

Harmonic Maxwell equations and their Finite Element discretization

Monique Dauge, Martin Costabel

► To cite this version:

Monique Dauge, Martin Costabel. Harmonic Maxwell equations and their Finite Element discretization. Doctoral. France. 2019. cel-02059645

HAL Id: cel-02059645 https://cel.hal.science/cel-02059645v1

Submitted on 6 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Harmonic Maxwell equations and their Finite Element discretization Les équations de Maxwell harmoniques et leurs discrétisations par éléments finis

Monique Dauge & Martin Costabel

IRMAR, Université de Rennes 1, FRANCE

Cours Doctoral IRMAR 2019 25 & 26 février 2019

This document includes the contributions by MD and MC and is available at: http://perso.univ-rennes1.fr/monique.dauge/publis/MaxwellMD.pdf

Outline / Plan / Contributions by MD and MC

- Part I. Introduction to Maxwell equations [MD]
 - Notations
 - Maxwell equations
 - Variational formulation for cavity problem
- Part II. Traps in Finite element discretization / *Quelques pièges* [MD] Toy problem – Bench test
 - 5 Numerical test / Rien ne va plus

Part III. Elliptic regularization: bad and good methods [MD]

- Standard regularization
- 7

10

- Non-convex corners
- Weighted regularization
- Part IV. Edge element techniques [MC]
 - Goals
 - Nedelec's edge elements

Part V. References

Part I

Introduction to Maxwell equations

Outline

2 Maxwell equations

Variational formulation for cavity problem

Before stating equations, agree on notations and conventions

Slides written in English / Transparents en anglais, avec quelques traductions

Colors

- Direction that we will follow
- Direction that we will leave
- Important expressions
- Emphasize or Danger

General notation

- $t \in \mathbb{R}$, time variable
- $\partial_t := \frac{\partial}{\partial t}$, time derivative
- x, space variable
 - In 3 dimensions *x* = (*x*₁, *x*₂, *x*₃)
 - In 2 dimensions $\mathbf{x} = (x_1, x_2)$
- For $j \in \{1, 2, 3\}$, $\partial_j := \frac{\partial}{\partial x_j}$ partial space derivative

Cavity problem

Operators of order 1 and 2 in 3 dimensions of space

 ∇ is the gradient operator. For scalar distribution φ

$$\nabla \varphi = \begin{pmatrix} \partial_1 \varphi \\ \partial_2 \varphi \\ \partial_3 \varphi \end{pmatrix}$$

div is the divergence operator: For vector distributions $\boldsymbol{u} = (u_1, u_2, u_3)$

div
$$\boldsymbol{u} = \nabla \cdot \boldsymbol{u} = \partial_1 u_1 + \partial_2 u_2 + \partial_3 u_3$$

curl is the curl operator / *rotationnel*: For vector distributions $\boldsymbol{u} = (u_1, u_2, u_3)$

$$\operatorname{curl} \boldsymbol{u} = \nabla \times \boldsymbol{u} = \begin{pmatrix} \partial_2 u_3 - \partial_3 u_2 \\ \partial_3 u_1 - \partial_1 u_3 \\ \partial_1 u_2 - \partial_2 u_1 \end{pmatrix}$$

 Δ is the Laplace operator (aka Laplacian). For scalar distribution φ

$$\Delta \varphi = \partial_1^2 \varphi + \partial_2^2 \varphi + \partial_3^2 \varphi$$

Maxwell equations

Cavity problem

Important relations

div
$$\nabla \varphi = \Delta \varphi$$

div curl $\boldsymbol{u} = 0$
curl $\nabla \varphi = 0$
curl curl $\boldsymbol{u} - \nabla$ div $\boldsymbol{u} = -\Delta \boldsymbol{u}$

where the vector Laplacian is

$$\boldsymbol{\Delta \boldsymbol{u}} = \begin{pmatrix} \Delta \boldsymbol{u}_1 \\ \Delta \boldsymbol{u}_2 \\ \Delta \boldsymbol{u}_3 \end{pmatrix}$$

Outline

Variational formulation for cavity problem

Time dependent Maxwell equations

Unknowns are 4 vector functions (fields / champ) with 3 components each

- & electric field
- ℋ magnetic field
- D electric displacement
- 38 magnetic induction

Maxwell equations consist of the 4 relations

 $\partial_t \mathscr{B} + \operatorname{curl} \mathscr{E} = 0 \tag{1a}$

$$\operatorname{div} \mathfrak{D} = \rho \tag{1b}$$

$$\partial_t \mathcal{D} - \operatorname{curl} \mathcal{H} = -\mathcal{J} \tag{1c}$$

$$\operatorname{div} \mathscr{B} = 0 \tag{1d}$$

- (1a) Faraday's law
- (1b) Gauss's law with ρ the scalar charge density
- (1c) Ampère's circuital law, modified by Maxwell, with current density ${\mathcal J}$
- (1d) tells that 38 is solenoidal

Time harmonic Maxwell equations

By partial in time Fourier transformation, or because the data \mathcal{J} and ρ are time harmonic, we assume that $\mathscr{E}, \mathscr{H}, \mathfrak{D}$, and \mathscr{B} are time harmonic, i.e. that there exists $\omega \in \mathbb{R}$ such that

$$\begin{split} & \mathscr{E}(t, \boldsymbol{x}) = \boldsymbol{e}^{-i\omega t} \boldsymbol{E}(\boldsymbol{x}), \qquad \mathcal{H}(t, \boldsymbol{x}) = \boldsymbol{e}^{-i\omega t} \boldsymbol{H}(\boldsymbol{x}), \\ & \mathscr{B}(t, \boldsymbol{x}) = \boldsymbol{e}^{-i\omega t} \boldsymbol{B}(\boldsymbol{x}), \qquad \mathscr{D}(t, \boldsymbol{x}) = \boldsymbol{e}^{-i\omega t} \boldsymbol{D}(\boldsymbol{x}) \end{split}$$

Then the 4-equation system becomes

$$\operatorname{curl} \boldsymbol{E} - i\omega \boldsymbol{B} = 0 \tag{2a}$$

$$\operatorname{div} \boldsymbol{D} = \rho \tag{2b}$$

$$\operatorname{curl} \boldsymbol{H} + i\omega \boldsymbol{D} = \boldsymbol{J} \tag{2c}$$

$$\operatorname{div} \boldsymbol{B} = 0 \tag{2d}$$

Divergence constraints

- Apply div to (2a) $\implies i\omega \operatorname{div} \boldsymbol{B} = 0$. Hence (2d) implied if $\omega \neq 0$
- Apply div to (2c) $\implies i\omega \operatorname{div} \boldsymbol{D} = \operatorname{div} \boldsymbol{J}$. Hence the relation $i\omega\rho = \operatorname{div} \boldsymbol{J}$

The 4-equation system is not closed.

Constitutive equations for linear media

Then **D** is proportional to **E** and **B** is proportional to **H**

 $\boldsymbol{D} = \boldsymbol{\varepsilon} \boldsymbol{E}$ and $\boldsymbol{B} = \boldsymbol{\mu} \boldsymbol{H}$

with coefficients $\varepsilon = \varepsilon(\mathbf{x})$ (electric permittivity) and $\mu = \mu(\mathbf{x})$ (magnetic permeability) depending on the material property at \mathbf{x} . Material coefficients ε and μ can be matrix valued (anisotropic materials). We consider here isotropic materials for which ε and μ are scalar. Particular materials

- Vacuum (or free space): $\varepsilon = \varepsilon_0$ and $\mu = \mu_0^{-1}$
- Dielectric material: ε and μ real, ε ≥ ε₀ and μ ≥ μ₀ for classical materials, possibly negative for metamaterials.
- Conducting material: $\mu \ge \mu_0$ real and ε complex valued, with $\operatorname{Im} \varepsilon = \sigma \omega^{-1}$ where σ is the conductivity.

Globally in \mathbb{R}^3 , ε and μ are piecewise constant depending on which material occupies the space at each point.

 $^{1}\varepsilon_{0} = 8.854 \times 10^{-12} \,\mathrm{Fm^{-1}}$ and $\mu_{0} = 4\pi \times 10^{-7} \,\mathrm{Hm^{-1}}$. Speed of light $c = (\varepsilon_{0}\mu_{0})^{-1/2}$.

Time harmonic Maxwell equations with constitutive laws

Putting all together we obtain

$$\operatorname{curl} \boldsymbol{E} - i\omega\mu\boldsymbol{H} = 0 \tag{3a}$$

$$\operatorname{div} \varepsilon \boldsymbol{E} = \rho \tag{3b}$$

$$\operatorname{curl} \boldsymbol{H} + i\omega\varepsilon\boldsymbol{E} = \boldsymbol{J} \tag{3c}$$

$$\operatorname{div} \mu \boldsymbol{H} = \boldsymbol{0} \tag{3d}$$

Leaving aside the source problem we take $\rho = 0$ and J = 0:

$$\operatorname{curl} \boldsymbol{E} - i\omega\mu\boldsymbol{H} = 0 \tag{4a}$$

$$\operatorname{div}\varepsilon\boldsymbol{E}=0 \tag{4b}$$

$$\operatorname{curl} \boldsymbol{H} + i\omega\varepsilon \boldsymbol{E} = 0 \tag{4c}$$

$$\operatorname{div} \mu \boldsymbol{H} = \boldsymbol{0} \tag{4d}$$

The problem is to find triples $(\omega, \boldsymbol{E}, \boldsymbol{H})$ with $\omega \in \mathbb{C}$, and $(\boldsymbol{E}, \boldsymbol{H}) \neq (0, 0)$ in admissible function spaces

- In ℝ³, this is the problem of finding scattering resonances.Suitable radiation conditions at infinity have to be imposed. In general Im ω < 0.
- In bounded domains, combined with suitable boundary conditions, this is the problem of finding cavity resonances. In general ω ∈ ℝ.

The cavity problem

An electromagnetic cavity Ω is a bounded region of \mathbb{R}^3 that is isolated from an electromagnetic point of view from the outside region $\mathbb{R}^3 \setminus \Omega$.

This is an idealization of a Faraday cage for which we consider that Ω is surrounded by a layer of infinite conductivity σ . Then the electric field *E* is zero outside Ω and this causes the boundary condition

 $\boldsymbol{E} \times \boldsymbol{n} = 0$ on $\partial \Omega$ (the tangential component of \boldsymbol{E} is 0 (5)

Here *n* is the unitary outward normal field to $\partial \Omega$.

This can be rigorously proved by setting Maxwell equation in a region containing Ω and its surrounding conductive medium and let σ tend to infinity. Going to this limit exhibits the skin effect / *effet de peau* / in conductive media.

