Ce cours est destiné à l'étude du comportement asymptotique en temps des solutions d'une classe d'équations de réaction-diffusion, par la théorie du Groupe de Renormalisation. Cette théorie a été appliquée avec grand succès, d'abord en Physique des Particules, ensuite en Phénomènes Critiques. Ce n'est pas un hasard de s'intéresser à ce genre d'équations, car celles-ci gèrent beaucoup de phénomènes naturels, en relation avec la physique, la mécanique, la mécanique des fluides, la thermique, les milieux poreux, les fronts de diffusion, la chimie, la biologie, la botanique et même l'économie.

Chapitre 1

Equations de réaction-diffusion.

Le but de ce chapitre est de montrer comment on obtient les équations de réactiondiffusion, qui apparaissent dans plusieurs domaines des sciences de la nature.

1.1 Définition de la densité de population.

Le mécanisme de diffusion modélise le mouvement des individus dans un environnement ou un milieu. Ces individus peuvent être petits, tels que des particules en physique, bactéries, molécules ou cellules, ou encore des objets très larges comme des êtres humains, animaux, insectes, organismes, plantes, ou certains types d'évènements comme des épidémies ou de rumeurs.

Supposons que les individus résident dans une région, Ω, qui est un domaine ouvert de l'espace euclidien R n , avec n ≥ 1. En particulier, nous serons intéressés par les cas n = 1, 2 et 3. Mais le formalisme présenté ici s'applique à toute dimension de l'espace.

La variable mathématique de base que nous considérons ici est la fonction densité de population : P (x, t), où t est le temps et x ∈ Ω est la position. La dimension de la densité de populations est le nombre de particules par unité de longueur (pour n = 1), unité d'aire (pour n = 2) ou par unité de volume (pour n = 3 ). Par exemple, la densité de population humaine est souvent exprimée en nombre d'individus par

kilomètre carré.

La densité de population est toujours associée à une échelle, comme le pays, la ville, la cité ou la rue. Mais comme pour d'autres modèles mathématiques, nous supposerons que la fonction P (x, t) a les bonnes propriétés mathématiques, comme la continuité et la dérivabilité. Ce qui est, en fait, raisonnable, lorsqu'on considère une population avec un grand nombre d'individus.

Techniquement, l'on définit la fonction densité de population P (x, t) comme suit : soit x un point de l'habitat Ω, et soit {O n } ∞ n=1 une séquence de régions spatiales (qui ont la même dimension que Ω) entourant le point x. Ici, les sous-domaines {O n } sont choisis, de sorte que leurs mesures spatiales {|O n |} (longueur, aire, volume, ou mathématiquement, la mesure de Lesbegue) tendent vers zéro, lorsque n → ∞, et

O n ⊃ O n+1 ; alors P (x, t) = lim n→∞ N ombre d ′ individus dans O n au temps t |O n | , (1.1) 
si la limite existe. Réellement, tant que l'échelle de collection des données est suffisamment petite, la densité de population est toujours très bien définie. Il est clair que la population totale dans n'importe quelque région O de Ω, au temps t, est Ω P (x, t) dx .

(1.2)

1.2 Equations de réaction-diffusion.

La question à laquelle nous sommes intéressés, maintenant, est comment la fonction P (t, x) change, lorsque t évolue et la position x varie. La population peut changer de deux manières : une est que les particules individuelles peuvent bouger dans leur domaine ; et la deuxième est qu'elles peuvent donner naissance à de nouveaux individus, ou tuer les individus existants, à cause des raisons physique, chimique ou biologique. On modélisera ces deux différents phénomènes séparément.

Comment les particules peuvent bouger ? En général, ceci est un processus hautement compliqué, qui peut être attribuer à plusieurs raisons. Par exemple, les raisons d'immigration humaine peuvent être pour chercher une vie descente, pour chercher un travail meilleur, pour une raison politique, ou pour une raison religieuse.

Généralement, la population se déplacent des régions où la densité de population est la plus grande à des régions ou cette densité est la plus faible. Cela est similaire à plusieurs phénomènes physiques, comme le transfert de chaleur (de l'endroit le plus chaud à l'endroit le plus froid), ou une dilution chimique dans l'eau. Ce fait nous rappelle le proverbe chinois : Le peuple monte vers le haut et l'eau coule vers le bas.

