to nearest” mode (§8.1.9). This has
the unfortunate consequence that instructions such as

if (y !I= x) then
z = 1.0/(y - x);

will produce a “division by zero” error when executind/(y - X).

Subnormal numbers solve this problem. The idea is to relax the condition
Bn—1 < m for the exponent,,;,. In other words, we include all numbers
of the formm - gémin for 1 < m < A"~ in the set of valid floating-point

3.1 Representation 83

numbers. We could also permit = 0, and then zero would be a subnormal
number, but we continue to regard zero as a special case.

Subnormal numbers are all positive integer multiplestgf with a multi-
plier m, 1 < m < p»!. The difference between = A" 'y and
y = ("' + 1)n is now representable, since it equa/ghe smallest positive
subnormal number. More generally, all floating-point numbers are multiples of
7, likewise for their sum or difference (in other words, operations in the sub-
normal domain correspond to fixed-point arithmetic). If the sum or difference
is non-zero, it has magnitude at legstand thus can not be rounded to zero.
Therefore, the “division by zero” problem mentioned above does not occur
with subnormal numbers.

In the IEEE 754 double-precision format — calleidary64 in IEEE 754-
2008 — the smallest positive normal numbezi¢°22, and the smallest positive
subnormal number 871974, In arbitrary precision, subnormal numbers sel-
dom occur, since usually the exponent range is huge compared to the expected
exponents in a given application. Thus, the only reason for implementing sub-
normal numbers in arbitrary precision is to provide an extension of IEEE 754
arithmetic. Of course, if the exponent range is unbounded, then there is ab-
solutely no need for subnormal numbers, because any non-zero floating-point
number can be normalized.

3.1.5 Encoding

The encodingof a floating-point numbex: = (—1)® - m - 3¢ is the way the
valuess, m, ande are stored in the computer. Remember that implicit, i.e.

is considered fixed for a given implementation; as a consequence, we do not
consider herenixed radixoperations involving numbers with different radices

B andg’.

We have already seen that there are several ways to encode the significand
m wheng is not a power of two, in base¥r in binary. For normal numbers
inradix2, i.e.2"~! < m < 2", the leading bit of the significand is necessarily
one, thus we might choose not the encode it in memory, to gain an extra bit
of precision. This is called thieplicit leading bit, and it is the choice made
in the IEEE 754 formats. For example, the double-precision format has a sign
bit, an exponent field of 1 bits, and a significand &f3 bits, with only52 bits
stored, which gives a total 6f! stored bits:

sign | (biased) exponent significand
(1 bit) (11 bits) (52 bits, plus implicit leading bit)

84 Floating-point arithmetic

A nice consequence of this particular encoding is the following.alLleé a
double-precision number, neither subnormalo, NaN, nor the largest normal
number in absolute value. Consider thiebit encoding of as ab4-bit integer,
with the sign bit in the most significant bit, the exponent bits in the next most
significant bits, and the explicit part of the significand in the low significant
bits. Adding1 to this 64-bit integer yields the next double-precision number
to =, away from zero. Indeed, if the significandis smaller thar2®® — 1, m
becomesn + 1, which is smaller tha®3. If m = 253 — 1, then the lowest
52 bits are all set, and a carry occurs between the significand field and the
exponent field. Since the significand field becomes zero, the new significand is
252 taking into account the implicit leading bit. This corresponds to a change
from (253 — 1) - 2¢ to 252 - 2¢*1, which is exactly the next number away from
zero. Thanks to this consequence of the encoding, an integer comparison of
two words (ignoring the actual type of the operands) should give the same
result as a floating-point comparison, so it is possible to sort normal positive
floating-point numbers as if they were integers of the same length (64-bit for
double precision).

In arbitrary precision, saving one bit is not as crucial as in fixed (small)
precision, where we are constrained by the word size (us@altyr 64 bits).
Thus, in arbitrary precision, it is easier and preferable to encode the whole
significand. Also, note that having an “implicit bit” is not possible in radix
6 > 2, since for a normal number the most significant digit might take several
values, froml to 5 — 1.

When the significand occupies several words, it can be stored in a linked
list, or in an array (with a separate size field). Lists are easier to extend, but
accessing arrays is usually more efficient because fewer memory references
are required in the inner loops and memory locality is better.

The signs is most easily encoded as a separate bit field, with a non-negative
significand. This is thesign-magnitudeencoding. Other possibilities are to
have a signed significand, using either one’s complement or two’s complement,
but in the latter case a special encoding is required for zero, if it is desired to
distinguish-+0 from —0. Finally, the exponent might be encoded as a signed
word (for example, typéong in the C language).

3.1.6 Precision: local, global, operation, operand

The different operands of a given operation might have different precisions,
and the result of that operation might be desired with yet another precision.
There are several ways to address this issue.

3.1 Representation 85

e The precision, say, is attached to a given operation. In this case, operands
with a smaller precision are automatically converted to precisi@perands
with a larger precision might either be left unchanged, or rounded to preci-
sionn. In the former case, the code implementing the operation must be able
to handle operands with different precisions. In the latter case, the round-
ing mode to shorten the operands must be specified. Note that this round-
ing mode might differ from that of the operation itself, and that operand
rounding might yield large errors. Consider for example= 1.345 and
b = 1.234567 with a precision of four digits. I is taken as exact, the exact
value ofa — b equals0.110433, which when rounded to nearest becomes
0.1104. If b is first rounded to nearest to four digits, we get 1.235, and
a — b = 0.1100 is rounded to itself.

e The precisiom is attached to each variable. Here again two cases may occur.
If the operation destination is part of the operation inputs, as in
sub(c, a, b), which means ¢ < round(a — b), then the precision of
the result operand is known, and thus the rounding precision is known
in advance. Alternatively, if no precision is given for the result, we might
choose the maximal (or minimal) precision from the input operands, or use
a global variable, or request an extra precision parameter for the operation,
asinc = sub(a, b, n).

Of course, these different semantics are inequivalent, and may yield different
results. In the following, we consider the case where each variable, including
the destination variable, has its own precision, and no pre-rounding or post-
rounding occurs. In other words, the operands are considered exact to their full
precision.

Rounding is considered in detail #8.1.9. Here we define what we mean by
the correct roundingof a function.

Definition 3.1 Leta, b, ... be floating-point numberg, a mathematical func-

tion, n > 1 an integer, ando a rounding mode. We say thatis the cor-

rect roundingof f(a,b,...), and we writec = o,(f(a,b,...)), if ¢ is the
floating-point number closest tf(a, b, ...) in precisionn and according to

the given rounding mode. In case several numbers are at the same distance
from f(a, b, ...), the rounding mode must define in a deterministic way which
one is “the closest”. When there is no ambiguity, we oménd write simply

c=o(f(a,b,...).

86 Floating-point arithmetic

3.1.7 Link to integers

Most floating-point operations reduce to arithmetic on the significands, which
can be considered as integers as seen at the beginning of this section.
Therefore, efficient arbitrary precision floating-point arithmetic requires effi-
cient underlying integer arithmetic (see Chapier 1).

Conversely, floating-point numbers might be useful for the implementation
of arbitrary precision integer arithmetic. For example, we might use hard-
ware floating-point numbers to represent an arbitrary precision integer. Indeed,
since a double-precision floating-point number habits of precision, it can
represent an integer up &% — 1, and an integerd can be represented as
A=ap 1" '+ +a;B + -+ a1+ ap, whereg = 2°3, and thea;
are stored in double-precision data types. Such an encoding was popular when
most processors wef2-bit, and some had relatively slow integer operations
in hardware. Now that most computers é#ebit, this encoding is obsolete.

Floating-pointexpansionsre a variant of the above. Instead of storing
and having3? implicit, the idea is to directly store;3*. Of course, this only
works for relatively smalk, i.e. whenever,; 3" does not exceed the format
range. For example, for IEEE 754 double precision, the maximal integer preci-
sion is1024 bits. (Alternatively, we might represent an integer as a multiple of
the smallest positive number 197, with a corresponding maximal precision
of 2098 bits.)

Hardware floating-point numbers might also be used to implement the fast
Fourier transform (FFT), using complex numbers with floating-point real and

imaginary part (se§3.3.1).

3.1.8 Ziv's algorithm and error analysis

A rounding boundarys a point at which the rounding functierix) is discon-
tinuous.

In fixed precision, for basic arithmetic operations, it is sometimes possible
to design one-pass algorithms that directly compute a correct rounding. How-
ever, in arbitrary precision, or for elementary or special functions, the classical
method is to use Ziv’s algorithm:

1. we are given an input, a target precision, and a rounding mode;

2. compute an approximatianwith precisionm > n, and a corresponding
error bounck such thaty — f(z)| < ¢;

3. if [y — e,y + €] contains a rounding boundary, increasend go to step 2;
4. output the rounding af, according to the given rounding mode.

3.1 Representation 87

The error bound at step 2 might be computed eitheepriori, i.e. fromz and

n only, ordynamically, i.e. from the different intermediate values computed by
the algorithm. A dynamic bound will usually be tighter, but will require extra
computations (however, those computations might be done in low precision).

Depending on the mathematical function to be implemented, we might pre-
fer an absolute or a relative error analysis. When computing a relative error
bound, at least two techniques are available: we might express the errors in
terms of units in the last place (ulps), or we might express them in terms of
true relative error. It is of course possible in a given analysis to mix both kinds
of errors, but in general a constant factor — the ratlixis lost when converting
from one kind of relative error to the other kind.

Another important distinction isorward versusbackwarderror analysis.
Assume we want to compuie= f(x). Because the input is rounded, and/or
because of rounding errors during the computation, we might actually compute
y' ~ f(«'). Forward error analysis will boung’ — y| if we have a bound on
|#' — x| and on the rounding errors that occur during the computation.

Backward error analysis works in the other direction. If the computed value
is 3/, then backward error analysis will give us a numbsuch that, fosome
2’ in the ball|2’ — z| < §, we havey’ = f(2’). This means that the error is
no worsethan might have been caused by an errar infthe input value. Note
that, if the problem is ill-conditioned, might be small even ify’ — y| is large.

In our error analyses, we assume that no overflow or underflow occurs,
or equivalently that the exponent range is unbounded, unless the contrary is
explicitly stated.

3.1.9 Rounding

There are several possible definitions of rounding. For exampleabilistic
rounding— also calledstochastic rounding— chooses at random a rounding
towards+oo or —oo for each operation. The IEEE 754 standard defines four
rounding modes: towards zerepo, —oo and to nearest (with ties broken to
even). Another useful mode is “rounding away from zero”, which rounds in the
opposite direction from zero: a positive number is rounded towards and a
negative number towardsoo. If the sign of the result is known, all IEEE 754
rounding modes might be converted to either rounding to nearest, rounding
towards zero, or rounding away from zero.

Theorem 3.2 Consider a floating-point system with radixand precisiomn.
Letu be the rounding to nearest of some reallhen the following inequalities
hold: [u — x| < 3 ulp(u), |u— | < 38" "[ul, lu—z| < 35" "|z|.

88 Floating-point arithmetic

Proof. Forz = 0, necessarily, = 0, and the statement holds. Without loss of
generality, we can assumendz positive. The first inequality is the definition
of rounding to nearest, and the second one follows frdp{u) < ' ™.

(In the cases = 2, it gives |u — z| < 27 ™|ul.) For the last inequality, we
distinguish two cases: if < z, it follows from the second inequality. if < «,
then if z andu have the same exponent, I8! < = < u < 3¢ then
ulp(u) = B¢~ < B~"z. The remaining case |8°~! < z < u = 3°. Since
the floating-point number precediny is 5¢(1 — ~"), andz was rounded to
nearest, we have. — z| < ¢~ /2 here too. 0

In order to round according to a given rounding mode, we prbeesefol-
lows:

1. firstround as if the exponent range was unbounded, with the given rounding
mode;

2. if the rounded result is within the exponent range, return this result;

3. otherwise raise the “underflow” or “overflow” exception, and retttthor
+oo accordingly.

For example, assume radix with precision4, e, = 3, with 2 = 0.9234 -

103,y = 0.7656-10%. The exact sum+y equalg).99996-103. With rounding
towards zero, we obtaif.9999 - 103, which is representable, so there is no
overflow. With rounding to nearest, + y rounds t00.1000 - 10*, where the
exponentd exceeds,,.x = 3, SO we geti-co as the result, with an overflow.

In this model, overflow depends not only on the operands, but also on the
rounding mode.

The “round to nearest” mode of IEEE 754 rounds the result of an operation
to the nearest representable number. In case the result of an operation is exactly
halfway between two consecutive numbers, the one with least significant bit
zero is chosen (for radiX). For example].10115 is rounded with a precision
of four bits to1.1104, as is1.11015. However, this rule does not readily extend
to an arbitrary radix. Consider for example radix= 3, a precision of four
digits, and the number212.111...3. Both 12123 and 12203 end in an even
digit. The natural extension is to require the whole significand to be even, when
interpreted as an integer 3"~ !, 3" — 1]. In this setting,(1212.111...)3
rounds to(1212)5 = 501¢. (Note that3™ is an odd number here.)

Assume we want to correctly round a real number, whose binary expansion
is2¢-0.1by...bybyy1 ..., ton bits. It is enough to know the values of=
bny1 — called theround bit— and that of thesticky bits, which is zero when
bniobnis ... is identically zero, and one otherwise. Tablel 3.1 shows how to
correctly round giverr, s, and the given rounding mode; rounding t@o

3.1 Representation 89

being converted to rounding towards zero or away from zero, according to the
sign of the number. The entry ;b is for round to nearest in the case of a tie:

if b, = 0, it will be unchanged, but i6,, = 1, we add one (thus changirbg

to zero).

r s | towardszero tonearest away from zefo
0 0 0 0 0
0 1 0 0 1
1 0 0 bn 1
1 1 0 1 1

Table 3.1 Rounding rules according to the round bitand
the sticky bits: a “0” entry means truncate (round towards
zero), a “1” means round away from zero (add one to the
truncated significand).

In general, we do not have an infinite expansion, but a finite approximation
of an unknown real value. For exampley might be the result of an arithmetic
operation such as division, or an approximation to the value of a transcendental
function such asxp. The following problem arises: given the approximation
y, and a bound on the errdy — x|, is it possible to determine the correct
rounding ofz? AlgorithmRoundingPossiblereturnstrue iff it is possible.

Algorithm 3.1 RoundingPossible
Input: afloating-point numbey = 0.1ys . . . y,,, @ precisiom < m, an error
bounde = 2%, a rounding mode
Output: truewheno,,(z) can be determined fay — z| < ¢
if & < n+1thenreturnfalse
if o isto nearesthenr — 1 elser — 0
if ypo1 =randypso =--- =y, =0thens — 0 elses — 1
if s = 1 thenreturntrue elsereturnfalse.

Proof of correctness. Since rounding is monotonic, it is possible to determine
o(z) exactly wheno(y — 27%) = o(y + 27%), or in other words when the
interval [y — 27%, y + 27*] contains no rounding boundary (or only one as
y—2"%ory+27F).

If & < n + 1, then the interva[—2~% 27*] has width at least—", and
thus contains at least one rounding boundary in its interior, or two rounding
boundaries, and it is not possible to round correctly. In the case of

90 Floating-point arithmetic

directed rounding (resp. rounding to nearest}, # 0, the approximatiory is
representable (resp. the middle of two representable numbers) in precision
n, and it is clearly not possible to round correctly.slf= 1, the interval

[y — 2%,y +27%] contains at most one rounding boundary, and, if so, it is one
of the bounds; thus, it is possible to round correctly. 0

The double rounding problem

When a given real valug is first rounded to precisiom and then to precision

n < m, we say that a “double rounding” occurs. The “double rounding prob-
lem” happens when this latter value differs from the direct roundingtofthe
smaller precisiom, assuming the same rounding mode is used in all cases, i.e.
when

on(om(x)) # on(x).

The double rounding problem does not occur for directed rounding modes.
For these rounding modes, the rounding boundaries at the larger precision
refine those at the smaller precisianthus all real values that round to the
same valug at precisionm also round to the same value at precisignamely
on(y).

Consider the decimal value= 3.14251. Rounding to nearest to five digits,
we gety = 3.1425; roundingy to nearest-even to four digits, we gel42,
whereas direct rounding afwould give3.143.

With rounding to nearest mode, the double rounding problem only occurs
when the second rounding involves the even-rule, i.e. the value,, (x) is
a rounding boundary at precisien Otherwisey has distance at least one ulp
(in precisionm) from a rounding boundary at precisianand sincgy — x| is
bounded by half an ulp (in precision), all possible values far round to the
same value in precision.

Note that the double rounding problem does not occur with all ways of
breaking ties for rounding to nearest (Exergisé 3.2).

3.1.10 Strategies

To determine the correct rounding ¢fxz) with n bits of precision, the best
strategy is usually to first compute an approximatjdo f(x) with a working
precision ofm = n+ h bits, with i relatively small. Several strategies are pos-
sible in Ziv's algorithm (§3.1.18) when this first approximatigiis not accurate
enough, or too close to a rounding boundary:

e Compute the exact value gf(z), and round it to the target precision
This is possible for a basic operation, for exampler) = 22, or more

3.2 Addition, subtraction, comparison 91

generallyf(z,y) = = + y orz x y. Some elementary functions may yield
an exactly representable output too, for exampgle25 = 1.5. An “exact
result” test after the first approximation avoids possibly unnecessary further
computations.

e Repeat the computation with a larger working precisioh= n + h'. As-
suming that the digits of (x) behave “randomly” and thay’(z)/f(x)| is
not too large, using’ ~ lgn is enough to guarantee that rounding is possi-
ble with probabilityl —O(1/n). If rounding is still not possible, because the
k' last digits of the approximation encofl®r 2" — 1, we can increase the
working precision and try again. A check for exact results guarantees that
this process will eventually terminate, provided the algorithm used has the
property that it gives the exact result if this result is representable and the
working precision is high enough. For example, the square root algorithm
should return the exact result if it is representable (see AlgoritR@qrt in

g3.5, and also Exercige3.3).

3.2 Addition, subtraction, comparison

Addition and subtraction of floating-point numbers operate from the most sig-
nificant digits, whereas integer addition and subtraction start from the least
significant digits. Thus completely different algorithms are involved. Also, in
the floating-point case, part or all of the inputs might have no impact on the
output, except in the rounding phase.

In summary, floating-point addition and subtraction are more difficult to im-
plement than integer addition/subtraction for two reasons:

e Scaling due to the exponents requires shifting the significands before adding
or subtracting them — in principle, we could perform all operations using
only integer operations, but this might require huge integers, for example
when addingl and2~1000,

e As the carries are propagated from least to most significant digits, we may
have to look at arbitrarily low input digits to guarantee correct rounding.

In this section, we distinguish between “addition”, where both operands to
be added have the same sign, and “subtraction”, where the operands to be
added have different signs (we assume a sign-magnitude representation). The
case of one or both operands zero is treated separately; in the description below
we assume that all operands are non-zero.

92 Floating-point arithmetic

3.2.1 Floating-point addition

Algorithm FPadd adds two binary floating-point numbérandc of the same

sign. More precisely, it computes the correct rounding ef ¢, with respect

to the given rounding mode. For the sake of simplicity, we assurbandc

are positiveph > ¢ > 0. It will also be convenient to scaleandc so that

27—l < p < 27 and2™~! < ¢ < 2™, wheren is the desired precision of the
output, andn < n. Of course, if the inputé andc to Algorithm FPadd are
scaled by2*, then, to compensate for this, the output must be scaleti by

We assume that the rounding mode is to nearest, towards zero, or away from
zero (rounding tatoo reduces to rounding towards zero or away from zero,
depending on the sign of the operands).

Algorithm 3.2 FPadd

Input: b > ¢ > 0 two binary floating-point numbers, a precisiarsuch that
2"—1 < b < 27, and a rounding mode

Output: a floating-point number of precisionn and scalee such that
a-2¢=o(b+c)

1: splitb into by, + b, whereb,, contains the: most significant bits ob.
split ¢ into ¢}, + ¢, wherec;, contains the most significant bits of and
ulp(cp,) = ulp(by) =1 > ¢, might be zero

N

3 ap<—byp+cp, e<—0

4: (c,r,8) «— by + ¢y > see the text
5: (a,t) « (ap + ¢ + round(o, r, 5), etc.) > for ¢ see Tabl€3]2 (upper)
6: if a > 2" then

7 (a,e) « (round2(o, a,t),e + 1) > see Tabl€3]2 (lower)
8 if a = 2" then (a,e) — (a/2,e+1)

9: return(a, e).

The values ofound(o, r, s) andround2(o, a, t) are given in Tablg_3]2. We
have simplified some of the expressions given in Table 3.2. For example, in
the upper half of the table, v s means) if » = s = 0, and1 otherwise. In
the lower half of the table2|(a + 1)/4] is (a — 1)/2 if a = 1 mod 4, and
(a+1)/21f a = 3 mod 4.

At sted? of AlgorithmFPadd, the notatior{c, r, s) < b,+c, means that is
the carry bit ofb, + ¢, r the round bit, and the sticky bit;c, r, s € {0, 1}. For
rounding to nearest,= sign(b+c—a) is aternary value, which is respectively
positive, zero, or negative whenis smaller than, equal to, or larger than the
exact sum + c.

Theorem 3.3 AlgorithmFPadd is correct.

3.2 Addition, subtraction, comparison 93

o r s round(o, 7, s) t
towards0 any any 0 -
away from0 any any rVs -
to nearest 0 any 0 s
to nearest 1 0 0/1 (even rounding) | +1/—1
to nearest 1 #0 1 -1
o a mod 2 t round2(o, a, t)
any 0 any a/2
towards0 1 any (a—1)/2
away from0 1 any (a+1)/2
to nearest 1 0 2[(a+1)/4]
to nearest 1 +1 (a+1t)/2

Table 3.2 Rounding rules for addition.

Proof. We have2”~! < b < 27 and2™~! < ¢ < 2™, with m < n. Thus,

by, andcy, are the integer parts éfandc, b, andc, their fractional parts. Since

b > ¢,we haver, < by and2"~! < b, < 27—1;thus 2"~ ! < q) <271 -2,

and, at stepl®" ! < a < 2"t If o < 27, ais the correct rounding df+ c.
Otherwise, we face the “double rounding” problem: roundirdpwn ton bits

will give the correct result, except wheris odd and rounding is to nearest. In
that case, we need to know if the first rounding was exact, and if not in which
direction it was rounded; this information is encoded in the ternary value
After the second rounding, we hag&=! < q < 27, 0

Note that the exponert, of the result lies betwee#, (the exponent ob —
here we considered the case= n) ande;, + 2. Thus, no underflow can occur
in an addition. The case, = ¢, + 2 can occur only when the destination
precision is less than that of the operands.

3.2.2 Floating-point subtraction

Floating-point subtraction (of positive operands) is very similar to addition,
with the difference thatancellationcan occur. Consider for example the sub-
traction6.77823 — 5.98771. The most significant digit of both operands disap-
peared in the resuld.79052. This cancellation can be dramatic, as in
6.7782357934 — 6.7782298731 = 0.0000059203, where six digits were can-
celled.

94 Floating-point arithmetic

Two approaches are possible, assumingsult digits are wanted, and the
exponent difference between the inputd:is

e Subtract then — d most-significant digits of the smaller operand from the
n most-significant digits of the larger operand. If the resulthase digits
with e > 0, restart withn + e digits from the larger operand arfd + ¢) — d
from the smaller operand.

e Alternatively, predict the number of cancelled digits in the subtraction,
and directly subtract thén + e) — d most-significant digits of the smaller
operand from the, + e most-significant digits of the larger one.

Note that, in the first approach, we might have= n if all most-significant
digits cancel, and thus the process might need to be repeated several times.
The first step in the second approach is usually cdéeding zero detec-
tion. Note that the numberof cancelled digits might depend on the rounding

mode. For example;.778 — 5.7781 with a 3-digit result yields0.999 with
rounding toward zero, antd00 with rounding to nearest. Therefore, in a real
implementation, the definition efhas to be made precise.

In practice, we might consider 4+ g and(n + g) — d digits instead ofn
andn — d, where the; “guard digits” would prove useful (i) to decide the final
rounding, and/or (ii) to avoid another loop in caseg g.

Sterbenz’s theorem

Sterbenz’s theorem is an important result concerning floating-point subtraction
(of operands of the same sign). It states that the rounding error is zero in some
common cases. More precisely:

Theorem 3.4 (Sterbenz)If » andy are two floating-point numbers of same
precisionn, such that lies in the intervalz /2, 22] U [2x, /2], theny — z is
exactly representable in precisionif there is no underflow.

Proof. The caser = y = 0 is trivial, so assume that # 0. Sincey €
[x/2,2x] U [2z,2/2], x andy must have the same sign. We assume without
loss of generality that andy are positive, s@ € [z/2, 2z].

Assumer < y < 2x (the same reasoning appliesfof2 <y < z,i.e.y <
x < 2y, by interchanging: andy). Sincez < y, we haveulp(z) < ulp(y),
and thusy is an integer multiple ofilp(z). It follows thaty — x is an integer
multiple of ulp(x). Since0 < y — x < z, y — x is necessarily representable
with the precision ofc. 0

It is important to note that Sterbenz’s theorem applies for @dix 3; the
constan® in [z/2, 2z] has nothing to do with the radix.

3.3 Multiplication 95
3.3 Multiplication

Multiplication of floating-point numbers is calledshort product. This reflects

the fact that, in some cases, the low part of the full product of the signifi-
cands has no impact — except perhaps for the rounding — on the final result.
Consider the multiplication: x y, wherexz = ¢3¢ andy = mp/. Then
o(zy) = o(¢m)B+/, and it suffices to consider the case that ¢ andy = m

are integers, and the product is rounded at some weigfior g > 0. Either

the integer product x m is computed exactly, using one of the algorithms
from Chaptef1L, and then rounded; or the upper part is computed directly using
a “short product algorithm”, with correct rounding. The different cases that can
occur are depicted in Figufe 8.1.

v @) “ (b

v (©)

Figure 3.1 Different multiplication scenarios, according to the input and output
precisions. The rectangle corresponds to the full product of the inpatsly

(most significant digits bottom left), the triangle to the wanted short product.
Case (a): no rounding is necessary, the product being exact; case (b): the full
product needs to be rounded, but the inputs should not be; case (c): the input
with the larger precision might be truncated before performing a short product;
case (d): both inputs might be truncated.

An interesting question is: how many consecutive identical bits can occur
after the round hit? Without loss of generality, we can rephrase this question

96 Floating-point arithmetic

as follows. Given two odd integers of at masbits, what is the longest run
of identical bits in their product? (In the case of an even significand, we might
write it m = ¢2¢ with ¢ odd.) There is n@ priori bound except the trivial one
of 2n — 2 for the number of zeros, arith — 1 for the number of ones. For
example, with a precisiofi bits, 27 x 19 = (1 000 000 001),. More generally,
such a case corresponds to a factorizatio2?8f ' + 1 into two integers of,
bits, for example258 513 x 132913 = 23° + 1. Having2n consecutive ones
is not possible sincg?” — 1 can not factor into two integers of at mosbits.
Therefore, the maximal runs ha2e. — 1 ones, for exampl@17 x 151 =
(111111111111 111), for n = 8. A larger example i849 583 x 647 089 =
239 _ 1.

The exact product of two floating-point numbers3® and m/3¢ is
(mm’)3<t¢ . Therefore, if no underflow or overflow occurs, the problem re-
duces to the multiplication of the significands and m’. See Algorithm
FPmultiply.

The product at sted 1 éfPmultiply is ashort product, i.e. a product whose
most significant part only is wanted, as discussed at the start of this section. In
the quadratic range, it can be computed in about half the time of a full product.
In the Karatsuba and Toom—Cook ranges, Mulders’ algorithm can gain 10% to
20%; however, due to carries, implementing this algorithm for floating-point
computations is tricky. In the FFT range, no better algorithm is known than
computing the full producinm’ and then rounding it.

Algorithm 3.3 FPmultiply
Input: 2z =m - (¢, 2/ =m’ - 3¢, aprecisiom, a rounding mode
Output: o(za’) rounded to precision

1: m” <« o(mm’) rounded to precision

2: returnm’’ - gete’.

Hence, our advice is to perform a full product:afand m’, possibly after
truncating them ta + ¢ digits if they have more than + g digits. Hereg (the
number ofguard digits) should be positive (see Exerdisé 3.4).

It seems wasteful to multiply.-bit operands, producing 2n-bit product,
only to discard the low-order bits. Algorithm ShortProduct computes an
approximation to the short product without computing 2hebit full product.

It uses a threshold, > 1, which should be optimized for the given code base.

Error analysis of the short product. Consider twon-word normalized sig-
nificandsA and B that we multiply using a short product algorithm, where the
notationFullProduct (A, B) means the full integer produet - B.

3.3 Multiplication 97

Algorithm 3.4 ShortProduct
Input: integersA, B, andn, with0 < A, B < "
Output: an approximation tol B div 8"
Require: a threshold
if n < ng thenreturnFullProduct (A, B) div 5"
choosek > n/2,0 —n —k
C, « FullProduct (A div 3¢, B div 8) div g+~*
Cy « ShortProduct(A mod *, B div 3%, ()
Cs3 « ShortProduct(A div 4%, B mod 3¢, ()
returnCy + Cs + Cs.

Cs 4 Cy

Ch
Cs

B

Figure 3.2 Graphical view of AlgorithnshortProduct:
the computed parts ar€, Cs, Cs, and the neglected
parts areCs, C%, C4 (most significant part bottom left).

Theorem 3.5 The valueC’ returned by Algorithn8hortProduct differs from
the exact short product’ = AB div 8™ by at mosB(n — 1)

C'<C<C'+3(n-1).

Proof. First, sinceA, B are non-negative, and all roundings are truncations,
the inequalityC” < C follows.

Let A = >, a;" andB = 3_.b;37, where0 < a;,b; < (3. The pos-
sible errors come from: (i) the neglectegh; terms, i.e. part€;, Cj, Cy of
Figure[3.2; (ii) the truncation while computin; ; (iii) the error in the recur-
sive calls forCy andCs.

We first prove that the algorithm accumulates all produgls with i + j >
n — 1. This corresponds to all terms on and below the diagonal in
Figure[3.2. The most significant neglected terms are the bottom-left terms from
C} andC4, respectivelyi, 1 b1 andag_1b,—1. Their contribution is at most
2(3—1)23"~2. The neglected terms from the next diagonal contribute at most

98 Floating-point arithmetic

4(B8 — 1)2p"3, and so on. The total contribution of neglected terms is thus
bounded by

(B—1)2B"28 2 +48 3 +687 " +---] < 28"

(the inequality is strict since the sum is finite).
The truncation error i is at most3™, thus the maximal differencgn)
betweenC' andC’ satisfies

e(n) < 3+2¢(|n/2)),
which givess(n) < 3(n — 1), sinces(1) = 0. 0

REMARK: if one of the operands was truncated before applying Algorithm
ShortProduct, simply add one unit to the upper bound (the truncated part is
less thanl, and thus its product by the other operand is bounde@t)y

The complexityS(n) of Algorithm ShortProduct satifies the recurrence
S(n) = M(k)+2S(n—k). The optimal choice of depends on the underlying
multiplication algorithm. Assuming/(n) =~ n® for « > 1 andk = yn, we
get

S(n) 7

= T = M

where the optimal value is = 1/2 in the quadratic rangey =~ 0.694 in
the Karatsuba range, and~ 0.775 in the Toom—Cook3-way range, giving
respectivelyS(n) ~ 0.5M(n), S(n) ~ 0.808M (n), andS(n) ~ 0.888M (n).
The ratioS(n)/M(n) — 1 asr — oo for Toom—Cookr-way. In the FFT
range, AlgorithmShortProduct is not any faster than a full product.

3.3.1 Integer multiplication via complex FFT

To multiply n-bit integers, it may be advantageous to use the fast Fourier tran-
form (FFT, seefl.3.4,92.3). Note that three FFTs give the cyclic convolution
z = x x y defined by

2k = Z ZTjYk—j mod N for 0 <k < N.
0<j<N
In order to use the FFT for integer multiplication, we have to pad the input
vectors with zeros, thus increasing the length of the transform fxotm 2.V.

FFT algorithms fall into two classes: those using number theoretical proper-
ties (typically working over a finite ring, as 2.3.3), and those based on com-
plex floating-point computations. The latter, while not having the best asymp-
totic complexity, exhibit good practical behavior, because they take advantage

3.3 Multiplication 99

of the efficiency of floating-point hardware. The drawback of the complex
floating-point FFT (complex FFT for short) is that, being based on floating-
point computations, it requires a rigorous error analysis. However, in some
contexts where occasional errors are not disastrous, we may accept a small
probability of error if this speeds up the computation. For example, in the con-
text of integer factorization, a small probability of error is acceptable because
the result (a purported factorization) can easily be checked and discarded if
incorrect.

The following theorem provides a tight error analysis:

Theorem 3.6 The complex FFT allows computation of the cyclic convolution
z = x x y of two vectors of lengtlv = 2™ of complex values such that

12 = 2lloo < 2l llyll - (1 +€)*" (1 +eV5)* (1 + p)*" — 1), (3.2)

where|| - || and|| - ||~ denote the Euclidean and infinity norms respectively,
eissuch thaf(a £b) — (a £ b)] < ela £ 0|, |(ab)’ — (ab)| < e|ab]| for all
machine floats, b. Here . > |(w*)’ — (w*)|, 0 < k < N, w = ¢*™/N, and

()’ refers to the computed (stored) valug(offor each expression.

For the IEEE 754 double-precision format, with rounding to nearest, we have
e = 273, and if thew* are correctly rounded, we can take= </+/2. For a
fixed FFT sizeN = 2", the inequality[(3.R) enables us to compute a boBnd

on the components af andy that guaranteel$z’ — z||- < 1/2. If we know

that the exact result € Z, this enables us to uniquely round the components
of 2/ to 2. Table[3:B givesh = lg B, the number of bits that can be used
in a 64-bit floating-point word, if we wish to perform-bit multiplication
exactly (heren = 2"~1b). Itis assumed that the FFT is performed with signed
components ifZ N [-20—1, +20=1), see for exampleé [80, p. 161].

Note that Theorer 3.6 is a worst-case result; with rounding to nearest we
expect the error to be smaller due to cancellation — see Exérclse 3.9.

Since 64-bit floating-point numbers have bounded precision, we can not
compute arbitrarily large convolutions by this method — the limit is about
n = 43. However, this corresponds to vectors of sife= 2" = 243 > 10!2,
which is more than enough for practical purposes — see also Exercise 3.11.

3.3.2 The middle product

Given two integers o2n andn bits respectively, their “middle product” con-
sists of the middle: bits of their3n-bit product (see Figuie_3.3). The middle
product might be computed using two short products, one (low) short product
between: and the high part of, and one (high) short product betweeand

100 Floating-point arithmetic

n b m n b m

1 25 25 11 18 18432

2 24 48 12 17 34816

3 23 92 13 17 69632

4 22 176 14 16 131072
5 22 352 15 16 262144
6 21 672 16 15 491520
7 20 1280 17 15 983040
8 20 2560 18 14 1835008
9 19 4864 19 14 3670016
10 19 9728 20 13 6815744

Table 3.3 Maximal numbeb of bits per IEEE 754
double-precision floating-point numbki nar y64 (53-bit
significand), and maximah for a plainm x m bit integer
product, for a given FFT siz2”, with signed components.

the low part ofy. However there are algorithms to comput2rax n middle
product with the same M (n) complexity as am x n full product (se€f3.8).

Y

Figure 3.3 The middle product af of n bits andy of 2n bits
corresponds to the middle region (most significant bits bottom
left).

Several applications benefit from an efficient middle product. One of these
applications is Newton's method(§4.2). Consider, for example, the reciprocal
iteration (§4.2.P):x; 11 = z; + x;(1 — z;y). If z; hasn bits, we have to
consider2n bits fromy in order to geRn accurate bits in;; ;. The product
z;y has3n bits, but if z; is accurate ton bits, then most significant bits
of z;y cancel withl, and then least significant bits can be ignored as they
only contribute noise. Thus, the middle product:gfandy is exactly what is
needed.

3.4 Reciprocal and division 101

Payne and Hanek argument reduction

Another application of the middle product is Payne and Hanek argument re-
duction. Assumer = m - 2¢ is a floating-point number with a significand
0.5 < m < 1 of n bits and a large exponeaisayn = 53 ande = 1024 to fix

the ideas). We want to compuien = with a precision ofn bits. The classical
argument reduction works as follows: first comphite- | /7], then compute

the reduced argument

¥ =x— k. (3.3)

Aboute bits will be cancelled in the subtraction— (kx), and thus we need to
computekr with a precision of at least+ n bits to get an accuracy of at least
n bits forz’. Of course, this assumes thais known exactly — otherwise there
is no point in trying to computein z. Assumingl /7 has been precomputed to
precisione, the computation o costsM (e, n), and the multiplicatiork x =
costsM (e, e + n); therefore, the total cost is abalif(¢) whene > n.

1/m

Y

Figure 3.4 A graphical view of Payne and Hanek algorithm.

The key idea of the Payne and Hanek algorithm is to rewrite Egd. (3.3) as
.
=7 (Tr k) (3.4)

If the significand ofr hasn < e bits, only abou®n bits from the expansion
of 1/m will effectively contribute to thex most significant bits of’, namely
the bits of weight2=¢=" to 27¢*". Let y be the correspondingn-bit part
of 1/x. Payne and Hanek’s algorithm works as follows: first multiply the
bit significand ofz by y, keep then middle bits, and multiply by am-bit
approximation ofr. The total costis- (M (2n,n)+ M (n)), or even~2M (n)

if the middle product is performed in tim# (n), and thus independent of

3.4 Reciprocal and division

As for integer operations [(§1.4), we should try as far as possible to trade
floating-point divisions for multiplications, since the cost of a floating-point

102 Floating-point arithmetic

multiplication is theoretically smaller than the cost of a division by a constant
factor (usually fron2 to 5, depending on the algorithm used). In practice, the
ratio might not even be constant, unless care is taken in implementing division.
Some implementations provide division with céxtM (n) logn) or ©(n?).