Outline

3 Variational formulation for cavity problem

Elimination of magnetic field

Recall equations

$$\operatorname{curl} \boldsymbol{E} - i\omega\mu\boldsymbol{H} = 0 \quad \text{in} \quad \Omega \tag{6a}$$

 $\operatorname{div} \varepsilon \boldsymbol{E} = 0 \quad \text{in} \quad \Omega \tag{6b}$

$$\operatorname{curl} \boldsymbol{H} + i\omega\varepsilon\boldsymbol{E} = 0 \quad \text{in} \quad \Omega \tag{6c}$$

 $\operatorname{div} \mu \boldsymbol{H} = 0 \quad \text{in} \quad \Omega \tag{6d}$

$$\boldsymbol{E} \times \boldsymbol{n} = 0 \quad \text{on} \quad \partial \Omega \tag{6e}$$

Using (6a) it is tempting to eliminate *H* by writing: $i\omega H = \frac{1}{\mu} \operatorname{curl} E$ which yields, formally with (6c)

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \boldsymbol{E} - \omega^2 \varepsilon \boldsymbol{E} = 0$$
 (7)

Most frequently, one finds (7) in the literature, followed by an integration by parts to find a variational formulation.

We will rather start from the system (6) to find directly the variational formulation, which allows to find variational spaces without doubt.

The space $H(\operatorname{curl}; \Omega)$

Assume that $\boldsymbol{E} \in L^2(\Omega)^3$ and $\boldsymbol{H} \in L^2(\Omega)^3$. Then (6c) and (6a) yields

 $\textbf{curl}\, \boldsymbol{\textit{E}} \in \textit{L}^{2}(\Omega)^{3} \quad \text{and} \quad \textbf{curl}\, \boldsymbol{\textit{H}} \in \textit{L}^{2}(\Omega)^{3}$

This leads to introduce the space

 $H(\operatorname{curl}; \Omega) = \{ \boldsymbol{U} \in L^2(\Omega)^3, \quad \operatorname{curl} \boldsymbol{U} \in L^2(\Omega)^3 \}$

Lemma [Girault-Raviart, 86]

Let Ω be a bounded Lipschitz domain^{*a*}. Then $\mathscr{C}^{\infty}(\overline{\Omega})^3$ is dense in $H(\operatorname{curl}; \Omega)$.

^aA Lipschitz domain is a domain that is (after possible rotations) the epigraph of a Lipschitz function in the neighborhood of each of its boundary points.

Consequence: if $U \in H(\operatorname{curl}; \Omega)$, the tangential trace $U \times n$ makes sense in $H^{-1/2}(\partial \Omega)^3$ thanks to the identity, valid for any $\Phi \in H^1(\Omega)^3$:

$$\langle \boldsymbol{U} \times \boldsymbol{n}, \Phi \rangle_{H^{-1/2}(\partial \Omega)^3 \mid H^{1/2}(\partial \Omega)^3} = \int_{\Omega} \boldsymbol{U} \cdot \operatorname{curl} \Phi \, \mathrm{d} \boldsymbol{x} - \int_{\Omega} \operatorname{curl} \boldsymbol{U} \cdot \Phi \, \mathrm{d} \boldsymbol{x}$$

Maxwell equations

Cavity problem

The space $H_0(\operatorname{curl}; \Omega)$

Then we can introduce the H-curl space with zero tangential traces

```
H_0(\operatorname{curl}; \Omega) = \{ \boldsymbol{U} \in H(\operatorname{curl}; \Omega), \quad \boldsymbol{u} \times \boldsymbol{n} \big|_{\partial \Omega} = 0 \}
```

Then

Lemma [Girault-Raviart, 86]

Let Ω be a bounded Lipschitz domain. Then $\mathscr{C}_0^{\infty}(\Omega)^3$ is dense in $H_0(\operatorname{curl}; \Omega)$.

And an important consequence

Lemma

Let Ω be a bounded Lipschitz domain. Then

$$\int_{\Omega} \boldsymbol{U} \cdot \boldsymbol{\mathsf{curl}} \ \boldsymbol{V} \ \mathrm{d}\boldsymbol{x} = \int_{\Omega} \boldsymbol{\mathsf{curl}} \ \boldsymbol{U} \cdot \boldsymbol{V} \ \mathrm{d}\boldsymbol{x} \quad \forall \boldsymbol{U} \in H_0(\boldsymbol{\mathsf{curl}};\Omega), \ \ \forall \boldsymbol{V} \in H(\boldsymbol{\mathsf{curl}};\Omega).$$

Cavity problem

Towards variational formulation of cavity problem

Recall

$$\operatorname{curl} \boldsymbol{E} - i\omega\mu \boldsymbol{H} = 0 \quad \text{in} \quad \Omega \tag{6a}$$

$$\operatorname{curl} \boldsymbol{H} + i\omega\varepsilon\boldsymbol{E} = 0 \quad \text{in} \quad \Omega \tag{6c}$$

$$\boldsymbol{E} \times \boldsymbol{n} = 0 \quad \text{on} \quad \partial \Omega \tag{6e}$$

If $\boldsymbol{E} \in L^2(\Omega)^3$ and $\boldsymbol{H} \in L^2(\Omega)^3$, then $\boldsymbol{E} \in H_0(\operatorname{curl}; \Omega)$ and $\boldsymbol{H} \in H(\operatorname{curl}; \Omega)$.

Pick a test function $\mathbf{E}' \in H_0(\mathbf{curl}; \Omega)$. Multiply (6a) by μ^{-1} on the left, take the \cdot product with **curl** \mathbf{E}' on the right, integrate over Ω

$$\int_{\Omega} \left(\mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' - i\omega \boldsymbol{H} \cdot \operatorname{curl} \boldsymbol{E}' \right) \mathrm{d}\boldsymbol{x} = 0$$
 (6a')

Multiply (6c) by $i\omega$, take the \cdot product with **E**' on the right, integrate over Ω

$$\int_{\Omega} \left(i\omega \operatorname{curl} \boldsymbol{H} \cdot \boldsymbol{E}' - \omega^2 \varepsilon \, \boldsymbol{E} \cdot \boldsymbol{E}' \right) \mathrm{d}\boldsymbol{x} = 0 \tag{6c'}$$

Add (6a') and (6c'), use the Lemma on previous slide and obtain

$$\int_{\Omega} \left(\mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' - \omega^2 \varepsilon \, \boldsymbol{E} \cdot \boldsymbol{E}' \right) \mathrm{d} \boldsymbol{x} = 0$$

Electric spectral problem

Definition

Let Ω be a bounded Lipschitz domain. The electric spectral problem is to find pairs (ω , \boldsymbol{E}) with non-zero $\boldsymbol{E} \in H_0(\operatorname{curl}; \Omega)$, such that

$$\int_{\Omega} \left(\mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' - \omega^2 \varepsilon \, \boldsymbol{E} \cdot \boldsymbol{E}' \right) \mathrm{d} \boldsymbol{x} = 0 \quad \forall \boldsymbol{E}' \in \mathcal{H}_0(\operatorname{curl}; \Omega)$$
(8)

Many questions arise

- Can we find solutions?
- O solutions correspond to solutions of the cavity problem?
- Scan we discretize (8) by Finite Element Method (Galerkin projection)

We address these questions on a simplified two-dimensional problem which

- Encounters the same difficulties as the original 3D problem
- Has solutions that can be alternatively deduced by solving a scalar equation.

Part II

Traps in Finite element discretization

Outline

Toy problem – Bench test

From 3 to 2 dimensions

- Take ε and μ constant equal to 1.
- Take as domain Ω a 2-dim. polygon (straight sides).

To find the Maxwell cavity problem in Ω in its TE (Transverse Electric) formulation we go back to the 3-dim. formulation, considered in $\Omega \times \mathbb{R}$:

curl	E –	iω Η	= 0	in	$\Omega imes \mathbb{R}$	(6a)
------	------------	-------------	-----	----	--------------------------	------

- div $\boldsymbol{E} = 0$ in $\Omega \times \mathbb{R}$ (6b)
- $\operatorname{curl} \boldsymbol{H} + i\omega \boldsymbol{E} = 0 \quad \text{in} \quad \Omega \times \mathbb{R}$ (6c)
 - div $\boldsymbol{H} = 0$ in $\Omega \times \mathbb{R}$ (6d)

$$\boldsymbol{E} \times \boldsymbol{n} = 0 \quad \text{on} \quad \partial \Omega \times \mathbb{R}$$
 (6e)

and assume that

- **E** and **H** are function of (x_1, x_2) only (no dependence in x_3)
- $E_3 = 0, H_1 = H_2 = 0$, i.e.

$$oldsymbol{E} = egin{pmatrix} E_1 \ E_2 \ 0 \end{pmatrix}$$
 and $oldsymbol{H} = egin{pmatrix} 0 \ 0 \ H_3 \end{pmatrix}$

Note that (6d) is already satisfied. We obtain

Bench test

The TE cavity problem

$$\partial_1 E_2 - \partial_2 E_1 - i\omega H_3 = 0$$
 in Ω (9a)

$$\partial_1 E_1 + \partial_2 E_2 = 0$$
 in Ω (9b)

$$\partial_2 H_3 + i\omega E_1 = 0$$
 and $-\partial_1 H_3 + i\omega E_2 = 0$ in Ω (9c)

$$E_1 n_2 - E_2 n_1 = 0 \quad \text{on} \quad \partial \Omega \tag{9d}$$

Define the scalar curl (denoted rot) in 2 dimensions as

$$\operatorname{rot} \boldsymbol{U} = \partial_1 U_2 - \partial_2 U_1 \quad \text{for} \quad \boldsymbol{U} = (U_1, U_2)$$

and the spaces $H(rot; \Omega)$ and $H_0(rot; \Omega)$ accordingly.

By the same method as in 3-dim. we find that $\boldsymbol{U} = (E_1, E_2)$ is solution of the

Electric Maxwell spectral problem in 2-dim.

Find pairs (ω, \boldsymbol{U}) with non-zero $\boldsymbol{U} \in H_0(rot; \Omega)$, such that

$$\int_{\Omega} \left(\operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}' - \omega^2 \, \boldsymbol{U} \cdot \boldsymbol{U}' \right) \mathrm{d}\boldsymbol{x} = 0 \quad \forall \boldsymbol{U}' \in H_0(\operatorname{rot}; \Omega)$$
(10)

Observe that (9c) implies $\partial_1 H_3$ and $\partial_2 H_3$ are in $L^2(\Omega)$. Hence $H_3 \in H^1(\Omega)$. We find:

Neumann spectral problem

Find pairs (ω, H_3) with non-zero $H_3 \in H^1(\Omega)$, such that

$$\int_{\Omega} \left(\nabla H_3 \cdot \nabla H' - \omega^2 H_3 H' \right) d\mathbf{x} = 0 \quad \forall H' \in H^1(\Omega)$$
(1)

1)

The electric Maxwell spectral problem (rot-rot eigenmodes)

Proposition 1

Let Ω be a 2-dim. simply connected Lipschitz domain. Let $(\omega, \boldsymbol{U}) \in \mathbb{C} \times H_0(\operatorname{rot}; \Omega)$ be a solution of

(*)
$$\int_{\Omega} \left(\operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}' - \omega^2 \boldsymbol{U} \cdot \boldsymbol{U}' \right) d\boldsymbol{x} = 0 \quad \forall \boldsymbol{U}' \in H_0(\operatorname{rot}; \Omega)$$

1 If $\omega = 0$, then exists a scalar potential φ such that

$$\varphi \in H_0^1(\Omega)$$
 and $\nabla \varphi = \boldsymbol{U}$

Conversely, if $\varphi \in H_0^1(\Omega)$, then $(0, \nabla \varphi)$ solves (*).

