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Abstract

In this course, we will see how to understand and describe the large scale limit of various
discrete evolution systems (random and deterministic) with the help of partial differential
equations. This will be the occasion to use, and discover, some standard tools from the
theory of PDEs, of numerical analysis, and of statistical physics.

1 Introduction

1.1 Discrete conservation laws

Suppose that we are given a family 7 of open polyhedral sets forming a partition of the space
R?: for all distinct K,L € T, we assume that K N L = () and that K N L is contained in an
hyperplane of R?. The partition is understood up to a negligible set: the Lebesgue measure of
R%\ Uger K is zero. The picture 1 below gives the example of a triangulation of the plane.
We consider the following evolution of an extensive quantity u: let 0 =tg <t; < - <t, <---
be some discrete times, let U} denote the amount of the quantity u in the cell K at time ¢,,. We
assume that U}é“ is given by the formula

Ut =Up + Aty S |KILIQY k- (1.1)
LeEN(K)

The notations used in (1.1) are the following ones: At,, is the length ¢, 1 —tn70f the time interval,
N(K) is the set of neighbors of K: L € T is a neighbor of K if K|L := K N L is non-empty



and of finite (N — 1)-dimensional Hausdorff measure |K|L| (in particular, K is not a neighbor
of K). The quantity At,|K|L|Q}_, ; represents a certain flux of the quantity u that has passed
through the interface K|L from the cell L to the cell K between the times ¢, and t,y+;. We
have put in factor the term At,|K|L| because we prefer to work with densities, rather than with
scale-dependent quantities (the typical scales here depend on the size of the cells and of At,, and
will tend to zero at some point later on). For the same reason, it is more appropriate to introduce
| K|, the Lebesgue measure of the cell K, and to work with the scaled quantity v = UR/|K|,
which satisfies the equation

n n Atn mn
uftt = u + &| Z |K|LIQT 5 k- (1.2)
LeN(K)

Assume that the densities of flux Q7 _, ; satisfy the following condition:

Qi ok = QKL (1.3)

for all n € N, for all K, L € T being neighbors. The condition (1.3) ensures that the (algebraic)
quantity of u that was given by the cell K to the cell L is the quantity of u received by the cell
L from the cell K. Under (1.3), the evolution given by (1.2) is conservative: we will show in
particular that, when it makes sense, the quantity

> Kk

KeT

is constant with respect to n. Our objective will be to explain what is the limit of (u}) when
At,, and |K| tends to 0. We need to be more specific on our framework to achieve this goal. Let
us simply say for the moment that what we will obtain in the end are some conservation laws

Opu + div,(Q) = 0, (1.4)

where Q(z) is a function of x, u(x) and Vu(z). The derivation of (1.4) is related to the analysis
of the Finite Volume method, which is used to compute the solution of conservation laws such
as (1.4) with the help of the discrete formulation (1.2).

1.2 The symmetric simple exclusion process

Let 0 < N < L be some integers. Consider N particles located at one of the site 1,...,L —1
that evolve according to the following process: there is always one particle at site 0 and, for each
site x € {1,..., L — 1}, we draw a random time 7T that follows an exponential law of parameter
A > 0, so that the family {7} } is independent. Consider the point x, at which x +— T} is minimal
and let the particle at x, jump from its original site x to a new site y with probability p(x«,y),
the jump occurring under the restriction that the arrival site y is vacant. Then start over. This
process is called an exclusion process for the reason that jumps to occupied sites are excluded.
It is termed simple to make the distinction with some more complicated situations, where the
probability of a jump from x to y may depend not only on x and y, but on the whole interval
[x,y] and on the disposition of particles in this interval. We also call the process symmetric when
p(x,x+1) = p(x,x — [), whenever the quantities are well defined. Here we will consider the case
p(x,y) = 0if |x — y| # 1, so that only jumps to left or right immediate neighboring site are
possible, and equi-probable. At the boundary, we assume p(0,1) = 0, p(L —1,L —2) = 1. We
can put in correspondence this evolution of particles with the evolution of a random interface



described as follows: we set H(0) = 0 and, for x € {1,...,L}, define H as the discrete primitive

function
x—1

H(x) =) (2n(y) - 1), (1.5)

y=0

where n(y) € {0,1} is the number of particle at y. Then we interpolate linearly between those
points. Conversely, we deduce 7(x) from H by the “differentiation” formula n(x) = [1 + H(x +
1) — H(x)]/2. In the situation where the site x is occupied and the site x + 1 is vacant, the shape
(above {x,x+ 1,x+2}) of the function H is A. If the particle at x jumps at x+ 1, it becomes V,
— and conversely. We consider then the following problem: assume that L and N are very large.
For definiteness, we will take L = 2N, which ensures that H(L) = 0. Consider the change of
scale

hX(z) = L7 H,(Lz), x€(0,1). (1.6)

What can we say about the evolution of the profile t — hF, for, possibly, t very large? We will
see that, under adequate conditions on the initial data, and after the following parabolic change
of time scale:

hi(x) =hk,, = L7V Hpy(L2), =€ (0,1),t >0, (1.7)

we have a kind of law of large numbers: for all final time 7' > 0, h” is converging in probability
in L>°(0,7T; L?(0,1)) to a deterministic profile A which is completely determined as a solution of
the heat equation with homogeneous Dirichlet boundary conditions.

1.3 Interacting particle systems

We will now consider a problem similar to the previous one, with the difference that it is multi-
dimensional and that jumps to occupied sites are not excluded. Let Ay be a finite subset of
7. We consider a system of particles scattered on Ay, which interact as follows: let x denote a
typical site of Ay and let 7¢(x) denote the number of particles located at site x at time ¢. We
will be interested in the evolution in time of the functions x — 7;(x). The state space is therefore
En := N2~ the set of functions Ay — N. The evolution is described by the following algorithm:
each site x has its own clock that is independent from the clocks at other sites, and that rings
after a time Ty which is a random variable of exponential law of parameter A(n(x)). Assume
that it is at the site x, that a clock is ringing first. If n(x,.) > 0, then one particle of the site x,
jumps to an other site y chosen at random in Ay, according to a transition probability p(x.,y)
(possibly, at that stage, some exclusion rules may be added, see Section ?7). Then we start over.
Let us consider the case where Ay is the discrete torus T4 = Z¢/NZ? and p is compatible and
translation invariant: for all | € NZ¢, m € Z¢,

px+1Ly) =pxy), px+my+m)=pxy) (1.8)
Let us zoom out (¢f. (1.6)) by considering the function
[0,1)*5 z— N1 ([Nz]) (1.9)

extended by periodicity. In (1.9), [Na] is the element x of T%, ~ {0,--- , N — 1}? such that
% < Nx; <x;+1forall i =1,...,d. May it be the case that, possibly after a change of time
scale (¢f. (1.7)), some averaging phenomena would lead to a given deterministic behaviour? We
will see that the question has to be refined, before being answered positively (at least in certain
cases).



2 DMartingales in continuous time

2.1 Conditional expectation

Proposition 2.1 (Conditional expectancy). Let (Q, F,P) be a probability space and let G C F be
a sub-o-algebra of F. Let X be real-valued random variable which is integrable: X € LY(Q, F,P).
Then there exists a unique G-measurable and integrable random variable Z such that

E(14X)=E(1,42), VAeg. (2.1)
We call Z the conditional expectancy of X knowing G, denoted E(X|G).

Roughly speaking, E(X|G) is the average of X with respect to all the events not relative to G.
The following facts or examples illustrate this fact.

Fact 1. If G = F, then E(X|F) = X a.s. If G is the trivial o-algebra {0, Q}, then E(X|G) =
E(X).
Example 1. When G is the o-algebra generated by an event A € F, G = {0, A, A°,Q}, then

E(1,X)
P(A)

If X = 1p where B € F, this gives E(15|G) =P(B|A)14 + P(BJ]A®)1 se.

E(14-X)

E(X|G) = SOr

14+

Fact 2. One has the following tower property: if H is a sub-o-algebra of G, then
EE(X|G)|H) =E(X|H) a.s. (2.2)

As a particular case, when H = {0, Q}, we obtain E[E(X|G)] = E[X].

Example 2. Let X, Y be two independent random variable and let f: R?2 — R be a bounded
Borel function. Then Z = E(f(X,Y)|o(Y)) is o(Y)-measurable, and it is known that such a
function can be written i (Y'), where h is Borel. In general, when saying that a o(Y)-measurable
function has the form h(Y'), we have no particular information on h. Here, however, we know
very well what is h: it is the function obtained by averaging with respect to “all that is not Y7,
i.e.

E(f(X;Y)|o(Y)) = h(Y), h(y) = E(f(X,y)). (2.3)

Example 3. Let D denote the set of dyadic cubes in [0,1)¢, and for n € N, let D,, denote the
subset of dyadic cubes of length 27™: all cubes in D,, are translation by an element of 2-"Z¢ of
the basic cube [0,27")%. Let f: [0,1)? — R be integrable. The piecewise-constant function f,
equal to the averaged value of f over each cube @) in D,, can be seen as the conditional expectancy
E(f|F,) by taking Q = [0,1)2, P being the Lebesgue measure, F the Borel o-algebra, and F,
being the o-algebra generated by all the cubes in D,, (verification left as en exercise). There is
a consistency property in this approximation process, which is the following one: for all m < n,
averaging the finer approximation f;,, over the coarser grid corresponding to D,, gives f,,:

E(falFm) = fm as. (2.4)

The property (2.4) follows from the tower property (2.2) for example. It is an instance of a
martingale property.



2.2 Martingales

Definition 2.1 (Filtration). Let (2, F,P) be a probability space. A family (F;);>o of sub-o-
algebras of F is said to be a filtration if the family is increasing with respect to t: Fy C F; for
all 0 < s <t. The space (2, F, (F¢)t>0, P) is called a filtered space.

Definition 2.2 (Adapted process). Let (Q,F, (Fi)i>0,P) be a filtered space. A real-valued
process (Xy);>o is said to be adapted if, for all t > 0, X, is F;-measurable.

Definition 2.3 (Martingale). Let (Q,F, (F¢)i>0,P) be a filtered space. Let (X¢);>o be an
adapted real-valued process such that, for all t > 0, X; € L'(Q2). The process (X;);>0 is said to
be a martingale if, for all 0 < s <t, X; = E(X{|Fs) a.s

Remark 2.1. A martingale with continuous (resp., cadlag!) trajectories is said to be a continuous
(resp., cadlag) martingale.

Remark 2.2. With respect to a fixed time ¢ > 0, conditioning on Fs with s < ¢ is a way to
average X; over all events which occurred between times s and t. For a martingale X, this will
let the position Xy unchanged. We expect a martingale not to wander too much therefore. We
will see and use several instance of this general principle. See Section 2.3 for a first example. Let
us also state the following result.

Theorem 2.2 (Doob’s martingale inequality). Letp > 1. Let (M;)icjo,1) be a cddlig, real-valued
martingale, such that E|Mrp|? < +c0. Then the inequality

p
BI0] < (S27) BMP, M= su [, (25)
- te[0,T]

is satisfied.

2.3 A digression on the Calder6n-Zygmund decomposition
2.3.1 The Calderén-Zygmund decomposition

Let f:[0,1)¢ — R be a non-negative, integrable function. Let A > 0 be a fixed threshold such
that the integral of f over [0,1)? is smaller than \/2. In terms of Example 3. in Section 2.1, this
means E[f] < A/2. Consider (see Remark 2.2) that being below A is “not wandering too much”,
while being above A is “wandering too much”. What is the behavior of the martingale (f,,) defined
in the Example 3. in Section 2.1? Let T be the stopping time 7' = inf{n > 0; f,, > A\}. We know
that T > 0 almost surely. If T'= +o0, then f,, < A for all n, and thus f = lim f,, < A. Here
we use the intuitive fact that f = lim f,,. We have to specify the mode of convergence however
and to justify the convergence. The convergence is almost sure. One can use the martingale
convergence theorem for example (probabilistic approach) or the dyadic version of the Lebesgue
differentiation theorem (analyst’s approach). In any case, we obtain: f < X a.s. on {T = +o00}.
The set {T' < 400} can be written as an at most countable collection (Q;);cs of dyadic cubes.
Indeed, it is the union over n > 1 of the sets {T' = n}, and {T' = n} is a union of dyadic cubes
in D,, (because f, is constant on each @ € D,). If @ is one of the cubes that enter in the
decomposition of {T' = n}, and if Q' € D,,_; is the twice bigger cube containing @, then the
averaged value of f on @’ is smaller than A (otherwise T' < n). It follows that

—_— X i d .
A<|@/Qf”d El o @ IQ’I/f 2)do < 290 (2.6)

lcadlag meaning “continue & droite avec limites & gauche”, i.e. “continuous from the right with left limits” at
each points




From these considerations on martingales, we can deduce the following statement.

Lemma 2.3 (Calderén-Zygmund). Let f: R — R be a non-negative, integrable function. Let
A > 0. There exists an at most countable family (Q;):cr of dyadic cubes such that

1
Viel, M<
1Qil Jo,

and f < X a.e. on the complementary set R% \ U;crQ;.

(z)dz < 29, (2.7)

Proof of Lemma 2.3. fix N large enough such that 2*Nd||f|\L1(Rd) < A\/2. Consider the countable
decomposition of R? by all the dyadic cubes of size 2. On each such cube R, we apply the
analysis performed before the statement of the lemma. This analysis was done with the starting
cube R = [0,1)%, but can be readily adapted to the general case. The final family of cube (Q;);cr
is then the union of the families obtained on each such cube R. O

The Calderén-Zygmund lemma is applied to obtain a decomposition of f = g 4+ b, where

1
- d| 1o, + flgao,.,0, 2.8
and .
b=f—g=S"bi, b=|f—— dz| 1o . 2.9
1-9=% [f a1 ). @ 4 o (2.9)

The function g is considered as the good part, since it is controlled in size by A; more precisely,
lg(x)| < (2941)\. The function b is considered as the “bad” part. It is not controlled in size but
has the properties that b; is supported in @); and has zero integral. The Calderén-Zygmund is
fundamental in harmonic analysis. Note that, if we come back again to the probabilistic approach
(and restrict things to [0,1)%), then g is simply fr, while b = f — fr.

2.3.2 Application to elliptic estimates
Let U be an open subset of R? d > 2. Let f: U — R be measurable. The Newtonian potential

of f in U is the function u defined by the convolution product

u@) = [ G- iy, 2 eRr, (2.10)
U
where the function G is defined by
—%ln|x| ifd=2,

G(z) = 1 1 (2.11)
A= Dy iz 1423

where wy is the d-dimensional Lebesgue measure of the unit ball in dimension d. Although G is
singular at the origin, the function u is well defined and has some given regularity/integrability
properties, depending on the regularity/integrability properties of f. See [13, Chapter 4.]. Since
G is the fundamental solution of the Laplace equation in R?, the function u satisfies —Au = f in
U, again under adequate regularity /integrability properties of u and f. The Newtonian potential
is also used to express a solution of the Poisson equation —Av = f as the sum u + w, where w
is harmonic in U (no considerations on boundary conditions here). We will use the Calderén-
Zygmund decomposition to prove the gain of regularity of two derivatives in the space LP.



Theorem 2.4. Let 1 < p < +o0o. Let f be bounded and locally Holder continuous and let u be
given by (2.10). Then u is of class C? in U, —Au = f in U, and

107 ull Loy < ClIf lLe (2.12)
foralli,je{1,...,d}, where the constant C depends on d and p only.

We will focus on (2.12). See [13, p.55] for the proof that u is of class C? in U and satisfies the
Poisson equation —Au = f in U. Informally, we have

&7 u(x) = /Rd Kij(z —y) f(y)dy,

where f is the extension of f by 0 outside U, and where K;; has a non-integrable singularity
of type |z|~¢ at the origin. We can also write (again informally), 82-2ju = R;R; f, where R;
is the Riesz transform. It is defined a priori as the application L?(R?) — L2(R?) given, after
conjugation with the Fourier Transform, by

F(R;if)(§) = ié}'(f)(f)» F(HE) = y fla)e™ " da. (2.13)

We recognize the expression of the operator f + 0,,(—A)Y?f. Using the expression of Fourier
transform of the homogeneous function £ %, [12], we also obtain (still informally at that
stage) the expression

Rjf(x) = y Kj(x —y)f(y)dy,

where K;(x) = % |IT{§;1 has a non-integrable singularity at the origin. We will use the
Calderon-Zygmund decomposition to establish the following result.

Theorem 2.5 (Singular Integral). Let K € C(R%\ {0}) be a given kernel. Assume that, for all
f € CX(RY), for all x € RY, the limit

Tf) = i T, TS = [ K- i (2.14)
e—0 I"D*y‘>5
exists, that there is a constant A > 0 such that
ITfll L2y < Allfll 2 ®ays (2.15)
for all f € C*(RY), and
sup/ |K(2) — K(z —y)|dz < A, (2.16)
yeEB J(2B)¢

for all ball B = B(0,r), r > 0, centred at the origin (with 2B = B(0,2r)). Then, for all
1 < p < +o0, there exists a constant A, > 0 such that

ITfllLe ey < ApllfllLe ey, (2.17)

for all f € C=(RY).



Let us do few comments on the result. First, see [21, p.19] for a more general statement. Second,
note that the constant A does not depend on the radius 7 in the regularity condition (2.16).
Let us consider the case of the Riesz transform. Using the definition (2.13) and the expression
F(Jz|~@=1) = ayl¢|~! for the Fourier Transform of the tempered distribution 2 ~ |z|~(?=1)
(where ay is a constant depending on d only), we see that

Rf@) = B [ o=l 0; (). (215)

(where (4 also denotes a constant depending on d only). Set K(z) = Bd‘Z‘ZTjH. Let ve(z,y)

denote the outward unit normal to the ball B(z, ) at a point y of the boundary and let (e;)1 4
denote the canonical basis of R%. We use the identity 9;¢ = div(pe;) and the Green formula to
obtain

T.f(z) = / K(z —y)f(y)dy = fu / & — 5|~ @0, f(y)dy + e,
|lz—y|>e |

z—y|>e

where

= el ) o0 )io)

We have v (z,y) =

re = Bae @D /| Y=L .0, f(y)do(y) = Ba / 2601 (x + e2)do(2).

r—y|=¢ |y - I| |z|=1 |Z

Since

/| Z e;jdo(z) =0

z|=1 |Z|
by symmetry, we obtain, for f smooth enough,

r— 5d/ [0, (x4 £2) — 8, f())do () = O(e).

z|=1 |Z|

This shows that the limit in (2.14) exists indeed. The property (2.15) is a direct consequence of
the definition (2.13). We use the homogeneity properties of K(z) = ﬂdlzfﬁ and the change of

variable 2/ =7z, y' = ry to see that (2.16) is equivalent to

sup / |K(z) — K(z —y)|dz < 400, (2.19)
yEB1 J(2B;)¢

where B; = B(0, 1) is the unit ball. Since |z| > 2, |z —y| > 1 in (2.19), and |K(z)| < Balz|~,
we must check the integrability at infinity in (2.19). For y € B and z € (2B)¢, we have

K - K=l =| [ (VK)G —ty)-ydt]

! ! 1 C'(d)
g/o |VK(z—ty)|dt§C(d)/0 Tt < ey (220

Indeed, |z| < |z — ty| + 1 < |z — ty| + |2|/2, which gives |z| < 2|z — ty| for ¢ € [0,1]. The bound
in (2.20) gives the desired result.



Proof of Theorem 2.5. We use the Marcinkiewicz’ interpolation Theorem (see the footnote in
[21, page 12]) and a duality argument to reduce the proof to the weak-(1, 1) estimate

A
HITH > ol < 221 £l e, (221)

for @ > 0, f € C°(R?), where |E| denotes the d-dimensional measure of a Borel set E. Let us
apply the Calderén-Zygmund decomposition:

HITf1 > a}f < {ITg| > a/2}| + [{|T6] > /2}|. (2.22)

Although f is smooth, g and b may be not smooth. All the computations below can be justified
by working first we T, defined in (2.14), and then letting ¢ — 0. The first piece in (2.22) is easy
to estimate: we use the Chebychev inequality and the L2-estimate (2.15) to obtain

4 4A?
{ITgl > a/2H < I Tgl3x < g,

We have seen that the pointwise bound |g(z)| < (1+2%)\ is satisfied. We have also [|g|| 1 gy <

[ £1l £1 (ra) as a direct application of (2.8). Therefore ||g[|7. is bounded by (1+2%)A|[f|| 11 (re) and
we conclude that

4A2
{ITgl > a/2}| < (27 + D=5 Al fllzr o). (2.23)

To estimate the second term in (2.22), we first note that, given a Borel set E, we have, using the
Markov inequality,

2
{IT0] > a/2}] < [{|Tb] > a/2} N E| + |E°| < E/ Tb(z)|dx + |E°.
E
By the decomposition (2.9), we deduce that

2
8> a/2)| < 2 [ (Thio)ld + |E7|. (2.24)
a “ E
el
Let x; denote the center of ;. Let B; denote the ball with same center as (); and diameter
diam(Q;). We have |B;| = ¢4|Q;| for a given constant c¢4. We use the cancellation property
satisfied by b; to write

Thi(z) = /B (K(x — y) — K — 2:)bi(y)dy.

i

With Fubini’s theorem, we deduce that
[irvi@an < [ [ K@= - Ko - zldslbity)ldv
E B, JE

Take E = N;jer(2B;)°. Then

/|K<x—y>—K<x—xi>|dxs / K (2 —y)— K (2 —)|de = / K (22 —y)— K (2)|dz,
E (2By)° (2B)e

where B; = x; + B;. Using (2.16) and (2.9) gives us

24 .24 .
1T > a/2)| < =3~ /B bi)ldy + 1B < ==l ray + | E°] (2.25)
i€l g
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By (2.6), we also have

2dc1
B <) 12Bi| =24 |Bi| < )\d £l 2 (may-
iel i€l

The final estimate
{ITf] > a}| < CAd) (@A +a "+ XD fllLr e

follows from (2.23) and (2.25). Taking A = «, we conclude to (2.21). O

3 Markov processes

We consider Markov processes taking values in a Polish space E. Recall that a process X =
(Xt)1>0 is a collection of random variables: for each ¢ > 0, X;: (Q, F) — (E, B(E)) is measurable
(on E we always consider the Borel o-algebra, denoted B(E). The law of the process is obtained
by considering the random variable X : Q — E®+, where E®+ is the set of functions from R
to E. On E®+ we consider the cylindrical o-algebra, which is the o-algebra generated by the
evaluations maps m;: E®+ — E, m.(f) := f(t), [22, Chapter 2.4]. Then, the law of X is described
by the set of finite-dimensional distributions P(A), where A is a cylindrical set of the form

A={X,, €By,...,X,, € B}, (3.1)

for some n € N, By,..., B, some Borel subsets of E and ti,...,t, > 0. The filtration (F;)
denotes the filtration generated by X: for a given ¢t > 0, F;X is the o-algebra generated by the
sets A of the form (3.1), with all times ¢; < ¢t.

