

Magnetic nanoparticles: synthesis, properties and biomedical applications

Olivier Sandre

► To cite this version:

Olivier Sandre. Magnetic nanoparticles: synthesis, properties and biomedical applications: Part 1: Synthesis and physical properties. Master. Física Aplicada, Universidad de Granada, Spain. 2017, pp.62. cel-02105959

HAL Id: cel-02105959 https://cel.hal.science/cel-02105959

Submitted on 22 Apr 2019 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

MAGNETIC NANOPARTICLES: SYNTHESIS, PROPERTIES AND BIOMEDICAL APPLICATIONS

Olivier Sandre, senior CNRS researcher at Univ. Bordeaux, France

Université **BORDEAUX**

CINIS

Universidad de <mark>Granada</mark>

CINIS

CITS

Magnetic nanoparticles (MNPs) Part 1: Synthesis and physical properties

• Part 1A: Chemistry of iron oxides and oxo-hydroxides:

Diversity of methods to prepare colloidal nanoparticles, either in non aqueous solvents: hydrothermal synthesis, polyol synthesis, thermal decomposition... or in water: alkaline co-precipitation of iron salts (also in EG, DEG...)

• Part 1B: Magnetic behavior (ferro- /ferri- /antiferro- /superpara- magnetism...) and optical properties of MNPs (UV-vis absorption, magnetic birefringence)

• Part 1C: MNPs as contrast agents in Magnetic Resonance Imaging Universal law for relaxometry $(T_1/T_2 \text{ of water H spins near MNPs})$

All properties are highly sensitive on MNP's size and shape (poly)dispersity!

- Part 2A Magnetic Hyperthermia ('Tumor catabolism')
- Part 2B Nanomedicines Magnetic carrier Magnetic Guiding ('Tumor homing')

• Part 2C Drug Delivery Systems (DDS) based on Magnetic Core@Polymer Shells, Magnetic Polymer Shells, Magnetic Micelles, or Vesicles ('Polymersomes')

Diversity of iron oxides and oxo-hydroxides

The Iron Oxides (Rochelle M. Cornell, Udo Schwertmann)

From solution of Fe²⁺ et Fe³⁺ salts towards solid phase

CINIS

Very narrow pH stability of $Fe^{3+}(H_2O)_6$ soluble ion

Jean-Pierre Jolivet

université

BORDEAUX

Chem. Commun., 2004, 481-487

Bordeaux INI

Antiferromagnetic clays made of iron^{+III} oxo-hydroxides

université BORDEAUX

Goethite nanolaths γ –FeOOH (rod-like)

Accicular Haematite α -Fe₂O₃ (spindle-like)

Synthesis of antiferromagnetic goethite nanorods

1/ ferrihydrite alkaline precipitation NaOH 2/ Slow dissolution X days at pH>11 3/ Washings H₂O 1M \rightarrow goethite formation (ochre) goethite 0.1M Fe(NO₃)₃ $\alpha - FeOOH$ Ni (NO₃)_ou Co(NO₃)₂ Dispersion in HNO₃ at pH=3

universite *BORDEAUX

 PhD thesis J. Hernandez (UPMC 1998): 10 days ageing at T=25C & pH13

 $_{\circ}$ S. Krehula et al. (Mat. Lett. 2002): hydrophobic base (TMAOH) Ageing during 1 – 21 days + "forced hydrolysis" (T=60 – 160C)

 D. Thies-Weesie et al. (Chem. Mater. 2007) Size-sorting by centrifugation steps

 Thermal decomposition Fe^{III}-oleate Taekyung Yu et al. (JACS 2007)

Doping of goethite nanorods with Mⁿ⁺ cations

U. Schwertmann & R.M. Cornell, <u>Iron Oxides in the Laboratory</u> (1991) B. Sing et al., Clay Minerals 2002 \rightarrow Cr³⁺, Mn³⁺, Ni²⁺ M. Mohapatra et al., Hydromelallurgy 2002 \rightarrow Cu²⁺, Ni²⁺, Co²⁺, Mat. Chem. Phys. 2005 –