2 If $\omega \neq 0$, then div $\boldsymbol{U} = 0$ and exists a scalar potential^a $\psi \in H^1(\Omega)$ s. t.

$$\psi \in H^1(\Omega)$$
 and $\overrightarrow{rot} \psi = U$

and (ω^2, ψ) is an eigenpair of the Neumann problem

(**)
$$\int_{\Omega} \left(\nabla \psi \cdot \nabla \psi' - \omega^2 \, \psi \, \psi' \right) \mathrm{d} \boldsymbol{x} = 0 \quad \forall \psi' \in H^1(\Omega)$$

Conversely, if (ω^2, ψ) is an eigenpair (**), then $(\omega, \overrightarrow{rot} \psi)$ solves (*).

^{*a*} $\overrightarrow{\text{rot}} \psi$ is the vector curl in 2-dim. : $\overrightarrow{\text{rot}} \psi = (\partial_2 \psi, -\partial_1 \psi)^{\perp}$

Proof

If $\omega = 0$, then rot $\boldsymbol{U} = 0$.

- As Ω is simply connected, there exists a potential φ such that $\nabla \varphi = \boldsymbol{U}$.
- Since $\boldsymbol{U} \times \boldsymbol{n} = 0$ on $\partial \Omega$, then φ is constant on $\partial \Omega$.
- The simple connectedness implies that ∂Ω has one component, so φ can be chosen in H¹₀(Ω).
- **2** If $\omega \neq 0$, choose as test function $U' = \nabla \varphi'$, with $\varphi' \in H_0^1(\Omega)$. Then $(*) \Rightarrow$

$$\int_{\Omega} \boldsymbol{U} \cdot \nabla \varphi' \, \mathrm{d} \boldsymbol{x} = 0 \quad \forall \varphi' \in H^1_0(\Omega)$$

Therefore, in the sense of duality

$$\langle \operatorname{div} \boldsymbol{U}, \varphi' \rangle_{H^{-1}(\Omega) \mid H^1_0(\Omega)} = 0 \quad \forall \varphi' \in H^1_0(\Omega)$$

Hence div $\boldsymbol{U} = 0$. This implies the existence of a scalar potential ψ s.t. $\overrightarrow{rot} \psi = \boldsymbol{U}$. As rot $\overrightarrow{rot} \psi = -\Delta \psi$ and $\overrightarrow{rot} \psi \cdot \overrightarrow{rot} \psi' = \nabla \psi \cdot \nabla \psi'$ $\boldsymbol{U} \in H_0(\operatorname{rot}; \Omega) \iff \psi \in D(\Delta^{\operatorname{Neu}}; \Omega) := \{ v \in H^1(\Omega), \ \Delta v \in L^2(\Omega) \& \partial_n v |_{\partial\Omega} = 0 \}$ With the test functions $\boldsymbol{U}' = \overrightarrow{rot} \psi'$ for any $\psi' \in D(\Delta^{\operatorname{Neu}}; \Omega)$, (*) implies that ψ satisfies

$$(***) \qquad \int_{\Omega} \left(\Delta \psi \, \Delta \psi' - \omega^2 \, \nabla \psi \cdot \nabla \psi' \right) \mathsf{d}\boldsymbol{x} = 0 \quad \forall \psi' \in \mathsf{D}(\Delta^{\mathsf{Neu}};\Omega)$$

End of proof

Integrating by parts (* * *) implies

÷

$$\int_{\Omega} \left(\Delta \psi \, \Delta \psi' + \omega^2 \, \psi \, \Delta \psi'
ight) \mathsf{d} \mathbf{x} = \mathbf{0} \quad orall \psi' \in \mathsf{D}(\Delta^{\mathsf{Neu}}; \Omega)$$

i.e.

$$\int_{\Omega} \left(\Delta \psi + \omega^2 \, \psi \right) \Delta \psi' \mathsf{d} \mathbf{x} = 0 \quad \forall \psi' \in \mathsf{D}(\Delta^{\mathsf{Neu}}; \Omega)$$

Denote by $L^2_{\circ}(\Omega)$ the space of functions $L^2(\Omega)$ orthogonal to constants on Ω

$$\mathcal{L}^2_\circ(\Omega) = \left\{ \mathbf{v} \in \mathcal{L}^2(\Omega), \quad \int_\Omega \mathbf{v} \, \mathrm{d}\mathbf{x} = \mathbf{0}
ight\}$$

Now, we can choose $\psi \in L^2_{\circ}(\Omega)$, and still have $\overrightarrow{rot} \psi = U$. The operator Δ^{Neu}

$$\Delta^{\mathsf{Neu}} : \mathsf{D}(\Delta^{\mathsf{Neu}}; \Omega) \longrightarrow L^2_{\circ}(\Omega)$$
 is onto / *surjectif*

Hence

$$\int_{\Omega} \left(\Delta \psi + \omega^2 \, \psi
ight) v \mathsf{d} oldsymbol{x} = \mathsf{0} \quad orall v \in L^2_\circ(\Omega)$$

and, since $\Delta\psi+\omega^2\psi$ belongs to $L^2_\circ(\Omega)$

$$\Delta \psi + \omega^2 \, \psi = 0$$

Finishing the proof is now easy.

The TE cavity problem versus the rot-rot spectral problem

Corollary

Let Ω be a 2-dim. simply connected Lipschitz domain. The solutions (ω , (E_1 , E_2 , H_3)) of the TE cavity problem (9) are

• $\omega = 0$ with $E_1 = E_2 = 0$ and H_3 non-zero constant.

2 $\omega \neq 0$ such that ω^2 is an eigenvalue of Δ^{Neu} , the positive Laplace operator with Neumann conditions: $\Delta^{\text{Neu}} = -\Delta$ with operator domain $D(\Delta^{\text{Neu}}; \Omega)$. Then

$$(E_1, E_2, H_3) = (\overrightarrow{\operatorname{rot}} \psi, -i\omega\psi)$$

with ψ eigenvector of Δ^{Neu} associated with ω^2 .

Remarks on 3-dim. domains

If Ω is a 3-dim. simply connected Lipschitz domain, the solutions of

(*)
$$\int_{\Omega} \left(\operatorname{curl} \boldsymbol{U} \cdot \operatorname{curl} \boldsymbol{U}' - \omega^2 \boldsymbol{U} \cdot \boldsymbol{U}' \right) \mathrm{d} \boldsymbol{x} = 0 \quad \forall \boldsymbol{U}' \in H_0(\operatorname{curl}; \Omega)$$

are related to the cavity problem in a similar way:

 $\omega = 0 \Longrightarrow \operatorname{div} \boldsymbol{U} \neq 0$ and $\omega \neq 0 \Longrightarrow \operatorname{div} \boldsymbol{U} = 0$

and the solutions of the cavity problem can be deduced from those of (*) when $\omega \neq 0$. But, in 3-dim. there is no scalar potential in general. The 2-dim. serves as a bench test / *banc d'essai* / for 3-dim.

Outline

Toy problem – Bench test

The square

Consider $\Omega = (0, \pi) \times (0, \pi)$. By separation of variables, we find that the eigenpairs of Δ^{Neu} are

$$\begin{cases} \omega^2 = j_1^2 + j_2^2 \\ \psi(x_1, x_2) = \cos(j_1 x_1) \cos(j_2 x_2) \end{cases} \text{ for any integers } j_1, j_2 \in \{0, 1, 2, \ldots\}$$

Using Proposition 1, this implies that the solutions of the electric Maxwell spectral problem

(*)
$$\int_{\Omega} \operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}' \, \mathrm{d}\boldsymbol{x} = \omega^2 \int_{\Omega} \boldsymbol{U} \cdot \boldsymbol{U}' \, \mathrm{d}\boldsymbol{x} \quad \forall \boldsymbol{U}' \in H_0(\operatorname{rot}; \Omega)$$

correspond to eigenvalues ω^2 equal to

- 0 (with infinite multiplicity)
- 1, 1, 2, 4, 4, 5, 5, 8, 9, 9, 10, 10, 13, 13, ...
 (with repetition according to multiplicity)

Finite element method

Q Let *a* be bilinear (or sesquilinear) form well defined on a product space $V \times V$

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \sum_{i} \sum_{j} \sum_{|\alpha| \le 1} \sum_{|\beta| \le 1} \int_{\Omega} \left(\boldsymbol{a}_{\alpha\beta} \, \partial^{\alpha} \boldsymbol{u}_{i} \, \partial^{\beta} \boldsymbol{v}_{j} \right) \mathrm{d}\boldsymbol{x}$$

Spectral problem associated with *a*: Find pairs (λ , *u*), with $0 \neq u \in V$ s. t.

(†)
$$a(\boldsymbol{u},\boldsymbol{v}) = \lambda \langle \boldsymbol{u},\boldsymbol{v} \rangle_{L^2(\Omega)|L^2(\Omega)} \quad \forall \boldsymbol{v} \in V$$

• Let \widetilde{V} be a finite dimensional subspace of V. Galerkin projection of problem (†): Find pairs $(\widetilde{\lambda}, \widetilde{\boldsymbol{u}})$, with $0 \neq \widetilde{\boldsymbol{u}} \in \widetilde{V}$ s. t.

(‡) $a(\widetilde{\boldsymbol{u}},\widetilde{\boldsymbol{v}}) = \widetilde{\lambda} \langle \widetilde{\boldsymbol{u}},\widetilde{\boldsymbol{v}} \rangle_{L^2(\Omega)|L^2(\Omega)} \quad \forall \widetilde{\boldsymbol{v}} \in \widetilde{\boldsymbol{V}}$

• The Finite Element Method [FEM] consists in constructing and implementing suitable spaces \tilde{V} . In general, they are based on a mesh of Ω (subdivision into triangular or quadrilateral elements in 2-dim.) and piecewise (mapped-)polynomials in each element of the mesh.

Analysis of FEM: proving (or disproving) convergence when dim $\widetilde{V} \to \infty$.