We will also denote by BM(E) the Banach space of bounded Borel-measurable functions on E
with the sup-norm

llellBym(e) = sup [p(z)]. (3.2)
zeFE

The set BC(E) is the subspace of continuous bounded functions.

3.1 Definition

By Markov process, we mean the triplet constituted of a Markov semi-group, some probability
kernels, and the associated Markov processes. More precisely, we suppose first that we are given:

1. a Markov semi-group P = (P,);>0, which is defined a priori as a family of endomorphisms
of the space BM(E) that satisfy the initial condition Py = Id, the semi-group property
P, 0 Py = P,y for t,s > 0, the preservation of positivity P;¢ > 0 when ¢ > 0, while fixing
the constant function 1 equal to 1 everywhere: P;1 =1 for all ¢ > 0,

2. a probability kernel Q(t,z, B): for all ¢ € BM(E), for all z € E,

Prplz) = /E P()Q(t, z. dy), (3.3)

where, for every t > 0, for every x € E, Q(¢,x,-) is a probability measure and the depen-
dence in x is measurable, in the sense that the right-hand side of (3.3) is a measurable
function of z,

11



3. aset X = {(X7)i>0; ¢ € E} of Markov processes indexed by their starting points z: X§ =z
almost surely, such that:

e the finite-dimensional distributions of (X[);>o are given by

P(Xy € Bo, X, € By,..., X}, € By) :/ Q(tr —te—1,Yx—1, Br)
Bo Br_1

X Q(tp—1 — tp—2,Yr—2, dyr—1) - - - Q(t1, %0, dy1) pu(dyo), (3.4)

where 0 < t; <--- <tg, Bo,...,Br € B(E) and p = 0, (Dirac mass),
e the Markov property
X
E [p(X{)IFe ] = Pop(XY) (3.5)
is satisfied for all s,t > 0, ¢ € BM(E).
There are a lot of redundancies in the definition above, that we will now analyse. It is not
limiting, however, to assume that all these elements are given altogether, all the more since the
processes (X[ )¢>o will generally have additional pathwise properties, being typically continuous
or cadlag. They may also satisfy the Markov property (3.5) with respect to a given filtration

(Ft) larger than (]:tX ). First, we need to define an appropriate mode on convergence of functions
in BM(E).

Definition 3.1. We say that there is bounded pointwise convergence of a sequence (p,) in
BM(E) to ¢ € BM(E) if sup,, ||¢n|lsme) < +00 and ¢, (z) — ¢(z) for all z € E. This mode of

. b.p.c.
convergence is denoted ¢, =5 .

Proposition 3.1. Let (P,);>0 be a semi-group as in 1. Assume that, for each t > 0,

b.p.c. b.p.c.
[Qpn L) 90] = [PtQOn L) Pt¢]~ (36)
Then there exists a probability kernel as in 2. such that (3.3) is satisfied.

Proof of Proposition 3.1. We give the main ideas of the proof. First observe that (3.3) implies
the continuity property (3.6): it is natural to assume (3.6) therefore. Set

Qt,z, A) = (Pi1a)(x) (3.7)

For each fixed ¢, x, this defines a non-negative set function Q(¢, z, -) such that Q(¢,z, E) = 1. The
only delicate point to show that Q(¢,x,-) is a probability measure is the countable additivity. It

follows from (3.6) and the convergence ¢, PP @, when Ay,..., A, ... are disjoint Borel sets in
E, ¢n =10, pcnAr, © = 1u, .4, By (3.7), (3.3) is satisfied when ¢ is a characteristic function.
By linearity, this remains true for simple functions. Any ¢ € BM(FE) can be approached for
bounded pointwise convergence by a sequence of simple functions, this gives the relation (3.3) in
all its generality. O

Proposition 3.2. Let Q be a probability kernel as in 2. Assume that
Qt+5,2,4) = [ Qs.y. Q7. (38)
E

is satisfied for every t,s >0, x € E, A € B(E). Then there exists a Markov semi-group as in 1.
such that (3.3) is satisfied.
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The relation (3.8) is called the Chapman Kolmogorov relation.

Proof of Proposition 3.2. We define P, by the relation (3.3). Then (P;);>o has all the desired
properties listed in 1. The only point that must be studied carefully is the semi-group property.
It is sufficient to establish that Prysp = P;(Psy) is satisfied for characteristic functions, but
then, this is equivalent to (3.8). O

Let us now study the relation between the process given in 3. and the probability kernel Q.
First, we state without proof the following result. See, e.g. [7, Theorem 1.1 p.157], for the proof.

Proposition 3.3. Let Q be a probability kernel as in 2. Then there exists a measurable space
(Q,F), a process (Xi)e>o0 on (Q,F) such that: for all probability measure p on E, there exists
a probability measure P, on (0, F), such that, under P,, (X¢)i>0 has the finite-dimensional
distributions given by (3.4): for all0 <t; <--- <ty, By,...,Br € B(E), the probability

PH(XO EBo,th S Bl,...,th S Bk) (39)
is given by the right-hand side of (3.4).

We denote by E,, the expectancy operator associated to P,,. When p = §,, we use the notations
P, and E,. The Kolmogorov extension theorem, [22], can be used to construct the measure P,,.
The probability space is the path space: Q = E®+. The o-algebra F is the cylindrical o-algebra
(called product o-algebra in [22, Chapter 2.4]). The process X is then the canonical process
Xi(w) = w(t).

In the following two results, we establish the link between the Markov property and the Chapman-
Kolmogorov (or semi-group) property.

Proposition 3.4. Under the hypotheses of Proposition 3.3, assume that the Chapman-Kolmo-
gorov property (3.8) is satisfied. Then the process (Xi,P,) constructed in Proposition 3.3 is
Markowv.

Proof of Proposition 3.4. Our aim is to show the identity

E, [0(Xeqs)|FX] = Pop(Xy) (3.10)

for all s,t > 0, ¢ € BM(E), where P, is defined by (3.3) (in particular, P; satisfies (3.6)). The
meaning of (3.10) is
Ep [o(Xets)1a] = By [Pop(Xi)1a], (3.11)

for all A € F;X. We can see both members of (3.11) as measures in A. Since F;¥ is generated
by cylindrical sets that form a m-system, it is sufficient, [3, Theorem 3.3], to establish (3.11) for
A of the form

A={Xo € By, Xy, € B1,...,Xt, €Bn},0<t; <+ <ty <t. (3.12)
Since (3.11) is linear in ¢ and the continuity property (3.6) is satisfied we can also reduce the

proof of (3.11) to the case where ¢ is a characteristic function 1g, with B € B(E). Alternatively,
the same kind of argument shows that, for all ¢y € BM(FE) and A of the form (3.12), we have

E,, [/(X:)1a] = /B /B Prt (yn)Qtn — ot Ynts dyn) - - Qt1, you dy (o), (3.13)
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since (3.4) and (3.3) show that (3.13) is true when ¢ = 1p,,,. We will use (3.13) and the
Chapman-Kolmogorov (or, more precisely, semi-group) property to conclude. Taking ¢ = Pyp
in (3.13) and using the semi-group property, we see that the right-hand side of (3.11) is

/ / Piis i, 0n)Qtn — tn—1,Yn—1,dyn) - - - Q(t1, Y0, dy1) pu(dyo). (3.14)
Bo B,

Then, using (3.13) again with ¢ 4+ s instead of ¢ shows that (3.14) coincides with the left-hand
side of (3.11). O

Proposition 3.5. Assume that the process (X¢,IP,) constructed in Proposition 3.5 is Markov.
Then Q satisfies the Chapman-Kolmogorv property (3.8).

Proof of Proposition 3.5. We will establish the equivalent semi-group property for (P;). Let
© € BM(FE). By the tower property (2.2), we have

Piysp(r) = Ep [0(Xigs)] = Eq [Ez [SD(XHS)V:)&XH .

The Markov property then gives
Prisp(x) = Eg [Psp(Xy)] = (P o Ps)p(z),

which is the desired identity. O

3.2 Invariant measures and weak convergence of probability measures

Let (P,Q,X) be a Markov process as in Section 3.1. If u is a probability measure on E, we
denote by P; i the law at time ¢ of Xy, when Xg ~

(P, 0) =Ky [p(Xe)] -

The notation can be justified as follows: using (3.13) with A =Q, i.e. By =---= B, = E, we
see that

E, [p(X:)] = /Eth(y)u(dy) = (1, Prp).

This establishes the expected formula

(Pf ) = (1, Prp). (3.15)

Definition 3.2 (Invariant measure). A probability measure p on E is said to be an invariant
measure if Py = p for all ¢t > 0.

To find an invariant measure p, one must choose Xy conveniently, to ensure that X; follows the
same law p for all ¢ > 0: an invariant measure is a fixed-point for the evolution in distribution
of the Markov process.

As far as the evolution of the distribution P}y of the Markov process is concerned, we can wonder
what are the continuity property of ¢ — P;ju. The space P;(F) of Borel probability measures
on FE is a subset of the dual space to the Banach space BC(E) (the norm being the sup norm
(3.2)). We consider the weak-+ topology on P1(E)?. A sequence (p,,) converges to p in P1(E) if

(tns 0) = (1, @), (3.16)

2This topology on P1(E) is metrizable: this is a non-obvious fact, [4, Theorem 6.8], in particular we cannot
simply build a metric based on a dense countable subset of BC(E) since BC(E) may be not separable (see the
argument in [14, p.6] however)
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for all ¢ € BC(E). When (3.17) is realized, it is customary to say that “(u,) converges weakly
to u”.

Let us state without proof the following version of the Portmanteau Theorem (see [14, p.4,5] for
the proof).

Theorem 3.6. The following five statements are equivalent.
(i) (un) converges weakly to p,
(#i) (3.16) is satisfied for all uniformly continuous and bounded functions ¢ on E,
(#ii) limsup p, (F) < p(F) for all closed set F,
(iv) iminf u, (G) > u(G) for all open set G,
(v) lim p,, (A) = p(A) for all Borel set A such that u(0A) = 0.

Coming back to t — P;u, we see that Pfp — P;u if

Hm (P}, ) = (P, ), (3.17)

t—s
for all ¢ € BC(E).

Definition 3.3 (Stochastic continuity of the semi-group). Let s > 0. The semi-group (P,);> is
said to be stochastically continuous at s if Py Dpg: Py when t — s for every ¢ € BC(E). We
say that (P;);>0 is stochastically continuous if it is stochastically continuous at very point.

The stochastic continuity of (P;);>0 at s is equivalent to the weak convergence (3.17). Indeed,
if (3.17) is satisfied, then (u, Pip) — (u, Ps¢) by the duality formula (3.15). Taking p = 6,
especially, we obtain Pyp(x) — Psp(x). Since |Pip(x)| < [|¢|lsc(r), we obtain the b.p. conver-
gence. Reciprocally, (u, Prp) — (1, Psp) follows from the stochastic continuity by dominated
convergence.

There is also a notion of stochastic continuity for processes: a stochastic process (X;) is stochas-
tically continuous at s if X; — X, in probability for the topology of E: for all 6 > 0,

lim P(d(X,, X,) > 6) =0, (3.18)

t—s

where d is the distance on E.

Exercise 3.4 (Stochastic continuity). Let (X;) be a Markov process, and let P; be defined by
Pio(x) = E;[@p(Xt)]. Show that stochastic continuity of (X;) at s implies stochastic continuity
of (P;) at s (Hint: use (ii) in Theorem 3.6). The solution to Ezercise 3.4 is here.

Definition 3.5 (Feller semi-group). A semi-group (P;);>¢ is said to be Feller if
P,: BC(E) — BCO(E),
for all t > 0: Pyp € BC(E) when ¢ € BC(E).

If (P)¢>o is Feller and (p,,) converges weakly to p, then we can test (3.16) against Pip. Using
the duality relation (3.15), we conclude that (P;u,) converges weakly to P .

The following exercises are all about invariant measures.
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Exercise 3.6 (Invariant measure for a discrete Ornstein-Uhlenbeck process). Let X, X1, ... be
the sequence of random variables on R defined as follows: Xg is chosen at random, according
to a law pg, then, X being known, a random variable Zy 1 taking the values +1 or —1 with
equi-probability is drawn independently on Xg,..., Xy and Xy given by

1
XNy1 = §XN +Zny1

1. What means g = dp7 What are then the law pq, puo of X7 and X5 respectively?

2. Consider the case pg = %5,2 + %5+2. Compute 1, po, 3. Can you guess a general formula
for pn?

3. Find an invariant measure.
The solution to Exercise 3.0 is here.

Exercise 3.7 (Invariant measure by Cesaro convergence). Suppose that (P;);>¢ is stochastically
continuous and Feller. For T > 0, and u € P1(E), let gr be the probability measure defined by

1 T
(Br, @) = T/o (P 1, p)dt.

Suppose that there exists a probability measure v on E such that, for at least on pu € P1(E), fir
converge weakly to v when T' — +o00. Show that v is an invariant measure.
The solution to Exercise 3.7 is here.

Exercise 3.8 (Invariant measures for deterministic systems). Let (®;)¢>0 denote the flow asso-
ciated to the ordinary differential equation & = F(x). Here F': R? — R? is a (globally) Lipschitz
continuous function.

1. Show that Py := ¢ o ®; defines a Markov semi-group on BM(R%).

2. Punctual equilibria. Let x1,...,x, be some zeros of F. Show that any convex combination
of the Dirac masses 0, ,...,d,, is an invariant measure.

3. Hamiltonian system. Suppose that d =n +n, x = (p,q) and

P (p) _ ( DgH (p, q) )
q -Dy,H(p,q))’
where H: R” x R® — R is of class C?.

(a) Show that t — H o ®;(x) is constant for all x.

(b) Assume that e ## € L}(R?) for all 3 > 0. We introduce the Gibbs measure sz,
which is the measure of density Z () 'e P with respect to the Lebesgue measure
(Z(B) = [ e PH@)dg is a normalizing factor). Show that g is an invariant measure.

The solution to Exercise 3.8 is here.

16



3.3 Infinitesimal generator

Given a Markov process as in Section 3.1, we would like to define the associated infinitesimal
generator. There are various possible approaches. In [1] for example, it is assumed that the
process admits an invariant measure pu. The semi-group can then be extended as a contraction
semi-group on L?(u). By assuming additionally that this extension gives rise to a strongly
continuous semi-group, [1, Property (vi), p.11], one can use the standard theory of strongly
continuous semi-group, [19], to define the infinitesimal generator. One may wonder why not
simply working in BM(FE), or BC(E), which are Banach spaces, to apply the standard theory
of strongly continuous semi-group. The difficulty is that the continuity property Py — ¢ when
t — 0 is too stringent in that context, at least when FE is infinite-dimensional. Consider for
example the simple deterministic case where P;¢p is given as the composition ¢ o ®; with a flow
(®;). Let E be the Hilbert space E = (?(N), with orthonormal basis (e, )nen, and let ®; be
given by

oo

O, (z) = Z e Mt x e, e,
n=0
where (),) is an increasing sequence converging to +oco. In general, one cannot control the
distance ||®(x) — z||¢2 () uniformly in 2 (this is possible when x is restricted to a compact set),
so even if ¢ is uniformly continuous, one does not expect the convergence

tim sup [ Prp() = ()] = 0.
We consider a different mode of convergence therefore, the bounded pointwise convergence (Def-
inition 3.1). A function ¢ € BM(E) is in the domain D(.Z) of the infinitesimal generator £ of
(P;) if there exists ¢ € BM(FE) such that

Pip— ¢ bpe.
# Ry, (3.19)
when t — 0. We then set Zp = 1. Note that, on the elements ¢ € D(¥), the property of

continuity
b.p.c.
P — ¢ (3.20)
when t — 0, is satisfied. By the semi-group property, (3.20) implies more generally the property

of continuity from the right P;p b-pg- P, o when t | t., for every t, > 0. The semi-group
property, and the continuity of P; with respect to b.p. convergence, that can be deduced from
(3.3) (see (3.6)), have also the following consequence: if p € D(.Z), then Py € D(%Z) for all
t >0 and

P, —Pipbpe.

W PPE P Lo = PP, (3.21)

when h — 0.

3.4 Martingale property of Markov processes

Consider a Markov process as in Section 3.1, which is Markov with respect to a filtration (F%),
and has a generator ., as defined as in Section 3.3. We make the following hypotheses:

1. stochastic continuity: we have Py P P;,p when t — t, for every ¢ € BC(E) and every
te 20,

17



2. measurability: the application (w,t) — X(w) is measurable Q@ x Ry — E.
We have then the following result.
Theorem 3.7. Let ¢ € D(£) NBC(E). Then

t
Myi= p0X0) — o(Xo) — | Lo(X.)ds (3:22)
0
is a (Fi)-martingale. If furthermore |p|? is in the domain of £, then the process (Z;) defined by
¢
Zoi= M - [ (216 - 2020) (X )ds, (3.23)
0

is a (Ft)-martingale.
Remark 3.1 (Quadratic variation). If (X;) has continuous trajectories, then
t
A= (LYol - 2020)(X.)ds (3:24)
0
is the quadratic variation (M, M), [15, p.38], of (M;). In the general case where (X;) is cadlag,

(A;) is the compensator, [15, p.32], of the quadratic variation [M, M|, [15, p.51], of (M}). For
instance, if (X; = N;) is a Poisson Process of rate A, then Zp(n) = Ap(n+ 1) — ¢(n)) and

A = )\/0 (o(Ns + 1) — @(Ny))?ds.

Taking ¢ = Id, gives the standard fact that (INV; — At) is a martingale.
Proof of Theorem 3.7. Let 0 < s < t. By the Markov property, we have
E[M|Fs] — Ms = E[M; — M| Fs]

= PerplX.) — ¢(X0) = [ [Prn2pl(X)do (3.25)

To establish (3.25) we have used the fact that

e[ [ v 17] = [ B El @ (3.26)

with ¥(w,0) := Lo(X,(w)), which is a measurable function. The identity (3.26) follows from
the linearity of the conditional expectation when 1) is a simple function, and standard arguments
give the general case. From (3.25) and the identity

Pip(x) — pla) = / P, p(x)ds, (3.27)

for all p € D(Z), x € E, t > 0, we conclude that E[M;|F,;] — Ms; = 0. To establish (3.27), we
notice that

B(t) = Prp(x) — p(z)

is a continuous function (here we use the stochastic continuity of (P;)), which is right-differentia-
ble at every point, with right-differential 5'(t+) := P;-Zp(x) which is a bounded (by stochastic
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continuity of (P;), it is even continuous if £y € BC(E) — but this is not assumed a priori).
Lemma 3.8 below then gives the result.

The proof of the martingale property for (3.23) is divided in several steps. First, we fix two
times 0 < 7 < 7/ < T. We fix a subdivision ¢ = (t;)o,n of [0,7], chosen in such a way that 7 is
always one of the ¢;, say 7 = t; (the index [ may hence vary with o). By C(p), we will denote
any constant that depend on ¢ and is independent on ¢ and may vary from lines to lines. We
also denote by A = O(B) any estimate of the form |A| < C(p)|B|. At last, we introduce the
following notations: we denote by dy, K the increment K3, , — Ky, of a function ¢ — K;. We also
denote by [, the conditional expectation with respect to F3,. Our aim is to show that

n—1
Ap = Tim >Ry, (16, M[7], (3.28)
=0

|o]—0
where the limit is taken in L?(f2). Indeed, taking (3.28) for granted, E[Z,, — Z,|F,] is the limit
when |o| — 0 of the quantity

n—1
]E[IMtnIQ — My, [P =Y By, (16, M]?] ’E] (3.29)

=l

Let us show that (3.29) = 0. To simplify the presentation®, we will treat the case t; = 7 = 0,
Fo = {0,9Q} (it makes sense to consider that Fy is the trivial sigma algebra since My = 0). We

have
n—1
S,
i=0

In (3.30), we can expand the square. The contribution of the double products is zero since, if
J > i, then, using the fact that d;, M is F;,-measurable, we have

2

E[|M,;,|*] =E (3.30)

]E I:(Sth(st]M:I = ]E []Etj [(5t]M] (5th} = 0

The last identity follows from the martingale property E¢, [0;,M] = 0. This implies (3.29) = 0,
and thus E[Z; — Z;|F;] = 0. The proof of (3.28) is divided into three steps.

Step 1. We show that A,/ = lim|,|_,o Z?:_Ol E;, [, A], with a convergence in L?(Q). Since A, =
Sy 84, A, we have to show that lim, o Y200 ¢ = 0 in L2(Q), where ¢ := &, A — Ey, [0, A].
The method is similar to the analysis of (3.29) above: we decompose

n—1 2
E>_G
i=0
By conditioning with respect to F;,, we get that each term in the last sum in (3.31) is trivial.
Since ¢; = O(dt;), the first sum in the right-hand side of (3.31) is O(|o|). This gives the result.

Step 2. We show that E, [|6;,¢(X)[?] = O(6t;). First, by the Markov Property, we have
E:, [0;, M] = 0. Using (3.22), which implies

n—1
=D E {lCiIQ] +2 > E[Gg] (3.31)
=0

0<i<j<n

tit1
S, M = 0,0(X) — ZLo(Xs)ds, (3.32)

t;

3the general case is left as an exercise, use the tower property (2.2)
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we deduce Ey, [§;,0(X)] = O(8t;). We can apply the previous estimate to |¢|?, since |p|? is in the
domain of £ by hypothesis (cf. (3.34) below), to get E¢, [&;,|¢[*(X)] = O(6¢;). On the other
hand, we have also the identity

100, 0(X)|? = 61, 1¢*(X) — 20( Xy, )61, 0(X). (3.33)

Taking expectation with respect to Fy, in (3.33) and using the fact that

By, [0(X1;)00,0(X)] = (X, ) By, [0r,0(X)]

gives the desired estimate Ey, [[6;,(X)[?] = O(6t;). We can insert this result in (3.32) to obtain
also By, [|6:, M|?] = O(6t;).

