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Abstract
In this course, we will see how to understand and describe the large scale limit of various

discrete evolution systems (random and deterministic) with the help of partial differential
equations. This will be the occasion to use, and discover, some standard tools from the
theory of PDEs, of numerical analysis, and of statistical physics.

1 Introduction
1.1 Discrete conservation laws
Suppose that we are given a family T of open polyhedral sets forming a partition of the space
Rd: for all distinct K,L ∈ T , we assume that K ∩ L = ∅ and that K ∩ L is contained in an
hyperplane of Rd. The partition is understood up to a negligible set: the Lebesgue measure of
Rd \

⋃
K∈T K is zero. The picture 1 below gives the example of a triangulation of the plane.

We consider the following evolution of an extensive quantity u: let 0 = t0 < t1 < · · · < tn < · · ·
be some discrete times, let UnK denote the amount of the quantity u in the cell K at time tn. We
assume that Un+1

K is given by the formula

Un+1
K = UnK + ∆tn

∑
L∈N (K)

|K|L|QnL→K . (1.1)

The notations used in (1.1) are the following ones: ∆tn is the length tn+1−tn of the time interval,
N (K) is the set of neighbors of K: L ∈ T is a neighbor of K if K|L := K ∩ L is non-empty
and of finite (N − 1)-dimensional Hausdorff measure |K|L| (in particular, K is not a neighbor
of K). The quantity ∆tn|K|L|QnL→K represents a certain flux of the quantity u that has passed
through the interface K|L from the cell L to the cell K between the times tn and tn+1. We
have put in factor the term ∆tn|K|L| because we prefer to work with densities, rather than with
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Figure 1: A mesh in R2

scale-dependent quantities (the typical scales here depend on the size of the cells and of ∆tn and
will tend to zero at some point later on). For the same reason, it is more appropriate to introduce
|K|, the Lebesgue measure of the cell K, and to work with the scaled quantity unK = UnK/|K|,
which satisfies the equation

un+1
K = unK + ∆tn

|K|
∑

L∈N (K)

|K|L|QnL→K . (1.2)

Assume that the densities of flux QnL→K satisfy the following condition:

QnL→K = −QnK→L, (1.3)

for all n ∈ N, for all K,L ∈ T being neighbors. The condition (1.3) ensures that the (algebraic)
quantity of u that was given by the cell K to the cell L is the quantity of u received by the cell
L from the cell K. Under (1.3), the evolution given by (1.2) is conservative: we will show in
particular that, when it makes sense, the quantity∑

K∈T
|K|unK

is constant with respect to n. Our objective will be to explain what is the limit of (unK) when
∆tn and |K| tends to 0. We need to be more specific on our framework to achieve this goal. Let
us simply say for the moment that what we will obtain in the end are some conservation laws

∂tu+ divx(Q) = 0, (1.4)

where Q(x) is a function of x, u(x) and ∇u(x). The derivation of (1.4) is related to the analysis
of the Finite Volume method, which is used to compute the solution of conservation laws such
as (1.4) with the help of the discrete formulation (1.2).

1.2 The symmetric simple exclusion process
Let 0 < N < L be some integers. Consider N particles located at one of the site 1, . . . , L − 1
that evolve according to the following process: there is always one particle at site 0 and, for each
site x ∈ {1, . . . , L− 1}, we draw a random time Tx that follows an exponential law of parameter
λ > 0, so that the family {Ty} is independent. Consider the point x∗ at which x 7→ Tx is minimal
and let the particle at x∗ jump from its original site x to a new site y with probability p(x∗, y),
the jump occurring under the restriction that the arrival site y is vacant. Then start over. This
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process is called an exclusion process for the reason that jumps to occupied sites are excluded.
It is termed simple to make the distinction with some more complicated situations, where the
probability of a jump from x to y may depend not only on x and y, but on the whole interval
[x, y] and on the disposition of particles in this interval. We also call the process symmetric when
p(x, x + l) = p(x, x− l), whenever the quantities are well defined. Here we will consider the case
p(x, y) = 0 if |x − y| 6= 1, so that only jumps to left or right immediate neighboring site are
possible, and equi-probable. At the boundary, we assume p(0, 1) = 0, p(L − 1, L − 2) = 1. We
can put in correspondence this evolution of particles with the evolution of a random interface
described as follows: we set H(0) = 0 and, for x ∈ {1, . . . , L}, define H as the discrete primitive
function

H(x) =
x−1∑
y=0

(2η(y)− 1), (1.5)

where η(y) ∈ {0, 1} is the number of particle at y. Then we interpolate linearly between those
points. Conversely, we deduce η(x) from H by the “differentiation” formula η(x) = [1 + H(x +
1)−H(x)]/2. In the situation where the site x is occupied and the site x + 1 is vacant, the shape
(above {x, x + 1, x + 2}) of the function H is ∧. If the particle at x jumps at x + 1, it becomes ∨,
– and conversely. We consider then the following problem: assume that L and N are very large.
For definiteness, we will take L = 2N , which ensures that H(L) = 0. Consider the change of
scale

hLt (x) = L−1Ht(Lx), x ∈ (0, 1). (1.6)
What can we say about the evolution of the profile t 7→ hLt , for, possibly, t very large? We will
see that, under adequate conditions on the initial data, and after the following parabolic change
of time scale:

hLt (x) = hLL2t = L−1HL2t(Lx), x ∈ (0, 1), t > 0, (1.7)
we have a kind of law of large numbers: for all final time T > 0, hL is converging in probability
in L∞(0, T ;L2(0, 1)) to a deterministic profile h which is completely determined as a solution of
the heat equation with homogeneous Dirichlet boundary conditions.

1.3 Interacting particle systems
We will now consider a problem similar to the previous one, with the difference that it is multi-
dimensional and that jumps to occupied sites are not excluded. Let ΛN be a finite subset of
Zd. We consider a system of particles scattered on ΛN , which interact as follows: let x denote a
typical site of ΛN and let ηt(x) denote the number of particles located at site x at time t. We
will be interested in the evolution in time of the functions x 7→ ηt(x). The state space is therefore
EN := NΛN , the set of functions ΛN → N. The evolution is described by the following algorithm:
each site x has its own clock that is independent from the clocks at other sites, and that rings
after a time Tx which is a random variable of exponential law of parameter λ(η(x)). Assume
that it is at the site x∗ that a clock is ringing first. If η(x∗) > 0, then one particle of the site x∗
jumps to an other site y chosen at random in ΛN , according to a transition probability p(x∗, y)
(possibly, at that stage, some exclusion rules may be added, see Section 6.2.1). Then we start
over. Let us consider the case where ΛN is the discrete torus TdN = Zd/NZd and p is compatible
and translation invariant: for all l ∈ NZd, m ∈ Zd,

p(x + l, y) = p(x, y), p(x +m, y +m) = p(x, y). (1.8)

Let us zoom out (cf. (1.6)) by considering the function

[0, 1)d 3 x 7→ N−1ηt([Nx]) (1.9)
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extended by periodicity. In (1.9), [Nx] is the element x of TdN ' {0, · · · , N − 1}d such that
xi ≤ Nxi < xi + 1 for all i = 1, . . . , d. May it be the case that, possibly after a change of time
scale (cf. (1.7)), some averaging phenomena would lead to a given deterministic behavior? We
will see that the question has to be refined, before being answered positively (at least in certain
cases).

2 Martingales in continuous time
2.1 Conditional expectation
Proposition 2.1 (Conditional expectancy). Let (Ω,F ,P) be a probability space and let G ⊂ F be
a sub-σ-algebra of F . Let X be real-valued random variable which is integrable: X ∈ L1(Ω,F ,P).
Then there exists a unique G-measurable and integrable random variable Z such that

E(1AX) = E(1AZ), ∀A ∈ G. (2.1)

We call Z the conditional expectancy of X knowing G, denoted E(X|G).

Roughly speaking, E(X|G) is the average of X with respect to all the events not relative to G.
The following facts or examples illustrate this fact.

Fact 1. If G = F , then E(X|F) = X a.s. If G is the trivial σ-algebra {∅,Ω}, then E(X|G) =
E(X).

Example 1. When G is the σ-algebra generated by an event A ∈ F , G = {∅, A,Ac,Ω}, then

E(X|G) = E(1AX)
P(A) 1A + E(1AcX)

P(Ac) 1Ac .

If X = 1B where B ∈ F , this gives E(1B |G) = P(B|A)1A + P(B|Ac)1Ac .

Fact 2. One has the following tower property: if H is a sub-σ-algebra of G, then

E(E(X|G)|H) = E(X|H) a.s. (2.2)

As a particular case, when H = {∅,Ω}, we obtain E[E(X|G)] = E[X].

Example 2. Let X, Y be two independent random variable and let f : R2 → R be a bounded
Borel function. Then Z = E(f(X,Y )|σ(Y )) is σ(Y )-measurable, and it is known that such a
function can be written h(Y ), where h is Borel. In general, when saying that a σ(Y )-measurable
function has the form h(Y ), we have no particular information on h. Here, however, we know
very well what is h: it is the function obtained by averaging with respect to “all that is not Y ”,
i.e.

E(f(X,Y )|σ(Y )) = h(Y ), h(y) := E(f(X, y)). (2.3)

Example 4. Let D denote the set of dyadic cubes in [0, 1)d, and for n ∈ N, let Dn denote the
subset of dyadic cubes of length 2−n: all cubes in Dn are translation by an element of 2−nZd of
the basic cube [0, 2−n)d. Let f : [0, 1)d → R be integrable. The piecewise-constant function fn
equal to the averaged value of f over each cube Q inDn can be seen as the conditional expectancy
E(f |Fn) by taking Ω = [0, 1)2, P being the Lebesgue measure, F the Borel σ-algebra, and Fn

5



being the σ-algebra generated by all the cubes in Dn (verification left as en exercise). There is
a consistency property in this approximation process, which is the following one: for all m < n,
averaging the finer approximation fn over the coarser grid corresponding to Dm gives fm:

E(fn|Fm) = fm a.s. (2.4)

The property (2.4) follows from the tower property (2.2) for example. It is an instance of a
martingale property.

2.2 Martingales
Definition 2.1 (Filtration). Let (Ω,F ,P) be a probability space. A family (Ft)t≥0 of sub-σ-
algebras of F is said to be a filtration if the family is increasing with respect to t: Fs ⊂ Ft for
all 0 ≤ s ≤ t. The space (Ω,F , (Ft)t≥0,P) is called a filtered space.

Definition 2.2 (Adapted process). Let (Ω,F , (Ft)t≥0,P) be a filtered space. A real-valued
process (Xt)t≥0 is said to be adapted if, for all t ≥ 0, Xt is Ft-measurable.

Definition 2.3 (Martingale). Let (Ω,F , (Ft)t≥0,P) be a filtered space. Let (Xt)t≥0 be an
adapted real-valued process such that, for all t ≥ 0, Xt ∈ L1(Ω). The process (Xt)t≥0 is said to
be a martingale if, for all 0 ≤ s ≤ t, Xs = E(Xt|Fs).

Remark 2.1. A martingale with continuous (resp., càdlàg) trajectories is said to be a continuous
(resp., càdlàg) martingale.
Remark 2.2. With respect to a fixed time t > 0, conditioning on Fs with s ≤ t is a way to
average Xt over all events which occurred between times s and t. For a martingale X, this will
let the position Xs unchanged. We expect a martingale not to wander too much therefore. We
will see and use several instance of this general principle. See Section 2.3 for a first example.

Theorem 2.2 (Doob’s martingale inequality). Let p > 1. Let (Mt)t∈[0,T ] be a càdlàg, real-valued
martingale, such that E|MT |p < +∞. Then the inequality

E [(M∗T )p] ≤
(

p

p− 1

)p
E|MT |p, M∗T = sup

t∈[0,T ]
|Mt|, (2.5)

is satisfied.

2.3 A digression on the Calderón-Zygmund decomposition
Let f : [0, 1)d → R be a non-negative, integrable function. Let λ > 0 be a fixed threshold such
that the integral of f over [0, 1)d is smaller than λ/2. In terms of Example 3. in Section 2.1, this
means E[f ] ≤ λ/2. Consider (see Remark 2.2) that being below λ is “not wandering too much”,
while being above λ is “wandering too much”. What is the behavior of the martingale (fn) defined
in the Example 3. in Section 2.1? Let T be the stopping time T = inf{n ≥ 0; fn > λ}. We know
that T > 0 almost surely. If T = +∞, then fn ≤ λ for all n, and thus f = lim fn ≤ λ. Here
we use the intuitive fact that f = lim fn. We have to specify the mode of convergence however
and to justify the convergence. The convergence is almost sure. One can use the martingale
convergence theorem for example (probabilistic approach) or the dyadic version of the Lebesgue
differentiation theorem (analyst’s approach). The set {T < +∞} can be written as an at most
countable collection (Qi)i∈I of dyadic cubes. Indeed, it is the union over n ≥ 1 of the sets
{T = n}, and {T = n} is a union of dyadic cubes in Dn. If Q is one of the cubes that enter in
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the decomposition of {T = n}, and if Q′ ∈ Dn−1 is the twice bigger cube containing Q, then the
averaged value of f on Q′ is smaller than λ (otherwise T < n). It follows that

λ ≤ 1
|Q|

∫
Q

f(x)dx ≤ 1
|Q|

∫
Q′
f(x)dx = 2d

|Q′|

∫
Q′
f(x)dx ≤ 2dλ. (2.6)

From these considerations on martingales, we can deduce the following statement.

Lemma 2.3 (Calderón-Zygmund). Let f : Rd → R be a non-negative, integrable function. Let
λ > 0. There exists an at most countable family (Qi)i∈I of dyadic cubes such that

∀i ∈ I, λ ≤ 1
|Qi|

∫
Qi

f(x)dx ≤ 2dλ, (2.7)

and f ≤ λ a.e. on the complementary set Rd \ ∪i∈IQi.

Proof of Lemma 2.3. fixN large enough such that 2−Nd‖f‖L1(Rd) ≤ λ/2. Consider the countable
decomposition of Rd by all the dyadic cubes of size 2N . On each such cube R, we apply the
analysis performed before the statement of the lemma. This analysis was done with the starting
cube R = [0, 1)d, but can be readily adapted to the general case. The final family of cube (Qi)i∈I
is then the union of the families obtained on each such cube R.

The Calderón-Zygmund lemma is applied to obtain a decomposition of f = g + b, where

g =
∑
i∈I

[
1
|Qi|

∫
Qi

f(x)dx
]

1Qi + f1Rd\∪i∈IQi

and
b = f − g =

∑
i∈I

bi, bi =
[
f − 1
|Qi|

∫
Qi

f(x)dx
]

1Qi .

The function g is considered as the good part, since it is controlled in size by λ; the function
b is considered as the “bad” part. It is not controlled in size but has the properties that bi
is supported in Qi and has zero integral. The Calderón-Zygmund is fundamental in harmonic
analysis. Note that, if we come back again to the probabilistic approach (and restrict things to
[0, 1)d), then g is simply fT , while b = f − fT .

3 Markov processes
We consider Markov processes taking values in a Polish space E. This is a framework that is
quite general, all the more since we shall apply it in the case of a finite state space E. The
generality of the approach used here may be useful elsewhere however.

3.1 Definition
If E is a Polish space, we denote by BM(E) the Banach space of bounded Borel-measurable
functions on E with the sup-norm

‖ϕ‖BM(E) = sup
x∈E
|ϕ(x)|.

The set BC(E) is the subspace of continuous bounded functions. By Markov process, we mean
the triplet constituted of a Markov semi-group, some probability kernels, and the associated
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Markov processes. More precisely, we suppose first that we are given a Markov semi-group
P = (Pt)t≥0, which is defined a priori as a family of endomorphisms of the space BM(E) that
satisfy the initial condition P0 = Id, the semi-group property Pt ◦ Ps = Pt+s for t, s ≥ 0, the
preservation of positivity Ptϕ ≥ 0 when ϕ ≥ 0, while fixing the constant function 1 equal to 1
everywhere: Pt1 = 1 for all t ≥ 0. The second element of our set of data is a probability kernel
Q(t, x,B): for all ϕ ∈ BM(E), for all x ∈ E,

Ptϕ(x) =
∫
E

ϕ(y)Q(t, x, dy), (3.1)

where, for every t ≥ 0, for every x ∈ E, Q(t, x, ·) is a probability measure and the dependence in
x is measurable, in the sense that the right-hand side of (3.1) is a measurable function of x. The
third and last element of our set of data is the set X = {(Xx

t )t≥0;x ∈ E} of Markov processes
indexed by their starting points x: Xx

0 = x almost surely. The finite-dimensional distributions
of (Xx

t )t≥0 are given by

P(Xx
0 ∈ B0, X

x
t1 ∈ B1, . . . , X

x
tk
∈ Bk) =

∫
B0

· · ·
∫
Bk−1

Q(tk − tk−1, yk−1, Bk)

×Q(tk−1 − tk−2, yk−2, dyk−1) · · ·Q(t1, y0, dy1)δx(dy0), (3.2)

where 0 ≤ t1 ≤ · · · ≤ tk and B0, . . . , Bk ∈ G and the Markov property

E
[
ϕ(Xx

t+s)|FXt
]

= Psϕ(Xx
t ) (3.3)

is satisfied for all s, t ≥ 0, ϕ ∈ BM(E), where (FXt ) = (σ(Xx(s)0≤s≤t)) is the filtration generated
by Xx (see the proof of (3.3) in Section 3.2 below). There is a certain redundancy in the
description above since the existence of probability kernels satisfying (3.1) can be deduced from
the properties of (Pt)t≥0, [1, Proposition 1.2.3], while, starting from a semi-group and a family
of probability kernels related by (3.1), the construction of a Markov process with the required
finite dimensional distribution is established in [6, Theorem 1.1 p.157] for example. It is not
limiting, however, to assume that all these elements are given altogether, all the more since the
processes (Xx

t )t≥0 will generally have additional pathwise properties, being typically continuous
or càdlàg. They may also satisfy the Markov property (3.3) with respect to a given filtration
(Ft) larger than (FXt ). See Section 3.2 below.
Remark 3.1 (From the probability kernels to the Markov process). Actually, it is established in
[6, Theorem 1.1 p.157] that, for every Borel probability measure µ on E, there exists a Markov
process (Xt)t≥0 with finite-dimensional distributions given by

P(Xx
0 ∈ B0, X

x
t1 ∈ B1, . . . , X

x
tk
∈ Bk) =

∫
B0

· · ·
∫
Bk−1

Q(tk − tk−1, yk−1, Bk)

×Q(tk−1 − tk−2, yk−2, dyk−1) · · ·Q(t1, y0, dy1)µ(dy0). (3.4)

The difference between (3.2) and (3.4) is the initial distribution of (Xt): X0 = x almost surely
in the first case, X0 ∼ µ in the second case. The law at time t of Xt is then given by

P(Xt ∈ B) =
∫
E

∫
B

Q(t, y0, dy1)µ(dy0). (3.5)

We will use the notations

Pµ(Xx
0 ∈ B0, X

x
t1 ∈ B1, . . . , X

x
tk
∈ Bk), Eµϕ(Xt) (3.6)
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to denote (3.4) and the quantity∫
E

∫
E

ϕ(y1)Q(t, y0, dy1)µ(dy0)

respectively. When µ = δx, we simply use the notations Px and Ex. For example, Ptϕ(x) is
Exϕ(Xt).

3.2 Semi-group property, Chapman-Kolmogorov property and Markov
property

From the semi-group property to the Markov property. Taking for ϕ the characteristic
function ϕ = 1A in (3.1), we obtain Q(t, x,A) = Pt1A(x). From the semi-group property
Pt+s = Pt ◦ Ps and the relation (3.1), we can then draw the following consequences

Q(t+ s, x,A) =
∫
E

Ps1A(y)Q(t, x, dy) =
∫
E

Q(s, y, A)Q(t, x, dy). (3.7)

The equality between the extreme sides of (3.7) is called the Chapman-Kolmogorov relation. In
the approach to Markov processes described in the previous section 3.1, the Markov property (3.3)
is deduced from the knowledge of the finite dimensional distributions (3.2) and (3.7). Although
(3.2) is expressed in terms of sets B0, · · · , Bk, the Markov property (3.3) is expressed in terms of
functions ϕ ∈ BM(E). To verify that (3.3) is a consequence of (3.2) and (3.7), we need to switch
from measurable sets to bounded measurable functions. The procedure is standard: take ϕ = 1A
for once, and, conversely, given ϕ ∈ BM(E), consider a sequence of simple functions (ϕn) that
converges pointwise, while being bounded, to ϕ (the existence of such a sequence is true in a
context more general that the one of Borel measure space, [17, Theorem 1.17]). The former mode
of convergence is denoted ϕn

b.p.c.−→ ϕ. So we say that there is bounded pointwise convergence of
a sequence (ϕn) in BM(E) to ϕ ∈ BM(E) if supn ‖ϕn‖BM(E) < +∞ and ϕn(x) → ϕ(x) for all
x ∈ E. Using b.p.c. sequences, we can give the following version of (3.2):

E [ϕ1(Xt1) · · ·ϕn(Xtn)] =
∫
E

· · ·
∫
E

ϕn(yn)Q(tn − tn−1, yn−1, dyn) · · ·ϕ1(y1)Q(t1, x, dy1), (3.8)

for all ϕ1, . . . , ϕn ∈ BM(E). At the same time, the σ-algebra FXt is generated by all the random
variables Xt1 , . . . , Xtn , where n ∈ N∗ and 0 ≤ t1 < · · · < tn ≤ t. Therefore (3.3) is equivalent to
the fact that

E [1A1B(Xt+s)] = E [1APs1B(Xt)] , (3.9)

for all A of form
A = {Xt1 ∈ B1, . . . , Xtn ∈ Bn} .

Note that, for simplicity, we have dropped the explicit dependence on x in the notations. By
(3.2), the left-hand side of (3.9) is∫

B1

· · ·
∫
Bn

Q(t+ s− tn, yn, B)Q(tn − tn−1, yn−1, dyn) · · ·Q(t1, x, dy1). (3.10)

This term (3.10) is also∫
B1

· · ·
∫
Bn

∫
E

Ps1B(z)Q(t− tn, yk, dz)Q(tn − tn−1, yn−1, dyk) · · ·Q(t1, x, dy1). (3.11)
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by (3.7). We apply (3.8) with k = n+ 1 and

ϕ1 = 1B1 , . . . , ϕn = 1Bn , ϕn+1 = Ps1B ,

to conclude that (3.11) is equal to E [1APs1B(Xt)].

From the Markov property to the semi-group property. It is often the case that a
Markov process is given as a dynamical system. We start from an initial X0 with distribution
µ, a given probability measure on E, and then compute a trajectory (Xt)t≥0 which satisfies the
Markov property

E [ϕ(Xt+s)|Ft] = Psϕ(Xt), (3.12)
where Ptϕ is defined by the identity Ptϕ(x) = Exϕ(Xt) (cf. Remark 3.1 for the notation Ex),
and (Ft) is a certain filtration. See Section 4.2 for instance. We emphasize the fact that, in this
approach, what is really given is P ∗t µ, defined as the law of Xt when X0 ∼ µ: what is naturally
given here is the evolution in time of the distribution of Xt. Then Ptϕ(x) is simply obtained by
the duality formula

〈P ∗t µ, ϕ〉 = 〈µ, Ptϕ〉, (3.13)
where we take µ = δx. To cast this framework into the one described in Section 3.1, we have
essentially to show that (Pt) has the semi-group property, the probability kernel Q(t, x,A) being
simply defined as Px(Xt ∈ A). The semi-group property is obtained as follows: by the tower
property (2.2), we have

Pt+sϕ(x) = Ex [ϕ(Xt+s)] = Ex [Ex [ϕ(Xt+s)|Ft]] .

We us the Markov property (3.12) to obtain

Pt+sϕ(x) = Ex [Psϕ(Xt)] = (Pt ◦ Ps)ϕ(x),

which is the desired identity.

3.3 Invariant measure
Let (P, Q,X) be a Markov process as in Section 3.1. If µ is a probability measure on E, we
denote by P ∗t µ the law at time t of Xt, when X0 ∼ µ. The notation is explained by the fact
that, for B a Borel subset of E and with ϕ = 1B , we have by (3.1) and (3.5), the identity

〈P ∗t µ, ϕ〉 = 〈µ, Ptϕ〉. (3.14)

Since B 7→ 〈µ, Pt1B〉 is a measure, the identity (3.14) is then true for all ϕ ∈ BM(E).

Definition 3.1 (Invariant measure). A probability measure µ on E is said to be an invariant
measure if P ∗t µ = µ for all t ≥ 0.

If µ is an invariant measure and one chooses X0 according to the law µ, then Xt follows the same
law µ for all t ≥ 0: an invariant measure is a fixed-point for the evolution in distribution of the
Markov process.

Exercise 3.2 (Invariant measure). Let X0, X1, . . . be the sequence of random variables on R
defined as follows: X0 is chosen at random, according to a law µ0, then, XN being known, a
random variable ZN+1 taking the values +1 or −1 with equi-probability is drawn independently
on X0, . . . , XN and XN+1 given by

XN+1 = 1
2XN + ZN+1.
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1. What means µ0 = δ0? What are then the law µ1, µ2 of X1 and X2 respectively?

2. Consider the case µ0 = 1
2δ−2 + 1

2δ+2. Compute µ1, µ2, µ3. Can you guess a general formula
for µN?

3. Find an invariant measure.

The solution to Exercise 3.2 is here.

