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Abstract
In this course, we will see how to understand and describe the large scale limit of various

discrete evolution systems (random and deterministic) with the help of partial differential
equations. This will be the occasion to use, and discover, some standard tools from the
theory of PDEs, of numerical analysis, and of statistical physics.

1 Introduction
1.1 Discrete conservation laws
Suppose that we are given a family T of open polyhedral sets forming a partition of the space
Rd: for all distinct K,L ∈ T , we assume that K ∩ L = ∅ and that K ∩ L is contained in an
hyperplane of Rd. The partition is understood up to a negligible set: the Lebesgue measure of
Rd \

⋃
K∈T K is zero. The picture 1 below gives the example of a triangulation of the plane.

We consider the following evolution of an extensive quantity u: let 0 = t0 < t1 < · · · < tn < · · ·
be some discrete times, let UnK denote the amount of the quantity u in the cell K at time tn. We
assume that Un+1

K is given by the formula

Un+1
K = UnK + ∆tn

∑
L∈N (K)

|K|L|QnL→K . (1.1)

The notations used in (1.1) are the following ones: ∆tn is the length tn+1−tn of the time interval,
N (K) is the set of neighbors of K: L ∈ T is a neighbor of K if K|L := K ∩ L is non-empty
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and of finite (N − 1)-dimensional Hausdorff measure |K|L| (in particular, K is not a neighbor
of K). The quantity ∆tn|K|L|QnL→K represents a certain flux of the quantity u that has passed
through the interface K|L from the cell L to the cell K between the times tn and tn+1. We
have put in factor the term ∆tn|K|L| because we prefer to work with densities, rather than with
scale-dependent quantities (the typical scales here depend on the size of the cells and of ∆tn and
will tend to zero at some point later on). For the same reason, it is more appropriate to introduce
|K|, the Lebesgue measure of the cell K, and to work with the scaled quantity unK = UnK/|K|,
which satisfies the equation

un+1
K = unK + ∆tn

|K|
∑

L∈N (K)

|K|L|QnL→K . (1.2)

Assume that the densities of flux QnL→K satisfy the following condition:

QnL→K = −QnK→L, (1.3)

for all n ∈ N, for all K,L ∈ T being neighbors. The condition (1.3) ensures that the (algebraic)
quantity of u that was given by the cell K to the cell L is the quantity of u received by the cell
L from the cell K. Under (1.3), the evolution given by (1.2) is conservative: we will show in
particular that, when it makes sense, the quantity∑

K∈T
|K|unK

is constant with respect to n. Our objective will be to explain what is the limit of (unK) when
∆tn and |K| tends to 0. We need to be more specific on our framework to achieve this goal. Let
us simply say for the moment that what we will obtain in the end are some conservation laws

∂tu+ divx(Q) = 0, (1.4)

where Q(x) is a function of x, u(x) and ∇u(x). The derivation of (1.4) is related to the analysis
of the Finite Volume method, which is used to compute the solution of conservation laws such
as (1.4) with the help of the discrete formulation (1.2).

1.2 The symmetric simple exclusion process
Let 0 < N < L be some integers. Consider N particles located at one of the site 1, . . . , L − 1
that evolve according to the following process: there is always one particle at site 0 and, for each
site x ∈ {1, . . . , L− 1}, we draw a random time Tx that follows an exponential law of parameter
λ > 0, so that the family {Ty} is independent. Consider the point x∗ at which x 7→ Tx is minimal
and let the particle at x∗ jump from its original site x to a new site y with probability p(x∗, y),
the jump occurring under the restriction that the arrival site y is vacant. Then start over. This
process is called an exclusion process for the reason that jumps to occupied sites are excluded.
It is termed simple to make the distinction with some more complicated situations, where the
probability of a jump from x to y may depend not only on x and y, but on the whole interval
[x, y] and on the disposition of particles in this interval. We also call the process symmetric when
p(x, x + l) = p(x, x− l), whenever the quantities are well defined. Here we will consider the case
p(x, y) = 0 if |x − y| 6= 1, so that only jumps to left or right immediate neighboring site are
possible, and equi-probable. At the boundary, we assume p(0, 1) = 0, p(L − 1, L − 2) = 1. We
can put in correspondence this evolution of particles with the evolution of a random interface
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described as follows: we set H(0) = 0 and, for x ∈ {1, . . . , L}, define H as the discrete primitive
function

H(x) =
x−1∑
y=0

(2η(y)− 1), (1.5)

where η(y) ∈ {0, 1} is the number of particle at y. Then we interpolate linearly between those
points. Conversely, we deduce η(x) from H by the “differentiation” formula η(x) = [1 + H(x +
1)−H(x)]/2. In the situation where the site x is occupied and the site x + 1 is vacant, the shape
(above {x, x + 1, x + 2}) of the function H is ∧. If the particle at x jumps at x + 1, it becomes ∨,
– and conversely. We consider then the following problem: assume that L and N are very large.
For definiteness, we will take L = 2N , which ensures that H(L) = 0. Consider the change of
scale

hLt (x) = L−1Ht(Lx), x ∈ (0, 1). (1.6)

What can we say about the evolution of the profile t 7→ hLt , for, possibly, t very large? We will
see that, under adequate conditions on the initial data, and after the following parabolic change
of time scale:

hLt (x) = hLL2t = L−1HL2t(Lx), x ∈ (0, 1), t > 0, (1.7)

we have a kind of law of large numbers: for all final time T > 0, hL is converging in probability
in L∞(0, T ;L2(0, 1)) to a deterministic profile h which is completely determined as a solution of
the heat equation with homogeneous Dirichlet boundary conditions.

1.3 Interacting particle systems
We will now consider a problem similar to the previous one, with the difference that it is multi-
dimensional and that jumps to occupied sites are not excluded. Let ΛN be a finite subset of
Zd. We consider a system of particles scattered on ΛN , which interact as follows: let x denote a
typical site of ΛN and let ηt(x) denote the number of particles located at site x at time t. We
will be interested in the evolution in time of the functions x 7→ ηt(x). The state space is therefore
EN := NΛN , the set of functions ΛN → N. The evolution is described by the following algorithm:
each site x has its own clock that is independent from the clocks at other sites, and that rings
after a time Tx which is a random variable of exponential law of parameter λ(η(x)). Assume
that it is at the site x∗ that a clock is ringing first. If η(x∗) > 0, then one particle of the site x∗
jumps to an other site y chosen at random in ΛN , according to a transition probability p(x∗, y)
(possibly, at that stage, some exclusion rules may be added, see Section ??). Then we start over.
Let us consider the case where ΛN is the discrete torus TdN = Zd/NZd and p is compatible and
translation invariant: for all l ∈ NZd, m ∈ Zd,

p(x + l, y) = p(x, y), p(x +m, y +m) = p(x, y). (1.8)

Let us zoom out (cf. (1.6)) by considering the function

[0, 1)d 3 x 7→ N−1ηt([Nx]) (1.9)

extended by periodicity. In (1.9), [Nx] is the element x of TdN ' {0, · · · , N − 1}d such that
xi ≤ Nxi < xi + 1 for all i = 1, . . . , d. May it be the case that, possibly after a change of time
scale (cf. (1.7)), some averaging phenomena would lead to a given deterministic behaviour? We
will see that the question has to be refined, before being answered positively (at least in certain
cases).
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2 Martingales in continuous time
2.1 Conditional expectation
Proposition 2.1 (Conditional expectancy). Let (Ω,F ,P) be a probability space and let G ⊂ F be
a sub-σ-algebra of F . Let X be real-valued random variable which is integrable: X ∈ L1(Ω,F ,P).
Then there exists a unique G-measurable and integrable random variable Z such that

E(1AX) = E(1AZ), ∀A ∈ G. (2.1)

We call Z the conditional expectancy of X knowing G, denoted E(X|G).

Roughly speaking, E(X|G) is the average of X with respect to all the events not relative to G.
The following facts or examples illustrate this fact.

Fact 1. If G = F , then E(X|F) = X a.s. If G is the trivial σ-algebra {∅,Ω}, then E(X|G) =
E(X).

Example 1. When G is the σ-algebra generated by an event A ∈ F , G = {∅, A,Ac,Ω}, then

E(X|G) = E(1AX)
P(A) 1A + E(1AcX)

P(Ac) 1Ac .

If X = 1B where B ∈ F , this gives E(1B |G) = P(B|A)1A + P(B|Ac)1Ac .

Fact 2. One has the following tower property: if H is a sub-σ-algebra of G, then

E(E(X|G)|H) = E(X|H) a.s. (2.2)

As a particular case, when H = {∅,Ω}, we obtain E[E(X|G)] = E[X].

Example 2. Let X, Y be two independent random variable and let f : R2 → R be a bounded
Borel function. Then Z = E(f(X,Y )|σ(Y )) is σ(Y )-measurable, and it is known that such a
function can be written h(Y ), where h is Borel. In general, when saying that a σ(Y )-measurable
function has the form h(Y ), we have no particular information on h. Here, however, we know
very well what is h: it is the function obtained by averaging with respect to “all that is not Y ”,
i.e.

E(f(X,Y )|σ(Y )) = h(Y ), h(y) := E(f(X, y)). (2.3)

Example 3. Let D denote the set of dyadic cubes in [0, 1)d, and for n ∈ N, let Dn denote the
subset of dyadic cubes of length 2−n: all cubes in Dn are translation by an element of 2−nZd of
the basic cube [0, 2−n)d. Let f : [0, 1)d → R be integrable. The piecewise-constant function fn
equal to the averaged value of f over each cube Q inDn can be seen as the conditional expectancy
E(f |Fn) by taking Ω = [0, 1)2, P being the Lebesgue measure, F the Borel σ-algebra, and Fn
being the σ-algebra generated by all the cubes in Dn (verification left as en exercise). There is
a consistency property in this approximation process, which is the following one: for all m < n,
averaging the finer approximation fn over the coarser grid corresponding to Dm gives fm:

E(fn|Fm) = fm a.s. (2.4)

The property (2.4) follows from the tower property (2.2) for example. It is an instance of a
martingale property.
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2.2 Martingales
Definition 2.1 (Filtration). Let (Ω,F ,P) be a probability space. A family (Ft)t≥0 of sub-σ-
algebras of F is said to be a filtration if the family is increasing with respect to t: Fs ⊂ Ft for
all 0 ≤ s ≤ t. The space (Ω,F , (Ft)t≥0,P) is called a filtered space.

Definition 2.2 (Adapted process). Let (Ω,F , (Ft)t≥0,P) be a filtered space. A real-valued
process (Xt)t≥0 is said to be adapted if, for all t ≥ 0, Xt is Ft-measurable.

Definition 2.3 (Martingale). Let (Ω,F , (Ft)t≥0,P) be a filtered space. Let (Xt)t≥0 be an
adapted real-valued process such that, for all t ≥ 0, Xt ∈ L1(Ω). The process (Xt)t≥0 is said to
be a martingale if, for all 0 ≤ s ≤ t, Xs = E(Xt|Fs) a.s.

Remark 2.1. A martingale with continuous (resp., càdlàg1) trajectories is said to be a continuous
(resp., càdlàg) martingale.
Remark 2.2. With respect to a fixed time t > 0, conditioning on Fs with s ≤ t is a way to
average Xt over all events which occurred between times s and t. For a martingale X, this will
let the position Xs unchanged. We expect a martingale not to wander too much therefore. We
will see and use several instance of this general principle. See Section 2.3 for a first example. Let
us also state the following result.

Theorem 2.2 (Doob’s martingale inequality). Let p > 1. Let (Mt)t∈[0,T ] be a càdlàg, real-valued
martingale, such that E|MT |p < +∞. Then the inequality

E [(M∗T )p] ≤
(

p

p− 1

)p
E|MT |p, M∗T = sup

t∈[0,T ]
|Mt|, (2.5)

is satisfied.

2.3 A digression on the Calderón-Zygmund decomposition
2.3.1 The Calderón-Zygmund decomposition

Let f : [0, 1)d → R be a non-negative, integrable function. Let λ > 0 be a fixed threshold such
that the integral of f over [0, 1)d is smaller than λ/2. In terms of Example 3. in Section 2.1, this
means E[f ] ≤ λ/2. Consider (see Remark 2.2) that being below λ is “not wandering too much”,
while being above λ is “wandering too much”. What is the behavior of the martingale (fn) defined
in the Example 3. in Section 2.1? Let T be the stopping time T = inf{n ≥ 0; fn > λ}. We know
that T > 0 almost surely. If T = +∞, then fn ≤ λ for all n, and thus f = lim fn ≤ λ. Here
we use the intuitive fact that f = lim fn. We have to specify the mode of convergence however
and to justify the convergence. The convergence is almost sure. One can use the martingale
convergence theorem for example (probabilistic approach) or the dyadic version of the Lebesgue
differentiation theorem (analyst’s approach). In any case, we obtain: f ≤ λ a.s. on {T = +∞}.
The set {T < +∞} can be written as an at most countable collection (Qi)i∈I of dyadic cubes.
Indeed, it is the union over n ≥ 1 of the sets {T = n}, and {T = n} is a union of dyadic cubes
in Dn (because fn is constant on each Q ∈ Dn). If Q is one of the cubes that enter in the
decomposition of {T = n}, and if Q′ ∈ Dn−1 is the twice bigger cube containing Q, then the
averaged value of f on Q′ is smaller than λ (otherwise T < n). It follows that

λ ≤ 1
|Q|

∫
Q

f(x)dx ≤ 1
|Q|

∫
Q′
f(x)dx = 2d

|Q′|

∫
Q′
f(x)dx ≤ 2dλ. (2.6)

1càdlàg meaning “continue à droite avec limites à gauche”, i.e. “continuous from the right with left limits” at
each points
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From these considerations on martingales, we can deduce the following statement.

Lemma 2.3 (Calderón-Zygmund). Let f : Rd → R be a non-negative, integrable function. Let
λ > 0. There exists an at most countable family (Qi)i∈I of dyadic cubes such that

∀i ∈ I, λ ≤ 1
|Qi|

∫
Qi

f(x)dx ≤ 2dλ, (2.7)

and f ≤ λ a.e. on the complementary set Rd \ ∪i∈IQi.

Proof of Lemma 2.3. fixN large enough such that 2−Nd‖f‖L1(Rd) ≤ λ/2. Consider the countable
decomposition of Rd by all the dyadic cubes of size 2N . On each such cube R, we apply the
analysis performed before the statement of the lemma. This analysis was done with the starting
cube R = [0, 1)d, but can be readily adapted to the general case. The final family of cube (Qi)i∈I
is then the union of the families obtained on each such cube R.

The Calderón-Zygmund lemma is applied to obtain a decomposition of f = g + b, where

g =
∑
i∈

[
1
|Qi|

∫
Qi

f(x)dx
]

1Qi
+ f1Rd\∪i∈IQi

(2.8)

and
b = f − g =

∑
i∈I

bi, bi =
[
f − 1
|Qi|

∫
Qi

f(x)dx
]

1Qi
. (2.9)

The function g is considered as the good part, since it is controlled in size by λ; more precisely,
|g(x)| ≤ (2d+1)λ. The function b is considered as the “bad” part. It is not controlled in size but
has the properties that bi is supported in Qi and has zero integral. The Calderón-Zygmund is
fundamental in harmonic analysis. Note that, if we come back again to the probabilistic approach
(and restrict things to [0, 1)d), then g is simply fT , while b = f − fT .

2.3.2 Application to elliptic estimates

Let U be an open subset of Rd, d ≥ 2. Let f : U → R be measurable. The Newtonian potential
of f in U is the function u defined by the convolution product

u(x) =
∫
U

G(x− y)f(y)dy, x ∈ Rd, (2.10)

where the function G is defined by

G(x) =

−
1

2π ln |x| if d = 2,
1

d(d− 2)ωd
1

|x|d−2 if d ≥ 3, (2.11)

where ωd is the d-dimensional Lebesgue measure of the unit ball in dimension d. Although G is
singular at the origin, the function u is well defined and has some given regularity/integrability
properties, depending on the regularity/integrability properties of f . See [13, Chapter 4.]. Since
G is the fundamental solution of the Laplace equation in Rd, the function u satisfies −∆u = f in
U , again under adequate regularity/integrability properties of u and f . The Newtonian potential
is also used to express a solution of the Poisson equation −∆v = f as the sum u + w, where w
is harmonic in U (no considerations on boundary conditions here). We will use the Calderón-
Zygmund decomposition to prove the gain of regularity of two derivatives in the space Lp.
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Theorem 2.4. Let 1 < p < +∞. Let f be bounded and locally Hölder continuous and let u be
given by (2.10). Then u is of class C2 in U , −∆u = f in U , and

‖∂2
iju‖Lp(U) ≤ C‖f‖Lp(U), (2.12)

for all i, j ∈ {1, . . . , d}, where the constant C depends on d and p only.

We will focus on (2.12). See [13, p.55] for the proof that u is of class C2 in U and satisfies the
Poisson equation −∆u = f in U . Informally, we have

∂2
iju(x) =

∫
Rd

Kij(x− y)f̃(y)dy,

where f̃ is the extension of f by 0 outside U , and where Kij has a non-integrable singularity
of type |x|−d at the origin. We can also write (again informally), ∂2

iju = RiRj f̃ , where Rj
is the Riesz transform. It is defined a priori as the application L2(Rd) → L2(Rd) given, after
conjugation with the Fourier Transform, by

F(Rjf)(ξ) = i
ξj
|ξ|
F(f)(ξ), F(f)(ξ) =

∫
Rd

f(x)e−ix·ξdx. (2.13)

We recognize the expression of the operator f 7→ ∂xj
(−∆)1/2f . Using the expression of Fourier

transform of the homogeneous function ξ 7→ ξj

|ξ| , [12], we also obtain (still informally at that
stage) the expression

Rjf(x) =
∫
Rd

Kj(x− y)f(y)dy,

where Kj(x) = Γ((d+1)/2)
π(d+1)/2

xj

|x|d+1 has a non-integrable singularity at the origin. We will use the
Calderón-Zygmund decomposition to establish the following result.

Theorem 2.5 (Singular Integral). Let K ∈ C(Rd \ {0}) be a given kernel. Assume that, for all
f ∈ C∞c (Rd), for all x ∈ Rd, the limit

Tf(x) = lim
ε→0

Tεf(x), Tεf(x) =
∫
|x−y|>ε

K(x− y)f(y)dy, (2.14)

exists, that there is a constant A ≥ 0 such that

‖Tf‖L2(Rd) ≤ A‖f‖L2(Rd), (2.15)

for all f ∈ C∞c (Rd), and
sup
y∈B

∫
(2B)c

|K(z)−K(z − y)|dz ≤ A, (2.16)

for all ball B = B(0, r), r > 0, centred at the origin (with 2B = B(0, 2r)). Then, for all
1 < p < +∞, there exists a constant Ap ≥ 0 such that

‖Tf‖Lp(Rd) ≤ Ap‖f‖Lp(Rd), (2.17)

for all f ∈ C∞c (Rd).
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Let us do few comments on the result. First, see [21, p.19] for a more general statement. Second,
note that the constant A does not depend on the radius r in the regularity condition (2.16).
Let us consider the case of the Riesz transform. Using the definition (2.13) and the expression
F(|x|−(d−1)) = αd|ξ|−1 for the Fourier Transform of the tempered distribution x 7→ |x|−(d−1)

(where αd is a constant depending on d only), we see that

Rjf(x) = βd

∫
Rd

|x− y|−(d−1)∂jf(y)dy, (2.18)

(where βd also denotes a constant depending on d only). Set K(z) = βd
zj

|z|d+1 . Let νε(x, y)
denote the outward unit normal to the ball B(x, ε) at a point y of the boundary and let (ei)1,d
denote the canonical basis of Rd. We use the identity ∂jϕ = div(ϕej) and the Green formula to
obtain

Tεf(x) =
∫
|x−y|>ε

K(x− y)f(y)dy = βd

∫
|x−y|>ε

|x− y|−(d−1)∂jf(y)dy + rε,

where
rε = βd

∫
|x−y|=ε

|x− y|−(d−1)νε(x, y) · ej∂jf(y)dσ(y).

We have νε(x, y) = y−x
|y−x| , hence

rε = βdε
−(d−1)

∫
|x−y|=ε

y − x
|y − x|

· ej∂jf(y)dσ(y) = βd

∫
|z|=1

z

|z|
· ej∂jf(x+ εz)dσ(z).

Since ∫
|z|=1

z

|z|
· ejdσ(z) = 0

by symmetry, we obtain, for f smooth enough,

rε = βd

∫
|z|=1

z

|z|
· ej [∂jf(x+ εz)− ∂jf(x)]dσ(z) = O(ε).

This shows that the limit in (2.14) exists indeed. The property (2.15) is a direct consequence of
the definition (2.13). We use the homogeneity properties of K(z) = βd

zj

|z|d+1 and the change of
variable z′ = rz, y′ = ry to see that (2.16) is equivalent to

sup
y∈B1

∫
(2B1)c

|K(z)−K(z − y)|dz < +∞, (2.19)

where B1 = B(0, 1) is the unit ball. Since |z| > 2, |z − y| > 1 in (2.19), and |K(x)| ≤ βd|x|−d,
we must check the integrability at infinity in (2.19). For y ∈ B and z ∈ (2B1)c, we have

|K(z)−K(z − y)| =
∣∣∣∣∫ 1

0
(∇K)(z − ty) · ydt

∣∣∣∣
≤
∫ 1

0
|∇K(z − ty)|dt ≤ C(d)

∫ 1

0

1
|z − ty|d+1 dt ≤

C ′(d)
|z|d+1 . (2.20)

Indeed, |z| ≤ |z − ty|+ 1 ≤ |z − ty|+ |z|/2, which gives |z| ≤ 2|z − ty| for t ∈ [0, 1]. The bound
in (2.20) gives the desired result.
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Proof of Theorem 2.5. We use the Marcinkiewicz’ interpolation Theorem (see the footnote in
[21, page 12]) and a duality argument to reduce the proof to the weak-(1, 1) estimate

|{|Tf | > α}| ≤ A1

α
‖f‖L1(Rd), (2.21)

for α > 0, f ∈ C∞c (Rd), where |E| denotes the d-dimensional measure of a Borel set E. Let us
apply the Calderón-Zygmund decomposition:

|{|Tf | > α}| ≤ |{|Tg| > α/2}|+ |{|Tb| > α/2}| . (2.22)

Although f is smooth, g and b may be not smooth. All the computations below can be justified
by working first we Tε, defined in (2.14), and then letting ε→ 0. The first piece in (2.22) is easy
to estimate: we use the Chebychev inequality and the L2-estimate (2.15) to obtain

|{|Tg| > α/2}| ≤ 4
α2 ‖Tg‖

2
L2 ≤

4A2

α2 ‖g‖
2
L2 .

We have seen that the pointwise bound |g(x)| ≤ (1 + 2d)λ is satisfied. We have also ‖g‖L1(Rd) ≤
‖f‖L1(Rd) as a direct application of (2.8). Therefore ‖g‖2L2 is bounded by (1 + 2d)λ‖f‖L1(Rd) and
we conclude that

|{|Tg| > α/2}| ≤ (2d + 1)4A2

α2 λ‖f‖L1(Rd). (2.23)

To estimate the second term in (2.22), we first note that, given a Borel set E, we have, using the
Markov inequality,

|{|Tb| > α/2}| ≤ |{|Tb| > α/2} ∩ E|+ |Ec| ≤ 2
α

∫
E

|Tb(x)|dx+ |Ec|.

By the decomposition (2.9), we deduce that

|{|Tb| > α/2}| ≤ 2
α

∑
i∈I

∫
E

|Tbi(x)|dx+ |Ec|. (2.24)

Let xi denote the center of Qi. Let Bi denote the ball with same center as Qi and diameter
diam(Qi). We have |Bi| = cd|Qi| for a given constant cd. We use the cancellation property
satisfied by bi to write

Tbi(x) =
∫
Bi

(K(x− y)−K(x− xi))bi(y)dy.

With Fubini’s theorem, we deduce that∫
E

|Tbi(x)|dx ≤
∫
Bi

∫
E

|K(x− y)−K(x− xi)|dx|bi(y)|dy.

Take E = ∩j∈I(2Bj)c. Then∫
E

|K(x−y)−K(x−xi)|dx ≤
∫

(2Bi)c

|K(x−y)−K(x−xi)|dx =
∫

(2B′
i
)c

|K(z+xi−y)−K(z)|dz,

where Bi = xi +B′i. Using (2.16) and (2.9) gives us

|{|Tb| > α/2}| ≤ 2A
α

∑
i∈I

∫
Bi

|bi(y)|dy + |Ec| ≤ 2A
α
‖f‖L1(Rd) + |Ec|. (2.25)
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By (2.6), we also have

|Ec| ≤
∑
i∈I
|2Bi| = 2d

∑
i∈I
|Bi| ≤

2dc−1
d

λ
‖f‖L1(Rd).

The final estimate

|{|Tf | > α}| ≤ C(A, d)(α−2λ+ α−1 + λ−1)‖f‖L1(Rd)

follows from (2.23) and (2.25). Taking λ = α, we conclude to (2.21).

3 Markov processes
We consider Markov processes taking values in a Polish space E. Recall that a process X =
(Xt)t≥0 is a collection of random variables: for each t ≥ 0, Xt : (Ω,F)→ (E,B(E)) is measurable
(on E we always consider the Borel σ-algebra, denoted B(E). The law of the process is obtained
by considering the random variable X : Ω → ER+ , where ER+ is the set of functions from R+
to E. On ER+ , we consider the cylindrical σ-algebra, which is the σ-algebra generated by the
evaluations maps πt : ER+ → E, πt(f) := f(t), [22, Chapter 2.4]. Then, the law of X is described
by the set of finite-dimensional distributions P(A), where A is a cylindrical set of the form

A = {Xt1 ∈ B1, . . . , Xtn ∈ Bn} , (3.1)

for some n ∈ N, B1, . . . , Bn some Borel subsets of E and t1, . . . , tn ≥ 0. The filtration (FXt )
denotes the filtration generated by X: for a given t ≥ 0, FXt is the σ-algebra generated by the
sets A of the form (3.1), with all times ti ≤ t.
We will also denote by BM(E) the Banach space of bounded Borel-measurable functions on E
with the sup-norm

‖ϕ‖BM(E) = sup
x∈E
|ϕ(x)|. (3.2)

The set BC(E) is the subspace of continuous bounded functions.

