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0 Notations



Before stating equations, agree on notations and conventions

Slides written in English / Transparents en anglais, avec quelques traductions
Colors

@ Direction that we will follow
@ Direction that we will leave
@ Important expressions
@ Emphasize or Danger

General notation

@ { € R, time variable
® 0; := 2 time derivative
@ X, space variable

o In 3 dimensions X = (x4, X2, X3)
@ In 2 dimensions x = (xy, X2)

@ Forje {1,2,3}, 9 := aix,- partial space derivative
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Operators of order 1 and 2 in 3 dimensions of space

V is the gradient operator. For scalar distribution ¢

O1p
Vo = | 0
O3

div is the divergence operator: For vector distributions u = (u1, Us, Us)
dvu=V . -u=01u + dallr + O3Us
curl is the curl operator / rotationnel. For vector distributions u = (us, U, us)
02 us — 83U2
curlu=V xu=|0suy —OUs
01Uz — DUy
A is the Laplace operator (aka Laplacian). For scalar distribution ¢

Dp = o+ 0o+ e
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Important relations

divVe = Agp
diveurlu=0
curlVo =0

curlcurlu — Vdivu = —Au

Auy
Au= | Auw
Aus

where the vector Laplacian is
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e Maxwell equations
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Time dependent Maxwell equations

Unknowns are 4 vector functions (fields / champ) with 3 components each
@ & electric field
@ /€ magnetic field
@ 9 electric displacement
@ 73 magnetic induction
Maxwell equations consist of the 4 relations

B +ceurl6 =0 (1a)
div®y =p (1b)
09 —curl#6 = — ¢ (1c)
dives =0 (1d)

@ (1a) Faraday’s law

@ (1b) Gauss’s law with p the scalar charge density

@ (1c) Ampere’s circuital law, modified by Maxwell, with current density ¢
@ (1d) tells that % is solenoidal
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Time harmonic Maxwell equations

By partial in time Fourier transformation, or because the data ¢ and p are
time harmonic, we assume that &, /¢, %, and % are time harmonic, i.e. that
there exists w € R such that

&(t,x)=e ™E(x), #(tx)=e “'H(x),
B(t,x)=e “'B(x), D(tx)=e “'D(x)

Then the 4-equation system becomes

curlE — iwB=0 (2a)
dvD=p (2b)
curlH+ iwD =J (2¢)
dvB=0 (2d)

Divergence constraints

@ Apply div to (2a) = iwdiv B = 0. Hence (2d) implied if w # 0

@ Apply div to (2c) = iw div D = div J. Hence the relation iwp = divJ
The 4-equation system is not closed.
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Constitutive equations for linear media

Then D is proportional to E and B is proportional to H
D=c¢cE and B=uH

with coefficients £ = £(x) (electric permittivity) and u = p(x) (magnetic
permeability) depending on the material property at x.

Material coefficients £ and p can be matrix valued (anisotropic materials).
We consider here isotropic materials for which ¢ and . are scalar.
Particular materials

@ Vacuum (or free space): e = ep and pu = po

@ Dielectric material: € and p real, e > ¢p and p > pyo for classical
materials, possibly negative for metamaterials.

@ Conducting material: © > o real and e complex valued, with
Ime = ow™" where o is the conductivity.

Globally in R?, ¢ and p are piecewise constant depending on which material
occupies the space at each point.

Teo =8.854 x 1072 Fm~" and g = 4w x 1077 Hm~'. Speed of light ¢ = (gop0) /2.
772



Time harmonic Maxwell equations with constitutive laws

Putting all together we obtain

curl E — jiwpH =10 (3a)
diveE =p (3b)
curl H+ jiweE =d (3¢)
divpH =10 (3d)
Leaving aside the source problem we take p = 0 and J = 0:
curl E — jwpH =0 (4a)
diveE =0 (4b)
curl H+ jweE =0 (4c)
divuH =0 (4d)

The problem is to find triples (w, E, H) with w € C, and (E, H) # (0,0) in
admissible function spaces
@ In R?, this is the problem of finding scattering resonances.Suitable
radiation conditions at infinity have to be imposed. In general Imw < 0.
@ In bounded domains, combined with suitable boundary conditions, this is
the problem of finding cavity resonances. In general w € R.
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The cavity problem

An electromagnetic cavity Q is a bounded region of R® that is isolated from
an electromagnetic point of view from the outside region R® \ Q.

This is an idealization of a Faraday cage for which we consider that Q is
surrounded by a layer of infinite conductivity o. Then the electric field E is
zero outside Q and this causes the boundary condition

Exn=0 on 092 (thetangential component of E is 0 (5)

Here n is the unitary outward normal field to 9%2.

This can be rigorously proved by setting Maxwell equation in a region
containing © and its surrounding conductive medium and let o tend to infinity.
Going to this limit exhibits the skin effect / effet de peau / in conductive media.
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o Variational formulation for cavity problem
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Elimination of magnetic field

Recall equations

curlE — jiwpH=0 in Q (6a)
diveE=0 in Q (6b)
curlH+ jiweE=0 in Q (6c)
divpH=0 in Q (6d)
Exn=0 on 00 (6e)
Using (6a) it is tempting to eliminate H by writing: iwH = & curl E which
yields, formally with (6c)
curl % curlE — w?*:E =0 @)

Most frequently, one finds (7) in the literature, followed by an integration by
parts to find a variational formulation.

We will rather start from the system (6) to find directly the variational
formulation, which allows to find variational spaces without doubt.
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The space H(curl; Q2)
Assume that E € [2(Q)® and H € [?(Q)®. Then (6c) and (6a) yields
curlE € L?(Q)° and curlH e L?(Q)®
This leads to introduce the space

H(eurl; Q) = {U € [3(Q)°, curlU e L*(Q)%}

Lemma [Girault-Raviart, 86]
Let  be a bounded Lipschitz domain?. Then 6°°(Q)?® is dense in H(curl; Q).