3.4 Infinitesimal generator
Given a Markov process as in Section 3.1, we would like to define the associated infinitesimal
generator. There are various possible approaches. In [1] for example, it is assumed that the
process admits an invariant measure µ. The semi-group can then be extended as a contraction
semi-group on L2(µ). By assuming additionally that this extension gives rise to a strongly
continuous semi-group, [1, Property (vi), p.11], one can use the standard theory of strongly
continuous semi-group, [16], to define the infinitesimal generator. One may wonder why not
simply working in BM(E), or BC(E), which are Banach spaces, to apply the standard theory
of strongly continuous semi-group. The difficulty is that the continuity property Ptϕ→ ϕ when
t → 0 is too stringent in that context, at least when E is infinite-dimensional. Consider for
example the simple deterministic case where Ptϕ is given as the composition ϕ ◦ Φt with a flow
(Φt). Let E be the Hilbert space E = `2(N), with orthonormal basis (en)n∈N, and let Φt be
given by

Φt(x) =
∞∑
n=0

e−λnt〈x, en〉en,

where (λn) is an increasing sequence converging to +∞. In general, one cannot control the
distance ‖Φt(x)− x‖`2(N) uniformly in x (this is possible when x is restricted to a compact set),
so even if ϕ is uniformly continuous, one does not expect the convergence

lim
t→0

sup
x∈E
|Ptϕ(x)− ϕ(x)| = 0.

We consider a different mode of convergence therefore, the bounded pointwise convergence defined
in Section 3.2 (see also [6, p.111]). A function ϕ ∈ BM(E) is in the domain D(L ) of the
infinitesimal generator L of (Pt) if there exists ψ ∈ BM(E) such that

Ptϕ− ϕ
t

b.p.c.−→ ψ, (3.15)

when t → 0. We then set Lϕ = ψ. Note that, on the elements ϕ ∈ D(L ), the property of
continuity

Ptϕ
b.p.c.−→ ϕ (3.16)

when t→ 0, is satisfied. By the semi-group property, (3.16) implies more generally the property
of continuity from the right Ptϕ

b.p.c.−→ Pt∗ϕ when t ↓ t∗, for every t∗ ≥ 0. The semi-group
property, and the continuity of Pt with respect to b.p. convergence, that can be deduced from
(3.1), have also the following consequence: if ϕ ∈ D(L ), then Ptϕ ∈ D(L ) for all t ≥ 0 and

Pt+hϕ− Ptϕ
h

b.p.c.−→ PtLϕ = LPtϕ, (3.17)

when h→ 0+.
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3.5 Martingale property of Markov processes
Consider a Markov process as in Section 3.1, which is Markov with respect to a filtration (Ft),
and has a generator L , as defined as in Section 3.4. We make the following hypotheses:

1. stochastic continuity: we have Ptϕ
b.p.c.−→ Pt∗ϕ when t→ t∗ for every ϕ ∈ BC(E) and every

t∗ ≥ 0,

2. measurability: for all x ∈ E, the application (ω, t) 7→ Xx
t (ω) is measurable Ω× R+ → E.

We have then the following result.

Theorem 3.1. Let ϕ ∈ D(L ) ∩ BC(E) and x ∈ E. Then

Mx
t := ϕ(Xx

t )− ϕ(x)−
∫ t

0
Lϕ(Xx

s )ds (3.18)

is a (Ft)-martingale. If furthermore |ϕ|2 is in the domain of L , then the process (Zxt ) defined
by

Zxt := |Mx
t |2 −

∫ t

0
(L |ϕ|2 − 2ϕLϕ)(Xx

s )ds, (3.19)

is a (Ft)-martingale.

Remark 3.2. Since ‖Ptϕ‖BM(E) ≤ ‖ϕ‖BM(E), the convergence Ptϕ
b.p.c.−→ Pt∗ϕ is equivalent to

the convergence Ptϕ(x) → Pt∗ϕ(x) for all x ∈ E. The hypothesis of stochastic continuity can
therefore be rephrased as the continuity, for the topology of the weak convergence of probability
measures, of t 7→ P ∗t δx, where P ∗t δx is the law of Xx

t . This continuity property is satisfied if
(Xx

t ) is stochastically continuous in particular: for all δ > 0,

lim
t→t∗

P(dE(Xx
t , X

x
t∗) > δ) = 0, (3.20)

where dE is the distance on E. Under (3.20), we can also assume, up to a modification of
the process, that the measurability property of Item 2 is satisfied, [3, Proposition 3.2]. If the
stochastic continuity property Ptϕ

b.p.c.−→ Pt∗ϕ is satisfied, then

Ptϕ(x)− ϕ(x) =
∫ t

0
PsLϕ(x)ds, (3.21)

for all ϕ ∈ D(L ), x ∈ E, t ≥ 0. Indeed both sides of (3.21) are continuous functions that
coincide at t = 0 and have same right-differential at all points.
Remark 3.3 (Quadratic variation). If (Xx

t ) is continuous, then

Axt :=
∫ t

0
(L |ϕ|2 − 2ϕLϕ)(Xx

s )ds (3.22)

is the quadratic variation 〈Mx,Mx〉t, [11, p.38], of (Mx
t ). In the general case where (Xx

t ) is
càdlàg, (Axt ) is the compensator, [11, p.32], of the quadratic variation [Mx,Mx]t, [11, p.51], of
(Mx

t ). For instance, if (Xt = Nt) is a Poisson Process of rate λ, then Lϕ(n) = λ(ϕ(n+1)−ϕ(n))
and

At := λ

∫ t

0
(ϕ(Ns + 1)− ϕ(Ns))2ds.

Taking ϕ = Id, gives the standard fact that (Nt − λt) is a martingale.
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Proof of Theorem 3.1. Since x is fixed, we will suppress the superscript x in the proof. Let
0 ≤ s ≤ t. By the Markov property, we have

E[Mt|Fs]−Ms = E[Mt −Ms|Fs]

= Pt−sϕ(Xs)− ϕ(Xs)−
∫ t

s

[Pσ−sLϕ](Xs)dσ.

We use (3.21) to conclude that E[Mt|Fs] −Ms = 0. The proof of the martingale property for
(3.19) is divided in several steps. First, we fix two times 0 ≤ τ < τ ′ ≤ T . We fix a subdivision
σ = (ti)0,n of [0, τ ′], chosen in such a way that τ is always one of the ti, say τ = tl (the index
l may hence vary with σ). By C(ϕ), we will denote any constant that depend on ϕ and is
independent on σ and may vary from lines to lines. We also denote by A = O(B) any estimate
of the form |A| ≤ C(ϕ)|B|. At last, we introduce the following notations: we denote by δtiK the
increment Kti+1 −Kti of a function t 7→ Kt. We also denote by Eti the conditional expectation
with respect to Fti . Our aim is to show that

A′τ = lim
|σ|→0

n−1∑
i=0

Eti
[
|δtiM |2

]
, (3.23)

where the limit is taken in L2(Ω). Indeed, taking (3.23) for granted, E[Zτ ′ − Zτ |Fτ ] is the limit
when |σ| → 0 of the quantity

E
[
|Mtn |2 − |Mtl |2 −

n−1∑
i=l

Eti
[
|δtiM |2

] ∣∣∣Fτ]. (3.24)

Let us show that (3.24) = 0. To simplify the presentation1, we will treat the case tl = τ = 0,
F0 = {∅,Ω} (it makes sense to consider that F0 is the trivial sigma algebra since M0 = 0). We
have

E
[
|Mtn |2

]
= E

∣∣∣∣∣
n−1∑
i=0

δtiM

∣∣∣∣∣
2 . (3.25)

In (3.25), we can expand the square. The contribution of the double products is zero since, if
j > i, then, using the fact that δtiM is Ftj -measurable, we have

E
[
δtiMδtjM

]
= E

[
Etj
[
δtjM

]
δtiM

]
= 0.

The last identity follows from the martingale property Etj
[
δtjM

]
= 0. This implies (3.24) = 0,

and thus E[Zτ ′ − Zτ |Fτ ] = 0. The proof of (3.23) is divided into three steps.
Step 1. We show that Aτ ′ = lim|σ|→0

∑n−1
i=0 Eti [δtiA], with a convergence in L2(Ω). Since Aτ ′ =∑n−1

i=0 δtiA, we have to show that lim|σ|→0
∑n−1
i=0 ζi = 0 in L2(Ω), where ζi := δtiA − Eti [δtiA].

The method is similar to the analysis of (3.24) above: we decompose

E

∣∣∣∣∣
n−1∑
i=0

ζi

∣∣∣∣∣
2

=
n−1∑
i=0

E
[
|ζi|2

]
+ 2

∑
0≤i<j<n

E [ζiζj ] . (3.26)

By conditioning with respect to Ftj , we get that each term in the last sum in (3.26) is trivial.
Since ζi = O(δti), the first sum in the right-hand side of (3.26) is O(|σ|). This gives the result.

1the general case is left as an exercise, use the tower property (2.2)
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Step 2. We show that Eti
[
|δtiϕ(X)|2

]
= O(δti). First, by the Markov Property, we have

Eti [δtiM ] = 0. Using (3.18), which implies

δtiM = δtiϕ(X)−
∫ ti+1

ti

Lϕ(Xs)ds, (3.27)

we deduce Eti [δtiϕ(X)] = O(δti). We can apply the previous estimate to |ϕ|2, since |ϕ|2 is in the
domain of L by hypothesis (cf. (3.29) below), to get Eti

[
δti |ϕ|2(X)

]
= O(δti). On the other

hand, we have also the identity

|δtiϕ(X)|2 = δti |ϕ|2(X)− 2ϕ(Xti)δtiϕ(X). (3.28)

Taking expectation with respect to Fti in (3.28) and using the fact that

Eti [ϕ(Xti)δtiϕ(X)] = ϕ(Xti)Eti [δtiϕ(X)]

gives the desired estimate Eti
[
|δtiϕ(X)|2

]
= O(δti). We can insert this result in (3.27) to obtain

also Eti
[
|δtiM |2

]
= O(δti).

Step 3. We conclude the proof. First, we note that (3.27) applied to ϕ2 gives

δtiM
(2) = δti |ϕ|2(X)−

∫ ti+1

ti

L |ϕ|2(Xs)ds, (3.29)

where M (2)
t := |ϕ|2(Xt) − |ϕ|2(x) −

∫ t
0 L |ϕ|2(Xs)ds. We combine (3.27), (3.28) and (3.29) to

obtain the identity

|δtiM |2 + 2δtiM
∫ ti+1

ti

Lϕ(Xs)ds+
∣∣∣∣∫ ti+1

ti

Lϕ(Xs)ds
∣∣∣∣2

= δtiM
(2) +

∫ ti+1

ti

L |ϕ|2(Xs)ds− 2ϕ(Xti)
(
δtiM +

∫ ti+1

ti

Lϕ(Xs)ds
)
. (3.30)

Taking the conditional expectation Eti in (3.30) and using the Markov property gives us

Eti
[
|δtiM |2

]
= Eti [δtiA]− 2Eti

[∫ ti+1

ti

(ϕ(Xti)− ϕ(Xs))Lϕ(Xs)ds
]

+O(|δti|3/2). (3.31)

Indeed, we have discarded the terms

Eti
[
2δtiM

∫ ti+1

ti

Lϕ(Xs)ds
]

and Eti

[∣∣∣∣∫ ti+1

ti

Lϕ(Xs)ds
∣∣∣∣2
]
,

which are respectively O(|δti|3/2) and O(|δti|2). To obtain the O(|δti|3/2)-estimate, we use the
bound ∣∣∣∣2δtiM ∫ ti+1

ti

Lϕ(Xs)ds
∣∣∣∣ ≤ η|δtiM |+ η−1

∣∣∣∣∫ ti+1

ti

Lϕ(Xs)ds
∣∣∣∣2 ,

then Step 2, and then we choose η = (δti)1/2. We can repeat Step 2, where we consider the time
interval [ti, s] instead of [ti, ti+1], to obtain the estimate Eti

[
|ϕ(Xti)− ϕ(Xs)|2

]
= O(δti), when

ti ≤ s ≤ ti+1. Consequently, the last term in (3.31) is also O(|δti|3/2). By summing with respect
to i in (3.31), we deduce finally that

n−1∑
i=0

Eti [δtiA] =
n−1∑
i=0

Eti
[
|δtiM |2

]
+O(|σ|1/2).

This equality, combined with Step 1, yields (3.23). This achieves the proof.
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The results of Theorem 3.1 can be extended to the case where the test function ϕ also depends on
t. We will need this result only in the simple case where the test function has the form θ(t)ϕ(x).

Corollary 3.2. Let ϕ ∈ D(L ) satisfies |ϕ|2 ∈ D(L ). Let θ ∈ C1(R+) and let ψ(t, x) =
θ(t)ϕ(x). Then, for all x ∈ E, the process

Mx
t := ψ(t,Xx

t )− ψ(0, x)−
∫ t

0
(∂t + L )ψ(s,Xx

s )ds (3.32)

is a (Ft)-martingale and the process (Zxt ) defined by

Zxt := |Mx
t |2 −

∫ t

0
((∂t + L )|ψ|2 − 2ψ(∂t + L )ψ)(s,Xx

s )ds, (3.33)

is a (Ft)-martingale.

Proof of Corollary 3.2. By the Markov property, we have

E [Mx
t −Mx

s |Fs]

= θ(t)(Pt−sϕ)(Xx
s )− θ(s)ϕ(Xx

s )−
∫ t

s

(θ′(σ)(Pσ−sϕ)(Xx
s ) + θ(σ) d

dσ
(Pσ−sϕ)(Xx

s ))dσ.

By explicit integration, we see that (Mx
t ) is a (Ft)-martingale. We compute then

(∂t + L )|ψ|2 − 2ψ(∂t + L )ψ = θ2(L |ϕ|2 − 2ϕLϕ).

Let us examine the proof of the second part of Theorem 3.1. Since θ is locally Lipschitz continu-
ous, we have θ(t) ' θ(ti) +O(δti), for t ∈ [ti, ti+1]. Using this approximation, it is easy to show,
by adapting the proof of Theorem 3.1, that, in our context, (Zxt ) is a martingale.

Exercise 3.3 (Markov process with finite state space). Let (P, Q,X) be a Markov process.
Assume that the state space E is finite, E = {x1, . . . , xL}. We introduce the family of matrices
A(t) = aij(t), with aij(t) = Q(t, xi, {xj}), i.e. aij(t) = Pxi(X(t) = xj).

1. If ϕ : E → R, we still denote by ϕ the vector (ϕ(xi))1≤i≤L. Give the expression of Ptϕ as
a product matrix-vector.

2. If µ is a probability measure on E, we still denote by µ the vector (µ({xi})1≤i≤L. Give the
expression of P ∗t µ as a product matrix-vector.

3. We assume that t 7→ A(t), from R+ into ML(R) is of class C1. Show that A(t) = etL ,
where L = A′(0) is the generator.

4. Give the equation satisfied by an invariant measure.

The solution to Exercise 3.3 is here.

Exercise 3.4 (Markov process in discrete time). We consider now a Markov process (Xn)n≥0
in discrete time.

1. Assume that the state space E is finite. How can you rephrase the questions and answers
of the previous exercise 3.3?
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2. Give and prove the equivalent statement to Theorem 3.1. More precisely, let L = P1− Id,
let ϕ ∈ BM(E). Show that

Mn = ϕ(Xn)− ϕ(X0)−
n−1∑
k=0

Lϕ(Xk) (3.34)

and

Zn := |Mn|2 −
n−1∑
k=0

Γ[ϕ](Xk) (3.35)

are martingales. In (3.35), Γ(ϕ) is a certain non-negative expression that you will have to
identify.

The solution to Exercise 3.4 is here.

4 Evolution of a random interface
In this part we establish the limit behavior of the symmetric simple exclusion process. More
precisely, we show in Theorem 4.1 that, after an adequate change of scales, the random interface
associated to the symmetric simple exclusion process converges in probability to the solution of
a heat equation.

4.1 Change of scale and limit behavior
Let XL denote the discrete interval XL = {0, . . . , L − 1}. Let EL be the set of functions
H : XL → R. Let E(1)

L be the convex subset of EL constituted of the functions H such that
H(0) = 0 and |H(x + 1)−H(x)| = 1 for all x ∈ XL (in the case x = L− 1, we use the convention
H(L) = 0). The space E(1)

L is the state space for the process described in Section 1.2. To
H ∈ EL, we associate a function Ĥ : [0, 1]→ R defined by

Ĥ(x) = L−1H(bLxc), (4.1)

where p = byc, defined for y ≥ 0, is the integer such that p ≤ y < p+ 1. The map H 7→ Ĥ is an
isometry EL → L2(0, 1) when EL and L2(0, 1) are endowed with the respective scalar products

〈H,G〉EL = 1
L3

L−1∑
x=0

H(x)G(x), 〈f, g〉L2 =
∫ 1

0
f(x)g(x)dx. (4.2)

Indeed, given H,G ∈ EL, we compute

〈Ĥ, Ĝ〉L2(0,1) =
L−1∑
x=0

∫ x+1
L

x
L

Ĥ(y)Ĝ(y)dy =
L−1∑
x=0

1
L3H(x)G(x) = 〈H,G〉EL . (4.3)

We will also work with the C0 norm defined by ‖f‖C([0,1]) = supx∈[0,1] |f(x)| for f continuous
on [0, 1]. Since H 7→ Ĥ is an isometry, a natural left-inverse is given by calculating the adjoint
operator. This is easily done, and we obtain a map L2(0, 1) → EL, which, to h ∈ L2(0, 1)
associates the function in EL given by

Jh : x 7→ L2
∫ x+1

L

x
L

h(x)dx. (4.4)
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However, we will work preferably with the related application h 7→ ȟ, defined on C([0, 1]) by
ȟ(x) = Lh(L−1x). The reason of this modification is apparent in Proposition 4.4. If h is Lipschitz
continuous on [0, 1], then |Jh(x)− ȟ(x)| is bounded by Lip(h). This implies that

|〈Ĥ, h〉L2(0,1) − 〈H, ȟ〉EL | ≤ Lip(h)L−2 sup
x∈XL

|H(x)|, (4.5)

for all H ∈ EL. Let hin be a continuous function on [0, 1], which is 1-Lipschitz continuous and
satisfies the boundary conditions hin(0) = hin(1) = 0. Given such a function hin, we build an
initial datum Hin ∈ E(1)

L for the evolution of the random interface. We want hin and Ĥin to be
close in a certain norm. It is simpler to consider things in the space EL, in which case we require
Hin and the function ȟin to be at distance O(1) for a certain norm. Note that the graph of a
profile H ∈ E(1)

L is a subset of the lattice

R = {(x, H); x ∈ {0, · · · , L}, H ∈ Zx} ,

where we have set Zx = 2Z if x is even, Zx = 2Z+ 1 if x is odd. To build Hin, we draw the graph
GrL of ȟin. Then we choose the closest points of GrL in R to obtain the graph of Hin. We have
then

sup
x∈{0,...,L}

∣∣∣ȟin(x)−Hin(x)
∣∣∣ ≤ 1. (4.6)

Since hin is 1-Lipschitz continuous, this implies

‖Ĥin − hin‖L2(0,1) ≤ ‖Ĥin − hin‖C([0,1]) ≤ 2L−1. (4.7)

Let (Ht) be the Markov process described in Section 1.2 (we will show below in Section 4.2 that it
is a Markov process indeed) that starts from Hin. We fix a time T > 0 and consider the solution
to the heat equation on [0, 1] with Dirichlet homogeneous boundary conditions and initial datum
hin: this the function h ∈ L2(0, T ;H1

0 (0, 1)) such that ∂th ∈ L2(0, T ;H−1(0, 1)) and

〈∂th(t), g〉L2(0,1) + 〈∂xh(t), ∂xg〉L2(0,1) = 0, (4.8)

for all g ∈ H1
0 (0, 1) and a.e. t ∈ (0, T ), and h(0) = hin, see [7, p.374]. We call such a function h

a weak solution to the following problem:

∂th− ∂2
xh = 0 in (0,+∞)× (0, 1), (4.9)

h(t, x) = 0 for (t, x) ∈ (0,+∞)× ({0} ∪ {1}), (4.10)
h(0, x) = hin(x) for x ∈ (0, 1). (4.11)

We will establish the following result.

Theorem 4.1. Let hin be a 1-Lipschitz continuous function on [0, 1] vanishing at 0 and 1 and
satisfying2 hin ∈ H2(0, 1). Let h be the unique solution to (4.9)-(4.10)-(4.11) (see (4.8)). Let
Hin ∈ E(1)

L satisfy (4.7), and let (Ht) be the Markov process described in Section 1.2 that starts
from Hin. Then the rescaled process (ĤL2t) converges to h in probability when L tends to +∞,
in the sense that, for all T > 0, for all δ > 0, one has

lim
L→+∞

P

(
sup
t∈[0,T ]

‖ĤL2t − h(t, ·)‖L2(0,1) > δ

)
= 0. (4.12)

2check
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4.2 Markov property
We will show in this part that the process (Ht) described in Section 1.2 is a Markov process and
give the expression of its generator. First, the general procedure using “clocks”, that transform
discrete-time Markov processes into continuous-time Markov processes is analyzed. In a second
step, we study the discrete-time Markov process that gives rise to (Ht).

4.2.1 From discrete-time to continuous-time Markov process

Notation: if Z = (Zt)t∈I is a process (I may be continuous or discrete), we denote by (FZt )t∈I the
filtration generated by Z: FZt is the σ-algebra generated by all random variables Zt1 , . . . , Ztm ,
where m ∈ N∗, t1, . . . , tm in I, tk ≤ t for all k.

Proposition 4.2. Let E be a Polish space. Let (Xn)n≥0 be a discrete time-homogeneous Markov
chain on E with transition operator Pn, n ∈ N. Let N(t) be a Poisson process of exponent λ > 0
independent on (Xn)n≥0 and let ξt = XN(t). Let also Ft = Fξt ∨ FNt be the minimal σ-algebra
containing Fξt and FNt . Then (ξt)t≥0 is a time-homogeneous Markov process with respect to
(Ft)t≥0, with transition operator and infinitesimal generator given by

Πt = exp (−λt(Id− P1)) , L = −λ(Id− P1), (4.13)

respectively.

Proof of Proposition 4.2. Note first that Pn = Pn1 for all n ≥ 0. This is the semi-group property
in discrete time. Then, we want to establish the following kind of Markov property: for all
A ∈ Ft, for all ϕ ∈ BM(E),

E
[
1Aϕ(Xn+N(t))

]
= E

[
1APnϕ(XN(t))

]
. (4.14)

Indeed, (4.14) means that E
[
ϕ(Xn+N(t))|Ft

]
= Pn1 ϕ(XN(t)). Assuming that (4.14) is satisfied

for the moment, we use the decomposition

E[ϕ(XN(t+s))|Ft] =
∞∑
n=0

E[ϕ(XN(t+s))1N(t+s)−N(t)=n|Ft].

By independence, this gives

E[ϕ(XN(t+s))|Ft] =
∞∑
n=0

P(N(t+ s)−N(t) = n)E[ϕ(XN(t)+n)|Ft].

In the last summand, we replace

P(N(t+ s)−N(t) = n) = e−λs
(λs)n

n! , E[ϕ(XN(t)+n)|Ft] = Pn1 ϕ(XN(t)).

The summation over n gives E[ϕ(ξt+s)|Ft] = (Πsϕ)(ξt), where Πt is defined by (4.13). Then we
are in the situation described in the last paragraph of Section 3.2, cf. (3.12)-(3.13). It follows
that (ξt)t≥0 is a time-homogeneous Markov process with respect to (Ft)t≥0. It is also clear
that L = −(Id − P1). To establish (4.14), we observe that each side of the equality defines a
set-function, by dependance on A, which is a finite measure. By [2, Theorem 3.3], it is sufficient
to prove (4.14) for all sets A in a classM which is a π-system generating Ft, in the sense that
σ(M) = Ft. To that effect, we consider the class M of sets of the form B ∩D ∩ {N(t) = m},
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where m ∈ N, B ∈ FXm , D ∈ FNt . It is clear that M is a π-system. The σ-algebra Ft is
generated by all the random variables XN(t1), . . . , XN(tj) and N(s1), . . . , N(sk) for j, k ∈ N∗ and
times ti, si ≤ t. By considering all the possible values taken by N(t1), . . . , N(tj) and N(t), the
event {

XN(t1) ∈ Γ1, . . . , XN(tj) ∈ Γj , N(s1) ∈ E1, . . . , N(sk) ∈ Ek
}
,

where Γ1, . . . ,Γj ∈ B(E), E1, . . . , Ek ⊂ N, can be written as a union over m1 ∈ N, . . . ,mj ,m ∈ N
of the intersection A := A1 ∩ A2 ∩ {N(t) = m} of the events A1 =

{
Xm1 ∈ Γ1, . . . , Xmj ∈ Γj

}
with the events

A2 = {N(t1) = m1, . . . , N(tj) = mj} ∩ {N(s1) ∈ E1, . . . , N(sk) ∈ Ek}.

Since N is non-decreasing and ti ≤ t, the set A is possibly non-empty only if the integers mi

are all smaller than m. In the latter case, we have A ∈ M. We conclude that σ(M) = Ft. For
A = B ∩D ∩ {N(t) = m} ∈ M, we have then

E
[
1Aϕ(Xn+N(t))

]
= P(D ∩ {N(t) = m})E [1Bϕ(Xn+m)]

by independence. By the Markov property, E [1Bϕ(Xn+m)] is equal to E [1BPnϕ(Xm)]. We use
independence again to conclude.