3.1 Definition
By Markov process, we mean the triplet constituted of a Markov semi-group, some probability
kernels, and the associated Markov processes. More precisely, we suppose first that we are given:

1. a Markov semi-group P = (Pt)t≥0, which is defined a priori as a family of endomorphisms
of the space BM(E) that satisfy the initial condition P0 = Id, the semi-group property
Pt ◦ Ps = Pt+s for t, s ≥ 0, the preservation of positivity Ptϕ ≥ 0 when ϕ ≥ 0, while fixing
the constant function 1 equal to 1 everywhere: Pt1 = 1 for all t ≥ 0,

2. a probability kernel Q(t, x,B): for all ϕ ∈ BM(E), for all x ∈ E,

Ptϕ(x) =
∫
E

ϕ(y)Q(t, x, dy), (3.3)

where, for every t ≥ 0, for every x ∈ E, Q(t, x, ·) is a probability measure and the depen-
dence in x is measurable, in the sense that the right-hand side of (3.3) is a measurable
function of x,
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3. a set X = {(Xx
t )t≥0;x ∈ E} of Markov processes indexed by their starting points x: Xx

0 = x
almost surely, such that:

• the finite-dimensional distributions of (Xx
t )t≥0 are given by

P(Xx
0 ∈ B0, X

x
t1 ∈ B1, . . . , X

x
tk
∈ Bk) =

∫
B0

· · ·
∫
Bk−1

Q(tk − tk−1, yk−1, Bk)

×Q(tk−1 − tk−2, yk−2, dyk−1) · · ·Q(t1, y0, dy1)µ(dy0), (3.4)

where 0 ≤ t1 ≤ · · · ≤ tk, B0, . . . , Bk ∈ B(E) and µ = δx (Dirac mass),
• the Markov property

E
[
ϕ(Xx

t+s)|FXt
]

= Psϕ(Xx
t ) (3.5)

is satisfied for all s, t ≥ 0, ϕ ∈ BM(E).

There are a lot of redundancies in the definition above, that we will now analyse. It is not
limiting, however, to assume that all these elements are given altogether, all the more since the
processes (Xx

t )t≥0 will generally have additional pathwise properties, being typically continuous
or càdlàg. They may also satisfy the Markov property (3.5) with respect to a given filtration
(Ft) larger than (FXt ). First, we need to define an appropriate mode on convergence of functions
in BM(E).

Definition 3.1. We say that there is bounded pointwise convergence of a sequence (ϕn) in
BM(E) to ϕ ∈ BM(E) if supn ‖ϕn‖BM(E) < +∞ and ϕn(x)→ ϕ(x) for all x ∈ E. This mode of
convergence is denoted ϕn

b.p.c.−→ ϕ.

Proposition 3.1. Let (Pt)t≥0 be a semi-group as in 1. Assume that, for each t ≥ 0,

[ϕn
b.p.c.−→ ϕ] ⇒ [Ptϕn

b.p.c.−→ Ptϕ]. (3.6)

Then there exists a probability kernel as in 2. such that (3.3) is satisfied.

Proof of Proposition 3.1. We give the main ideas of the proof. First observe that (3.3) implies
the continuity property (3.6): it is natural to assume (3.6) therefore. Set

Q(t, x,A) = (Pt1A)(x) (3.7)

For each fixed t, x, this defines a non-negative set function Q(t, x, ·) such that Q(t, x, E) = 1. The
only delicate point to show that Q(t, x, ·) is a probability measure is the countable additivity. It
follows from (3.6) and the convergence ϕn

b.p.c.−→ ϕ, when A1, . . . , An . . . are disjoint Borel sets in
E, ϕn = 1∪1≤k≤nAk

, ϕ = 1∪1≤kAk
. By (3.7), (3.3) is satisfied when ϕ is a characteristic function.

By linearity, this remains true for simple functions. Any ϕ ∈ BM(E) can be approached for
bounded pointwise convergence by a sequence of simple functions, this gives the relation (3.3) in
all its generality.

Proposition 3.2. Let Q be a probability kernel as in 2. Assume that

Q(t+ s, x,A) =
∫
E

Q(s, y, A)Q(t, x, dy), (3.8)

is satisfied for every t, s ≥ 0, x ∈ E, A ∈ B(E). Then there exists a Markov semi-group as in 1.
such that (3.3) is satisfied.
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The relation (3.8) is called the Chapman Kolmogorov relation.

Proof of Proposition 3.2. We define Pt by the relation (3.3). Then (Pt)t≥0 has all the desired
properties listed in 1. The only point that must be studied carefully is the semi-group property.
It is sufficient to establish that Pt+sϕ = Pt(Psϕ) is satisfied for characteristic functions, but
then, this is equivalent to (3.8).

Let us now study the relation between the process given in 3. and the probability kernel Q.
First, we state without proof the following result. See, e.g. [7, Theorem 1.1 p.157], for the proof.

Proposition 3.3. Let Q be a probability kernel as in 2. Then there exists a measurable space
(Ω,F), a process (Xt)t≥0 on (Ω,F) such that: for all probability measure µ on E, there exists
a probability measure Pµ on (Ω,F), such that, under Pµ, (Xt)t≥0 has the finite-dimensional
distributions given by (3.4): for all 0 ≤ t1 ≤ · · · ≤ tk, B0, . . . , Bk ∈ B(E), the probability

Pµ(X0 ∈ B0, Xt1 ∈ B1, . . . , Xtk ∈ Bk) (3.9)

is given by the right-hand side of (3.4).

We denote by Eµ the expectancy operator associated to Pµ. When µ = δx, we use the notations
Px and Ex. The Kolmogorov extension theorem, [22], can be used to construct the measure Pµ.
The probability space is the path space: Ω = ER+ . The σ-algebra F is the cylindrical σ-algebra
(called product σ-algebra in [22, Chapter 2.4]). The process X is then the canonical process
Xt(ω) = ω(t).
In the following two results, we establish the link between the Markov property and the Chapman-
Kolmogorov (or semi-group) property.

Proposition 3.4. Under the hypotheses of Proposition 3.3, assume that the Chapman-Kolmo-
gorov property (3.8) is satisfied. Then the process (Xt,Pµ) constructed in Proposition 3.3 is
Markov.

Proof of Proposition 3.4. Our aim is to show the identity

Eµ
[
ϕ(Xt+s)|FXt

]
= Psϕ(Xt) (3.10)

for all s, t ≥ 0, ϕ ∈ BM(E), where Pt is defined by (3.3) (in particular, Pt satisfies (3.6)). The
meaning of (3.10) is

Eµ [ϕ(Xt+s)1A] = Eµ [Psϕ(Xt)1A] , (3.11)

for all A ∈ FXt . We can see both members of (3.11) as measures in A. Since FXt is generated
by cylindrical sets that form a π-system, it is sufficient, [3, Theorem 3.3], to establish (3.11) for
A of the form

A = {X0 ∈ B0, Xt1 ∈ B1, . . . , Xtn ∈ Bn} , 0 < t1 < · · · < tn ≤ t. (3.12)

Since (3.11) is linear in ϕ and the continuity property (3.6) is satisfied we can also reduce the
proof of (3.11) to the case where ϕ is a characteristic function 1B , with B ∈ B(E). Alternatively,
the same kind of argument shows that, for all ψ ∈ BM(E) and A of the form (3.12), we have

Eµ [ψ(Xt)1A] =
∫
B0

· · ·
∫
Bn

Pt−tnψ(yn)Q(tn − tn−1, yn−1, dyn) · · ·Q(t1, y0, dy1)µ(dy0), (3.13)
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since (3.4) and (3.3) show that (3.13) is true when ψ = 1Bn+1 . We will use (3.13) and the
Chapman-Kolmogorov (or, more precisely, semi-group) property to conclude. Taking ψ = Psϕ
in (3.13) and using the semi-group property, we see that the right-hand side of (3.11) is∫

B0

· · ·
∫
Bn

Pt+s−tnϕ(yn)Q(tn − tn−1, yn−1, dyn) · · ·Q(t1, y0, dy1)µ(dy0). (3.14)

Then, using (3.13) again with t + s instead of t shows that (3.14) coincides with the left-hand
side of (3.11).

Proposition 3.5. Assume that the process (Xt,Pµ) constructed in Proposition 3.3 is Markov.
Then Q satisfies the Chapman-Kolmogorv property (3.8).

Proof of Proposition 3.5. We will establish the equivalent semi-group property for (Pt). Let
ϕ ∈ BM(E). By the tower property (2.2), we have

Pt+sϕ(x) = Ex [ϕ(Xt+s)] = Ex
[
Ex
[
ϕ(Xt+s)|FXt

]]
.

The Markov property then gives

Pt+sϕ(x) = Ex [Psϕ(Xt)] = (Pt ◦ Ps)ϕ(x),

which is the desired identity.

3.2 Invariant measures and weak convergence of probability measures
Let (P, Q,X) be a Markov process as in Section 3.1. If µ is a probability measure on E, we
denote by P ∗t µ the law at time t of Xt, when X0 ∼ µ:

〈P ∗t µ, ϕ〉 := Eµ [ϕ(Xt)] .

The notation can be justified as follows: using (3.13) with A = Ω, i.e. B0 = · · · = Bn = E, we
see that

Eµ [ϕ(Xt)] =
∫
E

Ptψ(y)µ(dy) = 〈µ, Ptϕ〉.

This establishes the expected formula

〈P ∗t µ, ϕ〉 = 〈µ, Ptϕ〉. (3.15)

Definition 3.2 (Invariant measure). A probability measure µ on E is said to be an invariant
measure if P ∗t µ = µ for all t ≥ 0.

To find an invariant measure µ, one must choose X0 conveniently, to ensure that Xt follows the
same law µ for all t ≥ 0: an invariant measure is a fixed-point for the evolution in distribution
of the Markov process.
As far as the evolution of the distribution P ∗t µ of the Markov process is concerned, we can wonder
what are the continuity property of t 7→ P ∗t µ. The space P1(E) of Borel probability measures
on E is a subset of the dual space to the Banach space BC(E) (the norm being the sup norm
(3.2)). We consider the weak-∗ topology on P1(E)2. A sequence (µn) converges to µ in P1(E) if

〈µn, ϕ〉 → 〈µ, ϕ〉, (3.16)
2This topology on P1(E) is metrizable: this is a non-obvious fact, [4, Theorem 6.8], in particular we cannot

simply build a metric based on a dense countable subset of BC(E) since BC(E) may be not separable (see the
argument in [14, p.6] however)
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for all ϕ ∈ BC(E). When (3.17) is realized, it is customary to say that “(µn) converges weakly
to µ”.
Let us state without proof the following version of the Portmanteau Theorem (see [14, p.4,5] for
the proof).

Theorem 3.6. The following five statements are equivalent.

(i) (µn) converges weakly to µ,

(ii) (3.16) is satisfied for all uniformly continuous and bounded functions ϕ on E,

(iii) lim supµn(F ) ≤ µ(F ) for all closed set F ,

(iv) lim inf µn(G) ≥ µ(G) for all open set G,

(v) limµn(A) = µ(A) for all Borel set A such that µ(∂A) = 0.

Coming back to t 7→ P ∗t µ, we see that P ∗t µ→ P ∗s µ if

lim
t→s
〈P ∗t µ, ϕ〉 = 〈P ∗s µ, ϕ〉, (3.17)

for all ϕ ∈ BC(E).

Definition 3.3 (Stochastic continuity of the semi-group). Let s ≥ 0. The semi-group (Pt)t≥0 is
said to be stochastically continuous at s if Ptϕ

b.p.c.−→ Psϕ when t → s for every ϕ ∈ BC(E). We
say that (Pt)t≥0 is stochastically continuous if it is stochastically continuous at very point.

The stochastic continuity of (Pt)t≥0 at s is equivalent to the weak convergence (3.17). Indeed,
if (3.17) is satisfied, then 〈µ, Ptϕ〉 → 〈µ, Psϕ〉 by the duality formula (3.15). Taking µ = δx
especially, we obtain Ptϕ(x) → Psϕ(x). Since |Ptϕ(x)| ≤ ‖ϕ‖BC(E), we obtain the b.p. conver-
gence. Reciprocally, 〈µ, Ptϕ〉 → 〈µ, Psϕ〉 follows from the stochastic continuity by dominated
convergence.
There is also a notion of stochastic continuity for processes: a stochastic process (Xt) is stochas-
tically continuous at s if Xt → Xs in probability for the topology of E: for all δ > 0,

lim
t→s

P(d(Xt, Xs) > δ) = 0, (3.18)

where d is the distance on E.

Exercise 3.4 (Stochastic continuity). Let (Xt) be a Markov process, and let Pt be defined by
Ptϕ(x) = Ex[ϕ(Xt)]. Show that stochastic continuity of (Xt) at s implies stochastic continuity
of (Pt) at s (Hint: use (ii) in Theorem 3.6). The solution to Exercise 3.4 is here.

Definition 3.5 (Feller semi-group). A semi-group (Pt)t≥0 is said to be Feller if

Pt : BC(E)→ BC(E),

for all t ≥ 0: Ptϕ ∈ BC(E) when ϕ ∈ BC(E).

If (Pt)t≥0 is Feller and (µn) converges weakly to µ, then we can test (3.16) against Ptϕ. Using
the duality relation (3.15), we conclude that (P ∗t µn) converges weakly to P ∗t µ.

The following exercises are all about invariant measures.
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Exercise 3.6 (Invariant measure for a discrete Ornstein-Uhlenbeck process). Let X0, X1, . . . be
the sequence of random variables on R defined as follows: X0 is chosen at random, according
to a law µ0, then, XN being known, a random variable ZN+1 taking the values +1 or −1 with
equi-probability is drawn independently on X0, . . . , XN and XN+1 given by

XN+1 = 1
2XN + ZN+1.

1. What means µ0 = δ0? What are then the law µ1, µ2 of X1 and X2 respectively?

2. Consider the case µ0 = 1
2δ−2 + 1

2δ+2. Compute µ1, µ2, µ3. Can you guess a general formula
for µN?

3. Find an invariant measure.

The solution to Exercise 3.6 is here.

Exercise 3.7 (Invariant measure by Cesàro convergence). Suppose that (Pt)t≥0 is stochastically
continuous and Feller. For T > 0, and µ ∈ P1(E), let µ̄T be the probability measure defined by

〈µ̄T , ϕ〉 = 1
T

∫ T

0
〈P ∗t µ, ϕ〉dt.

Suppose that there exists a probability measure ν on E such that, for at least on µ ∈ P1(E), µ̄T
converge weakly to ν when T → +∞. Show that ν is an invariant measure.
The solution to Exercise 3.7 is here.

Exercise 3.8 (Invariant measures for deterministic systems). Let (Φt)t≥0 denote the flow asso-
ciated to the ordinary differential equation ẋ = F (x). Here F : Rd → Rd is a (globally) Lipschitz
continuous function.

1. Show that Ptϕ := ϕ ◦ Φt defines a Markov semi-group on BM(Rd).

2. Punctual equilibria. Let x1, . . . , xn be some zeros of F . Show that any convex combination
of the Dirac masses δx1 , . . . , δxn

is an invariant measure.

3. Hamiltonian system. Suppose that d = n+ n, x = (p, q) and

F

(
p
q

)
=
(
DqH(p, q)
−DpH(p, q)

)
,

where H : Rn × Rn → R is of class C2.

(a) Show that t 7→ H ◦ Φt(x) is constant for all x.
(b) Assume that e−βH ∈ L1(Rd) for all β > 0. We introduce the Gibbs measure µβ ,

which is the measure of density Z(β)−1e−βH with respect to the Lebesgue measure
(Z(β) =

∫
e−βH(x)dx is a normalizing factor). Show that µβ is an invariant measure.

The solution to Exercise 3.8 is here.
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3.3 Infinitesimal generator
Given a Markov process as in Section 3.1, we would like to define the associated infinitesimal
generator. There are various possible approaches. In [1] for example, it is assumed that the
process admits an invariant measure µ. The semi-group can then be extended as a contraction
semi-group on L2(µ). By assuming additionally that this extension gives rise to a strongly
continuous semi-group, [1, Property (vi), p.11], one can use the standard theory of strongly
continuous semi-group, [19], to define the infinitesimal generator. One may wonder why not
simply working in BM(E), or BC(E), which are Banach spaces, to apply the standard theory
of strongly continuous semi-group. The difficulty is that the continuity property Ptϕ→ ϕ when
t → 0 is too stringent in that context, at least when E is infinite-dimensional. Consider for
example the simple deterministic case where Ptϕ is given as the composition ϕ ◦ Φt with a flow
(Φt). Let E be the Hilbert space E = `2(N), with orthonormal basis (en)n∈N, and let Φt be
given by

Φt(x) =
∞∑
n=0

e−λnt〈x, en〉en,

where (λn) is an increasing sequence converging to +∞. In general, one cannot control the
distance ‖Φt(x)− x‖`2(N) uniformly in x (this is possible when x is restricted to a compact set),
so even if ϕ is uniformly continuous, one does not expect the convergence

lim
t→0

sup
x∈E
|Ptϕ(x)− ϕ(x)| = 0.

We consider a different mode of convergence therefore, the bounded pointwise convergence (Def-
inition 3.1). A function ϕ ∈ BM(E) is in the domain D(L ) of the infinitesimal generator L of
(Pt) if there exists ψ ∈ BM(E) such that

Ptϕ− ϕ
t

b.p.c.−→ ψ, (3.19)

when t → 0. We then set Lϕ = ψ. Note that, on the elements ϕ ∈ D(L ), the property of
continuity

Ptϕ
b.p.c.−→ ϕ (3.20)

when t→ 0, is satisfied. By the semi-group property, (3.20) implies more generally the property
of continuity from the right Ptϕ

b.p.c.−→ Pt∗ϕ when t ↓ t∗, for every t∗ ≥ 0. The semi-group
property, and the continuity of Pt with respect to b.p. convergence, that can be deduced from
(3.3) (see (3.6)), have also the following consequence: if ϕ ∈ D(L ), then Ptϕ ∈ D(L ) for all
t ≥ 0 and

Pt+hϕ− Ptϕ
h

b.p.c.−→ PtLϕ = LPtϕ, (3.21)

when h→ 0+.

3.4 Martingale property of Markov processes
Consider a Markov process as in Section 3.1, which is Markov with respect to a filtration (Ft),
and has a generator L , as defined as in Section 3.3. We make the following hypotheses:

1. stochastic continuity: we have Ptϕ
b.p.c.−→ Pt∗ϕ when t→ t∗ for every ϕ ∈ BC(E) and every

t∗ ≥ 0,
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2. measurability: the application (ω, t) 7→ Xt(ω) is measurable Ω× R+ → E.

We have then the following result.

Theorem 3.7. Let ϕ ∈ D(L ) ∩ BC(E). Then

Mt := ϕ(Xt)− ϕ(X0)−
∫ t

0
Lϕ(Xs)ds (3.22)

is a (Ft)-martingale. If furthermore |ϕ|2 is in the domain of L , then the process (Zt) defined by

Zt := |Mt|2 −
∫ t

0
(L |ϕ|2 − 2ϕLϕ)(Xs)ds, (3.23)

is a (Ft)-martingale.

Remark 3.1 (Quadratic variation). If (Xt) has continuous trajectories, then

At :=
∫ t

0
(L |ϕ|2 − 2ϕLϕ)(Xs)ds (3.24)

is the quadratic variation 〈M,M〉t, [15, p.38], of (Mt). In the general case where (Xt) is càdlàg,
(At) is the compensator, [15, p.32], of the quadratic variation [M,M ]t, [15, p.51], of (Mt). For
instance, if (Xt = Nt) is a Poisson Process of rate λ, then Lϕ(n) = λ(ϕ(n+ 1)− ϕ(n)) and

At := λ

∫ t

0
(ϕ(Ns + 1)− ϕ(Ns))2ds.

Taking ϕ = Id, gives the standard fact that (Nt − λt) is a martingale.

Proof of Theorem 3.7. Let 0 ≤ s ≤ t. By the Markov property, we have

E[Mt|Fs]−Ms = E[Mt −Ms|Fs]

= Pt−sϕ(Xs)− ϕ(Xs)−
∫ t

s

[Pσ−sLϕ](Xs)dσ. (3.25)

To establish (3.25) we have used the fact that

E
[∫ t

s

ψ(σ)dσ |Fs
]

=
∫ t

s

E [ψ(σ) |Fs ] dσ, (3.26)

with ψ(ω, σ) := Lϕ(Xσ(ω)), which is a measurable function. The identity (3.26) follows from
the linearity of the conditional expectation when ψ is a simple function, and standard arguments
give the general case. From (3.25) and the identity

Ptϕ(x)− ϕ(x) =
∫ t

0
PsLϕ(x)ds, (3.27)

for all ϕ ∈ D(L ), x ∈ E, t ≥ 0, we conclude that E[Mt|Fs] −Ms = 0. To establish (3.27), we
notice that

β(t) := Ptϕ(x)− ϕ(x)

is a continuous function (here we use the stochastic continuity of (Pt)), which is right-differentia-
ble at every point, with right-differential β′(t+) := PtLϕ(x) which is a bounded (by stochastic
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continuity of (Pt), it is even continuous if Lϕ ∈ BC(E) – but this is not assumed a priori).
Lemma 3.8 below then gives the result.
The proof of the martingale property for (3.23) is divided in several steps. First, we fix two
times 0 ≤ τ < τ ′ ≤ T . We fix a subdivision σ = (ti)0,n of [0, τ ′], chosen in such a way that τ is
always one of the ti, say τ = tl (the index l may hence vary with σ). By C(ϕ), we will denote
any constant that depend on ϕ and is independent on σ and may vary from lines to lines. We
also denote by A = O(B) any estimate of the form |A| ≤ C(ϕ)|B|. At last, we introduce the
following notations: we denote by δtiK the increment Kti+1 −Kti of a function t 7→ Kt. We also
denote by Eti the conditional expectation with respect to Fti . Our aim is to show that

Aτ ′ = lim
|σ|→0

n−1∑
i=0

Eti
[
|δtiM |2

]
, (3.28)

where the limit is taken in L2(Ω). Indeed, taking (3.28) for granted, E[Zτ ′ − Zτ |Fτ ] is the limit
when |σ| → 0 of the quantity

E
[
|Mtn |2 − |Mtl |2 −

n−1∑
i=l

Eti
[
|δtiM |2

] ∣∣∣Fτ]. (3.29)

Let us show that (3.29) = 0. To simplify the presentation3, we will treat the case tl = τ = 0,
F0 = {∅,Ω} (it makes sense to consider that F0 is the trivial sigma algebra since M0 = 0). We
have

E
[
|Mtn |2

]
= E

∣∣∣∣∣
n−1∑
i=0

δtiM

∣∣∣∣∣
2 . (3.30)

In (3.30), we can expand the square. The contribution of the double products is zero since, if
j > i, then, using the fact that δtiM is Ftj -measurable, we have

E
[
δtiMδtjM

]
= E

[
Etj
[
δtjM

]
δtiM

]
= 0.

The last identity follows from the martingale property Etj
[
δtjM

]
= 0. This implies (3.29) = 0,

and thus E[Zτ ′ − Zτ |Fτ ] = 0. The proof of (3.28) is divided into three steps.
Step 1. We show that Aτ ′ = lim|σ|→0

∑n−1
i=0 Eti [δtiA], with a convergence in L2(Ω). Since Aτ ′ =∑n−1

i=0 δtiA, we have to show that lim|σ|→0
∑n−1
i=0 ζi = 0 in L2(Ω), where ζi := δtiA − Eti [δtiA].

The method is similar to the analysis of (3.29) above: we decompose

E

∣∣∣∣∣
n−1∑
i=0

ζi

∣∣∣∣∣
2

=
n−1∑
i=0

E
[
|ζi|2

]
+ 2

∑
0≤i<j<n

E [ζiζj ] . (3.31)

By conditioning with respect to Ftj , we get that each term in the last sum in (3.31) is trivial.
Since ζi = O(δti), the first sum in the right-hand side of (3.31) is O(|σ|). This gives the result.
Step 2. We show that Eti

[
|δtiϕ(X)|2

]
= O(δti). First, by the Markov Property, we have

Eti [δtiM ] = 0. Using (3.22), which implies

δtiM = δtiϕ(X)−
∫ ti+1

ti

Lϕ(Xs)ds, (3.32)

3the general case is left as an exercise, use the tower property (2.2)
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we deduce Eti [δtiϕ(X)] = O(δti). We can apply the previous estimate to |ϕ|2, since |ϕ|2 is in the
domain of L by hypothesis (cf. (3.34) below), to get Eti

[
δti |ϕ|2(X)

]
= O(δti). On the other

hand, we have also the identity

|δtiϕ(X)|2 = δti |ϕ|2(X)− 2ϕ(Xti)δtiϕ(X). (3.33)

Taking expectation with respect to Fti in (3.33) and using the fact that

Eti [ϕ(Xti)δtiϕ(X)] = ϕ(Xti)Eti [δtiϕ(X)]

gives the desired estimate Eti
[
|δtiϕ(X)|2

]
= O(δti). We can insert this result in (3.32) to obtain

also Eti
[
|δtiM |2

]
= O(δti).

Step 3. We conclude the proof. First, we note that (3.32) applied to ϕ2 gives

δtiM
(2) = δti |ϕ|2(X)−

∫ ti+1

ti

L |ϕ|2(Xs)ds, (3.34)

where M (2)
t := |ϕ|2(Xt) − |ϕ|2(x) −

∫ t
0 L |ϕ|2(Xs)ds. We combine (3.32), (3.33) and (3.34) to

obtain the identity

|δtiM |2 + 2δtiM
∫ ti+1

ti

Lϕ(Xs)ds+
∣∣∣∣∫ ti+1

ti

Lϕ(Xs)ds
∣∣∣∣2

= δtiM
(2) +

∫ ti+1

ti

L |ϕ|2(Xs)ds− 2ϕ(Xti)
(
δtiM +

∫ ti+1

ti

Lϕ(Xs)ds
)
. (3.35)

Taking the conditional expectation Eti in (3.35) and using the Markov property gives us

Eti
[
|δtiM |2

]
= Eti [δtiA]− 2Eti

[∫ ti+1

ti

(ϕ(Xti)− ϕ(Xs))Lϕ(Xs)ds
]

+O(|δti|3/2). (3.36)

Indeed, we have discarded the terms

Eti
[
2δtiM

∫ ti+1

ti

Lϕ(Xs)ds
]

and Eti

[∣∣∣∣∫ ti+1

ti

Lϕ(Xs)ds
∣∣∣∣2
]
,

which are respectively O(|δti|3/2) and O(|δti|2). To obtain the O(|δti|3/2)-estimate, we use the
bound ∣∣∣∣2δtiM ∫ ti+1

ti

Lϕ(Xs)ds
∣∣∣∣ ≤ η|δtiM |+ η−1

∣∣∣∣∫ ti+1

ti

Lϕ(Xs)ds
∣∣∣∣2 ,

then Step 2, and then we choose η = (δti)1/2. We can repeat Step 2, where we consider the time
interval [ti, s] instead of [ti, ti+1], to obtain the estimate Eti

[
|ϕ(Xti)− ϕ(Xs)|2

]
= O(δti), when

ti ≤ s ≤ ti+1. Consequently, the last term in (3.36) is also O(|δti|3/2). By summing with respect
to i in (3.36), we deduce finally that

n−1∑
i=0

Eti [δtiA] =
n−1∑
i=0

Eti
[
|δtiM |2

]
+O(|σ|1/2).

