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E. Gobet - Simulation of (nested/extreme) risks in finance

Agenda of the course

1. Financial context: risk measure calculations and stress tests

2. Overview on standard (and sometimes inefficient) methods for simulating
nested expectations OR extreme risks (not both at the same time)

3. Markov chain techniques on path space (MCMC, IPS) (explicit rare event)

4. Nested rare event statistics

5. Nested extreme risks using SA (implicit rare event)

And if enough time, I will talk also on

6. Uncertainty propagation in VaR, CVaR
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E. Gobet - Simulation of (nested/extreme) risks in finance

General references on stochastic simulation:

X L. Devroye: “Nonuniform random variate generation” (1986)
(http://luc.devroye.org/rnbookindex.html)

X S. Asmussen and P.W. Glynn: "Stochastic simulation" (2007)

X G. Rubino and B. Tuffin: "Rare events simulation" (2009)

X P. Glasserman: “Monte Carlo methods in financial engineering” (2003)

X A. Schwartz and A. Weiss: "Large Deviations for Performance Analysis" (1995)

X J.A. Bucklew: "Large deviation techniques in decision, simulation, and estimation"
(1990)
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.1 Few definitions and notations

1 Financial context: risk measure calculations
and stress tests

1.1 Few definitions and notations

Definition (VaR, CVaR).

X Loss V (scalar random variable), assumed to be integrable

X VaR (Value-at-risk) is the left quantile at level α of V , i.e.

VaRα(V ) = inf{x ∈ R : P(V ≤ x) > α}

I “Loss that, with a probability α, will not be exceeded.”

I Typically α = 99%

I
�

Does not take into account the losses beyond that threshold.

I Ref: [Artzner, Delbaen, Eber, Heath, Math Fin 2002; Follmer et Schied,

Stochastic finance, 2002]

X CVaR (Conditional Value-at-risk) accounts for losses exceeding VaR.
Depends on the full distribution in the right tail.
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.1 Few definitions and notations

Several similar definitions:

I Averaged VaR:

AVaRα(V) =
1

(1− α)

∫ 1

α

VaRβ(V)dβ.

I Convex optimization point-of-view [Rockafellar-Uryasev 00]:

AVaRα(V ) = inf
x

(
x+

1

1− α
E
[
(V − x)+

])
and the inf is attained for x = VaRα(V ).
[à AVaRα is sub-additivity, homogeneous, convex. . . ]

Winterschool - Lunteren (Netherlands) - 2018, January 22-23-24 5/120



E. Gobet - Simulation of (nested/extreme) risks in finance 1.1 Few definitions and notations

Proof. Set Q(β) := VaRβ(V ) and F (x) := P(V ≤ x). Then

E((V − s)+) + (1− α)s =E(Q(U)− s)+ + (1− α)s

=

∫ 1

0

(Q(r)− s)1Q(r)>sdr + (1− α)s

=

∫ 1

0

(Q(r)− s)1r>F (s)dr + (1− α)s

=

∫ 1

α

Q(r)dr +

∫ α

F (s)

Q(r)dr − s
∫ 1

F (s)

dr + s

∫ 1

α

dr

=

∫ 1

α

Q(r)dr +

∫ α

F (s)

(Q(r)− s)dr︸ ︷︷ ︸
I

.

∗ Case α > F (s). Then r > F (s)⇔ Q(r) > s à I > 0.
∗ Case α ≤ F (s). Then r ≤ F (s)⇔ Q(r) ≤ s à I ≥ 0.
∗ Case s = Q(α). Then F (s) = F (Q(α)) ≥ α and Q(r) = s for r ∈ [α, F (s)]

à I = 0.
�
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.1 Few definitions and notations

I Lemma (The inf may be attained for several x). Assume a continuous
c.d.f. for V : the arginf solve

x : P(V ≤ x) = α,

and any such solution leads to the same value for

x+
1

1− α
E
[
(V − x)+

]
.

à Selecting any α-quantile provides the same AVaR (useful remark for later
use of Stochastic Approximation algorithm).
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.1 Few definitions and notations

Proof. a) Already proved. Can be re-obtained by writing first-order
optimality condition.
b) Take x and x′, with x < x′ s.t. P [V ≤ x] = P [V ≤ x′] = α. Then,

x+
1

1− α
E [(V − x)+] = x+

1

1− α
(E [V 1V≥x]− xP [V ≥ x])

=
1

1− α
E [V 1V≥x] .

Since by assumption P [x < V ≤ x′] = 0, we have

x′ +
1

1− α
E [(V − x′)+] =

1

1− α
E [V 1V≥x] .

�
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.1 Few definitions and notations

I Expected Shortfall:

ESα(V) = E [V | V ≥ VaRα(V)] .

I Worst case expectation:

WCEα(V) := sup
A:P(A)≥1−α

E [V | A] .

X In full generality on V , AVaRα(V) ≥WCEα(V) ≥ ESα(V).

X When the c.d.f. of V is continuous at VaRα(V ), then these three quantities
coincide.

X In the following, we simply write CVaRα(V ) and assume implicitly no atoms
in the tails (continuous c.d.f.).

X We take α ∈ (0, 1) to avoid boundary problems.
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.2 Risk calculations in finance

1.2 Risk calculations in finance

Risks/volatilities get higher and higher...

 

1 
 

Fatter Tails 
The abnormal frequency of extreme currency market events since 2008: 

Causes and solutions 
 

by Brent Donnelly 
HSBC Foreign Exchange 

brent.x.donnelly@us.hsbc.com 
October 6, 2017 

 
While it is well known that currency returns are not normally distributed, tail events in FX have 
been abnormally frequent in recent years. Take a look at the first chart which shows the largest 
range of the day for the US dollar vs. G7 currencies from 1990 until the end of September 2017: 
 

 
Chart by AM/FX, data from Bloomberg 

 
Certainly not anti-fragile! A daily range of 6% or more in the dollar was nearly unheard of before 
2008; since then, we have seen eight different 6%+ ranges, including three events that produced 
daily ranges in excess of 10%. The challenge in diagnosing the multitude of tail events is that 
when we look at the triggers and causes of the events individually, it is hard to find common 
ground. The numbers on the chart correspond to the events listed in this table: 
  

USD versus G7 moves larger
than 6%.
Source: HSBC FX, 2017.

1. Asia Crisis, LTCM unwind, October 8,
1998

2. Global Fin. Crisis, October 2008

3. US stock market flash crash, May 6, 2010

4. US downgraded by Standard & Poors,
August 9, 2011

5. SNB puts in the floor, Sep 6, 2011

6. SNB removes the floor, January 15, 2015

7. China reval, August 24, 2015

8. UK votes to leave EU, June 24, 2016

9. Flash crash, October 7, 2016
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.2 Risk calculations in finance

Usually VaR− CVaR depend on time horizon, risk level, and losses under
consideration . . .

1.2.1 Usual VaR− CVaR

The main financial risk measures in practice are VaR and CVaR (as an expected
shortfall) of level α ∈ (0, 1)

Insurance: Solvency capital requirement (SCR) determined as the 99.5%-value
at risk for Solvency II, and the 99%-expected shortfall for the Swiss Solvency
Test, of the one-year loss and profit of the company

Banking: Basel II Pillar II defines economic capital as the 99% value-at-risk of
the one-year depletion of core equity tier I capital (CET1), the regulatory
metric that represents the wealth of the shareholders within the bank.
Moreover, the FRTB (2019?) requires a shift from 99% value-at-risk to
97.5% expected shortfall as the reference risk measure in capital calculations.

Market risk: risk computations over 10 trading days.
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1.2.2 Initial-Margin Variation

Ref: Basel Committee on Banking Supervision. Margin requirements for
non-centrally-cleared derivatives, 2015. http://www.bis.org/bcbs/publ/d317.pdf

Usual linear risk-neutral pricing of financial contracts: change of paradigm in
last few years, influenced by the regulators.

X Nowadays, banks and financial institutions have to post collateral to a central
counterparty (CCP = clearing house) in order to secure their positions.

X Variation margin= collateral to cover a new contract at inception and daily
changes

X Initial margin [Basel 2015, p.11 3(d)]: IM protects the transacting parties

from the potential future exposure that could arise from future changes

in the mark-to-market value of the contract during the time it takes to

close out and replace the position in the event that one or more

counterparties default. The amount of initial margin reflects the size

of the potential future exposure. It depends on a variety of factors,

[...] and can change over time [...].
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.2 Risk calculations in finance

Example (Toy model).

X IM deposits = proportional to CVaR of the contract price over a future
period of length ∆ = 1 week or 10 days.

X constant interest rate (money account)

X one tradable asset, denoted S:

dSt = µStdt+ σStdWt,

X πt amount invested in S

X Objective: hedging of an option with maturity T > 0 and payoff Φ (ST ).

X Usual self-financing replicating portfolio: its value evolves asdVt = r (Vt − πt) dt+ πt
dSt
St

, t ∈ [0, T ],

VT = Φ(ST ).

à Linear BSDE (Backward Stochastic Differential Equation) [EPQ97] and
linear pricing rule.
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.2 Risk calculations in finance

X Accounting for IM requirement:

dVt =
(
r (Vt − πt)−R× CVaRα

Ft (Vt − Vt+∆)
)

dt+ πt
dSt
St

,

where R is the net funding rate for the deposit (funding rate minus the
interest rate paid by the CCP for the deposit, e.g. R ≈ 3%).

à McKean Anticipative BSDE [CESS17, ADG+18]

Vt = Φ(ST ) +

∫ T

t

(
−r (Vs − πs)− µπs +RCVaRα

Fs
(
Vs − V(s+∆)∧T

))
ds

−
∫ T

t

πsσdWs, t ∈ [0, T ].

à Non linear nested expectations.
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.2 Risk calculations in finance

1.2.3 Credit risk

Aim: measuring the statistics of losses when some counter-parties of the bank
make defaults.