Le mouvement de P (x, t) est appelé "flux de densité de population", qui est un vecteur. Le principe du "haut vers le bas" signifie que le flux pointe dans la direction de la décroissance rapide de P (x, t), qui est le gradient négatif de P (x, t).

Ce principe est appelé "loi de Fick", décrite par l'équation

J (x, t) = -D (x) ∇ x P (x, t) , (1.3) 
où J (x, t) est le flux de P (x, t), D (x) est le coefficient de diffusion au point x, et 

∇ x l'opérateur gradient : ∇ x f (x) = (∂f /∂x
u ( -→ r , t) = u 0 (4πDt) -d/2 exp --→ r 2 /4Dt , (d = 3) . (1.13)
Ici, u 0 étant une constante. 

c ( -→ r , t) = c 0 (4πDt) -d/2 exp --→ r - -→ V t 2 /4Dt , (d = 3) , (1.15) 
où c 0 est une constante.

Equation de la chaleur.

Soit T ( -→ r , t) le champ de température dans un échantillon soumis à un gradient de température. La grandeur T ( -→ r , t) satisfait l'équation différentielle parabolique

∂ t T = k∆T , (1.16) 
où k est le coefficient de diffusivité thermique.

Marche au hasard.

Soit un particule en suspension dans un liquide. Elle subit alors un mouvement brownien (trajectoire aléatoire ou marche au hasard). Désignons par P ( -→ r , t) la probabilité de trouver la particule au point -→ r , à l'instant t, sachant qu'elle était à l'origine de l'espace O, à l'instant t = 0. Cette probabilité est solution de l'équation de diffusion

∂ t P = D∆P , Diffusion .
(1.17)

En présence d'une advection, cette équation devient

∂ t P + V -→ ∇ P. -→ γ = D∆P , Advection . (1.18) 
Ici, -→ γ désigne la direction d'orientation de la diffusion.

Advection non linéaire.

Considérons un fluide en régime de convection, et désignons par -→ V ( -→ r , t), sa vitesse d'écoulement. Cette dernière satisfait l'équation de Burgers

∂ t -→ V + -→ V .∇ -→ V = ν∆ -→ V , Equation de Burgers , (1.19) 
avec ν le coefficient de viscosité cinématique.

L'équation de Burgers apparaît également dans le problème des ondes de choc, relié aux fluides, pour lesquels la vitesse d'écoulement dépasse la vitesse du son. La vitesse d'écoulement, -→ V ( -→ r , t), est solution de l'équation différentielle parabolique suivante Si r > 0, la population croît. En revanche, si r < 0, la population est en voie de disparition. La valeur r = 0 correspond à une diffusion pure.

∂ t -→ V -c∇ -→ V + α -→ V .∇ -→ V = ac 3 ∆ -→ V , (1.20 

Diffusion anomale.

Pour des phénomènes de diffusion ayant lieu dans des milieux inhomogènes, la constante de diffusion dépend du point représentatif. L'équation de Richardson constitue l'un des modèles décrivant ce genre de situations 

∂ t u = D x 1-α/2 t 1-να ∂ 2 ∂x 2 x 1-α/2 u , Equationde Richardson , ( 1 
u (x, t) ∼ t -ν exp {-x α /t ν } . (1.24)
Pour les diffusions dans des milieux poreux, le coefficient de diffusion dépend de la solution elle-même. L'équation de diffusion généralisée est la suivante

∂ t u = div D (u) -→ ∇ u , (1.25) 
avec

D (u) = D 0 u u 0 m , u (0, x) = Q 0 δ (x) . (1.26)
Ici, l'exposant m est une constante du milieu. Les quantités D 0 , Q 0 , et u 0 sont des constantes. La solution de l'équation

(1.25) est u (x, t) =      u 0 λ(t) 1 - x r 0 λ(t) 2 , |x| < r 0 λ (t) , 0 , sinon . 
(1.27) avec l'échelle de temps

λ (t) = t t 0 1/2m
.

(1.28)

Propagation des épidémies.

Les épidémies sont causées par des bactéries, virus, moissures par des insectes ou animaux enragés.... L'on suppose que la transmission se fait d'un individu à l'autre.

Désignons par S (x, t) la densité de population, qui n'est pas encore infectée, au point

x, et à l'instant t. Soit I (x, t), la densité de population qui n'est pas encore affectée, au même point x et au même instant t. L'on a les équations de réaction-diffusion couplées

∂ t S = D∆S -rS × I , (1.29) 
∂ t I = D∆I + rS × I -aI . (1.30)
Ici, r désigne le taux d'infection et a le taux de mortalité.