Exercise 4.1 (Poisson process). Let (Tn) be a sequence of i.i.d. random variables with expo-
nential law of parameter λ > 0: P(Tn > t) = e−λt. We define a sequence of times S0, S1, . . . as
follows: let S0 = 0 and, for n ≥ 1, Sn = T1 + . . .+ Tn. Given an interval I of R+, we denote by
Γ(I) the number of times Sn in I:

Γ(I) = #(S ∩ I), S = {Sn;n ∈ N}.

It is often understood that some particular events take place at the times Sn and that we are
counting the number of such occurrences in the time interval I, see also Remark 4.1 below.

1. Compute the (density of the) law of Sn.

2. Let N(t) = Γ([0, t]). Show that N(t) is càdlàg and non-decreasing and is Poisson of
parameter λt (hint: compute first P(N(t) < n) = P(Sn > t)).

3. Establish the “memoryless property” of exponential random variables: for all t, s ≥ 0,

P(T > t+ s|T > s) = P(T > t), (4.15)

for all exponential random variable T .

4. Generalize (4.15) to the case where s is replaced by S, a random variable with values in
R+ independent on T . More precisely, establish the formula

P(T > t+ S) = P(T > t)P(T > S), (4.16)

where T is exponential random variable, t ≥ 0, S a random variable with values in R+
independent on T .

5. Our aim now is to prove the following result: let I and J be two disjoint interval of R+.
Then Γ(I) and Γ(J) are independent and Γ(J) is Poisson of parameter λ|J | (where |J | is
the length of J).
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(a) If we reach the desired conclusion, then the law of Γ(J) should be unchanged if we
modify the extremities of J (replacing for instance J = (s, t] by [s, t], or all possible
variations). Justify this fact.

(b) Prove the result when I = [0, t], J = (t, σ] (hint: adapt the proof of (4.16)).
(c) Establish the general case.

The solution to Exercise 4.1 is here.

Remark 4.1 (Terminology, point Poisson Process). In the framework of Exercise 4.1, the process
(N(t)) defined by N(t) = Γ([0, t]) is often called a Poisson process. We insisted to introduce the
random variables Γ(I), where I is an interval of R+ (actually, I may be a more complicated set)
to relate the Poisson process on R+ to general point Poisson processes. Let us define the latter
on the space Rd. Let µ be a σ-finite Borel measure on Rd. A Poisson point process Γ on Rd,
with mean measure µ, is a random map B(Rd)→ N, where B(Rd) are the Borel sets of Rd, such
that

1. for any Borel sets A1, . . . , An, the random variables Γ(A1), . . . ,Γ(An) are independent,

2. the random variable Γ(A) is Poisson with parameter µ(A):

P(Γ(A) = n) = e−µ(A)µ(A)n

n! .

See [12, p.11-12]. In Exercise 4.1, we draw an explicit set of points S = {Sn;n ∈ N} and define
Γ(I) as the number of points of S in I. We obtain then a Poisson point process with mean
measure µ, the one-dimensional Lebesgue measure restricted to R+. One may wonder how to
construct point Poisson processes, and even if such random objects exist. We refer again to [12]
again, p. 23.

4.2.2 Markov property for the symmetric simple exclusion process

If T and T ′ are two exponential independent random variables of parameters λ and λ′, then
T ∧ T ′ is also an exponential random variable of parameter λ+ λ′. Indeed,

P(T ∧ T ′ > t) = P({T > t} ∩ {T ′ > t}) = P(T > t)P(T ′ > t) = e−λte−λ
′t = e−(λ+λ′)t.

Instead of considering L independent clocks given by exponential random variables of parameter
1 at each site 0, · · · , L − 1 and then looking at the site where the first clock is ringing, we can
select a particular location by just having one single clock of parameter L. When it rings, we
choose a location x uniformly in XL. With that approach, we see that Ht = HN(t), where (N(t))
is a Poisson process of parameter L and (Hn) is an independent process that evolves in discrete
time. To describe this evolution, we introduce the following notation3 let ∆D be the discrete
Laplace operator defined on functions H ∈ EL by

∆DH(x) = H(x + 1) +H(x− 1)− 2H(x), ∀x ∈ {2, . . . , L− 1}, (4.17)
∆DH(1) = H(2)− 2H(1), ∆DH(L− 1) = H(L− 2)− 2H(L− 1). (4.18)

The index D in ∆D is for “Dirichlet”, since ∆D is actually the discrete Laplace operator with
homogeneous Dirichlet boundary conditions. This can be seen in (4.18), which is consistent with

3Note that the notation ∆D is reserved for the discrete Laplace operator (4.17). The continuous Laplace
operator on (0, 1) is denoted ∂2

x.
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(4.17) if H(0) = 0 and if we set H(L) := 0. In (4.17)-(4.18), the value of ∆DH at x = 0 has
not been defined. We set this value to be 0: ∆DH(0) = 0. In this way, denoting by E(0)

L the
subset of EL constituted of the functions H such that H(0) = 0, we may consider ∆D as an
operator E(0)

L → E
(0)
L (see Proposition 4.4 for instance). Let us come back to the description of

the evolution in discrete time of (Hn). If H has no corner at x, then ∆DH(x) = 0. If H has
a corner pointing upwards at x, then ∆DH(x) = −2. When the corner is pointing downwards,
then ∆DH(x) = +2. Given Hn, the profile Hn+1 is obtained as follows: choose x uniformly in
XL. Set Hn+1 = Hn + δx∆DHn, where

δx(y) = 1x=y if x ∈ XL. (4.19)

One can check that Hn 7→ Hn+1 is the desired transformation. Indeed, nothing happens if x = 0,
or, when x ∈ {1, . . . , L−1}, if Hn has no corner at x. If Hn has a corner at x, then Hn+1 is the graph
deduced from Hn by flipping this corner. The process (Hn) is Markov and time-homogeneous with
transition operator P1 given by

P1ϕ(H) = EHϕ(H1) = 1
L

L−1∑
x=0

ϕ(H + δx∆DH). (4.20)

From Proposition 4.2 and (4.20), we deduce the following result.

Theorem 4.3. Let E(1)
L be the set of functions H : XL → R such that H(0) = 0 and |Hx+1 −

Hx| = 1 for all x ∈ XL (in the case x = L − 1, we use the convention H(L) = 0). Let ∆D

and δ be defined by (4.17) and (4.19) respectively. The symmetric simple exclusion process (Ht)
described in Section 1.2 is a Markov process with generator L given by

Lϕ(H) =
L−1∑
x=0

(ϕ(H + δx∆DH)− ϕ(H)) , (4.21)

with domain the set of functions ϕ : E(1)
L → R.

Exercise 4.2 (Independent clocks). Justify the assertion used at the beginning of the present
section 4.2.2. The situation is the following one: let XL = {0, . . . , L − 1}. We consider two
different processes that, at a given time t, will have chosen N(t) points x1, . . . , xN(t) in XL.
To define the state space of this process, we introduce an arbitrary point †. Then, we set
X†L = XL ∪ {†}, and complete the finite sequence x1, . . . , xN(t) by the infinite sequence †, †, . . . ,
to get an element of (X†L)N, the state space being then N× (X†L)N. We want to compare the law
of these processes, i.e. to compute

P(N(t) ∈ E, xk1 ∈ A1, . . . , xkn ∈ An),

where E ⊂ N and A1, . . . An ⊂ X†L. Clearly, it is sufficient to compute

P(N(t) ≥ n, x1 ∈ A1, . . . , xn ∈ An), (4.22)

where A1, . . . An ⊂ XL. Now that we have reached this point, the question is the following one:
show that the value of (4.22) is the same in the two following cases:

• Case 1. Given some random variables Tnx indexed by x ∈ XL and n ∈ N∗, the whole family
of random variables that it constitutes being independent, set T̂n = min(Tnx ; x ∈ XL},
N(t) = max{n ≥ 1; T̂ 1 + . . . + T̂n ≤ t} (with the convention that max(∅) = 0), and, if
N(t) = n, xk = argmin(T̂ k), 1 ≤ k ≤ n.
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• Case 2. The process (N(t)) is a Poisson process of parameter L, and, given that N(t) ≥ n,
x1, . . . , xn, are uniform on XL and independent. Precisely, this means that

(4.22) =
∑
k≥n

e−Lt
(Lt)k

k!
|A1|
L
· · · |An|

L
, (4.23)

where |A| is the number of elements in A.

The solution to Exercise 4.2 is here.

4.3 Deterministic limit
The result of Theorem (4.1) is a kind of law of large numbers (a “functional law of large num-
bers”). Indeed, let us introduce the average 〈Ht〉 = E [Ht]. The convergence (4.12) is a conse-
quence of these two following facts:

1. after change of scale, the symmetric simple exclusion process is close to its average value
with high probability: for all δ > 0,

lim
L→+∞

P

(
sup
t∈[0,T ]

‖ĤL2t − 〈ĤL2t〉‖L2(0,1) > δ

)
= 0, (4.24)

2. we have the deterministic convergence

lim
L→+∞

sup
t∈[0,T ]

‖h(t, ·)− 〈ĤL2t〉‖L2(0,1) = 0, (4.25)

where h is the solution to (4.9)-(4.10)-(4.11).

In this section, we will establish the convergence (4.25). Before we proceed, let us study 〈Ht〉
more closely. Given x ∈ {1, . . . , L − 1}, we consider the evaluation map πx : H 7→ H(x). We
have 〈Ht(x)〉 = Eπx(Ht) = Ptπx(H). By definition of the generator L the derivative in time
is ∂t〈Ht(x)〉 = PtL πx(H). The explicit formula (4.21) gives L πx(H) = ∆DH(x). By linearity
of the operator ∆D, we deduce that ∂t〈Ht(x)〉 = ∆D〈Ht(x)〉. After examination of the various
boundary conditions, we conclude that 〈Ht〉 is solution to the following problem:

∂t〈Ht〉 −∆D〈Ht〉 = 0 in (0,+∞)× {1, . . . , L− 1}, (4.26)
〈Ht(0)〉 = 0 for all t ∈ (0,+∞), (4.27)
〈H0(x)〉 = Hin(x) for all x ∈ {1, . . . , L− 1}. (4.28)

Different approaches to the convergence result (4.25) are possible. Our proof will be based on a
spectral decomposition that will be exploited also to establish the averaging property (4.24) in
Section 4.4.

Proposition 4.4 (Spectral basis). The Laplace operator with homogeneous Dirchlet boundary
conditions in dimension 1, which is the operator −∂2

x, with domain

D(−∂2
x) =

{
h ∈ H2(0, 1);h(0) = h(1) = 0

}
admits a spectral basis (ak)k∈N∗ , where ak(x) =

√
2 sin(πkx). This constitutes an orthonormal

basis of L2(0, 1). The eigenvalue associated to ak is µk = π2k2.
Let E(0)

L be the subset of EL constituted of the functions H such that H(0) = 0. The discrete
Laplace operator −∆D : E(0)

L → E
(0)
L is self-adjoint and admits the spectral basis (ǎk)1≤k≤L−1.

The eigenvalue associated to ǎk is νk = 4 sin2 (πk
2L
)
.
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Proof of Proposition 4.4. We simply give the proof of some assertions about the discrete case.
If we extend any H ∈ E(0)

L to the value L by setting H(L) = 0, then for H,G in E(0)
L , we easily

check that −∆DH = D− ◦D+H, where

D+H(x) = H(x + 1)−H(x), D−H(x) = H(x)−H(x− 1).

Then we use the formula 〈D−H,G〉EL = −〈H,D+G〉EL to get

〈−∆DH,G〉EL = 〈D+H,D+G〉EL = 〈H,−∆DG〉EL . (4.29)

This shows that −∆D is self-adjoint. The elementary trigonometry formula

1− cos(2a) = 2 sin2(a) (4.30)

gives −∆Dǎk = νkǎk, with

νk = (eiπk/L + e−iπk/L − 2) = 4 sin2
(
πk

2L

)
.

Let 1 ≤ k, l ≤ L− 1. Using (4.29) and the fact that νk 6= νl if k 6= l, we obtain the orthogonality
relation 〈ǎk, ǎl〉EL = 0 when k 6= l. If k = l, the trigonometric identity (4.30) gives

〈ǎk, ǎk〉EL = L−1
∑

x∈XL

(1− cos(2πkx/L)) = 1− L−1Re
(
L−1∑
x=0

e2iπkx/L

)
= 1.

The family (ǎk)1≤k≤L−1 is free since 〈ǎk, ǎl〉EL = δkl. It constitutes a basis of E(0)
L hence, since,

clearly, dim(E(0)
L ) = L− 1. This concludes the proof.

Regularity of functions can be expressed in terms of decay of the “Fourier” coefficients. This is
what accounts for the following result.

Lemma 4.5. Let hin be a 1-Lipschitz continuous function on [0, 1] vanishing at 0 and 1. Let h
be the unique solution to (4.9)-(4.10)-(4.11) (see (4.8)). Then

sup
t∈(0,T )

|〈h(t, ·), ak〉L2(0,1)| ≤
√

2
πk

, (4.31)

for all k ≥ 1, where (ak)k∈N∗ is the orthonormal basis defined in Proposition 4.4.

Proof of Lemma 4.5. At time t, we have 〈h(t, ·), ak〉L2(0,1) = e−µkt〈hin, a
k〉L2(0,1). It is sufficient

to consider the case t = 0. The estimate (4.31) then follows from the fact that the function hin
is 1-Lipschitz continuous. Indeed, integration by parts gives

〈hin, a
k〉L2(0,1) = −〈h′in, Ak〉L2(0,1), Ak(x) =

∫ x

0
ak(y)dy =

√
2

πk
(1− cos(πkx)),

and the bound |〈hin, a
k〉L2(0,1)| ≤

√
2/πk.

We need a result similar to Lemma 4.5 on functions of the discrete variable x ∈ XL.

Lemma 4.6. There exists a constant C ≥ 0 such that

|〈H, ǎk〉EL | ≤
C

k
, |〈Ĥ, ak〉L2(0,1)| ≤

C

k
, (4.32)

for all H ∈ E(1)
L , for all k ∈ {1, . . . , L − 1}, where (ak)k∈N∗ is the orthonormal basis defined in

Proposition 4.4. One can take C =
√

2.
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Proof of Lemma 4.6. This time we use a discrete integration by parts:

〈H, ǎk〉EL = 1
L3

L−1∑
x=1

(H(x)−H(x− 1))Bk(x), (4.33)

where Bk(x) :=
√

2L
∑L−1

y=x sin(kπy/L) satisfies |Bk(x)| ≤
√

2L2k−1 for all x ∈ XL. Indeed, we
compute

|Bk(x)| =
√

2L

∣∣∣∣∣Im
L−1∑
y=x

eiπky/L

∣∣∣∣∣ ≤ √2L
∣∣∣∣1− eiπk(L−x)/L

1− eiπk/L

∣∣∣∣ ≤ 2L
√

2
|1− eiπk/L|

.

We have
|1− eiπk/L| = 2 sin(πk/(2L)) ≥ 2k/L,

since sin(x) ≥ (2/π)x if x ∈ [0, π/2], which gives |Bk(x)| ≤
√

2L2k−1 as desired. The product
〈Ĥ, ak〉L2(0,1) satisfies an identity similar to (4.33), with

Bk(x) := L2√2
L−1∑
y=x

∫ (y+1)/L

y/L
sin(πkz)dz.

Using the bound

|Bk(x)| =
√

2L2

πk
| cos(πk)− cos(πkx/L)| ≤ 2

√
2L2

πk
,

we obtain the second estimate in (4.32).

Proof of the convergence (4.25). Let K(L) satisfy

lim
L→+∞

K(L) = +∞, K(L) = o(L1/3).

By Lemma 4.5, Lemma 4.6 and the Parseval identity, we have

sup
t∈[0,T ]

‖h(t, ·)− 〈ĤL2t〉‖2L2(0,1) = sup
t∈[0,T ]

K(L)∑
k=1

∣∣∣〈h(t, ·)− 〈ĤL2t〉, ak〉L2(0,1)

∣∣∣2 + o(1) (4.34)

when L→ +∞. We will show that (4.34) can be approached, still with an o(1) error, by

sup
t∈[0,T ]

K(L)∑
k=1

∣∣〈h(t, ·), ak〉L2(0,1) − 〈〈HL2t〉, ǎk〉EL
∣∣2 . (4.35)

We use (4.5) and the fact that H(x) ≤ L for all x ∈ XL when H ∈ E(1)
L . Since Lip(ak) = O(k),

we obtain
K(L)∑
k=1

∣∣∣〈〈ĤL2t〉, ak〉L2(0,1) − 〈〈HL2t〉, ǎk〉EL
∣∣∣2 =

K(L)∑
k=1

∣∣O(L−1k)
∣∣2 = O(L−2K(L)3) = o(1) (4.36)

where the O and o are uniform in t ∈ [0, T ]. By Proposition 4.4, (4.35) is equal to

sup
t∈[0,T ]

K(L)∑
k=1

∣∣∣e−µkt〈hin, ak〉L2(0,1) − e−L
2νkt〈Hin, ǎk〉EL

∣∣∣2 . (4.37)

24



Let us now compare 〈hin, ak〉L2(0,1) to 〈Hin, ǎk〉EL . By (4.6), we have

sup
x∈[0,1]

|ˆ̌hin(x)− Ĥin(x)| ≤ L−1 sup
x∈XL

|ȟin(x)−Hin(x)| ≤ L−1.

We have also

sup
x∈[0,1]

|ˆ̌hin(x)− hin(x)| = sup
x∈[0,1]

|hin([xL]/L)− hin(x)| ≤ L−1,

since hin is 1-Lipschitz continuous. Finally, we can estimate the L2-norm by the L∞-norm to
obtain ‖hin − Ĥin‖L2(0,1) ≤ 2L−1 and

|〈hin, ak〉L2(0,1) − 〈Ĥin, ak〉L2(0,1)| ≤ 2L−1. (4.38)

By (4.5), we also have 〈Hin, ǎk〉EL = 〈Ĥin, ak〉L2(0,1) + O(L−1k). An estimate similar to (4.36)
gives then shows that (4.37) is equal (up to o(1)) to

sup
t∈[0,T ]

K(L)∑
k=1

∣∣∣e−µkt − e−L2νkt
∣∣∣2 〈hin, ak〉2L2(0,1). (4.39)

At that point, we need to compare the eigenvalues µk to the rescaled eigenvalues L2νk. The two
standard inequalities 2

πx ≤ sin(x) ≤ x, | sin(x) − x| ≤ x3, for 0 ≤ x ≤ π
2 , have the consequence

that there exists a constant C ≥ 0 such that

4
π2µk ≤ L

2νk ≤ µk, µk − L2νk ≤ C
k3

L
, (4.40)

for all k ∈ {1, · · · , L− 1}. We deduce that (4.39) is bounded from above by

C2TL−2K(L)6‖hin‖2L2(0,1),

which is o(1) since K(L) = o(L1/3) by hypothesis. This concludes the proof.

4.4 Averaging
In this section, we will establish the convergence (4.24). We use (4.3) and Proposition 4.4, which
give

‖ĤL2t − 〈ĤL2t〉‖2L2(0,1) =
L−1∑
k=1
|〈HL2t − 〈HL2t〉, ǎk〉EL |

2
. (4.41)

We need to analyze the behavior on [0, L2T ] of the process 〈Ht, ǎk〉EL , which is of the form
ϕk(Ht), with ϕk(H) = 〈H, ǎk〉EL . The formula (4.21) for the generator L of (Ht) gives
Lϕk(H) = 〈∆DH, ǎk〉EL . By Proposition 4.4 and the fact that ∆D is self-adjoint on E

(0)
L ,

we obtain Lϕk(H) = −νkϕk(H), when H ∈ E
(0)
L . Let us then apply the corollary 3.2 with

ψ(t,H) = eνktϕk(H). The quantity (∂t + L )ψ vanishes and we obtain that

M
(k)
t := eνkt〈Ht, ǎk〉EL − 〈Hin, ǎk〉EL (4.42)

and
Z

(k)
t :=

∣∣∣M (k)
t

∣∣∣2 − ∫ t

0
e2νks(L |ϕk|2 − 2ϕkLϕk)(Hs)ds (4.43)
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are both martingales. Since t 7→ E
[
M

(k)
t

]
is constant, by the martingale property, and vanishes

at t = 0, we have
0 = E

[
M

(k)
t

]
= eνkt〈〈Ht〉, ǎk〉EL − 〈Hin, ǎk〉EL .

Consequently our quantity of interest is 〈Ht − 〈Ht〉, ǎk〉EL = e−νktM
(k)
t . We can use the Doob’s

martingale inequality (Theorem 2.2 with p = 2), and the trivial bound e−νkt ≤ 1, to obtain the
estimate

P

(
sup

t∈[0,L2T ]
|〈Ht − 〈Ht〉, ǎk〉EL | > a

)
≤ 4
a2E|M

(k)
L2T |

2. (4.44)

Since E
[
Z

(k)
t

]
= 0, (4.43) gives us the bound from above

P

(
sup

t∈[0,L2T ]
|〈Ht − 〈Ht〉, ǎk〉EL | > a

)
≤ 4
a2

∫ L2T

0
e2νks(L |ϕk|2 − 2ϕkLϕk)(Hs)ds. (4.45)

We will compute the “carré du champ” L |ϕk|2 − 2ϕkLϕk to understand better what gives
(4.45). Before we start, let us pause a moment to consider the inequalities that we have used.
We come back to (4.44) in particular, where we have discarded the term e−νkt. We may have
lost something here. If k is O(1), then νk is of order L−2 for L large, and t 7→ e−νkt is not smaller
than a given positive constant on the time interval [0, L2T ]. If k takes greater values, then things
are different. However, as soon as k ≥ K(L), where K(L) is a quantity that grows to +∞ with
L, but possibly very slowly, we can use the bound of Lemma 4.6 to get the estimate

L−1∑
k=K(L)

|〈HL2t − 〈HL2t〉, ǎk〉EL |
2 ≤ C2

∑
k≥K(L)

1
k2 ≤ C

2K(L)−1. (4.46)

We have only to consider the indexes k ≤ K(L) hence. If this is not exactly a bounded range of
indexes, we will see that the loss of the e−νkt factor in (4.44) is not a problem.
We go back to the computation of the carré du champ now. We can write ϕk as the sum over
x ∈ {1, . . . , L−1} of L−3ǎk(x)πx, where πx is the evaluation at x. We need to compute L (πx⊗πy)
therefore, where πx ⊗ πy(H) := H(x)H(y). By (4.21), this is

L (πx ⊗ πy)(H) =
L−1∑
z=0

[(H(x) + δz(x)∆DH(x))(H(y) + δz(y)∆DH(y))−H(x)H(y)] ,

which is equal to H(y)∆DH(x) +H(x)∆DH(y) if x 6= y, and to 2H(x)∆DH(x) + |∆DH(x)|2 if
x = y. We obtain

(L |ϕk|2 − 2ϕkLϕk)(H) = 1
L6

L−1∑
x=1
|ǎk(x)|2|∆DH(x)|2. (4.47)

If H ∈ E
(1)
L , then |∆DH(x)| ≤ 2 for all x. This shows that the right-hand side of (4.47) is

bounded by 4L−3‖ǎk‖2EL . Since ǎk is normalized, we conclude finally that

0 ≤ (L |ϕk|2 − 2ϕkLϕk)(H) ≤ 4L−3, (4.48)

for all H ∈ E(1)
L . Let θ ∈ (0, 1/2) be fixed and let AL denote the event

AL =
⋂

1≤k<K(L)

{
sup

t∈[0,L2T ]
|〈Ht − 〈Ht〉, ǎk〉EL | ≤ L−θ

}
.
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Let us choose K(L) = (log(L))1/3. We will show that we have then limL→+∞ P(AL) = 1. By
(4.41) and (4.46) and, we see that

sup
t∈[0,T ]

‖HL2t − 〈HL2t〉‖2L2(0,1) ≤ C
2(log(L))−1/3 + (log(L))1/3L−2θ,

when AL is realized, so it is clearly sufficient to prove limL→+∞ P(AL) = 1 to get the desired
result. The union bound gives

P(AcL) ≤
∑

1≤k<K(L)

P

(
sup

t∈[0,L2T ]
|〈Ht − 〈Ht〉, ǎk〉EL | > L−θ

)
.

Using (4.45) and (4.48), we obtain

P(AcL) ≤ 16L2θ
∑

1≤k<K(L)

∫ L2T

0
eνksL−3ds ≤ 16L2θ−1

∑
1≤k<K(L)

eνkL
2T

νkL2 . (4.49)

From the inequality 2
πx ≤ sin(x) ≤ x for 0 ≤ x ≤ π

2 , we infer that νkL
2 is bounded between 16k2

and 4π2k2. We deduce then from (4.49) that

P(AcL) ≤ L2θ−1
∑

1≤k<K(L)

e4π2k2T

k2 ≤ SL2θ−1e4π2T (log(L))2/3
,

where S =
∑
k≥1 k

−2 = π2/6 is finite. This shows that limL→+∞ P(AL) = 1, as required.