Example (Credit Value Adjustment (CVA)). Simplified computations
with independence between default and losses:

CVA0 = LGD
∑
i

PD(ti−1, ti)E [(E [Φti,T | Fti ])+]

where Φti,T is the value cashflow occurring between ti and T .

à Simple nested computations.
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.2 Risk calculations in finance

1.2.4 XVA

Ref: [Armenti, Crépey 2017; Abbas-Turki, Crépey, Diallo 2017]

Cost of funding initial margin:

MVA0 = λE

[∫ T

0

IMα
t dt

]
.

Cost of capital (for remunerating shareholders for their capital at risk):

KVA0 = E

[∫ T

0

e−htCVaRα
t dt

]
.

à Double nested computations.
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1.3 Stress-test

Ref: European Banking Authority (EBA), Draft Guidelines on the revised
common procedures and methodologies for the supervisory review and evaluation
process (SREP) and supervisory stress testing, EBA/CP/2017/18, October 2017.

New recommendations about how to handle stress tests for the banks.
Objective: to define good practices for all banks.
Three major axes:

1. Possibility of identifying unlikely scenarii for the whole system, but quite
adverse for the bank, by applying chocks on the bank portfolio. Reverse
Stress Test.

2. Analyzing model risk when using a given model for stress testing.

3. Accounting for structures of dependency between risks: economic, crash of
industrial sectors, political risks, natural and ecological risks, operational
risks, reputation risks, cyber-risks. . .

New challenges for modelling and simulation of dependent and extreme risks . . .
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.4 Two problems with naive simulations

à In all these examples, the VaR, CVaR are usually not explicit,
conditional expectations for valuation are not available in closed form

à Monte-Carlo methods are a must-use

1.4 Two problems with naive simulations

1.4.1 Extreme/rare events
Definition (informal). An event A is extreme when P(A) ≤ 10−2, and rare
when P(A) ≤ 10−4.

Property (Probability vs Frequency). When i.i.d. events, the first
occurrence time of A is d

= G(P(A)) à E(τA) = 1
P(A) time periods.

X In trading: VaR at 99% over 10 days: E(τA) = 100 ∗ 10j ≈ 3 years.

X In aeronautics: probability=10−9 over 1 hour: E(τA) = 109h ≈ 114 000 years!

Examples (other). Traffic congestion in telecommunications (Internet,
Twitter,. . . ) , natural disaster (floods, earthquakes), accident involving
planes/nuclear plants, financial crisis. . .
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.4 Two problems with naive simulations

X Naive Monte-Carlo sampling scheme give poor statistics.

Example (Confidence intervals from Monte Carlo methods).
Computation of p = P(A) = E [1A].

Sample (Xi = 1Ai : i ≥ 1) having Bernoulli distribution with parameter p.

I Variance σ2 = p(1− p) ≈ p.
I Accuracy in absolute value (95% CI): ≈ 1.96

√
p
n

I Accuracy in relative value (95% CI): ≈ 1.96
√

1
pn .

∗ If relative accuracy of 10% is expected, then the required number of

simulations is n10% ≈ 400/p:
p 10−4 10−7

n10% 4 000 000 4 000 000 000

∗ If relative accuracy of 1% is expected, then

n1% ≈ 40000/p:
p 10−4 10−7

n1% 4 000 000 000 4 000 000 000 000
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.4 Two problems with naive simulations

X The rarer, the more inefficient.

X Tail statistics depend much on model mis-specification:

Example. Let Ax = {X > x} and X d
= E(λ) under Pλ. Then

Pλ(Ax) = exp(−λx) and lim
x→+∞

Pλ+ε(Ax)

Pλ(Ax)
=

0 if ε > 0

+∞ if ε < 0
.

X Need for sampling adverse events (stress tests) for testing the resilience of the
system. . .

Some solutions will be provided in this course.
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.4 Two problems with naive simulations

1.4.2 Nested expectations

Crude MC for E [f(O,E [R | O])]: Simulations in Simulations algorithm

X Outer (primary) Monte-Carlo

X Inner (secondary) Monte-Carlo

8 
 

 
Figure 1 : Obtention de la distribution de fonds propres économiques par la méthode SdS 

Chacun des jeux de simulations secondaires est conditionné par la simulation primaire 
correspondante, i.e. par l’information « monde-réel » de première période.  
 
Introduisons les notations suivantes afin de formaliser les calculs effectués dans une approche SdS : 

-  le résultat de la date  pour la simulation primaire  et secondaire 
, 

-  le résultat de la première période pour la simulation primaire , 

-  le cash-flow de passif de la date  pour la simulation primaire  et secondaire , 

-  le facteur d’actualisation de la date  pour la simulation primaire  et secondaire , 

-  le facteur d’actualisation de la première période pour la simulation primaire , 

-  l’information de première année contenue dans la simulation primaire p, 

-  les fonds propres économiques en fin de première période pour la simulation primaire 
, 

-  la valeur économique des passifs en fin de première période pour la simulation 
primaire . 

 
Les postes du bilan économique en , pour la simulation primaire , sont alors calculés de la 
manière suivante : 

 

Et, 

 

Simulation i

Simulation P

Simulation 1

FP11

VEP11

t = 0 t =1

Simulations  secondaires « market consistent »Simulations primaires « monde-réel »

Bilan en 1 – simulation i

A1i FP1i

VEP1i

Bilan en 1 – simulation 1

A11

Bilan en 1 – simulation P

A1P FP1P

VEP1P

…

…

Bilan économique en t=0

A0 FP0

VEP0

Picture credit:

from [DL09]
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E. Gobet - Simulation of (nested/extreme) risks in finance 1.4 Two problems with naive simulations

Crude Monte-Carlo algorithm:

X Sample M i.i.d. of O

X For each O(m), sample N i.i.d. samples of R | O(m):

E
[
R |O(m)

]
≈ 1

N

N∑
k=1

R(m,k).

X Simple scheme, but presumably not very efficient for both the outer and the
inner stages

A priori, the cost is M ×N .

X What is the accuracy? O(M−1/2 +N−1/2)?

X Can we do better?

X What about if the cost of sampling O is big (rare event)?

Some solutions later in this course.
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E. Gobet - Simulation of (nested/extreme) risks in finance 2.1 Acceptance/rejection method

2 Overview on standard (and sometimes inefficient)
methods for simulating nested expectations OR extreme
risks (not both at the same time)

2.1 Acceptance/rejection method

How to sample a random variable Z conditionally to an event A?

Theorem. For a r.v. Z and an event A with positive probability, let
(Zn, An)n≥1 be a sequence of i.i.d. elements distributed as (Z,A). Define the
first time when A is realized:

ν = inf{n ≥ 1 : An is realized}.

Then, the r.v. Zν has the conditional law of Z given A.

X Random number of loops = r.v. with geometric distribution G(1/P(A))

à E [ν] = 1
P(A)

X
�

When A is rare, inefficient procedure
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E. Gobet - Simulation of (nested/extreme) risks in finance 2.1 Acceptance/rejection method

Proof. For any Borel set B, we have

P(Zν ∈ B) =
∑
n≥1

P(Zn ∈ B;Ac1; · · · ;Acn−1;An)

=
∑
n≥1

(1− P(A))n−1 P(Zn ∈ B;An)

=
P(Z ∈ B;A)

P(A)
= P(Z ∈ B|A).

�

Example (How to sample X conditionally to {X ∈ B} = A?).

Repeat
sample X1, X2, ... independently

Until ν = n such that Xn ∈ B

à Xν has the right distribution
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E. Gobet - Simulation of (nested/extreme) risks in finance 2.2 Importance sampling

2.2 Importance sampling

1. Modify the sampling distribution

2. Quite common in probability (Girsanov transform) and in statistics
(likelihood, parametric model (Pθ, θ ∈ Θ), . . . )

3. Can be efficient for rare events (in some cases. . . )

2.2.1 Computing expectation

Definition. A probability measure Q on (Ω,F) defines a change of probability
measure (w.r.t. P), if there exists a positive r.v. L (the likelihood of Q w.r.t.
P) satisfying EP(L) = 1, such that

Q(A) = E[L1A] if A ∈ F .

In general we write Q = L · P, or dQ = L · dP, or
dQ
dP

= L.

X Probability measures P and Q equivalent if P(L > 0) = 1.

X If P ∼ Q, the null-sets under P and Q are the same.

X If P ∼ Q, L−1 = likelihood of P w.r.t. Q.
Winterschool - Lunteren (Netherlands) - 2018, January 22-23-24 25/120
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2.2.2 Computing expectation

For bounded (and then integrable) f(Y ), we have

EQ(f(Y)) = EP(Lf(Y)), EP(f(Y)) = EQ(L−1f(Y)).

Example (with density). Let Y have a probability density p(.) on Rd – w.r.t.
Lebesgue measure – and let q(.) be another p.d. with

{x ∈ Rd : q(x) = 0} = {x ∈ Rd : p(x) = 0}.

Then L = q
p (Y) defines a new probability measure Q and the Q-distribution of

Y has density q.

�

Changes of probability measure can modify

X the expectation,

X the variance,

X the independence between components. . .

à Very flexible tool, but . . .
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E. Gobet - Simulation of (nested/extreme) risks in finance 2.2 Importance sampling

2.2.3 Applications to Monte Carlo methods

Proposition. Assume EP|X| < +∞. Let Q ∼ P with likelihood L. Assume that
we can sample (L,X) under Q and that (Lm, Xm)m≥1 are i.i.d. distributed as
(L,X) under Q, then

IImp. Samp
Q,M =

1

M

M∑
m=1

L−1
m Xm

a.s.−→
M→+∞

EP(X) = E [X] .

Convergence rates given by CLT.
�

The variance can be larger, or smaller.

Property (Optimal Q). In the case X = 1A, L = 1A
P(A) gives a method with

zero variance.

Untractable in practice! But Q∗(A) = 1, showing that good IS should sample
more often the extreme event.
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E. Gobet - Simulation of (nested/extreme) risks in finance 2.2 Importance sampling

2.2.4 Probability changes with affine transform

Proposition. Let Y be a random variable on Rd, with (explicit) probability
density p(.), strictly positive on Rd.