4A Lipschitz domain is a domain that is (after possible rotations) the epigraph of a Lipschitz
function in the neighborhood of each of its boundary points.

Consequence: if U € H(curl; ), the tangential trace U x n makes sense in
H~1/2(8Q)* thanks to the identity, valid for any ¢ € H'(Q)®:

<U><n,d>>H,1/2(69)3|H1/2(6Q)3:/U-curI¢dx—/curIU~¢dx
Q Q
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The space Hy(curl; Q)

Then we can introduce the H-curl space with zero tangential traces
Ho(curl; Q) = {U € H(curl;Q), uxn|,, =0}
Then

Lemma [Girault-Raviart, 86]
Let Q be a bounded Lipschitz domain. Then 65°(Q2)* is dense in Hy(curl; Q).

And an important consequence

Lemma
Let 2 be a bounded Lipschitz domain. Then

/U-curl de:/curIU- Vdx VU e Hy(eurl;Q2), VYV € H(curl; Q).
Q Q
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Towards variational formulation of cavity problem

Recall
curlE — iwpH=0 in Q (6a)
curlH+ jiweE=0 in Q (6¢c)
Exn=0 on 02 (6e)

If E € L2(Q)* and H € [3(Q)®, then E € Ho(curl; Q) and H € H(curl; Q).

Pick a test function E’ € Hy(curl; Q). Multiply (6a) by ~" on the left, take the
- product with curl E’ on the right, integrate over Q

/ (,tf1 curl E - curl E' — iwH - curl E') dx =0 (6a)
Q
Multiply (6¢) by iw, take the - product with E’ on the right, integrate over Q
/ (iw curlH-E — <E. E’) dx =0 (6¢))
Q

Add (62’) and (6¢’), use the Lemma on previous slide and obtain

/ (,u_1 curlE - curl E' — w2 E - E') dx =0
Q
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Electric spectral problem

Definition
Let Q2 be a bounded Lipschitz domain. The electric spectral problem is to find
pairs (w, E) with non-zero E € Hy(curl; ©2), such that

/ (p,_1 curl E-curl E' — w?:E - E’) dx =0 VE' € Ho(cur;Q) (8)
Q

Many questions arise
@ Can we find solutions?
@ Do solutions correspond to solutions of the cavity problem?
© Can we discretize (8) by Finite Element Method (Galerkin projection)

We address these questions on a simplified two-dimensional problem which
@ Encounters the same difficulties as the original 3D problem

@ Has solutions that can be alternatively deduced by solving a scalar
equation.
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Part Il
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o Toy problem — Bench test
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From 3 to 2 dimensions

@ Take ¢ and p constant equal to 1.
@ Take as domain Q a 2-dim. polygon (straight sides).

To find the Maxwell cavity problem in Q in its TE (Transverse Electric)
formulation we go back to the 3-dim. formulation, considered in Q x R:

curlE —iwH=0 in QxR (6a)
dvE=0 in QxR (6b)
curlH+iwE=0 in QxR (6¢c)
dvH=0 in QxR (6d)
Exn=0 on 90QxR (6e)

and assume that
@ E and H are function of (x1, x2) only (no dependence in x3)
@ F5=0,H =H,=0,i.e.

E; 0
E=|E and H=| 0
0 Hs

Note that (6d) is already satisfied. We obtain YA
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31E2—82E1 —in3:0 in Q ( )
O1Ei +E; =0 in Q (9b)
OpH3 + iwEy =0 and —01Hz+iwEy =0 in Q (9c)
Eino — Eony =0 on 9Q ( )
Define the scalar curl (denoted rot) in 2 dimensions as
rotU = 01U, — Uy for U= (Ug,Us)
and the spaces H(rot; ) and Hy(rot; ) accordingly.

By the same method as in 3-dim. we find that U = (Ej, E) is solution of the
Electric Maxwell spectral problem in 2-dim.
Find pairs (w, U) with non-zero U € Hy(rot; ©2), such that

/ (rot Urotl —u?U- u’) dx =0 VU € Hy(rot; Q) (10)
Q

Observe that (9¢) implies 81 Hs and 8, H3 are in L2(Q). Hence H; € H'(Q). We find:
Neumann spectral problem
Find pairs (w, Hz) with non-zero Hz € H'(Q), such that

/Q(VH3~VH’—U.;2 Hy H’) dx=0 VH € H'(Q) 1)

The TE cavity problem
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The electric Maxwell spectral problem (rot-rot eigenmodes)

Proposition 1

Let Q be a 2-dim. simply connected Lipschitz domain.
Let (w, U) € C x Hy(rot; Q) be a solution of

(%) / (rot UrotlU —u?U- U’) dx =0 VYU € Hy(rot; Q)
Q
@ Ifw = 0, then exists a scalar potential ¢ such that
e H)(Q) and Vo=U

Conversely, if o € Hj(Q), then (0, V) solves (x).
Q Ifw # 0, then div U = 0 and exists a scalar potential® ¢ € H'(Q) s. t.

YbeH'(Q) and roty=U
and (w?, ) is an eigenpair of the Neumann problem

(%) /Q (vw VY — o ¢¢’) dx=0 Wy € H'(Q)

Conversely, if (w?, 1) is an eigenpair (++), then (w, 5{1/)) solves (x).

a ﬁw is the vector curl in 2-dim. : r’o’w = (8o, —ny)* 18/72
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@ lfw=0,thenrotU =0.
@ As Q is simply connected, there exists a potential ¢ such that Vp = U.
@ Since U x n = 0on 99, then ¢ is constant on 992.

@ The simple connectedness implies that Q2 has one component, so ¢ can be
chosen in H} ().