Ageing conditions: 24h in oven at 70° C-pH=11-12

Sample	$\mathrm{pH}_{\mathrm{ageing}}$	Ni/Fe	Φv/v	D _{hyd} nm		Sample	$\mathrm{pH}_{\mathrm{ageing}}$	Co/Fe	Φ v/v	D _{hyd} nm
T	11.1	0	0.21%	205	N.	T	11.1	0	0.21%	205
1Ni	11	0.6%	0.19%	198		1Co	12	1.0%	0.25%	284
5Ni	11.9	2.4%	0.17%	142		5Co	12.2	2.6%	0.15%	169
10Ni	12	2.8%	0.10%	168		10Co	12.2	9.6%	0.02%	238
Res and a second					OH) 	 -T1 goethite téme 5 Ni1 goethite d Goethite orthorh 	ON SUITACE pin non dopée opée Ni à 2,4% ombique (tables l	ogiciel)		
	OH: ortho	0,4 0,2 0 15	25 35	45 Å b=3.01	55 2 théta	65 7 4 62Å	5 85	95	7	-11

CINIS

Goethite nanorods doped with Co²⁺

Antiferromagnetic nanorods of even smaller sizes

Magneto-orientational behavior of a suspension of anti-ferromagnetic nanoparticles (NAF)

J. Phys.: Condens. Matter 20 (2008) 204120 Yu L Raikher, V. I. Stepanov (Perm, Russia) :

CINIS

Magnetic behavior of antiferromagnetic nanorods

6:30

SQUID magnetometry at ambient temperature*

université **BORDEAUX**

*measurement at INSP lab. (UPMC)

CNIS

Magnetite: Crystalline Structure

<u>Data</u>: one unit cell is cubic and contains 8 Fe₃O₄ molecules $v = 45 \text{ cm}^3 \cdot \text{mol}^{-1}$ Mass density $\rho = 5.18 \times 10^3$ kg·m⁻³, Molar mass M=231.535 g·mol⁻¹ 1 Bohr magneton $\mu_{\rm B}$ =9.274×10⁻²⁴ A·m² a=8.396 Å

2/calculate the specific magnetization M_S of bulk Fe_3O_4 in A·m⁻¹ $M_{s} = 5 \times 10^{5} \text{ A} \cdot \text{m}^{-1}$

> Jniversite BORDEAUX

Curie-Weiss

domains

Magnetic domains and Bloch boundaries (walls)

Macroscopic magnets (bulk materials) are multi-domains

Size of mono-domain: ~ 30-50 nm for iron oxides

Rosensweig 1965, Néel 1955, Kittel 1946, Elmore 1938

One ~10 nm nanoparticle is a magnetic single domain

Bloch walls

1: calculate magnetic moment (in nb of μ_B /MNP) for diameters: d=4 / 8 / 16 nm

- 2: calculate total nb of Fe ions per MNP for all d's
- 3: calculate nb of Fe ions on surface per MNP for all d's Data:

1 Bohr magneton $\mu_B = 9.274 \times 10^{-24} \text{ A} \cdot \text{m}^2$

For nano-crystalline Fe_3O_4 , $M_s = 4 \times 10^5 \text{ A} \cdot \text{m}^{-1}$

Answer:

1: 1500 / 11000 / 90000 2: 1400 / 10700 / 87000

3: 290 (20%) / 1100 (10%) / 4500 (5%)

Shape anisotropy contribution to birefringence "Rock-like" particles: S1C fraction, coated with PAA_{2k}

Birefringence measurement under H field

Starting materials : "True" ferrofluid

Ferrofluid = colloidal suspension of magnetic nanoparticles which remains <u>stable whatever the intensity of applied magnetic field</u>