X (Change of mean) For any θµ ∈ Rd,

L =
p(Y − θµ)

p(Y)

defines a new probability Q under which Y has the same distribution as
Y + θµ under P.

X (Changes of mean and covariance) More generally, for any θµ ∈ Rd and
any square invertible matrix θσ,

L =

1
|det.(θσ)|p(θ−1

σ (Y − θµ))

p(Y)

defines a new probability Q under which Y has the same distribution as
θσY + θµ under P.
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E. Gobet - Simulation of (nested/extreme) risks in finance 2.2 Importance sampling

Corollary (Gaussian distribution in dimension 1). Let Y d
=P N (0, 1).

X (Change of mean) For any θµ ∈ R, the likelihood

L = exp(θµY −
1

2
θ2
µ)

leads to Y d
=Q N (θµ, 1).

X (Changes of mean and variance) For any θµ ∈ R and θσ > 0, the
likelihood

L =
1

θσ
exp

(1

2
(1− 1

θ2
σ

)Y 2 +
Y θµ
θ2
σ

−
θ2
µ

2θ2
σ

)
leads to Y d

=Q N (θµ, θ
2
σ).

B Similar formulas in several dimensions

B In [GHS00], Delta-Gamma expansions for VaR of V = u(t, St)− u(0, S0):

V ≈ ∂tu(0,S0)∆t +∂xu(0,S0) ·S0σ0∆Wt + 1
2S0σ0∆Wt ·∂2

xxu(0,S0)S0σ∆Wt

in small time (t = 10 days). Then, use of Gaussian IS (with optimal new drift
and new covariance) as a proxy for good IS on V .
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Example. E(Y ) for Y = 1G≥x and G d
=P N (0, 1). Graphs for x = 6, with and

without change of mean.

Exact Empirical Half width Empirical Half width Ratio

x value of mean of Conf. Int. mean of Conf. Int. of

E(Y ) = N (−x) (simple MC) (at 95%) (Imp. Samp.) (at 95%) variances

1 1,59E-001 1,48E-001 6,96E-003 1,58E-001 3,74E-003 3,46

2 2,28E-002 2,12E-002 2,82E-003 2,24E-002 6,77E-004 17,4

3 1,35E-003 1,70E-003 8,07E-004 1,34E-003 4,84E-005 279

4 3,17E-005 0,00E+000 0,00E+000 3,24E-005 1,34E-006 ∞
5 2,87E-007 0,00E+000 0,00E+000 2,90E-007 1,35E-008 ∞
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Numerical results for E(Y ) with Y = 1|G|≥x, with or without change of
variance, with or without change or variance.

Change of mean: does not con-
verge to the right value.
Change of variance: much
better.
How to know in advance which
to use?

�

Be careful with blind choice of measure changes, it can produce worst results.

In finance, for realistic problems (see later), we don’t know if we have to change
the mean, the variance, or...

Conclusion. These IS methods can be very efficient when one has a certain
knowledge on the extreme event. Without this knowledge? look for data-driven
method or simulation-based method?
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2.3 Nested expectations

Aim: compute I = E[f(O,E(R|O))].
�

The inner and outer expectations could be under different measures

X outer ⇐ historical

X inner ⇐ risk-neutral

Four approaches:

X Simulations in the simulations (a.k.a. nested simulations)

X Direct (and unbiased) simulation in the case of f polynomials

X Multi-level approximations

X Empirical (linear or non-linear) regression for E(R|O)

Sometimes for certain f , derivation of non-nested lower and upper bounds is
possible.
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2.3.1 Preliminaries about the propagation of bias for computing
f(E(X))

Set XM = 1
M

∑M
m=1Xm. Bias: in general E(f(XM )) 6= f(E [X])

Proposition (bias in the substitution method).

i) If f is convex (resp. concave), the substitution method gives over-estimation
(under-estimation) of the desired quantity.

ii) If f is C2
b and if X has finite polynomial moments (up to some order), then

E(f(XM))− f(E [X]) =
c1

M
+ o(M−1)

for some constant c1.

à One can expect that in a nested MC scheme, the bias of the inner MC could
be still neglected compared to the variance. Would it imply that less MC effort is
required in the inner stage?
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When f is related to the maximum: split the sample

Proposition (Lower and upper biased estimators). Let
X1,M = 2

M

∑M/2
m=1Xi and X2,M = 2

M

∑M
m=M/2+1Xi. Set

fM = (XM − a)+, f
M

= 1X1,M≥a(X2,M − a).

Then fM and f
M

converge a.s. to (E [X]− a)+ as M → +∞, with

E
(
fM

)
≤ (E [X]− a)+ ≤ E

(
fM

)
.

X Allow to sandwich the unknown quantity by two computable estimators.

X Similar techniques used in pricing Bermuda options [Broadie-Glasserman

JEDC 1997].
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2.3.2 Simulations in the simulations (a.k.a. nested simulations or
Monte-Carlo2) for I = E[f(O,E(R|O))]

2 stages:

X Outer expectation: M i.i.d. simulations (O1, . . . , OM )

X Inner conditional expectation E(R|O): for each Om, N independent
simulations (Rm,1, . . . , Rm,N ) de R | Om:

E(R | Om) ≈ 1

N

N∑
k=1

Rm,k.

X E[f(O,E(R|O))] ≈ IM,N :=
1

M

M∑
m=1

f

(
Om,

1

N

N∑
k=1

Rm,k

)
.
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Theorem. Assume that the conditional distribution of R | O has finite moments
of order 4, uniformly in O:

sup
x

E
(
|R− E(R | O = x)|4

)
< +∞.

i) If f : Rd × R→ R is bounded Lipschitz in the second variable, then(
E
[
|IM,N − I|2

])1/2 ≤ O( 1√
N

+
1√
M

)
.

ii) If moreover, f is C1 in the second variable, with a derivative bounded
Lipschitz, then (

E
[
|IM,N − I|2

])1/2 ≤ O( 1

N
+

1√
M

)
.

Corollary (complexity analysis). Computational cost: C = O(NM). Denote
by TOL the error tolerance.

a) If f is Lipschitz (as in i)): then M = N = TOL−2 and C = O(TOL−4).

b) If f is smoother (as in ii)): then M = N2 = TOL−2 and C = O(TOL−3).
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2.3.3 Direct (unbiased) simulation when f is a polynomial

Assume that f(x,y) =
∑n

k=1 ak(x)yk and consider the problem of finding a
non-nested unbiased Monte-Carlo estimator of E[f(O,E(R|O))].

X Draw a M -sample i.i.d. of O

X To each Om, sample n i.i.d. copies (Rm,1, . . . , Rm,n) of R | Om
Theorem. Assume E [|R|] < +∞ and sup1≤k≤n E [|ak(O)| E [|R| | O]] < +∞.

X The estimator I(M) := 1
M

∑M
m=1

∑n
k=1 ak(Om)

∏k
i=1 Rm,i is an unbiased

estimator, in L1, a.s. convergent to E[f(O,E(R|O))].

X Confidence intervals available under additional integrability conditions.

Corollary (complexity analysis). Computational cost: C = O(M). If TOL is
the error tolerance, then M = TOL−2 and C = O(TOL−2)

à Better convergence order compared to the case of general f .

Useable for a general f (like x 7→ x+)?
�

Not a good idea (in general) to
approximate an arbitrary f by a polynomial and use the polynomial-type
estimator (large variance).
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2.3.4 Lower and upper non-nested estimator of E [(E [R | O])+]

Takes the form of CVA computations.

1. Non-nested lower estimator: for any ϕ, we have

E [(E [R | O])+] ≥ E
[
R1ϕ(O)≥0

]
and the equality holds for ϕ(O) = E [R | O].
Proof. Use x+ = x1x≥0.
LHS-RHS = E

[
E [R | O] (1E[R|O]≥0 − 1ϕ(O)≥0)

]
≥ 0.

2. Non-nested upper estimator: for any ε with E [ε | O] = 0, we have

E [(E [R | O])+] ≤ E [(R− ε)+]

and the equality holds for ε = R− E [R | O].
Proof. Jensen inequality.
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2.3.5 Multi-level Monte-Carlo estimations

How to retrieve the M = TOL−2 et C = O(TOL−2) for quite general f (under mild
conditions on f)?
Multi-Level MC (smart variance reduction): [Heinrich 01, Giles ’08, Giles

’15].

X Several level ` = 0, . . . , L

X At level `, sample i.i.d. (O`,m)1≤m≤Ml
and for each O`,m, sample i.i.d.

(R`,mj )1≤j≤nl according to R | O = O`,m

X Independent sampling between levels

Definition. The multi-level estimator is defined by

ÎML
M,n =

1

M0

M0∑
m=1

f

O0,m,
1

n0

n0∑
j=1

R0,m,j


+

L∑
`=1

1

M`

M∑̀
m=1

f
O`,m, 1

n`

n∑̀
j=1

R`,m,j

− f
O`,m, 1

n`−1

n`−1∑
j=1

R`,m,j

 .
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Error analysis. Set E
[
f
(
O, 1

n

∑n
j=1Rj

)]
and assume

X n` = n02`

X bias: E
[
f
(
O, 1

n

∑n
j=1Rj

)]
= I +O(1/n) with i.i.d. Rj

d
= R | O.

X f is Lipschitz

Theorem. For any choice of M`, we have

i) E[ÎML
M,n] = I +O(1/nL) à bias-accuracy at the finer level

ii) The computational cost is
∑L
`=0M`n`.

iii) The quadratic error is bounded (up to constant) as

E[(ÎML
M,n − I)2] ≤ C

(
1

n2
L

+

L∑
`=0

1

M`n`

)
.
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Corollary (Asymptotic optimization). Given an error tolerance TOL→ 0+,
take

X L = d− log(n0TOL)
log(2) e

X M`n` independent on ` à M` = M02−`

X Computational cost = (L+ 1)M0n0 = O

(∣∣∣ log(TOL)
TOL

∣∣∣2).
We achieve (up to the log factor) the optimal 1/2-order of MC methods.
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2.3.6 Empirical regression

Definition (terminology from Machine Learning). Let O and R two
random variables

X R ∈ R, the response (square integrable);

X O ∈ Rd, the observation;

X regression function M(.): E(R|O) = M(O);

X learning sample of M: (R(m), O(m))1≤m≤M with size M ;

X approximation by M̃M (·) on a linear vector space Φ with finite
dimension (size K):

Φ = Vect.(φ1, . . . , φK) =

{
ϕ(.) :=

K∑
k=1

αkφk(.) := α · φ(.), α ∈ RK

}
.