@ If w # 0, choose as test function U’ = V', with ¢’ € H}(Q). Then (x) =
/ U- Ve dx=0 Y¢' cH(Q)
Q
Therefore, in the sense of duality
(dvU, ¢') 1) @) =0 V¢ € H ()
Hence div U = 0. This implies the existence of a scalar potential ¢ s.t. Wtw =U. As
rotroty = —A¢ and  rote - roty = Vi - Vi
U € Ho(rot; Q) <= ¢ € D(AN; Q) := {v € H'(Q), Av € L3(Q) & dnV|,, =0}
With the test functions U’ = r3>td;’ forany ¢’ € D(AN®Y; Q), () implies that 1 satisfies

(¥ % %) /Q (Aw AY — WP VY- vw’) dx=0 Vy' e DN Q)
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End of proof

Integrating by parts (* * *) implies

/Q(A?/)Aw'+w21/)Aw’)dx:o vy € D(ANY; Q)

/9 (Aw +w? w) Ay'dx =0 Vi’ € D(ANY; Q)

Denote by L2(Q) the space of functions L?(Q) orthogonal to constants on Q

Lﬁ(Q):{veB(Q), /dex:o}

Now, we can choose v € L2(£), and still have roty = U. The operator ANev
ANev: p(aNey; Q) — 12(Q) is onto / surjectif
Hence
/Q (8w +e?o)vdx =0 e 2@
and, since Ay + w? 4 belongs to L2(Q)
AY+w?p=0
Finishing the proof is now easy.
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The TE cavity problem versus the rot-rot spectral problem

Corollary

Let 2 be a 2-dim. simply connected Lipschitz domain.
The solutions (w, (E1, Ez, Hz)) of the TE cavity problem (9) are

@ w = 0 with E; = E; = 0 and H; non-zero constant.

@ w # 0 such that w? is an eigenvalue of ANeU_ the positive Laplace operator with
Neumann conditions: AN®Y = —A with operator domain D(ANeY; Q). Then

(Ev, Ep, Hg) = (Fot v, —iwrp)
with + eigenvector of ANeU associated with w?.

Remarks on 3-dim. domains
If Q is a 3-dim. simply connected Lipschitz domain, the solutions of

() / (curlU -cun U — 2 U-U')dx =0 VU’ € Ho(curl; Q)
JQ

are related to the cavity problem in a similar way:
w=0=divU#0 and w#0=—=divU=0

and the solutions of the cavity problem can be deduced from those of (x) when w # 0.
But, in 3-dim. there is no scalar potential in general.
The 2-dim. serves as a bench test / banc d’essai/ for 3-dim.
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e Numerical test / Rien ne va plus
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Consider Q = (0, 7) x (0, 7).
By separation of variables, we find that the eigenpairs of AN®" are

F=f i for any integers ji, o € {0,1,2,...}
¥(x1, x2) = cos(ji x1) cos(jaxz) ’ T

Using Proposition 1, this implies that the solutions of the electric Maxwell
spectral problem

(%) / rotU rotU’ dx = wz/ U.-U dx YU € Hy(rot; Q)
Q Q

correspond to eigenvalues w? equal to
@ 0 (with infinite multiplicity)
Q@ 1,1,2, 4,4 5 5 8,9 9,10, 10, 13, 13, ...
(with repetition according to multiplicity)
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Finite element method

@ Let a be bilinear (or sesquilinear) form well defined on a product space

VxV
a(u, v)_zz > Z/ 0 0% u,8/3v,)dx

Jole<11B]<1

Spectral problem associated with a: Find pairs (A, u), with0 # u € V s. t.
() a(u,v) = MU, V)22 YVEV

O Let V be a finite dimensional subspace of V. B
Galerkin projection of problem (): Find pairs (X, &), with 0 # u € V s. t.

(1) a(t, v) = XU, V) 2q)12() YV € %

@ The Finite Element Method LFEM] consists in constructing and
implementing suitable spaces V. In general, they are based on a mesh of
(subdivision into triangular or quadrilateral elements in 2-dim.) and piecewise
(mapped-)polynomials in each element of the mesh.

Analysis of FEM: proving (or disproving) convergence when dim V = oo.
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Let'sgo/ Ony va

&
8
12F ° :
&
&
10 y
8 &
®
6f ,.&Q&
4 Mf
2 5
0 M . . . .
0 20 40 60 80 100 120 140

Triangular mesh
~ 450 Lagrange elements
of degree 1

| Sort computed eigenvalues

by increasing order

M<he <o

@ Abscissa: rank of computed eigenvalue 1 < n < 140

@ Ordinates: value of A\,

@ Horizontal lines = exact values for );
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Another try / Un autre essai

Mesh with one square element

1ol { of degree 8 :
u= (i, 0
10 . (i Te)
with
8 Ui, o € Qg =Pg @ Pg

Sort computed eigenvalues

4 by increasing order
M<he <o

2

0 ‘ Il'y a encore un probleme

0 10 20 30 40 50 60 70

@ Abscissa: rank of computed eigenvalue 1 < n <70
@ Ordinates: value of A,
@ Horizontal lines = exact values for );
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Another try / Un autre essai

Mesh with one square element

1ol { of degree 8 :
u= (i, 0
10 . (i Te)
ooe with
8 Ui, o € Qg =Pg @ Pg

Sort computed eigenvalues

4 ocus by increasing order
M<he <o

2

0 ‘ Il'y a encore un probleme

0 10 20 30 40 50 60 70

@ Abscissa: rank of computed eigenvalue 1 < n <70
@ Ordinates: value of A,
@ Horizontal lines = exact values for );
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Try something else (breaking identity between components)

14

12p

10

00 10 20 30 40 50

60

70

Mesh with one square element

1 of mixed degrees 7&8 :

U= (0, Os)
with
ﬁ1 cP;® Pg Ez € Pg® P7

| Sort computed eigenvalues

by increasing order
M<h<
II'n’y a plus de probléeme

This is an “edge element”
cf lecture by Martin.