Let's go / On y va

- Abscissa: rank of computed eigenvalue $1 \le n \le 140$
- Ordinates: value of λ̃_n
- Horizontal lines = exact values for λ_j

Another try / Un autre essai

- Abscissa: rank of computed eigenvalue $1 \le n \le 70$
- Ordinates: value of $\tilde{\lambda}_n$
- Horizontal lines = exact values for λ_j

Another try / Un autre essai

- Abscissa: rank of computed eigenvalue $1 \le n \le 70$
- Ordinates: value of $\tilde{\lambda}_n$
- Horizontal lines = exact values for λ_j

Try something else (breaking identity between components)

- Abscissa: rank of computed eigenvalue $1 \le n \le 70$
- Ordinates: value of λ̃_n
- Horizontal lines = exact values for λ_j

Part III

Elliptic regularization: bad and good methods
Weighted regularization

Outline

6 Standard regularization

7 Non-convex corners

Weighted regularization

Rappels on Dirichlet and Neumann scalar Laplace operators

Let Ω be a bounded Lipschitz domain. Denote by a_{∇} the bilinear form

$$a_
abla(u,v) := \int_\Omega
abla u \cdot
abla v \, \mathrm{d} oldsymbol{x}, \quad ext{for} \quad u, \; v \in H^1(\Omega).$$

O The positive Dirichlet Laplacian Δ^{Dir} is defined from $H_0^1(\Omega)$ into its dual space $H^{-1}(\Omega)$ by

$$\Delta^{\mathsf{Dir}}(u) = F \quad \text{with} \quad \left\langle F, v \right\rangle_{H^{-1}(\Omega) \mid H^{1}_{0}(\Omega)} := a_{\nabla}(u, v)$$

NB: Since $H^{-1}(\Omega)$ is a space of distributions in Ω , we have $F = -\Delta u$.

Since a_{∇} is coercive on $H_0^1(\Omega)$, Δ^{Dir} is invertible with compact inverse. The domain (in the sense of domain of unbounded operators) is

$$\mathsf{D}(\Delta^{\mathsf{Dir}};\Omega) = \{ v \in H^1_0(\Omega), \quad F \in L^2(\Omega) \}$$

The operator Δ^{Dir} defines an isomorphism from $D(\Delta^{\text{Dir}}; \Omega)$ onto $L^2(\Omega)$.

The spectrum of Δ^{Dir} is discrete and formed by a sequence of positive eigenvalues λ_n^{Dir} that tends to infinity as $n \to +\infty$.

Rappels on Dirichlet and Neumann scalar Laplace operators

Let Ω be a bounded Lipschitz domain. Denote by a_{∇} the bilinear form

$$a_{
abla}(u,v) := \int_{\Omega}
abla u \cdot
abla v \, \mathrm{d} oldsymbol{x}, \quad ext{for} \quad u, \; v \in H^1(\Omega).$$

• The non-negative Neumann Laplacian Δ^{Neu} is defined from $H^1(\Omega)$ into its dual space $H^1(\Omega)'$ by

$$\Delta^{\mathsf{Neu}}(u) = F \quad \text{with} \quad \left\langle F, v \right\rangle_{H^1(\Omega)' \mid H^1(\Omega)} \coloneqq a_{\nabla}(u, v)$$

NB: Since $H^1(\Omega)'$ is <u>not</u> a space of distributions in Ω , it may happen that $F \neq -\Delta u$

Since a_{∇} + Id is coercive on $H^1(\Omega)$, Δ^{Neu} + Id is invertible with compact inverse.

$$\mathsf{D}(\Delta^{\mathsf{Neu}};\Omega) = \{ v \in H^1(\Omega), F \in L^2(\Omega) \}$$

 $F \in L^2(\Omega)$ means that there exists a function $f \in L^2(\Omega)$ such that $\langle F, v \rangle = \int_{\Omega} f v \, d\mathbf{x}$. We deduce that

$$D(\Delta^{\text{Neu}}; \Omega) = \{ v \in H^1(\Omega), \Delta v \in L^2(\Omega) \text{ and } \partial_n v \Big|_{\partial \Omega} = 0 \}$$

The spectrum of Δ^{Neu} is discrete and formed by a sequence of non-negative eigenvalues / valeurs propres positives ou nulles / $\lambda_n^{\text{Neu}} \rightarrow +\infty$ as $n \rightarrow +\infty$.

Blowing up the kernel / Exploser le noyau /of the rot-rot operator

Recall that we want to compute FEM approximations of the eigenpairs $(\lambda, \boldsymbol{U})$ with $\lambda = \omega^2$ and non-zero $\boldsymbol{U} \in H_0(\text{rot}; \Omega)$, solution of

(*)
$$\int_{\Omega} \operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}' \, \mathrm{d}\boldsymbol{x} = \lambda \int_{\Omega} \boldsymbol{U} \cdot \boldsymbol{U}' \, \mathrm{d}\boldsymbol{x} \qquad \forall \boldsymbol{U}' \in \mathcal{H}_{0}(\operatorname{rot}; \Omega)$$

The "standard" approximation theory [Osborn, 75] [Babuška-Osborn, 91] applies if there is a compact embedding of the space V corresponding to the left hand side of (*) into the space H corresponding to its right hand side. But in our case

 $V = H_0(\text{rot}; \Omega)$ and $H = L^2(\Omega)^2$

The embedding $H_0(\text{rot}; \Omega) \longrightarrow L^2(\Omega)^2$ is not compact. The symptom is the infinite dimensional kernel.

Since we are interested by the divergence-free solutions of (*), a natural idea is to regularize the rot-rot bilinear form by the div-div form.

Notation

For any chosen s > 0 / pour tout s fixé, / set

$$\boldsymbol{a[s]}(\boldsymbol{U},\boldsymbol{U}') = \int_{\Omega} \left(\operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}' + s \operatorname{div} \boldsymbol{U} \operatorname{div} \boldsymbol{U}' \right) \, \mathrm{d} \boldsymbol{x}$$

well defined on the new space

 $X_N(\Omega) = \{ \mathbf{V} \in H_0(\operatorname{rot}; \Omega), \quad \operatorname{div} \mathbf{V} \in L^2(\Omega) \}$

The divergence

Lemma

Let Ω be a 2-dim. Lipschitz domain. Choose s > 0. Let $(\lambda, U) \in \mathbb{R} \times X_N(\Omega)$ be an eigenpair of a[s]

(*)
$$a[s](\boldsymbol{U},\boldsymbol{U}') = \lambda \int_{\Omega} \boldsymbol{U} \cdot \boldsymbol{U}' \, \mathrm{d}\boldsymbol{x} \quad \forall \boldsymbol{U}' \in X_N(\Omega)$$

Then div $\boldsymbol{U} \in H_0^1(\Omega)$ and [① or ② holds]

• div $\boldsymbol{U} =: \Phi$ is an eigenvector of $\boldsymbol{s} \Delta^{\text{Dir}}$ with eigenvalue λ :

$$\Phi \in H_0^1(\Omega) \quad \text{solves} \quad s \int_{\Omega} \nabla \Phi \cdot \nabla \Phi' \, d\boldsymbol{x} = \lambda \int_{\Omega} \Phi \, \Phi' \, d\boldsymbol{x} \quad \forall \Phi' \in H_0^1(\Omega)$$

v $\boldsymbol{U} = 0.$

Proof

2 di

Set $\Phi := \text{div } \boldsymbol{U}$. Choose as test function $\boldsymbol{U}' = \nabla \Phi'$ with

$$\Phi'\in\mathsf{D}(\Delta^{\mathsf{Dir}};\Omega)=\left\{v\in H^1_0(\Omega),\quad\Delta v\in L^2(\Omega)
ight\}.$$

Then $\boldsymbol{U}' = \nabla \Phi'$ belongs to $X_N(\Omega)$ since:

•
$$\Phi' \in H^1(\Omega) \Longrightarrow \boldsymbol{U}' \in L^2(\Omega)$$

•
$$\Phi'|_{\partial\Omega} = 0 \Longrightarrow \boldsymbol{U}' \times \boldsymbol{n}|_{\partial\Omega} = 0$$

•
$$\Delta \Phi' \in L^2(\Omega) \Longrightarrow \operatorname{div} \boldsymbol{U}' \in L^2(\Omega)$$

The divergence: Proof of Lemma

Set $\Phi := \text{div } \boldsymbol{U}$. Choose as test function $\boldsymbol{U}' = \nabla \Phi'$ with $\Phi' \in D(\Delta^{\text{Dir}}; \Omega)$. Then $(*) \Rightarrow$

$$s \int_{\Omega} \Phi \operatorname{div} \nabla \Phi' \, \mathrm{d} \boldsymbol{x} = \lambda \int_{\Omega} \boldsymbol{U} \cdot \nabla \Phi' \, \mathrm{d} \boldsymbol{x} \qquad \forall \Phi' \in \mathsf{D}(\Delta^{\mathsf{Dir}}; \Omega)$$

Observe that

• div
$$\nabla \Phi' = -\Delta^{\text{Dir}} \Phi'$$

• $\int_{\Omega} \boldsymbol{U} \cdot \nabla \Phi' \, \mathrm{d} \boldsymbol{x} = -\langle \operatorname{div} \boldsymbol{U}, \Phi' \rangle_{H^{-1}(\Omega) \mid H^{1}_{0}(\Omega)} = -\int_{\Omega} \Phi \, \Phi' \, \mathrm{d} \boldsymbol{x}$

Therefore, we have the orthogonality condition

$$\int_{\Omega} \Phi \, \left(\boldsymbol{s} \, \Delta^{\mathsf{Dir}} \Phi' - \lambda \Phi'
ight) \mathsf{d} oldsymbol{x} = 0 \quad orall \Phi' \in \mathsf{D}(\Delta^{\mathsf{Dir}}; \Omega)$$

In other words div $U = \Phi$ belongs to the orthogonal of the range of the self-adjoint operator $s \Delta^{\text{Dir}} - \lambda \text{ Id}$:

$$\Phi \in \left(\mathsf{range}(s \Delta^{\mathsf{Dir}} - \lambda \, \mathsf{Id})
ight)^{\perp}$$

Then **()** or **(2)** holds

• Φ is a non-zero element in the kernel of $s \Delta^{\text{Dir}} - \lambda \, \text{Id}$, i.e. is an eigenvector of $s \Delta^{\text{Dir}}$ with eigenvalue λ .