When several divisions have to be performed with the same divisor, a well-
known trick is to first compute the reciprocal of the divisdr (83.4.1); then each
division reduces to a multiplication by the reciprocal. A small drawback is that
each division incurs two rounding errors (one for the reciprocal and one for
multiplication by the reciprocal) instead of one, so we can no longer guarantee
a correctly rounded result. For example, in base ten with six digjitg3.0
might evaluate t©.999 999 = 3.0 x 0.333 333.

The cases of a single division, or several divisions with a varying divisor,
are considered if3.4.2.

3.4.1 Reciprocal

Here we describe algorithms that compute an approximate reciprocal of a pos-
itive floating-point number, using integer-only operations (see Chapier 1).
The integer operations simulate floating-point computations, but all roundings
are made explicit. The numberis represented by an integdrof n words in
radix 8: a« = ™A, and we assumg” /2 < A, thus requiringl/2 < a < 1.
(This does not cover all cases for> 3, butif 37~1 < A < 37 /2, multiplying
A by some appropriate integér< g will reduce to the casg”/2 < A; then
it suffices to multiply the reciprocal dfa by k.)

We first perform an error analysis of Newton’s methdd (§4.2) assuming all
computations are done with infinite precision, and thus neglecting roundoff
errors.

Lemma3.7 Letl/2<a < 1,p=1/a,z > 0,andz’ = z+z(1 —ax). Then

8
o

0<p—a' < Zz(p—2)
for some) € [min(x, p), max(x, p)].

Proof. Newton’s iteration is based on approximating the function by its tan-
gent. Letf(¢t) = a — 1/t, with p the root of f. The second-order expansion of
f att = p with explicit remainder is

3.4 Reciprocal and division 103

for somef € [min(zx, p), max(x, p)]. Sincef(p) = 0, this simplifies to

TP T e Py
Substitutingf (t) = a — 1/t, f'(t) = 1/t> and f"(t) = —2/t3, it follows that
.132
p=z+a(l—ar)+ 25 (p—2)
which proves the claim. 0

Algorithm ApproximateReciprocal computes an approximate reciprocal.
The inputA is assumed to be normalized, i®'/2 < A < ™. The output
integerX is an approximation tg?" /A.

Algorithm 3.5 ApproximateReciprocal

Input: A = """ a;8%, with 0 < a; < and3/2 < a,_,
Output: X = " + S0 2,8 with 0 < z; < 3

1 if n < 2thenreturn[3?"/A] — 1
20— |(n—=1)/2],h—n—1¢

3 Ap Z?;ol aptif3’

4. X, «— ApproximateReciprocal(Ay,)
5 T — AX,,

6: while T > 3"*" do

7. (Xh,T)H(Xh—l,T—A)
g T« pnth T

9: T, — | TS|

10: U « T,, X},

11: return X, 3¢ + |[UB 2R .

Lemma 3.8 If 5 is a power of two satisfying > 8, andg"/2 < A < g7,
then the outpufX of AlgorithmApproximateReciprocal satisfies

AX < B8P < A(X +2).

Proof. Forn < 2, the algorithm returns{ = |3%"/A], unlessA = ("/2,
when it returnsX = 2™ — 1. In both cases, we haweX < %" < A(X +1);
thus, the lemma holds for < 2.

Now considemn > 3. We havel = | (n—1)/2] andh = n—¢, and therefore
n = h + ¢andh > {. The algorithm first computes an approximate reciprocal
of the upperh words of A, and then updates it to words using Newton’s
iteration.

104 Floating-point arithmetic

After the recursive call at ling 4, we have by induction
ApXp < B < Ap(Xp +2). (3.6)

After the productl’ +— AX), and the while-loop at stefig[@-7, we still have
T = AX}, whereT andX;, may have new values, and in additidn< 571",
We also haves™t" < T 4 2A; we prove this by distinguishing two cases.
Either we entered the while-loop, then since the valug diecreased byl at
each loop, the previous vali® + A was necessarily 57", If we did not
enter the while-loop, the value @fis still AX},. Multiplying Eqn. [3.6) by3*
gives: 3"t < ALBY(Xy, +2) < A(X), +2) = T + 2A. Thus, we have

T < "t < T 4 2A.

It follows thatT > g"*th —24 > gnth —25". As a consequence, the value of
A7 th—T computed at stdgd 8 can not exc@gtt —1. The last lines compute the
productT;, X5, whereT,, is the upper part df’, and put it most significant
words in the low partX, of the resultX.

Now let us perform the error analysis. Compared to Lerhmh:3stands
for X}, 57", a stands forA3—", andz’ stands forX 5~". The while-loop en-
sures that we start from an approximation< 1/a, i.e. AX; < 3"t". Then
Lemmd3.Y guarantees that< x’ < 1/a if 2’ is computed with infinite preci-
sion. Here we have < 2/, sinceX = X, 5" + X,, whereX, > 0. The only
differences compared to infinite precision are:

e the low/ words from1 — ax (hereT at line[8) are neglected, and only its
upper par{1 — ax); (hereT,,) is considered,;
e the low2h — ¢ words fromz (1 — ax);, are neglected.

Those two approximations make the computed valug af the value which
would be computed with infinite precision. Thus, for the computed value
we have

r <z <1/a.

From Lemmd_3]7, the mathematical error is bounded iy 3(p — 2)? <
4372k sincer? < 62 and|p — x| < 237" The truncation from — az, which
is multiplied byz < 2, produces an error. 23~2". Finally, the truncation of
2(1 — ax);, produces an error. 5~™. The final result is thus

¥ <p<a +6572h4pm
Assuming65~2" < 3~", which holds as soon as$ > 6 since2h > n, this
simplifies to
¥ <p<a +2877,

3.4 Reciprocal and division 105
which gives witha’ = X5~ andp = " /A

5271
< .
X < 1 <X +2
Since3 is assumed to be a power of two, equality can hold only wHegs
itself a power of two, i.eA = ("/2. In this case, there is only one value
of X, that is possible for the recursive call, namély, = 25" — 1. In this
case, I = g"+" — 37 /2 before the while-loop, which is not entered. Then
gt T = p" /2, which multiplied byX, gives (again)p™+" — 3" /2, whose
h most significant words aré — 1. Thus, X, = 8 — 1,andX = 23" — 1.

REMARK . Lemma 3B might be extended to the cage! < A < 37, or to
a radixg which is not a power of two. However, we prefer to state a restricted
result with simple bounds.

COMPLEXITY ANALYSIS. Let I(n) be the cost to invert an-word num-
ber using AlgorithmApproximateReciprocal. If we neglect the linear costs,
we havel(n) ~ I(n/2) + M(n,n/2) + M(n/2), whereM (n,n/2) is the
cost of ann x (n/2) product — the product X, at sted’b — andV/ (n/2)
the cost of ann/2) x (n/2) product — the product,, X;, at stedID. If the
n x (n/2) product is performed via tw¢n/2) x (n/2) products, we have
I(n) ~ I(n/2)+3M (n/2), whichyieldsI(n) ~ M (n)in the quadratic range,
~ 1.5M(n) in the Karatsuba rangey 1.704M (n) in the Toom—Cook-way
range, and-3M (n) in the FFT range. In the FFT range, arx (n/2) product
might be directly computed by three FFTs of length/2 words, amounting
to ~ M (3n/4); in this case, the complexity decreasest@.5M (n) (see the
comments at the end §P.3.3, page 58).

THE WRAP-AROUND TRICK. We now describe a slight modification of
Algorithm ApproximateReciprocal, which yields a complexity2M (n). In
the productd X, at ste b, Eqn[{316) tells us that the result approagties,

or more precisely

Bt — 9™ < AX,, < g 4287 (3.7)

Assume we use an FFT-based algorithm such as thérbelge—Strassen
algorithm that computes products modw&® + 1, for some integem <
(n,n+h). LetAX, = UB™+V with0 <V < g™, It follows from Eqn.[37)
thatU = gnth—morU = gn+h=m — 1. LetT = AX}, mod (8™ + 1) be the
value computed by the algorithm. Név=V —U orT =V —-U+ (™ +1).

It follows that AX;, = T + U(B™ + 1) or AX), = T + (U — 1)(f™ + 1).

106 Floating-point arithmetic

Taking into account the two possible valued gfwe have
AXy =T+ (B"Th=™ —) (8™ + 1),

wheree € {0,1,2}. Sinces > 6, ™ > 45", thus only one value of yields
a value ofA X}, in the interval(gn*h — 287, gnth + 25m).

Thus, we can replace step 5 in AlgorithpproximateReciprocal by the
following code:
Computel’ = AX);, mod (8™ + 1) using FFTs with lengthn > n
T T + gnth 4 grth—m > the case = 0
while T > g"*" + 26" do

T—T—-("+1)

Assuming that we can take close ton, the cost of the producti X}, is
only about that of three FFTs of lengthi.e.~ M (n/2).

3.4.2 Division

In this section, we consider the case where the divisor changes between succes-
sive operations, so no precomputation involving the divisor can be performed.
We first show that the number of consecutive zeros in the result is bounded by
the divisor length, then we consider the division algorithm and its complexity.
Lemmd3.ID analyses the case where the division operands are truncated, be-
cause they have a larger precision than desired in the result. Finally, we discuss
“short division” and the error analysis of Barrett’s algorithm.

A floating-point division reduces to an integer division as follows. Assume
dividenda = ¢-3¢ and divisord = m-37, wherel, m are integers. Them/d =
(¢/m)Be=1. If k bits of the quotient are needed, we first determine a scaling
factor g such that3*~! < |¢39/m| < B*, and we divide/39 — truncated
if needed — bym. The following theorem gives a bound on the number of
consecutive zeros after the integer part of the quotient | by m.

Theorem 3.9 Assume we divide an-digit positive integer by an-digit pos-
itive integer in radixg, with m > n. Then the quotient is either exact, or its
radix # expansion admits at most— 1 consecutive zeros or ones after the
digit of weight(°.

Proof. We first consider consecutive zeros. If the expansion of the quatient
admitsn or more consecutive zeros after the binary point, we can write

g1+ 8" "qo, whereg; is an integer and < ¢y < 1. If gy = 0, then the quotient
is exact. Otherwise, i is the dividend and is the divisor, we should have
a = q1d+ B~ "qod. Howevera andg; d are integers, antl < 3~ "qod < 1, SO

B~ "qod can not be an integer, and we have a contradiction.

3.4 Reciprocal and division 107

For consecutive ones, the proof is similar: write= ¢; — 3~ "qq, with
0 < ¢p < 1. Sinced < (3, we still have) < 37 "qod < 1. 0

Algorithm DivideNewton performs the division of two-digit floating-
point numbers. The key idea is to approximate the inverse of the divisor to half
precision only, at the expense of additional steps. At [SteyiddleProduct
(o, d) denotes the middle product gf andd, i.e. then/2 middle digits of
that product. At stepl2; is an approximation td /d;, and thus tol /d, with
precisionn /2 digits. Therefore, at stdgd 3o approximates:/d to aboutn /2
digits, and the uppenr/2 digits of god at sted# agree with those of The
valuee computed at stdd 4 thus equadg — ¢ to precision:/2. It follows that
re =~ e/d agrees withyy — ¢/d to precisionn/2; hence, the correction term
(which is really a Newton correction) added in the last step.

Algorithm 3.6 DivideNewton

Input: n-digit floating-point numbers andd, with n even,d normalized
Output: an approximation of/d

cwrited = d1 82 + do with 0 < dy, dy < /2

r — ApproximateReciprocal(d,, n/2)

. qo < cr truncated ta:/2 digits

. e «+ MiddleProduct (g, d)

q < qo — Te.

In the FFT range, the cost of AlgorithBivideNewtonis ~2.5M (n): sted2
costs~ 2M (n/2) ~ M(n) with the wrap-around trick, and stepk[8—5 each
cost~ M (n/2), using a fast middle product algorithm for sfdp 4. By way of
comparison, if we computed a full precision inverse as in Barrett's algorithm
(see below), the cost would be3.5M (n). (See§3.8 for improved asymptotic
bounds on division.)

In the Karatsuba range, AlgorithBivideNewton costs~ 1.5M (n), and is
useful provided the middle product of sfdp 4 is performed with st (n/2).

In the quadratic range, AlgorithmivideNewton costs~ 2M/(n), and a clas-
sical division should be preferred.

When the requested precision for the output is smaller than that of the inputs
of a division, we have to truncate the inputs in order to avoid an unnecessarily
expensive computation. Assume for example that we want to divide two num-
bers of10, 000 bits, with al10-bit quotient. To apply the following lemma, just
replaceu, by an appropriate value such thatf and B; have abou2n andn
digits respectively, where is the desired number of digits in the quotient; for
example, we might chooge= /* to truncate td: words.

108 Floating-point arithmetic

Lemma3.10 LetA,B,u € N*,2 < u < B.LetQ = |A/B], Ay = |A/n],
B, = LB/,LLJ, Q1 = LAl/BlJ If A/B < 2B, then

Q<L <Q+2

The conditionA/B < 2B, is quite natural: it says that the truncated divisor
By should have essentially at least as many digits as the desired quotient.

Proof. Let Ay = Q:B; + R;. We haveA = A,u + Ag, B = Bip + By,
therefore

A ALLL-FAQ A1ﬂ+A0 R1[L+A0

== < =Q, + LT

B Bip+ By Biu Biu
SinceR; < By andAy < p, Rip+ Ag < Bip, thusA/B < @1 + 1. Taking
the floor of each side proves, sin€e is an integer, tha®) < Q.

Now consider the second inequality. For given truncated p&rtand By,

and thus giver),, the worst case is whes is minimal, sayA = A, u, andB
is maximal, sayB = B + (i — 1). In this case, we have

A A A A A(p—1)
B, B By Bip+(p—1) Bi(Bip+p—1)|
The numerator equald — A; < A, and the denominator equals B; there-

fore, the differencel, /B; — A/B is bounded byd /(B B) < 2, and so is the
difference betweey) and@);. 0

Algorithm ShortDivision is useful in the Karatsuba and Toom—Cook ranges.
The key idea is that, when dividing2a-digit number by am-digit number,
some work that is necessary for a fak-digit division can be avoided (see

Figure[3.5).

Algorithm 3.7 ShortDivision
Input: 0 < A< B, 3"/2< B< "
Output: an approximation ofi/ B
Require: a threshold:y

1: if n < ngthenreturn| A/B]
choosek > n/2,0 «—n—k
(A1, Ag) « (A div 8%, A mod %)
(B1, By) « (B div *, B mod %)
(Q1, R1) < DivRem(A44, By)
Al — R 3% + Ay — Q1 Bof*
Qo « ShortDivision(A’ div 8%, B div %)
returnQ, 5° + Qo.

3.4 Reciprocal and division 109

Theorem 3.11 The approximate quotient)’ returned by ShortDivision
differs at most by lg n from the exact quotied® = | A/ B|, more precisely

RQ<Q <Q+2Ign.

Proof. If n < ng, @ = @’ so the statement holds. Assume> ng. We
haveA = A,3% + Ay andB = B, ' + By; thus, sinced; = Q1B + R,
A = (QiB1 + R)B* + Ay = Q1Bp* + A’, with A’ < pg"tt. Let A’ =
Al R+ A), andB = B3¢+ B}, with0 < A}, B) < 3%, andA} < 3%¢. From
Lemmd3.ID, the exact quotientaf div 5% by B div 8* is greater or equal to
that of A’ by B; thus, by inductiorQ, > A’/B. SinceA/B = Q,3*+ A’/ B,
this proves that)’ > Q.

Now by induction,Qy < A}/Bj + 21lg¢, andA}/B; < A’/B + 2 (from
Lemma[3.ID again, whose hypothedi§ B < 2B/ is satisfied, sincel’ <
B1%,thusA’/B < 3 < 2B}),s0Qo < A'/B +2lgn, andQ’ < A/B +
21lgn. O

As shown at the lower half of Figure 3.5, we can use a short ptdadicompute
Q1 By at stefhB. Indeed, we need only the uppenords of A’, and thus only the
upper? words of(Q1 By. The complexity of AlgorithnShortDivision satisfies
D*(n) = D(k)+ M*(n—k)+D*(n—k) with k > n/2, whereD(n) denotes
the cost of a division with remainder, add*(n) the cost of a short product.
In the Karatsuba range, we ha¥®n) ~ 2M(n), M*(n) ~ 0.808M(n),
and the best possible value bfis & ~ 0.542n, with corresponding cost
D*(n) ~ 1.397M (n). In the Toom—-Cool-way rangek ~ 0.548n is op-
timal, and givesD*(n) ~ 1.988M (n).

Barrett’s floating-point division algorithm

Here we consider floating-point division using Barrett’s algorithm and provide
a rigorous error bound (sé@.4.1 for an exact integer version). The algorithm
is useful when the same divisor is used several times; otherwise Algorithm
DivideNewton s faster (see Exercige 3113). Assume we want to diwitg b

of n bits, each with a quotient of bits. Barrett’s algorithm is as follows:

1. Compute the reciprocalof b to n bits [rounding to nearest]
2. q < o,(a x r) [rounding to nearest]

The cost of the algorithm in the FFT rangeNsM (n): ~2M (n) to compute
the reciprocal with the wrap-around trick, afdl(n) for the product x r.

Lemma 3.12 At sted 2 of Barrett's algorithm, we have — bq| < 3|b|/2.

110 Floating-point arithmetic

M(g)

M(3)
M(n/4)

M(%)

M(2)
M(n/4)

M(%)
M(n/2)

M(%)
M(n/4)

M(%)

M (n/2)

Figure 3.5 Divide and conquer short division: a graphical view. Wppih
plain multiplication; lower: with short multiplication. See also Figlird 1.3.

Proof. By scalinga and b, we can assume thatand ¢ are integers, that
2n=l < bg < 27 thus,a < 2*". We haver = 1/b + ¢ with
le| < ulp(277/2) = 272", Also ¢ = ar + ¢’ with |¢/| < ulp(q)/2 = 1/2

3.5 Square root 111

sinceq hasn bits. Thereforeq = a(1/b +¢) + ¢’ = a/b+ ac + £, and
|bg — a| = |b||ac + €'| < 3]b|/2. 0

As a consequence of Lemra 3. 32iffers by at most one unit in last place
from then-bit quotient ofa andb, rounded to nearest.

Lemma3.IP can be applied as follows: to perform several divisions with a
precision ofn bits with the same divisor, precompute a reciprocal with g
bits, and use the above algorithm with a working precision &fg bits. If the
last g bits of ¢ are neithe000...00x nor 111 ... 11z (wherex stands for0
or 1), then rounding down ton bits will yield o,,(a/b) for a directed rounding
mode.

Which algorithm to use?

In this section, we described three algorithms to compyite Divide-Newton

uses Newton’s method for/y and incorporates the dividend at the last
iteration,ShortDivision is a recursive algorithm using division with remainder
and short products, and Barrett’s algorithm assumes we have precomputed an
approximation td /y. When the same divisaris used several times, Barrett's
algorithm is better, since each division costs only a short product. Otherwise
ShortDivision is theoretically faster thabDivideNewton in the schoolbook

and Karatsuba ranges, and taking= n/2 as parameter ishortDivision is

close to optimal. In the FFT rangBjvideNewton should be preferred.

3.5 Square root

Algorithm FPSqgrt computes a floating-point square root, using as subroutine
Algorithm SgrtRem (41.5.1 to determine an integer square root (with remain-
der). It assumes an integer significaing and a directed rounding mode (see
Exercisé_3.14 for rounding to nearest).

Algorithm 3.8 FPSqrt
Input: = = m - 2¢, a target precision, a directed rounding mode
Output: y = o, (/)

if eis oddthen (m/, f) « (2m,e — 1) else(m/, f) < (m,e)

definem’ := m2%* 4 mg, m, integer of2n or 2n — 1 bits,0 < mq < 22*

(s,r) — SqrtRem(m;)

if (o is round towards zero or down) 6r = mg = 0)

thenreturns - 2++//2 elsereturn(s + 1) - 28+//2,

112 Floating-point arithmetic

Theorem 3.13 Algorithm FPSqrt returns the correctly rounded square root
of z.

Proof. Sincem; has2n or 2n — 1 bits, s has exactlyn bits, and we have
x > 52224/ thus,\/z > s2F*7/2, On the other handsqrtRem ensures that
r < 2s,and2z2™F = (s2 +7)2% 4 my < (82 + 1+ 1)22F < (s + 1)22%F,
Sincey := s - 28//2 andy* = (s + 1) - 28+//2 are two consecutive-bit
floating-point numbers, this concludes the proof. 0

NOTE: in the cases = 2" — 1, s + 1 = 2™ is still representable in bits.

A different method is to use an initial approximation to the reciprocal square
rootz— /2 (§3.5.1), see Exerci§e 3]15. Faster algorithms are mentioriBd8n

3.5.1 Reciprocal square root

In this section, we describe an algorithm to compute the reciprocal square root
a~1/2 of a floating-point numbet, with a rigorous error bound.

Lemma 3.14 Leta,r > 0, p = a~'/2, andz’ = = + (2/2)(1 — az?). Then
323 9
0<p-a'< ﬁ(ﬂ*x))
for some) € [min(x, p), max(x, p)].

Proof. The proof is very similar to that of Lemnfia8.7. Here we y$e) =
a — 1/t2, with p the root of f. Eqn. [35) translates to
3
_ z 2 - 2
P*$+§(1—a$)"’W(P—x) .

which proves the Lemma. 0

Lemma 3.15 Provided thatg > 38, if X is the value returned by Algorithm
ApproximateRecSquareRoofa = A", o = X357 ", thenl/2 < z < 1
and

|z —a 12| <287,
Proof. We havel < a < 4. SinceX is bounded by3" — 1 at lined1 andlo,

we haver, z;, < 1, with 2;, = X;,3~". We prove the statement by induction
onn. Itis true forn < 2. Now assume the valug,, at ste # satisfies

e —ay P < 870

wherea;, = A,3~". We have three sources of error, that we will bound sepa-
rately:

3.5 Square root 113

Algorithm 3.9 ApproximateRecSquareRoot
Input: integerA with g" < A < 48", 3 > 38
Output: integerX, 5"/2 < X < 3" satisfying LemmBIIS
:if n < 2thenreturnmin(g™ — 1, | 6" /\/AB™"
L—|(n=1)/2],h—n—1¢

Ay — A7

X, « ApproximateRecSquareRoot{},)
T — AX}

Ty — I_Tﬁ_nj

Ty — % — T,

U—T, Xy

returnmin(g” — 1, X, 8¢ + |UB*~2" /27).

© O N aAE®WwDdR

1. the rounding errors in stepk 6 did 9;

2. the mathematical error given by Lemina_3.14, which would occur even if
all computations were exact;

3. the error coming from the fact we ugg instead ofA in the recursive call

at step 4.
At step® we have exactly

t:=TF " = ax?,

which gives |t;, — ax?| < B72" with t;, = T,572", and in turn
[te — (1 — ax?)| < B~ with ¢, := T,372". At step[3, it follows that
lu — 2, (1 — ax?)| < 72", whereu = UB~3". Thus, after taking into
account the rounding error in the last stép,— [z, + z,(1 — az?)/2]| <
(8720 + =) /2.

Now we apply Lemm&314 to — zp, 2’ — z, to bound the mathematical
error, assuming no rounding error occurs
3xf’L
2

O§a71/27 < 74(&71/2*%)2

)

which givel la=1/2 — 2| < 3.04(a=Y/2 — ;)% Now |a=1/2 — a; /|
la — ap|lv=/2/2 for v € [min(ap, a), max(ap, a)]; thus,|a=1/2 — a,
(B~"/2. Together with the induction hypothesis;, — a;1/2| < 287" i
follows that|a=1/2 — x| < 2.58~". Thus,|a~'/? — 2| <1952

|

=
_w
IA A

—

1 Sinceb € [z},,a" /2] and|z;, —a~V/2| < 2.5~ ", we haved > z;, — 2.56~", and
zn/0 < 142537/ <1+ 53" (remembe® € [z},,a'/2]), and it follows that
6 > 1/2.For3 > 38, sinceh > 2, we havel + 56~ < 1.0035; thus,
1.523 /6* < (1.5/6)(1.0035)3 < 3.04.

114 Floating-point arithmetic

The total error is thus bounded by
la=1/?% —z| < gﬂfﬂ +19872h,

Since2h > n + 1, we see that9p—2" < 3= /2 for 3 > 38, and the lemma
follows. 0

NOTE: If A, X? < 33" at stefi#t of AlgorithmApproximateRecSquareRoot,
we could haved X? > 37 +2h at stefi b, which might cauge to be negative.

Let R(n) be the cost ofApproximateRecSquareRootfor an n-digit in-
put. We haveh, ¢ ~ n/2; thus, the recursive call cosfg(n/2), stepb costs
M (n/2) to computeX?, andM (n) for the productAX? (or M (3n/4) in the
FFT range using the wrap-around trick describet@mt.1, since we know the
uppern/2 digits of the product give), and againV/ (n/2) for steg 8. We get
R(n) = R(n/2) +2M(n) (or R(n/2) + 7M(n)/4 in the FFT range), which
yields R(n) ~ 4M(n) (or R(n) ~ 3.5M (n) in the FFT range).

This algorithm is not optimal in the FFT range, especially when using an
FFT algorithm with cheap point-wise products (such as the complex FFT, see
43.3.1). Indeed, AlgorithnApproximateRecSquareRootuses the following
form of Newton'’s iteration

=+ g(l — az?).

It might be better to write

¥ =x+ i(ac —ax®).

Here, the product® might be computed with singleFFT transform of length
3n/2, replacing the point-wise products by z?, with a total cost-0.75M (n).
Moreover, the same idea can be used for the full produétof 5n/2 bits,
where the uppen /2 bits match those of. Thus, using the wrap-around trick,
a transform of lengti2n is enough, with a cost of M (n) for the last iter-
ation, and a total cost of 2M (n) for the reciprocal square root. With this
improvement, the algorithm of Exercise 3.15 costs onB25M (n).

3.6 Conversion

Since most software tools work in radixor 2*, and humans usually enter or
read floating-point numbers in radiX or 10, conversions are needed from
one radix to the other one. Most applications perform very few conversions,

3.6 Conversion 115

in comparison to other arithmetic operations, thus the efficiency of the conver-
sions is rarely criticE.The main issue here is therefore more correctness than
efficiency. Correctness of floating-point conversions is not an easy task, as can
be seen from the history of bugs in Microsoft E)&el.

The algorithms described in this section use as subroutines the integer-
conversion algorithms from ChaptEl 1. As a consequence, their efficiency
depends on the efficiency of the integer-conversion algorithms.

3.6.1 Floating-point output

In this section, we follow the convention of using lower-case letters for param-
eters related to the internal radixand upper-case for parameters related to
the external radix3. Consider the problem of printing a floating-point num-
ber, represented internally in radix(sayb = 2) in an external radix3 (say

B = 10). We distinguish here two kinds of floating-point output:

e Fixed-format output, where the output precision is given by the user, and
we want the output value to be correctly rounded according to the given
rounding mode. This is the usual method when values are to be used by
humans, for example to fill a table of results. The input and output precisions
may be very different, for example we may want to piifd0 digits of2/3,
which uses only one digit internally in radix Conversely, we may want to
print only a few digits of a number accuratelt@)0 bits.

e Free-format output, where we want the output value, when read with correct
rounding (usually to nearest), to giexactlythe initial number. Here the
minimal number of printed digits may depend on the input number. This
kind of output is useful when storing data in a file, while guaranteeing that
reading the data back will produce exactly the same internal numbers, or for
exchanging data between different programs.

In other words, ifx is the number that we want to print, adis the printed
value, the fixed-format output requires— X| < ulp(X), and the free-format
output requiresz — X | < ulp(z) for directed rounding. Replace ulp(-) by
< ulp(-)/2 for rounding to nearest.

Some comments on AlgorithRrintFixed :

e It assumes that we have precomputed valuesof= o(log b/ log B) for

2 An important exception is the computation of billions of digits of constants#ikeg 2,
where a quadratic conversion routine would be far too slow.

3 In Excel 2007, the produ&50 x 77.1 prints as100, 000 instead 065, 535; this is really an
output bug, since if we multiply “100000” by 2, we get131, 070. An input bug occurred in
Excel 3.0 to 7.0, where the inpuit40737488355328 gave(.64.

116 Floating-point arithmetic

Algorithm 3.10 PrintFixed

Input: = = f-b°"P with f,e,pintegersp?~t < | f| < bP, external radixB
and precisionP, rounding mode

Output: X = F - BP~F with F, E integers,BY~! < |F| < B, such that

X = o(x) in radix B and precision”

A« o(logb/log B)

E—1+|(e—1))]

g [P/A]

y « o(xBF~F) with precisiong

if we can not roung to an integethen increase; and go to stepl4

F « Integer(y, o). > seedIl. 4

if || > B then E + E + 1 and go to stepl4.

returnfF’, E.

© NG R wNR

any possible external radi® (the internal radi» is assumed to be fixed for
a given implementation). Assuming the input exponeig bounded, it is
possible — see Exercige 317 — to choose these values precisely enough that

log b
logB |

E=1+ {(e -1 (3.8)
Thus, the value ok at stefi 1L is simply read from a table.

e The difficult part is stejpl4, where we have to perform the exponentiation
BP~F — remember all computations are done in the internal radixand
multiply the result byr. Since we expect an integergfligits in stefi B, there
is no need to use a precision of more thadigits in these computations,
but a rigorous bound on the rounding errors is required, so as to be able to
correctly roundy.

e In step[®, we can roung to an integer if the interval containing all pos-
sible values oft B”~F — including the rounding errors while approaching
xBP~F and the error while rounding to precisign- contains no rounding
boundary (ifo is a directed rounding, it should contain no integer i
rounding to nearest, it should contain no half-integer).

Theorem 3.16 AlgorithmPrintFixed is correct.

Proof. First assume that the algorithm finishes. E@n.](3.8) impliés ! <

be~1; thus|z|BP—# > BP~!, which implies thaiF'| > BY~! at stef®.
ThereforeB”~! < |F| < BT at the end of the algorithm. Now, printing
givesF - B iff printing «B* givesF - B4+* for any integetk. Thus, it suffices
to check that printingg B”—F givesF', which is clear by construction.

3.6 Conversion 117

The algorithm terminates because at Elepi#’’ — ¥, if not an integer, can not
be arbitrarily close to an integer. H — E > 0, let k& be the number of digits of
BP~F in radix b, thenzB”~F can be represented exactly wjth+ k digits.

If P—E <0, letg = BP~P, of k digits in radixb. Assumef/g = n + ¢
with n integer; thenf — gn = ge. If € is not zeroge is a non-zero integer, and
el = 1/g > 27",

The caseF| > B at sted¥ can occur for two reasons: eithg 3"~ >
B, and its rounding also satisfies this inequality;|efB”~* < BT, but
its rounding equal$3” (this can only occur for rounding away from zero or
to nearest). In the former case, we haveB”~F > BF~1 at the next pass
in step#, while in the latter case the rounded valuequalsB”~! and the
algorithm terminates. O

Now consider free-format output. For a directed rounding eyade want
|z — X| < ulp(z) knowing |z — X| < ulp(X). Similarly, for rounding to
nearest, if we replacelp by ulp /2.

It is easy to see that a sufficient condition is th&b(X) < ulp(z), or
equivalently BEF—F < p¢~P in Algorithm PrintFixed (with P not fixed at
input, which explain the “free-format” name). To summarize, we have

bl <|z| < b, BF'<|X|< BE.

Since|z| < b¢, and X is the rounding ofz, it suffices to haveB®~! < b°. It
follows thatBE—F < p¢B'—F, and the above sufficient condition becomes

logb
P21+p1§ggB

For example, withh = 2 andB = 10, p = 53 givesP > 17, andp = 24 gives

P > 9. As a consequence, if a double-precision IEEE 754 binary floating-
point number is printed with at leasT significant decimal digits, it can be read
back without any discrepancy, assuming input and output are performed with
correct rounding to nearest (or directed rounding, with appropriately chosen
directions).

3.6.2 Floating-point input

The problem of floating-point input is the following. Given a floating-point
numberX with a significand ofP digits in some radixB (say B = 10), a
precisionp and a given rounding mode, we want to correctly rounido a
floating-point numbes: with p digits in the internal radix (sayb = 2).

118 Floating-point arithmetic

At first glance, this problem looks very similar to the floating-point output
problem, and we might think it suffices to apply Algoriti®rintFixed, simply
exchanging(b, p, e, f) and (B, P, E, F'). Unfortunately, this is not the case.
The difficulty is that, in AlgorithmPrintFixed, all arithmetic operations are
performed in thenternal radix b, and we do not have such operations in radix
B (see however Exerci§e 1137).

3.7 Exercises

Exercise 3.11n §3.1.3, we described a trick to get the next floating-point num-
ber in the direction away from zero. Determine for which IEEE 754 double-
precision numbers the trick works.

Exercise 3.2 (Kidder, Boldo) Assume a binary representation. The “rounding

to odd” modeM@O] is defined as follows: in case the exact value is not
representable, it rounds to the unique adjacent number with an odd significand.
(“Von Neumann rounding’@Z] omits the test for the exact value being repre-
sentable or not, and rounds to odd in all non-zero cases.) Note that overflow
never occurs during rounding to odd. Prove that i round(z,p + &, odd)

andz = round(y, p, nearest_even), andk > 1, then

z = round(z, p, nearest_even),
i.e. the double-rounding problem does not occur.

Exercise 3.3 Show that, if,/a is computed using Newton’s iteration for /2

3
o=z + (1 —az?)

2
(see§3.5.1), and the identity/a = a x a—'/2, with rounding mode “round to-
wards zero”, then it might never be possible to determine the correctly rounded
value of/a, regardless of the number of additional guard digits used in the

computation.

Exercise 3.4How does truncating the operands of a multiplicatiomte- ¢
digits (as suggested {8.3) affect the accuracy of the result? Considering the
caseg = 1 andg > 1 separately, what could happen if the same strategy were
used for subtraction?

Exercise 3.51s the bound of Theorefm 3.5 optimal?

3.7 Exercises 119

Exercise 3.6 Adapt Mulders’ short product algorithrmn] to floating-point
numbers. In case the first rounding fails, can you compute additional digits
without starting again from scratch?

Exercise 3.7 Show that, if a balanced ternary system is used (r&dixith
digits {0, £1}), then “round to nearest” is equivalent to truncation.

Exercise 3.8 (Percival) Suppose we compute the product of two complex
floating-point numbersy, = ag + ibg and z; = a; + by in the follow-

ing way: z, = o(apai), x, = o(bob1), ya = o(agh1), y» = o(arby), z =
o(xq—xp)+io(y,+yp). Allcomputations are done in precisianwith round-

ing to nearest. Compute an error bound of the form zz1| < ¢27"|z021].
What is the best possible constafit

Exercise 3.9 Show that, if, = O(e) andne < 1, the bound in Theorefn 3.6
simplifies to

12" = zllec = O(l2] - [y] - ne).

If the rounding errors cancel, we expect the error in each componehtmbe

O(|z| - Jy| - n'/?¢). The errof|2’ — z|| . could be larger since it is a maximum

of N = 2™ component errors. Using your favourite implementation of the
FFT, compare the worst-case error bound given by Thebrém 3.6 with the error
||z — z||~ that occurs in practice.

Exercise 3.10 (Enge)Design an algorithm that correctly rounds the product
of two complex floating-point numbers withmultiplications only. [Hint: as-
sume all operands and the result havhkit significand.]

Exercise 3.11Write a computer program to check the entries of TRblk 3.3 are
correct and optimal, given Theorém13.6.

Exercise 3.12 (Bodrato) Assuming we use an FFT modulg” — 1 in the
wrap-around trick, how should we modify sfép 5AifproximateReciprocal?

Exercise 3.13To performk divisions with the same divisor, which of Algo-
rithm DivideNewton and Barrett’s algorithm is faster?

Exercise 3.14 Adapt AlgorithmFPSqrt to the rounding to nearest mode.

Exercise 3.15Devise an algorithm similar to AlgorithiaPSqrt but using Al-
gorithm ApproximateRecSquareRootto compute am /2-bit approximation
to 2~'/2, and doing one Newton-like correction to return/abit approxima-
tion to z'/2. In the FFT range, your algorithm should take time&A/(n) (or
better).

120 Floating-point arithmetic

Exercise 3.16Prove that for any:-bit floating-point numberéz, y) # (0,0),

and if all computations are correctly rounded, with the same rounding mode,
the result ofz/ /22 + y? lies in[—1, 1], except in a special case. What is this
special case and for what rounding mode does it occur?

Exercise 3.17Show that the computation o in Algorithm PrintFixed,
stepl2, is correct — i.ef = 1 + [(e — 1)logb/log B| — as long as there is
no integem such thain/(e — 1) log B/logb — 1| < ¢, wheres is the relative
precision when computing: A = log B/logb(1 + 0) with |§] < . For a
fixed range of exponentse,,.x < e < emax, deduce a working precisian
Application: forb = 2, anden.x = 23!, compute the required precision for
3 < B < 36.

Exercise 3.18 (Leévre) The IEEE 754-1985 standard required binary to dec-
imal conversions to be correctly rounded in double precision in the range
{m - 10" : |m| < 107 — 1,|n| < 27}. Find the hardest-to-print double-
precision number in this range (with rounding to nearest, for example). Write
a C program that outputs double-precision numbers in this range, and compare
it to thesprintf C-language function of your system; similarly, for a con-
version from the IEEE 754-2008inary64 format (significand ob3 bits,

27107 < |z| < 21024) to thedecimal64 format (significand ofi6 decimal
digits).