@ Abscissa: rank of computed eigenvalue 1 < n <70

@ Ordinates: value of A,
@ Horizontal lines = exact values for );
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Part Il
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e Standard regularization
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Rappels on Dirichlet and Neumann scalar Laplace operators

Let Q2 be a bounded Lipschitz domain. Denote by ay the bilinear form
av(u,v):= / Vu-Vvdx, for u, veH (Q).
Q

@ The positive Dirichlet Laplacian AP is defined from H} () into its dual space
H=1(Q) by .
APT(u) = F with (F, V>H—1(n) H@) = av(u,v)

NB: Since H~'(Q) is a space of distributions in Q, we have F = —Au.

Since ay is coercive on H} (), AP is invertible with compact inverse. The domain (in
the sense of domain of unbounded operators) is

D(AP"; Q) = {ve H(Q), Fel*Q)}
The operator AP defines an isomorphism from D(APT; Q) onto L?(R).

The spectrum of APT is discrete and formed by a sequence of positive eigenvalues A\B"
that tends to infinity as n — +oo.
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Rappels on Dirichlet and Neumann scalar Laplace operators

Let Q2 be a bounded Lipschitz domain. Denote by ay the bilinear form
av(u,v):= / Vu-Vvdx, for u, veH (Q).
Q

@ The non-negative Neumann Laplacian ANeY is defined from H'(Q) into its dual
space H'(Q)’ by

ANU(U) = Fowith (F,V) 0y i) = av (U, V)

NB: Since H'(Q)’ is not a space of distributions in Q, it may happen that F # —Au

Since ay + Id is coercive on H'(Q), ANeU 1 Id is invertible with compact inverse.
D(ANY: Q) = {ve H'(Q), Fel2(Q)}

F € 12(Q) means that there exists a function f € L2(Q) such that (F,v) = [, fv dx.
We deduce that

D(ANeu;Q) _ {V c H1 (Q), Av € LZ(Q) and 8nV|BQ = 0}

The spectrum of ANeU is discrete and formed by a sequence of non-negative
eigenvalues / valeurs propres positives ou nulles / \NeU — o0 as n — +oo.
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Blowing up the kernel / Exploser le noyau /of the rot-rot operator

Recall that we want to compute FEM approximations of the eigenpairs (A, U) with
X = w? and non-zero U € Hy(rot; 2), solution of

(%) / rotU rotU’ dx = )\/ U-Udx VYU € Hy(rot; Q)
Q Q

The “standard” approximation theory [Osborn, 75] [Babuska-Osborn, 91] applies if
there is a compact embedding of the space V corresponding to the left hand side of (x)
into the space H corresponding to its right hand side. But in our case

V = Hy(rot; Q) and H = L?(Q)?

The embedding Ho(rot; Q) — L?(£2)? is not compact. The symptom is the infinite
dimensional kernel.

Since we are interested by the divergence-free solutions of (x), a natural idea is to
regularize the rot-rot bilinear form by the div-div form.

Notation
For any chosen s > 0/ pour tout s fixé, / set
a[s|(U,U’) = / (rotU rotU’ + sdivU divU’) dx
well defined on the new space ?
Xn() = {V € Hy(rot; Q), divV e [3(Q)}
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The divergence

Lemma

Let © be a 2-dim. Lipschitz domain. Choose s > 0. Let (X, U) € R x Xy(Q2) be an
eigenpair of a[s]

(+) als|(U, U') = A/ U.U dx WU € Xn(Q)
Q
Then div U € H}(Q) and [ @ or @ holds]
@ div U =: & is an eigenvector of s AP" with eigenvalue A:
& e H(Q) solves s/ Vo - Vo' dx = )\/ oo dx Vo' € Hi(Q)
Q Q
Q divU=0.

Proof
Set ¢ := div U. Choose as test function U’ = V&’ with

¢’ € D(APT; Q) = {v €HI(Q), Ave LZ(Q)}.
Then U’ = V&' belongs to Xy(Q) since:
@ P e H'(Q) = U € ?(Q)
@ ¢, =0=Uxnl,;=0
@ Ad € [2(Q) = divU € [3(Q)
30/72



The divergence: Proof of Lemma

Set ® := div U. Choose as test function U’ = V&’ with &’ € D(AP"; Q). Then (x) =
s/ ¢ divve’ dx = )\/ U.- Vo' dx  vo' e D(APT; Q)
Q Q

Observe that

@ divve/ = —APre/

° /Qu-w dx = —(dv U, ") 10 i) = 7/Qq> @’ dx
Therefore, we have the orthogonality condition

/ ® (s AP/ )\cb’) dx=0 Vo' e D(AP"; Q)
Q

In other words div U = ¢ belongs to the orthogonal of the range of the self-adjoint
operator s AP — X 1d:
DI 4
o e (range(sA T Id))
Then @ or @ holds

Q ois a non-zero element in the kernel of s AP _ \1d, i.e. is an eigenvector of
s AP with eigenvalue A.

Q ¢o=0.
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The scalar rot

We have a similar statement concerning the scalar rot of U:

Lemma

Let © be a 2-dim. Lipschitz domain. Choose s > 0.
Let (A, U) € R x Xn(£2) be an eigenpair of a[s]

(+) als|(U, U") :)\/QU- U dx WU € Xn(Q)

ThenrotU € H'(Q) and [ @ or @ holds]
Q@ rotU=0.
@ rotU =: W is an eigenvector of ANeU with eigenvalue A:

W e H'(Q) solves /vw-vw’ dx:A/\U\U’ dx vV € H'(Q)
Q Q

Proof
Similar as before. Now the test functions are U’ = rot W' with any ¢’ € D(ANev; Q).
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Spectrum of the regularized form g[s]

Theorem
Let © be a 2-dim. simply connected Lipschitz domain. Choose s > 0.