Step 3. We conclude the proof. First, we note that (3.32) applied to ¢? gives

tit1
50, M®) = 5, | (X) - / Z]p2(X.)ds, (3.34)
tq

i

where M = |p|2(X;) — |@[?(x) — [5 Z]p[2(X,)ds. We combine (3.32), (3.33) and (3.34) to
obtain the identity

tit1 2

Lo(Xs)ds

tit1
|6, M |* 4 26, M Lo(X,)ds +

ti

t;
tit1 tit1

=6, M® + 2o (X,)ds — 20(X,) (@M +

i

fcp(XS)ds) . (3.35)

ti

t;

Taking the conditional expectation E;, in (3.35) and using the Markov property gives us

Ey, |

M) =1 15 4] - 281 | [ (0l - (X Z(X0)ds| + 0. (330

tq
2‘|
)

which are respectively O(|6t;|>/?) and O(|6t;]?). To obtain the O(|6t;|>/?)-estimate, we use the
bound

Indeed, we have discarded the terms

tiy1 tit1
E., [26“M .Zcp(Xs)ds] and E, l ZLp(Xs)ds

ti

ti

tit1 2

ZLp(Xs)ds

tit1
ZLp(Xs)ds

ti

< nlé, M| +n~"

)

‘25“]\4

t;

then Step 2, and then we choose 1 = (5t;)'/?

interval [t;, s] instead of [t;,t;11], to obtain the estimate E,, |

. We can repeat Step 2, where we consider the time
p(X1,) — p(Xs)P] = O(t;), when
t; < s < t;y1. Consequently, the last term in (3.36) is also O(|6t;]*/?). By summing with respect
to 4 in (3.36), we deduce finally that

n—1 n—1
ZE% [5t1A] = Z]th [|5t1M|2] =+ O(|J|1/2)
i=0 i=0
This equality, combined with Step 1, yields (3.28). This achieves the proof. O
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Lemma 3.8. Let B: Ry — R be a continuous function, right-differentiable at every point, such
that t — B'(t+) is bounded. Then

ﬁ(t)—B(O)z/o B (s+)ds, (3.37)

for allt > 0.

Proof of Lemma 3.8. Note first that
/ o —1y _
F(e+) = T n(B(t+n) — 4(0)

defines a measurable function of ¢ as limit of measurable functions. Since it is bounded by
hypothesis, it is integrable. Let T > 0. Let m, M € R be such that m < §'(t4) < M for every
t €10,7]. We will show that
B(t) — B(0)
t

<M, (3.38)

for all t € [0,T]. This gives the conclusion by considering

mw:mw—mmféﬂhﬂm,

and applying (3.38) with m = M = 0. For ¢ € (0,T], let us denote by I'(t) the quotient in
(3.38). We set T'(0) = 5/(0+) to extend T by continuity at 0. Let § > 0. Assume that there
exists ¢1 € [0,T] such that I'(t;) > M + ¢. By continuity of T, we have ¢; > 0. By restricting
things to [0, 1] if necessary, we can assume t; = T. Let now D(t) = (0) + (M + §/2)t be a
parametrization of the straight-line with slope M + §/2 having the same origin as the graph of
B. We have 5(T) > D(T). Let T denote the infimum of the points ¢ € [0, 7] such that 8 > D
on [t,T]. By continuity, 7 is well defined, 7 € [0,T) and S(7) = D(7). At this stage, a picture
is useful: at the point 7, the graph of § crosses the straight line ¢ — 3(0) + (M + 6/2)t and is
above this straight line on [, T]. It is clear that this contradicts the fact that 5'(7+) < M and,
indeed, the inequality

B(t+h) — B(71) _ B(t+h) — D(7) > D(t+ h) — D(7)

h h h ’
for h > 0 small enough gives, at the limit &~ — 0+, the contradiction §'(74) > M + /2. O

Exercise 3.9 (Carré du champ). The operator
1 2
F:@H§$|<p| — Ly

is called the “carré du champ?”, [1, p.viii].

1. Let F: R? — R? be Lipschitz continuous. Let (X7) be given as the solution to the Cauchy

Problem d
%Xf = F (X)), X§=u.

Compute I' on C} (R9) (bounded C* function with bounded first derivatives).
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2. (For those who know SDEs). Let F be as above and o: R? — M4(R) be Lipschitz contin-
uous. Let (X7) be given as the solution to the Cauchy Problem

AXF = F(XP)dt + o(X7)dWs,  X§ =, (3.39)

where (W) is a d-dimensional Wiener process. Compute I' on CZ(R?) (bounded C? function
with bounded first and second derivatives).

3. In the general case, show that I'(p) > 0 for all .
The solution to Ezercise 3.9 is here.

The results of Theorem 3.7 can be extended to the case where the test function ¢ also depends on
t. We will need this result only in the simple case where the test function has the form 6(¢)p(z).

Corollary 3.9. Let p € D(¥) satisfies |¢|?> € D(&). Let § € CL(Ry) and let ¥(t,z) =
0(t)p(x). Then, the process
t
My = (8, X0) ~ 0(0.X0) ~ [ (0 + 2)(s, X)ds (3.40)
0
is a (F¢)-martingale and the process (Zy) defined by

Zy = | My|* — /0 (0 + L)Y = 200, + L)) (s, X )ds, (3.41)

is a (Fy)-martingale.

Proof of Corollary 3.9. By the Markov property, we have
E[M; — M| Fs]

= 00)(Prop) (X.) = 0(5)(X) = [ (0/(0)(Pamsp) (X,) + 0(0) - (Pa-sp) (X))o

By explicit integration, we see that (M,) is a (F;)-martingale. We compute then
0 + L) =200 + L) = *(Lp|* — 20Lp).

Let us examine the proof of the second part of Theorem 3.7. Since 0 is locally Lipschitz continu-
ous, we have 6(t) = 0(t;) + O(t;), for ¢ € [t;,t;+1]. Using this approximation, it is easy to show,
by adapting the proof of Theorem 3.7, that, in our context, (Z;) is a martingale. O

Exercise 3.10 (Markov process with finite state space). Let (P, Q,X) be a Markov process.
Assume that the state space E is finite, F = {x1,...,21}. We introduce the family of matrices

A(t) = ai;(t), with a;;) = Q(t, x4, {5}), i-e. ai;(t) = Py, (X () = ;).

1. If ¢: E — R, we still denote by ¢ the vector (¢(x;))1<i<r. Give the expression of Py as
a product matrix-vector.

2. If p is a probability measure on E, we still denote by p the vector (u({x;})i<i<r. Give the
expression of P;*u as a product matrix-vector.

3. We assume that t — A(t), from R, into M (R) is of class C'. Show that A(t) = e,
where £ = A’(0) is the generator.
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4. Give the equation satisfied by an invariant measure.

The solution to Exercise 3.10 is here.

Exercise 3.11 (Markov process in discrete time). We consider now a Markov process (X,,)n>0
in discrete time.

1. Assume that the state space FE is finite. How can you rephrase the questions and answers
of the previous exercise 3.107

2. Give and prove the equivalent statement to Theorem 3.7. More precisely, let £ = P, —1d,
let ¢ € BM(FE). Show that

My = o(X,) — 9(Xo) — 3 (X)) (3.42)
k=0
and .
Zy = M — 3 TI(X) (3.43)
k=0

are martingales. In (3.43), I'(¢) is a certain non-negative expression that you will have to
identify.

The solution to Exercise 3.11 is here.

4 Evolution of a random interface

In this part we establish the limit behavior of the symmetric simple exclusion process. More
precisely, we show in Theorem 4.1 that, after an adequate change of scales, the random interface
associated to the symmetric simple exclusion process converges in probability to the solution of
a heat equation.

4.1 Change of scale and limit behavior

Let X, denote the discrete interval Xy, = {0,...,L}. Let Er, be the set of functions H: Xj — R
such that H(L) = 0. Let ES) be the convex subset of Er, constituted of the functions H such
that H(0) =0 and |H(x+1) — H(x)| =1 for all x € {0,..., L — 1}. The space ES) is the state
space for the process described in Section 1.2. To H € E},, we associate a function H: [0,1] = R

defined b,
' H(z) = L7*H(|Lz)), (4.1)

where p = |y|, defined for y > 0, is the integer such that p <y < p+ 1. The map H — H is an
isometry E7, — L?(0,1) when Er, and L?(0,1) are endowed with the respective scalar products

H.G)e, = 75 30 WG, (L) = [ f@gta)d (12)

xe€X

Indeed, given H,G € E},, we compute

o L-1 sl R L-1
.Gy =Y [ BWEWy =Y. SHEOW = (H.Gr,. (13)
x=0"T x=0
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Since H — H is an isometry, a natural left-inverse is given by calculating the adjoint operator.
This is easily done, and we obtain a map L?(0,1) — Er, which, to h € L?(0,1) associates the
function in Ej, given by

Jh(L) =0, Jh(x)= L2/ h(z)dr, x=0,...,L—1. (4.4)

However, we will work preferably with the related application h fVL, defined by ivz(x) =
Lh(L~'x). The reason of this modification is apparent in Proposition 4.5. If h is Lipschitz
continuous on [0,1] and h(1) = 0, then |Jh(x) — h(x)| is bounded by Lip(h). This implies that

(H.,h) 1201y — (H,h)p, | < Lip(h)L™> sup |H (x)], (4.5)
xeXr

for all H € E,. Let hi, be a continuous function on [0, 1], which is 1-Lipschitz continuous and
satisfies the boundary conditions hi,(0) = hi,(1) = 0. Given such a function h;,, we build an
initial datum H;, € E(Ll)
H;, in a certain norm. It is simpler to consider things in the space £y, in which case we require
H;, and the function hi, to be at distance O(1) for a certain norm. Note that the graph of a

profile H € E(Ll) is a subset of the lattice

for the evolution of the random interface. We want h;, to be close to

#={(x,H);x€{0,---, L}, H € Z,},

where we have set Z, = 27 if x is even, Zy, = 2Z + 1 if x is odd. To build Hj,, we draw the graph
Gry, of hiy. Then we choose the closest points of Gry in #Z to obtain the graph of Hy,. We check
that H;j, satisfies the constraint |Hi,(x + 1) — Hin(x)| = 1 (it follows from the fact that hyy, is
1-Lipschitz continuous). We have then

sup |hin(x) — Hin(x)| <1 = sup |Jhin(x) — Hin(x)| < 2, (4.6)
x€Xp, x€X,

hence ||Jhin — Hiy||p, < 2L~ This gives
| Hin — hinllz201) < 2075 (4.7)

Let (H;) be the Markov process described in Section 1.2 (we will show below in Section 4.2 that it
is a Markov process indeed) that starts from Hj,. We fix a time 7' > 0 and consider the solution
to the heat equation on [0, 1] with Dirichlet homogeneous boundary conditions and initial datum
hin: this the function h € L?(0,T; H}(0,1)) such that d;h € L?(0,T; H=1(0,1)) and

(0:h(t), 9) 12(0,1) + (O21(t),029) 2(0,1) = O, (4.8)

for all g € H}(0,1) and a.e. t € (0,T), and h(0) = hiy, see [8, p.374]. We call such a function h
a weak solution to the following problem:

Oth — 02h = 0 in (0, +o0) x (0,1), (4.9)
h(t,z) =0 for (t,z) € (0,+00) x ({0} U {1}), (4.10)
h(0,z) = hin(z) for z € (0,1). (4.11)

We will establish the following result.
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Theorem 4.1. Let hi, be a 1-Lipschitz continuous function on [0,1] vanishing at 0 and 1 and
satisfying hin € H?(0,1). Let h be the unique solution to (4.9)-(4.10)-(4.11) (see (4.8)). Let
H;, € E(Ll) satisfy (4.7), and let (Hy) be the Markov process described in Section 1.2 that starts

from H;,. Then the rescaled process (H’th) converges to h in probability when L tends to +oo,
in the sense that, for all T > 0, for all 6 > 0, one has

lim P | sup ||IA{L2,5 — h(t, ')||L2(0,1) >4 | =0. (4.12)
L—+o0 te[0,T)

4.2 Markov property

We will show in this part that the process (H;) described in Section 1.2 is a Markov process and

give the expression of its generator. First, the general procedure using “clocks”; that transform
discrete-time Markov processes into continuous-time Markov processes is analysed. We begin
this step with a section of remainder about Poisson processes. In a second step, we study the
discrete-time Markov process that gives rise to (Hy).

4.2.1 Poisson processes

Definition 4.1 (Counting process). A counting process (X;);>0 is a cadlag process with values
in N such that

1. Xo =0 a.s,,
2. every jump of ¢ — X; has amplitude +1: X; — X;_ =1 if there is a jump at .

Definition 4.2 (Poisson process). Let A > 0. A Poisson process (on R ) of parameter A is a
counting process (N (t))¢>o such that, for all ¢,s > 0,

1. N(t+ s) — N(t) is independent on F}",

2. N(t+ s) — N(t) follows a Poisson’s law of parameter As:

P(N(t+s) — N(t) = k) = e=* (’\]:!)k. (4.13)

The aim of Exercise 4.3 below is to make the relation between the count of exponential arrival
times (these are the clocks that we use in Section 1.2 for instance) and Poisson processes. This
relation is only partially established in Exercise 4.3. To complete the analysis, we introduce the
notion of Poisson point process in R%. Exercise 4.5 gives several results and the construction of
Poisson point processes. This is used in Exercise 4.6 to complete Exercise 4.3 .

Exercise 4.3 (Poisson process). Let (T},) be a sequence of i.i.d. random variables with expo-
nential law of parameter A\ > 0: P(T}, > t) = e~*. We define a sequence of times Sp, S1,... as
follows: Sy =0 and, forn >1, S, =T1+...+T,. Given an interval I of R, we denote by T'(I)
the number of times S,, that fall in I:

I(I)=#(SNI), S={S.;neN}L
1. Compute the (density of the) law of S,,.

2. Let N(t) =T'([0,¢]). Show that N(¢) is a counting process and is Poisson of parameter At
(hint: P(N(t) =n) =P(S, <t < Sny1)).
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The solution to Fxercise 4.3 is here.

Definition 4.4 (Poisson point process). Let p be a (non-negative) measure on the Borel o-
algebra of R%. Let (Q, F,P) be a given probability space. A Poisson process IT with intensity u
on R? is a map from € into the set of countable subsets of R? such that

1. for all Borel subset A of R,
T'(A) := #{IIN A}

is a random variable,

2. for all disjoint Borel subsets A1, ..., A; of R%, the random variables I'(41),...,T'(A) are
independent,

3. for all Borel subset A of R?, T'(A) follows a Poisson distribution of parameter p(A):

n

In the third item 3, we use the following convention: a random variable X with Poisson’s law of
parameter 0 is concentrated on 0: P(X = 0) = 1. Similarly, a random variable X with Poisson’s
law of parameter +oco is concentrated on +o00: P(X = 400) = 1.

Exercise 4.5 (Construction of a Poisson point process). 1. Let II be a Poisson point process
of intensity p on RY.
(a) Show that p has no atom.

(b) Suppose that p is finite: u(RY) < 4+o00. Let Ay,..., Ag be some disjoints subsets of
R%. Let nq,...,n; and n € N be such that ng :=n — Zle n; > 0. Show that

— — dy _ _ n! no . n
(4.14)
where
Ag =R\ (A, U---UA), (4.15)
and v is the normalized measure defined by
A
o(A) = A (4.16)

In the right-hand side of (4.14) appears the multinomial distribution with parameters n and
bo = V(A0)7p1 = V(Al)a -y P = V(Ak)'

This link between Poisson point processes and multinomial distribution will be exploited to
give a construction of a Poisson point process. It will also be exploited in Ezercise j.6 below
to complete Exercise 4.5.

2. Let p be a finite measure on R? with no atoms. Let v be the probability measure defined
by (4.16) and let X7,..., X, be some iid random variables of law v.

(a) Show that, almost-surely, II,, = {X3,..., X,,} contains n points.
(b) Let I',(A) = #{ANTI,}. Show that I, satisfies (4.14) (with the same n).
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3. Let u be a finite measure without atoms. We use the analysis of Questions 1 and 2 to build
a Poisson point process of intensity ¢ on R?. Let v be the probability measure defined
by (4.16) and let X1, Xo, ..., be some iid random variables of law v. Let N be a Poisson
distribution of parameter u(RY) independent on (X, )n>1. Let Il = {X1,..., Xn}. Show
that II is a Poisson point process of intensity ; on R.

4. Show the following result

Theorem 4.2 (Superposition principle). Let Iy, 1o, ... be a countable collection of inde-
pendent Poisson point processes on RY with respective intensity measures ji1, o, ... Then
= U I,
n>1

is a Poisson point process on RY with intensity measure

= Z“”' (4.17)

n>1

5. Let p be a measure on R? without atoms that can be written as (4.17) where each p,, is
finite. Show that there exists a Poisson point process on R? with intensity measure .

6. Show that a o-finite measure can be written as (4.17) where each p,, is finite.

7. Let A > 0. Consider the case where d = 1, and p is A times the restriction of the Lebesgue
measure to R;. What is the process N(t) = I'([0,¢]) then?
The solution to Exercise 4.5 is here.

Exercise 4.6 (Poisson process - continued). To complete the analysis of Exercise 4.3, it is
sufficient (why?) to show that

P(N(t1) = n1,...,N(tp) = nk)
_ At Al —to))™ T

—Atr—tr—1) (/\(tk — tkfl))nk_nk71 (418)

. e s
(n1 —np)! (ng —ng—1)!
forall 0 <t; <--- <t and n; < --- < ng. We will need the following tools. Let ¢ > 0.
Let Uy, ...,U, be some independent uniform random variables on [0,¢]. The order statistics of
(U, ...,U,) is the rearrangement (U(y),...,Ur)) of the variables U; in increasing order:

U(1)<-'-<U(n), {U(l),...,U(n)}Z{Ul,...,Un}.
Let A denote the subset {0 < u; < w2 < -+ < u, < t} of [0,¢]". The variables U; are
exchangeable, so the law of (U, ..., U(n)) is given by

]E[go(U(l),...,U(n))] :n!/---/Ago(ul,...,un)dul~--dun. (4.19)

1. Show that, conditionally to Ny = n, (S1,...,S,) has the law of (U, ..., Up).

Hint: Express E [@(Sl, e Sn)15”9<5"+1] in terms of the variables T1,...,T,4+1 and do
the adequate changes of variables.

2. Conclude.

The solution to FExercise 4.6 is here.
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4.2.2 From discrete-time to continuous-time Markov process

Proposition 4.3. Let E be a Polish space. Let (X,,)n>0 be a discrete time-homogeneous Markov
chain on E with transition operator P,, n € N. Let N(t) be a Poisson process of exponent A > 0

independent on (Xp)n>o0 and let § = Xypy. Let also (Fy) = (Ft(g’N)) be the filtration generated
by (&, N(t))e>0- Then (&)e>0 5 a time-homogeneous Markov process with respect to (Fi)i>o0,
with transition operator and infinitesimal generator given by

II; =exp(=At(Id — P)), £ =-XId-P), (4.20)
respectively.

Proof of Proposition 4.5. Note first that P, = P[* for all n > 0. This is the semi-group property
in discrete time. Then, we want to establish the following kind of Markov property: for all
A e F, for all ¢ € BM(E),

E []-A‘p(Xn-&-N(t))] =K [1Apn<P(XN(t))] . (421)

Indeed, (4.21) means that E [o(X, 1 n@))|[Fe] = Pie(Xn()). Assuming that (4.21) is satisfied
for the moment, we use the decomposition

Elo(Xn(t+s)|Ft] = ZE (XN (t4+5) IN(t45)—N(t)=n|Ft]-
n=0

By independence, this gives
Elo(X N (t45))|Ft] = Z P(N(t+ s) — N(t) = n)E[o(X N () 4n) [ Ft]-

In the last summand, we replace

BV(+ )~ Nt =) = O Rl 1F) = Pre(Xva)
The summation over n gives E[p(&i45)|Ft] = (sp) (&), where I1; is defined by (4.20). It follows
that (&)¢>0 is a time-homogeneous Markov process with respect to (Fi)i>0. It is also clear
that .2 = —(Id — P1). To establish (4.21), we observe that each side of the equality defines a
set-function, by dependance on A, which is a finite measure. By [3, Theorem 3.3], it is sufficient
to prove (4.21) for all sets A in a class M which is a m-system generating F;, in the sense that
o(M) = F;. To that effect, we consider the class M of sets of the form BN DN {N(t) = m},
where m € N, B € FX, D € FN. Tt is clear that M is a m-system. The o-algebra F; is
generated by all the random variables Xy, ..., Xn(,) and N(s1),..., N(sg) for j,k € N* and
times t;,s; < t. By considering all the possible values taken by N(t1),...,N(t;) and N(t), the
event
{XN(tl) ely,... ,XN(tj) S Fj,N(Sl) e Fq,... ,N(Sk) S Ek},

whereI'y,...,I'; € B(E), E1,...,E, CN, can be written as a union over m; € N,...,m;,m € N
of the intersection A := A; N As N {N(t) = m} of the events 4; = {Xm1 €ly,.... X, € I‘j}
with the events

Ay = {N(tr) = mi,...,N(t;) = m;} 0 {N(s1) € En,..., N(si) € Ei}.
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Since N is non-decreasing and ¢; < t, the set A is possibly non-empty only if the integers m;
are all smaller than m. In the latter case, we have A € M. We conclude that (M) = F;. For
A=BNDN{N(t) =m} € M, we have then

E [1A90(Xn+N(t))} =P(DN{N(t) =m}E [1po(Xnim)]

by independence. By the Markov property, E [15¢0(Xp4+m)] is equal to E [15P,¢(X,,)]. We use
independence again to conclude. O

Exercise 4.7 (Poisson process as Markov process). Let (N (¢)) be a Poisson process of parameter
A > 0. Show that (N(t)) is a Markov process, give the transition semi-group and the generator.
The solution to FExercise 4.7 is here.

