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Abstract

The unified model of electroweak interactions (Glashow-Weinberg-Salam model) is constructed
step by step. As an application, the phenomenology of neutrino mixing, in the framework of the
three-family model, is discussed in detail. Numerous formulae for appearance or disappearance
of neutrinos in vacuum or in matter are derived. These notes should provide a self-contained
introduction to the GWS model and to neutrino mixing and oscillations. Recent experimental
results on neutrino oscillations are briefly reviewed.
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The following notes are rather detailed so that a student who does not have a proper academic

environment in particle physics can find them self-sufficient. The prerequisite is a course on advanced

quantum mechanics and some knowledge on the notion of invariant scattering amplitudes and Feynman

rules for fermions and bosons.

These notes are available at the following URL : https://lectures.lapth.cnrs.fr/standard_model

where some exercices on the calculation of particle production and decay can be found.
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1 Introduction

From the experimental point of view the world of “elementary particles” consists in:

− leptons: they have spin 1
2 and come in three doublets, (e−, νe) the electron and its associated

neutrino, (µ−, νµ) the muon and its neutrino, (τ−, ντ ) the tau and its neutrino.

− vector bosons: they have spin 1 and there is a massless boson, the photon, and three massive

ones, the W+, W− and the Z.

− hadrons: one distinguishes mesons of integer spin (S = 0, 1, . . . ) from baryons of half-integer

spin (S = 1
2 ,

3
2 , . . . ). The hadrons have been known for a long time to have a finite size (typically

of the order of 1 fm) and there exist so many hadrons (about 150 mesons and 120 baryons) that

they cannot be considered as elementary. At high energy they appear as composite objects made up

of quasi-free point-like fields : the quarks and the gluons. Like the leptons and the vector bosons,

the quarks and the gluons are structureless down to a scale of about 10−3 to 10−4 fermi, i.e. 10−18

to 10−19 m according to the most recent experimental results obtained at the CERN Large Hadron

Collider (LHC). They are treated as elementary fields appearing in the lagrangian which describes the

dynamics of their interactions.

Three types of forces have been identified acting on these fields: the strong force which affects

only the quarks and the gluons, and the electromagnetic and weak forces. The basic principle which

guides the construction of models of particle physics is that of local gauge invariance according to

which the physical properties do not depend on the phases of the fields. The Standard Model is a

(highly successful) example of a minimal model based on the local gauge group

SU(3)⊗ SU(2)L ⊗ U(1)Y

i.e. the direct product of three simple groups. The main features of these groups are :

− The SU(3) gauge group or colour group is the symmetry group of strong interactions. This

group acts on the quarks and the interaction force is mediated by the gluons which are the gauge

bosons of the group. The quarks and the gluons are coloured fields. The “coupling” (fine structure

constant) between quarks and gluons is denoted by αs which can be large. Under some conditions,

however, αs becomes very small and perturbation theory applies. The SU(3) colour symmetry is exact

and consequently the gluons are massless. The theory of strong interactions based on colour SU(3) is

called Quantum Chromodynamics ;

− The SU(2)L ⊗ U(1)Y is the gauge group of the unified weak and electromagnetic interactions,

where SU(2)L is the weak isospin group, acting on left-handed fermions, and U(1)Y is the hypercharge

group. At “low” energy, below 250 GeV, the SU(2)L ⊗ U(1)Y symmetry is “spontaneously” broken

6



and the residual group is U(1)em whose generator is a linear combination of the U(1)Y generator and

a generator of SU(2)L: the corresponding gauge boson is of course the photon and the associated

“coupling” is α ≃ 1
137 . Symmetry breaking implies that the other gauge bosons acquire a mass: they

are the heavyW±, Z bosons discovered at CERN in the mid ’80’s. The symmetry breaking mechanism

is associated to the names of Brout, Englert, Higgs, Guralnik, Hagen, Kibble and Sudarshan and it

is known now as the BEH mechanism after the names of the authors (Brout, Englert, Higgs) who

published their results first. Higgs emphasized the existence of a massive scalar field as a consequence

of the spontaneously broken symmetry and this field is traditionally refered to as the Higgs boson, but

it is sometimes called also the ”BEH boson” or simply the ”massive scalar boson”. Unlike the strong

and electromagnetic interactions, the weak interactions violate parity. The electroweak theory, based

on spontaneously broken SU(2)L⊗U(1)Y gauge invariance, is known as the Glashow-Salam-Weinberg

(GSW) model.

A specific feature of the electroweak model is the generation mixing occuring at the Born level

independently for the quark and the lepton sectors. The corresponding formalism is associated to

the Cabibbo-Kobayashi-Maskawa (CKM) matrix for the quarks and the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix for the leptons. In the latter case the consequences are neutrino oscillations

the phenomenology of which will be the object of the second part of these notes.

Before entering the description of the unified theory of electroweak interactions, based on broken

gauge invariance, it is useful to briefly review the Fermi theory of weak interactions and its phe-

nomenological extensions: this will serve to motivate the choice of the gauge group SU(2)L ⊗ U(1)Y

as well as illustrate the features related to the presence of massive gauge bosons.
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2 The Fermi theory and its extensions

At the beginning was the Fermi theory of muon decay :

µ− → e− νe νµ.

and neutron decay :

n→ p e− νe.

In the latter case we work in the quark/parton model where we assume the nucleon is made of three

quarks : neutron = (udd) and proton = (uud). For neutron decay, charge conservation allows only

the transition d→ u e− νe, the other two quarks being spectators.

d

u e−

ν̄e

µ−

νµ e−

ν̄e

neutron decay µ−decay

2.1 Contact interactions

These transitions are described by a local current-current (4 fermion) interaction parameterised by

the Lagrangian:

L =
GF√
2
Jν(x)J†

ν (x). (2.1)

The current has a leptonic part and a hadronic part, Jν(x) = lν(x) + hν(x),

lν(x) = ψeγν(1− γ5
)ψνe + ψµγν(1− γ5

)ψνµ + ψτγν(1− γ5
)ψντ

hν(x) = ψdγν(1− γ5
)ψu + ψsγν(1− γ5

)ψc + ψbγν(1− γ5
)ψt, (2.2)

where, for simplicity, the argument of the fermion fields are not shown, ψe instead ψe(x), · · · . The

γ5 matrix anticommutes with all γν ’s (see the appendix for the properties of the γ5 matrix). The

particular V − A (vector (γν) − axial (γνγ5)) form of the current is dictated by experiment, in

particular the angular distribution of particles in the final state1. The Fermi constant GF is universal,

1The γνγ5 interaction breaks parity maximally, see sec.B.2 in the appendix.

8



i.e. it is the same for the hadronic sector and the leptonic sector and its value has been measured to

be :

GF = 1.6639(2)10−5 GeV−2. (2.3)

Thus the transition matrix element for µ decay is an element in (G/
√
2)lν(x)l†ν(x) constructed from

the first two terms of lν(x):

M =
GF√
2
(ψeγν(1− γ5

)ψνe)(ψµγ
ν(1− γ

5
)ψνµ)

†

=
GF√
2
(ψeγν(1− γ5

)ψνe)(ψνµγ
ν(1− γ

5
)ψµ) (2.4)

and that of neutron decay (d quark decay) is an element of (G/
√
2)lν(x)h†ν(x):

M =
GF√
2
(ψeγν(1− γ5

)ψνe)(ψdγ
ν(1− γ

5
)ψu)

†

=
GF√
2
(ψeγν(1− γ5

)ψνe)(ψuγ
ν(1− γ

5
)ψd). (2.5)

Introducing the expansion of a spinor ψi in terms of plane waves with annihilation operators b
(α)
i (p)

and d
(α)
i (p) for a positive energy and negative energy particle respectively (α is the polarisation index):

ψi(x) =

∫
d3p

(2π)32ω
ψi(p, x)

=

∫
d3p

(2π)32ω

∑

α

[

b
(α)
i (p) uiα(p) e

−ip.x + d
(α)†
i (p) viα(p) e

ip.x
]

, p.x = ωt− p.x, (2.6)

where the uiα(p) and viα(p) are, respectively, the wave functions of the annihilated fermion (positive

energy) and the created antifermion (negative energy). Injecting eq. (2.6) into the matrix element

above, we see that eq. (2.5) describes several processes related by crossing symmetry such as: d →
u e− ν̄e (term in ūu · · · ud ūe · · · vνe) or d ū→ e− ν̄e (term in v̄u · · · ud ūe · · · vνe) or νe d→ e− u (term

in ūu · · · ud ūe · · · uνe) or · · · . Considering the last process which is the dominant mechanism for the

deep inelastic scattering of a neutrino on a proton one can easily calculate the cross section at the

partonic level. Defining the momenta by νe(p1) d(p2)→ e−(p3) u(p4), the invariants are

(p1+p2)
2 = s, (p1−p3)2 = t = q2 = (s/2)(1− cos θ), (p1−p4)2 = u = (s/2)(1+cos θ). (2.7)

Supposing all fermions massless, the matrix element is (ignoring the polarisation indices):

M =
GF√
2
[ūe(p3)γ

µ(1− γ
5
)uνe(p1)] [ūu(p4)γµ(1− γ5

)ud(p2)], (2.8)
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and the matrix element squared summed/averaged over polarisation is

Σ|M|2 =
1

4

G2
F

2
4 Tr(6p3γµ 6p1γν(1− γ5))Tr(6p4γµ 6p2γν(1− γ5))

=
G2
F

2
[Tr(6p3γµ 6p1γν)Tr(6p4γµ 6p2γν) + Tr(6p3γµ 6p1γνγ5)Tr(6p4γµ 6p2γνγ5)]. (2.9)

The traces and their product can be easily evaluated using eqs. (A.9) and (A.10) in appendix A. There

is no mixing between the trace with a γ5 matrix and that without since the former is antisymmetric

in µν and the latter is symmetric. After reduction the result is simple:

Σ|M|2 = 4 G2
F [(s2 + u2) + (s2 − u2)] = 8 G2

F s
2, (2.10)

where the first term in the square brackets corresponds to the first term (V −A interaction) in eq. (2.9).

The differential cross section is2:

dσ

dΩ

νed→e−u

=
1

2s

∫
d3p3

(2π)32E3

d3p4
(2π)32E4

(2π)4δ(4)(p1 + p2 − p3 − p4)
(
Σ|M|2

)

=

{
1

(2π)2
1

16s

}

(8 G2
F s

2)

=
G2
F

8π2
s, (2.11)

independent of the polar angle. This result is in agreement with the data at not too high s. It is

also interesting to consider in the Fermi model the diffusion of antineutrinos on the proton. In the

quark/parton model, because of charge conservation, the ν̄e interacts only with the u quarks via the

transition ν̄e(p1) u(p2)→ e+(p3) d(p4). The matrix element can easily be constructed and it is:

M =
GF√
2
[v̄νe(p1)γ

µ(1− γ
5
)ve(p3)] [ūd(p4)γµ(1− γ5

)uu(p2)]. (2.12)

Taking the square of the matrix element one obtains eq. (2.9) with p1 and p3 interchanged. Because

Tr(6p3γµ 6p1γν) is symmetric and Tr(6p3γµ 6p1γνγ5) antisymmetric under this interchange, one sees im-

mediately that Σ|M|2 = 4 G2
F [(s2+u2)− (s2−u2)] = 8 G2

F u
2 and consequently the differential cross

section is found to be:

dσ

dΩ

ν̄eu→e+d

=
G2
F

8π2
u2

s
=

G2
F

8π2
s

4
(1 + cos θ)2 (2.13)

also in agreement with experimental observations where the positron is produced mainly in the direc-

tion of the initial ν̄e quark.

2The term in {· · · } is the phase space factor for massless particles.
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If instead of the V − A form of the currents we had used only the vector part the results would be

in disagreement with data since for both cross sections above, eqs (2.11) and (2.13), the result would

have been :

dσ

dΩ
=

G2
F

64π2
s2 + u2

s
, (2.14)

a prediction not supported by experiments because of the wrong angular distribution for both reactions.

If one had tried ”scalar currents” of the form:

l(x) = ψeψνe + ψµψνµ + · · ·

h(x) = ψdψu + ψsψc + · · · , , (2.15)

both ν and ν̄ cross sections would have been proportional to s : this prediction is correct for

νe d→ e− u but incorrect for ν̄e u→ e+ d. In summary, all low energy data support the V − A

form to describe weak interactions.

However the Fermi theory is not satisfactory at high energy. Indeed, from eq. (2.11) one obtains

for the total cross section σνed→e−u = G2
F s/2π. However such a rapid rise of the cross section with

energy cannot be asymptotically true as it violates the famous Froissart unitarity bound which requires

σ ≤ ln2 s as s → ∞. Note that the linear rise in s of a 2 → 2 cross section integrated over all final

state variables could have easily been guessed on dimensional grounds. Indeed, in Fermi theory, such

a cross section is proportional to G2
F of dimension GeV−4 but a cross section3 is measured in units

of GeV−2. Since, after integrating over the final state phase space, the only scale available in the

problem is s, of dimension GeV2, one necessarily has σ ∝ G2
F s.

2.2 Vector boson mediated interactions

The rapid rise of cross sections is related to the locality of the current-current interaction. One can

make the 4-fermion interaction nonlocal by postulating a massive charged particle coupling to the

Jµ(x) current similarly to the coupling of a photon to the fermionic current ψ̄(x)γµψ(x) to mediate

the interaction between the currents. It must be a vector particle because of the γµ coupling in eq.

(2.2) as shown below

3We work in the system where ~ = c = 1.
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W exchangeFermi

e−

ud ud

W

e−

Denoting M
W

the mass of this particle and g
W

its dimensionless coupling to the currents, the matrix

element eq. (2.5) becomes :

M = g2
W
[ψeγµ(1− γ5

)ψνe ]
gµν − qµqν/M2

W

q2 −M2
W

[ψuγν(1− γ5
)ψd] (2.16)

where q is the momentum transfer from the d quark to the u quark. Coming back to the reaction

νe(p1) d(p2)→ e(p3) u(p4) studied above, the matrix element eq. (2.8), in momentum space is (we do

not write explicitely the polarisation index of the fermions):

M = g2
W
[ūe(p3)γµ(1− γ5

)uνe(p1)]
gµν − qµqν/M2

W

q2 −M2
W

[ūu(p4)γν(1− γ5
)ud(p2)]

=
g2
W

q2 −M2
W

[ūe(p3)γµ(1− γ5
)uνe(p1)] [ūu(p4)γ

µ(1− γ
5
)ud(p2)], (2.17)

with q = p1 − p3 = p4 − p2 and where we have used Dirac equation for massless fields 6piu(pi) = 0.

This equation is identical to eq (2.8) provided we make the substitution:

GF√
2
=

g2
W

q2 −M2
W

→
g2
W

M2
W

when q2 → 0, (2.18)

which allows to obtain the matrix element squared summed/averaged over polarisation from eq. (2.8):

Σ|M|2 = 16 g4
W

s2

(q2 −M2
W
)2
, (2.19)

and the differential cross section :

dσ

dΩ

νed→e−u

=
g4
W

4π2
s

(q2 −M2
W
)2
, (2.20)

with q2 = −s(1− cos θ)/2. The integrated cross section is easily calculated to be:

σνed→e−u =
1

π

g4
W

M2
W

s

s+M2
W

. (2.21)

At low energy we recover the Fermi model prediction provided, g2
W
/M2

W
= GF

√
2, while at high energy

the Froissart bound is satisfied.

12



2.3 Still more problems!

However this is not the end of the story ! The W particle can be produced, and has been produced at

LEP2, in the reaction e− e+ → W− W+ but the corresponding cross section, in our model, violates

Froissart bound. To see this, let us consider instead the unrealistic, but simpler, case4 of the scattering

νe(p1) ν̄e(p2)→W+(p3)W
−(p4) the amplitude of which is given by only one Feynman diagram with

the exchange of an electron:

νe

ν̄e

W+

W−

p1

p2

p3

p4

e−

To illustrate the problem we first define the kinematics and make some comments on the polarisation

states of a massive vector particle. We work at very high energy in the center of mass frame of the

e− e+ system :

(p1 + p2)
µ = (

√
s,0), pµ1 = (

√
s

2
, 0, 0,

√
s

2
), pµ2 = (

√
s

2
, 0, 0,−

√
s

2
). (2.22)

We take p3 and p4 in the xOz plane:

pµ3 = (E3, p3 sin θ, 0, p3 cos θ), E3 =
√
s/2, p3 =

√

s/4−M2
W

(2.23)

Unlike the photon which has two transverse polarisation states theW particle being massive has three

degrees of polarisation.

• Polarisation of a massive spin 1 particle

In the rest frame of a massive particle, p = (M,0) the polarisation is described by space-like vectors.

A basis of such vectors is given by

ε(1)µ = (0, 1, 0, 0), ε(2)µ = (0, 0, 1, 0), ε(3)µ = (0, 0, 0, 1), (2.24)

satisfying ε(i).ε(j) = −δij as well as p.ε(i) = 0 for i, j = 1, 2, or 3.

4For e− e+ there are two diagrams

e−

e+

W−

W+

p1

p2

p3

p4

γ

W−

W+

νe

, and this complicates the discussion.

13



Important remark

For a boson W with momentum p, the polarisation vectors become functions of p, ε(i)µ(p), satisfying

the same conditions as above, namely ε(i)(p).ε(j)(p) = −δij as well as p.ε(i)(p) = 0. One often needs,

in the propagator for example,

Pµν =
∑

i

ε(i)µ(p) ε(i)ν(p) = −
(

gµν − pµpν

M2
W

)

. (2.25)

The last equality is easily derived knowing that the rank 2 tensor Pµν depends only on the vector pµ

so that it is of the form agµν + bpµpν : the conditions p2 = M2
W
, pµPµν = pνPµν = 0 and Pµµ = −3

then determine a and b as given in eq. (2.25).

If the bosonW has its momentum along the z-axis, p = (E, 0, 0, p) the polarisation vectors are boosted

to:

ε(1)µ = (0, 1, 0, 0), ε(2)µ = (0, 0, 1, 0) transverse polarisations (2.26)

ε(3)µ =
1

M
W

(p, 0, 0, E) longitudinal polarisation. (2.27)

For a boson W with a momentum making an angle θ in the zOx plane one simply has to make a

rotation around the Oy axis, p = (E, p sin θ, 0, p cos θ), and the polarisation vectors become:

ε(1)µ(p) = (0, cos θ, 0,− sin θ), ε(2)µ(p) = (0, 0, 1, 0) transverse polarisations (2.28)

ε(3)µ(p) =
1

M
W

(p, p sin θ, 0, E cos θ) longitudinal polarisation. (2.29)

In the high energy limit, in the frame of eqs. (2.22), E ≃ p ≃ √s/2 ≫ M
W
, the longitudinal

polarisation vector simplifies to:

ε(3)µ(p) ≈ 1

M
W

(
√
s/2,
√
s/2 sin θ, 0,

√
s/2 cos θ) ≈ pµ

M
W

. (2.30)

We use this approximation in the calculaion below. For convenience we introduce the notation

ε(1)µ or ε(2)µ = εµ
T
, and ε(3)µ = εµ

L
.

In contrast, we recall that a massless spin 1 particle has only two states of transverse polarisation.

• Production of massive vector bosons

After all these kinematic preliminaries we turn to the evaluation of the matrix element. Remembering

14



the γµ(1 − γ5) coupling of the W boson to the fermions, the matrix element for the diagram above

with the electron exchange is:

Mij = −2ig2
W

v̄(p2) 6ε(j)(p4)(6p1 − 6p3) 6ε(i)(p3)(1− γ5)u(p1)
(p1 − p3)2

(2.31)

where we have pushed the (1 − γ5) factors to the right, hence the factor 2. Without doing the

calculation explicitely one can guess that the matrix element squared will contain terms of the form :

|Mij |2 ∝
g4
W

((p1 − p3)2)2
{(p1.ε(i)(p3) p2.ε(j)(p4))2, · · · , (pk.pl) (p1.ε(j)(p3))2 ε(j)

2
(p4), · · · ,

(pk.pl) (pm.pn) (ε
(i)(p3).ε

(j)(p4))
2, · · · }, (2.32)

with pk, pl, · · · any of the external momenta. In the limit
√
s ≫ M

W
, it is easy to see that, if both

polarisation vectors are transverse, all expressions such as:

p1.εT (p3) p2.εT (p4) ∝ (p1.εT (p3))
2 ∝ s, (2.33)

since all components of the transverse polarisation vectors are of order 1 and the momenta are gener-

ically of order
√
s. If, on the contrary, both W ′s are longitudinally polarised, the components of the

polarisation vectors being of O(√s/M
W
) one finds:

p1.εL(p3) p2.εL(p4) ∝ ((p1.εL(p3))
2 ∝ s2

M2
W

. (2.34)

In consequence (p1.p3 ∝ s),

|MTT |2 ∝ g4W , and |MLL|2 ∝ g4W
s2

M4
W

. (2.35)

Asymptotically the matrix element squared for the production of longitudinal bosons grows very fast

while it is bounded in the case of transverse bosons. Since integrating over phase space to obtain the

total cross section brings a factor 1/s (see eq. (2.11)) we expect the production of two longitudinal

W ’s to violate unitarity. To calculate effectively this cross section, one has to be a bit more refined

and to go back to eq. (2.31) using the form eq. (2.30) for the polarisation vectors:

MLL = −i
g2
W

M2
W

v̄(p2) 6p4
[ 6p4 − 6p2
(p2 − p4)2

+
6p1 − 6p3
(p1 − p3)2

]

6p3(1− γ5)u(p1), (2.36)

where we have used the trivial equality p1 − p3 = p4− p2. Anticommuting the matrices so as to bring

6 p1 close to u(p1) and use the Dirac equation 6 p1u(p1) = 0 and similarly for 6 p2 and v̄(p2) we end up
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with:

MLL = −i
g2
W

M2
W

v̄(p2)

[

M2
W
− 2p2.p4

(p2 − p4)2
6p3+ 6p4

2p1.p3 −M2
W

(p1 − p3)2

]

(1− γ5)u(p1)

= −i
g2
W

M2
W

v̄(p2) [ 6p3− 6p4] (1− γ5)u(p1) (2.37)

Averaging on the initial polarisations one finds:

Σ|MLL|2 =
1

4

g4
W

M4
W

2 Tr(6p2(6p3− 6p4) 6p1(6p3− 6p4)(1 − γ5))

= 2
g4
W

M4
W

Tr(6p2 6p3 6p1 6p3(1− γ5))

= 16
g4
W

M4
W

p1.p3 p2.p3 =
g4
W

M4
W

s2(1− cos2 θ), (2.38)

in the limit s ≫ M2
W
. It is then easy to obtain the differential cross section using the phase space

factor of eq. (2.11) and then the integrated cross section for νe ν̄e →WL WL:

σ(νeν̄e →W+
LW

−
L ) =

g4
W

24π

s

M4
W

. (2.39)

In contrast one can estimate the cross section of νe ν̄e →WT WT (but it is more tedious and is left as

an exercise):

σ(νeν̄e →W+
T W

−
T ) ∝

g4
W

M2
W

when s→∞. (2.40)

We thus find that the production of longitudinally polarised vector bosons violates the unitarity limit

while that of transverse bosons is well behaved at high energies. Several ways have been tried to cure

this problem: among them one can mention the hypothesis of a new heavy lepton (fig. 1b) and choose

its couplings to enforce a proper behaviour of the cross section at high energies. It turns out that

νe

ν̄e

W+

W−

p1

p2

p3

p4

e−

νe

ν̄e

W+

W−

E−

W+

W−

νe

ν̄e

Z

(a) (b) (c)

Figure 1: Possible Feynman diagrams for νeνe →W+W− scattering. (a): e exchange; (b) hypothetical
heavy electron E exchange; (c) neutral vector boson Z exchange.

another possibility, namely that of a heavy neutral vector boson, denoted Z (fig. 1c), is realised in
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Nature. Assuming the Z coupling to the fermions of type g
Z
γµ(a− bγ5

) and to the charged W bosons

of type5 g′
Z
(pρ
W+
−pρ

W−
)gµν + · · · , they can be chosen to make cross sections such as νe ν̄e →W+ W−,

e+ e− →W+ W−, · · · asymptotically well behaved. However, this patch up job is not yet sufficient to

have a satisfactory model. Indeed, keeping fermion masses and considering for exemple e+ e− → Z Z

scattering one finds an interference piece in the cross section ∼ g4me
√
s/M4

Z
which again violates

unitarity! Similar problems arise in the W W scattering process, e.g. W+ W− →W+ W− which are

studied at LHC or will be in the future e+e− high energy linear colliders: the cross sections for these

processes diverge linearly in s. These problems can be solved by supposing the existence of a scalar

particle which interacts with the bosons as well as the fermions with appropriately chosen couplings.

One can thus construct a viable electroweak theory in the pedestrian way described above, carefully

choosing masses and couplings of the newly introduced particles so as to ensure the correct behaviour

of all cross sections. It is more instructive however to assume that these relations among masses and

couplings arise from some symmetry property. This is what is done next. Before doing that, one

should discuss the implications of the γµ(1−γ5) coupling in the weak interactions compared to the γµ

coupling of electrodynamics Then we describe in some details the symmetry group assuming global

then local gauge invariance. At this level, the chosen group requires all fields to be massless. The

theory is renormalisable (well behaved at asymptotic energies) being a non-abelian field theory. Then,

by the mechanism of “spontaneous symmetry breaking” whereby the symmetry of the lagrangian is

preserved but the choice of a ground state breaks the symmetry, fermions and gauge bosons acquire a

mass. After symmetry breaking, the theory remains renormalisable as a consequence of the underlying

gauge invariance which imposes the required relations between couplings. One is left however with a

large number of parameters (at least 18 for the Standard Model with massless neutrinos and 25 with

massive neutrinos) which gives a motivation for a (still unsuccessful!) search of a deeper symmetry.

5Dimensional arguments and gauge invariance lead to such a choice.
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3 Fermions, chirality, helicity

3.1 Fermions : chirality

We saw that the Fermi model involves charged transitions such as ψ̄dγµ(1−γ5)ψu ou ψ̄eγµ(1−γ5)ψνe ,
i.e. charged currents of a particular type : the fermion interacts only through the combination

(1− γ5)ψ. We can always write :

ψ = ψ− + ψ+, with ψ− =
1− γ5

2
ψ, ψ+ =

1 + γ5
2

ψ (3.1)

The spinors ψ− and ψ+ have a definite chirality defined by their transformation when applying γ5 :

γ5 ψ− = −ψ−, γ5 ψ+ = ψ+. (3.2)

ψ−, ψ+ have negative, positive chirality respectively. The combinations

P− =
1− γ5

2
, P+ =

1 + γ5
2

(3.3)

are projection operators satisfying:

P+ + P− = 1, P+P− = 0, (P+)2 = P+, (P−)2 = P−. (3.4)

Only negative chirality fermions are sensitive to the weak interactions. It is useful to note that:

ψ− = ψ
1 + γ5

2
, ψ+ = ψ

1− γ5
2

. (3.5)

3.2 Fermions : positive and negative energy solutions

When using the plane wave decomposition of the spinor, eq. (2.6), the free Dirac equation (i6∂−m)ψ =

0 implies:

(6p −m) uα(p) = 0, (6p+m) vα(p) = 0 (3.6)

on the positive (uα exp(−ipx), see eq. (2.6)) and negative (vα exp(ipx)) energy component respectively.

At rest, p = 0, and using the Dirac representation of γµ matrices given in appendix, they reduce to:

m(γ0 − 1)uα ⇒
(

0 0
0 −2112

)(
χα
0

)

= 0

m(γ0 + 1)vα ⇒
(

2112 0
0 0

)(
0
χα

)

= 0 (3.7)

where we have introduced the 2-component spinors :

χ1 =

(
1
0

)

, χ2 =

(
0
1

)

and uα =

(
χα
0

)

, vα =

(
0
χα

)

, α = 1, 2. (3.8)
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Since one has τ3χ1 = χ1, τ
3χ2 = −χ2 one says that χ1 has spin up and χ2 spin down and6

1 + τ3

2
and

1− τ3
2

(3.9)

are respectively the spin up and spin down projection operators for the 2-component spinors. When

p 6= 0, to obtain the spinors uα(p) and vα(p) one can apply a Lorentz boost to the solution in the rest

frame or, more simply, observe that:

uα(p) =
1√

ω +m
(6p+m)uα, vα(p) =

1√
ω +m

(−6p+m)vα, (3.10)

satisfy eqs. (3.6) respectively. The factor 1/
√
ω +m is the chosen normalisation factor such that:

ūα(p) uβ(p) = 2m δαβ, u†α(p) uβ(p) = 2ω δαβ ,

v̄α(p) vβ(p) = −2m δαβ, v†α(p) vβ(p) = 2ω δαβ . (3.11)

Explicitely, one has in terms of two component spinors:

uα(p) =
1√

ω +m

(
(ω +m) χα
p.τ χα

)

, vα(p) =
1√

ω +m

(
p.τ χα

(ω +m) χα

)

. (3.12)

The solution uα(p) is the positive energy spinor while vα(p) is called the negative energy one with

momentum (−ω,−p). In particular, for a boost of magnitude η in the z direction, the positive energy

spinors have momentum p = (ω, 0, 0, pz), with ω = m cosh η, pz = m sinh η, and they become:

uα(p)=
1√

ω +m

(
(ω +m)χα
pzτ

3 χα

)

⇒ u1(p)=
1√

ω +m







ω +m
0
pz
0






, u2(p)=

1√
ω +m







0
ω +m

0
−pz






,

(3.13)

while the negative energy solutions with momentum −p are:

vα(p)=
1√

ω +m

(
pz τ

3 χα
(ω +m)χα

)

⇒ v1(p)=
1√

ω +m







pz
0

ω +m
0






, v2(p)=

1√
ω +m







0
−pz
0

ω +m






. (3.14)

In general, it is useful to introduce operators which project out positive and negative energy states.

They are defined by:

Λ± =
±6p+m

2m
, (3.15)

6The Pauli matrices τ i are given in appendix A.
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and they satisfy the required relations:

Λ−(p) + Λ+(p) = 1 , Λ−(p)Λ+(p) = Λ+(p)Λ−(p) = 0 , (Λ−(p))
2 = Λ−(p) , (Λ+(p))

2 = Λ+(p) .

(3.16)

Thus Λ±ψ(p, x) respectively project the positive and negative energy solutions of ψ(x) in eq. (2.6).

We discuss in appendix B.1 the interpretation of the negative energy solution as a positive energy

antiparticle.

3.3 Fermions : helicity

When applying a boost along the z-axis one does not change the orientation of the fermion spin, as

shown in the figure below, so that the projection of the fermion spin along the momentum is positive

for u1(p) (spin up) and negative for u2(p) (spin down) : one says that u1(p) has positive helicity or is

right-handed and is denoted by uR(p), while u2(p) has negative helicity or is left-handed and is denoted

by uL(p).

u1(p) u2(p)

helicity+ helicity−

p p

For the negative energy solutions the situation is opposite and v1(p) = vL(p) has negative helicity or

is left-handed and v2(p) = vR(p) has positive helicity or is right-handed as shown below

v1(p) v2(p)

helicity− helicity+

−p −p

For a spinor of momentum p one defines the helicity projection operator

S±(p̂) = 1± T . p̂
2

, T =

(
τ 0
0 τ

)

, p̂ =
p

|p| (3.17)
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with p̂ the unit vector in the direction of the momentum. Applying these operators to the positive

energy spinors one finds ((τ p̂)2 = 1):

S±(p̂)uα(p) =
1

2
√
ω +m

(
(ω +m)(1± τ p̂)χα
p(±1 + τ p̂)χα

)

. (3.18)

If p̂ is in the direction of Oz, the helicity projection operators applied on the spinors reduce to

S±(p̂)uα(p) =
1

2
√
ω +m

(
(ω +m)(1± τ3)χα
p(±1 + τ3)χα

)

, (3.19)

showing that u1(p) is right-handed, and u2(p) is left-handed as found before. For negative energy

spinors, since they have momentum −p, S+(−p̂) projects out positive helicity and S−(−p̂) projects
our negative helicity. The operators S± are helicity projection operators and satisfy:

(S±(p))2 = S±(p), S+(p)S−(p) = 0, S+(p) + S−(p) = 112 (3.20)

• Massless spinors : helicity and chirality

In the Standard Model, at high energy, quarks of light flavours and neutrinos are often treated as

massless. Considering massless spinors with a generic momentum p one has:

uα(p) =
√
ω

(
χα

p̂.τ χα

)

, vα(p) =
√
ω

(
p̂.τ χα
χα

)

, α = 1 or 2. (3.21)

When acting on positive energy spinors uα(p), the helicity projection operator and P±, the chirality

projection operators of eq. (3.3), give the same result:

S±(p̂)uα(p) = P± uα(p) =

√
ω

2

(
(1± τ p̂)χα
(±1 + τ p̂)χα

)

, α = 1, 2 ,

This shows that positive chirality and right-handed helicity are the same and likewise for negative

chirality and left-handed helicity. For spinors vα(p) one finds instead:

S±(−p̂) vα(p) = P∓ vα(p) =

√
ω

2

(
(∓1 + τ p̂)χα
(1∓ τ p̂)χα

)

, α = 1, 2 ,

thus a right-handed negative energy spinor has negative chirality and a left-handed one positive chi-

rality. Thus if one constructs a massless spinor u(p) as a linear combination of uα, α = 1, 2, then

uL(p) = (1−γ5)
2 u(p) and uR(p) = (1+γ5)

2 u(p) are respectively left-handed and right-handed spinors,

while vL(p) =
(1+γ5)

2 v(p) is left-handed and vR(p) =
(1−γ5)

2 v(p) right-handed, so helicity = chirality

for positive energy spinors but helicity = − chirality for negative energy ones .
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To summarise, in the massless case, from the definition of ψ(x) in eq. (2.6), the combination

ψL(x) =
1− γ5

2
ψ(x) (3.22)

- destroys a left-handed fermion, with wave function uL(p) and creates a right-handed antifermion

with wave function vR(p), eqs. (3.28), (3.30),

ψL(x) =

∫
d3p

(2π)32ω

[

bL(p) uL(p) e
−ip.x + d†R(p) vR(p) e

ip.x
]

(3.23)

and mutatis mutandis:

ψR(x) =
1 + γ5

2
ψ(x) (3.24)

- destroys a right-handed fermion, with wave function uR(p) and creates a left-handed antifermion

with wave function vL(p).

ψR(x) =

∫
d3p

(2π)32ω

[

bR(p) uR(p) e
−ip.x + d†L(p) vL(p) e

ip.x
]

(3.25)

Thus, the Fermi interaction, discussed in the previous section, concerns only left-handed fermions and

right-handed antifermions.