Dispersion d'un insecte invasif.

Considérons des insectes ravageurs (de graines de cèdre, par exemple). Soit u (x, t) leur densité au point x et à l'instant t. Cette variable dynamique est solution de l'équation de réaction-diffusion

∂ t u = D∆u - -→ V . -→ ∇ u -X (x, t) u + f (x, t) , (1.31) 
où f (x, t) est la fonction émergence progressive des insectes, X (x, t) le taux de mortalité quotidien pendant la période de vol, et -→ V (x, t) un vecteur tenant compte de la distance à la forêt la plus proche, et de la force du vent.

1.3.10 Propagation d'une flamme dans un mélange de gaz.

On considère un mélange de gaz dans un conduit. Le feu est mise à l'entrée de ce conduit, et va donc s'y propager. Désignons par T (x, t) la température du mélange, par u (x, t) la concentration du réacton, et par c la vitesse de la flamme. Les variables T et u sont solutions des équations de réaction-diffusion suivantes 

c∂ t T = D M ∆T + f (T, u) -λh (T, u) , (1.32) 
c∂ t u = D R ∆u -f (T, u) , (1.33 
∂ t u = D A ∆u + f (u) -v , (1.35) ∂ t v = D B ∆v + αu -βv , ( 1 

Morphogenèse.

La morphogenèse est une interaction entre cellules et certains types de molécules, à l'état embryonnaire. Le bronzage, rayures des zèbres, ou tâches sur les girafes sont dûs à une molécule appelée Mélanine. Ces motifs sont reproduits en utilisant la Théorie de Turing (1952). Cette théorie décrit le processus de réaction-diffusion de deux substances chimiques qui diffusent dans l'épiderme.

Chimiotactisme et morphogenèse peuvent être modélisés par des équations de réaction-réaction couplées Pour la théorie ϕ 4 , par exemple, l'action est la somme

∂ t -→ u = div (D∇ -→ u ) + -→ Q . ( 1 
S [ϕ] = S 0 ϕ, m 2 + S int [ϕ, g) , (2.1) 
avec

S 0 ϕ, m 2 = 1 2 d d x (∂ µ ϕ) (∂ µ ϕ) + m 2 ϕ 2 (x) , (2.2) et S int [ϕ, g) = g 4! d d xϕ 4 (x) . (2.3)
Ici, S 0 [ϕ, m 2 ) est l'action libre, quadratique dans le champ ϕ et ses dérivées, et S int [ϕ, g) l'action interaction, non linéaire dans ce même champ.

La théorie a été développée à l'aide des fonctions de Green, G (N) (x 1 , ..., x N , m 2 , g), qui sont la moyenne vide-vide d'un produit du champ ϕ

G (N) (x 1 , ..., x N ) = 0| T ϕ (x 1 ) ...ϕ (x N ) |0 , x i ∈ M d , (2.4) 
où T est l'opération ordre chronologique. Grâce à ces fonctions, on calcule une quantité de base, qui est la matrice S permettant de déduire la section efficace qu'on mesure expérimentalement [START_REF] Bogoliubov | Introduction to Theory of Quantized Fields[END_REF][START_REF] Itzykson | Quantum Field Theory[END_REF]. Tout ce qu'on sait faire est de développer ces fonctions en série de puissances de la constante de couplage g. Le prix à payer est l'apparition des divergences à courtes distances, ou encore divergences ultraviolettes.

Pour donner un sens à la théorie, on doit d'abord la régulariser. Il existe plusieurs façons de régulariser, mais la plus commode est la régularisation dimensionnelle Dans le cadre de cette régularisation, les divergences à courtes distances sont des pôles en ǫ. Donc, les fonctions de Green régularisées ou "nues" se présentent comme des séries de Laurent dans la variable ǫ et des séries entières dans la constante de couplage nue g.