Later, we will consider other approximations in non-linear space (like neural
networks).
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X M(O) = argmin
MO

E(R−MO)2

since E(R−MO)2 = E(R− E(R|O))2 + E(E(R|O)−MO)2;

X empirical coefficients: αM := arg min
α∈RK

1

M

M∑
m=1

(R(m) − α · φ(O(m)))2.

à Ordinary Least-Squares problem (linear regression)
�

There are maybe several minimizing coefficients (colinearity in the basis
function along the learning sample): solutions are in a hyperplane.

à The good solution (numerically and mathematically) is to take the SVD
minimizer (minimizing the distance of the hyperplan to the origin =
coefficients with minimal norm).

X empirical regression function:

M̃M(.) = αM · φ(·) =
K∑

k=1

αM
k φk(.).

�

Function with random coefficients.
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X Final estimator: E[f(O,E(R|O))] ≈ 1
M

∑M
m=1 f(O(m), M̃M(O(m))).

We obtain an evaluation of x 7→ E(R|O = x) everywhere

Further remarks

X We do not assume that the basis functions is orthormalized with respect to
the distribution of O à allows great flexibility in the choice of basis functions
and in applicability to any model for O (including jump processes . . . )
à data-driven method

X However, if Ai,j = E(φi(O)φj(O)) = δi,j , then one could set

αMk =
1

M

M∑
m=1

R(m)φk(O(m)).

Called quasi-regression method 6= regression method
Applicable only in few cases (Hermite polynomials and Gaussian model, etc).
See books [Funaro ’92 ; Canuto-Hussaini-Quarteroni-Zang ’06; Schoutens

book’00].
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Examples of approximation space

1st example: global polynomials

X Popular in finance (ex. with Bermuda options and Longstaff-Schwarz ’01

algorithm).
�

Polynomials of LogNormal r.v. are not dense is L2.

X Global approximation, suitable for smooth functions (is low degree
sufficient?)

X If M has singularities or discontinuities, slow convergence

X Mind large values/coefficients when O us unbounded

X Error analysis: very few results. See [Funaro ’92 ;

Canuto-Hussaini-Quarteroni-Zang ’06].

X In full generality, curse of dimensionality if we seek the perfect accuracy.
Sometimes, few polynomials are enough.

X Extra available tools/results: Cross-validation techniques, model
selection, parcimony penalization. . .
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2nd exemple: local
polynomials. Local ap-
proximations on different
hypercubes.
Definition.

X Hypercubes Ci1,...,id = [i1∆, (i1 + 1)∆[× · · · × [id∆, (id + 1)∆[, on a large
set [−H,H[d

X On each hypercube, polynomials of degree < k

Properties.

X Very fast regression: equivalent to independent regression on each hypercube,
with low dimension

X Approximation error: if M of class Ck(. . . ) and O (with distribution µ)
has exponential moments (take H ∼ c log(1/∆) with c large enough), then

inf
ϕ∈Φ
|ϕ−M|L2(µ) ≤ c ∆k.
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Error analysis without (many) model assumptions

�

Error has to be performed on the function and not on its
coefficients.

Theorem (key). Define

i) L2 empirical norm: |ϕ|2L2(µM ) = 1
M

∑M
m=1 ϕ

2(O(m));

ii) empirical regression function:

M̃M (.) := arg min
ϕ∈Φ

1

M

M∑
m=1

|R(m) − ϕ(O(m))|2.

[Hyp.] Conditional variance of R is bounded: σ2 = supo∈Rd Var(R|O = o) < +∞.

Then, the mean quadratic error can be decomposed regarding bias and variance:

E
(
|M̃M −M|2L2(µM)

)
≤ min
ϕ∈Φ
|ϕ−M|2L2(µ) + σ2 K

M
.
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Further remarks

X Trade-off between K et M? approximation error vs statistical error.

X Can be optimized.

X At the end, using local polynomials,[
E
(
|M̃M −M|2L2(µM)

)] 1
2

≤ C
M→+∞

M− k
2k+d

with a computational cost O(M).

Take-home message: the order of convergence as a function of computational

cost is
1

2 + dimension
smoothness

.

X If dimension
smoothness � 1, we retrieve the MC rate!

X Otherwise, empirical regression not appropriate
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Back to the initial problem I = E(f(O,E(R | O)))

Theorem. Assume

(i) f : Rd × R→ R is globally Lipschitz in the second variable;

(ii) f(O,M(O)) is square integrable.

Then (
E
[
|ÎM − I|2

])1/2

≤ C

([
E
(
|M̃M −M|2L2(µM)

)] 1
2

+

√
1

M

)

with ÎM := 1
M

∑M
m=1 f(O(m), M̃M (O(m))).

To summarize:

X If dimension
smoothness � 1, nested regression is as efficient as the MultiLevel MC rate

X However, the Nested MC or MLMC do not give any information on E(R|O)

(or its distribution)
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Non-linear regression

Example (Feed-forward Neural Network).

...

Input layer

...
...

Hidden layers

Output layer

· · ·

· · ·

· · ·

1

x1

xd

ϕ(x)

Representation of neural networks
Different activation functions: 1y≥0,

max(y, 0), 1/(1 + e−y).
[Anthony, Bartlett, Neural Network Learning, 1999.]
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Theorem. Let (O,R) be a random vector in Rd × R, with R bounded, and let
Φ be a dictionary of functions Rd 7→ R. Assume that the dictionary is countably
generated (like for NN). Consider a learning sample (O(m), R(m))m=1,...,M and
define

M̃M := arg min
ϕ∈Φ

1

M

M∑
m=1

|R(m) − ϕ(O(m))|2.

Then

E
[∫

Rd

∣∣∣[M̃M]|R|∞(x)−M(x)
∣∣∣2 µ(dx)

]
≤c VC(Φ)

(1 + logM)

M
+ inf
ϕ∈Φ

E
[
|ϕ(O)− E [R|O] |2

]
where VC(Φ) is the Vapnik-Chervonenkis dimension of Φ.

X Essentially, same control as for vector space case, assuming additionally R
bounded

X In the vector space case, VC(ΦVS) = O(K).

X For NN and RELU activation, VC(ΦNN) = O(#{Weights} ×#{Layers}2)

X Computing M̃M may require a specific optimization algorithm (for non
convex problems)
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3 Sampling extremes using Markov chains on
path space

3.1 Monte-Carlo Markov Chain

3.1.1 Brief overview of important principles

X Markov chain with transition kernel P (x, .):

Xk+1
d
= P (Xk, .)

X Long-term behavior? convergence to a stationary distribution π?

x = X0 y
P

X1 y
P

. . . y
P

Xn(
dist.
≈ π) y

P
. . . y

P
X2n(

dist.
≈ π) . . .

X Characterization of π using reversibility: if P is π-reversible, that is

(X0,X1)
d
= (X1,X0)

then the distribution π of X0 is stationary for the transition P (., .).
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X Chain with rejection in A: transition Q defined on A by∫
ϕ(y)Q(x, dy) :=

∫
A
ϕ(y)P (x, dy) + ϕ(x)P (x,Ac).

If P is π-reversible, then Q is π|A-reversible.
Proof.∫
A

∫
A
γ(x)ϕ(y)Q(x,dy)π(dx) =

∫
A

∫
A
γ(x)ϕ(y)P (x,dy)π(dx) +

∫
A
γ(x)ϕ(x)P (x,Ac)π(dx)

=

∫
A

∫
A
γ(y)ϕ(x)P (x,dy)π(dx) +

∫
A
γ(x)ϕ(x)P (x,Ac)π(dx)

=

∫
A

∫
A
γ(y)ϕ(x)Q(x, dy)π(dx).
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3.1.2 Convergence in finite dimension

Ready-to-use statement.

Theorem ([FM03, Proposition 2],[MT09, Theorem 15.0.1]). Let Q be a
phi-irreducible aperiodic transition kernel on A ⊂ Rd and let C ⊂ A be an
accessible petite set. Assume there exist δ ∈ (0, 1), b ∈ R and a measurable
V : A → [1,+∞), bounded on C, such that

QV(x) ≤ δV(x) + b1x∈C , x ∈ A.

Let p ≥ 2, assume that E [V (X0)] < +∞. Then for some constant 0 < r < 1, for
any g bounded in V 1/p-norm, we have(

E

[∣∣∣∣∣1n
n∑

i=1

g(Xi)− π(g)

∣∣∣∣∣
p])1/p

≤ C√
n
, |E [g(Xn]− π(g)| ≤ Crn,

for some finite constant C > 0.
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3.1.3 Some (important) examples according to π

In the sequel, for sampling efficiently extreme events, we will use reversible
Markov transition, with small transformation: we call them shakers.

We write the transition P (x, .) under its sampling form:

K(x,Y)
d
= P(x, .)

for some independent random variable Y .

On the top on this, there are some probabilistic models that are functions of X
and that describe the extreme risks;

Z = φZ(X).
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Low-dimensional parameterization of reversible shakers

X If π is a standard Gaussian distribution,

Kρ(x,y) = ρx +
√

1− ρ2y

with Y d
= N (0, 1), −1 ≤ ρ ≤ 1.

If X d
= N (0, 1) ⊥ Y , then (X,Kρ(X,Y))

d
= (Kρ(X,Y),X).