27



K L
M

N

K|L

Figure 2: A mesh in R2

5 Conservation laws and the Finite Volume method
5.1 Discrete conservation laws, continuous limit
We go back to Section 1.1 of the introductory part. We considered a discrete evolution equation

un+1
K = unK + ∆tn

|K|
∑

L∈N (K)

|K|L|QnL→K . (5.1)

The quantity unK represents the density of a certain extensive quantity u in the space-time cell
K × (tn, tn+1). The time grid is constituted from the discrete times t0 < t1 < · · · < tn < · · · ,
where tn = n∆t, n ∈ N for a fixed time-step ∆t. The space Rd is partitioned as follows: we are
given a family T of disjoint open sets such that:

• for all distinct K,L ∈ T , the interface K ∩ L is contained in an hyperplane of Rd,

• up to a negligible set for the d-dimensional Lebesgue measure, the union of the sets K in
T is equal to Rd.

We also use the following notations:

• K|L is the intersection K ∩ L,

• |K| is the d-dimensional Lebesgue measure ofK and |K|L| is the d−1-dimensional Lebesgue
measure of K|L,

• N (K) = {L ∈ T ; 0 < |K|L| < +∞} is the set of neighbors of K,

• when K ∈ T and L ∈ N (K), nK→L is the outward unit normal to K along K|L and QnK→L
is some numerical flux, ∆tQnK→L representing the amount of u that has passed from K to
L trough the interface K|L on the time interval (tn, tn+1).

In the introductory section 1.1, we also assumed that the condition

QnL→K = −QnK→L, (5.2)

for all n ∈ N, for all K,L ∈ T being neighbors, is satisfied. The condition (1.3) ensures that, in
the time interval (tn, tn+1), the (algebraic) quantity of u transferred from the cell K to the cell
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L is the exact opposite of the quantity of u transferred from L to K: no loss of creation of u
occurs at the interface K|L. Define

h = sup
K∈T

diam(K), uh,∆t =
∑
n∈N

∑
K∈T

unk1K×(tn,tn+1). (5.3)

Under some additional conditions on the the discrete fluxes QnK→L, we will study the limit when
h,∆t→ 0 of uh,k. We will show that we obtain in the limit a conservation law

∂tu+ divx(Q) = 0, (5.4)

where Q = Q(x, t). There are various instances of such conservation laws. For example the heat
equation ∂t − div(K∇u) = 0 or the diffusion equation ∂t − div(D∇u) = 0, the flux being then
given by the the Fourier law, Q = −K∇xu, or the Fick law, Q = −D∇u respectively. An other
example is the continuity equation

∂tu+ divx(au) = 0, (5.5)

where a is a vector-field over Rd. The continuity equation can be rewritten

∂tu+ a · ∇xu+ divx(a)u = 0, (5.6)

and coincides with the transport equation ∂u + a · ∇xu = 0 when a is divergence-free. We can
also mention the Fokker-Planck equation of the kinetic theory of gases,

∂tf + v · ∇xf + F (x) · ∇vf = divv(∇vf + vf), (5.7)

which is of the form (1.4), or more precisely ∂tf + divx,v(Q) = 0, with a flux

Q =
(

vf
F (x)f − (∇vf + vf)

)
.

In all these examples, the equations are linear. We can also consider the non-linear equations

∂tu−∆φ(u) = 0, (5.8)

or
∂tu+ divx(A(u)) = 0, (5.9)

where A : R → Rd. The hydrodynamic limits of particles in stochastic interaction that we will
consider later can be of very different types, including in particular (5.8) and (5.9). Although
both (5.8) and (5.9) may be considered in our framework, we will restrict our attention to models
with (5.9) as continuous limit. We refer to [10] for the derivation of (5.8).

5.2 Discrete fluxes
We will begin this section with a discussion on expected discrete fluxes in some specific situations,
before giving the description or our general framework.
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5.3 Discrete fluxes for linear equations
Consider the continuity equation (5.5). Assume for simplicity that the vector field a is constant.
Then (5.5) is equivalent to the transport equation (5.6). What one would observe by looking at
the behavior of the solution to (5.6) on the interface K|L between the times tn and tn+1 is a flow
of u across K|L in the direction u. Let nK→L denote the unit normal to K along K|L in the
direction of L. The value of |a · nK→L| ponders the amplitude of the flux across K|L, while the
sign of a ·nK→L determines the direction of the flow of u across K|L. It is quite natural then to
set QnK→L = a · nK→LunK if a · nK→L ≥ 0. The condition of conservation (5.2) will be satisfied
then if we also set QnK→L = −a · nK→LunL when a · nK→L ≤ 0. This can be summed up in the
formula

QnK→L = (a · nK→L)+unK − (a · nK→L)−unL. (5.10)

A generalization of (5.11) in the case where a is a non-constant vector field is

QnK→L = a+
K→Lu

n
K − a−K→Lu

n
L, (5.11)

where
aK→L = 1

|K|L|

∫
K|L

a(x) · nK→Ldσ(x). (5.12)

A further generalization of (5.10) can be given in the case where the flux A(u) in (5.9) actually
depends on x also and is of the form A(x, u) = f(u)a(x), where f is a non-decreasing locally
Lipschitz function R → R and a : Rd → Rd is a divergence-free smooth vector field. Indeed,
(5.9) can be rewritten as the non-linear transport equation ∂tu+ f ′(u)a ·∇xu = 0 and, using the
definition (5.12), the sign of f ′(u)aK→L is the sign of aK→L since f ′(u) ≥ 0. In that situation,
one can consider the flux

QnK→L = a+
K→Lf(unK)− a−K→Lf(unL). (5.13)

5.4 General monotone fluxes
Consider the case of a general flux A in (5.9). By general flux A, we mean any functionA : R→ Rd
that is locally Lipschitz continuous. Sometimes, we also the consider the extension to some fluxes
A(x, u) depending also on the space variable. What kind of numerical flux may be compatible
with such an expected limit as (5.9)? Inspired by the examples in Section 5.3, we look for some
numerical fluxes QnK→L given by a relation

QnK→L = AK→L(unK , unL), (5.14)

where AK→L is a function with the following properties:

1. compatibility with the flux A:

AK→L(v, v) = A(v) · nK→L, (5.15)

for all v ∈ R,

2. regularity: the function AK→L is locally Lipschitz continuous: for every R > 0, there exists
a constant LA(R) ≥ 0 such that

|AK→L(v, w)−AK→L(v′, w′)| ≤ LA(R)(|v − v′|+ |w − w′|), (5.16)

for all v, v′, w, w′ ∈ [−R,R] and for all neighboring cells K,L ∈ T ,
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3. monotony: for all v, w ∈ R, the function AK→L(v, ·) is non-increasing, while the function
AK→L(·, w) is non-decreasing,

4. conservation property:
AK→L(v, w) = −AL→K(w, v), (5.17)

for all v, w ∈ [−R,R] and for all neighboring cells K,L ∈ T .

If we choose the definition (5.14) of the flux, then (5.17) yields the conservation property (5.2).
There is some redundancy in the properties required above: (5.17) and the single fact that
AK→L(v, ·) is non-increasing implies that AK→L(·, w) is non-decreasing for instance. In the next
two paragraphs we infer some consequences on the discrete evolution equation (5.1) of (5.14),
(5.15), (5.16), (5.17) and the monotony properties of AK→L.

Exercise 5.1 (Godunov flux, Engquist-Osher flux). Define AGK→L(v, w) as follows: if v ≤ w,
then AGK→L(v, w) is the maximum value of u 7→ A(u) · nK→L on the interval [v, w]. If w ≤ v,
then AGK→L(v, w) is the minimum value of u 7→ A(u) · nK→L on the interval [w, v]. Define also
AEOK→L(v, w) by the formula

AEOK→L(v, w) =
∫ v

0
(a(ξ) · nK→L)+dξ −

∫ w

0
(a(ξ) · nK→L)−dξ,

where a(u) = A′(u). Show that AGK→L and AEOK→L have the required properties and show that
they coincide with the upwind flux (5.10) in the linear case A(u) = au.
The solution to Exercise 5.1 is here.

5.5 Constants as solutions
Any constant function unK ≡ v is solution to (5.1). By (5.15), we have indeed∑

L∈N (K)

|K|L|QnK→L =
∑

L∈N (K)

|K|L|A(v) · nK→L =
∑

L∈N (K)

∫
K|L

A(v) · nK→Ldσ(x).

We use the Stokes formula∑
L∈N (K)

∫
K|L

Ψ(x) · nK→Ldσ(x) =
∫
K

div Ψ(x)dx, (5.18)

to obtain ∑
L∈N (K)

|K|L|QnK→L = 0,

as desired.

Exercise 5.2 (Spatially dependent flux). Assume that A(x, u) satisfies the divergence-free con-
dition (divxA)(x, u) = 0 for all u ∈ R. Assume also that QnK→L is given by (5.14), where AK→L
satisfies the following generalized version of (5.15):

AK→L(v, v) = 1
|K|L|

∫
K|L

A(x, v) · nK→Ldσ(x). (5.19)

Show that constant are solutions.
The solution to Exercise 5.2 is here.
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For later use, we record the identity∑
L∈N (K)

|K|L|AK→L(unK , unK) = 0, (5.20)

valid for all neighboring cells K,L ∈ T . We can use it to transform (5.1) into the identity

un+1
K = unK + ∆tn

|K|
∑

L∈N (K)

|K|L|[AK→L(unK , unK)−AK→L(unK , unL)]. (5.21)

On the formula (5.21), we can see the stabilizing effect of the monotony of the numerical flux.
Imagine that unK > unL for all neighboring cells L of K. Then

AK→L(unK , unK)−AK→L(unK , unL) ≤ 0

for all L since AK→L is non-increasing in its second argument, which implies that un+1
K ≤ unK .

The estimates in the following two sections essentially use this.

5.6 Comparison principle
5.6.1 Periodic discrete conservation law

In all that follows we will consider for simplicity a periodic setting. We assume that the mesh T
is periodic, in the sense that there exists a mesh T ] of the hypercube (0, 1)d such every K ∈ T
is the translation of an element K] of T ] by a vector of Zd. We also assume that K 7→ u0

K

is periodic, in the sense that K ∼ L (where the relation of equivalence K ∼ L is defined by
K = ` + L, ` ∈ Zd) implies u0

K = u0
L. This will be the case if we assume, as will be done later,

that
∀K ∈ T , u0

K = 1
|K|

∫
K

u0(x)dx, (5.22)

where u0 : Rd → R is Zd-periodic. We denote by Td the d-dimensional torus Td = Rd/Zd.

5.6.2 Comparison principle and consequences

The value of uh,∆t(tn, ·) in (5.3) is 0. We slightly modify the second identity of (5.3) as

uh,∆t =
∑
n∈N

∑
K∈T

unK1K×[tn,tn+1). (5.23)

With this new definition, we have uh,∆t(tn, x) = unK if x ∈ K. We will use the following notation
also: if F : R→ R is continuous,∫

Td
F (uh,∆t(tn, x))dx =

∑
K∈T ]

|K|F (unK). (5.24)

Proposition 5.1 (L1-contraction). Let uh,∆t and vh,∆t be two sequences defined by (5.1), with
a flux given as in Section 5.4. Define

RnK(uh,∆t) = max {|unL|;L ∈ N (K) ∪ {K}} , |∂K| :=
∑

L∈N (K)

|K|L|.
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Let n ∈ N be fixed, and assume that the conditions

2∆t|∂K|
|K|

LA(RnK(uh,∆t))) ≤ 1, 2∆t|∂K|
|K|

LA(RnK(vh,∆t))) ≤ 1 (5.25)

are satisfied for all K ∈ T , where LA is defined in (5.16). We have then∫
Td

(uh,∆t(tn+1)− vh,∆t(tn+1))+dx ≤
∫
Td

(uh,∆t(tn)− vh,∆t(tn))+dx. (5.26)

Remark 5.1 (CFL condition). Recall that h is defined in (5.3) by h = supK∈T diam(K). Suppose
that there exists α > 0 such that

αhd ≤ |K|, |∂K| ≤ 1
α
hd−1, (5.27)

for all K ∈ T . Then (5.25) is satisfied if

∆t ≤ Ch, (5.28)

where C = 2α−2LA(R), and R is a bound for all the quantities RnK(w), w = uh,∆t or vh,∆t (we
will see soon how to ensure that R is finite). The condition (5.28) puts a constraint of the size of
the time step, depending on the size of the space-step h. It is called a Courant-Friedrichs-Lewy
(CFL) condition.

Exercise 5.3 (Spatially dependent flux). Give some examples of meshes in dimension d = 2
which do not satisfy one of the two bounds in (5.27).
The solution to Exercise 5.3 is here.

Proof of Proposition 5.1. Here, and later in the analysis of (5.1), we will use the notation

a ∧ b = min(a, b), a ∨ b = max(a, b). (5.29)

We have then the formula
(u− v)+ = u ∨ v − v, (5.30)

for all u, v ∈ R. Our first goal is to estimate un+1
K ∨ vn+1

K . Let us consider the right-hand side
of (5.21). It is a non-decreasing function of the variables unL, L ∈ N (K). With respect to the
variable unK , it can be written as a sum Id+f , where f is a locally Lipschitz continuous function.
On the domain where Lip(f) ≤ 1, it will be also an non-decreasing function of unK . Actually, our
function f here is has the form F (u, u, u), where

F (u1, u2, u3) = ∆tn
|K|

∑
L∈N (K)

|K|L|[AK→L(u1, u2)−AK→L(u3, u
n
L)]

is a non-decreasing function of u1. We are only interested in the Lipschitz dependency of this
function with respect to u2 and u3, which, using (5.16), is bounded by the first term in (5.25).
To sum up, as long as the first condition in (5.25) is satisfied, we have

un+1
K = Hn

K(unK , unL;L ∈ N (K)), (5.31)

where Hn
K is a non-decreasing function of its arguments. We deduce, under (5.25), that

un+1
K ∨ vn+1

K ≤ Hn
K(unK ∨ vnK , unL ∨ vnL;L ∈ N (K)), (5.32)
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for all K ∈ T . Then we use (5.30) and (5.31) to obtain the inequality

(un+1
K − vn+1

K )+ ≤ Hn
K(unK ∨ vnK , unL ∨ vnL;L ∈ N (K))−Hn

K(vnK , vnL;L ∈ N (K)). (5.33)

We write (5.33) under the form

(un+1
K − vn+1

K )+

≤ (unK − vnK)+ + ∆tn
|K|

∑
L∈N (K)

|K|L|[ΦK→L(unK , unK ; vnK , vnK)− ΦK→L(unK , unL; vnK , vnL)], (5.34)

where
ΦK→L(v, w; v′, w′) := AK→L(v ∨ v′, w ∨ w′)−AK→L(v′, w′). (5.35)

We multiply (5.34) by |K| and sum over K ∈ T ]. It gives us the desired estimate (5.26), provided
we can show that∑

K∈T ]

∑
L∈N (K)

|K|L|[ΦK→L(unK , unK ; vnK , vnK)− ΦK→L(unK , unL; vnK , vnL)] = 0. (5.36)

The cancellation property (5.36) follows from the two identities∑
L∈N (K)

|K|L|[ΦK→L(unK , unK ; vnK , vnK) = 0,
∑
K∈T ]

∑
L∈N (K)

|K|L|ΦK→L(unK , unL; vnK , vnL)] = 0.

(5.37)
The left identity in (5.37) follows from (5.20). The second identity in (5.37) is a consequence of
(5.17) and of the formula∑

K∈T ]

∑
L∈N (K)

a(K,L) = 1
2
∑
K∈T ]

∑
L∈N (K)

(a(K,L) + a(L,K)), (5.38)

satisfied by any periodic function a : T × T → R. Indeed, if K∗ ∈ T ] and L∗ ∈ N (K), then the
term a(L∗,K∗) in the right-hand side of (5.38) will appear in the sum on the left when K = L∗
and L = K∗ (in the case where the interface K∗|L∗ is on the boundary of (0, 1)d, we need to use
the periodic character of a to complete this argument).

From Proposition 5.1, we deduce first a comparison principle and an L∞ estimate.
Proposition 5.2 (Comparison principle, L1 estimate). Under the hypotheses of Proposition 5.1,
we have ∫

Td
|uh,∆t(tn+1)− vh,∆t(tn+1)|dx ≤

∫
Td
|uh,∆t(tn)− vh,∆t(tn)|dx. (5.39)

Besides, if vh,∆t(tn) ≥ uh,∆t(tn) a.e. in Td, then vh,∆t(tn+1) ≥ uh,∆t(tn+1) a.e. in Td.
Proposition 5.3 (Comparison principle, L∞ estimate). Assume |uh,∆t(0)| ≤ R a.e. in Td.
Then, under the CFL condition

∀K ∈ T , 2∆t|∂K|
|K|

LA(R) ≤ 1, (5.40)

we have the L∞ bound |uh,∆t(t)| ≤ R a.e. in Td, for a.e. t ≥ 0.
Proof of Proposition 5.2 and Proposition 5.3. We exchange the roles of uh,∆t and vh,∆t to deduce
the L1-contraction (5.39) from (5.26) and we use the fact that vh,∆t(tn) ≥ uh,∆t(tn) a.e. in Td
if, and only if the integral over Td of (uh,∆t(tn)− vh,∆t(tn))+ vanishes to prove the comparison
principle. The L∞ bound |uh,∆t(tn)| ≤ R is proved by recursion on n, using the comparison
principle and the fact that the constant functions R and −R are solutions of (5.1).
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5.6.3 Asymptotic behavior

We consider the behavior of the numerical solution to (5.1) when the characteristic scales h and
∆t get smaller and smaller. Let (∆tk) be a sequence of positive reals that converge to 0, let
(Tk) be a sequence of meshes that are Zd-periodic and such that hk := supK∈Tk diam(K) tends
to 0 when k → +∞. We assume that (5.27) is satisfied for all k, for all K ∈ Tk, where α
is independent on k. We also assume that (5.16) is satisfied with a Lipschitz constant LA(R)
independent on k. Let (u0

K)K∈Tk be given by (5.22), where u0 ∈ L∞(Td). Consider the CFL
condition

∆tkLA(R) ≤ α2hk, (5.41)
where R ≥ ‖u0‖L∞(Td). Let T > 0 be fixed. By Proposition 5.3, the solution u(k) := uhk,∆tk of
(5.1) satisfies the bound ‖u(k)‖L∞(Td×(0,T )) ≤ R for all k. Consequently, there is a subsequence
still denoted (u(k)) which converges to a certain function u in L∞(Td × (0, T )) for the weak-∗
topology. We would like to show that u is solution to the conservation law (5.9). In the case
where A is not a linear function, there two difficulties to this approach:

1. we use a weak mode of convergence (convergence in L∞(Td × (0, T )) for the weak-∗ topol-
ogy), which is not sufficient in all generality to deal with the convergence of non-linear
terms,

2. the theory of the Cauchy Problem for (5.9) in L∞ requires a specific treatment, via the use
of entropy solutions.

We will establish the convergence of (u(k)) towards a solution of (5.9) in the linear case only, see
Section 5.9. Some additional estimates on u(k) are necessary for this, and we will give them in the
following section 5.7, for a general numerical fluxes, associated, via (5.15), to a not-necessarily
linear flux A. We refer to [9, Chapter 6] for the proof of convergence of (5.1) in the general case.

5.7 Energy estimate
Consider the parabolic equation

ut + div(A(u))− η∆u = 0 in Td × (0,+∞). (5.42)

Here η > 0 is supposed to be small. The flux in (5.42) is A(u)− η∇u. This is a perturbation of
the flux A(u). The addition of the term −η∇u has a stabilizing effect, of the same nature as the
stabilizing effect discussed at the end of Section 5.5, in relation with the monotony properties
of the numerical fluxes. In (5.42), the additional term −η∆u has a positive contribution in the
energy estimate: if we multiply (5.42) by u (say, a smooth solution) and integrate over Td×(0, t),
we obtain ∫ t

0

1
2
d

dt

∫
Td
u2dxds+

∫ t

0

∫
Td
udiv(A(u))dxds− η

∫ t

0

∫
Td
u∆udxds = 0. (5.43)

We develop the term

udiv(A(u)) = uA′(u) · ∇u = B′(u) · ∇u = div(B(u)), B′(u) := uA′(u),

and, using periodicity, we obtain

1
2

∫
Td
|u(x, t)|2dx+ η

∫ t

0

∫
Td
|∇u|2dxds ≤ 1

2

∫
Td
|u0|2dx.

We will establish a similar result in the discrete case.
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Proposition 5.4 (Energy estimate). Let u0 ∈ L∞(Td) satisfy ‖u0‖L∞(Td) ≤ R. Define

D(tN ) = 1
2

N−1∑
n=0

∆t
∑
K∈T

∑
L∈N (K)

|K|L|
∫ unK

un
L

{AK→L(unK , unL)−AK→L(z, z)}dz.

Assume that the following CFL condition is satisfied: there exists ξ ∈]0, 1] such that

2∆t |∂K|
|K|

LA(R) ≤ 1− ξ, ∀K ∈ T , (5.44)

for all K ∈ T . Then we have the energy estimate

1
2‖uh,∆t(tN )‖2L2(Td) + ξD(tN ) ≤ 1

2‖u0‖2L2(Td), (5.45)

for all N ≥ 1.

Remark 5.2. the term D(tN ) is non-negative. Indeed, using the monotony properties of AK→L,
we have AK→L(unK , unL) − AK→L(z, z) ≥ 0 if unL ≤ z ≤ unK . Similarly, AK→L(unK , unL) −
AK→L(z, z) ≤ 0 if unK ≤ z ≤ unL.

Proof of Proposition 5.4. We multiply the identity (5.21) by |K|unK and we sum the result over
K ∈ T ] and n ∈ {0, . . . , N − 1}. We obtain an identity J∆t + J∆x = 0, where

J∆t =
N−1∑
n=0

∑
K∈T ]

|K|unK(un+1
K − unK), (5.46)

and

J∆x =
N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

unK{AK→L(unK , unL)−AK→L(unK , unK)}. (5.47)

We use the formula a(b− a) = b2−a2

2 − (a−b)2

2 , which is the “finite difference” version of the the
continuous identity u∂tu = 1

2∂tu
2. It gives

J∆t = 1
2‖uh,∆t(tN )‖2L2(Td) −

1
2‖uh,∆t(0)‖2L2(Td) −

1
2

N−1∑
n=0

∑
K∈T ]

|K||un+1
K − unK |2. (5.48)

We leave as an exercise the proof that (5.22) implies ‖uh,∆t(0)‖L2(Td) ≤ ‖u0‖L2(Td). From (5.48),
we deduce that

1
2‖uh,∆t(tN )‖2L2(Td) + J∆x ≤

1
2‖u0‖2L2(Td) + 1

2

N−1∑
n=0

∑
K∈T ]

|K||un+1
K − unK |2 (5.49)

The remaining term in the right-hand side of (5.49) will be absorbed in J∆x, by means of the
CFL condition. The summation formula (5.38) and the conservation property (5.17) give the
following expression of J∆x:

J∆x = 1
2

N−1∑
n=0

k
∑
K∈T ]

∑
L∈N (K)

unK{AK→L(unK , unL)−AK→L(unK , unK)}

− unL{AK→L(unK , unL)−AK→L(unL, unL)}. (5.50)

36



Denote by ψK→L an anti-derivative of z 7→ z ddzAK→L(z, z). Integration by parts shows that

ψK→L(v)− ψK→L(w) = v{AK→L(v, v)−AK→L(v, w)}

− w{AK→L(w,w)−AK→L(v, w)}+
∫ v

w

{AK→L(v, w)−AK→L(z, z)}dz. (5.51)

Taking w = unL, v = unK in (5.51) shows that

J∆x = 1
2

N−1∑
n=0

k

 ∑
K∈T ]

∑
L∈N (K)

∫ unK

un
L

{AK→L(unK , unL)−AK→L(z, z)}dz + Rn
∆x

 , (5.52)

where the remainder term is

Rn
∆x = −1

2
∑
K∈T ]

∑
L∈N (K)

ψK→L(unK)− ψK→L(unL).

The cancellation property (5.20) and (5.38) give Rn
∆x = 0. We conclude that J∆x = D(tN ). The

estimate (5.45) will be established (as a consequence of (5.49)) if we can prove that

1
2

N−1∑
n=0

∑
K∈T ]

|K||un+1
K − unK |2 ≤ (1− ξ)J∆x. (5.53)

We use Equation (5.21) and the Cauchy-Schwarz inequality to get

∣∣un+1
K − unK

∣∣2 ≤ (∆t)2|∂K|
|K|2

∑
L∈N (K)

|K|L||AK→L(unK , unL)−AK→L(unK , unK)|2.

The CFL condition (5.44) gives then (5.53) with a term J∗∆x instead of J∆x, where

J∗∆x = 1
4LA(R)

N∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L||AK→L(unK , unL)−AK→L(unK , unK)|2.

To conclude, we show that J∗∆x ≤ D(tN ). To that purpose, we use the following inequality:∫ r

0
B(z)dz ≥ 1

2 Lip(B)B(r)2, r ∈ [0, R] (5.54)

valid for any non-decreasing Lipschitz continuous function B on [0, R]. To obtain (5.54), we
simply use the formula

B(r)2 = 2
∫ r

0
B(s)B′(s)ds,

and bound B′(s) by Lip(B). Suppose unK ≥ unL for instance. Then (5.54) applied to B(z) :=
AK→L(unK , unL)−AK→L(unK , z + unL) and r = unK − unL will give

|AK→L(unK , unL)−AK→L(unK , unK)|2 ≤ 2LA(R)
∫ unK

un
L

{AK→L(unK , unL)−AK→L(unK , z)}dz. (5.55)

We use the fact that AK→L(unK , z) ≥ AK→L(z, z) since unK ≥ z to get the desired identity. The
reasoning in the case unK ≤ unL is similar.
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Remark 5.3 (Discrete H1-estimate in the time variable). Note that (5.53) and (5.45) give the
estimate

N−1∑
n=0

∑
K∈T ]

|K|
∣∣un+1
K − unK

∣∣2 ≤ (1− ξ)D(tN ) ≤ 1− ξ
ξ
‖u0‖2L2(Td), (5.56)

for all N ≥ 1. Note also that the inequality J∗∆x ≤ D(tN ) in the proof above and (5.45) give the
estimate

N∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L||AK→L(unK , unL)−AK→L(unK , unK)|2 ≤ 4LA(R)
ξ

‖u0‖2L2(Td), (5.57)

for all N ≥ 1.