Il ne suffit pas de régulariser la théorie, mais il faut la renormaliser. Il a fallu plus d'une quinzaine d'années pour qu'une myriade de célèbres théoriciens démontrent que la Théorie de Champ est renormalisable, à tous les ordres de la série de perturbation [START_REF] Bogoliubov | Introduction to Theory of Quantized Fields[END_REF][START_REF] Itzykson | Quantum Field Theory[END_REF]. Ce théorème stipule qu'il existe une masse carrée renormalisée m 2 R , une constante de couplage renormalisée g R et un facteur de renormalisation Z, fonctions des paramètres nus (m 2 , g) et du régulateur ǫ, tels que la fonction de Green nue G (N) est directement proportionnelle à la fonction de Green renormalisée

G (N) R G (N) x 1 , ..., x N , m 2 , g, ǫ = Z N/2 m 2 , g, ǫ G (N ) R x 1 , ..., x N , m 2 R , g R , ǫ , (2.5) ϕ = Z 1/2 ϕ R . (2.5a) La fonction G (N) R
est finie lorsque ǫ → 0, à paramètres renormalisés m 2 R et g R fixés. Donc, une partie des divergences a été absorbée en redéfinissant les paramètres nus, et la partie divergente restante a été factorisée (facteur Z N/2 ). On peut dire qu'une renormalisation est équivaut à un changement de paramètres.

De la propriété de la renormalisation multiplicative (2.5), on déduit l'équation du GR, ou encore équation de Callan-Symanzik [START_REF] Bogoliubov | Introduction to Theory of Quantized Fields[END_REF][START_REF] Itzykson | Quantum Field Theory[END_REF], satisfaite par la fonction de Green renormalisée. La résolution de cette équation renseigne sur le comportement infrarouge (ou à grande distance) des fonctions de Green, c'est-à-dire lorsque m 2 → 0.

Par la suite, K. Wilson, un physicien issu de la Physique des Particules, avait étendu les idées du GR à un autre domaine très différent, qui est celui des Phénomènes Critiques [9 -11]. Dans ce cas, le paramètre d'ordre joue le rôle du champ ϕ, l'écart à la température critique τ = T -T c joue le rôle de la masse carrée m 2 , et les fonctions de corrélation sont l'analogue des fonctions de Green G (N) . Ici, T c est la température critique. Donc, l'approche de la transition (T → T c ), pour les Phénomènes Critiques, correspond à la limite infrarouge m 2 → 0, pour la Théorie Quantique des Champs.

Pour les EDPs qui m'intéresse ici, ces diverses limites sont l'analogue de la limite asymptotique de la solution, lorsque t → ∞.

Notion de self-similarité.

Je considère une propriété u (x 1 , ..., x n , t), qui dépend du point (x 1 , ..., x n , t) ∈ R n+1 . u * (L a 1 x 1 , ..., L an x n , L a t) = L p u * (x 1 , ..., x n , t) .

(

Ici, l'échelle de dilatation L est un nombre réel arbitraire, et p le degré d'homogénéité.

Les exposants (a 1 , ..., a 2 , a) sont des nombres réels. Cette définition est équivalente à la formule d'Euler

n i=1 a i x i ∂ ∂x i + at ∂ ∂t -p u * (x 1 , ..., x n , t) = 0 . ( 2.7) 
Réécrivons la relation (2.6) sous la forme

u * (x 1 , ..., x n , t) = L -p u * (L a 1 x 1 , ..., L a n x n , L a t) . (2.8) 
Bien évidemment, le second membre de cette égalité ne doit pas dépendre de l'échelle L. Je décide donc de choisir cette échelle, de telle sorte que

L a t = 1 ou L = t -1/a .
Avec ce choix, la relation (2.8) devient u * (x 1 , ..., x n , t) = t p/a f * x 1 t -a 1 /a , ..., x n t -an/a , (

avec la notation f * x 1 t -a 1 /a , ..., x n t -a n /a = u * x 1 t -a 1 /a , ..., x n t -a n /a , 1 .

(2.10)

Il est facile de vérifier que la fonction f * est une fonction invariante d'échelle, appelée fonction d'échelle. Il en ressort que la solution de l'équation fonctionnelle (2.6) est

u * (x 1 , ..., x n , t) = t -α/2 f * x 1 t -∆ 1 , ..., x n t -∆ n . (2.11) avec l'exposant principal α = - 2p a , (2.12) 
et les exposants de crossover 2.4 Comportement asymptotique par le GR dans l'espace réel.

∆ i = a i a , ( 1 
≤ i ≤ n) . ( 2 
Soit l'équation différentielle parabolique suivante, satisfaite par la variable dynamique

u (x, t), ∂ t u = ∂ 2 u + F (u, ∂u , ∂∂u) , (d = 1) . (2.14) 
Nous considérons ici le problème à une dimension (d = 1), mais l'analyse que nous présentons ici s'étend à toute autre dimension de l'espace d. Dans l'équation précédente, ∂ 2 représente le Laplancien, et la "réaction" F est une fonction non linéaire de la solution u et de ses dérivées premières et secondes ∂u et ∂∂u.