Figure 1: Shaking N (0, 1) with ρ = 0.9 and ρ = 0.5
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X If X is a standard Brownian motion,

K(X,Y ) = (

∫ t

0

ρsdXs +

∫ t

0

√
1− ρ2

sdYs)0≤t≤T

with Y is an independant BM and ρ ∈ [−1, 1] deterministic function.

Shaker means ρ ≈ 1.

Shaking OU model

dZt = λ(µ− Zt)dt+ σdXt.

Path of Z, shaked Z with ρ = 0.9

and ρ = 0.1

Can be extended to any Gaussian Hilbert space (Fractional Brownian
Motion, . . . ). [Nualart 2006]
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X For a Gamma distribution Ga ∼ Gamma(α, β), i.e

P(Ga ∈ dx) =
βα

Γ(α)
xα−1e−βxdx, x > 0

we can use a transformation based on the Beta-Gamma algebra

K(Ga) = Ga ∗ Beta(α(1− p), αp) + Gamma(αp, β),

(includes exponential distribution).

Figure 2: Shaking Gamma(2.5, 0.12) with p = 0.1 and p = 0.5
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X Compound Poisson process. Let Xt =
∑Nt
k=1 Jk be a CPP(λ, µ).

CPP decomposition: Xt = Xa
t +Xb

t

where Xa d
= CPP((1− p)λ, µ) and Xb d

= CPP(pλ, µ)

K(X,Y) = (Xa
t + Yt)0≤t≤T with Yt

d
= CPP(pλ, µ)

à remove each jump with probability p and add extra independent ones.

Useful when extreme risks are described by jump processes.
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3.2 Back to rare-event statistics

Here, extreme event is given explicitly (and not implicitly by a VaR).

Aim: efficient numerical evaluation of

P(Z ∈ AZ) or E(ϕZ(Z)1Z∈AZ),

E(ϕZ(Z) | Z ∈ AZ),

∂θEθ(ϕZ(Z) | Z ∈ AZ),

X Z = economic and financial variables of interest with

Z := φZ(X)

X X = stochastic variable generating the risk factors

X AZ = set of critical scenarios (defined by user/regulator)

X A = φ−1
Z (A), ϕZ(φZ(x)) = ϕ(x), so that E(ϕZ(Z) | Z ∈ AZ) = E(ϕ(X) | X ∈ A)

X The Markov chain will be performed at the level of X (usually a stochastic
"path" in finance)
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3.2.1 Setting and Shaker

X Given probability space: (Ω,F ,P)

X State space S for stochastic element X.

I S = Rd, i.e. X = finite-dimensional random variable

I S = C([0, 1],Rd), e.g. X = Brownian motion or SDE or Itô process

I S = D([0, 1],Rd), e.g. X = compound Poisson process, jump processes

I S = RN, i.e. X = countably infinite number of random variables

If a path space, may be non-Markovian.

Definition (of reversible shaking transformation). Similar to before.

X Define K(.) = K(.,Y) for some K(.) and Y independent of everything else

X K(·) is a reversible shaker for X if:

(X,K(X,Y))
d
= (K(X,Y),X).
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3.2.2 Splitting

Define a sequence of n nested subsets of S

S := A0 ⊃ · · · ⊃ Ak ⊃ · · · ⊃ An := A,

P(X ∈ A) =
n∏

k=1

P(X ∈ Ak|X ∈ Ak−1).

For instance: Scenarios of Porfolio loss of 1 Ge is seen as a nested sequence of
larger and larger losses: 10Me , 100Me , 500Me , 800Me , 900Me

3.2.3 Shaker with rejection

MKk (X) :=

K(X) if K(X) ∈ Ak
X if K(X) /∈ Ak.

�

We know it preserves the conditional distribution of X | X ∈ Ak.
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3.2.4 1st method: the Parallel One-Path (POP) approach

The Markov transformationMKk leaves invariant the distribution of
X|X ∈ Ak.
X Birkhoff’s ergodic theorem: for ergodic Markov chains (Zi)i with a

unique invariant distribution π, we have

1

N

N∑
i=1

f(Zi) −→
N→+∞

∫
fdπ a.s.

X Proposition (Markov chain at level k). Given an initial position

Xk,0 ∈ Ak

define
Xk,i :=MKk (Xk,i−1), i ≥ 1.

Then, as N → +∞ (average over time),

P(X ∈ Ak+1|X ∈ Ak) ≈ 1

N

N−1∑
i=0

1Ak+1
(Xk,i).
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POP sampling scheme
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Theorem. Assume the conditions of Theorem of slide 54. If N is the length of
simulations, L2-convergence at rate

√
N .

In the case of Gaussian shaker, conditions are fulfilled.

Property. Independent computations

X in the computing sense (parallel-processing à fast computations)

X in the probabilistic sense (independent Markov chains à low variance)
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How to get initial positions?

X X0,0 is simulated as an independent copy of X, then apply
X0,i+1 =MK0 (X0,i) until getting one point in A1, then take it as X1,0

X apply X1,i+1 =MK1 (X1,i) until hitting A2, then take it as X2,0 etc

X Extra computational cost is negligeable w.r.t the global cost of the algorithm.

Adaptive levels. Possibility of an adaptive version where the levels are chosen
online to ensure 10% for the conditional probabilities. See refs on the
summerschool webpage.
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3.2.5 2nd method: Interacting Particles System (IPS) approach

We define (Xi)0≤i≤n−1 as a Markov chain taking values in S:

X0
d
= X and Xi :=MKi (Xi−1),1 ≤ i ≤ n− 1.

Theorem (Feymann-Kac measure representation).

P(X ∈ An) = E(
n−1∏
i=0

1Ai+1
(Xi)),

E(ϕ(X)|X ∈ An) =
E(ϕ(Xn−1)

∏n−1
i=0 1Ai+1(Xi))

E(
∏n−1
i=0 1Ai+1

(Xi))
.

X Interacting particles system (IPS, [Del Moral 2004]) method gives estimation
of E

(
f(X0, · · · , Xn)

∏n−1
i=0 Gi(Xi)

)
Theorem. (Average over space) Using a system with M particles in interaction,
L2-convergence at rate

√
M .

�

No parallel computation, requires to store in memory all the particles.
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IPS sampling scheme
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3.3 Numerical tests

3.3.1 Maximum of Ornstein-Uhlenbeck process

Model:

dYt = λ(µ− Yt)dt+ σdWt, Y0 = 0 with λ = 1, µ = 0, σ = 1, T = 1.

We want to estimate P( max
0≤l≤100

Ỹtl > 3.6) with tl = hl where Ỹ is the Euler

scheme simulation of Y with time step h = 0.01.

Experiments:

X 107 MC simulations with IS gives CI = [0.9772, 1.0038]× 10−7

X Intermediate levels are defined as Li = 3.6× ( i5 )1/2, 1 ≤ i ≤ 5.

X Output statistics computed with 50 macro MC runs.
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mean std std/mean

ρ = 0.9 1.06e-07 5.12e-08 0.48

ρ = 0.75 9.51e-08 2.15e-08 0.22

ρ = 0.5 9.32e-08 9.42e-08 1.01

IPS: M = 105

mean std std/mean

ρ = 0.9 9.80e-08 6.74e-09 0.07

ρ = 0.75 1.00e-07 9.52e-09 0.10

ρ = 0.5 1.05e-07 2.78e-08 0.27

POP: N = 105
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3.3.2 Oscillation of OU process

Let W be a standard Brownian motion, consider the solution to

dZt = λ(µ− Zt)dt+ σdWt, Z0 = 0.

We wish to compute the rare event
probability

P( max
0≤t≤T

Zt > 1.6 and min
0≤t≤T

Zt < −1.6).

�

Importance sampling techniques are difficult to apply on this example.
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Aim at computing (the time-discretized quantity)

P( max
0≤l≤100

Ỹtl > 1.6 and min
0≤l≤100

Ỹtl < −1.6).

X 7× 109 MC simulation gives CI = [3.9709, 4.3691]× 10−7

X Set Li = 1.6× ( i5 )1/2 and Ai = { max
0≤l≤100

Ỹtl > Li and min
0≤l≤100

Ỹtl < −Li}

X 100 macro MC runs
mean std std/mean

ρ = 0.9 4.01e-07 1.23e-07 0.31

ρ = 0.75 4.10e-07 1.67e-07 0.41

ρ = 0.5 2.44e-07 4.76e-07 1.95

IPS: M = 105, α = 1

mean std std/mean

ρ = 0.9 4.14e-07 2.68e-08 0.06

ρ = 0.75 4.18e-07 4.60e-08 0.11

ρ = 0.5 4.29e-07 1.26e-07 0.29

POP: N = 105
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3.3.3 Measuring the default probabilities in credit portfolios

[Model as in Carmona-Fouque-Vestal 2009]

X I Firms:

 dXi(t) = rXi(t)dt + σ(t)Xi(t)dWi(t),

dσ(t) = κ
(
σ̄ − σ(t)

)
dt + γ

√
σ(t)dWt

with positive κ, σ̄ and γ and d〈Wi,Wj〉 = ρdt, i 6= j, d〈Wi,W 〉 = ρσdt.

X Time of default for firm i:

τi(Bi) := inf
{
t : Xi(t) ≤ Bi

}
with a fixed default boundary Bi.

X Probability of L+ 1 defaults at least: P(L) = P

(
I∑

i=1

1{τi(Bi)≤T} > L

)
.

X Path-dependent problem. As opposed to [CFV09], we do not perform IPS
based on time-discretization of (X,σ).
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Good nested sets:

Ak =
{
ω :

I∑
i=1

1{
τi

(
X0(i)− k

n (X0(i)−Bi)
)

(ω)≤T
} > L

}
, 1 ≤ k ≤ n.

Less efficient nested sets:

Ãk =
{
ω :

I∑
i=1

1{
τi(Bi)(ω)≤T

} > k

n
L
}
, 1 ≤ k ≤ n.

Model parameters:
Xi(0) r ρ σ(0) κ σ̄ γ ρσ

90 0.06 0.10 0.4 3.5 0.4 0.7 -0.06

Credit risk parameters: I = 125, threshold level Bi = B, T = 1.