Exercise 3.19 The same question as in Exerdise 8.18, but for decimal to binary
conversion, and thatof C-language function.

3.8 Notes and references

In her Ph.D. thesiZ, Chapter V], ¥ale Ménissier-Morain discusses con-
tinued fractions and redundant representations as alternatives to the classical
non-redundant representation considered here. She also corlsiders [162, Chap-
ter 111] the theory of computable reals, their representatiombgdic numbers,

and the computation of algebraic or transcendental functions.

Other representations were designed to increase the range of representable
values; in particular Clenshaw and OIVE|[7O] invent@ekl-index arithmetic,
where for example2009 is approximated by3.7075, since 2009 =~
exp(exp(exp(0.7075))), and the leading indicates the number of iterated ex-
ponentials. The obvious drawback is that it is expensive to perform arithmetic
operations such as addition on numbers in the level-index representation.

3.8 Notes and references 121

Clenshaw and OlvelL_[_dSQ] also introduced the concept ofiarestricted
algorithm (meaning no restrictions on the precision or exponent range).
Several such algorithms were described in Brent [48].

Nowadays most computers use radix two, but other choices (for example
radix 16) were popular in the past, before the widespread adoption of the IEEE
754 standard. A discussion of the best choice of radix is given in dant [42].

For a general discussion of floating-point addition, rounding modes, the
sticky bit, etc., see Hennessy, Patterson, and Gold@ [120, Append@ A.A4].

The main reference for floating-point arithmetic is the IEEE 754 standard
[B], which defines four binary formats: single precision, single extended (dep-
recated), double precision, and double extended. The IEEE 854 standard de-
fines radix-independent arithmetic, and mainly decimal arithmetic — see Cody
etal. [E]. Both standards were replaced by the revision of IEEE 754 (approved
by the IEEE Standards Committee on June 12, 2008).

We have not found the source of Theorem 3.2 — it seems to be “folklore”.
The rule regarding the precision of a result, given possibly differing precisions
of the operands, was considered by Brént [49] and I@[lZ?].

Floating-point expansions were introduced by Pr@[l%]. They are mainly
useful for a small number of summands, typically two or three, and when the
main operations are additions or subtractions. For a larger number of sum-
mands, the combinatorial logic becomes complex, even for addition. Also,
except in simple cases, it seems difficult to obtain correct rounding with
expansions.

Some good references on error analysis of floating-point algorithms are the
books by Higham 1] and MuIIe4]. Older references include Wilkin-
son’s classic 209].

Collins and Krandickﬂ4], and Lefre], proposed algorithms for
multiple-precision floating-point addition.

The problem of leading zero anticipation and detection in hardware is classi-
cal; see Schmookler and Nowl@.94 for a comparison of different methods.
Theoreni 3.4 may be found in SterbedﬂZlO].

The idea of having a “short product” together with correct rounding was
studied by Krandick and Johnsdﬂ45]. They attributed the term “short prod-
uct” to Knuth. They considered both the schoolbook and the Karatsuba do-
mains. AlgorithmsShortProduct andShortDivision are due to Mulderajm].

The problem of consecutive zeros or ones — also calladof zeros or ones —
has been studied by several authors in the context of computer arithmetic:
lordache and Matula@w] studied division (Theorem 3.9), square root, and

4 We refer to the first edition as later editions may not include the relevant Appendix by
Goldberg.

122 Floating-point arithmetic

reciprocal square root. Muller and Lal@Sl] generalized their results to alge-
braic functions.

The fast Fourier transform (FFT) using complex floatin pomt numbers and
the Scldnhage—Strassen algorithm are described in K 142]. Many varia-
tions of the FFT are discussed in the books by Cran@ll 9, 80]. For further
references, se@.9.

Theorem 3.6 is from Percivam83]; previous rigorous error analyses of
complex FFT gave very pessimistic bounds. Note that the erroneous proof
given in @] was corrected by Brent, Percival, and Zimmermanh [55] (see
also Exercis€3]8).

The concept of “middle product” for power series is discussed in Hatrot
al. [E]. Bostan, Lecerf, and Scho@[m] have shown that it can be seen as
a special case of “Tellegen’s principle”, and have generalized it to operations
other than multiplication. The link between usual multiplication and the mid-
dle product using trilinear forms was mentioned by Victor Fka_nJ[lSl] for the
multiplication of two complex numbers: “The duality technique enables us to
extend any successful bilinear algorithms to two new ones for the new prob-
lems, sometimes quite different from the original probleni’. Harvey]
has shown how to efficiently implement the middle product for integers. A
detailed and comprehensive description of the Payne and Hanek argument re-
duction method can be found in Mulléﬂm]

In this section, we drop the “~" that strictly should be included in the com-
plexity bounds. TheM (n) reciprocal algorithm of3.4.1 — with the wrap-
around trick — is due to Sémhage, Grotefeld, and Vett98]. It can be
improved, as noticed by Dan Bernstein| [20]. If we keep the FFT-transform of
x, we can savé/(n)/3 (assuming the term-to-term products have negligible
cost), which givessM (n)/3. Bernstein also proposes a “messyi¥/(n)/2
algorithm Ed)] Scbnhage’s3M (n)/2 algorithm is S|mpler-7] The idea
is to write Newton'’s iteration as’ = 2x — ax?. If z is accurate to/2 bits,
thenaz? has (in theorypn bits, but we know the upper/2 bits cancel with
z, and we are not interested in the lewbits. Thus, we can perform modu-
lar FFTs of size3n /2, with costM (3n/4) for the last iteration, and.5M/ (n)
overall. This1.5M (n) bound for the reciprocal was improved tol44.M (n)
by Harvey |[T;Lb]. See also Cornea-Hasegan, Golliver, and Mark@in [78] for
the roundoff error analysis when using a floating-point multiplier.

The idea of incorporating the dividend in AlgoritidivideNewtonis due to
Karp and Marksteir@?], and is usually known as the Karp—Markstein trick;
we already used it in AlgorithriexactDivision in Chapte]l. The asymptotic
complexity5M/ (n)/2 of floating-point division can be improved 5/ (n)/3,
as shown by van der Hoeven 25]. Another well-known method to perform

3.8 Notes and references 123

a floating-point division is Goldschmidt's iteration: starting frarfb, first find

¢ such thath; = cb is close tol, anda/b = ay /by with a; = ca. At step

k, assuminga/b = ax /by, we multiply botha, andb, by 2 — by, giving

ai+1 andbg1. The sequenc@y) converges td, and(ay) converges ta/b.
Goldschmidt’s iteration works becausebjf = 1 + ¢, with £, small, then
b1 = (1 +¢ex)(1 —e;) = 1 — 7. Goldschmidt's iteration admits quadratic
convergence as does Newton’s method. However, unlike Newton’s method,
Goldschmidt’s iteration is not self-correcting. Thus, it yields an arbitrary pre-
cision division with costO(M (n)logn). For this reason, Goldschmidt’s it-
eration should only be used for small, fixed precision. A detailed analysis of
Goldschmidt’s algorithms for division and square root, and a comparison with
Newton’s method, is given in Markstei@SS].

Bernstein|L—2b] obtained faster square root algorithms in the FFT domain, by
caching some Fourier transforms. More precisely, he obtaihéd(n)/6 for
the square root, anslM (n)/2 for the simultaneous computation of/2 and
z~/2, The bound for the square root was reduced 4o/ (n)/3 by
Harvey].

Classical floating-point conversion algorithms are due to Steele and White
[@], Gay @], and CIingeml]; most of these authors assume fixed pre-
cision. Cowlishaw maintains an extensive bibliography of conversion to and
from decimal formats (se€5.3). What we call “free-format” output is called
“idempotent conversion” by Kahalﬂ33]; see also Kn142, exercise 4.4-
18][.|£nother useful reference on binary to decimal conversion is Caehea
al. [77].

Burgisser, Clausen, and ShokroII[GO] is an excellent book on topics such
as lower bounds, fast multiplication of numbers and polynomials, Strassen-like
algorithms for matrix multiplication, and the tensor rank problem.

There is a large literature on interval arithmetic, which is outside the scope
of this chapter. A recent book is Kuliscmw], and a good entry point is the
Interval Computations web page (see Chapter 5).

In this chapter, we did not consider complex arithmetic, except where rel-
evant for its use in the FFT. An algorithm for the complex (floating-point)
square root, which allows correct rounding, is given in Ercegovac and Muller
[@]. See also the comments on Friedland’s algorithriid2.

4
Elementary and special function evaluation

Here we consider various applications of Newton's method,
which can be used to compute reciprocals, square roots, and more
generally algebraic and functional inverse functions. We then
consider unrestricted algorithms for computing elementary and
special functions. The algorithms of this chapter are presented at
a higher level than in ChaptEl 3. A full and detailed analysis of
one special function might be the subject of an entire chapter!

4.1 Introduction

This chapter is concerned with algorithms for computing elementary and
special functions, although the methods apply more generally. First we con-
sider Newton’s method, which is useful for computing inverse functions. For
example, if we have an algorithm for computipg= In 2z, then Newton’s
method can be used to compute= expy (see§4.2.5). However, Newton's
method has many other applications. In fact, we already mentioned Newton'’s
method in Chaptefd [}-3, but here we consider it in more detail.

After considering Newton’s method, we go on to consider various methods
for computing elementary and special functions. These methods include power
series ([£4.14), asymptotic expansions_(§4.5), continued fractibns (§4.6), recur-
rence relations [§417), the arithmetic-geometric me&n1§4.8), binary splitting
(§4:9), and contour integration[(§4]10). The methods that we considemnare
restrictedin the sense that there is no restriction on the attainable precision —
in particular, it is not limited to the precision of IEEE standard 32-bit or 64-bit
floating-point arithmetic. Of course, this depends on the availability of a suit-
able software package for performing floating-point arithmetic on operands of
arbitrary precision, as discussed in Chapter 3.

126 Elementary and special function evaluation

Unless stated explicitly, we do not consider rounding issues in this chapter;
it is assumed that methods described in Chdgter 3 are used. Also, to simplify
the exposition, we assume a binary radix£2), although most of the content
could be extended to any radix. We recall thatenotes the relative precision
(in bits here) of the desired approximation; if the absolute computed value is
close tol, then we want an approximation to withén™.

4.2 Newton’s method

Newton’s method is a major tool in arbitrary-precision arithmetic. We have al-
ready seen it or itg-adic counterpart, namely Hensel lifting, in previous chap-
ters (see for example AlgorithBxactDivision in §T.4.3, or the iteratior (2.3)

to compute a modular inverse§@.3). Newton’s method is also useful in small
precision: most modern processors only implement addition and multiplication
in hardware; division and square root are microcoded, using either Newton’s
method if a fused multiply-add instruction is available, or the SRT algorithm.
See the algorithms to compute a floating-point reciprocal or reciprocal square
root in §3.4.1 andj3.5.1.

This section discusses Newton’s method is more detail, in the context of
floating-point computations, for the computation of inverse rodis (g4.2.1),
reciprocals (§4.2]2), reciprocal square roots (§4.2.3), formal power series
(§4:2.3), and functional inverse$ (§4.2.5). We also discuss higher-order Newton-
like methods (§4.216).

Newton’s method via linearization
Recall that a functiorf of a real variable is said to havezaro(if f({) = 0.
If fis differentiable in a neighborhood ¢fandf’(¢) # 0, then(is said to be
asimplezero. Similarly, for functions of several real (or complex) variables. In
the case of several variabl€ss a simple zero if the Jacobian matrix evaluated
at is non-singular.

Newton’s methotbr approximating a simple zerpof f is based on the idea
of making successive linear approximationsf{a:) in a neighborhood of.
Suppose that, is an initial approximation, and thgtx) has two continuous
derivatives in the region of interest. From Taylor’s thecﬁ]em

)
Comlpmg @y

1 Here we use Taylor's theoremag, since this yields a formula in terms of derivatives:at
which is known, instead of &}, which is unknown. Sometimes (for example in the derivation
of [@.3)), itis preferable to use Taylor's theorem at the (unknown) zero

F(Q) = f(=o) + (€ = mo) f' (o) +

4.2 Newton’s method 127

for some point in an interval including(¢, zo }. Sincef(¢) = 0, we see that
z1 =20 — f(20)/f'(%0)

is an approximation tq, and
21— (=0 (Jxo = ¢[?).

Providedz is sufficiently close t@, we will have
|21 — (] < |wo — ¢]/2 < 1.

This motivates the definition dlewton’s methods the iteration

Tip1 =T — JJ:’((Z))’ j=0,1,.... (4.2)

Provided|z, — (| is sufficiently small, we expect,, to converge ta;. The
order of convergencwill be at least two, i.e.

lent1] < Klen|?

for some constank” independent of, wheree,, = x,, — (is the error aften
iterations.
A more careful analysis shows that

()

2f'(¢)

provided f € C? near¢. Thus, the order of convergence is exactly two if

1"(¢) # 0 andey is sufficiently small but non-zero. (Such an iteration is also
said to bequadratically convergent.)

en+0(lenl) (4.3)

4.2.1 Newton’s method for inverse roots

Consider applying Newton’s method to the function
f(x) =Y —- J"_ma

wherem is a positive integer constant, and (for the momeni3 a positive
constant. Sinc¢’(z) = ma~ (™1, Newton’s iteration simplifies to

Tip1 = xj +xi(1 = 2'y)/m. (4.4)

This iteration converges t© = y—!/™ provided the initial approximatiom,

is sufficiently close ta(. It is perhaps surprising thdf_(4.4) does not involve
divisions, except for a division by the integer constantn particular, we can
easily compute reciprocals (the case= 1) and reciprocal square roots (the
casemn = 2) by Newton’s method. These cases are sufficiently important that
we discuss them separately in the following subsections.

128 Elementary and special function evaluation

4.2.2 Newton’s method for reciprocals
Takingm = 1 in (@.4), we obtain the iteration

T = x5 +x(1 — x5y), (4.5)

which we expect to converge tgy, providedz is a sufficiently good approx-
imation. (Se€f3.4.1 for a concrete algorithm with error analysis.) To see what
“sufficiently good” means, define

uj =1—x;y.

Note thatu; — 0 iff ; — 1/y. Multiplying each side of[{415) by, we get
1—ujpr = (1 —u;) (1 +uy),

which simplifies to

Uj41 = U? (46)

Thus
uj = (ug)” . 4.7)

We see that the iteration converges|iff| < 1, which (for realzy andy) is
equivalent to the conditionyy € (0, 2). Second-order convergence is reflected
in the double exponential with exponenon the right-hand side of (4.7).

The iteration [[4.b) is sometimes implemented in hardware to compute re-
ciprocals of floating-point numbers (sg§&12). The sign and exponent of the
floating-point number are easily handled, so we can assumg th#l.5, 1.0)
(recall we assume a binary radix in this chapter). The initial approximatjon
is found by table lookup, where the table is indexed by the first few biis of
Since the order of convergence is two, the number of correct bits approximately
doubles at each iteration. Thus, we can predict in advance how many iterations
are required. Of course, this assumes that the table is initialized cdgectly.

Computational issues
At first glance, it seems better to replace E@n.l(4.5) by

1’j+1 = IJ(Q — .”Ejy), (48)

which looks simpler. However, although those two forms are mathematically
equivalent, they are not computationally equivalent. Indeed, in Eqgd. (4.5), if
x; approximated /y to within n/2 bits, thenl — z;y = O(27"/2), and the

2 In the case of the infamowRentiumfdiv bug[109,[175], a lookup table used for division

was initialized incorrectly, and the division was occasionally inaccurate. In this case division
used the SRT algorithm, but the moral is the same — tables must be initialized correctly.

4.2 Newton’s method 129

product ofz; by 1 — z;y might be computed with a precision of onty2 bits.
In the apparently simpler forri(4.8);-z;y = 1+0O(27"/2), and the product
of z; by 2 — z;y has to be performed with a full precisionobits to getr;;
accurate to withim bits.

As a general rule, it is best to separate the terms of different order in New-
ton’s iteration, and not try to factor common expressions. For an exception, see
the discussion of S@mhage’s3 M (n)/2 reciprocal algorithm irf3.8.

4.2.3 Newton’s method for (reciprocal) square roots
Takingm = 2 in ([@.4), we obtain the iteration

Tip = x5 +x;(1 — 23y) /2, (4.9)

which we expect to converge 10 !/2 providedz, is a sufficiently good ap-
proximation.

If we want to computey'/2, we can do this in one multiplication after first
computingy /2, since

1/ 1/2

y' =y xy”

This method does not involve any divisions (exceptZbygee Exercige3.15).
In contrast, if we apply Newton’s method to the functipfr) = 22 — y, we
obtain Heron iteration (see Algorithnsqrtint in §1.5.7) for the square root
of y
1 Yy

Tj41 = 5 (J?j + x]) . (410)
This requires a division by; at iterationj, so it is essentially different from
the iteration [4.R). Although both iterations have second-order convergence,
we expect[(419) to be more efficient (however this depends on the relative cost
of division compared to multiplication). See al§®5.1 and, for various opti-
mizations,§3.8.

4.2.4 Newton’s method for formal power series

This section is not required for function evaluation, however it gives a comple-
mentary point of view on Newton’s method, and has applications to computing
constants such as Bernoulli numbers (see ExerciseH4.41-4.42).

Newton’s method can be applied to find roots of functions defined by for-
mal power series as well as of functions of a real or complex variable. For

3 Heron of Alexandriagirca 10-75 AD.

130 Elementary and special function evaluation
simplicity, we consider formal power series of the form
Alz) =ap+ a1z +ax2® +--- |

wherea; € R (or any field of characteristic zero) andd(A) = 0, i.e.ag # 0.

For example, if we replacgin (4.3) byl — z, and take initial approximation
xo = 1, we obtain a quadratically convergent iteration for the formal power
series

1—2)"'= Z:Oz".

In the case of formal power series, “quadratically convergent” means that
ord(e;) — +oo like 27, wheree; is the difference between the desired
result and theth approximation. In our example, with the notationddfZ.2,

ug =1—xoy = 2, SOu; = 22" and

w1 o
R 71—Z+O<Z)

Given a formal power seried(z) = 3. a;2/, we can define the formal
derivative

A/(Z) = Zjajzj_l = a1 + 2a22z + 3@322 o,
§>0
and theintegral
Z Ll sy
=) T
but there is no useful analogue for multiple-precision inte@’]g0 a;B3.

This means that some fast algorithms for operations on power series have no
analogue for operations on integers (see for example Ex&rcise 4.1).

4.2.5 Newton’'s method for functional inverses

Given a functiony(z), its functional inversé:(x) satisfiesg(h(z)) = x, and
is denoted by:(z) := ¢(~)(z). For exampleg(z) = Inz andh(z) = exp =
are functional inverses, as ajér) = tanx andh(x) = arctan . Using the
function f(x) = y — g(z) in (£2), we get a roof of f, i.e. a value such that

9(Q) =y, or{ = gV (y)
y—g(z;)

T)

4.2 Newton’s method 131

Since this iteration only involveg andg’, it provides an efficient way to eval-
uateh(y), assuming thag(x;) andg’(x;) can be efficiently computed. More-
over, if the complexity of evaluating’ — and of division — is no greater than
that ofg, we get a means to evaluate the functional invéreeg with the same
order of complexity as that af.

As an example, if one has an efficient implementation of the logarithm, a
similarly efficient implementation of the exponential is deduced as follows.
Consider the roat? of the functionf (z) = y — In 2, which yields the iteration

i1 =z +xj(y —Inzy), (4.11)

and in turn AlgorithmLiftExp (for the sake of simplicity, we consider here
only one Newton iteration).

Algorithm 4.1 LiftExp
Input: x5, (n/2)-bit approximation texp(y)
Output: x;1, n-bit approximation texp(y)

t—Inz, > t computed to-bit accuracy
u—y—t >« computed tdn/2)-bit accuracy
v — ziu > v computed tqn/2)-bit accuracy

Tj41 < T + 0.

4.2.6 Higher-order Newton-like methods

The classical Newton’s method is based on a linear approximatiptwoinear
x¢. If we use a higher-order approximation, we can get a higher-order method.
Consider for example a second-order approximation. Egd. (4.1) becomes:

(S (¢ —20)°

5 f" (o) + 5

f(©) = flzo) + (¢ — x0) f'(20) + ().

Sincef(¢) = 0, we have

flzo) — (C—0)* f"(20) 3
¢ =m0 (o) 5 Flao) + O((¢ — 20)°). (4.12)
A difficulty here is that the right-hand side ¢f(4]112) involves the unkngwn
Let(= xzo — f(z0)/f (x0) + v, wherev is a second-order term. Substituting
this in the right-hand side of(4.112) and neglecting terms of ofder x()?

yields the cubic iteration

flay) flay)? " (x)

TR T) T 2 (ay)?

132 Elementary and special function evaluation
For the computation of the reciprocal (§412.2) wjttx) = y — 1/, this yields
Tip1 =25+ 2(1 —zjy) +2;(1 — 259)% (4.13)
For the computation afxp y using functional inversion [§4.2.5), we get
1
Tjip1 =x;+2;(y —Inz;) + izrj(yflnxj)? (4.14)

These iterations can be obtained in a more systematic way that generalizes to
give iterations of arbitrarily high order. For the computation of the reciprocal,
lete; =1 — z;y, soz;y = 1 —¢; and (assumingg;| < 1),

1y =xz;/(1—¢j) :Ij(1+€j+€?+"').
Truncating after the temfg?*l gives akth-order iteration
s =xj(l4e+ei+-+ei) (4.15)

for the reciprocal. The cade = 2 corresponds to Newton’s method, and the
casek = 3 is just the iteration(4.13) that we derived above.
Similarly, for the exponential we takg = y — Inz; = In(z/z;), SO

oo m
/ >
T/T; =exXpe; = —
J J m)
m=0

Truncating afte terms gives &th-order iteration

k—1 em
Tj41 =Ty (Z Trjl,'> (416)
m=0

for the exponential function. The case= 2 corresponds to the Newton itera-
tion, the casé = 3 is the iteration[(4.14) that we derived above, and the cases
k > 3 give higher-order Newton-like iterations. For a generalization to other
functions, see ExercisEs ¥3,14.6.

4.3 Argument reduction

Argument reductiois a classical method to improve the efficiency of the eval-
uation of mathematical functions. The key idea is to reduce the initial problem
to a domain where the function is easier to evaluate. More precisely, given
to evaluate at, we proceed in three steps:

4.3 Argument reduction 133

e argument reductionz is transformed into eeduced argument’;
e evaluation:f is evaluated at’;
e reconstruction;f(z) is computed frony («’) using a functional identity.

In some cases, the argument reduction or the reconstruction is trivial, for ex-
amplez’ = /2 inradix 2, or f(z) = +f(2') (some examples illustrate this
below). It might also be that the evaluation step uses a different fungtion
instead off; for examplegsin(z + 7/2) = cos(x).

Unfortunately, argument reduction formulse do not exist for every function;
for example, no argument reduction is known for the error function. Argument
reduction is only possible when a functional identity relgteés) andf (') (or
g(z) andg(z")). The elementary functions hawmedition formulaesuch as

exp(x + y) = exp(z) exp(y),

) =
log(zy) = log() +log(y),
sin(x + y) = sin(z) cos(y) + cos(z) sin(y),
tan(z +y) = tan() + tan(y) . (4.17)

— tan(z) tan(y)

We use these formulee to reduce the argument so that power series converge
more rapidly. Usually we take = y to getdoubling formulaesuch as

exp(2z) = exp(z)?, (4.18)
though occasionallyripling formulaesuch as
sin(3z) = 3sin(z) — 4sin®(2)

might be useful. This tripling formula only involves one function {siwhereas
the doubling formulain(2z) = 2sin x cos x involves two functions (sirand
cos), but this problem can be overcome: §e3.4 andjf4.9.1.

We usually distinguish two kinds of argument reduction:

e Additive argument reduction, whené = z — ke, for some real constant
¢ and some integek. This occurs in particular whefi(x) is periodic, for
example for the sine and cosine functions with 2.

e Multiplicative argument reduction, wheré = z/c* for some real constant
c and some integek. This occurs withe = 2 in the computation oéxp x
when using the doubling formula{4118): SgE31.

Note that, for a given function, both kinds of argument reduction might be
available. For example, fasin 2, we might either use the tripling formula
sin(3z) = 3sinz — 4sin® 2, or the additive reductiogin(x + 2k7) = sinx

that arises from the periodicity efn.

134 Elementary and special function evaluation

Sometimes “reduction” is not quite the right word, since a functional identity
is used toincreaserather than todecreasethe argument. For example, the
Gamma functiol’(z) satisfies an identity

al(z) =T(z+ 1),

that can be used repeatedlyinareasethe argument until we reach the region
where Stirling’s asymptotic expansion is sufficiently accurate §éég

4.3.1 Repeated use of a doubling formula

If we apply the doubling formuld(4.18) for the exponential functiotimes,
we get

exp(z) = exp(x/2k)2k .

Thus, if|z| = ©(1), we can reduce the problem of evaluating(x) to that of
evaluatingexp(z/2%), where the argument is no@(2~*). This is better since
the power series converges more quickly£ge*. The cost is thé: squarings
that we need to reconstruct the final result fregp(z/2%).

There is a trade-off here, adshould be chosen to minimize the total time.
If the obvious method for power series evaluation is used, then the optiimal
of order,/n and the overall time i©)(n'/2M (n)). We shall see if4.2.3 that
there are faster ways to evaluate power series, so this is not the best possible
result.

We assumed here that| = O(1). A more careful analysis shows that the
optimal & depends on the order of magnituderofsee Exercisg4.5).

4.3.2 Loss of precision

For some power series, especially those with alternating signs, a loss of pre-
cision might occur due to a cancellation between successive terms. A typical
example is the series fexp(x) whenz < 0. Assume for example that we
want ten significant digits afxp(—10). The first ten terms* /k! for z = —10

are approximately:

1.,-10.,50., =166.6666667,416.6666667, —833.3333333, 1388.888889,
—1984.126984, 2480.158730, —2755.731922.

Note that these terms alternate in sign and initisdbreasan magnitude. They
only start to decrease in magnitude for> |z|. If we add the first1 terms
with a working precision of ten decimal digits, we get an approximation to
exp(—10) that is only accurate to about three digits!

4.3 Argument reduction 135

A much better approach is to use the identity

exp(x) = 1/ exp(—x)

to avoid cancellation in the power series summation. In other cases, a different
power series without sign changes might exist for a closely related function:
for example, compare the seriés (4.22) dnd (4.23) for computation of the error
functionerf(x). See also Exercises 4]119-4.20.

4.3.3 Guard digits

Guard digitsare digits in excess of the number of digits that are required in
the final answer. Generally, it is necessary to use some guard digits during a
computation in order to obtain an accurate result (one that is correctly rounded
or differs from the correctly rounded result by a small number of units in the
last place). Of course, it is expensive to use too many guard digits. Thus, care
has to be taken to use the right number of guard digits, i.e. the right working
precision. Here and below, we use the generic term “guard digits”, even for
radix g = 2.

Consider once again the example=gf =, with reduced argument/2* and
x = O(1). Sincezr /2% isO(27*), when we sum the power seriegz /2% +- - -
from left to right (forward summation), we “lose” aboktbits of precision.
More precisely, ifr /2 is accurate ta bits, thenl + z /2 is accurate ta + k
bits, but if we use the same working precisiorwe obtain onlyn correct bits.
After squaringk times in the reconstruction step, abautits will be lost (each
squaring loses about one bit), so the final accuracy will be anlyk bits. If
we summed the power series in reverse order instead (backward summation),
and used a working precision ef + & when addingl andz/2* + --- and
during the squarings, we would obtain an accuracy ef k bits before the:
squarings, and an accuracysobits in the final result.

Another way to avoid loss of precision is to evaluatem1(x/2%), where
the functionexpm1 is defined by

expml(z) = exp(x) — 1

and has a doubling formula that avoids loss of significance vihleis small.

See Exercisds4.[[=4.9.

136 Elementary and special function evaluation

4.3.4 Doubling versus tripling

Suppose we want to compute the functidnh(z) = (e* — e=*)/2. The
obvious doubling formula fosinh,

sinh(2z) = 2sinh(x) cosh(x),

involves the auxiliary functiorosh(z) = (e” + e~*)/2. Sincecosh?(z) —
sinh?(z) = 1, we could use the doubling formula

sinh(2z) = 2sinh(x)y/1 + sinh?(x),

but this involves the overhead of computing a square root. This suggests using
the tripling formula

sinh(3x) = sinh(z)(3 + 4 sinh?(z)). (4.19)

However, it is usually more efficient to do argument reduction via the doubling
formula [4.18) forexp, because it takes one multiplication and one squaring
to apply the tripling formula, but only two squarings to apply the doubling
formula twice (and3 < 22). A drawback is loss of precision, caused by can-
cellation in the computation efxp(x) — exp(—x), when|z| is small. In this
case, it is better to use (see Exer¢ise ¥.10)

sinh(z) = (expml(z) — expml(—x))/2. (4.20)

See§4.12 for further comments on doubling versus tripling, especially in the
FFT range.

4.4 Power series

Once argument reduction has been applied, where posdiblé (§4.3), we are usu-
ally faced with the evaluation of a power series. The elementary and special
functions have power series expansions such as

xJ (—1)igi+t
expxr = — In(l+2x) = -~ .,
P Z J! () Z J+1
j=0 j>0
—1)Ip25+1 2j+1
arctanx = Z (2)7x1 » sinhx = Z % » etce.
I = D!

This section discusses several techniques to recommend or to avoid. We use
the following notationsz is the evaluation pointy is the desired precision,
andd is the number of terms retained in the power seried,-ot is the degree

of the corresponding polynom@:ong ajd.

4.4 Power series 137

If f(z)is analytic in a neighborhood of some poingan obvious method to
consider for the evaluation ¢f(x) is summation of the Taylor series

d—1 ;
)(C) + Rg(z,c).

JZO

As a simple but instructive example, we consider the evaluatiaxpfz)
for |z| <1, using

]

—| (4.21)

exp(x i
=0

where|Ry(z)| < |z|?exp(|z])/d! < e/d!.

Using Stirling’s approximation fod!, we see thatl > K(n) ~ n/lgn is
sufficient to ensure thak(z)| = O(27 ™). Thus, the time required to evaluate
(4.23) with Horner’s I’U'ISO (nM(n)/logn).

In practice, it is convenient to sum the series in the forward direction
(j=0,1,...,d —1). The termg; = 27 /4! and partial sums

5=3

i=0

may be generated by the recurretige= at;_1/j, S; = S;—1 + t;, and the
summation terminated whety| < 2~ /e. Thus, itis not necessary to estimate
d in advance, as it would be if the series were summed by Horner’s rule in the
backward directiorfj = d — 1,d — 2,...,0) (see however Exerci§e 4.4).

We now consider the effect of rounding errors, under the assumption that
floating-point operations are correctly rounded, i.e. satisfy

o(z op y) = (z op y)(1+),

where|d| < e and “op” ="“+", “=", “x” or “/". Here & = 27" is the “machine
precision” or “working preC|S|on”. Lefj be the computed value af, etc.
Thus

[t =151/ It5] < 2je+ O(?)

4 By Horner’s rule (with argumentz), we mean evaluating the polynomial
so = Zo<]‘<d aj;x? of degreed (notd — 1 in this footnote) by the recurrensg = aq,
sj=aj+sjpxforj=d—1,d—2,...,0.Thus,s;, = Zk<j<d aj:cj*k. An
evaluation by Horner’s rule takesadditions and multiplications, and is more efficient than
explicitly evaluating the individual terms; 7.

138 Elementary and special function evaluation
and usingzg?:0 ti=95 <e

d
|Sa = Sal < des+Y" 2jelt;| + O(c?)
j=1

< (d+2)es + O(?) = O(ne).

Thus, to getS,—Sy| = O(27™), itis sufficient that = O(2"/n). In other
words, we need to work with abolgn guard digits. This is not a significant
overhead if (as we assume) the number of digits may vary dynamically. We
can sum withy increasing (théorward direction) or decreasing (tHeckward
direction). A slightly better error bound is obtainable for summation in the
backward direction, but this method has the disadvantage that the number of
termsd has to be decided in advance (see however Exdrcike 4.4).

In practice, it is inefficient to keep the working precisiorfixed. We can
profitably reduce it when computing from t;_; if |t;_1| is small, without
significantly increasing the error bound. We can also vary the working preci-
sion when accumulating the sum, especially if it is computed in the backward
direction (so the smallest terms are summed first).

It is instructive to consider the effect of relaxing our restriction {hét< 1.

First suppose that is large and positive. Sinde;| > |t;_1| whenj < |z|, it

is clear that the number of terms required in the dum {4.21) is at least of order
|z|. Thus, the method is slow for larde| (see§4.3 for faster methods in this
case).

If || is large andz is negative, the situation is even worse. From Stirling’s
approximation we have

exp |z|

/27| x| ,

but the result isexp(—|z|), so abou2|z|/log 2 guard digits are required to

compensate for what Lehmer called “catastrophic cancellatlon” [94]. Since

exp(z) = 1/exp(—x), this problem may easily be avoided, but the corre-

sponding problem is not always so easily avoided for other analytic functions.
Here is a less trivial example. To compute the error function

2 T
erf(z) = 7= /0 e du,

we may use either the power series

ti| ~
max [t] >

(4.22)

4.4 Power series 139

or the (mathematically, but not numerically) equivalent

2ze~%" & 27 %
erf(z) = 7 ;1'3.5_”(2]_“)- (4.23)

For small|z|, the seried(4.22) is slightly faster than the sefies{4.23) because
there is no need to compute an exponential. However, the deriek (4.23) is prefer-
able to [42P) for moderate:| because it involves no cancellation. For large
||, neither series is satisfactory, becatXe?) terms are required, and in this
case it is preferable to use the asymptotic expansioarfofz) = 1 — erf(z):
see§4.5. In the borderline region, use of the continued fracfion {4.40) could be
considered: see Exercise 4.31.

In the following subsections, we consider different methods to evaluate power
series. We generally ignore the effect of rounding errors, but the results
obtained above are typical.

Assumption about the coefficients

We assume in this section that we have a power serigs, a;z’, where
a;+s/a; is a rational functionR(j) of j, and hence it is easy to evaluate
ag, a1, as, ... sequentially. Herd is a fixed positive constant, usuallyor

2. For example, in the case efp x, we havel = 1 and

ajt1 . J! 1

a; G+ 41

Our assumptions cover the common case of hypergeometric functions. For the
more general case of holonomic functions, $68.2.

In common cases where our assumption is invalid, other good methods are
available to evaluate the function. For example = does not satisfy our as-
sumption (the coefficients in its Taylor series are catlwyent numberand
are related to Bernoulli numbers — s§&7.2), but to evaluatean x we can
use Newton’s method on the inverse function (arctan, which does satisfy our
assumptions — se@l.2.3), or we can usewn z = sin z/ cos z.

The radius of convergence

If the elementary function is an entire function (exgp, sin), then the power
series converges in the whole complex plane. In this case, the degree of the
denominator ofR(j) = a,+1/a; is greater than that of the numerator.

In other cases (such ds, arctan), the function is not entire. The power
series only converges in a disk because the function has a singularity on the
boundary of this disk. In factn(x) has a singularity at the origin, which is

140 Elementary and special function evaluation

why we consider the power series faf1 +). This power series has radius
of convergence 1.

Similarly, the power series fairctan(x) has radius of convergence 1 be-
causearctan(z) has singularities on the unit circle (&) even though it is
uniformly bounded for all reat.

4.4.1 Direct power series evaluation

Suppose that we want to evaluate a power sexies, a;=’ at a given argu-
mentz. Using periodicity (in the cases ein, cos) and/or argument reduction
technigues (§413), we can often ensure thats sufficiently small. Thus, let
us assume that| < 1/2 and that the radius of convergence of the series is at
least 1.

As above, assume thaf s/a; is a rational function ofj, and hence easy
to evaluate. For simplicity, we consider only the case 1. To sum the series
with errorO(2~™) it is sufficient to taker + O(1) terms, so the time required
is O(nM (n)). If the function is entire, then the series converges faster and the
time is reduced t@(nM(n)/(logn)). However, we can do much better by
carrying the argument reduction further, as demonstrated in the next section.

4.4.2 Power series with argument reduction

Consider the evaluation ekp(x). By applying argument reductidn+ O(1)
times, we can ensure that the argumesatisfiegz| < 27*. Then, to obtaim-

bit accuracy we only need to sub(n/k) terms of the power series. Assuming
that a step of argument reductior®$M (n)), which is true for the elementary
functions, the total cost i©((k+n/k)M (n)). Indeed, the argument reduction
and/or reconstruction requiré¥(k) steps ofO(M (n)), and the evaluation of
the power series of order/k costs(n/k)M (n); so choosing: ~ n'/? gives
cost

0 (nl/QM(n)) .
For example, our comments apply to the evaluatioexf) using
exp(z) = exp(z/2)?,

tologlp(z) = In(1 + z) using

T
loglp(z) = 2loglp [————),
glp(z) gp<1+m>

4.4 Power series 141

and toarctan(z) using

X
arctanxr = 2arctan | ———— | .
(1+—V1—Fx2>
Note that in the last two cases each step of the argument reduction requires
a square root, but this can be done with c0$i\/(n)) by Newton’s method
(§338). Thus, in all three cases the overall cosDis'/2M (n)), although the
implicit constant might be smaller fekp than forloglp or arctan. See Exer-

cised4.B=4]9.