• Massless chiral spinors

It is easy and amusing (as well as useful for neutrino physics) to find the explicit form of mass-

less chiral spinors of arbitrary momentum. For instance, for positive energy spinors one has, using

expressions (3.12) :

γ5 uR(p) = uR(p) ⇒ p̂.τ χR = χR

γ5 uL(p) = −uL(p) ⇒ p̂.τ χL = −χL, (3.26)

for right-handed and left-handed spinors respectively. Solving for p̂.τ χ = ±χ, we get the 2-component

spinors after proper normalisation:

χR =

(

cos θ2 e
−iφ

2

sin θ
2 e

iφ
2

)

χL =

(

− sin θ
2 e

−iφ
2

cos θ2 e
iφ
2

)

, (3.27)

and thus,

uR(p) =
√
ω

(
χR
χR

)

uL(p) =
√
ω

(
χL
−χL

)

, (3.28)

One follows the same procedure for negative energy spinors, but since their momentum is −p they

satisfy

γ5 vR(p) = −vR(p), γ5 vL(p) = vL(p) (3.29)
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and, compared to the u(p) spinors, the role of χR and χL is interchanged so that:

vR(p) =
√
ω

(
−χL
χL

)

vL(p) = −
√
ω

(
χR
χR

)

, (3.30)

The relations χ†
RχR = χ†

LχL = 1, χ†
RχL = χ†

LχR = 0 ensure that eqs. (3.11) are satisfied.

• Massive spinors : helicity and chirality

In general, if in the rest-frame of the fermion the polarisation direction is given by the vector s = (0, s)

with s2 = −1, s.p = 0, the spin projection operators along or opposite s are given, in a covariant form,

by

Σ±(s) =
1± γ5 6s

2
. (3.31)

Specifying to the helicity, the spin projection along or opposite the fermion momentum, one defines

s = (
p

m
,
ω

m
p̂), with p = |p| and p̂ =

p

p
, (3.32)

(which satisfies the conditions s2 = −1, s.p = 0) and Σ±(s) takes the form:

Σ±(s) =
1

2m

(
m± ωp̂.τ ∓p
±p m∓ ωp̂.τ

)

. (3.33)

The form of the projectors Σ±(s) is different from the helicity projection operators defined in eq.

(3.17) but when acting on positive energy spinors u(p), one shows that:

Σ±(s)uα(p) = S±(p̂)uα(p), α = 1, 2 (3.34)

Thus, for positive energy spinors, Σ+ projects out right-handed states and Σ− the left-handed ones.

Similarly, when acting on negative energy spinors v(p), one finds that,

Σ±(s) vα(p) = S±(−p̂) vα(p), α = 1, 2 (3.35)

related to the fact that negative energy spinors carry momentum −p. Thus, again, Σ+ projects out

the right-handed helicity state and Σ− the left-handed ones.

For massive spinors at very high energy if one uses (1± γ5)/2 as helicity projection operators rather

than Σ±(s), with s as defined in eq. (3.32), the error made is of O(m/ω)7.

7A negative chirality massive fermion at very high energy will be mainly left-handed with a small admixture, of
O(m/ω), of the right-handed component, and vice-versa.
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In summary, it is easy to see that the fermion wave-functions:

ψfR(p, x) = Σ+(s)
6p+m

2m
ψ(p, x) destroys a right-handed fermion

ψfL(p, x) = Σ−(s)
6p+m

2m
ψ(p, x) destroys a left-handed fermion

ψf̄R(p, x) = Σ+(s)
−6p+m

2m
ψ(p, x) creates a right-handed antifermion

ψf̄L(p, x) = Σ−(s)
−6p+m

2m
ψ(p, x) creates a left-handed antifermion. (3.36)

This summary will prove useful when discussing C and CP violation later.

Application

The helicity arguments above and conservation of angular momentum are useful to understand/pre-

dict the angular dependence of a process governed by the γµ(1 − γ5) interaction which carries total

angular momentum 1 (L = 0, S = 1). For example, coming back to the processes νe d → e− u and

νe u→ e+ d, eqs. (2.8) and (2.12), the leptonic transition is given by ψeγµ(1− γ5)ψνe = 2 ψeLγµψνeL

or its hermitian conjugate ψνeγµ(1− γ5)ψe = 2 ψνeLγµψeL . From eq. (3.23), we see that these transi-

tions involve only left-handed leptons or right-handed antileptons. Likewise, from the ψdγµ(1− γ5)ψu
or ψuγµ(1 − γ5)ψd interactions, only left-handed quarks or right-handed antiquarks are allowed. In

the scattering νe d → e− u only left-handed leptons and quarks are involved. If θ denotes the angle

between the incoming and outgoing leptons in the ν d center of mass frame, the spin projection of

the system along the axis of motion of the particles is 0 because each particle has a negative helicity

and they move in opposite directions (see the figure). Therefore we expect no angular dependence

for the cross section, in agreement with eq. (2.11). On the contrary, for the scattering νe u → e+ d

the antileptons being right-handed and the quarks left-handed the spin projection of the antilepton-

quark system along the direction of motion of the antilepton is always 1 : for a forward produced

e+ the angular momentum projection along the z axis is 1 for both initial and final states and thus

is conserved while for a backward produced e+ (θ = π) the spin projection of the final system along

the z axis is -1, and angular momentum is not conserved, consequently the matrix element vanishes.

From Clebsh-Gordan tables8 the associated angular distribution is proportional to d111(θ) ≃ 1 + cos θ,

in agreement with eq. (2.13).

8See, Clebsh-Gordan coefficients, spherical harmonics and d-functions in Particle Data group, C. Patrignani et. al.,
Chin. Phys. C40 (2016) 100001 (http://pdg.lbl.gov).
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νe

e−

d

u

θ

z z

ν̄e

e+

u

d

θ

Similar arguments can be applied to ν/ν scattering on quarks or antiquarks and, then, one can easily

derive eqs. (2.11), (2.13).

We note the useful relations :

ψLγµψL =
1

2
ψγµ(1− γ5)ψ

ψγµψ = ψLγµψL + ψRγµψR, ψLγµψR = ψRγµψL = 0

ψψ = ψRψL + ψLψR, ψRψR = ψLψL = 0. (3.37)
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4 The global SU(2)L ⊗U(1)Y gauge invariance : conserved currents

Before entering the details of the model it is useful to recall the relation between rigid (global) gauge

transformations and conserved currents since, as we shall see, the construction of the Weinberg-Salam

model is made more transparent when using this notion. The choice of SU(2)L is motivated by

the structure of currents building up the Fermi interaction. For massless particles these currents are

conserved, hence from Noether theorem, they are the consequences of a global SU(2) invariance. The

assumed U(1)Y global invariance is the minimal group necessary to construct the electromagnetic

current : indeed by an appropriate choice of the hypercharges Y, one constructs the electromagnetic

current as the sum of the neutral SU(2) one and the U(1) current. Following the spectacular success

of QED the SU(2)L ⊗U(1)Y invariance is made local to generate the interactions. It works !

4.1 Global gauge invariance and Noether theorem

One starts from the lagrangian density L(ψ(x), ∂µψ(x)), which is a fonction of the field and its first

derivatives, and from the action defined by

S =

∫

d4xL(ψ(x), ∂µψ(x)).

The action has no dimension. The Maupertuis principle (least action principle) states that, ”in

Nature”, the action is stationary under a variation of the field and this leads to the Euler-Lagrange

equations
δL

δψ(x)
− ∂µ

δL
δ∂µψ(x)

= 0 (4.1)

Now, assume that the lagrangian density is invariant under the rigid transformation

ψ(x) → eiαψ(x)

ψ(x) → e−iαψ(x),
(4.2)

where α is a real arbitrary constant, independent of the space-time coordinate x. Considering rather

an infinitesimal transformation
δψ(x) = iαψ(x)

δψ(x) = −iαψ(x), (4.3)

the variation of the lagrangian is9 (note the relative position of the derivative term such as δL/δψ and

the δψ)

δL(ψ, ∂µψ) =
δL
δψ
δψ +

δL
δ∂µψ

δ∂µψ + δψ
δL
δψ

+ (δ∂µψ)
δL
δ∂µψ

. (4.4)

9To lighten the notation and when no ambiguity arises one simply writes in the following ψ for ψ(x) and δψ for
δψ(x).
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But, δ∂µψ = ∂µδψ = iα∂µψ, δ∂µψ = ∂µδψ = −iα∂µψ, and using the Euler-Lagrange equations to

eliminate δL/δψ and δL/δψ one finds

δL(ψ, ∂µψ) = iα∂µ

(
δL
δ∂µψ

ψ − ψ δL
δ∂µψ

)

. (4.5)

Since δL(ψ, ∂µψ) = 0 under the variation of the fields, eqs. (4.3), the current defined by

Jµ(x) =
δL
δ∂µψ

ψ − ψ δL
δ∂µψ

(4.6)

is conserved, i.e. ∂µJ
µ(x) = 0 . For a fermion field with the langrangien density

L(ψ, ∂µψ) = ψ(i 6∂ −m)ψ

the conserved current is simply

Jµ(x) = ψγµψ. (4.7)

One defines the charge by the space integration of the 0th component of the current, and specifying

x = (t,x), d4x = dtd3x, one has

Q(t) =

∫

d3xJ0(t,x) =

∫

d3xψ†(t,x)ψ(t,x). (4.8)

Using current conservation, ∂µJ
µ(x) ≡ ∂tJ0(t,x) +∇ · J(t,x) = 0, it is easy to prove that the charge

is time independent since

dQ(t)

dt
= −

∫

Ω
d3x∇ · J(t,x) = −

∫

∂Ω
ds · J(t,x) = 0, (4.9)

where the last equality is realised when we assume the fields are suppressed at infinity.

Thus the Noether theorem states that to an invariance under a set of continuous transformations

corresponds a conserved current. The results eqs. (4.6), (4.7) are easily extended to the case of non

abelian symmetries such as SU(2), · · · , SU(N) or to a lagrangian density involving several fields ψi.

Then if

L(ψ, ∂µψ) =
∑

i

ψi(i 6∂ −mi)ψi (4.10)

is invariant under the set of transformations

δψi = i α yi ψi, ∀i
δψi = −i α yi ψi, ∀i, (4.11)
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with α a common real parameter and yi the charge of field ψi, the conserved current is

Jµ(x) =
∑

i

yi ψiγ
µψi, (4.12)

a result to be used later. The charge of fermion ψi is then defined as yi.

4.2 The lagrangian density

As discussed above, the weak interactions induce a transition between left-handed fermions of different

charges. It is then natural to group them into doublets

(
νeL
e−
L

)

,

(
νµL
µ−
L

)

,

(
ντL
τ−
L

)

︸ ︷︷ ︸

leptons

;

(
u
L

d
L

)

,

(
c
L

s
L

)

,

(
t
L

b
L

)

︸ ︷︷ ︸

quarks

(4.13)

We introduce the left handed doublets:

ΨeL =

(
νeL
e
L

)

, · · · ΨqL =

(
u
L

d
L

)

, · · · , (4.14)

and the right-handed singlets ψeR = e
R
, · · · , ψqR = q

R
, · · · . We assume all fermions are massless. The

free massless fermion lagrangian is then written,

−iLF = ē6∂ e+ ν̄eL 6∂ νeL + ū6∂ u+ d̄6∂ d (4.15)

where we have kept the first family of fermions νe, e, u, d only and where we have ignored the right-

handed neutrino νeR not observed experimentally. Using the second of eq. (3.37) and regrouping the

members of a doublet one finds

−iLF = ΨeL 6∂ ΨeL +ΨqL 6∂ ΨqL + e
R
6∂ e

R
+ u

R
6∂ u

R
+ d

R
6∂ d

R
(4.16)

For massless fermions the charged current introduced by Fermi, eq. (2.2), is conserved so it is tempting

to introduce a global symmetry associated to this current.

4.3 The global SU(2)L gauge invariance

It is obvious that the lagrangian above is invariant under a global SU(2) phase change of the left

handed fermion fields, i.e. under the transformation,

Ψ
L
→ eiα·τ/2Ψ

L
, Ψ

L
→ Ψ

L
e−iα·τ/2 (4.17)

28



where the 2× 2 Pauli matrices τ = (τ1, τ2, τ3) satisfy the algebra

[τi
2
,
τj
2

]

= i ǫijk
τk
2
, (4.18)

and have the following properties

τ = τ †, Tr(τiτj) = 2δij (4.19)

The parameter α = (α1, α2, α3) is a set of 3 arbitrary constants. As discussed above to a global

symmetry is associated a conserved current. The SU(2) group has three generators and there are

three conserved currents. Following the reasoning leading to eq. (4.6) they are identified to

Jµi (x) = Ψe
L
γµ
τi
2
Ψe

L
+ΨqLγ

µ τi
2
ΨqL . (4.20)

They are called the ”weak isospin currents”. The first two, Jµ1 (x), J
µ
2 (x), are related to the currents

introduced by E. Fermi to describe the weak interaction: for example, using the first of the eq. (3.37)

identities, Jµ1 (x) is written

Jµ1 (x) =
1

2
(e
L
γµνeL + d

L
γµu

L
+ h.c.),

=
1

4
(eγµ(1− γ

5
)νe + dγµ(1− γ

5
)u+ h.c.),

which together with Jµ2 (x) allows to reconstruct eq. (2.2). The third one is new, it is a neutral current,

Jµ3 (x) =
1

2
[νeLγ

µνeL − eLγµeL + u
L
γµu

L
− d

L
γµd

L
]. (4.21)

The corresponding weak isopin charge is given by,

I3 =

∫

d3xJ0
3 (x) =

1

2

∫

d3x(ν†eLνeL − e
†
L
e
L
+ u†

L
u
L
− d†

L
d
L
), (4.22)

which allows to assign a charge I3 = +1/2 to the neutrino and the u quark and I3 = −1/2 to the

electron and the d quark. Obviously Jµ3 (x) cannot be the current coupling to the photon field otherwise

the neutrino would interact with the photon ! Jµ3 (x) is a neutral current since it does not change the

charge of the fermion.

4.4 The global U(1)Y gauge invariance

The lagrangian LF of eq. (4.15) is invariant under a U(1) global transformation acting on all fields, left

and right. It is called called the U(1)Y group, where Y refers to the hypercharge. A transformation
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is defined by :

ΨeL → ei βy
e
L
/2ΨeL , ΨqL → ei βy

q
L
/2ΨqL

e
R
→ ei βy

e
R
/2e

R
,

u
R
→ ei βy

u
R
/2u

R
, d

R
→ ei βy

d
R
/2d

R
, (4.23)

where the ye
L
, yq

L
, ye

R
, yu

R
, yd

R
are the hypercharges of the corresponding fields. The associated conserved

current writes (see eq. (4.12))

JµY (x) = ye
L
ΨeLγ

µΨeL + yq
L
ΨqLγ

µΨqL + ye
R
e
R
γµe

R
+ yu

R
u
R
γµu

R
+ yd

R
d
R
γµd

R
. (4.24)

Since the sum of conserved currents is also a conserved current we can construct the electromagnetic

current,

Jµemg(x) = eeeγ
µe+ euuγ

µu+ eddγ
µd, (4.25)

as the sum of the weak isospin and hypercharge currents10 :

Jµemg(x) = Jµ3 (x) +
JµY (x)

2
, (4.26)

with the hypercharges of the fields chosen so as to construct their correct electric charges (which

are normalised here to the charge of the proton). For the lepton sector, for exemple, one finds −1
for the left-handed doublet and −2 for the right-handed electron partner to get a charge of −1 for

both left-handed and right-handed component of the electron and 0 for the neutrino. The results are

summarised in the following table :

I I3 Y Q

νe 1/2 1/2 −1 0

e
L

1/2 −1/2 −1 −1
e
R

0 0 −2 −1
u
L

1/2 1/2 1/3 2/3

d
L

1/2 −1/2 1/3 −1/3
u
R

0 0 4/3 2/3

d
R

0 0 −2/3 −1/3

(4.27)

which shows that the relation between the charge, hypercharge and weak isospin satisfies, by construc-

tion, the famous Gell-Mann/Nishijima relation :

Q = I3 +
Y

2
(4.28)

10the facteur 1/2 associated to the hypercharge current is historically conventional.
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• Application

In general, for a SU(2) doublet ΦT = (φ1, φ2) of fields of hypergharge yΦ and electric charges (e1, e2),

the Gell-Mann/Nishijima relation yields

e1 − e2 = 1 and y
Φ
= e1 + e2, (4.29)

Thus the charges of the members of a doublet always differ by one unit of charge while the hypercharge

is the sum of the electric charges. For a field singlet under SU(2) the relation between hypercharge

and electric charge is simply

e
φ
=
y
φ

2
. (4.30)
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5 The local SU(2)L ⊗U(1)Y gauge invariance : interactions

The local SU(2) transformation, acting on the left-handed doublets only, is defined by

Ψ′
L
→ U(x)Ψ

L
= ei gα(x)·τ/2Ψ

L
, Ψ′

L
→ Ψ

L
U †(x) = Ψ

L
e−i gα(x)·τ/2, (5.1)

with UU † = 1, or, for an infinitesimal transformation,

δΨ
L
= i g α(x) · τ

2
Ψ
L
, δΨ

L
= −i g ψ

L
α(x) · τ

2
, (5.2)

where the 3 components of the real parameter α(x) are functions of the space-time coordinates. We

have introduced a coupling g associated to this transformation. Under the local transformation the

lagrangian density (4.15) is no longer invariant because of the derivative term in ∂µα(x)

δLF = ΨeL{−g(∂µα(x)) ·
τ

2
}γµΨeL +ΨqL{−g(∂µα(x)) ·

τ

2
}γµΨqL (5.3)

To recover the invariance of LF under this transformation one introduces a multiplet (a triplet) of

gauge vector fields Wµ(x) = (W µ
1 (x),W

µ
2 (x),W

µ
3 (x)) and defines the covariant derivative operating

only on the left-handed fields :

Dµ
L = ∂µ − igWµ(x), with Wµ(x) =

τ

2
·Wµ(x). (5.4)

The transformation properties of Wµ(x) are chosen such that the lagrangian density

LF = Ψe
L
6DL ΨeL +ΨqL 6DL ΨqL + ψe

R
6∂ ψeR + ψuR 6∂ ψuR + ψdR 6∂ ψdR (5.5)

is invariant under an SU(2) transformation. Since the right-handed fields are not affected by the

transformation it is enough to impose that Dµ
LΨ(x) transforms as Ψ(x) to achieve the invariance of

the lagrangian:

(Dµ
LΨ(x))′ = U(x)(Dµ

LΨ(x)). (5.6)

Therefore,

(Dµ
LΨ(x))′ = (Dµ

L)
′U(x)Ψ(x)) = U(x)Dµ

LΨ(x), (5.7)

implies

(Dµ
L)

′ = U(x)Dµ
LU

−1(x), (5.8)

since it should hold for all Ψ(x). Consequently, using ∂µU−1(x) = (∂µU−1(x)) + U−1(x)∂µ, one finds

(Dµ
L)

′ = ∂µ + U(x)(∂µU−1(x))− igU(x)Wµ(x)U−1(x), (5.9)
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which can be written as (Dµ
L)

′ = ∂µ − igW ′µ(x) with

W ′µ(x) =
i

g
U(x)(∂µU−1(x)) + U(x)Wµ(x)U−1(x) (5.10)

Restricting to the infinitesimal transformations eq. (5.2), one obtains

W ′µ(x)−Wµ(x) = δWµ(x) = ∂µα(x) · τ
2
+ ig [α(x) · τ

2
,Wµ(x)], (5.11)

which, in terms of SU(2) components, is equivalent to

δ W µ
i (x) = ∂µαi(x)− g ǫijk αj(x) W µ

k (x). (5.12)

spinor we have D
′µ
L U = UDµ

L, hence eq. (5.8).

To construct the kinetic term of the gauge bosons W µ
i (x) we first consider, as in QED, the tensor

Fµν(x) = [Dµ
L(x),D

ν
L(x)] (5.13)

Using Leibnitz rule ∂µW
ν
i (x) = (∂µW

ν
i (x)) +W ν

i (x)∂µ it is easy to show that the tensor is given by

Fµν(x) = ∂µWν(x)− ∂νWµ(x)− ig[Wµ(x),Wν(x)] (5.14)

or in components

Fµνi (x) = ∂µW ν
i (x)− ∂νW µ

i (x) + g ǫijk W
µ
j (x)W

ν
k (x). (5.15)

The transformation property of Fµν(x) is obviously the same as that of Dµ
L, eq. (5.8), and we have

then F ′µν(x) = UFµν(x)U−1 so that

TrFµν(x)Fµν(x) =
1

2
Fµνi (x)Fiµν(x) (5.16)

is a Lorentz scalar invariant under a gauge transformation by the property of cyclicity of the trace.

Furthermore it has the right dimension to be the kinetic term of the W µ
i bosons. The lagrangian of

left-handed fields becomes then :

LFL = −1

4
Fµνi (x)Fiµν(x) + ΨeLiD

µ
LγµΨeL +ΨqLiD

µ
LγµΨqL . (5.17)

where each of the three terms is invariant under a local SU(2) transformation. We note at this point

the perfect analogy between the construction of the “weak” lagrangian with that of QCD: the differ-

ences are in the choice of group which requires here only three vector bosons while for SU(3) symmetry

eight bosons had to be introduced. Also, the SU(2) group acts only on the left handed components
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of the fields and consequently the W µ
i (x) gauge bosons do not couple to the right handed fermion

components.

We now make the U(1)Y gauge transformation local. It is defined by

δΨeL = ig′
ye
L

2
β(x) ΨeL , δΨqL = ig′

yq
L

2
β(x) ΨqL

δe
R
= ig′

ye
R

2
β(x) e

R
,

δu
R
= ig′

yu
R

2
β(x) u

R
, δd

R
= ig′

yd
R

2
β(x) d

R
, (5.18)

with g′ the coupling associated to the U(1) transformation. To keep the invariance of the lagrangien

requires the introduction of another vector boson Bµ(x) to which are associated covariant derivatives

generating couplings of Bµ(x) to fermions. Because the fermions carry different hypercharges we

introduce covariant derivatives appropriate for each right-handed field : acting on field ψ
R
(ψ = e, u, d)

it is11

Dµ
ψ
R
= ∂µ − i g′ y

ψ
R

2
Bµ, (5.19)

while for the left handed fields the covariant derivative eq. (5.4) acquires a new piece and becomes :

Dµ
ψ
L
= ∂µ − i g τ

2
·Wµ − i g′ y

ψ
L

2
Bµ. (5.20)

The stress-energy tensor of the new vector field is simply :

Kµν(x) = ∂µBν(x)− ∂νBµ(x) (abelian field). (5.21)

In summary, the initial free lagrangian eq. (4.15) becomes, after imposing a SU(2) local symmetry

on the left-handed fields and an appropriate U(1) invariance on both the left-handed fields and a

right-handed ones,

L = LG + LF = −1

4
Fiµν(x) F

µν
i (x)− 1

4
Kµν(x) Kµν(x)

+ ΨeL i 6DeL ΨeL +ΨqL i 6DqL ΨqL+

+ e
R
i 6DeR e

R
+ u

R
i 6DuR uR + d

R
i 6DdR d

R
(5.22)

where only the (e, νe) and (u, d) quark family has been specified. It is important to point out that

the SU(2)L ⊗ U(1)Y invariance imposes that all fermions are massless. Indeed a fermion mass term

11The left and right covariant derivatives generically defined as Dµ
L, D

µ
R are now denoted Dµ

ψ
L

, Dµ
ψ
R

since they depend

on the quantum numbers of the fermion fields ψ
L
, ψ

R
.

34



in the lagrangian would have the form

Lmass = m ψψ = m(Ψ
L
ψ
R

+ ψ
R
Ψ
L
). (5.23)

But since Ψ
L
is a doublet and ψ

R
a singlet under SU(2), the mass term cannot be invariant under a

gauge transformation!

It is useful to separate the lagrangian density eq. (5.22) into a free part

L0F + L0G = ΨeL i 6∂ ΨeL +ΨqL i 6∂ ΨqL + e
R
i 6∂ e

R
+ u

R
i 6∂ u

R
+ d

R
i 6∂ d

R
(5.24)

−1

4
[(∂µWν(x)−∂νWµ(x)) · (∂µWν(x)−∂νWµ(x)) + (∂µBν(x)−∂νBµ(x)) (∂µBν(x)−∂νBµ(x))],

and an interacting part containing all terms depending on the couplings g and g′. It contains two

classes of terms : one describing the fermion-gauge bosons interactions (which can be expressed very

easily in terms of the currents introduced above) and the other the W boson self interactions

LIF+LIG = g Jµ(x) ·Wµ(x) + g′
JµY (x)

2
Bµ(x) (5.25)

−g
2
ǫijk(∂µWiν(x)− ∂νWiµ(x))W

µ
j (x)W

ν
k (x)−

g2

4
ǫijkWjµ(x)Wkν(x) ǫilmW

µ
l (x)W

ν
m(x)

with Jµ the weak isospin current of eq. (4.20) and JµY the hypercharge current of eq. (4.24). One

recognizes in the sum of these two terms the expression which lead to the construction of the electro-

magnetic current in eq. (4.25).

5.1 Fermion-boson interactions, construction of the photon and the Z boson

We turn first to the fermion-Wµ interaction. It is read off from LIF and is simply

g Jµ(x) ·Wµ(x) =
g

2

(
ΨeLγ

µτiΨeL +ΨqLγ
µτiΨqL

)
Wiµ. (5.26)

Defining the charged vector fields

(W±)µ(x) =
(W µ

1 (x)∓ iW
µ
2 (x))√

2
, with (W+∗)µ(x) = (W−)µ(x) (5.27)

their interaction with the fermions can be easily obtained from the charge changing part of the currents

(Jµ1 (x), J
µ
2 (x)) in eq. (5.26) and we find

LIF (charged current) =
g√
2
(νeL γ

µ e
L
W+
µ + u

L
γµ d

L
W+
µ + h.c.) (5.28)

=
g

2
√
2
(νeγ

µ(1− γ5) eW+
µ + u γµ(1− γ5) dW+

µ + h.c.), (5.29)
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which is now expressed in terms of the usual fermion fields νe, e, u, d. One can thus read off the W±

coupling to fermions : using standard techniques it is found to be −i(g/2
√
2)γµ(1−γ5), coupling with

the same strength to all fermion species. (Note the relation g/2
√
2 = g

W
of eq. (2.16)).

Turning now to the neutral vector bosons sector one has two pieces : one originates from the SU(2)L

invariance, namely gJµ3W3µ contained in eq. (5.26), and the other one from the U(1)Y invariance,

g′JµYBµ. From eq. (5.25) we can read off the neutral current interaction lagrangian which is

LIF (neutral currents) = gJµ3W3µ + g′
1

2
JµYBµ (5.30)

Note that the photon cannot be identified to the W3µ field because of the γ5 term in the coupling

nor to the Bµ boson because of the different charge assignment for the left and right component of a

fermion field. The photon will be constructed as a linear combination of both. Thus, introducing the

fields Aµ and Zµ such that

Bµ = cos θ Aµ − sin θ Zµ

W µ
3 = sin θ Aµ + cos θ Zµ, (5.31)

with θ an adjustable parameter, one finds

LIF (neutral currents) = (g sin θJµ3 + g′ cos θ
1

2
JµY )Aµ + (g cos θJµ3 − g′ sin θ

1

2
JµY )Zµ. (5.32)

To construct the field Aµ as the photon field we should adjust the parameters to be such that

g sin θJµ3 + g′ cos θ
1

2
JµY = eJµemg (5.33)

where, by convention, e is taken as the charge of the proton. This can be achieved if we choose

g sin θ = g′ cos θ = e (5.34)

since, then, we recover eq. (4.26) which lead to eq. (4.25) for Jµemg. With this choice, we have

JµY /2 = Jµemg − Jµ3 which is used to eliminate in the coefficient of Zµ the hypercharge current so that

the interaction lagrangien reads

LIF (neutral currents) = eJµemgAµ +
e

sin θ cos θ
(Jµ3 − sin2 θJµemg)Zµ, (5.35)

defining the couplings of the photon Aµ(x) and the neutral Zµ(x) boson to the fermions. Concerning

the Zµ couplings we can be more explicit and derive them for a pair of fermions ψ1, ψ2 of charge
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e1, e2 (normalised to the proton charge e) respectively, such that (ψ1L, ψ2L) forms a SU(2) doublet

(I = 1/2) and ψ1R, ψ2R are singlets (I = 0). Writing explicitely the currents Jµ3 and Jµemg, we have

from eq. (5.35):

e

sin θ cos θ

[

(ψ1L ψ2L)

(
1/2 − e1 sin2 θ 0

0 −1/2− e2 sin2 θ

)

6Z
(
ψ1L

ψ2L

)

+(ψ1R ψ2R)

(
−e1 sin2 θ 0

0 −e2 sin2 θ

)

6Z
(
ψ1R

ψ2R

)]

=
e

sin θ cos θ

[

(ψ1 ψ2)

(
1/2− e1 sin2 θ 0

0 −1/2− e2 sin2 θ

)

6Z (1− γ5)
2

(
ψ1

ψ2

)

+(ψ1 ψ2)

(
−e1 sin2 θ 0

0 −e2 sin2 θ

)

6Z (1 + γ5)

2

(
ψ1

ψ2

)]

=
e

sin θ cos θ

[

(ψ1 ψ2)

(
1/4− e1 sin2 θ 0

0 −1/4− e2 sin2 θ

)

6Z
(
ψ1

ψ2

)

−(ψ1 ψ2)

(
1/4 0
0 −1/4

)

6Z γ5

(
ψ1

ψ2

)]

(5.36)

The full neutral current interaction lagrangian density eq. (5.35) can then be written for one generation

of quarks and leptons

LIF (neutral currents) = −e e 6A e+
e

sin θ cos θ

∑

l=ν,e

l 6Z (al − blγ5
) l

+ e
∑

q=u,d

eq q 6A q +
e

sin θ cos θ

∑

q=u,d

q 6Z (aq − bqγ5
)q

(5.37)

with

ai =
I3
2
− ei sin2 θ, bi =

I3
2
. (5.38)

Contrary to the photon which has a purely vector coupling to the fermions, the neutral gauge boson

Zµ has both vector and axial-vector couplings. We recall that with the choice of g = e/ cos θ the

charged Wµ couplings are

LIF (charged current) =
e

2
√
2 sin θ

(νeγ
µ(1− γ5) eW+

µ + u γµ(1− γ5) dW+
µ + h.c.), (5.39)

These couplings are in agreement with those of the physical Z boson once the ”weak mixing” or

Weinberg angle θ (in fact introduced by Glashow!) is taken from experiment to be :

sin2 θ ∼ .2313 . (5.40)

We herafter denote the weak mixing angle by θ
W
.
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• The covariant derivative in terms of the Aµ, Zµ,W
±
µ fields

It is useful, for later use, to have an explicit representation of the covariant derivatives eqs. (5.19)

and (5.20) in terms of the W±
µ , Aµ and Zµ gauge bosons. Although they can be read off the previous

discussion based on defining the electromagnetic current we construct them directly. For instance, the

covariant derivative eq. (5.20) acting on a SU(2) doublet of fields with hypercharge yφ, the components

of which having electric charge (ee1, ee2), contains the piece

− ig τ3
2
W3µ − ig′

yφ
2
Bµ = −i

[

(g sin θ
W

τ3
2

+ g′ cos θ
W

yφ
2
)Aµ + (g cos θ

W

τ3
2
− g′ sin θ

W

yφ
2
)Zµ

]

(5.41)

For Aµ to be the photon one imposes the conditions

1
2 (g sin θW + g′yφ cos θW ) = e e1 g′yφ cos θW = e(e1 + e2) g′ cos θ

W
= e

⇒ ⇒
1
2(−g sin θW + g′yφ cos θW ) = e e2 g sin θ

W
= e(e1 − e2) = e g sin θ

W
= e,

(5.42)

where the rightmost equalities are a consequence, eq. (4.29), of the Gell-Mann/Nishijima relation.

Eliminating g, g′, yφ in favour of e, θ
W

and the charges one finds

− ig τ3
2
W3µ − ig′

yφ
2
Bµ = −ie

(
e1Aµ 0
0 e2Aµ

)

− i e

sin θ
W
cos θ

W

(
1
2 − e1 sin2 θWZµ 0

0 −1
2 − e2 sin2 θWZµ

)

Going back to the full expression, eq. (5.20), including the W±
µ contribution, the covariant derivative

on a doublet field is

Dµ = ∂µ − i
e√

2 sin θ
W

(
0 W+

µ

W−
µ 0

)

− ie
(
e1Aµ 0
0 e2Aµ

)

− i e

sin θ
W
cos θ

W

(
(12 − e1 sin2 θW )Zµ 0

0 (−1
2 − e2 sin2 θW )Zµ

)

(5.43)

Since, by definition, W−∗
µ = W+

µ , from now on we use the notation W−
µ = Wµ and W+

µ = W ∗
µ to

respectively represent the wave functions of the W− and W+ gauge bosons.

The covariant derivative acting on a singlet φ is simply

Dµ = ∂µ − ig′
yφ
2
Bµ = ∂µ − ie eφAµ + i

e e
φ
sin2 θ

W

sin θ
W
cos θ

W

Zµ (5.44)

5.2 Gauge bosons and their self-interactions

We already identified in eq. (5.24) the free gauge boson pieces L0G and in eq. (5.25) the interacting

terms LIG. We now reformulate these expressions in terms of the ”physical” fields W ∗
µ ,Wµ, Zµ and
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Aµ. For this purpose we rewrite L0G by doing an integration by part and neglecting, as usual, the

terms which are total derivatives, we find

L0G =
1

2
Wiµ(x)DµνW iν(x) +

1

2
Bµ(x)DµνBν(x), (5.45)

with Dµν = �gµν − ∂µ∂ν . This is rewritten in a matrix form

L0G =
1

2
(W1µ W2µ)

(
Dµν 0
0 Dµν

)(
W1µ

W2µ

)

+
1

2
(W3µ Bµ)

(
Dµν 0
0 Dµν

)(
W3µ

Bµ

)

. (5.46)

We go from the W3µ, Bµ coordinates to the Aµ, Zµ coordinates by a rotation matrix R, eq. (5.31),

and since RTR = 1, we can immediately replace (W3µ Bµ) by (Aµ Zµ) in the equation above. Now

we go from the W1µ,W2µ components to the charged W ’s ones via the matrix O defined by

(
W1µ

W2µ

)

=

(
1√
2

1√
2

i√
2

−i√
2

)(
W ∗
µ

Wµ

)

, (5.47)

which satisfies OTO =

(
0 1
1 0

)

so that we can immediately write

L0G =
1

2
[W ∗

µ(x)DµνWν(x) +Wµ(x)DµνW ∗
ν (x)] +

1

2
Zµ(x)DµνZν(x) +

1

2
Aµ(x)DµνAν(x)

= −1

4
K∗
µνKµν −

1

4
KµνK∗µν − 1

4
K
ZµνKµνZ

− 1

4
K
AµνKµνA

, (5.48)

where in the last line we have dropped a total derivative and where the K∗µν ,Kµν ,Kµν
Z
,Kµν

A
are re-

spectively the abelian-like stress-energy tensors, eq. (5.21), of the W±, Z,A gauge bosons.