- no attraction of nanoparticles under B field gradient nor chaining by dipolar interaction
 - but progressive orientation of dipoles according to Langevin's laws:

Improved properties of the larger magnetic NPs

Lieberatore de Chimie High Frequency Magnetic Susceptometry / Hyperthermia

Astalan, A.; Ahrentorp, F.; Jonasson, C.; Blomgren, J.; Yan, M.; Courtois, J.; Berret, J.-F.; Fresnais, J.; Sandre, O.; Müller, R.; Dutz, S.; Johansson, C., AIP Conf. Proc. Series 2010

High frequency AC susceptometer built at the IMEGO company (Sweden) AC signal source (A), current amplifier (B), coil system and mechanics (C), lock-in amplifier (D) and user interface software (E)

Role of the sizes' (mono) dispersity on the SHP effect

G. Glöckl, R. Hergt, J. Phys.: Condens. Matter 18 (2006) S2935–S2949: resonance effect

Astalan, A.; Ahrentorp, F.; Jonasson, C.; Blomgren, J.; Yan, M.; Courtois, J.; Berret, J.-F.; Fresnais, J.; Sandre, O.; Müller, R.; Dutz, S.; Johansson, C., AIP Conf. Proc. Series 2010

CINS

Role of MNP shape on the magnetic anisotropy K_{a}

Astalan, A.; Ahrentorp, F.; Jonasson, C.; Blomgren, J.; Yan, M.; Courtois, J.; Berret, J.-F.; Fresnais, J.; Sandre, O.; Müller, R.; Dutz, S.; Johansson, C., AIP Conf. Proc. Series 2010

Improved properties of the larger magnetic NPs

Ionic Ferrofluids: the coprecipitation synthesis

université **BORDEAUX**

Massart's process:
 Alkaline coprecipitation of FeCl₂ & FeCl₃
 → magnetite Fe₃O₄ nanoparticles

 $\begin{array}{r} {Fe^{2+}}_{(aq)} + \ 2Fe^{3+}{}_{(aq)} + \ 8OH^{-}{}_{(aq)} \\ \rightarrow Fe_{3}O_{4(s)} + \ 4H_{2}O_{(I)} \end{array}$

R. Massart IEEE Trans. Magn. 17 1247 (1981)

Oxidation by $Fe(NO_3)_3$ \rightarrow maghemite γ -**Fe₂O₃** nanoparticles in acidic medium (HNO3): stabilized by electrostatic surface charges (PZC \approx 7)

A. Abou-Hassan, O. Sandre, and V. Cabuil, *Chapter 9: Microfluidics for the synthesis of iron oxide nanoparticles*, in <u>Microfluidic Devices in Nanotechnology: Applications</u>, C.S.S.R. Kumar, Editor. **2010**, John Wiley & Sons, Inc: Hoboken, NJ, USA. p. 323-360

Microfluidics as a tool to get an insight of the kinetics of the coprecipitation reaction

Microfluidics as a tool to get an insight of the mechanism of goethite formation

université *BORDEAUX

"2-lines ferrihydrite" nanodots \emptyset = 4±1 nm

CINIS

A. Abou-Hassan, O. Sandre, S. Neveu, V. Cabuil, Angew. Ch. 48 1-5 (2009)

Z max

Axis

of symmetry

r_{in} r_w

CINIS

FEM lab simulations

Microfluidics as a tool to get an insight of the mechanism of goethite formation

 $\mathbf{j}_i = -D_i \operatorname{\mathbf{grad}} C_i + \frac{D_i}{k_{\pi}T} C_i Z_i e \mathbf{E}$