@ Let (AD <I>B"),721 be a complete system of eigenpairs of AP

@ Let (ANeu, whev) _  be a complete system of eigenpairs of ANeY,
with ANeY = 0 and wheu = 1
Then a complete system of eigenpairs for a[s] is given by the union of

(SAE",UBi")n>1 and (Aﬁe“,uMaX)

n>1
where
Q otUBV =0 and divUDY = @D
Q divUM™ =0 and rotUMax = pNeu
Proof. It suffices to set
UV — ' oD and UM — ' ot @Dir
n - )\Eir n n - )\”eu n

Since Q is simply connected, there is no non-zero field U € Xy(£2) such that
divU=rotU=0.
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Spectrum of g[s| and Maxwell spectral problem

The spectrum of a[s]: A € R, U € Xn(Q)
(%) / (rotU rotU' + sdivU divU’) dx = A[s]/ U-U dx VU € Xn(Q)
Q Q

has clearly two well separated parts:
@ A part that depends linearly of s and with curl-free eigenvectors
@ A part independent of s with divergence free eigenvectors. This is the
spectrum we are looking for.
How to distinguish them in numerical computations?
Two techniques:

@ Calculate the ratio _
= |rotU|?

(V) —
s||div U||?
We expect large values for approximation of divergence free
eigenvectors and small values for the others.
@ Calculate eigenvalues for several different values of s
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Spectrum of a[s] on the square, s =0

12f 1 Mesh with one square element
of degree 8 :
10 U= (in @
U= (i, ) € (Qs)
8 with b.c. U x n\m =0

Sort computed eigenvalues
by increasing order

4 M<he <o

Extra multiplicities

00 10 20 30 40 50 60 70

@ Abscissa: rank of computed eigenvalue 1 < n <70
@ Ordinates: value of A,
@ Horizontal lines = exact values for );
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Spectrum of g[s], s = 0.002 on the square

Mesh with one square element
| of degree 8 :

U= (lh, 0p) € (Qs)?

@ with b.c. U x n|69 =0

8 Sort computed eigenvalues
by increasing order

M<he <o

! 7(w) = | rotu||*(s| diva||*)~"

2 * when 7 small o when 7 large

% e 30 40 50 60 70 Leprobleme semble disparaitre

@ Abscissa: rank of computed eigenvalue 1 < n <70
@ Ordinates: value of A,
@ Horizontal lines = exact values for );
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Spectrum of g[s| on the square, dependence in s

" LS ' Mesh with one square element

10l | ofdegree 8:
U= (th, ) € (Qs)?
;

with b.c. U x n|6Q =0

Jl/f’f f f f Sort computed eigenvalues
by increasing order

M<h<

0

[22)
T

7(w) = | rotu||*(s| diva||*)~"

* when 7 small o when 7 large

15 2 25 3 a5 4 Leprobleme adisparu

@ Abscissa: Value of s
@ Ordinates: all smallest values of A\, < 14,n=1,2.3, ...
@ Horizontal lines = exact values for );
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e Non-convex corners
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Spectrum of g[s] on a L-shape domain, dependence in s

45

66868
a0k R and
35r

00000
30+ M‘V 1
25F

B T

WOOOOOOOOOOT

WOOOOOOOOOO(

0 1

2 3 4 5

@ Abscissa: Value of s

@ Ordinates: all smallest values of A\, <45, n=1,2.3, ...

@ Horizontal lines = values close to exact for A; (by computing Neumann
eigenvalues)

(2= (-1,12\[0,1] x [-1,0]|

Mesh with 9 quadrilateral
elements of degree 10 :

U e (Qo)?
withb.c. U x n|,, =0

Sort computed eigenvalues
by increasing order

M<h<
() = |[rotw||(s| diva||?)~"

* when 7 small o when 7 large

Patatras !
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Spectrum of g[s| on a L-shape domain: Interpretation

We observe
@ One (large) half of eigenvalues seems to be correctly approximated

@ The other (smaller) half is completely missed and replaced by something
else that does not have a clear behavior in s (neither linear nor constant).

@ The situation does not improve if we increase the polynomial degree or
the density of the mesh (or both)

The diagnosis is that

We converge towards something that we don’t expect

What? Why?
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Spectrum of g[s| on a L-shape domain: Explanation

Recall that
Xn(Q) = {V € Ho(rot; Q), divV e L*(Q)}

Denote by Hn(Q2) the space
Hn(Q) = Hi(Q)? N Xn(Q) = {V € Hi1(Q)?, V xn|,, =0}

The explanation is the conjunction of three facts:

@ In L-shape domain Q, Hn(Q) is strictly smaller that Xy(£2). Moreover, a
large part of eigenvectors U2" and UM do not belong to Hy(R)

@ The discrete Finite Element spaces are contained in Hy(f2)
@ Hn(Q) is closed for the topology of Xy(Q)

Conclusion: A large part of the eigenvectors of a[s] cannot be approximated
by a plain Finite Element discretization in Xy(£2).

Let us explain each point in more detail.
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Spectrum of g[s| on a L-shape domain. Point

There exists one corner singularity S = V®g,g s. t. [Birman-Solomyak 87]
Xn(Q) = Hv(Q) & (S)

where ®gng € D(AP"; Q) but dgng & H*(Q2). In polar coordinates (r, §)

Ssing(X) = x(r) r*° S'n( )
where x is a smooth function equal to 1if r <  andto 0 if r > 1. We have
D(A™"; Q) = (H* N H3)(Q) @ (Psing)

In fact, since we are in 2-dim.
S = Vg = rot Wgpg

where Wgng € D(ANY; Q) but Wging ¢ H*(Q2). Note Wsing = x(r) r*/* cos(%)

Almost all eigenvectors We" of AN that are even with respect to the
diagonal x; + x> = 0 “contain” this singularity, i.e.