4.2.3 Markov property for the symmetric simple exclusion process

The evolution of the symmetric simple exclusion process is described in Section 1.2. Recall that
we are in the situation where L = 2NN, and that, to a given configuration n of particles, is
associated the function H € E, given by

x—1

H(x) = Y (2n(y) - 1). (4.22)

y=0
The evolution of (H;) can thus be described as follows

1. Let X} :={0,...,L —1}. Draw a family (Tx)xeX/L of independent exponential variables of
parameter 1.

2. Select the point x, such that Ty, = infyele T5.

3. Perform the transformation Hr, — — Hr, according to the rule of evolution of the sym-
metric simple exclusion process.

4. Start over.

Let us first give some precisions on step 3. Then we will discuss the steps 1-2 can be replaced
by the following procedure. Let

EVY) = {H € E; H(0) = 0}

Introduce the discrete Laplace operator Ap: Eéo) — Eéo) defined by ApH(x) =0ifx=0o0r L
and
ApH(x)=H(x+1)+ H(x—-1)—-2H(x), Vxe{l,...,L—1}, (4.23)

The index D in Ap is for “Dirichlet”, since Ap is actually the discrete Laplace operator with
homogeneous Dirichlet boundary conditions. Consider the transformation

H« H+0,ApH (4.24)

where
Ox(y) = 1y—y, x€ Xp. (4.25)

We consider the graph of H (when H is extended as a piecewise affine function). Examining 4.25
shows that (4.24) is the transformation that flips a corner at x (local extremum) in a the graph of
H into the opposite corner (nothing happens if H has no local extremum at x). We also consider
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the different possible configurations of particles, to observe that, when the site x is selected at
time ¢, H;_ becomes Hy_ + 0yt ApH;—:

Ht_ — Ht_ + 6x+kADHt— (426)
where k is a random variable (independent on the variables Ty) with Bernoulli distribution
b(1/2): P(k = 1) = P(k = 0) = 1/2. Let us now discuss the steps 1-2. We assert that it can
be replaced by the following procedure: draw a time 7" with exponential law of parameter L,
select, independently a site x € X} with uniform law (and then perform (4.26) at time ¢ = T).

Indeed, if T and T are two exponential independent random variables of parameters A and X,
then T'A T’ is also an exponential random variable of parameter A + \':

P(TAT >t)=PUT >t} n{T" > t}) =P(T > )P(T' > t) = e Me Nt = ¢~ AN,

Let
() =P |T, = inf T,;T, >t|.
Px(t) [ yex: y ]
Clearly, px(t) = py(t) for all x,y € X} . Since T := infyex; Ty is exponential of parameter L, this
gives

1 .
pe(t) =7 > py(t) 7P U (= yle%gz Ty; Ty >t}
yeEX ] zeX ]

which is simply
1 - -
pe(t) = ZP(T >t) =P =x,T>1t),
where Y is uniform in X and independent on T. With that approach, we see that H, = Hy(4),
where (N(t)) is a Poisson process of parameter L and (H,) is an independent process that evolves

in discrete time as follows
Hppp =Hy + §Y+kADHn

The process (H,,) is Markov and time-homogeneous with transition operator P; given by

L—-1
1 1 1
Pip(H) =Ene(th) = 7 > [2@(1[1 +0:ApH) + So(H + 0x1 ApH)
x=0

L-1
1 1 1

x=1
From Proposition 4.3 and (4.27), we deduce the following result.

Theorem 4.4. Let E(Ll) be the set of functions H: X5 — R such that H(0) = 0 and |Hyq11 —
Hy| =1 for all x € X1, (in the case x = L — 1, we use the convention H(L) = 0). Let Ap
and 0 be defined by (4.23) and (4.25) respectively. The symmetric simple exclusion process (Hy)
described in Section 1.2 is a Markov process with generator £ given by

L-1

Lo(H) = (p(H + 6;ApH) — p(H))

x=1

4 o (o UH + BoApH) — (H)) + o (o(H + 5 ApH) — o(H)), (4.28)

with domain the set of functions p: E(Ll) — R.
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4.3 Deterministic limit

The result of Theorem (4.1) is a kind of law of large numbers (a “functional law of large num-
bers”). Indeed, let us introduce the average (H;) = E[H;]. The convergence (4.12) is a conse-
quence of these two following facts:

1. after change of scale, the symmetric simple exclusion process is close to its average value
with high probability: for all 6 > 0,

lim P( sup |[Hp2e — (Hpze)llr200) >0 ) =0, (4.29)
L—+o0 t€[0,T]

2. we have the deterministic convergence

lim sup |h(t,-) — <I:IL2t)HL2(O’1):0, (4.30)
L—=+coteio,1)

where h is the solution to (4.9)-(4.10)-(4.11).

In this section, we will establish the convergence (4.30). Before we proceed, let us study (H;)
more closely. Given x € {1,...,L — 1}, we consider the evaluation map my: H — H(x). We
have (H(x)) = Eny(H;) = Pymx(H). By definition of the generator £ the derivative in time
is 0y (Hy(x)) = P.%Lmy(H). The explicit formula (4.28) gives Lmy(H) = ApH(x). By linearity
of the operator Ap, we deduce that 0;(H(x)) = Ap(H(x)). After examination of the various
boundary conditions, we conclude that (H) is solution to the following problem:

Oy (Hy) — Ap(Hy) =01in (0,400) x {1,...,L —1}, (4.31)
(H(0)) =0 for all t € (0,400), (4.32)
(Ho(x)) = Hin(x) for all x € {1,..., L —1}. (4.33)

Different approaches to the convergence result (4.30) are possible. Our proof will be based on a
spectral decomposition that will be exploited also to establish the averaging property (4.29) in
Section 4.4.

Proposition 4.5 (Spectral basis). The Laplace operator with homogeneous Dirchlet boundary
conditions in dimension 1, which is the operator —02, with domain

D(—82) = {h € H*(0,1); h(0) = h(1) = 0}

admits a spectral basis (ax)ken+, where ag(x) = ﬂsin(wkx), This constitutes an orthonormal
basis of L?(0,1). The eigenvalue associated to ay, is juy = 72k,
Let E(LO) be the subset of Ey, constituted of the functions H such that H(0) = 0. The discrete

Laplace operator —Ap: E} ©) — E(O) is self- adjomt and admits the spectral basis (Gg)1<kp<r—1-
The eigenvalue associated t0 Gy s v, = 4sin? (”k)

Proof of Proposition /.5. We simply give the proof of some assertions about the discrete case.

If we extend any H € E(LO) to the value L by setting H(L) = 0, then for H,G in E(LO), we easily
check that —ApH = D_ o D, H, where

D,H(x)=H(x+1)-H(x), D_H(x)=H(x)—H(x-1).
Then we use the formula (D_H,G)g, = —(H,D,.G)g, to get
(-ApH,G)g, = (D+H,D,G)g, = (H,-ApG)g, . (4.34)
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This shows that —Ap is self-adjoint. We also have —Apay = vgay, with
) . k
vp = (€L 4 e R/L _ 9) = 4sin? (;) . (4.35)

The second identity in (4.35) uses the elementary trigonometry formula
1 — cos(2a) = 2sin’(a) (4.36)

Let 1 < k,l < L—1. Using (4.34) and the fact that v # v, if k # [, we obtain the orthogonality
relation (dg, a;) g, = 0 when k # I. If k = [, the trigonometric identity (4.36) gives

L-1
(g, ar)p, = L' Z (1 —cos(2mkx/L)) =1 — L™ 'Re <Z eQi”kx/L> =1

x€X x=0

The family (Gx)1<k<r—1 is free since (Gx, &;) g, = dxi. It constitutes a basis of E(LO) hence, since,
clearly, dim(E(LO)) = L — 1. This concludes the proof. O

It follows from Proposition 4.5 that the solution h to (4.9)-(4.10)-(4.11) is given by

h(t) = e M iy, ak>L2(o,1), (4.37)
=1

and that (H;) is given by
L—1
(H) =Y e "((Hin), @), . (4.38)
k=1

Regularity of functions can be expressed in terms of decay of the “Fourier” coefficients. This is
what accounts for the following result.

Lemma 4.6. Let hy, be a 1-Lipschitz continuous function on [0,1] vanishing at 0 and 1. Let h
be the unique solution to (4.9)-(4.10)-(4.11) (see (4.8)). Then

V2
sup [(h(t, ), ar)r20,1)| < ey

, 4.39
te(0,T) k ( )

for all k > 1, where (ag)ren+ s the orthonormal basis defined in Proposition 4.5.

Proof of Lemma 4.6. At time t, we have (h(t,-), ak>Lz(0,1) = e_“kt<hin,ak>Lz(0,1). It is sufficient
to consider the case t = 0 therefore. The estimate (4.39) then follows from the fact that the
function h;, is 1-Lipschitz continuous. Indeed, integration by parts gives

x \/§
(hin, @) r2(0,1) = = (Wi A¥) 1201y, Ar(z) = / ar(y)dy = 7(1 — cos(rkx)),
0

T
and then the bound [(hin, a*)12(0,1)] < V2/7k. O
We need a result similar to Lemma 4.6 on functions of the discrete variable x € X ..

Lemma 4.7. There exists a constant C > 0 such that

C N C
= |(H, ak)r2(0,1)| < Z (4.40)
for all H € E(Ll), forallk € {1,...,L — 1}, where (a)ren~ is the orthonormal basis defined in
Proposition 4.5. One can take C' = V2.

|(H, k) e, | <
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Proof of Lemma /4.7. This time we use a discrete integration by parts:

(H.ix)p, = 75 Z H(x — 1)) By(), (4.41)

where By(x) := V2L Z}f;xl sin(kry/L) satisfies | By (x)| < v2L2k™! for all x € Xz. Indeed, we
compute

1— eiwk(fo)/L

202

= |1 = ek /L

L—-1
Im E 67,'71'ky/L

y=x

|Bi(x)] = V2L

1 — eink/L

S\@L‘

We have

11— e™*/ | = 2sin(nk/(2L)) > 2k/L,
since sin(z) > (2/m)z if © € [0,7/2], which gives |Bg(x)| < v2L?*k~" as desired. The product
(H,ag)r2(0,1) satisfies an identity similar to (4.41), with

—1 rG+D/L
Bi(x) := L2\/§Z " sin(rkz)dz.
y=x"Y

Using the bound

2L? 2v/2L2
|Br(x)| = V2 | cos(mk) — cos(mkx/L)| < \fk ,
™
we obtain the second estimate in (4.40). O
Proof of the convergence (4.30). Let K (L) satisfy
lim K(L)=+oco, K(L)=o(L*?).
L—4o00
By Lemma 4.6, Lemma 4.7 and the Parseval identity, we have
K(L)
sup e = (il = s D [(b(e) = i andiacy o| Fo) (442
te[0,T] te[0,7]

when L — +o00. We will show that (4.42) can be approached, still with an o(1) error, by

? (4.43)

sup ak L2(0,1) — <<HL2 > >E
te[0,T] kzl | (1 ! v

We use (4.5) and the fact that H(x) < L for all x € X, when H € E(Ll). Since Lip(ay) = O(k),
we obtain

K(L) 5 K@)

S (e adh e = (Hez e, | = 0[O = O(L2K(L)*) = o1) (4.44)
k=1 k=1

where the O and o are uniform in ¢ € [0,7]. Now we can use the spectral decompositions (4.37)
and (4.38) to see that (4.43) is equal to
K(L) )

sup Y e~ hin, ax) 20,1y — € X (Hin, k) iy | - (4.45)
te(0,T] .=
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Let us compare (hin, ax)r2(0,1) to (Hin, dx) g, - By (4.6), we have

sup [hin(2) — Hin(@)] < L™ sup [hun(x) — Hin(x)| < L1
z€[0,1] x€X

We have also

sup |hin(@) — hin(2)] = sup |hin([L]/L) — hin(x)| < L7,
z€[0,1] z€[0,1]

since hi, is 1-Lipschitz continuous. Finally, we can estimate the L2?-norm by the L>-norm to
obtain ||hin — Hinll12(0,1) < 2L7* and

|<hin7ak>L2(O,1) - <I:[inaak>L2(0,1)| < 2L (4-46)

By (4.5), we also have (Hi,,dr)g, = <ﬁinaak>L2(0,1) + O(L7'k). An estimate similar to (4.44)
then shows that (4.45) is equal (up to o(1)) to

K(L)

s 12
sup e~Hrt = Lvktl (p ak>2L2(071). (4.47)
tel0,T] 1

At that point, we need to compare the eigenvalues ju;, to the rescaled eigenvalues L%v,. The two
standard inequalities 2z < sin(z) < z, [sin(z) — z| < 23, for 0 < 2 < Z, have the consequence
that there exists a constant C' > 0 such that

4 K3
3 < Lo < pgy, g — LPp < Cf’ (4.48)
for all k € {1,---,L —1}. Using (4.39), we deduce that (4.47) is bounded from above by
C*TL™?K (L) ||hin| 20,1,

which is o(1) since K (L) = o(L?/%) by hypothesis. This concludes the proof. O

4.4 Averaging

In this section, we will establish the convergence (4.29). We use (4.3) and Proposition 4.5, which
give
L-1

1H e = (Hro)3 200 = D [(Hroe = (Hro), i), (4.49)
k=1

We need to analyze the behavior on [0, L>T] of the process (Hy,ax)g,, which is of the form
or(Hy), with ¢p(H) = (H,dg)gp,. The formula (4.28) for the generator £ of (H;) gives
Lor(H) = (ApH,d,)E,. By Proposition 4.5 and the fact that Ap is self-adjoint on E(LO)7

we obtain Lyr(H) = —viper(H), when H € Eg)). Let us then apply Corollary 3.9 with
P(t, H) = e"*' i (H). The quantity (0; + £)¢ vanishes and we obtain that

M = e (H, i), — (Hin, dr) e, (4.50)

and .
k) @ [ 2us s
zZ" =M, e (&l 201 L k) (Hs)ds (4.51)
0
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are both martingales. Since ¢t — E [Mt(k)} is constant, by the martingale property, and vanishes
at t = 0, we have
0= B [M®] = e (), ) 5, — (Hins ),

Consequently our quantity of interest is (H; — (Hy), dg) g, = e‘”’“tMt(k). We can use the Doob’s
martingale inequality (Theorem 2.2 with p = 2), and the trivial bound e~“** < 1, to obtain the
estimate

. 4
P ( sup |(Hy — (Hy), a1, | > a> < SEIMYE) |2 (4.52)
t€[0,L2T) a

Since E [Zt(k)] =0, (4.51) gives us the bound from above

5 4 LT
P ( sup |[(Hy — (Hy),di) g, | > a) < —2/ XS (Llokl? — 20k Lor)(Hy)ds.  (4.53)
t€[0,L2T) a= Jo

We will compute the “carré du champ” .Z|pi|? — 20k L) to understand better what gives
(4.53). Before we start, let us pause a moment to consider the inequalities that we have used.
We come back to (4.52) in particular, where we have discarded the term e~ '. We may have
lost something here. If k is O(1), then vy, is of order L2 for L large, and t ++ e~¥** is not smaller
than a given positive constant on the time interval [0, L2T). If k takes greater values, then things
are different. However, as soon as k > K (L), where K (L) is a quantity that grows to 400 with
L, but possibly very slowly, we can use the bound of Lemma 4.7 to get the estimate

L—-1

y 1 _
> WHpee— (Hpa),an)p, |* < C* ) = < C?K(L)~". (4.54)
k=K (L) E>K (L)

We have only to consider the indexes k < K(L) hence. If this is not exactly a bounded range of
indexes, we will see that the loss of the e~"** factor in (4.52) is not a problem.
We go back to the computation of the carré du champ now. We can write ¢y as the sum over

x € {1,...,L—1} of L73d,(x)my, where my is the evaluation at x. We need to compute £ (7, @y)
therefore, where 7y, ® 7y(H) := H(x)H(y). By (4.28), this is
L—1
L (me@my)(H) = Y [(H(x) + 6.(x)ApH(x))(H(y) + 6(y) Ap H(y)) - H(=)H(y)],
z=0

which is equal to H(y)ApH (x) + H(x)ApH(y) if x # y, and to 2H (x)ApH (x) + |Ap H (x)|? if
x =y. We obtain

L—-1
(LIenl? 200200 (H) = 25 3 ) PIAp Hx) . (155)

x=1

If H e E(Ll), then |ApH(x)| < 2 for all x. This shows that the right-hand side of (4.55) is
bounded by 4L73||ax |7, . Since @y is normalized, we conclude finally that

0 < (Llerl® — 208 Lok)(H) < 4L72, (4.56)
for all H € Eg). Let 6 € (0,1/2) be fixed and let A;, denote the event

A= ﬂ { sup [(Hy — (Hy), i), | < L_e}.
1<k<F(r) (tEOLT]
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Let us choose K(L) = (log(L))'/3. We will show that we have then limy,_, ., P(AL) = 1. By
(4.49) and (4.54) and, we see that

e [Hp2e = (Hp2e)l|72(0,1) < C*(log(L))~? + (log(L)) /2L,
|0,

when Ay, is realized, so it is clearly sufficient to prove limy_, 1o P(AL) = 1 to get the desired
result. The union bound gives

PAZ) < Y P ( sup |(H, — (Ho), ax) s, | > L0> .
<heorm(r) \t€[0.L?T]
Using (4.53) and (4.56), we obtain

el/k L2T

I/kL2 '

L*r
P(Ag) <16L* > / e L73ds < 161271 ) (4.57)
0

1<k<K(L) 1<k<K(L)

From the inequality 2z < sin(z) < z for 0 < = < %, we infer that v, L? is bounded between 16k
and 47%k2. We deduce then from (4.57) that

2.2
. 20-1 etm kT 20—1_4m>T(log(L))*/?
P(AS) < L ) o < SL e :
1<k<K(L)

where S =37, -, k7% = 7%/6 is finite. This shows that limp_, o P(AL) = 1, as required.

5 Conservation laws and the Finite Volume method

5.1 Discrete conservation laws, continuous limit
We go back to Section 1.1 of the introductory part. We considered a discrete evolution equation
At
1
uit =it 2 IKILQE (5.1)
LEN(K)

The quantity u} represents the density of a certain extensive quantity u in the space-time cell
K X (tn,tns1). The time grid is constituted from the discrete times top < t1 < -+ < t, < -+,
where t,, = nAt, n € N for a fixed time-step At. The space R? is partitioned as follows: we are
given a family T of disjoint open bounded sets such that:

e for all distinct K, L € T, the interface K N L is contained in an hyperplane of R¢,

e up to a negligible set for the d-dimensional Lebesgue measure, the union of the sets K in
T is equal to R

We also use the following notations:
e K|L is the intersection K N L,

e | K| is the d-dimensional Lebesgue measure of K and |K|L| is the d—1-dimensional Lebesgue
measure of K|L,
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K|L

Figure 2: A mesh in R?

e N(K)={LeT;0<|K|L| < +oo} is the set of neighbors of K,

e when K € T and L € N(K), nk_,, is the outward unit normal to K along K|L and Q"% _, ;
is some numerical flux, At Q% _, ; representing the amount of u that has passed from K to
L trough the interface K|L on the time interval (t,,%,1).

In the introductory section 1.1, we also assumed that the condition

QTILJHK = _Q?(%Lﬂ (5‘2)

for all n € N, for all K, L € T being neighbors, is satisfied. The condition (1.3) ensures that, in
the time interval (t,,t,+1), the (algebraic) quantity of u transferred from the cell K to the cell
L is the exact opposite of the quantity of u transferred from L to K: no loss or creation of u
occurs at the interface K|L. Define

h = sup diam(K), upar= Z Z U LR [t i) (5.3)
KeT neN KeT

Under some additional conditions on the the discrete fluxes Q% _, ;, we will study the limit when
h, At — 0 of uyp, ;. We will show that we obtain in the limit a conservation law

Ayu + div,(Q) = 0, (5.4)

where @ = Q(x,t). There are various instances of such conservation laws. For example the heat
equation 0, — div(KVu) = 0 or the diffusion equation 0; — div(DVu) = 0, the flux being then
given by the the Fourier law, Q = —KVu, or the Fick law, Q = —DVu respectively. An other
example is the continuity equation

Oyu + divy(au) = 0, (5.5)
where a is a vector-field over R%. The continuity equation can be rewritten
Ou+ a - Vyu + divy(a)u =0, (5.6)

and coincides with the transport equation Ou + a - V,u = 0 when « is divergence-free. We can
also mention the Fokker-Planck equation of the kinetic theory of gases,

Of+v-Vof + F(x) -V, f =divy (Vo f +vf), (5.7)
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which is of the form (1.4), or more precisely 9, f + div, ,(Q) = 0, with a flux

2= (s s +09)
F(x)f = (Vof +vf))"
In all these examples, the equations are linear. We can also consider the non-linear equations
Ou — Ad(u) =0, (5.8)
or
Opu + div, (A(u)) = 0, (5.9)

where A: R — R%. The hydrodynamic limits of particles in stochastic interaction that we will
consider later can be of very different types, including in particular (5.8) and (5.9). Although
both (5.8) and (5.9) may be considered in our framework, we will restrict our attention to models
with (5.9) as continuous limit. We refer to [11] for the derivation of (5.8).