(Nernst-Planck)

pH = f(α) with α = Q_{OH-} / Q_{H+}

A. Abou-Hassan, J-F. Dufrêche, O. Sandre, G. Mériguet, O. Bernard, V. Cabuil, J. Chem. Phys. C 2009

Universite **BORDEAUX**

r max

CNIS

Microfluidics as a tool to get an insight of the mechanism of goethite formation

université

BORDEAUX

Bordeaux INP

Detection of first seeds using SAXS in microfluidics

Detection of first seeds using SAXS in microfluidics

Preliminary SAXS results: intensity curves along z

 α = 400/10=40 R_{jet} = 88 μ m 1,E+00 z = 8 mm X R z = 6,5 mm z = 7 mm1,E-01 z = 5,5 mm2H z = 4 mmz = 3,5 mm z = 3 mm (1,E-02 E) z = 2 mm💊 1,E-03 1,E-04 Ζ space (z) \approx time equivalency? X-rays 1,E-05 0,001 0,01 0,1 q (Å⁻¹) CINIS université BORDEAUX

Preliminary SAXS results: fits as disk form factor

Preliminary SAXS results: fits as disk form factor

Coatings of iron oxide and oxo-hydroxide NPs for their dispersion in various media

Different coatings to insure colloidal stability :

 surfactants (oleic acid, phosporic diester ,...) for organic solvents (alkanes, chlorinated,...)

 sodium citrate in aqueous neutral medium (pH=7.2) or sodium polyacrylate (2000 or 5000 g/moL)

J. A. Galicia, O. Sandre, F. Cousin, D. Guemghar, C. Ménager, V. Cabuil, J. Phys.-Cond. Mat. 2003. <u>15</u> S1379.

Universite **BORDEAUX**

Ionic Ferrofluids: demixtion & size sorting

Size Polydispersity: P(d, nm)

R. Massart, E. Dubois, V. Cabuil, E. Hasmonay, J. Magn. Magn. Mater. 149 1 (1995)

Size-sorted "ionic ferrofluid" as elementary bricks

	USPIO fraction	Given name in this work	D _H of bare MNPs in HNO ₃ nm / PDI	Average diameters by TEM	Average diameters by VSM	Saturation magnetization emu/g A/m	r₂ (4.7T) s⁻¹mM⁻¹ _{Fe}	SLP at f=800 kHz, H ₀ =11 kA/m W/g
	515253	6-7 nm	11 / 0.12	d _n =4.9 nm, d _w =6.9 nm (N=600)	d _n =6.5 nm, d _w =7.5 nm	55±1 2.8×10 ⁵	70	2±1
14.4								
				74 5 - 17 - 19 - 19 - 19 - 19 - 19 - 19 - 19				
1 - E		•			1 0.9 0.8			
0.3 0.25 0.2				/Msat	0.7			·
0.15 0.1			5	M	0.4		······································	
0.05 0 50 mm	5 10	15 20 M diameter (nm)	25 30	5.1	0 20	H H DOO 4000 Applied magnetic	6000 800 6ield (Oe)	0 10000
				*BORDEAUX		000000000000000000000000000000000000000	BG	scep

Size-sorted "ionic ferrofluid" as elementary bricks

			-		_	-	_	-	
		USPIO fraction	Given name in this work	D _H of bare MNPs in HNO ₃ nm / PDI	Average diameters by TEM	Average diameters by VSM	Saturation magnetization emu/g A/m	r ₂ (4.7T) s ⁻¹ mM ⁻¹ Fe	SLP at f=800 kHz, H _o =11 kA/m W/g
		515253	6-7 nm	11 / 0.12	d _n =4.9 nm, d _w =6.9 nm (<i>N</i> =600)	d _n =6.5 nm, d _w =7.5 nm	55±1 2.8×10 ⁵	70	2±1
5	23	S1C2	8-10 nm	23 / 0.16	d _n =8.5 nm, d _w =11.6 nm (<i>N</i> =3800)	d _n =8.2 nm, d _w =10.0 nm	60 3.0×10 ⁵	104	9±1
	0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0		15 EM diameter (nn	20 25 30 n)	M/Msat	$ \begin{array}{c} 1 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		6000 800 field (Oe)	0 10000
					* BORDEAUX			-	