We turn now to the interaction lagrangian density LIG eq. (5.25). Permuting µ ↔ ν, j ↔ k in the

term ǫijk∂νWiµ(x)W
µ
j (x)W

ν
k (x) one obtains

LIG = −g ǫijk∂µWiν(x)W
µ
j (x)W

ν
k (x)−

g2

4
ǫijkWjµ(x)Wkν(x) ǫilmW

µ
l (x)W

ν
m(x). (5.49)

The term linear in g can be written

− g det

∣
∣
∣
∣
∣
∣

∂µW1ν W µ
1 W ν

1

∂µW2ν W µ
2 W ν

2

∂µW3ν W µ
3 W ν

3

∣
∣
∣
∣
∣
∣

. (5.50)

Adding i×the second line to te first one to reconstruct W ∗
µ and taking into account the fact that a

determinant is invariant when adding or subtracting lines (eventually multiplied by a constant factor)

39



one obtains for the expression (5.50)

−g det

∣
∣
∣
∣
∣
∣

√
2∂µW

∗
ν

√
2W ∗µ √

2W ∗ν

∂µW2ν W µ
2 W ν

2

∂µW3ν W µ
3 W ν

3

∣
∣
∣
∣
∣
∣

= − g

2 i
det

∣
∣
∣
∣
∣
∣

√
2∂µW

∗
ν

√
2W ∗µ √

2W ∗ν

2 i∂µW2ν 2 iW µ
2 2 iW ν

2

∂µW3ν W µ
3 W ν

3

∣
∣
∣
∣
∣
∣

= i g det

∣
∣
∣
∣
∣
∣

∂µW
∗
ν W ∗µ W ∗ν

∂µWν W µ W ν

∂µW3ν W µ
3 W ν

3

∣
∣
∣
∣
∣
∣

. (5.51)

The last equality is obtained by subtracting the first line from the second. Then using W3ν =

sin θ
W
Aµ + cos θ

W
Zµ and the relation e = g sin θ

W
(eq. (5.34)), the above expression becomes

i e det

∣
∣
∣
∣
∣
∣

∂µW
∗
ν W ∗µ W ∗ν

∂µWν W µ W ν

∂µAν Aµ Aν

∣
∣
∣
∣
∣
∣

+ i e
cos θ

W

sin θ
W

det

∣
∣
∣
∣
∣
∣

∂µW
∗
ν W ∗µ W ∗ν

∂µWν W µ W ν

∂µZν Zµ Zν

∣
∣
∣
∣
∣
∣

. (5.52)

Expanding the determinant we find for the γW+W− vertex

− i e [∂µW ∗
ν (W

µAν −AµW ν)− ∂µWν(W
∗µAν −AµW ∗ν) + ∂µAν(W

∗µW ν −W−µW ∗ν)], (5.53)

By assigning a definite index to each field, e.g. Aλ,W ρ,W ∗σ, the expression takes the usual form

i e [Aλgρσ(Wρ∂λW
∗
σ −W ∗

σ∂λWρ) +W ρgσλ(W ∗
σ∂ρAλ −Aλ∂ρW ∗

σ ) +W ∗σgλρ(Aλ∂σWρ −Wρ∂σAλ)], (5.54)

and similarly for the ZW+W− vertex with the coupling e cos θ
W
/ sin θ

W
instead of e. This defines all

tri-linear couplings among gauge bosons.

The term in g2 in the interaction lagrangian density eq. (5.49) is rather boring to expand. Using the

relation ǫijkǫilm = δjlδkm − δjmδkl, it becomes

− e2

4 sin2 θ
W

[Wµ(x) ·Wµ(x)W
ν(x) ·Wν(x)−Wµ(x) ·Wν(x)W

ν(x) ·Wµ(x)]

= − e2

4 sin2 θ
W

[
W µ
i WiρW

ν
j Wjσ

]
[gρµ g

σ
ν − gσµ gρν ] (5.55)

with the notation Wµ ·Wν = ΣiW
µ
i Wiν . One obtains the vertex for the physical fields using

Wµ(x) ·Wρ(x) =W µW ∗
ρ +W ∗µWρ + (sin θ

W
Aµ + cos θ

W
Zµ)(sin θ

W
Aρ + cos θ

W
Zρ)], (5.56)

so that eq. (5.55) becomes

− e2

2 sin2 θ
W

[
WµW

∗
ρWσW

∗
ν +WµW

∗
ρ (sin θWAσ+cos θ

W
Zσ)(sin θWAν+cos θ

W
Zν)
]
[gµρ gνσ − gµσ gνρ]
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The antisymmetry of the [gµρ gνσ − gµσ gνρ] tensor combination kills the terms with only photons

and/or Z bosons. The self-couplings of gauge bosons are thus given by

LIG =

−i e [Aλgρσ(Wρ∂λW
∗
σ −W ∗

σ∂λWρ) +W ρgσλ(W ∗
σ∂ρAλ −Aλ∂ρW ∗

σ ) +W ∗σgλρ(Aλ∂σWρ −Wρ∂σAλ)]

+ {Aλ → Zλ, e→ e cos θ
W
/ sin θ

W
} (5.57)

− e2

2 sin2 θ
W

[
WµW

∗
ρWσW

∗
ν +WµW

∗
ρ (sin θWAσ+cos θ

W
Zσ)(sin θWAν+cos θ

W
Zν)
]
[gµρgνσ − gµσgνρ]

In conclusion, from eq. (5.49) one has two three-boson vertices W−W+γ, W−W+Z with derivative

couplings and four four-boson vertices W−W+W−W+, W−W+γγ, W−W+ZZ, W−W+γZ. The ab-

sence of vertices involving only γ’s and/or Z’s has its origin in the fact that they would arise from

the term g2ǫi33W3µ(x)W3ν(x) ǫi33W
ρ
3 (x)W

σ
3 (x), in eq. (5.49), which is of course 0. Using ”standard

methods” one can, from the expressions above, extract the Feynman rules for the couplings between

fermions and gauge bosons. It will not be done here as they can be found in books.

To summarize this rather technical section we count at this point 15 couplings in the model (for one

generation of fermions). One has:

- 9 fermion-fermion-boson vertices: ēeγ, ēeZ, ν̄eνeZ, ν̄eeW
+, ūuγ, ūuZ, d̄dγ, d̄dZ, ūdW+

- 2 trilinear gauge bosons vertices : W+W−γ, W+W−Z

- 4 quadrilinear gauge bosons vertices : W−W+W−W+, W−W+γγ, W−W+ZZ, W−W+γZ.

They depend only on two parameters e and θ
W

(and, of course, the fermion charges). It is obvious

that the symmetry properties of the lagrangien is quite constraining. The important fact is that

the relations between couplings derived above will be preserved by the mechanism of ”spontaneous

symmetry breaking” we are going to discuss. This is an important difference with a mechanism of

explicit symmetry breaking where these relations would have been lost.

5.3 Progress status and problems

Considering what has been achieved until now, one finds that the model based on the SU(2)L⊗U(1)Y

symmetry contains four gauge bosons: two charged ones with (V −A) couplings to fermions and two

neutral ones with couplings such that these bosons can be interpreted as the photon and the Z boson.

The “only” difference with the real world is that in the present state of development of the model

the gauge bosons are massless, because of the assumed exact gauge invariance and the fermions are

also massless because of the left-right asymmetry of the gauge group. Counting the bosonic degrees
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of freedom of the model one realizes that three degrees of freedom are “missing”, associated to the

longitudinal polarisation states of the heavy vector bosons as summarised in the table.

Model Real World
degrees of freedom degrees of freedom

transverse longitudinal
W− 2 0
W+ 2 0
Z 2 0
γ 2 0

transverse longitudinal
W− 2 1
W+ 2 1
Z 2 1
γ 2 0

In order to complete the model one should therefore introduce at least three new fields in the la-

grangian. This will be done through a multiplet of scalar fields and it will be seen that, by the

mechanism of spontaneous symmetry breaking of local gauge invariance, some of the scalar fields

become the longitudinal polarisation states and correlatively the vector bosons acquire a mass.
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6 Spontaneous symmetry breaking under a global phase change

We proceed in steps and discuss, first, the case of a global symmetry and state the Golstone theorem.

In the next sections we deal with the case of a spontaneously broken local U(1) symmetry, leading to

a massive gauge boson, and then we turn to the Glashow-Weinberg-Salam model based on a broken

SU(2)L ⊗ U(1)Y symmetry.

6.1 Global symmetry breaking

Consider the very simple case of a complex scalar field

ϕ =
1√
2
(ϕ1 + iϕ2) (6.1)

which has two degrees of freedom ϕ1(x), ϕ2(x). The lagrangian

L = ∂µϕ
∗∂µϕ− V (ϕ) with the potential V (ϕ) = −µ2|ϕ|2 + h|ϕ|4. (6.2)

is invariant under a rigid U(1) phase transformation ϕ(x) → eiαϕ(x) where α is constant. The

potential has the well-known “Mexican hat” or “cul-de-bouteille” shape (depending on your cultural

background!). The hamiltonian is

H = π ∂0 ϕ−L, with π =
δL
δ∂0ϕ

= ∂0ϕ
∗

= |~∇ϕ|2
︸ ︷︷ ︸

Hkinetic

+ V (ϕ). (6.3)

The (positive) kinetic part vanishes for static configurations and the full hamiltonian is minimal for

constant values of the field given by

|ϕ0| =
µ√
2h

=
v√
2

(6.4)

which defines the so-called vacuum expectation value v of the field ϕ in terms of the parameters of

the lagrangian. Indeed, the quantum theory should be constructed from the lowest energy classical

state which, in this case, is characterised by having its norm constrained by the above equation. One

immediately notices that the vacuum is degenerate since the application of a gauge transformation

(phase change) does not affect the norm of the state. There is an infinite number of classical vacuum

states, namely all states of type |ϕ0|eiα. However to construct the quantum theory one needs to choose

a particular vacuum, by imposing, for example, the classical vacuum field to be real i.e.

ϕ0 =
v√
2

(6.5)
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This obviously amounts to breaking the symmetry of the vacuum since ϕ0 is no more invariant under

a gauge transformation, but the dynamical laws are still unbroken because they are given by the gauge

invariant lagrangian eq. (6.2). This is the basis of “spontaneous symmetry breaking” in contradis-

tinction to “explicit symmetry breaking” where the lagrangian itself would loose gauge invariance. To

study the theory, we translate the original field by its vacuum expectation value

ϕ(x) =
1√
2
(v + ϕ1(x) + iϕ2(x)) (6.6)

and, neglecting constant terms, the lagrangian becomes

L =
1

2
(∂µϕ1)

2 − hv2ϕ2
1 +

1

2
(∂µϕ2)

2

− hvϕ1(ϕ
2
1 + ϕ2

2) −
h

4
(ϕ2

1 + ϕ2
2)

2 (6.7)

After spontaneous symmetry breaking, we are left with a model of two interacting real fields ϕ1 and

ϕ2. The free theory is given by the first line of the equation above which shows that ϕ1 has a mass

mϕ1
=
√
2hv2 while ϕ2 is massless: ϕ2 is called the Goldstone boson. The interaction part is all

contained in the second line of eq. (6.7) and there are cubic and quartic interactions between ϕ1

and ϕ2. Since, the initial lagrangian contained only two parameters, there are necessarily relations

between the three parameters mϕ1
, the coefficient of the cubic coupling term g

3
and the coefficient of

the quartic coupling g
4
e.g.

g2
3
= 2m2

ϕ1
g
4
. (6.8)

Such a relation reflects the symmetry property of the lagrangian density. These features are a simple

illustration of very general properties of spontaneous breaking of larger (non-abelian) group symmetry.

They are a particular case of the Goldstone theorem.

6.2 The Goldstone theorem

This theorem reads :

When a global symmetry is spontaneously broken there appear as many massless scalar modes

(called the Goldstone bosons) as there are broken degrees of symmetry.

A proof of this theorem is now sketched. Consider ϕ, a collection of n scalar fields ϕi, i = 1, · · · , n
written as a column vector so that

ϕ
T

= (ϕ
1
, · · · , ϕn) (6.9)
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The lagrangian density is formally written as

L = L(ϕ, ∂µϕ)kin − V (ϕ). (6.10)

The vacuum of the model is defined by the conditions

δV

δϕi
= 0, ⇒ vacuum: ϕ0T = (ϕ0

1
, · · · , ϕ0

n) (6.11)

One perturbs around the vacuum state

ϕ = ϕ0 + ϕ′, i.e. ϕi = ϕ0
i + ϕ′

i (6.12)

so that the lagrangian (neglecting constant terms) is re-written

L = L(ϕ′, ∂µϕ
′)kin −

1

2

∑

ij

δV

δϕiδϕj

∣
∣
∣
∣
ϕ0

ϕ′
i ϕ

′
j ⊕ (ϕ′3) ⊕ (ϕ′4) (6.13)

where it is not necessary for our present purposes to specify the cubic nor the quartic couplings. By

construction, there are no terms linear in the fields because we are expanding around the minimum

of the potential. The quantity of interest is the quadratic term which defines the mass matrix

m2
ij =

δV

δϕiδϕj

∣
∣
∣
∣
ϕ0

. (6.14)

Consider now the action of an infinitesimal global gauge transformation. Its action on the fields is

δϕ = i αJ T J ϕ, J = 1, · · · , N, (6.15)

where the T J are the N generators (n × n matrices) of the group and the αJ are the N associated

arbitrary parameters. If for some field configuration ϕ we have for a particular generator T J ,

T Jϕ = 0, ⇒ δϕ = iαJ T Jϕ = 0, (6.16)

then we say that this configuration ϕ is invariant under the sub-group generated by T J : the corre-

sponding symmetry is unbroken. If, on the contrary, T Jϕ 6= 0 the corresponding degree of symmetry

is said to be spontaneously broken. Let us suppose now that the vacuum satisfies

T Jϕ0 6= 0 for J = 1, · · · , N ′

T Jϕ0 = 0 for J = N ′ + 1, · · · , N, (6.17)

i.e. that the vacuum state breaks N ′ degrees of symmetry. The invariance of the potential V (ϕ) under

the gauge transformation δϕi = i αJ T Jik ϕk yields

δV (ϕ) =
δV

δϕi
δϕi = i αJ

δV

δϕi
T Jik ϕk = 0. (6.18)
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Since this true for any αJ one has
δV

δϕi
T Jik ϕk = 0. (6.19)

Taking the derivative of this relation at ϕ = ϕ0, it comes out

δ2V

δϕjδϕi

∣
∣
∣
∣
ϕ0

T Jik ϕ
0
k +

δV

δϕi

∣
∣
∣
∣
ϕ0

T Jik δkj = 0 ⇒ m2
ji T

J
ik ϕ

0
k = 0, (6.20)

where the last equality is true because ϕ0 defines the minimum of the potential. Since this relation

is automatically satisfied for J = N ′ + 1, · · · , N one concludes that the mass matrix must have N ′

vanishing eigenvalues. Thus, N ′ fields ϕ′
i will be massless which are the Golstone bosons associated

to the N ′ degrees of broken symmetry (qed).
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7 Spontaneous local U(1) symmetry breaking

We impose now that the lagrangian density eq. (6.2) is invariant under the local phase change

ϕ(x) → eigα(x)ϕ(x). For this purpose we introduce a vector field Bµ(x) and a covariant derivative

Dµ = ∂µ − igBµ(x) such that Dµϕ(x) → igα(x)Dµϕ(x) under an infinitesimal phase change. This is

realised if Bµ(x) transforms as Bµ(x) → Bµ(x) + g∂µα(x). Since Dµϕ
∗(x) → −igα(x)Dµϕ

∗(x) the

locally invariant version of the scalar field lagrangian density is

LS + LG = Dµϕ
∗Dµϕ+ µ2ϕ∗ϕ− h(ϕ∗ϕ)2 − 1

4
KµνKµν (7.1)

where we have also included the kinetic term, see eq. (5.21), of the gauge boson Bµ(x). As in the study

of the breaking of the global symmetry we choose as the lowest energy state ϕ0 = v/
√
2, (eq. (6.5),

and we expand the field around this vacuum expectation value as in eq. (6.6).

7.1 Unitary gauge

We take advantage of the freedom of choice of the gauge to find a function α(x) such that eigα(x)

applied to eq. (6.6) gives

ϕ(x) =
1√
2
(v +H(x)), (7.2)

i.e. we absorb the imaginary part in a change of phase and we are left with one real field H(x). This

choice defines the unitary gauge. Applying the covariant derivative on ϕ(x) one obtains

Dµϕ(x) =
1√
2
∂µH(x)− igBµ(x)

1√
2
(v +H(x)) (7.3)

Injecting this in the lagrangian density, taking the potential part from eq. (6.7) with ϕ1 = H, ϕ2 = 0,

and reshuffling the terms we find

LS + LG =

[
1

2
(∂µH(x))2 − hv2H2(x)

]

+

[

−1

4
Kµν(x)Kµν(x) +

g2v2

2
Bµ(x)B

µ(x)

]

+ g2vH(x)Bµ(x)B
µ(x) +

g2

2
H2(x)Bµ(x)B

µ(x)− hvH3(x)− h

4
H4(x). (7.4)

The terms in the first line are those from which we build the propagators of the H and Bµ fields

respectively, while the second line contains the couplings between the fields. Applying the Euler-

Lagrange equation (4.1) we obtain for the H field (∂µ∂
µ = �)

(−�− 2hv2)H(x) = 3hvH2(x) + hH3(x)− g2vBµ(x)Bµ(x)− g2H(x)Bµ(x)B
µ(x), (7.5)
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and for the gauge boson

(�gµν − ∂µ∂ν + (gv)2)Bν(x) = −g2H2(x)Bµ(x)− 2g2vHBµ(x). (7.6)

To get the free propagators one solves the Green’s functions

(−�− 2hv2) G(x− y) = iδ(4)(x− y)

(�gµρ − ∂µ∂ρ + (gv)2gµρ) G
ρν(x− y) = igνµδ

(4)(x− y), (7.7)

in Fourier space. For the scalar field one parameterises G(x− y) =
∫
(d4k/(2π)4) exp(−ik(x− y))G(k)

and one easily get the H field propagator

G(k) =
i

k2 −M2
H
+ iǫ

with M
H
= v
√
2h, (7.8)

with the iǫ prescription required by causality. Similarly, for the gauge field we write Gµν(x − y) =
∫
(d4k/(2π)4) exp(−ik(x − y))Gµν(k) to get

(−k2gµρ + kµkρ + (gv)2gµρ)G
ρν(k) = igνµ. (7.9)

We look for the solution under the form Gρν(k) = agρν + bkρkν which is the most general rank 2

tensor which can be constructed from a vector kµ. One obtains finally

Gµν(k) =
−i

k2 −M2
B
+ iǫ

(gµν −
kµkν
M2

B

) with M
B
= gv. (7.10)

The mass of the scalar H field is M
H

=
√
2hv and the mass of the gauge field M

B
= gv : both are

proportional to the vacuum expectation value of the scalar field but the latter is proportional to the

gauge coupling while the former depends on the quartic coupling in the potential. The term giving

rise to the gauge boson mass originates from the covariant derivative acting on ϕ(x) after symmetry

breaking while the mass of the H field comes from the potential V (ϕ).

• Remark on the polarisation of a massive vector boson

The propagator of Bµ(x) is that of a massive scalar field which has three states of polarisation. Indeed

one can easily verify, from eq. (2.25), that the numerator of eq. (7.10) is

−
(

gµν −
kµkν
M2

B

)

=
∑

i

ε(i)µ (k) ε(i)ν (k), (7.11)

the trace of which is -3.
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Counting the degrees of freedom in the model we have after symmetry breaking one real scalar field

H(x) and the three polarisation states of the gauge boson while before symmetry breaking one had

two scalar fields ϕ1(x), ϕ2(x) and the two polarisation states of the massless gauge boson : it appears

that the massless Golstone boson ϕ2(x) has become the longitudinal polarisation of Bµ(x). The gauge

used in this derivation is called the unitary gauge. With this choice the vector boson propagator may

lead, as we have seen, to divergences when calculationg Feynman diagrams because of the kµkν/m
2
B

term and therefore may ruin the renormalisability of the model.

7.2 Renormalisable gauges : ’t Hooft Rξ gauges

To study this is more detail we go back to the lagrangiann density eq. (7.1) with the general form,

eq. (6.6), of the scalar field after symmetry breaking. The covariant derivative is then

Dµφ(x) = (∂µ − igBµ(x))
1√
2
(v + φ1(x) + iφ2(x))

=
1√
2
[∂µφ1(x) + gBµ(x)φ2(x)] +

i√
2
[∂µφ2(x)− gBµ(x)(v + φ1(x))] (7.12)

The lagrangian density takes then the form, keeping explicitely only the terms quadratic in the fields,

LS + LG =

[
1

2
(∂µφ1(x))

2 − hv2φ21(x)
]

+

[

−1

4
Kµν(x)Kµν(x) +

g2v2

2
Bµ(x)B

µ(x)

]

+

[
1

2
(∂µφ2(x))

2 − gvBµ(x)∂µφ2(x)
]

+ Lint. (7.13)

The first line is identical to that of eq. (7.4) with a massive scalar field φ1(x) (φ1(x) = H(x) is the

Higgs field) and a massive gauge boson. In the second line one has the massless φ2(x) scalar (the

Goldstone boson) coupling to the gauge field. The function Lint,

Lint = g(ϕ2
←→
∂µϕ1)B

µ + g2vϕ1BµB
µ +

g2

2
(ϕ2

1 + ϕ2
2)BµB

µ − hvϕ1(ϕ
2
1 + ϕ2

2)−
h

4
(ϕ2

1 + ϕ2
2)

2, (7.14)

contains the couplings between φ1, φ2 and Bµ.

Clearly φ2(x) is not independent on Bµ(x) since it oscillates into the gauge boson with a derivative

coupling as can be seen from eq. (7.13). In fact if we consider the polarisation tensor of the Bµ field,

treating both the mass term and the Bµ∂
µφ2 as vertices we find (gv =MB)

= +

iM2
Bgµν −MBkµ MBkν
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iM2
B
gµν + (−M

B
kµ)

i

k2
M

B
kν = iM2

B
(gµν − kµkν

k2
) (7.15)

which is transverse as it should be. From eq. (2.25) one sees that the tensor structure is equivalent

to summing over transverse and longitudinal polarisations of Bµ: this shows that φ2(x) builds up the

longitudinal polarisation of the originally transverse Bµ(x) field. One may suspect that iterating the

self-energy bubble on the Bµ field propagator will reconstruct the propagator of a massive field. This

is disccussed more precisely below.

We follow here a procedure familiar from QED. To quantise QED, it is necessary to break the gauge

invariance and this is done by adding to the lagrangian a “gauge fixing” term. Here the gauge fixing

term is chosen to be

LGF = − 1

2ξ
(∂µB

µ(x) + ξ gv φ2(x))
2. (7.16)

This choice (instead of the traditional term −(∂µBµ(x))2/2ξ of QED) is made to eliminate the mixed

term gvBµ(x)∂
µφ2(x) in the lagrangian. This class of gauge conditions is known under the name of

’t Hooft’s gauges or Rξ gauges where ξ is an arbitrary real number. One considers the new lagrangian

density LS + LG + LGF which then becomes

LS + LG + LGF =

[
1

2
(∂µφ1(x))

2 − hv2φ21(x)
]

+
1

2

[
(∂µφ2(x))

2 − ξ(gv)2φ22(x)
]

+

[

−1

4
KµνKµν +

(gv)2

2
Bµ(x)B

µ(x)

]

+
1

2ξ
(∂µB

µ(x))2 + Lint (7.17)

By the specific choice of the gauge condition the mixed term in Bµ∂
µφ2 in LS + LG combines with

the term φ2∂
µBµ in LGF to give a total derivative which can be safely ignored in perturbation theory.

However the Goldstone boson acquires a mass from the gauge fixing lagrangian density. Following the

procedure used when working in the unitary gauge one derives the Green’s equation for the fields φi

and Bµ, the solution of which gives the free propagators. Thus one obtains

(−�− 2hv2)Gφ1(x− y) = iδ(4)(x− y)

(−�− ξ(gv)2)Gφ2(x− y) = iδ(4)(x− y)

(�gµν − (1− 1

ξ
)∂µ∂ν + (gv)2gµν)G

νρ(x− y) = igρµδ
(4)(x− y). (7.18)

For the scalar fields we obtain easily

for the field φ1 = H G
H
(k) =

i

k2 −M2
H
+ iǫ

with M
H
= v
√
2h (7.19)

for the Goldstone field φ2 Gφ2(k) =
−i

k2 − ξM2
B
+ iǫ

with M
B
= gv . (7.20)
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For the gauge fields, introducing Gνρ(x− y) =
∫
(d4k/(2π)4) exp(−ik(x − y))Gνρ(k) one has to solve

(k2gµν − (1− 1

ξ
)kµkν −M2

B
gµν)G

νρ(k) = −igρµ (7.21)

One looks for the solution in the form of aνρ + bkνkρand one finds

Gνρ(k) = −
i

k2 −M2
B
+ iǫ

(

gνρ − (1− ξ) kνkρ
k2 − ξM2

B

)

. (7.22)

One observes that for any value of ξ finite all propagators have the right asymptotic behavior i.e. they

behave like 1/k2, k2 →∞ which is a necessary condition for the model to be renormalisable. However

both the Goldstone and the gauge boson propagators have a spurious pole at k2 − ξm2
B which should

cancel when calculating a physical process. It is interesting to compare the gauge boson propagator

in the general ’t Hooft gauge with its form in the unitary gauge. One proves easily

− i

k2 −M2
B
+ iǫ

(

gνρ − (1− ξ) kνkρ
k2 − ξM2

B

)

= − i

k2 −M2
B
+ iǫ

(

gνρ −
kνkρ
M2

B

)

− i

M2
B

kνkρ
k2 − ξM2

B

(7.23)

One recognises on the right-hand side the propagator in the unitary gauge, eq. (7.10), plus a term

which has the the same pole structure as the Goldstone boson. An exemple will be given later, on

how such a cancellation occurs between this extra piece and the Goldstone contribution.

Special choices of ξ can be made:

- ξ = 0 (Landau gauge) : the Golstone boson is massless and the gauge boson propagator is transverse

i.e. kνGνρ = 0;

- ξ = 1 (Feynman gauge) : the Golstone boson has the same mass as the gauge boson but one looses

the transversity property of the gauge boson propagator;

- ξ →∞ : the Goldstone boson does not propagate and one keeps only the physical degrees of freedom

in the model: one recovers the unitary gauge already considered.

7.3 Fermion masses

We now include a fermion in our toy model. We assume one massless fermion ψ(x) and impose a local

U(1) gauge invariance only on the left-handed component of ψ(x) : δψL(x) = igα(x)ψL(x), δψR(x) =

0. The fermion part of the lagrangian density takes the form

LF = ψ̄Li6DψL + ψ̄Ri6∂ψR, (7.24)

with the covariant derivative acting on ψL(x) defined by

6DψL = (6∂ − ig 6B)ψL. (7.25)
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We parameterise the U(1) invariant interaction between the scalar field and the fermion by the Yukawa

type lagrangian density

LY = −λf (ψ̄LφψR + ψ̄Rφ
∗ψL). (7.26)

After symmetry breaking, using the parameterisation eq. (6.6) of the scalar field, only LY is affected

LY = − λf√
2
(v +H)(ψ̄LψR + ψ̄RψL)− i

λf√
2
φ2(ψ̄LψR − ψ̄RψL)

= −λfv√
2
ψ̄ψ − λf√

2
Hψ̄ψ − i λf√

2
φ2ψ̄γ

5ψ, (7.27)

where we have recombined the left-handed and right-handed fields. Regrouping all fermion terms we

have

LF + LY = ψ̄(i6∂ − λfv√
2
)ψ +

g

2
ψ̄ 6B(1− γ5)ψ − λf√

2
Hψ̄ψ − i λf√

2
φ2ψ̄γ

5ψ. (7.28)

We read off the fermion mass

mf =
λfv√
2

(7.29)

and the couplings of the fermion

- to the gauge field : −i(g/2)γµ(1− γ5) ;
- to the Higgs field : iλf/

√
2) ;

- to the Goldstone boson : (λf/
√
2)γ5.

The coupling of the Higgs to the fermion can be written in terms of ”physical parameters”, masses

and the gauge coupling, and one finds

coupling Higgs-fermion-fermion : iλf/
√
2) = i g

mf

MB
, (7.30)

which illustrates an important feature of spontaneous symmetry breaking, namely that the coupling

is proportional to the fermion mass.

In the unitary gauge, the Higgs and gauge boson couplings to the fermion are as above, while the

Goldstone boson φ2 is absorbed by the gauge choice and does not couple to the fermion.

7.4 Gauge invariance at the Born level: an exemple

Putting everything together, the lagrangien density of our model in a general Rξ gauge is

LS + LG + LGF + LF + LY (7.31)

with LS + LG + LGF from eq. (7.17) and LF + LY from eq. (7.28). We are now in a position to

calculate the scattering amplitude for the collision ψ1+ψ2 → ψ3+ψ4. The diagrams to be considered

are
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1 2

3 4

1 2 1 2

3 4 3 4

gauge boson Goldstone boson Higgs boson

The point is to check that the first two diagrams lead to a gauge independent contribution since the

Higgs exchange diagram is independent of the gauge choice ξ. Using the decomposition eq. (7.23) of

the gauge boson propagator in the general ’t Hooft gauge it is enough to prove that the rightmost

term in eq. (7.23) is cancelled by the Goldstone exchange diagram. From the gauge boson exchange

we have

− g2

4
ψ̄3γµ(1− γ5)ψ1(−i)

kµkν

M2
B(k

2 − ξM2
B)
ψ̄4γν(1− γ5)ψ2. (7.32)

Using Dirac equation this term can be considerably simplified. For instance with kµ = pµ1 − p
µ
3

ψ̄3γµ(1− γ5)ψ1k
µ = ψ̄3(6p1 − 6p3)ψ1 + ψ̄3γ

5 6p1ψ1 + ψ̄3 6p3γ5ψ1

= 2mf ψ̄3γ
5ψ1, (7.33)

where to obtain the last line we have used Dirac equation 6p1ψ1 = mfψ1 and ψ̄3 6p3 = mfψ3. The same

trick can be used at the other vertex to obtain

ψ̄4γµ(1− γ5)ψ2k
µ = ψ̄4(6p4 − 6p2)ψ2 − ψ̄4 6p4γ5ψ2 − ψ̄4γ

5 6p2ψ2

= −2mf ψ̄4γ
5ψ2. (7.34)

This shows that after symmetry breaking the axial current ψ̄γµγ5ψ is not conserved since, when

contracted with the gauge field momentum, it gives a term proportional to the mass of the fermion.

Thus eq. (7.32) reduces to

−
g2m2

f

M2
B

i

k2 − ξM2
B

ψ̄3γ
5ψ1ψ̄4γ

5ψ2 (7.35)

The contribution of the Goldstone boson exchange is simply

λ2F
2

i

k2 − ξM2
B

ψ̄3γ
5ψ1ψ̄4γ

5ψ2 (7.36)

Using the relation g2m2
f/M

2
B = λ2F/2, eq. (7.30), one easily verifies the compensation of the ξ depen-

dant part of the gauge propagator by the Goldstone boson. Needless to say that, for this to occur, the
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mass term of the gauge boson and that of the fermion should have the same origin and be both related

to the vacuum expectation value v. The gauge invariance can be checked on other processes notably

those involving the triple gauge couplings, however the discussion is more tricky since it implies the

coupling of the Goldstone field to the vector boson as given in (7.14).
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8 The broken SU(2)L ⊗U(1)Y symmetry

In this case, the generators of the symmetry group will be T J = (τ1, τ2, τ3, Y ), i.e. the generators of

the weak isospin group and of the U(1)Y hypercharge gauge group. We introduce a complex scalar

field Φ(x), which is a doublet of SU(2) (I
Φ
= 1

2),

Φ =
1√
2

(
ϕ

1
− i ϕ

2

ϕ
3
− i ϕ

4

)

(8.1)

and the standard scalar lagrangian

LS = ∂µΦ
†∂µΦ− V (Φ), V (Φ) = −µ2Φ†Φ + h (Φ†Φ)2. (8.2)

which is invariant under the rigid transformation

Φ→ Φ′ = eiτ ·α/2 eiyΦβ/2 Φ. (8.3)

The minimum of the potential is obtained for (see eq. (6.4))

Φ†Φ = |Φ|2 = µ2

2h
=
v2

2
. (8.4)

There is an infinite number of vacua states : all states with the norm v/
√
2 obtained by a gauge

transformation. We choose the physical vacuum to be

Φ0 =

(

0
v√
2

)

with v =
µ√
h
. (8.5)

Since we require the electric charge to be conserved after symmetry breaking, following the reasoning

in sec. 6.2, we have to enforce that the charge generator acting on the vacuum state should vanish.

Using the Gell-Mann/Nishijima relation eq. (4.28) the charge operator acting on Φ0 is

Q Φ0 = (I3 +
Y

2
) Φ0 =

1

2
(τ3 + Y ) Φ0 =

(
1
2 +

y
Φ

2 0

0 −1
2 +

y
Φ

2

) (

0
v√
2

)

= 0 (8.6)

implying that the hypercharge of the scalar field must be y
Φ
= 1 to ensure charge conservation in the

broken theory: the charge of the classical vacuum is 0. As in the abelian case, we can study the system

around the classical minimum and expand the scalar field around its vacuum expectation value

Φ =

(
1√
2
(ω

1
(x)− iω

2
(x))

1√
2
(v + ω

0
(x)− iω

3
(x))

)

=

(

ω∗(x)
1√
2
(v + ω

0
(x)− iω

3
(x))

)

. (8.7)
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The complex field ω∗ has a positive electric charge while ω0 and ω3 are neutral. In terms of the new

variables the scalar potential V (Φ) becomes

V (Φ) = hv2ω2
0

+ hv ω
0
(ω2

0
+ ω2) +

h

4
(ω2

0
+ ω2)2 (8.8)

showing that the triplet ω of ωi fields is massless while the neutral ω
0
field acquires a mass

Mω
0
=
√
2hv2. (8.9)

All these fields are coupled together with a strength which can be read off the equation above.

Thus, in our model, in agreement with Noether theorem, three degrees of freedom are broken leading

to three massless Goldstone bosons, and the vacuum is still left invariant under the combination

Q = I3 + Y/2. There is still an abelian symmetry left, namely the U(1)emg group.

8.1 Local symmetry breaking and the Brout-Englert-Higgs mechanism

Armed with this lengthy preliminaries we now turn to spontaneous breaking of the local gauge sym-

metry SU(2)L ⊗ U(1)Y down to U(1)emg in the framework of the Standard Model. Let us state the

results before diving into an ocean of technicalities. The case of a global symmetry has just been

analysed and led to the appearance of three massless (Goldstone) bosons and a massive one. When

the symmetry is made local these massless bosons turn out to be unphysical (two charged ones, ω and

ω∗, and a neutral one ω3), in the sense that they can be gotten rid off by a gauge transformation, but

instead, three gauge bosons (a neutral one and the two charged ones) become massive and therefore

acquire longitudinal polarisation states which are the Goldstone modes in disguise.

To implement the breaking of the local SU(2)L ⊗ U(1)Y symmetry we first have to extend the

electroweak lagrangian eq. (5.22) to include the scalar field contribution LS eq. (8.2) in its locally

gauge invariant form (see eq. (8.12) below) as well as the interaction of the scalar field with the

fermions LY (where Y stands for Yukawa; see eq. (8.26) below) so that the complete electroweak

lagrangian density is

L = LF + LG + LS + LY . (8.10)

In the following we work in the unitary gauge.