This equality, combined with Step 1, yields (3.28). This achieves the proof.
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Lemma 3.8. Let β : R+ → R be a continuous function, right-differentiable at every point, such
that t 7→ β′(t+) is bounded. Then

β(t)− β(0) =
∫ t

0
β′(s+)ds, (3.37)

for all t ≥ 0.

Proof of Lemma 3.8. Note first that

β′(t+) = lim
n→+∞

n(β(t+ n−1)− β(t))

defines a measurable function of t as limit of measurable functions. Since it is bounded by
hypothesis, it is integrable. Let T > 0. Let m,M ∈ R be such that m ≤ β′(t+) ≤ M for every
t ∈ [0, T ]. We will show that

m ≤ β(t)− β(0)
t

≤M, (3.38)

for all t ∈ [0, T ]. This gives the conclusion by considering

β̃(t) = β(t)− β(0)−
∫ t

0
β′(s+)ds,

and applying (3.38) with m = M = 0. For t ∈ (0, T ], let us denote by Γ(t) the quotient in
(3.38). We set Γ(0) = β′(0+) to extend Γ by continuity at 0. Let δ > 0. Assume that there
exists t1 ∈ [0, T ] such that Γ(t1) > M + δ. By continuity of Γ, we have t1 > 0. By restricting
things to [0, t1] if necessary, we can assume t1 = T . Let now D(t) = β(0) + (M + δ/2)t be a
parametrization of the straight-line with slope M + δ/2 having the same origin as the graph of
β. We have β(T ) > D(T ). Let τ denote the infimum of the points t ∈ [0, T ] such that β > D
on [t, T ]. By continuity, τ is well defined, τ ∈ [0, T ) and β(τ) = D(τ). At this stage, a picture
is useful: at the point τ , the graph of β crosses the straight line t 7→ β(0) + (M + δ/2)t and is
above this straight line on [τ, T ]. It is clear that this contradicts the fact that β′(τ+) ≤M and,
indeed, the inequality

β(τ + h)− β(τ)
h

= β(τ + h)−D(τ)
h

≥ D(τ + h)−D(τ)
h

,

for h > 0 small enough gives, at the limit h→ 0+, the contradiction β′(τ+) ≥M + δ/2.

Exercise 3.9 (Carré du champ). The operator

Γ: ϕ 7→ 1
2L |ϕ|2 − ϕLϕ

is called the “carré du champ”, [1, p.viii].

1. Let F : Rd → Rd be Lipschitz continuous. Let (Xx
t ) be given as the solution to the Cauchy

Problem
d

dt
Xx
t = F (Xx

t ), Xx
0 = x.

Compute Γ on C1
b (Rd) (bounded C1 function with bounded first derivatives).
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2. (For those who know SDEs). Let F be as above and σ : Rd →Md(R) be Lipschitz contin-
uous. Let (Xx

t ) be given as the solution to the Cauchy Problem

dXx
t = F (Xx

t )dt+ σ(Xx
t )dWt, Xx

0 = x, (3.39)

where (Wt) is a d-dimensional Wiener process. Compute Γ on C2
b (Rd) (bounded C2 function

with bounded first and second derivatives).

3. In the general case, show that Γ(ϕ) ≥ 0 for all ϕ.

The solution to Exercise 3.9 is here.

The results of Theorem 3.7 can be extended to the case where the test function ϕ also depends on
t. We will need this result only in the simple case where the test function has the form θ(t)ϕ(x).

Corollary 3.9. Let ϕ ∈ D(L ) satisfies |ϕ|2 ∈ D(L ). Let θ ∈ C1(R+) and let ψ(t, x) =
θ(t)ϕ(x). Then, the process

Mt := ψ(t,Xt)− ψ(0, X0)−
∫ t

0
(∂t + L )ψ(s,Xs)ds (3.40)

is a (Ft)-martingale and the process (Zt) defined by

Zt := |Mt|2 −
∫ t

0
((∂t + L )|ψ|2 − 2ψ(∂t + L )ψ)(s,Xs)ds, (3.41)

is a (Ft)-martingale.

Proof of Corollary 3.9. By the Markov property, we have

E [Mt −Ms|Fs]

= θ(t)(Pt−sϕ)(Xs)− θ(s)ϕ(Xs)−
∫ t

s

(θ′(σ)(Pσ−sϕ)(Xs) + θ(σ) d
dσ

(Pσ−sϕ)(Xs))dσ.

By explicit integration, we see that (Mt) is a (Ft)-martingale. We compute then

(∂t + L )|ψ|2 − 2ψ(∂t + L )ψ = θ2(L |ϕ|2 − 2ϕLϕ).

Let us examine the proof of the second part of Theorem 3.7. Since θ is locally Lipschitz continu-
ous, we have θ(t) = θ(ti) +O(δti), for t ∈ [ti, ti+1]. Using this approximation, it is easy to show,
by adapting the proof of Theorem 3.7, that, in our context, (Zt) is a martingale.

Exercise 3.10 (Markov process with finite state space). Let (P, Q,X) be a Markov process.
Assume that the state space E is finite, E = {x1, . . . , xL}. We introduce the family of matrices
A(t) = aij(t), with aij(t) = Q(t, xi, {xj}), i.e. aij(t) = Pxi

(X(t) = xj).

1. If ϕ : E → R, we still denote by ϕ the vector (ϕ(xi))1≤i≤L. Give the expression of Ptϕ as
a product matrix-vector.

2. If µ is a probability measure on E, we still denote by µ the vector (µ({xi})1≤i≤L. Give the
expression of P ∗t µ as a product matrix-vector.

3. We assume that t 7→ A(t), from R+ into ML(R) is of class C1. Show that A(t) = etL ,
where L = A′(0) is the generator.
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4. Give the equation satisfied by an invariant measure.

The solution to Exercise 3.10 is here.

Exercise 3.11 (Markov process in discrete time). We consider now a Markov process (Xn)n≥0
in discrete time.

1. Assume that the state space E is finite. How can you rephrase the questions and answers
of the previous exercise 3.10?

2. Give and prove the equivalent statement to Theorem 3.7. More precisely, let L = P1− Id,
let ϕ ∈ BM(E). Show that

Mn = ϕ(Xn)− ϕ(X0)−
n−1∑
k=0

Lϕ(Xk) (3.42)

and

Zn := |Mn|2 −
n−1∑
k=0

Γ[ϕ](Xk) (3.43)

are martingales. In (3.43), Γ(ϕ) is a certain non-negative expression that you will have to
identify.

The solution to Exercise 3.11 is here.

4 Evolution of a random interface
In this part we establish the limit behavior of the symmetric simple exclusion process. More
precisely, we show in Theorem 4.1 that, after an adequate change of scales, the random interface
associated to the symmetric simple exclusion process converges in probability to the solution of
a heat equation.

4.1 Change of scale and limit behavior
Let XL denote the discrete interval XL = {0, . . . , L}. Let EL be the set of functions H : XL → R
such that H(L) = 0. Let E(1)

L be the convex subset of EL constituted of the functions H such
that H(0) = 0 and |H(x + 1)−H(x)| = 1 for all x ∈ {0, . . . , L− 1}. The space E(1)

L is the state
space for the process described in Section 1.2. To H ∈ EL, we associate a function Ĥ : [0, 1]→ R
defined by

Ĥ(x) = L−1H(bLxc), (4.1)

where p = byc, defined for y ≥ 0, is the integer such that p ≤ y < p+ 1. The map H 7→ Ĥ is an
isometry EL → L2(0, 1) when EL and L2(0, 1) are endowed with the respective scalar products

〈H,G〉EL
= 1
L3

∑
x∈XL

H(x)G(x), 〈f, g〉L2 =
∫ 1

0
f(x)g(x)dx. (4.2)

Indeed, given H,G ∈ EL, we compute

〈Ĥ, Ĝ〉L2(0,1) =
L−1∑
x=0

∫ x+1
L

x
L

Ĥ(y)Ĝ(y)dy =
L−1∑
x=0

1
L3H(x)G(x) = 〈H,G〉EL

. (4.3)
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Since H 7→ Ĥ is an isometry, a natural left-inverse is given by calculating the adjoint operator.
This is easily done, and we obtain a map L2(0, 1) → EL, which, to h ∈ L2(0, 1) associates the
function in EL given by

Jh(L) = 0, Jh(x) = L2
∫ x+1

L

x
L

h(x)dx, x = 0, . . . , L− 1. (4.4)

However, we will work preferably with the related application h 7→ ȟ, defined by ȟ(x) =
Lh(L−1x). The reason of this modification is apparent in Proposition 4.5. If h is Lipschitz
continuous on [0, 1] and h(1) = 0, then |Jh(x)− ȟ(x)| is bounded by Lip(h). This implies that

|〈Ĥ, h〉L2(0,1) − 〈H, ȟ〉EL
| ≤ Lip(h)L−2 sup

x∈XL

|H(x)|, (4.5)

for all H ∈ EL. Let hin be a continuous function on [0, 1], which is 1-Lipschitz continuous and
satisfies the boundary conditions hin(0) = hin(1) = 0. Given such a function hin, we build an
initial datum Hin ∈ E(1)

L for the evolution of the random interface. We want hin to be close to
Ĥin in a certain norm. It is simpler to consider things in the space EL, in which case we require
Hin and the function ȟin to be at distance O(1) for a certain norm. Note that the graph of a
profile H ∈ E(1)

L is a subset of the lattice

R = {(x, H); x ∈ {0, · · · , L}, H ∈ Zx} ,

where we have set Zx = 2Z if x is even, Zx = 2Z+ 1 if x is odd. To build Hin, we draw the graph
GrL of ȟin. Then we choose the closest points of GrL in R to obtain the graph of Hin. We check
that Hin satisfies the constraint |Hin(x + 1) − Hin(x)| = 1 (it follows from the fact that hin is
1-Lipschitz continuous). We have then

sup
x∈XL

∣∣∣ȟin(x)−Hin(x)
∣∣∣ ≤ 1⇒ sup

x∈XL

|Jhin(x)−Hin(x)| ≤ 2, (4.6)

hence ‖Jhin −Hin‖EL
≤ 2L−1. This gives

‖Ĥin − hin‖L2(0,1) ≤ 2L−1. (4.7)

Let (Ht) be the Markov process described in Section 1.2 (we will show below in Section 4.2 that it
is a Markov process indeed) that starts from Hin. We fix a time T > 0 and consider the solution
to the heat equation on [0, 1] with Dirichlet homogeneous boundary conditions and initial datum
hin: this the function h ∈ L2(0, T ;H1

0 (0, 1)) such that ∂th ∈ L2(0, T ;H−1(0, 1)) and

〈∂th(t), g〉L2(0,1) + 〈∂xh(t), ∂xg〉L2(0,1) = 0, (4.8)

for all g ∈ H1
0 (0, 1) and a.e. t ∈ (0, T ), and h(0) = hin, see [8, p.374]. We call such a function h

a weak solution to the following problem:

∂th− ∂2
xh = 0 in (0,+∞)× (0, 1), (4.9)

h(t, x) = 0 for (t, x) ∈ (0,+∞)× ({0} ∪ {1}), (4.10)
h(0, x) = hin(x) for x ∈ (0, 1). (4.11)

We will establish the following result.
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Theorem 4.1. Let hin be a 1-Lipschitz continuous function on [0, 1] vanishing at 0 and 1 and
satisfying hin ∈ H2(0, 1). Let h be the unique solution to (4.9)-(4.10)-(4.11) (see (4.8)). Let
Hin ∈ E(1)

L satisfy (4.7), and let (Ht) be the Markov process described in Section 1.2 that starts
from Hin. Then the rescaled process (ĤL2t) converges to h in probability when L tends to +∞,
in the sense that, for all T > 0, for all δ > 0, one has

lim
L→+∞

P

(
sup
t∈[0,T ]

‖ĤL2t − h(t, ·)‖L2(0,1) > δ

)
= 0. (4.12)

4.2 Markov property
We will show in this part that the process (Ht) described in Section 1.2 is a Markov process and
give the expression of its generator. First, the general procedure using “clocks”, that transform
discrete-time Markov processes into continuous-time Markov processes is analysed. We begin
this step with a section of remainder about Poisson processes. In a second step, we study the
discrete-time Markov process that gives rise to (Ht).

4.2.1 Poisson processes

Definition 4.1 (Counting process). A counting process (Xt)t≥0 is a càdlàg process with values
in N such that

1. X0 = 0 a.s.,

2. every jump of t 7→ Xt has amplitude +1: Xt −Xt− = 1 if there is a jump at t.

Definition 4.2 (Poisson process). Let λ > 0. A Poisson process (on R+) of parameter λ is a
counting process (N(t))t≥0 such that, for all t, s ≥ 0,

1. N(t+ s)−N(t) is independent on FNt ,

2. N(t+ s)−N(t) follows a Poisson’s law of parameter λs:

P(N(t+ s)−N(t) = k) = e−λs
(λs)k

k! . (4.13)

The aim of Exercise 4.3 below is to make the relation between the count of exponential arrival
times (these are the clocks that we use in Section 1.2 for instance) and Poisson processes. This
relation is only partially established in Exercise 4.3. To complete the analysis, we introduce the
notion of Poisson point process in Rd. Exercise 4.5 gives several results and the construction of
Poisson point processes. This is used in Exercise 4.6 to complete Exercise 4.3 .

Exercise 4.3 (Poisson process). Let (Tn) be a sequence of i.i.d. random variables with expo-
nential law of parameter λ > 0: P(Tn > t) = e−λt. We define a sequence of times S0, S1, . . . as
follows: S0 = 0 and, for n ≥ 1, Sn = T1 + . . .+Tn. Given an interval I of R+, we denote by Γ(I)
the number of times Sn that fall in I:

Γ(I) = #(S ∩ I), S = {Sn;n ∈ N}.

1. Compute the (density of the) law of Sn.

2. Let N(t) = Γ([0, t]). Show that N(t) is a counting process and is Poisson of parameter λt
(hint: P(N(t) = n) = P(Sn ≤ t < Sn+1)).
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The solution to Exercise 4.3 is here.

Definition 4.4 (Poisson point process). Let µ be a (non-negative) measure on the Borel σ-
algebra of Rd. Let (Ω,F ,P) be a given probability space. A Poisson process Π with intensity µ
on Rd is a map from Ω into the set of countable subsets of Rd such that

1. for all Borel subset A of Rd,
Γ(A) := #{Π ∩A}

is a random variable,

2. for all disjoint Borel subsets A1, . . . , Ak of Rd, the random variables Γ(A1), . . . ,Γ(Ak) are
independent,

3. for all Borel subset A of Rd, Γ(A) follows a Poisson distribution of parameter µ(A):

P(Γ(A) = n) = e−µ(A)µ(A)n

n! .

In the third item 3, we use the following convention: a random variable X with Poisson’s law of
parameter 0 is concentrated on 0: P(X = 0) = 1. Similarly, a random variable X with Poisson’s
law of parameter +∞ is concentrated on +∞: P(X = +∞) = 1.

Exercise 4.5 (Construction of a Poisson point process). 1. Let Π be a Poisson point process
of intensity µ on Rd.

(a) Show that µ has no atom.
(b) Suppose that µ is finite: µ(Rd) < +∞. Let A1, . . . , Ak be some disjoints subsets of

Rd. Let n1, . . . , nk and n ∈ N be such that n0 := n−
∑k
i=1 ni ≥ 0. Show that

P(Γ(A1) = n1, . . . ,Γ(Ak) = nk|Γ(Rd) = n) = n!
n0!n1! · · ·nk! [ν(A0)]n0 · · · [ν(Ak)]nk ,

(4.14)
where

A0 = Rd \ (A1 ∪ · · · ∪Ak), (4.15)

and ν is the normalized measure defined by

ν(A) = µ(A)
µ(Rd) . (4.16)

In the right-hand side of (4.14) appears the multinomial distribution with parameters n and

p0 = ν(A0), p1 = ν(A1), . . . , pk = ν(Ak).

This link between Poisson point processes and multinomial distribution will be exploited to
give a construction of a Poisson point process. It will also be exploited in Exercise 4.6 below
to complete Exercise 4.3.

2. Let µ be a finite measure on Rd with no atoms. Let ν be the probability measure defined
by (4.16) and let X1, . . . , Xn be some iid random variables of law ν.

(a) Show that, almost-surely, Πn = {X1, . . . , Xn} contains n points.
(b) Let Γn(A) = #{A ∩Πn}. Show that Γn satisfies (4.14) (with the same n).
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3. Let µ be a finite measure without atoms. We use the analysis of Questions 1 and 2 to build
a Poisson point process of intensity µ on Rd. Let ν be the probability measure defined
by (4.16) and let X1, X2, . . . , be some iid random variables of law ν. Let N be a Poisson
distribution of parameter µ(Rd) independent on (Xn)n≥1. Let Π = {X1, . . . , XN}. Show
that Π is a Poisson point process of intensity µ on Rd.

4. Show the following result

Theorem 4.2 (Superposition principle). Let Π1,Π2, . . . be a countable collection of inde-
pendent Poisson point processes on Rd with respective intensity measures µ1, µ2, . . . Then

Π =
⋃
n≥1

Πn

is a Poisson point process on Rd with intensity measure

µ =
∑
n≥1

µn. (4.17)

5. Let µ be a measure on Rd without atoms that can be written as (4.17) where each µn is
finite. Show that there exists a Poisson point process on Rd with intensity measure µ.

6. Show that a σ-finite measure can be written as (4.17) where each µn is finite.

7. Let λ > 0. Consider the case where d = 1, and µ is λ times the restriction of the Lebesgue
measure to R+. What is the process N(t) = Γ([0, t]) then?

The solution to Exercise 4.5 is here.

Exercise 4.6 (Poisson process - continued). To complete the analysis of Exercise 4.3, it is
sufficient (why?) to show that

P(N(t1) = n1, . . . , N(tk) = nk)

= e−λ(t1−t0) (λ(t1 − t0))n1−n0

(n1 − n0)! · · · e−λ(tk−tk−1) (λ(tk − tk−1))nk−nk−1

(nk − nk−1)! , (4.18)

for all 0 ≤ t1 ≤ · · · ≤ tk and n1 ≤ · · · ≤ nk. We will need the following tools. Let t > 0.
Let U1, . . . , Un be some independent uniform random variables on [0, t]. The order statistics of
(U1, . . . , Un) is the rearrangement (U(1), . . . , U(n)) of the variables Ui in increasing order:

U(1) < · · · < U(n), {U(1), . . . , U(n)} = {U1, . . . , Un}.

Let ∆ denote the subset {0 < u1 < u2 < · · · < un < t} of [0, t]n. The variables Ui are
exchangeable, so the law of (U(1), . . . , U(n)) is given by

E
[
ϕ(U(1), . . . , U(n))

]
= n!

∫
· · ·
∫

∆
ϕ(u1, . . . , un)du1 · · · dun. (4.19)

1. Show that, conditionally to Nt = n, (S1, . . . , Sn) has the law of (U(1), . . . , U(n)).
Hint: Express E

[
ϕ(S1, . . . , Sn)1Sn≤t<Sn+1

]
in terms of the variables T1, . . . , Tn+1 and do

the adequate changes of variables.

2. Conclude.

The solution to Exercise 4.6 is here.
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4.2.2 From discrete-time to continuous-time Markov process

Proposition 4.3. Let E be a Polish space. Let (Xn)n≥0 be a discrete time-homogeneous Markov
chain on E with transition operator Pn, n ∈ N. Let N(t) be a Poisson process of exponent λ > 0
independent on (Xn)n≥0 and let ξt = XN(t). Let also (Ft) = (F (ξ,N)

t ) be the filtration generated
by (ξt, N(t))t≥0. Then (ξt)t≥0 is a time-homogeneous Markov process with respect to (Ft)t≥0,
with transition operator and infinitesimal generator given by

Πt = exp (−λt(Id− P1)) , L = −λ(Id− P1), (4.20)

respectively.

Proof of Proposition 4.3. Note first that Pn = Pn1 for all n ≥ 0. This is the semi-group property
in discrete time. Then, we want to establish the following kind of Markov property: for all
A ∈ Ft, for all ϕ ∈ BM(E),

E
[
1Aϕ(Xn+N(t))

]
= E

[
1APnϕ(XN(t))

]
. (4.21)

Indeed, (4.21) means that E
[
ϕ(Xn+N(t))|Ft

]
= Pn1 ϕ(XN(t)). Assuming that (4.21) is satisfied

for the moment, we use the decomposition

E[ϕ(XN(t+s))|Ft] =
∞∑
n=0

E[ϕ(XN(t+s))1N(t+s)−N(t)=n|Ft].

By independence, this gives

E[ϕ(XN(t+s))|Ft] =
∞∑
n=0

P(N(t+ s)−N(t) = n)E[ϕ(XN(t)+n)|Ft].

In the last summand, we replace

P(N(t+ s)−N(t) = n) = e−λs
(λs)n

n! , E[ϕ(XN(t)+n)|Ft] = Pn1 ϕ(XN(t)).

The summation over n gives E[ϕ(ξt+s)|Ft] = (Πsϕ)(ξt), where Πt is defined by (4.20). It follows
that (ξt)t≥0 is a time-homogeneous Markov process with respect to (Ft)t≥0. It is also clear
that L = −(Id − P1). To establish (4.21), we observe that each side of the equality defines a
set-function, by dependance on A, which is a finite measure. By [3, Theorem 3.3], it is sufficient
to prove (4.21) for all sets A in a classM which is a π-system generating Ft, in the sense that
σ(M) = Ft. To that effect, we consider the class M of sets of the form B ∩D ∩ {N(t) = m},
where m ∈ N, B ∈ FXm , D ∈ FNt . It is clear that M is a π-system. The σ-algebra Ft is
generated by all the random variables XN(t1), . . . , XN(tj) and N(s1), . . . , N(sk) for j, k ∈ N∗ and
times ti, si ≤ t. By considering all the possible values taken by N(t1), . . . , N(tj) and N(t), the
event {

XN(t1) ∈ Γ1, . . . , XN(tj) ∈ Γj , N(s1) ∈ E1, . . . , N(sk) ∈ Ek
}
,

where Γ1, . . . ,Γj ∈ B(E), E1, . . . , Ek ⊂ N, can be written as a union over m1 ∈ N, . . . ,mj ,m ∈ N
of the intersection A := A1 ∩ A2 ∩ {N(t) = m} of the events A1 =

{
Xm1 ∈ Γ1, . . . , Xmj

∈ Γj
}

with the events

A2 = {N(t1) = m1, . . . , N(tj) = mj} ∩ {N(s1) ∈ E1, . . . , N(sk) ∈ Ek}.
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Since N is non-decreasing and ti ≤ t, the set A is possibly non-empty only if the integers mi

are all smaller than m. In the latter case, we have A ∈ M. We conclude that σ(M) = Ft. For
A = B ∩D ∩ {N(t) = m} ∈ M, we have then

E
[
1Aϕ(Xn+N(t))

]
= P(D ∩ {N(t) = m})E [1Bϕ(Xn+m)]

by independence. By the Markov property, E [1Bϕ(Xn+m)] is equal to E [1BPnϕ(Xm)]. We use
independence again to conclude.

Exercise 4.7 (Poisson process as Markov process). Let (N(t)) be a Poisson process of parameter
λ > 0. Show that (N(t)) is a Markov process, give the transition semi-group and the generator.
The solution to Exercise 4.7 is here.

4.2.3 Markov property for the symmetric simple exclusion process

The evolution of the symmetric simple exclusion process is described in Section 1.2. Recall that
we are in the situation where L = 2N , and that, to a given configuration η of particles, is
associated the function H ∈ EL given by

H(x) =
x−1∑
y=0

(2η(y)− 1). (4.22)

The evolution of (Ht) can thus be described as follows

1. Let X ′L := {0, . . . , L− 1}. Draw a family (Tx)x∈X′
L
of independent exponential variables of

parameter 1.

2. Select the point x∗ such that Tx∗ = infy∈X′
L
Ty.

3. Perform the transformation HTx∗− → HTx∗
according to the rule of evolution of the sym-

metric simple exclusion process.

4. Start over.

Let us first give some precisions on step 3. Then we will discuss the steps 1-2 can be replaced
by the following procedure. Let

E
(0)
L = {H ∈ EL;H(0) = 0}

Introduce the discrete Laplace operator ∆D : E(0)
L → E

(0)
L defined by ∆DH(x) = 0 if x = 0 or L

and
∆DH(x) = H(x + 1) +H(x− 1)− 2H(x), ∀x ∈ {1, . . . , L− 1}, (4.23)

The index D in ∆D is for “Dirichlet”, since ∆D is actually the discrete Laplace operator with
homogeneous Dirichlet boundary conditions. Consider the transformation

H ← H + δx∆DH (4.24)

where
δx(y) = 1x=y, x ∈ XL. (4.25)

We consider the graph of H (when H is extended as a piecewise affine function). Examining 4.25
shows that (4.24) is the transformation that flips a corner at x (local extremum) in a the graph of
H into the opposite corner (nothing happens if H has no local extremum at x). We also consider
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the different possible configurations of particles, to observe that, when the site x is selected at
time t, Ht− becomes Ht− + δx+k∆DHt−:

Ht− ← Ht− + δx+k∆DHt− (4.26)

where k is a random variable (independent on the variables Ty) with Bernoulli distribution
b(1/2): P(k = 1) = P(k = 0) = 1/2. Let us now discuss the steps 1-2. We assert that it can
be replaced by the following procedure: draw a time T̄ with exponential law of parameter L,
select, independently a site x ∈ X ′L with uniform law (and then perform (4.26) at time t = T̄ ).
Indeed, if T and T ′ are two exponential independent random variables of parameters λ and λ′,
then T ∧ T ′ is also an exponential random variable of parameter λ+ λ′:

P(T ∧ T ′ > t) = P({T > t} ∩ {T ′ > t}) = P(T > t)P(T ′ > t) = e−λte−λ
′t = e−(λ+λ′)t.