Using symmetries
A not-so-well-known idea is to evaluate(1 + x) using the power series

2j+1

1+y) Y
m< =2 =
1—y j202]+1

with y defined by(1 + y)/(1 —y) = 1+ z, i.e.y = x/(2 +). This
saves half the terms and also reduces the argument, girce /2 if 2 > 0.
Unfortunately, this nice idea can be applied only once. For a related example,
see Exercise 4.11.

4.4.3 Rectangular series splitting

Once we determine how many terms in the power series are required for the
desired accuracy, the problem reduces to evaluating a truncated power series,
i.e. a polynomial.

Let P(z) = > o<jca ajz’ be the polynomial that we want to evaluate,
deg(P) < d. In the general case; is a floating-point number of. bits,
and we aim at an accuracy ofbits for P(x). However, the coefficients,,
or their ratiosR(j) = a;4+1/a;, are usually small integers or rational num-
bers ofO(logn) bits. A scalar multiplicationinvolves one coefficient; and
the variablex (or more generally am-bit floating-point number), whereas a
non-scalar multiplicatiorinvolves two powers of (or more generally twa-
bit floating-point numbers). Scalar multiplications are cheaper becausg the
are small rationals of siz&(logn), wherease and its powers generally have
©(n) bits. It is possible to evaluat2(x) with O(y/n) non-scalar multiplica-
tions (plusO(n) scalar multiplications an@(n) additions, using(y/n) stor-
age). The same idea applies, more generally, to evaluation of hypergeometric
functions.

142 Elementary and special function evaluation

Classical splitting
Supposel = jk, definey = =¥, and write

j—1 k—1
P(x) = Zy‘fPf(x), where Py(z) = Z Ahotgm T
£=0 m=0

We first compute the powers’, 23, ..., z*~1 2% = 4, then the polynomials
P;(x) are evaluated simply by multiplying,,., ., and the precomputed™ (it

is important not to use Horner’s rule here, since this would involve expensive
non-scalar multiplications). Finally?(z) is computed from the?(x) using
Horner’s rule with argumeny. To see the idea geometrically, writgz) as

y° [ao + arx + asz’? + + apz® o+
y' [ak + arpir + agser® 4 o 4 a1z 4+
y? laz + asep1® + askg2r® + o0+ age2t'] +
g1 ' _ . _ 2 A k-1
Y lag-vr + ag-vrt1® + a2z + 0+ aje1xt],

wherey = z*. The terms in square brackets are the polynonitals), P; (),
PR Pj_l(l').

As an example, considdr= 12, with j = 3 andk = 4. This givesPy(x) =
ao+arx+asx? +azx®, Pi(v) = ay+asr+asr’+ara?, Py(x) = ag+agw+
a107? +ay 23, thenP(x) = Py(z) +y Py () +y? P2 (z), wherey = z*. Here
we need to compute?, =3, z*, which requires three non-scalar products —
note that even powers like* should be computed &d3%)? to use squarings
instead of multiplies — and we need two non-scalar products to evai{ate
thus, a total of five non-scalar products, instead/ ef 2 = 10 with a naive
application of Horner’s rule taP(x)ﬁ

Modular splitting
An alternate splitting is the following, which may be obtained by transpos-
ing the matrix of coefficients above, swappipgndk, and interchanging the
powers ofz andy. It might also be viewed as a generalized odd—even scheme
(41.3.3). Suppose as before thiat- jk, and write, withy = 27:

Jj—1 k—1
P(z) = erPg(y), where Py(y) = Z Qjmte Y™
=0 m=0

5 P(xz) has degred — 1, so Horner’s rule performé — 1 products, but the first one x ag_ 1
is a scalar product, hence there dre 2 non-scalar products.

4.4 Power series 143

First computey = 7,42, %°,...,%*~!. Now the polynomials?(y) can be
evaluated using only scalar multiplications of the farm, ., x y™.
To see the idea geometrically, writ&x) as

1’0 [ao + a;y + (Iij2 + N } +
1’1 [a1 + i1y + a2j+1y2 + c } +
1’2 +

[a2 4+ @y 4 azey® +]

e aj 4 agiay A+ aziayt 4+ -],

wherey = z7. We traverse the first row of the array, then the second row, then
the third,. .., finally the jth row, accumulating sumsSy, S1,...,5;-1 (one

for each row). At the end of this proces$, = P(y), and we only have to
evaluate

P(z) = X_:IeSg .

£=0

The complexity of each scheme is almost the same (see ExErci$e 4.12). With
d =12 (j = 3andk = 4) we havePy(y) = ao + azy + asy® + agy?,

Pi(y) = a1 + asy + azy® + aroy®, Po(y) = as + asy + asy® + any®.

We first computey = 23, »2, andy?, then we evaluaté(y) in three scalar
multiplicationsasy, agy?, andagy® and three additions, similarly faP; and

P,. Finally we evaluate®(z) using

P(z) = Po(y) + 2Pi(y) + 2° Pa(y),

(here we might use Horner’s rule). In this example, we have a total of six non-
scalar multiplications: four to computeand its powers, and two to evaluate
P(x).

Complexity of rectangular series splitting

To evaluate a polynomiaP(x) of degreed — 1 = jk — 1, rectangular series
splitting takesO(j + k) non-scalar multiplications — each costi@gM (n)) —
andO(jk) scalar multiplications. The scalar multiplications involve multipli-
cation and/or division of a multiple-precision number by small integers. As-
sume that these multiplications and/or divisions take tifakn each (see Ex-
ercisd 4.1B for a justification of this assumption). The functigf) accounts

for the fact that the involved scalars (the coefficient®r the ratiosz;;1/a;)
have a size depending on the degdeef P(x). In practice, we can usually
regarde(d) as constant.

144 Elementary and special function evaluation

Choosingj ~ k ~ d'/2, we get overall time
O(d**M (n) + dn - ¢(d)). (4.24)

If d is of the same order as the precisiorof x, this is not an improvement

on the bound)(n'/?M (n)) that we obtained already by argument reduction
and power series evaluatiori (§4J4.2). However, we can do argument reduction
before applying rectangular series splitting. Assuming tfiaj = O(1) (see
Exercisé 4.14 for a detailed analysis), the total complexity is

T(n) =0 <gM(n) +dV2M(n) + dn) ,

where the extrdn/d) M (n) term comes from argument reduction and/or re-
construction. Which term dominates? There are two cases:

1. M(n) > n*/3. Here the minimum is obtained when the first two terms —
argument reduction/reconstruction and non-scalar multiplications — are
equal, i.e. ford ~ n?/3, which yieldsT'(n) = O(n'/3M(n)). This case
applies if we use classical or Karatsuba multiplication, siigce > 4/3,
and similarly for Toom—CooR-, 4-, 5-, or 6-way multiplication (but not
7-way, sincdlog; 13 < 4/3). In this case7'(n) > n°/3,

2. M(n) < n*/3. Here the minimum is obtained when the first and the last
terms — argument reduction/reconstruction and scalar multiplications — are
equal. The optimal value of is then /M (n), and we get an improved
bound©(n\/M(n)) > n®/2. We can not approach th@(n'*¢) that is
achievable with AGM-based methods (if applicable) —$&8.

4.5 Asymptotic expansions

Often it is necessary to use different methods to evaluate a special function in
different parts of its domain. For example, the exponential intégral

Ei(z) = / (=) 4, (4.25)
z u
is defined for allz: > 0. However, the power series
(1)1
Ei(z)+y+lnx = Z (1)% (4.26)
= v

S Ei(z) andEi(z) = PV [__(exp(t)/t) dt are both called “exponential integrals”. Closely
related is the “logarithmic integrali(z) = Ei(Inz) = PV [;(1/ Int) d¢. Here the integrals

PV [.- should be interpreted as Cauchy principal values if there is a singularity in the range
of integration. The power serids (4126) is valid foe C if | arg z| < 7 (see Exercise 4.16).

4.5 Asymptotic expansions 145

is unsatisfactory as a means of evaluafifigx) for large positivez, for the
reasons discussed§d.4 in connection with the power seri€s(4.22)dof(z),
or the power series farxp(x) (z negative). For sufficiently large positive it
is preferable to use

k . 1) j—1
¢ Eifx) =Y]— + R(a), (4.27)
j=1
where
Ry(z) = k! (—=1)F exp(x) / %;“) du. (4.28)
Note that
!
| Ry ()| < prEE
SO
2, Rel) =0,

butlimy_. ., Ri(z) does not exist. In other words, the series

= (=D (=1)t
Z(J)xg)

Jj=1

is divergent. In such cases, we call thisssymptotic serieand write

i 1)(=1)71
¢ By(a) ~ 3 % : (4.29)
j>0

Although they do not generally converge, asymptotic series are very useful.
Often (though not always!) the error is bounded by the last term taken in the
series (or by the first term omitted). Also, when the terms in the asymptotic
series alternate in sign, it can often be shown that the true value lies between
two consecutive approximations obtained by summing the series with/say)
andk + 1 terms. For example, this is true for the serfes (#.29) above, provided
x is real and positive.

Whenz is large and positive, the relative error attainable by uding 14.27)
with k = |z] is O(z'/? exp(—x)), because

[Re(k)| < KI/EFT = O(k™/% exp(—k)) (4.30)

and the leading term on the right side bf(4.27) js:. Thus, the asymptotic
series may be used to evaluate,(z) to precision n whenever

146 Elementary and special function evaluation

x > nln2 4+ O(Inn). More precise estimates can be obtained by using a
version of Stirling’s approximation with error bounds, for example

k)" k" 1
<> Vork < k! < () V2rk exp <> .
e e 12k
If = is too small for the asymptotic approximation to be sufficiently accurate,
we can avoid the problem of cancellation in the power sefies](4.26) by the
technique of Exercise 4.119. However, the asymptotic approximation is faster
and hence is preferable whenever it is sufficiently accurate.
Examples where asymptotic expansions are useful include the evaluation of
erfe(x), I'(z), Bessel functions, etc. We discuss some of these below.
Asymptotic expansions often arise when the convergence of series is accel-
erated by the Euler—Maclaurin sum fornfiigor example, Euler’s constant
is defined by

v = A}im (Hy —InN), (4.31)

whereHy = >, ;. 1/7 is a harmonic number. However, Eqn. (4.31) con-
verges slowly, so to evaluate accurately we need to accelerate the conver-
gence. This can be done using the Euler—Maclaurin formula. The idea is to
split the sumH into two parts

N
HN:prl'i_Z;'
Jj=p

We approximate the second sum using the Euler—Maclaurin fofrwiti
a=pb=N, f(x) = 1/z,then letN — +o0c. The result is

Ba _
ryNHp—lnp—FZT?:p s (4.32)
k>1

If p and the number of terms in the asymptotic expansion are chosen judi-
ciously, this gives a good algorithm for computingthough not the best algo-
rithm: seef4. 12 for a faster algorithm that uses properties of Bessel functions).

7 The Euler-Maclaurin sum formula is a way of expressing the difference between a sum and
an integral as an asymptotic expansion. For example, assuming thdt, b € Z, a < b, and
f(x) satisfies certain conditions, one form of the formula is

b a
S k) 7/ @) da ~ I();f(b) +3 Bay (f(Qk—l)(b) _ f(2k—1)(a)>.
a k>1

ey (2k)!

Often we can leb — +oo and omit the terms involving on the right-hand side. For more
information, se¢j4.13.

4.5 Asymptotic expansions 147

Here is another example. The Riemann zeta-funcior) is defined for
s€C,R(s) > 1, by
()= 45", (4.33)

j=1

and by analytic continuation for other# 1. ((s) may be evaluated to any
desired precision ifn andp are chosen large enough in the Euler—Maclaurin
formula

p—1 —s 1—s m
s P p
C(s):Z] + =5 +8_1+Z Tip(s) + Emp(s), (4.34)
j=1 k=1
where
B 2k—2
2k s .
Tip(s) = e 07 I (s +4), (4.35)
(2k)! o
1Bmp(8)] < |[Trmy1p(8) (s +2m+1)/(0 + 2m + 1)), (4.36)

m>0,p>1,0=R(s) > —(2m+ 1), and theBy;, are Bernoulli numbers.

In arbitrary-precision computations, we must be able to compute as many
terms of an asymptotic expansion as are required to give the desired accuracy.
It is easy to see that, if» in (£.32) is bounded as the precisiangoes to
oo, thenp has to increase as an exponential functiomoffo evaluatel(s)
from (4.33) to precisiom in time polynomial inn, bothm andp must tend to
infinity with n. Thus, the Bernoulli numbems, . . ., Bs,, cannot be stored in
a table of fixed siﬂ,but must be computed when needed ($&8&). For this
reason, we cannot use asymptotic expansions when the general form of the
coefficients is unknown or the coefficients are too difficult to evaluate. Often
there is a related expansion with known and relatively simple coefficients. For
example, the asymptotic expansibn (4.38)lfof (=) has coefficients related to
the Bernoulli numbers, like the expansifn (4.34)¢6¢), and thus is simpler to
implement than Stirling’s asymptotic expansion fdr) (see Exercise 4.42).

Consider the computation of the error functiatfi(z). As seen irff4.4, the
series [(4.22) and (4.23) are not satisfactory for Ignge since they require
Q(2?) terms. For example, to evaluatef (1000) with an accuracy of six digits,

8 In addition, we would have to store them as exact rationals, takimg? 1g m bits of storage,
since a floating-point representation would not be convenient unless the target precision
were known in advance. S§d.7.2 and Exercide 4.B7.

148 Elementary and special function evaluation

Eqn. [4.22) requires at lea®18 279 terms! Instead, we may use an asymp-
totic expansion. The complementary error functiofe(z) = 1 — erf(x) sat-
isfies

erfe(x x\f Z (j (22) %, (4.37)

with the error bounded in absolute value by the next term and of the same sign.
In the caser = 1000, the term forj = 1 of the sum equals-0.5 x 10~5; thus,

e~ /(z\/7) is an approximation terfc(z) with an accuracy of six digits.
Becauserfc(1000) ~ 1.86 x 10434298 js very small, this gives aextremely
accurate approximation taf(1000).

For a function like the error function, where both a power series (at0)
and an asymptotic expansion fat= co) are available, we might prefer to use
the former or the latter, depending on the value of the argument and on the
desired precision. We study here in some detail the case of the error function,
since it is typical.

The sum in[(4.37) is divergent, since ifth term is~ /2(j/ex?)’. We
need to show that the smallest term($2~™) in order to be able to deduce
ann-bit approximation teerfe(x). The terms decrease whije< 2% + 1/2,
so the minimum is obtained fgr ~ x2, and is of ordee—*"; thus, we need
x > v/nln?2. For example, fom = 10° bits this yieldsz > 833. However,
sinceerfc(x) is small for larger, sayerfc(z) ~ 2=, we need onlyn = n— \
correct bits okrfc(z) to getn correct bits okerf(z) = 1 — erfe(z).

Considerz fixed andj varying in the terms in the sums_(4]122) ahd (4.37).
Forj < 2%, 2% /j!is anincreasingfunction of j, but (25)!/(j!(422)7) is a
decreasindunction of;. In this region, the terms in Eqii._(4]37) are decreasing.
Thus, comparing the seriels (4.22) ahd (#.37), we see that the latter should
always be used if it can give sufficient accuracy. Similafly, (#.37) should if
possible be used in preference[fo (4.23), as the magnitudes of corresponding
terms in [4.2P) and i .(4.23) are similar.

Algorithm Erf computesrf(x) for real positiver (for other real:, use the
fact thaterf(x) is an odd function, serf(—z) = —erf(z) anderf(0) = 0).

In Algorithm Erf, the number of terms needed if EqfL_{4.22) or Eqn. (4.23)
is used is approximately the unique positive rgetrounded up to the next
integer) of

j(lnj—2Inz—1)=nln2,

S0 jo > ex?. On the other hand, if EQn_{4137) is used, then the summation
boundk is less than:? + 1/2 (since otherwise the terms start increasing). The

4.5 Asymptotic expansions 149

Algorithm 4.2 Erf
Input: positive floating-point numbet, integern
Output: ann-bit approximation tarf(z)
m— [n— (22 +Inz+ (In7)/2)/(In2)]
if (m+1/2)In(2) < 22 then
t « erfc(x) with the asymptotic expansiq@d.37) and precisionn
returnl — ¢ (in precisionn)
else ifz < 1then
computeerf(z) with the power serie§4.23) in precisionn
else
computeerf(z) with the power serie§4.23) in precisionn.

condition(m + 1/2)In(2) < 2?2 in the algorithm ensures that the asymptotic
expansion can givex-bit accuracy.

Here is an example: for = 800 and a precision of one million bits, Equa-
tion (4.23) requires abouty = 2339601 terms. Eqn.[(4.37) tells us that
erfe(z) ~ 27923335, thus, we need onlyn = 76665 bits of precision for
erfc(z) —in this case Eqn(4.87) requires only abbut 10375 terms. Note
that using Eqn.[{4.22) would be slower than using Efn. {4.23), because we
would have to compute about the same number of terms, but with higher pre-
cision, to compensate for cancellation. We recommend using Eqnl (4.22) only
if |z| is small enough that any cancellation is insignificant (for example, if
|z] < 1).

Another example, closer to the boundary: for= 589, still with n = 106,
we havem = 499 489, which givesj, = 1497924, andk = 325092. For
somewhat smaller: (or largern), it might be desirable to use the continued
fraction [4.40), see Exercige 4]131.

Occasionally, an asymptotic expansion can be used to obtain arbitrarily high
precision. For example, consider the computatiom®f(z). For large positive
x, We can use Stirling’s asymptotic expansion

1 In(2r) Bay,
(4.38)
whereR,, (z) is less in absolute value than the first term neglected, i.e.

BQm
2m(2m — 1)z2m—1"

150 Elementary and special function evaluation

and has the same sﬂ'.he ratio of successive termgandt. of the sumis

2
i (K
tr rx)’
so the terms start to increase in absolute value for (approximaktely) rz.
This gives a bound on the accuracy attainable, in fact

In|R,,(z)] > —27xIn(x) + O(x).

However, becausE(x) satisfies the functional equatidi{xz + 1) = «I'(z),

we can taker’ = x + ¢ for some sufficiently largé € N, evaluatelnT'(x")

using the asymptotic expansion, and then compuf#) from the functional
equation. See Exercite 4121.

4.6 Continued fractions

In §4.3, we considered the exponential intedtalz). This can be computed
using thecontinued fraction

e’ Ey(z) =
r+

1+

x +
1+
x +

3
14---

Writing continued fractions in this way takes a lot of space, so instead we use
the shorthand notation

T E(r) = — — — = = 2 . 4,
¢ Ex(z) ot 1+ 24+ 1+ o+ 1+ (4.39)

Another example is

erfe(z) = (e—x2> 1 1/22/23/24725/2 (4.40)

AV B S S S S S
Formally, a continued fraction
a1 an as -~
=bp+ —+——---cC
f=bo bi+ ba+ b3+

9 The asymptotic expansion is also valid fole C, | arg z| < m, = # 0, but the bound on the
error termR,, (z) in this case is more complicated. See for exaniple [1, 6.1.42].

4.6 Continued fractions 151

is defined by two sequencés;) cn- and(b;),cn, Wherea;, b; € C. Here
C = CU {0} is the set okextendedcomplex numbefd The expressiorf is
defined to béimy_. . fx, if the limit exists, where

aq as as Q.
T T 4.41
= e ot batr by (4-41)

is the finite continued fraction — called thgh approximant— obtained by
truncating the infinite continued fraction aftequotients.

Sometimes continued fractions are preferable, for computational purposes,
to power series or asymptotic expansions. For example, Euler’s continued frac-
tion (4.39) converges for all real > 0, and is better for computation &f; (z)
than the power serieE (4]26) in the region where the power series suffers from
catastrophic cancellation but the asymptotic expankionl(4.27) is not sufficiently
accurate. Convergence ¢f (4139) is slowriis small, so[(4.39) is preferred
for precisionn evaluation ofE; () only whenz is in a certain interval, say
z € (c1n, can), cp ~ 0.1, co = In2 ~ 0.6931 (see Exercise 4.24).

Continued fractions may be evaluated by either forward or backward recur-
rence relations. Consider the finite continued fraction

aq a9 as Qg

= = 4.42
Y b1+ ba+ b3+ br ()

The backward recurrencely, = 1, Rp_1 = by,
Rj =0bj11 Rji1 +aji2 Rjt2 (j=k—2,...,0), (4.43)

andy = a1 R/ Ry, with invariant

Ri _ 1 a1
Rj_1 bj+ bjp1+ b

The forward recurrence iy = 0, P, = a1, Qo = 1, Q1 = by,

Pj = bj Pj71 + a; Pj,Q
Qj=b;Qj1+a;Q;_2

andy = P./Q;. (see Exercise 4.26).
The advantage of evaluating an infinite continued fraction sudh_ag (4.39) via
the forward recurrence is that the cutéfhieed not be chosen in advance; we
can stop whenDy| is sufficiently small, where
P, P

Dy — 2k _ .
"TQr Qra

10 Arithmetic operations offt are extended t& in the obvious way, for example
1/0=1400=1 X 0o = 00, 1/oo = 0. Note thatd/0, 0 x co andoco + oo are undefined.

} (G=2....k), (4.44)

(4.45)

152 Elementary and special function evaluation

The main disadvantage of the forward recurrence is that twice as many arith-
metic operations are required as for the backward recurrence with the same
value of k. Another disadvantage is that the forward recurrence may be less
numerically stable than the backward recurrence.

If we are working with variable-precision floating-point arithmetic, which is
much more expensive than single-precision floating-point, then a useful strat-
egy is to use the forward recurrence with single-precision arithmetic (scaled to
avoid overflow/underflow) to estimate and then use the backward recurrence
with variable-precision arithmetic. One trick is needed: to evaliitaising
scaled single-precision we use the recurrence

Dy = a1 /by, (4.46)
Dj = —a;Qj—2Dj-1/Q; (G=23..))" .

which avoids the cancellation inherent[in (4.45).

By analogy with the case of power series with decreasing terms that alternate
in sign, there is one case in which it is possible to give a simpbesteriori
bound for the error occurred in truncating a continued fraction. fLée a
convergent continued fraction with approximaritsas in [4.41). Then:

Theorem 4.1 If a; > 0andb; > 0forall j € N*, then the sequencgay) en
of even order approximants is strictly increasing, and the sequefig1) ken
of odd order approximants is strictly decreasing. Thus

Jar < f < fort1

and

fm - fmfl
2

o fmfl +fm
2

s

for all m € N*,

In general, if the conditions of Theordm .1 are not satisfied, then it is diffi-
cult to give simple, sharp error bounds. Power series and asymptotic series are
usually much easier to analyse than continued fractions.

4.7 Recurrence relations

The evaluation of special functions by continued fractions is a special case
of their evaluation by recurrence relations. To illustrate this, we consider the
Bessel functions of the first kind, (z). Herev andx can in general be com-
plex, but we restrict attention to the case= Z, = € R. The functions/, (x)

4.7 Recurrence relations 153

can be defined in several ways, for example by the generating function (elegant
but only useful forv € Z)

exp (; (t— 1)) - io .7, (z), (4.47)

V=—00

or by the power series (also validuf¢ Z):

(VN (et
We also need Bessel functions of the second kind (sometimes called Neumann
functions or Weber functionsj, (x), which may be defined by

Ju(x) cos(mpr) = J_ ()

N H H .
Yo(2) = ;Pg%/ sin(mp) (4.49)

Both J, (z) andY, (x) are solutions of Bessel’s differential equation

22y +ay + (2 — vy = 0. (4.50)

4.7.1 Evaluation of Bessel functions

The Bessel functiong,, (z) satisfy the recurrence relation
2v
Jy—1(x) + Jpp1(x) = ?Jy(:c). (4.51)

Dividing both sides byJ,, (z), we see that
Jy—i(z) 20 1/ Jy(x)

Jo(x) Joii(x)
which gives a continued fraction for the ratip(z)/J,—1(z) (v > 1)
J,(z) 1 1 1

Jo_i(z) 2wlz— 2w+ 1)/a— 2 +2)/z— (4.52)
However, [4.5R) is not immediately useful for evaluating the Bessel functions
Jo(z) or Jy(x), as it only gives their ratio.

The recurrencd (4.51) may be evaluated backwardslibigr's algorithm.
The idea is to start at some sufficiently large indéxakef, .1 =0, f,, =1,
and evaluate the recurrence

for 4 forr =22 4, (453)

154 Elementary and special function evaluation

backwards to obtairf,._1, - - - , fo. However, [4.5B) is the same recurrence as
(@51), so we expect to obtajfy ~ cJy(x), wherec is some scale factor. We
can use the identity

Jo(x) +2) Jau(x) =1 (4.54)
v=1

to determiner.

To understand why Miller’s algorithm works, and why evaluation of the re-
currence[(4:51) in the forward direction is numerically unstablevfas =,
we observe that the recurren€e (4.53) has two independent solutions: the de-
sired solutionJ, (z), and an undesired solutidf (x), whereY,, (z) is a Bessel
function of thesecond kind, see Eqih.(4149). The general solution of the recur-
rence [[4.5B) is a linear combination of the special solutigr(s;) andY,, (z).
Due to rounding errors, the computed solution will also be a linear combina-
tion, sayaJ, (z) + bY, (x). Since|Y, (z)| increases exponentially withwhen
v > ex/2, but|.J,(z)| is bounded, the unwanted component will increase ex-
ponentially if we use the recurrence in the forward direction, but decrease if
we use it in the backward direction.

More precisely, we have

J,(x) ~ ﬁ% (%) and Y, (z) ~ — % <Z> (4.55)
asv — +oo with z fixed. Thus, whew is large and greater than: /2, J, (x)
is small andY,, (z)| is large.

Miller’'s algorithm seems to be the most effective method in the region where
the power serie$ (4.48) suffers from catastrophic cancellation, but asymptotic
expansions are not sufficiently accurate. For more on Miller’'s algorithm, see

§412.

4.7.2 Evaluation of Bernoulli and tangent numbers

In 4.8, Eqns.[(4.35) an@{4.88), the Bernoulli numbBss or scaled Bernoulli
numbersCy, = Bsyi/(2k)! were required. These constants can be defined by
the generating functions

> k

Y B = (4.56)
k! et —1

k=0

- ok x x x/2
< = - 4.57
kz_% Cr e’ —1 + 2 tanh(z/2) (4.57)

4.7 Recurrence relations 155

Multiplying both sides ofl(4.56) of (4.57) hy¥ — 1, then equating coefficients,
gives the recurrence relations

k
kE+1
Bozl,z<_‘j>Bj:0fork>0, (4.58)
i=o N J
and
k

C; 1
Z (2k + 1Jf 2/)l ~ 2(2k)! (4.59)

=0
These recurrences, or slight variants with similar numerical properties, have
often been used to evaluate Bernoulli numbers.

In this chapter our philosophy is that the required precision is not known in
advance, so it is not possible to precompute the Bernoulli numbers and store
them in a table once and for all. Thus, we need a good algorithm for computing
them at runtime.

Unfortunately, forward evaluation of the recurrente_(%.58), or the corre-
sponding recurrencé€ (4}59) for the scaled Bernoulli numbers, is numerically
unstable: using precisiom, the relative error in the computesgh, or C}, is of
order4*2~": see Exercisg 4.35.

Despite its numerical instability, use 6f(4159) may give heto acceptable
accuracy if they are only needed to generate coefficients in an Euler—Maclaurin
expansion where the successive terms diminish by at least a factor of four (or if
the C}, are computed using exact rational arithmetic). If ¢heare required to
precisionn, then [4.5D) should be used with sufficient guard digits, or (better)
a more stable recurrence should be used. If we multiply both sides of (4.57) by
sinh(z/2) /2 and equate coefficients, we get the recurrence

k

Gj 1
jZ::O (2k +1 —2j)14+—7 — (2k)1 4k (4.60)

If (Z.60) is used to evaluaté€, using precisionn arithmetic, the relative
error is only O(k?27"). Thus, use of[{4.80) gives a stable algorithm for
evaluating the scaled Bernoulli numbe€s, (and hence, if desired, the
Bernoulli numbers).
An even better, and perfectly stable, way to compute Bernoulli numbers is
to exploit their relationship with thiangent number$);, defined by
2j—1

tanx = ZTj h . (4.61)

Jj=1

The tangent numbers are positive integers and can be expressed in terms of

156 Elementary and special function evaluation

Bernoulli numbers
By

Tj - (71)j7122j (22j - 1) 2j

(4.62)

Conversely, the Bernoulli numbers can be expressed in terms of tangent
numbers

1 if =0,
)12 if j =1,
T (—1)I2NTy /(4 — 27) if 5 > 0is even,
0 otherwise.

Eqgn. [4.62) shows that the odd primes in the denominator of the Bernoulli
number By; must be divisors o2? — 1. In fact, this is a consequence of
Fermat's little theorem and the Von Staudt—Clausen theorem, which says that
the primesp dividing the denominator of3,; are precisely those for which

(p —1)[2j (seefd.1D).

We now derive a recurrence that can be used to compute tangent numbers,
using only integer arithmetic. For brevity, write= tanz andD = d/dz.
ThenDt = sec?x = 1 + t2. It follows that D(t") = nt"~!(1 + ¢2) for all
n € N*,

It is clear thatD™¢ is a polynomial irt, say P, (t). For examplePy(t) = t,
Py(t) = 1+¢2, etc. WriteP,(t) = Zpopn,jtj. From the recurrencB, (t) =
DP,_4(t), and the formula foD(¢™) just noted, we see thdtg(P,) =n+1
and

> bt =Y pao1 gt T 1+,

5>0 §>0

SO
Pr = —Dpn-1,j—1+ G+ Dpn-1j+41 (4.63)

for all n € N*. Using [4.6B), it is straightforward to compute the coefficients
of the polynomialsP; (t), P»(t), etc.

Observe that, sincewn x is an odd function of;, the polynomiald>y (t) are
odd, and the polynomialB 11 (t) are even. Equivalently,, ; = 0if n+jis
even.

We are interested in the tangent numb&js = Ps;_1(0) = par—_1,0-
Using the recurrencé (4.163) but avoiding computation of the coefficients that
are known to vanish, we obtain AlgorithiangentNumbersfor the in-place
computation of tangent numbers. Note that this algorithm uses only arithmetic
on non-negative integers. If implemented with single-precision integers, there

4.7 Recurrence relations 157

Algorithm 4.3 TangentNumbers
Input: positive integem
Output: Tangent number®y, ..., T,,
T1 — 1
for k from 2to m do
Ty — (k— 1)Tx—4
for k from 2 to m do
for j from k to m do
Ty — (= k)i + (G — k+2)T;
returnTy, Ts, ..., Thy,.

may be problems with overflow as the tangent numbers growlsajfitmple-
mented using floating-point arithmetic, it is numerically stable because there
is no cancellation. An analogous algoritfBecantNumbersis the topic of
Exercisd 4.40.

The tangent numbers grow rapidly because the generating funatianhas
poles atr = +7 /2. Thus, we expect}, to grow roughly like(2k—1)! (2/7)%".
More precisely

T, B 221~c+1(1 _ 2_2k)C(2I€)

2k — 1)1 w2k ’ (4.64)

where((s) is the usual Riemann zeta-function, and
(1—-27°)¢(s) =14+37°4+5"°4---

is sometimes called thedd zeta-function.

The Bernoulli numbers also grow rapidly, but not quite as fast as the tan-
gent numbers, because the singularities of the generating funictioh (4.56) are
further from the origin (at:-2i7 instead of+x/2). It is well-known that the
Riemann zeta-function for even non-negative integer arguments can be
expressed in terms of Bernoulli numbers — the relation is

k-1 Bar _ 2((2k)

(-1 e (4.65)
Since((2k) = 14+ O(47%) ask — +oo, we see that
k)!
| Bog | ~ ?2(5)2)1@ : (4.66)

It is easy to see thaf (4.64) arld (4.65) are equivalent, in view of the rela-
tion (4.62).

158 Elementary and special function evaluation

An asymptotically fast way of computing Bernoulli numbers is the topic of
Exercise[4.211. For yet another way of computing Bernoulli numbers, using
very little space, se@4.10.

4.8 Arithmetic-geometric mean

The (theoretically) fastest known methods for very large precisiase the
arithmetic-geometric mean (AGM) iteration of Gauss and Legendre. The AGM
is another non-linear recurrence, important enough to treat separately. Its com-
plexity isO(M (n) lnn); the implicit constant here can be quite large, so other
methods are better for smail

Given(ag, by), the AGM iteration is defined by

a; + b;
(@j41,bj41) = (. 5 J7\/ajbj>~

For simplicity, we only consider real, positive starting valdeg, by) here (for
complex starting values, séd.8.53 andj4.12). The AGM iteration converges
quadraticallyto a limit that we denote bAGM (aq, bo).

The AGM is useful because:

1. It converges quadratically — eventually the number of correct digits doubles
at each iteration, so oni§(log n) iterations are required.

2. Each iteration takes tim@(M (n)) because the square root can be com-
puted in timeO(M (n)) by Newton’s method (se$8.3 andj4.2.3).

3. If we take suitable starting valu€sy, by), the resultAGM(ay, by) can be
used to compute logarithms (directly) and other elementary functions (less
directly), as well as constants suchraandin 2.

4.8.1 Elliptic integrals

The theory of the AGM iteration is intimately linked to the theory of elliptic
integrals. Theeomplete elliptic integral of the first kind defined by

(4.67)

/2 do 1 dt
K(k)*/o /71—14:2511129/0 \/(1—t2)(1—k2t2)'

and thecomplete elliptic integral of the second kired

/2 L 22
E(k):/ \/1—k251n29d9:/ JEEE g

4.8 Arithmetic-geometric mean 159

wherek € [0, 1] is called themodulusandk’ = /1 — k2 is thecomplemen-
tary modulus. It is traditional (though confusing as the prime does not denote
differentiation) to writeK’ (k) for K (k') andE’ (k) for E(k').

The connection with elliptic integrals. Gauss discovered that

1 2,
AT ~ —K' (k). (4.68)
This identity can be used to compute the elliptic integkarapidly via the
AGM iteration. We can also use it to compute logarithms. From the defini-
tion (4.67), we see that'(k) has a series expansion that convergesifpx 1
(in fact, K (k) = (w/2)F(1/2,1/2;1;k?) is a hypergeometric function). For
smallk, we have

T k2 4
K(Iq):5 1+Z+O(k)) - (4.69)
It can also be shown that
/ _ g 4 o k72 4
K'(k) = . In (k) K (k) 1 + O(k). (4.70)

4.8.2 First AGM algorithm for the logarithm

From the formulad(4.68). (4.59), aid (4.70), we easily get

AG;\T&/&M =In (:) (1+0(k?)). (4.71)

Thus, ifz = 4/k is large, we have

o) - 2 (100 ().

If 2 > 2"/2, we can computén(z) to precisionn using the AGM iteration. It
takes abou? lg(n) iterations to converge if € [2/2,2"].

Note that we need the constantwhich could be computed by using our
formula twice with slightly different arguments, andz-, then taking differ-
ences to approximatel In(z)/dx)/m atz, (see Exercise 4.44). More efficient
is to use thaBrent—Salamirfor Gauss—Legendre) algorithm, which is based on
the AGM and the Legendre relation

EK' + E'K — KK' = g : (4.72)

160 Elementary and special function evaluation

Argument expansion. If = is not large enough, we can compute
In(2‘z) =¢In2 +1Inz

by the AGM method (assuming the constam® is known). Alternatively, if
x > 1, we can square enough times and compute

In (xzé) = 2%In(x).

This method withr = 2 gives a way of computingn 2, assuming we already
know .

The error term. The O(k?) error term in the formuld{4.71) is a nuisance. A
rigorous bound is

/2 4 9
e — — < — .
AGM(LE) hl(k)‘ <4k*(8 —Ink) (4.73)
for all & € (0, 1], and the bound can be sharpened &7k?(2.4 — In(k)) if

k € (0,0.5].

The errorO(k?|In k|) makes it difficult to accelerate convergence by using
alarger value of: (i.e. a value of: = 4/k smaller thar2™/2). There is arexact
formula which is much more elegant and avoids this problem. Before giving
this formula, we need to define sortfeeta functionsand show how they can
be used to parameterize the AGM iteration.

4.8.3 Theta functions
We need the theta functiofis(q), 65(¢) andf,(q), defined forlq| < 1 by

+oo +oo
02((]) _ Z q(n+1/2)2 _ 2ql/4 an(n+1)’ (474)
n=-—oo n=0
00) 00)
O3(g) = > ¢~ =1+2) q", (4.75)
n=-—oo n=1
00)
ba(q) = O3(~q) =1+2) (~1)"¢". (4.76)
n=1

Note that the defining power series are sparse, so it is easy to cofyute
andds(q) for smallg. Unfortunately, the rectangular splitting method{df4.3
does not help to speed up the computation.

The asymptotically fastest methods to compute theta functions use the AGM.
However, we do not follow this trail, because it would lead us in circles! We
want to use theta functions to give starting values for the AGM iteration.

4.8 Arithmetic-geometric mean 161

Theta function identities. There are many classical identities involving theta
functions. Two that are of interest to us are

w =03(¢*) and 03(q)04(q) = 05(q°).