Benchmark value for L = 100 and B = 36 (by Crude Monte-Carlo using
3× 109 samples),

P(L) ∈ [4.92,5.13]× 10−6

with 99%-confidence.
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Detailed performances

Non adaptive version

IPS POP

mean std. std./mean mean std. std./mean

(×10−5) (×10−6) (×10−6) (×10−7)

ρ = 0.9 1.18 5.72 0.48 5.01 8.03 0.16

ρ = 0.7 1.53 8.73 0.57 4.99 10.21 0.20

ρ = 0.5 1.40 15.40 1.1 5.02 19.38 0.39

Table 1: Estimators of default probability (mean) for L = 100 and B = 36 with
empirical standard deviation (std.) for IPS and POP method based on 100 macro-
runs.
Each intermediate level estimator in both the methods is based on M = N = 104

simulations.
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Adaptive version

Adaptive IPS Adaptive POP

mean std. std./mean mean std. std./mean

(×10−6) (×10−6) (×10−6) (×10−6)

ρ = 0.9 4.93 1.91 0.39 5.16 0.85 0.16

ρ = 0.7 5.42 1.58 0.29 4.98 1.02 0.20

ρ = 0.5 6.40 5.00 0.78 5.35 2.05 0.38

Table 2: Estimators of default probability (mean) for L = 100 and B = 36 with
empirical standard deviation (std.) for adaptive IPS and POP methods (p = 10%)
based on 100 algorithm macro-runs. Each intermediate level estimator in both
methods is based on M = N = 104 simulations.

No significant increase of statistical error.
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Tuning the shaking parameters for the non-adaptive version
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Figure 3: POP method, standard deviation (std. dev.) of each conditional proba-
bility estimator and corresponding rejection rate (rej. rate), based on 100 macro-
runs, for different values of ρ.

à Rule-of-thumb: minimal variances for POP correspond to
acceptance rate ≈ 30− 40%.
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Tuning the shaking parameters for the adaptive version
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Figure 4: Adaptive POP method (p = 10%). Standard deviation (std. dev.) and corre-
sponding rejection rate (rej. rate), based on 100 macro-runs, of each quantile estimator
and last level occupation measure estimator, for different values of ρ. The std. dev. of
occupation measure (level 6) estimator has been scaled by 10 for easier comparison.
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Extra shaking for IPS between selection steps

×10−6 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7 J = 8 J = 9 J = 10 POP

ρ = 0.9 2.50 1.21 1.04 1.01 1.03 1.06 1.11 1.19 1.31 1.37 0.80

ρ = 0.7 1.74 1.40 1.29 1.25 1.20 1.29 1.28 1.33 1.37 1.43 1.02

ρ = 0.5 4.46 3.69 3.56 3.11 3.18 2.90 2.67 2.73 2.63 2.61 1.94

Table 3: Empirical standard deviation of IPS estimators of default probability
for L = 100 and B = 36 based on 1000 algorithm macro-runs, with M = 104 and
particle system size equal toM ′ = bMJ c. The last column is the empirical standard
deviation of POP method using n = M = 104 iterations at each level.
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Impact of time-discretization (curse of dimensionality of MCMC?)
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Figure 5: The impact of the number of discretization times (Nstep) on the optimal
shaking parameter (ρ) at each level of POP method.
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Generation of stress-tests
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Figure 6: Sample paths for the asset price of firm 1 at Level 1 and Level 5 in the
POP method and the respective volatility sample paths.
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Rare event probability estimates on a large range of parameters
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Plot (a) and log-plot (b) of default probabilities for varying B/X0.
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3.3.4 Random graph

X Erdos-Renyi model: V vertices, vertex i is
connected with vertex j with probability q.

X P(Triangle(X) > V(V−1)(V−2)
6 t3) for t > q,

with V = 64, q = 0.35, t = 0.4

X In [BHLN13], this probability is estimated as
2.19e− 06 and 2.03e− 06

X Shaker: 10% of all Xij by P with qP (1, 0) = (1− q)P (0, 1)

X Intermediate levels Li = V (V−1)(V−2)
6 t3( i5 )

1
5 , i = 1, 2, 3, 4, 5

X 50 macro MC runs
P (1, 0) 0.25 0.5 0.75

mean 1.79e-06 1.83e-06 1.92e-06

std 2.29e-06 1.30e-06 1.04e-06

std/mean 1.28 0.71 0.54

IPS: M = 104

P (1, 0) 0.25 0.5 0.75

mean 2.15e-06 2.05e-06 2.06e-06

std 5.76e-07 4.52e-07 3.23e-07

std/mean 0.27 0.22 0.16

POP: N = 104

X On-going applications to systemic risks.
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3.3.5 Hawkes process (high-frequency modeling. . . )

X Model: self-exciting counting process (Nt)t≥0 with stochastic intensity

dλt = θ(µ− λt)dt+ dNt.

Here θ = 2, µ = 1, the terminal time T = 24 and λ0 = 1.

X Jump instants: (τj)j≥1. H = max{τj − τi : τk+1 − τk < 0.5, i ≤ k < j− 1}=
longest period during which all jump inter-arrivals are less than 0.5.

X Estimation of P(H > 11)?

X Using 3× 108 crude MC simulations gives a 99%-CI = [3.2469, 3.8064]× 10−6.

X Intermediate sets as {H > Lk} where (Lk)k=1,··· ,5 = [3.5, 5.5, 7.5, 9.5, 11]

IPS p = 0.1 p = 0.3 p = 0.5

mean 3.30e-06 5.19e-06 3.88e-06

std 2.84e-06 1.37e-05 1.60e-05

std/mean 0.86 2.64 4.12

IPS: M = 104

POP p = 0.1 p = 0.3 p = 0.5

mean 3.33e-06 3.51e-06 2.69e-06

std 1.25e-06 2.92e-06 3.71e-06

std/mean 0.37 0.83 1.38

POP: N = 104
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3.3.6 Ruins in insurance

X Model: Insurance company’s capital reserve

Rt = x+ ct−
Nt∑
k=1

Zk.

Take c = 1, λ(intensity for Nt) = 0.005, x = 100, T = 1 and suppose Zk’s are
Gamma(2.5, 0.12).

X Estimation of P( min
0≤t≤T

Rt < 0)

X 105 MC simulations with IS gives CI = [1.0419, 1.1881]× 10−6

X Set Li = x(1− ( i5 )2), i = 1, 2, 3, 4, 5 and Ai = { min
0≤t≤T

Rt < Li}

X 100 macro MC runs
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IPS: works when shaking only jumps (Gamma variables) or when shaking jumps
and inter-arrival times.

M = 104, shaking only jumps
p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6

mean 1.25e-006 1.11e-006 1.01e-006 1.02e-006 1.15e-006 1.09e-006

std 2.82e-006 1.30e-006 6.46e-007 8.39e-007 5.15e-007 4.11e-007

std/mean 2.26 1.17 0.64 0.82 0.45 0.38

POP: works only when shaking jumps and inter-arrival times.

N = 104

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6

mean 1.14e-06 1.11e-06 1.12e-06 1.05e-06 1.12e-06 9.29e-07

std 5.08e-07 4.44e-07 4.80e-07 6.74e-07 8.24e-07 9.52e-07

std/mean 0.45 0.40 0.43 0.64 0.74 1.02
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3.3.7 Model risk and robustness

X Model with switching volatilities according to the MA [Guyon 2014]

X Two volatilities σ− < σ+

X Discrete-time dynamics (non-Markovian)

Si+1 = Si exp
(
−1

2
σ2
−∆t+ σ−∆Wi

)
, i = 0, 1, 2, 3,

Si+1 =

Si exp
(
− 1

2σ
2
−∆t+ σ−∆Wi

)
if Si ≥

∑
k=i−4 Sk

4

Si exp
(
− 1

2σ
2
+∆t+ σ+∆Wi

)
if Si <

∑
k=i−4 Sk

4

when i ≥ 4.

X Hedging of a Call using the BS hedge with volatility σ−:

PLtrader := BS Call option price +
9∑

j=0

δi(S5(j+1) − S5j)− (ST −K)+.

X Probability of large losses due to model misspecification:

P(PLtrader ≤ L)?
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Model parameters: S0 = 10, σ− = 0.2, σ+ = 0.27, K = 10 and L = −2.4.

MC parameters: Lk := kL/5, k = 1, 2, 3, 4, 5.

Crude MC (with 5× 108 simulations): P(PLtrader ≤ L) ∈ [2.93,3.34]× 10−6

with 99%-confidence.

IPS POP

mean std. std./mean mean std. std./mean

(×10−6) (×10−7) (×10−6) (×10−7)

ρ = 0.9 3.10 5.29 0.17 3.13 2.07 0.07

ρ = 0.7 3.23 13.3 0.41 3.11 3.98 0.13

ρ = 0.5 2.79 25.9 0.93 3.18 8.44 0.27

Table 4: Estimators of P
(
PLtrader ≤ L

)
(mean) with empirical standard deviation

(std.) for IPS and POP method based on 100 macro-runs.
Each intermediate level estimator in both the methods is based on M = N = 105

simulations.

Winterschool - Lunteren (Netherlands) - 2018, January 22-23-24 88/120



E. Gobet - Simulation of (nested/extreme) risks in finance 3.3 Numerical tests

3.3.8 Tails of implied volatility in fSABR model

Denote by (B
(H)
t )t∈R the fractional Brownian motion with Hurst exponent

H ∈ (0, 1): i.e. the R-valued Gaussian process, centered with covariance function

E(B
(H)
t B(H)

s ) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

Mandelbrot and van Ness representation:

B
(H)
t = CH

[ ∫ t

−∞

[
(t− s)H− 1

2 − (−s)H−
1
2

+

]
dBs,

CH =

√
2HΓ(3/2−H)

Γ(H + 1/2)Γ(2− 2H)
.