The scalar rot

We have a similar statement concerning the scalar rot of U:

Lemma Let Ω be a 2-dim. Lipschitz domain. Choose s > 0. Let $(\lambda, \boldsymbol{U}) \in \mathbb{R} \times X_N(\Omega)$ be an eigenpair of $\boldsymbol{a}[s]$ (*) $\boldsymbol{a}[s](\boldsymbol{U}, \boldsymbol{U}') = \lambda \int_{\Omega} \boldsymbol{U} \cdot \boldsymbol{U}' \, d\boldsymbol{x} \quad \forall \boldsymbol{U}' \in X_N(\Omega)$ Then rot $\boldsymbol{U} \in H^1(\Omega)$ and [• or • holds] • rot $\boldsymbol{U} = 0$. • rot $\boldsymbol{U} = : \Psi$ is an eigenvector of Δ^{Neu} with eigenvalue λ : $\Psi \in H^1(\Omega)$ solves $\int_{\Omega} \nabla \Psi \cdot \nabla \Psi' \, d\boldsymbol{x} = \lambda \int_{\Omega} \Psi \Psi' \, d\boldsymbol{x} \quad \forall \Psi' \in H^1(\Omega)$

Proof

Similar as before. Now the test functions are $U' = \overrightarrow{rot} \Psi'$ with any $\Phi' \in D(\Delta^{Neu}; \Omega)$.

Spectrum of the regularized form *a*[*s*]

Theorem

Let Ω be a 2-dim. simply connected Lipschitz domain. Choose s > 0.

- Let $(\lambda_n^{\text{Dir}}, \Phi_n^{\text{Dir}})_{n\geq 1}$ be a complete system of eigenpairs of Δ^{Dir}
- Let $(\lambda_n^{\text{Neu}}, \Psi_n^{\text{Neu}})_{n \ge 0}$ be a complete system of eigenpairs of Δ^{Neu} , with $\lambda_0^{\text{Neu}} = 0$ and $\Psi_0^{\text{Neu}} = 1$

Then a complete system of eigenpairs for *a*[*s*] is given by the union of

$$\left(s\lambda_n^{\text{Dir}}, \boldsymbol{U}_n^{\text{Div}}\right)_{n \ge 1}$$
 and $\left(\lambda_n^{\text{Neu}}, \boldsymbol{U}_n^{\text{Max}}\right)_{n \ge 1}$

where

• rot $\boldsymbol{U}_n^{\text{Div}} = 0$ and div $\boldsymbol{U}_n^{\text{Div}} = \Phi_n^{\text{Dir}}$ • div $\boldsymbol{U}_n^{\text{Max}} = 0$ and rot $\boldsymbol{U}_n^{\text{Max}} = \Phi_n^{\text{Neu}}$

Proof. It suffices to set

$$\boldsymbol{U}_n^{\text{Div}} = -\frac{1}{\lambda_n^{\text{Dir}}} \nabla \Phi_n^{\text{Dir}}$$
 and $\boldsymbol{U}_n^{\text{Max}} = \frac{1}{\lambda_n^{\text{Neu}}} \overrightarrow{\text{rot}} \Phi_n^{\text{Dir}}$

Since Ω is simply connected, there is no non-zero field $\boldsymbol{U} \in X_N(\Omega)$ such that div $\boldsymbol{U} = \operatorname{rot} \boldsymbol{U} = 0$.

Spectrum of a[s] and Maxwell spectral problem

The spectrum of a[s]: $\lambda \in \mathbb{R}$, $\boldsymbol{U} \in X_N(\Omega)$

(*)
$$\int_{\Omega} (\operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}' + \boldsymbol{s} \operatorname{div} \boldsymbol{U} \operatorname{div} \boldsymbol{U}') \, \mathrm{d} \boldsymbol{x} = \lambda[\boldsymbol{s}] \int_{\Omega} \boldsymbol{U} \cdot \boldsymbol{U}' \, \mathrm{d} \boldsymbol{x} \quad \forall \boldsymbol{U}' \in X_N(\Omega)$$

has clearly two well separated parts:

- A part that depends linearly of *s* and with curl-free eigenvectors
- A part independent of *s* with divergence free eigenvectors. This is the spectrum we are looking for.

How to distinguish them in numerical computations?

Two techniques:

Calculate the ratio

$$au(\widetilde{\boldsymbol{U}}) = rac{\|\operatorname{rot}\widetilde{\boldsymbol{U}}\|^2}{s\|\operatorname{div}\widetilde{\boldsymbol{U}}\|^2}$$

We expect large values for approximation of divergence free eigenvectors and small values for the others.

• Calculate eigenvalues for several different values of s

Weighted regularization

Spectrum of a[s] on the square, s = 0

- Abscissa: rank of computed eigenvalue $1 \le n \le 70$
- Ordinates: value of λ̃_n
- Horizontal lines = exact values for λ_j

Weighted regularization

Spectrum of a[s], s = 0.002 on the square

- Abscissa: rank of computed eigenvalue $1 \le n \le 70$
- Ordinates: value of λ̃_n
- Horizontal lines = exact values for λ_j

Weighted regularization

Spectrum of *a*[*s*] on the square, dependence in *s*

- Abscissa: Value of s
- Ordinates: all smallest values of $\tilde{\lambda}_n \leq 14, n = 1, 2, 3, \dots$
- Horizontal lines = exact values for λ_i

Outline

Non-convex corners

Weighted regularization

Spectrum of *a*[*s*] on a L-shape domain, dependence in *s*

- Abscissa: Value of s
- Ordinates: all smallest values of $\tilde{\lambda}_n \leq 45, n = 1, 2, 3, \dots$
- Horizontal lines = values close to exact for λ_j (by computing Neumann eigenvalues)

Weighted regularization

Spectrum of *a*[*s*] **on a L-shape domain: Interpretation**

We observe

- One (large) half of eigenvalues seems to be correctly approximated
- The other (smaller) half is completely missed and replaced by something else that does not have a clear behavior in *s* (neither linear nor constant).
- The situation does not improve if we increase the polynomial degree or the density of the mesh (or both)

The diagnosis is that

We converge towards something that we don't expect

What? Why?

Spectrum of *a*[*s*] **on a L-shape domain: Explanation**

Recall that

$$X_N(\Omega) = \{ V \in H_0(\operatorname{rot}; \Omega), \quad \operatorname{div} V \in L^2(\Omega) \}$$

Denote by $H_N(\Omega)$ the space

 $H_{N}(\Omega) = H_{1}(\Omega)^{2} \cap X_{N}(\Omega) = \{ \boldsymbol{V} \in H_{1}(\Omega)^{2}, \quad \boldsymbol{V} \times \boldsymbol{n} \big|_{\partial \Omega} = 0 \}$

The explanation is the conjunction of three facts:

- In L-shape domain Ω , $H_N(\Omega)$ is strictly smaller that $X_N(\Omega)$. Moreover, a large part of eigenvectors $\boldsymbol{U}_n^{\text{Div}}$ and $\boldsymbol{U}_n^{\text{Max}}$ do not belong to $H_N(\Omega)$
- **2** The discrete Finite Element spaces are contained in $H_N(\Omega)$
- $H_N(\Omega)$ is closed for the topology of $X_N(\Omega)$

Conclusion: A large part of the eigenvectors of a[s] cannot be approximated by a plain Finite Element discretization in $X_N(\Omega)$.

Let us explain each point in more detail.

Spectrum of *a*[*s*] **on a L-shape domain. Point**

There exists one corner singularity $\mathbf{S} = \nabla \Phi_{sing}$ s. t. [Birman-Solomyak 87]

 $X_N(\Omega) = H_N(\Omega) \oplus \langle \mathbf{S} \rangle$

where $\Phi_{sing} \in D(\Delta^{Dir}; \Omega)$ but $\Phi_{sing} \notin H^2(\Omega)$. In polar coordinates (r, θ)

$$\Phi_{\rm sing}(\boldsymbol{x}) = \chi(\boldsymbol{r}) \, \boldsymbol{r}^{2/3} \sin(\frac{2\theta}{3})$$

where χ is a smooth function equal to 1 if $r < \frac{1}{4}$ and to 0 if $r > \frac{1}{2}$. We have

$$\mathsf{D}(\Delta^{\mathsf{Dir}};\Omega) = (H^2 \cap H^1_0)(\Omega) \oplus \langle \Phi_{\mathsf{sing}} \rangle$$

In fact, since we are in 2-dim.

$$\boldsymbol{S} = \nabla \Phi_{\text{sing}} = \overrightarrow{\text{rot}} \Psi_{\text{sing}}$$

where $\Psi_{sing} \in D(\Delta^{Neu}; \Omega)$ but $\Psi_{sing} \notin H^2(\Omega)$. Note $\Psi_{sing} = \chi(r) r^{2/3} \cos(\frac{2\theta}{3})$

Almost all eigenvectors Ψ_n^{Neu} of Δ^{Neu} that are even with respect to the diagonal $x_1 + x_2 = 0$ "contain" this singularity, i.e.

 $\Psi_n^{\mathsf{Neu}} - c_n \Psi_{\mathsf{sing}} \in H^2(\Omega)$ for some coefficient $c_n \neq 0$

Spectrum of *a*[*s*] on a L-shape domain. Points (2) and (3)

- 2 The FEM space are made of functions \tilde{u} that are
 - opiecewise polynomials
 - **i** in the space $X_N(\Omega)$.

We observe

- rot \tilde{u} is in $L^2(\Omega) \Longrightarrow$ no tangential jump for \tilde{u} between two elements.
- div \tilde{u} is in $L^2(\Omega) \Longrightarrow$ no normal jump for \tilde{u} between two elements.
- Finally, both components of \tilde{u} are continuous over Ω .
- Therefore \tilde{u} belongs to H_N

③ A sequence $u_m \in H_N(\Omega)$, $m \ge 1$, that is converging for the topology of $X_N(\Omega)$ will never converge to a limit outside $H_N(\Omega)$ by virtue of

Theorem [Costabel, 91] [Costabel-Dauge, 99]

Let Ω be a Lipschitz polygon. The space $H_N(\Omega)$ is a closed subspace in $X_N(\Omega)$.

 \Longrightarrow In L-shape, instead of the Maxwell spectral problem, we are solving a Lamé system with elasticity coefficients depending on s

Weighted regularization

Outline

Standard regularization

Introduction of a weight

- Let Ω be a polygon with one non-convex corner ${\pmb c}$ of opening $\omega > \pi$
- This applies to the L-shape domain Ω with its non-convex corner at the origin.
- Let $r = |\mathbf{x} \mathbf{c}|$ be the distance function to the non-convex corner \mathbf{c} .
- Choose a number γ ∈ [0, 1]. This will be the exponent of a weight function.