Let
px(t) = P

[
Tx = inf

y∈X′
L

Ty;Tx > t

]
.

Clearly, px(t) = py(t) for all x, y ∈ X ′L. Since T̄ := infy∈X′
L
Ty is exponential of parameter L, this

gives

px(t) = 1
L

∑
y∈X′

L

py(t) 1
L
P

 ⋃
z∈X′

L

{Tz = inf
y∈X′

L

Ty;Tz > t}

 ,
which is simply

px(t) = 1
L
P(T̄ > t) = P(Y = x, T̄ > t),

where Y is uniform in X ′L and independent on T̄ . With that approach, we see that Ht = HN(t),
where (N(t)) is a Poisson process of parameter L and (Hn) is an independent process that evolves
in discrete time as follows

Hn+1 = Hn + δY+k∆DHn

The process (Hn) is Markov and time-homogeneous with transition operator P1 given by

P1ϕ(H) = EHϕ(H1) = 1
L

L−1∑
x=0

[
1
2ϕ(H + δx∆DH) + 1

2ϕ(H + δx+1∆DH)
]

= 1
L

L−1∑
x=1

ϕ(H + δx∆DH) + 1
2Lϕ(H + δ0∆DH) + 1

2Lϕ(H + δL∆DH) (4.27)

From Proposition 4.3 and (4.27), we deduce the following result.

Theorem 4.4. Let E(1)
L be the set of functions H : XL → R such that H(0) = 0 and |Hx+1 −

Hx| = 1 for all x ∈ XL (in the case x = L − 1, we use the convention H(L) = 0). Let ∆D

and δ be defined by (4.23) and (4.25) respectively. The symmetric simple exclusion process (Ht)
described in Section 1.2 is a Markov process with generator L given by

Lϕ(H) =
L−1∑
x=1

(ϕ(H + δx∆DH)− ϕ(H))

+ 1
2L (ϕ(H + δ0∆DH)− ϕ(H)) + 1

2L (ϕ(H + δL∆DH)− ϕ(H)), (4.28)

with domain the set of functions ϕ : E(1)
L → R.
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4.3 Deterministic limit
The result of Theorem (4.1) is a kind of law of large numbers (a “functional law of large num-
bers”). Indeed, let us introduce the average 〈Ht〉 = E [Ht]. The convergence (4.12) is a conse-
quence of these two following facts:

1. after change of scale, the symmetric simple exclusion process is close to its average value
with high probability: for all δ > 0,

lim
L→+∞

P

(
sup
t∈[0,T ]

‖ĤL2t − 〈ĤL2t〉‖L2(0,1) > δ

)
= 0, (4.29)

2. we have the deterministic convergence

lim
L→+∞

sup
t∈[0,T ]

‖h(t, ·)− 〈ĤL2t〉‖L2(0,1) = 0, (4.30)

where h is the solution to (4.9)-(4.10)-(4.11).

In this section, we will establish the convergence (4.30). Before we proceed, let us study 〈Ht〉
more closely. Given x ∈ {1, . . . , L − 1}, we consider the evaluation map πx : H 7→ H(x). We
have 〈Ht(x)〉 = Eπx(Ht) = Ptπx(H). By definition of the generator L the derivative in time
is ∂t〈Ht(x)〉 = PtL πx(H). The explicit formula (4.28) gives L πx(H) = ∆DH(x). By linearity
of the operator ∆D, we deduce that ∂t〈Ht(x)〉 = ∆D〈Ht(x)〉. After examination of the various
boundary conditions, we conclude that 〈Ht〉 is solution to the following problem:

∂t〈Ht〉 −∆D〈Ht〉 = 0 in (0,+∞)× {1, . . . , L− 1}, (4.31)
〈Ht(0)〉 = 0 for all t ∈ (0,+∞), (4.32)
〈H0(x)〉 = Hin(x) for all x ∈ {1, . . . , L− 1}. (4.33)

Different approaches to the convergence result (4.30) are possible. Our proof will be based on a
spectral decomposition that will be exploited also to establish the averaging property (4.29) in
Section 4.4.

Proposition 4.5 (Spectral basis). The Laplace operator with homogeneous Dirchlet boundary
conditions in dimension 1, which is the operator −∂2

x, with domain

D(−∂2
x) =

{
h ∈ H2(0, 1);h(0) = h(1) = 0

}
admits a spectral basis (ak)k∈N∗ , where ak(x) =

√
2 sin(πkx). This constitutes an orthonormal

basis of L2(0, 1). The eigenvalue associated to ak is µk = π2k2.
Let E(0)

L be the subset of EL constituted of the functions H such that H(0) = 0. The discrete
Laplace operator −∆D : E(0)

L → E
(0)
L is self-adjoint and admits the spectral basis (ǎk)1≤k≤L−1.

The eigenvalue associated to ǎk is νk = 4 sin2 (πk
2L
)
.

Proof of Proposition 4.5. We simply give the proof of some assertions about the discrete case.
If we extend any H ∈ E(0)

L to the value L by setting H(L) = 0, then for H,G in E(0)
L , we easily

check that −∆DH = D− ◦D+H, where

D+H(x) = H(x + 1)−H(x), D−H(x) = H(x)−H(x− 1).

Then we use the formula 〈D−H,G〉EL
= −〈H,D+G〉EL

to get

〈−∆DH,G〉EL
= 〈D+H,D+G〉EL

= 〈H,−∆DG〉EL
. (4.34)
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This shows that −∆D is self-adjoint. We also have −∆Dǎk = νkǎk, with

νk = (eiπk/L + e−iπk/L − 2) = 4 sin2
(
πk

2L

)
. (4.35)

The second identity in (4.35) uses the elementary trigonometry formula

1− cos(2a) = 2 sin2(a) (4.36)

Let 1 ≤ k, l ≤ L− 1. Using (4.34) and the fact that νk 6= νl if k 6= l, we obtain the orthogonality
relation 〈ǎk, ǎl〉EL

= 0 when k 6= l. If k = l, the trigonometric identity (4.36) gives

〈ǎk, ǎk〉EL
= L−1

∑
x∈XL

(1− cos(2πkx/L)) = 1− L−1Re
(
L−1∑
x=0

e2iπkx/L

)
= 1.

The family (ǎk)1≤k≤L−1 is free since 〈ǎk, ǎl〉EL
= δkl. It constitutes a basis of E(0)

L hence, since,
clearly, dim(E(0)

L ) = L− 1. This concludes the proof.

It follows from Proposition 4.5 that the solution h to (4.9)-(4.10)-(4.11) is given by

h(t) =
∞∑
k=1

e−µkt〈hin, a
k〉L2(0,1), (4.37)

and that 〈Ht〉 is given by

〈Ht〉 =
L−1∑
k=1

e−νkt〈〈Hin〉, ǎk〉EL
. (4.38)

Regularity of functions can be expressed in terms of decay of the “Fourier” coefficients. This is
what accounts for the following result.

Lemma 4.6. Let hin be a 1-Lipschitz continuous function on [0, 1] vanishing at 0 and 1. Let h
be the unique solution to (4.9)-(4.10)-(4.11) (see (4.8)). Then

sup
t∈(0,T )

|〈h(t, ·), ak〉L2(0,1)| ≤
√

2
πk

, (4.39)

for all k ≥ 1, where (ak)k∈N∗ is the orthonormal basis defined in Proposition 4.5.

Proof of Lemma 4.6. At time t, we have 〈h(t, ·), ak〉L2(0,1) = e−µkt〈hin, a
k〉L2(0,1). It is sufficient

to consider the case t = 0 therefore. The estimate (4.39) then follows from the fact that the
function hin is 1-Lipschitz continuous. Indeed, integration by parts gives

〈hin, a
k〉L2(0,1) = −〈h′in, Ak〉L2(0,1), Ak(x) =

∫ x

0
ak(y)dy =

√
2

πk
(1− cos(πkx)),

and then the bound |〈hin, a
k〉L2(0,1)| ≤

√
2/πk.

We need a result similar to Lemma 4.6 on functions of the discrete variable x ∈ XL.

Lemma 4.7. There exists a constant C ≥ 0 such that

|〈H, ǎk〉EL
| ≤ C

k
, |〈Ĥ, ak〉L2(0,1)| ≤

C

k
, (4.40)

for all H ∈ E(1)
L , for all k ∈ {1, . . . , L − 1}, where (ak)k∈N∗ is the orthonormal basis defined in

Proposition 4.5. One can take C =
√

2.
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Proof of Lemma 4.7. This time we use a discrete integration by parts:

〈H, ǎk〉EL
= 1
L3

L−1∑
x=1

(H(x)−H(x− 1))Bk(x), (4.41)

where Bk(x) :=
√

2L
∑L−1

y=x sin(kπy/L) satisfies |Bk(x)| ≤
√

2L2k−1 for all x ∈ XL. Indeed, we
compute

|Bk(x)| =
√

2L

∣∣∣∣∣Im
L−1∑
y=x

eiπky/L

∣∣∣∣∣ ≤ √2L
∣∣∣∣1− eiπk(L−x)/L

1− eiπk/L

∣∣∣∣ ≤ 2L
√

2
|1− eiπk/L|

.

We have
|1− eiπk/L| = 2 sin(πk/(2L)) ≥ 2k/L,

since sin(x) ≥ (2/π)x if x ∈ [0, π/2], which gives |Bk(x)| ≤
√

2L2k−1 as desired. The product
〈Ĥ, ak〉L2(0,1) satisfies an identity similar to (4.41), with

Bk(x) := L2√2
L−1∑
y=x

∫ (y+1)/L

y/L
sin(πkz)dz.

Using the bound

|Bk(x)| =
√

2L2

πk
| cos(πk)− cos(πkx/L)| ≤ 2

√
2L2

πk
,

we obtain the second estimate in (4.40).

Proof of the convergence (4.30). Let K(L) satisfy

lim
L→+∞

K(L) = +∞, K(L) = o(L2/5).

By Lemma 4.6, Lemma 4.7 and the Parseval identity, we have

sup
t∈[0,T ]

‖h(t, ·)− 〈ĤL2t〉‖2L2(0,1) = sup
t∈[0,T ]

K(L)∑
k=1

∣∣∣〈h(t, ·)− 〈ĤL2t〉, ak〉L2(0,1)

∣∣∣2 + o(1) (4.42)

when L→ +∞. We will show that (4.42) can be approached, still with an o(1) error, by

sup
t∈[0,T ]

K(L)∑
k=1

∣∣〈h(t, ·), ak〉L2(0,1) − 〈〈HL2t〉, ǎk〉EL

∣∣2 . (4.43)

We use (4.5) and the fact that H(x) ≤ L for all x ∈ XL when H ∈ E(1)
L . Since Lip(ak) = O(k),

we obtain
K(L)∑
k=1

∣∣∣〈〈ĤL2t〉, ak〉L2(0,1) − 〈〈HL2t〉, ǎk〉EL

∣∣∣2 =
K(L)∑
k=1

∣∣O(L−1k)
∣∣2 = O(L−2K(L)3) = o(1) (4.44)

where the O and o are uniform in t ∈ [0, T ]. Now we can use the spectral decompositions (4.37)
and (4.38) to see that (4.43) is equal to

sup
t∈[0,T ]

K(L)∑
k=1

∣∣∣e−µkt〈hin, ak〉L2(0,1) − e−L
2νkt〈Hin, ǎk〉EL

∣∣∣2 . (4.45)
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Let us compare 〈hin, ak〉L2(0,1) to 〈Hin, ǎk〉EL
. By (4.6), we have

sup
x∈[0,1]

|ˆ̌hin(x)− Ĥin(x)| ≤ L−1 sup
x∈XL

|ȟin(x)−Hin(x)| ≤ L−1.

We have also

sup
x∈[0,1]

|ˆ̌hin(x)− hin(x)| = sup
x∈[0,1]

|hin([xL]/L)− hin(x)| ≤ L−1,

since hin is 1-Lipschitz continuous. Finally, we can estimate the L2-norm by the L∞-norm to
obtain ‖hin − Ĥin‖L2(0,1) ≤ 2L−1 and

|〈hin, ak〉L2(0,1) − 〈Ĥin, ak〉L2(0,1)| ≤ 2L−1. (4.46)

By (4.5), we also have 〈Hin, ǎk〉EL
= 〈Ĥin, ak〉L2(0,1) + O(L−1k). An estimate similar to (4.44)

then shows that (4.45) is equal (up to o(1)) to

sup
t∈[0,T ]

K(L)∑
k=1

∣∣∣e−µkt − e−L
2νkt
∣∣∣2 〈hin, ak〉2L2(0,1). (4.47)

At that point, we need to compare the eigenvalues µk to the rescaled eigenvalues L2νk. The two
standard inequalities 2

πx ≤ sin(x) ≤ x, | sin(x) − x| ≤ x3, for 0 ≤ x ≤ π
2 , have the consequence

that there exists a constant C ≥ 0 such that

4
π2µk ≤ L

2νk ≤ µk, µk − L2νk ≤ C
k3

L
, (4.48)

for all k ∈ {1, · · · , L− 1}. Using (4.39), we deduce that (4.47) is bounded from above by

C2TL−2K(L)5‖hin‖2L2(0,1),

which is o(1) since K(L) = o(L2/5) by hypothesis. This concludes the proof.

4.4 Averaging
In this section, we will establish the convergence (4.29). We use (4.3) and Proposition 4.5, which
give

‖ĤL2t − 〈ĤL2t〉‖2L2(0,1) =
L−1∑
k=1
|〈HL2t − 〈HL2t〉, ǎk〉EL

|2 . (4.49)

We need to analyze the behavior on [0, L2T ] of the process 〈Ht, ǎk〉EL
, which is of the form

ϕk(Ht), with ϕk(H) = 〈H, ǎk〉EL
. The formula (4.28) for the generator L of (Ht) gives

Lϕk(H) = 〈∆DH, ǎk〉EL
. By Proposition 4.5 and the fact that ∆D is self-adjoint on E

(0)
L ,

we obtain Lϕk(H) = −νkϕk(H), when H ∈ E
(0)
L . Let us then apply Corollary 3.9 with

ψ(t,H) = eνktϕk(H). The quantity (∂t + L )ψ vanishes and we obtain that

M
(k)
t := eνkt〈Ht, ǎk〉EL

− 〈Hin, ǎk〉EL
(4.50)

and
Z

(k)
t :=

∣∣∣M (k)
t

∣∣∣2 − ∫ t

0
e2νks(L |ϕk|2 − 2ϕkLϕk)(Hs)ds (4.51)
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are both martingales. Since t 7→ E
[
M

(k)
t

]
is constant, by the martingale property, and vanishes

at t = 0, we have
0 = E

[
M

(k)
t

]
= eνkt〈〈Ht〉, ǎk〉EL

− 〈Hin, ǎk〉EL
.

Consequently our quantity of interest is 〈Ht − 〈Ht〉, ǎk〉EL
= e−νktM

(k)
t . We can use the Doob’s

martingale inequality (Theorem 2.2 with p = 2), and the trivial bound e−νkt ≤ 1, to obtain the
estimate

P

(
sup

t∈[0,L2T ]
|〈Ht − 〈Ht〉, ǎk〉EL

| > a

)
≤ 4
a2E|M

(k)
L2T |

2. (4.52)

Since E
[
Z

(k)
t

]
= 0, (4.51) gives us the bound from above

P

(
sup

t∈[0,L2T ]
|〈Ht − 〈Ht〉, ǎk〉EL

| > a

)
≤ 4
a2

∫ L2T

0
e2νks(L |ϕk|2 − 2ϕkLϕk)(Hs)ds. (4.53)

We will compute the “carré du champ” L |ϕk|2 − 2ϕkLϕk to understand better what gives
(4.53). Before we start, let us pause a moment to consider the inequalities that we have used.
We come back to (4.52) in particular, where we have discarded the term e−νkt. We may have
lost something here. If k is O(1), then νk is of order L−2 for L large, and t 7→ e−νkt is not smaller
than a given positive constant on the time interval [0, L2T ]. If k takes greater values, then things
are different. However, as soon as k ≥ K(L), where K(L) is a quantity that grows to +∞ with
L, but possibly very slowly, we can use the bound of Lemma 4.7 to get the estimate

L−1∑
k=K(L)

|〈HL2t − 〈HL2t〉, ǎk〉EL
|2 ≤ C2

∑
k≥K(L)

1
k2 ≤ C

2K(L)−1. (4.54)

We have only to consider the indexes k ≤ K(L) hence. If this is not exactly a bounded range of
indexes, we will see that the loss of the e−νkt factor in (4.52) is not a problem.
We go back to the computation of the carré du champ now. We can write ϕk as the sum over
x ∈ {1, . . . , L−1} of L−3ǎk(x)πx, where πx is the evaluation at x. We need to compute L (πx⊗πy)
therefore, where πx ⊗ πy(H) := H(x)H(y). By (4.28), this is

L (πx ⊗ πy)(H) =
L−1∑
z=0

[(H(x) + δz(x)∆DH(x))(H(y) + δz(y)∆DH(y))−H(x)H(y)] ,

which is equal to H(y)∆DH(x) +H(x)∆DH(y) if x 6= y, and to 2H(x)∆DH(x) + |∆DH(x)|2 if
x = y. We obtain

(L |ϕk|2 − 2ϕkLϕk)(H) = 1
L6

L−1∑
x=1
|ǎk(x)|2|∆DH(x)|2. (4.55)

If H ∈ E
(1)
L , then |∆DH(x)| ≤ 2 for all x. This shows that the right-hand side of (4.55) is

bounded by 4L−3‖ǎk‖2EL
. Since ǎk is normalized, we conclude finally that

0 ≤ (L |ϕk|2 − 2ϕkLϕk)(H) ≤ 4L−3, (4.56)

for all H ∈ E(1)
L . Let θ ∈ (0, 1/2) be fixed and let AL denote the event

AL =
⋂

1≤k<K(L)

{
sup

t∈[0,L2T ]
|〈Ht − 〈Ht〉, ǎk〉EL

| ≤ L−θ
}
.
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Let us choose K(L) = (log(L))1/3. We will show that we have then limL→+∞ P(AL) = 1. By
(4.49) and (4.54) and, we see that

sup
t∈[0,T ]

‖HL2t − 〈HL2t〉‖2L2(0,1) ≤ C
2(log(L))−1/3 + (log(L))1/3L−2θ,

when AL is realized, so it is clearly sufficient to prove limL→+∞ P(AL) = 1 to get the desired
result. The union bound gives

P(AcL) ≤
∑

1≤k<K(L)

P

(
sup

t∈[0,L2T ]
|〈Ht − 〈Ht〉, ǎk〉EL

| > L−θ

)
.

Using (4.53) and (4.56), we obtain

P(AcL) ≤ 16L2θ
∑

1≤k<K(L)

∫ L2T

0
eνksL−3ds ≤ 16L2θ−1

∑
1≤k<K(L)

eνkL
2T

νkL2 . (4.57)

From the inequality 2
πx ≤ sin(x) ≤ x for 0 ≤ x ≤ π

2 , we infer that νkL
2 is bounded between 16k2

and 4π2k2. We deduce then from (4.57) that

P(AcL) ≤ L2θ−1
∑

1≤k<K(L)

e4π2k2T

k2 ≤ SL2θ−1e4π2T (log(L))2/3
,

where S =
∑
k≥1 k

−2 = π2/6 is finite. This shows that limL→+∞ P(AL) = 1, as required.

5 Conservation laws and the Finite Volume method
5.1 Discrete conservation laws, continuous limit
We go back to Section 1.1 of the introductory part. We considered a discrete evolution equation

un+1
K = unK + ∆tn

|K|
∑

L∈N (K)

|K|L|QnL→K . (5.1)

The quantity unK represents the density of a certain extensive quantity u in the space-time cell
K × (tn, tn+1). The time grid is constituted from the discrete times t0 < t1 < · · · < tn < · · · ,
where tn = n∆t, n ∈ N for a fixed time-step ∆t. The space Rd is partitioned as follows: we are
given a family T of disjoint open bounded sets such that:

• for all distinct K,L ∈ T , the interface K ∩ L is contained in an hyperplane of Rd,

• up to a negligible set for the d-dimensional Lebesgue measure, the union of the sets K in
T is equal to Rd.

We also use the following notations:

• K|L is the intersection K ∩ L,

• |K| is the d-dimensional Lebesgue measure ofK and |K|L| is the d−1-dimensional Lebesgue
measure of K|L,
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Figure 2: A mesh in R2

• N (K) = {L ∈ T ; 0 < |K|L| < +∞} is the set of neighbors of K,

• when K ∈ T and L ∈ N (K), nK→L is the outward unit normal to K along K|L and QnK→L
is some numerical flux, ∆tQnK→L representing the amount of u that has passed from K to
L trough the interface K|L on the time interval (tn, tn+1).

In the introductory section 1.1, we also assumed that the condition

QnL→K = −QnK→L, (5.2)

for all n ∈ N, for all K,L ∈ T being neighbors, is satisfied. The condition (1.3) ensures that, in
the time interval (tn, tn+1), the (algebraic) quantity of u transferred from the cell K to the cell
L is the exact opposite of the quantity of u transferred from L to K: no loss or creation of u
occurs at the interface K|L. Define

h = sup
K∈T

diam(K), uh,∆t =
∑
n∈N

∑
K∈T

unk1K×[tn,tn+1). (5.3)

Under some additional conditions on the the discrete fluxes QnK→L, we will study the limit when
h,∆t→ 0 of uh,k. We will show that we obtain in the limit a conservation law

∂tu+ divx(Q) = 0, (5.4)

where Q = Q(x, t). There are various instances of such conservation laws. For example the heat
equation ∂t − div(K∇u) = 0 or the diffusion equation ∂t − div(D∇u) = 0, the flux being then
given by the the Fourier law, Q = −K∇xu, or the Fick law, Q = −D∇u respectively. An other
example is the continuity equation

∂tu+ divx(au) = 0, (5.5)

where a is a vector-field over Rd. The continuity equation can be rewritten

∂tu+ a · ∇xu+ divx(a)u = 0, (5.6)

and coincides with the transport equation ∂u + a · ∇xu = 0 when a is divergence-free. We can
also mention the Fokker-Planck equation of the kinetic theory of gases,

∂tf + v · ∇xf + F (x) · ∇vf = divv(∇vf + vf), (5.7)
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which is of the form (1.4), or more precisely ∂tf + divx,v(Q) = 0, with a flux

Q =
(

vf
F (x)f − (∇vf + vf)

)
.

In all these examples, the equations are linear. We can also consider the non-linear equations

∂tu−∆φ(u) = 0, (5.8)

or
∂tu+ divx(A(u)) = 0, (5.9)

where A : R → Rd. The hydrodynamic limits of particles in stochastic interaction that we will
consider later can be of very different types, including in particular (5.8) and (5.9). Although
both (5.8) and (5.9) may be considered in our framework, we will restrict our attention to models
with (5.9) as continuous limit. We refer to [11] for the derivation of (5.8).

5.2 Discrete fluxes
We will begin this section with a discussion on expected discrete fluxes in some specific situations,
before giving the description of our general framework. First let us start from (5.9), and see how
this can approximate by a discrete system of equations (this is the usual procedure in numerical
analysis). Let us integrate (5.9) on a space-time cell K× (tn, tn+1). We assume that u is smooth
for simplicity (beware that this is typically not the case of the solutions to (5.9)). Using Stokes’
formula, we obtain∫

K

u(tn+1, x)dx−
∫
K

u(tn, x)dx = −
∫ tn+1

tn

∫
∂K

A(u) · ndσdt. (5.10)

We use the approximation ∫
K

u(tm, x)dx ∼ |K|umK

and develop ∫
∂K

A(u) · ndσ =
∑

L∈N (K)

∫
K|L

A(u) · nK→Ldσ. (5.11)

This gives us the equation

un+1
K = unK −

1
|K|

∑
L∈N (K)

∫ tn+1

tn

∫
K|L

A(u) · nK→Ldσdt. (5.12)

We would like to use an approximation like∫ tn+1

tn

∫
K|L

A(u) · nK→Ldσdt ' ∆tn|K|L|A(unM ) · nK→L,

where M is either the cell K or the cell L, but, precisely, how to make this choice? The study
of linear equations gives some insight on this problem.
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5.3 Discrete fluxes for linear equations
Consider the continuity equation (5.5). Assume for simplicity that the vector field a is constant.
Then (5.5) is equivalent to the transport equation (5.6). What one would observe by looking at
the behavior of the solution to (5.6) on the interface K|L between the times tn and tn+1 is a
flow of u across K|L in the direction u. Let nK→L denote the unit normal to K along K|L in
the direction of L. The value of |a · nK→L| ponders the amplitude of the flux across K|L, while
the sign of a · nK→L determines the direction of the flow of u across K|L. It is quite natural
then to set QnK→L = a · nK→LunK if a · nK→L ≥ 0. The condition of conservation (5.2) will be
satisfied then if we also set QnK→L = a · nK→LunL when a · nK→L ≤ 0. This can be summed up
in the formula

QnK→L = (a · nK→L)+unK − (a · nK→L)−unL. (5.13)

A generalization of (5.14) in the case where a is a non-constant vector field is

QnK→L = a+
K→Lu

n
K − a−K→Lu

n
L, (5.14)

where
aK→L = 1

|K|L|

∫
K|L

a(x) · nK→Ldσ(x). (5.15)

A further generalization of (5.13) can be given in the case where the flux A(u) in (5.9) actually
depends on x also and is of the form A(x, u) = f(u)a(x), where f is a non-decreasing locally
Lipschitz function R → R and a : Rd → Rd is a divergence-free smooth vector field. Indeed,
(5.9) can be rewritten as the non-linear transport equation ∂tu+ f ′(u)a ·∇xu = 0 and, using the
definition (5.15), the sign of f ′(u)aK→L is the sign of aK→L since f ′(u) ≥ 0. In that situation,
one can consider the flux

QnK→L = a+
K→Lf(unK)− a−K→Lf(unL). (5.16)

5.4 General monotone fluxes
Consider the case of a general flux A in (5.9). By general flux A, we mean any functionA : R→ Rd
that is locally Lipschitz continuous. Sometimes, we also the consider the extension to some fluxes
A(x, u) depending also on the space variable. What kind of numerical flux may be compatible
with such an expected limit as (5.9)? Inspired by the examples in Section 5.3, we look for some
numerical fluxes QnK→L given by a relation

QnK→L = AK→L(unK , unL), (5.17)

where AK→L is a function with the following properties:

1. compatibility with the flux A:

AK→L(v, v) = A(v) · nK→L, (5.18)

for all v ∈ R,

2. regularity: the function AK→L is locally Lipschitz continuous: for every R > 0, there exists
a constant LA(R) ≥ 0 such that

|AK→L(v, w)−AK→L(v′, w′)| ≤ LA(R)(|v − v′|+ |w − w′|), (5.19)

for all v, v′, w, w′ ∈ [−R,R] and for all neighboring cells K,L ∈ T ,
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3. monotony: for all v, w ∈ R, the function AK→L(v, ·) is non-increasing, while the function
AK→L(·, w) is non-decreasing,

4. conservation property:
AK→L(v, w) = −AL→K(w, v), (5.20)

for all v, w ∈ R and for all neighboring cells K,L ∈ T .