Recent interests for fBM in modeling random volatility: [Comte-Renault

98][Gatheral-Jaisson-Rosenbaum 14]. . .
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fSABR model:


dSt
St

= σtdZt

σt = σ̄ exp
(
−α

2

2 t
2H + αB

(H)
t

)
with d〈B,Z〉t = ρBZdt.

Parameter values: S0 = 40, σ̄ = 0.235, r = 0, T = 1.0.

What is the impact of parameters H,α, ρBZ on prices? Which ones can
we retrieve from calibration?

X Use information from the tails (ITM-OTM options, Implied Vol smile).

X Lee formula (left tail):

βL := lim sup
x→−∞

I2(x)

x/T

where I(x) is the BS implied volatility corresponding to the log-moneyness x
and option maturity T

X If q̃ := sup{q ≥ 0 : E[S−qT ] <∞}, then

q̃ = 1/2βL + βL/8− 1/2.
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Figure 7: Plot of estimated squared implied volatility estimates w.r.t. log-strike in fSABR

model, for different correlations ρBZ .
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α = 0.5 α = 1.0

ρBZ H = 0.15 H = 0.25 H = 0.75 H = 0.9 H = 0.15 H = 0.25 H = 0.75 H = 0.9

-0.3 2.6133 2.5515 2.8058 2.9753 0.8251 0.8267 0.9211 0.9632

-0.5 2.4222 2.3823 2.6733 2.8715 0.7905 0.7913 0.8950 0.9449

-0.7 2.2593 2.2042 2.5465 2.7918 0.7597 0.7591 0.8686 0.9277

-0.9 2.1235 2.0653 2.4339 2.6919 0.7325 0.7297 0.8449 0.9113

Table 5: Estimates of maximum negative moment q̃ in fSABR model using POP method.

It suggests that

X calibration of α and ρBZ seems tractable

X calibration of H-index may be difficult from vanilla prices
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3.3.9 Estimating sensitivities for OTM options

Insurance contracts for asset managers.

Model:
dSit
Sit

= µidt+ σid(LWt)
i.

Aim: sensitivity of E
[
(K − p1S

1
T − p2S

2
T )+

]
Model parameters:

X r = µi = 0.01

X K = 100, T = 1,

X Correlation matrix C = LL∗

X σ1 = 25%, σ2 = 22.5%, C1,2 = 90% (ruled out by [GT13, Theorem 1])

X p1 = 10, S1
0 = 10, p2 = 5, S2

0 = 20

X Rare-event regime: P
[
p1S

1
T + p2S

2
T ≤ K

]
≈ 1.7× 10−3.
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For extreme event, direct sensitivity is not relevant à better to use

relative sensitivity, defined by
∂θE

[
(K− p1S1

T − p2S2
T)+

]
E [(K− p1S1

T − p2S2
T)+]

.

We use the Malliavin calculus to get

∂θE
[
(K− p1S1

T − p2S2
T)+

]
= E

[
Zθ1K−p1S1

T−p2S2
T≥0

]
so that, setting A := {K − p1S

1
T − p2S

2
T ≥ 0},

∂θE
[
(K − p1S

1
T − p2S

2
T )+

]
E [(K − p1S1

T − p2S2
T )+]

=
E [Zθ | A]

E [K − p1S1
T − p2S2

T | A]
.

�

Can be evaluated directly by the Markov chain at the last level à very simple
and efficient.

Explicit weights:

X θ = pi à Zθ = 1
piT

Σ−1ei ·WT

X θ = σi à Zθ = Σ−1ei ·WT

(
−σi + 1

T (LWT )i
)
− (LΣ−1)i,i

X θ = Ci,jà Zθ = 1
T (L−1WT )i(L−1WT )j − (C−1)i,j
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Estimates of relative sensitivity w.r.t. different model parameters.

Sensitivity w.r.t.

p1 σ1 C1,2

POP method (106 paths) −0.7155 (0.0046) 24.0078 (0.1760) 3.1058 (0.0253)

(mean/std)

Finite difference (106 paths −0.7120 (0.0157) 23.9252 (0.4838) 3.0866 (0.1128)

POP with CRN)

(mean/std)

Finite difference (109 paths) (−0.7155,−0.7129) (23.9285, 24.0108) (3.0801, 3.0990)

(99% conf. interval)

for benchmark
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3.3.10 Summary and perspectives

X Efficient framework to compute rare event probabilities and generate stress
tests using reversible Markov chains (shakers) on path space

X IPS (average in space) 6= POP (average in time)

X In general, better performance of POP compared to IPS (variances are
divided by about 10)

X Advantages of POP: low memory, parallel and independent computations

X Tuning the intermediate levels can be done adaptively

X In Gaussian setting, sensitivity analysis available (Malliavin calculus)

X The variance optimal ρ for POP depends on the level.
Rule of thumb: adjust ρ so that acceptance rate is ≈ 30− 40%.
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3.4 MCMC/Regression scheme for E [f(Y,E [R | Y ]) | Y ∈ A]
Example. R = future cashflow at time 2; E [R | Y ] = price at time 1;
Evaluation in adverse situations A.
3.4.1 Algorithm

1 /* Simulation of the design and the observations */

2 O(0) ∼ ξ, where ξ is a distribution on A ⊂ Rd ;

3 for m = 1 to M do
4 O(m) ∼ P(O(m−1), dx) (apply the Shaker with rejection);

5 R(m) ∼ Q(O(m), dr);

6 /* Least-Squares regression */

7 Choose α̂M ∈ RL solving argmin
α∈RL

1

M

M∑
m=1

∣∣∣R(m) −
〈
α;φ(O(m))

〉∣∣∣2 and set

φ̂M (x) :=
〈
α̂M ;φ(x)

〉
;

8 /* Final estimator using ergodic average */

9 Return ÎM :=
1

M

M∑
m=1

f(O(m), φ̂M (O(m))).
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3.4.2 Convergence results about regression

Notations:

X Let µdλ be the distribution of Y | Y ∈ A, λ=positive σ-finite measure

X Let L2(µ) be the set of measurable functions ϕ : Rd → R such that
|ϕ|L2(µ) :=

(∫
ϕ2µdλ

)1/2
< +∞

X Let ψ? = arg infϕ∈Span(φ1,··· ,φL) |M− ϕ|L2(µ) be the projection of M on the
basis functions (linear approximation space)

Theorem (Non asymptotic error estimates on the regression function).
Assume that

(i) the transition kernel P and the initial distribution ξ satisfy: there exists a
constant CP and a rate sequence {ρ(m),m ≥ 1} such that for any m ≥ 1,∣∣∣∣ξPm[(ψ? −M)2]−

∫
(ψ? −M)2 µdλ

∣∣∣∣ ≤ CP ρ(m).
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(ii) the conditional distribution Q satisfies

σ2 := sup
x∈A

{∫
r2 Q(x, dr)−

(∫
rQ(x, dr)

)2
}
<∞.

Let O(1:M) and φ̂M be given by the previous Algorithm. Then,

∆M :=E

[
1

M

M∑
m=1

(
φ̂M(O(m))−M(O(m))

)2
]

≤ σ2L

M
+ |ψ? −M|2L2(µ) +

CP

M

M∑
m=1

ρ(m).

Remarks.

X Finite dimensional Gaussian shaker à ρ(m) = O(rm) with r ∈ (0, 1). See
slide 54.

X Usually
∑
m=1 ρ(m) < +∞

X The use of MCMC design does not impact significantly the statistical error.
Compare with slide 47
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Corollary (Non asymptotic error estimates on the outer expectation
E [f (Y,E [R | Y ]) | Y ∈ A]). Assume

(i) f : Rd × R→ R is globally Lipschitz in the second variable

|f(y, r1)− f(y, r2)| ≤ Cf |r1 − r2| .

(ii) There exists a finite constant C such that for any M

E

(M−1
M∑
m=1

f
(
O(m),M(O(m))

)
−
∫
f(x,M(x))µ(x) dλ(x)

)2
 ≤ C

M
.

ThenE

∣∣∣∣∣ 1

M

M∑
m=1

f(O(m), φ̂M(O(m)))− E [f (Y,E [R | Y]) | Y ∈ A]

∣∣∣∣∣
2
1/2

≤ Cf

√
∆M +

√
C

M
.
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3.4.3 Numerical examples

Goal: to approximate

I := E
[(
E
[
(K− h(ST′))+ | ST

]
− p?

)
+
| ST ∈ S

]
for various choices of h, where {St, t ≥ 0} is a d-dimensional geometric Brownian
motion, T < T ′ and {ST ∈ S} is a rare event.

B A toy example in dimension 1. Here h(y) = y and S = {s ∈ R+ : s ≤ s?}
so that

I = E
[(
E
[
(K− ST′)+ | ST

]
− p?

)
+
| ST ≤ s?

]
.

T T ′ S0 K σ s? p?

1 2 100 100 30% 30 10

Here P(Y ∈ A) ≈ 5.6e-5
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Figure 8: Normalized histograms of the M = 1e6 points from the Markov chain
(left), from the i.i.d. sampler with rejection (middle). (right) Restricted to [−6, y?],
the cdf of Y given {Y ∈ A} with MCMC/crude MC estimates.

MCMC sampler gives very accurate sampling of the tails
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As before, choosing the shaking parameter is important!

0 10 20 30 40 50

-0.2

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.99

Figure 9: For different values of ρ, estimation of the autocorrelation function (over
100 independent runs) of the Markov chain. Each curve is computed using 1e6

sampled points.
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à Tune the shaking parameter according to the acceptance rate
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Figure 10: (top) Mean acceptance rate afterM chain iterations of the chain (green
= 23.4% [Rosenthal 2008])(bottom) Estimation of P(Y ∈ A) by combining splitting

and MCMC
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Figure 11: (left) 1000 sampled points (O(m), R(m)) (using the MCMC sampler),
together with M; (right) A realization of the error function x 7→ φ̂M (x) −M(x)

on [−5, y?], for different values of L ∈ {2, 3, 4} and two different kernels when
sampling O(1:M).