8.2 The Higgs and gauge bosons sector : masses and couplings

We concentrate for the moment on LS which drives the spontaneous breaking of the local electroweak

symmetry. Only neutral scalar fields can acquire a vacuum expectation value : other fields, such
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as fermions or gauge bosons, cannot do so otherwise the physical vacuum would have some angular

momentum or other non-vanishing quantum numbers. We impose now the invariance of LS under a

change of the local phases

Φ(x)→ Φ′(x) = eigα(x)·τ/2 eig
′y

Φ
β(x)/2 Φ(x). (8.11)

To keep gauge invariance requires substituting the covariant derivative to the partial derivative in LS
which then takes the form

LS = DµΦ
†DµΦ− µ2Φ†Φ+ h(Φ†Φ)2 (8.12)

with the definition, eq. (5.20),

Dµ = ∂µ − i g τ
2
·Wµ − i 1

2
g′ Bµ (8.13)

and the choice, eq. (8.6), y
Φ
= 1 for the hypercharge. This can be easily checked using the same line

of reasoning as used in sec. 5.

To study the system around the classical vacuum we parameterise the scalar field as in eq. (8.7).

However we note that by an appropriate gauge transformation we can find α(x), β(x) such that :

eig
′y

Φ
β(x)/2 eigτ ·α(x)/2 Φ(x) =

(

0
v+H(x)√

2

)

, (8.14)

showing that the fields ωi(x) can be removed from the lagrangian altogether and therefore are not

physical. Of course, explicit gauge invariance of the vacuum state will be lost since a particular gauge

has been chosen. To analyse the effects of symmetry breaking we work with the “physical” Aµ and Zµ

fields of eq. (5.31) rather than with W3µ and Bµ. For this purpose we use the expression eq. (5.43)

for the covariant derivative which, applied to the form eq. (8.14) of Φ (with e1 = 1, e2 = 0), yields

Dµ

(

0
v+H(x)√

2

)

=

[

∂µ − i
e√

2 sin θ
W

(
0 W ∗

µ

Wµ 0

)

− ie
(
Aµ 0
0 0

)

−i e

sin θ
W
cos θ

W

(
1
2 − sin2 θ

W
Zµ 0

0 −1
2Zµ

)](

0
v+H(x)√

2

)

=

( −i e
2 sin θ

W
W ∗
µ(v +H(x))

∂µ
H(x)√

2
+ i e

2
√
2 sin θ

W
cos θ

W

Zµ(v +H(x))

)

(8.15)

It is then trivial to get DµΦ
†DµΦ and write the scalar lagrangian density LS

LS =
1

2
(∂µH(x))2 +

e2

4 sin2 θ
W

(v +H(x))2W ∗
µW

µ +
e2

8 sin2 θ
W
cos2 θ

W

(v +H(x))2ZµZ
µ

− hv2H2 − hv H3 − h

4
H4 (8.16)
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In the last line we have used eq. (8.8) for the scalar potential dropping of course the spurious ω(x)

fields which have been gauged away. The above equation contains a lot of information since it gives

masses to the gauge and the Higgs fields as well as defines the couplings between them.

• Masses

Combining the terms proportional to v2 in the equation above with the stress-energy terms of L0G ,
eq. (5.48), we have the pieces in the lagrangien density which lead to the free propagators of the H

and gauge bosons,

LOS + LOG =
1

2
(∂µH(x))2 − hv2H2 − 1

4
K
AµνKµνA

−1

2
K∗
µνKµν +

e2v2

4 sin2 θ
W

W ∗
µW

µ

−1

4
K
ZµνKµνZ

+
e2v2

8 sin2 θ
W
cos2 θ

W

ZµZ
µ (8.17)

Using the same method as in sec. 7.1 we can derive the propagators of the H scalar and the gauge

bosons

G(k) =
i

k2 −M2
H
+ iǫ

GµνA (k) =
−i

k2 + iǫ
gµν

GµνW (k) =
−i

k2 −M2
W

+ iǫ
(gµν − kµkν/M2

W )

GµνZ (k) =
−i

k2 −M2
Z
+ iǫ

(gµν − kµkν/M2
Z) (8.18)

We recover a massive H field with M
H
=
√
2h v as in eq. (7.8), while the W and Z bosons acquire

the masses

M
W

=
e v

2 sin θ
W

, M
Z
=

e v

2 sin θ
W
cos θ

W

, (8.19)

and the photon remains massless as no quadratic term in Aµ appears in the lagrangian. The vanishing

of the photon mass is a consequence of the surviving exact gauge symmetry U(1)emg. Note the

important relation

M
W

=M
Z
cos θ

W
(8.20)

We have the relation v = sin θ
W
M

W
/
√
πα between the vacuum expectation value of the scalar field

and the physical parameters and, plugging in numerical values, we find v ∼ 250 GeV, which is the
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basis for the claim, made in the introduction, that the non-abelian symmetry is broken at the scale of

250 GeV.

• Couplings

We consider now all the terms of LS , eq. (8.16), not contained in L0S to define the interaction

lagrangian of the Higgs boson

LIS =
e2v

2 sin2 θ
W

HW ∗
µW

µ +
e2

4 sin2 θ
W

H2W ∗
µW

µ

+
e2v

4 sin2 θ
W
cos2 θ

W

HZµZ
µ +

e2

8 sin2 θ
W
cos2 θ

W

H2ZµZ
µ

− hv H3 − h

4
H4 (8.21)

One notes that the trilinear couplings of the H boson to a pair of gauge bosons have the dimension

of a mass, proportional to the vacuum expectation value v, while the quadrilinear couplings are

dimensionless proportional to e2. One can show that, in terms of Feynman diagrams,

− the vertex HW+W− is : − i e2v

2 sin2 θ
W

= −i e

sin θ
W

M
W
;

− the vertex HZZ is : − i e2v

2 sin2 θ
W
cos2 θ

W

= −i e

sin θ
W
cos θ

W

M
Z
; (8.22)

− the vertex H2W+W− is : − i e2

2 sin2 θ
W

− the vertex H2ZZ is : − i e2

2 sin2 θ
W
cos2 θ

W

.

There are furthermore the H boson self-couplings proportional respectively to hv and h. These

variables are easily eliminated in favour of the observables M
W
,M

H
and one finds,

− the vertex H3: i 6hv = i 3
2

e
sin θ

W

M2

H

M
W

− the vertex H4: i 6h = i 34
e2

sin2 θ
W

M2

H

M2

W

. (8.23)

It is interesting to remark that the triple and the quartic H boson vertices vary as the square of the

Higgs boson mass (for fixed W mass). As an indication of the strength of the Higgs boson couplings

one finds 0.2 for the vertex H2W+W− and 0.12 for the quartic H4 term.

To complete this section we recall the gauge boson self-couplings defined in LIG, eq. (5.57) : they

are not affected by the spontaneous breaking of the symmetry, eventhough three gauge bosons have

acquired a mass.

59



8.3 The Yukawa lagrangian LY and fermion masses and couplings

The scalar field Φ couples to fermions. The requirement for such couplings to exist is that the

corresponding terms in the lagrangian density be Lorentz invariant as well as invariant under a

SU(2)L ⊗ U(1)Y transformation, before the spontaneous breaking of this symmetry is implemented.

Let us recall that ΨeL and ΨqL of eq. (4.14) and Φ of eq. (8.1) are 2 under SU(2) i.e. they transform

as

δΦ = i
τ

2
α Φ, · · · , δΨ = i

τ

2
α Ψ, · · · , δΨ = −i Ψ τ

2
α, · · · (8.24)

so that ΨeLΦ, ΨqLΦ are invariant under a SU(2)L transformation and so are the hermitian conjugates

γ0Φ†ΨeL , γ
0Φ†ΨqL. Considering now the transformation properties under U(1)Y : the combination

ΨeLΦ has hypercharge 2 and ΨqLΦ hypercharge 2/3 so that ΨeLΦ e
R
and ΨqLΦ d

R
(see table eq. (4.27)

for the hypercharge assignments) are invariant under a SU(2)L ⊗U(1)Y gauge transformation. Their

hermitian conjugates are : e
R
Φ† ΨeL and d

R
Φ† ΨqL . Since these terms are also Lorentz invariants

they satisfy all criteria to enter LY .

One can construct another type of group invariant with the help of Φ̃ = iτ
2
Φ∗ which is a SU(2)

doublet : indeed one can show

δΦ̃ ≡ δ(iτ
2
Φ∗) = iτ

2
δΦ∗ = iτ

2
(−iτ

∗

2
α) Φ∗ = (i

τ

2
α) Φ̃ (8.25)

where one has used for the last equality the property iτ
2
τ ∗ = −τ (iτ

2
). The combinations ΨeLiτ2Φ

∗and

ΨqLiτ2Φ
∗ are invariant under a SU(2)L transformation and have hypercharge 0 and -4/3 (y

Φ
∗ = −y

Φ
=

−1), respectively. Thus ΨqLiτ2Φ
∗ u

R
= ΨqLΦ̃ u

R
is invariant under a group transformation. Had we

included a right-handed neutrino the contribution ΨeLiτ2Φ
∗ ν

R
= ΨeLΦ̃ ν

R
would satisfy the conditions

but we will ignore it here (see sec. 12). Thus the Yukawa lagrangian then takes the form

LY = − cd Ψq
L
Φ d

R
− cu Ψq

L
Φ̃ u

R
− ce ΨeLΦ e

R
+ h.c. + other families, (8.26)

where we have explicitely written out the terms involving the first family of fermions (ν, e;u, d). Six

other parameters should be similarly introduced for the couplings of the second and third families so

that nine new parameters appear in the model.

Implementing spontaneous symmetry breaking, in the unitary gauge, i.e. substituting in LY the

expression of Φ as given in the right-hand side of eq. (8.14), we derive

LY = − cd
v +H√

2
dd − cu

v +H√
2
uu − ce

v +H√
2
ee + other families. (8.27)
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From this expression we relate the mass of a fermion f to the vacuum expectation value v via

mf = cf
v√
2
. (8.28)

This is not a prediction of the theory since the parameters cf are unknown and will be adjusted so

as to obtain the “physical” mass of the corresponding fermion. Furthermore, no relation is expected

between the masses of partners of a given family since one parameter is introduced for each of the

fermion type in a family. One may remark that the only “prediction” is that the neutrino remains

massless as a consequence of the absence a right-handed neutrino. On the other hand, the Higgs

couplings to the fermions are predicted, if the fermion masses are known,

gf =
cf√
2
=
mf

v
=

e

2 sin θ
W

mf

M
W

, (8.29)

where eqs. (8.28) and (8.19) have been used: the Higgs particle couples to a fermion flavour in pro-

portion to the fermion mass, implying that the top quark could play a major role in the production

and/or decay of the Higgs particle (mt ∼ 175 GeV) while the electron and light fermion contribu-

tions can be safely neglected. It is a puzzle why one observes such a large spectrum of masses from

me = .511 10−3 GeV to mt = 173.21 GeV! No model naturally “explains” this fact.

• Remark

In sec. 2.3 we mentioned a problem related to massive gauge bosons namely the bad asymptotic

behavior of the cross section of W pair production in e−e+ colliders. This was illustrated on the

simpler case ν ν̄ → W− W+ showing that the longitudinal polarisation states yield a cross section

violating the Froissart bound if one keeps only the neutrino exchange diagram. Coming back to

e− e+ → W− W+ we leave it to the reader to check that, keeping fermion mass terms and including

all diagrams in the unitary gauge, as shown in Fig. 2, the corresponding cross section is asymptotically

finite. At higher orders, loop diagrams involve massive gauge boson propagators: in the unitary gauge

e−

e+

W−

W+

p1

p2

p3

p4

νe
γ, Z

W−

W+
H

W−

W+

Figure 2: The e− e+ →W− W+ diagrams at lowest order in the unitary gauge.

they do not converge to 0 when k2 → ∞ and this leads to an apparently non-renormalisable theory.
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As explained in detail for the abelian case, the way out is to work in a “renormalisable” gauge (the

’t Hooft gauges) where the gauge boson propagators have the form eq. (7.22) and the Golstone modes

ω are explicitely kept in the calculation.

8.4 The Higgs boson discovery

As an application we consider Higgs production in proton-proton colliders at the LHC at a center of

mass energy
√
s = 7, 8 or 13 TeV. The Higgs boson could be produced in the annihilation of light

proton

Higgs
g

g

t

proton

Figure 3: Higgs production mechanism at hadron-hadron colliders : the dominant contribution arises
from the subprocess where two gluons couple to the Higgs via a top quark loop. Another diagram with
the fermion arrow reversed should be added.

W

γ

γ

H
t

γ

γ

H H

γ

γ

W

W

Figure 4: Higgs decay mechanism into two photons: The dominant contributions arises from top quark
loops and W boson loops. The final photons should be symmetrised in the first two diagrams.

quarks and antiquarks of the initial hadrons, q+ q̄ → H, but such a coupling, eq. (8.29), is suppressed

by a factor mf/v ≃ mf/250 with mf , the mass of the quark, measured in GeV. The direct process

tt→ H is possible but it is, of course, suppressed because of the negligibly small density of top quarks

in the proton. For a Higgs mass below about 500 GeV it turns out that the dominant process is

gluon-gluon fusion where the effective Higgs coupling to the gluon-gluon system is via a top quark

loop as indicated in Fig. 3. The discovery channels of the Higgs boson have been H → Z Z∗ → 4
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Figure 5: ATLAS (Phys. Rev. D90 (2014) 112015) results on Higgs observation through its decay
into 2 photons.

charged leptons (direct HZZ coupling ∝ eM
Z
) and H → γ γ. As shown in fig. 4 the two photon

channel involves again a virtual top loop as well as W± loops. The results of the ATLAS and CMS

collaborations are shown in Figs. 5 and 6: they illustrate the difficulty to extract the small H → γ γ

signal from a huge background, essentially q q̄ → γ γ and its large associated QCD corrections. The

H boson, of mass MH = 125.09 GeV, cannot decay in a top pair of mass 2∗173.21 Gev but can decay

into a bottom-antibottom pair. However the background in this channel is too large to be able to

extract the Higgs signal, but the decay H → b+ b̄, with H produced in association with a vector boson,

has been studied by ATLAS12 and CMS13. Other decay channels which have been considered and will

studied at the High Luminosity LHC and the High Energy (27 GeV) LHC are H → WW ∗ → lνl′ν ′,

12ATLAS Collaboration, M. Aaboud et al., Phys. Lett. B786 (2018) 59, arXiv:1808.08238 [hep-ex].
13CMS Collaboration,Phys. Rev. Lett. 121 (2018) 121801, arXiv:1808.08242 [hep-ex].
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Figure 6: CMS (Eur. Phys. J. C76 (2016) 13) results on Higgs observation through its decay into 2
photons.

H → τ−τ+ with the τ ’s decaying leptonically or hadronically and H → µ−µ+.14

The next two sections are devoted to a discussion of important production and decay mechanisms of

the Higgs boson. Other exercises on the Standard Model can be found at

https://lectures.lapth.cnrs.fr/standard_model/cours/exo_en.pdf.

8.5 Conclusions

At this point one has, in a first approximation, a complete model for the electroweak interactions. It

contains a massive scalar particle, a massless and three massive gauge bosons, with propagators as

in eqs. (8.18). All couplings between bosons and bosons to fermions are given assuming no mixing

between the three generations of matter fields. The generation mixing is dealt with in sec. 11.

14Higgs Physics at the HL-LHC and HE-LHC, arXiv:1902.00134, [hep-ph].
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9 Exercise : study of the reaction proton + proton → H+X

The mass of the Higgs boson is large enough to justify the use of the parton model and perturbative

QCD to study the production of a Higgs boson in proton-proton collisions.

9.1 The gluon-gluon fusion mechanism

In this framework, considering only the dominant process via gluon-gluon fusion, the hadronic cross

section of the inclusive reaction p(k1) + p(k2)→ H(p3) +X can be written as:

σH =

∫ 1

0
dx1

∫ 1

0
dx2 F

P
g (x1,M

2)FPg (x2,M
2) σ̂g g→H , (9.1)

where FPg (x,M2) stands for the gluon density in the proton, the gluon carrying a fraction x of the

proton four-momentum, evolved at the factorisation scale M . The quantity σ̂g g→H is the cross section

of the partonic reaction g(p1) + g(p2)→ H(p3). The 4-momentum of the initial gluons are such that

p1 = x1 k1 and p2 = x2 k2. The partonic cross section itself is given by:

σ̂g g→H =
1

4 p1.p2

∫
d3p3

(2π)3 2E3
(2π)4 δ4(p1 + p2 − p3) |T̄ |2, (9.2)

with |T̄ |2 the matrix element squared averaged over initial polarisations and colours. Transform-

ing d3p3/(2E3) in d4p3 δ
+(p23 −M2

H), the integration on p3 can be performed easily with the Dirac

distribution and we get:

σ̂g g→H =
1

2x1 x2 S
(2π) δ+(x1 x2 S −M2

H) |T̄ |2, (9.3)

with the total energy squared S = (k1 + k2)
2 = 2 k1.k2 (the proton mass is neglected). Injecting

eq. (9.3) in eq. (9.1), we get for the hadronic cross section:

σH =

∫ 1

0

dx1
x1

∫ 1

0

dx2
x2

FPg (x1,M
2)FPg (x2,M

2)
π

S
δ+(x1 x2 S −M2

H) |T̄ |2. (9.4)

The integration over x2 can be performed with the help of the remaining Dirac distribution to find:

σH =
π

M2
H S

∫ 1

M2
H/S

dx1
x1

FPg (x1,M
2)FPg

(
M2
H

x1 S
,M2

)

|T̄ |2 (9.5)

The bounds on integration are obtained from the constraints 0 < x1, x2 ≤ 1 and M2
H/S ≤ x1x2 ≤ 1

which lead to M2
H/(x1 S) ≤ x2 ≤ 1 and M2

H/S ≤ x1 ≤ 1. We compute now |T̄ |2. At the lowest order,

three diagrams contribute to the partonic process g(p1) + g(p2)→ H(p3):
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g(p1) g(p1) g(p1)

g(p2) g(p2) g(p2)

k

k − p1

k + p2

H(p3) H(p3) H(p3)

T1 T2 T3

The amplitude T3 vanishes because it is proportional to Tr[T a], T a traceless, a generator of the

SU(3) colour algebra. Applying the Feynman rules in n 6= 4 dimensions to tame potential ultraviolet

divergencies (µ is the arbirary mass introduced when going to n dimensions) and taking into account

the factor −1 for a fermion loop, the amplitude T1 is given by:

T1 = −g2s
mq

v
Tr
[

T aT b
]

µ4−n
∫

dnk

(2π)n
Tr

[

γν
(6k +mq)

k2 −m2
q + i ǫ

γµ
(6k − 6p1 +mq)

(k − p1)2 −m2
q + i ǫ

(6k + 6p2 +mq)

(k + p2)2 −m2
q + i ǫ

]

× ǫaµ(p1) ǫbν(p2)

= − g2s emq

4 sin θ
W
M

W

µ4−n δab ǫaµ(p1) ǫ
b
ν(p2)

∫
dnk

(2π)n

× Tr [γν (6k +mq) γ
µ (6k − 6p1 +mq) (6k + 6p2 +mq)]

(k2 −m2
q + i ǫ) ((k − p1)2 −m2

q + i ǫ) ((k + p2)2 −m2
q + i ǫ)

(9.6)

where gsT
a is the strong interaction coupling of a gluon of colour a to a quark,mq/v (see eq. (8.29)), the

coupling of the quarks to the Higgs boson. In the second equation the relation 1/v = e/2 sin θ
W
M

W
,

eq. (8.19) is used and Tr
[
T aT b

]
= δab/2 takes care of the sum on the quark colours in the loop.

Setting

Nµν(k) = Tr [γν (6k +mq) γ
µ (6k − 6p1 +mq) (6k + 6p2 +mq)]

and computing the trace on the Dirac matrices as usual, we get:

Nµν(k) = 4mq {gµ ν(k − p1).(k + p2) + (k + p2)
ν (k − p1)µ − (k − p1)ν (k + p2)

µ + kν (k + p2)
µ

+(k + p2)
ν kµ − gµ ν k.(k + p2) + kν (k − p1)µ + kµ (k − p1)ν − gµ ν k.(k − p1) +m2

q g
µ ν
}

= 4mq

{
gµ ν (m2

q − k2 − p1.p2) + 4 kµ kν − 2 kν pµ1 + 2 kµ pν2 + pν1 p
µ
2 − pν2 p

µ
1

}
. (9.7)

In eq. (9.7), all the terms proportional to pµ1 and pν2 can be dropped because they will vanish after

contraction with the gluon polarisation vectors. The quantity Nµν(k) becomes:

Nµ ν(k) = 4mq

{
gµ ν (m2

q − k2 − p1.p2) + 4 kµ kν + pν1 p
µ
2

}
. (9.8)
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Then, two Feynman parameters x and y are introduced to linearize the denominator:

T1 = 2Kµ ν

∫ 1

0
dy y

∫ 1

0
dx

∫
dnk

(2π)n
Nµ ν(k)

×
[
(1− y) (k2 −m2

q + i ǫ) + x y ((k − p1)2 −m2
q + i ǫ) + (1− x) y ((k + p2)

2 −m2
q + i ǫ)

]−3

= 2Kµ ν

∫ 1

0
dy y

∫ 1

0
dx

∫
dnk

(2π)n
Nµ ν(k)

×
[
(k + (p2 (1− x)− p1 x) y)2 + 2 y2 x (1− x)p1.p2 −m2

q + i ǫ
]−3

(9.9)

with

Kµν = − g2s emq

4 sin θ
W
M

W

µ4−n δab ǫaµ(p1) ǫ
b
ν(p2)

We shift the loop four-momentum k = l − (p2 (1 − x)− p1 x) y. The factor Nµν(k) contains terms of

the type k2 and kµ kν which transform under the shift as:

k2 ≃ l2 − 2 y2 x (1− x) p1.p2
kµ kν ≃ gµ ν/n l2 − y2 x (1 − x) pµ2 pν1

All odd powers of l will vanish after the integration over l, so they have been removed. Eq. (9.8)

becomes:

Nµν(k) = 4mq

{

gµ ν
[(

4

n
− 1

)

l2 +m2
q + 2 p1.p2

(

y2 x (1− x)− 1

2

)]

+ pν1 p
µ
2

(
1− 4 y2 x (1− x)

)
}

(9.10)

The amplitude T1 is then:

T1 = 2Kµ ν

∫ 1

0
dy y

∫ 1

0
dx

∫
dnl

(2π)n
4mq

(A1 l
2 +A2) g

µ ν +B pν1 p
µ
2

(l2 −R2 + i ǫ)3
(9.11)

with:
R2 = m2

q − 2 y2 x (1− x) p1.p2
A1 = 4/n − 1
A2 = 2m2

q − p1.p2 −R2

B = 1− 4 y2 x (1− x) = 1− 2(m2
q +R2)/p1.p2

The integration over the four-momentum l yields the following result15:

T1 =
i

(4π)n/2
4mqKµ ν

∫ 1

0
dy y

∫ 1

0
dx

[
n

2

4− n
n

Γ
(

2− n

2

) (
R2 − i ǫ

)−2+n/2
gµν

− Γ
(

3− n

2

) (
R2 − i ǫ

)−3+n/2
(A2 g

µ ν +B pν1 p
µ
2 )

]

(9.12)

15The general formula is:
∫

dnk

(2π)n
k2

r

[k2 −R2 + iǫ]m
= i (R2 − iǫ)r−m+n

2
(−1)r−m

(4π)
n

2

Γ(r + n
2
)

Γ(n
2
)

Γ(m− r − n
2
)

Γ(m)

= i
(−1)r−m

(4π)2

(

4π

R2 − iǫ

)ε

(R2)2+r−m
Γ(2 + r − ε)

Γ(2− ε)

Γ(m− r − 2 + ε)

Γ(m)
.
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The coefficient in front of the ultraviolet divergence Γ
(
2− n

2

)
vanishes for n = 4, more precisely:

n

2

4− n
n

Γ
(

2− n

2

)

=
(

2− n

2

)

Γ
(

2− n

2

)

= Γ
(

3− n

2

)

So, actually, there is no divergence in this amplitude and we can now take safely n = 4 so that

Γ
(
3− n

2

)
reduces to 1. In addition, using p1.p2 =M2

H/2, we get:

T1 =
i

(4π)2
4mqKµ ν

(

gµ ν − 2 pν1 p
µ
2

M2
H

) ∫ 1

0
dy y

∫ 1

0
dx

×
[

2 +
M2
H

2

(

1−
4m2

q

M2
H

)

1

m2
q − y2 x (1− x)M2

H − i ǫ)

]

(9.13)

To perform the integration on the Feynman parameters, let us introduce the function:

J(z) =

∫ 1

0
dx

∫ 1

0
dy y

1

1− y2 x (1− x)/z − i ǫ (9.14)

with z = m2
q/M

2
H positive. The integration over y can be easily performed to get:

J(z) = −z
2

∫ 1

0
dx

1

x (1 − x) ln

(

1− x (1 − x)
z

− i ǫ
)

= −z
2

∫ 1

0
dx

[
1

x
+

1

(1− x)

]

ln

(

1− x (1 − x)
z

− i ǫ
)

= −z
∫ 1

0

dx

x
ln

(

1− x (1− x)
z

− i ǫ
)

. (9.15)

The roots of the argument of the logarithm are given by:

0 < z < 1
4 x1, 2 =

1
2 ± 1

2

√
1− 4 z ± i ǫ

z > 1
4 x1, 2 =

1
2 ± i

2

√
4 z − 1 ,

so

ln

(

1− x (1− x)
z

− i ǫ
)

= ln

(
1

z

)

+ ln(x− x1) + ln(x− x2) ,

but ln(1/z) = − ln(x1 x2) = − ln(−x1)− ln(−x2) because x1 and x2 are complex conjugate. The two

terms ln(x− x1) and ln(−x1) can be grouped because the imaginary parts of the two arguments are

the same and similarly for the terms in x2. So we get for J(z):

J(z) = −z
[∫ 1

0

dx

x
ln

(

1− x

x1

)

+

∫ 1

0

dx

x
ln

(

1− x

x2

)]

= z

[

Li2

(
1

x1

)

+ Li2

(
1

x2

)]

. (9.16)
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It can be shown, c.f. sec. 9.3, that J(z) can be written using only the logarihtm function whatever

the value of z is:

J(z) = −z
2







(

ln
(
1−

√
1−4 z

1+
√
1−4 z

)

− i π
)2

z ≤ 1/4

ln2
(
i
√
4 z−1−1

i
√
4 z−1+1

)

z > 1/4
. (9.17)

So the amplitude T1 is given by:

T1 =
i

(4π)2
4mqKµ ν

(

gµ ν − 2 pν1 p
µ
2

M2
H

)
M2
H

2m2
q

×
{

2
m2
q

M2
H

+

(

1− 4
m2
q

M2
H

)

J

(

m2
q

M2
H

)}

. (9.18)

For the following, we set:

F(z) = 2 z + (1− 4 z) J (z) (9.19)

The function F(z) can be complex or real following the ratio z = m2
q/M

2
H . In fig. 7, we draw the

Figure 7: Real and imaginary part of the function F(z) with respect to z = m2
q/M

2
H

real and imaginary parts of F(z) with respect to z (see sec. 9.3). It can be shown that this function

has the limit 1/3 when z →∞. To show that let us come back to eq. (9.14) which gives the integral

representation of the function J(z), when z → ∞, the denominator cannot vanish so we can take

safely the limit ǫ→ 0 and write:

1

1− y2 x (1 − x)/z ≃ 1 + y2 x (1− x)/z .
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So in this limit, the function J(z) behaves as:

J(z) ≃
∫ 1

0
dx

∫ 1

0
y dy +

1

z

∫ 1

0
dxx (1− x)

∫ 1

0
dy y3

≃ 1

2
+

1

24 z
, (9.20)

and therefor the function F(z)→ 1/3 when z →∞. Since the amplitude T2 can be obtained from the

amplitude T1 by changing ǫ(p1), p1 ↔ ǫ(p2), p2, it is clear from eq. (9.18) that T2 = T1. So the total

amplitude T = T1 + T2 is:

T = − i

4π

αs e

sin θ
W

M2
H

M
W

δab ǫaµ(p1) ǫ
b
ν(p2)

(

gµ ν − 2 pν1 p
µ
2

M2
H

)

F
(

m2
q

M2
H

)

, (9.21)

where the notation αs = g2s/(4π) has been introduced for the strong interaction coupling. Note that in

eq. (9.21), if we replace ǫ(p1) (respectively ǫ(p2)) by p1 (resp. p2), the amplitude T vanishes because:

p1µ

(

gµ ν − 2 pν1 p
µ
2

M2
H

)

= 0

Let us now compute the modulus squared of the amplitude averaging over the initial spins and colours:

|T̄ |2 = 1

4 (N2 − 1)2

∑

polarisations

∑

colours

|T |2

For the average over the initial spins, we have to compute something like:

S =
∑

polarisations

ǫaµ(p1) ǫ
b
ν(p2) ǫ

c ⋆
ρ (p1) ǫ

d ⋆
σ (p2)

(

gµ ν − 2 pν1 p
µ
2

M2
H

)(

gρ σ − 2 pσ1 p
ρ
2

M2
H

)

= δa c δb d (−gµρ) (−gν σ)
(

gµ ν − 2 pν1 p
µ
2

M2
H

)(

gρ σ − 2 pσ1 p
ρ
2

M2
H

)

= 2 δa c δb d

Note that we have taken
∑

pol. ǫ
a
µ(p1) ǫ

c ⋆
ρ (p1) = −δa c gµ ρ this is justified in this case because the

replacement of ǫµ(p1) by p
µ
1 (ǫν(p2) by p2) gave zero. Now, for the average over the initial colours, we

have to compute:

C =
∑

a,b,c,d

δa b δc d δa c δb d =
∑

a

δa a = N2 − 1

where N is the number of colours. Finally we obtain for the matrix element squared:

|T̄ |2 = α2
s αM

4
H

8π (N2 − 1) (sin θ
W
M

W
)2

∣
∣
∣
∣
∣
F
(

m2
q

M2
H

)∣
∣
∣
∣
∣

2

, (9.22)

70



where the fine structure constant α = e2/4π is introduced. So far, we considered only one quark

flavour in the loop, in principle we need to sum over all the possible flavours of quarks so that eq. (9.5)

becomes:

σH =
1

8 (N2 − 1)

α2
s αM

2
H

(sin θ
W
M

W
)2 S




∑

q=d,u,s,c,b,t

∣
∣
∣
∣
∣
F
(

m2
q

M2
H

)∣
∣
∣
∣
∣

2




×
∫ 1

M2
H/S

dx1
x1

FPg (x1,M
2)FPg

(
M2
H

x1 S
,M2

)

(9.23)

In practice, we can content ourselves to keep only the top quark since the function F is vanishingly

small for other quark species. The scale M which appears in the partonic densities of eq. (9.23) must

be taken of the order of the Higgs boson mass (MH) because this is the only “hard” energy scale

(much greater than ΛQCD) which remains.

9.2 Function Li2

The Li2 function is defined as:

Li2(z) = −
∫ y

0
dt

ln(1− t)
t

= −
∫ 1

0
dt

ln(1− z t)
t

(9.24)

with z complex. From its definition, the function Li2 has a cut in the complex plan on the real axis

[1,∞[. Furthermore, we have the following property:

Li2(1) =
π2

6
=

∞∑

k=1

1

k2
.

In the case where z has an infinitesimal imaginary part z = x ± i ǫ and a real part x > 1, from the

definition of the function Li2, we can show that:

Li2 (x± i ǫ) ǫ→0
= −Li2

(
1

x

)

− 1

2
ln2
(
1

x

)

+
π2

3
∓ i π ln

(
1

x

)

. (9.25)

This equation gives us the prescription for x > 1. More generally, if z is a complex number with a

non vanishing imaginary part (it is always the case if we carefuly keep track of the small imaginary

part ǫ), we have the following relations:

Li2

(
1

z

)

= −Li2(z)−
π2

6
− 1

2
ln2(−z) (9.26)

Li2(1− z) = −Li2(z) +
π2

6
− ln(1− z) ln(z) . (9.27)
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9.3 Different rewritting of the function J(z)

We can apply the relations in the section above to simplify J(z) (eq. (9.16)). Let us start with the

case where z ≤ 1/4. In this case the real parts of x1 and x2 are between 0 and 1. We can use eq. (9.25)

and we obtain that:

Li2

(
1

x1

)

+ Li2

(
1

x2

)

= −Li2(y)− Li2(1− y)−
1

2
ln2(y)− 1

2
ln2(1− y)

+
2π2

3
− i π (ln(1− y)− ln(y)) , (9.28)

with y the real part of x1, y = 1/2 (1 +
√
1− 4 z). Then, we can apply the relation (9.27) to the

equation (9.28), this gives:

Li2

(
1

x1

)

+ Li2

(
1

x2

)

= −1

2
ln2(y)− 1

2
ln2(1− y) + ln(y) ln(1− y)

+
π2

2
− i π (ln(1− y)− ln(y))

= −1

2
(ln(1− y)− ln(y))2 +

π2

2
− i π (ln(1− y)− ln(y)) . (9.29)

As 0 ≤ y ≤ 1, we can group the logarithms and we get:

Li2

(
1

x1

)

+ Li2

(
1

x2

)

= −1

2

[

ln

(
1

y
− 1

)

+ i π

]2

= −1

2
ln2
(

1− 1

x1

)

. (9.30)

In the case where z > 1/4, x1 and x2 are complex conjugate but with an imaginary part which is not

infinitesimal. We will use the relation (9.26) to write that:

Li2

(
1

x1

)

+ Li2

(
1

x2

)

= −Li2(x1)− Li2(1− x1)−
1

2
ln2(−x1)−

1

2
ln2(x1 − 1)− π2

3
. (9.31)

Then, applying eq. (9.27), the sum of the dilogarithms becomes:

Li2

(
1

x1

)

+ Li2

(
1

x2

)

= −1

2
ln2(−x1)−

1

2
ln2(x1 − 1)− π2

2

+ ln(x1) ln(1− x1)

= −1

2
(ln(x1 − 1)− ln(−x1))2 −

π2

2
− ln(x1 − 1) ln(−x1) + ln(x1) ln(1− x1) . (9.32)

Let us remark that x1 has a real part and an imaginary part which are both positive, it lies then in the

first quadrand. With the convention that the cut of the logarithm is along the negative real axis, then
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the phase of a complex number in the main Rieman sheet is between −π and π, if x1 is parametrised

like ρ ei θ then −x1 = ρ ei (θ−π) and so the relation between the logarithms of x1 and −x1 is:

ln(−x1) = ln(x1)− i π .

In the same way, 1 − x1 has a positive real part and a negative imaginary part, so if 1 − x1 = ρ ei θ

then x1 − 1 = ρ ei (θ+π) and we have that:

ln(x1 − 1) = ln(1− x1) + i π .