5.2 Discrete fluxes

We will begin this section with a discussion on expected discrete fluxes in some specific situations,
before giving the description of our general framework. First let us start from (5.9), and see how
this can approximate by a discrete system of equations (this is the usual procedure in numerical
analysis). Let us integrate (5.9) on a space-time cell K X (¢,,,t,+1). We assume that u is smooth
for simplicity (beware that this is typically not the case of the solutions to (5.9)). Using Stokes’
formula, we obtain

n41
/ w(tpt1,x)dx —/ (tn,z)d / / - ndodt. (5.10)
K K oK

We use the approximation
/ W(tm, x)dx ~ |K|up
K
and develop

/ A(u) - ndo = / A(u) - ng_rdo. (5.11)
oK KL

This gives us the equation

n+1
utt = Z / /K ) - nx_spdodt. (5.12)

LeN(K)

LeN(K)

We would like to use an approximation like
n+1
/ / nK_>LdO'dt Atn‘K|L|A(ug}I) *NMK—L,
K|L

where M is either the cell K or the cell L, but, precisely, how to make this choice? The study
of linear equations gives some insight on this problem.
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5.3 Discrete fluxes for linear equations

Consider the continuity equation (5.5). Assume for simplicity that the vector field a is constant.
Then (5.5) is equivalent to the transport equation (5.6). What one would observe by looking at
the behavior of the solution to (5.6) on the interface K|L between the times ¢, and t,41 is a
flow of w across K|L in the direction u. Let ng_,; denote the unit normal to K along K|L in
the direction of L. The value of |a - nx_ | ponders the amplitude of the flux across K|L, while
the sign of a - ng_1 determines the direction of the flow of u across K|L. It is quite natural
then to set Q% _,; = a-ngpuf if a - nxg_p > 0. The condition of conservation (5.2) will be
satisfied then if we also set Q% _,; = a-ng_ru} when a-ng_,;, <0. This can be summed up
in the formula

)+

wor = (a-ngp)Tuk —(a-ng_p) uy. (5.13)

A generalization of (5.14) in the case where a is a non-constant vector field is
Qi = a?{—»L“?{ - aI_(—>Lu1[1n (5.14)

where

1

IKIL] Jkr a(z) -ng—rdo(z). (5.15)

OK L =

A further generalization of (5.13) can be given in the case where the flux A(u) in (5.9) actually
depends on z also and is of the form A(z,u) = f(u)a(z), where f is a non-decreasing locally
Lipschitz function R — R and a: R? — R? is a divergence-free smooth vector field. Indeed,
(5.9) can be rewritten as the non-linear transport equation dyu+ f'(u)a-V,u = 0 and, using the
definition (5.15), the sign of f'(u)ax 1 is the sign of ax_,1, since f/(u) > 0. In that situation,
one can consider the flux

Q= af f(uf) —ax_, f(u}). (5.16)

5.4 General monotone fluxes

Consider the case of a general flux A in (5.9). By general flux A, we mean any function A: R — R¢
that is locally Lipschitz continuous. Sometimes, we also the consider the extension to some fluxes
A(z,u) depending also on the space variable. What kind of numerical flux may be compatible
with such an expected limit as (5.9)7 Inspired by the examples in Section 5.3, we look for some
numerical fluxes Q% _,; given by a relation

?(%L = AK%L(U?OU%% (5'17)
where Ak _, 5, is a function with the following properties:

1. compatibility with the flux A:
AKHL(U,'U) :A(’U) TNK-sL, (518)
for all v € R,

2. regularity: the function Ag ., is locally Lipschitz continuous: for every R > 0, there exists
a constant L4(R) > 0 such that

[ A= (v,w) = Ao p (v, 0')] < La(R)(Jo = ' + |w — w']), (5.19)

for all v,v',w,w’ € [-R, R] and for all neighboring cells K,L € T,
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3. monotony: for all v,w € R, the function Ax_,r(v,-) is non-increasing, while the function
Ak (-, w) is non-decreasing,

4. conservation property:
AK_>L(’U,1U) = 7AL_>K(w,’U), (520)
for all v,w € R and for all neighboring cells K, L € T.
If we choose the definition (5.17) of the flux, then (5.20) yields the conservation property (5.2).
There is some redundancy in the properties required above: (5.20) and the single fact that
Ak 1 (v,-) is non-increasing implies that Ax_, 1 (-, w) is non-decreasing for instance. In the next

two paragraphs we infer some consequences on the discrete evolution equation (5.1) of (5.17),
(5.18), (5.19), (5.20) and the monotony properties of Ax_, ..

Exercise 5.1 (Godunov flux, Engquist-Osher flux). Define A% . (v,w) as follows: if v < w,
then A, (v,w) is the minimum value of u — A(u) - nx_ 1, on the interval [v,w]. If w < v,
then A%, (v, w) is the maximum value of u — A(u) - nx_ 1, on the interval [w,v]. Define also
AEO (v, w) by the formula

AR o) = | “(al€) - nsr) e — / " (al€) - ) e,

where a(u) = A’(u). Show that A ., and AEC ; have the required properties and show that
they coincide with the upwind flux (5.13) in the linear case A(u) = au.
The solution to Ezercise 5.1 is here.
5.5 Constants as solutions
Any constant function u% = v is solution to (5.1). By (5.18), we have indeed
S OIKILIQk = > IKILIA®W) kL= Y / A() - ng_pdo(x).
LEN(K) LeN(K) LeN(K) 7 KIL

We use the Stokes formula

/ U(z) ng_pdo(z) = / div ¥(z)dz, (5.21)
LeN (k) "’ KIL K
to obtain
LeN(K)
as desired.

Exercise 5.2 (Spatially dependent flux). Assume that A(z,u) satisfies the divergence-free con-
dition (div, A)(z,u) = 0 for all uw € R. Assume also that Q% _, ; is given by (5.17), where Ax_, 1,
satisfies the following generalized version of (5.18):

1
Ag_p(v,v) = K| i A(z,v) - ng_pdo(x). (5.22)

Show that constant are solutions.
The solution to Exercise 5.2 is here.
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For later use, we record the identity

> IK|LIAk S (ufe, ufe) =0, (5.23)
LeN(K)

valid for all neighboring cells K, L € T. We can use it to transform (5.1) into the identity

At, n o.mn n o ,n
U?{“ =ug + Z |K|L[[Ak 1 (uk, uk) — Ax—r(uf, ur)]. (5.24)

| | LeEN(K)

On the formula (5.24), we can see the stabilizing effect of the monotony of the numerical flux.
Imagine that u' > u} for all neighboring cells L of K. Then

Axoip(uf,uk) — Ao (uf,uy) <0
for all L since Ak _.,1 is non-increasing in its second argument, which implies that u’}{“
The estimates in the following two sections essentially use this.

n
< uk.

5.6 Comparison principle
5.6.1 Periodic discrete conservation law

In all that follows we will consider for simplicity a periodic setting. We assume that the mesh T
is periodic, in the sense that there exists a mesh 7% of the hypercube (0,1)% such every K € T
is the translation of an element K* of 7* by a vector of Z%. We also assume that K ~— u%
is periodic, in the sense that K ~ L (where the relation of equivalence K ~ L is defined by
K =/(+L,¢ecZ implies uf = uY. This will be the case if we assume, as will be done later,
that

1
VK € T,ud = —/ uo(x)dz, (5.25)
K| Jx
where ug: R? — R is Z%periodic. We denote by T? the d-dimensional torus T = R?/Z¢.

5.6.2 Comparison principle and consequences
Remember the notation (5.3):
Uh,At = Z Z U LR [t b))
neNKeT
Note in particular that, if F': R — R is continuous, then
/ Flunaeltn,2))dz = 3 [K|F (). (5.26)
T KeTt

Proposition 5.1 (L'-contraction). Let up at and vy ar be two sequences defined by (5.1), with
a flux given as in Section 5./. Define

Rie(up.ar) = max {[u}; L € N(K)U{K}}, |0K|:= > |K|L|.
LeN(K)
Let n € N be fized, and assume that the conditions
At|OK|
K]

AHOK]|

2
K]

La(Ry(unat)) <1, 2

La(Rg(vnat)) <1 (5.27)
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are satisfied for all K € T, where Ly is defined in (5.19). We have then

/ (.t (bnst) — On.ae(tnss)) Tz < / (un.ae(bn) — vn.ac(tn)) Fda. (5.28)
Td Td

Remark 5.1 (CFL condition). Recall that h is defined in (5.3) by h = sup g5 diam(K). Suppose
that there exists az > 0 such that

1
ah? < |K|, |0K|< =h%, (5.29)
«

for all K € 7. Then (5.27) is satisfied if
At < Ch, (5.30)

where C™! = 2a72L 4(R), and R is a bound for all the quantities R (w), w = up a¢ Or vp, At (We
will see soon how to ensure that R is finite). The condition (5.30) puts a constraint of the size of
the time step, depending on the size of the space-step h. It is called a Courant-Friedrichs-Lewy
(CFL) condition.

Exercise 5.3 (Spatially dependent flux). Give some examples of meshes in dimension d = 2
which do not satisfy one of the two bounds in (5.29).
The solution to Exercise 5.3 is here.

Proof of Proposition 5.1. Here, and later in the analysis of (5.1), we will use the notation
a Ab=min(a,b), aVb=max(a,bd). (5.31)

We have then the formula
(u—v)" =uVo—u, (5.32)
for all u,v € R. Our first goal is to estimate u"K+1 \Y v?‘l. Let us consider the right-hand side
of (5.24). It is a non-decreasing function of the variables u?, L € N(K). With respect to the
variable u’, it can be written as a sum Id+ f, where f is a locally Lipschitz continuous function.
On the domain where Lip(f) < 1, it will be also an non-decreasing function of /. Actually, our
function f here is has the form F(u,u,u), where
Aty,
F(ui,uz,u3) = 7 Z |K|L|[Ak (w1, u2) — A1 (us, ul)]
| | LeN(K)

is a non-decreasing function of u;. We are only interested in the Lipschitz dependency of this
function with respect to us and us, which, using (5.19), is bounded by the first term in (5.27).
To sum up, as long as the first condition in (5.27) is satisfied, we have

it = Hp (ul, ut; L€ N(K)), (5.33)
where HJ: is a non-decreasing function of its arguments. We deduce, under (5.27), that
uitt v ottt < HE (e Vol ul Vol L € N(K)), (5.34)
for all K € 7. Then we use (5.32) and (5.33) to obtain the inequality

(ufptt — oYt < HE (Wl Vo, uf Vol Le N(K)) — Hy (v, v} L € N(K)). (5.35)
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We write (5.35) under the form

(it — iy

n n Atn n n n n n n.,,n n
< (ug —vR)T + ﬁ Z |K|L|[® s (ufe, ugs vy, Vi) — Pror (U, ul; v, vp)],  (5.36)
LeN(K)
where
D (v,wyv,w') i= A (v Vo, wVaw') — Ag (v, w'). (5.37)

We multiply (5.36) by | K| and sum over K € T*. It gives us the desired estimate (5.28), provided
we can show that

Z Z |K‘L|[(I>KHL(UTIIOUTIL{VU?OU?() _(I)KHL(U?OUTIL,;U?OUQ)} =0. (5'38)
KeTt LeEN(K)

The cancellation property (5.38) follows from the two identities

Z |K|L|[® k-1 (ufe, uk; Vi, v ) = 0, Z Z |K|L|®@ g 1 (u, up; vfc, vE)] = 0.
LeN(K) KeT? LEN(K)
(5.39)
The left identity in (5.39) follows from (5.23). The second identity in (5.39) is a consequence of
(5.20) and of the formula

>y MKJ»:% > Y (a(K,L) +a(L, K)), (5.40)

KeTt LEN(K) KeTt LEN(K)

satisfied by any periodic function a: 7 x 7 — R. Indeed, if K, € 7% and L, € N(K), then the
term a(L., K,) in the right-hand side of (5.40) will appear in the sum on the left when K = L,
and L = K, (in the case where the interface K,|L, is on the boundary of (0, 1), we need to use
the periodic character of a to complete this argument). O

From Proposition 5.1, we deduce first a comparison principle and an L estimate.

Proposition 5.2 (Comparison principle, L! estimate). Under the hypotheses of Proposition 5.1,
we have

lun,At(tn+1) — Vn,at(tntr)|de < [un,at(tn) — vp At (tn)|de. (5.41)
']I‘d, 'H‘d

Besides, if vnat(tn) > unat(tn) a.e. in T, then vy a¢(tni1) > unae(tni1) a.e. in T

Proposition 5.3 (Comparison principle, L estimate). Assume |up a¢(0)] < R a.e. in T9.
Then, under the CFL condition

Atn|0K

VK € T,¥n>1, 2
K|

La(R) <1, (5.42)

we have the L™ bound |up a¢(t)] < R a.e. in T%, for a.e. t > 0.

Proof of Proposition 5.2 and Proposition 5.3. We exchange the roles of up A+ and vj, a+ to deduce
the Ll-contraction (5.41) from (5.28) and we use the fact that vy a¢(tn) > up a¢(ts) a.e. in T¢
if, and only if the integral over T? of (up a¢(tn) — vh.a¢(tn))T vanishes to prove the comparison
principle. The L*® bound |up at(t,)| < R is proved by recursion on n, using the comparison
principle and the fact that the constant functions R and —R are solutions of (5.1). O
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5.6.3 Asymptotic behavior

We consider the behavior of the numerical solution to (5.1) when the characteristic scales h and
At get smaller and smaller. Let (At(k)) be a sequence of positive reals that converge to 0, let
(Tk) be a sequence of meshes that are Z?-periodic and such that hy := supger, diam(K) tends
to 0 when k& — 4o0o. We assume that (5.29) is satisfied for all k, for all K € T, where «
is independent on k. We also assume that (5.19) is satisfied with a Lipschitz constant L4(R)
independent on k. Let (u%)xer, be given by (5.25), where ug € L>(T%). Consider the CFL
condition

sup At < AtF L4 (R) < a?hy, (5.43)
n>0

where R > |uol| oo (1) Let T' > 0 be fixed. By Proposition 5.3, the solution ) := uy, A of
(5.1) satisfies the bound |[u() |l oo (1ax(0,r)) < R for all k. Consequently, there is a subsequence
still denoted (u(x)) which converges to a certain function u in L>(T¢ x (0,7T)) for the weak-*
topology. We would like to show that u is solution to the conservation law (5.9). In the case
where A is not a linear function, there are two difficulties to establish this:

1. we use a weak mode of convergence (convergence in L>(T? x (0,T')) for the weak-* topol-
ogy), which is not sufficient in all generality to deal with the convergence of non-linear
terms,

2. the theory of the Cauchy Problem for (5.9) in L requires a specific treatment, via the use
of entropy solutions.

We will establish the convergence of (u(y)) towards a solution of (5.9) in the linear case only, see
Section 5.10. Some additional estimates on u) are necessary for this, and we will give them in
the following section 5.7, for a general numerical fluxes, associated, via (5.18), to a not-necessarily
linear flux A. We refer to [10, Chapter 6] for the proof of convergence of (5.1) in the general
case.

5.7 Energy estimate
Consider the parabolic equation
uy + div(A(u)) — nAu =0 in T¢ x (0, 400). (5.44)

Here i > 0 is supposed to be small. The flux in (5.44) is A(u) — nVu. This is a perturbation of
the flux A(u). The addition of the term —nVu has a stabilizing effect, of the same nature as the
stabilizing effect discussed at the end of Section 5.5, in relation with the monotony properties
of the numerical fluxes. In (5.44), the additional term —nAw has a positive contribution in the
energy estimate: if we multiply (5.44) by u (say, a smooth solution) and integrate over T¢ x (0, 1),

we obtain
t1d t t
/ 5%/ uzdzds+/ / udiv(A(u))dzds—n/ / uAudzds = 0. (5.45)
0 Td 0 Jrd 0 Jrd

We develop the term
udiv(A(u)) = ud'(u) - Vu = B'(u) - Vu = div(B(u)), B'(u):=uA'(u),

and, using periodicity, we obtain

1 ! 1
= |u(x,t)|2dx+77/ / |Vu|?dzds < 7/ luo|?dzx.
2 Jra o Jrd 2 Jra

We will establish a similar result in the discrete case.
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Proposition 5.4 (Energy estimate). Let ug € L°°(T?) satisfy |uol|=(ray < R. Define

Zm >N \K|L|/ {Ax_ oWl ut) — A (2, 2) }dz.

KeT LeN(K)

Assume that the following CFL condition is satisfied: there exists £ €]0,1] such that

2At, |fK||LA(R) <1-¢ VKeT,n>1 (5.46)
Then we have the energy estimate
*IIUh at(tn) 72 (pay +ED(tw) < IIUOlle(W) (5.47)

for all N > 1.

Remark 5.2. the term D(ty) is non-negative. Indeed, using the monotony properties of Ax_, 1.,
we have Ag_p(uf,u}) — Axp(z,2) > 0 if uf < z < uf. Similarly, Ag_p(ul,ul) —
Agop(z,2) <0ifulf <z <uf.

Proof of Proposition 5.4. Note first that

lun,a¢(0)] oo (ray < |uol| poe (ray < R.

By Proposition 5.3, we deduce that |uf| < R for all K € T, n > 1. To start with the energy
estimate, we multiply the identity (5.24) by |K|u}% and we sum the result over K € 7% and
n € {0,...,N —1}. We obtain an identity Ja; + Ja, = 0, where

Jae = Z > K u (it — i)

n=0 KeTt

(5.48)

and
ZAt Z Z W { A (U, ul) — A (U, ulk)} (5.49)
KeTt LeEN(K)
We use the formula a(b — a) = # - %
continuous identity udyu = 10,u?. It gives

, which is the “finite difference” version of the the

1 1 .
s = Ll s ey — M s Oy — L 3 5 (Kl —ukPe (550)
n=0 KeTt

We leave as an exercise the proof that (5.25) implies ||up,a¢(0)|| p2(ray < |Juo|l g2 (ray. From (5.50),
we deduce that

1
st agony + 50 < SlolBageo + 1 3 3 1Kl - (551)
n=0 KeTt
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The remaining term in the right-hand side of (5.51) will be absorbed in Ja,, by means of the
CFL condition. The summation formula (5.40) and the conservation property (5.20) give the
following expression of Ja,:

Z At, Z Z UK{AK%L uK,”L) AK%L(UTILOU”K)}

KeTt LEN(K)

—up{Agr(uf,ur) — Axso(uz,up)}.  (5.52)

Denote by ¥k _,;, an anti-derivative of z — zj—ZAK_)L(z, z). Integration by parts shows that

Yo () —Yrop(w) = v{Ax 0 (v,v) — Ag (v, w)}

v

—w{AKﬁL(w,w)—AKHL(U,w)}—i—/ {Akp(v,w) — Ak (2,2)}dz. (5.53)

w

Taking w = u}, v = v’ in (5.53) shows that

ZAt S Y / (Arsr (Wi u) — Axsn(z2) s + R, S, (5.54)

KeTt LeEN (K
where the remainder term is
Ra, = Z Y Uror(uf) — Yron(uf).
KeTﬁ LeN(K)

The cancellation property (5.23) and (5.40) give R}, = 0. We conclude that Ja, = D(tn). The
estimate (5.47) will be established (as a consequence of (5.51)) if we can prove that

N—-1
1 n n
SO0 ST K - i < (1 - s (5.55)

n=0 KeTt

We use Equation (5.24) and the Cauchy-Schwarz inequality to get

< SRE 2 I AR b ) — Axoon (e wio)l

LeN(K)

The CFL condition (5.46) gives then (5.55) with a term J3 , instead of Ja,, where

Jne = 750 ZN SN KL Ak (ufe,uf) = Agp(ufe, ).
KeTt LEN (K)

To conclude, we show that J3, < Ja, = D(tn). To that purpose, we use the following inequality:
" 1

dz > ———B(r)? 0,R 5.56

| B> g B reH (5.56)

valid for any non-decreasing Lipschitz continuous function B on [0, R]. To obtain (5.56), we

simply use the formula

B(r)? = 2/0T B(s)B'(s)ds,
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and bound B’(s) by Lip(B). Suppose ul > u?} for instance. Then (5.56) applied to B(z) :=
Agp (W ut) — Axsp (W, z +up) and r = ul — u} will give

|Agr(ufe, uf) — Agop (W, uf)|? < 2LA(R)/ {Ar o (uf,ul) — A 1(ug, 2) }dz. (5.57)
uy

We use the fact that Ax_,(u%,z) > Ax_ (2, 2) since u > z to get the desired identity. The
reasoning in the case u% < uf is similar. O

Remark 5.3 (Discrete H'-estimate in the time variable). Note that (5.55) and (5.47) give the
estimate

1—
Z SR it —ui? < (1 - D(tw) < 2ol pay, (5.58)

n=0 KeTt ¢

for all N > 1. Note also that the inequality J}, < D(tx) in the proof above and (5.47) give the
estimate

4L4(R)

ZNZ > KL Axp(ufe, uf) — Agp (ufe, ufe)]* < ¢

n=0 KeTt LEN(K)

o7z cray,  (5.59)
for all N > 1.

5.8 Approximate weak solutions

In this section, we will prove that u ) obtained in Section 5.6.3 is an approximate weak solution

of (5.9).

Definition 5.4 (Weak solution). Let ug € L°(T?), assume that A: R — R%is a locally Lipschitz
continuous function. Let T > 0. A function u € L (T? x (0,T)) is said to be a weak solution to
(5.9) on (0,7T) with initial datum wg if

T
/ / (ur + A(w) - Vo) dadt + / wo (@), 0)d = 0, (5.60)
0 Td Td

for all test-function ¢ € C°(T? x [0,T)).

Notation: if u: TY — R and 1 < p < +00, we denote by wr»(u; k) the modulus of continuity in
LP(T4):
uel0 ) = S =+ ance, (5.61)
z|<h
Theorem 5.5 (Approximate weak solutions). Let ug € L>(T?%) and let R > |Jugl|p(ra). As-

sume that the CFL condition (5.46) is satisfied for all K € T*. Then up a; is an approzimate
weak solution to (5.9) on (0,T) with initial datum uy in the sense that

(un,atpr + A(upar) - Vyp)dadt + / uo(x)e(x,0)dx

TP Td

< (up avs lol) + (h ae 10e0]) + (A [Vaiel),  (5.62)
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for all test-function ¢ € C2(T? x [0,T)), where thoaes @ € {0,1,2)} are some non-negative
measures on T¢ x [0,T] which satisfy the estimate

tthy ar (T % [0,T]) < C(AEY? + W2 + wri (ug; b)), (5.63)

where C' is a constant depending only on the dimension d, on T, on the constant « in (5.29), on
R, on La(R) (¢f. (5.19)), and on the constant & in (5.46).