Winterschool - Lunteren (Netherlands) - 2018, January 22-23-24 105/120



E. Gobet - Simulation of (nested/extreme) risks in finance3.4 MCMC/Regression scheme for E [f(Y, E [R | Y ]) | Y ∈ A]

B Correlated geometric Brownian motions in dim. 2. We consider

I := E

[(
E
[(

K−
√

S1,T′S2,T′)
)

+
| ST

]
− p?

)
+

| ST ∈ S

]
with S = {(s1, s2) ∈ R+ × R+ : s1 ≤ s?, s2 ≤ s?}.

Y
2
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5

Level curves of the density function
of (S1,T , S2,T ) and the rare set in the
lower left area delimited by the two
hyperplanes.
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For the basis functions, we take

ϕ1(x) = 1, ϕ2(x) =
√
x1, ϕ3(x) =

√
x2,

ϕ4(x) = x1, ϕ5(x) = x2, ϕ6(x) =
√
x1 x2.

T T ′ S0,1 S0,2 K σ1 σ2 % s? p?

1 2 100 100 100 25% 35% 50% 50 5
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Figure 12: (left) Normalized histograms of the error {φ̂M (O(m))−M(O(m)),m =

1, · · · ,M}, when L = 3. (right): the same case with L = 6.
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Figure 13: (left) Error function with L = 3. (right) The same case with L = 6.
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3.4.4 Conclusion

X Design of a regression method suitable for design points in an extreme set A

X Extreme design points are sampled using MCMC

X Error estimates available as if the set A were not rare

On-going work: Rare event set A depending itself on conditional expectations
(on cashflow value) à adaptive MCMC-regression scheme
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4 Stochastic algorithms, VaR and nested risks
Able to handle the case where the extreme set is not explicitly given (but given
implicitly by some conditional expectations)

4.1 Usual Robbins-Monro algorithm

Seeking the zeros of a function h : Rd 7→ Rd, i.e.

T ∗ = {θ ∈ Rd : h(θ) = 0}

where h has the form

h(θ) = E(H(θ,X)),

for X : Ω→ Rq, a r.v. that can be sampled, and H : Rd × Rq → Rd.

Example (VaRα(X)). Assume that X ∈ R has a continuous c.d.f. Then the
zeros of

h(q) = E [1X≤q − α]

give the α-quantile of X. VaR is the inf of such zeros.
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Definition (Stochastic approximation). Define

θn+1 = θn − γn+1H(θn, Xn+1),

for i.i.d. Xn and where (γn)n∈N are the steps of the algorithm such that∑
n≥1

γn = +∞,
∑
n≥1

γ2
n < +∞.

Example. Take γn = c
nα with α ∈ ( 1

2 , 1].

Theorem (Convergence). Let h ∈ C0, T ∗ = h−1({0}) and assume that for
any θ∗ ∈ T ∗ and θ /∈ T ∗ we have

〈θ − θ∗, h(θ)〉 > 0, (separation condition).

If E(|H(θ,X)|2) ≤ CH(1 + |θ|2) for a certain constant CH , there exists a r.v.
θ∞ : Ω→ T ∗ such that θn

a.s.−→ θ∞.

Furthermore, the convergence holds also in Lp with p ∈ (0, 2).

Under some extra conditions, convergence rate is equal to 1/
√
γn.
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�� ��Further remarks

X The conditions for convergence are fulfilled for the α-quantile. We could
compute the CVaR along the same sequence since it does not depend on the
specific representant of the α-quantile. See slide 7.

X SA is a sequential algorithm that can be stopped at any time at the
current result.

X The more we simulate, the more accurate the result.

X We can incorporate a IS scheme in the SA for VaR, [BFP09].

X Alternative scheme for VaR: sample and sort. Efficient for non-nested
computations. Not clear for nested expectations.
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Proof (of convergence). Let θ∗ ∈ T ∗. Write

|θn+1 − θ∗|2 = |θn − θ∗|2 + γ2
n+1|H(θn, Xn+1)|2 − 2γn+1〈θn − θ∗, H(θn, Xn+1)〉.

Step 1. This shows that θn ∈ L2,∀n.

Step 2. Set ∆Mn = H(θn, Xn+1)− h(θn) where h(θn) = E(H(θn, Xn+1) | Fn),
then

|θn+1 − θ∗|2 =|θn − θ∗|2 + γ2
n+1|H(θn, Xn+1)|2 − 2γn+1〈θn − θ∗,∆Mn〉

− 2γn+1〈θn − θ∗, h(θn)〉.

Then, for any c ≥ 0, define

Sn :=
|θn − θ∗|2 +

∑n−1
k=0 2γk+1〈θk − θ∗, h(θk)〉+ c

∑
k≥n+1 γ

2
k∏n

k=1(1 + cγ2
k)

≥ 0.

For a constant c ≥ 0 large enough, we have

E(Sn+1 | Fn) ≤ Sn.

à Sn is surmartingale (and positive).
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Recall

Sn :=
|θn − θ∗|2 +

∑n−1
k=0 2γk+1〈θk − θ∗, h(θk)〉+ c

∑
k≥n+1 γ

2
k∏n

k=1(1 + cγ2
k)

.

Step 3. Therefore, for some integrable S∞ ≥ 0, Sn
a.s.−→ S∞. Thus,

X |θn − θ∗|2
a.s.−→ and consequently, supn |θn − θ∗|2 is a.s. finite

X
∑

k≥1 γk+1〈θk − θ∗,h(θk)〉 < +∞.

Step 4. Define

l = lim inf
k→∞

〈θk − θ∗, h(θk)〉 ≥ 0.

We must have l = 0, otherwise there is a contradiction with the convergence.

Step 5: T ∗ = {θ∗}. Up to an subsequence extraction (θk bounded), we show
that θσ(k)

a.s.−→ θ∗ and finally the whole sequence θk
a.s.−→ θ∗.

Step 6: T ∗ contains several points. Similar arguments using a dense subset
of T ∗. . . �

Winterschool - Lunteren (Netherlands) - 2018, January 22-23-24 115/120



E. Gobet - Simulation of (nested/extreme) risks in finance4.2 SA (Robbins-Monro) algorithm with nested simulations

4.2 SA (Robbins-Monro) algorithm with nested
simulations

From [Barrera, Crépey, Diallo, Fort, G’, Stazhinsky, 2018] for XVA computations.

We aim at computing the VaR of losses of the form

L := Φ +DE1 [W ]− E0 [W ′] ,

where

X Z=observable financial/economic variables serving to project values on,

X the second/third terms of L are the future and present liability valuations,

I (W | Z1 = z1)
d
= Π(z1, ·)

I (W ′ | Z0 = z)
d
= Π′(z, ·)

X the first term Φ is the realized loss on the interval [0, 1],

X D is the (random) discount factor.
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Example. Euro Median Term Note (EMTN), issued by a bank, with a
performance linked to the Euribor rate denoted by Z. Then

L := Φ +DE1 [W ]− E0 [W ′] ,

corresponds to

X W ′ = ϕ(Z1)1D≥1 +Dϕ(Z2)1D≥2,

X W = ϕ(Z2)1D≥2,

X Φ = ϕ(Z1)1D≥1.

Algorithm principle (nested simulations in SA algorithm) Instead of
sampling exactly L := Φ +DE1 [W ]− E0 [W ′], we sample approximately using a
MC average of E1 [W ] for each Z1 and a MC average for E0 [W ′].
�

We may not compute anymore the VaR of L, except if the inner MC contains
more and more samples. Interaction with the SA step γk?
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1 Input: A positive sequence {γk, k ≥ 1}, N∗-valued sequences
{Mk,M

′
k, k ≥ 1}, ξ0 ∈ R, χ0 = 0 and z ∈ Rq.

2 for k = 1 to K, do
3 /* Sampling step */

4 Sample (Φk, Dk, Zk1 ) with the same distribution as (Φ, D, Z1)

conditionally to Z0 = z, independently from the past draws ;

5 Sample M ′k independent copies {W ′m, 1 ≤ m ≤M ′k} with the

distribution Π′(z, ·);
6 Given Zk1 , sample Mk independent copies {Wm,k, 1 ≤ m ≤Mk} with the

distribution Π(Zk1 , ·);

7 Compute Lk := Φk +Dk 1
Mk

∑Mk

m=1Wm,k − 1
M ′k

∑M ′k
m=1W

′
m ;

8 /* Update the VaR estimates */

9 ξk = ξk−1 − γk(1Lk≤ξk−1
− α) ;

10 Return(The sequences {ξk, 1 ≤ k ≤ K})
Algorithm 1: Estimate of VaRα(L)
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4.2.1 Convergence
Assume

i) The distribution of L has a bounded density and D is bounded.

ii) For some p? ≥ 2, W and W ′ have finite polynomial moments of order p?.

iii) There exists κ ∈ (0, 1] such that∑
k

γk = +∞,
∑
k

γ1+κ
k < +∞,∑

k≥1

γ1−κ
k (Mk ∧M ′k)

−p?/(1+p?)
< +∞,

∑
k≥1

γk (Mk ∧M ′k)
−1/2

< +∞.

Flexibility in the trade-off between γk → 0 and Mk,M
′
k → +∞.

Theorem. Assume the previous assumptions. Then there exists a bounded
random variable ξ∞ such that

ξk
a.s.−→ ξ∞.

and ξ∞ is a α-quantile of L = Φ +DE1 [W ]− E0 [W ′].

See [Barrera, Crépey, Diallo, Fort, G’, Stazhinsky, 2018] for numerical results.
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4.2.2 Conclusion, perspectives

X Inner MC into SA for computing VaR in future valuations

X Sequential procedure 6= batch procedure of sample-sort scheme

X Convergence rates are available

X What about boosting the convergence by IS or POP sampling?

X Other topics: model mis-specification (model risk)

I quite important problem in the tails

I sensitivity analysis may be not enough

I better with Uncertainty Quantification. Some first results in [Crépey,

Fort, G’, Stazhinsky, 2017]

https://hal.archives-ouvertes.fr/hal-01629952/
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