W — e Wgng € H2(Q) for some coefficient ¢, # 0
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Spectrum of g[s| on a L-shape domain. Points 2 and =

© The FEM space are made of functions U that are
@ piecewise polynomials
O in the space Xy(Q).
We observe
@ rotis in L?(Q2) = no tangential jump for & between two elements.
@ divuis in L?(Q) = no normal jump for & between two elements.
@ Finally, both components of u are continuous over .
@ Therefore u belongs to Hy

© A sequence un € Hy(Q), m > 1, that is converging for the topology of
Xn(Q2) will never converge to a limit outside Hy(2) by virtue of
Theorem [Costabel, 91] [Costabel-Dauge, 99]

Let Q be a Lipschitz polygon.
The space Hy(Q2) is a closed subspace in Xy().

— In L-shape, instead of the Maxwell spectral problem, we are solving a
Lamé system with elasticity coefficients depending on s
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o Weighted regularization
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Introduction of a weight

@ Let Q be a polygon with one non-convex corner ¢ of opening w > 7

@ This applies to the L-shape domain Q with its non-convex corner at the
origin.

@ Let r = |x — c| be the distance function to the non-convex corner c.

@ Choose a number v € [0, 1]. This will be the exponent of a weight
function.

Notation
For any chosen s > 0 set
a,[s|(U,U') = / (rotu rotU + sr* divU div u') dx
Q

well defined of the new space
XU(Q) = {V € Ho(rot; ), r7divV e [3(Q)}

If v > 0, the norm in the divergence is relaxed (the norm is smaller than
without weight)
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Spectrum of a,[s] on a L-shape domain, v = 0

45
66868

a0 A< - and (2= (-1,12\[0,1] x [-1,0] |
35¢ 1 Mesh with 9 quadrilateral
a0l Wooow_ elements of degree 10 :

- = 2

u

o5l € (Qio)

B T

withb.c. U x n|,, =0

Sort computed eigenvalues

T TR TR TTTTTTY 00000000007 by increasing order
M<h<

osEEEEEEEIITIIIIIITI0992200000% (1) = || rot @|[?(s|| div &)~

* when 7 small o when 7 large

0 1 2 3 4 5
@ Abscissa: Value of s

@ Ordinates: all smallest values of A\, <14, n=1,23,...

@ Horizontal lines = values close to exact for A; (by computing Neumann

eigenvalues)
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Spectrum of a,[s] on a L-shape domain, v = 0.35

45
a0} " slo of [2=(-1,12\[0,1]x[-1,0]
f f | b b b
35f j’ 1 Mesh with 9 quadrilateral
30l ooozv“’vﬂ 0000000000000 elements of degree 10 :
A, e (Qp)

withb.c. U x n|,, =0

P ) S 3-
Z f Sort computed eigenvalues
15 v ooooooooooooooooooooc; by Increasing order
10} [f{d o096 M<Xe< -
5 j 7(U) = |[rota||?(s| diva|?)~
000000000
0 . L L L * when 7 small o when 7 large
0 2 4 6 8 10

@ Abscissa: Value of s

@ Ordinates: all smallest values of A\, < 14,n=1,2.3, ...

@ Horizontal lines = values close to exact for A; (by computing Neumann
eigenvalues)
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Spectrum of a,[s] on a L-shape domain, v = 0.5

of seooed  [2=(-1,1°\10,1]x [-1,0]]

351 1 Mesh with 9 quadrilateral
elements of degree 10 :
30 0.06.0005700000Y nnooonnnnoo _ 5
u
o5l A/ ﬁ /“ f | @ (Qi0)

oLl fnnnonov cooo000000000000 Withb.c. U x n|8§2 =0
20

/ f’ Sort computed eigenvalues
15} ﬁf; 1 bvi -
10" #0/6900000 A <<

f)/( 1 (@) = | rotu||?(s| diva|?)~

0.000000000000000000000000000000009
L s

0 2 4 6 8 10

* when 7 small o when 7 large

@ Abscissa: Value of s

@ Ordinates: all smallest values of A\, <45, n=1,2.3, ...

@ Horizontal lines = values close to exact for A; (by computing Neumann
eigenvalues)
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Spectrum of a,[s] on a L-shape domain, v = 1

(2= (-1,12\[0,1] x [-1,0] |

351 1 Mesh with 9 quadrilateral
30 % elements of degree 10 :
T 2
uc
Crogfiovsegettosntiemmosenes (@0
% oo0olio oBoooato
4 Soooobe

withb.c. U x n|,, =0

Sort computed eigenvalues
by increasing order

M<h<
() = || rot@||(s| div a||?)~"

* when 7 small o when 7 large

@ Abscissa: Value of s

@ Ordinates: all smallest values of A\, <45, n=1,2.3, ...

@ Horizontal lines = values close to exact for A; (by computing Neumann
eigenvalues)
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Theoretical result

Theorem Costabel-Dauge, 02
Let © be a polygon with one non-convex corner ¢ of opening w > 7 and let r
be the distance function to ¢. Let v be such that

Vs

1-—<y<1

w

Then, forany s > 0
@ Hn(R) is dense in Xy ()

@ The eigenvalues of a,[s] are correctly approximated by Lagrange finite
elements

The eigenvalues of a,[s] are
@ the sAD™” with the eigenvalues A\J"" of the Dirichlet realization of
v rPA(rv)

o the AN (independent of s and ~)

This theorem extends to 3-dim. polyhedra. The weight is the distance to the
union of non-convex edges.
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Singularities and weighted spaces

Let Q be a polygon with one non-convex corner ¢ of opening w > «
Define for m € N and 8 € R the weighted Sobolev space

KT(Q) = {v e L&e(Q), r*Tlagv e [3(Q) Va e N?,|a| < m}
Observe that
@ The Laplacian A = 9% + 05 is continuous from K2 ,(Q) into K9(Q).
e If U e Xy (Q), then divU € K%(Q).
@ The singularity ®sing has the form, in polar coordinates centered at ¢

Bing (X) = (1) ™/ sin(%e)

and dgng € K2_,(Q) if and only if = > 1 — v, i.e.