If we choose the definition (5.17) of the flux, then (5.20) yields the conservation property (5.2).
There is some redundancy in the properties required above: (5.20) and the single fact that
AK→L(v, ·) is non-increasing implies that AK→L(·, w) is non-decreasing for instance. In the next
two paragraphs we infer some consequences on the discrete evolution equation (5.1) of (5.17),
(5.18), (5.19), (5.20) and the monotony properties of AK→L.

Exercise 5.1 (Godunov flux, Engquist-Osher flux). Define AGK→L(v, w) as follows: if v ≤ w,
then AGK→L(v, w) is the minimum value of u 7→ A(u) · nK→L on the interval [v, w]. If w ≤ v,
then AGK→L(v, w) is the maximum value of u 7→ A(u) · nK→L on the interval [w, v]. Define also
AEOK→L(v, w) by the formula

AEOK→L(v, w) =
∫ v

0
(a(ξ) · nK→L)+dξ −

∫ w

0
(a(ξ) · nK→L)−dξ,

where a(u) = A′(u). Show that AGK→L and AEOK→L have the required properties and show that
they coincide with the upwind flux (5.13) in the linear case A(u) = au.
The solution to Exercise 5.1 is here.

5.5 Constants as solutions
Any constant function unK ≡ v is solution to (5.1). By (5.18), we have indeed∑

L∈N (K)

|K|L|QnK→L =
∑

L∈N (K)

|K|L|A(v) · nK→L =
∑

L∈N (K)

∫
K|L

A(v) · nK→Ldσ(x).

We use the Stokes formula∑
L∈N (K)

∫
K|L

Ψ(x) · nK→Ldσ(x) =
∫
K

div Ψ(x)dx, (5.21)

to obtain ∑
L∈N (K)

|K|L|QnK→L = 0,

as desired.

Exercise 5.2 (Spatially dependent flux). Assume that A(x, u) satisfies the divergence-free con-
dition (divxA)(x, u) = 0 for all u ∈ R. Assume also that QnK→L is given by (5.17), where AK→L
satisfies the following generalized version of (5.18):

AK→L(v, v) = 1
|K|L|

∫
K|L

A(x, v) · nK→Ldσ(x). (5.22)

Show that constant are solutions.
The solution to Exercise 5.2 is here.
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For later use, we record the identity∑
L∈N (K)

|K|L|AK→L(unK , unK) = 0, (5.23)

valid for all neighboring cells K,L ∈ T . We can use it to transform (5.1) into the identity

un+1
K = unK + ∆tn

|K|
∑

L∈N (K)

|K|L|[AK→L(unK , unK)−AK→L(unK , unL)]. (5.24)

On the formula (5.24), we can see the stabilizing effect of the monotony of the numerical flux.
Imagine that unK > unL for all neighboring cells L of K. Then

AK→L(unK , unK)−AK→L(unK , unL) ≤ 0

for all L since AK→L is non-increasing in its second argument, which implies that un+1
K ≤ unK .

The estimates in the following two sections essentially use this.

5.6 Comparison principle
5.6.1 Periodic discrete conservation law

In all that follows we will consider for simplicity a periodic setting. We assume that the mesh T
is periodic, in the sense that there exists a mesh T ] of the hypercube (0, 1)d such every K ∈ T
is the translation of an element K] of T ] by a vector of Zd. We also assume that K 7→ u0

K

is periodic, in the sense that K ∼ L (where the relation of equivalence K ∼ L is defined by
K = ` + L, ` ∈ Zd) implies u0

K = u0
L. This will be the case if we assume, as will be done later,

that
∀K ∈ T , u0

K = 1
|K|

∫
K

u0(x)dx, (5.25)

where u0 : Rd → R is Zd-periodic. We denote by Td the d-dimensional torus Td = Rd/Zd.

5.6.2 Comparison principle and consequences

Remember the notation (5.3):

uh,∆t =
∑
n∈N

∑
K∈T

unk1K×[tn,tn+1).

Note in particular that, if F : R→ R is continuous, then∫
Td

F (uh,∆t(tn, x))dx =
∑
K∈T ]

|K|F (unK). (5.26)

Proposition 5.1 (L1-contraction). Let uh,∆t and vh,∆t be two sequences defined by (5.1), with
a flux given as in Section 5.4. Define

RnK(uh,∆t) = max {|unL|;L ∈ N (K) ∪ {K}} , |∂K| :=
∑

L∈N (K)

|K|L|.

Let n ∈ N be fixed, and assume that the conditions

2∆t|∂K|
|K|

LA(RnK(uh,∆t))) ≤ 1, 2∆t|∂K|
|K|

LA(RnK(vh,∆t))) ≤ 1 (5.27)
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are satisfied for all K ∈ T , where LA is defined in (5.19). We have then∫
Td

(uh,∆t(tn+1)− vh,∆t(tn+1))+dx ≤
∫
Td

(uh,∆t(tn)− vh,∆t(tn))+dx. (5.28)

Remark 5.1 (CFL condition). Recall that h is defined in (5.3) by h = supK∈T diam(K). Suppose
that there exists α > 0 such that

αhd ≤ |K|, |∂K| ≤ 1
α
hd−1, (5.29)

for all K ∈ T . Then (5.27) is satisfied if

∆t ≤ Ch, (5.30)

where C−1 = 2α−2LA(R), and R is a bound for all the quantities RnK(w), w = uh,∆t or vh,∆t (we
will see soon how to ensure that R is finite). The condition (5.30) puts a constraint of the size of
the time step, depending on the size of the space-step h. It is called a Courant-Friedrichs-Lewy
(CFL) condition.

Exercise 5.3 (Spatially dependent flux). Give some examples of meshes in dimension d = 2
which do not satisfy one of the two bounds in (5.29).
The solution to Exercise 5.3 is here.

Proof of Proposition 5.1. Here, and later in the analysis of (5.1), we will use the notation

a ∧ b = min(a, b), a ∨ b = max(a, b). (5.31)

We have then the formula
(u− v)+ = u ∨ v − v, (5.32)

for all u, v ∈ R. Our first goal is to estimate un+1
K ∨ vn+1

K . Let us consider the right-hand side
of (5.24). It is a non-decreasing function of the variables unL, L ∈ N (K). With respect to the
variable unK , it can be written as a sum Id+f , where f is a locally Lipschitz continuous function.
On the domain where Lip(f) ≤ 1, it will be also an non-decreasing function of unK . Actually, our
function f here is has the form F (u, u, u), where

F (u1, u2, u3) = ∆tn
|K|

∑
L∈N (K)

|K|L|[AK→L(u1, u2)−AK→L(u3, u
n
L)]

is a non-decreasing function of u1. We are only interested in the Lipschitz dependency of this
function with respect to u2 and u3, which, using (5.19), is bounded by the first term in (5.27).
To sum up, as long as the first condition in (5.27) is satisfied, we have

un+1
K = Hn

K(unK , unL;L ∈ N (K)), (5.33)

where Hn
K is a non-decreasing function of its arguments. We deduce, under (5.27), that

un+1
K ∨ vn+1

K ≤ Hn
K(unK ∨ vnK , unL ∨ vnL;L ∈ N (K)), (5.34)

for all K ∈ T . Then we use (5.32) and (5.33) to obtain the inequality

(un+1
K − vn+1

K )+ ≤ Hn
K(unK ∨ vnK , unL ∨ vnL;L ∈ N (K))−Hn

K(vnK , vnL;L ∈ N (K)). (5.35)
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We write (5.35) under the form

(un+1
K − vn+1

K )+

≤ (unK − vnK)+ + ∆tn
|K|

∑
L∈N (K)

|K|L|[ΦK→L(unK , unK ; vnK , vnK)− ΦK→L(unK , unL; vnK , vnL)], (5.36)

where
ΦK→L(v, w; v′, w′) := AK→L(v ∨ v′, w ∨ w′)−AK→L(v′, w′). (5.37)

We multiply (5.36) by |K| and sum over K ∈ T ]. It gives us the desired estimate (5.28), provided
we can show that∑

K∈T ]

∑
L∈N (K)

|K|L|[ΦK→L(unK , unK ; vnK , vnK)− ΦK→L(unK , unL; vnK , vnL)] = 0. (5.38)

The cancellation property (5.38) follows from the two identities∑
L∈N (K)

|K|L|[ΦK→L(unK , unK ; vnK , vnK) = 0,
∑
K∈T ]

∑
L∈N (K)

|K|L|ΦK→L(unK , unL; vnK , vnL)] = 0.

(5.39)
The left identity in (5.39) follows from (5.23). The second identity in (5.39) is a consequence of
(5.20) and of the formula∑

K∈T ]

∑
L∈N (K)

a(K,L) = 1
2
∑
K∈T ]

∑
L∈N (K)

(a(K,L) + a(L,K)), (5.40)

satisfied by any periodic function a : T × T → R. Indeed, if K∗ ∈ T ] and L∗ ∈ N (K), then the
term a(L∗,K∗) in the right-hand side of (5.40) will appear in the sum on the left when K = L∗
and L = K∗ (in the case where the interface K∗|L∗ is on the boundary of (0, 1)d, we need to use
the periodic character of a to complete this argument).

From Proposition 5.1, we deduce first a comparison principle and an L∞ estimate.

Proposition 5.2 (Comparison principle, L1 estimate). Under the hypotheses of Proposition 5.1,
we have ∫

Td

|uh,∆t(tn+1)− vh,∆t(tn+1)|dx ≤
∫
Td

|uh,∆t(tn)− vh,∆t(tn)|dx. (5.41)

Besides, if vh,∆t(tn) ≥ uh,∆t(tn) a.e. in Td, then vh,∆t(tn+1) ≥ uh,∆t(tn+1) a.e. in Td.

Proposition 5.3 (Comparison principle, L∞ estimate). Assume |uh,∆t(0)| ≤ R a.e. in Td.
Then, under the CFL condition

∀K ∈ T ,∀n ≥ 1, 2∆tn|∂K|
|K|

LA(R) ≤ 1, (5.42)

we have the L∞ bound |uh,∆t(t)| ≤ R a.e. in Td, for a.e. t ≥ 0.

Proof of Proposition 5.2 and Proposition 5.3. We exchange the roles of uh,∆t and vh,∆t to deduce
the L1-contraction (5.41) from (5.28) and we use the fact that vh,∆t(tn) ≥ uh,∆t(tn) a.e. in Td
if, and only if the integral over Td of (uh,∆t(tn)− vh,∆t(tn))+ vanishes to prove the comparison
principle. The L∞ bound |uh,∆t(tn)| ≤ R is proved by recursion on n, using the comparison
principle and the fact that the constant functions R and −R are solutions of (5.1).
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5.6.3 Asymptotic behavior

We consider the behavior of the numerical solution to (5.1) when the characteristic scales h and
∆t get smaller and smaller. Let (∆t(k)) be a sequence of positive reals that converge to 0, let
(Tk) be a sequence of meshes that are Zd-periodic and such that hk := supK∈Tk

diam(K) tends
to 0 when k → +∞. We assume that (5.29) is satisfied for all k, for all K ∈ Tk, where α
is independent on k. We also assume that (5.19) is satisfied with a Lipschitz constant LA(R)
independent on k. Let (u0

K)K∈Tk
be given by (5.25), where u0 ∈ L∞(Td). Consider the CFL

condition
sup
n≥0

∆t(k)
n ≤ ∆t(k)LA(R) ≤ α2hk, (5.43)

where R ≥ ‖u0‖L∞(Td). Let T > 0 be fixed. By Proposition 5.3, the solution u(k) := uhk,∆t(k) of
(5.1) satisfies the bound ‖u(k)‖L∞(Td×(0,T )) ≤ R for all k. Consequently, there is a subsequence
still denoted (u(k)) which converges to a certain function u in L∞(Td × (0, T )) for the weak-∗
topology. We would like to show that u is solution to the conservation law (5.9). In the case
where A is not a linear function, there are two difficulties to establish this:

1. we use a weak mode of convergence (convergence in L∞(Td × (0, T )) for the weak-∗ topol-
ogy), which is not sufficient in all generality to deal with the convergence of non-linear
terms,

2. the theory of the Cauchy Problem for (5.9) in L∞ requires a specific treatment, via the use
of entropy solutions.

We will establish the convergence of (u(k)) towards a solution of (5.9) in the linear case only, see
Section 5.10. Some additional estimates on u(k) are necessary for this, and we will give them in
the following section 5.7, for a general numerical fluxes, associated, via (5.18), to a not-necessarily
linear flux A. We refer to [10, Chapter 6] for the proof of convergence of (5.1) in the general
case.

5.7 Energy estimate
Consider the parabolic equation

ut + div(A(u))− η∆u = 0 in Td × (0,+∞). (5.44)

Here η > 0 is supposed to be small. The flux in (5.44) is A(u)− η∇u. This is a perturbation of
the flux A(u). The addition of the term −η∇u has a stabilizing effect, of the same nature as the
stabilizing effect discussed at the end of Section 5.5, in relation with the monotony properties
of the numerical fluxes. In (5.44), the additional term −η∆u has a positive contribution in the
energy estimate: if we multiply (5.44) by u (say, a smooth solution) and integrate over Td×(0, t),
we obtain ∫ t

0

1
2
d

dt

∫
Td

u2dxds+
∫ t

0

∫
Td

udiv(A(u))dxds− η
∫ t

0

∫
Td

u∆udxds = 0. (5.45)

We develop the term

udiv(A(u)) = uA′(u) · ∇u = B′(u) · ∇u = div(B(u)), B′(u) := uA′(u),

and, using periodicity, we obtain

1
2

∫
Td

|u(x, t)|2dx+ η

∫ t

0

∫
Td

|∇u|2dxds ≤ 1
2

∫
Td

|u0|2dx.

We will establish a similar result in the discrete case.
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Proposition 5.4 (Energy estimate). Let u0 ∈ L∞(Td) satisfy ‖u0‖L∞(Td) ≤ R. Define

D(tN ) = 1
2

N−1∑
n=0

∆tn
∑
K∈T

∑
L∈N (K)

|K|L|
∫ un

K

un
L

{AK→L(unK , unL)−AK→L(z, z)}dz.

Assume that the following CFL condition is satisfied: there exists ξ ∈]0, 1] such that

2∆tn
|∂K|
|K|

LA(R) ≤ 1− ξ, ∀K ∈ T , n ≥ 1. (5.46)

Then we have the energy estimate

1
2‖uh,∆t(tN )‖2L2(Td) + ξD(tN ) ≤ 1

2‖u0‖2L2(Td), (5.47)

for all N ≥ 1.

Remark 5.2. the term D(tN ) is non-negative. Indeed, using the monotony properties of AK→L,
we have AK→L(unK , unL) − AK→L(z, z) ≥ 0 if unL ≤ z ≤ unK . Similarly, AK→L(unK , unL) −
AK→L(z, z) ≤ 0 if unK ≤ z ≤ unL.

Proof of Proposition 5.4. Note first that

‖uh,∆t(0)‖L∞(Td) ≤ ‖u0‖L∞(Td) ≤ R.

By Proposition 5.3, we deduce that |unK | ≤ R for all K ∈ T , n ≥ 1. To start with the energy
estimate, we multiply the identity (5.24) by |K|unK and we sum the result over K ∈ T ] and
n ∈ {0, . . . , N − 1}. We obtain an identity J∆t + J∆x = 0, where

J∆t =
N−1∑
n=0

∑
K∈T ]

|K|unK(un+1
K − unK), (5.48)

and

J∆x =
N−1∑
n=0

∆tn
∑
K∈T ]

∑
L∈N (K)

unK{AK→L(unK , unL)−AK→L(unK , unK)}. (5.49)

We use the formula a(b− a) = b2−a2

2 − (a−b)2

2 , which is the “finite difference” version of the the
continuous identity u∂tu = 1

2∂tu
2. It gives

J∆t = 1
2‖uh,∆t(tN )‖2L2(Td) −

1
2‖uh,∆t(0)‖2L2(Td) −

1
2

N−1∑
n=0

∑
K∈T ]

|K||un+1
K − unK |2. (5.50)

We leave as an exercise the proof that (5.25) implies ‖uh,∆t(0)‖L2(Td) ≤ ‖u0‖L2(Td). From (5.50),
we deduce that

1
2‖uh,∆t(tN )‖2L2(Td) + J∆x ≤

1
2‖u0‖2L2(Td) + 1

2

N−1∑
n=0

∑
K∈T ]

|K||un+1
K − unK |2 (5.51)

45



The remaining term in the right-hand side of (5.51) will be absorbed in J∆x, by means of the
CFL condition. The summation formula (5.40) and the conservation property (5.20) give the
following expression of J∆x:

J∆x = 1
2

N−1∑
n=0

∆tn
∑
K∈T ]

∑
L∈N (K)

unK{AK→L(unK , unL)−AK→L(unK , unK)}

− unL{AK→L(unK , unL)−AK→L(unL, unL)}. (5.52)

Denote by ψK→L an anti-derivative of z 7→ z ddzAK→L(z, z). Integration by parts shows that

ψK→L(v)− ψK→L(w) = v{AK→L(v, v)−AK→L(v, w)}

− w{AK→L(w,w)−AK→L(v, w)}+
∫ v

w

{AK→L(v, w)−AK→L(z, z)}dz. (5.53)

Taking w = unL, v = unK in (5.53) shows that

J∆x = 1
2

N−1∑
n=0

∆tn

 ∑
K∈T ]

∑
L∈N (K)

∫ un
K

un
L

{AK→L(unK , unL)−AK→L(z, z)}dz + Rn
∆x

 , (5.54)

where the remainder term is

Rn
∆x = −1

2
∑
K∈T ]

∑
L∈N (K)

ψK→L(unK)− ψK→L(unL).

The cancellation property (5.23) and (5.40) give Rn
∆x = 0. We conclude that J∆x = D(tN ). The

estimate (5.47) will be established (as a consequence of (5.51)) if we can prove that

1
2

N−1∑
n=0

∑
K∈T ]

|K||un+1
K − unK |2 ≤ (1− ξ)J∆x. (5.55)

We use Equation (5.24) and the Cauchy-Schwarz inequality to get∣∣un+1
K − unK

∣∣2 ≤ (∆t)2|∂K|
|K|2

∑
L∈N (K)

|K|L||AK→L(unK , unL)−AK→L(unK , unK)|2.

The CFL condition (5.46) gives then (5.55) with a term J∗∆x instead of J∆x, where

J∗∆x = 1
4LA(R)

N∑
n=0

∆tn
∑
K∈T ]

∑
L∈N (K)

|K|L||AK→L(unK , unL)−AK→L(unK , unK)|2.

To conclude, we show that J∗∆x ≤ J∆x = D(tN ). To that purpose, we use the following inequality:∫ r

0
B(z)dz ≥ 1

2 Lip(B)B(r)2, r ∈ [0, R] (5.56)

valid for any non-decreasing Lipschitz continuous function B on [0, R]. To obtain (5.56), we
simply use the formula

B(r)2 = 2
∫ r

0
B(s)B′(s)ds,
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and bound B′(s) by Lip(B). Suppose unK ≥ unL for instance. Then (5.56) applied to B(z) :=
AK→L(unK , unL)−AK→L(unK , z + unL) and r = unK − unL will give

|AK→L(unK , unL)−AK→L(unK , unK)|2 ≤ 2LA(R)
∫ un

K

un
L

{AK→L(unK , unL)−AK→L(unK , z)}dz. (5.57)

We use the fact that AK→L(unK , z) ≥ AK→L(z, z) since unK ≥ z to get the desired identity. The
reasoning in the case unK ≤ unL is similar.

Remark 5.3 (Discrete H1-estimate in the time variable). Note that (5.55) and (5.47) give the
estimate

N−1∑
n=0

∑
K∈T ]

|K|
∣∣un+1
K − unK

∣∣2 ≤ (1− ξ)D(tN ) ≤ 1− ξ
ξ
‖u0‖2L2(Td), (5.58)

for all N ≥ 1. Note also that the inequality J∗∆x ≤ D(tN ) in the proof above and (5.47) give the
estimate

N∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L||AK→L(unK , unL)−AK→L(unK , unK)|2 ≤ 4LA(R)
ξ

‖u0‖2L2(Td), (5.59)

for all N ≥ 1.

5.8 Approximate weak solutions
In this section, we will prove that u(k) obtained in Section 5.6.3 is an approximate weak solution
of (5.9).

Definition 5.4 (Weak solution). Let u0 ∈ L∞(Td), assume that A : R→ Rd is a locally Lipschitz
continuous function. Let T > 0. A function u ∈ L∞(Td× (0, T )) is said to be a weak solution to
(5.9) on (0, T ) with initial datum u0 if∫ T

0

∫
Td

(uϕt +A(u) · ∇xϕ)dxdt+
∫
Td

u0(x)ϕ(x, 0)dx = 0, (5.60)

for all test-function ϕ ∈ C∞c (Td × [0, T )).

Notation: if u : Td → R and 1 ≤ p < +∞, we denote by ωLp(u;h) the modulus of continuity in
Lp(Td):

ωLp(u;h) = sup
|z|≤h

‖u− u(·+ z)‖Lp(Td). (5.61)

Theorem 5.5 (Approximate weak solutions). Let u0 ∈ L∞(Td) and let R ≥ ‖u0‖L∞(Td). As-
sume that the CFL condition (5.46) is satisfied for all K ∈ T ]. Then uh,∆t is an approximate
weak solution to (5.9) on (0, T ) with initial datum u0 in the sense that∣∣∣∣∣
∫ T

0

∫
TD

(uh,∆tϕt +A(uh,∆t) · ∇xϕ)dxdt+
∫
Td

u0(x)ϕ(x, 0)dx

∣∣∣∣∣
≤ 〈µ0

h,∆t, |ϕ|〉+ 〈µ1
h,∆t, |∂tϕ|〉+ 〈µ2

h,∆t, |∇xϕ|〉, (5.62)
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for all test-function ϕ ∈ C∞c (Td × [0, T )), where µih,∆t, i ∈ {0, 1, 2)} are some non-negative
measures on Td × [0, T ] which satisfy the estimate

µih,∆t(Td × [0, T ]) ≤ C(∆t1/2 + h1/2 + ωL1(u0;h)), (5.63)

where C is a constant depending only on the dimension d, on T , on the constant α in (5.29), on
R, on LA(R) (cf. (5.19)), and on the constant ξ in (5.46).

Remark 5.4 (Entropy solutions). When A is non-linear, weak solutions to (5.60) are non unique.
The Cauchy Problem for (5.9) is solved in the class of weak entropy solutions. A function
u ∈ L∞(Td × (0, T )) is said to be a weak entropy solution to (5.9) on (0, T ) with initial datum
u0 if ∫ T

0

∫
Td

(η(u)ϕt + Φ(u) · ∇xϕ)dxdt+
∫
Td

η(u0(x))ϕ(x, 0)dx ≥ 0, (5.64)

for all non-negative test-function ϕ ∈ C∞c (Td × [0, T )) and all entropy, entropy-flux pair (η,Φ).
This means that η is of class C2, convex, Φ is locally lipschitz continuous, Φ′(u) = η′(u)A′(u)
for a.e. u ∈ R. Actually, it is sufficient to establish (5.60) for a family of generating entropy,
entropy-flux pairs. One generally considers the Kruzhkov entropies η(u) = |u − r|, where the
parameter r runs in R. Such a η is not of class C2, but the associated flux is well defined. We
can also work with the semi Kruzhkov entropies η±(u) = (u− r)±. The associated fluxes are

Φ+(u; r) = A(u ∨ r)−A(r), Φ−(u; r) = A(u)−A(u ∧ r). (5.65)

We can see on the expressions (5.36) and (5.65) (we take vnK ≡ r in (5.36)) that we have already
established a discrete version of (5.64):

(un+1
K − r)+ ≤ (unK − r)+ + ∆tn

|K|
∑

L∈N (K)

|K|L|[ΦK→L(unK , unK ; r)− ΦK→L(unK , unL; r)], (5.66)

where ΦK→L(v, w; r) = AK→L(v ∨ r, w ∨ r)− AK→L(r, r). If we start from (5.66) and adapt in
a suitable way the proof of Theorem 5.5, we can establish that uh,∆t is an approximate weak
entropy solution to (5.9) on (0, T ) with initial datum u0 in the sense that

∫ T

0

∫
Td

(η±(uh,∆t; r)ϕt + Φ±(uh,∆t; r) · ∇xϕ)dxdt+
∫
Td

η±(u0(x); r)ϕ(x, 0)dx

≥ −〈µ0
h,∆t, |ϕ|〉 − 〈µ1

h,∆t, |∂tϕ|〉 − 〈µ2
h,∆t, |∇xϕ|〉, (5.67)

for all non-negative test-function ϕ ∈ C∞c (Td× [0, T )) and for all r ∈ R, where µh,∆t satisfies an
estimate similar to (5.63). See [10].

Proof of Theorem 5.5. Let ϕ ∈ C∞c (Td × [0, T )). We first look at the error done at initial time.
Define the error ε0(ϕ) by the formula

ε0(ϕ) =
∫
Td

(u0(x)− uh,∆t(x, 0))ϕ(x, 0)dx. (5.68)

By decomposition of the integral in (5.68), we have

ε0(ϕ) =
∑
K∈T ]

∫
K

(u0(x)− u0
K)ϕ(x, 0)dx.

48



For x ∈ K, u0(x) − uh,∆t(x, 0) is the average over K of y 7→ u0(x) − u0(y). Using Fubini’s
theorem, this gives the inequality |ε0(ϕ)| ≤ µ0

h,∆t(|ϕ|), where

µ0
h,∆t(ψ) =

∑
K∈T ]

∫
K

1
|K|

∫
K

|u0(x)− u0(y)|ψ(x, 0)dxdy

In particular, we have

|µ0
h,∆t(Td × [0, T ])| ≤

∑
K∈T ]

∫
K

1
|K|

∫
K

|u0(x)− u0(y)|dxdy.