Size-sorted "ionic ferrofluid" as elementary bricks

USPIO fraction	Given name in this work	D _H of bare MNPs in HNO ₃ nm / PDI	Average diameters by TEM	Average diameters by VSM	Saturation magnetization emu/g A/m	r₂ (4.7T) s⁻¹mM⁻¹ _{Fe}	SLP at f=800 kHz, H _o =11 kA/m W/g
S1S2S3	6-7 nm	11 / 0.12	d _n =4.9 nm, d _w =6.9 nm (<i>N</i> =600)	d _n =6.5 nm, d _w =7.5 nm	55±1 2.8×10⁵	70	2±1
S1C2	8-10 nm	23 / 0.16	d _n =8.5 nm, d _w =11.6 nm (<i>N</i> =3800)	d _n =8.2 nm, d _w =10.0 nm	60 3.0×10⁵	104	9±1
 C1C25354	10-15 nm	38 / 0.26	d _n =13.8 nm, d _w =20 nm (<i>N</i> =1140)	d _n =10.4 nm, d _w =14.8 nm	70±1 3.5×10 ⁵	293	80±5

Magnetization curves along the size-grading process

Magnetic/magneto-optical properties of size-sorted MNPs nèr<mark>es O</mark>rganiques

Synthesis & properties of multi-core "nanoflowers"

L. Lartigue, P. Hugounenq, D. Alloyeau, S. P. Clarke, M. Lévy, J-C. Bacri, R. Bazzi, D. F. Brougham, C. Wilhelm, F. Gazeau, ACS Nano 6, 10935–10949 (2012)

umèr<mark>es O</mark>rganiques

BORDEAUX

NSCBP

Nanoflower synthesis: the New Orleans method

- 1) D. Caruntu, G. Caruntu, Y. Chen, C. J. O'Connor, G. Goloverda, V. L. Kolesnichenko, *Chem. Mater.* **2004**, *16*, 5527-5534;
- 2) S. Sun and H. Zeng et al, J. A. C. S., 2002, 124, 8204-8205 and 2004, 126, 273-279

Inversite

BORDEAUX

Bordeaux IN

3) F.A. Tourinho, R. Franck, R. Massart, J. Materials Science 1990, 25, 3249-3254

CNIS

Large library of sample batches

université

BORDEAUX

Batch name	Nomenclature
15ff	DN1000 _{HU} -5h
17ff	D5000 _{HI} -20m
25ff	DN500 _{HU} -4h
30ff	DN1000 _{HU} -5h
31ff	DN500 _{HU} -1h
32ff	DN500 _{HU} -5h
34ff	DN100 _{HU} -5h*
35ff	DN100 _{HU} -5h
36ff	DN100 _{HU} -5h

Vary μL water in 120 g polyol mixture:

EG: Ethylene Glycol	D=pure DEG			
DEG: Diethylene Glycol	DN=DEG/NMDEA (1:1)			
TEG: Triethylene Glycol	DD=DEG/DEA (1:1)			
DEA: Diethanolamine	TD=TEG/DEA (1:1)			
NMDEA: N-methyldiethanolamine				
TEA: Triethanolamine	HU=heating up			
DIA: N-ethyl Diisopropylar	nine HI=hot injection			
	* no stirring			

Batch name	Nomenclature
28AA	DN100 _{HU} -220-5h-Cl
29AA	DN200 _{HU} -220-5h-Cl
02MA	DN300 _{HU} -220-5h-Cl
09MA	DN400 _{HU} -220-5h-Cl
10MA	DN500 _{HU} -220-5h-Cl
11MA	DN50 _{HU} -220-5h-Cl
27MA	DN0-220-5h-Acac
12MA	DN100-220-5h-Acac
17MA	DN200-220-5h-Acac
18MA	DN300-220-5h-Acac
19MA	DN400-220-5h-Acac
20MA	DN500-220-5h-Acac
15JA	DD100-250-5h-Cl
10JA	TD100-250-5h-Cl