Using that, we write:

ln(x1) ln(1− x1) = ln(−x1) ln(x1 − 1) + i π (ln(x1 − 1)− ln(−x1)) + π2 , (9.33)

so the sum of the two dilogarithms can be written:

Li2

(
1

x1

)

+ Li2

(
1

x2

)

= −1

2
(ln(x1 − 1)− ln(−x1))2 +

π2

2
+ i π (ln(x1 − 1)− ln(−x1))

= −1

2
[ln(x1 − 1)− ln(−x1)− i π]2 . (9.34)

The term i π can be reabsorbed by writing ln(1−x1) instead of ln(x1−1) and remarking that 1−x1 = x2

and −x1 have a same sign imaginary part, then we finally get:

Li2

(
1

x1

)

+ Li2

(
1

x2

)

= −1

2
ln2
(

1− 1

x1

)

. (9.35)

Thus, J(z) can be simplified such that only the logarithmic function is used for buth cases:

J(z) = −z
2







ln2
(√

1−4 z−1+i ǫ√
1−4 z+1+i ǫ

)

z ≤ 1/4

ln2
(
i
√
4 z−1−1

i
√
4 z−1+1

)

z > 1/4
. (9.36)

To conclude these technical remarks, we show how to rewrite J(z) to make easy the comparison with

the results which can be found in the litterature. In the case z ≤ 1/4, it is easy to show that:

ln

(√
1− 4 z − 1 + i ǫ√
1− 4 z + 1 + i ǫ

)

= ln

(√
1− 4 z − 1√
1− 4 z + 1

+ i ǫ

)

= − ln

(
1 +
√
1− 4 z

1−
√
1− 4 z

)

+ i π . (9.37)

For the case z > 1/4, we write:

ln

(
i
√
4 z − 1− 1

i
√
4 z − 1 + 1

)

= ln





√

1− 1
4 z + i

√
1
4 z

√

1− 1
4 z − i

√
1
4 z



 . (9.38)
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Remarking that the complex number
√

1− 1/4 z + i
√

1/4 z has a modulus which is equal to 1 and it

lies in the first quadrand, we show:

ln

(
i
√
4 z − 1− 1

i
√
4 z − 1 + 1

)

= ln





(√

1− 1

4 z
+ i

√

1

4 z

)2




= 2 ln

(√

1− 1

4 z
+ i

√

1

4 z

)

= 2 i arcsin

(√

1

4 z

)

. (9.39)

Then, the function J(z) becomes:

J(z) =
4 z

2







−1
4

(

ln
(
1+

√
1−4 z

1−
√
1−4 z

)

− i π
)2

z ≤ 1/4

arcsin2
(√

1
4 z

)

z > 1/4
. (9.40)
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10 Exercises: Higgs boson decays

We consider in the following various two body decays of a Higgs boson.

10.1 Kinematics

Let the Higgs boson of mass MH and momentum q decay into particles A and B of masses m1 and

m2 and momenta p1 and p2 respectively: H(q) → A(p1) + B(p2). The decay rate summed over final

polarisations and colours is:

dΓ =
1

2M

d3p1
(2π)3 2E1

d3p2
(2π)3 2E2

(2π)4 δ4 (q − p1 − p2)
∣
∣T̄
∣
∣2 , (10.1)

with
∣
∣T̄
∣
∣2 the invariant matrix element squared, summed over final colours and polarisations. Mo-

mentum conservation imposes p1.p2 = (M2
H − m2

1 − m2
2)/2 with p21 = m2

1 et p22 = m2
2. Thus

∣
∣T̄
∣
∣2

depends only on the external masses
∣
∣T̄ (m2

1,m
2
2,M

2
H)
∣
∣2 and the integral in eq. (10.1) can be done

independently of the decay channel. Using d3p2/2E2 = d4p2 δ
+(p22 −m2

2) and carrying out the d4p2

integration it comes out

dΓ =
1

2MH

∣
∣T̄
∣
∣2

(2π)2

∫
d3p1
2E1

δ+
(
(q − p1)2 −m2

2

)
. (10.2)

Going to the rest frame of the Higgs boson, q = (M, 0, 0, 0), one finds that the argument of the δ+

function reduces to (M2 − 2ME1 +m2
1 −m2

2) independent of the angles. Since all cases we consider

have m1 = m2 the expressions will simplify. Using p1 dp1 = E1 dE1 all integrations are easily done to

get:

Γ =
1

16πMH

∣
∣T̄
∣
∣2

√

1− 4m2

M2
, (10.3)

with m the common mass of the decay products.

10.2 Higgs decay into a fermion anti-fermion pair

This channel has only one diagram with the Higgs fermion-antifermion coupling, mf/v given in

eq. (8.29):

�

H(q)

f̄(p2)

f(p1)
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The coresponding amplitude T is:

T = −i mf

v
ū(p1) v(p2) (10.4)

leading to:

|T̄ |2 =
m2
f

v2
(N)

(
Tr [ 6p1 6p2]−m2

f Tr[1]
)

=
2m2

f M
2
H

v2

(

1−
4m2

f

M2
H

)

(N) . (10.5)

In the above result the colour factor N has been put in parentheses to indicate that, if the final fermions

are quarks then we keep this factor, while if they are leptons it should be ignored. Getting rid of the

vacuum expectation value v in favor of physical quantities via eq. (8.19), 1/v = e/(2 sin θ
W
M

W
) and

e2 = 4πα the decay rate is:

ΓH→f f̄ =
(N)α

8 sin2(θ
W
)

MH m
2
f

M2
W

(

1−
4m2

f

M2
H

)3/2

(10.6)

where eq. (10.3) has been used.

10.3 Higgs decay into a W+ W− pair

Here again only one diagram contributes:

�

H(q)

W−(p2)

W+(p1)

The amplitude for this transition is:

T = i
eM

W

sin θ
W

gαβ ελ1∗α (p1) ε
λ2∗
β (p2) , (10.7)

with ελα(p) the polarisation vector of a gauge boson and the coupling given in eq. (8.22). The sum

over polarisations is done using:

∑

λ

ελα(p) ε
λ ∗
β (p) = −gαβ +

pα pβ
M2

W

, (10.8)
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so that:

|T̄ |2 =

(
eM

W

sin θ
W

)2 (

−gαµ +
p1α p1µ
M2

W

) (

−gαµ + pα2 p
µ
2

M2
W

)

=
e2

4 sin2 θ
W
M2

W

(
12M4

W
+M4

H − 4M2
W
M2
H

)
. (10.9)

Finally the decay rate is:

ΓH→W+W− =
α

16 sin2(θ
W
)

M3
H

M2
W

√

1−
4M2

W

M2
H

(

1− 4
M2

W

M2
H

+ 12
M4

W

M4
H

)

(10.10)

10.4 Higgs decay in a γ γ pair

As seen in sec. 8.4 this transition goes via two types of loop diagrams, one involving fermions and the

other charged gauge bosons.

10.4.1 W boson loop

In the unitary gauge three types of diagrams contribute:

�

k + p1

k

k + q

H(q)

γ(p2)

γ(p1)

T1
�

k + p2

k

k + q

H(q)

γ(p1)

γ(p2)

T2
�

k + q

k

H(q)

γ(p2)

γ(p1)

T3

All these diagrams have a common structure, namely theHWW vertex and the two adjacentW propa-

gators of momentum k and k+q respectively. Each amplitude Ti is written as Ti = T µ1 µ2i ε∗µ1(p1) ε
∗
µ2(p2)

where we drop for simplicity the photon polarisation indices. Furthermore we introduce the tensor

T̃ µ1 µ2i :

T µ1 µ2i =

∫
dnk

(2π)n
T̃ µ1 µ2i ,

with T̃ µ1 µ2i = Rα1 α2
Mµ1 µ2 α1 α2

i , Rα1 α2
containing the part common to all three digrams. Applying
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the Feynman rules, using the unitary gauge for the W propagators, it comes out:

Mµ1 µ2 α1 α2

1 = (i e)
[

gα2 µ2 (k + q + p2)
β1 + gµ2 β1 (−p2 + k + p1)

α2 + gβ1 α2 (−k − p1 − k − q)µ2
]

× (−i)
(

gβ1 β2 −
(k + p1)β1 (k + p1)β2

M2
W

)
1

(k + p1)2 −M2
W

+ i ǫ

× (i e)
[

gβ2 µ1 (k + p1 + p1)
α1 + gµ1 α1 (−p1 + k)β2 + gα1 β2 (−k − k − p1)µ1

]

(10.11)

Mµ1 µ2 α1 α2

2 = Mµ1 µ2 α1 α2

1 (µ1 ↔ µ2, p1 ↔ p2) (10.12)

Mµ1 µ2 α1 α2

3 = i e2 [gα1 µ1 gα2 µ2 + gα1 µ2 gα2 µ1 − 2 gµ1 µ2 gα1 α2 ] , (10.13)

and for the common structure of the amplitudes:

Rα1 α2
= −i eM

W

sin(θ
W
)

(

gα1 α2
− (k + q)α1

(k + q)α2

M2
W

− kα1
kα2

M2
W

+
kα1

(k + q)α2
k.(k + q)

M4
W

)

× 1

(D0 + i ǫ) (D3 + i ǫ)
. (10.14)

The quantities D0 and D3 are the denominators of propagators,

D0 = k2 −M2
W
, D3 = (k + q)2 −M2

W
, (10.15)

and we will need later,

D1 = (k + p1)
2 −M2

W
, D2 = (k + p2)

2 −M2
W
. (10.16)

The diagrams T1, T2 et T3 are highly divergent in the ultraviolet region:

T1 etT2 ≃
∫
d4k k8

k6
≃
∫

dk k5

T3 ≃
∫
d4k k6

k6
≃
∫

dk k3 ,

but working in n space-time dimensions regularizes the divergencies. Rather than evaluating these

integrals by brute force we try to arrange the terms to make possible cancellations obvious in the

integrands. One thus defines:

T µ1 µ2 = T µ1 µ21 + T µ1 µ22 + T µ1 µ23

=

∫
dnk

(2π)n

(

T̃ µ1 µ21 + T̃ µ1 µ22 + T̃ µ1 µ23

)

. (10.17)

After integration on the loop momentum k the tensor T µ1 µ2 depends only on the external momenta

p1, p2 and it can be parameterised as:

T µ1 µ2 =
A

p1.p2
pµ21 pµ12 +

B

p1.p2
pµ11 pµ22 + C gµ1 µ2 . (10.18)
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The aim is to calculate the expressions A,B and C. For this purpose we construct the following

scalars:

gµ1 µ2 T
µ1 µ2 = A+B + nC

p1µ2 p2µ1 T
µ1 µ2 = p1.p2 (B + C)

p1µ1 p2µ2 T
µ1 µ2 = p1.p2 (A+ C) ,

where the property gµ1 µ2 g
µ1 µ2 = n has been used since we work in n dimensions. The system of

equations is easily solved to find:

C =
1

2 (n− 2)

(

gµ1 µ2 T
µ1 µ2 − p1µ2 p2µ1

p1.p2
T µ1 µ2 − p1µ1 p2µ2

p1.p2
T µ1 µ2

)

(10.19)

B =
p1µ2 p2µ1
p1.p2

T µ1 µ2 − C (10.20)

A =
p1µ1 p2µ2
p1.p2

T µ1 µ2 − C . (10.21)

The various contractions of the tensor T µ1 µ2 are calculated with the help of a form program16,17. By

reconstructing systematically the quantities D0, · · · ,D3 in the numerators and cancelling them with

the denominators, we get rid of the k dependence in the numerators so that only scalar integrals have

to be evaluated. There are two 3-point integrals:

I013 =

∫
dnk

(2π)n
1

(D0 + i ǫ) (D1 + i ǫ) (D3 + i ǫ)

I023 =

∫
dnk

(2π)n
1

(D0 + i ǫ) (D2 + i ǫ) (D3 + i ǫ)

three 2-points integrals:

I03 =

∫
dnk

(2π)n
1

(D0 + i ǫ) (D3 + i ǫ)

I13 =

∫
dnk

(2π)n
1

(D1 + i ǫ) (D3 + i ǫ)

I23 =

∫
dnk

(2π)n
1

(D2 + i ǫ) (D3 + i ǫ)

and four 1-point integrals:

I0 =

∫
dnk

(2π)n
1

(D0 + i ǫ)
I1 =

∫
dnk

(2π)n
1

(D1 + i ǫ)

I2 =

∫
dnk

(2π)n
1

(D2 + i ǫ)
I3 =

∫
dnk

(2π)n
1

(D3 + i ǫ)
.

16For an on line documentation on form see http://www.nikhef.nl/~form/maindir/documentation/reference/online/
17The code for the evaluation of A,B and C is found at https://lectures.lapth.cnrs.fr/standard_model/cours/hgaga.frm
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Note that the last two sets of integrals would be ultraviolet divergent in 4 dimensions, but, working in

n dimensions, they are regular and we can do translations on the loop momentum to evaluate them.

For example:

I1 =

∫
dnk

(2π)n
1

(k + p1)2 −M2
W

+ i ǫ
=

∫
dnk

′

(2π)n
1

(k′)2 −M2
W

+ i ǫ
with k

′

= k + p1 , (10.22)

then I1 = I0. In the same way one shows that:

I3 = I2 = I1 = I0

All 2-point integrals can be written in the following form:

J2 =

∫
dnk

(2π)n
1

(k2 −M2
W

+ i ǫ) ((k + p)2 −M2
W

+ i ǫ)
, (10.23)

is reduced to:

J2 =

∫ 1

0
dx

∫
dnk

(2π)n
1

((k + p x)2 −R2 + i ǫ)2
, (10.24)

after introduction of the Feynman variable x, with R2 = M2
W
− p2 x (1 − x). Doing the change of

variable k to l = k + p x and using the usual formulae (see sec. 9.1) one obtains:

J2 =
i

(4π)n/2

∫ 1

0
dx
(
R2 − i ǫ

)−2+n/2 Γ(2− n/2)
Γ(2)

. (10.25)

Introducing ε through n = 4− 2 ε, and expanding around ε = 0, it comes out:

J2 =
i

(4π)2−ε
Γ(1 + ε)

ε

(

1− εĨ(p2)
)

, (10.26)

with:

Ĩ(p2) =

∫ 1

0
dx ln

(
M2

W
− p2 x (1− x)− i ǫ

)
. (10.27)

The pole in ε is the consequence of the ultraviolet divergence of the 2-point functions. It turns out

that, in our calculation, the 2-point integrals are all multiplied by ε which allows us to take the ε→ 0

limit to find finally:

ε J2 =
i

(4π)2
. (10.28)

For the 3-point integrals, both I013 et I023 can be written as:

J3 =

∫
dnk

(2π)n
1

(k − r1)2 −M2
W

+ i ǫ

1

k2 −M2
W

+ i ǫ

1

(k + r2)2 −M2
W

+ i ǫ
(10.29)

with r1 = p1 and r2 = p2 for I013, and r1 = p2 et r2 = p1 for I023. Introducing the Feynman parameters

and using l = k + (r2 (1− x)− r1 x) y rather than k as integration variable one finds:

J3 = 2

∫ 1

0
y dy

∫ 1

0
dx

∫
dnl

(2π)n
1

(l2 −R2 + i ǫ)3
, (10.30)
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with R2 =M2
W
− y2 x (1− x) q2 and q = p1 + p2 = r1 + r2. Integrating on l yields:

J3 = −
i

(4π)n/2
Γ
(

3− n

2

) ∫ 1

0
y dy

∫ 1

0
dx (R2 − i ǫ)−3+n/2 , (10.31)

which is regular. Taking n = 4 and doing the y integration J3 can be written as:

J3 = −
i

(4π)2
1

M2
W

J

(

M2
W

q2

)

, (10.32)

with the function J defined in eq. (9.16) of the previous section. The result depends only on r1 + r2

which implies I013 = I023.

After contraction of the tensor T µ1 µ2 with the photons polarisation vectors we obtain:

TW = T µ1 µ2 ε∗µ1(p1) ε
∗
µ2(p2)

=

(

C gµ1 µ2 +
A

p1.p2
pµ11 pµ22

)

ε∗µ1(p1) ε
∗
µ2(p2) (10.33)

one observes that the B term has disappeared as it is multiplied by 0!. The form code gives A = −C
and:

C =
i

(4π)2

(

e2
eM

W

sin(θ
W
)

) [

6 +
1

z
W

+ J(z
W
)

(

−12 + 6

z
W

)]

(10.34)

with z
W

=M2
W
/M2

H . Putting everything together it comes out:

TW =
i

(4π)2

(

e2
eM

W

sin(θ
W
)

) [

6 +
1

z
W

+ J(z
W
)

(

−12 + 6

z
W

)] (

gµ1 µ2 − pµ11 pµ22
p1.p2

)

× ε∗µ1(p1) ε
∗
µ2(p2)

= i
α

4π

e

sin(θ
W
)

M2
H

M
W

G
(

M2
W

M2
H

) (

gµ1 µ2 − 2 pµ11 pµ22
M2
H

)

ε∗µ1(p1) ε
∗
µ2(p2) (10.35)

where:

G(z) = [6 z + 1 + 6J (z) (1− 2 z)]

Some remarks are in order.

1. All ultraviolet divergences have disappeared: it was necessary to go to n dimensions in the

intermediate steps of the calculation to give a mathematical meaning to individual integrals and

allow for the momentum translations in the loops, but after combining all terms one takes the

limit to 4 dimensions since the final result is regular;

2. T µ1 µ2 is transverse, which means p1µ1 T
µ1 µ2 = p2µ2 T

µ1 µ2 =0 .
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10.4.2 Fermion loops

This part is very similar to the calculation of Higgs boson production via gluon-gluon fusion in sec. 9

and the result eq. (9.21) can be used with appropriate changes. First the strong coupling is replaced

by eQf and αs then becomes αQ2
f with Qf = −1, 2/3 or −1/3. Since the photons are colour neutral

the colour factor Tr
[
T aT b

]
= δab/2 becomes 1 (see eq. (9.6)). The result is:

Tf = −i
αQ2

f e

2π sin θ
W

M2
H

M
W

F(zf )
(

gµ1 µ2 − 2 pµ11 pµ22
M2
H

)

ε∗µ1(p1) ε
∗
µ2(p2) , (10.36)

with zf = m2
f/M

2
H . Eventhough heavy fermions only will contribute (Higgs coupling proportional to

the fermion mass) it is necessary to recall that we have to sum over all fermions. The function F is

defined in eq. (9.19) and we recall it here:

F(z) = [2 z + (1− 4 z) J (z)] .

The amplitude for the decay of a Higgs boson into two photons is then:

Tf = −i α e

2π sin θ
W

M2
H

M
W

(

gµ1 µ2 − 2 pµ11 pµ22
M2
H

)

ε∗µ1(p1) ε
∗
µ2(p2)

×
(
∑

l

Q2
l F

(
m2
l

M2
H

)

+N
∑

q

Q2
q F

(

m2
q

M2
H

))

(10.37)

where the sum over l stands for leptons and q for quarks. In the latter case an extra factor N obviously

appears from the colour sum in the loop.

10.5 Final result

The final amplitude will be the sum of the amplitudes Tf and TW . To calculate its square one has to

sum on the photon polarisation and evaluate the expression:

S =
∑

λ1

∑

λ2

ελ1∗µ1 (p1) ε
λ2∗
µ2 (p2) ε

λ1
ν1 (p1) ε

λ2
ν2 (p2)

(

gµ1 µ2 − 2 pµ21 pµ12
M2
H

) (

gν1 ν2 − 2 pν21 pν12
M2
H

)

=

(

gµ1 µ2 − 2 pµ11 pµ22
M2
H

) (

gµ1 µ2 −
2 p1µ1 p2µ2

M2
H

)

= 2 (10.38)

thus:

|TW + Tf |2 =
α2 e2

8π2 sin θ
W

M4
H

M2
W

|Y |2 (10.39)
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with:

Y = G
(

M2
W

M2
H

)

− 2
∑

l

F
(
m2
l

M2
H

)

− 2N
∑

q

Q2
q F

(

m2
q

M2
H

)

Using eq. (10.3), the decay rate of a Higgs boson in two photons is:

ΓH→γ γ =
α3

32π2 sin2(θ
W
)

M3
H

M2
W

|Y |2 (10.40)
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11 Family mixing and the Kobayashi-Maskawa matrix

The above discussion has been considerably simplified since it completely ignored mixing between the

three fermion families. For example, if the coupling u→ d+W+ is allowed the couplings u→ s+W+

and u→ b+W+ are not possible in the model. However it turns out that the transitions

sd b

W

u

> >
W

u

> >
W

u

are observed with the hierarchy as indicated. They can be summarised by defining a transition u→ d′

with d′ a linear superposition of the d, s, b quarks. The quark states (ui) and (di) with i = 1, 2, 3

for the three families constructed in the previous sections are eigenstates of the mass matrix but the

charged electroweak transition is not diagonal in these states but rather it is diagonal in a (u′i) , (d
′
i)

basis called the flavour basis. The two bases are related as follows:

uiL = S
u
L

ij u
′
jL
, diL = S

d
L

ij d
′
jL
, uiR = S

u
R

ij u
′
jR
, diR = S

d
R

ij d
′
jR
, i, j = 1, 2, 3. (11.1)

Eq. (11.1) can be written in a matrix form u
L
= SuLu′

L
and similarly for the right-handed up sec-

tor as well as the left-handed and right-handed down sectors. As will be shown later the matrices

SuL ,SuR , · · · are unitary. The quark sector of the SU(2)L ⊗ U(1)Y lagrangian is written in general18

(see eq. (5.22))

LF =
∑

i

(u′iL d
′
iL
) i 6DqL

(
u′iL
d′iL

)

+
∑

i

u′iR i 6DuR u′iR +
∑

i

d′iR i 6DdR d′iR , (11.2)

so that the electroweak interactions are diagonal in the “primed” flavour basis. After symmetry

breaking, the most general Yukawa lagrangian takes the form in the “primed” basis, (see eqs. (8.26),

(8.27)), ignoring for the moment the H boson couplings to the fermions

LY = − v√
2

∑

ij

(u′iL c
u
ij u

′
jR + d′iL c

d
ij d

′
jR + h.c.)

= − v√
2
(u′

L
Cu u

′
R

+ d′
L
Cd d

′
R

+ h.c.) (11.3)

18We could in fact identify flavour and mass eigenstates of the up sector and take for simplicity S
u
L = S

u
R = 1.
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where the complex, 3 × 3, Cu,Cd matrices are the generalized Yukawa couplings. Including the

common normalisation factor v/
√
2 with the Cu and Cd matrices, the most general such matrices can

be written as a product :
v√
2
Cu = Mu Tu,

v√
2
Cd = Md Td (11.4)

with Mu a hermitian matrix (Mu = M†
u) and Tu a unitary matrix (T−1

u = T†
u). The hermitian

matrix can be diagonalized by a unitary transformation, Mu = S−1
u muSu = S†

umuSu where mu is

diagonal with real eigenvalues, and similarly for the d sector. The Yukawa lagrangian reduces to the

very simple diagonal form :

LY = − u
L
mu u

R
− u

R
mu u

L
− d

L
md d

R
− d

R
md d

L

= − u mu u − d md d (11.5)

when written in terms of the mass eigenstate basis related to the original one by :

u
L

= Su u′
L
, u

R
= Su Tu u′

R

d
L

= Sd d′
L
, d

R
= Sd Td d′

R
, (11.6)

which defines the matrices SuL ,SuR , · · · introduced above. We remark that, as advertized before, the

transformation from the primed basis to the unprimed one is unitary since such are the S,T matrices.

The components of u in which the mass matrix is diagonal are, by definition, the “physical” quark

fields (u, c, t) of definite mass eigenstate (idem for the d sector). The same is obviously true for the

Higgs couplings which are diagonal in the u and d bases. Having achieved a simple form for the

Yukawa lagrangian we re-write now the gauge part LF in terms of these physical fields. Singling out

the neutral current interactions we have

LF (neutral current) =
∑

i

(u′iL i 6DuL u
′
iL + u′iR i 6DuR u

′
iR) + d′ sector

= (u′
L
i 6DuL u′

L
+ u′

R
i 6DuR u′

R
) + d′ sector, (11.7)

in which we keep only the diagonal (in SU(2)) part of the operator 6D
L
. Because of the unitarity

of the transformations within the left-handed bases and the right-handed bases the above lagrangian

immediately reduces itself to

LF (neutral current) = u
L
i 6DuL u

L
+ u

R
i 6DuR u

R

+ d
L
i 6DuL d

L
+ u

R
i 6DuR u

R
. (11.8)
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This equation is the basis for the slogan that, in the Standard Model and in agreement with experi-

ments, there is “no flavour-changing neutral current”, in other words the neutral current is diagonal

in flavour space as well as in the mass eigenstates : it does not induce transition between the c quark

and the u quark or between the b quark and the d quark for example. The case of the charged current

pieces is more involved because it couples the up sector and the down sector which do not transform

with the same unitary matrices and, as a consequence, there is no reason for the charged current

interactions to be diagonal in the basis which diagonalises the mass matrix. Indeed we have, from

eqs. (11.2), (5.43):

LF (quark charged current) =
e√

2 sin θ
W

(u′
L
6W ∗ d′

L
+ d′

L
6W u′

L
)

=
e√

2 sin θ
W

(u
L
6W ∗ Su S†

d d
L

+ d
L
Sd S†

u 6W u
L
) (11.9)

where the last equation is obtained from eq. (11.6). The matrix CKM = SuS
†
d is the famous

Cabibbo-Kobayashi-Maskawa matrix which parameterises the flavour changing content of charged

current transitions, i.e transitions between left-handed up spinors (u
L
, c

L
, t

L
) of definite mass to

down spinors (d
L
, s

L
, b

L
) of definite mass. Its matrix elements are often written as

CKM =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (11.10)

The matrix CKM is unitary, since both Su,S
†
d are such, and its matrix elements must satisfy relations

of type V ∗
ubVud+ V ∗

cbVcd+ V ∗
tbVtd = 0 or V ∗

ubVub+ V ∗
cbVcb+ V ∗

tbVtb = 1. The determination of the Vij is a

very active area of particle physics phenomenology at present and it is one of the aims of the LHCb

collaboration at CERN and Belle II at KEK in Japan. If Vud is mainly constrained from nuclear β

decays the others are essentially determind from K decays and heavy flavour decays. The 2018 edition

of the particle data group19 quotes the following values

|Vud| = 0.97446 ± 0.00010, |Vus| = 0.22452 ± 0.00044, |Vub| = (3.65 ± 0.12)10−03

|Vcd| = 0.22438 ± 0.00044, |Vcs| = 0.97359+0.00010
−0.00011 , |Vcb| = (4.214 ± 0.076)10−02 (11.11)

|Vtd| = (8.96+0.24
−0.23)10

−03, |Vts| = (4.133 ± 0.074)10−02 , |Vtb| = 0.999105 ± 0.000032

The CKM matrix generalizes to three families the Cabibbo angle, sin θ
C
= λ ∼ .22 ≃ Vus introduced

long ago to deal with the mixing of two families. The Cabibbo-Kobayashi-Maskawa quark mixing

19 M. Tanabashi et. al. (Particle Data Group), Phys. Rev. D98 (2018) 030001 (http://pdg.lbl.gov).
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matrix is a 3 × 3 unitary matrix and from its definition20 it depends on nine parameters which can

be chosen as three real parameters and six phases. Changing the phase of uiL and djL respectively

by eiφui and eiφdj the CKM matrix elements (SuS
†
d)ij becomes ei(φdj−φui)(SuS

†
d)ij . The five arbitrary

phase differences can be used to absorb as many phases of the CKM matrix leaving one CP violating

phase. One should of course shift the phases of the right-handed fields and the left-handed ones by

the same amount to leave the mass terms eq. (11.5) invariant. The independent parameters of the

CKM matrix are chosen as three angles (cij = cos θij, sij = sin θij with 0 < θij < π/2) and a phase

δ (0 < δ < 2π) and one writes:

CKM =





1 0 0
0 c23 s23
0 −s23 c23



 .





c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13



 .





c12 s12 0
−s12 c12 0
0 0 1





=





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13



 . (11.12)

This last form is not very illuminating and in view of the relative smallness of |s13| ≃ |Vub| ≃ 3.57 10−03,

|s23| ≃ |Vcb| = 4.11 10−02 the approximation c13 ≈ c23 ≈ 1 is justified. With |s12| ≈ |Vus| = 0.225,

Wolfenstein introduced the convenient and often used parameterisation (see the PDG review19):

CKM =





1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



 , (11.13)

with

s12 ≈ λ = 0.22453 ± 0.00044, A = 0.836 ± 0.0015

ρ = 0.122+0.018
−0.017, η = 0.355+0.012

−0.011 (11.14)

This parameterisation shows that the charged current transition, for example, of a u quark to d, s, b

quarks takes place with amplitudes which are proportional to (1−λ2/2), λ, Aλ3(ρ− iη) respectively.
The phase factor η, or equivalently δ in eq. (11.12), is responsible for CP violation in the Standard

Model (see appendix B, in particular B.3). The measurement of this CP violating parameter, in kaon

and B meson systems, for example, is of great theoretical interest in order to understand the origin

of CP violation and of great practical importance since it may be related to the origin of the baryon

asymmetry in the universe.

20A unitary matrix U can be written U = exp(i
∑

a α
aT a), with T a the generators of the SU(3) group for a = 1, · · · , 8

and T 9 = 11. The αa are real parameters. A matrix U parameterised as in eq. (11.12) is often written U = U23U13(δ)U12.
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A very important point is to check experimentally the unitarity of the CKM matrix : indeed any

violation of one of the unitarity relations may indicate the existence of a new quark or a new family

of quarks. Present data are consistent with the unitarity of the CKM matrix within a 3% accuracy.
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12 Neutrinos and the Pontecorvo-Maki-Nakagawa-Sakata matrix

The absence of a CKM mixing matrix for the leptonic sector requires a comment. We assumed that

the right-handed neutrinos decouple from the observed world. As a consequence, as mentioned above,

the neutrinos νe, νµ, ντ remain massless even after spontaneous symmetry breaking since there are,

in the lagrangian density, no terms coupling left-handed and right-handed fields like in eq. (8.26).

Therefore no mass matrix can be constructed from which the “physical” neutrino states are defined.

When studying the weak-current transition from charged leptons to neutrinos we are thus free to

define the neutrino physical states as those for which the charged weak current is diagonal in lepton

flavour.

However, recent experiments have shown that neutrinos oscillate i.e. they change flavour when prop-

agating from their emission point to their detection point. This can be explained if neutrinos are

massive. If one follows the same procedure as for the quarks one introduces right-handed fields and

this leads to Dirac type massive neutrinos. There is another possibility which relies on the fact that,

being neutral, neutrinos can be their own antiparticles and this leads to Majorana type neutrinos. In

the first case the total lepton number L = Le + Lµ + Lτ is conserved, while, in the latter case, it is

not. In this section, we deal with Dirac neutrinos, the Majorana case being treated in sec. 15.

We assume that, like quarks, the neutrinos are of Dirac type with both left-handed and right-handed

components. In the flavour basis, besides the triplet of left-handed fields ν′
L
one introduces a triplet

of right-handed fields ν′
R
, singlets under SU(2)L,

ν′
L
=





νeL
νµL
ντL



 and ν′
R
=





νeR
νµR
ντR





.

(12.1)

In this notation νeL is the neutrino produced by an electron in a charged current interaction and

similarly for νµL and ντL . Assuming the SU(2)L ⊗ U(1)Y symmetry holds true, the right handed

neutrinos cannot be produced or interact in reactions mediated by gauge bosons: they do not couple

to the SU(2)L gauge bosons nor to the U(1)Y boson since being neutral yνR = 2eνR = 0, thus they

do not couple to W±, Z or γ gauge bosons. They can be produced in Higgs decays but, given that

the Higgs couplings are proportional to the masses, it is fair to assert that the production rate via

this channel is not measurable. Their only effect is to give masses to neutrinos. The charged current
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transition (eq. (5.28)) is given by the term (g/
√
2) (e

L
6W ν′

L
+ ν′

L
6W ∗ e

L
), diagonal in flavour where

e
L
=





e
L

µ
L

τ
L



 (12.2)

is the triplet of left-handed charged leptons. We emphasize that e
L
, µ

L
, τ
L
are the mass eigenstates

of the charged leptons. In analogy with the case of quarks, after symmetry breaking, the Dirac mass

term for neutrinos is of the form

LYD = − v√
2
ν′
L
Cν ν

′
R
+ h.c. (12.3)

Following the steps leading from eq. (11.3) to eq. (11.6), we introduce the notation (Mν hermitian,

Tν unitary),
v√
2
Cν = Mν Tν , (12.4)

and diagonalize the hermitian matrix by the transformation Mν = S−1
ν mνSν = S†

νmνSν (Sν unitary).

Defining

ν
L
= Sν ν

′
L

and ν
R
= Sν Tν ν

′
R
, (12.5)

the Yukawa lagrangian becomes diagonal,

⇒ LYD = − ν
L
mν νR − νRmν νL = −ν mν ν (12.6)

with m1,m2,m3 the three real eigenvalues of mν and ν1, ν2, ν3 the three neutrino mass eigenstates

ν = ν
L
+ ν

R
=





ν1
ν2
ν3



 . (12.7)

Then, using eq. (12.5), the charged current transition is written

L(leptonic charged current) =
g√
2
(e

L
6W ν′

L
+ ν′

L
6W ∗ e

L
)

=
e√

2 sin θ
W

(e
L
6W S†

ν νL + ν
L
Sν 6W ∗ e

L
). (12.8)

Similarly to the CKM mixing matrix one introduces the Pontecorvo-Maki-Nakagawa-Sakata matrix21

PMNS = S†
ν the matrix elements of which are often written as22:

PMNS =





Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3



 (12.9)

21In 1952, B. Pontevorvo was the first to mention the possibility of νe − νe oscillations. In 1962, the year when νµ
was discovered, Ziro Maki, Masami Nakagawa and Shoichi Sakata, assuming two kinds of neutrinos proposed a ”particle
mixture theory of neutrino”, Prog. Theor. Physics 28 (1962), 870.

22The PMNS matrix appears simpler than the CKM one since the gauge interaction eq. (12.8) is written directly
in terms of the charged lepton mass eigenstates.

90



where e, µ, τ refer to flavour states and 1, 2, 3 to mass eigenstates.

It is easy to check that all terms in the lagrangian density are invariant under the global phase change

of all fields

e
L
→ ei λ e

L
, ν

L
→ ei λ ν

L
, ν

R
→ ei λ ν

R
. (12.10)

To this invariance corresponds the conservation of the total lepton number defined as L =
∑

α Lα, α =

e, µ, τ . It follows that such transitions as µ− → e−+γ or µ− → e−+e++e− are allowed in the model.

A recent fit to available data shows that the mixing pattern is quite different from that of the quark23

|Ue1| = 0.800→ 0.844, |Ue2| = 0.515→ 0.581, |Ue3| = 0.139→ 0.155

|Uµ1| = 0.229 → 0.516, |Uµ2| = 0.438→ 0.699, |Uµ3| = 0.614→ 0.790

|Uτ1| = 0.249→ 0.528, |Uτ2| = 0.462→ 0.715, |Uτ3| = 0.595 → 0.776. (12.11)

As for quarks, no satisfactory model can account for this mixing pattern.

The phenomenology of neutrino mixing is discussed below in the framework of Dirac neutrinos. There

are several recent reviews on this topic, in particular by Nakamura and Petcov24 and by Giganti,

Lavignac and Zito25. The case of Majorana neutrinos is discussed in sec. 15 and by Bilenky and

Petcov26.