This can be written

|µ0
h,∆t(Td × [0, T ])| ≤

∑
K∈T ]

1
|K|

∫
x∈Td

∫
y∈K

1K(x)|u0(x)− u0(y)|dxdy.

We do the change of variable y = x+ z to obtain

|µ0
h,∆t(Td × [0, T ])| ≤

∑
K∈T ]

1
|K|

∫
x∈Td

∫
z∈K−x

1K(x)|u0(x)− u0(x+ z)|dxdz,

and thus

|µ0
h,∆t(Td × [0, T ])| ≤

∑
K∈T ]

1
|K|

∫
x∈Td

∫
z∈B(0,h)

1K(x)|u0(x)− u0(x+ z)|dxdz,

since K − x ⊂ B(0, h) if x ∈ K. We use the first bound of (5.29) and the fact that the sum over
K of 1K(x) is 1 for a.e. x to get

|µ0
h,∆t(Td × [0, T ])| ≤ 1

αhd

∫
x∈Td

∫
z∈B(0,h)

|u0(x)− u0(x+ z)|dxdz,

We can exchange the integrals in x and z then to obtain

|µ0
h,∆t(Td × [0, T ])| ≤ |B(0, h)|

αhd
sup
|z|≤h

∫
x∈Td

|u0(x)− u0(x+ z)|dxdz.

This gives the first estimate

|µ0
h,∆t(Td × [0, T ])| ≤ α−1|B(0, 1)|ω(u0;h). (5.69)

Let us now study the term

It =
∫ T

0

∫
Td

uh,∆tϕtdxdt+
∫
Td

uh,∆t(x, 0)ϕ(x, 0)dx.

Let N ∈ N be such that tN−1 < T ≤ tN . Since ϕ is compactly supported in Td × [0, T ), we can
assume that T = tN . We expand It as

It =
N−1∑
n=0

∑
K∈T ]

|K|unK(ϕK(tn+1)− ϕK(tn)) +
∑
K∈T ]

|K|u0
KϕK(0),
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where ϕK(t) is the average value of ϕ(·, t) on the cell K. A discrete integration by parts gives

It = −
N−1∑
n=0

∑
K∈T ]

|K|(un+1
K − unK)ϕK(tn+1). (5.70)

We proceed similarly with the term

Ix =
∫ T

0

∫
Td

A(uh,∆t) · ∇xϕdxdt.

We expand Ix as

Ix =
N−1∑
n=0

∑
K∈T ]

∫ tn+1

tn

∫
K

A(unK) · ∇xϕdxdt.

By the Stokes formula, this gives

Ix =
N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|A(unK) · nK→LϕnK|L, (5.71)

where ϕnK|L is the average of the function ϕ on K|L× (tn, tn+1). We use the consistency proper-
ty (5.18) to write A(unK) · nK→L = AK→L(unK , unK). We also add a corrective term to the sum
in (5.71) to obtain

Ix =
N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|(AK→L(unK , unK)−AK→L(unK , unL))ϕnK|L. (5.72)

By the anti-symmetry property of the term AK→L(unK , unL))ϕnK|L (cf. (5.20)) and the summation
formula (5.40), (5.71) and (5.72) coincide indeed. Let us now denote by ϕnK the average value
of the function ϕ over K × (tn, tn+1). If we replace the quantities ϕK(tn+1) in (5.70) and ϕnK|L
in (5.72) by ϕnK , then we obtain It + Ix = 0. This follows from (5.24). Consequently, we have
It + Ix = ε1(ϕ) + ε2(ϕ), where

ε1(ϕ) =
N−1∑
n=0

∑
K∈T ]

|K|(un+1
K − unK)(ϕnK − ϕK(tn+1)),

and

ε2(ϕ) =
N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|(AK→L(unK , unK)−AK→L(unK , unL))(ϕnK|L − ϕnK).

To conclude to (5.62), we need to examine the error terms ε1(ϕ) and ε2(ϕ). Since∫ tn+1

tn

{ϕ(tn+1)− ϕ(t)}dt =
∫ tn+1

tn

∫ tn+1

t

ϕt(s)dsdt =
∫ tn+1

tn

(tn+1 − s)ϕt(s)ds,

we have
|ϕK(tn+1)− ϕnK | ≤

1
|K|

∫ tn+1

tn

∫
K

|ϕt(x, t)| dxdt.
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This gives |ε1(ϕ)| ≤ 〈µ1
h,∆t, |∂tϕ|〉, where

〈ψ, µ1
h,∆t〉 =

N−1∑
n=0

∑
K∈T ]

|unK − un+1
K |

∫ tn+1

tn

∫
K

ψ(x, t)dxdt. (5.73)

In particular, the total mass of µ1
h,∆t is

µ1
h,∆t(Td × [0, T ]) =

N−1∑
n=0

∆t
∑
K∈T ]

|K||unK − un+1
K |. (5.74)

By the Cauchy-Schwarz inequality and (5.58), we have

[
µ1
h,∆t(Td × [0, T ])

]2 ≤ T 1− ξ
ξ
‖u0‖2L2(Td)∆t. (5.75)

Similarly, we develop

ϕK|L − ϕK = 1
|K|L||K|

∫
K|L

∫
K

|ϕ(x)− ϕ(y)|dxdσ(y)

and use the development ϕ(x) − ϕ(y) =
∫ 1

0 ∇ϕ(ry + (1 − r)x) · (x − y)dr to obtain |ε2(ϕ)| ≤
〈µ2
h,∆t, |∇ϕ|〉, where

〈ψ, µ2
h,∆t〉 :=

N−1∑
n=0

∑
K∈T ]

∑
L∈N (K)

|AK→L(unK , unK)−AK→L(unK , unL)|

× 1
|K|

∫ tn+1

tn

∫
K|L

∫
K

∫ 1

0
ψ(ry + (1− r)x, t)|x− y|drdxdσ(y)dt. (5.76)

We have |x− y| ≤ h when x ∈ K, y ∈ K|L, so

µ2
h,∆t(Td × [0, T ]) ≤ h

N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L||AK→L(unK , unK)−AK→L(unK , unL)|. (5.77)

We use the Cauchy-Schwarz inequality and the estimate (5.59) to get the bound[
µ2
h,∆t(Td × [0, T ])

]2 ≤ h2ΓLA(R)‖u0‖2L2(Td).

The factor Γ is

Γ =
N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|| = T
∑
K∈T ]

|∂K|.

By (5.29), we have the bound Γ ≤ Tα−2h−1, which shows that[
µ2
h,∆t(Td × [0, T ])

]2 ≤ Tα−2LA(R)‖u0‖2L2(Td)h. (5.78)

We can bound the L2-norm of u0 by R in (5.75) and (5.78). This gives the desired estimate
(5.63).
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5.9 Convergence in the linear case
We restrict now our analysis to the case of a linear flux A: A(u) = au. In this context, we consider
a possibly non-constant vector field a. More precisely, we will assume that a ∈ C1(Td;Rd) and
that a is divergence free: div(a(x)) = 0 for all x ∈ Td. We consider then the scheme (5.1) with
a numerical flux given by (5.14)-(5.15), which is called the upwind, or upstream, flux. We have
then (5.17) with some numerical flux functions

AK→L(v, w) = a+
K→Lv − a

−
K→Lw (5.79)

which satisfies all the properties listed in Section 5.4, with LA(R) = ‖a‖L∞(Td). We will admit
that Theorem 5.5 remains valid, in the sense that we have∣∣∣∣∣
∫ T

0

∫
TD

(uh,∆tϕt + uh,∆ta(x) · ∇xϕ)dxdt+
∫
Td

u0(x)ϕ(x, 0)dx

∣∣∣∣∣
≤ 〈µ0

h,∆t, |ϕ|〉+ 〈µ1
h,∆t, |∂tϕ|〉+ 〈µ2

h,∆t, |∇xϕ|〉, (5.80)

and (5.63). In the asymptotic situation ∆t → 0, h → 0 described in Section 5.6.3, we can pass
to the limit in (5.80). This shows that u is a weak solution to (5.5) on (0, T ) with initial datum
u0, in the following sense (similar to Def. 5.4).

Definition 5.5 (Weak solution). Let u0 ∈ L∞(Td). A function u ∈ L∞(Td × (0, T )) is said to
be a weak solution to (5.5) on (0, T ) with initial datum u0 if∫ T

0

∫
Td

u(ϕt + a(x) · ∇xϕ)dxdt+
∫
Td

u0(x)ϕ(x, 0)dx = 0, (5.81)

for all test-function ϕ ∈ C∞c (Td × [0, T )).

We use then the following theorem.

Theorem 5.6. Let u0 ∈ L∞(Td) and T > 0. The continuity equation (5.5) admits a unique weak
solution in L∞(Td × (0, T )) with initial datum u0. It is given explicitly by u(x, t) = u0 ◦ Φt(x),
where (Φt) is the flow associated to the ODE ẋ = a(x) and Φt is the inverse4 of x 7→ Φt(x).

Exercise 5.6 (Uniqueness in transport equations). Prove Theorem 5.6 (beware, this is not
obvious).
The solution to Exercise 5.6 is here.

5.10 Error estimate in the linear case
Our aim in this section and the following ones is to establish the following result.

Theorem 5.7. Let u0 ∈ L∞∩BV(Td) and T > 0. Let A(x, u) = a(x)u, where a ∈ C1(Td;Rd) is
divergence-free. Let uh,∆t be the solution of the upwind Finite Volume method (5.1) with fluxes
given by (5.17)-(5.79)-(5.15). Let u ∈ L∞(Td × (0, T )) be the weak solution to (5.5) on (0, T )
with initial datum u0. Assume that (5.29) and (5.46) are satisfied. Assume also that ∆t ≤ C0h

4an expression of Φt is Φt(x) = Φ−t(x), this is a consequence of the group property Φt ◦ Φs = Φt+s; when
the sense of the time evolution does matter, for instance in the study of stochastic differential equations, it is
important to define Φt as the inverse of x 7→ Φt(x), not as Φ−t(x)
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for a certain constant C0. Then, there is a constant c(d) > 0 depending on d only such that, for
h,∆t ≤ c(d), we have the error estimate

‖uh,∆t(t)− u(t)‖L1(Td) ≤ C|Du0|(Td)h1/2, (5.82)

for all t ∈ [0, T ], where C is a constant depending only on the dimension d, on T , on C0, on
‖a‖C1(Td), on the constant α in (5.29) and on the constant ξ in (5.46).
We will make some comments on Theorem 5.7, but first we need a brief remainder on the space
BV.

5.10.1 Functions of bounded variations

Let U be an open subset of Rd. If ϕ ∈ C(U ;Rd), we denote by ‖ϕ‖C(U) the sup over x ∈ U of
the euclidean norm |ϕ(x)| of ϕ(x).
Definition 5.7 (Functions of bounded variation). Let U be an open subset of Rd. A function
u ∈ L1(U) is said to have bounded variation in U if

sup
{∫

U

udivϕdx
}
< +∞ (5.83)

where the supremum is taken over all ϕ ∈ C1
c (U ;Rd) such that ‖ϕ‖C(U) ≤ 1. We denote by

BV(U) the space of functions of bounded variations.
We denote by BVloc(U) the space of functions having locally bounded variations, defined as the
set of functions u ∈ L1

loc(U) such that u ∈ BV(V ) for all open subset V ⊂⊂ U (this last notation
means that there exists a compact K of Rd such that V ⊂ K ⊂ U).
Exercise 5.8 (Some functions of bounded variation). 1. Let U = (−1, 1). Let u : U → R be

defined as the integral over [0, x] of a function f ∈ L1
loc(U). Show that u ∈ BVloc(U) and

that u ∈ BV(U) if, and only if, f ∈ L1(U).

2. Let U = (−1, 1). Let u : U → R be the Heavyside function: u(x) = 0 if x < 0, u(x) = 1 if
x > 0. Show that u ∈ BV(U).

3. Let U = B(0, 1) in R2. Let u be the characteristic function of the disk B(0, 1/2). Show
that u ∈ BV(U).

The solution to Exercise 5.8 is here.
To enunciate the following structure theorem for functions of bounded variations, let us recall
the following facts about measures.

1. (See [20, Chapter 6]). Let (X,A) be a measure space. A complex measure over (X,A) is
a set function µ : A → C such that, for all A ∈ A, one has

µ(A) =
∞∑
i=1

µ(Ai), (5.84)

for all countable partition (Ai)i≥1 of A, the sum in (5.84) being absolutely convergent. If
µ is a complex measure, the formula

|µ|(A) = sup
{ ∞∑
i=1
|µ(Ai)|

}
, (5.85)

where the supremum is taken over all countable partitions (Ai)i≥1 of A, defines a non-
negative finite measure |µ| on A called the total variation of µ.
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2. (See [20, p. 130]). A complex measure µ defined on the Borel subsets of a topological
Hausdorff space X is said to be regular if for all Borel set A,

|µ|(A) = sup {|µ|(K);K compact ⊂ A} = inf {|µ|(V );V open ⊃ A} . (5.86)

Theorem 5.8 (Structure theorem for functions of bounded variations). Let U be an open set in
Rd. Let u ∈ L1(U). Then u ∈ BV(U) if, and only if, there exists a non-negative regular finite
measure κ on U and a Borel map n : U → Rd such that |n(x)| = 1 for κ-a.e. x ∈ U and∫

U

udivϕdx = −
∫
U

ϕ · ndκ, (5.87)

for all ϕ ∈ C1
c (U ;Rd). The sup in (5.83) is then equal to κ(U).

Proof of Theorem 5.8. In essential, the proof is an application of the theorem of representation
of Riesz. We take as a reference Theorem 6.19 in [20]. In [20], the result is given for a functional
of complex-valued functions. Since we need to consider a functional of vector valued functions,
we will come back on the main steps of the proof of Theorem 6.19 in [20]. For simplicity, we
will use the same notations as Rudin, except that vector-valued function are denoted using bold
fonts. Consider the functional

Φ(f) = −
∫
U

udiv(f)dx

It is defined for f ∈ C1
c (U ;Rd). By (5.83), it can be extended to a linear continuous functional

(still denoted Φ) on C0(U ;Rd). We consider then the further extension to C0(U ;Cd) defined
by Φ(f) := Φ(f1) + iΦ(f2), where f1 is the real part of f and f2 the imaginary part of f . Our
aim is to prove that there exists a non-negative regular finite measure λ on U and a Borel map
g : U → Rd such that |g(x)| = 1 for λ-a.e. x ∈ U and

Φ(f) =
∫
U

f · gdλ, (5.88)

for all f ∈ C0(U ;Rd), where (f ·g)(x) =
∑d
i=1 fi(x)gi(x). Let us focus on the “factor” λ in (5.88).

If (5.88) is satisfied, then the functional

ϕ 7→
∫
U

ϕdλ,

defined for ϕ ∈ Cc(U ;R), dominates Φ in the sense that, if ϕ ≥ 0, then

sup
{
|Φ(h)|; h ∈ Cc(U ;Cd), |h| ≤ ϕ

}
≤
∫
U

ϕdλ. (5.89)

For ϕ ∈ Cc(U ;R+), we define Λ(ϕ) as the left-hand side of (5.89):

Λ(f) = sup
{
|Φ(h)|; h ∈ Cc(U ;Cd), |h| ≤ ϕ

}
. (5.90)

This can be seen as a functional analogue to (5.85). Our aim is to show that we have the
representation

Λ(ϕ) =
∫
U

ϕdλ. (5.91)

For a general ϕ ∈ Cc(U ;R), we set Λ(ϕ) = Λ(ϕ+) − Λ(ϕ−). It is easy to see that this defines
a continuous functional on Cc(U ;R) which is positive. We will show that Λ is actually a linear
functional (see below). By the representation theorem of Riesz, [20, Theorem 2.14], there exists
a non-negative regular finite measure λ on U such that (5.91) is satisfied for all ϕ ∈ Cc(U ;R).
Next, we use the following representation result.
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Proposition 5.9. Every continuous linear form Ψ on E := L1(U, λ;Cd) admits a representation

Ψ(f) =
∫
U

f · gdλ, g ∈ L∞(U ;Cd). (5.92)

We have ‖Ψ‖E′ = ‖g‖L∞(U) in this correspondence, where ‖g‖L∞(U) is the the essential supre-
mum over x ∈ U of the euclidean norm |g(x)| of g(x) and ‖Ψ‖E′ is the norm of the linear form
Ψ.

Proposition 5.9 is an extension of [20, Theorem 6.16] to the vector valued case. We admit this
result, which can be proved by a systematic examination of the proof of [20, Theorem 6.16]. Let
us apply Proposition 5.9 to Φ. The functional Φ satisfies the hypotheses of the proposition:
(5.89) with ϕ = |h| shows that

|Φ(h)| ≤
∫
U

|h|dλ, (5.93)

for all h ∈ Cc(U ;Cd). Since Cc(U ;Cd) is dense, we can extend Φ as a continuous linear form on E
with norm ‖Φ‖E′ ≤ 1. This gives us the representation (5.88) with ‖g‖L∞(U) ≤ 1. To conclude,
there remains to show that |g(x)| = 1 for λ-a.e. x ∈ U . By (5.88) and the Cauchy-Schwarz
inequality |f · g| ≤ |f ||g|, we have

|Φ(f)| ≤
∫
U

|g|dλ, f ∈ Cc(U ;Cd), |f(x)| ≤ 1.

Taking the sup over f in the previous inequality gives Λ(1) ≤
∫
U
|g|dλ. Since Λ(1) = λ(U), |g|

is equal to 1 λ-a.e. To finish the proof, let us show that the map Λ defined by (5.90) is linear.
Let f, g ∈ Cc(U ;R+), ε > 0 and h1,h2 ∈ Cc(U ;Cd) such that

Λ(f) ≤ |Φ(h1)|+ ε, Λ(g) ≤ |Φ(h2)|+ ε.

There are some complex numbers α1, α2 ∈ C of modulus 1 such that |Φ(hi)| = αiΦ(hi). Then
the sum Λ(f) + Λ(g) is bounded by

α1Φ(h1) + α2Φ(h2) + 2ε = Φ(α1h1 + α2h2) + 2ε ≤ Λ(f + g) + 2ε,

which shows that Λ(f) + Λ(g) ≤ Λ(f + g). To prove the converse inequality, consider h ∈
Cc(U ;Cd) satisfying the constraint |h| ≤ f + g and set V = {f + g > 0} and

h1 = f

f + g
1V h, h2 = g

f + g
1V h.

Then h1,h2 ∈ Cc(U ;Cd) (why?), h1 + h2 = h, |h1| ≤ f , |h2| ≤ g, which shows that |Φ(h)| ≤
Λ(f) + Λ(g). Taking the sup over h gives the desired result.

Notation: if u ∈ BV(U), we denote by Du the (vector-valued) complex measure nκ in (5.87)
and by |Du| the measure κ. The norm ‖u‖BV(U) of u is defined as

‖u‖BV(U) = ‖u‖L1(U) + |Du|(U). (5.94)

Exercise 5.9 (Some functions of bounded variation). Compute Du, |Du| and ‖u‖BV(U) for the
functions u considered in the exercise 5.8.
The solution to Exercise 5.9 is here.

Definition 5.10 (Set of finite perimeter). 1. A Lebesgue measurable set E of Rd is said to
have finite perimeter in U if 1E ∈ BV(Rd). In that case, we set P (E) = |D1E |(Rd).
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2. Let U be an open subset of Rd. A Lebesgue measurable set E of Rd is said to have finite
perimeter in U if 1E ∈ BV(U). In that case, we set P (E;U) = |D1E |(U).

We now state without proof the following results.

Theorem 5.10 (Lower semicontinuity of the total variation). Let U be an open set in Rd. Let
(un) be a sequence of functions of BV(U) which converges in L1

loc(U) to a function u. Then

|Du|(U) ≤ lim inf
n→+∞

|Dun|(U). (5.95)

Theorem 5.11 (Local approximation by smooth functions). Let U be an open set in Rd. Let
u ∈ BV(U). There exists a sequence of functions uk in BV(U) ∩ C∞(U) such that

1. uk → u in L1(U), and

2. |Duk|(U)→ |Du|(U).

Remark 5.5. Note that if u ∈ BV(U) ∩ C∞(U) then u ∈W 1,1(U) and

|Du|(U) =
∫
U

|∇u(x)|dx. (5.96)

Theorem 5.12 (Trace of functions of bounded variations). Let U be an open bounded set in Rd,
with ∂U Lipschitz continuous. Let σ denote the surface measure on ∂U and n the outward unit
normal to U on ∂U . There exists a bounded linear application

γ : BV(U)→ L1(∂U, σ),

such that ∫
U

udivϕdx = −
∫
U

ϕ · dDu+
∫
∂U

(γu)ϕ · ndσ, (5.97)

for all ϕ ∈ C1(Rd;Rd).

Theorem 5.13 (Patch of functions of bounded variations). Let U be an open bounded set in
Rd, with ∂U Lipschitz continuous. Let σ denote the surface measure on ∂U and n the outward
unit normal to U on ∂U . Let v ∈ BV(U), w ∈ BV(Rd \ Ū) and let u ∈ L1(Rd) be the function
defined as u = v1U + w1Rd\Ū . Then u ∈ BV(Rd) and∫

Rd

ϕ · dDu =
∫
U

ϕ · dDv +
∫
Rd\Ū

ϕ · dDw +
∫
∂U

(γv − γw)ϕ · ndσ, (5.98)

for all ϕ ∈ Cc(Rd;Rd). The BV norm of u is

‖u‖BV(Rd) = ‖v‖BV(U) + ‖w‖BV(Rd\Ū) +
∫
∂U

|γv − γw|dσ. (5.99)

Theorem 5.14 (Co-area formula for functions of bounded variations). Let U be an open set in
Rd. Let u ∈ L1(U) be a non-negative function. For t ∈ R, we denote by Et the super-level set
{u > t}. Then, for a.e. t ∈ R, Et has finite perimeter in U , and we have

‖u‖L1(U) =
∫ ∞

0
‖1Et

‖L1(U)dt, |Du|(U) =
∫ ∞

0
|D1Et

|(U)dt. (5.100)
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See [9, Theorem 5.2] for the proof of Theorem 5.10, [9, Theorem 5.3] for the proof of Theorem 5.11,
[9, Theorem 5.6] for the proof of Theorem 5.12, [9, Theorem 5.8] for the proof of Theorem 5.13
and [9, Theorem 5.9] for the proof of Theorem 5.14. To complete this section, let us give the
definition of the norm ‖u‖BV(Td) of a Zd-periodic function u : Rd → R. First, by BV(Td) we
denote the set of Zd-periodic functions u ∈ BVloc(Rd). The measure |Du| is then a regular
measure on Rd, with |Du|(G) finite for every compact G ⊂ Rd. Let Q denote the unit cube
(0, 1)d and let Q1 = [0, 1)d. We define then

|Du|(Td) = |Du|(Q1), ‖u‖BV(Td) = ‖u‖L1(Q) + |Du|(Td). (5.101)

We take the measure |Du| of Q1, not Q, in (5.101). This makes a difference if |Du| has a singular
part with respect to the Lebesgue measure. This singular part may be due to some jumps of u,
which is the case if we consider piecewise constant functions. Let u ∈ L1(Td), denote by uh the
piecewise constant function defined by

uh(x) = uK := 1
|K|

∫
K

u(x)dx, x ∈ K. (5.102)

Then
Duh(A) = 1

2
∑
K∈T

∑
L∈N (K)

(uK − uL)nK→LHd−1(A ∩K|L), (5.103)

and we have
|Duh|(Td) = 1

2
∑
K∈T ]

∑
L∈N (K)

|K|L||uK − uL|. (5.104)

Since K|L is included in an hyperplane H, by hypothesis, the Hausdorff measure Hd−1(A∩K|L)
in (5.103) can simply be rewritten λH(A ∩K|L), where λH is the (d− 1)-dimensional Lebesgue
measure on H.

5.10.2 Comments on the error estimate

If 1 < p < +∞, one can establish the error estimate

‖uh,∆t(t)− u(t)‖Lp(Td) ≤ C‖u0‖W 1,p(Td)h
1/2. (5.105)

See [17]. The estimate (5.105) cannot be generalized when the flux in the conservation law (5.9)
is non-linear, for the reason that W 1,p(Td) is not stable in the evolution: if u0 ∈W 1,p(Td), there
may be some time t > 0 such that the (entropy) solution u of (5.9) starting from u0 loses the
W 1,p(Td) regularity at time t. This is a consequence of the apparition of discontinuities and is
already clear in dimension d = 1. On the contrary, the space BV(Td) is stable in the evolution by
(5.9). For general fluxes A, the error estimate (5.82) is observed in numerical practice, but has
not been established yet, except when the mesh is a cartesian mesh, i.e. each cell is a product
of one-dimensional cells of a one-dimensional mesh.

5.11 Error estimate in the linear case: proof
The following proof of the error estimate (5.82) is taken from [18]. A different proof, using
probabilistic tools, has been given in [5].
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5.11.1 Reduction of the problem

Projection on piecewise constant functions and BV-norm. We will use several times
the following result.

Proposition 5.15. Consider the map u 7→ uh defined by (5.102). There exists a constant C ≥ 0
only depending on d and on the constant α in (5.29) such that, if u ∈ BV(Td), then

|Duh|(Td) ≤ C|Du|(Td) and ‖uh − u‖L1(Td) ≤ C|Du|(Td)h. (5.106)

Proof of Proposition 5.15. Let K ∈ T ] and let L ∈ N (K). We will establish first the estimate

|uK − uL| ≤
2d+1 max(|K|, |L|)h

|K| |L|
|Du|(B(xK , 2h)), (5.107)

where xK := 1
|K|
∫
K
xdx is the center of gravity of K. Note that K,L ⊂ B(xK , 2h). Using Theo-

rem 5.10 and Theorem 5.11 with U = B(xK , 2h), we may suppose that u ∈ BV∩C1(B(xK , 2h)),
in which case (cf. (5.96))

|Du|(B(xK , 2h)) =
∫
B(xK ,2h)

|∇u(z)|dz.

Since |x− y| ≤ 2h for every (x, y) ∈ K × L, we have then

|uK − uL| ≤
1

|K| |L|

∫
K

∫
L

|u(x)− u(y)|dxdy

≤
2h
|K| |L|

∫
K

∫
L

∫ 1

0
|∇u((1− r)x+ ry)|drdxdy.