Cas

F = 0.
Dans cette situation, la solution est triviale et est donnée par la gaussienne

u 0 (x, t) = (4πt) -1/2 e -x 2 /4t , (2.15) 
Cette solution est exactement self-similaire, c'est-à-dire

u 0 Lx, L 2 t = L -1 u 0 (x, t) . ( 2.16) 
Ceci correspond aux quantités

a 1 = 1 , a = 2 , p = -1 , ∆ = a 1 a = 1 2 , α = - 2p a = 1 . (2.17) 
La solution (2.16) s'écrit donc sous la forme d'échelle 

u 0 (x, t) = t -1/2 f * 0 xt -1/2 , (2.18) 
f * 0 (y) = (4π) -1/2 e -
u Lx, L 2 t ∼ L -α u (x, t) , t → ∞ . (2.21) 
Le but est alors la recherche de cette solution asymptotique par application du GR dans l'espace réel. C'est précisément l'objectif de la sous-section suivante.

Transformation de renormalisation.

Introduisons la fonction

u L (x, t) = Lαu Lx, L 2 t , (2.22) 
qui est, au facteur multiplicatif Lα près, la solution à l'échelle L. Il est facile de voir que

u L (x, t) → t -α/2 f * xt -1/2 , L → ∞ , (2.23) 
et que u L est solution de l'équation différentielle parabolique

∂ t u L = ∂ 2 u L + F L (u L , ∂u L , ∂∂u L ) , (2.24) 
avec

F L (u L , ∂u L , ∂∂u L ) = L 2+α F L -α u L , L -1-α ∂u L , L -2-α ∂∂u L (2.25)
la non-linéarité à l'échelle L.

Je part d'un data initial : f (x) = u (x, 1). C'est la solution à l'instant initial t = 1. L'ensemble de tous les data initiaux, S, est un espace de Banach. Par définition [15 -17], une transformation du Groupe de Renormalisation (TGR), est l'application R L : S → S, telle que

(R L f) (x) = u L (x, 1) = Lαu Lx, L 2 . (2.26)
La TGR dépend donc de l'échelle L et de la forme de la non-linéarité F .

Il est facile de se convaincre que la TGR satisfait la propriété de semi-groupe

R L oR L ′ = R LL ′ . (2.27)
Le GR est alors l'ensemble de toutes les TGR possibles R L , avec L > 1. Si l'on effectue n fois une TGR d'échelle L, alors l'on obtient

u (x, t) ∼ L nα u L n x, L 2n t , L → ∞ . (2.28) 
Soit, en tenant compte de la définition de la TGR (2.26),

u (x, t) ∼ t -α/2 (R L n f ) xt -1/2 ↔ u (x, t) ∼ t -α/2 f * xt -1/2 , ( 2.29) 
Ce résultat doit être comparé à la forme asymptotique (2.23). L'on trouve alors 

R L n f → f * , L → ∞ . ( 2 

Point fixe gaussien.

En l'absence de toute réaction (F = 0), la solution est définie par la relation (2.15).

Le data initial et la TGR correspondants sont respectivement donnés par

f 0 (x) = u 0 (x, 1) = (4π) -1/2 e -x 2 /4 = f * 0 (x) , (2.31) (R L f 0 ) (x) = u L (x, 1) = Lu 0 Lx, L 2 = f 0 (x) , (α = 1) .
Alors, la TGR R L est exacte et possède une ligne de points fixes, à savoir les 

multiples de f * 0 (x), avec f * 0 (x) = (4π) -1/2 e -x 2 /4 . ( 2 
        d F > 0 , Monôme irrelevant , d F = 0 , Monôme marginal , d F < 0 , Monôme relevant . ( 2 
u (x, t) = t -1/(p-1) f * xt -1/2 , α = 1 p -1 , (2.38) 
où le point fixe non trivial f * est solution de l'équation différentielle ordinaire

f ′′ + 1 2 xf ′ + f p -1 -f p = 0 , (2.39) On a montré qu'asymptotiquement [15 -17] f * (x) ∼ |x| -2/(p-1) , x → ∞ . (2.40) 
Exemple 2 : Equation de Burgers. 2.5 Solution asymptotique par la Théorie de Champ.