5.8 Approximate weak solutions
In this section, we will prove that u(k) obtained in Section 5.6.3 is an approximate weak solution
of (5.9).

Definition 5.4 (Weak solution). Let u0 ∈ L∞(Td), assume that A : R→ Rd is a locally Lipschitz
continuous function. Let T > 0. A function u ∈ L∞(Td× (0, T )) is said to be a weak solution to
(5.9) on (0, T ) with initial datum u0 if∫ T

0

∫
Td

(uϕt +A(u) · ∇xϕ)dxdt+
∫
Td
u0(x)ϕ(x, 0)dx = 0, (5.58)

for all test-function ϕ ∈ C∞c (Td × [0, T )).

Notation: if u : Td → R and 1 ≤ p < +∞, we denote by ωLp(u;h) the modulus of continuity in
Lp(Td):

ωLp(u;h) = sup
|z|≤h

‖u− u(·+ z)‖Lp(Td). (5.59)

Theorem 5.5 (Approximate weak solutions). Let u0 ∈ L∞(Td) and let R ≥ ‖u0‖L∞(Td). As-
sume that the CFL condition (5.44) is satisfied for all K ∈ T ]. Then uh,∆t is an approximate
weak solution to (5.9) on (0, T ) with initial datum u0 in the sense that∣∣∣∣∣
∫ T

0

∫
TD

(uh,∆tϕt +A(uh,∆t) · ∇xϕ)dxdt+
∫
Td
u0(x)ϕ(x, 0)dx

∣∣∣∣∣
≤ 〈µ0

h,∆t, |ϕ|〉+ 〈µ1
h,∆t, |∂tϕ|〉+ 〈µ2

h,∆t, |∇xϕ|〉, (5.60)

for all test-function ϕ ∈ C∞c (Td × [0, T )), where µih,∆t, i ∈ {0, 1, 2)} are some non-negative
measures on Td × [0, T ] which satisfy the estimate

µih,∆t(Td × [0, T ]) ≤ C(∆t1/2 + h1/2 + ωL1(u0;h)), (5.61)

where C is a constant depending only on the dimension d, on T , on the constant α in (5.27), on
R, on LA(R) (cf. (5.16)), and on the constant ξ in (5.44).

Remark 5.4 (Entropy solutions). When A is non-linear, weak solutions to (5.58) are non unique.
The Cauchy Problem for (5.9) is solved in the class of weak entropy solutions. A function
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u ∈ L∞(Td × (0, T )) is said to be a weak entropy solution to (5.9) on (0, T ) with initial datum
u0 if ∫ T

0

∫
Td

(η(u)ϕt + Φ(u) · ∇xϕ)dxdt+
∫
Td
η(u0(x))ϕ(x, 0)dx ≥ 0, (5.62)

for all non-negative test-function ϕ ∈ C∞c (Td × [0, T )) and all entropy, entropy-flux pair (η,Φ).
This means that η is of class C2, convex, Φ is locally lipschitz continuous, Φ′(u) = η′(u)A′(u)
for a.e. u ∈ R. Actually, it is sufficient to establish (5.58) for a family of generating entropy,
entropy-flux pairs. One generally considers the Kruzhkov entropies η(u) = |u − r|, where the
parameter r runs in R. Such a η is not of class C2, but the associated flux is well defined. We
can also work with the semi Kruzhkov entropies η±(u) = (u− r)±. The associated fluxes are

Φ+(u; r) = A(u ∨ r)−A(r), Φ−(u; r) = A(u)−A(u ∧ r). (5.63)

We can see on the expressions (5.34) and (5.63) (we take vnK ≡ r in (5.34)) that we have already
established a discrete version of (5.62):

(un+1
K − r)+ ≤ (unK − r)+ + ∆tn

|K|
∑

L∈N (K)

|K|L|[ΦK→L(unK , unK ; r)− ΦK→L(unK , unL; r)], (5.64)

where ΦK→L(v, w; r) = AK→L(v ∨ r, w ∨ r)− AK→L(r, r). If we start from (5.64) and adapt in
a suitable way the proof of Theorem 5.5, we can establish that uh,∆t is an approximate weak
entropy solution to (5.9) on (0, T ) with initial datum u0 in the sense that∫ T

0

∫
Td

(η±(uh,∆t; r)ϕt + Φ±(uh,∆t; r) · ∇xϕ)dxdt+
∫
Td
η±(u0(x); r)ϕ(x, 0)dx

≥ −〈µ0
h,∆t, |ϕ|〉 − 〈µ1

h,∆t, |∂tϕ|〉 − 〈µ2
h,∆t, |∇xϕ|〉, (5.65)

for all non-negative test-function ϕ ∈ C∞c (Td× [0, T )) and for all r ∈ R, where µh,∆t satisfies an
estimate similar to (5.61). See [9].

Proof of Theorem 5.5. Let ϕ ∈ C∞c (Td × [0, T )). We first look at the error done at initial time.
Define the error ε0(ϕ) by the formula

ε0(ϕ) =
∫
Td

(u0(x)− uh,∆t(x, 0))ϕ(x, 0)dx. (5.66)

By decomposition of the integral in (5.66), we have

ε0(ϕ) =
∑
K∈T ]

∫
K

(u0(x)− u0
K)ϕ(x, 0)dx.

For x ∈ K, u0(x) − uh,∆t(x, 0) is the average over K of y 7→ u0(x) − u0(y). Using Fubini’s
theorem, this gives the inequality |ε0(ϕ)| ≤ µ0

h,∆t(|ϕ|), where

µ0
h,∆t(ψ) =

∑
K∈T ]

∫
K

1
|K|

∫
K

|u0(x)− u0(y)|ψ(x, 0)dxdy

In particular, we have

|µ0
h,∆t(Td × [0, T ])| ≤

∑
K∈T ]

∫
K

1
|K|

∫
K

|u0(x)− u0(y)|dxdy.
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This can be written

|µ0
h,∆t(Td × [0, T ])| ≤

∑
K∈T ]

1
|K|

∫
x∈Td

∫
y∈K

1K(x)|u0(x)− u0(y)|dxdy.

We do the change of variable y = x+ z to obtain

|µ0
h,∆t(Td × [0, T ])| ≤

∑
K∈T ]

1
|K|

∫
x∈Td

∫
z∈K−x

1K(x)|u0(x)− u0(x+ z)|dxdz,

and thus

|µ0
h,∆t(Td × [0, T ])| ≤

∑
K∈T ]

1
|K|

∫
x∈Td

∫
z∈B(0,h)

1K(x)|u0(x)− u0(x+ z)|dxdz,

since K − x ⊂ B(0, h) if x ∈ K. We use the first bound of (5.27) and the fact that the sum over
K of 1K(x) is 1 for a.e. x to get

|µ0
h,∆t(Td × [0, T ])| ≤ 1

αhd

∫
x∈Td

∫
z∈B(0,h)

|u0(x)− u0(x+ z)|dxdz,

We can exchange the integrals in x and z then to obtain

|µ0
h,∆t(Td × [0, T ])| ≤ |B(0, h)|

αhd
sup
|z|≤h

∫
x∈Td

|u0(x)− u0(x+ z)|dxdz.

This gives the first estimate

|µ0
h,∆t(Td × [0, T ])| ≤ α−1|B(0, 1)|ω(u0;h). (5.67)

Let us now study the term

It =
∫ T

0

∫
Td
uh,∆tϕtdxdt+

∫
Td
uh,∆t(x, 0)ϕ(x, 0)dx.

Let N ∈ N be such that tN−1 < T ≤ tN . Since ϕ is compactly supported in Td × [0, T ), we can
assume that T = tN . We expand It as

It =
N−1∑
n=0

∑
K∈T ]

|K|unK(ϕK(tn+1)− ϕK(tn)) +
∑
K∈T ]

|K|u0
KϕK(0),

where ϕK(t) is the average value of ϕ(·, t) on the cell K. A discrete integration by parts gives

It = −
N−1∑
n=0

∑
K∈T ]

|K|(un+1
K − unK)ϕK(tn+1). (5.68)

We proceed similarly with the term

Ix =
∫ T

0

∫
Td
A(uh,∆t) · ∇xϕdxdt.
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We expand Ix as

Ix =
N−1∑
n=0

∑
K∈T ]

∫ tn+1

tn

∫
K

A(unK) · ∇xϕdxdt.

By the Stokes formula, this gives

Ix =
N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|A(unK) · nK→LϕnK|L, (5.69)

where ϕnK|L is the average of the function ϕ on K|L× (tn, tn+1). We use the consistency proper-
ty (5.15) to write A(unK) · nK→L = AK→L(unK , unK). We also add a corrective term to the sum
in (5.69) to obtain

Ix =
N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|(AK→L(unK , unK)−AK→L(unK , unL))ϕnK|L. (5.70)

By the anti-symmetry property of the term AK→L(unK , unL))ϕnK|L (cf. (5.17)) and the summation
formula (5.38), (5.69) and (5.70) coincide indeed. Let us now denote by ϕnK the average value
of the function ϕ over K × (tn, tn+1). If we replace the quantities ϕK(tn+1) in (5.68) and ϕnK|L
in (5.70) by ϕnK , then we obtain It + Ix = 0. This follows from (5.21). Consequently, we have
It + Ix = ε1(ϕ) + ε2(ϕ), where

ε1(ϕ) =
N−1∑
n=0

∑
K∈T ]

|K|(un+1
K − unK)(ϕnK − ϕK(tn+1)),

and

ε2(ϕ) =
N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|(AK→L(unK , unK)−AK→L(unK , unL))(ϕnK|L − ϕnK).

To conclude to (5.60), we need to examine the error terms ε1(ϕ) and ε2(ϕ). Since∫ tn+1

tn

{ϕ(tn+1)− ϕ(t)}dt =
∫ tn+1

tn

∫ tn+1

t

ϕt(s)dsdt =
∫ tn+1

tn

(tn+1 − s)ϕt(s)ds,

we have
|ϕK(tn+1)− ϕnK | ≤

1
|K|

∫ tn+1

tn

∫
K

|ϕt(x, t)| dxdt.

This gives |ε1(ϕ)| ≤ 〈µ1
h,∆t, |∂tϕ|〉, where

〈ψ, µ1
h,∆t〉 =

N−1∑
n=0

∑
K∈T ]

|unK − un+1
K |

∫ tn+1

tn

∫
K

ψ(x, t)dxdt. (5.71)

In particular, the total mass of µ1
h,∆t is

µ1
h,∆t(Td × [0, T ]) =

N−1∑
n=0

∆t
∑
K∈T ]

|K||unK − un+1
K |. (5.72)
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By the Cauchy-Schwarz inequality and (5.56), we have

[
µ1
h,∆t(Td × [0, T ])

]2 ≤ T 1− ξ
ξ
‖u0‖2L2(Td)∆t. (5.73)

Similarly, we develop

ϕK|L − ϕK = 1
|K|L||K|

∫
K|L

∫
K

|ϕ(x)− ϕ(y)|dxdσ(y)

and use the development ϕ(x) − ϕ(y) =
∫ 1

0 ∇ϕ(ry + (1 − r)x) · (x − y)dr to obtain |ε2(ϕ)| ≤
〈µ2
h,∆t, |∇ϕ|〉, where

〈ψ, µ2
h,∆t〉 :=

N−1∑
n=0

∑
K∈T ]

∑
L∈N (K)

|AK→L(unK , unK)−AK→L(unK , unL)|

× 1
|K|

∫ tn+1

tn

∫
K|L

∫
K

∫ 1

0
ψ(ry + (1− r)x, t)|x− y|drdxdσ(y)dt. (5.74)

We have |x− y| ≤ h when x ∈ K, y ∈ K|L, so

µ2
h,∆t(Td × [0, T ]) ≤ h

N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L||AK→L(unK , unK)−AK→L(unK , unL)|. (5.75)

We use the Cauchy-Schwarz inequality and the estimate (5.57) to get the bound[
µ2
h,∆t(Td × [0, T ])

]2 ≤ h2ΓLA(R)‖u0‖2L2(Td).

The factor Γ is

Γ =
N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|| = T
∑
K∈T ]

|∂K|.

By (5.27), we have the bound Γ ≤ Tα−2h−1, which shows that[
µ2
h,∆t(Td × [0, T ])

]2 ≤ Tα−2LA(R)‖u0‖2L2(Td)h. (5.76)

We can bound the L2-norm of u0 by R in (5.73) and (5.76). This gives the desired estimate
(5.61).

5.9 Convergence in the linear case
We restrict now our analysis to the case of a linear flux A: A(u) = au. In this context, we consider
a possibly non-constant vector field a. More precisely, we will assume that a ∈ C1(Td;Rd) and
that a is divergence free: div(a(x)) = 0 for all x ∈ Td. We consider then the scheme (5.1) with
a numerical flux given by (5.11)-(5.12), which is called the upwind, or upstream, flux. We have
then (5.14) with some numerical flux functions

AK→L(v, w) = a+
K→Lv − a

−
K→Lw (5.77)
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which satisfies all the properties listed in Section 5.4, with LA(R) = ‖a‖L∞(Td). We will admit
that Theorem 5.5 remains valid, in the sense that we have∣∣∣∣∣
∫ T

0

∫
TD

(uh,∆tϕt + uh,∆ta(x) · ∇xϕ)dxdt+
∫
Td
u0(x)ϕ(x, 0)dx

∣∣∣∣∣
≤ 〈µ0

h,∆t, |ϕ|〉+ 〈µ1
h,∆t, |∂tϕ|〉+ 〈µ2

h,∆t, |∇xϕ|〉, (5.78)

and (5.61). In the asymptotic situation ∆t → 0, h → 0 described in Section 5.6.3, we can pass
to the limit in (5.78). This shows that u is a weak solution to (5.5) on (0, T ) with initial datum
u0. We use then the following theorem.

Theorem 5.6. Let u0 ∈ L∞(Td) and T > 0. The continuity equation (5.5) admits a unique
weak solution on (0, T ) with initial datum u0. It is given explicitly by u(x, t) = u0 ◦Φt(x), where
(Φt) is the flow associated to the ODE ẋ = a(x) and Φt is the inverse4 of x 7→ Φt(x).

Exercise 5.5 (Uniqueness in transport equations). Prove Theorem 5.6.
The solution to Exercise 5.5 is here.

5.10 Error estimate in the linear case
Our aim in this section and the following ones is to establish the following result.

Theorem 5.7. Let u0 ∈ L∞∩BV(Td) and T > 0. Let A(x, u) = a(x)u, where a ∈ C1(Td;Rd) is
divergence-free. Let uh,∆t be the solution of the upwind Finite Volume method (5.1) with fluxes
given by (5.14)-(5.77)-(5.12). Let u ∈ L∞(Td × (0, T )) be the weak solution to (5.5) on (0, T )
with initial datum u0. Assume that (5.27) and (5.44) are satisfied. Assume also that δt ≤ C0h
for a certain constant C0. Then, there is a constant c(d) > 0 depending on d only such that, for
h,∆t ≤ c(d), we have the error estimate

‖uh,∆t(t)− u(t)‖L1(Td) ≤ C|Du0|(Td)h1/2, (5.79)

for all t ∈ [0, T ], where C is a constant depending only on the dimension d, on T , on C0, on
‖a‖C1(Td), on the constant α in (5.27) and on the constant ξ in (5.44).

We will make some comments on Theorem 5.7, but first we need a brief remainder on the space
BV.

5.10.1 Functions of bounded variations

Let U be an open subset of Rd. If ϕ ∈ C(U ;Rd), we denote by ‖ϕ‖C(U) the sup over x ∈ U of
the euclidean norm |ϕ(x)| of ϕ(x).

Definition 5.6 (Functions of bounded variation). Let U be an open subset of Rd. A function
u ∈ L1(U) is said to have bounded variation in U if

sup
{∫

U

udivϕdx
}
< +∞ (5.80)

where the supremum is taken over all ϕ ∈ C1
c (U ;Rd) such that ‖ϕ‖C(U) ≤ 1. We denote by

BV(U) the space of functions of bounded variations.
4an expression of Φt is Φt(x) = Φ−t(x), this is a consequence of the group property Φt ◦ Φs = Φt+s; when

the sense of the time evolution does matter, for instance in the study of stochastic differential equations, it is
important to define Φt as the inverse of x 7→ Φt(x), not as Φ−t(x)
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We denote by BVloc(U) the space of functions having locally bounded variations, defined as the
set of functions u ∈ L1

loc(U) such that u ∈ BV(V ) for all open subset V ⊂⊂ U (this last notations
means that there exists a compact K of Rd such that V ⊂ K ⊂ U).

Exercise 5.7 (Some functions of bounded variation). 1. Let U = (−1, 1). Let u : U → R be
defined as the integral over [0, x] of a function f ∈ L1

loc(U). Show that u ∈ BVloc(U) and
that u ∈ BV(U) if, and only if, f ∈ L1(U).

2. Let U = (−1, 1). Let u : U → R be the Heavyside function: u(x) = 0 if x < 0, u(x) = 1 if
x > 0. Show that u ∈ BV(U).

3. Let U = B(0, 1) in R2. Let u be the characteristic function of the disk B(0, 1/2). Show
that u ∈ BV(U).

The solution to Exercise 5.7 is here.

To enunciate the following structure theorem for functions of bounded variations, let us recall
the following facts about measures.

1. (See [17, Chapter 6]). Let (X,A) be a measure space. A complex measure over (X,A) is
a set function µ : A → C such that, for all A ∈ A, one has

µ(A) =
∞∑
i=1

µ(Ai), (5.81)

for all countable partition (Ai)i≥1 of A, the sum in (5.81) being absolutely convergent. If
µ is a complex measure, the formula

|µ|(A) = sup
{ ∞∑
i=1
|µ(Ai)|

}
, (5.82)

where the supremum is taken over all countable partitions (Ai)i≥1 of A, defines a non-
negative finite measure |µ| on A called the total variation of µ.

2. (See [17, p. 130]). A complex measure µ defined on the Borel subsets of a topological
Hausdorff space X is said to be regular if for all Borel set A,

|µ|(A) = sup {|µ|(K);K compact ⊂ A} = inf {|µ|(V );V open ⊃ A} . (5.83)

Theorem 5.8 (Structure theorem for functions of bounded variations). Let U be an open set in
Rd. Let u ∈ L1(U). Then u ∈ BV(U) if, and only if, there exists a non-negative regular finite
measure κ on U and a Borel map n : U → Rd such that |n(x)| = 1 for κ-a.e. x ∈ U and∫

U

udivϕdx = −
∫
U

ϕ · ndκ, (5.84)

for all ϕ ∈ C1
c (U). The sup in (5.80) is then equal to κ(U).

Proof of Theorem 5.8. In essential, the proof is an application of the theorem of representation
of Riesz. We take as a reference Theorem 6.19 in [17]. In [17], the result is given for a functional
of complex-valued functions. Since we need to consider a functional of vector valued functions,
we will come back on the main steps of the proof of Theorem 6.19 in [17]. For simplicity, we will
use the same notations as Rudin. Consider the functional

Φ(f) = −
∫
U

udiv(f)dx
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It is defined for f ∈ C1
c (U ;Rd). By (5.80), it can be extended to a linear continuous functional

(still denoted Φ) on C0(U ;Rd). We consider then the further extension to C0(U ;Cd) defined by
Φ(f) := Φ(f1) + iΦ(f2), where f1 is the real part of f and f2 the imaginary part of f . Our
aim is to prove that there exists a non-negative regular finite measure λ on U and a Borel map
g : U → Rd such that |g(x)| = 1 for λ-a.e. x ∈ U and

Φ(f) =
∫
U

f · gdλ, (5.85)

for all f ∈ C0(U ;Rd), where (f · g)(x) =
∑d
i=1 fi(x)gi(x). For f ∈ Cc(U ;R+), we set

Λ(f) = sup
{
|Φ(h)|;h ∈ Cc(U ;Cd), |h(x)| ≤ f(x) for all x ∈ U

}
. (5.86)

For a general f ∈ Cc(U ;R), we set then Λ(f) = Λ(f+)−Λ(f−). This defines a linear continuous
functional Λ on Cc(U ;R) which is positive. By the representation theorem of Riesz, [17, Theorem
2.14], there exists a a non-negative regular finite measure λ on U such that Λ(f) =

∫
U
fdλ for all

f ∈ Cc(U ;R). In the previous assertion, the fact that Λ is linear is of course not obvious. This
is the delicate point here. That we consider Φ(h) with h ∈ Cc(U ;C) or h ∈ Cc(U ;Cd) changes
absolutely nothing to the proof that Λ(f + g) = Λ(f) + Λ(g). We give the sketch of the proof
for completeness. Let f, g ∈ Cc(U ;R+), ε > 0 and h1, h2 ∈ Cc(U ;Cd) such that

Λ(f) ≤ |Φ(h1)|+ ε, Λ(g) ≤ |Φ(h2)|+ ε.

There are some complex numbers α1, α2 ∈ C of modulus 1 such that |Φ(hi)| = αiΦ(hi). Then
the sum Λ(f) + Λ(g) is bounded by

α1Φ(h1) + α2Φ(h2) + 2ε = Φ(α1h1α2h2) + 2ε ≤ Λ(f + g) + 2ε,

which shows that Λ(f) + Λ(g) ≤ Λ(f + g). To prove the converse inequality, consider h ∈
Cc(U ;Cd) satisfying the constraint |h| ≤ f + g and set V = {f + g > 0} and

h1 = f

f + g
1V h, h2 = g

f + g
1V h.

Then h1, h2 ∈ Cc(U ;Cd), h1 +h2 = h, |h1| ≤ f , |h2| ≤ g, which shows that |Φ(h)| ≤ Λ(f)+Λ(g).
Taking the sup over h gives the desired result. Once the representation of the functional Λ by
the measure λ has been established, we obtain by definition of Λ the estimate

|Φ(f)| ≤
∫
U

|f |dλ, (5.87)

for all f ∈ Cc(U ;Cd). Then we use the fact that there is a correspondence between the maps of
the form

Ψ: f 7→
∫
U

f · gdλ, g ∈ L∞(U ;Cd) (5.88)

and the continuous linear forms of E := L1(U, λ;Cd). This is an extension of [17, Theorem 6.16] to
the vector valued case. We admit this result, which can be proved by a systematic examination
of the proof of [17, Theorem 6.16]. We also obtain the fact that ‖Ψ‖E′ = ‖g‖L∞(U) in this
correspondence, where ‖g‖L∞(U) is the the essential supremum over x ∈ U of the euclidean
norm |g(x)| of g(x) and ‖Ψ‖E′ is the norm of the linear form Ψ. Since Cc(U ;Cd) is dense in
L1(U, λ;Cd), ‖Ψ‖E′ is equal to

‖Ψ‖E′ = sup
{
|Ψ(f)|; f ∈ Cc(U ;Cd), ‖f‖L1(λ) ≤ 1

}
. (5.89)
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This gives us the desired representation (5.85). There remains to prove that |g(x)| = 1 for λ-a.e.
x ∈ U . By (5.87), we have ‖Φ‖E′ ≤ 1, hence ‖g‖L∞(U) ≤ 1. On the other hand, it follows from
(5.85) and the Cauchy-Schwarz inequality |f · g| ≤ |f ||g| that

|Φ(f)| ≤
∫
U

|g|dλ, f ∈ Cc(U ;Cd), |f(x)| ≤ 1.

Taking the sup over f in the previous inequality, and considering the definition (5.86), we see
that Λ(1) ≤

∫
U
|g|dλ. Since Λ(1) = λ(U) at the same time, |g| is equal to 1 λ-a.e.

Notation: if u ∈ BV(U), we denote by Du the (vector-valued) complex measure nκ in (5.84)
and by |Du| the measure κ. The norm ‖u‖BV(U) of u is defined as

‖u‖BV(U) = ‖u‖L1(U) + |Du|(U). (5.90)

Exercise 5.8 (Some functions of bounded variation). Compute Du, |Du| and ‖u‖BV(U) for the
functions u considered in the exercise 5.7.
The solution to Exercise 5.8 is here.

Definition 5.9 (Set of finite perimeter). 1. A Lebesgue measurable set E of Rd is said to
have finite perimeter in U if 1E ∈ BV(Rd). In that case, we set P (E) = |D1E |(Rd).

2. Let U be an open subset of Rd. A Lebesgue measurable set E of Rd is said to have finite
perimeter in U if 1E ∈ BV(U). In that case, we set P (E;U) = |D1E |(U).

We now state without proof the following results.

Theorem 5.9 (Local approximation by smooth functions). Let U be an open set in Rd. Let
u ∈ BV(U). There exists a sequence of functions uk in BV(U) ∩ C∞(U) such that

1. uk → u in L1(U), and

2. |Duk|(U)→ |Du|(U).