12.1 Neutrino survival and oscillation

The space-time evolution of a state of given mass is (~ = c = 1)

|νi(x) >= e−i(E t−
~k ~x)|νi > . (12.12)

As will be seen below it is justified to assume the neutrinos to be ultrarelativistic particles so that

E ≈ k +m2
i /2 k and the equation becomes (x denotes now the length travelled by the neutrino)

|νi(x) >= e−ix (m
2
i /2 k)|νi > . (12.13)

23I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, T. Schwetz, JHEP 1701 (2017) 087,
arXiv:1611.01514 [hep-ph]. The variation of the coefficients is given for a 3 σ range.

24K. Nakamura, S.T. Petcov, in Particle Data Group (PDG), M. Tanabashi et. al., Phys. Rev. D98 (2018) 030001
(http://pdg.lbl.gov).

25C. Giganti, S. Lavignac, M. Zito, Prog. Part. Nucl. Phys. 98 (2018) 1, arXiv:1710.00715 [hep-ex].
26S.M. Bilenky, S.T. Petcov, Rev. Mod. Phys. 59 (1987) 671.
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We consider a neutrino of type α produced in a charged current interaction with momentum k. It is

a coherent superposition of neutrino states of definite mass27,

|να >=
∑

i

U∗
αi|νi >, α = e, µ, τ : i = 1, 2, 3. (12.14)

The space-time evolution of this neutrino is given at a later time t and at a distance x = t by

|να(x) >=
∑

i

U∗
αi e

−ix (m2
i /2 k)|νi > . (12.15)

The probability for this neutrino, initially of flavour α, to be observed as a neutrino of flavour β at

the distance x from the emission point is

P (να → νβ) = | < νβ|να(x) > |2 =
∑

i,j

U∗
αiUαjUβiU

∗
βj exp

(

i x
δm2

ji

2k

)

, (12.16)

where the symbol δm2
ji = m2

j −m2
i . Separating the real and imaginary part of the phase factor and

using the unitarity of the U matrix (U∗
αiUβi = δαβ) this expression can be written as28:

P (να → νβ) = δαβ − 4
∑

i>j

Re(U∗
αiUαjUβiU

∗
βj) sin

2

(

x
δm2

ij

4k

)

+ 2
∑

i>j

Im(U∗
αiUαjUβiU

∗
βj) sin

(

x
δm2

ij

2k

)

,

(12.17)

For the time reversed transition P (νβ → να) permuting α and β in eq. (12.16) is equivalent to

permuting i and j so that it comes out

P (νβ → να) = δαβ − 4
∑

i>j

Re(U∗
αiUαjUβiU

∗
βj) sin

2

(

x
δm2

ij

4k

)

− 2
∑

i>j

Im(U∗
αiUαjUβiU

∗
βj) sin

(

x
δm2

ij

2k

)

,

(12.18)

which exhibits the violation of T invariance due to the phase factor in the PMNS matrix. One finds

the same result, eq. (12.18), for P (να → νβ), exhibiting this time the CP violation of the model.

Then CPT is conserved because P (νβ → να) = P (να → νβ). Finally one has the sum rule, valid in

the three family model

1 =
∑

νβ=νe,νµ,ντ

P (να → νβ) =
∑

νβ=νe,νµ,ντ

P (να → νβ), for any να, να. (12.19)

It is important to remark that in case of a disappearance probability, P (να → να), the last term

in the eqs. (12.17) or (12.18) disappears since terms such as U∗
αiUαjUαiU

∗
αj are real and therefore a

disappearance probability cannot depend on the imaginary part of the PMNS matrix elements.

27From eqs. (12.5), (12.9) a flavour field ναL
is related to the fields νiL of given masses by ναL

=
∑

i(S
†)αiνiL =

∑

i UαiνiL , but the state |να > is created by the field ναL
, hence eq. (12.14).

28We use cos
(

xδm2
ij/2k

)

= 1− 2 sin2
(

x δm2
ij/4k

)

, the factor 1 then leading to the δαβ term.

92



12.2 Summary of results

It turns out, as will be discussed below, that the last factor in eqs. (12.17) and (12.18) is small. Then,

oscillations, as a function of x, in the probability for the neutrino to change flavour (or to remain in

the same flavour) are essentially induced by the factors sin2(x δm2
ij/4k). For the oscillation to be seen

this factor should be of O(1). To be quantitative, we have to inject the ~ and c factors to make the

argument of the sin2 factor dimensionless. One finds29

δm2
ij x

4 k
⇒ 1.27 10−18

δm2
ij [GeV2] x [km]

k [GeV]
= 1.27

δm2
ij [eV

2] x [km]

k [GeV]
= 1.27

δm2
ij [eV

2] x [m]

k [MeV]
, (12.20)

where we have given this expression in terms of the units commonly used. One defines the oscillation

length associated to a given mass squared difference by the condition

δm2
ij x

4 k
= π ⇒ x [m] = 2.47

k [MeV]

δm2
ij [eV

2]
or x [km] = 2.47

k [GeV]

δm2
ij [eV

2]
. (12.21)

Conversely, we can use this formula to estimate the sensitivity of typical neutrino experiments to mass

squared differences as shown in the table below. In some experimental conditions, a factor (x δm2
ij/4k)

Source type of ν k [GeV] x [km] <δm2> [eV2]

Reactors (short baseline) νe 10−3 1 10−3

Reactors (long baseline) νe 10−3 100 10−5

Accelerators (short baseline) νµ, νµ 1 1 1

Accelerators (long baseline) νµ, νµ 1 103 10−3

Atmospheric νe, νe, νµ, νµ 1 104 10−4

Sun νe 10−2 1.5 108 10−10

Table 1: Sensitivity in terms of δm2
ij of the different types of neutrino experiments characterised by

the energy k of the neutrino and the distance x between the ν source and the detector.

may remain small and its contribution to the oscillation pattern becomes negligible. In other cases on

the contrary, it stays very large and the oscillating sin2 term averages out to 1/2. These facts simplify

the analysis of the oscillations as will be seen below in the discussion of several experiments. We give

here the values of the parameters, with the PMNS matrix written as in eq. (11.12), obtained from of

29In eq. (12.12) the dimensionless phase should be −i(Et− ~k ~x)/~, with the energy E measured in GeV and k in

GeV/c as appropriate for neutrino experiments. It can be written −i(Ect− ~k ~x)/(~c), with both E and k as well
as the mass measured in GeV and [ct] = [x] in km if c is expressed in km/sec. We have (see the PDG tables)
~c = 197.3267 10−21 GeV·km; using the approximate form eq. (12.13), the oscillation factor in eq. (12.17) becomes
δm2

ij [GeV2] x [km]/(4 k [GeV] ~c[GeV·km]) = 1.27 10−18δm2
ij [GeV2] x [km]/k [GeV].
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a recent global analysis of data30

δm2
21 = (6.92 − 7.91) 10−5 eV2, δm2

31 = (2.392 − 2.594) 10−3 eV2

sin2 θ12 = 0.265 − 0.346, sin2 θ23 = 0.430 − 0.602, sin2 θ13 = 0.0190 − 0.0239. (12.22)

By convention the mass m2 is chosen larger than m1 but there are two possibilities for m3: either

m1 < m2 < m3, labeled normal hierarchy, or m3 < m1 < m2, labeled inverted hierarchy. The above

results are obtained assuming a normal hierarchy. In the other case the values of the parameters

are very similar except of course for the sign of δm2
3i. For example, the best fit value for δm2

32 is

2.418 10−3 eV2 (normal hierarchy) and δm2
32 = −2.478 10−3 eV2 (inverted hierarchy). There are two

independent δm2
ij and given the relative smallness of δm2

21, one is justified to take |δm2
32| ≈ |δm2

31|.
Concerning the mass hierarchy and the CP violating phase δ, they are difficult to extract because, as

will be seen, they enter the observables with small coefficients. One notes that the angle θ13 is much

smaller than the other mixing angles and small θ13 approximations will often be used. At present

fits to data seem to indicate a value δ ≈ 3π/2, with large error bars, for both mass hierarchies and a

preference for normal hierarchy.

One does not know the absolute scale of neutrino masses. If we assume m1 ≪ m2 one gets m2 ≈
8.6 10−3 eV and m3 ≈ 5.1 10−2 eV, while in the inverted hierarchy case, assuming m3 ≪ m1 the result

is m1 ≈ m2 ≈ 5.1 10−2 eV. One way to experimentally access the mass scale of neutrinos is through

nuclear β decay which allows to give a direct limit on the νe mass. For these purposes, several past

and ongoing experiments study tritium decay31, 3H → 3He+ e− + νe. The electron energy spectrum

is sensitive to the neutrino mass near the upper end of the spectrum. Denoting E0 the total energy

release in the decay, the maximum value of the electron energy is E < E0 ≈ 18 keV, if the neutrino

is massless. A non vanishing neutrino mass will slightly reduce the bound to E < E0 −mνe and will

modify the shape of the spectrum near this end point of the distribution. Near the end point the

electron spectrum behaves as

dN/dE ∝ Eνekνe = (E0 −E)((E0 − E)2 −m2
νe)

1/2, (12.23)

which has a non-zero derivative, in fact −∞, if the neutrino is massive. The effect is very hard to

measure since the rate of energetic electrons is very low. A limit established some years ago32 was

30F. Capozzi, E. Lisi, A. Marrone, A. Palazzo, Prog. Part. Nucl. Phys. 102 (2018) 48, arXiv:1804.09678 [hep-
ph]; see also P.F. de Salas, S. Gariazzo, O. Mena, C.A. Ternes, M. Tórtola, Front. Astron. Space Sci. 5 (2018) 36;
arXiv:1806.11051 [hep-ph]; P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tórtola, J.W.F. Valle, Phys. Lett. B782 (2018)
633, arXiv:1708.01186 [hep-ph]; NuFIT webpage, http://www.nu-fit.org/.

31G. Drexlin, V. Hannen, S. Mertens, and C. Weinheimer, Adv.High Energy Phys. (2013) 293986, arXiv:1307.0101.
32Troitzk Collaboration, V.N. Aseev et al. Phys. Rev D84 (2011) 112003.
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mνe < 2.05 eV at 95% c.l., quite a bit higher than the tentative scales suggested above. The KATRIN

experiment which started operation in 2018, in Karlsruhe, quotes now an upper limit of 1.1 eV at

90% c.l.33. By 2024 the collaboration expects to reach 0.2 eV (90% c.l.) or 0.35 eV (5 σ). Finally

astrophysical and cosmological limits are available on the sum of neutrino masses and a recent result

reported by the Planck collaboration is34

∑

j

mj < .12 eV, (12.24)

but this result is model dependent. In the following we use for the PMNS matrix, eq. (12.9), the

representation, eq. (11.12).

12.3 Survival probabilities in vacuum

Since, in experiments, both survival and oscillation probabilities can be measured we quote below

the general form of these expressions for 3 flavoured neutrinos35 In the analysis of results it will turn

out that different approximations can be made, depending on the experimental set-up, which simplify

considerably the general expressions. The reduced forms will be easily obtained from the results given

in this section and the next. The simplest case is the electron survival probability, the exact expression

of which is:

P (νe → νe) = 1 − sin2(2θ12) cos
4(θ13) sin

2

(

x
δm2

21

4k

)

− sin2(2θ13) sin
2(θ12) sin

2

(

x
δm2

32

4k

)

− sin2(2θ13) cos
2(θ12) sin

2

(

x
δm2

31

4k

)

, (12.25)

insensitive to δ (thus P (νe → νe) = P (νe → νe)) and to the hierarchy of mass. The muon survival is

given by:

P (νµ → νµ) = 1 − [sin2(2θ12) cos
4(θ23) + sin2(2θ23)[cos

4(θ12) + sin4(θ12)] sin
2(θ13)] sin2

(

x
δm2

21

4k

)

− [sin2(2θ23) cos
2(θ13) cos

2(θ12) + sin2(2θ13) sin
4(θ23) sin

2(θ12)] sin2
(

x
δm2

32

4k

)

− [sin2(2θ23) cos
2(θ13) sin

2(θ12) + sin2(2θ13) sin
4(θ23) cos

2(θ12)] sin2
(

x
δm2

31

4k

)

− 8J cos(δ)COSνµ +O(sin3(θ13)), (12.26)

33G. Drexin for the KATRIN Collaboration, 16th TAUP International Conference, Toyama, Japan, Sept. 2019.
34Planck 2018 results. VI. Cosmological parameters, N. Aghanim et al., in Astronomy and & Astrophysics, 2018,

arXiv:1807.06209 [astro-ph.CO].
35Exact expressions in a somewhat different form are found in V. Barger, D. Marfatia, K. Whisnant, Int. J. Mod.

Phys. E12 (2003) 569, hep-ph:0308123.
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with the Jarlskog factor36 J :

J =
1

8
sin(2θ12) sin(2θ23) sin(2θ13) cos(θ13), (12.27)

and the expression COSνµ :

COSνµ =

[

cos2(θ23) cos(2θ12) sin
2

(

x
δm2

21

4k

)

− sin2(θ23)

(

sin2
(

x
δm2

32

4k

)

− sin2
(

x
δm2

31

4k

))]

(12.28)

More precisely, in eq. (12.26), we have neglected very small terms of type sin4(θ13) sin
2(xδm2

21/4k),

sin3(θ13) cos(δ) and sin2(θ13) cos
2(δ). The τ survival probability is obtained from this equation, by

exchanging sin2(θ23) and cos2(θ23) and reversing the sign of the cos(δ) term.

12.4 Oscillation in vacuum, CP asymmetries, mass hierarchy and δ

It is important to obtain the dependence on the phase δ of the oscillation probabilities as it is related

to the CP asymmetries and to the mass hierarchy. In fact, all oscillation probabilities have, up to a

sign, the same dependence on sin(δ) which is relatively easy to obtain. Injecting the parameterisation

eq. (11.12) in the U matrices in eq. (12.16) one finds without approximations

P (νe → νµ) = sin2(2θ12) cos
2(θ13)[cos

2(θ23)− sin2(θ23) sin
2(θ13)] sin

2

(

x
δm2

21

4k

)

+ sin2(2θ13) sin
2(θ23) sin

2(θ12) sin
2

(

x
δm2

32

4k

)

+ sin2(2θ13) sin
2(θ23) cos

2(θ12) sin
2

(

x
δm2

31

4k

)

+ 4J cos(δ) COS + 2J sin(δ) SIN, (12.29)

with

COS =

[

cos(2θ12) sin
2

(

x
δm2

21

4k

)

− sin2
(

x
δm2

32

4k

)

+ sin2
(

x
δm2

31

4k

)]

(12.30)

SIN =

[

sin

(

x
δm2

21

2k

)

+ sin

(

x
δm2

32

2k

)

+ sin

(

x
δm2

13

2k

)]

. (12.31)

36C. Jarlskog, Z. Phys. C29 (1985) 491. Due to the unitarity of the PMNS matrix one shows that Im(U∗
αiUαjUβiU

∗
βj)

with α 6= β, α, β = e, µ, τ , i 6= j, i, j = 1, 2, 3, is up to a sign an invariant, thus Im(U∗
e3Ue2Uµ3U

∗
µ2) = J sin(δ).
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Using the sum rule eq. (12.19) or by direct calcultation it comes out:

P (νe → ντ ) = sin2(2θ12) cos
2(θ13)[sin

2(θ23)− cos2(θ23) sin
2(θ13)] sin

2

(

x
δm2

21

4k

)

+ sin2(2θ13) cos
2(θ23) sin

2(θ12) sin
2

(

x
δm2

32

4k

)

+ sin2(2θ13) cos
2(θ23) cos

2(θ12) sin
2

(

x
δm2

31

4k

)

− 4J cos(δ) COS− 2J sin(δ) SIN, (12.32)

From the expressions given in eqs. (12.25) to (12.32) and with the help of the relations given in sec.

12.1 we can obtain all survival or oscillation probabilities of neutrinos and antineutrinos. For instance,

one obtains P (νµ → νe) from P (νe → νµ) by reversing the sign of δ in eq. (12.29) and one derives

P (νµ → ντ ) = 1− P (νµ → νe)− P (νµ → νµ) from the sum rule. For completeness we quote it at the

same level of approximation as the previous rates with the further simplification of dropping all terms

proportional to sin2(θ13) in the first line:

P (νµ → ντ ) = −1

4
sin2(2θ23) sin

2(2θ12) sin
2

(

x
δm2

21

4k

)

+ sin2(2θ23)[cos
2(θ12)− sin2(θ12) sin

2(θ13)] cos
2(θ13) sin

2

(

x
δm2

32

4k

)

+ sin2(2θ23)[sin
2(θ12)− cos2(θ12) sin

2(θ13)] cos
2(θ13) sin

2

(

x
δm2

31

4k

)

+ 4J cos(δ) COSτ + 2J sin(δ) SIN, (12.33)

with

COSτ = cos(2θ23)

[

cos(2θ12) sin
2

(

x
δm2

21

4k

)

+ sin2
(

x
δm2

32

4k

)

− sin2
(

x
δm2

31

4k

)]

(12.34)

If one defines a measure of the CP asymmetry in the oscillation να → νβ by

A(να → νβ) = P (να → νβ)− P (να → νβ), (12.35)

then the following relations hold true:

A(νe → νµ) = −A(νµ → νe) = −A(νe → ντ ) = A(νµ → ντ ) = 4J sin(δ) SIN

= 4J sin(δ)

[

sin

(

x
δm2

21

2k

)

+ sin

(

x
δm2

32

2k

)

+ sin

(

x
δm2

13

2k

)]

. (12.36)
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Since the δm2
ij factors are not independent, δm

2
31 = δm2

32+ δm
2
21, one can eliminate m2

31, for example,

and obtain:

SIN = 4 sin

(

x
δm2

21

4k

)

sin

(

x
δm2

31

4k

)

sin

(

x
δm2

32

4k

)

(12.37)

= 4 sin

(

x
δm2

21

4k

)

sin2
(

x
δm2

32

4k

)

+O
(

sin2
(

x
δm2

21

4k

))

. (12.38)

where the last relation is valid when x δm2
21/4k is small compared to x δm2

32/4k. Coming back to the

oscillation probabilities, the coefficient of the cos(δ) piece in the equations can likewise be simplified

and one finds37

COS = 2 sin

(

x
δm2

21

4k

)

sin

(

x
δm2

31

4k

)

cos

(

x
δm2

32

4k

)

− 2 sin2(θ12) sin
2

(

x
δm2

21

4k

)

(12.39)

= 2 sin

(

x
δm2

21

4k

)

sin

(

x
δm2

32

4k

)

cos

(

x
δm2

32

4k

)

+O
(

sin2
(

x
δm2

21

4k

))

. (12.40)

Under these simplifications38, and neglecting small sin2(θ13) corrections in the coefficients of terms in

sin2
(
x δm2

21/4k
)
, the oscillation probabilities for νe → νµ and νe → ντ take the form:

P (νe → νµ) ≈ sin2(2θ12) cos
2(θ23) sin

2

(

x
δm2

21

4k

)

+ sin2(2θ13) sin
2(θ23) sin

2

(

x
δm2

32

4k

)

+8J sin

(

x
δm2

21

4k

)

sin

(

x
δm2

32

4k

)[

cos(δ) cos

(

x
δm2

32

4k

)

+ sin(δ) sin

(

x
δm2

32

4k

)]

(12.41)

P (νe → ντ ) ≈ sin2(2θ12) sin
2(θ23) sin

2

(

x
δm2

21

4k

)

+ sin2(2θ13) cos
2(θ23) sin

2

(

x
δm2

32

4k

)

− 8J sin

(

x
δm2

21

4k

)

sin

(

x
δm2

32

4k

)[

cos(δ) cos

(

x
δm2

32

4k

)

+ sin(δ) sin

(

x
δm2

32

4k

)]

(12.42)

and similarly for other probabilities. The difference between normal and inverted hierarchy occurs

only in the sign of the cos(δ) coefficient, all other terms being insensitive to the sign of δm2
32. If

the present experimental value of δ around 3π/2 (with large error bars) is confirmed, it will be very

difficult to solve the mass hierarchy problem from oscillation experiments in vacuum. More on this

later.

Sometimes, it is sufficient to consider only a two neutrino system, νe and νx say, in which case the

37One has also COSτ = −2 cos(2θ23) [sin
(

xδm2
21/4k

)

sin
(

xδm2
32/4k

)

cos
(

xδm2
31/4k

)

+ sin2(θ12) sin
2
(

xδm2
21/4k

)

].
38They are particularly useful in oscillation experiments with accelerator neutrinos. Note that one can use indifferently

δm2
32 or δm2

31 in eqs. (12.38) and (12.40).

98



oscillation formulae simplify considerably:

P (νe → νe) = 1− sin2(2θ12) sin
2

(

x
δm2

21

4k

)

P (νe → νx) = sin2(2θ12) sin
2

(

x
δm2

21

4k

)

(12.43)
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13 Neutrinos interactions with matter

Atmospheric (anti)neutrinos observed after crossing the earth or neutrinos produced in the sun prop-

agate through matter and interact with it before reaching the detector. The scattering on protons,

neutrons and electrons in matter will modify the oscillation patterns. This is the Mikheyev-Smirnov-

Wolfenstein (MSW) effect39. The important parameters in this effect are the electron density in

matter and the neutrino energy. For some values of the parameters large resonance effects enhance

the neutrino conversion rate compared to what is expected in vacuum.

To illustrate this point it is sufficient to consider a two-flavour model with mass eigenvectors |ν1> and

|ν2> with the 1 state being the lightest one. From eq. (12.13) the evolution of the doublet of |νi(t)>
states, in vacuum, is given by (t = x):

i
d

dt

(
|ν1(t)>
|ν2(t)>

)

= H0

(
|ν1(t)>
|ν2(t)>

)

=

(
m2

1/2k 0
0 m2

2/2k

)(
|ν1(t)>
|ν2(t)>

)

, (13.1)

with H0 the free hamiltonian. A global phase change on the |νi(t)> states does not affect the physics

but shifts the hamiltonian by a matrix proportional to the unit matrix. For instance, a phase change

im2
1t/2k on both states leads to the evolution equation:

i
d

dt

(
|ν1(t)>
|ν2(t)>

)

=

(
0 0
0 δm2/2k

)(
|ν1(t)>
|ν2(t)>

)

, (13.2)

with δm2 = m2
2 −m2

1 taken to be positive. The evolution of the flavour states |νe(t)> and |νx(t)>
(|νx(t)> can be a combination of |νµ(t)> and |ντ (t)>)40, is easily obtained from the relation:

(
|νe(t)>
|νx(t)>

)

= R(θ)
(
|ν1(t)>
|ν2(t)>

)

with the matrix R(θ) =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)

. (13.3)

We then have:

i
d

dt

(
|νe(t)>
|νx(t)>

)

= R(θ)
(
0 0
0 δm2/4k

)

RT(θ)
(
|νe(t)>
|νx(t)>

)

(13.4)

=

(
(δm2/2k) sin2(θ) (δm2/4k) sin(2θ)
(δm2/4k) sin(2θ) (δm2/2k) cos2(θ)

)(
|νe(t)>
|νx(t)>

)

= Hfl
0

(
|νe(t)>
|νx(t)>

)

, (13.5)

with Hfl
0 is the free hamiltonian in the flavour basis. The interaction of neutrinos with matter can

preserve or destroy the coherence of the system. In the latter case, the state of the particles (momentum

and spin) is modified and it can be shown that incoherent interactions are negligible.

39L. Wolfenstein, Phys. Rev. D17 (1978) 2369; S.P. Mikheyev, A.Yu. Smirnov, Prog. Part. Nucl. Phys. 23 (1989)
41.

40We have in mind solar neutrinos but the discussion applies to any two flavour system.
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13.1 Incoherent scattering

For example, for neutrinos up to a GeV, scattering on nucleons νx+n→ x+p is the dominant process

and the cross section41 can be parameterised as:

σ ≈ 10−43

(
Eν
MeV

)2

cm2, (13.6)

with Eν the energy in the frame where the nucleon is at rest. The scattering length of the neutrino in

matter is lmatter = 1/NNσ where NN is the number of nucleons per cm3. In the core of the sun, the

density is 150 gr/cm3, so approximately 1026 nucleons per cm3. The scattering length is then:

lsun ≈ 1017
(
Eν
MeV

)−2

cm ≈ 1012
(
Eν
MeV

)−2

km. (13.7)

The typical energy of solar neutrinos being .1 MeV < Eν < 10 MeV, the corresponding scattering

length is 1014 km > lsun > 1010 km, to be compared to the sun radius of 7 105 km. Incoherent neutrino

scattering in the sun is negligible.

The range of energy of neutrinos crossing the earth is much larger, from .1 MeV for solar neutrinos

to TeV’s for atmospheric or cosmic ones. At high energy the charged current ν-nucleon cross section

behaves as

σ ≈ 6.7 10−39

(
Eν
GeV

)

cm2.

The matter density in the earth ranges from 4 gr/cm3 in the mantle to, on the average, 11 gr/cm3 in

the core. This leads respectively to NN = 2.4 1024 to 6.6 1024 nucleons per cm3. Then, the scattering

length of 100 GeV neutrinos learth varies from 6. 106 km in the mantle to 2 106 km in the inner core.

This is to be compared to the mantle thickness of 2.9 103 km and the core radius of 3.4 103 km. Thus

the effect of the earth matter is negligible for neutrinos of energy up to hundreds of GeV. On the

contrary, for neutrinos around 100 TeV and above the earth becomes opaque since the cross section

grows linearly with energy.

13.2 Coherent scattering

Coherence of the neutrino system is preserved by forward elastic scattering of the neutrino on matter.

This can go via neutral current interactions, on protons, neutrons or electrons, νe,x +N → νe,x + N

and νe,x+e
− → νe,x+e

−, which are universal for all neutrinos species or via charged current exchange

which is specific to νe scattering on electrons (see fig. 15 in sec. 14.4). These interactions add a piece

41J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307.
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to the hamiltonian which becomes

H = Hfl
0 +Hfl

int (13.8)

where Hfl
int is diagonal in flavour. Implementing a phase change on the states amounts to shifting

the hamiltonian by a matrix proportional to unity and one can thus subtract the universal neutral

current contribution leaving the charged current one which affects only the element <νe|Hfl
int|νe>=

<νe|Hfl
cc|νe>. This interaction is given by eqs. (2.1), (2.2) in sec. 2.1,

GF√
2
ψe(x)γµ(1− γ5

)ψνe(x) ψνe(x)γ
µ(1− γ

5
)ψe(x) = 2

√
2GF ψeL(x)γµψνeL(x) ψνeL

(x)γµψeL(x)

= 2
√
2GF ψνeL

(x)γµψνeL(x) ψeL(x)γµψeL(x), (13.9)

where a Fierz transformation has been made to obtain the second line. The effective interaction

hamiltonian of the neutrinos in matter is obtained by summing over all electrons in matter42:

Hfl
cc = 2

√
2GF

∫

dp3ef(pe) <eL(pe)|ψνeL(x)γ
µψνeL(x) ψeL(x)γµψeL(x)|eL(pe)>

= 2
√
2GF ψνeL

(x)γµψνeL(x)

∫

dp3ef(pe) <eL(pe)|ψeL(x)γµψeL(x)|eL(pe)>, (13.10)

where the electron energy distribution f(pe) in matter is homogeneous, isotropic and is normalised to
∫
dp3ef(pe) = 1. Assuming the electron approximately at rest in the medium, the space components γi

can be neglected and the combinations ψγµψ reduce to ψγ0ψ = ψ†ψ, so that

Hfl
cc = 2

√
2GF ψ

†
νeL

(x)ψνeL (x)

∫

dp3ef(pe) <eL(pe)|ψ†
eL
(x)ψeL(x)|eL(pe)>,

=
√
2GF ψ

†
νeL
ψνeL Ne, (13.11)

with Ne the density of electrons in the medium (NeL = Ne/2). The evolution equation will then be of

the form

i
d

dt

(
|νe(t)>
|νx(t)>

)

=

(
(δm2/2k) sin2(θ) +

√
2GFNe (δm2/4k) sin(2θ)

(δm2/4k) sin(2θ) (δm2/2k) cos2(θ)

)(
|νe(t)>
|νx(t)>

)

= H
(
|νe(t)>
|νx(t)>

)

.

(13.12)

Due to the charged current interaction the mass eigenstates |νi(t)> of eq. (13.1) no longer diagonalize

the hamiltonian. Let us denote ω1 and ω2 the eigenvalues of the above matrix and |νm1
(t)> and

|νm2
(t)> the corresponding mass eigenstates related to the flavour states |νe(t)> and |νx(t)> at time

t by

|νe(t)> = cos θm|νm1
(t)> +sin θm|νm2

(t)>

|νx(t)> = − sin θm|νm1
(t)> +cos θm|νm2

(t)> . (13.13)
42M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460 (2008) 1.
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13.3 Matter of constant density

If Ne is independent of t, so are θm and the eigenvalues given by:

ω1,2 =
GFNe√

2
+
δm2

4k
∓ 1

2

√

(
√
2GFNe − cos(2θ)δm2/2k)2 + (sin(2θ)δm2/2k)2

=
δm2

4k

[

Â+ 1∓
√

sin2(2θ) + (cos(2θ)− Â)2
]

, (13.14)

with ωi the eigenvalue of the state |νmi(t)>. The important parameter Â is defined by:

Â =
2
√
2GF kNe

δm2
, (13.15)

which is the ratio of the interaction energy in matter to the vacuum energy. The matrix H in eq.

(13.12) is diagonalised by RT(θm)HR(θm) = diag(ω1, ω2) (see eq. (13.3)) and one finds:

tan(θm) =
Â− cos(2θ) +

√

sin2(2θ) + (cos(2θ)− Â)2
sin(2θ)

(13.16)

from which we derive (for δm2 positive):

cos(2θm) =
cos(2θ)− Â

√

sin2(2θ) + (cos(2θ)− Â)2

sin(2θm) =
sin(2θ)

√

sin2(2θ) + (cos(2θ)− Â)2
, (13.17)

To obtain the oscillation probabilities we use eqs. (12.43):

P (νe → νe) = 1− sin2(2θm) sin2
(
δM2t

4k

)

, P (νe → νx) = sin2(2θm) sin2
(
δM2t

4k

)

, (13.18)

where43

δM2 = δm2
√

sin2(2θ) + (cos(2θ)− Â)2. (13.19)

The corresponding oscillation length in matter is given by (see eq. (12.21):

lmat =
4πk

δM2
=

2π

ω2 − ω1
(13.20)

Several cases can be distinguished assuming Ne constant in the medium (with δm2 positive).

43The physics depends only on the difference ω2 − ω1 and θm, which are functions of the difference of the diagonal
elements of H, in agreement with the fact that one can modify H by adding to it a matrix proportional to unity.
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• If Â ≪ 1, then sin(2θm) ≈ sin(2θ)(1 + Â cos(2θ)), δM2 ≈ δm2(1 − Â cos(2θ)): the interaction

with matter is small and the neutrino system evolves almost as in empty space, lmat ≈ lvac with
a small correction;

• If Â ≫ | cos(2θ)|, interaction with matter is dominant: then sin(2θm) ≈ sin(2θ)/Â ≈ 0 and

cos(2θm) ≈ −1, hence θm ≈ π/2: from eq. (13.13) the electron neutrino tends to a pure

mass eigenstate |νm2
>, the heaviest state (ω2 ≈

√
2GFNe); it propagates without oscillations

independent of the value of the mixing angle in vacuum;

• If Â ≈ cos(2θ), this is the resonant regime: it occurs only if cos(2θ) is positive (0 < θ < π/4),

then cos(2θm) ≈ 0, sin(2θm) ≈ 1, θm ≈ π/4, lmat ≈ lvac/ sin(2θ); the electron neutrino is an

equal combination of |νm1
> and νm2

>, independent of the initial mixing angle, the amplitude of

oscillations is maximal, since sin(2θm) ≈ 1, as well as the oscillation length. For π/4 < θ < π/2

there is no resonance effect possible and θm is always larger than π/4.

Remarks

• When applying eq. (13.11) to antineutrinos states one will obtain an extra − sign44, thus

giving a contribution −
√
2GFNe to H. Then, the sign of Â for antineutrinos is opposite to

that for neutrinos. If the resonance condition Â ≈ cos(2θ) can be reached for neutrinos, it

cannot occur for antineutrinos and vice-versa. For antineutrinos the resonance condition requires

π/4 < θ < π/2.

• The evolution of neutrinos in matter violates the CP symmetry, which is obvious since matter

is not CP symmetric.

Application to solar neutrinos

Electron neutrinos are produced in the core of the sun where Ne can be as large as 6. 1025 cm−3. It

is useful to define the quantity NRes by

NRes =
δm2 cos(2θ)

2
√
2GF k

, (13.21)

related to the parameter Â previously introduced by

Ne

NRes
=

Â

cos(2θ)
(13.22)

44ν̄e → ν̄e scattering is obtained from νe → νe by crossing symmetry which implies a relative - sign when crossing
fermions.
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Taking for θ and δm2 the values θ12 and δm2
21 from eq. (12.22) below, one obtains

N21
Res ≈ .8 10−6

(
Eν
MeV

)−1

MeV3 ≈ 1026
(
Eν
MeV

)−1

cm−3, (13.23)

so N21
Res / 1025 cm−3 for Eν ' 10 MeV. In that case, the condition Ne ≫ N21

Res (equivalently Â ≫
cos(2θ12)) is realised and the neutrino is produced in a mass eigenstate. On the contrary, neutrinos

of energy Eν ≈ .1 MeV evolve as in vacuum since they satisfy Ne ≪ N21
Res. The range of values

of θ12 given in eqs. (12.22 ), 30o < θ12 < .38o implies cos(2θ12) > 0 so that the resonance regime

Â ≈ cos(2θ12) can be satisfied for neutrinos of intermediate energies. In the sun, however, Ne is a

decreasing function of x, the distance from the center, and taking this effect into account requires

a special treatment to which we turn in the next section. We can also consider oscillations to the

third generation and estimate N31
Res. Using the values of θ13 and δm2

31 from eq. (12.22) one finds

Ne/N
31
Res ≈ 6.10−3(Eν/MeV), so that 6.10−4 < Ne/N

31
Res < 6.10−2 in the Eν range [.1, 10.] MeV,

making matter effects negligible in this case. When studying oscillations in the sun, working in the 2

family oscillation model will be a good enough approximation.

Neutrinos through the earth

The electron density in the earth is much less than in the sun and it remains approximately con-

stant in the core45 (Ne ≈ 3.3 1024 cm−3) and in the mantle (Ne ≈ 1.2 1024 cm−3). It is then

expected that solar neutrinos with Eν < 10 MeV will be little affected by coherent interactions

when traversing the earth. However this will not the case for higher energy neutrinos in the GeV

and multi-Gev range. Furthermore, in the 3-ν model, 13 oscillations will become important since

Ne/N
31
Res = 2

√
2GF k/(δm

2
31 cos(2θ13)) can be of order 1 in the GeV range. This will be discussed

later.