Notation

For any chosen s > 0 set

$$\boldsymbol{a}_{\gamma}[\boldsymbol{s}](\boldsymbol{U},\boldsymbol{U}') = \int_{\Omega} \left(\operatorname{rot} \boldsymbol{U} \operatorname{rot} \boldsymbol{U}' + \boldsymbol{s} \, \boldsymbol{r}^{2\gamma} \operatorname{div} \boldsymbol{U} \operatorname{div} \boldsymbol{U}' \right) \, \mathrm{d}\boldsymbol{x}$$

well defined of the new space

$$X^{\gamma}_{N}(\Omega) = \{ oldsymbol{V} \in H_{0}(\operatorname{rot};\Omega), \quad r^{\gamma} \operatorname{div} oldsymbol{V} \in L^{2}(\Omega) \}$$

If $\gamma >$ 0, the norm in the divergence is relaxed (the norm is smaller than without weight)

Spectrum of $a_{\gamma}[s]$ on a L-shape domain, $\gamma = 0$

- Abscissa: Value of s
- Ordinates: all smallest values of $\tilde{\lambda}_n \leq 14, n = 1, 2, 3, ...$
- Horizontal lines = values close to exact for λ_j (by computing Neumann eigenvalues)

Weighted regularization

Spectrum of $a_{\gamma}[s]$ on a L-shape domain, $\gamma = 0.35$

- Abscissa: Value of s
- Ordinates: all smallest values of $\tilde{\lambda}_n \leq 14, n = 1, 2, 3, ...$
- Horizontal lines = values close to exact for λ_j (by computing Neumann eigenvalues)

Weighted regularization

Spectrum of $a_{\gamma}[s]$ on a L-shape domain, $\gamma = 0.5$

- Abscissa: Value of s
- Ordinates: all smallest values of $\tilde{\lambda}_n \leq 45$, n = 1, 2, 3, ...
- Horizontal lines = values close to exact for λ_j (by computing Neumann eigenvalues)

Spectrum of $a_{\gamma}[s]$ on a L-shape domain, $\gamma = 1$

- Abscissa: Value of s
- Ordinates: all smallest values of $\tilde{\lambda}_n \leq 45$, n = 1, 2, 3, ...
- Horizontal lines = values close to exact for λ_j (by computing Neumann eigenvalues)

Theoretical result

Theorem Costabel-Dauge, 02

Let Ω be a polygon with one non-convex corner *c* of opening $\omega > \pi$ and let *r* be the distance function to *c*. Let γ be such that

$$1 - \frac{\pi}{\omega} < \gamma < 1$$

Then, for any s > 0

- $H_N(\Omega)$ is dense in $X_N^{\gamma}(\Omega)$
- The eigenvalues of a_γ[s] are correctly approximated by Lagrange finite elements

The eigenvalues of $a_{\gamma}[s]$ are

- the $s\lambda_n^{\text{Dir},\gamma}$ with the eigenvalues $\lambda_n^{\text{Dir},\gamma}$ of the Dirichlet realization of $v \mapsto r^{\gamma} \Delta(r^{\gamma} v)$
- the λ^{Neu} (independent of *s* and γ)

This theorem extends to 3-dim. polyhedra. The weight is the distance to the union of non-convex edges.

Singularities and weighted spaces

Let Ω be a polygon with one non-convex corner \boldsymbol{c} of opening $\omega > \pi$ Define for $m \in \mathbb{N}$ and $\beta \in \mathbb{R}$ the weighted Sobolev space

$${\mathcal K}^m_\beta(\Omega)=\{{\boldsymbol v}\in {\mathcal L}^2_{\rm loc}(\Omega),\quad r^{\beta+|\alpha|}\partial^\alpha_{\boldsymbol x}{\boldsymbol v}\in {\mathcal L}^2(\Omega) \ \, \forall \alpha\in {\mathbb N}^2, |\alpha|\leq m\}$$

Observe that

- The Laplacian $\Delta = \partial_1^2 + \partial_2^2$ is continuous from $K^2_{\gamma-2}(\Omega)$ into $K^0_{\gamma}(\Omega)$.
- If $\boldsymbol{U} \in X_N^{\gamma}(\Omega)$, then div $\boldsymbol{U} \in K_{\gamma}^0(\Omega)$.
- The singularity Φ_{sing} has the form, in polar coordinates centered at \boldsymbol{c}

$$\Phi_{
m sing}(m{x}) = \chi(m{r})\,m{r}^{\pi/\omega}\,{
m sin}(rac{\pi heta}{\omega})$$

and $\Phi_{\text{sing}} \in K^2_{\gamma-2}(\Omega)$ if and only if $\frac{\pi}{\omega} > 1 - \gamma$, i.e. $\gamma > 1 - \frac{\pi}{\omega}$

Theorem [Kondrat'ev, 67]

Let $\gamma \in [0, 1]$. If $\gamma > 1 - \frac{\pi}{\omega}$, Δ isomorphism $\mathcal{K}^2_{\gamma-2}(\Omega) \cap H^1_0(\Omega) \longrightarrow \mathcal{K}^0_{\gamma}(\Omega)$ If $\gamma < 1 - \frac{\pi}{\omega}$, Δ isomorphism $\mathcal{K}^2_{\gamma-2}(\Omega) \cap H^1_0(\Omega) \oplus \langle \Phi_{sing} \rangle \longrightarrow \mathcal{K}^0_{\gamma}(\Omega)$

Part IV

Edge element techniques

Outline

References: Monk 2003, Arnold–Falk–Winther 2006

NUMERICAL MATHEMATICS AND SCIENTIFIC COMPUTATION

Finite Element Methods for Maxwell's Equations

PETER MONK

OXFORD SCIENCE PUBLICATIONS

Main goal

Construction of finite element spaces V_N that allow spectrally correct approximations of the Maxwell cavity problem, using the original variational formulation in $H_0(\text{curl}; \Omega)$.

 $V_N \subset H_0(\mathbf{curl}; \Omega)$, piecewise polynomials on mesh \mathcal{T}_N

$$\boldsymbol{u}_N \in \boldsymbol{V}_N$$
: $\int_{\Omega} \left(\operatorname{curl} \boldsymbol{u}_N \cdot \operatorname{curl} \boldsymbol{u}' - \omega^2 \, \boldsymbol{u}_N \cdot \boldsymbol{u}' \right) \mathrm{d} \boldsymbol{x} = 0 \quad \forall \boldsymbol{u}' \in \boldsymbol{V}_N$

 $N \sim \dim V_N \rightarrow \infty$ either through

- mesh refinement with fixed degree polynomials: "h-version", or
- Iixed mesh, increasing degree of polynomials: "p-version"

Interface conditions

Remark: Ideally, one would like to have

 $V_N \subset H_0(\operatorname{curl}; \Omega) \cap H(\operatorname{div}; \Omega) = X_N(\Omega)^{(\dagger)}.$

^(†)As defined in Part III, $X_N(\Omega)$ is not a discrete space. Different meaning of subscript "N"!

Interface conditions

Remark: Ideally, one would like to have

$$V_N \subset H_0(\operatorname{curl}; \Omega) \cap H(\operatorname{div}; \Omega) = X_N(\Omega)^{(\dagger)}.$$

Not good.

One has to discretize $H_0(\text{curl}; \Omega)$ and $H(\text{div}; \Omega)$ separately and differently.

^(†)As defined in Part III, $X_N(\Omega)$ is not a discrete space. Different meaning of subscript "N"!

53/72

Interface conditions

Remark: Ideally, one would like to have

$$V_{\mathcal{N}} \subset H_0(\operatorname{\mathbf{curl}};\Omega) \cap H(\operatorname{\mathsf{div}};\Omega) = X_{\mathcal{N}}(\Omega)^{(\dagger)}.$$

Not good.

One has to discretize $H_0(\text{curl}; \Omega)$ and $H(\text{div}; \Omega)$ separately and differently.

A LemmaLet $\Omega = \Omega_1 \cup \Gamma \cup \Omega_2$ and u, u defined on $\Omega, u_j = u|_{\Omega_j}$. ThenIf $u_j \in H^1(\Omega_j)$, then $u \in H^1(\Omega) \iff [[u]]_{\Gamma} = 0$ If $u_j \in H(\operatorname{div}; \Omega_j)$, then $u \in H(\operatorname{div}; \Omega) \iff [[u \cdot n]]_{\Gamma} = 0$ If $u_j \in H(\operatorname{curl}; \Omega_j)$, then $u \in H(\operatorname{curl}; \Omega) \iff [[u \times n]]_{\Gamma} = 0$ If $u_j \in L^2(\Omega_j)$, then $u \in L^2(\Omega)$

Proof of (a): For
$$\boldsymbol{u}' \in (C_0^{\infty}(\Omega))^3$$
:
 $\langle \operatorname{curl} \boldsymbol{u}, \boldsymbol{u}' \rangle = \langle \boldsymbol{u}, \operatorname{curl} \boldsymbol{u}' \rangle = \int_{\Omega_1} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{u}' + \int_{\Omega_2} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{u}'$
 $= \int_{\Omega_1} \operatorname{curl} \boldsymbol{u} \cdot \boldsymbol{u}' + \int_{\Gamma} \boldsymbol{u} \times \boldsymbol{n} \cdot \boldsymbol{u}' \mathrm{ds} + \int_{\Omega_2} \operatorname{curl} \boldsymbol{u} \cdot \boldsymbol{u}' - \int_{\Gamma} \boldsymbol{u} \times \boldsymbol{n} \cdot \boldsymbol{u}' \mathrm{ds}$
 $= \int_{\Omega} (\operatorname{curl} \boldsymbol{u})|_{\Omega \setminus \Gamma} \cdot \boldsymbol{u}' + \int_{\Gamma} [[\boldsymbol{u} \times \boldsymbol{n}]]_{\Gamma} \cdot \boldsymbol{u}' \mathrm{ds}$

Interface conditions

Remark: Ideally, one would like to have

```
V_N \subset H_0(\operatorname{curl}; \Omega) \cap H(\operatorname{div}; \Omega) = X_N(\Omega)^{(\dagger)}.
```

Not good.

One has to discretize $H_0(\mathbf{curl}; \Omega)$ and $H(\operatorname{div}; \Omega)$ separately and differently.

Corollary

If u, u are piecewise polynomial on a mesh, then

• $u \in H^1(\Omega) \iff [[u]] = 0$ on all interfaces

2 $\boldsymbol{u} \in H(\operatorname{div}; \Omega) \iff [[\boldsymbol{u} \cdot \boldsymbol{n}]] = 0$ on all interfaces

() $\boldsymbol{u} \in H(\operatorname{curl}; \Omega) \iff [[\boldsymbol{u} \times \boldsymbol{n}]] = 0$ on all interfaces

• if $\boldsymbol{u} \in H(\operatorname{div}; \Omega) \cap H(\operatorname{curl}; \Omega)$, then $\boldsymbol{u} \in H^1(\Omega)^3$

 $^{^{(\}dagger)}$ As defined in Part III $X_{N}(\Omega)$ is not a discrete space. Different meaning of subscript "N"

How to describe finite element spaces or "A finite element"

Ingredients

- Mesh ℑ_N. Elements K ∈ ℑ_N, triangles, quadrilaterals, tetrahedra, hexahedra (cubes)...
 One assumes Ω = ⋃_{K∈ℑ_N} K
- **2** On each K, a local space of polynomials P_K . Usually defined on a reference element and mapped to K.
- Obgrees of freedom Σ_{κ} . Linear forms that describe a basis of the dual space $(P_{\kappa})'$. Adjacent elements may have joint degrees of freedom.