Cl=2 mmol FeCl₂, 4 mmolFeCl₃,16 mmol NaOH Acac=6 mmol Fe(acac)₃,16 mmol NaOH

Study of polyol route: fate of solvent molecules

CINIS

Study of polyol route: fate of solvent molecules

Bordeaux INP

CINIS

Study of polyol route: fate of solvent molecules

- Can be oxidized in boiling $Fe(NO_3)_3$: $Fe_3O_4 \rightarrow \gamma Fe_2O_3$
- Washed and stabilized in water at pH~7 with citrate ligand or PEG-phosphonate

iversite ••BORDEAUX

Hydrodynamic size by DLS

	Figure	Batch	D _h (nm)	PDI		
	а	5ff	36	0.22		
	b	7ff	32	0.14		
	С	12ff	44	0.18		
	d	15ff	46	0.23		
	е	17ff	24	0.32		
	f	19ff	22	0.18		
	g	20ff	16	0.21		
	h	21ff	27	0.14		
	i	22ff	43	0.14		
	j	25ff	55	0.26		
	k	26ff	36	0.10		
	I	27ff	50	0.11		
	m	29ff	37	0.16		
	n	31ff	33	0.08		
	0	32ff	21	0.13		
	р	33ff	45	0.12		
	q	34ff	30	0.19		
	r	35ff	36	0.13		
) 16 12 8 4 0	Time (μ s) 0.1 10 1000 10 ⁵ 10 10 10 10 10 10 10 10 10 10					

Bordeaux INP ENSCBP 1

q

Variety of Fe_3O_4 NP batches synthesized in DEG:NMDEA $\langle d \rangle = d_0 e^{\sigma^2/2}$ $var(d) = d_0^2 (e^{\sigma^2/2} - 1)$

CNIS

Example of ultra-small nanosphere sample: 17FF

université BORDEAUX ordeaux INP

Example of medium size nanosphere sample: 25FF

université BORDEAUX

CINIS

Example of very large size nanosphere sample: 34FF

université BORDEAUX Bordeaux INP

Example of nanoflower sample: 15FF

Necessity to measure precisely iron oxide concentration

Experimental measurement of all properties (m_S , Δn_S , SHP, P(q), r_1 , r_2 ...) require the total iron concentration.

Available methods are:

• Atomic Absorption Spectroscopy (or ICP): sensitive (10⁻⁵M) but ±5%

• Redox titration (Charlot) by K₂Cr₂O₇/SnCl₂: precise (±1%) but not sensitive (10⁻¹M)

• Whole UV-Vis curve: precise (±1%) and sensitive (10⁻⁴M)

• "Ferrozine assay": highly sensitive (10⁻⁷M) from OD_{562nm} according to Small 5 (2009) 256

UV-Vis extinction is independent on MNP size distribution es Organiques

BORDEAUX

61

Conclusion on Part 1 (Synthesis & Properties of MNPs)

- Since 30 years, the aqueous route (alkaline coprecipitation) leads to a quantitative production (~100g dry γ–Fe₂O₃) of magnetic nanoparticles that can be further functionalized (organic solvent, polymer matrix, biological coatings...). Today the up-scalable method is <u>polyol route</u>.
- Samples have inherent size / shape polydispersity, which can be a drawback for long-range ordering (*e.g.* colloidal or liquid crystals) but, according to Curie's principle, this is a great advantage to get large physical properties!
- The outlooks for biological applications (MRI contrast agents and magnetic hyperthermia) might be to play on the anisotropy constant *K*_a (shape anisotropy or other "irregularity") rather than on the size only, because of the difficulty to stabilize large MNPs (*e.g.* Ø>20nm) in biological media (ionic strength and flocculent proteins).