Theorem [Kondrat’ev, 67]
Lety e [0, 1]. Ify>1—-Z,
A isomorphism K2 () N Hy(Q) — KI(Q)
lfy<1-7Z,
A isomorphism K2 _5(2) N Hy(Q) @ (Psing) — K (Q)
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Main goal

Construction of finite element spaces Vy that allow spectrally correct
approximations of the Maxwell cavity problem, using the original variational
formulation in Ho(curl; Q).

Vv C Ho(curl; Q), piecewise polynomials on mesh Ty

uye W : / (curIuN-curIu’—w2 uN-u’) dx=0| Vu' € Wy
Q

N ~ dim Viy — oo either through
@ mesh refinement with fixed degree polynomials: “h-version”, or
@ fixed mesh, increasing degree of polynomials: “p-version”
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Interface conditions

Remark: Ideally, one would like to have
Vi C Ho(curl; Q) N H(div; Q) = Xn(Q).

() As defined in Part Ill, Xy(2) is not a discrete space. Different meaning of subscript “N”!
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Interface conditions

Remark: Ideally, one would like to have
Vi C Ho(curl; Q) N H(div; Q) = Xn(Q).
Not good.
One has to discretize Hy(curl; 2) and H(div; Q) separately and differently.

() As defined in Part Ill, Xy(2) is not a discrete space. Different meaning of subscript “N”!
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Interface conditions

Remark: Ideally, one would like to have
Vi C Ho(curl; Q) N H(div; Q) = Xy ().
Not good.
One has to discretize Hyp(curl; ) and H(div; Q) separately and differently.

A Lemma

Let Q = Q1 UT U and u, u defined on Q, uy; = u|gj. Then
Q Ify e H(), then ue H'(Q) < [[ullr=0
Q If u; € H(div;Q;), then ue H(div;Q) < [[u-n)lr=0
Q If u; € H(curl; Q)), then ue H(eurl; Q) < [[uxn]]r=0
Q Ifuy € LA(), then uel?Q)

Proof of @: For u’ € (C5°(Q))3:

(curlu, ') = (u,curlu’y = / u-curlu’ + u-curld
Q4 Q

= curlu-u’+/uxn~u’ds+ curIu-u’—/uxn-u’ds
o3 r [N r

J— N / . /
_/Q(CUﬂ u)lo\r - U +/r[[u>< nlr - u'ds 5372



Interface conditions

Remark: Ideally, one would like to have
Vi C Ho(curl; Q) N H(div; Q) = Xn(Q)1.
Not good.
One has to discretize Hy(curl; ) and H(div; Q) separately and differently.

Corollary

If u, u are piecewise polynomial on a mesh, then
Q ue H'(Q) < [[u]] = 0 on all interfaces
Q u € H(div; Q) <= [[u - n]] = 0 on all interfaces
Q@ u e H(curl; Q) < [[u x n]] = 0 on all interfaces
Q if u € H(div; Q) N H(curl; Q), then u € H'(Q)*

() Ae Aafinad im Part Il Y. (O) e mAt o Aierrata cmana PiEaramt manminm ~f ol fhenpimt S0 53/72



How to describe finite element spaces or “A finite element”

Ingredients

@ Mesh Jy. Elements K € Iy, triangles, quadrilaterals, tetrahedra,
hexahedra (cubes)... -
One assumes Q = Jy g, K

@ On each K, a local space of polynomials Pk. Usually defined on a
reference element and mapped to K.

© Degrees of freedom . Linear forms that describe a basis of the dual
space (Px)’. Adjacent elements may have joint degrees of freedom.

One can then define
@ a global finite element space

Vv ={u:Q — C| | ulx € Pxk; joint d.o.f. have a unique value }
@ an interpolation projector my

Uv=7nU <= uUveW & VteXg:tu—un)=0

The element is called W-conforming if Vy C W.
54/72



Spectrally correct approximation according to [Caorsi et al 2000]

@ Number the increasing sequence of non-zero eigenfrequencies w ,
repeated according to multiplicity

0< w<uw® <. <ol < ..

Q Let = e (0,w"). Number the increasing sequence of discrete
eigenfrequencies wy > ¢, repeated according to multiplicity

e< wﬁ)gwﬁ)g...gw%)g...

Good spectral approximation
@ (SCA) Spectrally Correct Approximation

VieN, lim W = w® and the eigenspaces converge.
— 00

@ (SFA) Spurious-Free Approximation

Ja>0, VNeN, w@¢(0,a] forallwl

(SCA) and (SFA) together correspond to taking e = 0 in @ 5572



Necessary and sufficient conditions for convergence [Caorsi et al 2000]

(CAS)
Completeness of the Approximating Subspaces

vue hofcur Q) fim - inf flu—onl, o =

(CDK)
Completeness of the Discrete Kernels
Vk € kercurl : NILmoo kNekercurmvN |lk — kN||L2(Q

(DCP) [KIKUCHI 1989]
Discrete Compactness Property
Any sequence {un}, __ with

uy € Vw0 (kery, curl)™ and flunll, .00 <

contains a subsequence that converges in L?(9)
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Spurious-free spectrally correct approximation

The ideal situation of eigenvalue approximation is to have (SFA) + (SCA):
With the exact eigenvalues

0< w<w?®< . << .
and the discrete eigenvalues

0< w <@ <. << ..
w)) converges to w(”, together with the eigenspaces.