The latter may be written as

03(q)03(q) = 03 (q*)
to show the connection with the AGM

AGM(65(q), 63(9)) = AGM(03(¢*), 0

2
s V4
= AGM(02(¢*"),0

¢°) ="
@) ==
for any|q| < 1. (The limitis1 becauseﬁ” converges td, thus bothd; and

04 converge tal.) Apart from scaling, the AGM iteration is parameterized by
(02(¢2"),02(¢*")) fork = 0,1,2,

:

7

The scaling factor. Since AGM(63(q),63(q)) = 1, and AGM(X\a, A\b) =
A - AGM(a, b), scaling givesAGM(1,k") = 1/03(q) if k' = 03(q)/03(q)

Equivalently, sinced; + 0F = 03 (Jacobi),k = 62(q)/603(q). However, we
know (from [4.68) withk — £’) that1/ AGM(1, k") = 2K (k)/m, so

K (k) = 63(q). (4.77)

Thus, the theta functions are closely related to elliptic integrals. In the literature
q is usually called th@omeassociated with the modulés

From ¢ to k and k to ¢. We saw thate = 63(q)/63(q), which givesk in
terms ofq. There is also a nice inverse formula which giveis terms ofk:
q = exp(—7K'(k)/K(k)), or equivalently

()

Sasaki and Kanada’s formula. Substituting [(4.68) and_(4.17) intG_(4]78)
with k& = 03(q)/03(q) gives Sasaki and Kanada’s elegant formula

1 m
m(q>:AGMwa@ﬁa@f

This leads to the following algorithm to compuiex.

(4.79)

162 Elementary and special function evaluation

4.8.4 Second AGM algorithm for the logarithm

Supposer is large. Lety = 1/, computeds (¢*) andfs(¢*) from their defin-
ing series[(4.74) and(4175), then compiat&M (03(q*), 62(¢*)). Sasaki and
Kanada’s formula (witly replaced by* to avoid they'/* term in the definition
of 02(q)) gives

B /4

-~ AGM(65(q*), 05 (%))

There is a trade-off between increasingby squaring or multiplication by a
power of2, see the paragraph on “Argument Expansion§4iB.2), and taking
longer to computé-,(¢*) andfs(q*) from their series. In practice, it seems
good to increase until ¢ = 1/ is small enough thad(¢>¢) terms are negli-
gible. Then we can use

02(¢*) =2 (q+ ¢ + ¢* + O(¢*?)) ,

In(x)

05(¢") =1+2(¢" +¢"° + O0(¢*?)) .

We need: > 2"/36, which is much better than the requirement 2"/2 for
the first AGM algorithm. We save about four AGM iterations at the cost of a
few multiplications.

Implementation notes. Since

2 2
AGM(62, 62) — ACM(63 +293, 20203)

we can avoid the first square root in the AGM iteration. Also, it only takes two
non-scalar multiplications to compu2é,65; and3 + 67 from 6, andfs: see
Exercisd 4.45. Another speedup is possible by trading the multiplications for

squares, seff.12.

Drawbacks of the AGM. The AGM has three drawbacks:

1. The AGM iteration imot self-correcting, so we have to work with full pre-
cision (plus any necessary guard digits) throughout. In contrast, when us-
ing Newton’s method or evaluating power series, many of the computations
can be performed with reduced precision, which savkeg a factor (this
amounts to using aegativenumber of guard digits).

2. The AGM with real arguments givés(x) directly. To obtainexp(z), we
need to apply Newton's methodd 2.5 and ExercisE4.6). To evaluate
trigonometric functions such am(z), cos(z), arctan(x), we need to work
with complex arguments, which increases the constant hidden in the “O

4.9 Binary splitting 163

time bound. Alternatively, we can use Landen transformations for incom-
plete elliptic integrals, but this gives even larger constants.

3. Because it converges so fast, it is difficult to speed up the AGM. At best we
can save)(1) iterations (see howev@d.12).

4.8.5 The complex AGM

In some cases, the asymptotically fastest algorithms require the use of complex
arithmetic to produce a real result. It would be nice to avoid this because com-
plex arithmetic is significantly slower than real arithmetic. Examples where we
seem to need complex arithmetic to get the asymptotically fastest algorithms
are:

1. arctan(z), arcsin(x), arccos(z) via the AGM, using, for example,
arctan(z) = S(In(1 + ix));

2. tan(x), sin(x), cos(x) using Newton’s method and the above, or
cos(z) + isin(z) = exp(ix),

where the complex exponential is computed by Newton’s method from the
complex logarithm (see Eqri._(4]11)).

The theory that we outlined for the AGM iteration and AGM algorithms for
In(z) can be extended without problems to compleg (—oo, 0], provided
we always choose the square root with positive real part.

A complex multiplication takes three real multiplications (using Karatsuba’s
trick), and a complex squaring takes two real multiplications. We can do even
better in the FFT domain, assuming that one multiplication of ddét) is
equivalent to three Fourier transforms. In this model, a squaring 266t /3.

A complex multiplication(a + ib)(c + id) = (ac — bd) + i(ad + bc) requires

four forward and two backward transforms, and thus c@3fgn). A complex
squaring(a + ib)* = (a + b)(a — b) + i(2ab) requires two forward and two
backward transforms, and thus co$f¥/ (n)/3. Taking this into account, we
get the asymptotic upper bounds relative to the cost of one multiplication given
in Table 4.1 (0666 should be interpreted as2M (n)/3, and so on). Se¢L.12

for details of the algorithms giving these constants.

4.9 Binary splitting

Since the asymptotically fastest algorithms fottan, sin, cos, etc. have a
large constant hidden in their time bou@dM (n) log n) (see “Drawbacks of

164 Elementary and special function evaluation

Operation real complex
squaring 0.666 1.333
multiplication 1.000 2.000
reciprocal 1.444 3.444
division 1.666 4.777
square root 1.333 5.333
AGM iteration 2.000 6.666
log via AGM 4.0001gn 13.3331gn

Table 4.1 Costs in the FFT domain.

the AGM", §4.8.4, page 162), it is interesting to look for other algorithms that
may be competitive for a large range of precisions, even if not asymptotically
optimal. One such algorithm (or class of algorithms) is basebioary split-

ting (seed4.12). The time complexity of these algorithms is usually

O((logn)* M (n))

for some constantv > 1 depending on how fast the relevant power series
converges, and also on the multiplication algorithm (classical, Karatsuba, or
quasi-linear).

The idea. Suppose we want to computectan(z) for rationalz = p/q,
wherep andq are small integers and| < 1/2. The Taylor series gives

p (—1)7p2+1
arctan <) ~ FTT s T
Z +1
0/ iz (201

The finite sum, if computed exactly, gives a rational approximafig) to
arctan(p/q), and

log |Q| = O(nlogn).

(Note: the series foexp converges faster, so in this case we ssm/Inn
terms and gelog |Q] = O(n).)

The finite sum can be computed by the “divide and conquer” strategy: sum
the first half to getP; /@, say, and the second half to gét/Q-, then

P_P P PQ+PO
Q Q1 Qo Q1Q-

The rationalsP; /@, and P, /@, are computed by a recursive application of

the same method, hence the term “binary splitting”. If used with quadratic

4.9 Binary splitting 165

multiplication, this way of computing’/) does not help; however, fast mul-
tiplication speeds up the balanced produet§),, P,Q1, and@Q1Qx.

Complexity. The overall time complexity is

Mg(n)]
O 28 M (2 Fnlogn) | = O((logn)*M(n)), (4.80)
k=1

wherea = 2 in the FFT range; in general < 2 (see Exercise 4.47).

We can save a little by working to precisiarrather tham log n at the top
levels; but we still havex = 2 for quasi-linear multiplication.

In practice, the multiplication algorithm would not be fixed but would de-
pend on the size of the integers being multiplied. The complexity would de-
pend on the algorithm(s) used at the top levels.

Repeated application of the idea.lf = € (0,0.25) and we want to compute
arctan(z), we can approximate by a rationalp/q and computerctan(p/q)
as a first approximation tarctan(z), sayp/q < = < (p + 1)/q. Now,

from (4.17) -

z —p/q
tan(arctan(x) — arctan = ",
((2) (v/9)) = 1 e
SO
arctan(x) = arctan(p/q) + arctan(d),
where

_z—-plg _qr—p,
L+px/q q+px

We can apply the same idea to approximatetan(d). Eventually we get a
sufficiently accurate approximationdoctan(z). Since|d| < |x—p/q| < 1/q,
it is easy to ensure that the process converges.

Complexity of repeated application. If we use a sequence of abdgtn ra-
tionalsp1/q1,p2/q2, - . ., Wwhere
qi = 22i7

then the computation of eaelctan(p; /¢;) takes timeD((logn)*M (n)), and
the overall time to computerctan(z) is

O((logn)**" M (n)).

166 Elementary and special function evaluation

Indeed, we hav® < p; < 22 '; thus,p; has at mosgi— bits, andp; /q;

as a rational has valu@(2-2"") and sizeO(2%). The exponent: + 1 is 2

or 3. Although this is not asymptotically as fast as AGM-based algorithms, the
implicit constants for binary splitting are small and the idea is useful for quite
largen (at leastl0° decimal places).

Generalizations. The idea of binary splitting can be generalized. For exam-
ple, the Chudnovsky brothers gave a “bit-burst” algorithm, which applies to
fast evaluation of solutions of linear differential equations. This is described in

§49.2.

4.9.1 A binary splitting algorithm for sin, cos

Brent @ Theorem 6.2] claims aB(M (n) log? n) algorithm forexp = and

sin z; however, the proof only covers the case of the exponential and ends with
“the proof of (6.28) is similar”. He had in mind deducisig = from a complex
computation ofexp(iz) = cosz + isinz. Algorithm SinCosis a variation

of Brent’s algorithm forexp x that computesin x andcos x simultaneously,

in a way that avoids computations with complex numbers. The simultaneous
computation ofsin 2 andcos 2 might be useful to computean = or a plane
rotation through the angle.

Algorithm 4.4 SinCos

Input: floating-pointd < = < 1/2, integern

Output: an approximation ofin x andcos x with errorO(27")

1: write z ~ Zf:o pi - 272" where0 < p; < 22" andk = Mgn] —1

2 letz; = Zf:j i - 2-2""" with ZTp+1 = 0, andy; = p; - 2-2"

3 (Sk+1, Ck+1) — (0, 1) > Sj is SiIlej ande is COS X5
4: for j from k downto 0 do
5
6
7

computesin y; andcos y; using binary splitting
S« siny;-Cjp1+cosy;-Sjy1,Cj < cosy;j-Cipr —siny; - Sj
. return(Sop, Co).

At step[2 of AlgorithmSinCos, we haver; = y; + z,41; thus,sinz; =
siny; cosxj4+1 + cosy; sinx 41, and similarly forcos x;, explaining the for-
mulee used at stdd 6. StEp 5 uses a binary splitting algorithm similar to the
one described above farctan(p/q): y; is a small rational, or is small itself,
so that all needed powers do not exceelits in size. This algorithm has the
same complexity) (M (n) log® n) as Brent's algorithm foexp z.

4.9 Binary splitting 167
4.9.2 The bit-burst algorithm

The binary-splitting algorithms described abovedottan x, exp z, sin x rely

on a functional equatiortan(z + y) = (tanz + tany)/(1 — tanz tany),
exp(z + y) = exp(z)exp(y), sin(z + y) = sinzcosy + sinycosx. We
describe here a more general algorithm, known as the “bit-burst” algorithm,
which does not require such a functional equation. This algorithm applies to
a class of functions known dlonomicfunctions. Other names adifferen-
tiably finiteandD-finite.

A function f(z) is said to béholonomiciff it satisfies a linear homogeneous
differential equation with polynomial coefficientsinEquivalently, the Taylor
coefficientsu,, of f satisfy a linear homogeneous recurrence with coefficients
polynomial ink. The set of holonomic functions is closed under the operations
of addition and multiplication, but not necessarily under division. For example,
theexp, In, sin, cos functions are holonomic, bitn is not.

An important subclass of holonomic functions is the hypergeometric func-
tions, whose Taylor coefficients satisfy a recurrenge; /u, = R(k), where
R(k) is a rational function of (see§4.4). This matches the second defini-
tion above, because we can write itas;1Q(k) — up P(k) = 0 if R(k) =
P(k)/Q(k). Holonomic functions are much more general than hypergeometric
functions (see Exercige 4148); in particular, the ratio of two consecutive terms
in a hypergeometric series has sizfog k) (as a rational number), but can be
much larger for holonomic functions.

Theorem 4.2 If f is holonomic and has no singularities on a finite, closed
interval [A, B], whereA < 0 < B and f(0) = 0, then f(z) can be com-
puted to an (absolute) accuracy ofits, for anyn-bit floating-point number

z € (A, B),intimeO(M (n)log®n).

NoTES For a sharper result, see Exerdise #.49. The condjtioh = 0 is just
a technical condition to simplify the proof of the theorefi{() can be any
value that can be computedstdbits in timeO(M (n) log® n).

Proof. Without loss of generality, we assume< z < 1 < B; the binary
expansion ofr can then be writterx = 0.b1bs...b,. Definer; = 0.bq,
ro = 0.0b2b3, r3 = 0.000b4b5bsb7 (the same decomposition was already used
in Algorithm SinCo9: r; consists of the first bit of the binary expansionof
ro consists of the next two bits; the next four bits, and so on. Thus, we have
=711+ ry+ ...+, where2b—1 < n < 2k,

Definex; = r + --- + r; with g = 0. The idea of the algorithm is to
translate the Taylor series ¢f from z; to z;,1; since f is holonomic, this
reduces to translating the recurrence on the corresponding coefficients. The

168 Elementary and special function evaluation

condition thatf has no singularity if0, z] C [A, B] ensures that the translated
recurrence is well-defined. We defifigt) = f(¢), f1(¢) = fo(r1+1), fo(t) =
filre +4), . fi(t) = fia(ri +) fori < k. We havef;(t) = f(z; + 1),
andfi(t) = f(x +t) sincexy = z. Thus, we are looking fof,(0) = f(z).

Let f7(t) = f:(t) — f:(0) be the non-constant part of the Taylor expansion
of f;. We havef’(r;+1) = fi(riy1) — fi(0) = fi41(0) — f;(0) because
fi+1(t) = fi(rig1 +1). Thus

fo(r) + -+ fioa(re) = (f1(0) = fo(0)) + -+ - + (f&(0) = fr—1(0))
= fx(0) = fo(0) = f(z) — f(0).

Sincef(0) = 0, this gives

k—1
F@) = ff (i)
=0
To conclude the proof, we will show that each teffi{r; ;) can be evalu-
ated ton bits in timeO (M (n) log® n). The rational;, ; has a numerator of at
most2¢ bits, and

0<ripq <2172,

Thus, to evaluatef; (r;11) to n bits, n/2¢ + O(logn) terms of the Taylor
expansion off;*(¢) are enough. We now use the fact thyais holonomic.
Assumej satisfies the following homogeneous I||Ebd|fferentlal equation
with polynomial coefficients

Cm () FU () + -+ L (8) /() + o) f(2) = 0.
Substitutinge; + t for ¢, we obtain a differential equation fg¥
e (i + B F™ () + -+ ea(ws +) F(1) + colw + D fi(t) =0

From this equation, we deduce (S§E12) a linear recurrence for the Taylor
coefficients off;(¢), of the same order as that f@(t). The coefficients in the
recurrence forf; (t) haveO(2?) bits, sincer; = ry + - -+ + r; hasO(2?) bits.
It follows that the/th Taylor coefficient off;(t) has sizeO(£(2¢ + log¥)).
The Zlog ¢ term comes from the polynomials ihin the recurrence. Since
¢ <n/2" + O(logn), this isO(nlogn).

However, we do not want to evaluate tfté Taylor coefficientu, of f;(t),
L |f f satisfies a non-homogeneous differential equation, say

E(t, f(t), £ (), ..., f®)(t)) = b(t), whereb(t) is polynomial int, differentiating it yields
F(t, f@t), f/ &), ..., fEFD (@) =/ (t), andb/ (t) E(-) — b(t)F(-) is homogeneous.

4.10 Contour integration 169

but the series
¢
Sy = Zuj’rl-?le ~ fi*(Ti+1)~
j=1

Noting thatu, = (Sg—5g,1)/7‘f+1, and substituting this value in the recurrence
for (u¢), say of ordewl, we obtain a recurrence of ordér- 1 for (s;). Putting
this latter recurrence in matrix forr§, = M,S,_1, where S, is the vector
(Se¢y80-1,---,S0—d), We Obtain

Se= MMy - Mg4154, (4.81)
where the matrix productM,M,_,---Myy; can be evaluated in time
O(M (n)log® n) using binary splitting. O

We illustrate Theorern 4.2 with the arc-tangent function,chlsatisfies the
differential equationf’(t)(1 +) = 1. This equation evaluates at + ¢ to
f1)(1 + (z; +t)?) = 1, wheref;(t) = f(z; +t). This gives the recurrence

(1 + 22)ug + 22;(0 — Vup_y + (£ — 2)ug_2 =0
for the Taylor coefficients, of f;. This recurrence translates to
(14 2) v + 22m41(€ — Vve—y + 17,1 (£ — 2)vp—0 =0
for v, = werf, |, and to
(1+ 5”12)5(52 —50-1)
+ 221 (€ — 1) (801 — Se—2) + 17,1 (£ — 2)(s0—2 — 8¢0—3) =0

for s, = Zﬁzl v;. This recurrence of orde¥ can be written in matrix form,
and Eqn.[(4.81) enables us to efficiently compute: f;(r; +1) — f;(0) using
multiplication of3 x 3 matrices and fast integer multiplication.

4.10 Contour integration

In this section, we assume that facilities for arbitrary-precision complex arith-
metic are available. These can be built on top of an arbitrary-precision real
arithmetic package (see Chapféers 3f@nd 5).

Let f(z) be holomorphic in the dis¢z| < R, R > 1, and let the power
series forf be

f(z) = i aj 2. (4.82)
=0

170 Elementary and special function evaluation

From Cauchy’s theoreZ, Ch. 7], we have
1[Iy,

21t Jo 2t

;= (4.83)

whereC is the unit circle. The contour integral in (4183) may be approximated
numerically by sums

k—1
f 27r17n/k 727rijm/k' (484)

w\»—‘

Jk =
m=0

Let C” be a circle with centre at the origin and radipse (1, R). From
Cauchy’s theorem, assuming that &, we have (see Exercige 4150)

1 z
Sik = a5 = %/ (’Ci(l))zjﬂdzzaﬁﬁ%‘wﬁ“' , (4.8
s0|S;x — aj| = O((R — §)~U*k) ask — oo, for anys > 0. For example,
let

z z

@) =Z—+3 (4.86)

be the generating function for the scaled Bernoulli numbers dsinl (4.57), so
azj = Cj = Boj/(24)! andR = 27 (because of the poles &R7i). Then

By Boj ik Boj o
ok — = 4.87
S2i.k @)l @ik @kt T (4.87)

so we can evaluatBs,; with relative errorO((27)~*) by evaluatingf(z) atk
points on the unit circle.

There is some cancellation when usihg(4.84) to evalfiafe because the
terms in the sum are of order unity but the result is of or@er)~2/. Thus,
O(37) guard digits are needed. In the following, we assymeO(n).

If exp(—2mijm/k) is computed efficiently fromaxp(—27i/k) in the obvi-
ous way, the time required to evaluat®,,...,B; to precisionn is
O(jnM(n)), and the space required 3(n). We assume here that we need
all Bernoulli numbers up to indeXj, but we do not need to store all of them
simultaneously. This is the case if we are using the Bernoulli numbers as coef-
ficients in a sum such as(4138).

The recurrence relation method®E7.2 is faster but requires spa@éjn).
Thus, the method of contour integration has advantages if space is critical.

For comments on other forms of numerical quadrature{4d

4.11 Exercises 171
4.11 Exercises

Exercise 4.11f A(z) = > ;5 ajz’ is a formal power series ovék with

ap = 1, show thatln(A(x)) can be computed with errad(z™) in time
O(M(n)), whereM (n) is the time required to multiply two polynomials of
degreen — 1. Assume a reasonable smoothness condition on the growth of
M(n) as a function ofn. [Hint: (d/dz)In(A(x)) = A'(z)/A(z).] Does a
similar result hold fom-bit numbers ifx is replaced byt /2?

Exercise 4.2 (Scbnhage[@] and Schost) Assume we want to compute
1/s(xz) mod z™, for s(x) a power series. Design an algorithm using an odd—
even scheme[(31.3.5), and estimate its complexity in the FFT range.

Exercise 4.3 Suppose thaj andh are sufficiently smooth functions satisfying
g(h(z)) = = on some interval. Leg; = h(x;). Show that the iteration
k—1
T =xi4+ Y (y—y;s)
m=1
is akth-order iteration that (under suitable conditions) will converge te
g(y). [Hint: generalize the argument leading[fo(4.16).]

m 9 (y;)
m!

Exercise 4.4 Design a Horner-like algorithm for evaluating a se@§zo ajxl

in the forward direction, while deciding dynamically where to stop. For the
stopping criterion, assume that the;| are monotonic decreasing and that
|x| < 1/2. [Hint: usey = 1/x.]

Exercise 4.5Assume we want bits of expz for = of order2’, with the
repeated use of the doubling formul&{%§413.1), and the naive method to evaluate
power series. What is the best reduced argumegat in terms ofn and;?
[Consider both cases> 0 andj < 0.]

Exercise 4.6 Assuming we can compute anbit approximation toln z in
time T'(n), wheren < M(n) = o(T(n)), show how to compute an-bit
approximation teexp « in time ~ T'(n). Assume thaf’(n) and M (n) satisfy
reasonable smoothness conditions.

Exercise 4.7 Care has to be taken to use enough guard digits when computing
exp(x) by argument reduction followed by the power serles (4.21}. i of
order unity and: steps of argument reduction are used to compxipéx) via

exp(r) = (explr/2)”

show that abouk bits of precision will be lost (so it is necessary to use about
k guard bits).

172 Elementary and special function evaluation

Exercise 4.8 Show that the problem analysed in Exer¢isé 4.7 can be avoided
if we work with the function

expml(z) = exp(z) — 1 = —

=

which satisfies the doubling formulapm1(2z) = expm1(z)(2+expml(x)).

Exercise 4.9 Forx > —1, prove the reduction formula

x
loglp(z) = 2loglp [————) ,
oglp(z) = 2log p<l+m)

where the functioftog1p(z) is defined byloglp(z) = In(1 +), as in§4.4.2.
Explain why it might be desirable to work witlhvg1p instead ofln in order

to avoid loss of precision (in the argument reduction, rather than in the recon-
struction as in Exercide 4.7). Note however that argument reductidngop

is more expensive than that fexpm1, because of the square root.

Exercise 4.10Give a numerically stable way of computiggih(z) using one
evaluation ofexpm1(]z|) and a small number of additional operations (com-

pare Eqn.[(4.20)).

Exercise 4.11 (White) Show thatexp(x) can be computed viginh(x) using
the formula

exp(z) = sinh(z) + \/1 + sinh®(z).
Since
ez o 671 1,2k+1

51 h = = ’
sinh(z) 2 24 2k + 1)!

this saves computing about half the terms in the power seriesfdr) at the
expense of one square root. How can we modify this method to preserve nu-
merical stability for negative argument8 Can this idea be used for functions
other tharexp(x)?

Exercise 4.12Count precisely the number of non-scalar products necessary
for the two variants of rectangular series splitting (§4.4.3).

Exercise 4.13 A drawback of rectangular series splitting as present§d.th3

is that the coefficients (a4, in the classical splitting, at;,,,+¢ in the modular
splitting) involved in the scalar multiplications might become large.
Indeed, they are typically a product of factorials, and thus have size
O(dlog d). Assuming that the ratios; 1 /a; are small rationals, propose an
alternate way of evaluating(x).

4.11 Exercises 173

Exercise 4.14Make explicit the cost of the slowly growing functiarid)

(4.4.3).

Exercise 4.15Prove the remainder terri (4]128) in the expansfan {4.27) for
E;(z). [Hint: prove the result by induction oh, using integration by parts

in the formula[(4.28).]

Exercise 4.16 Show that we can avoid using Cauchy principal value integrals
by definingEi(z) andE; (z) in terms of the entire function

o0

Ein(z)z/jl_eXp(_t)dt:ZW-

!
t =

Exercise 4.17Let E;(x) be defined by[(4.25) for real > 0. Using [427),
show that

1 1 1

;—1_72 <€xE1($)< ;
Exercise 4.181In this exercise, the series are purely formal, so ignore any ques-
tions of convergence. Applications are given in Exerdises £.19-4.20.

Suppose thafa;);en iS a sequence with exponential generating function

s(z) = Zj‘;o a;2’ /j!. Suppose thatl, = 377 (7)a;, and letS(z) =
Z;’io A; 27/ 7! be the exponential generating function of the sequéAGe,, cn.
Show that

S(z) = exp(2)s(z).

Exercise 4.19The power series fdtin(z) given in Exercis€4.16 suffers from
catastrophic cancellation whenis large and positive (like the series for
exp(—=z)). Use Exercis¢ 4.18 to show that this problem can be avoided by
using the power series (whefg&, denotes theith harmonic number)

e Hij

j!

e Ein(z) =
j=1

Exercise 4.20Show that Eqn.[{4.23) foerf(z) follows from Eqn. [4.2R).
[Hint: this is similar to ExercisE4.19.]

Exercise 4.21Give an algorithm to evalual®(z) for realz > 1/2, with guar-
anteed relative erroD(2~"). Use the method sketched #.3 for InT'(x).
What can be said about the complexity of the algorithm?

174 Elementary and special function evaluation

Exercise 4.22Extend your solution to Exercige 4121 to give an algorithm to
evaluatel /T'(z) for z € C, with guaranteed relative err6r(2—"). Note:I'(z)
has poles at zero and the negative integers (i.e.—fore N), but we over-
come this difficulty by computing the entire functiapil’(z). Warning:|T'(z)|

can be very small if¥(z) is large. This follows from Stirling’s asymptotic
expansion. In the particular casez0f iy on the imaginary axis, we have

. ™

More generally
(@ + iy)|* = 27]y[** " exp(—7y)
for z,y € R and|y| large.

Exercise 4.23The usual form[{4.38) of Stirling’s approximation for(T'(z))
involves a divergent series. It is possible to give a version of Stirling’s approx-
imation where the series is convergent

o0

1 In(27) Ck
lnI‘(z)—(z—2>lnz—z+2 CESCET BT
(4.88)
where the constants, can be expressed in terms $firling numbers of the
first kind, s(n, k), defined by the generating function

k=1

Zs(n,k)xk:x(x—l)---(x—n+1).

k=0

In fact

The Stirling numbers(n, k) can be computed easily from a three-term recur-
rence, so this gives a feasible alternative to the usual form of Stirling’s approx-
imation with coefficients related to Bernoulli numbers.

Show, experimentally and/or theoretically, that the convergent form of Stir-
ling’s approximation isnot an improvement over the usual form as used in
Exercisd 4.21.

Exercise 4.24Implement procedures to evaludig(x) to high precision for

real positivez, using (a) the power series (4126), (b) the asymptotic expan-
sion [4.27) (if sufficiently accurate), (c) the method of ExerEisel4.19, and (d)
the continued fractiod (4.39) using the backward and forward recurrences as

4.11 Exercises 175

suggested i§4.6. Determine empirically the regions where each method is the
fastest.

Exercise 4.25Prove the backward recurren€e(4.43).

Exercise 4.26 Prove the forward recurrende (4144).

[Hint: let
a1 ak—1 ag

bt bt brta
Show, by induction ork > 1, that
y(z) = P+ Peaz]
Qr + Qr—1
Exercise 4.27For the forward recurrence(4]44), show that

Qr Qr—1\ ([b 1 by 1Y\ (b 1
Pk Pk—l - aq 0 a9 0 Qg 0

holds fork > 0 (and fork = 0 if we defineP_,, Q_, appropriately).
Remark.This gives a way to use parallelism when evaluating continued frac-
tions.

Yk ()

Exercise 4.28For the forward recurrence(4]44), show that

Qr Qr—1
P, Py

Exercise 4.29Prove the identity[(4.46).

= (—l)kalag ceeap.

Exercise 4.30Prove Theorem 4]1.

Exercise 4.31Investigate using the continued fractidn (4.40) for evaluating
the complementary error functianfc(x) or the error functiorerf(z) = 1 —
erfc(z). Is there a region where the continued fraction is preferable to any of
the methods used in Algorithirf of §4.9?

Exercise 4.32Show that the continued fractidn (4141) can be evaluated in time
O(M (k) log k) if the a; andb; are bounded integers (or rational numbers with
bounded numerators and denominators). [Hint: use Exdrcisk 4.27.]

Exercise 4.33Instead of[(4.54), a different normalization condition
Jo(x)?+2) Jy(z)? =1 (4.89)
v=1

could be used in Miller's algorithm. Which of these normalization conditions
is preferable?

176 Elementary and special function evaluation

Exercise 4.34Consider the recurrencg _1 + f,+1 = 2K f,, whereK > 0

is a fixed real constant. We can expect the solution to this recurrence to give
some insight into the behavior of the recurrerice (4.53) in the ragisnk .
Assume for simplicity thaf{ # 1. Show that the general solution has the form

fo = AN+ By,

where)\ andy are the roots of the quadratic equatioh— 2Kz + 1 = 0, and

A andB are constants determined by the initial conditions. Show that there are
two cases: if’ < 1, then\ andu are complex conjugates on the unit circle,
So|\| = |p| = 1;if K > 1, then there are two real roots satisfyikg = 1.

Exercise 4.35Prove (or give a plausibility argument for) the statements made
in §4.7 that: (a) if a recurrence based &n (4.59) is used to evaluate the scaled
Bernoulli numbelC},, using precisiom arithmetic, then the relative error is of
order4*2—"; and (b) if a recurrence based én_(4.60) is used, then the relative
error isO(k?27").

Exercise 4.36 Starting from the definitiod (4.56), prove Eqh.(4.57). Deduce
the relation[[4.6R2) connecting tangent numbers and Bernoulli numbers.

Exercise 4.37(a) Show that the number of bits required to represent the tan-
gent numbefl}, exactly is~ 2k 1g k ask — oo. (b) Show that the same applies
for the exact representation of the Bernoulli numBgf, as a rational number.

Exercise 4.38Explain how the correctness of AlgorithifangentNumbers
(§47.2) follows from the recurrence(4163).

Algorithm 4.5 SecantNumbers
Input: positive integem
Output: Secant numberSy, Sy, ..., Sn
So —1
for k£ from 1to m do
Sk — kSk—1
for k from 1tom do
for j from k + 1tom do
Sj =G —k)Si1+ 0 —k+1)S5;
returnSy, S1, ..., Sm.

Exercise 4.39 Show that the complexity of computing the tangent numbers
Ty,. .., T,, by Algorithm TangentNumbers(§&7.2) isO(m? log m). Assume

4.11 Exercises 177

that the multiplications of tangent numbers by small integers take time
O(log T}). [Hint: use the result of Exercige 4]37.]

Exercise 4.40Verify that Algorithm SecantNumberscomputes in-place the
Secant numberS;, defined by the generating function

22k 1
R -,
Z F (2k)! ST = os
k>0

in much the same way that AlgorithfrangentNumbers (§4.7.2) computes
the Tangent numbers.

Exercise 4.41 (Harvey) The generating functio (4.66) for Bernoulli num-
bers can be written as

l‘k Z‘k
ZBkk!:l/gow’

k>0

and we can use an asymptotically fast algorithm to compute thenfisstl
terms in the reciprocal of the power series. This should be asymptotically faster
than using the recurrences given§.7.2. Give an algorithm using this idea

to compute the Bernoulli numbeisy, By, ..., B, in time O(n?(logn)?*¢).
Implement your algorithm and see how langeeeds to be for it to be faster
than the algorithms discussed§A.7.2.

Algorithm 4.6 SeriesExponential

Input: positive integem and real numbers, , as, ..., an,
Output: real number$y, by, ...,b,, such that
bo + b1z + -+ bpa™ = exp(a1z + - + apa™) + O(z™)
bo — 1

for k from 1 to m do
by — (Z?;May‘bkﬂ) [k

returnbg, by, ..., by,

Exercise 4.42(a) Show that AlgorithnSeriesExponentiacomputesB(z) =
exp(A(z)) up to terms of order™ !, whereA(z) = a1z +agz?+- - -+a,z™
is input data and3(z) = by + by + - - - + b, 2™ is the output. [Hint: compare

Exercisd 4.11.]

178 Elementary and special function evaluation

(b) Apply this to give an algorithm to compute the coefficienisin
Stirling’s approximation fon! (or I'(n + 1)):

ot (8) Ve

[Hint: we know the coefficients in Stirling’s approximatidn (4.38) fol(z)
in terms of Bernoulli numbers.]

(c) Is this likely to be useful for high-precision computatiorgf:) for real
positivex?

Exercise 4.43Deduce from Eqn[{4.69) and (4]70) an expansiomn¢t/k)
with error termO(k*log(4/k)). Use any means to figure out an effective
bound on the)() term. Deduce an algorithm requiring onty> 2"/ to getn
bits of In .

Exercise 4.44 Show how bothr andln 2 can be evaluated using Eqh. (4.71).

Exercise 4.45In §4.8:4, we mentioned th&f»0; and63 + 63 can be com-
puted using two non-scalar multiplications. For example, we could (A) com-
puteu = (6, + 63)? andv = ,03; then the desired values ae andu — 2v.
Alternatively, we could (B) compute andw = (62 — 603)?; then the desired
values ardu + w)/2. Which method (A) or (B) is preferable?

Exercise 4.46Improve the constants in Table 4.1.

Exercise 4.47 Justify Eqn. [[4-80) and give an upper bound on the constant
if the multiplication algorithm satisfied/ (n) = ©(n*) for somec € (1, 2].

Exercise 4.48 (Salvy)ls the functionexp(z?) + x/(1 — 2%) holonomic?

Exercise 4.49 (van der Hoeven, Mezzarobba)mprove to O(M (n)log® n)
the complexity given in Theorem 4.2.

Exercise 4.501f w = ¢>7/¥ show that
k—1
1 1 w™
2k —1 _%mz::oz—wm.
Deduce thasS; ;,, defined by Eqn[{4.84), satisfies

g 1 Zh—i-1 q
=g, o

for j < k, where the contout” is as in§4.10. Deduce Eqn[_{4.85).

4.12 Notes and references 179

Remark. Eqn. [4.8b) illustrates the phenomenonatifising: observations at
k points can not distinguish between the Fourier coefficients,; 1, 42k,
etc.

Exercise 4.51Show that the sum; 5, of §4.10 can be computed with (essen-
tially) only aboutk /4 evaluations off if k is even. Similarly, show that about
k /2 evaluations off suffice if k is odd. On the other hand, show that the error
boundO((27)~*) following Eqn. [4.87) can be improvedifis odd.

4.12 Notes and references

One of the main references for special functions is the “Handbook of Mathe-
matical Functions” by Abramowitz and Stegtﬂw [1], which gives many useful
results but no proofs. A more recent book is that of Nico Termmel [214], and
a comprehensive reference is Andrestsal. [@]. A large part of the content

of this chapter comes from Breﬂﬂ48], and was implemented in the MP pack-
age Brentl[47]. In the context of floating-point computations, the “Handbook
of Floating-Point Arithmetic” by Brisebarret al. [@] is a useful reference,
especially Chapter 11.

The SRT algorithm for division is named after Sweeney, Roberlson [189]
and Tocher|_L_2;|]6]. Original papers on Booth recoding, SRT division, etc., are
reprinted in the book by Swartzland@lZ]. SRT division is similar to non-
restoring division, but uses a lookup table based on the dividend and the divisor
to determine each quotient digit. The Intel Pentiftiv bug was caused by
an incorrectly initialized lookup table.

Basic material on Newton's method may be found in many references, for
example the books by Brerﬂ41, Ch. 3], Househol@[l%] or Traub [218].
Some details on the use of Newton’s method in modern processors can be
found in Intel @]. The idea of first computing™'/2, then multiplying by
y to gety!/? (§4.2.3) was pushed further by Karp and Markstein [137], who
perform this at the penultimate iteration, and modify the last iteration of New-
ton’s method fory—1/2 to gety'/2 directly (see§I.4.3 for an example of the
Karp—Markstein trick for division). For more on Newton’s method for power
series, we refer tﬁhﬁﬂdﬂ@@zozy

Some good references on error analysis of floating-point algorithms are the
books by Highaml] and MuIIe4]. Older references include Wilkin-
son’s classic 2P9].

Regarding doubling versus tripling: #.3.4, we assumed that one multi-
plication and one squaring were required to apply the tripling forniulal(4.19).

180 Elementary and special function evaluation

However, we might use the forsinh(3z) = 3sinh(z)+4 sinh®(z), which re-
quires only one cubing. Assuming a cubing costs 50% more than a squaring —
in the FFT range — the ratio would He5log; 2 ~ 0.946. Thus, if a special-

ized cubing routine is available, tripling may sometimes be slightly faster than
doubling.

For an example of a detailed error analysis of an unrestricted algorithm, see
Clenshaw and Olvems9].

The idea of rectangular series splitting to evaluate a power serieS\th)
non-scalar multiplications [§4.4.3) was first published in 1973 by Paterson and
StockmeyerEZ]. It was rediscovered in the context of multiple-precision
evaluation of elementary functions by Sm@@&,?] in 1991. Smith gave it
the name “concurrent series”. Smith proposed modular splitting of the series,
but classical splitting seems slightly better. Smith noticed that the simultaneous
use of this fast technique and argument reduction yiéltis'/> M (n)) algo-
rithms. Earlier, in 1960, EstritEbZ] had found a similar technique witR
non-scalar multiplications, bu?(log n) parallel complexity.

There are several variants of the Euler—Maclaurin sum formula, with and
without bounds on the remainder. See Abramowitz and Steﬂun [1, Ch. 23],
and Apostolﬁb], for example.

Most of the asymptotic expansions that we have givefdlii may be found
in Abramowitz and Stegurﬂ[l]. For more background on asymptotic expan-
sions of special functions, see for example the books by de Bl@h [84],
Olver @] and Wongl]. We have omitted mention of many other useful
asymptotic expansions, for example all but a few of those for Bessel functions,
for which see OIver@O], Watson [225], Whittaker and Wat@[ZZ?].