Remark 5.4 (Entropy solutions). When A is non-linear, weak solutions to (5.60) are non unique.
The Cauchy Problem for (5.9) is solved in the class of weak entropy solutions. A function
u € L(T? x (0,T)) is said to be a weak entropy solution to (5.9) on (0,7) with initial datum
Ug if

/ / w)pr + P(u) - Vyp)dedt +/ n(ug(z))e(x,0)dz > 0, (5.64)
Td Td

for all non-negative test-function ¢ € C°(T¢ x [0,7)) and all entropy, entropy-flux pair (1, ®).
This means that 7 is of class C2, convex, ® is locally lipschitz continuous, ®'(u) = n'(u)A’(u)
for a.e. u € R. Actually, it is sufficient to establish (5.60) for a family of generating entropy,
entropy-flux pairs. One generally considers the Kruzhkov entropies n(u) = |u — r|, where the
parameter r runs in R. Such a 7 is not of class C?, but the associated flux is well defined. We
can also work with the semi Kruzhkov entropies n*(u) = (u — r)*. The associated fluxes are

O (uyr) = A(uvr)—A(r), @ (u;r) = A(u) — A(uAr). (5.65)

We can see on the expressions (5.36) and (5.65) (we take v = r in (5.36)) that we have already
established a discrete version of (5.64):

Aty,
(u =) < (u —7)F + 57 Y KILI@xor (ufe ufesr) — Prsr(ufe, ufir)], (5.66)

‘ | LeN(K)

where O, (v,w;r) = A .(vVr,wVr) — Ag_,(r,7r). If we start from (5.66) and adapt in
a suitable way the proof of Theorem 5.5, we can establish that u, a: is an approximate weak
entropy solution to (5.9) on (0,7") with initial datum ug in the sense that

T
| 0 Gan i 0% unsiir) - Vapdads + [ n*(unlo)ir)o(e, 0)dz
0 T T
_<M2,At7 lol) — <:uilz,At7 0spl) — <M%,At’ IVeel), (5.67)

for all non-negative test-function p € C2°(T¢ x [0,T)) and for all r € R, where puj, o satisfies an
estimate similar to (5.63). See [10].

Proof of Theorem 5.5. Let ¢ € C2°(T? x [0,T)). We first look at the error done at initial time.
Define the error €q(y) by the formula

coli) = [ (unla) = i, 0)),0)d (5.68)

By decomposition of the integral in (5.68), we have

Z/uo —u%)p(z,0)dz.

KeTt
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For z € K, up(z) — up,ae(z,0) is the average over K of y — up(z) — up(y). Using Fubini’s
theorem, this gives the inequality [eo(¢)| < ) A,(|¢]), Where

o) = 3 [ o [ o) = w) v, 0)dedy

KeTt

In particular, we have

sl 07D < Y [ e [ o) = woly)dody.

KeTt
This can be written
1
sl % 0.1 < 3 o [ Le@luoe) - woly)ldod.
KET”| | z€T® JyeK

We do the change of variable y = z 4+ z to obtain

%0 < 3 e [ k@) - e + 2o
KeTﬁ| | zeTd JzeK—x
and thus
10T 0,7 < 3 / / )|t (x) — oz + 2)|ddz,
| z€Te zEB(Oh)

KeTﬁ

since K —x C B(0,h) if x € K. We use the first bound of (5.29) and the fact that the sum over
K of 1x(x) is 1 for a.e. x to get

19,0 (T % [0,T))] < —— / / o) — ol + 2)|dwdz,
ah® [ era 2€B(0,h)

We can exchange the integrals in  and z then to obtain

B(0,h
8 aa0 0,70 < EE sup [ o) — ot + 2o
’ ah® 12 1<h Jrema
This gives the first estimate
i ar(T? % [0,T])| < @ [B(0,1)|w(uo; h). (5.69)

Let us now study the term

T
I; = / / Up, Arprdadt —‘r-/ “h,At(%O)tp(x,O)dm,
o Jra T

Let N € N be such that ty_; < T < ty. Since ¢ is compactly supported in T¢ x [0, T), we can
assume that T'=ty. We expand I; as

L = Z Z |Kufe (rc(tns1) — Z |K|uk o (0),

n=0 KeTt KeTt
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where g (t) is the average value of ¢(+,t) on the cell K. A discrete integration by parts gives

N-1
- Z Z K| (g™ = uf)ox (tnta)- (5.70)

n=0 KeTt

We proceed similarly with the term

T
I, = / A(up,at) - Vypddt.
0 J1d

We expand I, as
N— 1
Z 3 / / (ul) - Voot
n=0 KeTt*

By the Stokes formula, this gives

Z At Z Z |K|L|A uK) nKHL‘P[qLa (5.71)

n=0  KeTtLEN(K)

where @i, is the average of the function ¢ on K |L X (tn, tnt1). We use the consistency proper-

ty (5.18) to write A(u%) - nx—r = Ax—r(ul,ul}). We also add a corrective term to the sum
n (5.71) to obtain

Z At Z Z |K|LI(Ag 1 (uf, uk) — AK%L(“?(}“Z))SD?(\L' (5.72)
KeTt LEN(K)

By the anti-symmetry property of the term Ax_, 1, (u%, uz))go’;qL (¢f. (5.20)) and the summation
formula (5.40), (5.71) and (5.72) coincide indeed. Let us now denote by ¢’ the average value
of the function ¢ over K X (t,,t,+1). If we replace the quantities pg (¢,+1) in (5.70) and L
in (5.72) by ¢%, then we obtain I, + I, = 0. This follows from (5.24). Consequently, we have
L + L, = el (p) + £2(p), where

N-1
= Z Z |K|(u?<+1 —ug ) (P — or(thi1)),
n=0 KeTt
and
Z MY Y IRIE ARk i)  Axosn (0] (s — )
KeT* LEN(K)

To conclude to (5.62), we need to examine the error terms () and €2(y). Since

tnt1 tnt1 ot tnt1
[ ettns) — ottt = / | esit= [ b = et
t t

n n

we have

n 1 tn+1
[pr (o) = Pkl < Ty / / ¢ ()| dadt.
K| Ji,  Jk

50



This gives |e' ()| < (1p ap: [0ep]), Where

(0, ik ar) = Z S g - u"+1|/t:n+l/K1/1(o:,t)dxdt. (5.73)

n=0 KeTt

In particular, the total mass of u,ll) Ar 1S

i, a (T Z At Y| Kl —uic™. (5.74)
KeTt

By the Cauchy-Schwarz inequality and (5.58), we have
L (T [0,TD]2 < T8 o) A 7
1 e ¢ 0,71)]% < 5 oy . (5.75)

Similarly, we develop

1
PK|L — PK = W /KL /K lo(x) — @(y)|drdo(y)

and use the development p(z) — ¢(y) = fol Vo(ry + (1 —r)x) - (z — y)dr to obtain |e2(p)] <
(17 ap> IV l), where

N—-1
Wouhoa) =D > Y |Axor(ufe, ufk) — Axp(ufe,ult)|

n=0 KeTt LEN(K)

tnt1 1
x |Tl(|/t /KL/K/O Y(ry + (1 —r)x, t)|z — y|drdedo(y)dt.  (5.76)

We have | —y| < h when z € K, y € K|L, so

N-1

phar(TOx 0T <h Y At Y Y |K|L| A r(uf, ufk) — Ao (uf, uf)|. (5.77)
n=0 KeTt LEN(K)

We use the Cauchy-Schwarz inequality and the estimate (5.59) to get the bound

2
[ a0 (T¢ % [0,T1)]” < B*TLA(R) w072 (pay-

The factor I is

F_ZAt Yo > KL =T ) |9K|.

KeTt LEN(K) KeTt

By (5.29), we have the bound I' < T'a~2h~!, which shows that

2 _
(15 ae(T4 % [0, T])]” < Ta™?La(R)|uol|72 (gayh- (5.78)

We can bound the L?-norm of ug by R in (5.75) and (5.78). This gives the desired estimate
(5.63). O
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5.9 Convergence in the linear case

We restrict now our analysis to the case of a linear flux A: A(u) = au. In this context, we consider
a possibly non-constant vector field a. More precisely, we will assume that a € C1(T%;R¢) and
that a is divergence free: div(a(x)) = 0 for all x € T?. We consider then the scheme (5.1) with
a numerical flux given by (5.14)-(5.15), which is called the upwind, or upstream, flux. We have
then (5.17) with some numerical flux functions

Agsp(v,w)=ak v —ap_,w (5.79)

which satisfies all the properties listed in Section 5.4, with L4(R) = [|a| g (1ay. We will admit
that Theorem 5.5 remains valid, in the sense that we have

T
/ / (un,arpr + up ara(x) - Vyp)dadt —|—/ uo(z)p(z,0)dz
o Jrp Td

< (i ans lol) + (haes 10s0]) + (Wi ags [Vaiel),  (5.80)

and (5.63). In the asymptotic situation At — 0, h — 0 described in Section 5.6.3, we can pass
to the limit in (5.80). This shows that v is a weak solution to (5.5) on (0,7") with initial datum
ug, in the following sense (similar to Def. 5.4).

Definition 5.5 (Weak solution). Let ug € L°(T%). A function u € L>(T¢ x (0,7)) is said to
be a weak solution to (5.5) on (0,7) with initial datum wg if

T

/ / u(pr + a(x) - Vyp)dedt + / uo(x)e(x,0)dr = 0, (5.81)
0 Td Td

for all test-function ¢ € C°(T? x [0,T)).

We use then the following theorem.

Theorem 5.6. Letug € L>®(T?) and T > 0. The continuity equation (5.5) admits a unique weak
solution in L>°(T? x (0,T)) with initial datum ug. It is given explicitly by u(z,t) = ug o ®*(z),
where (®;) is the flow associated to the ODE & = a(x) and ® is the inverse® of x — ®4(z).

Exercise 5.6 (Uniqueness in transport equations). Prove Theorem 5.6 (beware, this is not
obvious).
The solution to Exercise 5.0 is here.

5.10 Error estimate in the linear case

Our aim in this section and the following ones is to establish the following result.

Theorem 5.7. Let ug € L NBV(T?) and T > 0. Let A(z,u) = a(z)u, where a € C* (T4 RY) is
divergence-free. Let up ar be the solution of the upwind Finite Volume method (5.1) with fluzes
given by (5.17)-(5.79)-(5.15). Let u € L=(T¢ x (0,T)) be the weak solution to (5.5) on (0,T)
with initial datum ug. Assume that (5.29) and (5.46) are satisfied. Assume also that At < Cyh

4

an expression of ®! is ®f(z) = ®_,(x), this is a consequence of the group property ®; o &5 = &4 ; when
the sense of the time evolution does matter, for instance in the study of stochastic differential equations, it is
important to define ®! as the inverse of x — ®;(x), not as ®_(x)
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for a certain constant Cy. Then, there is a constant ¢(d) > 0 depending on d only such that, for
h, At < ¢(d), we have the error estimate

[wn,ae(t) — u(t)| 1 (ray < C|Dug|(T?)R'2, (5.82)

for all t € [0,T], where C is a constant depending only on the dimension d, on T, on Cy, on
llallcr(ray, on the constant o in (5.29) and on the constant & in (5.46).

We will make some comments on Theorem 5.7, but first we need a brief remainder on the space
BV.

5.10.1 Functions of bounded variations

Let U be an open subset of R%. If ¢ € C(U;R?), we denote by ll¢llcwy the sup over z € U of
the euclidean norm |¢(x)| of ().

Definition 5.7 (Functions of bounded variation). Let U be an open subset of R?. A function
u € LY (U) is said to have bounded variation in U if

sup {/ uwdiv g@dm} < 400 (5.83)
U

where the supremum is taken over all ¢ € C(U;R?) such that [|¢[|cy < 1. We denote by
BV(U) the space of functions of bounded variations.

We denote by BV,.(U) the space of functions having locally bounded variations, defined as the
set of functions u € LL (U) such that u € BV(V) for all open subset V CC U (this last notation

loc

means that there exists a compact K of R? such that V Cc K C U).

Exercise 5.8 (Some functions of bounded variation). 1. Let U = (—1,1). Let u: U — R be
defined as the integral over [0, z] of a function f € Ll (U). Show that u € BVjo.(U) and
that u € BV(U) if, and only if, f € L*(U).

2. Let U = (—1,1). Let u: U — R be the Heavyside function: u(z) =0 if z < 0, u(z) =1 if
x > 0. Show that uv € BV(U).

3. Let U = B(0,1) in R?. Let u be the characteristic function of the disk B(0,1/2). Show
that u € BV(U).
The solution to Ezercise 5.8 is here.

To enunciate the following structure theorem for functions of bounded variations, let us recall
the following facts about measures.

1. (See [20, Chapter 6]). Let (X,.A) be a measure space. A complex measure over (X, .A) is
a set function p: A — C such that, for all A € A, one has

p(A) =D (A, (5.84)

for all countable partition (A4;);>1 of A, the sum in (5.84) being absolutely convergent. If
1 is a complex measure, the formula

1l(A4) = sup {Z u<A¢)|} : (5.85)

where the supremum is taken over all countable partitions (A;);>1 of A, defines a non-
negative finite measure |u| on A called the total variation of w.
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2. (See [20, p. 130]). A complex measure p defined on the Borel subsets of a topological
Hausdorff space X is said to be regular if for all Borel set A,

|| (A) = sup {|p|(K); K compact C A} = inf {|u|(V);V open D A}. (5.86)

Theorem 5.8 (Structure theorem for functions of bounded variations). Let U be an open set in
R?. Let u € LY(U). Then u € BV(U) if, and only if, there exists a non-negative reqular finite
measure k on U and a Borel map n: U — R? such that |n(x)| = 1 for k-a.e. z € U and

/ udivodr = —/ © - ndk, (5.87)
U U

for all ¢ € CL(U;R?). The sup in (5.83) is then equal to k(U).

Proof of Theorem 5.8. In essential, the proof is an application of the theorem of representation
of Riesz. We take as a reference Theorem 6.19 in [20]. In [20], the result is given for a functional
of complex-valued functions. Since we need to consider a functional of vector valued functions,
we will come back on the main steps of the proof of Theorem 6.19 in [20]. For simplicity, we
will use the same notations as Rudin, except that vector-valued function are denoted using bold
fonts. Consider the functional

P(f) = —/Uudiv(f)dx

It is defined for £ € C}(U;R?). By (5.83), it can be extended to a linear continuous functional
(still denoted ®) on Co(U;R?). We consider then the further extension to Co(U;C?) defined
by ®(f) := ®(f;) + i®(f2), where f; is the real part of f and f; the imaginary part of f. Our
aim is to prove that there exists a non-negative regular finite measure A\ on U and a Borel map
g: U — R? such that |g(x)| =1 for M-a.e. z € U and

B(f) = /U £.gd, (5.88)

for all f € Cy(U;RY), where (f-g)(z) = Zle f;(z)gi(x). Let us focus on the “factor” A in (5.88).
If (5.88) is satisfied, then the functional

@H/ pdA,
U

defined for ¢ € C.(U;R), dominates ® in the sense that, if ¢ > 0, then
sup {|®(h)|;h € C.(U;C%), |h| < ¢} < / @d. (5.89)
U

For ¢ € C.(U;R,), we define A(p) as the left-hand side of (5.89):
A(f) =sup {|@(h)|;h € Cc(U;CY), |h| < o} . (5.90)

This can be seen as a functional analogue to (5.85). Our aim is to show that we have the
representation

A(cp):/Ugod/\. (5.91)

For a general ¢ € C.(U;R), we set A(p) = A(p™) — A(¢p™). It is easy to see that this defines
a continuous functional on C.(U;R) which is positive. We will show that A is actually a linear
functional (see below). By the representation theorem of Riesz, [20, Theorem 2.14], there exists
a non-negative regular finite measure A on U such that (5.91) is satisfied for all ¢ € C.(U;R).
Next, we use the following representation result.
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Proposition 5.9. Every continuous linear form W on E := L' (U, \; C%) admits a representation
U(f) = / f-gd\, ge L>(U;CY). (5.92)
U

We have | ®|| g = gl L) in this correspondence, where ||g| Ly is the the essential supre-
mum over x € U of the euclidean norm |g(x)| of g(x) and ||¥| g is the norm of the linear form
.

Proposition 5.9 is an extension of [20, Theorem 6.16] to the vector valued case. We admit this
result, which can be proved by a systematic examination of the proof of [20, Theorem 6.16]. Let
us apply Proposition 5.9 to ®. The functional ® satisfies the hypotheses of the proposition:
(5.89) with ¢ = |h| shows that

B(h)] < /U Ih|d), (5.93)

forallh € C.(U;CY). Since C.(U;C?) is dense, we can extend ® as a continuous linear form on E
with norm ||®||g < 1. This gives us the representation (5.88) with ||g|| () < 1. To conclude,
there remains to show that |g(z)| = 1 for A-a.e. z € U. By (5.88) and the Cauchy-Schwarz
inequality |f - g| < |f||g|, we have

B(f)] < /U gld\, feC.(U;CY), |f(x) < 1.

Taking the sup over f in the previous inequality gives A(1) < [, |g|dA. Since A(1) = A(U), |g|
is equal to 1 A-a.e. To finish the proof, let us show that the map A defined by (5.90) is linear.
Let f,g € C.(U;Ry), ¢ >0 and hy, hy € C.(U;C%) such that

A < [B(0)] +e, Alg) < |®(ho)| + .

There are some complex numbers «;,as € C of modulus 1 such that |®(h;)| = a;®(h;). Then
the sum A(f) + A(g) is bounded by

041@(1’11) + OéQ(I’(hg) + 2 = ‘P(O{lhl + 0421’12) + 2e S A(f + g) + 28,

which shows that A(f) + A(g) < A(f + g). To prove the converse inequality, consider h €
C.(U;C?) satisfying the constraint |h| < f + g and set V = {f + g > 0} and

f g
h; = 1yvh, hy = 1y h.
1= 2=
Then hy,hy € C.(U;C%) (why?), hy + hy = h, |hy| < f, |hy| < g, which shows that |®(h)| <
A(f) + A(g). Taking the sup over h gives the desired result. O

Notation: if u € BV(U), we denote by Du the (vector-valued) complex measure nx in (5.87)
and by |Du| the measure x. The norm ||ul|gy () of u is defined as

lullBv @y = llullr @) + [Dul(U). (5.94)

Exercise 5.9 (Some functions of bounded variation). Compute Du, |Du| and ||u| gy for the
functions u considered in the exercise 5.8.
The solution to Ezercise 5.9 is here.

Definition 5.10 (Set of finite perimeter). 1. A Lebesgue measurable set E of R is said to
have finite perimeter in U if 1z € BV(R?). In that case, we set P(E) = |D1g|(R%).
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2. Let U be an open subset of R?. A Lebesgue measurable set E of R? is said to have finite
perimeter in U if 15 € BV(U). In that case, we set P(E;U) = |D1g|(U).

We now state without proof the following results.

Theorem 5.10 (Lower semicontinuity of the total variation). Let U be an open set in RY. Let
(un) be a sequence of functions of BV(U) which converges in Li .(U) to a function u. Then

|Du|(U) < liginf |Du,, |(U). (5.95)

Theorem 5.11 (Local approximation by smooth functions). Let U be an open set in Re. Let
u € BV(U). There exists a sequence of functions uy in BV(U) N C>®(U) such that

1. up — u in LY(U), and

2. |Dug|(U) — |Du|(U).
Remark 5.5. Note that if u € BV(U) N C°°(U) then u € W11(U) and
\Du|(U) = / Vu(z)|dz. (5.96)
U

Theorem 5.12 (Trace of functions of bounded variations). Let U be an open bounded set in RY,
with QU Lipschitz continuous. Let o denote the surface measure on OU and n the outward unit
normal to U on OU. There exists a bounded linear application

v: BV(U) = LY(0U, 0),

such that
/ udiv pdx = —/ ¢ -dDu + / (vu)g - ndo, (5.97)
U U ou

for all p € C1(R%;RY).

Theorem 5.13 (Patch of functions of bounded variations). Let U be an open bounded set in
R?, with OU Lipschitz continuous. Let o denote the surface measure on OU and n the outward

unit normal to U on OU. Let v € BV(U), w € BV(R?\ U) and let u € L*(R?) be the function
defined as u =vly + wlga\g. Then u € BV(R?) and

/ ¢ -dDu = / - dDv + / - dDw + / (yv — yw)p - ndo, (5.98)
R4 U RI\U U
for all ¢ € C.(R%RY). The BV norm of u is

nwmwfwﬂmm+w%wmm+éﬁw—wwa (5.99)

Theorem 5.14 (Co-area formula for functions of bounded variations). Let U be an open set in
R?. Let u € L'(U) be a non-negative function. Fort € R, we denote by E; the super-level set
{u > t}. Then, for a.e. t € R, FEy; has finite perimeter in U, and we have

uwum=A MEMwME|&Mm=A D1, (U)dt. (5.100)
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See [9, Theorem 5.2] for the proof of Theorem 5.10, [9, Theorem 5.3] for the proof of Theorem 5.11,
[9, Theorem 5.6] for the proof of Theorem 5.12, [9, Theorem 5.8] for the proof of Theorem 5.13
and [9, Theorem 5.9] for the proof of Theorem 5.14. To complete this section, let us give the
definition of the norm [u|lgy ey of a Z%periodic function u: R* — R. First, by BV(T?) we
denote the set of Z?-periodic functions u € BVj,.(R?). The measure |Dul is then a regular
measure on R?, with |Du|(G) finite for every compact G C R%. Let @ denote the unit cube
(0,1)¢ and let Q1 = [0,1)?. We define then

|Dul(T?) = [Du|(Q1),  |[ullsviray = llull L) + [Dul(T?). (5.101)

We take the measure |Du| of Q1, not @, in (5.101). This makes a difference if | Du| has a singular
part with respect to the Lebesgue measure. This singular part may be due to some jumps of u,
which is the case if we consider piecewise constant functions. Let u € L'(T9), denote by u; the
piecewise constant function defined by

1
up(x) = ug = I /Ku(m)dx, z e K. (5.102)
Then 1
Dup(A) = 5 SN (uk —up)nko HTH(ANKIL), (5.103)
KeT LEN(K)
and we have
| Duy, |(T?) = Z > IE|L|juk — ugl. (5.104)

KeTﬂ LeN(K)

Since K|L is included in an hyperplane H, by hypothesis, the Hausdorff measure H%~*(ANK|L)
in (5.103) can simply be rewritten Ay (A N K|L), where A g is the (d — 1)-dimensional Lebesgue
measure on H.

5.10.2 Comments on the error estimate

If 1 < p < 400, one can establish the error estimate
[un,a(t) = w()| Lo ray < Clluollwr.o(rayh®’?. (5.105)

See [17]. The estimate (5.105) cannot be generalized when the flux in the conservation law (5.9)
is non-linear, for the reason that W1?(T%) is not stable in the evolution: if ug € W1?(T%), there
may be some time ¢ > 0 such that the (entropy) solution u of (5.9) starting from wg loses the
WLP(T9) regularity at time ¢. This is a consequence of the apparition of discontinuities and is
already clear in dimension d = 1. On the contrary, the space BV(T?) is stable in the evolution by
(5.9). For general fluxes A, the error estimate (5.82) is observed in numerical practice, but has
not been established yet, except when the mesh is a cartesian mesh, i.e. each cell is a product
of one-dimensional cells of a one-dimensional mesh.