Theorem [CAORSI - FERNANDES - RAFFETTO 2000]
(CAS) + (CDK) + (DCP) — (SFA) + (SCA) J

(CDK) means: Have enough gradients in Vy
For (DCP), must control discrete divergence-free functions. (Main difficulty!)
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@ Nedelec’s edge elements
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Div-conforming elements on simplices

Notation: P, polynomials of total degree k. _
Px homogeneous polynomials of degree k. = Py =Px_1 & Pk
Definition

K tetrahedron. _
Pk = Dx := (Pk_1)* @ Px_1x C (Px)®

Example k=1:ue D < u=a+bx,acC®beC.
“Raviart-Thomas element” RT;.
Degrees of freedom:

Q u— [,u-ng, qgePk+(f), fface of K

Qur— [Lu-q, qe (P)°
Global FE space Wy, interpolation projector wy, well defined on
Hz 3 (Q)3, 5 > 0.
Note: u € Dx = u - n € Px_(f) for all faces f of K.

Wy C H(div; Q)
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Curl-conforming elements on simplices

Definition (/< tetrahedron) }

Pc=Ri:=P1)’®{pe @)’ |p-x=0 C (B

Example k=1:uc R u=a+bxx,abeC
“Nedelec edge element”.
Degrees of freedom:

Q eedge:u— [,qu-t, gePii(e)

Q fface:ur ; f;u-q, q € (Pio(f))’

Quw— [Lu-q qge (Pis)
Global FE space Vy, interpolation projector ry, well defined on

{ue HEP(Q)® |curlu € LP(Q)},6 > 0,p > 2
Note: For k = 1, only @ appear (“edge element”).
Vi C H(eurl; Q)

A decomposition }

(P)® = Rk ® VPry+
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A commuting diagram

These spaces and their densely defined projection operators satisfy the
commuting diagram

H©Q) 29 Ho(eur Q) M Hdivi) 2% [2(Q)

|3 |mh=ru |7 = wy |
rad 1 di
Vi=P ¥ vi=ww 2 vE=w B V=P

Lagrange Nedelec Raviart-Thomas discont.
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Edge elements on hexhedra K cube)

Notation: Qx,;m =Pk @ P; @ Py
@ H' conforming: Px = (Qkxk)*
@ H(curl) conforming: Px = Qk—1.k.k X Qik—1.6 X Qu ke k—1
© H(div) conforming: Px = Qxk—14—1 X Qu_1.hk—1 X Qk_1.k_14
@ L2 conforming: Px = (Qk_1.k_1k-1)°

One has once again the De Rham complex and the commuting diagram
(“cochain projections”)
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Recall: Approximation on the square 2 = (0, 7) x (0, )

One square element ((Qs)? N Ho(curl; Q))
14

12 ]

10

00 10 20 30 40 50 60 70

Wrong multiplicities
Too many discrete divergence free functions
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Approximation on the square Q = (0,7) x (0,7)

Spurious eigenfunctions in (Qg)? N Ho(curl; Q): Graph of x-component

i i ‘\\‘\\\\\\\k&t\\\\\\\\\“w
‘ iy
. A ARs

: 1 \
0 0 0 0

True first eigenfunction Spurious eigenfunction
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Spurious eigenfunctions in Vy = (Qgg)? N Hy(curl; Q)

Notation PJ = Pg(0,7) N H{(0,7), Q= (0,m)2
Vi = (Qg,8)° N Ho(rot; Q) = Pg @ P x Pg ® Pg

u= (00, rergesgy= (100

(roturotv) —w2(u.v) = [[ 1009/ (y) (@211 — erve)oxdy o2 [ 109w (x. )xdy
:/07r g’(y)ay/(;ﬂf(x)w (x,y)dxdy — wz/oﬂg(y)/oﬂf(x)w (x,y)dxdy

- [ 10 aretxyyxdy =0 vy
<
Q /79 (y)dy —w? [f9(y)e(y)dy =0V ¢(y) = [gT(X)vi(x,y)dx &V ¢ € P
Q [ ()¢ (N)dx [ g (y)e(y)dy =0 Ve € B, 4 € Py
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Spurious eigenfunctions in Vy = (Qgg)? N Hy(curl; Q)

Q /79 ()¢ (V)dy —w? [Fa(y)é(y)dy =0 V¥ ¢ € Fg
This is the 1D Laplace—Dirichlet(—Pg-Galerkin) eigenvalue problem
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Spurious eigenfunctions in V) = (Q8,8)2 N Hp(curl; Q)

Q /79 ()¢ (V)dy —w? [Fa(y)é(y)dy =0 V¥ ¢ € Fg
This is the 1D Laplace—Dirichlet(—Pg-Galerkin) eigenvalue problem

Q [ 1(x)¢' (x)dx [5 o' (V)¥(y)dy =0 Vo €PY, ¢ € Py
< (f,¢') =0V or (g',¢) =0V

(9, ¥) =0V €ePg =g =0=g=0= u=0impossible

fePg (f,¢')=0Vp e IP’g has 2 independent solutions:

dimP§ =9 —2=7anddimPg = 9

1st solution f = 1, 2nd solution f(x) = Lg(%x — 1) (Legendre polynomial).

The 2nd solution gives spurious eigenfunctions that are discrete divergence-free, but
not divergence-free. In fact, their divergence goes to infinity with the polynomial
degree, in violation of condition (DCP).

Remedy: Eliminate 2nd solution by replacing Pg with 7.
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FEM-Table [femtable.org]

Penodlc 'I'able of the Fm:te Elements
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