Cette équation est telle que

∂ t u = ∂ 2 u + (∂ x u) 2 , d F = 1 . ( 2 
u (x, t) = At -1/2 f * xt -1/2 , f * (x) = Ae ′ (x) 1 + Ae (x) , ( 2 
Mon point de départ est l'équation différentielle parabolique 

∂ t ϕ = ν 0 ∂ 2 ϕ + V (ϕ, ∂ϕ, ∂∂ϕ) , ( 2 
G (x, t | x 0 , 0) = Dϕ D ϕϕ (x, t) e -S[ϕ, ϕ]+ ϕ(x 0 ) , (2.45) 
avec l'action

S [ϕ, ϕ] = dx dt ϕ ∂ t ϕ -ν 0 ∂ 2 ϕ + V (ϕ, ∂ϕ, ∂∂ϕ) . ( 2 

.46)

Je suppose, par la suite, que la non-linéarité V est de la forme

V (ϕ, ∂ϕ, ∂∂ϕ) = ν 0 m,n,p g mnp ϕ m (∂ϕ) n (∂∂ϕ) p , (2.47) 
où les coefficients de la série g mnp représentent les constantes de couplage.

Pour sélectionner les monômes relevants de la série précédente, nous allons raisonner en utilisant un comptage naïf de puissances. x g > 0 , g mnp est irrelevante ,

x g = 0 , g mnp est marginale ,

x g < 0 , g mnp est relevante . Application de la Théorie de Champ.

L'espace ne me permet pas d'entrer ici dans les détails concernant l'applicabilité de la Théorie de Champ à l'étude du comportement asymptotique, je vais simplement dessiner la stratégie :

1. Faire un développement perturbatif par rapport aux constantes de couplage {g}, et il apparaît des divergences à courtes distances (pôles en ǫ = d c -d).

2. Renormaliser la théorie, c'est-à-dire écrire : G ({g} , ǫ) = Z ({g} , ǫ)×G R ({g R } , ǫ).

3. Ecrire, ensuite, l'équation du GR satisfaite par G R .

4. Sa solution est alors le comportement asymptotique.

Pour la non-linéarité V = ν 0 gϕ m , par exemple, on montre que la solution est exactement self-similaire [26] ϕ (x, t) ∼ (ν 0 t) -1/(m-1) f * x/ √ ν 0 t .

(2.55)

Remarques finales.

Dans cette revue, j'ai exposé l'application des techniques de la théorie de la renormalisation à la recherche du comportement asymptotique des équations différentielles paraboliques.

J'affirme que ces mêmes techniques pourraient s'appliquer à des équations différentielles couplées, c'est-à-dire qui contiennent plus d'une variable dynamique.

Aussi, certains processus de réaction-diffusion nécessite l'introduction d'un bruit.

Plus exactement, ces équations se présentent sous la forme 

∂ t ϕ = ν 0 ∂ 2 ϕ + V (ϕ

. 23 )

 23 où α et ν sont des exposants qui dépendent de la nature du milieu. Les valeurs α = 2 et ν = 1/2 correspondent à un processus gaussien. A titre d'exemple, les valeurs α = ν = 2/3 permettent la description de la distance entre deux particules en régime turbulant développé. La solution de l'équation différentielle précédente est

2. 2

 2 Bref aperçu sur la théorie de la renormalisation.La renormalisation est un vieux concept, qui apparaît d'abord en physique élémentaire. Ainsi, pour le vide, la constante diélectrique est ǫ 0 , mais pour un milieu diélectrique (verres, matières plastiques...), cette constante est plutôt ǫ = ǫ 0 × ǫ r , où ǫ r est la permittivité du vide. Il s'agit alors d'une renomalisation multiplicative de la constante diélectrique. Dans un solide, les électrons libres qui assurent la conduction électrique, interagissent avec la structure cristalline sous-jacente. Pour simplifier l'étude, on peut ignorer la masse réelle m des électrons, à condition de la remplacer par une masse effective m * = m × m, où le facteur m porte les traces des interactions structure cristalline-électrons.Réellement, la théorie de la renormalisation apparaît en Théorie Quantique des Champs[7 -11]. Cette théorie est construite à l'aide d'une action S [ϕ], qui est une fonctionnelle du champ ϕ, et fonction des paramètres microscopiques, à savoir la masse des particules m et la constante de couplage g. Bien-entendu, selon le processus de diffusion mis en jeu, on peut avoir plusieurs champs (donc plusieurs masses).Mathématiquement parlant, un champ ϕ (x 0 , -→ x ) est une distribution tempérée. Ici, xµ = (x 0 = ct, -→ x ) est un 4-vecteur, où -→ x ∈ R 3 est le 3-vecteur, t la variable temps et c = 3 × 10 8 m/s la vitesse de la lumière dans le vide. Les 4-vecteurs sous-tendent l'espace-temps de Minkowski M 4 (variété différentiable de dimension 4).