One can then define

a global finite element space

 $V_N = \{ u : \Omega \to \mathbb{C} | \mid u|_K \in P_K; \text{ joint d.o.f. have a unique value } \}$

o an interpolation projector π_N

$$u_N = \pi_N u \iff u_N \in V_N \& \forall t \in \Sigma_K : t(u - u_N) = 0$$

The element is called *W*-conforming if $V_N \subset W$.

Spectrally correct approximation according to [Caorsi et al 2000]

Number the increasing sequence of non-zero eigenfrequencies ω, repeated according to multiplicity

 $0 < \omega^{(1)} \leq \omega^{(2)} \leq \ldots \leq \omega^{(i)} \leq \ldots$

2 Let ε ∈ (0, ω⁽¹⁾). Number the increasing sequence of discrete eigenfrequencies ω_N > ε, repeated according to multiplicity

 $\varepsilon < \omega_N^{(1)} \le \omega_N^{(2)} \le \ldots \le \omega_N^{(i)} \le \ldots$

Good spectral approximation

(SCA) Spectrally Correct Approximation

 $\forall i \in \mathbb{N}, \quad \lim_{N \to \infty} \omega_N^{(i)} = \omega^{(i)} \quad \text{and the eigenspaces converge.}$

• (SFA) Spurious-Free Approximation

$$\exists \alpha > \mathbf{0}, \quad \forall \mathbf{N} \in \mathbb{N}, \quad \omega_{\mathbf{N}}^{(i)} \not\in (\mathbf{0}, \alpha] \quad \text{for all } \omega_{\mathbf{N}}^{(i)}$$
Necessary and sufficient conditions for convergence [Caorsi et al 2000]

(CAS)

Completeness of the Approximating Subspaces

$$\forall \, \boldsymbol{u} \in H_0(\operatorname{\boldsymbol{curl}}; \Omega) : \qquad \lim_{N \to \infty} \, \inf_{\boldsymbol{u}_N \in V_N} \left\| \boldsymbol{u} - \boldsymbol{u}_N \right\|_{H(\operatorname{\boldsymbol{curl}}, \Omega)} = 0$$

(CDK)

Completeness of the Discrete Kernels

$$\forall \mathbf{k} \in \ker \mathbf{curl}: \qquad \lim_{N \to \infty} \inf_{\mathbf{k}_N \in \ker \mathbf{curl} \cap V_N} \left\| \mathbf{k} - \mathbf{k}_N \right\|_{L^2(\Omega)} = 0$$

(DCP) [КІКИСНІ 1989]

```
Discrete Compactness Property
Any sequence \{u_N\}_{N\to\infty} with
u_N \in V_N \cap (\ker_{V_N} \operatorname{curl})^{\perp} and \|u_N\|_{H(\operatorname{curl};\Omega)} \leq 1
contains a subsequence that converges in L^2(\Omega)
```

Spurious-free spectrally correct approximation

The ideal situation of eigenvalue approximation is to have (SFA) + (SCA): With the exact eigenvalues

$$\mathbf{0} < \omega^{(1)} \leq \omega^{(2)} \leq \ldots \leq \omega^{(i)} \leq \ldots$$

and the discrete eigenvalues

$$\mathbf{0} < \omega_{N}^{(1)} \leq \omega_{N}^{(2)} \leq \ldots \leq \omega_{N}^{(i)} \leq \ldots$$

 $\omega_N^{(i)}$ converges to $\omega^{(i)}$, together with the eigenspaces.

Theorem [Caorsi - Fernandes - Raffetto 2000]

 $(CAS) + (CDK) + (DCP) \implies (SFA) + (SCA)$

(CDK) means: Have enough gradients in V_N For (DCP), must control discrete divergence-free functions. (Main difficulty!)

Outline

9 Goals

Div-conforming elements on simplices

Notation: \mathbb{P}_k polynomials of total degree *k*.

 $\widetilde{\mathbb{P}}_k$ homogeneous polynomials of degree k. $\implies \mathbb{P}_k = \mathbb{P}_{k-1} \oplus \widetilde{\mathbb{P}}_k$

Definition

K tetrahedron.

$$\mathcal{P}_{\mathcal{K}} = \mathcal{D}_k := (\mathbb{P}_{k-1})^3 \oplus \widetilde{\mathbb{P}}_{k-1} oldsymbol{x} \ \subset (\mathbb{P}_k)^3$$

Example k = 1: $\boldsymbol{u} \in D_1 \Leftrightarrow \boldsymbol{u} = \boldsymbol{a} + b\boldsymbol{x}, \boldsymbol{a} \in \mathbb{C}^3, b \in \mathbb{C}$. "Raviart-Thomas element" RT_1 .

Degrees of freedom:

$${igodot} \ {m u}\mapsto \int_{f} {m u}\cdot {m n}\, q, \ q\in \mathbb{P}_{k-1}(f), \ f$$
 face of K

2
$$\boldsymbol{u}\mapsto \int_{K}\boldsymbol{u}\cdot\boldsymbol{q},\ \boldsymbol{q}\in (\mathbb{P}_{k-1})^{3}$$

Global FE space W_N , interpolation projector w_N , well defined on $H^{\frac{1}{2}+\delta}(\Omega)^3, \delta > 0$. Note: $u \in D_k \Rightarrow u \cdot n \in \mathbb{P}_{k-1}(f)$ for all faces f of K.

 $W_N \subset H(\operatorname{div}; \Omega)$

Curl-conforming elements on simplices

Definition (*K* **tetrahedron)**

$$oldsymbol{P}_{\mathcal{K}}=oldsymbol{R}_k:=\left(\mathbb{P}_{k-1}
ight)^3\oplus\left\{oldsymbol{p}\in\left(\widetilde{\mathbb{P}}_k
ight)^3\midoldsymbol{p}\cdotoldsymbol{x}=0\ \subset\left(\mathbb{P}_k
ight)^3$$

Example k = 1: $\boldsymbol{u} \in R_1 \Leftrightarrow \boldsymbol{u} = \boldsymbol{a} + \boldsymbol{b} \times \boldsymbol{x}, \ \boldsymbol{a}, \boldsymbol{b} \in \mathbb{C}^3$. "Nedelec edge element".

Degrees of freedom:

• e edge:
$$\boldsymbol{u} \mapsto \int_{\boldsymbol{e}} \boldsymbol{q} \, \boldsymbol{u} \cdot \boldsymbol{t}, \, \boldsymbol{q} \in \mathbb{P}_{k-1}(\boldsymbol{e})$$

• f face: $\boldsymbol{u} \mapsto \frac{1}{|f|} \int_{f} \boldsymbol{u} \cdot \boldsymbol{q}, \, \boldsymbol{q} \in (\mathbb{P}_{k-2}(f))^{3}$
• $\boldsymbol{u} \mapsto \int_{K} \boldsymbol{u} \cdot \boldsymbol{q}, \, \boldsymbol{q} \in (\mathbb{P}_{k-3})^{3}$

Global FE space V_N , interpolation projector r_N , well defined on

$$\{oldsymbol{u}\in H^{rac{1}{2}+\delta}(\Omega)^3\mid extbf{curl}\ oldsymbol{u}\in L^p(\Omega)\},\delta>0,p>2\}$$

Note: For k = 1, only **()** appear ("edge element").

 $V_N \subset H(\mathbf{curl}; \Omega)$

A decomposition

$$(\mathbb{P}_k)^3 = R_k \oplus \nabla \widetilde{\mathbb{P}}_{k+1}$$

Goa

A commuting diagram

These spaces and their densely defined projection operators satisfy the commuting diagram

 $\begin{array}{cccc} H_0^1(\Omega) & \stackrel{\text{grad}}{\longrightarrow} & H_0(\text{curl};\Omega) & \stackrel{\text{curl}}{\longrightarrow} & H_0(\text{div};\Omega) & \stackrel{\text{div}}{\longrightarrow} & L^2(\Omega) \\ & & \downarrow \pi_N^0 & & \downarrow \pi_N^1 = \textbf{\textit{r}}_N & & \downarrow \pi_N^2 = \textbf{\textit{w}}_N & & \downarrow \pi_N^3 \\ V_N^0 = \mathbb{P}_k & \stackrel{\text{grad}}{\longrightarrow} & V_N^1 = V_N & \stackrel{\text{curl}}{\longrightarrow} & V_N^2 = W_N & \stackrel{\text{div}}{\longrightarrow} & V_N^3 = \mathbb{P}_{k-1} \\ \text{Lagrange} & & \text{Nedelec} & & \text{Raviart-Thomas} & & \text{discont.} \end{array}$

Edge elements on hexhedra (K cube)

Notation: $\mathbb{Q}_{k,l,m} = \mathbb{P}_k \otimes \mathbb{P}_l \otimes \mathbb{P}_m$

- H^1 conforming: $P_K = (\mathbb{Q}_{k,k,k})^3$
- **2** $H(\operatorname{curl})$ conforming: $P_{K} = \mathbb{Q}_{k-1,k,k} \times \mathbb{Q}_{k,k-1,k} \times \mathbb{Q}_{k,k,k-1}$

3
$$H(\text{div})$$
 conforming: $P_{K} = \mathbb{Q}_{k,k-1,k-1} \times \mathbb{Q}_{k-1,k,k-1} \times \mathbb{Q}_{k-1,k-1,k}$

•
$$L^2$$
 conforming: $P_K = (\mathbb{Q}_{k-1,k-1,k-1})^3$

One has once again the De Rham complex and the commuting diagram ("cochain projections")

Recall: Approximation on the square $\Omega = (0, \pi) \times (0, \pi)$

One square element $((\mathbb{Q}_8)^2 \cap H_0(\operatorname{curl}; \Omega))$

Approximation on the square $\Omega = (0, \pi) \times (0, \pi)$

Spurious eigenfunctions in $(\mathbb{Q}_8)^2 \cap H_0(\operatorname{curl}; \Omega)$: Graph of *x*-component

Spurious eigenfunctions in $V_N = (\mathbb{Q}_{8.8})^2 \cap H_0(\text{curl}; \Omega)$