Remark 5.5. Note that if u ∈ BV(U) ∩ C∞(U) then u ∈W 1,1(U) and

|Du|(U) =
∫
U

|∇u(x)|dx. (5.91)

Theorem 5.10 (Trace of functions of bounded variations). Let U be an open bounded set in Rd,
with ∂U Lipschitz continuous. Let σ denote the surface measure on ∂U and n the outward unit
normal to U on ∂U . There exists a bounded linear application

γ : BV(U)→ L1(∂U, σ),

such that ∫
U

udivϕdx = −
∫
U

ϕ · dDu+
∫
∂U

(γu)ϕ · ndσ, (5.92)

for all ϕ ∈ C1(Rd;Rd).
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Theorem 5.11 (Patch of functions of bounded variations). Let U be an open bounded set in
Rd, with ∂U Lipschitz continuous. Let σ denote the surface measure on ∂U and n the outward
unit normal to U on ∂U . Let v ∈ BV(U), w ∈ BV(Rd \ Ū) and let u ∈ L1(Rd) be the function
defined as u = v1U + w1Rd\Ū . Then u ∈ BV(Rd) and∫

Rd
ϕ · dDu =

∫
U

ϕ · dDv +
∫
Rd\Ū

ϕ · dDw +
∫
∂U

(γv − γw)ϕ · ndσ, (5.93)

for all ϕ ∈ Cc(Rd;Rd). The BV norm of u is

‖u‖BV(Rd) = ‖v‖BV(U) + ‖w‖BV(Rd\Ū) +
∫
∂U

|γv − γw|dσ. (5.94)

Theorem 5.12 (Co-area formula for functions of bounded variations). Let U be an open set in
Rd. Let u ∈ L1(U) be a non-negative function. For t ∈ R, we denote by Et the super-level set
{u > t}. Then, for a.e. t ∈ R, Et has finite perimeter in U , and we have

‖u‖L1(U) =
∫ ∞

0
‖1Et‖L1(U)dt, |Du|(U) =

∫ ∞
0
|D1Et |(U)dt. (5.95)

See [8, Theorem 5.3] for the proof of Theorem 5.9, [8, Theorem 5.6] for the proof of Theorem 5.10,
[8, Theorem 5.8] for the proof of Theorem 5.11 and [8, Theorem 5.9] for the proof of Theorem 5.12.
To complete this section, let us give the definition of the norm ‖u‖BV(Td) of a Zd-periodic function
u : Rd → R. First, by BV(Td) we denote the set of Zd-periodic functions u ∈ BVloc(Rd). Let
(ei)1,d denote the canonical basis of Rd. Let Q denote the unit cube (0, 1)d. For σ almost all
x ∈ ∂Q, there is a unique x̌ ≡ x(mod Zd) in ∂Q (located on the opposite side...). If v : ∂Q→ R,
we denote by v̌ the function that assign to x 7→ v(x̌). This is simply the function x 7→ v(x± ei),
depending on the side of Q to which x belongs. We define then

|Du|(Td) = |Du|(Q) + 1
2

∫
∂Q

|γu− γ̌u|dσ, ‖u‖BV(Td) = ‖u‖L1(Q) + |Du|(Td). (5.96)

The integral on ∂Q in (5.96) accounts for the possible jumps of u across ∂Q and is coherent
with (5.94). Observe also that, with the definition (5.96), we have also the following identity:
for u ∈ L1(Td), denote by uh the piecewise constant function defined by

uh(x) = uK := 1
|K|

∫
K

u(x)dx, x ∈ K. (5.97)

Then we have
|Duh|(Td) =

∑
K∈T ]

∑
L∈N (K)

|uK − uL|. (5.98)

5.10.2 Comments on the error estimate

If 1 < p < +∞, one can establish the error estimate

‖uh,∆t(t)− u(t)‖Lp(Td) ≤ C‖u0‖W 1,p(Td)h
1/2. (5.99)

See [14]. The estimate (5.99) cannot be generalized when the flux in the conservation law (5.9)
is non-linear, for the reason that W 1,p(Td) is not stable in the evolution: if u0 ∈W 1,p(Td), there
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may be some time t > 0 such that the (entropy) solution u of (5.9) starting from u0 loses the
W 1,p(Td) regularity at time t. This is a consequence of the apparition of discontinuities and is
already clear in dimension d = 1. On the contrary, the space BV(Td) is stable in the evolution by
(5.9). For general fluxes A, the error estimate (5.79) is observed in numerical practice, but has
not been established yet, except when the mesh is a cartesian mesh, i.e. each cell is a product
of one-dimensional cells of a one-dimensional mesh.

5.11 Error estimate in the linear case: proof
The following proof of the error estimate (5.79) is taken from [15]. A different proof, using
probabilistic tools, has been given in [4].

5.11.1 Reduction of the problem

Projection on piecewise constant functions and BV-norm. We will us several times the
following result.

Proposition 5.13. Consider the map u 7→ uh defined by (5.97). There exists a constant C ≥
only depending on d and on the constant α in (5.27) such that, if u ∈ BV(Td), then

|Duh|(Td) ≤ C|Du|(Td) and ‖uh − u‖L1(Td) ≤ C|Du|(Td)h. (5.100)

Proof of Proposition 5.13. Let K ∈ T ] and let L ∈ N (K). We will establish first the estimate

|uK − uL| ≤
2d+1 max(|K|, |L|)h

|K| |L|
|Du|(B(xK , 2h)), (5.101)

where xK := 1
|K|
∫
K
xdx is the center of gravity of K. Note that K,L ⊂ B(xK , 2h). By

Theorem 5.9 applied with U = B(xK , 2h), we may suppose that u ∈ BV ∩ C1(B(xK , 2h)), in
which case (cf. (5.91))

|Du|(B(xK , 2h)) =
∫
B(xK ,2h)

|∇u(z)|dz.

Since |x− y| ≤ 2h for every (x, y) ∈ K × L, we have then

|uK − uL| ≤
1

|K| |L|

∫
K

∫
L

|u(x)− u(y)|dxdy

≤
2h
|K| |L|

∫
K

∫
L

∫ 1

0
|∇u((1− r)x+ ry)|drdxdy.

Now we perform the change of variables (x, y, r) 7→ (w = x − y, z = (1 − r)x + ry, r = r) (of
Jacobian determinant equal to 1). This gives

|uK − uL| ≤
2h
|K| |L|

∫
B(xK ,2h)

|∇u(z)|
(∫ 1

0

∫
Rd
g(w, z, r)dwdr

)
dz,

g is defined by g(w, z, r) = 1 if z + rw ∈ K and z − (1− r)w ∈ L, and g(w, z, r) = 0 otherwise.
We remark that, for (z, r) ∈ B(xK , 2h)× [0, 1], we have

∫
Rd g(w, z, r)dw ≤ 2d|K| if r ≥ 1/2 and∫

Rd g(w, z, r)dw ≤ 2d|L| if r < 1/2. The estimate (5.101) follows. Using (5.27), we deduce from
(5.101) that, for all K ∈ T ],∑

L∈N (K)

|K|L||uK − uL| ≤ 2d+1α−2|Du|(B(xK , 2h)).
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Summing on K ∈ T ], we get∑
K∈T ]

∑
L∈N (K)

|K|L||uK − uL| ≤ 2d+1α−2
∫
Rd

∑
K∈T ]

1B(xK ,2h)(z)d|Du|(z).

Let us set χ(z) =
∑
K∈T ] 1B(xK ,2h)(z). We have d(xK ,K) ≤ h, so χ(z) = 0 if z is at a distance

superior to 3h of Q. We may assume that 3h < 1, and then χ(z) = 0 if z /∈ Q′, where Q′ is the
cube (−1, 2)d - which contains 3d translates of Q. By (5.27), we also have

αhdχ(z) ≤
∑
K∈T ]

1B(xK ,2h)(z)|K| ≤
∑

K:d(z,K)<3h

|K|.

Indeed, |z − xK | < 2h implies d(z,K) < 3h. Since the cells in T ] are disjoint, we have

∑
K:d(z,K)<3h

|K| =

∣∣∣∣∣∣
⋃

K:d(z,K)<3h

K

∣∣∣∣∣∣ ≤ |B(z, 4h)| = 4d|B(0, 1)|hd.

It follows that χ ≤ 4d|B(0, 1)|α−11Q′ , which gives us

1
2
∑
K∈T ]

∑
L∈N (K)

|K|L||uK − uL| ≤ 8dα−3|B(0, 1)||Du|(Q′) ≤ 24dα−3|B(0, 1)||Du|(Td).

Let K ∈ T . Similarly, we have∫
K

|uh(x)− u(x)|dx ≤
1
|K|

∫
K×K

|u(x)− u(y)|dxdy ≤ 2dh|Du|(B(xK , h)).

Summing on K ∈ T and using the fact that the cardinal of the set {K : d(K, z) ≤ h} is bounded
by Cα−1, we get the second estimate of (5.100).

Exercise 5.10 (Modulus of continuity of functions of bounded variation). Show that

ωL1(u;h) ≤ C|Du|(Td)h, (5.102)

for all u ∈ BV(Td), for all 0 ≤ h ≤ 1, where ωL1(u;h) is the modulus of continuity defined by
(5.59) and where C is a constant depending on the dimension d only.
The solution to Exercise 5.10 is here.

Contraction in L1. We will also need the following proposition.

Proposition 5.14 (Lp-conservation). Let u, v ∈ L∞(Td×(0, T )) be some weak solutions to (5.5)
on (0, T ) with respective initial data u0, v0 ∈ L∞(Td). Assume that a is divergence free. Then,
for every p ∈ [1,+∞], we have

‖u(t)− v(t)‖Lp(Td) = ‖u0 − v0‖Lp(Td), (5.103)

for all t ∈ (0, T ).

Proof of Proposition 5.14. We use Theorem 5.6. By linearity, we can assume v ≡ 0. We have
u(x, t) = u0 ◦Φt(x). This gives (5.103) since Φt is a bijection of Td (case p = +∞) and preserves
the measure (case p ∈ [1,+∞)), since a is divergence free.
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A trivial consequence of (5.103) is that

‖u(t)− v(t)‖L1(Td) ≤ ‖u0 − v0‖L1(Td). (5.104)

We will also use Proposition 5.2, which gives (with obvious notations)

‖uh,∆t(t)− vh,∆t(t)‖L1(Td) ≤ ‖u0 − v0‖L1(Td), (5.105)

for all t ≥ 0.

Reduction 1. Discrete time. Let t ∈ [0, T ]. There is a unique n ≥ 0 such that tn ≤ t < tn−1.
We have uh,∆t(t) = uh,∆t(tn) and

‖u(t)− u(tn)‖L1(Td) = ‖u0 ◦ Φt − u0 ◦ Φtn‖L1(Td) ≤ C|Du0|(Td)‖Φt − Φtn‖C(Td)

by (5.102). The group property of the flow Φt is also satisfied by Φt. We have, therefore,

|Φt(x)− Φtn(x)| = |Φt−tn(Φtn(x))− Φtn(x)| ≤ ‖Φt−tn − Id‖C(Td) = ‖Φt−tn − Id‖C(Td).

Since Φt(x)− x =
∫ t

0 a(Φs(x))ds, we obtain finally the bound

‖u(t)− u(tn)‖L1(Td) ≤ C|Du0|(Td)∆t ≤ C|Du0|(Td)h,

where C depends on d, C0 and ‖a‖L∞(Td). This shows that it is sufficient to establish (5.79) for
a time t in the discrete grid {tn;n ≥ 0}. We proceed to this reduction to extend the analysis
done in the proof of Theorem 5.5. Indeed, in the proof of Theorem 5.5, it was assumed that the
test function ϕ was compactly supported in Td × [0, T ). It is easy however to extend our proof
to the case where T = tN and ϕ ∈ C1(Td × [0, T ]). In that case we have an additional term for
t = T and (5.60) will be replaced by the inequality∣∣∣∣∣
∫ T

0

∫
Td
uh,∆t(ϕt + a · ∇xϕ)dxdt+

∫
Td
u0(x)ϕ(x, 0)dx−

∫
Td
uh,∆t(x, T )ϕ(x, T )dx

∣∣∣∣∣
≤ 〈µ0

h,∆t, |ϕ|〉+ 〈µ1
h,∆t, |∂tϕ|〉+ 〈µ2

h,∆t, |∇xϕ|〉. (5.106)

Reduction 2. Non-negative functions. Since constants are solutions to (5.1) and (5.5)
and since the addition of a constant to a function u ∈ BV(Td) does not modify the quantity
|Du|(Td), we may replace u0 by u0 + ‖u0‖L∞(Td), which allows us to work with non-negative
functions only. This reduction step is not fundamental actually. The co-area formula for BV
function, Theorem 5.12, has been stated for non-negative functions for simplicity; this is what
accounts for the present procedure.

Reduction 3. Projection on a cartesian grid. Let L ∈ N, L ∼ h−1/2, for example
L = [h−1/2]. Let v0 be the L2-projection (see (5.97)) of u0 on the functions piecewise constant
with respect to the periodic mesh T0 = L−1(Q+ Zd). This mesh satisfies (5.27) with h0 = L−1

and α = (2d)−1 since
|K0| = hd0, |∂K0| = 2dhd−1

0 ,

for all K0 ∈ T ]0 . By Proposition 5.13, we have

|Dv0|(Td) ≤ C|Du0|(Td), ‖u0 − v0‖L1(Td) ≤ C|Du0|(Td)h1/2,
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where C depends on the dimension d only. In view of (5.104)-(5.105), of the second estimate
in (5.100) and of (5.102), we can replace u0 by v0 to establish (5.79). Consequently, we may
assume without loss of generality that u0 is piecewise constant with respect to T0. We use this
first reduction step for the following reason: let t > 0 and let A = {u0 > t} be a super-level
set of u. Then A is an union of distinct cells K(1)

0 , . . . ,K
(j)
0 of T0. Let A〈h1/2〉 denote the L−1

neighborhood of ∂A:
A〈h1/2〉 = {x ∈ Rd; d(x, ∂A) < L−1}.

We estimate the volume |A〈h1/2〉| as follows: letK0 ⊂ A and let L0 ∈ T0 be such thatK0|L0 ⊂ ∂A.
The points at distance less than L−1 of K0|L0 are either in K0, L0 or one of their neighboring
cells, thus in a set of volume less than 4dL−d. Since |K0|L0| = L−(d−1) and L−1 ≤ 2h1/2 (assume
c(d) < 1/4), it follows that

|A〈h1/2〉| ≤ C|∂A|h1/2, (5.107)

where the constant C depends on d only.

Reduction 4. Co-area formula. We apply Theorem 5.12. The equations we consider are
linear: they satisfy a superposition principle. By (5.95), we may replace by u0 by the character-
istic function of a super-level set A with finite perimeter. The advantage of this manipulation
is the following one. Since 0 ≤ uh,∆t ≤ 1 by the comparison principle (Proposition 5.2), and
u(t) = u0 ◦ Φt = 1A(t), A(t) := φt(A), we have

|uh,∆t(x, t)− u(x, t)| = (u(x, t)− uh,∆t(x, t))ϕ](x, t), ϕ](t) := (1A(t) − 1A(t)c).

Note that ϕ](t) = ϕ](0) ◦Φt, so (∂t + a · ∇x)ϕ] = 0. If we could use this ϕ] as a test function in
(5.106), we would get (taking T = t = tn) the estimate

‖uh,∆t(t)− u(t)‖L1(Td)

≤ ‖uh,∆t(0)− u(0)‖L1(Td) + 〈µ0
h,∆t, |ϕ]|〉+ 〈µ1

h,∆t, |∂tϕ]|〉+ 〈µ2
h,∆t, |∇xϕ]|〉, (5.108)

and then would have to work on the error terms. Since ϕ] has not the regularity properties that
justify (5.108), we proceed differently and consider a regularized version of ϕ]. Let ϕ0 be defined
by

ϕ0(x) = min(1, Ld(x, ∂A))1A −min(1, Ld(x, ∂A))1Ac

and let ϕ(x, t) = ϕ0 ◦Φt(x). The function ϕ0 is Lipschitz continuous, this is enough regularity to
justify, after a preliminary regularization procedure, that (5.106) is valid with ϕ as a test-function.
Since ‖ϕ0‖L∞(Td) ≤ 1, we obtain∣∣∣∣∫

Td
(uh,∆t(t)− u(t))ϕ(x, t)dx

∣∣∣∣
≤ ‖uh,∆t(0)− u(0)‖L1(Td) + 〈µ0

h,∆t, |ϕ|〉+ 〈µ1
h,∆t, |∂tϕ|〉+ 〈µ2

h,∆t, |∇xϕ|〉, (5.109)

instead of (5.108). In the next section, we will explain how to exploit (5.109) to obtain (5.79).
Remark 5.6. The step consisting in Reduction 3 is necessary in our method of proof. We can
illustrate this in dimension d = 2. Indeed, assume from the start that u0 is the characteristic
function of a set A of finite perimeter, in which case the “Reduction 4” step is irrelevant. Assume
that the volume of |A| is positive, say ≥ 1

3 , to discard trivial sets that have a too small volume.
Consider the case where A is the union of small discs of radius r > 0 centered at the points
(k/n, l/n), where 0 < k, l < n are integers. There are (n − 1)2 such points. If r < 1

2n , then
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the volume of A is (n − 1)2πr2. We take r = 1
3n to obtain |A| ≥ π/9 > 1/3. If ε (that will

be h1/2) is smaller enough to ensure that r + ε < 1
2n (i.e. ε < 1

6n ) then the volume of A〈ε〉 is
(n− 1)2π(r + ε)2. We cannot have

|A〈ε〉| ≤ C|∂A|ε, (5.110)
with C independent on ε then, because |∂A| = 2π(n− 1)2r. If (5.110) were true, we would get
(r + ε)2 ≤ 2Cr, which leads to a contradiction when r → 0.

5.11.2 Error estimate

We examine first the integral in the left-hand side of (5.109), that we would like to compare to
the exact L1-norm ‖uh,∆t(t)− u(t)‖L1(Td). Since ‖uh,∆t(t)− u(t)‖L∞(Td) ≤ 1, we have

‖uh,∆t(t)− u(t)‖L1(Td) ≤
∣∣∣∣∫

Td
(uh,∆t(t)− u(t))ϕ(x, t)dx

∣∣∣∣+ ‖ϕ](t)− ϕ(t)‖L1(Td).

By the conservation property (5.103) for p = 1,

‖ϕ](t)− ϕ(t)‖L1(Td) = ‖ϕ](0)− ϕ(0)‖L1(Td) ≤ |A〈h〉|.

We use the estimate (5.107) (and the fact that |∂A| = |Du0|(Td) in our context) to obtain

‖uh,∆t(t)− u(t)‖L1(Td) ≤
∣∣∣∣∫

Td
(uh,∆t(t)− u(t))ϕ(x, t)dx

∣∣∣∣+ C|Du0|(Td)h1/2. (5.111)

The first term ‖uh,∆t(0)−u(0)‖L1(Td) in the right-hand side of (5.109) is bounded by C|Du0|(Td)h
as a consequence of Proposition 5.13. By (the proof of) Theorem 5.5 and (5.102), we have

〈µ0
h,∆t, |ϕ|〉 ≤ ‖ϕ0‖L∞(Td)ωL1(u0;h) ≤ C|Du0|(Td)h.

We can now begin the study of the two most important terms in (5.109): 〈µ1
h,∆t, |∂tϕ|〉 and

〈µ2
h,∆t, |∇xϕ|〉. To that purpose, we need to come back to the definition of µ1

h,∆t and µ1
h,∆t in

the proof of Theorem 5.5, cf. (5.71) and (5.74):

〈ψ, µ1
h,∆t〉 =

N−1∑
n=0

∑
K∈T ]

|unK − un+1
K |

∫ tn+1

tn

∫
K

ψ(x, t)dxdt, (5.112)

and (taking into account the expression (5.11) of the numerical flux in (5.74)):

〈ψ, µ2
h,∆t〉 :=

N−1∑
n=0

∑
K∈T ]

∑
L∈N (K)

a−K→L|u
n
K − unL|

× 1
|K|

∫ tn+1

tn

∫
K|L

∫
K

∫ 1

0
ψ(ry + (1− r)x, t)|x− y|drdxdσ(y)dt. (5.113)

The norm of the gradient ∇xϕ(x, t) = (∇Φt(x))∗(∇xϕ0) ◦ Φt(x) is bounded by

‖∇Φt‖L∞(Td)‖∇xϕ0‖L∞(Td).

We have ‖∇xϕ0‖L∞(Td) ≤ L ≤ h−1/2 and ‖∇Φt‖L∞(Td) ≤ et‖a‖C1(Td;Rd) . This last bound comes
from the identities (where ∇Φ = (∂iΦj)i,j)

∇Φt = exp
(∫ t

0
∇a ◦ Φsds

)
, Id = ∇Φt(x)(∇Φt)(Φt(x)),
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for all x ∈ Td. Using the transport equation ∂tϕ = −a · ∇xϕ, we deduce from these estimates
that

‖∇t,xϕ‖L∞(Td×[0,T ]) ≤ Ch−1/2, (5.114)

where C depends on ‖a‖C1(Td;Rd) and T only. We also remark that the derivatives ∇t,xϕ are
supported in the “streak”

S〈h1/2〉 =
⋃

0≤t≤T
Φt(A〈h1/2〉)× {t}.

This has the consequence that

〈µ1
h,∆t, |∂tϕ|〉 ≤ Ch−1/2

N−1∑
n=0

∆t
∑
K∈T ]

|K||unK − un+1
K |χ(K × (tn, tn+1)),

where χ(K × (tn, tn+1)) = 1 if K × (tn, tn+1) intersects the set S〈h1/2〉, and 0 otherwise. By the
Cauchy-Schwarz inequality and (5.56), we obtain

|〈µ1
h,∆t, |∂tϕ|〉|2 ≤ Ch−1∆tD(tN )

N−1∑
n=0

∆t
∑
K∈T ]

|K|χ(K × (tn, tn+1)). (5.115)

To estimate the term

S〈h1/2〉 :=
N−1∑
n=0

∆t
∑
K∈T ]

|K|χ(K × (tn, tn+1))

in (5.115), we will use the Lipschitz bounds ‖∇Φt‖L∞(Td) ≤ C, ‖∇Φt‖L∞(Td) ≤ C satisfied by
the flow and the inverse flow. First, we notice that

χ(K × (tn, tn+1)) = 1⇒ χ̃n(x) = 1, x ∈ K,

where χ̃n(x) = 1 if, and only if, there is a t ∈ (tn, tn+1) such that x is at distance at most h of
the set Φt(A〈h1/2〉). We then have, for a certain a ∈ A〈h1/2〉,

d(x,Φt(a)) < h⇒ d(Φt(x), a) < Ch⇒ d(Φtn(x), a) < C(h+ ∆t)⇒ Φtn(x) ∈ A〈h1/2+C(h+∆t)〉,

with quite clear notations. We use the bound δt ≤ C0h and we see that we have shown that
χn ≤ 1A〈h1/2+Ch〉

◦ Φtn . It is easy to adapt the proof of (5.107) to show that the estimate

|A〈h1/2+Ch〉| ≤ C|∂A|h1/2 (5.116)

holds true, with possibly a different constant C. Eventually, we have

S〈h1/2〉 ≤
N−1∑
n=0

∆t
∑
K∈T ]

∫
K

1A〈h1/2+Ch〉
◦ Φtn(x)dx =

N−1∑
n=0

∆t
∫
Td

1A〈h1/2+Ch〉
◦ Φtn(x)dx.

We use the fact that the Lebesgue measure is invariant by Φtn and (5.116) to obtain the bound
S〈h1/2〉 ≤ C|∂A|h1/2. We report this estimate in (5.115) (and use the bound ∆t ≤ C0h) to
conclude that

|〈µ1
h,∆t, |∂tϕ|〉|2 ≤ CD(tN )h1/2. (5.117)

By similar arguments, we obtain the analogous estimate

|〈µ2
h,∆t, |∇xϕ|〉|2 ≤ C|Du0|(Td)D(tN )h1/2. (5.118)
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We have, indeed, by (5.113) and the bounds on ∇xϕ,

|〈µ2
h,∆t, |∇xϕ|〉| ≤ Ch1/2

N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|a−K→L|u
n
K − unL|χ(K̄ × [tn, tn+1]).

The first inequality in (5.57) reads

N∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|[a−K→L|u
n
K − unL|]2 ≤ 4‖a‖C(Td;Rd)D(tN ).

By the Cauchy-Schwarz inequality, we obtain

|〈µ2
h,∆t, |∇xϕ|〉|2 ≤ ChD(tN )

N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|χ(K̄ × [tn, tn+1]).

Since
h

∑
L∈N (K)

|K|L| = h|∂K| ≤ α−2|K|,

by (5.27), we see that |〈µ2
h,∆t, |∇xϕ|〉|2 ≤ ChD(tN )S〈h1/2〉 and the estimate on S〈h1/2〉 given above

yields (5.118). To sum up, we have shown that

‖uh,∆t(t)− u(t)‖L1(Td) ≤ C
{
|Du0|(Td)D(tN )h1/2

}1/2
+ C|Du0|(Td)h1/2 (5.119)

We see here that, simply estimating D(tN ) from above by ‖u0‖2L2(Td) will not be enough to
conclude. Instead, the energy estimate (5.45) must be fully exploited. It gives, indeed (recall that
t ∈ [tN , tN+1]) a bound on the quantity 2ξD(tN ) by the difference ‖u0‖2L2(Td)−‖uh,∆t(t)‖

2
L2(Td).

By the conservation of the Lp-norms in the continuity equation(5.5), ‖u0‖2L2(Td) = ‖u(t)‖2L2(Td).
Since u(t) and uh,∆t(t) are bounded by 1 in L∞(Td), we obtain

ξD(tN ) ≤ ‖uh,∆t(t)− u(t)‖L1(Td). (5.120)

We report the estimate (5.120) and use the inequality 2ab ≤ ηa2 + η−1b2 with a parameter η
small enough (with respect to the constant C) to obtain

‖uh,∆t(t)− u(t)‖L1(Td) ≤
1
2‖uh,∆t(t)− u(t)‖L1(Td)s+ C|Du0|(Td)h1/2,

and the error estimate (5.79) follows.