Now we perform the change of variables (x, y, r) 7→ (w = x − y, z = (1 − r)x + ry, r = r), of
Jacobian determinant equal to 1, and of inverse (w, z, r) 7→ (z + rw, z − (1− r)w, r). This gives

|uK − uL| ≤
2h
|K| |L|

∫
B(xK ,2h)

|∇u(z)|
(∫ 1

0

∫
Rd

g(w, z, r)dwdr
)
dz,

where g is defined by g(w, z, r) = 1 if z + rw ∈ K and z − (1 − r)w ∈ L, and g(w, z, r) = 0
otherwise. We remark that, for (z, r) ∈ B(xK , 2h)× [0, 1], we have∫

Rd

g(w, z, r)dw ≤ |r−1(K − z)| ≤ 2d|K|,

if r ≥ 1/2 and ∫
Rd

g(w, z, r)dw ≤ 2d|L|,

if r < 1/2. The estimate (5.107) follows. Using (5.29), we deduce from (5.107) that, for all
K ∈ T ], ∑

L∈N (K)

|K|L||uK − uL| ≤ 2d+1α−2|Du|(B(xK , 2h)).

Summing on K ∈ T ], we get∑
K∈T ]

∑
L∈N (K)

|K|L||uK − uL| ≤ 2d+1α−2
∫
Rd

∑
K∈T ]

1B(xK ,2h)(z)d|Du|(z).
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Let us set χ(z) =
∑
K∈T ] 1B(xK ,2h)(z). We have d(xK ,K) ≤ h, so χ(z) = 0 if z is at a distance

superior to 3h of Q. We may assume that 3h < 1, and then χ(z) = 0 if z /∈ Q′, where Q′ is the
cube [−1, 2)d - which is contained in 3d translates of Q1. By (5.29), we also have

αhdχ(z) ≤
∑
K∈T ]

1B(xK ,2h)(z)|K| ≤
∑

K:d(z,K)<3h

|K|.

Indeed, |z − xK | < 2h implies d(z,K) < 3h. Since the cells in T ] are disjoint, we have

∑
K:d(z,K)<3h

|K| =

∣∣∣∣∣∣
⋃

K:d(z,K)<3h

K

∣∣∣∣∣∣ ≤ |B(z, 4h)| = 4d|B(0, 1)|hd.

It follows that χ ≤ 4d|B(0, 1)|α−11Q′ , which gives us
1
2
∑
K∈T ]

∑
L∈N (K)

|K|L||uK − uL| ≤ 8dα−3|B(0, 1)||Du|(Q′) ≤ 24dα−3|B(0, 1)||Du|(Td).

Let K ∈ T . Similarly, we have∫
K

|uh(x)− u(x)|dx ≤
1
|K|

∫
K×K

|u(x)− u(y)|dxdy ≤ 2dh|Du|(B(xK , h)).

Summing on K ∈ T and using the fact that the cardinal of the set {K : d(K, z) ≤ h} is bounded
by Cα−1, we get the second estimate of (5.106).

Exercise 5.11 (Modulus of continuity of functions of bounded variation). Show that

ωL1(u;h) ≤ C|Du|(Td)h, (5.108)

for all u ∈ BV(Td), for all 0 ≤ h ≤ 1, where ωL1(u;h) is the modulus of continuity defined by
(5.61) and where C is a constant depending on the dimension d only.
The solution to Exercise 5.11 is here.

Contraction in L1. We will also need the following proposition.

Proposition 5.16 (Lp-conservation). Let u, v ∈ L∞(Td×(0, T )) be some weak solutions to (5.5)
on (0, T ) with respective initial data u0, v0 ∈ L∞(Td). Assume that a is divergence free. Then,
for every p ∈ [1,+∞], we have

‖u(t)− v(t)‖Lp(Td) = ‖u0 − v0‖Lp(Td), (5.109)

for all t ∈ (0, T ).

Proof of Proposition 5.16. We use Theorem 5.6. By linearity, we can assume v ≡ 0. We have
u(x, t) = u0 ◦Φt(x). This gives (5.109) since Φt is a bijection of Td (case p = +∞) and preserves
the measure (case p ∈ [1,+∞)), since a is divergence free.

A trivial consequence of (5.109) is that

‖u(t)− v(t)‖L1(Td) ≤ ‖u0 − v0‖L1(Td). (5.110)

We will also use Proposition 5.2, which gives (with obvious notations)

‖uh,∆t(t)− vh,∆t(t)‖L1(Td) ≤ ‖u0 − v0‖L1(Td), (5.111)

for all t ≥ 0.
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Reduction 1. Discrete time. Let t ∈ [0, T ]. There is a unique n ≥ 0 such that tn ≤ t < tn−1.
We have then uh,∆t(t) = uh,∆t(tn) and

‖u(t)− u(tn)‖L1(Td) = ‖u0 ◦ Φt − u0 ◦ Φtn‖L1(Td)

Since a is divergence free, Φt and φt preserve the Lebesgue measure, so

‖u(t)− u(tn)‖L1(Td) = ‖u0 ◦ Φt ◦ Φtn − u0‖L1(Td) ≤ C|Du0|(Td)‖Φt ◦ Φtn − Id‖C(Td)

by (5.108). Here,
‖Φt ◦ Φtn − Id‖C(Td) = sup

x∈Q̄
|Φt ◦ Φtn(x)− x|.

The group property of the flow gives

Φt ◦ Φtn(x)− x = Φtn−t(x)− x =
∫ 0

tn−t
a(Φs(x))ds,

so
‖u(t)− u(tn)‖L1(Td) ≤ C|Du0|(Td)∆t ≤ C|Du0|(Td)h,

where C depends on d, C0 and ‖a‖L∞(Td). This shows that it is sufficient to establish (5.82) for
a time t in the discrete grid {tn;n ≥ 0}. We proceed to this reduction to extend the analysis
done in the proof of Theorem 5.5. Indeed, in the proof of Theorem 5.5, it was assumed that the
test function ϕ was compactly supported in Td × [0, T ). It is easy however to extend our proof
to the case where T = tN and ϕ ∈ C1(Td × [0, T ]). We have then an additional term for t = T
to take into account, and (5.62) will be replaced by the inequality∣∣∣∣∣
∫ T

0

∫
Td

uh,∆t(ϕt + a · ∇xϕ)dxdt+
∫
Td

u0(x)ϕ(x, 0)dx−
∫
Td

uh,∆t(x, T )ϕ(x, T )dx

∣∣∣∣∣
≤ 〈µ0

h,∆t, |ϕ|〉+ 〈µ1
h,∆t, |∂tϕ|〉+ 〈µ2

h,∆t, |∇xϕ|〉. (5.112)

Reduction 2. Non-negative functions. Since constants are solutions to (5.1) and (5.5)
and since the addition of a constant to a function u ∈ BV(Td) does not modify the quantity
|Du|(Td), we may replace u0 by u0 + ‖u0‖L∞(Td), which allows us to work with non-negative
functions only. This reduction step is not fundamental actually. The co-area formula for BV
function, Theorem 5.14, has been stated for non-negative functions for simplicity; this is what
accounts for the present reduction step.

Reduction 3. Projection on a cartesian grid. Let L ∈ N, L ∼ h−1/2, for example
L = [h−1/2]. Let v0 be the L2-projection (see (5.102)) of u0 on the functions which are piecewise
constant with respect to the periodic mesh T0 = L−1(Q + Zd). This mesh satisfies (5.29) with
h0 = L−1 and α = (2d)−1 since

|K0| = hd0, |∂K0| = 2dhd−1
0 ,

for all K0 ∈ T ]0 . By Proposition 5.15, we have

|Dv0|(Td) ≤ C|Du0|(Td), ‖u0 − v0‖L1(Td) ≤ C|Du0|(Td)h1/2,

where C depends on the dimension d only. In view of (5.110)-(5.111), of the second estimate
in (5.106) and of (5.108), we can replace u0 by v0 to establish (5.82). Consequently, we may
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assume without loss of generality that u0 is piecewise constant with respect to T0. We use this
first reduction step for the following reason: let t > 0 and let A = {u0 > t} be a super-level set
of u0. Then A is an union of given cells of T0. Let 〈∂A〉L−1 denote the L−1 neighbourhood of
∂A:

〈∂A〉L−1 = {x ∈ Rd; d(x, ∂A) < L−1}.
We want to prove that the volume |〈∂A〉L−1 | of 〈∂A〉L−1 satisfies the estimate

|〈∂A〉L−1 | ≤ C|∂A|h1/2, (5.113)

where the constant C depends on d only. To establish (5.113), denote by T0[∂A] the set of cells
K ⊂ A such that K̄ ∩ ∂A is non-empty. We have

〈∂A〉L−1 ⊂
⋃

K∈T0[∂A]

〈∂K〉L−1 .

Since 〈∂K〉L−1 is included in the closure of the union of K and its 2d neighbouring cells, we
obtain

|〈∂A〉L−1 | ≤
∑

K∈T0[∂A]

(1 + 2d)L−d. (5.114)

On the other hand, each K ∈ T0[∂A] has at least one face of size L−(d−1) contributing to |∂A|,
so

|∂A| ≥
∑

K∈T0[∂A]

L−(d−1). (5.115)

The two estimates (5.114) and (5.115) give (5.113).

Reduction 4. Co-area formula. We apply Theorem 5.14. The equations we consider are
linear: they satisfy a superposition principle. By (5.100), we may replace u0 by the characteristic
function of a super-level set A with finite perimeter. The advantage of this manipulation is
the following one. Since 0 ≤ uh,∆t ≤ 1 by the comparison principle (Proposition 5.2), and
u(t) = u0 ◦ Φt = 1A(t), A(t) := Φt(A), we have

|uh,∆t(x, t)− u(x, t)| = (u(x, t)− uh,∆t(x, t))ϕ](x, t), ϕ](t) := (1A(t) − 1A(t)c).

Note that ϕ](t) = ϕ](0) ◦Φt, so (∂t + a · ∇x)ϕ] = 0 in a weak sense. If we could use this ϕ] as a
test function in (5.112), we would get (taking T = t = tn) the estimate

‖uh,∆t(t)− u(t)‖L1(Td)

≤ ‖uh,∆t(0)− u(0)‖L1(Td) + 〈µ0
h,∆t, |ϕ]|〉+ 〈µ1

h,∆t, |∂tϕ]|〉+ 〈µ2
h,∆t, |∇xϕ]|〉, (5.116)

and then would have to work on the error terms. Since ϕ] is not sufficiently regular to justify
(5.116), we proceed differently and consider a regularized version of ϕ]. Let T1 denote the
function

T1(s) = min(1,max(−1, s)),
which truncates s when |s| > 1. Let δ denote the signed distance function

δ(x) = d(x, ∂A)1A − d(x, ∂A)1Ac ,

where d is the euclidean distance. We set

ϕ0(x) = T1(L−1δ(x)), ϕ(x, t) = ϕ0 ◦ Φt(x). (5.117)

61



The functions T1 and δ are Lipschitz continuous5, so ϕ0 as well. This regularity is sufficient to
justify, after a preliminary regularization procedure, that (5.112) is valid with ϕ as a test-function.
We obtain∣∣∣∣∫

Td

(uh,∆t(t)− u(t))ϕ(x, t)dx
∣∣∣∣

≤ ‖uh,∆t(0)− u(0)‖L1(Td) + 〈µ0
h,∆t, |ϕ|〉+ 〈µ1

h,∆t, |∂tϕ|〉+ 〈µ2
h,∆t, |∇xϕ|〉, (5.119)

instead of (5.116). In the next section, we will explain how to exploit (5.119) to prove (5.82).
Remark 5.6. The step consisting in Reduction 3 is necessary in our method of proof. We can
illustrate this in dimension d = 2. Indeed, assume from the start that u0 is the characteristic
function of a set A of finite perimeter, in which case the “Reduction 4” step is irrelevant. We
consider An = Kn× [0, η], where K0 = [0, 1], K1 = [0, 1/3]∪ [2/3, 1], . . . is the standard sequence
used to define the triadic Cantor set and η > 0 will tend to 0. We take η > 0 only to get a
non-trivial boundary ∂An. To simplify the argument, let us work directly with Kn. For ε = 3−N ,
N ≥ 1 and n ≥ N , we have 〈Kn〉ε = KN−1 and |Kn| = (2/3)n, so the inequality

〈Kn〉ε ≤ C|Kn|ε,

where C is an absolute constant, cannot be satisfied when n is too large.

5.11.2 Error estimate

We examine first the integral in the left-hand side of (5.119), that we would like to compare to
the exact L1-norm ‖uh,∆t(t)− u(t)‖L1(Td). Since ‖uh,∆t(t)− u(t)‖L∞(Td) ≤ 1, we have

‖uh,∆t(t)− u(t)‖L1(Td) ≤
∣∣∣∣∫

Td

(uh,∆t(t)− u(t))ϕ(x, t)dx
∣∣∣∣+ ‖ϕ](t)− ϕ(t)‖L1(Td).

By the conservation property (5.109) for p = 1,

‖ϕ](t)− ϕ(t)‖L1(Td) = ‖ϕ](0)− ϕ(0)‖L1(Td) ≤ |〈∂A〉L−1 |.

We use the estimate (5.113), and the fact that |∂A| = |Du0|(Td), to obtain

‖uh,∆t(t)− u(t)‖L1(Td) ≤
∣∣∣∣∫

Td

(uh,∆t(t)− u(t))ϕ(x, t)dx
∣∣∣∣+ C|Du0|(Td)h1/2. (5.120)

The first term ‖uh,∆t(0)−u(0)‖L1(Td) in the right-hand side of (5.119) is bounded by C|Du0|(Td)h
as a consequence of Proposition 5.15. By (the proof of) Theorem 5.5 and (5.108), we have

〈µ0
h,∆t, |ϕ|〉 ≤ ‖ϕ0‖L∞(Td)ωL1(u0;h) ≤ C|Du0|(Td)h.

5if x, y ∈ A and z ∈ ∂A, then
d(x, ∂A) ≤ d(x, z) ≤ d(x, y) + d(y, z).

Taking the inf on z ∈ ∂A, we obtain d(x, ∂A) ≤ d(x, y) + d(y, ∂A). By symmetry, we also have d(y, ∂A) ≤
d(x, y) + d(x, ∂A), hence

|δ(x)− δ(y)| ≤ d(x, y), x, y ∈ A. (5.118)
Replacing A by Ac shows that (5.118) holds true when x, y ∈ Ac. If x ∈ A, y ∈ Ac, then the segment [x, y]
intersects ∂A at least at the point zτ defined by

τ = sup{t ∈ [0, 1]; [x, zt] ⊂ A}, zt := (1− t)x+ ty.

Then
|δ(x)− δ(y)| = d(x, ∂A) + d(y, ∂A) ≤ d(x, zτ ) + d(y, zτ ) = d(x, y).
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We can now begin the study of the two most important terms in (5.119): 〈µ1
h,∆t, |∂tϕ|〉 and

〈µ2
h,∆t, |∇xϕ|〉. To that purpose, we need to come back to the definition of µ1

h,∆t and µ2
h,∆t in

the proof of Theorem 5.5, cf. (5.73) and (5.76):

〈µ1
h,∆t, ψ〉 =

N−1∑
n=0

∑
K∈T ]

|unK − un+1
K |

∫ tn+1

tn

∫
K

ψ(x, t)dxdt, (5.121)

and (taking into account the expression (5.14) of the numerical flux in (5.76)):

〈µ2
h,∆t, ψ〉 :=

N−1∑
n=0

∑
K∈T ]

∑
L∈N (K)

a−K→L|u
n
K − unL|

× 1
|K|

∫ tn+1

tn

∫
K|L

∫
K

∫ 1

0
ψ(ry + (1− r)x, t)|x− y|drdxdσ(y)dt. (5.122)

The norm of the gradient ∇xϕ(x, t) = (∇Φt(x))∗(∇xϕ0) ◦ Φt(x) is bounded by

‖∇Φt‖L∞(Td)‖∇xϕ0‖L∞(Td).

We have ‖∇xϕ0‖L∞(Td) ≤ L ≤ h−1/2 and ‖∇Φt‖L∞(Td) ≤ et‖a‖C1(Td;Rd) . This last bound comes
from the identities (where ∇Φ = (∂iΦj)i,j)

∇Φt = exp
(∫ t

0
∇a ◦ Φsds

)
, Id = ∇Φt(x)(∇Φt)(Φt(x)),

for all x ∈ Td. Using the transport equation ∂tϕ = −a · ∇xϕ, we deduce from these estimates
that

‖∇(t,x)ϕ‖L∞(Td×[0,T ]) ≤ Ch−1/2, (5.123)

where C depends on ‖a‖C1(Td;Rd) and T only. We also remark that the derivatives ∇(t,x)ϕ are
supported in the “streak”

S =
⋃

0≤t≤T
Φt(〈∂A〉L−1)× {t}.

This has the consequence that

〈µ1
h,∆t, |∂tϕ|〉 ≤ Ch−1/2

N−1∑
n=0

∆t
∑
K∈T ]

|K||unK − un+1
K |χ(K × (tn, tn+1)),

where χ(K × (tn, tn+1)) = 1 if K × (tn, tn+1) intersects the set S, and 0 otherwise. By the
Cauchy-Schwarz inequality and (5.58), we obtain

|〈µ1
h,∆t, |∂tϕ|〉|2 ≤ Ch−1∆tD(tN )

N−1∑
n=0

∆t
∑
K∈T ]

|K|χ(K × (tn, tn+1)). (5.124)

To estimate the term

S :=
N−1∑
n=0

∆t
∑
K∈T ]

|K|χ(K × (tn, tn+1))
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in (5.124), let us fix n ∈ {0, . . . , N − 1}. We have∑
K∈T ]

|K|χ(K × (tn, tn+1)) = |En|

where En is the union of the cells K such that χ(K × (tn, tn+1)) = 1. If x ∈ K ⊂ En, then there
exists s ∈ (tn, tn+1), z ∈ 〈∂A〉L−1 such that Φs(z) ∈ K. We have then

d(x,Φtn(z)) ≤ d(x,Φs(z)) + d(Φs(z),Φtn(z)) ≤ h+ C∆t,

hence
d(Φtn(x), z) ≤ Cd(x,Φtn(z)) ≤ Ch, (5.125)

under the CFL condition ∆t ≤ Ch. The estimate (5.125) shows that Φtn(x) ∈ 〈∂A〉L−1+Ch, and

En ⊂ Φtn(〈∂A〉L−1+Ch).

Since Φtn preserves the Lebesgue measure, we obtain the estimate

|En| ≤ |〈∂A〉L−1+Ch| ≤ C|∂A|h1/2. (5.126)

To get (5.126), we have used the estimate |∂A〈L−1+Ch| ≤ C|∂A|(L−1 + h), which is a slight
generalization of (5.113). It follows from (5.126) that S〈h1/2〉 ≤ C|∂A|h1/2. We report this
estimate in (5.124) (and use the bound ∆t ≤ C0h) to conclude that

|〈µ1
h,∆t, |∂tϕ|〉|2 ≤ CD(tN )h1/2. (5.127)

By similar arguments, we obtain the analogous estimate

|〈µ2
h,∆t, |∇xϕ|〉|2 ≤ C|Du0|(Td)D(tN )h1/2. (5.128)

We have, indeed, by (5.122) and the bounds on ∇xϕ,

|〈µ2
h,∆t, |∇xϕ|〉| ≤ Ch1/2

N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|a−K→L|u
n
K − unL|χ(K̄ × [tn, tn+1]).

The first inequality in (5.59) reads

N∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|[a−K→L|u
n
K − unL|]2 ≤ 4‖a‖C(Td;Rd)D(tN ).

By the Cauchy-Schwarz inequality, we obtain

|〈µ2
h,∆t, |∇xϕ|〉|2 ≤ ChD(tN )

N−1∑
n=0

∆t
∑
K∈T ]

∑
L∈N (K)

|K|L|χ(K̄ × [tn, tn+1]).

Since
h

∑
L∈N (K)

|K|L| = h|∂K| ≤ α−2|K|,

by (5.29), we see that |〈µ2
h,∆t, |∇xϕ|〉|2 ≤ ChD(tN )S and the estimate on S given above yields

(5.128). To sum up, we have shown that

‖uh,∆t(t)− u(t)‖L1(Td) ≤ C
{
|Du0|(Td)D(tN )h1/2

}1/2
+ C|Du0|(Td)h1/2. (5.129)
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We see here that, simply estimating D(tN ) from above by ‖u0‖2L2(Td) will not be enough to
conclude. Instead, the energy estimate (5.47) must be fully exploited. It gives, indeed (recall that
t ∈ [tN , tN+1]) a bound on the quantity 2ξD(tN ) by the difference ‖u0‖2L2(Td)−‖uh,∆t(t)‖

2
L2(Td).

By the conservation of the Lp-norms in the continuity equation(5.5), ‖u0‖2L2(Td) = ‖u(t)‖2L2(Td).
Since u(t) and uh,∆t(t) are bounded by 1 in L∞(Td), we obtain

ξD(tN ) ≤ ‖uh,∆t(t)− u(t)‖L1(Td). (5.130)

We report the estimate (5.130) and use the inequality 2ab ≤ ηa2 + η−1b2 with a parameter η
small enough (with respect to the constant C) to obtain

‖uh,∆t(t)− u(t)‖L1(Td) ≤
1
2‖uh,∆t(t)− u(t)‖L1(Td) + C|Du0|(Td)h1/2.

The error estimate (5.82) follows.

6 Solution to the exercises
Solution to Exercise 3.4. Since the stochastic continuity of (Pt) at s is equivalent to the
weak convergence of P ∗t µ to P ∗s µ for all µ, we can use the Portmanteau Theorem and consider
simply a function ϕ which is bounded and uniformly continuous. Given ε > 0, there exists δ > 0
such that d(x, y) < δ implies |ϕ(x)− ϕ(y)| < ε. We decompose then the difference

E[ϕ(Xt)]− E[ϕ(Xs)].

into two pieces. The first one is

E
[
(ϕ(Xt)− ϕ(Xs))1d(Xt,Xs)<δ

]
,

which is bounded by ε. The second piece is

E
[
(ϕ(Xt)− ϕ(Xs))1d(Xt,Xs)≥δ

]
,

which can be bounded by 2‖ϕ‖BC(E)P(d(Xt, Xs) ≥ δ), which is smaller than ε for t close enough
to s.
Back to Exercise 3.4.

Solution to Exercise 3.6.

1. That µ0 = δ0 means that X0 always take the value 0 (X0 is deterministic). We have then
X1 = ±1 with equi-probability, so

µ1 = 1
2δ−1 + 1

2δ+1,

which is an example of Bernoulli’s Law b( 1
2 ). We have then

P(X2 = −2) = 1
4 , P(X2 = 0) = 1

2 , P(X2 = +2) = 1
4 .

The law of X2 is therefore

µ2 = 1
4
[
δ−3/2 + δ−1/2 + δ1/2 + δ3/2

]
.
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2. The law µN is

µN = 1
2N+1 δ−2 +

∑
−2N−1<k<2N−1

1
2N δ k

2N−2
+ 1

2N+1 δ−2. (6.1)

3. The answer is that µ0 is the uniform law on [−2, 2]:

µ0(A) = 1
4 |A ∩ [−2, 2]|,

where |A| is the Lebesgue measure of a Lebesgue set A ⊂ R (see the proof below for µ∞).
This answer can be simply guessed by examination of the evolution of the process (Xn).
An other way to find the right µ0 is to look at µN for large N . Indeed, a usual way to find
an equilibrium for a system in evolution is to look as the behavior for large times: if there
is convergence to a limit object, this will most probably be an equilibrium of the system.
Here, for example, one can look at the evolution starting from the binomial b(1/2) with
values in {−2,+2}, as in Question 2. If ϕ ∈ BC(R), then∫

R
ϕdµN =

∑
−2N−1<k<2N−1

1
2N ϕ

(
k

2N−2

)
+ o(1)

= 1
4

∑
−2N−1<k<2N−1

1
2N−2ϕ

(
k

2N−2

)
+ o(1).

We recognize a Riemann sum, which converges to∫
R
ϕdµ∞ := 1

4

∫ 2

−2
ϕ(x)dx.

The limit law µ∞ is an invariant measure for good. Indeed, if X0 ∼ µ∞, then, by the
formula of total probability,

P(X1 ∈ A) = P(X1 ∈ A|Z1 = −1)P(Z1 = −1) + P(X1 ∈ A|Z1 = +1)P(Z1 = +1)

= 1
2P(X0/2 ∈ A+ 1) + 1

2P(X0/2 ∈ A− 1),

for any Borel subsets A of R. This gives

8P(X1 ∈ A) = |A+ ∩ [−2, 2]|+ |A− ∩ [−2, 2]|, A± := 2A± 2.

We compute, by the invariance by translation of the Lebesgue measure and the change of variable
formula,

|A+ ∩ [−2, 2]| = |2A ∩ [−4, 0]| = 2|A ∩ [−2, 0]|, |A− ∩ [−2, 2]| = 2|A ∩ [0, 2]|.

If follows that P(X1 ∈ A) = 1
4 |A ∩ [−2, 2]| = µ∞(A): X1 has law µ∞.

Back to Exercise 3.6.

Solution to Exercise 3.7. We will use the following result.

Lemma 6.1. Let (E, d) be a complete, separable metric space. Then BC(E) is a separating
class: if two probability measures ν1 and ν2 satisfy 〈ν1, ϕ〉 = 〈ν2, ϕ〉 for all ϕ ∈ BC(E), then
ν1 = ν2.
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Proof of Lemma 6.1. The set of closed subsets of E is a π-system. By [3, Theorem 3.3], it is
sufficient to show that ν1(A) = ν2(A) for all closed sets A. This follows from the pointwise
monotone convergence ϕn ↓ 1A, where the function

ϕn(x) = 1−min(1, nd(x,A))

is continuous.

Let ϕ ∈ BC(E). By Lemma 6.1, it is sufficient to show that 〈P ∗t ν, ϕ〉 = 〈ν, ϕ〉. We write

〈P ∗t µ̄T , ϕ〉 = 1
T

∫ T

0
〈P ∗t+sµ, ϕ〉ds, (6.2)

(we will justify later this commutation relation). A change of variable gives then

〈P ∗t µ̄T , ϕ〉 = 1
T

∫ T+t

t

〈P ∗s µ, ϕ〉ds = T + t

T
〈µ̄T , ϕ〉 −

t

T
〈µ̄t, ϕ〉. (6.3)

Using the Feller property of (Pt) and the convergence µ̄T → ν, we can pass to the limit in (6.3)
to obtain the desired identity 〈P ∗t ν, ϕ〉 = 〈ν, ϕ〉. There remains to justify (6.2). By continuity of
t 7→ 〈P ∗t µ, ϕ〉, we have the following convergence of Riemann sums

1
N

N−1∑
n=0

P ∗sn
µ→ µ̄T , sn = nT

N
.