Notation $\mathbb{P}_{8}^{0} = \mathbb{P}_{8}(0,\pi) \cap H_{0}^{1}(0,\pi), \quad \Omega = (0,\pi)^{2}.$ $V_{N} = (\mathbb{Q}_{8,8})^{2} \cap H_{0}(\operatorname{rot};\Omega) = \mathbb{P}_{8} \otimes \mathbb{P}_{8}^{0} \times \mathbb{P}_{8}^{0} \otimes \mathbb{P}_{8}$ $u = \binom{f(x)g(y)}{0}, f \in \mathbb{P}_{8}, g \in \mathbb{P}_{8}^{0}, \mathbf{v} = \binom{v_{1}(x,y)}{v_{2}(x,y)}$ $(\operatorname{rot} \mathbf{u}, \operatorname{rot} \mathbf{v}) - \omega^{2}(\mathbf{u}, \mathbf{v}) = \iint_{\Omega} f(x)g'(y)(\partial_{2}v_{1} - \partial_{1}v_{2})dxdy - \omega^{2}\iint_{\Omega} f(x)g(y)v_{1}(x,y)dxdy$ $= \int_{0}^{\pi} g'(y)\partial_{y}\int_{0}^{\pi} f(x)v_{1}(x,y)dxdy - \omega^{2}\int_{0}^{\pi} g(y)\int_{0}^{\pi} f(x)v_{1}(x,y)dxdy$ $- \iint_{\Omega} f(x)g'(y)\partial_{1}v_{2}(x,y)dxdy = 0 \quad \forall \mathbf{v}$

Spurious eigenfunctions in $V_N = (\mathbb{Q}_{8,8})^2 \cap H_0(\text{curl}; \Omega)$

This is the 1D Laplace–Dirichlet(– \mathbb{P}_8 -Galerkin) eigenvalue problem

Spurious eigenfunctions in $V_N = (\mathbb{Q}_{8.8})^2 \cap H_0(\text{curl}; \Omega)$

 $\oint_{0}^{\pi} g'(y) \phi'(y) dy - \omega^{2} \int_{0}^{\pi} g(y) \phi(y) dy = 0 \quad \forall \phi \in \mathbb{P}_{8}^{0}$ This is the 1D Laplace–Dirichlet(– \mathbb{P}_{8} -Galerkin) eigenvalue problem

 $\begin{array}{l} \textcircled{3} \int_{0}^{\pi} f(x)\varphi'(x)\mathrm{d}x \ \int_{0}^{\pi} g'(y)\psi(y)\mathrm{d}y = 0 \quad \forall \varphi \in \mathbb{P}_{8}^{0}, \ \psi \in \mathbb{P}_{8} \\ \Leftrightarrow (f,\varphi') = 0 \ \forall \varphi \quad \text{or} \quad (g',\psi) = 0 \ \forall \psi. \end{array}$

 $(g',\psi) = 0 \; \forall \psi \in \mathbb{P}_8 \Rightarrow g' = 0 \Rightarrow g = 0 \Rightarrow u = 0$ impossible

 $f \in \mathbb{P}_8, (f, \varphi') = 0 \ \forall \varphi \in \mathbb{P}_8^0$ has 2 independent solutions: dim $\mathbb{P}_0^0 = 9 - 2 = 7$ and dim $\mathbb{P}_8 = 9$

1st solution f = 1, 2nd solution $f(x) = L_8(\frac{2}{3}x - 1)$ (Legendre polynomial). The 2nd solution gives spurious eigenfunctions that are discrete divergence-free, but not divergence-free. In fact, their divergence goes to infinity with the polynomial degree, in violation of condition (DCP).

Remedy: Eliminate 2nd solution by replacing \mathbb{P}_8 with \mathbb{P}_7 .

FEM-Table [femtable.org]

Periodic Table of the Finite Elements

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		$ \begin{array}{c} \mathcal{P}_{r}^{-} \mathcal{A}^{k} \\ \\ \mathcal{P}_{r} & \mathcal{A}^{k} \\ \\ \\ \mathcal{P}_{r} & \mathcal{P}_{r} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	is quark for T_{i} , S^{i} is $S^{i} \sim dT_{i}$, dT_{i} , dT	A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		$ \mathcal{P}_{\mathcal{T}} \mathcal{A}^k $ The dependence of the de	space for $T_r S^r$ must be addressed and one with polynomial and $= \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r}$ $= \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r}$ $= \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r}$ $= \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r} \binom{r}{r}$ $= \binom{r}{r} $	2 4 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3	1 24 24 24 24 24 24 24 24 24 24	$\begin{array}{c} \mathcal{Q}_{r}^{-} \bigwedge^{k} \\ \\ {\underset{l \to 0}{\overset{l}{\underset{l \to 0}{\underset{l \to 0}{\atop\atop1}}{\underset{l \to 0}{\underset{l \to 0}{\underset{l \to 0}{\atop1}}{\underset{l \to 0}{\atop1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	which have the consider to encode using a basis of the structure of the structure $1/\lambda_1 \rightarrow 2$ for a given by $1/\lambda_1 \rightarrow 2$ (see Section 2) of the structure of t	4 A/CO 1000-1	$\begin{array}{c} \mathcal{S}_r A^k \\ {} \mathbb{P}_r \mathcal{S}_r {=} \underbrace{\mathbb{P}}_r \mathbb{P}_r {=} \underbrace{\mathbb{P}}_r {=} \underbrace{\mathbb{P}}_r {=} \underbrace{\mathbb{P}}_r \mathbb{P}_r {=} \underbrace{\mathbb{P}}_r {=$	$(x^{(i)}, x^{(i)}, x^{(i)}) \neq 0$ $(x^{(i)}, x^{(i)}) \neq 0$ of the space $x^{(i)}$ of the
and			****** *****	1.4558.4 1			Δ.					*449.*			
						<u>w</u>					· Cope · · · · · · · · · · · · · · · · · · ·				
***									a. efficie *****		• • • • • • • • • • • • • • • • • • •		Arrow Arrow		
					4										
				A		4					2 of a				
		Ingen (1944) No kan den den star den star						- <u>5</u> - 2(- 7)0	Parity administration of the second s				Extension Construction Const		

_1

Part V

References

References: Books, Memoirs, Chapters, Review Papers

V. GIRAULT, P. RAVIART.

Finite Element Methods for the Navier–Stokes Equations, Theory and Algorithms. Springer series in Computational Mathematics, 5. Springer-Verlag, Berlin 1986.

P. MONK.

Finite element methods for Maxwell's equations. Oxford University Press, New York, 2003.

R. HIPTMAIR.

Finite elements in computational electromagnetism. *Acta Numerica* (2002) 237–339.

M. COSTABEL, M. DAUGE.

Computation of resonance frequencies for Maxwell equations in non-smooth domains *Lect. Notes Comput. Sci. Eng.* 31, 125–161, Springer, 2003.

D. N. ARNOLD, R. S. FALK, R. WINTHER.

Finite element exterior calculus, homological techniques, and applications. *Acta Numerica* 15 (2006) 1–155.

D. BOFFI.

Finite element approximation of eigenvalue problems. *Acta Numerica* 19 (2010) 1–120.

D. N. ARNOLD.

Finite Element Exterior Calculus. CBMS-NSF Regional Conf. Series in Applied Math. SIAM, 2018

- F. ASSOUS, P. CIARLET, E. SONNENDRÜCKER.

Résolution des équations de Maxwell dans un domaine avec un coin rentrant. *C. R. Acad. Sc. Paris, Série I* **323** (1996) 203–208.

I. BABUŠKA, J. E. OSBORN.

Finite element-Galerkin approximation of the eigenvalues [...] selfadjoint problems. *Math. Comp.* **52**(186) (1989) 275–297.

M. BIRMAN, M. SOLOMYAK.

 L^2 -theory of the Maxwell operator in arbitrary domains. *Russ. Math. Surv.* **42 (6)** (1987) 75–96.

D. BOFFI.

Fortin operator and discrete compactness for edge elements. *Numer. Math.* **87**(2) (2000) 229–246.

D. BOFFI, M. COSTABEL, M. DAUGE, L. DEMKOWICZ, AND R. HIPTMAIR,

Discrete compactness for the *p*-version of discrete differential forms, *SIAM J. Numer. Anal.*, **49** (1) (2011) 135–158.

D. BOFFI, P. FERNANDES, L. GASTALDI, I. PERUGIA.

Computational models of electromagnetic resonators: analysis of edge element [...] SIAM J. Numer. Anal. **36** (1999) 1264–1290.

A.-S. BONNET-BEN DHIA, C. HAZARD, S. LOHRENGEL.

A singular field method for the solution of Maxwell's equations in polyhedral domains. *SIAM J. Appl. Math.* **59**(6) (1999) 2028–2044 (electronic).

.

A. BONITO, J.-L.GUERMOND.

Approximation of the [...] Maxwell system by continuous Lagrange finite elements. *Math. Comp.* **80**(276) (2011) 1887–1910.

A. BUFFA, P. CIARLET, JR., E. JAMELOT.

Solving electromagnetic eigenvalue problems [...] with nodal finite elements. *Numer. Math.* **113**(4) (2009) 497–518.

S. CAORSI, P. FERNANDES, M. RAFFETTO.

Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec [...] M2AN Math. Model. Numer. Anal. 35(2) (2001) 331–354.

M. COSTABEL.

A coercive bilinear form for Maxwell's equations.

J. Math. Anal. Appl. 157 (2) (1991) 527–541.

M. COSTABEL, M. DAUGE.

Maxwell and Lamé eigenvalues on polyhedra. Math. Meth. Appl. Sci. 22 (1999) 243–258.

M. COSTABEL, M. DAUGE.

Singularities of electromagnetic fields in polyhedral domains. *Arch. Rational Mech. Anal.* **151**(3) (2000) 221–276.

M. COSTABEL, M. DAUGE.

Weighted regularization of Maxwell equations in polyhedral domains. *Numer. Math.* **93 (2)** (2002) 239–277.

M. COSTABEL, M. DAUGE, S. NICAISE.

Singularities of Maxwell interface problems.

M2AN Math. Model. Numer. Anal. 33(3) (1999) 627-649.

M. COSTABEL, M. DAUGE, C. SCHWAB.

Exponential convergence of the *hp*-FEM for the weighted regularization of Maxwell equations in polygonal domains.

Math. Models Methods Appl. Sci. 15, No 4 (2005), 575622

J. DESCLOUX, N. NASSIF, J. RAPPAZ.

On spectral approximation. I. The problem of convergence. *RAIRO Anal. Numér.* **12**(2) (1978) 97–112, iii.

71/72

C. HAZARD, S. LOHRENGEL.

A singular field method for Maxwell's equations: Numerical aspects in two dimensions. *SIAM J. Numer. Anal.* (2002) To appear.

F. Кікисні.

On a discrete compactness property for the Nédélec finite elements. *J. Fac. Sci. Univ. Tokyo Sect. IA Math.* **36**(3) (1989) 479–490.

V. A. KONDRAT'EV.

Boundary-value problems for elliptic equations in domains with conical or angular points. *Trans. Moscow Math. Soc.* **16** (1967) 227–313.

J.-C. NÉDÉLEC.

Mixed finite elements in \mathbb{R}^3 . Numer. Math. **35** (1980) 315–341.