13.4 Matter of varying density: νe in the sun

When the density of electrons decreases from the core to the surface, as it is the case in the sun, the

angle θm(t) becomes a function of x = t. The variation of θm(x) should bring a dθm(x)/dx = θ′m(x)

dependence in the evolution equations of the neutrino system. From eq. (13.13) written as

(
|νe(x)>
|νx(x)>

)

= R(θm(x))
(
|νm1

(x)>
|νm2

(x)>

)

, (13.24)

45One assumes an equal number of neutrons and protons hence Np = Ne = NN/2, with NN given above.
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we derive

i
d

dx

(
|νe(x)>
|νx(x)>

)

= i

(
d

dt
R(θm(x))

)(
|νm1

(x)>
|νm2

(x)>

)

+R(θm(x)) i d
dt

(
|νm1

(x)>
|νm2

(x)>

)

= R(θm(x))
[

RT (θm(x)) i
(
d

dt
(R(θm(x))

)

+

(
ω1(x) 0
0 ω2(x)

)](
|νm1

(x)>
|νm2

(x)>

)

= R(θm(x))
(

ω1(x) iθ′m(x)
−iθ′m(x) ω2(x)

)

RT (θm(x))
(
|νe(x)>
|νx(x)>

)

, (13.25)

similar to eq. (13.4) except for the off-diagonal term iθ′m(x). If |2 θ′m(x)/(ω2(x) − ω1(x)| ≪ 1,

then ω1(x) and ω2(x) will remain approximate eigenvalues of the system and the |νmi(x)> will be

approximately the mass eigenstates. Intuitively, one expects this to happen if the rate of change of

the electron density (1/Ne)dNe/dx is very slow compared to the oscillation length in matter. This

rate of change is measured by (1/Ne)dNe/dx = 1/r0, where a large value of r0 corresponds to a small

variation of Ne and if

r0/lmat ≫ 1, (13.26)

with lmat given by eq. (13.20), then the variation of Ne will have a small effect on the neutrino mass

eigenstates. More precisely, this condition is :

ω2(x)− ω1(x)

2 |θ′m(x)|
≫ 1. (13.27)

From eqs. (13.17) one derives

2 θ′m(x) =
dÂ

dx

sin(2θ)

sin2(2θ) + (cos2(2θ)− Â)2
, (13.28)

and from eq. (13.15) one has,

dÂ

dx
=
Â

r0
. (13.29)

Using then the relations

sin2(2θ) + (cos2(2θ)− Â)2
sin2(2θ)

= 1 + tan−2(2θm) , (13.30)

the condition (13.27) can be written:

1

Â

r0δm
2

2k
sin2(2θ)(1 + tan−2(2θm))3/2 =

2πr0
lmat

NRes

Ne
tan(2θ)(1 + tan−2(2θm))≫ 1 . (13.31)

If this condition is satisfied the evolution of the neutrino system in matter is said to be adiabatic.

The flavoured neutrinos related, at the initial time, to the mass eigenstates |νmi(x0)> by the angle
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θm = θm(x0) as in eq. (13.24), will be, at each point of the evolution, related to the mass eigenstates

|νmi(x)> by the angle θm(x), until they exit from matter in vacuum, at a distance R where the mixing

angle is θ and the mass eigenstates |νi>. The assumed adiabatic evolution does not mix the |νm1
(x)>

and |νm2
(x)> states which evolve respectively to the |ν1> and |ν2> states of the vacuum when the

neutrino exit from the medium. Thus, for

|νe(x0)>= cos(θm(x0))|νm1
(x0)> +sin(θm(x0))|νm2

(x0)>, (13.32)

at some initial time, one has at time x,

|νe(x)>= cos(θm(x))|νm1
(x)> +sin(θm(x))|νm2

(x)>, (13.33)

and when the neutrino reaches the surface of the sun,

|νe(R)>= cos(θ)|ν1> +sin(θ)|ν2>, (13.34)

The probability to find a νe at the surface will be |<νe(R)|νe(x0)> |2, i.e.:

P (νe → νe;x0, R) = [cos(θ) cos(θm(x0)) <ν1|νm1
(x0)> +sin(θ) sin(θm(x0)) <ν2|νm2

(x0)>]
2

=
1

2
[1 + cos(2θ) cos(2θm(x0))] + oscillating term

≈ sin2(θ) + cos(2θ) cos2(θm(x0)), (13.35)

where we have supposed that the oscillating term averages out to 0. As a special case, if at x0 the

neutrino is produced in a pure mass eigenstate |νm2
(x0)> (θm(x0) = π/2), then the neutrino will

remain in this pure mass eigenstate |νm2
(x)> during its propagation until it reaches the surface where

|νm2
(R)>= |ν2> in vacuum. The probability to find a νe at the surface will then be

P (νe → νe;x0, R) = sin2(θ). (13.36)

On the contrary, one may consider the extreme non-adiabaticity case of the evolution in matter: in

that case a νe produced in the |νm2
(x0)> state ends up as the |ν1(R)> when exiting from the medium,

and if this occurs

P (νe → νe;x0, R) = cos2(θ). (13.37)

in contrast with eq. (13.36). The general treatment of a non adiabatic evolution is given by Petcov46.

It is easy to check that, in the sun, the adiabaticity condition is satisfied.

46 S.T. Petcov, Phys. Lett. 200 (1988) 373.
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13.5 Neutrinos through the earth

As mentioned above, for energetic neutrinos traversing the earth Ne/N
21
Res is very large and Ne/N

31
Res

may be of order 1 for Eν ' 1 GeV: indeed, in that case, Ne ≈ 1.2 to 3.3 1024 cm−3 compared

N21
Res ≈ 1023 (Eν/GeV)−1 cm−3 and N31

Res ≈ 1025 (Eν/GeV)−1 cm−3. It is then necessary to work with

the full 3-ν model. The free hamiltonian when acting on the mass eigenstates is

H0 =





m2
1/2k 0 0
0 m2

2/2k 0
0 0 m2

3/2k



 . (13.38)

After a change of phase on the states it can be put in the form

H0 =





0 0 0
0 δm2

21/2k 0
0 0 δm2

31/2k



 (13.39)

with δm2
ij = m2

i −m2
j . Going to the flavour basis,





νe
νµ
ντ



 = U





ν1
ν2
ν3



 , (13.40)

the hamiltonian is written Hfl
0 = U H0 U† where U is parameterised20 as in eq. (11.12), U =

U23U13(δ)U12. Since the interaction in matter affects only the electron the interacting hamiltonian

is written

Hfl = U





0 0 0
0 δm2

21/2k 0
0 0 δm2

31/2k



U† +





√
2GFNe 0 0
0 0 0
0 0 0



 (13.41)

= U23 U(δ)



U13U12





0 0 0
0 δm2

21/2k 0
0 0 δm2

31/2k



U †
12U

†
13 +





√
2GFNe 0 0
0 0 0
0 0 0







U †(δ)U †
23 .

Several comments are in order. The matrix U23 does not affect the interaction matrix which can then

be multiplied by U23 on the left and U †
23 on the right. Furthermore, writing U13(δ) = U(δ)U13 U

†(δ)

with

U(δ) =





1 0 0
0 1 0
0 0 eiδ



 , (13.42)

the δ dependence can be factored out as indicated above. We know that δm2
21 ≪ δm2

31 and we have

seen that, in the earth, for neutrinos in the GeV range and above, the ratio δm2
21/2
√
2GFNek is very
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small which justifies the approximation δm2
21 = 0 which is now done. This will considerably simplify

the discussion47. The hamiltonian in the flavour basis can then be written:

Hfl = U23 U(δ)



U13





0 0 0
0 0 0
0 0 δm2

31/2k



U †
13 +





√
2GFNe 0 0
0 0 0
0 0 0







U †(δ)U †
23. (13.43)

The matrix U12 plays no role because of our choice δm2
21 = 0, so we take θ12 = 0, U12 = 1. Then this

equation becomes:

Hfl = U23 U(δ)





(δm2
31/2k) sin

2(θ13) +
√
2GFNe 0 (δm2

31/4k) sin
2(2θ13)

0 0 0
(δm2

31/4k) sin
2(2θ13) 0 (δm2

31/2k) cos
2(θ13)



U †(δ)U †
23. (13.44)

The diagonalisation of the interacting hamiltonian follows the procedure of sec. 13.3. Here one eigen-

value ω2 is 0 while the other two, ω1,3, are given by

ω1,3 =
δm2

31

4k

[

Â+ 1∓
√

sin2(2θ13) + (cos(2θ13)− Â)2
]

, (13.45)

identical to the eigenvalues given in eq. (13.14) with the substitution θ → θ13 and δm2 → δm2
31. As

in the work of M. Freund47 Â is now

Â = 2
√
2GFNek/δm

2
31 . (13.46)

The 3× 3 matrix in eq. (13.44) is diagonalised via the matrix Um13 and Hfl is then written:

Hfl = U23 U(δ)Um13





ω1 0 0
0 0 0
0 0 ω3



Um†
13 U †(δ)U †

23, (13.47)

with the matrix Um13 of the same form as U13 but function of the angle θm13. This angle is given by eqs.

(13.16) or (13.17) with the appropriate change of notation. Finally the matrix Um which relates the

flavour eigenstates and the mass eigenstates (with eigenvalues ω1, 0, ω3) of the interacting theory is of

the usual form

Um = Um23 U
m
13(δ)U

m
12 = U23 U

m
13(δ)U12, (13.48)

47The full treatment, which is applied here in a simplified form, is given in M. Freund, Phys. Rev. D64 (2001)
053003, [arXiv:hep-ph/0103300].
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with

sin(θm12) = 0, sin(θm23) = sin(θ23), δm = δ

cos(2θm13) =
cos(2θ13)− Â

√

sin2(2θ13) + (cos(2θ13)− Â)2
=

cos(2θ13)− Â
Ĉ

sin(2θm13) =
sin(2θ13)

√

sin2(2θ13) + (cos(2θ13)− Â)2
=

sin(2θ13)

Ĉ
. (13.49)

with

Ĉ =

√

sin2(2θ13) + (cos(2θ13)− Â)2 . (13.50)

To reconstruct the various νe transition probabilities, one needs to define the oscillating factors given

by x(ωi − ωj)/2. They are, in the small θ13 approximation (see eqs. (12.22)), and using Â < 1:

x
(ω2 − ω1)

2
= −x ω1

2
≈ −Âδm

2
31

4k
x

x
(ω3 − ω2)

2
= x

ω3

2
≈ δm2

31

4k
x

x
(ω3 − ω1)

2
= x Ĉ

δm2
31

4k
≈ |1− Â|δm

2
31

4k
x. (13.51)

The oscillation probabilities, eqs. (12.25), (12.29) and (12.32) considerably simplify because of the

vanishing of θ12: the only oscillating factor to be kept is sin2(x (ω3 − ω1)/2) = sin2(x Ĉ δm2
31/4k) all

others are multipled by sin(θ12) and disappear. One finds:

P (νe → νµ) ≈ sin2(θ23)
sin2(2θ13)

Ĉ 2
sin2

(

x Ĉ
δm2

31

4k

)

, (13.52)

Changing sin(θ23) to cos(θ23), one obtains P (νe → ντ ). In the small θ13 approximation Ĉ ≈ |1 − Â|
and

P (νe → νµ) ≈ sin2(θ23)
sin2(2θ13)

(1− Â)2
sin2

(

x(1− Â)δm
2
31

4k

)

, (13.53)

As a result of neutrino interaction with matter, both the amplitude and the frequency of oscillations

are modified.

Going beyond the δm2
21 = 0 approximation leads to much more complicated expressions for the

different parameters which are given in the work of Martin Freund47. All parameters in eqs. (13.49)

receive a correction proportional to α = δm2
21/δm

2
31. However, in a realistic and often used limit,

drastic simplifications are possible. This is the case if one keeps only leading terms in α and sin(θ13). In
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practice if one keeps, in the probability functions, only terms up to O(α2), O(sin2(θ13)), O(α sin(θ13)),

the only correction to the parameters in eqs. (13.49) to take into account is a modification of θ12 to

θm12. To derive it, we turn back to eq. (13.41) and consider, assuming now θ13 ≈ 0, U13 ≈ 1, the

diagonalisation by the matrix Um12 of

Um12



U12





0 0 0
0 δm2

21/2k 0
0 0 δm2

31/2k



U †
12 +





√
2GFNe 0 0
0 0 0
0 0 0







Um†
12 . (13.54)

This is done in sec. 13.3, the only difference being here that we define ω1 as the largest eigenvalue

and ω2 the smallest. This amounts to exchanging ω1 and ω2, hence reversing the sign of the square

root factor in eq (13.16). This leads to a negative θm12, and in the large Â21 = Â/α≫ 1 limit, to

sin(2θm12) ≈ −
sin(2θ12)

Â21

= −αsin(2θ12)
Â

. (13.55)

from eq. (13.17). Using this result together with eqs. (13.49) and (13.51) one reconstructs the various

probability functions. All oscillatory factors now enter the formulae and, from eq. (12.29), one finds

for the oscillation νe → νµ:

P (νe → νµ) ≈ sin2(θ23)
sin2(2θ13)

(1− Â)2
sin2

(

x(1− Â)δm
2
31

4k

)

+ α2 cos2(θ23)
sin2(2θ12)

Â2
sin2

(

xÂ
δm2

31

4k

)

+ α
8J cos(δ)

Â(1− Â)
cos

(

x
δm2

31

4k

)

sin

(

xÂ
δm2

31

4k

)

sin

(

x(1− Â)δm
2
31

4k

)

+ α
8J sin(δ)

Â(1− Â)
sin

(

x
δm2

31

4k

)

sin

(

xÂ
δm2

31

4k

)

sin

(

x(1− Â)δm
2
31

4k

)

. (13.56)

To obtain the terms in sin(δ) and cos(δ) we use respectively eqs. (12.37) and (12.39) with J as defined

in eq. (12.27). We recall this expression is valid in the small δm2
21/δm

2
31 and sin(θ13) approximation.

The effect of matter is contained in Â = 2
√
2GFNek/δm

2
31 which changes the relative weights of the

terms compared to vacuum and the magnitude of the change is energy dependent since Â ∝ k. Taking
α = 0 one recovers a previously derived result but it is not allowed in this expression to make Â = 0,

the vacuum limit, since the derivation was done assuming Â = Ne cos(2θ13/N
31
Res > α. With the

present value of δm2
21 this condition is, for neutrinos traversing the earth, Eν > .3 GeV. The results

above thus do not apply to solar neutrinos but it does apply to atmospheric and accelerator neutrinos.

The time reversed probability P (νµ → νe) is obtained from the above equation by reversing the sign of

δ while for P (νe → νµ) one reverses both the sign of Â and δ. From eq. (12.33) and the above results

one can obtain the oscillation probability P (νµ → ντ ) in matter which are stronger than νµ → νe, the
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dominant term being proportional to sin2(2θ23) rather than sin2(2θ13).

• Discussion and order of magnitude of the parameters

We summarize here for later use the value of the parameters and the order of magnitude of the

|α| Â xδm2
21/4k xδm2

31/4k xÂδm2
31/4k

3. 10−2 .125 (k/GeV) 10−4 (x/km)(k/GeV)−1 3.2 10−3 (x/km)(k/GeV)−1 4 10−4 (x/km)

Table 2: Value of the parameters controling the neutrino oscillations in the earth mantle: |α| =
δm2

21/|δm2
31|, Â = 2

√
2GF kNe/|δm2

31| with Ne = 1.25 1024 cm−3, δm2
21 is positive and δm2

32 ≈ δm2
31

is assumed. The value of the masses are taken from eq. (12.22).

oscillating factors. One of the experimentally unsolved question is the mass ordering, i.e. is δm2
31

positive or negative ? Although the derivation above was done assuming this quantity positive it also

holds with δm2
31 < 0 keeping δm2

21 > 0. In that case, Â is also negative but the combinations α/Â

and Â δm2
31 remain positive. Similarly to the oscillations in vacuum the difference between the two

hypothesis is the sign of the cos δ term but this term is very small if δ ≈ 3π/2 (see eq. (13.56)).

In matter however, since the magnitude of the oscillation depends on Â one can use the energy as a

parameter to probe the hierarchy hypothesis. For example, all terms with a normalisation factor in

1/(1− Â) will be sensitive to the sign of δm2
31 provided of course that the associated oscillating factor

x(1−Â)δm2
31/4k be large enough so as not to compensate the normalisation otherwise one can expand

sin(x(1− Â)δm2
31/4k) ≈ (1− Â) sin(xδm2

31/4k) and then get back the vacuum oscillation result.
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14 Neutrino experiments

In the following we discuss how the values of the PMNS matrix elements are extracted from data. The

first experiments were ”disappearance” experiments where one measured the neutrino flux of a given

flavour near the emission point and compared it to the flux of neutrinos of the same flavour measured

at a distance. More recently several collaborations are able to carry out ”appearance” experiments

where one measures, near or far from the emission point, the flux of neutrino of a flavour different

from the emitted one.

The source of (anti)neutrinos are varied:

• Nuclear reactors produce νe of typical energy <Eνe> ≈ 3. MeV which are measured close

to the reactors ∼ 100 m or ∼ 1 km (Double Chooz, Daya Bay, RENO) or far away 180 km

(KAMLAND).

• At accelerators, π±’s produced in hadronic collisions decay predominently in νµ and νµ while

K±’s decay also νe and νe. The average energy <Eν > ≈ 1 GeV and the flux is measured

at a distance of 295 km (T2K), 735 km (MINOS), 810 km (NOνA). For OPERA the incident

neutrino energy is much higher <Eνµ> ≈ 17 GeV and the detector is 730 km away from the

source. All these are long baseline experiments.

• Atmospheric neutrinos are produced in cosmic ray showers from π+ → νµ µ
+ followed by µ+ →

e+ νe νµ (and similarly with π−) so that they are a mixture (νµ+νµ) and (νe+νe) in proportion

2 : 1 at low energy < 1 Gev. Before being detected the neutrinos travel 1 to 30 km (above

the Earth, “downward flux”) or 1.3 104 km (through the Earth, “upward flux”) (SNO, Super-

Kamiokande).

• For the solar neutrinos, the flux from 8B (8B →7Be∗ + e+ + νe) is particularly useful. It has a

relatively large energy, 1.5 MeV < Eν < 15 MeV, and the 8B is the only source of νe’s in this

energy range. The neutrinos travel 1.5 108 km before being detected in mines on Earth (SNO).

Previous experiments (GALLEX, GNO, SAGE) measured the flux of lower energy νe’s: .1 MeV

< Eν < .4 MeV.

• Ultra-high energy or cosmic or cosmogenic neutrinos have energies in the range of 100 TeV

to several PeV: they are produced by collisions of ultra-high energy cosmic rays on protons

or photons, for example on photons from the Cosmic Microwave Background (CMB), and by
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sources such as Active Galactic Nuclei (AGN). Their flux is very small and they require huge

detectors (telescopes) to be observed (IceCube, ANTARES, KM3net, Baikal-GVD).

14.1 Nuclear reactors : KamLAND, Double-Chooz, Daya Bay, RENO

Nuclear reactors produce dominantly electron antineutrinos and, assuming three flavours, we recall

that their survival probability at a distance x is from eq. (12.25),

P (νe → νe) = 1 − sin2(2θ12) cos
4(θ13) sin

2(δm2
21x/4 k)

− sin2(2θ13) sin
2(θ12) sin

2(δm2
32x/4 k)

− sin2(2θ13) cos
2(θ12) sin

2(δm2
31x/4 k). (14.1)

14.1.1 Long baseline: KamLAND, δm2
21
, θ12

KamLAND, a long baseline experiment (<x>=180 km) with the detector in Kamioka mine in Gifu,

Japan, receives νe’s from 56 nuclear power reactors48. The average neutrino energy is <k>= 3. MeV

so that the factors x δm2
31/4 <k> ≈ x δm2

32/4 <k> ≈ 190, and integrating over the energy of the

neutrino, averages the value of the factors sin2(x δm2
31/4k) ≈ sin2(x δm2

32/4k) ≈ 0.5. The equation

above reduces to

P (νe → νe) ≈ 1− cos4(θ13) sin
2(2θ12) sin

2(δm2
21x/4 k) − 0.5 sin2(2θ13)

≈ cos4(θ13)P
(2)(νe → νe) + sin4(θ13) (14.2)

where one has introduced the oscillation probability in a two flavour neutrino world, eq. (12.43),

P (2)(νe → νe) = 1− sin2(2θ12) sin
2(δm2

21x/4 k). (14.3)

Taking advantage of the smallness of sin2(θ13), it is reasonable to make the further approximation

(appropriate for long baseline experiments), neglecting sin4(θ13) terms,

P (νe → νe) ≈ (1− 2 sin2(θ13))P
(2)(νe → νe) (14.4)

The survival probability plotted, in fig. 8, as a fonction of L0/Eνe = x/k in our notation is clearly

seen in the figure from the KamLAND collaboration. One observes that the 2-neutrino best fit is very

similar to the 3-neutrino one, meaning a very small value for θ13 ∼ 0. Using the 3-neutrino analysis

they obtain49:

δ(m2
21) = (7.54 + 0.19

− 0.18) 10
−5 eV2, sin2(θ12) = 0.325 + 0.045

− 0.039 . (14.5)

48KamLAND collaboration, A. Gando et al., Phys.Rev D83 (2011) 052002, arXiv:1009.4771, [hep-ex].
49Atsuto Suzuki, Eur.Phys.J. C74 (2014) 3094, arXiv:1409.4515 [hep-ex].
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Figure 8: KamLAND oscillation pattern and fits in the 2-ν and 3-ν models.

14.1.2 Short baseline: Double-Chooz, Daya Bay, RENO, δm2
31
, θ13

Double-Chooz50, Daya Bay51 and RENO52 are short baseline experiments. They have near detectors at

a distance of typically 300m to 600m and far detectors at a distance of typically 1000m to 1700m. In

these configurations the δm2
21 term in eq. (14.1) becomes negligible and the oscillations are dominated

by δm2
31 ≈ δm2

32 terms so that the probability function reduces to (appropriate for short baseline

experiments):

P (νe → νe) ≈ 1− sin2(2θ13) sin
2(δm2

32x/4 k). (14.6)

50Double-Chooz collaboration, C. Buck, PoS NEUTEL2015 (2015) 015.
51Daya Bay collaboration, D. Aday et al., Phys. Rev. Lett. 121 (2018) 241805, arXiv:1809.02261 [hep-ex]; they use

the complete expression eq. (14.1) in their fit to data.
52RENO collaboration, G. Bak et al., Phys. Rev. Lett. 121 (2018) 201801, arXiv:1806.00248 [hep-ex].
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With the high statistics available these short baseline experiments are well suited to constrain the

small θ13 mixing angle. For instance, the Daya Bay collaboration reports a precise determination of

the angle θ13, sin
2 2θ13 = 0.0856 ± 0.0029. They also quote the value for the mass-squared difference

for normal ordering δm2
32 = (2.471+.0068−.0070) 10−3 eV2. Recently the result from Double Chooz53 is

sin2 2θ13 = 0.105 ± 0.0014.

14.2 Neutrinos from accelerators: T2K, NOνA and OPERA ; δm2

32
, θ23, δ

T2K is a long baseline experiment with a muon neutrino beam with a peak energy of 0.6 GeV produced

at the J-PARC (Japan Proton Accelerator Research Complex in Tokai) facility and observed in a near

detector at 280 m and in the Super-Kamiokande detector at a distance x = 295 km from the production

source. This is both a νµ disappearance and a νe appearance experiment. In 2011 the collaboration

gave the first indication of νe appearance in a νµ beam54. Based on the small number of νe observed,

a non vanishing value of θ13 is obtained for the first time: sin θ13 = .11 with a large error however.

Results analysing both ν and ν oscillations based on a νµ beam generated by 7.48 1020 POT (”protons

on target”) and a νµ beam from 7.47 1020 POT have been published in 201755. Comparing νµ → νe

and νµ → νe transitions is very useful to extract a precise measurement of the CP violating parameter.

In a simplified form (δm2
31 = δm2

32), the νµ survival probability is written (eq. (12.26)):

P ( ν(−)
µ → ν(−)

µ) = 1 − sin2(2θ12) cos
4(θ23) sin

2

(

x
δm2

21

4k

)

(14.7)

− [sin2(2θ23) cos
2(θ13) + sin2(2θ13) sin

4(θ23)] sin2
(

x
δm2

32

4k

)

− 16J sin2(θ23) cos(δ) sin

(

x
δm2

21

4k

)

sin

(

x
δm2

32

4k

)

cos

(

x
δm2

32

4k

)

,

and the oscillation probability is (see eq. (12.41):

P ( ν(−)
µ → ν(−)

e ) = sin2(2θ13) sin
2(θ23) sin

2

(

x
δm2

32

4 k

)

+ sin2(2θ12) cos
2(θ23) sin

2

(

x
δm2

21

4 k

)

(14.8)

+ 8J sin

(

x
δm2

21

4k

)

sin

(

x
δm2

32

4k

)[

cos(δ) cos

(

x
δm2

32

4 k

)

± sin(δ) sin

(

x
δm2

32

4 k

)]

.

where the − sign is for neutrino and the + sign for antineutrinos.

53H. de Kerret et al., arXiv:1901.09445 [hep-ex].
54T2K collaboration, K.Abe et al., Phys. Rev. Lett. 107 (2011) 041801, arXiv:1106.2822 [hep-ex].
55T2K collaboration, K.Abe et al., Phys. Rev. D 96 (2017) 092006, arXiv:1707.01048 [hep-ex].
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Figure 9: Comparison of the oscillation rate νe in a νµ beam (right) with that of νe in a νµ beam
(left) for differente hypothesis on the CP violation parameter δ. Note that δ = −π/2 in the figure
corresponds to δ = 3π/2 in the text. From Y. Oyama, for T2K Collaboration, PoS PLANCK2015
(2015) 094, arXiv:1510.07200 [hep-ex].
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Figure 10: Joint fit of sin2(θ13) and δ to the data of appearance of νe in a νµ beam and νe in a νµ
beam, for both mass hierarchy hypotheses: ∆χ2 contours using 5-sample data (black) or 4-sample data
(red). Constraints from reactors data are included. δ in the text is 2π+ δCP in the figures. From T2K
Collaboration, K. Abe et al., Phys. Rev. D 96 (2017) 092006, arXiv:1707.01048 [hep-ex].

For the T2K configuration, the sin
(
x δm2

21/4k
)
term is very small (≈ 0.048) compared to sin

(
x δm2

32/4k
)

which justifies the neglect of terms in sin2
(
x δm2

21/4k
)
in the cofficient of J (see eqs. (12.38) and (12.40)).

Since sin2(2θ13) ≈ .084 is small, we drop such terms in the coefficient of sin2
(
x δm2

21/4k
)
but

keep them in the coefficient of sin2
(
x δm2

32/4k
)
. The survival probabilities are dominated by the

sin2(2θ23) sin
2
(
x δm2

32/4k
)
piece and lead to a good determination of θ23 and δm2

32. Based on data

collected until 2016 the T2K collaboration quotes the values, at a 1 σ confidence level:

δm2
32 = (2.54 ± 0.08) 10−3 eV2, sin2(θ23) = 0.55+ 0.05

− 0.09 (14.9)
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for normal mass ordering, and

δm2
32 = (2.51 ± 0.08) 10−3 eV2, sin2(θ23) = 0.55+ 0.05

− 0.08 (14.10)

for inverted mass ordering. For this value of δm2
32 and for a peak energy of .6 GeV and the base line

of 295 km one finds cos
(
x δm2

32/4k
)
≈ 0 which means that the cos(δ) term has almost no contribution

to the survival or oscillation probabilities. Since it is the only term which changes sign when going

from normal to inverted hierarchy, T2K is not sensitive to the sign of δm2
32 ≈ δm2

31. The δ dependence

of P (νµ → νe) is therefore almost entirely given by the sin(δ) piece which is

−8J sin

(

x
δm2

21

4k

)

sin2
(

x
δm2

32

4k

)

sin(δ)

≈ − sin(2θ12) sin(2θ23) sin(2θ13) cos(θ13) sin

(

x
δm2

21

4k

)

sin2
(

x
δm2

32

4k

)

sin(δ)

≈ − 0.013 sin(δ) (14.11)

for the peak energy of 0.6 GeV. Furthermore the variation of P (νµ → νe) as a function of δ is opposite

to that of P (νµ → νe). The amplitude of variation is about 0.026 when going from δ = π/2 to δ = 3π/2

as illustrated in fig. 9. From the oscillation data the collaboration quotes the following results, at a 1

σ confidence level, taking into account the reactor constraints on θ13:

δ = 4.56 + 0.81
− 0.85 (1.45π+ 0.26π

− 0.27 π) for normal mass order,

δ = 4.83 + 0.68
− 0.73 (1.54π+ 0.22π

− 0.23 π) for inverted mass order.

The correlation δ − sin(θ13) is illustrated in fig. 10. The best fit value of the CP violating angle is

δ ≈ 3π/2, which means cos(δ) ≈ 0 and, consequently, it will be difficult to solve the hierarchy problem

from any oscillation experiment in vacuum. In principle, since the neutrinos propagate through the

Earth crust on a distance of about 300 km, matter effects should be taken into account when extracting

the values of parameters. However, for a peak energy Eν = 0.6 GeV and a density of electrons in the

Earth crust around Ne = 8 1023 cm−3, the relevant parameter Â = 2
√
2GFNeEν/δm

2
31 is very small,

Â ≈ 0.05, leading to negligible matter effects.

NOνA is another long baseline accelerator experiment, optimised to study νµ ↔ νe oscillations,

which started publishing results recently56. It is a νµ disappearance νe appearance experiment for

both neutrinos and antineutrinos, with a beam of peak energy Eν ≈ 2 GeV from Fermilab with a far

56NOνA collaboration, P. Adamson, Phys. Rev. Lett. 118 (2017) 231801, arXiv:1703.03328 [hep-ex]; Jianming Bian,
for the NOνA collaboration, arXiv:1812.09585 [hep-ex].

118



detector 810 km away in Minnesota. With this choice of parameters, the value of sin2(xδm2
32/Eν) is

near its maximum which maximizes the disappearance of νµ and the appearance of νe. NOνA has

collected an equivalent of 8.85 1020 protons on target for neutrinos and 6.9 1020 for antineutrinos. It

should be more sensitive to matter effects than T2K with a value of Â ≈ .18. A preliminary analysis,

for normal hierarchy (with δm2
31 ≈ δm2

32), yields δm
2
32 = 2.51+0.12

−0.08 10
−3 eV2 with a mixing angle,

sin2(θ23) = .58 ± .03.

OPERA is a τ appearance experiment : it is the only detector designed to identify τ leptons in a

νµ beam on an event-by-event basis. The νµ source is the CNGS (CERN Neutrinos to Gran Sasso)

beam directed at the Grand Sasso underground facility 730 km away. Compared to other accelerator

experiments the νµ energy is very high, <Eνµ>= 17 GeV to overcome the τ production threshold,

Eth = 3.55 GeV. The observed number of τ leptons is written57

Nτ = A

∫

Eth

Φνµ(E)P (νµ → ντ )σ
CC
τ (E) ε(E) dE, (14.12)

where A is a normalisation constant taking account of the detector mass, Φνµ(E) the neutrino flux,

σCCτ (E) the charged-current ντ cross section and ε(E) the ντ detection efficiency. As for P (νµ → ντ )

the oscillation rate given in eq. (12.33), it simplifies considerably since the sin2(δm2
12x/4k) term with

δm2
12x/4k ≈ 4.1 10−3 gives a negligeable contribution,

P (νµ → ντ ) ≈ sin2(2θ23) sin
2(δm2

32x/4k) (14.13)

ignoring furthermore sin2(θ13) pieces. For the OPERA configuration the number of observed τ leptons

is given58

Nτ ≈ A′ sin2(2θ23) (δm
2
32[eV

2]L[km])2
∫

Eth

Φνµ(E)σCCτ (E) ε(E)
dE

E2
. (14.14)

In 2010 the first observation of a τ lepton in a νµ beam59 was made. According to the final results60 10

ντ candidate events have been reported, for an expected no oscillation background of 2 events, which

allows to claim for the discovery of νµ → ντ oscillations with a significance level of 6.1 σ. A value of

δm2
32 = 2.7+0.7

−0.6 10
−3 eV2 is obtained, consistent with the world average.

57OPERA Collaboration, S. Dusini, AIP Conference Proc. 1666 (2015) 110003; doi: 10.1063/1.4915575.
58In this expression the approximation sin

(

Lδm2
32/4E

)

≈ 1.27 δm2
32[eV

2]L[km]/E[GeV] is justified.
59OPERA Collaboration, N. Agafonova et al. Phys. Lett. B 691 (2010) 138, arXiv:1006.1623.
60N. Agafonava et al. Phys. Rev. Lett. 120 (2018) 211801, arXiv:1804.04912 [hep-ex].
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14.3 Atmospheric neutrinos: Super-Kamiokande ; δm2

32
, θ23, δ

In 1998, the collaboration provided the first experimental evidence of neutrino oscillations61. Super-

Kamiokande is an underground detector of 50 kilotons of ultra-pure water located in Gigu prefecture

in Japan. It records the µ± and e± produced in ν and ν induced reactions. In a first analysis it is

difficult to tell νµ (νe) from νµ (νe) so that the results are given for νµ + νµ and νe + νe fluxes. One

distinguishes the downward going flux (zenithal angle θz ≈ 0) with the neutrinos interacting (primary

vertex) in the detector after a path length of 1 to 30 km in the atmosphere, from the upward going flux

(zenithal angle θz ≈ π) where the neutrinos, after travelling up to 1.3 104 km through the Earth, are

interacting in the rocks outside Super-K producing a muon energetic enough to enter the detector62.

In a first approximation (e.g. x/k < 103) one ignores the oscillation terms in sin(δm2
21x/4k) and take

δm2
32 ≈ δm2

31. The relevant rates of oscillations (in vacuum) are obtained from secs. 12.3 and 12.4:

P (νe ↔ νµ) ≈ sin2(2θ13) sin
2(θ23) sin

2(δm2
31 x/4 k)

P (νe → ντ ) ≈ sin2(2θ13) cos
2(θ23) sin

2(δm2
31 x/4 k)

P (νµ → ντ ) ≈ sin2(2θ23) cos
4(θ13) sin

2(δm2
31 x/4 k) (14.15)

P (νe → νe) ≈ 1− sin2(2θ13) sin
2(δm2

31x/4 k)

P (νµ → νµ) ≈ 1− [sin2(2θ23) cos
2(θ13) + sin2(2θ13) sin

4(θ23)] sin2
(

x
δm2

31

4k

)

.

One checks easily that P (νµ → νµ) = 1− P (νµ → νe) − P (νµ → ντ ). We quote here very simplified

formulae which are sufficient to understand the global features of the data but, in their analysis,

the Super-K collaboration uses the full model including the CP violating phase δ as well as matter

effects. From eqs. (14.15) it is expected that νµ will fluctuate dominantly in ντ (sin2(2θ23) ≈ .99 vs

sin2(2θ13) ≈ .1) and the νµ disappearance will be less important for downward neutrinos since they

do not have time to oscillate unlike those crossing the Earth. Because of the small value of sin2(2θ13)

νe oscillation is less effective.