We apply P ∗t to each member (the convergence holds true owing to the Feller property of (Pt)).
By linearity of P ∗t , we get

1
N

N−1∑
n=0

P ∗t (P ∗sn
µ)→ P ∗t µ̄T . (6.4)

The semi-group property of Pt implies P ∗t (P ∗s µ) = P ∗t+sµ, therefore the left-hand side of (6.4)
is again a Riemann sum, which converges to the right-hand side of (6.2). This gives the desired
result.
Back to Exercise 3.7.

Solution to Exercise 3.8.

1. Quite clear.

2. Quite clear also !

3. (a) Let (p(t), q(t)) = Φt(p, q). We compute the time derivative of H(p(t), q(t)):

d

dt
H(p(t), q(t)) = DpH(p, q)ṗ+DqH(p, q)q̇ = 0.

(b) We have
〈P ∗t µβ , ϕ〉 = 1

Z(β)

∫
Rd

ϕ ◦ Φt(x)e−βH(x)dx.

The change of variable y = Φt(x) has the inverse x = Φ−t(y) since the system is
autonomous, and has Jacobian 1 since

div(p,q)(DqH,−DpH) =
n∑
i=1

∂2piqiH − ∂2piqiH = 0.
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Using the identity H ◦ Φ−t = H, we obtain∫
Rd

ϕ ◦ Φt(x)e−βH(x)dx =
∫
Rd

ϕe−βH(x)dx.

Back to Exercise 3.8.

Solution to Exercise 3.9. Let us first prove that Γ(ϕ) ≥ 0. Let ϕ ∈ D(L ) be such that
ϕ2 ∈ D(L ). Then 2Γ(ϕ) is the limit for b.p. convergence when t→ 0+ of the quantity

Pt[ϕ2]− ϕ2

t
− 2ϕPtϕ− ϕ

t
. (6.5)

Since Pt is given by
Ptϕ(x) =

∫
E

ϕ(y)Q(t, x, dy),

where Q is a probability kernel, we can apply the Jensen inequality to bound (6.5) from below
by

[Ptϕ]2 − ϕ2

t
− 2ϕPtϕ− ϕ

t
. (6.6)

Rearranging the expression, we see that (6.6) is equal to t−1(Ptϕ− ϕ)2 ≥ 0.
Let us now consider the case of an ODE: Ẋt = F (Xt). Let Φt denote the associate flow, so that
Xx
t = Φt(x). There is no randomness here, so we may consider that we are given a probability

space (Ω,F ,P) with F = {∅,Ω} the trivial σ-algebra. However, it is sometimes relevant to put
randomness in the initial datum only. In that configuration, we consider a non-trivial σ-algebra
F and a trivial filtration Ft = F , for all t. In any case, we obtain a Markov process with
transition operator Ptϕ = ϕ ◦ Φt. Then we compute Lϕ(x) = F (x) · ∇ϕ(x) when ϕ ∈ C1

b (Rd)
and

2Γ(ϕ) = F · ∇(ϕ2)− 2ϕF · ∇ϕ = 0.

In the case of the SDE (3.39), showing that (Xt) is a Markov process is not immediate, see, e.g.,
[2, p.313]. Define the non-negative matrix a = σ∗σ. By the Itô formula, we have, for ϕ ∈ C2

b (Rd),

E [ϕ(Xt)] = E [ϕ(X0)] +
∫ t

0
E [Lϕ(Xs)] ds, (6.7)

where L is given by
Lϕ(x) = F (x) · ∇ϕ+ 1

2a(x) : D2ϕ(x). (6.8)

In (6.8), we use the following notations: D2ϕ is the Hessian Matrix with ij-components ∂2
xixj

ϕ;
A : B is the scalar product of d× d matrices:

A : B =
d∑

i,j=1
AijBij .

It follows from (6.7) and the continuity properties of the solution to (3.39) that the generator of
(Xt) is indeed the operator L of (6.8). A simple computation gives then

Γ(ϕ)(x) = a(x) : ∇ϕ(x)⊗∇ϕ(x). (6.9)
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In (6.9), we use the following notation: given u, v ∈ Rd, u ⊗ v is the (rank-1) matrix with ij-
element uivj . Then A : u⊗ v = Av ·u, scalar product of Av with u. This gives us the alternative
expression

Γ(ϕ)(x) = a(x)∇ϕ(x) · ∇ϕ(x) = |σ(x)∇ϕ(x)|2.

In the particular case σ(x) = Id, we obtain Γ(ϕ) = |∇ϕ|2.
Back to Exercise 3.9.

Solution to Exercise 3.10. We have

Ptϕ(xi) = Exiϕ(Xt) =
L∑
j=1

Exi

[
1X(t)=xj

ϕ(xj)
]

=
L∑
j=1

Pxi(X(t) = xj)ϕ(xj) =
L∑
j=1

aij(t)ϕ(xj),

which gives Ptϕ = A(t)ϕ. With the conventions that are used, we observe that 〈ϕ, µ〉 = (ϕ, µ),
where (·, ·) is the canonical scalar product in RL. Consequently,

〈ϕ, P ∗t µ〉 = 〈Ptϕ, µ〉 = (A(t)ϕ, µ) = (ϕ,A(t)∗µ),

and we obtain P ∗t µ = A(t)∗µ, where A(t)∗ is the adjoint of the matrix A(t). The semi-group
property reads A(t+ s) = A(t)A(s). It follows that

A(t+ s)−A(s)
t

= A(s)A(t)− IL
t

= A(t)− IL
t

A(s).

By letting t → 0, we deduce that A satisfies the ODE A′(t) = LA(t) = A(t)L , which implies
A(t) = etL since A(0) = IL. The equation satisfied by an invariant measure is A(t)∗µ = µ for all
t ≥ 0. By differentiation, we obtain L ∗µ = 0. Of course the latter equation implies (L ∗)nµ = 0
for all n ≥ 1, and thus

A(t)∗µ = etL
∗
µ =

∑
n≥0

(L ∗)n

n! µ = µ.

Consequently, there is strict equivalence between A(t)∗µ = µ for all t ≥ 0, and L ∗µ = 0.
Back to Exercise 3.10.

Solution to Exercise 3.11. Assume E = {x1, . . . , xL} as in Exercise 3.10. Let A denote the
matrix A(1): aij = Pxi(X1 = xj). We still have Pnϕ = A(n)ϕ and P ∗nµ = A(n)∗µ. By the
semi-group property, we have A(n) = An for all n ≥ 0. The equation satisfied by the invariant
measure is (A∗ − Id)µ = 0 (the equivalent to L here is A − Id). Let us come back to the case
of a general state space E (a Polish space in our framework). Let us first prove that (Mn) is
a martingale. We can use the tower property (2.2) to show that it is sufficient to establish the
identity E [Mn+1|Fn] = Mn for all n ≥ 0. By the Markov property, we obain

E [Mn+1|Fn] = P1ϕ(Xn)− ϕ(X0)−
n∑
k=0

Lϕ(Xk).

Since L = P1−Id, this is precisely the desired identity E [Mn+1|Fn] = Mn. Let us look at (3.43)
now. Again, we want to prove that E [Zn+1|Fn] = Zn. We write

Mn+1 = ϕ(Xn+1)− Yn, Yn = ϕ(X0) +
n∑
k=0

Lϕ(Xk),
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where Yn is Fn-measurable. This gives

E
[
|Mn+1|2|Fn

]
= E

[
|ϕ(Xn+1)|2|Fn

]
− 2YnE [ϕ(Xn+1)|Fn] + |Yn|2

= P1|ϕ|2(Xn)− 2YnP1ϕ(Xn) + |Yn|2

= P1|ϕ|2(Xn) + Yn(Yn − 2P1ϕ(Xn))

We have also Yn = ϕ(Xn) + Lϕ(Xn)−Mn = P1ϕ(Xn)−Mn, hence

E
[
|Mn+1|2|Fn

]
= P1|ϕ|2(Xn)− (P1ϕ(Xn)−Mn)(P1ϕ(Xn) +Mn).

and
E
[
|Mn+1|2|Fn

]
− |Mn|2 = P1|ϕ|2(Xn)− |P1ϕ(Xn)|2.

We obtain then (3.43) by using the definition Γ[ϕ] = P1|ϕ|2 − |P1ϕ|2. The Jensen inequality
applied to

P1ϕ(x) =
∫
E

ϕ(y)Q(1, x, dy)

shows that Γ[ϕ] ≥ 0.
Back to Exercise 3.11.

Solution to Exercise 4.3. Each Tn has density f : t 7→ λe−λt1R+(t) with respect to the
Lebesgue measure on R. By independence, Sn has the law f ∗ · · · ∗ f (convolution n times). We
compute

f ∗ f(t) =
∫
R
λ2e−λse−λ(t−s)1R+(s)1R+(t− s)ds =

∫ t

0
λ2e−λtds1R+(t) = λ2te−λt1R+(t),

and, by recursion on n, f ∗ · · · ∗ f(t) = λn tn−1

(n−1)!e
−λt1R+(t). We compute then

P(N(t) = n) = P(Sn ≤ t < Sn+1) = P(Sn ≤ t < Sn + Tn+1)

= E[1Sn≤t<Sn+Tn+1 ] =
∫ t

s=0

∫ ∞
τ=t−s

dµ(Sn,Tn+1)(s, τ).

By independence, µ(Sn,Tn+1) = µSn ⊗ µTn+1 , so

P(N(t) = n) =
∫ t

s=0

∫ ∞
τ=t−s

λn
sn−1

(n− 1)!e
−λsdsλe−λτdτ = e−λt

(λt)n

n! .

The assertion that N(t) is càdlàg is a deterministic statement, it comes from the fact that Γ is a
measure: indeed, we note that, whatever the Radon measure µ on R+, the map t 7→ µ([0, t]) is
càdlàg. It is clear that N(0) = 0 a.s. and that (N(t)) has jumps of amplitude +1.
Back to Exercise 4.3.

Solution to Exercise 4.5.

1. (a) Assume by contradiction µ({x0}) > 0. For A = {x0}, we have then P(Γ(A) ≥ 2) > 0,
which is absurd since A cannot contain more than one point.
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(b) The left-hand side of (4.14) is

P(Γ(A1) = n1, . . . ,Γ(Ak) = nk,Γ(A0) = n0)
P(Γ(Rd) = n) =

∏k
i=0 e

−µ(Ai) µ(Ai)ni

ni!

e−µ(Rd) µ(Rd)n

n!

.

By rearrangement, we obtain (4.14).

2. (a) For i 6= j, using independence, the event Xi = Xj has probability

P(Xi = Xj) =
∫∫

x=y
dµ(Xi,Xj)(x, y) =

∫
R

∫
{x}

dν(y)dν(x) = 0.

This shows that #Πn < n with probability 0.
(b) Here, the event Γn(Rd) = n has probability 1, so

P(Γn(A1) = n1, . . . ,Γn(Ak) = nk|Γn(Rd) = n) = P(Γn(A1) = n1, . . . ,Γn(Ak) = nk).
We consider the realization of the event
{Γn(A1) = n1, . . . ,Γn(Ak) = nk} = {Γn(A0) = n0,Γn(A1) = n1, . . . ,Γn(Ak) = nk}.

Drawing each random variable Xi successively gives us n independent trials, where we
have to test the (k + 1) outcomes Xi ∈ Aj , each having probability pj = ν(Aj): this
is precisely the situation of a generalized Bernoulli test, described by the multinomial
distribution. To be complete, let us prove this result. We use a recursion on n,
starting from the trivial case n = 1. Without loss of generality, we assume that all
nj , j = 0, . . . , k are strictly positive. We condition to the location of the first variable
X1 to obtain

P(Γn(A0) = n0,Γn(A1) = n1, . . . ,Γn(Ak) = nk)

=
k∑
j=0

P(Γn(A0) = n0,Γn(A1) = n1, . . . ,Γn(Ak) = nk|X1 ∈ Aj)P(X1 ∈ Aj)

We have P(X1 ∈ Aj) = pj and
P(Γn(A0) = n0,Γn(A1) = n1, . . . ,Γn(Ak) = nk|X1 ∈ Aj)

= P(Γn−1(A0) = n0,Γn−1(A1) = n1, . . . ,Γn−1(Aj) = nj − 1, . . .Γn−1(Ak) = nk)

= 1
pj

nj
n

n!
n0!n1! · · ·nk!p

n0
0 · · · p

nk

k ,

which gives the desired result by summation over j.

3. For each Borel subset A of Rd, Γ(A) is equal to the sum
∞∑
i=1

1A(Xi)1[i,+∞)(N),

so Γ(A) is a random variable. Using the notations of the previous questions, we have
P(Γ(A1) = n1, . . . ,Γ(Ak) = nk)

=
∞∑

n=n1+···+nk

P(Γ(A1) = n1, . . . ,Γ(Ak) = nk|N = n)P(N = n)

=
∞∑

n0=0
P(Γn(A0) = n0,Γn(A1) = n1, . . . ,Γn(Ak) = nk)P(N = n),
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which gives

P(Γ(A1) = n1, . . . ,Γ(Ak) = nk)

=
∞∑

n0=0

n!
n0!n1! · · ·nk! [ν(A0)]n0 · · · [ν(Ak)]nke−µ(Rd)µ(Rd)n

n!

=
∞∑

n0=0

1
n0!n1! · · ·nk! [µ(A0)]n0 · · · [µ(Ak)]nke−µ(Rd).

There is no more n in this last expression. We explicit the summation over n0 to obtain

P(Γ(A1) = n1, . . . ,Γ(Ak) = nk) = 1
n1! · · ·nk! [µ(A1)]n1 · · · [µ(Ak)]nke−µ(Rd)+µ(A0)

= e−µ(A1) [µ(A1)]n1

n1! · · · e−µ(Ak) [µ(Ak)]nk

nk! . (6.10)

Taking k = 1 in (6.10) shows that Γ(A) has a Poisson distribution of parameter µ(A), then
(6.10) for general k shows that Γ(A1), . . . ,Γ(Ak) have the desired independence property.

4. Let X1, X2, . . . be independent random variables with Poisson distributions of respective
parameter λn ∈ [0,+∞]. We know that X1 + X2 then follows a Poisson distribution of
parameter λ1 + λ2 (this is standard when λ1, λ2 < +∞, but the case where one of the λi
is +∞ is trivial). By iteration, any finite sum

∑
n∈S Xn follows a Poisson distribution of

parameter
∑
n∈S λn:

P

[∑
n∈S

Xn = k

]
= e−λ

λk

k! . (6.11)

We can pass to the limit in (6.11) (using monotone convergence) to extend the identity to
the case where S is countable (again, discussing the case where all parameters λn, n ∈ S
are finite, or one is infinite). This yields the Superposition Principle.

5. For each n, we can construct a Poisson process Πn with intensity µn using some iid random
variables (Xn,m)m≥1 and some independent Poisson variable Nn of parameter µn(Rd). It
is always possible to ensure that the family

{Xn,m, Nn;n,m ≥ 1}

is independent. Then we obtain independent Poisson point processes with intensity µn.
The Superposition Principle gives the result.

6. Suppose that
Rd =

⋃
n∈N

An, µ(An) < +∞.

We can assume that the sets An are disjoint, otherwise, we consider

B1 = A1, B2 = (A1 ∪A2) \B1, . . . , Bn = (A1 ∪ · · · ∪An) \Bn−1, . . .

Then (4.17) is realized with µn =restriction of µ to An.
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7. When d = 1, µ = λ×restriction of the Lebesgue measure to R+, the process N(t) = Γ([0, t])
is a counting process with Poisson’s distribution of parameter λt. If 0 ≤ t, s and t1 ≤ · · · ≤
tk ≤ t, then

P(N(t1) = n1, . . . , N(tk) = nk, N(t+ s)−N(t) = m) (6.12)
= P(Γ(A1) = n1,Γ(A2) = n2 − n1 . . . ,Γ(Ak) = nk − nk−1,Γ(A) = m), (6.13)

where A1 = [0, t1], A2 = (t1, t2], . . . , Ak = (tk−1, tk], A = (t, t+ s]. We can always assume
that tk = t. Using the independence properties of the Poisson point process, we obtain
then, setting t0 = 0 and n0 = 0 and tk+1 = t+ s, nk+1 = m+ nk,

P(N(t1) = n1, . . . , N(tk) = nk, N(t+ s)−N(t) = m)

= e−λ(t1−t0) (λ(t1 − t0))n1−n0

(n1 − n0)! · · · e−λ(tk+1−tk) (λ(tk+1 − tk))nk+1−nk

(nk+1 − nk)!
= P(N(t1) = n1, . . . , N(tk) = nk)P(N(t+ s)−N(t) = m) (6.14)

This shows that N(t+ s)−N(t) is independent on FNt and follows a Poisson distribution
of parameter λs. Therefore, (N(t)) is a Poisson process, as defined in Definition 4.2.

Back to Exercise 4.5.

Solution to Exercise 4.6.

1. By independence, the quantity E
[
ϕ(S1, . . . , Sn)1Sn≤t<Sn+1

]
is equal to

E
[
ϕ(T1, T1 + T2 . . . , T1 + · · ·+ Tn)1T1+···+Tn≤t<T1+···+Tn+Tn+1

]
=
∫ ∞
t1=0
· · ·
∫ ∞
tn+1=0

ϕ(t1, t1 + t2, . . . , t1 + · · ·+ tn)1t1+···+tn≤t<t1+···+tn+tn+1

× λn+1e−λ(t1+···+tn+1)dt1 · · · dtn+1.

We do the change of variable (of Jacobian 1)

u1 = t1, u2 = t1 + t2, . . . , un+1 = t1 + · · ·+ tn+1

to get the expression∫ t

u1=0

∫ t

u2=u1

· · ·
∫ t

un=un−1

∫ ∞
un+1=t

ϕ(u1, u2, . . . , un)λn+1e−λun+1du1 · · · dun+1

= λne−λt
∫ t

u1=0

∫ t

u2=u1

· · ·
∫ t

un=un−1

ϕ(u1, u2, . . . , un)du1 · · · dun

= λn

n! e
−λtE[ϕ(U(1), . . . , U(n))]

This gives us the identity

E
[
ϕ(S1, . . . , Sn)1N(t)=n

]
= E[ϕ(U(1), . . . , U(n))]P(N(t) = n),

as desired.
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2. We use the same kind of transformation as in (6.12) to see that

P(N(t1) = n1, . . . , N(tk) = nk)
= P(Γ(A1) = n1,Γ(A2) = n2 − n1 . . . ,Γ(Ak) = nk − nk−1, N(tk) = nk),

where A1 = [0, t1], A2 = (t1, t2], . . . , Ak = (tk−1, tk]. Let m1 = n1 and mj = nj − nj−1 for
j > 1. The result of the previous question shows that, conditionally to N(tk) = nk, the
event

Γ(A1) = m1,Γ(A2) = m2 . . . ,Γ(Ak) = mk

corresponds to the arrangement of mj among nk independent uniform variables Ui on
[0, tk] in the set Aj , for all j. This is the multinomial distribution (already discussed in
Exercise 4.5) that gives therefore the probability:

P(N(t1) = n1, . . . , N(tk) = nk)

= nk!
m1! · · ·mk!

(
|A1|
tk

)m1

· · ·
(
|Ak|
tk

)mk

P(N(tk) = nk). (6.15)

A simple computation then gives (4.18).

Back to Exercise 4.6.

Solution to Exercise 4.7. Either adapt the proof of Proposition 4.3, either apply directly
this Proposition taking E = N and Xn = X0 + n. We have then P1ϕ(n) = ϕ(n + 1), therefore
(N(t)) has the generator

Lϕ(n) = −λ(ϕ(n+ 1)− ϕ(n)),

with domain the whole set of bounded functions N→ R and transition semigroup Pt = etL .
Back to Exercise 4.7.

Solution to Exercise 5.1. Clearly, the properties (5.18), (5.20) and the monotony property
are satisfied. To establish the regularity property (5.19), we use the fact that A is locally Lipschitz
continuous.
Back to Exercise 5.1.

Solution to Exercise 5.2. Same proof as in the case A = A(v). This times we use the
divergence-free condition (divxA)(x, v) = 0.
Back to Exercise 5.2.

Solution to Exercise 5.3. We suppose that α is fixed of course. Consider a mesh with
triangles only. If one triangle as a basis of length ∼ h, but a height that is almost 0, i.e. if there
is an almost flat triangle in the mesh, then the first condition in (5.29) may not be satisfied.
If we consider triangles only then |∂K| ≤ 3 diam(K) ≤ 3h for any K. Now, consider a triangle
with a basis of length ∼ 1, and a height ∼ h. Then fold the “arrow” of this triangle to form
a polygonal set of diameter O(h) and perimeter ∼ 1. If T contains such kind of set, then the
second condition in (5.29) will not be satisfied.
Back to Exercise 5.3.
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Solution to Exercise 5.6. We only give the sketch of the proof. By linearity, it is sufficient
to consider the case u0 = 0, in which case we want to prove u ≡ 0. If u is smooth, then
∂tu + a · ∇u = 0 (recall that a is divergence free). By the usual chain-rule formula, it follows
that ∂tβ(u) + a · ∇β(u) = 0 for any function β of class C1. By integration, we obtain∫

Td

β(u(x, t))dx =
∫
Td

β(u(x, 0))dx = β(0). (6.16)

It is sufficient to apply (6.16) with a non-negative function β such that β(s) = 0 if, and only if,
s = 0, for example β(s) = s2, to conclude. In this special case β(s) = s2, we can reformulate
things as follows: our aim is to justify the “energy estimate”

∂tu
2 + a · ∇x(u2) = 0

for a weak solution u. This is a standard problem. It is discussed for example in [16, Section
III.2.] for parabolic equations, or [23, Appendix A.20] for the kinetic Fokker-Planck equation.
For transport equation, specifically, this problem is treated in [6]. Actually, [6] deals with less
regular fields a, which, instead of being Lipschitz continuous, have a mere Sobolev regularity.
See Section II.2 in [6].
To show that (x, t) 7→ u0 ◦ Φt(x) is a weak solution, do the change of variable x′ = Φt(x) in the
weak formulation. Back to Exercise 5.6.

Solution to Exercise 5.8.

1. Let ϕ ∈ C1
c (U). We have∫ 1

−1
u(x)ϕ′(x)dx = −

∫ 1

−1
u′(x)ϕ(x)dx = −

∫ 1

−1
f(x)ϕ(x)dx. (6.17)

If ϕ is supported in (−r, r) with r < 1, then (6.17) is bounded by ‖f‖L1(−r,r)‖ϕ‖C(−1,1). We
have u ∈ BV(U) if, and only if there is a finite constant C such that |

∫ 1
−1 f(x)ϕ(x)dx| ≤

C‖ϕ‖C(−1,1) for all ϕ ∈ C1
c (U). Clearly, f ∈ L1(U) implies u ∈ BV(U). Conversely,

if u ∈ BV(U), let us consider, for ε > 0, χε the characteristic function of the interval
(−1 + ε, 1 − ε) and (ρε), an approximation of the unit with ρε supported in (−ε, ε). Let
also ψ be a function in C1

c (U). We have then∣∣∣∣∫ 1

−1
f sign(f)εψdx

∣∣∣∣ ≤ C, ϕε := (ϕχε) ∗ ρε. (6.18)

Taking the limit ε→ 0 in (6.18) gives∣∣∣∣∫ 1

−1
|f |ψdx

∣∣∣∣ ≤ C. (6.19)

We consider then a non-decreasing sequence of functions ψ ∈ C1
c (U) which converges

pointwise to the constant function 1. By monotone convergence, (6.19) gives f ∈ L1(U).

2. Let ϕ ∈ C1
c (U). We have∫ 1

−1
u(x)ϕ′(x)dx =

∫ 1

0
ϕ′(x)dx = −ϕ(0) ≤ ‖ϕ‖C(−1,1), (6.20)

hence u ∈ BV(U).
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3. By the Stokes’ formula, we have, for ϕ ∈ C1
c (U),∫

U

udivϕdx =
∫
B(0,1/2)

divϕdx =
∫
∂B(0,1/2)

ϕ(x) · n(x)dσ(x) ≤ π‖ϕ‖C(−1,1), (6.21)

hence u ∈ BV(U).

Back to Exercise 5.8.

Solution to Exercise 5.9. In the first case, we assume f ∈ L1(−1, 1). Then (6.17) shows
that Du = fλ, where λ is the Lebesgue measure on (−1, 1). By [20, Theorem 6.13], we have
|Du| = |f |λ then and ‖u‖BV(U) = ‖u‖L1(U) + ‖f‖L1(U). In the second case, (6.20) shows that
Du = δ0, the Dirac mass at 0. Then |Du| = δ0 also and ‖u‖BV(U) = ‖u‖L1(U) + 1 = 2.
In the third case, (6.21) shows that Du = nσ, where n is the outward unit normal to U on
∂U and σ the surface measure. By [20, Theorem 6.13] again, |Du| = σ. We compute then
‖u‖BV(U) = π/4 + π = 5π/4.
Back to Exercise 5.9.

Solution to Exercise 5.11. Assume first that u is of class C1. Let h ∈ [0, 1]. For x ∈ Q =
(0, 1)d and z ∈ Rd with |z| ≤ h, we have

|u(x+ z)− u(x)| =
∣∣∣∣∫ 1

0
(∇u)(x+ rz) · zdr

∣∣∣∣ ≤ h∫ 1

0
|∇u|(x+ rz)dr.

We do the change of variable (x′, r′) = (x+ rz, r) of Jacobian determinant 1 to obtain∫
Q

|u(x+ z)− u(x)|dx ≤ h
∫ 1

0

∫
Q+rz

|∇u(x)|dxdr ≤ h
∫
Q′
|∇u(x)|dx = h|Du|(Q′),

where Q′ = (−1, 2)d. This gives ωL1(u;h) ≤ |Du|(Q′)h. This estimate remains true in the
general case by Theorem 5.11 applied on U = Q′. Since |Du|(Q′) ≤ 3d|Du|(Td), we obtain the
desired result with C = 3d.
Back to Exercise 5.11.
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