Most of the continued fractions mentionedd#.d may be found in Abram-
owitz and Stegun [[1]. The classical theory is given in the books by
Khinchin] and WaII@]. Continued fractions are used in the manner
described inff4.8 in arbitrary-precision packages such as Brent's MP [47]. A
good recent reference on various aspects of continued fractions for the evalu-
ation of special functions is thdandbook of Continued Fractions for Special
Functionsby Cuytet al. [@]. In particular, Chapter 7 contains a discussion
of error bounds. Our Theorelm #.1 is a trivial modification of Celyal. [@
Theorem 7.5.1]. The asymptotically fast algorithm suggested in Exércise 4.32
was given by SobnhageS].

A proof of a generalization of {4.54) is given B [4.9]. Miller’s algorithm
is due to J. C. P. Miller. It is described, for example,%§9,12,§l9.28] and
Clenshawet al. [@ §13.14]. An algorithm is given in Gautscllli__LJJOZ].

A recurrence based ofi (4]160) was used to evaluate the scaled Bernoulli
numbersCy, in the MP package following a suggestion of ReinsEh\).

4.12 Notes and references 181

Previously, the inferior recurrencE_(4159) was widely used, for example in
Knuth] and in early versions of Brent's MP pack & 11]. The idea

of using tangent numbers is mentioned@l%ﬁ], where it is attributed to

B. F. Logan. Our in-place AlgorithmBEngentNumbersandSecantNumbers

may be new (see Exercides 4.88-4.40). Kanekd [135] describes an algorithm
of Akiyama and Tanigawa for computing Bernoulli numbers in a manner simi-
lar to “Pascal’s triangle”. However, it requires more arithmetic operations than
Algorithm TangentNumbers Also, the Akiyama—Tanigawa algorithm is only
recommended for exact rational arithmetic, since it is numerically unstable if
implemented in floating-point arithmetic. For more on Bernoulli, tangent and
secant numbers, and a connection with Stirling numbers, see @en [62] and
Sloanel[203, A027641, A000182, AO00364].

The Von Staudt—Clausen theorem was proved independently by Karl von
Staudt and Thomas Clausen in 1840. It can be found in many references. If just
a single Bernoulli number of large index is required, then Harvey's modular
algorithm] can be recommended.

Some references on the Arithmetic-Geometric Mean (AGM) are BEht [43,
,@], Salamin2], the Borweins’ b036], Arndt and Haehbl [7]. An
early reference, which includes some results that were rediscovered later, is
the fascinating repolAKMEM by Beeler, Gosper and Schroep@ [15]. Bern-
stein] gives a survey of different AGM algorithms for computing the log-
arithm. Eqn. [[4.70) is given in Borwein and Borwe[36, (1.3.10)], and the
bound [4.7B) is given in [36, p. 11, Exercise 4(c)]. The AGM can be extended
to complex starting values provided we take the correct branch of the square
root (the one with positive real part): see Borwein and Borwein [36, pp. 15-16].
The use of the complex AGM is discussedﬂ [88]. For theta function identities,
see , Chapter 2], and for a proof bf{4.78), seé [263].

The use of the exact formula{4179) to complite: was first suggested by
Sasaki and Kanada (SQ[SG, (7.2.5)], but beware the typo). See Brent [46] for
Landen transformations, and Brent![43] for more efficient methods; note that
the constants given in those papers might be improved using faster square root
algorithms (Chaptér 3).

The constants in Table 4.1 are justified as follows. We assume we are in
the FFT domain, and one Fourier transform cdgt§:) /3. Thel3M (n)/9 =~
1.444M (n) cost for a real reciprocal is from Harve@lG], and assumes
M(n) ~ 3T (2n), whereT'(n) is the time to perform a Fourier transform of
sizen. For the complex reciprocal/ (v +iw) = (v—iw)/(v* +w?), we com-
putev?+w? using two forward transforms and one backward transform, equiv-
alentin cost taV/ (n), then one real reciprocal to obtain say= 1/(v? + w?),
then two real multiplications to computer, wz, but take advantage of the

182 Elementary and special function evaluation

fact that we already know the forward transformsvadindw, and the trans-
form of x only needs to be computed once, so these two multiplications cost
only M (n). Thus, the total cost 810 (n)/9 ~ 3.444M (n). The1.666M (n)

cost for real division is from van der Hoevdﬂzs, Remark 6], and assumes
M(n) ~ 3T(2n) as above for the real reciprocal. For complex division, say
(t+iu)/(v+iw), we first compute the complex reciproaat-iy = 1/(v+iw),

then perform a complex multiplicatioft + u)(x + iy), but save the cost

of two transforms by observing that the transformszoénd y are known

as a byproduct of the complex reciprocal algorithm. Thus, the total cost is
(31/9+4/3)M (n) ~ 4.777M (n). ThedM (n)/3 cost for the real square root

is from Harvey], and assum@ég(n) ~ 37(2n) as above. The complex
square root uses Friedland’s algorithm| [9¢}r + iy = w + iy/(2w), where

w = +/(|z| + (22 + y2)1/2)/2; as for the complex reciprocal? + y> costs

M (n), then we compute its square root4M (n)/3, the second square root

in 4M (n)/3, and the divisiony/w costs1.666M (n), which gives a total of
5.333M (n).

The cost of one real AGM iteration is at most the sum of the multiplica-
tion cost and of the square root cost, but since we typically perform several
iterations, it is reasonable to assume that the input and output of the iteration
includes the transforms of the operands. The transfora+eb is obtained by
linearity from the transforms af andb, so is essentially free. Thus, we save
one transform of\/ (n)/3 per iteration, giving a cost per iteration 2/ (n).
(Another way to saveM (n)/3 is to trade the multiplication for a squaring,
as explained in S@nhage, Grotefeld, and Vett%.2.5].) The complex
AGM is analogous: it costs the same as a complex multiplication(¢2))/and
a complex square root @331 (n)), but we can save two (real) transforms per
iteration (2M(n)/3), giving a net cost 06.666M (n). Finally, the logarithm
via the AGM cost2 1g(n) + O(1) AGM iterations.

We note that some of the constants in Table 4.1 may not be optimal. For
example, itmay be possible to reduce the cost of reciprocal or square root
(Harvey, Sergeev). We leave this as a challenge to the reader (see Hxerdise 4.46).
Note that the constants for operations on power series may differ from the cor-
responding constants for operations on integers/reals.

The idea of binary splitting is quite old, since in 1976 Bréﬂ [45, Th. 6.2]
gave a binary splitting algorithm to computep « in time O(M (n)(log n)?).

See also Borwein and BorweiEtSG, page 335]. The CLN library implements
several functions with binary splitting, see Haible and Papanikoia_mh [108], and
is quite efficient for precisions of a million bits or more.

The “bit-burst” algorithm was invented by David and Gregory Chud-
novsky @5], and our Theorefn 4.2 is based on their work. Some references

4.12 Notes and references 183

on holonomic functions are J. Bernst[, 26], van der Hoe [123] and
Zeilberger Eib]. See also the Mapt&UN packageES], which allows one,
amongst other things, to deduce the recurrence for the Taylor coefficients of
f(x) from its differential equation.

There are several topics that are not covered in this chapter, but might have
been if we had more time and space. We mention some references here. A
useful resource is the websi@43].

The Riemann zeta-functiof(s) can be evaluated by the Euler—Maclaurin
expansion[(4.34)E(4.86), or by Borwein’s algorith|a| [, 39], but neither of
these methods is efficient¥(s) is large. On the critical lin&(s) = 1/2, the
Riemann-Siegel formulﬁbg] is much faster and in practice sufficiently accu-
rate, although only an asymptotic expansion. If enough terms are taken, the
error seems to b@(exp(—mt)), wheret = (s): see Brent's revie\/\}IésZ] and
Berry's paperﬂS]. An error analysis is given @.84]. The Riemann-Siegel
coefficients may be defined by a recurrence in terms of certain integeinsit
can be defined using Euler numbers (see Sloane’s sequence A087617 [203]).
Sloane calls this the Gabcke sequence but Gabcke credits Lr [155] so
perhaps it should be called thehmer—Gabcke sequence. The sequépge
occurs naturally in the asymptotic expansionwfl’(1/4 + it/2)). The (not
obvious) fact that the,, are integers was proved by de Reyé [85].

Borwein’s algorithm for((s) can be generalized to cover functions such as
the polylogarithm and the Hurwitz zeta-function: seeEIap].

To evaluate the Riemann zeta-functigfv + it) for fixed o and many
equally spaced points the fastest known algorithm is due to Odlyzko and
Sckbnhageg]. It has been used by Odlyzko to compute blocks of zeros with
very large height, see 8]; also (with improvements) by Gourdon to
verify the Riemann Hypothesis for the firdi'? non-trivial zeros in the upper
half-plane, se5]. The Odlyzko—Sxtthage algorithm can be generalized
for the computation of other L-functions.

In §4.10, we briefly discussed the numerical approximation of contour inte-
grals, but we omitted any discussion of other forms of numerical quadrature,
for example Romberg quadrature, the tanh rule, the tanh-sinh rule, etc. Some
references areE]lDlD]@ ‘i&.__hEZB], dﬂi §374.3]. For further dis-
cussion of the contour integration method, @[156}. For Romberg quadra-
ture (which depends on Richardson extrapolation), @e@,@, 191]. For
Clenshaw—Curtis and Gaussian quadrature,@é;_[_b& 219]. An example of
the use of numerical quadrature to evaluEfe) is ﬂﬁ p. 188]. This is an
interesting alternative to the use of Stirling’s asymptotic expansi@i)§

We have not discussed the computation of specific mathematical constants
such asm, v (Euler's constant)((3), etc. = can be evaluated using =

184 Elementary and special function evaluation

4arctan(1) and a fashrctan computation (§4.912); or by thBauss—Legendre
algorithm (also known as thBrent—Salamiralgorithm), see@ﬂ 2].
This asymptotically fast algorithm is based on the arithmetic-geometric mean
and Legendre’s relatiof (4]72). A recent record computation by Be@d [16]
used a rapidly converging series fofm by the Chudnovsky brotherﬂ64],
combined with binary splitting. Its complexity © (M (n)log” n) (theoret-
ically worse than Gauss—Legendr&¥ M (n)logn), but with a small con-
stant factor). There are several popular booksromve mention Arndt and
Haenel[ﬂ?]. A more advanced book is the one by the Borwein brothers [36].

For a clever implementation of binary splitting and its application to the
fast computation of constants suchrasand((3) — and more generally con-
stants defined by hypergeometric series — see Cheng, Hanrot €] Zama,
and Zimmermanr[63].

The computation ofy and its continued fraction is of interest because it
is not known whethety is rational (though this is unlikely). The best algo-
rithm for computingy appears to be the “Bessel function” algorithm of Brent
and McMillan @l], as modified by Papanikolaou and later Gour@ [106] to
incorporate binary splitting. A very useful source of information on the evalua-
tion of constants (including, ¢, v, In 2, ¢(3)) and certain functions (including
I'(z) and((s)) is Gourdon and Sebah’s web 5@06].

A nice book on accurate humerical computations for a diverse set of “SIAM
100-Digit Challenge” problems is Bornemann, Laurie, Wagon, and Waldvo-
gel @]. In particular, Appendix B of this book considers how to solve the
problems tol 0 000-decimal digit accuracy (and succeeds in all cases but one).

)
Implementations and pointers

Here we present a non-exhaustive list of software packages that
(in most cases) the authors have tried, together with some other
useful pointers. Of course, we cannot accept any responsibility
for bugs/errors/omissions in any of the software or documenta-
tion mentioned here eaveat emptor!

Websites change. If any of the websites mentioned here disappear
in the future, you may be able to find the new site using a search
engine with appropriate keywords.

5.1 Software tools

5.1.1 CLN

CLN (Class Library for Numbershttp://www.ginac.de/CLNY/) is a

library for efficient computations with all kinds of numbers in arbitrary preci-
sion. It was written by Bruno Haible, and is currently maintained by Richard
Kreckel. It is written in C++ and distributed under the GNU General Public
License (GPL). CLN provides some elementary and special functions, and fast
arithmetic on large numbers, in particular it implements@®ttage—Strassen
multiplication, and the binary splitting algorith 08]. CLN can be config-
ured to use GMP low-leveliPN routines, which improves its performance.

5.1.2 GNU MP (GMP)

The GNU MP library is the main reference for arbitrary-precision arithmetic.
It has been developed since 1991 by TorbjGranlund and several other con-
tributors. GNU MP (GMP for short) implements several of the algorithms de-

http://www.ginac.de/CLN/

186 Implementations and pointers

scribed in this book. In particular, we recommend reading the “Algorithms”
chapter of the GMP reference manm104]. GMP is written in C, is released
under the GNU Lesser General Public License (LGPL), and is available from
http://gmplib.org/

GMP’s MmPz class implements arbitrary-precision integers (corresponding
to Chaptei1l), while theuPF class implements arbitrary-precision floating-
point numbers (corresponding to Chaﬂﬂ Bhe performance of GMP comes
mostly from its low-levelvPN class, which is well designed and highly opti-
mized in assembly code for many architectures.

As of version 5.0.0MPz implements different multiplication algorithms
(schoolbook, Karatsuba, Toom—Cod8lway, 4-way, 6-way, 8-way, and FFT
using Sclinhage—Strassen’s algorithm); its division routine implements Algo-
rithm RecursiveDivRem({1.4.3) in the middle range, and beyond that New-
ton’s method, with complexity) (M (n)), and so does its square root, which
implements AlgorithmSqrtRem, since it relies on division. The Newton di-
vision first precomputes a reciprocal to precisiof2, and then performs two
steps of Barrett reduction to precisiaif2: this is an integer variant of Algo-
rithm Divide. It also implements unbalanced multiplication, with Toom—Cook
(3,2), (4,3), (5,3), (4,2), or (6,3) [13_1|]. Functionmpn.ni _invertappr,
which is not in the public interface, implements Algorithiypproximate-
Reciprocal (§3.4.1). GMP 5.0.0 does not implement elementary or special
functions (Chaptdrl4), nor does it provide modular arithmetic with an invariant
divisor in its public interface (ChaptEt 2). However, it contains a preliminary
interface for Montgomery'®EDC algorithm.

MPIR is a “fork” of GMP, with a different license, and various other dif-
ferences that make some functions more efficient with GMP, and some with
MPIR; also, the difficulty of compiling under Microsoft operating systems may
vary between the forks. Of course, the developers of GMP and MPIR are con-
tinually improving their code, so the situation is dynamic. For more on MPIR,
seehttp://www.mpir.org/.

5.1.3 MPFQ

MPFQ is a software library developed by Pierrick Gaudry and Emmanuel
Thomé for manipulation of finite fields. What makes MPFQ different from
other modular arithmetic libraries is that the target finite field is giveroat-

pile time, thus more specific optimizations can be done. The two main targets
of MPFQ are the Galois field8,~» and[F, with p prime. MPFQ is available

1 However, the authors of GMP recommend using MPFR {B&E34) for new projects.

http://gmplib.org/
http://www.mpir.org/

5.1 Software tools 187

from http://www.mpfq.org/ , and is distributed under the GNU Lesser
General Public License (LGPL).

5.1.4 GNU MPFR

GNU MPFR is a multiple-precision binary floating-point library, written in C,
based on the GNU MP library, and distributed under the GNU Lesser General
Public License (LGPL). It extends the main ideas of the IEEE 754 standard to
arbitrary-precision arithmetic, by providirgprrect roundingand exceptions.
MPFR implements the algorithms of Chapfiér 3 and most of those of Chap-
ter[d, including all mathematical functions defined by the ISO C99 standard.
These strong semantics are in most cases achieved with no significant slow-
down compared to other arbitrary-precision tools. For details of the MPFR
library, seehttp://www.mpfr.org/ and the papeESbG].

5.1.5 Other multiple-precision packages

Without attempting to be exhaustive, we briefly mention some of MPFR’s pre-
decessors, competitors, and extensions.

1. ARPREC is a package for multiple-precision floating-point arithmetic, writ-
ten by David Baileyet al. in C++/Fortran. The distribution includ&se Ex-
perimental Mathematician’s Toolkit, which is an interactive high-precision
arithmetic computing environment. ARPREC is available froitp://
crd.Ibl.gov/ ~ dhbailey/mpdist/

2. MP] is a package for multiple-precision floating-point arithmetic and el-
ementary and special function evaluation, written in Fortran77. MP permits
any small bas@ (subject to restrictions imposed by the word-size), and im-
plements several rounding modes, though correct rounding-to-nearest is not
guaranteed in all cases. MP is now obsolete, and we recommend the use of
a more modern package such as MPFR. However, much of Clidpter 4 was
inspired by MP, and some of the algorithms implemented in MP are not yet
available in later packages, so the source code and documentation may be
of interest: sedttp://rpbrent.com/pub/pub043.html.

3. MPC (http://www.multiprecision.org/)is a C library for arith-
metic using complex numbers with arbitrarily high precision and correct
rounding, written by Andreas Enge, PhilippeéMeny, and Paul Zimmer-
mann |[§b]. MPC is built on and follows the same principles as MPFR.

http://www.mpfq.org/
http://www.mpfr.org/
http://crd.lbl.gov/~dhbailey/mpdist/
http://crd.lbl.gov/~dhbailey/mpdist/
http://rpbrent.com/pub/pub043.html
http://www.multiprecision.org/

188 Implementations and pointers

4. MPFlis a package for arbitrary-precision floating-point interval arithmetic,
based on MPFR. It can be useful to get rigorous error bounds using interval
arithmetic. Segttp://mpfi.gforge.inria.fr/, and also 5.3

5. Several other interesting/useful packages are listed under “Other Related
Free Software” at the MPFR webshép://www.mpfr.org/.

5.1.6 Computational algebra packages

There are several general-purpose computational algebra packages that incor-
porate high-precision or arbitrary-precision arithmetic. These include Magma,
Mathematica, Maple, and Sage. Of these, Sage is free and open-source; the
others are either commercial or semi-commercial and not open-source. The
authors of this book have often used Magma, Maple, and Sage for prototyping
and testing algorithms, since it is usually faster to develop an algorithm in a
high-level language (at least if one is familiar with it) than in a low-level lan-
guage like C, where there are many details to worry about. Of course, if speed
of execution is a concern, it may be worthwhile to translate the high-level code
into a low-level language, but the high-level code will be useful for debugging
the low-level code.

1. Magma (http://magma.maths.usyd.edu.au/magma/) was de-
veloped and is supported by John Cannon’s group at the University of Syd-
ney. Its predecessor w&ayley, a package designed primarily for compu-
tational group theory. However, Magma is a general-purpose algebra pack-
age with logical syntax and clear semantics. It includes arbitrary-precision
arithmetic based on GMP, MPFR, and MPC. Although Magma is not open-
source, it has excellent online documentation.

2. Maple(http://www.maplesoft.com/) is a commercial package orig-
inally developed at the University of Waterloo, now by Waterloo Maple,
Inc. It uses GMP for its integer arithmetic (though not necessarily the latest
version of GMP, so in some cases calling GMP directly may be significantly
faster). Unlike most of the other software mentioned in this chapter, Maple
uses radix 0 for its floating-point arithmetic.

3. Mathematicais a commercial package produced by Stephen Wolfram’s
company Wolfram Research, Inc. In the past, public documentation on
the algorithms used internally by Mathematica was poor. However, this
situation may be improving. Mathematica now appears to use GMP for its

http://mpfi.gforge.inria.fr/
http://www.mpfr.org/
http://magma.maths.usyd.edu.au/magma/
http://www.maplesoft.com/

5.2 Mailing lists 189

basic arithmetic. For information about Mathematica, Isije://www.
wolfram.com/products/mathematica/

4. NTL (http://www.shoup.net/ntl/) is a C++ library providing data
structures and algorithms for manipulating arbitrary-length integers, as well
as vectors, matrices, and polynomials over the integers and over finite fields.
For example, it is very efficient for operations on polynomials over the fi-
nite field[F, (i.e. GF(2)). NTL was written by and is maintained by Victor
Shoup.

5. PARI/GP(http://pari.math.u-bordeaux.fr/) is a computer al-
gebra system designed for fast computations in number theory, but also
able to handle matrices, polynomials, power series, algebraic numbers, etc.
PARI is implemented as a C library, and GP is the scripting language for
an interactive shell giving access to the PARI functions. Overall, PARI is a
small and efficient package. It was originally developed in 1987 by Chris-
tian Batut, Dominique Bernardi, Henri Cohen, and Michel Olivier at Uni-
versie Bordeaux I, and is now maintained by Karim Belabas and a team of
volunteers.

6. Sage(http://www.sagemath.org/) is a free, open-source mathe-
matical software system. It combines the power of many existing open-
source packages with a common Python-based interface. According to the
Sage website, its mission is “Creating a viable free open-source alternative
to Magma, Maple, Mathematica and Matlab”. Sage was started by William
Stein and is developed by a large team of volunteers. It uses MPIR, MPFR,
MPC, MPFI, PARI, NTL, etc. Thus, it is a large system, with many capa-
bilities, but occupying a lot of space and taking a long time to compile.

5.2 Mailing lists
5.2.1 The GMP lists

There are four mailing lists associated with GMjmp-bugs for bug reports;
gmp-announce for important announcements about GMP, in particular new
releasesgmp-discuss for general discussions about GMémnp-devel

for technical discussions between GMP developers. We recommend subscrip-
tion to gmp-announce (very low traffic), togmp-discuss (medium to

high traffic), and tagmp-devel only if you are interested in the internals of

http://www.wolfram.com/products/mathematica/
http://www.wolfram.com/products/mathematica/
http://www.shoup.net/ntl/
http://pari.math.u-bordeaux.fr/
http://www.sagemath.org/

190 Implementations and pointers

GMP. Information about these lists (including archives and how to subscribe)
is available fromhttp://gmplib.org/mailman/listinfo/

5.2.2 The MPFR list

There is only one mailing list for the MPFR library. Saép://www.
mpfr.org/ to subscribe or search through the list archives.

5.3 On-line documents

TheNIST Digital Library of Mathematical Function®LMF) is an ambitious
project to completely rewrite Abramowitz and Stegun’s clastamdbook of
Mathematical Function@]. Itis online athttp://dImf.nist.gov/ and
will also be published in book form by Cambridge University Press.

The Wolfram Functions Siténttp://functions.wolfram.com/
contains a lot of information about mathematical functions (definition, spe-
cific values, general characteristics, representations as series, limits, integrals,
continued fractions, differential equations, transformations, and so on).

The Encyclopedia of Special Functions (ESF) is another nice web site, whose
originality is that all formulee are automatically generated from very few data
that uniquely define the corresponding function in a general dgls [163]. This
encyclopedia is currently being reimplemented in the Dynamic Dictionary of
Mathematical Functions (DDMF); both are available frattp://algo.
inria.fr/online.html

A large amount of information about interval arithmetic (introduction, soft-
ware, languages, books, courses, applications) can be found on the Interval
Computations pagkettp://www.cs.utep.edu/interval-comp/)

Mike Cowlishaw maintains an extensive bibliography of conversion to and
from decimal arithmetic &tttp://speleotrove.com/decimal/

Useful if you want to identify an unknown real constant such.&$4213 - - -
is the Inverse Symbolic Calculato(lSC) by Simon Plouffe (building on
earlier work by the Borwein brothers) attp://oldweb.cecm.sfu.
cal/projects/ISC/.

Finally, an extremely useful site for all kinds of integer/rational sequences is
Neil Sloane’®0nline Encyclopaedia of Integer Sequen@@EIS) athttp://
www.research.att.com/ ~ njas/sequences/

http://gmplib.org/mailman/listinfo/
http://www.mpfr.org/
http://www.mpfr.org/
http://dlmf.nist.gov/
http://functions.wolfram.com/
http://algo.inria.fr/online.html
http://algo.inria.fr/online.html
http://www.cs.utep.edu/interval-comp/
http://speleotrove.com/decimal/
http://oldweb.cecm.sfu.ca/projects/ISC/
http://oldweb.cecm.sfu.ca/projects/ISC/
http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/

References

[1] Abramowitz, Milton and Stegun, Irene A. 1973 andbook of Mathematical

Functions Dover. (150, 179, 180, 190)

[2] Agrawal, Manindra, Kayal, Neeraj, and Saxena, Nitin. 2004. PRIMES is in P.

Annals of Mathemati¢c460, 1-13. (45)

[3] Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D. 197%e Design and

(4]
(5]

(6]
(7]
(8]
9]
[10]

[11]

[12]

[13]

[14]

Analysis of Computer Algorithm#ddison-Wesley. (46, 78)

Andrews, George E., Askey, Richard, and Roy, Ranjan. 199@cial Functions
Cambridge University Press. (179, 180)

ANSI/IEEE. 2008. IEEE Standard for Binary Floating-Point Arithmetic. Revi-
sion of IEEE 754-1985, approved on June 12, 2008 by IEEE Standards Board.
(121)

Apostol, Tom M. 1999. An elementary view of Euler's summation formilae
American Mathematical MonthlyL,06(5), 409-418. (180)

Arndt, Jorg and Haenel, Christoph. 2004 Unleashed. Berlin: Springer-Verlag.
(181, 184)

Bach, Eric. 1990. A note on square roots in finite fiellSEE Transactions on
Information Theory36(6), 1494—-1498. (46)

Bach, Eric and Shallit, Jeffrey O. 1998lgorithmic Number Theory, Volume 1:
Efficient Algorithms MIT Press. (46)

Bachmann, Paul. 1902.Niedere Zahlentheorie. Vol. 1. Leipzig: Teubner.
Reprinted by Chelsea, New York, 1968. (46)

Bailey, David H. 2006. Tanh-sinh high-precision quadrature. Manuscript,
3 pages, Jan 2006: LBNL-60519. Available frdrttp://crd.Ibl.gov/

~ dhbailey/dhbpapers/dhb-tanh-sinh.pdf. (183)

Bailey, David H. and Borwein, Jonathan M. 2009. High-precision nu-
merical integration: progress and challenges. Manuscript, 19 pages, July
2009: LBNL-547E. http://crd.lbl.gov/ ~ dhbailey/dhbpapers/
hp-num-int.pdf . (183)

Bailey, David H., Jeyabalan, Karthik, and Li, Xiaoye S. 2005. A comparison
of three high-precision quadrature schemggperimental Mathematic44(3),
317-329. (183)

Barrett, Paul. 1987. Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. Pages 311-323 of

http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/hp-num-int.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/hp-num-int.pdf

192 References

Odlyzko, A. M. (ed.), Advances in Cryptology, Proceedings of Crypto’86. Lec-
ture Notes in Computer Science, vol. 263. Springer-Verlag. (77)

[15] Beeler, Michael, Gosper, Richard W., and Schroeppel, Rich. 1972. HAKMEM.
Memo 239. MIT Atrtificial Intelligence Laboratory.http://www.inwap.

com/pdp10/hbaker/hakmem/hakmem.html . (181)
[16] Bellard, Fabrice. 2009. Pi computation recdnttp://bellard.org/pi/
pi2700e9/announce.html . (184)

[17] Bernstein, Daniel J. 1998. Detecting perfect powers in essentially linear time.
Mathematics of Computatiof7, 1253-1283. (45)
[18] Bernstein, Daniel J. 2002. Pippenger’s exponentiation algorithitp://

cr.yp.to/papers.html . 21 pages. (78)

[19] Bernstein, Daniel J. 2003. Computing logarithm intervals with the arithmetic-
geometric-mean iteration. http://cr.yp.to/arith.html . 8 pages.
(181)

[20] Bernstein, Daniel J. 2004a. Removing redundancy in high-precision Newton
iteration. http://cr.yp.to/fastnewton.html . 13 pages. (122, 123)

[21] Bernstein, Daniel J. 2004b. Scaled remainder treletsp://cr.yp.to/
arith.html . 8 pages. (43)

[22] Bernstein, Daniel J. 2008. Fast multiplication and its applicatidrig://
cr.yp.to/arith.html . 60 pages. (78)

[23] Bernstein, Daniel J., Lenstra, Hendrik W., Jr., and Pila, Jonathan. 2007. Detect-
ing perfect powers by factoring into coprimedathematics of Computation,
76(257), 385-388. (45)

[24] Bernstein, Daniel J. and Sorenson, Jonathan P. 2007. Modular exponentiation via
the explicit Chinese remainder theoremathematics of Computatioi6(257),
443-454. (77, 78)

[25] Bernstein, Joseph N. 1971. Modules over a ring of differential operators, study
of the fundamental solutions of equations with constant coeffici€nusctional
Analysis and Its Application$(2), Russian original: 1-16, English translation:
89-101. (183)

[26] Bernstein, Joseph N. 1972. The analytic continuation of generalized functions
with respect to a parameterf-unctional Analysis and Its Application§(4),

[3] Russian original: 26—-40, English translation: 273-285. (183)

[27] Bernstein, Robert. 1986. Multiplication by integer constaStsftware, Practice
and Experiencel6(7), 641-652. (14)

[28] Berry, Michael V. 1995. The Riemann-Siegel expansion for the zeta function:
high orders and remainderBroc. Roy. Soc. LondoA50, 439-462. (183)

[29] Bertot, Yves, Magaud, Nicolas, and Zimmermann, Paul. 2002. A proof of GMP
square root.Journal of Automated Reasoning9, 225-252. Special Issue on
Automating and Mechanising Mathematics: In honour of N.G. de Bruijn. (45)

[30] Bluestein, Leo I. 1968. A linear filtering approach to the computation of the
discrete Fourier transformNortheast Electronics Research and Engineering
Meeting Record]0, 218-219. (78)

[31] Bodrato, Marco and Zanoni, Alberto. 2007. Integer and polynomial multiplica-
tion: towards optimal Toom—Cook matrices. Pages 17—24 of Brown, C. W. (ed.),
Proceedings of the 2007 International Symposium on Symbolic and Algebraic
Computation (ISSAC'07). (44, 186)

http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html
http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html
http://bellard.org/pi/pi2700e9/announce.html
http://bellard.org/pi/pi2700e9/announce.html
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://cr.yp.to/arith.html
http://cr.yp.to/fastnewton.html
http://cr.yp.to/arith.html
http://cr.yp.to/arith.html
http://cr.yp.to/arith.html
http://cr.yp.to/arith.html

References 193

[32] Bornemann, Folkmar, Laurie, Dirk, Wagon, Stan, and Waldvogel.J2004.

The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Comput-
ing. SIAM. (183, 184)

[33] Borodin, Allan and El-Yaniv, Ran. 1998nline Computation and Competitive
Analysis Cambridge University Press. (44)

[34] Borodin, Allan and Moenck, Robert. 1974. Fast modular transfodmstnal of
Computer and System Sciend®8), 366—386. (78)

[35] Borodin, Allan and Munro, lan. 1975The Computational Complexity of Alge-
braic and Numeric Problem<Elsevier Computer Science Library. (78)

[36] Borwein, Jonathan M. and Borwein, Peter B. 1998.and the AGM: A Study
in Analytic Number Theory and Computational Complexity. Wiley. (181, 182,
184)

[37] Borwein, Jonathan M., Borwein, Peter B., and Girgensohn, Roland. 2004.
Experimentation in Mathematics: Computational Paths to Discovery. A. K.
Peters. (183)

[38] Borwein, Jonathan M., Bradley, David M., and Crandall, Richard E. 2000. Com-
putational strategies for the Riemann zeta functidaurnal of Computational
and Applied Mathemati¢cd 21, 247-296. (183)

[39] Borwein, Peter B. 2000. An efficient algorithm for the Riemann zeta function.
In Constructive, Experimental, and Nonlinear Analydisnoges, 1999), CMS
Conf. Proc. 27, Amer. Math. Soc. (183)

[40] Bostan, Alin, Lecerf, Gegoire, and Schosric. 2003. Tellegen’s principle into
practice. Pages 37-44 of Sendra, J. R. (&&t9ceedings of the 2003 Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC(03?)

[41] Brent, Richard P. 1973a.Algorithms for Minimization without Derivatives
Prentice-Hall. Reprinted by Dover, 2008&ttp://rpbrent.com/pub/
pub011.html . (179)

[42] Brent, Richard P. 1973b. On the precision attainable with various floating-point
number systemdEEE Transactions on ComputeiS-22, 601-607 http://
rpbrent.com/pub/pub017.html . (118, 121)

[43] Brent, Richard P. 1975. Multiple-precision zero-finding methods and the com-
plexity of elementary function evaluation. Pages 151-176 of Traub, J. F. (ed.),
Analytic Computational Complexity. New York: Academic Preb#p://
rpbrent.com/pub/pub028.html . (179, 181, 184)

[44] Brent, Richard P. 1976a. Analysis of the binary Euclidean algorithm. Pages
321-355 of Traub, J. F. (ed)ew Directions and Recent Results in Algorithms
and Complexity. New York: Academic Prebstp://rpbrent.com/pub/
pub037.html . Errata: see the online version. (45)

[45] Brent, Richard P. 1976b. The complexity of multiple-precision arithmetic. Pages
126-165 of Anderssen, R. S. and Brent, R. P. (efleg,Complexity of Computa-
tional Problem Solving. University of Queensland Prégtp://rpbrent.
com/pub/pub032.html . (166, 182)

[46] Brent, Richard P. 1976c. Fast multiple-precision evaluation of elementary func-
tions. Journal of the ACM23(2), 242—251 http://rpbrent.com/pub/
pub034.html . (181, 184)

http://rpbrent.com/pub/pub011.html
http://rpbrent.com/pub/pub011.html
http://rpbrent.com/pub/pub017.html
http://rpbrent.com/pub/pub017.html
http://rpbrent.com/pub/pub028.html
http://rpbrent.com/pub/pub028.html
http://rpbrent.com/pub/pub037.html
http://rpbrent.com/pub/pub037.html
http://rpbrent.com/pub/pub032.html
http://rpbrent.com/pub/pub032.html
http://rpbrent.com/pub/pub034.html
http://rpbrent.com/pub/pub034.html

194

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

References

Brent, Richard P. 1978. Algorithm 524: MP, a Fortran multiple-precision
arithmetic package. ACM Transactions on Mathematical Softwasg,71-81.
http://rpbrent.com/pub/pub043.html . (179, 180, 181, 187)

Brent, Richard P. 1980. Unrestricted algorithms for elementary and special func-
tions. Pages 613—619 of Lavington, S. H. (ebhjprmation Processing, vol. 80.
http://rpbrent.com/pub/pub052.html . (121, 179, 180)

Brent, Richard P. 1982. An idealist’s view of semantics for integer and real
types. Australian Computer Science Communicatiohs130-140.http://
rpbrent.com/pub/pub069.htmi . (121)

Brent, Richard P. 2000. Twenty years’ analysis of the binary Euclidean algo-
rithm. Pages 41-53 of Davies, J., Roscoe, A. W., and Woodcock, J. (eds.),
Millennial Perspectives in Computer Science. New York: Palgréng://
rpbrent.com/pub/pub183.htmi . (45)

Brent, Richard P. 2006. Fast algorithms for high-precision computation of el-
ementary functions. Invited talk presented at the Real Numbers and Computa-
tion Conference (RNC7), Nancy, France, July 2006. Available fidtp://
rpbrent.com/talks.html . (181)

Brent, Richard P. and Kung, Hsiang T. 1978. Fast algorithms for manipulat-
ing formal power series.Journal of the ACM,25(2), 581-595. http://
rpbrent.com/pub/pub045.html . (179)

Brent, Richard P. and Kung, Hsiang T. 1983. Systolic VLSI arrays for linear-time
GCD computation. Pages 145-154 of Anceau, F. and Aas, E. J. (¥tS),

83. Amsterdam: North-Hollandhttp://rpbrent.com/pub/pub082.

html | (46)

Brent, Richard P. and McMillan, Edwin M. 1980. Some new algorithms for
high-precision computation of Euler's constaMathematics of Computation,
34(149), 305-312http://rpbrent.com/pub/pub049.html . (184)

Brent, Richard P., Percival, Colin, and Zimmermann, Paul. 2007. Error bounds
on complex floating-point multiplicatiotMathematics of Computatiof6(259),
1469-1481 http://rpbrent.com/pub/pub221.html . (122)

Brent, Richard P. and Traub, Joseph F. 1980. On the complexity of composition
and generalized composition of power seri®sAM J. on Computing, 54—66.
http://rpbrent.com/pub/pub050.html . (179)

Brent, Richard P. and Zimmermann, Paul. 2010. @@\ (n) log n) algorithm

for the Jacobi symbol. Pages 83-95 of Hanrot, Guillaume, Morain, Francois, and
Thomé, Emmanuel (eds.Rroceedings of the 9th Algorithmic Number Theory
Symposium (ANTS-IX). Lecture Notes in Computer Science, vol. 6197. Nancy,
France, July 19-23, 2010: Springer-Verlag. (46)

Brisebarre, Nicolas, de Dinechin, Florent, Jeannerod, Claude-Pierreyreef
Vincent, Melquiond, Guillaume, Muller, Jean-Michel, Revol, Nathalie, &ehl
Damien, and Torres, Serge. 2009Handbook of Floating-Point Arithmetic.
Birkhauser. 572 pages. (179)

Bulirsch, Roland and Stoer, Josef. 1967. Handbook series numerical integration:

numerical quadrature by extrapolatioumerische Mathematilg, 271-278.
(183)

http://rpbrent.com/pub/pub043.html
http://rpbrent.com/pub/pub052.html
http://rpbrent.com/pub/pub069.html
http://rpbrent.com/pub/pub069.html
http://rpbrent.com/pub/pub183.html
http://rpbrent.com/pub/pub183.html
http://rpbrent.com/talks.html
http://rpbrent.com/talks.html
http://rpbrent.com/pub/pub045.html
http://rpbrent.com/pub/pub045.html
http://rpbrent.com/pub/pub082.html
http://rpbrent.com/pub/pub082.html
http://rpbrent.com/pub/pub049.html
http://rpbrent.com/pub/pub221.html
http://rpbrent.com/pub/pub050.html