5.11 Error estimate in the linear case: proof

The following proof of the error estimate (5.82) is taken from [18]. A different proof, using
probabilistic tools, has been given in [5].
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5.11.1 Reduction of the problem

Projection on piecewise constant functions and BV-norm. We will use several times
the following result.

Proposition 5.15. Consider the map u — uy, defined by (5.102). There exists a constant C > 0
only depending on d and on the constant o in (5.29) such that, if u € BV(T?), then

|Dup|(T%) < C|Du|(T%) and [Jup, — ul| 1(ray < C[Dul(T%)h. (5.106)
Proof of Proposition 5.15. Let K € T* and let L € N(K). We will establish first the estimate

2! max(| K1, |L|)h

YA |Du|(B(zx, 2h)), (5.107)

lug —ur| <

where x i 1= |—11(‘ fK xdx is the center of gravity of K. Note that K, L C B(zk,2h). Using Theo-

rem 5.10 and Theorem 5.11 with U = B(xx,2h), we may suppose that u € BVNC(B(z g, 2h)),
in which case (cf. (5.96))

|Dul(B(wr,2h)) = / |Vu(z)|dz.
B(JZK,Qh)

Since |z — y| < 2h for every (z,y) € K x L, we have then

ke — ur| < |KHL'//lu y)|ddy
|K|L|/// IVu((1 —r)z + ry)|drdzdy.

Now we perform the change of variables (z,y,r) — (w =z—y,z=0-r)z+ryr=r),of
Jacobian determinant equal to 1, and of inverse (w, z,r) — (z + rw, z — (1 — r)w,r). This gives

2h
lug —up| < —— (// wzrdwdr)dz
|K[[L] B(xK,2h)

where g is defined by g(w,z,7) = 1if z+rw € K and z — (1 — r)w € L, and g(w,z,r) = 0
otherwise. We remark that, for (z,7) € B(zk,2h) x [0,1], we have

/ g(w, z,r)dw < [ (K - 2)] < 2K,
Rd

if r >1/2 and

[ atw, 2w < 21,

Rd
if r < 1/2. The estimate (5.107) follows. Using (5.29), we deduce from (5.107) that, for all
K eTt,

> IK|L|juk — ur| < 24 a2 Dul(B(xk, 2h)).
LeN(K)

Summing on K € T*#, we get

> % Il = sl <2507 [ 37 daan ()dIDu(2),

KeTt LeEN(K) KeTt
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Let us set x(2) = > g7+t 1B(ax,2n)(2). We have d(zk, K) < h, so x(z) = 0 if 2 is at a distance
superior to 3h of Q. We may assume that 3h < 1, and then x(z) = 0 if z ¢ Q’, where Q' is the
cube [—1,2)¢ - which is contained in 3% translates of Q1. By (5.29), we also have

ah'x(2) € Y 1paeamGIKI < Y |K].
KeTt K:d(z,K)<3h

Indeed, |z — xx| < 2h implies d(z, K) < 3h. Since the cells in 7* are disjoint, we have

Y k= U K| <|Blean)| = B,
K:d(z,K)<3h K:d(z,K)<3h

It follows that x < 4¢|B(0,1)|a~!1¢,, which gives us

1

3 > > IK|Lluk —ur] < 8%7?B(0,1)[|Dul(Q) < 24% | B(0, 1)|| Du|(T%).

KeTt LeEN(K)
Let K € T. Similarly, we have
1
/ |un(z) — u(z)|de < —= |u(x) — uly)|dzdy < 2°h|Du|(B(zk, h)).
K |K| KxK

Summing on K € T and using the fact that the cardinal of the set {K : d(K,z) < h} is bounded
by Ca™!, we get the second estimate of (5.106). O

Exercise 5.11 (Modulus of continuity of functions of bounded variation). Show that
wri (u; h) < C|Du|(Thh, (5.108)

for all u € BV(T?), for all 0 < h < 1, where w1 (u;h) is the modulus of continuity defined by
(5.61) and where C' is a constant depending on the dimension d only.
The solution to Ezercise 5.11 is here.

Contraction in L'. We will also need the following proposition.

Proposition 5.16 (LP-conservation). Let u,v € L>(T%x (0,T)) be some weak solutions to (5.5)
on (0,T) with respective initial data ug, vo € L°°(T?). Assume that a is divergence free. Then,
for every p € [1,400], we have

[u(t) — vl Lr(rey = lluo — vollLr(ray, (5.109)
forallt e (0,T).

Proof of Proposition 5.16. We use Theorem 5.6. By linearity, we can assume v = 0. We have
u(w,t) = ug o ®*(x). This gives (5.109) since ®¢ is a bijection of T? (case p = +00) and preserves
the measure (case p € [1,400)), since a is divergence free. O

A trivial consequence of (5.109) is that
[u(t) — o)l L1 rey < [luo — vollL1(ray- (5.110)
We will also use Proposition 5.2, which gives (with obvious notations)
lun,ac(t) = vn,ae@) ey < fluo — voll L1 (rey (5.111)
for all t > 0.
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Reduction 1. Discrete time. Let ¢ € [0,7]. There is a unique n > 0 such that t,, < ¢ < t,,_1.
We have then up, at(t) = up ae(ty,) and

l[u(t) = w(tn)ll L1 ey = llug 0 ®° — ug 0 B || L1 (ay
Since a is divergence free, ®* and ¢; preserve the Lebesgue measure, so
w(t) = w(tn)|lp1ray = lug 0 ®* 0 By, — uo| 1 (qay < C|Dug|(T)[|®* 0 Dy, —1d||c(pay

by (5.108). Here,
[ 0 @, — 1d]ore) = sup @ 0 B, () — a.
z€Q
The group property of the flow gives

0
Plod, (z)—a =, 4(z)—z= / a(®s(x))ds,

tn—t

SO
lu(t) = ultn)ll 1 (ray < C|Duo|(T)At < C|Dug|(T)h,

where C' depends on d, Co and ||al| e (pay. This shows that it is sufficient to establish (5.82) for
a time ¢ in the discrete grid {t,;n > 0}. We proceed to this reduction to extend the analysis
done in the proof of Theorem 5.5. Indeed, in the proof of Theorem 5.5, it was assumed that the
test function ¢ was compactly supported in T¢ x [0, 7). It is easy however to extend our proof
to the case where T' =ty and ¢ € C1(T? x [0,T]). We have then an additional term for t = T
to take into account, and (5.62) will be replaced by the inequality

T
/ / (@t + 0 - Vog)dudt + / wo(@) (i, 0)dx — / wn e, T)plr, T)de
0 Td Td T

< <N?L,At7 ll) + <N111,Ata |0rpl) + <Mi21,At» IVaeel). (5.112)

Reduction 2. Non-negative functions. Since constants are solutions to (5.1) and (5.5)
and since the addition of a constant to a function v € BV(T?) does not modify the quantity
|Du|(T%), we may replace ug by ug + |[tol| g (re), which allows us to work with non-negative
functions only. This reduction step is not fundamental actually. The co-area formula for BV
function, Theorem 5.14, has been stated for non-negative functions for simplicity; this is what
accounts for the present reduction step.

Reduction 3. Projection on a cartesian grid. Let L € N, L ~ h™'/2, for example
L = [h=1/2]. Let vy be the L2-projection (see (5.102)) of ug on the functions which are piecewise
constant with respect to the periodic mesh 7o = L=(Q + Z%). This mesh satisfies (5.29) with
ho = L~! and a = (2d)~! since

|Ko| = hd, |0Ko| = 2dhi™",
for all Ko € 7Bﬁ. By Proposition 5.15, we have
| Dol (T4) < C|Duo|(T),  [lug — voll 1 (ra) < C|Dug| (TR,

where C' depends on the dimension d only. In view of (5.110)-(5.111), of the second estimate
in (5.106) and of (5.108), we can replace ug by vy to establish (5.82). Consequently, we may
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assume without loss of generality that ug is piecewise constant with respect to 7o. We use this
first reduction step for the following reason: let ¢ > 0 and let A = {uy > ¢} be a super-level set
of ug. Then A is an union of given cells of 7y. Let (9A); -1 denote the L~! neighbourhood of
0A:

(0A) -1+ = {z € RY; d(x,0A) < L7},

We want to prove that the volume |[(0A)r-1| of (DA); -1 satisfies the estimate
(DAY 1| < C|OA|RY?, (5.113)

where the constant C' depends on d only. To establish (5.113), denote by 7g[0A] the set of cells
K C A such that K N 9dA is non-empty. We have

@A) c |J (OF)-.

KeTo[0A]

Since (OK)p-1 is included in the closure of the union of K and its 2d neighbouring cells, we
obtain
@A) < > (1+2d)L% (5.114)
KeTo[0A]
On the other hand, each K € To[0A] has at least one face of size L™(¢~1) contributing to |0A|,
o
EZT = N At (5.115)
KeToloA]

The two estimates (5.114) and (5.115) give (5.113).

Reduction 4. Co-area formula. We apply Theorem 5.14. The equations we consider are
linear: they satisfy a superposition principle. By (5.100), we may replace ug by the characteristic
function of a super-level set A with finite perimeter. The advantage of this manipulation is
the following one. Since 0 < wup Ay < 1 by the comparison principle (Proposition 5.2), and
u(t) = ug o ' = 1), A(t) := ®¢(A), we have

lun,ai (@, 1) = w(w, t)] = (u(z,t) = upar(@, 1) (@, 1),  GHt) = (Lag) — Lage)-

Note that *(t) = ¢#(0) 0 ®!, s0 (J; +a-V,)p* = 0 in a weak sense. If we could use this ¢ as a
test function in (5.112), we would get (taking T' =t =t,,) the estimate
l[un,ae(t) — u(®) 1 (ray
< fun.ae(0) = w(O)l|reray + (i avs [€°1) + (o, avs 106 ) + iy ars [Va®l), (5.116)

and then would have to work on the error terms. Since ¢f is not sufficiently regular to justify
(5.116), we proceed differently and consider a regularized version of f. Let Ty denote the
function

T1(s) = min(1, max(—1,s)),

which truncates s when |s| > 1. Let § denote the signed distance function
§(z) =d(x,04)14 — d(x,0A)1 gc,
where d is the euclidean distance. We set

wo(x) = ThH(L7'6(x)), @(x,t) = @ o (). (5.117)
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The functions 77 and 6 are Lipschitz continuous®, so ¢ as well. This regularity is sufficient to
justify, after a preliminary regularization procedure, that (5.112) is valid with ¢ as a test-function.
We obtain

‘/W(“Mt“) — u(t))p(x, t)dz

< Jlun,ae(0) = w(O)llpr¢ray + (i, avs [91) + (b, ae: 10el) + (5 av [Vael), (5119

instead of (5.116). In the next section, we will explain how to exploit (5.119) to prove (5.82).
Remark 5.6. The step consisting in Reduction 3 is necessary in our method of proof. We can
illustrate this in dimension d = 2. Indeed, assume from the start that ug is the characteristic
function of a set A of finite perimeter, in which case the “Reduction 4” step is irrelevant. We
consider 4,, = K,, x [0,n], where Ky = [0,1], K; = [0,1/3]U[2/3,1],... is the standard sequence
used to define the triadic Cantor set and n > 0 will tend to 0. We take n > 0 only to get a
non-trivial boundary 0A4,,. To simplify the argument, let us work directly with K,,. For ¢ = 37V,
N >1and n > N, we have (K,). = Ky_1 and |K,| = (2/3)", so the inequality

(Kn)e < ClKple,

where C' is an absolute constant, cannot be satisfied when n is too large.

5.11.2 Error estimate

We examine first the integral in the left-hand side of (5.119), that we would like to compare to
the exact L'-norm |lup,a¢(t) — u(t)|| p1(ra)y. Since [Jup,at(t) — u(t)|| o (ray < 1, we have

o a8 = uOrcrs < | [ n,300) = w0l 0] + 150 = O

By the conservation property (5.109) for p = 1,

1o (8) = @Ol L2 (ray = 9°(0) = @(0) |1 (ray < {OA) 1.

We use the estimate (5.113), and the fact that |0A| = |Dug|(T¢), to obtain

+ C|Dug|(TH)h/2. (5.120)

o ael®) = wlscooy < | [ (0na(®) = oot o

The first term |[us, a¢(0)—u(0)]| 11 (ra) in the right-hand side of (5.119) is bounded by C|Dug|(T%)h
as a consequence of Proposition 5.15. By (the proof of) Theorem 5.5 and (5.108), we have

(1h aes el) < lloll oo (raywrs (wo; h) < C|Dug|(T%)h.

5if z,y € A and z € JA, then

d(z,04) < d(z,z) < d(z,y) +d(y, 2).
Taking the inf on z € JA, we obtain d(z,0A) < d(z,y) + d(y,0A). By symmetry, we also have d(y,0A) <
d(z,y) + d(z,0A), hence
l6(z) —o(y)| < d(z,y), =,y€ A (5.118)
Replacing A by A€ shows that (5.118) holds true when z,y € A°. If z € A, y € A°, then the segment [z, y]
intersects OA at least at the point z; defined by
T =sup{t € [0,1]; [z, 2¢] C A}, =zt :=(1—t)z +ty.

Then
[6(z) — 6(y)| = d(=z,04) + d(y, 0A) < d(x, 27) + d(y, 27) = d(z, y).
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We can now begin the study of the two most important terms in (5.119): (i} a4, [9ep]) and

(,u,%,m, |[V.pl). To that purpose, we need to come back to the definition of “}lz,At and M}ZL,At in
the proof of Theorem 5.5, ¢f. (5.73) and (5.76):

tnt1
(a0 ) = Z > |uK—u"+1|/ /Kqﬁ(a:,t)dxdt, (5.121)
tn

n=0 KcT*

and (taking into account the expression (5.14) of the numerical flux in (5.76)):

(Wi, a0 ) : Z Z Z aK—>L|uK up|

n=0 KeTt LEN (K
tn+1

|K| . /K|L/ / Y(ry + (1 —r)x,t)|x — y|drdedo(y)dt.  (5.122)

The norm of the gradient V,p(z,t) = (V' (x))*(Vapo) o @' (x) is bounded by
V|| oo (74 [ Va0l | Lo (7).

We have ||V,ol|pos(ra) < L < h=1/2 and VO] foc (ray < e'lelerazd)  This last bound comes
from the identities (where V® = (0;®;); ;)

V&, = exp (/Of Va o @Sds) ;1= VO (2) (V) (P4(x)),

for all z € T?. Using the transport equation 0, = —a - V,¢, we deduce from these estimates
that
IV (t,0) | Loe (raxc o,z < CRTH2, (5.123)

where C' depends on ||al|c1(pa;re) and T" only. We also remark that the derivatives V(; )¢ are
supported in the “streak”

U @04),-1) x {t}.

0<t<T
This has the consequence that

N-1

(tth,ae 0pl) < CRTVENY AL Y K| |ufe — up X (K X (b tnsr)),
n=0 KeTt

where x(K X (tp,tny1)) = 1 if K X (tn,tn41) intersects the set S, and 0 otherwise. By the
Cauchy-Schwarz inequality and (5.58), we obtain

N-1

[(tth,as [0s0))[* < CRTTAID(En) D AL DY [K|X(K X (tnytag1))- (5.124)
n=0 KeTt

To estimate the term

N—-1
Si= 3" AL ST KK X (tatns))

KeTt
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in (5.124), let us fix n € {0,..., N — 1}. We have
Z |KIX(K X (tn, tnt1)) = |y
KeTt

where F,, is the union of the cells K such that x(K X (t,,tn+1)) = 1. If x € K C E,, then there
exists s € (tn,tnt1), 2 € (0A) -1 such that ®4(z) € K. We have then

A, By, () < d(a, D(2)) + d(®,(2), By, (2)) < h+ CAL,

hence
d(®' (z),2) < Cd(x, @, (2)) < Ch, (5.125)

under the CFL condition At < Ch. The estimate (5.125) shows that ®'(z) € (0A)p-1,cp, and
En C @, ((0A)L-140n)-
Since ®; preserves the Lebesgue measure, we obtain the estimate
|En| < [(0A) -1 pcn| < ClOA|RY?. (5.126)

To get (5.126), we have used the estimate |0A(;-1, 0| < ClOA|(L™! + h), which is a slight
generalization of (5.113). It follows from (5.126) that S1/2y < C|0A|h'2. We report this
estimate in (5.124) (and use the bound At < Cyh) to conclude that

[(ih.aes 0ep))[> < CD(tx)RM2. (5.127)
By similar arguments, we obtain the analogous estimate
(b, a0 Vo) < C|Duo|(T*)D(tx )1/, (5.128)
We have, indeed, by (5.122) and the bounds on V¢,

N—-1

(ihaes Vol S CRY2Y DALY Y K| Llag, lufk — ufIX(K X [tns taga])-
n=0 KeT? LEN(K)

The first inequality in (5.59) reads

N

n=

At Y N |K[L|[ag pluf — uf]* < 4llaf oz D(EN).
0 KeTt LEN(K)

By the Cauchy-Schwarz inequality, we obtain

N-1

(ka6 [Vapl)|? < CRD(EN) D At > > K|LIX(E X [tns tn))-
n=0 KeT? LEN(K)

Since
h > |K|L| = h|oK| < a7?|K],
LeN(K)

by (5.29), we see that \(,uiAt, |V2p)|? < ChD(ty)S and the estimate on S given above yields
(5.128). To sum up, we have shown that

1/2
lun,aelt) = u(®)llzsaay < C {[Duo|(TYD(En)R2} " + C|Duo| (T 012, (5.129)
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We see here that, simply estimating D(tx) from above by ||u0||%2(Td) will not be enough to

conclude. Instead, the energy estimate (5.47) must be fully exploited. It gives, indeed (recall that
t € [tn,tn+1]) a bound on the quantity 26D(ty) by the difference ||u0||2Lg(Td) - HuhAt(t)H%%Td).

By the conservation of the LP-norms in the continuity equation(5.5), ||uo||2L2(Td) = ||u(t)H%2(Td).
Since u(t) and up a¢(t) are bounded by 1 in L>(T?), we obtain
ED(tx) < llun,ae(t) — u(®)| oo (5.130)

We report the estimate (5.130) and use the inequality 2ab < na® + n~'b? with a parameter 7

small enough (with respect to the constant C') to obtain
1
lun,a(t) = w2 (rey < Sllunae(t) = ul®) |1 ey + CDuo| (T2,

The error estimate (5.82) follows.

6 Solution to the exercises

Solution to Exercise 3.4. Since the stochastic continuity of (P;) at s is equivalent to the
weak convergence of Pju to P} for all i, we can use the Portmanteau Theorem and consider
simply a function ¢ which is bounded and uniformly continuous. Given € > 0, there exists § > 0
such that d(z,y) < § implies |¢(z) — ¢(y)| < €. We decompose then the difference

Elp(X:)] — E[p(Xs)].
into two pieces. The first one is
E [(p(X:) = o(Xs))Lax, x,)<8) »
which is bounded by €. The second piece is
E [(p(X:) = o(Xs))Lax, x.,)>3) »

which can be bounded by 2|¢||gc(g)P(d(X¢, Xs) > 0), which is smaller than ¢ for ¢ close enough
to s.

Back to Ezercise 3.4.

Solution to Exercise 3.6.

1. That puo = dp means that X, always take the value 0 (X is deterministic). We have then
X7 = +1 with equi-probability, so

1 1
p1 = 55—1 + §5+1’
which is an example of Bernoulli’s Law b(3). We have then

1 1
P(X2:—2): IP(XQZO):i, IP)(X2:+2): i

1
4 b
The law of X5 is therefore

1
M2 =7 [5—3/2 +0_1/2+ 012+ 53/2} .
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2. The law pupy is

1 1 1
UN = Wé_Q + Z 27]\7621\1122 + W(s_g. (61)
—ON-lck<coN-1

3. The answer is that pg is the uniform law on [—2,2]:
1
po(4) = 7140 [-2,2]|

where |A| is the Lebesgue measure of a Lebesgue set A C R (see the proof below for fis).
This answer can be simply guessed by examination of the evolution of the process (X,,).
An other way to find the right g is to look at py for large N. Indeed, a usual way to find
an equilibrium for a system in evolution is to look as the behavior for large times: if there
is convergence to a limit object, this will most probably be an equilibrium of the system.
Here, for example, one can look at the evolution starting from the binomial b(1/2) with
values in {—2, 42}, as in Question 2. If ¢ € BC(R), then

/R@duzv = Z QLNga (2Nk_2> +0(1)

—2N—l<k<2N -1
1 1 k
1 Z oN—2¥ (2N—2> +o(1).
—2N-1<k<2N-1

We recognize a Riemann sum, which converges to

1 2
/gaduoo = 1/ o(z)dz.
R -2

The limit law oo is an invariant measure for good. Indeed, if Xy ~ p, then, by the
formula of total probability,

P(X;€eA)=P(X, € A|Z1 =-1)P(Z; = -1)+P(X; € A|Z; = +1)P(Z; = +1)
1 1
= i]P’(XO/2 cA+1)+ §P(X0/2 €eA-1),
for any Borel subsets A of R. This gives

8P(X; € A)=]ALN[-2,2]|+]A-N[-2,2]|, A4 :=24+2.

We compute, by the invariance by translation of the Lebesgue measure and the change of variable
formula,

As 0 [=2,2] = 240 [~4,0]] = 241 [-2,0]], [A_N[-2,2]] = 2/4N[0,2]].
If follows that P(X; € A) = 1|/AN[-2,2]| = poo(A): X1 has law ficc.

Back to Ezercise 3.6.

Solution to Exercise 3.7. We will use the following result.

Lemma 6.1. Let (E,d) be a complete, separable metric space. Then BC(E) is a separating
class: if two probability measures v1 and vo satisfy (v1,¢) = (v2,¢) for all ¢ € BC(E), then
V1 = Va.
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Proof of Lemma 6.1. The set of closed subsets of E is a m-system. By [3, Theorem 3.3], it is
sufficient to show that 1q(A) = v,(A) for all closed sets A. This follows from the pointwise
monotone convergence ¢, | 14, where the function

on(z) =1 —min(1,nd(z, A))
is continuous. O

Let ¢ € BC(FE). By Lemma 6.1, it is sufficient to show that (Pfv, p) = (v, ¢). We write

* — 1 T *
(P fir, o) = T/o (Plysh p)ds, (6.2)
(we will justify later this commutation relation). A change of variable gives then
T+t
* — * T + t — t —
(P jir, o) = f/ (Pmsp)ds = ——({fir, ) = 7 (e, 9)- (6.3)
t

Using the Feller property of (P;) and the convergence ji — v, we can pass to the limit in (6.3)
to obtain the desired identity (P;v, ) = (v, ¢). There remains to justify (6.2). By continuity of
t — (P, ), we have the following convergence of Riemann sums

1 = nT

~ NP n=

N HZZO s ur, S N

We apply P;* to each member (the convergence holds true owing to the Feller property of (F;)).