54



6 Interacting particle systems
We recall the situation described in Section 1.3. Let ΛN be a finite subset of Zd. We consider a
system of particles scattered on ΛN , which interact as follows: let x denote a typical site of ΛN
and let ηt(x) denote the number of particles located at site x at time t. We will be interested in
the evolution in time of the functions x 7→ ηt(x). The state space is therefore EN := NΛN , the set
of functions ΛN → N. The evolution is described by the following algorithm: each site x has its
own clock that is independent from the clocks at other sites, and that rings after a time Tx which
is a random variable of exponential law of parameter λ(η(x)). Assume that it is at the site x∗
that a clock is ringing first. If η(x∗) > 0, then one particle of the site x∗ jumps to an other site y
chosen at random in ΛN , according to a transition probability p(x∗, y) (possibly, at that stage,
some exclusion rules may be added, see Section 6.2.1). Then we start over. Let us consider the
case where ΛN is the discrete torus TdN = Zd/NZd and p is compatible and translation invariant:
for all l ∈ NZd, m ∈ Zd,

p(x + l, y) = p(x, y), p(x +m, y +m) = p(x, y). (6.1)

Let us zoom out (cf. (1.6)) by considering the function

[0, 1)d 3 x 7→ N−1ηt([Nx]) (6.2)

extended by periodicity. In (1.9), [Nx] is the element x of TdN ' {0, · · · , N − 1}d such that
xi ≤ Nxi < xi + 1 for all i = 1, . . . , d. In Section 1.3, we raised the following question: may it be
the case that, possibly after a change of time scale (cf. (1.7)), some averaging phenomena would
lead to a given deterministic behavior? We will explain very briefly how the answers to this
question may differ, depending on the kind of stochastic interaction that govern the dynamics of
the particles, and what is the common approach to these answers.

6.1 Empirical measure
6.1.1 An alternative description of the system

We slightly change our point of view. To each η ∈ EN = NTdN we can associate in a unique way
the measure

κN [η] = 1
Nd

∑
x∈Td

N

η(x)δx̂, (6.3)

where x̂ := N−1x. This last change of scale means that we see κN [η] as a measure on Td. This
operation is very natural if, for instance, η(x) is considered as the height of a sand pile over the
point x: the measure κN [η] describes the whole sand-pile then. Note the normalizing factor 1

Nd

in (6.3) which ensures that the total mass of κN [η] is bounded, provided the total number of
particles

K :=
∑

x∈Td
N

η(x) (6.4)

is of order Nd. Let then (ηn) be a sequence of random variables over EN . This may be a sequence
of possible initial data for the process (ηt) that we consider, or the values of the corresponding
solutions at a given time T . We say that (ηn) is associated with a measure ζ on Td if the sequence
(κN [ηN ]) converges in probability to the deterministic measure ζ in the space of finite measures
on Td. More precisely: letM+(Td) denote the set of finite (non-negative) Borel measures over
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Td. This is the set of locally finite non-negative Borel measures ζ over Rd that are invariant by
the action of Zd, the latter being defined by translation: if m ∈ Zd, m · ζ is the measure given by

〈m · ζ, h〉 =
∫
Rd
h(x+m)dζ(x), h ∈ Cc(Rd).

If ζ ∈M+(Td) and h ∈ C(Td), then
∫
Td hdζ stands for∫

Td
hdζ = 〈ζ, h〉 =

∫
[0,1)d

h(x)dζ(x).

We endow M+(Td) with the topology of the weak convergence of measure: a sequence (ζn) of
M+(Td) weakly converges to ζ ∈ M+(Td) if 〈ζn, h〉 → 〈ζ, h〉 for all h ∈ C(Td). Let V be an
open neighborhood of ζ for this topology. The sequence (ηn) is associated with a measure ζ on
Td if

lim
N→+∞

P(κN [ηN ] /∈ V ) = 0. (6.5)

A basis of neighborhood of ζ for the weak topology is constituted by the finite intersection of
sets of the form

V =
{
ζ ′ ∈M+(Td); |〈ζ ′, h〉 − 〈ζ, h〉| < δ

}
,

where δ > 0 and h ∈ C(Td). Therefore (6.5) is equivalent to require

lim
N→+∞

P(|〈κN [ηN ], h〉 − 〈ζ, h〉| > δ) = 0, (6.6)

for all δ > 0 and h ∈ C(Td). If we denote by µn the law of ηn, then (6.6) can be rewritten as

lim
N→+∞

µN

∣∣∣∣∣∣ 1
Nd

∑
x∈Td

N

η(x)h(N−1x)−
∫
Td
hdζ

∣∣∣∣∣∣ > δ

 = 0. (6.7)

When ζ is absolutely continuous with respect to the Lebesgue measure on Td, with density ρ,
(6.7) is the definition used in [13, p.43] (the sequence (µn) is then said to be associated to the
profile ρ).

6.1.2 Empirical measure

Consider the following situation: each day (or hour, or minute... the unit of time may vary) a
given experiment is conducted. On day n, a given quantity is measured, and after N days, one
considers the average of all the measurements that have been recorded. The situation is modeled
as follows:

1. the result of the experiment n is a point Xn in a state space E (say a Banach space for
example),

2. the measure recorded on day n is ϕ(Xn), where ϕ is a real-valued continuous bounded
function on E,

3. the state Xn is a random variable with a given law.
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The average over N days is then

1
N

N∑
n=1

ϕ(XN ) = 〈πN , ϕ〉, πN := 1
N

N∑
n=1

δXN . (6.8)

The measure πN is called the empirical measure, for the reason that it is the central object in the
empirical approach that is considered. From that point of view, in the study of the interacting
particle system, we should reserve the term empirical measure to the measure

πN [η] = 1
Nd

∑
x∈Td

N

δ(x̂,τxη), (6.9)

the time variable of (6.8) being now the space variable x. In (6.9), we have used the notation
τxη to denote the function y 7→ η(y + x). This is a way to describe η “as seen from x”. If ϕ is
a function EN → R, we will also denote by τxϕ the function ϕ ◦ τx. Let us also introduce the
notation ιx for the evaluation function η 7→ η(x). In that way, we have ιx = τxι0 and κN [η] is
deduced from πN [η] by the formula

〈κN [η], h〉 = 〈πN [η], h⊗ ι0〉, h ∈ C(Td). (6.10)

Beware that the measure κN [η] in (6.3) is often called empirical measure also (this is meaningful
if η is considered fixed, not random, while the base point x is chosen uniformly in TdN ; in that
case the state space is TdN hence). In what follows, we will simply speak of measure, and specify
if we consider κN [η] or πN [η], depending on the cases.

6.2 Equilibria
6.2.1 Generator

Using the results of Section 4.2.1, one can show that the generator associated to the process
(ηt)t≥0 is

(LNϕ)(η) =
∑

x,y∈Td
N

c(x, y, η)(ϕ(ηx,y)− ϕ(η)), (6.11)

where ηx,y denotes the configuration deduced from η when a particle at site x has jumped to site
y:

ηx,y(z) = η(z)− 1z=x + 1z=y. (6.12)

The coefficient c(x, y, η) is given by c(x, y, η) = λ(η(x))p(x, y), up to the possible exclusion rules
mentioned in the beginning of Section 6. We will consider the following examples:

Simple exclusion process. There is zero or one particle at each site (vacant or occupied), and
a particle cannot jump to an occupied site. In that case η(x) ∈ {0, 1}, λ(η(x)) = 1η(x)=1 = η(x)
and the exclusion rule leads to a a coefficient cc(x, y, η) = λ(η(x))p(x, y) given by

c(x, y, η) = η(x)(1− η(y))p(x, y). (6.13)
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Zero range process. In that case λ(η(x)) = g(η(x)) where g : N → R is a function which
satisfies the following hypotheses: g(0) = 0, g(k) > 0 for k > 0 and g is of bounded variation:

g∗ = sup
k≥0
|g(k + 1)− g(k)| < +∞. (6.14)

We have then
(LNϕ)(η) =

∑
x,y∈Td

N

g(η(x))p(x, y)(ϕ(ηx,y)− ϕ(η)). (6.15)

Some particular examples are given by

1. independent random walks: this corresponds to g(k) = k.

2. the case g(k) = 1k>0: this models a system of queues with mean-one exponential random
times of service.

6.2.2 Invariant measure

Let EN [K] denote the set of configurations η ∈ EN with total number of particles K, as in (6.4).
The evolution of the process (ηt) takes place in EN [K], where K is fixed by η0. We assume that
the Markov process (ηt) is irreducible on EN [K]. This property may, or may not, be realized,
depending on the choice of the transition probabilities p(x, y). The invariance by translation
(6.1) implies that p(x, y) = p(y−x) for a given function p. When d = 2 for instance, we may well
consider the case where p(e1) + p(−e1) = 1 (e1 is the first basis vector). Only horizontal jumps
are possible then, and our system may be decoupled into a series of given equivalent systems
on the one-dimensional discrete torus T1

N . For simplicity, we will assume that, p has range 1:
p(v) = 0 if |v| 6= 1, and that for each direction ei, we have

p(ei) + p(−ei) > 0. (6.16)

Under condition (6.16), the Markov chain (ηt) is irreducible on the finite state space EN [K].
Consequently, it admits a unique invariant measure νK,N . In the models that are considered, we
expect these invariant measures νK,N to have a limit νρ when N → +∞ with KN−d → ρ ∈ R+.
In the examples given in the previous section 6.2.1, we have an explicit expression of these
equilibrium measures νρ. These measures are measures on the state space NZd , because they are
obtained as limits of measures on NTdN . They are product measures, in the following sense: let
νx
ρ denote the measure on N defined by

νx
ρ(A) = νρ(η(x) ∈ A). (6.17)

The measure νx
ρ is the push-forward of the measure νρ by the evaluation function ιx : η 7→ η(x).

That νρ is a product measure means that

νρ =
⊗
x∈Zd

νx
ρ. (6.18)

It is equivalent to say that, when η ∈ NZd is picked up at random under νρ, then the family of
random variables (η(x))x∈Zd is independent (and i.i.d. actually, because we assume invariance
by translation in the system). We will see, for our examples of interest, what are these measures.
We will also consider the measure on EN = NTdN obtained by making the product in (6.17) over
x ∈ TdN instead of x ∈ Zd. We denote by νNρ this measure:

νNρ =
⊗

x∈Td
N

νx
ρ. (6.19)
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We will show that is an invariant measure for the particle system considered on EN .

6.2.3 Simple exclusion process

Proposition 6.1 (Invariant measures for simple exclusion processes). For ρ ∈ [0, 1], define νx
ρ

as the Bernoulli measure with parameter ρ. Then νNρ defined by (6.19) is an invariant measure
for the simple exclusion process. The adjoint process with respect to νNρ is the simple exclusion
process with rate p̌, where p̌(v) = p(−v).

Proof of Proposition 6.1. Let ĽN be the generator associated to the the simple exclusion process
with rate p̌. Let ϕ,ψ be some given function EN → R. The second part of the statement of
Proposition 6.1 is expressed by the formula∫

EN
LNϕ(η)ψ(η)dνNρ (η) =

∫
EN
ϕ(η)ĽNψ(η)dνNρ (η), (6.20)

that should be satisfied for all ϕ,ψ bounded cylinder functions (cf. Section 6.2.5). Since ĽN1 = 0
(where 1 is the constant function equal to 1), (6.20) implies∫

EN
LNϕ(η)dνNρ (η) = 0,

which means that νρ is invariant. To prove (6.20), we expand∫
EN

LNϕ(η)ψ(η)dνNρ (η) =
∑

x,y∈Td
N

∫
EN
p(x, y)η(x)(1− η(y))[ϕ(ηx,y)− ϕ(η)]ψ(η)dνNρ (η) (6.21)

Let us set sx→y(η) := ηx,y. Then each term in the sum (6.21) is of the form

p(x, y)〈νNρ , ιx(1− ιy)(ϕ ◦ sx→y − ϕ)ψ〉. (6.22)

Taking into account that η(x)(1 − η(y)) vanishes when η(x) = 0 or η(y) = 1 and that νNρ is a
product measure, we obtain the following identity:

〈νNρ , ιx(1− ιy)(ϕ ◦ sx→yψ〉 = 〈νNρ , ιy(1− ιx)ϕψ ◦ sy→x〉. (6.23)

We exchange the roles of x and y then, to get the expression

1
2
∑

x,y∈Td
N

p(y− x)〈νNρ , ιx(1− ιy)(ϕ ◦ sx→y−ϕ)ψ〉+ p̌(y− x)〈νNρ , ιx(1− ιy)ϕ(ψ ◦ sx→y−ψ)〉 (6.24)

of the right-hand side of (6.20). The expression (6.24) is the sum of the following terms:

1
2
∑

x,y∈Td
N

p(y− x)〈νNρ , ιx(1− ιy)ϕ ◦ sx→yψ〉+ p̌(y− x)〈νNρ , ιx(1− ιy)ϕψ ◦ sx→y〉, (6.25)

and
1
2
∑

x,y∈Td
N

p(y− x)〈νNρ , ιxιyϕψ〉+ p̌(y− x)〈νNρ , ιxιyϕψ〉, (6.26)

with
1
2
∑

x,y∈Td
N

p(y− x)〈νNρ , ιxϕψ〉+ p̌(y− x)〈νNρ , ιxϕψ〉. (6.27)
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The two terms (6.25), (6.26) are invariant by the operation (p, ϕ, ψ)← (p̌, ψ, ϕ). The third term
(6.27) is equal to ∑

x∈Td
N

〈νNρ , ιxϕψ〉,

because the sum of p(x, y) over y is equal to 1. It follows that (6.27) also has the desired invariance
property. This concludes the proof.

6.2.4 Zero range processes

Consider the zero range process defined in Section 6.2.1. Denote by Z(a) the generating function

Z(a) =
∑
k≥0

ak

g(k)! , g(k)! := Πk
j=1g(j), (6.28)

with the convention that g(0)! = 1. Assume that Z has a radius of convergence a∗ ∈ (0,+∞]
and that

lim
a↑a∗

Z(a) = +∞. (6.29)

For instance, for independent random walks, which corresponds to g(k) = k, the partition
function is Z(a) = ea, with radius of convergence a∗ = +∞. In the case g(k) = 1k>0 (queues
with mean-one exponential random times of service), the partition function is Z(a) = (1− a)−1,
with radius a∗ = 1. In the following proposition, we give a family of invariant measures indexed
by a ∈ (0, a∗). We will see then how to modify this parametrization, to obtain a parametrization
by the density ρ.

Proposition 6.2 (Invariant measures for zero range processes). For each a ∈ (0, a∗), consider
the product measure ν̄a =

⊗
x∈Td

N
ν̄x
a, where ν̄x

a is the probability measure on N given by

ν̄x
a({k}) = 1

Z(a)
ak

g(k)! . (6.30)

Then ν̄a is an invariant measure for the zero range process. The adjoint process with respect to
ν̄a is the zero range process with rates (g, p̌).

Proof of Proposition 6.2. We proceed as in the proof of Proposition 6.1. We start from the
following expansion:∫

EN
LNϕ(η)ψ(η)dν̄a(η) =

∑
x,y∈Td

N

p(x, y)〈ν̄a, g ◦ ιxϕ ◦ sx,yψ〉 −
∑

x∈Td
N

〈ν̄a, g ◦ ιxϕψ〉. (6.31)

We have used the fact that y 7→ p(x, y) is probability distribution to obtain (6.31). The last term
in the right-hand of (6.31) is of course invariant under the operation

(p, ϕ, ψ)← (p̌, ψ, ϕ). (6.32)

We focus on the first term in the right-hand of (6.31), that is

∑
x,y∈Td

N

p(x, y)
∑

k≥1,j≥0

g(k)
Z(a)2

ak+j

g(k)!g(j)! 〈ν̄a, Tx,yϕ(k − 1, j + 1)Tx,yψ(k, j)〉, (6.33)
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where Tx,yϕ(a, b) denotes the function η 7→ ϕ(η) with the variables η(x) and η(y) frozen to the
values a and b respectively. We use the identity

g(k) ak+j

g(k)!g(j)! = g(j + 1) a(k−1)+(j+1)

g(k − 1)!g(j + 1)!

to get

(6.33) =
∑

x,y∈Td
N

p(x, y)
∑

j≥1,k≥0

g(j)
Z(a)2

ak+j

g(k)!g(j)! 〈ν̄a, Tx,yϕ(k, j)Tx,yψ(k + 1, j − 1)〉. (6.34)

Note that Tx,yϕ(k, j) = Ty,xϕ(j, k). It remains therefore to exchange the role of x and y and of
k and j in (6.34) and to compare the result to (6.33) to establish the equivalent of (6.20).

To obtain a parametrization of the invariant measure by the density, we proceed as follows. Let
R(a) denote the average

R(a) =
∑
k∈N

kν̄x
a({k}) = 1

Z(a)
∑
k≥0

k
ak

g(k)! = a
∂aZ(a)
Z(a) = a∂a lnZ(a). (6.35)

Lemma 6.3. The function r 7→ lnZ(er) is strictly convex.

Proof of Lemma 6.3. Set θ(r) = lnZ(er). The convexity of θ is the property

θ(λr + (1− λ)s) < λθ(r) + (1− λ)θ(s), λ ∈ (0, 1), r 6= s. (6.36)

Setting r′ = λr, s′ = (1− λ)s, p = λ−1, q = (1− λ)−1, and rearranging the expression, (6.36) is
equivalent to

Z(er
′+s′) < Z(epr

′
)1/pZ(eqs

′
)1/q, (6.37)

which follows from the Hölder inequality, once we rule out the equality case, which reads er =
es.

Lemma 6.4. The function R : [0, a∗)→ [0,+∞) is onto.

Proof of Lemma 6.4. Assume first that a∗ is finite. If R is bounded in the neighborhood of a∗,
then Z also by (6.35), which is in contradiction with (6.29). If a∗ is infinite, we use (6.14), which
gives g(k) ≤ g∗k. We may assume g∗ > 0 (otherwise g ≡ 0). We obtain in (6.35) the estimate

R(a) = 1
Z(a)

∑
k≥0

k
ak

g(k)! ≥
1

g∗Z(a)
∑
k≥1

ak

g(k − 1)! = a

g∗
.

This shows that lima→+∞R(a) = +∞.

Let Φ: [0,+∞) → [0, a∗) denote the inverse of R, which is well defined by Lemma 6.3 and
Lemma 6.4 (and is a non-decreasing function). Then

νρ := ν̄Φ(ρ) (6.38)

is an invariant measure for the zero range process, parametrized by the density ρ:

〈νρ, ιx〉 =
∑
k∈N

kνx
ρ({k}) = ρ.
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Note, using this parametrization, that we have also

〈ν̄a, g〉 = 1
Z(a)

∑
k≥0

g(k) ak

g(k)! = a,

and thus
〈νρ, g〉 = Φ(ρ). (6.39)

6.2.5 Weak local equilibrium

Remember that a cylinder subset of E = NZd is of the form⋂
x∈Λ

ι−1
x (Bx),

where Bx is a subset of N and Λ is a finite subset of Zd. A bounded cylinder function ϕ on E is
a function of the form

ϕ(η) = θ(η(x1), . . . , η(xm)),
where θ : Rm → R is measurable bounded. To each bounded cylinder function ϕ, we associate
the function ϕ̄ : R+ → R defined by

ϕ̄(ρ) = Eνρ [ϕ] =
∫
E
ϕ(η)dνρ(η). (6.40)

Let ρ : Td → R be a measurable function. We can then consider the measure π[ρ] defined by

〈π[ρ], h⊗ ϕ〉 =
∫
Td
h(x)ϕ̄(ρ(x))dx =

∫∫
Td×E

h⊗ ϕ(x, η)dνρ(x)(η)dx, (6.41)

for all h ∈ C(Td), and ϕ bounded cylinder function on E . In (6.41), we have used the notation
h⊗ ϕ(x, η) = h(x)ϕ(η).

Definition 6.1 (Weak local equilibrium). Let (ηN ) be a sequence of random variables, each
with values in NTdN . Let ρ : Td → R be a measurable function. We say that (ηN ) is a weak
local equilibrium of profile ρ if the sequence of measures πN [ηN ] (with πN [η] defined by (6.9))
converges in probability to π[ρ] defined by (6.41), in the sense that one has

lim
N→+∞

P
(
|〈πN [ηN ], h⊗ ϕ〉 − 〈π[ρ], h⊗ ϕ〉| > δ

)
= 0, (6.42)

for all δ > 0, for all h ∈ C(Td), and ϕ bounded cylinder function on E .

Note that, in terms of the law µN of ηN , (6.42) can be expressed as (cf. [13, Definition 0.2 p.43]):

lim
N→+∞

µN

∣∣∣∣∣∣ 1
Nd

∑
x∈Td

N

h(x̂)τxϕ−
∫
Td
h(x)ϕ̄(ρ(x))dx

∣∣∣∣∣∣ > δ

 = 0, (6.43)

If sufficient equi-integrability conditions are satisfied, then one can extend (6.42) to non-bounded
functions. In particular, taking ϕ(η) = ι0(η), we deduce from (6.42) (and (6.10)) that

lim
N→+∞

P
(
|〈κN [ηN ], h〉 − 〈ρ, h〉| > δ

)
= 0, (6.44)

for all δ > 0, for all h ∈ C(Td).
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6.3 Some hydrodynamic limits
We give now the description of the hydrodynamic limit of some interacting particle systems. The
situation is the following one: we will start initially close to some equilibrium state with profile
ρ0, say ρ0 continuous. If we let time evolve, then, basically, nothing will happen since the system
is locally (locally in space) at equilibrium. However, after a very long time, some transformations
may begin to manifest themselves since ρ0 is not globally constant a priori. If we assume that
the system has a natural trend to equilibrium, then we may obtain a new equilibrium with
profile ρ′0 which may be deduced from ρ0. This description is very schematic since time evolves
continuously. The situation we are inclined to consider is more the following one: we consider a
time change of scale t 7→ θ(N)t such that:

1. at each time tθ(N), the system is close to some equilibrium state with profile ρ(t, ·),

2. an evolution equation for the parameter ρ(t, ·) can be given.

This evolution equation is what is termed the hydrodynamic limit. Under a change of scale, it
gives a description of the system that involves only the macroscopic parameters of the equilibria.
In our context, there is only one macroscopic parameter, the density.
Let jx,y denote the instantaneous current between x and y, i.e, the rate at which a particle jumps
from x to y, minus the rate at which a particle jumps from y to x: jx,y(η) = c(x, y, η)− c(y, x, η).
By (6.11) and (6.12), we have

LN ιx∗ =
∑

x,y∈Td
N

c(x, y, ·)(1x∗=y − 1x∗=x) =
∑

x∈Td
N

jx,x∗ . (6.45)

Let h be a smooth function Td → R. Let

ϕ(η) := 〈κN [η], h〉 = 1
Nd

∑
x∈Td

N

h(x/N)η(x) = 1
Nd

∑
x∈Td

N

h(x/N)ιx(η).

Let MN
h (t) denote the martingale

MN
h (t) = ϕ(ηt)− ϕ(η0)−

∫ t

0
LNϕ(ηs)ds. (6.46)

By (6.45), the action of LN on ϕ is given by

LNϕ = 1
Nd

∑
x,y∈Td

N

h(x/N)jy,x = 1
2Nd

∑
x,y∈Td

N

(h(x/N)− h(y/N))jy,x, (6.47)

We have used the antisymmetry property jx,y = −jy,x to transform the sum in (6.47). Recall
that c(x, y, ·) is non-trivial if, and only if, x and y are at distance 1. Then the same is true of
jx,y(η). We deduce from (6.47) the expression

LNϕ = 1
2Nd

∑
x∈Td

N

d∑
i=1

(h(x/N)−h(x/N−ei/N))jx−ei,x+(h(x/N)−h(x/N+ei/N))jx+ei,x, (6.48)

Doing the change of indexation x′ = x + ei in the last sum of (6.48) yields

LNϕ = 1
Nd

∑
x∈Td

N

d∑
i=1

(h(x/N)− h(x/N − ei/N))jx−ei,x. (6.49)
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Let us assume now that 〈jy,x, νρ〉 is non-trivial. By invariance by translation, this means that
there is at least one direction ei ∈ Rd (1 ≤ i ≤ d) such that the function

Ai : ρ 7→ 〈jx−ei,x, νρ〉 (6.50)

is non trivial. Then, at each time t, we expect that a jump of a small step ∼ N−1 in the direction
ei will occur. In a time of order N , we should observe therefore a global displacement in the
direction ei. Let us rescale time by a factor N : we obtain

MN
h (Nt) = ϕ(ηNt)− ϕ(η0)−

∫ t

0

d∑
i=1

1
Nd

∑
x∈Td

N

N [h(x/N)− h(x/N − ei/N)]jx−ei,x(ηNs)ds.