References 195

[60] Burgisser, Peter, Clausen, Michael, and Shokrollahi, Mohammad A. 1807.
gebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften
315. Springer. (41, 123)

[61] Burnikel, Christoph and Ziegler, Joachim. 1998. Fast Recursive Division.
Research Report MPI-1-98-1-022. MPI Sadrtken. (45)

[62] Chen, Kwang-Wu. 2001. Algorithms for Bernoulli numbers and Euler numbers.
Journal of Integer Sequencet Article 01.1.6, 7 pp. (181)

[63] Cheng, Howard, Hanrot, Guillaume, ThémEmmanuel, Zima, Eugene, and
Zimmermann, Paul. 2007. Time- and space-efficient evaluation of some hy-
pergeometric constants. Pages 85-91 of Brown, C. W. (Rtheedings of the
2007 International Symposium on Symb@l&ESAC’2007). ACM. (184)

[64] Chudnovsky, David V. and Chudnovsky, Gregory G. 1988. Approximations and
complex multiplication according to Ramanujan. Pages 375-472 of Andrews,
G. E., Berndt, B. C., and Rankin, R. A. (edRgmanujan Revisited: Proceedings
of the Centenary Conference. Boston: Academic Press. (184)

[65] Chudnovsky, David V. and Chudnovsky, Gregory V. 1990. Computer algebra
in the service of mathematical physics and number theory. Pages 109-232 of
Computers in MathematidStanford, CA, 1986). Lecture Notes in Pure and
Applied Mathematics, vol. 125. New York: Dekker. (182)

[66] Chung, Jaewook and Hasan, M. Anwar. 2007. Asymmetric squaring formulae.
Pages 113-122 of Kornerup, P. and Muller, J.-M. (ed&g¢ceedings of the 18th
IEEE Symposium on Computer Arithmetic (ARITH-18). IEEE Computer Society.
(45)

[67] Clenshaw, Charles W. and Curtis, Alan R. 1960. A method for numerical inte-
gration on an automatic comput&umerische MathematiR, 197-205. (183)

[68] Clenshaw, Charles W., Goodwin, Charles E. T., Martin, David W., Miller, Geof-
frey F., Olver, Frank W. J., and Wilkinson, James H. 198hdern Computing
Methods. Second edn. Notes on Applied Science, No. 16. HMSO. (180)

[69] Clenshaw, Charles W. and Olver, Frank W. J. 1980. An unrestricted algorithm
for the exponential functiorSIAM Journal on Numerical Analysis7, 310-331.
(121, 180)

[70] Clenshaw, Charles W. and Olver, Frank W. J. 1984. Beyond floating plmiat-
nal of the ACM31(2), 319-328. (120)

[71] Clinger, William D. 1990. How to read floating point numbers accurately. Pages
92-101 ofProceedings of the ACM SIGPLAN’'90 Conference on Programming
Language Design and Implementation. (123)

[72] Cody, William J., Coonen, Jerome T., Gay, David M., Hanson, Kenton, Hough,
David, Kahan, William, Karpinski, Richard, Palmer, John, Ris, Frederic N., and
Stevenson, David. 1984. A proposed radix- and word-length-independent stan-
dard for floating-point arithmetidEEE Micro, 86—-100. (121)

[73] Cohen, Henri. 1993.A Course in Computational Algebraic Number Theory.
Graduate Texts in Mathematics 138. Springer-Verlag. 534 pages. (45, 78)

[74] Collins, George E. and Krandick, Werner. 2000. Multiprecision floating point
addition. Pages 71-77 of Traverso, C. (eBrpceedings of the 2000 Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSACR0OM
Press. (121)

196

[75]

[76]

[77]

[78]

[79]
[80]
[81]

[82]

[83]

[84]

[85]

[86]

[87]

(88]

[89]

[90]

References

Commerce, US Department of. 2000. Digital Signature Standard (DSS). Tech.
rept. FIPS PUB 186-2. National Institute of Standards and Technology. 76 pages.
(78)

Cook, Stephen A. 1966. On the minimum computation time of functions. Ph.D.
thesis, Harvard University. Chapter 3 available frbitp://cr.yp.to/
bib/1966/cook.html . (44)

Cornea, Marius, Anderson, Cristina, Harrison, John, Tang, Ping Tak Peter,
Schneider, Eric, and Tsen, Charles. 2007. A software implementation of the
IEEE 754R decimal floating-point arithmetic using the binary encoding format.
Pages 29-37 dProceedings of the 18th IEEE Symposium on Computer Arith-
metic (ARITH-18). (123)

Cornea-Hasegan, Marius A., Golliver, Roger A., and Markstein, Peter. 1999.
Correctness proofs outline for Newton—Raphson based floating-point divide and
square root algorithms. Pages 96—105 of Koren, I. and Kornerup, P. (ens.),
ceedings of the 14th IEEE Symposium on Computer Arithmetic (ARITH-14)
(122)

Crandall, Richard E. 1994Projects in Scientific Computation. TELOS, The
Electronic Library of Science, Santa Clara, California. (122)

Crandall, Richard E. 199@o0opics in Advanced Scientific Computation. TELOS,
The Electronic Library of Science, Santa Clara, California. (99, 122)

Crandall, Richard E. and Pomerance, Carl. 20B8me Numbers: A Computa-
tional Perspective. Second edn. Springer-Verlag. (44)

Crary, Fred D. and Rosser, John B. 1977. High precision coefficients related
to the zeta function.Reviewed in Mathematics of Computati@i, 803-804.
Review available fronittp://rpbrent.com/review01.html . (183)

Cuyt, Annie, Petersen, Vigdis B., Verdonk, Brigitte, Waadeland, Haakon, and
Jones, William B. (with contributions by Franky Backeljauw and Catherine
Bonan-Hamada). 2008Handbook of Continued Fractions for Special Func-
tions Springer. xvi+431 pages. (180)

de Bruijn, Nicolaas G. 1970 (reprinted by Dover, New York 1984%ymptotic
Methods in AnalysisThird edn. North-Holland. (180)

de Reyna, Juan Arias. 2005. Dynamical zeta functions and Kummer congru-
encesActa Arithmetical19(1), 39-52. (183)

Dimitrov, Vassil S., Jullien, Graham A., and Miller, William C. 1998. An algo-
rithm for modular exponentiatiorinformation Processing Letter§6, 155—-159.

(78)

Dixon, Brandon and Lenstra, Arjen K. 1993. Massively parallel elliptic curve
factoring. Pages 183-193 #foceedings of Eurocrypt'92. Lecture Notes in
Computer Science, vol. 658. Springer-Verlag. (44)

Dupont, Regis. 2010. Fast evaluation of modular functions using Newton itera-
tions and the AGMMathematics of Computation. In press, 2010. (181)
Eikenberry, Shawna M. and Sorenson, Jonathan P. 1998. Efficient algorithms for
computing the Jacobi symbolournal of Symbolic Computatio26(4), 509—

523. (46)

Enge, Andreas, Téveny, Philippe, and Zimmermann, Paul. 2000IPC — A
library for multiprecision complex arithmetic with exact roundir@8.1 edn.
INRIA. http://mpc.multiprecision.org/ . (187)

http://cr.yp.to/bib/1966/cook.html
http://cr.yp.to/bib/1966/cook.html
http://rpbrent.com/review01.html
http://mpc.multiprecision.org/

References 197

[91] Ercegovac, Milg D. and Muller, Jean-Michel. 2007. Complex square root with
operand prescalindg-he Journal of VLSI Signal Processirtf(1), 19-30. (123)

[92] Estrin, Gerald. 1960. Organization of computer systems — the fixed plus variable
structure computer. Pages 33—4@Pobceedings of the Western Joint Computer
Conference. (180)

[93] Féjer, Leopold. 1933. On the infinite sequences arising in the theories of har-
monic analysis, of interpolation, and of mechanical quadratiBe#ietin of the
American Mathematical Society9, 521-534. (183)

[94] Forsythe, George E. 1970. Pitfalls in computation, or why a math book isn’t
enough.American Mathematical Monthly,7, 931-956. (138)

[95] Fousse, Laurent. 2006. Bdration nurdrique avec erreur boge en pecision
arbitraire. Ph.D. thesis, University Henri Poineddancy 1. (183)

[96] Fousse, Laurent, Hanrot, Guillaume, &efe, Vincent, Blissier, Patrick, and
Zimmermann, Paul. 2007. MPFR: A multiple-precision binary floating-point
library with correct rounding. ACM Transactions on Mathematical Software,
33(2), 13:1-13:15. (187)

[97] Friedland, Paul. 1967. Algorithm 312: Absolute value and square root of a com-
plex numberCommunications of the ACMQ(10), 665. (182)

[98] Furer, Martin. 2007. Faster integer multiplication. Pages 57—66 of Johnson,
D. S. and Feige, U. (edsRroceedings of the 39th Annual ACM Symposium on
Theory of Computing (STOC3an Diego, California, USA. ACM. (78)

[99] Gabcke, Wolfgang. 1979. Neue Herleitung und explizite Restéivachg der
Riemann-Siegel-Formel. Ph.D. thesis, Georg-August-UnirsEdttingen.
Spanish translation available from Juan Arias de Reyna. (183)

[100] Gathen, Joachim von zur and Gerharidrgén. 1999. Modern Computer Al-
gebra. Cambridge: Cambridge University Pressttp://www-math.
uni-paderborn.de/mca . (77)

[101] Gauss, Carl F. 188%ntersuchungeiiber Hohere Arithmetik. Berlin: Springer.
Reprinted by the American Mathematical Society, 2006. (46)

[102] Gautschi, Walter. 1964. Algorithm 236: Bessel functions of the first kBain-
munications of the ACM;, 479-480. (180)

[103] Gay, David M. 1990. Correctly rounded binary-decimal and decimal-binary con-
versions. Numerical Analysis Manuscript 90-10. AT&T Bell Laboratories. (123)

[104] GMP. 2010.GNU MP: The GNU Multiple Precision Arithmetic Library. 5.0.0
edn. http://gmplib.org/ . (186)

[105] Gourdon, Xavier. 2004. Thi)'? first zeros of the Riemann zeta function, and
zeros computation at very large heighttp://numbers.computation.
free.fr/Constants/Miscellaneous/zetazeroslel3-1e24.

pdf . (183)
[106] Gourdon, Xavier and Sebah, Pascal. 2010. Numbers, constants and computation.
http://numbers.computation.free.fr/ . (184)

[107] Graham, Ronald L., Knuth, Donald E., and Patashnik, Oren. 199zhcrete
MathematicsThird edn. Addison-Wesley. (181)

[108] Haible, Bruno and Papanikolaou, Thomas. 1998. Fast multiprecision evaluation
of series of rational numbers. Pages 338-350 of Buhler, J. P. Rrdggedings
of the 3rd Algorithmic Number Theory Symposium (ANTS-écture Notes in
Computer Science, vol. 1423. Springer-Verlag. (182, 185)

http://www-math.uni-paderborn.de/mca
http://www-math.uni-paderborn.de/mca
http://gmplib.org/
http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf
http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf
http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf
http://numbers.computation.free.fr/

198 References

[109] Halfhill, Tom R. 1995. The truth behind the Pentium bigyte. March 1995.
Available from http://www2.informatik.uni-jena.de/ ~nez/
rechnerarithmetik_5/fdiv_bug/byte_artl.htm. (128)

[110] Hankerson, Darrel, Menezes, Alfred, and Vanstone, Scott. 2G4de to El-
liptic Curve Cryptography. Springer-Verlaghttp://www.cacr.math.
uwaterloo.ca/ecc/ . (78)

[111] Hanrot, Guillaume, Quercia, Michel, and Zimmermann, Paul. 2004. The mid-
dle product algorithm, I. Speeding up the division and square root of power
series. Applicable Algebra in Engineering, Communication and Computing,
14(6), 415-438. (122)

[112] Hanrot, Guillaume and Zimmermann, Paul. 2004. A long note on Mulders’ short
product.Journal of Symbolic Computatio87, 391-401. (45)

[113] Hars, Laszlo. 2004. Long modular multiplication for cryptographic applica-
tions. Pages 44—-61 @HES'04. Lecture Notes in Computer Science, vol. 3156.
Springer-Verlag. (77)

[114] Harvey, David. 2009a. Faster polynomial multiplication via multipoint
Kronecker substitutionJournal of Symbolic Computatiod4, 1502-1510. (39,

44)
[115] Harvey, David. 2009b. The Karatsuba middle product for integlettp://
cims.nyu.edu/ ~ harvey/papers/mulmid/ . Preprint. (122)

[116] Harvey, David. 2010a. Faster algorithms for the square root and reciprocal of
power seriesMathematics of Computation. Posted on July 8, 2010 (to appear
in print). (122, 123, 181, 182)

[117] Harvey, David. 2010b. A multimodular algorithm for computing
Bernoulli numbersMathematics of Computatio@9, 2361-2370. (181)

[118] Hasenplaugh, William, Gaubatz, Gunnar, and Gopal, Vinodh. 2007. Fast mod-
ular reduction. Pages 225-229Rioceedings of the 18th IEEE Symposium on
Computer Arithmetic (ARITH-18). Montpellier, France: IEEE Computer Society
Press. (77)

[119] Hastad, Johan. 1990. Tensor rank is NP-compliarnal of Algorithms11(4),
644—654. (41)

[120] Hennessy, John L., Patterson, David A., and Goldberg, David. 1@8thputer
Architecture: A Quantitative Approach. Morgan Kaufmann. (121)

[121] Higham, Nicholas J. 2002Accuracy and Stability of Numerical Algorithms
Second edn. SIAM. (121, 179)

[122] Hille, Einar. 1959 Analytic Function Theory. Vol. 1. New York: Blaisdell. (170)

[123] Hoeven, Joris van der. 1999. Fast evaluation of holonomic funcfidreretical
Computer Scienc10, 199-215. (183)

[124] Hoeven, Joris van der. 2002. Relax, but don't be too lakyurnal of Sym-
bolic Computation,34(6), 479-542. Available fronhttp://www.math.
u-psud.fr/ ~vdhoeven . (44, 76)

[125] Hoeven, Joris van der. 2006. Newton’s method and FFT trading. Tech.
rept. 2006-17. University Paris-Suuttp://www.texmacs.org/joris/
fnewton/fnewton-abs.html . (122, 182)

[126] Householder, Alston S. 1970rhe Numerical Treatment of a Single Nonlinear
Equation. New York: McGraw-Hill. (179)

http://www2.informatik.uni-jena.de/~nez/rechnerarithmetik_5/fdiv_bug/byte_art1.htm
http://www2.informatik.uni-jena.de/~nez/rechnerarithmetik_5/fdiv_bug/byte_art1.htm
http://www.cacr.math.uwaterloo.ca/ecc/
http://www.cacr.math.uwaterloo.ca/ecc/
http://cims.nyu.edu/~harvey/papers/mulmid/
http://cims.nyu.edu/~harvey/papers/mulmid/
http://www.math.u-psud.fr/~vdhoeven
http://www.math.u-psud.fr/~vdhoeven
http://www.texmacs.org/joris/fnewton/fnewton-abs.html
http://www.texmacs.org/joris/fnewton/fnewton-abs.html

References 199

[127] Hull, Thomas E. 1982. The use of controlled precision. Pages 71-84 of Reid,
J. K. (ed.),The Relationship Between Numerical Computation and Programming
Languages. North-Holland. (121)

[128] Intel. 2003. Division, square root and remainder algorithms for the Intel(R) Ita-
nium(TM) architecture. Application Note, available frdtp://download.
intel.com/software/opensource/divsqrt.pdf , 120 pages. (179)

[129] lordache, Cristina and Matula, David W. 1999. On infinitely precise rounding
for division, square root, reciprocal and square root reciprocal. Pages 233-240 of
Proceedings of the 14th IEEE Symposium on Computer Arithmetic (ARITH-14).
IEEE Computer Society. (121)

[130] Jebelean, Tudor. 1993. An algorithm for exact divisialournal of Symbolic
Computation 15, 169-180. (45)

[131] Jebelean, Tudor. 1995. A double-digit Lehmer—Euclid algorithm for finding the
GCD of long integersJournal of Symbolic Computatiofh9, 145-157. (46)

[132] Jebelean, Tudor. 1997. Practical integer division with Karatsuba complexity.
Pages 339-341 ofikchlin, W. W. (ed.) Proceedings of International Symposium
on Symbolic and Algebraic Computation (ISSAC:94p)

[133] Kahan, William M. 2002. Idempotent binary» decimal — binary
conversion. | http://www.cs.berkeley.edu/ ~wkahan/Math128/
BinDecBin.pdf. 1 page. (123)

[134] Kaihara, Marcelo E. and Takagi, Naofumi. 2008. Bipartite modular multiplica-
tion method.IEEE Transactions on Computeis7(2), 157-164. (77)

[135] Kaneko, Masanobu. 2000. The Akiyama-Tanigawa algorithm for Bernoulli
numbers.Journal of Integer Sequences Article 00.2.9, 6 pages. (181)

[136] Karatsuba, Anatolii A. and Ofman, Yuri. 1962. Multiplication of multi-digit
numbers on automata (in Russiaroklady Akad. Nauk SSSR45(2), 293—
294. Translation irBoviet Physics-Doklady (1963), 595-596. (44)

[137] Karp, Alan H. and Markstein, Peter. 1997. High-precision division and square
root. ACM Trans. on Mathematical Softwa@3(4), 561-589. (45, 122, 179)

[138] Khachatrian, Gurgen H., Kuregian, Melsik K., Ispiryan, Karen R., and Massey,
James L. 2001. Fast multiplication of integers for public-key applications. Pages
245-254 of Vaudenay, S. and Youssef, A. M. (ed3rpceedings of the 8th An-
nual International Workshop Selected Areas in Cryptography (SAC 2001). Lec-
ture Notes in Computer Science, vol. 2259. Springer-Verlag. (40, 45)

[139] Khinchin, Aleksandr Y. 1963.Continued FractionsThird edn. Groningen:
Noordhoff. Translated by P. Wynn. Reprinted by Dover, New York, 1997. (45,
180)

[140] Knuth, Donald E. 1962. Euler’s constant to 1271 pladé¢athematics of Com-
putation,16, 275-281. (181)

[141] Knuth, Donald E. 1971. The analysis of algorithms. Pages 269-2A¢tes
du Conges International des Maéimaticiens de 1970, vol. 3. Paris: Gauthiers-
Villars. (46)

[142] Knuth, Donald E. 1998The Art of Computer Programming. Third edn. Vol.

2 : Seminumerical Algorithms. Addison-Weslétp://www-cs-staff.
stanford.edu/ ~ knuth/taocp.html. (xi, 15, 30, 45, 122, 123, 179)

ftp://download.intel.com/software/opensource/divsqrt.pdf
ftp://download.intel.com/software/opensource/divsqrt.pdf
http://www.cs.berkeley.edu/~wkahan/Math128/BinDecBin.pdf
http://www.cs.berkeley.edu/~wkahan/Math128/BinDecBin.pdf
http://www-cs-staff.stanford.edu/~knuth/taocp.html
http://www-cs-staff.stanford.edu/~knuth/taocp.html

200 References

[143] Koornwinder, Tom, Temme, Nico, and Vidunas, Raimundas. 2010. Algorith-
mic methods for special functions by computer algebkdtp://staff.
science.uva.nl/ ~ thk/specfun/compalg.html . (183)

[144] Krandick, Werner and Jebelean, Tudor. 1996. Bidirectional exact integer divi-
sion. Journal of Symbolic ComputatioB]1(4-6), 441-456. (45)

[145] Krandick, Werner and Johnson, Jeremy R. 1993. Efficient multiprecision float-
ing point multiplication with optimal directional rounding. Pages 228-233 of
Swartzlander, E., Irwin, M. J., and Jullien, G. (ed®joceedings of the 11th
IEEE Symposium on Computer Arithmetic (ARITH-11). (121)

[146] Kronecker, Leopold. 1880.Uber die symmetrischen FunctionenMonats-
berichte der Kniglich Preugschen Akademie der Wissenschaften zu Berlin
1880(Berlin: Verl. d. Kgl. Akad. d. Wiss., 1881), 936-948. (44)

[147] Kronecker, Leopold. 1882Grundzige einer arithmetischen Theorie der alge-
braischen Géssen. Berlin: Druck und Verlag Von G. Reimer. (44)

[148] Kuki, Hirondo and Cody, William J. 1973. A statistical study of the accuracy
of floating-point number systemsCommunications of the ACMS6, 223—-230.
(118)

[149] Kulisch, Ulrich W. 2008.Computer Arithmetic and Validity. Theory, Implemen-
tation, and ApplicationsStudies in Mathematics, no. 33. de Gruyter. 410 pages.
(123)

[150] Kung, Hsiang T. 1974. On computing reciprocals of power sefi&snerische
Mathematik22, 341-348. (179)

[151] Lang, Tomas and Muller, Jean-Michel. 2001. Bounds on runs of zeros and ones
for algebraic functions. Pages 13—20Rybceedings of the 15th IEEE Sympo-
sium on Computer Arithmetic (ARITH-15). IEEE Computer Society. (122)

[152] Lefevre, Vincent. 2001. Multiplication by an Integer Constant. Research Report
RR-4192. INRIA. (45)

[153] Lefevre, Vincent. 2004. The generic multiple-precision floating-point addition
with exact rounding (as in the MPFR library). Pages 135-145%rofeedings of
the 6th Conference on Real Numbers and Compu(é&el)

[154] Lehmer, Derrick H. 1938. Euclid’s algorithm for large numbéFhe American
Mathematical Monthly45(4), 227-233. (45)

[155] Lehmer, Derrick H. 1956. Extended computation of the Riemann zeta-function.
Mathematika3, 102—-108. (183)

[156] Lyness, James N. and Moler, Cleve B. 1967. Numerical differentiation of ana-
lytic functions. SIAM Journal on Numerical Analysi§, 20-2—210. (183)

[157] Maeder, Roman. 1993. Storage allocation for the Karatsuba integer multiplica-
tion algorithm. Pages 59-65 Bfroceedings of the International Symposium on
Design and Implementation of Symbolic Computation Systems (DISIC£0)
ture Notes in Computer Science, vol. 722. Springer-Verlag. (40)

[158] Markstein, Peter. 2004. Software division and square root using Goldschmidt’s
algorithms. Pages 146-157 of Frougny, Ch., Brattka, V., adtldy] N. (eds.),
Proceedings of the 6th Conference on Real Numbers and Computers (RNC’6).
(123)

[159] Maze, Gerard. 2007. Existence of a limiting distribution for the binary GCD
algorithm. Journal of Discrete Algorithms, 176-186. (45)

http://staff.science.uva.nl/~thk/specfun/compalg.html
http://staff.science.uva.nl/~thk/specfun/compalg.html

References 201

[160] McLaughlin, Philip B., Jr. 2004. New frameworks for Montgomery’s modular
multiplication method Mathematics of Computatioi@3(246), 899-906. (77)

[161] Menezes, Alfred J., van Oorschot, Paul C., and Vanstone, Scott A. H@d-
book of Applied Cryptography. CRC Preséittp://www.cacr.math.
uwaterloo.ca/hac/ . (78)

[162] Ménissier-Morain, Varie. 1994. Arithratique exacte, conception, algorith-
mique et performances d’'une ingphentation informatique en geision arbi-
traire. Ph.D. thesis, University of Paris 7. (120)

[163] Meunier, Ludovic and Salvy, Bruno. 2003. ESF: an automatically generated
encyclopedia of special functions. Pages 199-206 of Sendra, J. R.Res.),
ceedings of the 2003 International Symposium on Symbolic and Algebraic Com-
putation (ISSAC’'03). (190)

[164] Mihailescu, Preda. 2008. Fast convolutions meet Montgoméaghematics of
Computation/7, 1199-1221. (77)

[165] Mikami, Yoshio. 1913.The Development of Mathematics in China and Japan.
Teubner. Reprinted by Martino Publishing, Eastford, CT, USA, 2004. (45)

[166] Moenck, Robert and Borodin, Allan. 1972. Fast modular transforms via division.
Pages 90-96 dProceedings of the 13th Annual IEEE Symposium on Switching
and Automata Theory. (45)

[167] Moller, Niels. 2007. Notes on the complexity of CRT. Preprint. 8 pages. (78)

[168] Moller, Niels. 2008. On Sdinhage’s algorithm and subquadratic integer GCD
computation.Mathematics of Computatio7(261), 589-607. (46)

[169] Montgomery, Peter L. 1985. Modular multiplication without trial division.
Mathematics of Computatiod4(170), 519-521. (77)

[170] Montgomery, Peter L. 1987. Speeding the Pollard and elliptic curve methods of
factorization.Mathematics of Computatiod8(177), 243—-264. (78)

[171] Montgomery, Peter L. 2001. Personal communication to Bonb{sranlund.
(42)

[172] Mori, Masatake. 2005. Discovery of the double exponential transformation and
its developments. Publications of RIMS, Kyoto Universit#1(4), 897—935.
(183)

[173] Mulders, Thom. 2000. On short multiplications and divisiofipplicable Alge-
bra in Engineering, Communication and Computifig(1), 69-88. (119, 121)

[174] Muller, Jean-Michel. 200&lementary Functions. Algorithms and Implementa-
tion. Birkhauser. Second edition. 265 pages. (121, 122, 179)

[175] Nicely, Thomas R. 1995. Enumeration16'* of the twin primes and Brun’s
constant. Virginia Journal of Scienced6(3), 195-204. http://www.
trnicely.net/twins/twins.html . Review athttp://wwwmaths.
anu.edu.au/ ~ brent/reviews.html. (128)

[176] Nussbaumer, Henri J. 1982Fast Fourier Transform and Convolution Algo-
rithms Second edn. Springer-Verlag. (78)

[177] Odlyzko, Andrew M. 1992. Th&0*°-th zero of the Riemann zeta function and
175 million of its neighbors. http://www.dtc.umn.edu/ ~ odlyzko/
unpublished/ . (183)

[178] Odlyzko, Andrew M. 2001. The0?*?-nd zero of the Riemann zeta function.
Pages 139-144 of van Frankenhuysen, M. and Lapidus, M. L. (Edsgmical,

http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
http://www.trnicely.net/twins/twins.html
http://www.trnicely.net/twins/twins.html
http://wwwmaths.anu.edu.au/~brent/reviews.html
http://wwwmaths.anu.edu.au/~brent/reviews.html
http://www.dtc.umn.edu/~odlyzko/unpublished/
http://www.dtc.umn.edu/~odlyzko/unpublished/

202 References

Spectral, and Arithmetic Zeta FunctianAmerican Math. Soc., Contemporary
Math. series, no. 290. (183)

[179] Odlyzko, Andrew M. and Sd@mhage, Arnold. 1988. Fast algorithms for multi-
ple evaluations of the zeta-functiofirans. Amer. Math. Soc309(2), 797-809.
(183)

[180] Olver, Frank W. J. 1974Asymptotics and Special Function&cademic Press.
Reprinted by A. K. Peters, 1997. (180)

[181] Pan, Victor. 1984How to Multiply Matrices FasterLecture Notes in Computer
Science, vol. 179. Springer-Verlag. (122)

[182] Paterson, Michael S. and Stockmeyer, Larry J. 1973. On the number of nonscalar
multiplications necessary to evaluate polynomi&lgAM Journal on Computing,
2(1), 60-66. (180)

[183] Percival, Colin. 2003. Rapid multiplication modulo the sum and difference of
highly composite numbersMathematics of Computatior’,2(241), 387—-395.

(78, 122)

[184] Petermann, Yves-F. S. anceRly, Jean-Luc. 2007. On the Cohen-Olivier algo-
rithm for computing¢(s): error analysis in the real case for an arbitrary preci-
sion. Advances in Applied Mathematj&8, 54—70. (183)

[185] Pollard, John M. 1971. The fast Fourier transform in a finite filldthematics
of Computation25(114), 365-374. (78)

[186] Priest, Douglas M. 1991. Algorithms for arbitrary precision floating point arith-
metic. Pages 132-144 of Kornerup, P. and Matula, D. (ed}ieedings of the
10th IEEE Symposium on Computer Arithmetic (ARITH-10). Grenoble, France:
IEEE Computer Society Press. (121)

[187] Rader, Charles M. 1968. Discrete Fourier transforms when the number of data
samples is primeProceedings IEEE56, 1107-1108. (78)

[188] Richardson, Lewis F. and Gaunt, John A. 1927. The deferred approach to the
limit. Philosophical Transactions of the Royal Society of London, Seri226\
299-361. (183)

[189] Robertson, James E. 1958. A new class of digital division metH&ds Trans-
actions on Electronic Compute&C-7(3), 218—-222. (179)

[190] Roche, Daniel S. 2009. Space- and time-efficient polynomial multiplication.
Pages 295-302 of May, J. P. (ed®ypceedings of the 2009 International Sym-
posium on Symbolic and Algebraic Computation (ISSAC’09))

[191] Romberg, Werner. 1955. Vereinfachte numerische Integrafimt. Kongelige
Norske Videnskabers Selskab Forhandlin@éonheim),28(7), 30—36. (183)

[192] Salamin, Eugene. 1976. Computationsofising arithmetic-geometric mean.
Mathematics of Computatio80, 565-570. (181, 184)

[193] Salvy, Bruno and Zimmermann, Paul. 1994. Gfun: A Maple package for the ma-
nipulation of generating and holonomic functions in one variaBléM Trans-
actions on Mathematical Softwar2Q(2), 163-177. (183)

[194] Schmookler, Martin S. and Nowka, Kevin J. 2001. Leading zero anticipation and
detection — a comparison of methods. Pages 7-12 of Burgess, N. and Ciminiera,
L. (eds.),Proceedings of the 15th IEEE Symposium on Computer Arithmetic
(ARITH-15). IEEE Computer Society. (121)

[195] Sclonhage, Arnold. 1971. Schnelle Berechnung von Kettenbruchentwicklun-
gen.Acta Informatical, 139-144. (46, 180)

References 203

[196] Sclonhage, Arnold. 1982. Asymptotically fast algorithms for the numerical mul-
tiplication and division of polynomials with complex coefficients. Pages 3-15
of Computer Algebra, EUROCAM’'82. Lecture Notes in Computer Science, vol.
144. Springer-Verlag. (44)

[197] Scldnhage, Arnold. 2000. Variations on computing reciprocals of power series.
Information Processing Letterg4, 41-46. (122, 171)

[198] Sclonhage, Arnold, Grotefeld, A. F. W., and Vetter, E. 19B4st Algorithms: A
Multitape Turing Machine Implementation. BlI-Wissenschaftsverlag, Mannheim.
(46, 122, 182)

[199] Scldonhage, Arnold and Strassen, Volker. 1971. Schnelle Multiplikation groRer
Zahlen.Computing,7, 281-292. (45, 78)

[200] Shallit, Jeffrey and Sorenson, Jonathan. 1993. A binary algorithm for the Jacobi
symbol. SIGSAM Bulletin27(1), 4-11. http://euclid.butler.edu/
~ sorenson/papers/binjac.ps . (46)

[201] Shand, Mark and Vuillemin, Jean. 1993. Fast implementations of RSA cryptog-
raphy. Pages 252—259 Bfoceedings of the 11th IEEE Symposium on Computer
Arithmetic (ARITH-11). (45)

[202] Sieveking, Malte. 1972. An algorithm for division of power seri€@mputing,

10, 153-156. (179)

[203] Sloane, Neil J. A. 2009. The On-Line Encyclopedia of Integer Sequences.
http://www.research.att.com/ ~njas/sequences/ . (181, 183)

[204] Smith, David M. 1991. Algorithm 693: A Fortran package for floating-point
multiple-precision arithmetic. ACM Transactions on Mathematical Software,
17(2), 273-283. (180)

[205] Sorenson, Jonathan P. 1994. Two fast GCD algorithlosrnal of Algorithms
16, 110-144. (46)

[206] Steel, Allan. 2006. Reduce everything to multiplication. Computing by the
Numbers: Algorithms, Precision, and Complexity, Workshop for Richard Brent’s
sixtieth birthday, Berlin. http://www.mathematik.hu-berlin.de/
~gaggle/EVENTS/2006/BRENT60/ . (44)

[207] Steele, Guy L. and White, Jon L. 1990. How to print floating-point numbers
accurately. Pages 112-126Ribceedings of the ACM SIGPLAN’'90 Conference
on Programming Language Design and Implementation. (123)

[208] Stehé, Damien and Zimmermann, Paul. 2004. A binary recursive GCD algo-
rithm. Pages 411-425 of Buell, D. A. (ed?roceedings of the 6th International
Symposium on Algorithmic Number Theory (ANTS VI). Lecture Notes in Com-
puter Science, vol. 3076. Burlington, USA: Springer-Verlag. (35, 46)

[209] Stein, Josef. 1967. Computational problems associated with Racah algebra.
Journal of Computational Physics, 397—-405. (45)

[210] Sterbenz, Pat H. 1974Floating-Point Computation. Englewood Cliffs, NJ,
USA: Prentice Hall. (121)

[211] Svoboda, Antonin. 1963. An algorithm for divisionnformation Processing
Machines9, 25-34. (45)

[212] Swartzlander, Earl E., Jr. (ed.). 19&bmputer Arithmetic. Dowden, Hutchison
and Ross (distributed by Van Nostrand, New York). (78, 179)

http://euclid.butler.edu/~sorenson/papers/binjac.ps
http://euclid.butler.edu/~sorenson/papers/binjac.ps
http://www.research.att.com/~njas/sequences/
http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/
http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/

204 References

[213] Takahasi, Hidetosi and Mori, Masatake. 1974. Double exponential formulas for
numerical integrationPublications of RIMS, Kyoto Universit9(3), 721-741.
(183)

[214] Temme, Nico M. 1996. Special Functions: An Introduction to the Classical
Functions of Mathematical PhysicgViley. (179)

[215] Thone, Emmanuel. 2002. Karatsuba multiplication with temporary space of size
< n. 6 pageshttp://www.loria.fr/ ~thome/ . (40)

[216] Tocher, Keith D. 1958. Techniques of multiplication and division for automatic
binary computers.Quarterly Journal of Mechanics and Applied Mathematics
11(3), 364-384. (179)

[217] Toom, Andrei L. 1963. The complexity of a scheme of functional elements real-
izing the multiplication of integers (in Russiari)oklady Akademii Nauk SSSR,
150(3), 496-498. Available fronmttp://www.de.ufpe.br/ ~toom/
my_articles/rusmat/MULT-R.PDF . Translation inSoviet Mathematics
4 (1963), 714-716. (44)

[218] Traub, Joseph F. 1964terative Methods for the Solution of Equatiorsngle-
wood Cliffs, New Jersey: Prentice-Hall. (179)

[219] Trefethen, Lloyd N. 2008. Is Gauss quadrature better than Clenshaw—Curtis?
SIAM Review50(1), 67-87. (183)

[220] Urabe, Minoru. 1968. Roundoff error distribution in fixed-point multiplication
and a remark about the rounding ruBlAM Journal on Numerical Analysis,
202-210. (118)

[221] Vallée, Brigitte. 1998. Dynamics of the binary Euclidean algorithm: functional
analysis and operatoralgorithmica,22, 660—685. (46)

[222] Van Loan, Charles F. 1992Computational Frameworks for the Fast Fourier
Transform. Philadelphia: SIAM. (78)

[223] Vepstas, Linas. 2007. An efficient algorithm for accelerating the convergence of
oscillatory series, useful for computing the polylogarithm and Hurwitz zeta func-

tions. http://arxiv.org/abs/math.CA/0702243 . 37 pages. (183)
[224] Wall, Hubert S. 1948 Analytic Theory of Continued Fractiond/an Nostrand.
(180)

[225] Watson, George N. 196& Treatise on the Theory of Bessel FunctioBecond
edn. Cambridge University Press. (180)

[226] Weber, Kenneth. 1995. The accelerated integer GCD algori##@M Transac-
tions on Mathematical Softwarg1(1), 111-122. (31, 46)

[227] Whittaker, Edmund T. and Watson, George N. 192 Tourse of Modern Anal-
ysis Fourth edn. Cambridge University Press. (180)

[228] Wilkinson, James H. 1963Rounding Errors in Algebraic ProcessesiMSO,
London. (121, 179)

[229] Wilkinson, James H. 1969 he Algebraic Eigenvalue Problem. Clarendon Press,
Oxford. (121, 179)

[230] Winograd, Shmuel. 1978. On computing the discrete Fourier transtdathe-
matics of Computatiorg2(141), 175-199. (78)

[231] Wong, Roderick. 198%Asymptotic Approximation of Integral8cademic Press.
Reprinted by SIAM, 2001. (180)

[232] Yap, Chee K. 2000.Fundamental Problems in Algorithmic Algebra. Oxford
University Press. (46)

http://www.loria.fr/~thome/
http://www.de.ufpe.br/~toom/my_articles/rusmat/MULT-R.PDF
http://www.de.ufpe.br/~toom/my_articles/rusmat/MULT-R.PDF
http://arxiv.org/abs/math.CA/0702243

References 205

[233] Zeilberger, Doron. 1990. A holonomic systems approach to special function
identities.J. Comput. Appl. Math32(3), 321-348. (183)

[234] Zimmermann, Paul. 1999. Karatsuba Square Root. Research Report 3805. IN-
RIA. http://hal.inria.fr/docs/00/07/28/54/PDF/RR-3805.
pdf . (45)