[ 24 -

 24 26], dont le régulateur est ǫ = 4 -d, où d est la dimensionalité de l'espace.

  Pour les systèmes dynamiques, t est le temps et (x 1 , ..., x n ) les degrés de liberté. Pour les matériaux magnétiques, t est l'écart à la température critique T c et x 1 le champ magnétique H. L'on suppose qu'il existe un domaine D ⊂ R n+1 , tel que la restriction de la propriété u à D, notée u * = u| D , satisfait la propriété d'homogénéité généralisée (d'invariance d'échelle ou de self-similarité)

. 13 )

 13 Pour les systèmes dynamiques, la relation de self-similarité (2.11) constitue le comportement asymptotique en temps. Donc, la connaissance de ce comportement nécessite la connaissance des exposants α et ∆ i et de la fonction d'échelle f * . L'universalité, quand elle est présente, signifie que α et ∆ i ainsi que f * sont indépendants des détails du problème, c'est-à-dire les mêmes pour toute une classe de phénomènes de nature différente.

  .30) La fonction d'échelle f * constitue alors un point fixe de la TGR. Dans cette limite, la non-linéarité F L , à l'échelle L, tend vers la valeur fixe F * . Donc, il est suffisant pour obtenir la solution asymptotique u * de remplacer dans l'équation différentielle parabolique initiale la non-linéarité F par F * . L'on écrit alors F = F * + δF , où la déformation δF renseigne sur le comportement sous-dominant. L'universalité, si elle se présente, signifie l'indépendance de l'exposant α et de f * du data initial et de la nature du problème. L'étape suivante consiste à donner le critère de relevance quant à la recherche du comportement asymptotique. Pour cela, nous commençons par rappeler le point fixe gaussien.

2. 5 . 1

 51 Comptage de puissances.J'introduis d'abord les dimensions en distance et en temps d'une quantité quelconqueX [X] = L x F T y F ,(2.48)où L et T sont respectivement des échelles de longueur et de temps. Ainsi, l'on a[ν 0 ] = L 2 T -1 , [ ϕ] = L 0 T 0 , [ϕ] = L -d T 0 , (2.49a) [V ] = L -d T -1 , [g mnp ] = L xg T 0 , (2.49b) avec x g = n + 2p -2 + d (m + n + p -1) . (2.50)La dimension x g suggère que les constantes de couplage effectives sont plutôtg mnp = g mnp L x g . (2.51) D'où le critère de relevance         

( 2 .

 2 52)Je note que pour d = 1, l'on retrouve le critère de relevance présenté dans la dernière section.Pour un monôme donné, c'est-à-dire à (m, n, p) fixés, le raisonnement peut se faire en terme de la dimension de l'espace d. Pour cela, j'écris x g sous la formex g = (m + n + p -1) (d -d c ) ,(2.53)oùd c = 2 -n -2p m + n + p -1 (2.53a) est la dimension critique. Alors, l'on a le critère          d < d c , g mnp est relevante , d = d c , g mnp est marginale , d > d c , g mnp est irrelevante .(2.54) Ainsi, pour les non-linéarités V = ν 0 gϕ m et V = ν 0 gϕ∂ϕ, les dimensions critiques respectives sont d c = 2/ (m -1) et d c = 1.