By linearity of P}, we get

1 N-1

N O PPLm) - Pl (6.4)
n=0

The semi-group property of P; implies Pj(P;u) = Py, therefore the left-hand side of (6.4)
is again a Riemann sum, which converges to the right-hand side of (6.2). This gives the desired
result.

Back to Exercise 3.7.

Solution to Exercise 3.8.
1. Quite clear.
2. Quite clear also !
3. (a) Let (p(t),q(t)) = ®(p, q). We compute the time derivative of H(p(t), q(t)):

d

S H(0(t),a(t)) = DpH(p,q)p + DeH (p,q)¢ = 0.

(b) We have
* 1 —
(Fins o) = 75 / g0 @i (x)e ) da,

The change of variable y = ®;(x) has the inverse x = ®_;(y) since the system is
autonomous, and has Jacobian 1 since

diV(;mq)(DqHa _DPH) = ZaQPin’H - 82piQiH =0.

i=1
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Using the identity H o ®_; = H, we obtain

/ @o@t(x)e_BH(‘”)da::/ e PHE) gy
R R

Back to Exercise 3.8.

Solution to Exercise 3.9. Let us first prove that I'(¢) > 0. Let ¢ € D(¥) be such that
©? € D(Z). Then 2I'(p) is the limit for b.p. convergence when t — 0+ of the quantity

Pi[p?] — ¢
t

Pp—¢
; .

—2 (6.5)

Since P; is given by
Pee(@) = [ o)Qta.)

where @ is a probability kernel, we can apply the Jensen inequality to bound (6.5) from below
by

[Piel —¢* , Po—¢

— 20 )
t t

Rearranging the expression, we see that (6.6) is equal to t=1(P,p — )% > 0.
Let us now consider the case of an ODE: X, = F(X}). Let ®; denote the associate flow, so that
X? = ®4(x). There is no randomness here, so we may consider that we are given a probability
space (Q, F,P) with F = {0,Q} the trivial o-algebra. However, it is sometimes relevant to put
randomness in the initial datum only. In that configuration, we consider a non-trivial o-algebra
F and a trivial filtration F; = F, for all ¢. In any case, we obtain a Markov process with
transition operator P, = ¢ o ®;. Then we compute L¢(z) = F(z) - Vo(x) when ¢ € C}(R?)
and

(6.6)

2T (p) = F - V(¢?) — 20F -V = 0.

In the case of the SDE (3.39), showing that (X;) is a Markov process is not immediate, see, e.g.,
[2, p.313]. Define the non-negative matrix a = o*o. By the It6 formula, we have, for ¢ € CZ(R?),

E [p(X))] = E [p(Xo)] + / E[Z(X.)]ds, (6.7)

where . is given by
1
Zolw) = Fx) -V + salx) : D*p(a) (6.8)

In (6.8), we use the following notations: Dy is the Hessian Matrix with 4j-components 97, , ¢
A : B is the scalar product of d x d matrices:

It follows from (6.7) and the continuity properties of the solution to (3.39) that the generator of
(X3) is indeed the operator . of (6.8). A simple computation gives then

I'(p)(x) = a(z) : V(z) @ V(). (6.9)
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In (6.9), we use the following notation: given u,v € R, u ® v is the (rank-1) matrix with ;-
element u;v;. Then A : u®v = Av-u, scalar product of Av with u. This gives us the alternative
expression

L(p)(2) = a()Ve(e) - Ve(z) = |o(z)Ve(z)|*.
In the particular case o(z) = I, we obtain I'(p) = |Vp|2.
Back to Ezercise 3.9.

Solution to Exercise 3.10. We have

L L L

Pup(@i) = Eayp(Xi) = Y Bo, [Ix(n=a, 0(25)] = Y Puy (X (1) = 25)p(a;) = Y aij(t) (),

Jj=1 Jj=1 Jj=1

which gives P;p = A(t)e. With the conventions that are used, we observe that (o, u) = (p, 1),
where (-, -) is the canonical scalar product in RL. Consequently,

(@, Pf ) = (Pup, ) = (A(t)p, ) = (0, A(t)* 1),

and we obtain Pfu = A(t)*p, where A(t)* is the adjoint of the matrix A(t). The semi-group
property reads A(t + s) = A(t)A(s). It follows that

At +5) — A(s)
t

By letting ¢ — 0, we deduce that A satisfies the ODE A'(t) = L A(t) = A(t)-%, which implies
A(t) = e since A(0) = Ip. The equation satisfied by an invariant measure is A(t)*u = p for all
t > 0. By differentiation, we obtain .Z*u = 0. Of course the latter equation implies ((£*)"u =10
for all n > 1, and thus

:A®A@;h:A@;hMﬂ

* _tLT (oiﬂ*)" _
Alt)'p=e M—ZTN—M-
n>0
Consequently, there is strict equivalence between A(t)*u = p for all t > 0, and £*u = 0.

Back to Exercise 3.10.

Solution to Exercise 3.11. Assume E = {z1,...,21} as in Exercise 3.10. Let A denote the
matrix A(1): a;; = Py, (X1 = z;). We still have P, = A(n)p and Py = A(n)*p. By the
semi-group property, we have A(n) = A™ for all n > 0. The equation satisfied by the invariant
measure is (A* —Id)p = 0 (the equivalent to .Z here is A — Id). Let us come back to the case
of a general state space E (a Polish space in our framework). Let us first prove that (M) is
a martingale. We can use the tower property (2.2) to show that it is sufficient to establish the
identity E [M,,41|Fn] = M, for all n > 0. By the Markov property, we obain

E [ My 41| Fn) = Pro(Xn) — 0(Xo) = > Lo(Xy).
k=0

Since . = Py —1d, this is precisely the desired identity E [M,,11|F,] = M,. Let us look at (3.43)
now. Again, we want to prove that E[Z,11|F,] = Z,. We write

n
Mn-‘rl = @(Xn-l-l) =Y, Y,.= QO(XO) + Zggp(xk)v
k=0
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where Y,, is F,,-measurable. This gives

E [|Mn+1|2‘fn] =E [|90(Xn+1)|2|}—n] =2V, E[o(Xny1)|Fn] + ‘Yn|2
= P1|<p|2(Xn) - 2YnP1<p(Xn) + |YTL|2
= P1|90|2(Xn) + Yo (Yo — 2P1p(X,))
We have also Y,, = ¢(X,,) + Lo(X,) — M,, = Pyp(X,) — M, hence
E [| My 41?1 ] = Pulol*(Xn) — (Pro(Xn) — M) (Pro(Xp) + My).

and
E [|Mys1*|Fn] = [Ma|? = Pilp]*(Xn) — |Pro(Xa) %

We obtain then (3.43) by using the definition T'[p] = Pi|p|> — |Pip|?. The Jensen inequality
applied to

Piota) = [ otz
E
shows that I'[¢] > 0.
Back to Exercise 3.11.

Solution to Exercise 4.3. FEach T, has density f:t — /\e”‘tlﬂhr (t) with respect to the
Lebesgue measure on R. By independence, S,, has the law f *--- % f (convolution n times). We
compute

t
f % f(t) _ /]R)\Qe—Ase—A(t—S)lRJr(S)]_RJr(t _ s)ds :/O )\26_)‘td51R+(t) — )\Qte_/\th+(t),

and, by recursion on n, fx---x f(t) = A" (f:fll)!e_’\th+ (t). We compute then

P(N(t) =n) = P(Sp <t < Sps1) = P(Sp <t < Sn+ Ths1)

t ]
=E[ls, <t<5,+T0 1] =/ / dp(s, T,41)(8:7).

=0 =t—s
By independence, p (s, 1,.,) = is, @ 4T, SO

t o 8"71 ()\t)n
P(N — _ n —As —AT — —At )
(N(t) =n) /5:0 /T:tiS A = 1)!6 dshe™"Tdr =e¢ o

The assertion that N(¢) is cadlag is a deterministic statement, it comes from the fact that I' is a
measure: indeed, we note that, whatever the Radon measure p on R, the map ¢ — u([0,]) is
cadlag. It is clear that N(0) = 0 a.s. and that (N (¢)) has jumps of amplitude +1.

Back to Ezercise 4.5.

Solution to Exercise 4.5.

1. (a) Assume by contradiction u({zo}) > 0. For A = {x¢}, we have then P(I'(4) > 2) > 0,
which is absurd since A cannot contain more than one point.
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(b) The left-hand side of (4.14) is

P(I(A1) =y, ., D(Ap) = g, D(Ag) =) _ [lig e A0 EEE
P(I'(R4) = n) e—n(®d) LED"

By rearrangement, we obtain (4.14).

(a) For i # j, using independence, the event X; = X, has probability

P(X, = X;) = / diixsx,) (@, y) = / dv(y)du(z) = 0.
=y R J{z}

This shows that #II,, < n with probability 0.
(b) Here, the event I',,(R?) = n has probability 1, so

P(T, (A1) =nqy,...,Dp(Ag) = nk|Fn(Rd) =n) =P, (A1) =n1,...,[n(Ar) = ng).
We consider the realization of the event
{Fn(Al) =MN1y... 7Fn(Ak:) = nk} == {Fn(AO) = Nnyo, Fn(Al) = Ni,... ,Fn(Ak) == nk}

Drawing each random variable X; successively gives us n independent trials, where we
have to test the (k + 1) outcomes X; € A;, each having probability p; = v(A;): this
is precisely the situation of a generalized Bernoulli test, described by the multinomial
distribution. To be complete, let us prove this result. We use a recursion on n,
starting from the trivial case n = 1. Without loss of generality, we assume that all
n;, j =0,...,k are strictly positive. We condition to the location of the first variable
X1 to obtain

]P)(Fn(Ao) = nO,Fn(Al) =Ni,... 7Fn(A]€) = nk)

Mw

P(I'y(Ag) = no, I'n(A1) = na, ..., Tn(Ag) = ni| X1 € 45)P(X1 € A4j)

(=)

i=
We have P(X; € A;) = p; and

P(T'(Ao) = no, I'n(A1) = na, ..., Tn(Ag) = ni| X1 € 4j)
:]P( ( )7n0, n— 1(A1)fnl,...,Fn_l(Aj):njfl,...Fn_l(Ak):nk)
1mn; n!

) U
' ' 'po ...pk ,
pj n Nng:nq- N

which gives the desired result by summation over j.

. For each Borel subset A of R? T'(A) is equal to the sum

oo
D 1A(Xi)Lji 400y (N),
1=1

so I'(A) is a random variable. Using the notations of the previous questions, we have

P(D(Ay) = n, ..., T(Ay) = ng)

= > P((A) =m,....,T(Ax) = m|N = n)P(N = n)

n=ni+---+ng

Z]P’ w(Ag) =0, T (A1) = na, ..., Tn(Ar) = np)P(N = n),

no=0
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which gives

]P)(F(Al) =MNy,... 7F(Ak) = nk)
- Z #[V(Ao)]m T [V(Ak)]n’“e*“(Rd)iu(Rd)n

l... | |
=0 : ng: n:

o0

1 a
_ s no .. ng ,—u(R?)
S A A

There is no more n in this last expression. We explicit the summation over ny to obtain

P(T(Ay) = na,...,[(Ag) = ng) = ﬁ[ﬂmmm o [u(Ag)] e HEDFa(Ao)
_ e—wm% . eﬁ%%' (6.10)

Taking & = 1 in (6.10) shows that I'(A) has a Poisson distribution of parameter p(A), then
(6.10) for general k shows that I'(A;),...,I'(Ax) have the desired independence property.

. Let X1, Xo,... be independent random variables with Poisson distributions of respective
parameter A\, € [0,+00]. We know that X; + X5 then follows a Poisson distribution of
parameter A; + Ao (this is standard when Ay, A2 < 400, but the case where one of the \;
is o0 is trivial). By iteration, any finite sum > _o X, follows a Poisson distribution of
parameter Y ¢ Ap:

nes

P [Z X, = k] = e_A%T. (6.11)

nes

We can pass to the limit in (6.11) (using monotone convergence) to extend the identity to
the case where S is countable (again, discussing the case where all parameters \,, n € S
are finite, or one is infinite). This yields the Superposition Principle.

. For each n, we can construct a Poisson process I1,, with intensity pu,, using some iid random
variables (X, m)m>1 and some independent Poisson variable N,, of parameter p,,(R%). It
is always possible to ensure that the family

{Xn,ma Nn; n,m > 1}

is independent. Then we obtain independent Poisson point processes with intensity .
The Superposition Principle gives the result.

. Suppose that
R = | An,  u(An) < +00.
neN

We can assume that the sets A,, are disjoint, otherwise, we consider
Bl :Al, Bg = (A1 UAQ)\Bl’...7Bn = (AluuAn)\Bn_l,

Then (4.17) is realized with u,, =restriction of u to A,.
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7. When d = 1, u = Axrestriction of the Lebesgue measure to R, the process N(t) = I'([0, ¢])
is a counting process with Poisson’s distribution of parameter At. If 0 < ¢, sand t; < --- <

ti <t, then
P(N(t1) =ny,...,N(ty) = ng, N(t +8) — N(t) =m) (6.12)
=PI A )=n1,I'(As) =ng —ny...,I'(Ag) = np — ng—1,[(A) = m), (6.13)
where Ay = [0,t1], Ay = (t1,t2], ..., Ax = (tx—1,tk], A = (t,t + s]. We can always assume

that t, = t. Using the independence properties of the Poisson point process, we obtain
then, setting t) =0 and ng =0 and txy1 =t + s, ngy1 = m + ng,

P(N(t;) =ny,...,N(ty) =ng, Nt +s) — N(t) =m)
e~ Mt1—to) (A(t1 — tg))™—mo e Mt —ti) (Mtry1 —tr))

(n1 — TL())' (nk+1 — nk)'
= P(N(t1) = n1,...,N(ty) = ni)P(N(t + s) — N(t) =m) (6.14)

N1~ Nk

This shows that N(t + s) — N(¢) is independent on F}¥ and follows a Poisson distribution
of parameter \s. Therefore, (N (t)) is a Poisson process, as defined in Definition 4.2.

Back to Ezercise 4.5.

Solution to Exercise 4.6.

1. By independence, the quantity E [90(51, R Sn)1$n§t<5n+1] is equal to

E[o(T1, Ty +To....,Ti+ 4 1)Ly oo i Ty <t Ty ot T+ T )
/ / Ot by Fto, .oty ) Ly g, <t<ty bt b
n4+1=0
x NV Hle= Attt dtne) g oot
We do the change of variable (of Jacobian 1)
up =t1,u2 =%+l ., Unp1 =81+ F g
to get the expression
t t t oo
/ / o / / P(ur, g, . un) AT eT N duy - g
u1=0 Jus=u1 Un=Un—1 J Upt1=1
= \e _’\t/ / / o(uy, ug, ..., up)duy - - - duy,
u1=0 Juzs=u, Un=Un—1
A" A
=ye ‘Ele(Uq), - - Uwmy)]

This gives us the identity

as desired.
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2. We use the same kind of transformation as in (6.12) to see that

P(N(tl) :nl,...,N(tk) :’I’Lk)
= P(F(Al) = nl,F(Ag) =MN2 —Np.. ,F(Ak) =Nk — nk,h]\/'(tk) = ’I’Lk),

where A; = [0,t1], Ao = (t1,%2],..., Ak = (tg—1,tx]. Let mq = ny and m; = n; —n;_; for
j > 1. The result of the previous question shows that, conditionally to N(tx) = ng, the
event

F(Al) = ml,F(AQ) =Mma... ,F(Ak) = mg

corresponds to the arrangement of m; among n; independent uniform variables U; on
[0,t] in the set A;, for all j. This is the multinomial distribution (already discussed in
Exercise 4.5) that gives therefore the probability:

P(N(tl) = nl,...7N<tk> = nk)

_ ml'nik'mk' ("?}:')ml ('f:')mk P(N(tx) = ni).  (6.15)

A simple computation then gives (4.18).

Back to Ezercise 4.6.

Solution to Exercise 4.7. Either adapt the proof of Proposition 4.3, either apply directly
this Proposition taking £ = N and X,, = Xy + n. We have then Pip(n) = p(n + 1), therefore
(N (t)) has the generator
ZLp(n) = =A(p(n+1) = p(n)),
Z

with domain the whole set of bounded functions N — R and transition semigroup P; = et~
Back to Ezercise 4.7.

Solution to Exercise 5.1. Clearly, the properties (5.18), (5.20) and the monotony property
are satisfied. To establish the regularity property (5.19), we use the fact that A is locally Lipschitz
continuous.

Back to Ezercise 5.1.

Solution to Exercise 5.2. Same proof as in the case A = A(v). This times we use the
divergence-free condition (div, A)(x,v) = 0.
Back to Exercise 5.2.

Solution to Exercise 5.3. We suppose that a is fixed of course. Consider a mesh with
triangles only. If one triangle as a basis of length ~ h, but a height that is almost 0, i.e. if there
is an almost flat triangle in the mesh, then the first condition in (5.29) may not be satisfied.

If we consider triangles only then |0K| < 3diam(K) < 3h for any K. Now, consider a triangle
with a basis of length ~ 1, and a height ~ h. Then fold the “arrow” of this triangle to form
a polygonal set of diameter O(h) and perimeter ~ 1. If T contains such kind of set, then the
second condition in (5.29) will not be satisfied.

Back to Ezercise 5.5.
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Solution to Exercise 5.6. We only give the sketch of the proof. By linearity, it is sufficient
to consider the case ug = 0, in which case we want to prove u = 0. If u is smooth, then
Oru + a - Vu = 0 (recall that a is divergence free). By the usual chain-rule formula, it follows
that 9;8(u) + a - VB(u) = 0 for any function 3 of class C*. By integration, we obtain

8 Blu(z, t))dx = » B(u(zx,0))dz = B(0). (6.16)

It is sufficient to apply (6.16) with a non-negative function 8 such that §(s) = 0 if, and only if,
s = 0, for example 3(s) = s2, to conclude. In this special case 5(s) = s, we can reformulate
things as follows: our aim is to justify the “energy estimate”

o’ +a-Vy(u?)=0

for a weak solution u. This is a standard problem. It is discussed for example in [16, Section
II1.2.] for parabolic equations, or [23, Appendix A.20] for the kinetic Fokker-Planck equation.
For transport equation, specifically, this problem is treated in [6]. Actually, [6] deals with less
regular fields a, which, instead of being Lipschitz continuous, have a mere Sobolev regularity.
See Section II.2 in [6].

To show that (z,t) — ug o ®!(z) is a weak solution, do the change of variable 2’ = ®!(z) in the
weak formulation. Back to Ezercise 5.6.

Solution to Exercise 5.8.

1. Let ¢ € CL(U). We have

1 1 1
/ u(m)w’(x)dx:—/ u’(w)ap(x)dx:—/ f(x)p(x)dz. (6.17)
—1 —1 -1
If ¢ is supported in (—r, ) with 7 < 1, then (6.17) is bounded by || f[| 1 (=, l¢llc(=1,1)- We
have u € BV(U) if, and only if there is a finite constant C' such that |fi1 f(z)p(z)dz| <
Cllelle(=1,1) for all ¢ € CHU). Clearly, f € L'(U) implies u € BV(U). Conversely,
if w € BV(U), let us consider, for ¢ > 0, x. the characteristic function of the interval
(—=1+4+¢,1—¢) and (pe), an approximation of the unit with p. supported in (—¢,¢). Let
also 9 be a function in C}(U). We have then

1
‘ / Fsign(f)abds| SC. - pui= (o) * e (6.18)

Taking the limit ¢ — 0 in (6.18) gives

‘ / 11 | Flpda

We consider then a non-decreasing sequence of functions v € CL(U) which converges
pointwise to the constant function 1. By monotone convergence, (6.19) gives f € L*(U).

<C. (6.19)

2. Let p € CH(U). We have

1 1
/ u(a)e! (2)de = / o (2)dz = —p(0) < [lelle, (6.20)
0

-1

hence u € BV(U).

(0]



3. By the Stokes’ formula, we have, for p € C1(U),
/ udivdr = / div pdx = / o(x) -n(x)do(x) < wllplle-1,1), (6.21)
U B(0,1/2) 8B(0,1/2)

hence u € BV(U).

Back to Exercise 5.8.

Solution to Exercise 5.9. In the first case, we assume f € L!'(—1,1). Then (6.17) shows
that Du = f\, where A is the Lebesgue measure on (—1,1). By [20, Theorem 6.13], we have
|Du| = | f|X then and [|ullgv@w) = [Jull @) + [ fllz1 ). In the second case, (6.20) shows that
Du = 4y, the Dirac mass at 0. Then |[Du| = 4o also and |[ullgy@w) = [Jullpr@w) +1 = 2.
In the third case, (6.21) shows that Du = no, where n is the outward unit normal to U on
OU and o the surface measure. By [20, Theorem 6.13] again, |Du| = 0. We compute then
lullpv@) =n/4+m =5n/4.

Back to Exercise 5.9.

Solution to Exercise 5.11. Assume first that u is of class C'. Let h € [0,1]. For z € Q =
(0,1)? and z € R? with |z| < h, we have

1 1
lu(z + z) — u(x)| = /0 (Vu)(x +rz) - zdr| < h/o |Vul|(z + rz)dr.

We do the change of variable (2/,7') = (z + rz,r) of Jacobian determinant 1 to obtain

u(x + z) —u(z)|de < h Vu(z)|dzdr < h Vu(z)|dz = h|Du|(Q'),
Lt —u@lae <[] wu@drir < | vuie = nioui@)

where Q' = (—1,2)%. This gives wri(u;h) < |Du|(Q')h. This estimate remains true in the
general case by Theorem 5.11 applied on U = @Q'. Since |Du|(Q’) < 3¢|Du|(T%), we obtain the
desired result with C' = 3.

Back to Exercise 5.11.
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