[235] Zuras, Dan. 1994. More on squaring and multiplying large inted¢feEE Trans-
actions on Computerg3(8), 899-908. (41, 44)

http://hal.inria.fr/docs/00/07/28/54/PDF/RR-3805.pdf
http://hal.inria.fr/docs/00/07/28/54/PDF/RR-3805.pdf

Index

Abramowitz, Milton[T79[180, 190
addition[2[91
carry bit[T0[92
modular[5D
addition chain[_xil/[_619
weighted 7l
Adleman, Leonard Max, 68

AGM, seearithmetic-geometric mean

Agrawal, Manindra_45
Aho, Alfred Vaino[46[7B
AKS primality test[4b
algorithm
AGM (for log),[159[162
Akiyama-Tanigawd, 181

ApproximateReciprocal,_10B, 1119
ApproximateRecSquareRobf, 113

BackwardFFT 54
Barrett's[58[78, 109, 11T, 119
BarrettDivRem[5P
BasecaseDivRer, 115,141,142
BasecaseMultiply, 14,40
BaseKExp[_7il
BaseKExpOdd,_12

D. Bernstein’s|_122

R. Bernstein’d_14

binary splitting[168
BinaryDivide [33
BinaryGed[31

bit-burst[I6V[178
Bluestein's[7B
Brent—-Salamir_ 139, 184
cryptographid_ 64, 48
DivideByWord [24
DivideNewton[1011, 111,110, 1p2
DoubleDigitGed[31L
Erf,[149[175
EuclidGed[3D
ExactDivision[2P[_ 122
ExtendedGed, 38,43
FastIntegerinpul, 39, 43
FastIntegerOutput._39
FastREDC[_6R2
FFTMulMod,[56
ForwardFFT 5B
FPadd[9P

FPmultiply,[96
FPSqrt[IIn 119
Friedland's[18R

Furer's [57[78
Gauss-Legendrg, 149, 184
HalfBinaryGed[3b[43
HalfGed [43
IntegerAddition[P
Integerinput[3B
IntegerOutpul_38
IntegerToRNS_ 73,78

208

IsPower[2P
KaratsubaMultiplyl B[40
lazy,[2[43
LeftToRightBinaryExp[ZI[_16
LiftExp, I31
McLaughlin’s [63E6H, 717
ModularAdd[50[7b
Modularinverse,_66
Montgomery's[6D
MontgomerySvobodé, 62
Mulders’,[96
MultipleInversion[[6V[718
MultMcLaughlin,[64

OddEvenKaratsubf] B, 141
off-line,[2,[44
on-line [44

parallel,[46,[4P[67[_76._¥T._1I75,

180
Payne and Hanek, 101
PrintFixed 116120
Rader's[7B
RecursiveDivReni, 1§, 42
REDC [GD
ReducedRatMod, 32, 46
relaxed[P[44
RightToLeftBinaryExpl_7b
RNSTolntegef_74
RootInt[2T
RoundingPossiblé,_ 89
Sasaki—Kanad&,_1b2. 181

Index

SvobodaDivision 17,42
systolic[46
TangentNumbers_1b7,_176, 177,
181
ToomCook3[J7
UnbalancedDivisior, 20, 42
unrestricted, 121125
zealous 44
Ziv's,
aliasing[17P
Andrews, George Eyrg,_ 1119, 180
ANU, il
Apostol, Tom Mike[I8D
ARC,[x]
argument reductiof, IO, 132=135
additive[T38
multiplicative [133
arithmetic-geometric mean, 148=163
advantage$, 158
complex varian{_183
drawbackd, 162
error term[16D
for elliptic integrals[158
for logarithms[[I50=162
optimization of [16M, 182
Sasaki—Kanada algorithin, 162
scaling factof_161
theta functiond, 180
Arndt, Brg,[xi,[181[18%
ARPREC[18V

Schdnhage—Strassef. 148,155.] 65Askey, Richard Allen 179, 180

[78,[10%[12P 185

SecantNumberE, 116, 177,181

SeriesExponentidl, 17
ShortDivision[108 111,121
ShortProduct 97,121
SinCos[16b

Sqrtint [2T[4B[46
SqrtRem[ZH, 45
Strassen’d, 36, 123

asymptotic equality notatior, Xvl
asymptotic expansioris, 144,180
asymptotic series notatiarrxv
Avizienis representatiof, 73

Bach, (Carl) Eric[/4b

Bachmann, Paul Gustav Heinri¢h] 46
Backeljauw, Franky, 180

backward summatiof, 1B5, 138

Index 209

Bailey, David Harold["I83, 184,187 Big O notation[xv

balanced ternarfz 1119 binary coded decimal (BCD]), 81
Barrett's algorithm,[54=80_64, 177, binary exponentiatiof, 68, 70
[78,[10%9[11P binary number, notation fdr, Xvi
Barrett, Paul 54,39 binary representatiof] 1
base[X[80 conversion to decimdl_B7
conversion_ 31,190 binary splitting[16B=186¢, 1TB. 185
Batut, Christian_189 CLN library,[182
Becuwe, Stefarf, 180 for 1/m,((3),[184
Beeler, Michael 181 for sin/cos[16b
Belabas, Karin{_189 binary-integer decimal (BID], 81
Bellard, Fabricd,_184 binary64[81[8d, 120
Bernardi, Dominiqud, 189 BinaryDivide [32
Bernoulli numbers[Xxii,[I47[154, binomial coefficient xii[4B
158169176 bipartite modular multiplicatio, 17
Akiyama-Tanigawa algorithm, bit reversal[53, 54
181 bit-burst algorithm[_166=160. 1I78
complexity of evaluatiori, 177 Bluestein, Leo IsaaE, 78
denominators of_1%6 Bodrato, Marco 44, 119
fast evaluatior], 177 Boldo, Sylvie[118
Harvey's algorithm[_181 Bonan-Hamada, Catheriie, 180
scaled[Xii Booth representatiof, 113,178

space required fdr, 160, 1176 Bornemann, Folkmalr,_183. 1184
stable computatioi, 155, 1116, 180 Borodin, Allan Bertram_44, 18

via tangent numberg,_156 Borwein, Jonathan Michael_159-
Bernstein, Daniel Juliu§_ 48, Wb 177, [161[181E184. 190
[78,[122[128, 131 Borwein, Peter Benjamif,_1H0-161,
Bernstein, Joseph Naumovi¢h, 183 [I831-£184[190
Bernstein, Roberf, 14 Bostan, Alin[12P
Berry, Michael Victor[188 branch predictior, 16
Bertot, Yves[4b Brent, Erin Margaref Xi
Bessel functions_ 153 Brent, Richard Peircé, #5121, 166,
first kind, J,, (x),[153 [182[18%
in computation ofy,[146 184 Brent—McMillan algorithm[_12d, 184
Miller's algorithm,[154 Brent—Salamin algorithnh,_159, 1184
second kindy, (x),[I53 Briggs, Keith Martin[45

Bessel's differential equation, 153 Bruijn, seede Bruijn

Bessel, Friedrich Wilhelni,_ 152 Bulirsch, Roland Zdegk,[183
Bézout coefficient, 32 Burgisser, Petelr, 40, 1P3
Bézout,Etienne[3R Burnikel, Christoph[45

210

butterfly operatior{, 33

C,[68[186E189
C++,[185[1811. 189
cancellation[138
Cannon, John Josefh, 188
carry bit,[T0[40[92
catastrophic cancellatioin, 1138
Cauchy principal valué_xMi, 144
Cauchy’s theoreni, 170
Cayley[188
ceiling function[z],xw
Chen, Kwang-WU, 181
Cheng, Howard, 184
Chinese remainder
seemodular representation

Chinese remainder theorem (CRT),

[[373[78
explicit,[49
reconstructior,_14,. 18
Chiu Chang Suan Shiu, 45

Chudnovsky, David VolfovicH, 166,

182184

Chudnovsky, Gregory \olfovich,

[166,[182(18¢4
Chung, Jaewook,_45
classical splitting,_142

Index

arithmetic[18V
multiplication,[163
square roof_182
squaring[163
complexity
arithmetic[B[#
asymptotic[B
bit, 4
concatenation, notation for, Vi, 38
continued fraction
approximant_151
backward recurrence. 141,175
error bound 1972, 175
fast evaluatiod,_17%, 180

representation, for E;,[I50

for erfc,[I50
forward recurrencé. _1I5L, 1175
notation for[xvi[15D
regular[30
contour integratiorf, 169, 183
convolution [X[78
convolution theorent,_ %0
cyclic,[xivi,[78,[98
via FFT[64[99
Cook, Stephen Arthul,_44
Cornea-Hasegan, Marius Adrian,

12211238

Clausen, Michael Hermann, 41,123 correct rounding,,, 83

Clausen, Thomak, 156, 181

cosh(z),[138

Clenshaw, Charles Williarh,ZIP0.180,Cowlishaw, Mike[12,190

183
Clenshaw—Curtis quadratufe, 183
Clinger, William Douglad 123
CLN,[182[185
Cohen, Henri 44, 189
Collins, George Edwir, 121
complementary error functiosge
erfe(x)
complex

AGM, 163

Crandall, Richard Eugenle, 44,122
Crary, Fred D[183

CRT, seeChinese remainder theorem
cryptographic algorithni, 68, 78
Curtis, Alan R.[I8B

Cuyt, Annie[18D

D-finite, seeholonomic
DBNS,[73
DDMF,

Index 211

de Bruijn, Nicolaas Govert (Dick), DLMF, 180

180

decimal arithmetid,_ 81
decimal representatiol], 2

conversion to binary, 37
decimal64[120
degxv
determinant, notation fdr, Xvi
Detrey, &emie[X

DFT, seeDiscrete Fourier transform
differentiably finite,seeholonomic

Diffie, Bailey Whitfield,[68

Diffie—Hellman key exchangE, b8

Dimitrov, Vassil S.[[78

Discrete Fourier transform, H0,164

notation forxy
div notation[xiv
divide and conquer
for conversion[_38
for GCD,[33
for multiplication,[3
division,[I4£25[4D
by a single word, 23,42
classicalversusHensel[24
divide and conquel, 18
Euclidean[4b
exact[TH 2142
full, L4
Goldschmidt’s iteratiorf, 123
modular[6b
notation for[iy
paper and pencil_ 25

SRT algorithm[12d, 128179

time for, D(n),[xivl 102

unbalanced 19, 42
divisor

implicitly invariant,[60[78

notation for[iy

preconditioning[_111, 81
Dixon, Brandon[_44

double roundind, 90
double-base number systdm] 78
doubling formula T33=136.1V1, 172
for exp,[133
for sin,[133
for sinh, [138
versus tripling 136, 179
Dupont, Regis[181

e, seeEuler’s constant
ECM, seeelliptic curve method
Ehrhardt, Wolfgand, Xi
Ein(x),[I73
elementary functio, 126=144
El Gamal, Tahei, 88
El Gamal cryptosysterh, 68
elliptic curve cryptography, 65
elliptic curve method,_47
elliptic integral [158
first kind,[158
modulus[I50
nome[161
second kind,_158
email addresses] x
Enge, Andrea$, 45, TN0, 187
entire function[140
Ercegovac, Mibs Dragutin[1213
erf(z),[138 148173
erfe(z), 139148150
error correctior_75
error function seeerf(z)
ESF[190
Estrin, Gerald_ 180
Euclid,[29
Euclidean algorithmseeGCD
Euler's constant, [184
Euler’s constant,[184
Brent—McMillan algorithm, (146,
184

212 Index

Euler—Maclaurin approx,_1#6 Figure[2Z.1[6B
Euler’s totient functior_xiv Figure[3.1[9b
Euler—-Maclaurin formuld,_146, 180 Figure[3.2[9
for computation ofy, [148 Figure[3:3[100
exp(z), seeexponential Figure[3.3 101
exponent 79, 8183 Figure[3.5[110
exponential finite field, seefield
addition formulal_I313 floating-point
binary splitting for[18P addition[91[0QM, 121
expml,[I35[17P binary64[81
notations forrxv choice of radix[_1211
exponential integral_144.1b0. 173, comparisor 91
173 conversion 114, 123
exponentiation decimal 1Tk
binary[70 division,[I01
modular[68E713 double precisiorf, 81
extended complex numbets 151 encoding[8B
expansionsg, 86, 11
fast Fourier transform (FFTL] 850, guard digits[135
[65,[86[12P input,[TIT
Bluestein’s algorithn{,_18 level-index representatioin, 120
complex[99 loss of precisior 134
in place algorithn, 53 multiplication [9%
over finite ring[99 output[ITh
padding[5B. 98 reciprocal I0N[102,122
Rader’s algorithn{ 48 reciprocal square rodt, 1112
rounding errors i, 99 redundant representatiofis, 120
use for multiplication 54,98 representatiof, 79
Féjer, Leopold 183 sign-magnitudd, 84
Fermat, Pierre de special value$, 82
little theorem[6B[_156 square roof 111
FFT, seefast Fourier transform subtraction 91, 93
field, finite [Z7[78 via integer arithmeti¢, 86
representation, 49 floor function|z |, X%
Figures fmaa instruction[40
Figure[T1[1P folding,[63
Figure[T.2[1B Fortran[18
FigureT.B[2D forward summatiori, 135, 188
Figure[T.3[21 Fourier transformseeDFT

Figure[T.5[24 fraction, seesignificand

Index

free format[I2B

Friedland, Paul[_182

function, D-finite,seeholonomic
function, elementaryseeelementary
function, holonomicseeholonomic
function, specialseespecial
functional inversd,_125

Furer, Martin[78

Gabcke sequende, 183

Gabcke, Wolfgand, 183
Galbraith, Steven Douglds] ki,43
~, seeEuler’s constant

213

notation for[xiV

plain,[29

Sorenson’s algorithni, 29

subquadrati¢,_38=3[. 43

subtraction-only algorithmE, 29
Gerhard, Urgen[7¥
Girgensohn, Rolan@ 183
GMP|[x],[185[18B, 189
gnuplot[Xi
Goldberg, David Mard, 121
Goldschmidt’s iteratior, 123
Golliver, Roger Allen[122
Goodwin, Charles E. T._I80

Gamma functior(x),[I34[I3Y[138, Gopal, Vinodh[77
[IZ42E150,I7B[1741y T._183,Gosper, Ralph William, JI, 181

on imaginary axid, 114
Gathenseevon zur Gathen
Gaubatz, Gunndr, Y7
Gaudry, Pierrick_186
Gaunt, John Arthuf_183

Gourdon, Xavier Richar@_18B, 184
GP[189

GPL,[18%

Graham, Ronald Lewif, 181
Granlund, Torkjrn,[xi,[42 [78[186

greatest common divisaseeGCD

Gauss, Johann Carl Friedri€h] 6. 15&rotefeld, Andreas Friedrich Wil-

Gauss—Kuz'min theorerh, 45

helm [122[18P

Gauss—Legendre algorithi. 159, 1184yroup operation

Gaussian quadratufe, 183
Gautschi, Waltef_180
Gay, David M.[1ZB
GCD,[29
algorithms for[2P
Bézout coefficients, 32
binary[30[4D
cofactors[-3p
continued fraction fronl, 30
divide and conquel,_33
double digit[30[3B3
Euclidean[2H, 4%, 49
extended, 29,32, 3B, b5
half binary[33
Lehmer’s algorithm{_29
multipliers [32

cost of [77
notation for[7B
guard digits[96,118,185
for AGM,
for Bernoulli numberd,_15%,. 170
for catastrophic cancellation, 138
for exp,[171
for subtraction[94
for summation[_138
negative[162

Haenel, Christopli,_184
Haible, Bruno[I8, 185
HAKMEM, 37
HalfBezout[30
HalfBinaryGed[3# 6b

214 Index

HalfGed,[43 infinity, co, 00,82

Hanek, Robert N[_T0[,1P2 INRIA, kil

Hankerson, Darrel Richard,]78 integer

Hanrot, Guillaume[Xi[/40["41"#5, notation forrxy
122184 integer division

harmonic numbel Xii[_173 notation for[X

Hars, Laszld 77 integer sequencds, 190

Harvey, David [34144, 45,122 interval arithmetid 184190
M2317y[(174. 181,182 inversion

Hasan, Mohammed Anwar{il, #5 batch[78

Hasenplaugh, Williani, 17 modular[32[6H=88_76

Hastad, Johan Torké[#1 lordache, Cristina S, 1P1

Hellman, Martin Edward. 88 ISC,[T90

Hennessy, John LeRdy, 1121 Ispiryan, Karen R[Z40

Hensel

division,[24E2b[25, 49, 58-H1.166 .
’ Jacobi symbol 4346
lifing, 211 22 [32[45 49, 85 notatign for%
Hensel, Kurt Wilhelm Sebastigdn,149 subquadratic algorithri B U6

Heron of Alexandrid,_129)
)) Jacobi, Carl Gustav Jacdb, 43
Higham, Nicholas Johf, TP, 179 Jebelean, TuddE #5146

Hille, Einar Carl[I7D
H:)ever: seevan der Hoeven Johnson, Jeremy Russl 121
’ Jones, William B[180

holonomic function[1391671178

53 "Jullien, Graham A[18
Hopcroft, John Edward, 46,178
Horner's rule[T3M_ 147 143 Kahan, William Morton[1283
forward [T71 Kaihara, Marcelo Emilid_47
Horner, William Georgd, 137 Kanada, Yasumasa, 162,181
Householder, Alston Scolf_1I79 Kaneko, Masanobi, 181
Hull, Thomas Edward 121 Karatsuba'’s algorithni] 836, 10,141,
Hurwitz zeta-function_183 [44,[62[16B
Hurwitz, Adolf,[183 in-place versior, 40
hypergeometric function_1BJ._159, threshold for’4D
167 Karatsuba, Anatolii Alekseevich, 11,
[44,[62]96
idempotent conversioh, 1IR3 Karp, Alan Hersh 24, 4%, 1PP._ 1179
IEEE 754 standar@_70, 11 Karp—Markstein trick, 2245122,
extension of 187 AS)
IEEE 854 standard, 121 Kayal, Neeraj_45b

iff, Kiv] Khachatrian, Gurgen H._#0, 45

Index

Khinchin,
43,180
Kidder, Jeffrey Nelsori, 118

Knuth, Donald Ervin[i 45,46, 121,

122181
Koornwinder, Tom Hendrik_ 183
Krandick, Wernef_ 49, 121
Kreckel, Richard Bernd_185
Kronecker, Leopold, 44
Kronecker-Sctinhage trick,[1339,
42444977
Kulisch, Ulrich Walter HeinZ,_123
Kung, Hsiang Tsund, 46, 179
Kuregian, Melsik K.[4D
Kuz’min, Rodion OsievicH. 45

Lagrange interpolatioft] 6,74
Lagrange, Joseph Louls, 6
Landen transformations, 163, 181
Landen, Johi,_ 163

Lang, Tomad, 122

Laurie, Dirk,[I83[18k

lazy algorithm[2[44

leading zero detectioh, P4

Lecerf, Gegoire[12P

Lefevre, Vincent 45, 120, 121
Legendre, Adrien-Marié¢,_15B, 184
Lehmer, Derrick Henry,_30, 45,183
Lehmer—Gabcke sequente, 1183
Lenstra, Arjen Klaa$, 44

Lenstra, Hendrik Willem, Ji 45
level-index arithmetid,_120

lg, seelogarithm

LGPL,[186[18¥

Lickteig, Thomas Michael 123
lists versus arrayk, 84

little o notation[Xy

In, seelogarithm

Loan,seeVan Loan

log, seelogarithm

Aleksandr Yakovlevich,

215

loglp, seelogarithm
Logan, Benjamin Franklin “Tex”, Jr.,
181

logarithm
addition formula[_133
computation via AGM[_T59
lg(z), In(z), log(z), Xv
loglp,[140[172
notations for=xv
Sasaki—Kanada algorithin, 162

logical operationg, xiv

LSB,[22[24[25 29. 29

Luschny, Petef, 43

Lyness, James N., 1B3

machine precisioh, Xiv

Maeder, Roman Erich, #0

Magaud, Nicolag, 45

Magma[18B

mailing lists[189

mantissaseesignificand

Maple [183[188

Markstein, Petell_24,_4%,_1PP, 123,
179

Martin, David W.[180

MasPar 44

Massey, James Lde 140

Mathematica_188

Mathematics Genealogy Projelcl, xi

matrix multiplication[41L[1213

matrix notationxv

Matula, David William[121L

Maze, Gerard[4b

MCA, [77

McLaughlin’s algorithm[57,_ 38, 63—
[65,[77

polynomial version_47

McLaughlin, Philip Burtis, Jr[[40,63,
(72

McMillan, Edwin Mattison[184

216

Menezes, Alfred Johf, V8
Ménissier-Morain, Varie [1T20
Mezzarobba, Mar¢, K, 1T8
Microsoft,[186

middle product 24,4199
Mihailescu, Preda M _17
Mikami, Yoshio[4%

Miller’s algorithm,[154[17H, 180

Index

Montgomery—Svoboda algorithin,149,
BIE3[76[77

Mori, Masatake[183

MP,[I79£181 187

MPC,[I8T[18B

MPFI,[188

MPFQ[186

MPFR,[I87[188

Miller, Jeffrey Charles Percy_Th4, MPIR,[186

Miller, William C.,[78

mod notation[XV

modular
addition[50
division,[65
exponentiatior, 88=TB. 78

base2*,[70

inversion[3P 6H-08. 76
multiplication [E8E£6b
splitting,[142
subtraction[50

modular arithmetic
notation for[iy
special moduli 64,748

modular representatioin, 173
comparison problerfi, 75
conversion to/fronf_43
redundan{_745
sign detection problerf, 75

Moenck, Robert Thomals, U5.178

Moler, Cleve Barry|_183
Moller, Niels [42[4B 46,18
Montgomery’s algorithn{, 38
Montgomery’s form[-4H, 60

Montgomery multiplication,_60=63

subquadrati¢,_82
Montgomery reductio, 26, %9

MSB, (21222425, 29. 49
Mulders, Thom[96, 119, 121
Muller, Jean-Michel, i, (121=123,
179
multiplication
by a constanf_13
carry bit,[40
complex[16B
FFT range[B
Furer’s algorithm[_7B
Karatsuba’s algorithni, 163
modular[58E65
of integers[B=45
of large integerg, 38
Schbnhage—Strassdn.]49
schoolbook b
short produc{ 35
time for, M (n),[xivl
unbalanced]8=10 %1
complexity of [T1
via complex FFT_98
multiplication chain[_6P
weighted[7l
Munro, (James) laif,_T8

NaN,[82
quiet,[82
signaling[8P

nbits,xy

Montgomery, Peter Lawrend€ 142] 48 nearest integer functiop |, Xv

7278

Neumann, Carl Gottfrie@_ 153

Index

217

Newton’s method,_ 21,25, P6. 19,166 p-adic [49

[102[114[126=132.1¥9

for functional inversd, 130, 189

for inverse rootd, 127

for power series, 129

for reciprocal[12B

for reciprocal square rodf,_IP9

higher-order variantg, 181

Karp—Marstein trickl_T79

p-adic (Hensel lifting)[2R
Newton, Isaad, 21,40, 102,125
Nicely, Thomas R[128
NIST,[78
NIST Digital Library,[190
normalized divisof_14
Not a Number (NaN}, 82
Nowka, Kevin Johr[121
NTL,
numerical differentiatiof,_183
numerical instability

in summation[_138

recurrence relations_1b5
numerical quadratursgequadrature
Nussbaumer, Henri Jedn] 78

odd zeta-functio,_ 157

odd—even schemig @145, 182, 1171
Odlyzko, Andrew Michae[_183
Odlyzko—Scldnhage algorithni, 183
OEIS[190

off-line algorithm[2[44

Olivier, Michel,[189

Olver, Frank William Johr{_120. 180
Omega notatiofi, xv]

on-line algorithm[-44
Oorschotseevan Oorschot

ord,xXv

Osborn, Judy-anne Heathil, xi

Paar, Christof_41

Pan, Victor YakovlevicH, 122
Papanikolaou, Thomds, 182,184
PARI/GP[189
Patashnik, Oref, 181
Paterson, Michael Stewalf, 180
Patterson, David Andref, 1P1
Payne and Hanek
argument reductiof, I, 1122
Payne, Mary H[_TQ{, 122
Pentium bud,_ 128,179
Percival, Colin Andrew,_44. 118, 1p2
Pétermann, Yves-Francois Sap-
phorain[I8B
Petersen, Vigdis Brevik,_180
phi functiong, xivi
w,[184
Brent—Salamin algorithrh, 159, 1181
Chudnovsky seriek, 1B4
Gauss-Legendre algorithin, 159
record computatio, 184
Pila, Jonathan 9., %5
Plouffe, Simon[_190
Pollard, John Michae[TZ. V8
polylogarithm[18B
polynomial evaluatiori, 141
Pomerance, Call_#4
power
computation of_6o
detection of 2H. 45
power series
argument reductioif, T#0
assumptions re coefficienks, 139
backward summation_IB%, 137,
direct evaluatior, 120
forward summatiod, 135, 187, 1138
radius of convergencg, 1139
precision[XV
local/global[84

218

machine[137
operand/operatioh, 84, 121
reduced 162
working,[90[13V
Priest, Douglas M[86, 121
product tred 67
pseudo-Mersenne prinfe,]65] 78
PV [, seeCauchy principal value
Python[18D

quadrature
Clenshaw—Curti$, 183
contour integratiorl,_169
Gaussiar[, 183
numerical[18B
Romberg[183
tanh-sinh, [183
Quercia, Michel 4, 41122
Quisquater, Jean-Jacques, 77
quotient selectiorh, 16,18, 61

Rader, Charles M[,_T8
radix,[xiv,[79581

choice of[80

mixed [83

radix ten[114
rational reconstructiof,_ 87
reciprocal square rodt, 112, 129

Index

Remy, Jean-Lud, 183
residue class representatibn] 47
residue number system.148] 73] 77
Reyna, Juan Arias de, 1183
Richardson extrapolation, 1183
Richardson, Lewis Fr{, 183
Riemann Hypothesis
computational verificatiof, 183
Riemann zeta-functioh, THZ, 184
at equally spaced poinfs,_183
at even integer§, 157
Bernoulli numberd, 157
Borwein’s algorithm[ZI83
error analysid, 183
Euler—Maclaurin expansior,_147,
183
odd zeta-functiori, 157
Odlyzko—-Sclknhage
183
Riemann-Siegel formulb,1B3
Riemann, Georg Friedrich Bernhard,
141
Rivest, Ronald Linr[_88
Rix, Anne[X]
RNS,seeresidue number system
Robertson, James Evahs, 179
Roche, Daniel Steveh, 40
Roegel, Denig, Xi

algorithm,

rectangular series splitting,_14I=144Romberg quadraturg, 1183

recurrence relations,_1b2
REDC[60[7V
redundant representation
for error detection/correctiof, 75
for exponentiatior,_43
for modular addition_48
Reinsch, Christiah,_180
relaxed algorithn{ 12,44
relaxed multiplication,_716
remainder tre¢, 48,67

Romberg, Wernef,_183
root
kth,[27
Goldschmidt's iteratiorf, 123
inverse[12I7
principal [50
square[25-26.T111
complex[128,182
paper and pencil_ 25
wrap-around trick_114
Rosser, John Barkley, 183

Index

rounding
away from zerd,_ 87
boundary[86
correct[85137
double[90
mode[8Y[121
notation for[xiy
probabilistic[8¥
round bit[88[9P
sticky bit,[88 Q21211
stochastid_87
strategies fof,_ 90
to nearesf, 82._87-D0
balanced ternarf, 119
to odd[118
towards zerd, 87,118
Von Neumanr_118
rounding mode, [85+31
Roy, Ranjan_179. 180
RSA cryptosystent, 68
runs of zeros/oneg, 1P1
Ryde, Kevin[4D

Sagel 189

Salamin, Eugené, 181,184
Salvy, Bruno[178

Sasaki, Tateaki, 162,181
Saxena, Nitin_45

Schmid, Wolfgang Alexanddr Ixi
Schmookler, Martin S[. 121

219

segmentatiorseeKronecker—
Schbnhage trick
Sergeeyv, Igor S[, 182
Shallit, Jeffrey Outlawi,_46
Shamir, Adi[68
Shand, Mark Alexanddr, #5
Shokrollahi, Mohammad Amin_41,
123
short division[121L
short produc{_672, 95-9B, 121
Shoup, Victor Johi, 48,189
Sieveking, Maltel_ 179
sign Xy
sign-magnitudd;]Z. 47, 84,191
significand[7P[_83
sin(z),[133
sinh(z),[138
sliding window algorithm[_712
Sloane, Neil James Alexander, 190
Smith’s methodseerectangular
series splitting
Smith, David Michael[_180
software toold 185
Sorenson, Jonathan Pdul] B1] 486, 77,
73
special function_12%=18#. 190
special moduli_6H. 78
splitting
classicall[_14R
modular[14p

Sctbnhage, Arnold[Xi["43[~44, 46, square rootseeroot

122 [171[18(0. 182, 183

squaring[_TH[41

Schinhage—Strassen algorithrh, 149, complex[168

(65,[65 78104, 122, 185
SchostEric,[122 171
Schroeppel, Richard Crabtrée, 181
Sebah, Pascdl, 1184
secant numberg, _IH7, 177
Sedjelmaci, Sidi MohamefIxi
Sedoglavic, Alexandré, #2

SRT division[12b. 128179

Staudt, Karl Georg Christian von,
158,181

Steel, Allan[Z4

Steele, Guy Lewis, Ji,_1P3

Stegun, Irene Anné_1VQ, 1180, 190

Stehke, Damien[4, 46

220

Stein, Josef_45
Stein, William Arthur[189
Sterbenz’s theorerh, P4, 121
Sterbenz, Pat Holmds.]94, 121
sticky bit,[883[121
Stirling numberd, 1744, 181
Stirling’s approximation
convergent forn{, 174
for InT'(iy),[174
for InT'(z),[149
for InT'(2), 1472
for n! or I'(2),[134,[13Y[134, 137,
177183
with error boundd, 146
Stirling, Jamed, 134
Stockmeyer, Larry Josedh, 180
Stoer, Josef 183
Strassen’s algorithri, B6
Strassen, Volkel 36, 1P3
strings
concatenation, xif. 38
subnormal numberk, B2
smallest[xiV
substitution seeKronecker—
Schbnhage trick
subtraction[4, 91
guard digits[9%
leading zero detectioh. P4
modular[5D
summation
backward[134,138
forward [135[138

Index

Table[Z2[6B
Table 3.1[8P
Table 3.2[9B
Table 3.3[100
Table 4.1[16K
Takagi, Naofumi_7I7
Takahasi, Hidetosl, 183
tan(z), 133155
tangent numberg Xiii, 156, 1116, 181
algorithm for[156
complexity of evaluatior, 117
space required fdr, 1V6
Tellegen'’s principld, 122
Temme, Nico M.[179,183
tensor rank,_ 41,123
ternary systeni, 119
theta functiond, 160
Theta notatior®, X
Théveny, Philippd, 187
Thomé, Emmanuelkil—4d, 41,184,
Tocher, Keith Dougla$, 1T9
Toom, Andrei LeonovicH, 44
Toom—Cook multiplicatior J63 741
time for,[1
totient function[xiy
Traub, Joseph Frederidk, 179
Trefethen, (Lloyd) Nichola§, 188, 184
tripling formula
for sin,[133
for sinh, [136
in FFT rangel 134, 180

Svoboda’s algorithn{,_17,_PB, 12,145,

496116377
Svoboda, Antonirf._4%. 49
Swartzlander, Earl E., Jr_148. 179
Sweeney, Dura Warreh, 1179

Tables
Table[Z1[4D

Ullman, Jeffrey David_4i4, 18
unbalanced multiplicatiofi] B=1I141
unit in the last place (ulp)xiV, 80, 87
unrestricted algorithni,_12LTP5

for exp,[180

Vallée, Brigitte[46

valuation [xiy

Index 221

Weber, KennetH, 46

van der Hoeven, Jori§, WA 176, 122Weimerskirch, Ande,[41

178182188
Van Loan, Charles Franc[s. 178
van Oorschot, Paul Cornelfs.]78
Vandermonde matrik] 7
Vanstone, Scott Alexandér.]78
vectors, notation for3v
Vepstas, Linad, 183
Verdonk, Brigitte[18D

Wezelenburg, Mark ki

White, Jim[I7P

White, Jon L.[12B

Whittaker, Edmund Taylof,_I80

Wilkinson, James Hardy, 11,179,
1180

Winograd, Shmuel 18

Wolfram, Stepherl, 188

Vetter, Herbert Dieter Ekkehaff, 122,\ong, Roderick 180

182
Vidunas, RaimundaB_1B3

wrap-around trick_ 8@, 105

Von Neumann, John &hos Lajos), Yap, Chee-Kend_26

118

Von Staudt—Clausen theorern, 156

181
von zur Gathen, Joachifn, 177
Vuillemin, JearEtienne[411 45

Waadeland, Haakoh, 180
Wagon, Stanley (Starf), 163, 184
Waldvogel, &rg,[T83[18K

Wall, Hubert Stanley, 180

Wang, Paul Shyh-Hornf, #6
Watson, George Nevillg,_1B0
Weber functionsY,, (z),[153
Weber, Heinrich Friedricti, 153

Zanoni, Alberto[44
zealous algorithni, 44
Zeilberger, Doror{,_183
zero,+0,[82[82
((3),[184
Ziegler, Joachin{ 45
Zima, Eugend, 184
Zimmermann, Marid, _Xi
Zimmermann, Paul Vincenf_}#5, 146,
122184187
Ziv's algorithm [86
Zuras, Dan_41, 44

Summary of complexities

Integer arithmetic (sBit or (m, n)-bit input)

Addition, subtraction O(n)
Multiplication M(n)
Unbalanced multiplication (nz n) | M(m,n) < [M (n), M(™£2)
Division O(M(n))
Unbalanced division (with remainder) D(m + n,n) = O(M(m,n))
Square root O(M(n))
kth root (with remainder) O(M(n))
GCD, extended GCD, Jacobi symbpl O(M(n)logn)
Base conversion O(M(n)logn)
| Modular arithmetic (nbit modulus) |
Addition, subtraction O(n)
Multiplication M(n)
Division, inversion, conversion to/from RNSO(M (n) logn)
Exponentiation (kbit exponent) O(kM(n))

| Floating-point arithmetic (+bit input and output)|

Addition, subtraction O(n)
Multiplication M(n)
Division O(M(n))
Square rootkth root O(M(n))
Base conversion O(M(n)logn)
Elementary functions
(in a compact set O(M(n)logn)
excluding zeros and poles)

	Contents
	Preface
	Acknowledgements
	Notation
	Integer arithmetic
	Representation and notations
	Addition and subtraction
	Multiplication
	Naive multiplication
	Karatsuba's algorithm
	Toom--Cook multiplication
	Use of the fast Fourier transform (FFT)
	Unbalanced multiplication
	Squaring
	Multiplication by a constant

	Division
	Naive division
	Divisor preconditioning
	Divide and conquer division
	Newton's method
	Exact division
	Only quotient or remainder wanted
	Division by a single word
	Hensel's division

	Roots
	Square root
	kth root
	Exact root

	Greatest common divisor
	Naive GCD
	Extended GCD
	Half binary GCD, divide and conquer GCD

	Base conversion
	Quadratic algorithms
	Subquadratic algorithms

	Exercises
	Notes and references

	Modular arithmetic and the FFT
	Representation
	Classical representation
	Montgomery's form
	Residue number systems
	MSB vs LSB algorithms
	Link with polynomials

	Modular addition and subtraction
	The Fourier transform
	Theoretical setting
	The fast Fourier transform
	The Schönhage--Strassen algorithm

	Modular multiplication
	Barrett's algorithm
	Montgomery's multiplication
	McLaughlin's algorithm
	Special moduli

	Modular division and inversion
	Several inversions at once

	Modular exponentiation
	Binary exponentiation
	Exponentiation with a larger base
	Sliding window and redundant representation

	Chinese remainder theorem
	Exercises
	Notes and references

	Floating-point arithmetic
	Representation
	Radix choice
	Exponent range
	Special values
	Subnormal numbers
	Encoding
	Precision: local, global, operation, operand
	Link to integers
	Ziv's algorithm and error analysis
	Rounding
	Strategies

	Addition, subtraction, comparison
	Floating-point addition
	Floating-point subtraction

	Multiplication
	Integer multiplication via complex FFT
	The middle product

	Reciprocal and division
	Reciprocal
	Division

	Square root
	Reciprocal square root

	Conversion
	Floating-point output
	Floating-point input

	Exercises
	Notes and references

	Elementary and special function evaluation
	Introduction
	Newton's method
	Newton's method for inverse roots
	Newton's method for reciprocals
	Newton's method for (reciprocal) square roots
	Newton's method for formal power series
	Newton's method for functional inverses
	Higher-order Newton-like methods

	Argument reduction
	Repeated use of a doubling formula
	Loss of precision
	Guard digits
	Doubling versus tripling

	Power series
	Direct power series evaluation
	Power series with argument reduction
	Rectangular series splitting

	Asymptotic expansions
	Continued fractions
	Recurrence relations
	Evaluation of Bessel functions
	Evaluation of Bernoulli and tangent numbers

	Arithmetic-geometric mean
	Elliptic integrals
	First AGM algorithm for the logarithm
	Theta functions
	Second AGM algorithm for the logarithm
	The complex AGM

	Binary splitting
	A binary splitting algorithm for sin, cos
	The bit-burst algorithm

	Contour integration
	Exercises
	Notes and references

	Implementations and pointers
	Software tools
	CLN
	GNU MP (GMP)
	MPFQ
	GNU MPFR
	Other multiple-precision packages
	Computational algebra packages

	Mailing lists
	The GMP lists
	The MPFR list

	On-line documents

	References
	Index