This reads

MN
h (Nt) = ϕ(ηNt)− ϕ(η0)−

∫ t

0

d∑
i=1

1
Nd

∑
x∈Td

N

(∂ih)(x/N)jx−ei,x(ηNs)ds+O(N−1).

Taking expectancy, we obtain

E〈κN [ηNt], h〉 − E〈κN [η0], h〉 −
∫ t

0

d∑
i=1

E〈πN [ηNs], ∂ih⊗ j−ei,0〉ds = O(N−1). (6.51)

We assume, according to our formulation (6.42) of equilibrium that there is a time-dependent
profile ρ(t), such that, when N is large,

E〈κN [ηNt], h〉 ' 〈ρ(t), h〉, E〈πN [ηNs], ∂ih⊗ j−ei,0〉 ' 〈Ai(ρ), ∂ih〉, (6.52)

see (6.42) and the definition (6.50). We can pass to the limit in (6.51) then, to obtain the
equation ∫

Td
h(x)ρ(t, x)dx−

∫
Td
h(x)ρ(0, x)dx =

∫ t

0

d∑
i=1

∫
Td
∂ih(x)Ai(ρ(s, x))dsdx,

which is the weak form of the non-linear conservation law

∂tρ(t, x) + divx(A(ρ(t, x)) = 0, (6.53)

with initial condition ρ|t=0 = ρ0.
In a second step, let us consider a situation where all the fluxes Ai in (6.50) are trivial. This
happens in particular if, for all i ∈ {1, . . . , d},

jx−ei,x(η) = [τx−eiβi(η(0))− τxβi(η(0))] , (6.54)

for a given function βi : R → R. Then we can perform a second integration by parts in (6.51)
and take t = t′N (which amounts to a total rescaling by a factor N2 on the microscopic time
N), to obtain, dropping the primes,

MN
h (N2t) = ϕ(ηN2t)− ϕ(η)−

∫ t

0

d∑
i=1

∑
x∈Td

N

N2(ĥ(x− ei) + ĥ(x + ei)− 2ĥ(x))τxxβi(ηN2s(0))ds.

The reasoning that leads from (6.51) to (6.53) can be adapted here. The hydrodynamic limit
that we obtain is then the second-order non-linear equation

∂tρ(t, x)− ∂2
ii(Bi(ρ(t, x)) = 0, (6.55)

with initial condition ρ|t=0 = ρ0, where Bi(ρ) := 〈βi, νx
ρ〉.

64



Remark 6.1 (Rigorous derivation of (6.53), (6.55)). To what extent the system is close to equi-
librium, and in which sense (cf. Definition 6.1), are difficult points that one has to address to
establish rigorously the hydrodynamic limit. Various tools have been developed in that context
(one block estimate, two blocks estimate, entropy estimates, etc.). See [13].
In what follows, we consider different examples of interacting particle systems.

Simple exclusion process. We have seen that c(x, y, η) = η(x)(1− η(y))p(y− x) and that νx
ρ

is the Bernoulli measure with parameter ρ. We compute

jx−ei,x(η) = η(x− ei)(1− η(x))p(ei)− η(x)(1− η(x− ei))p(−ei),

and
Ai(ρ) = 〈jx−ei,x, νρ〉 = αiρ(1− ρ), αi = p(ei)− p(−ei). (6.56)

If the process, is asymmetric (ASEP), in the sense that p(ei)− p(−ei) 6= 0 for at least one index
i, then we obtain the hydrodynamic limit (6.53) with the flux Ai given in (6.56). Let us examine
the case of the symmetric simple exclusion process (SSEP), where p(ei) = p(−ei) =: pi for all i.
We have then

jx−ei,x(η) = pi [η(x− ei)(1− η(x))− η(x)(1− η(x− ei))] . (6.57)

Using the fact that η(x) ∈ {0, 1}, we check that the bracket in (6.57) can be rewritten

jx−ei,x(η) = pi [η(x− ei)− η(x)] ,

which is of the form (6.54) with βi(η(0)) = piη(0). We obtain the hydrodynamic limit (6.55) with
Bi(ρ) = piρ. In the isotropic case pi = 1

2d , (6.55) is the Heat equation thus (we have established
this fact in Section 4).

Zero range process. For the zero range processes considered in Section 6.2.4, (6.39) gives

jx,y = g(η(x))p(x, y)− g(η(y))p(y, x), 〈jx,y, νρ〉 = Φ(ρ)(p(x, y)− p(y, x)).

Once again, we need to make the distinction between the symmetric and the asymmetric case.
In the asymmetric case, there exists i such that p(ei)− p(−ei) 6= 0 for at least one index i, and
we obtain the hydrodynamic limit (6.53) with the flux Ai given by

Ai(ρ) = αiΦ(ρ), αi = p(ei)− p(−ei).

In the symmetric case, we have

jx−ei,x(η) = pi [g(η(x− ei))− g(η(x))] ,

which is of the form (6.54) with βi(η(0)) = pig(η(0)). We obtain the hydrodynamic limit (6.55)
with Bi(ρ) = piΦ(ρ). In the particular cases where g(k) = k (independent random walk), the
equations are linear, with Φ(ρ) = ρ. When g(k) = 1k>0, we obtain Φ(ρ) = ρ

1+ρ .
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7 Solution to the exercises
Solution to Exercise 3.2.

1. That µ0 = δ0 means that X0 always take the value 0 (X0 is deterministic). We have then
X1 = ±1 with equi-probability, so

µ1 = 1
2δ−1 + 1

2δ+1,

which is an example of Bernoulli’s Law b( 1
2 ). We have then

P(X2 = −2) = 1
4 , P(X2 = 0) = 1

2 , P(X2 = +2) = 1
4 .

The law of X2 is therefore

µ2 = 1
4
[
δ−3/2 + δ−1/2 + δ1/2 + δ3/2

]
.

2. The law µN is

µN = 1
2N+1 δ−2 +

∑
−2N−1<k<2N−1

1
2N δ k

2N−2
+ 1

2N+1 δ−2. (7.1)

3. The answer is that µ0 is the uniform law on [−2, 2]:

µ0(A) = 1
4 |A ∩ [−2, 2]|,

where |A| is the Lebesgue measure of a Lebesgue set A ⊂ R (see the proof below for µ∞).
This answer can be simply guessed by examination of the evolution of the process (Xn).
An other way to find the right µ0 is to look at µN for large N . Indeed, a usual way to find
an equilibrium for a system in evolution is to look as the behavior for large times: if there
is convergence to a limit object, this will most probably be an equilibrium of the system.
Here, for example, one can look at the evolution starting from the binomial b(1/2) with
values in {−2,+2}, as in Question 2. If ϕ ∈ BC(R), then∫

R
ϕdµN =

∑
−2N−1<k<2N−1

1
2N ϕ

(
k

2N−2

)
+ o(1)

= 1
4

∑
−2N−1<k<2N−1

1
2N−2ϕ

(
k

2N−2

)
+ o(1).

We recognize a Riemann sum, which converges to∫
R
ϕdµ∞ := 1

4

∫ 2

−2
ϕ(x)dx.

The limit law µ∞ is an invariant measure for good. Indeed, if X0 ∼ µ∞, then, by the
formula of total probability,

P(X1 ∈ A) = P(X1 ∈ A|Z1 = −1)P(Z1 = −1) + P(X1 ∈ A|Z1 = +1)P(Z1 = +1)

= 1
2P(X0/2 ∈ A+ 1) + 1

2P(X0/2 ∈ A− 1),

for any Borel subsets A of R. This gives

8P(X1 ∈ A) = |A+ ∩ [−2, 2]|+ |A− ∩ [−2, 2]|, A± := 2A± 2.
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We compute, by the invariance by translation of the Lebesgue measure and the change of variable
formula,

|A+ ∩ [−2, 2]| = |2A ∩ [−4, 0]| = 2|A ∩ [−2, 0]|, |A− ∩ [−2, 2]| = 2|A ∩ [0, 2]|.

If follows that P(X1 ∈ A) = 1
4 |A ∩ [−2, 2]| = µ∞(A): X1 has law µ∞.

Back to Exercise 3.2.

Solution to Exercise 3.3. We have

Ptϕ(xi) = Exiϕ(Xt) =
L∑
j=1

Exi
[
1X(t)=xjϕ(xj)

]
=

L∑
j=1

Pxi(X(t) = xj)ϕ(xj) =
L∑
j=1

aij(t)ϕ(xj),

which gives Ptϕ = A(t)ϕ. With the conventions that are used, we observe that 〈ϕ, µ〉 = (ϕ, µ),
where (·, ·) is the canonical scalar product in RL. Consequently,

〈ϕ, P ∗t µ〉 = 〈Ptϕ, µ〉 = (A(t)ϕ, µ) = (ϕ,A(t)∗µ),

and we obtain P ∗t µ = A(t)∗µ, where A(t)∗ is the adjoint of the matrix A(t). The semi-group
property reads A(t+ s) = A(t)A(s). It follows that

A(t+ s)−A(s)
t

= A(s)A(t)− IL
t

= A(t)− IL
t

A(s).

By letting t → 0, we deduce that A satisfies the ODE A′(t) = LA(t) = A(t)L , which implies
A(t) = etL since A(0) = IL. The equation satisfied by an invariant measure is A(t)∗µ = µ for all
t ≥ 0. By differentiation, we obtain L ∗µ = 0. Of course the latter equation implies (L ∗)nµ = 0
for all n ≥ 1, and thus

A(t)∗µ = etL
∗
µ =

∑
n≥0

(L ∗)n

n! µ = µ.

Consequently, there is strict equivalence between A(t)∗µ = µ for all t ≥ 0, and L ∗µ = 0.
Back to Exercise 3.3.

Solution to Exercise 3.4. Assume E = {x1, . . . , xL} as in Exercise 3.3. Let A denote the
matrix A(1): aij = Pxi(X1 = xj). We still have Pnϕ = A(n)ϕ and P ∗nµ = A(n)∗µ. By the
semi-group property, we have A(n) = An for all n ≥ 0. The equation satisfied by the invariant
measure is (A∗ − Id)µ = 0 (the equivalent to L here is A − Id). Let us come back to the case
of a general state space E (a Polish space in our framework). Let us first prove that (Mn) is
a martingale. We can use the tower property (2.2) to show that it is sufficient to establish the
identity E [Mn+1|Fn] = Mn for all n ≥ 0. By the Markov property, we obain

E [Mn+1|Fn] = P1ϕ(Xn)− ϕ(X0)−
n∑
k=0

Lϕ(Xk).

Since L = P1−Id, this is precisely the desired identity E [Mn+1|Fn] = Mn. Let us look at (3.35)
now. Again, we want to prove that E [Zn+1|Fn] = Zn. We write

Mn+1 = ϕ(Xn+1)− Yn, Yn = ϕ(X0) +
n∑
k=0

Lϕ(Xk),
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where Yn is Fn-measurable. This gives

E
[
|Mn+1|2|Fn

]
= E

[
|ϕ(Xn+1)|2|Fn

]
− 2YnE [ϕ(Xn+1)|Fn] + |Yn|2

= P1|ϕ|2(Xn)− 2YnP1ϕ(Xn) + |Yn|2

= P1|ϕ|2(Xn) + Yn(Yn − 2P1ϕ(Xn))

We have also Yn = ϕ(Xn) + Lϕ(Xn)−Mn = P1ϕ(Xn)−Mn, hence

E
[
|Mn+1|2|Fn

]
= P1|ϕ|2(Xn)− (P1ϕ(Xn)−Mn)(P1ϕ(Xn) +Mn).

and
E
[
|Mn+1|2|Fn

]
− |Mn|2 = P1|ϕ|2(Xn)− |P1ϕ(Xn)|2.

We obtain then (3.35) by using the definition Γ[ϕ] = P1|ϕ|2 − |P1ϕ|2. The Jensen inequality
applied to

P1ϕ(x) =
∫
E

ϕ(y)Q(1, x, dy)

shows that Γ[ϕ] ≥ 0.
Back to Exercise 3.4.

Solution to Exercise 4.1. Each Tn has density f : t 7→ λe−λt1R+(t) with respect to the
Lebesgue measure on R. By independence, Sn has the law f ∗ · · · ∗ f (convolution n times). We
compute

f ∗ f(t) =
∫
R
λ2e−λse−λ(t−s)1R+(s)1R+(t− s)ds =

∫ t

0
λ2e−λtds1R+(t) = λ2te−λt1R+(t),

and, by recursion on n, f ∗ · · · ∗ f(t) = λn tn−1

(n−1)!e
−λt1R+(t). We compute then

P(N(t) < n) = P(Sn > t) =
∫ ∞
t

λn
sn−1

(n− 1)!e
−λsds.

This gives P(N(t) = 0) = P(N(t) < 1) = e−λt. Assume n > 1. By integration by parts, we
obtain

P(N(t) < n) = e−λt
(λt)n−1

(n− 1)! + P(N(t) < n− 1),

which shows that P(N(t) = n − 1) = e−λt (λt)n−1

(n−1)! . The assertion that N(t) is càdlàg and non-
decreasing is a deterministic statement, it is obvious since Γ is a measure: indeed, we note that,
whatever the Radon measure µ on R+, the map t 7→ µ([0, t]) is càdlàg and non-decreasing.
Let T be an exponential random variable of parameter λ > 0. We have

P(T > s+ t|T > s) = P({T > t+ s} ∩ {T > s})
P(T > s) = P({T > t+ s})

P(T > s) = e−λ(t+s)

e−λs
.

This gives P(T > s+ t|T > s) = e−λt = P(T > t). To establish (4.16), we write

P(T > t+ S) =
∫
R+

P(T > t+ s)dµS(s), (7.2)
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where µS is the law of S. By (4.15), we have P(T > t + s) = P(T > t)P(T > s). Using again
(7.2) (with t = 0) gives the result. A proof of (7.2) is as follows:

P(T > t+ S) = E [1T>t+S ] =
∫∫

R+×R+

1τ>t+sdµ(T,S)(τ, s).

By independence, the law µ(T,S) of the couple (T, S) is the product µT ⊗ µS . This gives

P(T > t+ S) =
∫
R+

[∫
R+

1τ>t+sdµT (τ)
]
dµS(s) =

∫
R+

P(T > t+ s)dµS(s),

as desired. For all t, for all n, the event {Sn = t} has probability 0 since the law of Sn is
absolutely continuous with respect to the Lebesgue measure. Consequently: for all t, the event
S ∩{t} 6= ∅, which is the union over n of the events {Sn = t}, has probability 0. This shows that
Γ(J) = Γ(J̃) P-a.s. if J̃ is deduced from J by modification of the extremities of J . In particular,
Γ(J) and Γ(J̃) have the same law. Let us now consider the case I = [0, t], J = (t, σ]. We want
to prove

P(Γ(I) = n & Γ(J) = k) = e−λ|I|
(λ|I|)n

n! × e−λ|J| (λ|J |)
k

k! . (7.3)

The event {Γ(I) = n & Γ(J) = k} corresponds here to the event

Sn ≤ t < Sn+1 ≤ · · · ≤ Sn+k ≤ σ < Sn+k+1. (7.4)

What will be relevant here is the time T ′n+1 := Tn+1 − (t− Sn) (indeed, starting from t, this is
after the time duration T ′n+1 that we see the first event being counted in Γ(J)). We rewrite (7.4)
as

Sn ≤ t and t− Sn < Tn+1 and Sn+1 ≤ · · · ≤ Sn+k ≤ σ < Sn+k+1. (7.5)
This is also equivalent to

Sn ≤ t and 0 < T ′n+1 and Sn+1 − t ≤ · · · ≤ Sn+k − t ≤ σ − t < Sn+k+1 − t. (7.6)

Eventually, we rewrite (7.6) as

Sn ≤ t and 0 < T ′n+1 and S′n+1 ≤ · · · ≤ S′n+k ≤ σ − t < S′n+k+1, (7.7)

where S′n+l = T ′n+1 + Tn+2 + · · · + Tn+l. It is quite clear that things will work now. In terms
of the laws of the different random variables involved, using independence, we can write (same
reasoning as in the proof of (4.16)):

P (Γ(I) = n & Γ(J) = k)

=
∫ t

0
dµSn(sn)

∫ ∞
t−sn

dµTn(tn)P(tn+Tn+2+· · ·+Tn+l ≤ σ−t < tn+Tn+2+· · ·+Tn+l+Tn+l+1).

After the change of variable t′n = tn − (t− sn), we obtain

P(Γ(I) = n & Γ(J) = k) =
∫ t

0
dµSn(sn)P(N(σ − t) = k),

which gives (7.3). In the general case, where I has extremities s < t and J has extremities s′ < t′,
with t ≤ s′, we introduce the intervals K, L having extremities 0 < s and t < s′ respectively and
an empty intersection with I and J . Then we prove, by some similar reasoning, that

P(Γ(K) = m & Γ(I) = n & Γ(L) = p & Γ(J) = k)
= P(Γ(K) = m)P(Γ(I) = n)P(Γ(L) = p)P(Γ(J) = k). (7.8)
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Summing (7.8) over m and p gives the desired result.
Back to Exercise 4.1.

Solution to Exercise 4.2. We have seen at the beginning of Section 4.2.2 that (T̂n) is a
sequence of i.i.d. random variables with exponential law of parameter L. Consequently (see
Exercise 4.1 for instance), (N(t)) is a Poisson process of parameter L. Let us first treat the case
n = 1. We have then

P(N(t) ≥ 1, x1 ∈ A1) = P(T̂ 1 ≤ t, x1 ∈ A1).
It is sufficient to consider the case where A1 is the singleton A1 = {y}. The probability that we
consider is thus

P

{T 1
y ≤ t}

⋂⋂
x6=y

{T 1
x > T 1

y }

 . (7.9)

By independence, using the explicit form of the exponential law, (7.9) is∫ t

0
e−se−(L−1)sds = 1

L
(1− e−Lt),

and we obtain (4.23) for n = 1, |A1| = 1, as required. When n = 2, we have

P(N(t) ≥ 2, x1 ∈ A1, x2 ∈ A2) = P(T̂ 1 + T̂ 2 ≤ t, x1 ∈ A1, x2 ∈ A2).

Again, we assume A1 = {y1}, A2 = {y2}, and obtain the probability

P

{T 1
y1

+ T 2
y2
≤ t}

⋂ ⋂
x1 6=y1

{T 1
x1
> T 1

y1
}
⋂ ⋂

x2 6=y2

{T 2
x2
> T 2

y2
}

 . (7.10)

We use independence as above, to obtain the following expression of (7.10):∫∫
0≤t1+t2≤t

e−(t1+t2)e−(L−1)t1e−(L−1)t2dt1dt2 = 1
L

∫ t

0
e−Lt1(1− e−L(t−t1))dt1,

which again is (4.23) for n = 2, |A1| = |A2| = 1. The case of a general n is proved similarly: we
obtain an integral ∫

· · ·
∫

0≤t1+···+tn≤t
e−L(t1+···+tn)dt1 · · · tn

which is L−nP(T ′1 + · · ·+T ′n ≤ t) where T ′1, . . . , T ′n are some independent exponential variable of
parameter L. Therefore the computed probability is L−nP(N(t) ≥ n), which is (4.23) for n = 2,
|A1| = · · · = |An| = 1.
Back to Exercise 4.2.

Solution to Exercise 5.1. Clearly, the properties (5.15), (5.17) and the monotony property
are satisfied. To establish the regularity property (5.16), we use the fact that A is locally Lipschitz
continuous.
Back to Exercise 5.1.

Solution to Exercise 5.2. Same proof as in the case A = A(v). This times we use the
divergence-free condition (divxA)(x, v) = 0.
Back to Exercise 5.2.
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Solution to Exercise 5.3. We suppose that α is fixed of course. Consider a mesh with
triangles only. If one triangle as a basis of length ∼ h, but a height that is almost 0, i.e. if there
is an almost flat triangle in the mesh, then the first condition in (5.27) may not be satisfied.
If we consider triangles only then |∂K| ≤ 3 diam(K) ≤ 3h for any K. Now, consider a triangle
with a basis of length ∼ 1, and a height ∼ h. Then fold the “arrow” of this triangle to form
a polygonal set of diameter O(h) and perimeter ∼ 1. If T contains such kind of set, then the
second condition in (5.27) will not be satisfied.
Back to Exercise 5.3.

Solution to Exercise 5.5. We only give the sketch of the proof. By linearity, it is sufficient
to consider the case u0 = 0, in which case we want to prove u ≡ 0. If u is smooth, then
∂tu + a · ∇u = 0 (recall that a is divergence free). By the usual chain-rule formula, it follows
that ∂tβ(u) + a · ∇β(u) = 0 for any function β of class C1. By integration, we obtain∫

Td
β(u(x, t))dx =

∫
Td
β(u(x, 0))dx = β(0). (7.11)

It is sufficient to apply (7.11) with a non-negative function β such that β(s) = 0 if, and only
if, s = 0, for example β(s) = s2, to conclude. All the difficulty of the proof is to justify this
approach for weak solutions. The idea is to use convolution in x with a smooth approximation
of the unit (ρε). One then needs to control the commutator (au) ∗ρε−a(u ∗ρε). This is possible
if a is smooth enough, if a is Lipschitz in particular, but even if a has only a Sobolev regularity.
See the paper by Di Perna and Lions, [5] (Theorem II.1 and Lemma II.1 in particular).

To show that (x, t) 7→ u0 ◦ Φt(x) is a weak solution, do the change of variable x′ = Φt(x) in the
weak formulation. Back to Exercise 5.5.

Solution to Exercise 5.7.

1. Let ϕ ∈ C1
c (U). We have∫ 1

−1
u(x)ϕ′(x)dx = −

∫ 1

−1
u′(x)ϕ(x)dx = −

∫ 1

−1
f(x)ϕ(x)dx. (7.12)

If ϕ is supported in (−r, r) with r < 1, then (7.12) is bounded by ‖f‖L1(−r,r)‖ϕ‖C(−1,1). We
have u ∈ BV(U) if, and only if there is a finite constant C such that |

∫ 1
−1 f(x)ϕ(x)dx| ≤

C‖ϕ‖C(−1,1) for all ϕ ∈ C1
c (U). Clearly, f ∈ L1(U) implies u ∈ BV(U). Conversely,

if u ∈ BV(U), let us consider, for ε > 0, χε the characteristic function of the interval
(−1 + ε, 1 − ε) and (ρε), an approximation of the unit with ρε supported in (−ε, ε). Let
also ψ be a function in C1

c (U). We have then∣∣∣∣∫ 1

−1
f sign(f)εψdx

∣∣∣∣ ≤ C, ϕε := (ϕχε) ∗ ρε. (7.13)

Taking the limit ε→ 0 in (7.13) gives∣∣∣∣∫ 1

−1
|f |ψdx

∣∣∣∣ ≤ C. (7.14)

We consider then a non-decreasing sequence of functions ψ ∈ C1
c (U) which converges

pointwise to the constant function 1. By monotone convergence, (7.14) gives f ∈ L1(U).
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2. Let ϕ ∈ C1
c (U). We have∫ 1

−1
u(x)ϕ′(x)dx =

∫ 1

0
ϕ′(x)dx = −ϕ(0) ≤ ‖ϕ‖C(−1,1), (7.15)

hence u ∈ BV(U).

3. By the Stokes’ formula, we have, for ϕ ∈ C1
c (U),∫

U

udivϕdx =
∫
B(0,1/2)

divϕdx =
∫
∂B(0,1/2)

ϕ(x) · n(x)dσ(x) ≤ π‖ϕ‖C(−1,1), (7.16)

hence u ∈ BV(U).

Back to Exercise 5.7.

Solution to Exercise 5.8. In the first case, we assume f ∈ L1(−1, 1). Then (7.12) shows
that Du = fλ, where λ is the Lebesgue measure on (−1, 1). By [17, Theorem 6.13], we have
|Du| = |f |λ then and ‖u‖BV(U) = ‖u‖L1(U) + ‖f‖L1(U). In the second case, (7.15) shows that
Du = δ0, the Dirac mass at 0. Then |Du| = δ0 also and ‖u‖BV(U) = ‖u‖L1(U) + 1 = 2.
In the third case, (7.16) shows that Du = nσ, where n is the outward unit normal to U on
∂U and σ the surface measure. By [17, Theorem 6.13] again, |Du| = σ. We compute then
‖u‖BV(U) = π/4 + π = 5π/4.
Back to Exercise 5.8.

Solution to Exercise 5.10. Assume first that u is of class C1. Let h ∈ [0, 1]. For x ∈ Q =
(0, 1)d and z ∈ Rd with |z| ≤ h, we have

|u(x+ z)− u(x)| =
∣∣∣∣∫ 1

0
(∇u)(x+ rz) · zdr

∣∣∣∣ ≤ h∫ 1

0
|∇u|(x+ rz)dr.

We do the change of variable (x′, r′) = (x+ rz, r) of jacobian determinant 1 to obtain∫
Q

|u(x+ z)− u(x)|dx ≤ h
∫ 1

0

∫
Q+rz

|∇u(x)|dxdr ≤ h
∫
Q′
|∇u(x)|dx = h|Du|(Q′),

where Q′ = (−1, 2)d. This gives ωL1(u;h) ≤ |Du|(Q′)h. This estimate remains true in the
general case by Theorem 5.9 applied on U = Q′. Since |Du|(Q′) ≤ 3d|Du|(Td), we obtain the
desired result with C = 3d.
Back to Exercise 5.10.
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