  .37) Ici, u (x, t) = (u 1 , ..., u n ) est un vecteur formé par les densités ou concentrations des espèces ou substances, et D la matrice formée de coefficients de diffusion D i des espèces. Le vecteur Q = (Q 1 , ..., Q n ) décrit les termes de réaction, et qui est fonction de (x, t) et des densités (u 1 , ..., u n ). En fonction du choix des D i et Q i , les concentrations u i peuvent donner lieu à des motifs locaux. Ces équations peuvent modéliser la pigmentation des coquillages, le pelage des animaux, (zèbre, guépard...), ou des réactions chimiques cycliques.Enfin, très récemment, dans le domaine de la synthèse des images, des chercheurs ont utilisé ce modèle pour créer des textures naturelles. -6], si cette équation possède une certaine symétrie.Parmi les problèmes d'intérêt, on s'intéresse à la stabilité de la solution desEDPs, ainsi que leur comportement asymptotique. La méthode la plus sophistiquée pour étudier le comportement asymptotique en temps est la technique du GR. Dans le passé, cette même approche a été appliquée avec grand succès d'abord en Physique des Particules[START_REF] Bogoliubov | Introduction to Theory of Quantized Fields[END_REF][START_REF] Itzykson | Quantum Field Theory[END_REF], ensuite en Phénomènes Critiques[9 -11]. Pour le premier domaine, le GR a été très utile pour étudier le comportement infrarouge, ainsi que la liberté asymptotique. Pour le second, le GR a été introduit dans une série de brillants travaux par K. Wilson[START_REF] Wilson | Renormalization Group and Critical Phenomena I[END_REF][START_REF] Wilson | Renormalization Group and Critical Phenomena II[END_REF], pour extraire le comportement critique des systèmes présentant une transition de phase de second ordre.

	Chapitre 2
	Application du Groupe de
	Renormalisation.
	Les EDPs sont des équations très souvent non linéaires, et c'est rare où on réussit
	à les résoudre d'une manière analytique. Lorsque la solution analytique existe, elle
	peut être obtenue par transformation de l'équation originale en une équation linéaire

Nous rappelons, dans ce chapitre, comment on applique les techniques du Groupe de Renormalisation (GR), pour l'extraction du comportement asymptotique en temps des équations de réaction-diffusion. Ces équations sont de type parabolique.

2.1 Introduction.

Les équations différentielles paraboliques (EDPs) sont des équations différentielles aux dérivées partielles, qui contiennent une dérivée partielle simple par rapport au temps et des dérivées spatiales

[START_REF] Polyanin | Handbook of Linear Partial Equations For Engineers and Scientists[END_REF][START_REF] Polyanin | Handbook of Nonlinear Partial Equations For Engineers and Scientists[END_REF]

. Ces équations modélisent toute une classe de systèmes naturels. Parmi ces systèmes, je peux citer le transfert thermique avec absorption, l'écoulement dan un milieu poreux, la pression d'un gaz dans un problème d'ondes de choc, la pression d'un liquide dans un milieu poreux, la croissance d'une interface, les phénomènes de réaction-diffusion ou le front de diffusion.

(donc facile à résoudre). On utilise également les techniques des algèbres de Lie [3 Il y a quelques années, on s'est avéré que le GR pouvait s'appliquer également pour l'extraction du comportement asymptotique en temps des EDPs [14 -22]. L'hypothèse fondamentale est que la solution se comporte asymptotiquement comme : t -α/2 f x/ √ t , où l'exposant α et la fonction d'échelle f (x) dépendent, généralement, de la nature du problème. Ici, x est la variable spatiale et t le temps. Donc, la recherche du comportement asymptotique nécessite la connaissance de ces deux quantités. Pour ce faire, on construit d'abord une transformation de renormalisation. Le point fixe de cette transformation n'est rien d'autre que la fonction d'échelle f (x). Très récemment, on a aussi utilisé la Théorie de Champ pour étudier ce comportement asymptotique [23].

Cet article de revue s'organise comme suit. En Sec. 2, je situe la théorie de la renormalisation dans son contexte historique. Je rappelle la notion importante de la self-similarité dans la Sec. 3. L'application du GR dans l'espace réel pour la recherche du comportement asymptotique est l'objectif de la Sec. 4. L'application de la Théorie de Champ est présentée en Sec. 5. Je termine par des remarques finales, dans la dernière section.

  , ∂ϕ, ∂∂ϕ) + η (x, t) . (2.56) Ici, le bruit est supposé gaussien, auquel casη (x, t) = 0 , η (x, t) η (x ′ , t ′ ) = ν 0 δ (t -t ′ ) δ d (x -x ′ ) .(2.57) La présente analyse s'étend sans difficulté à ce genre de situations.

Les EDPs avec un temps fractionnaire sont aussi d'intérêt. Ces équations sont relevantes pour les systèmes où diffusion et réaction se passent dans des milieux aléatoires (ou fractals). Ces équations sont comme suit