The Super-K collaboration has given the most precise measurements of the atmospheric neutrino

fluxes in a large energy range63: 0.15 < Eν [GeV ] < 65 for νe + νe and 0.25 < Eν [GeV ] < 2500 for

νµ + νµ (see fig. 11 which also displays model predictions with and without oscillations). At high

energies, the spectrum is dominated by νµ + νµ and, for kinematical reasons, the ντ flux is negligible.

As expected the νe + νe flux is globally not sensitive to oscillations while the νµ + νµ flux below 100

61Super-Kamiokande Collaboration, Y. Fukuda et al. Phys. Rev. Lett. 81 (1998)1562, arXiv:hep-ex/9807003.
62More precisely, the downward neutrinos have 0 < θz < π/2 and the upward neutrinos have π/2 < θz < π.
63Super-Kamiokande collaboration, E. Richard et al., Phys. Rev. D94 (2016) 052001, arXiv:1510.08127 [hep-ex].
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Figure 11: Energy spectra of νe + νe and νµ + νµ atmospheric neutrinos by the Super-K collaboration
in comparison with other measurements. The solid (dashed) lines are model predictions with (with-
out) oscillations. From Super-Kamiokande collaboration, E. Richard et al., Phys. Rev. D94 (2016)
052001, arXiv:1510.08127 [hep-ex].

GeV is reduced. Above this energy the factor (x δm2
31/4 k) is small and oscillations become irrelevant.

Fig. 12 displays details of ν oscillations in the Earth. Panel b) illustrates the survival pattern of an

upward (cos θz = −1) 4 GeV νµ as a function of the distance travelled in the Earth. After crossing the

Earth (x ≈ 1.28 104 km) the neutrinos have undergone 3 cycles of oscillations i.e. (xδm2
31/4k) ≈ 3π.

Notice that, in the model illustrated in fig. 12-b, the oscillation strength is enhanced as the muon

neutrino crosses the Earth indicating a modification of the mixing angles (see eqs. (13.49)). A naive

estimate of the effect of matter is obtained by calculating the factor Â, eq. (13.46):

Â =
2
√
2GFNeEν
δm2

31

≈ .1
(
Eν

[GeV ]

)

, for Ne ≈ 1. 1024cm−3.
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Figure 12: Neutrino oscillation patterns in the Earth. a) definition of the zenith angle θ, denoted θz in
the text, and multilayer structure of the Earth ; the average density of electrons in the core (grey areas)

is N
core

e ≈ 3.3 1024cm−3, and in the mantle (red area) N
mantle

e ≈ 1.2 1024cm−3; b) survival probability of
an upward (cos θ = −1) E = 4 GeV muon neutrino crossing the Earth (red) and correlated appearance
probability of an electron neutrino (green); c) survival probability of an upward going muon neutrino
having crossed the Earth as a function of energy. From C. Rott, A. Taketa, D. Bose, Nature Scientific
Reports: 15225, www.nature.com/articles/srep15225.

Panel c) illustrates, as a function of energy, the survival pattern of an upward muon neutrino exiting

from the Earth: because of the 1/k dependence of the oscillating factor, oscillations are much more

rapid at low energy. In data, an average over a large energy range is performed so that the oscillating

factor sin2(xδm2
31/4k) reduces to .5.

The distribution of events as a function of the zenith angle is given in fig. 13: for events labelled

”Multi-GeV µ-like” (middle panel) the increase in the number of events when cos θz decreases from 1 to

0 is due to the increase of the effective thickness of the atmosphere, then at cos θz = −1 the oscillations

reduce the νµ + νµ flux by a factor 2 compared to the no oscillation expectation. Concerning νe’s,

the disappearance (left panels) is much less pronounced. One notices however that energetic upgoing
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Figure 13: Superkamiokande zenithal oscillations : “Sub-GeV” refers to events with Evis < 1.33
Gev while “Multi-GeV refers to neutrinos with Evis > 1.33 GeV. The 4 left most panels have a
reconstruted vertex in the SK detector while the 2 right most panels show the sample of upward-going
muons produced by neutrinos in the rock surrounding the detector. The blue lines show the non-
oscillated prediction and the red lines the oscillated ones. From R. Wendell for the Super-Kamiokande
collaboration, arXiv:1412.5234 [hep-ex].

(anti)neutrinos are less suppressed than downgoing (cos θz ≈ 1) ones: at high energy the atmospheric

νµ+ νµ flux is much larger than the νe+ νe flux and, furthermore, between 2 and 10 GeV the νµ+ νµ

to νe + νe resonant enhancement in the Earth is possible as discussed in sec. 13.3. The resonant

enhancement is sensitive to the sign of δm2
31 and affects νe’s for normal hierarchy and νe’s for inverted

hierarchy. Separating neutrinos from antineutrinos would allow to determine the sign of δm2
31. For

this purpose the collaboration is constructing νe and νe enriched samples.

In recent analyses of their data64, keeping the δ dependence and matter effects as in eq. (13.56), for

example, the Super-Kamiokande collaboration constrains several mixing parameters. The analyses are

constrained, i.e. fixing sin2(θ13), or unconstrained. In the latter case the best fit for normal hierarchy

gives sin2(θ13) = .008+ 0.025
− 0.005 and:

δm2
31 = (2.63+0.10

− 0.21) 10
−3eV2, sin2(θ23) = 0.588 +0.030

− 0.062, δ = 3.84 +2.00
− 2.14 ( 1.22π+0.63π

− 0.68π), (14.16)

64Super-Kamiokande collaboration, K. Abe et al., Phys.Rev. D97 (2018) 072001, arXiv:1710.09126 [hep-ex].
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while, fixing sin2(θ13) = 0.0210 ± 0.0011 (from the Daya Bay, RENO and Double-Chooz) the results

are:

δm2
31 = (2.53+ 0.22

− 0.12) 10
−3eV2, sin2(θ23) = 0.425 +0.046

− 0.037, δ = 3.14 +2.67
− 1.35 (π+0.85π

− 0.43π). (14.17)

Very similar numbers are obtained for the inverted hierarchy hypothesis but the data indicate a weak

preference for the normal mass hierarchy. One observes that, when constraining θ13, the θ23 angle is

in the first octant θ23 < π/4 but, for the other case, θ23 is in the second octant θ23 > π/465. This

illustrates the strong correlations between parameters as shown by eqs. (14.15), as well as the difficulty

to obtain a precise determination of the mixing angles.

The upper end of the ν + ν spectra in fig. 11 do not play any role in the physics of oscillations but, as

will be seen in sec. 14.5, they carry information on cosmic sources.

The parameters δm2
32 and sin2(θ23) are often called atmospheric oscillation parameters.

14.4 Solar neutrinos: SNO ; δm2

12
, θ12

Since the mid sixties solar neutrinos presented a nagging problem : the measured flux66 was two to

three time smaller than the predicted one by the standard solar neutrino model67. Several explanations

were proposed to account for this discrepancy68 but now it has been shown that the correct explanation

lies in the incoherent interactions of neutrinos with matter in the sun.

According to the standard solar neutrino model, the production modes of neutrinos are given in fig. 14.

The most abondant one is

p+ p→ D + e+ + νe (14.18)

with .1 MeV < Eν < .4 MeV. The flux has been observed by the ”Gallium” experiments, GALLEX69,

SAGE70 and GNO71, via the transition Gallium to Germanium νe+
71Ga→ e−+71Ge, with a threshold

of .233 MeV. They all show a deficit of νe’s compared to the model, roughly φobs(νe)/φmod(νe) ≈ .54.
Later on, the SNO (Sudbury Neutrino Obervatory) collaboration measured the neutrino flux from the

65If θ23 ≈ π/4 the interchange θ23 → π/2 − θ23 leads to almost degenerate predictions for the observables, see
eqs. (14.15).

66Homestake experiment, R. Davis et al., Phys. Rev. Lett. 12 (1964) 302.
67J.N. Bahcall, et al., Phys. Rev. Lett. 17 (1966) 398; J.N. Bahcall, A.M. Serenelli, S. Basu, Astrophys.J. 621 (2005)

L85.
68Bruno Pontecorvo sugested in 1977 neutrino oscillations as the most reasonable explanation for the observed νe

deficit, Dubna Report E10545, 1977; S.M. Bilenky, B. Pontecorvo, Comments Nuc. Part. Phys. 7 (1977) 149.
69GALLEX Collaboration, W. Hampel et al., Phys. Lett. B447 (1999) 127.
70SAGE Collaboration, J.N. Abdurashitov et al., Phys. Rev. C80 (2009) 015807.
71GNO Collaboration, M. Altmann et al., Phys. Lett. B616 (2005) 174; GALLEX + GNO, F. Kaether et al., Phys.

Lett. B685 (2010) 47.
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Figure 14: The solar neutrino spectrum from the sun (from J.N. Bahcall, A.M. Serenelli, S. Basu,
Astrophys.J. 621 (2005) L85.

8B decay into an excited beryllium state:

8B →8Be∗ + e+ + νe. (14.19)

It is essentially the only νe source in the energy range 1.5 MeV < Eνe < 15. MeV but the solar νe’s can

convert to νµ’s and ντ ’s on their way to the detector. The SNO collaboration72 in Canada conducted

an elaborate study of 8B solar neutrinos. SNO is a detector using 1000 tons of ultra-pure heavy water

(D2O) surrounded by an ultra-pure water (H2O) shield. Three types of reactions are studied

νe +D → p+ p+ e−, via charged current (CC)

νx +D → p+ n+ νx, via neutral current (NC)

νx + e− → νx + e−, elastic scattering (ES), (14.20)

72SNO collaboration, B. Aharmim et al., Phys. Rev. C88 (2013) 025501, arXiv:1109.0763 [nucl-ex].

125



where νx stands for νe, νµ or ντ . The Cherenkov light emitted by the electron in the final state is

used to detect the first and third reactions and the second one is seen via the emission of a photon of

6.25 MeV emitted in the capture of the neutron on deuterium. The first reaction (CC), mediated by

a W boson exchange, is only sensitive to electron neutrino while the second one (NC), mediated by Z

boson exchange, receives an equal contribution from all three flavours

σNC(νe) = σNC(νµ) = σNC(ντ ) (14.21)

For the third one, νe has a higher cross section since it can go both by charged or neutral current as

shown in fig. 15, and one has with a good approximation

σES(νµ) = σES(ντ ) ≈ 0.156 σES(νe) (14.22)

νe

e−

Z

νe

e−

νe

e−

W

e−

νe

νµ, ντ

e−

Z

νµ, ντ

e−

Figure 15: Feynman diagrams for the elastic diffusion of a neutrino on an electron: on the left for νe,
on the right for νµ or ντ .

The collaboration measures the flux of neutrinos in the various channels and finds (in units of 106 cm−2 s−1)

φCC = φ(νe) = 1.76+ 0.06
− 0.05 (stat.)

+0.09
− 0.09 (syst.)

φES = φ(νe) + 0.156 (φ(νµ) + φ(ντ )) = 2.39+ 0.24
− 0.23 (stat.)

+0.12
− 0.12 (syst.)

φNC = φ(νe) + φ(νµ) + φ(ντ ) = 5.09+ 0.44
− 0.43 (stat.)

+0.46
− 0.43 (syst.) (14.23)

The result of φNC is in very good agreement with the Standard Solar Neutrino Model73. From these

results the collaboration derives (in the same units)

φ(νµ) + φ(ντ ) = 3.41+0.45
− 0.45 (stat.)

+0.48
− 0.45 (syst.), (14.24)

73A.S. Brun, S. Turck-Chièze, J.P. Zahn, Astrophys. J. 525 (2001) 1032; J.N. Bahcall, M.H. Pinsonneault, S. Basu,
Astrophys. J. 555 (2001) 990.
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which is clear evidence for the disappearance of solar νe’s. In later stages, the SNO collaboration

improved the detection efficiency of neutrons by adding an array of 3He proportional counters in the

D2O volume and they obtain the most precise estimate of active neutrino flux (in units of 106 cm−2 s−1)

φNC = 5.25+ 0.16
− 0.16 (stat.)

+0.11
− 0.13 (syst.)

φ(νe)

φNC
= .317 ± 0.016 (stat.)± 0.009 (syst.), at Eν = 10 MeV, independent on Eν . (14.25)

Because SNO observes νe and νµ + ντ only, neither the mixing angle θ23 nor the CP violating phase

play a role (see eqs. (12.25), (12.29), (12.32)). Furthermore, given the distance involved, 1.5 109 km,

the argument of the oscillating factors are so large that the corresponding sin2 terms reduce to 1/2.

In vacuum, the νe survival rate is then

P (νe → νe) = 1− 1

2
sin2(2θ12) cos

4(θ13)−
1

2
sin2(2θ13)

= sin4(θ13) + (1− 1

2
sin2(2θ12)) cos

4(θ13) ≈ 1− 1

2
sin2(2θ12), (14.26)

where the last approximate equality is a consequence of the smallness of θ13. It is then justified to use

a two neutrino model. Assuming the validiy of the oscillation model in vacuum to explain the SNO

data, one would obtain
φ(νe)

φNC
≈ 1− 1

2
sin2(2θ12) ≈ 0.56, (14.27)

in contradiction with the SNO result of 0.317. The obvious conclusion is that neutrinos interact with

matter in the sun.

• Neutrinos in the sun

The electron density in the sun is parameterised as74

Ne(x) = Ne(x0) exp

(
x− x0
r0

)

(14.28)

with Ne(0) ≈ 6. 1025 and r0 ≈ .1R⊙ ≈ .7 105 km (valid for x0 ' .05 R⊙). If one uses for δm2 and θ

the values δm2
21 and θ12 given by eq.(12.22 ) the adiabaticity condition eq. (13.31) will be satisfied if

1

Â

r0δm
2
12

2Eν
sin2(2θ12) ≈ 2.7 104

(
Eν
MeV

)−2

≫ 1, (14.29)

where Â is taken from eq. (13.15). The inequality is satisfied for the SNO range of 5. MeV <

Eν < 15. Mev. Besides Â remaining large (see secs. 13.3 and 13.4) one is justified to assume that the

74J.N. Bahcall, Neutrino Astrophysics, Cambridge University Press, 1989.
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Figure 16: Three flavour neutrino oscillation analysis : the blue lines are obtained using all solar
neutrino experiments, the black ones are from KamLAND data and the colored potatoes are from
a joint analysis. (From SNO collaboration, B. Aharmim et al., Phys. Rev. C88 (2013) 025501,
arXiv:1109.0763 [nucl-ex].)

neutrino is produced as the heaviest mass eigenstate and will emerge from the sun in a |ν2 > state

with a probability P (νe → νe;x0, R) = sin2(θ12) as in eq. (13.36). Being a pure eigenstate of the

vacuum it will propagate without oscillation to Earth and will give

φ(νe)

φNC
= sin2(θ12) ≈ .325, (14.30)

in good agreement, within errors, with the experimental result of eq. (14.25). Based on their flux

measurements the SNO collaboration performs a two flavour and a three flavour neutrino oscillation

analysis. However SNO data alone are not sufficient to give tight constraints on the parameters

δm2
12, θ12 so an analysis is performed using also other solar data as well as KamLAND reactor data.

Fig. 16 shows the constraints provided by SNO alone as well as various combinations of data. The

best fit to the joint data, in the three flavour analysis, yields:

δm2
21 = (7.46+ 0.20

− 0.19) 10
−5eV2, tan2 θ12 = 0.443+ 0.030

− 0.025, sin2 θ13 = (2.49+ 0.20
− 0.32) 10

−2, (14.31)

in very good agreement with eq. (12.22). Coming back to the case of low energy neutrinos from

128



Figure 17: Summary of solar νe survival probabilities as a function of the average neutrino energy.
νe’s produced in the p p reactions eq. (14.18): red point; in the 7Be + e− → 7Li + νe channel: blue
point; in the p+ e− + p→ D + νe channel: light blue point; in the 8B channel eq. (14.19): black and
grey points. The band is the theoretical prediction from the standard solar model with the MSW effect.
The figure is from Borexino Collaboration, M. Agostini et al., arXiv:1709.00756 [hep-ex].

reaction eq. (14.18), the adiabatic condition is still verified but, in this case, the resonance condition

cannot be satisfied since Â < cos(2θ12), or equivalently Ne(x0) < NRes, and interaction with matter

becomes weaker. One expects from eq. (13.35) to have a larger ratio for φ(νe)/φ
NC as is found by the

collaborations GALLEX, GNO, SAGE and Borexino. In fact, for Eν ≈ .2 MeV, one findsNe/NRes ≈ .1
from eq. (13.23) and, with a good approximation, the νe’s should propagate as in vacuum with the

result P (νe → νe) = .56 as in eq. (14.27) (see fig. 17).

The parameters δm2
21 and θ12 are sometimes referred to as solar oscillation parameters and indexed

with the symbol ⊙.

14.5 Ultra-high energy or cosmic neutrinos

It is expected that, in the multi-TeV energy range and above, neutrinos from astrophysical or cosmic

origin, will dominate over the atmospheric neutrinos. They can be produced in violent phenomena such

as those occuring in Active Galactic Nuclei (AGN) or in collisions of ultra-high energy (UHE) cosmic

rays on nucleons or photons, in particular photons from the cosmic microwave background (CMB).

Neutrinos produced in a supernova event or in the merging of stars or black holes are expected to have

energies in the MeV/GeV range. Unlike other cosmic messengers such as cosmic rays or photons the

129



universe is transparent to neutrinos75. Cosmic rays (protons, nuclei) are deflected by extra-galactic

and galactic fields so that it is not possible to identify the source which produced them. They also

loose energy when scattering on CMB photons, gaz and dust. Concerning photons, if their energy

is high enough, they are absorbd on their way to Earth by e+e− pair production on CMB to UV

Figure 18: The photon horizon.
Photons emitted in the grey do-
main do not reach the Earth because
of annihilation into e+ e− pairs.
A redshift z = 1 corresponds to a
distance of 14 Gly from the Earth.
From J.G. Learned, K. Mannheim, An-
nual Rev. Nuc. Part. Sci. 50 (2000)
679.

background photons via γ
HE

+ γ
bkgrd

→ e+ + e−. The threshold for such a process is obtained by

solving the constraint (pγ
HE

+ pγ
bkgrd

)2 > 4m2
e. Because of their high density (∼ 400 cm−3) the CMB

photons (Eγ
CMB

≈ .23 meV) are particularly efficient in this respect cutting the high energy photon

flux above 1015 eV: even those emitted nearby in the galactic center do not reach the Earth, as seen in

Fig. 18. This figure illustrates the depth of the photon horizon as a function of the photon energy: for

example a 1012 eV photon emitted by an object with a redshift z = .1 (i.e. roughly 1 Gly away) is

absorbed before reaching the Earth. On the contrary, neutrinos are expected to travel undisturbed

once they are emitted.

However the flux of UHE neutrinos is very low and to observe them requires huge detectors such

as the km3 IceCube detector76 at the South Pole, the projected KM3NET77 with a volume of 5 km3 in

the Mediterranean Sea which builds up on the ANTARES telescope78 or the Giga Volume Detector79

(GVD) which is an upgrade of the Lake Baikal experiment. As neutrino cross sections increase with

75 The ”Glashow resonance”, i.e. the reaction νe+ e
− →W− → X should affect the νe flux above Eνe > 6.3 1015 eV.

76IceCube collaboration, Science 342 (2013) no. 6161.
77KM3NET Collaboration, Maarten De Jong, PoS NEUTEL2015 (2015) 055
78ANTARES Collaboration, Maurizio Spurio, PoS NEUTEL2015 (2015) 054.
79BAIKAL-GVD Collaboration, A.D. Avrorin et al. (2015), DOI: 10.1142/9789814663618 0019.
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Figure 19: The high energy νµ + νµ flux in IceCube, [arXiv:1705.07780].

energy the Earth will become opaque to neutrinos for Eν > 100 TeV. The UHE neutrinos will then

be searched for in the downward neutrino fluxes, but, in that case, the cosmic ray shower background

will be enormous and must be vetoed.

IceCube recently extended the measurement of the νµ+νµ flux above the domain shown in Fig. 11,

up to more than 2 PeV80. The results are displayed in Fig. 19 where a hardening of the spectrum is

observed above 100 TeV. Using a parameterisation of the cosmic ray flux and models of interactions

of cosmic rays with the atmosphere they estimate the flux of atmospheric neutrinos : model and

observation are in very good agreement up to around 100 TeV, energy above which the atmospheric

neutrino flux falls below the data. The excess is interpreted as the flux of ”astrophysical neutrinos”

i.e. neutrinos directly emitted by sources such as AGN or produced in collisions of cosmic rays with

dust, gaz or CMB photons.

On 22 September 2017 a high-energy neutrino-induced muon track event was detected by IceCube:

the muon energy loss was estimated at 23.7 ± 2.8 TeV corresponding to a probable parent neutrino

energy of 290 TeV (event labelled IceCube-170922A)81. Furthermore the reconstructed neutrino direc-

tion appeared to be pointing at the known blazar TXS 0506+56 (redshift z = .3365). An automatic

alert was activitated and led to the subsequent observation of very high energy gamma rays by the

80IceCube collaboration, M.G. Aarsten et. al., EPJ C77 (2017) 692, [arXiv:1705.07780].
81IceCube collaboration, M.G. Aartsen et. al. Science 361 (2018) 347, [arXiv:1807.08794].
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Fermi-LAT satellite and the Magic telescope by this blazar in a flaring state. Radio, optical, and

X-ray observations were carried out and pointed to an increase of radio emission and variability in

months before the alert and of X-ray emission a week after82.

This event is interesting as it is, at present, the only example of an identified neutrino emission

from a blazar.

radio/microwave IR/UV X-ray γ-ray

Figure 20: Spectral energy density of blazar TXS 0506+056 in a multi-messenger, multi-wave length
analysis82. The rightmost two points are representative of νµ + νµ flux upper limits that produce
on average one detection like IceCube-170922A over a period of 0.5 year (solid black line) or 7.5
years (dashed black line) assuming a spectrum of dN/dE ∝ E−2 at the most probable neutrino energy
(311 TeV).

• Example of multi-messenger constraints on astrophysical ν emission

Fig. 20 shows the spectral energy density (SED) of TXS 0506+056 from radio to γ-ray energies as

well as the upper limit of the neutrino contribution83. The characteristic two-peak structure of AGN

82Science 361 (2018) no.6398, eaat1378,[arXiv:1807.08816].
83For a review on multi-messenger studies of blazars see M. Böttcher, [arXiv:1901.04178].
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Figure 21: The dominant reactions in the leptonic model of AGN

Figure 22: The dominant reactions in the hadronic model of AGN.

spectra is clearly visible84. The first peak is due to bremsstrahlung emission by relativistic electrons in

the AGN jet but different models are used to explain the second peak. In leptonic models, Fig. 21, it

is due to scattering of low energy bremsstrahlung photons on electrons producing them (synchrotron-

self-Compton) or, more generally, to inverse Compton scattering; in this class of models protons in

the jet are not accelerated to high enough energy to contribute to radiative energy even though they

carry most of the kinetic energy of the jet. In hadronic models, Fig. 22, on the contrary, protons reach

energies high enough to initiate photoproduction reactions on bremsstrahlung photons and produce

pions. In more details one has the photoproduction of π0 via

γ + p→ π0 + p followed by π0 → γ + γ

and also production of π± , e.g.

γ + p→ π+n, γ + p→ π+ + π− + π0 + p

π± → µ± + νµ, µ± → e± + ν + ν

Hadronic models then imply, from charged pion decays, the production of ν ′es and ν
′
µs carrying on the

average 5% of the energy of the initiating proton. Knowing the energy of the neutrino detected on

84An AGN consists typically in a supermassive rotating black hole in the center (106M⊙ to 1010M⊙), an accretion
disk, clouds of ionized gaz, a dust ring, two jets extending on 10′s of parsecs and lobes extending on 100′s of parsecs.
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Earth it is then possible to estimate, after taking account of the relevant boost factor, the energy of

the proton in the frame of the emission zone. An important feature is that hadronic models predict

also the emission, from neutral pion decays, of ultra energetic photons in the same energy range

as that of the neutrinos, namely hundreds of TeV. If these photons escape from the emission zone

they are not seen on Earth because of e+e− pair production which would cut-off their flux (see the

”photon horizon” cut-off on Fig. 18). Most of the ultra-high energy photons however are expected to

be absorbed by e+e− pair creation in the emission zone and the e±′
s radiate, create electromagnetic

cascades ending in the UV, X-ray or soft gamma regimes. In conclusion, in this model, the rate of

emission of neutrinos is strongly constrained by the spectral energy density in the UV and X-ray

range, but no very high energy photons are expected to be seen in association with ν ′s observations.

A model of SED spectra of TXS 0506+056 is shown in Fig. 23 : it is seen that the hadronic component
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Figure 23: Spectral energy density of blazar
TXS 0506+056 in the model of Shan Gao,
A. Fedynitch, W. Winter, M. Pohl, Nat.
Astron. 3 (2019) 88, [arXiv:1807.04275].
The red curve indicates the neutrino con-
tribution assuming one νµ observation in
180 days. The emission of GeV γ rays
is dominated by leptonic processes. The
blue area shows the domain of absorbtion,
by e+e− pair creation, of UHE photons on
their way to Earth.

gives a major contribution to the spectral energy density in the X-ray range.

The above discussion illustrates how a multi-messenger analysis can constrain models and thereby

help understand the physics of astrophysical objects.85

Coming back to neutrinos IceCube can, to some extent, determine the neutrino flavor. Using this

85No neutrinos have been observed in correlation with the detection of gravitational waves emitted in the merging
of black holes or neutron stars: ANTARES, IceCube and the Pierre Auger Observatory, Astrophys.J. 850 (2017) L35,
[arXiv:1710.05839]; IceCube collaboration [arXiv:1908.07706].
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possibility and taking into account oscillations, the observations will then give precious information

on the flavor composition in the production zone which in turn helps distinguish between production

models86.

14.6 Problems?

The three neutrino oscillation model can account, at present, for almost all data. However two collab-

orations, LSND87 and MiniBooNE88, claim results in strong disagreement with the above experiments.

To add to the confusion LSND results are not confirmed by KARMEN89 where very similar technics are

used. MiniBooNE considers νµ → νe and νµ → νe in short baseline experiments with .2 < Eν [GeV] <

1.25 and a ratio x/Eν in the range .25 < x/Eν [m/MeV] < 2.5. In a 2-neutrino oscillation model

involving a sterile neutrino, the oscillations are best fitted with the parameters [δm2, sin2(2θ)] =

[3.14 eV2, 0.002] for ν’s, and [0.043 eV2, 0.88] for ν’s. MiniBooNE results are summarised saying that

”the data are consistent with neutrino oscillations in the 0.01 < δm2 [eV2] < 1.0 range” and they

”have some overlap with the evidence for antineutrino oscillations from LSND”.

In the last few years, the νe flux from nuclear reactors has raised a puzzle. In short baseline experiments

(10 < x [m] < 100) there is a 6% deficit in the observed νe compared to model expectations: this is

the Reactor Antineutrino Anomaly (RAA)90. Several explanations have been proposed. In a recent

study the Daya Bay collaboration91 observes correlations between the time evolution of the fuel in the

core (the composition in U and Pu isotopes varies with time) and changes in the νe flux and energy

spectrum. A detailed study of these correlations shows a 7.8% discrepancy between the observed and

predicted 235U yields which suggests that this isotope is the main contributor to the RAA.

An alternative explanation has been to assume a fourth (sterile) neutrino to account for the νe deficit

in short baseline nuclear reactor experiments. This is illustrated in Fig. 24 which shows that short

and very short (less than 10 m) baseline reactor measurements are not sensitive to the three family

neutrino parameters as given in eqs. (12.22), but would be affected by a fourth neutrino according the

disappearance probability (see eq. (14.3)):

P (νe → νe) = 1− sin2(2θ14) sin
2

(
x δm2

41

4 k

)

.

86IceCube collaboration, M.G. Aartsen et. al., Astrophys.J. 809 (20158) 98, [arXiv:1507.03991].
87LSND collaboration, A. Aguilar et al., Phys. Rev. D64 (2001) 112007.
88MiniBooNE collaboration, A. A. Aguilar-Arevalo, arXiv:1207.4809 [hep-ex]; Phys. Rev. Lett. 110 (2013) 161801;

arXiv:1303.2588 [hep-ex].
89KARMEN collaboration, B. Armbruster et al., Phys. Rev. D65 (2002) 112001.
90G. Mention et. al., Phys. Rev. D83 (2011) 073006, arXiv:1101.2755 [hep-ex].
91Daya Bay collaboration, F. P. An et. al., Phys. Rev. Lett. 118 (2017) 251801, arxiv:1704.01082 [hep-ex].
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Figure 24: The figure illustrates the range of various oscillation parameters as a function the reactor-
detector distance: a sterile neutrino with parameters as given in the text does not affect long base-
line experiments, from the 2013 presentation of STEREO experiment by S. Kox et al., on the site
lpsc.in2p3.fr/trac/neutrino/wiki/.

The best global fit92 to short baseline νe disappearance is obtained with δm2
41 of the order of 1. eV2

and sin2(2θ14) ≈ .1. To further test the hypothesis of a sterile neutrino several experiments with very

short baseline are taking data. DANSS93 is located at a nuclear reactor in Russia with detectors at

10,7 m and 12,7 m from the core while the NEOS collaboration94 has been taking data at a nuclear

reactor in Korea at a distance of around 24 m from the core. More recently STEREO95 at ILL

92J. Kopp et al, JHEP 1305:050 (2013); see also C. Giunti, X. P. Ji, M. Laveder, Y. F. Li and B. R. Littlejohn, JHEP
1710 (2017) 143, arXiv:1708.01133 [hep-ph]; M. Dentler et. al., JHEP 1711 (2017) 099, arxiv:1709.04294 [hep-ph].

93DANSS collaboration, I. Alekseev et. al., JINST 11 (2016) P11011, arXiv:1606.02896 [physics.ins-det];
arXiv:1804.04046 [hep-ex].

94NEOS collaboration, Y.J. Ko et. al., Phys. Rev. Lett. 118 (2017) 121802, arXiv:1610.05134 [hep-ex].
95STEREO collaboration, N. Allemandou, et. al., arXiv:1804.09052 [physics.ins-det]; Phys. Rev. Lett. 121 161801
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Figure 25: Exclusion contour in the parameter space δm2
41, sin

2(2θ14) ≡ sin2(2θee). The RAA con-
tours are taken from G. Mention et al.90 and the RAA best fit is marked by ⋆. From STEREO
publications95.

Grenoble, a high flux reactor using a 93% enriched 235U with no time evolution on the νe flux, has a

segmented detector taking data at distances betwwen 9 and 11 m from the core. In PROSPECT96, at

the High Flux Isotope Reactor at Oak Ridge National Laboratory, the detector is 7.4 m from the core.

All these experiments reduce the domain of sterile neutrino parameters obtained in previous reactor

data90 or global fits92 and already exclude some best fits, as illustrated in Fig. 25 from the STEREO

collaboration: the best RAA fit is already excluded at 99% C.L. More data are being accumulated

and could reduce further the allowed domain of θ14, δm
2
41.

14.7 Neutrinos: conclusions

The work for more precision on the determination of neutrino oscillation parameters is continuing.

The present experiments will increase the precision even more and this is crucial for the determination

(2018), arXiv:1806.02096 [hep-ex]; L. Bernard arXiv:1905.11896 [hep-ex]].
96PROSPECT collaboration, J. Ashenfelter et al., arXiv:1809.02784 [hep-ex].
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of the CP violating phase. This will also help settle the ambiguity of the neutrino mass hierarchy. For

example, recent global fits30 indicate that normal hierarchy, in the 3-ν model, is favoured over inverted

hierarchy at a 3σ level and the CP phase is constrained at the same level by .87 < δ/π < 1.94. There

remains the ambiguity in the mixing angle θ23 which is near the maximum mixing value (sin(2θ23) ≈ 1),

but in which octant (θ23 ≤ π/4 or θ23 ≥ π/4)? Measuring these parameters with precision will be

a long process: for example the DUNE collaboration97 expects to measure δ to better than 20o and

Figure 26: The measured or expected flux of neutrinos originating from different sources, from C. Spier-
ing, Eur. Phys. J. H37 (2012) 515, [arXiv:1207.4952]. The range in energy covers 24 orders of
magnitude, from µeV to EeV

resolve the θ23 octant with a 5 σ significance after 10 years of running. The absolute mass scale of

neutrinos is not settled yet although (model dependent) cosmological constraints become stronger and

stronger. Also, are neutrinos of Dirac type or of Majorana type (see next section)? Finally there

remains the question: are sterile neutrinos necessary? On this last topic progress is soon expected

thanks to the future very short baseline reactor data. Despite these open questions, neutrinos are on

the verge of becoming useful messengers which will contribute to the understanding of astrophysical

97For the DUNE collaboration, N. Grant, PoS(NuFact2017) 052 (2017). DUNE is a long base line oscillation exper-
iment (1300 km) with a highly pure νµ beam from FERMILAB and 4 10kt Liquid Argon Time Projection Chambers
deep underground in South-Dakota, expected to start operation in 2026.
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phenomena and objects such as gamma-ray bursts, supernovae remnants, quasars, blazars, · · · 98. As

an illustration, in Fig. 26 is summarized in a semi-quantitative way the flux of neutrinos associated to

different sources. Notice that there is more than 36 orders of magnitude between the solar neutrino

flux and the expected cosmogenic flux.

Neutrinos may also be a signal of dark matter annihilation in the universe99.

98Astro2020 Science White Paper: Cosmology and Fundamental Physics, K.N. Abazajian et al., arXiv:1903.04333,
[astro-ph].

99M. Chianese, arXiv:1907.11926, [hep-ph].
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15 Majorana neutrinos

A Majorana fermion is a fermion which transforms into itself when applying the charge conjugation

operator : a Majorana fermion is its own antiparticle. This is the case if we choose, in eq. (2.6), to

identify the operators :

b(p) ≡ d(p), b†(p) ≡ d†(p) (15.1)

so that:

ψM (x) =

∫
d3p

(2π)32ω

[

b(p) u(p) e−ip.x + b†(p) v(p) eip.x
]

. (15.2)

In the case of a ”left-handed” neutrino eq. (3.23),

ψL(x) =

∫
d3p

(2π)32ω

[

bL(p) uL(p) e
−ip.x + b†R(p) vR(p) e

ip.x
]

, (15.3)

we have using eqs. (B.12) in the appendix, ucL = vl, v
c
R = uR,

ψcL(x) =

∫
d3p

(2π)32ω

[

bR(p) uR(p) e
−ip.x + b†L(p) vL(p) e

ip.x
]

= ψR(x) (15.4)

and defining a Majorana neutrino by

ψM (x) = ψL(x) + ψcL(x), (15.5)

one has indeed,

(ψM (x))c = ψM (x), (15.6)

which satisfies the Majorana condition. A Majorana neutrino has both left-handed and a right-handed

components which are related by the C transformation. A mass for a Majorana neutrino is generated

very simply from a term in the lagrangian density such as

ψ̄cL(x)ψL(x) + ψ̄L(x)ψ
c
L(x) ≡ ψ̄M (x)ψM (x). (15.7)

without introduction of an extra right-handed component.

15.1 Majorana mass term for neutrinos

Coming back to the Standard Model with three generations, we recall that we have defined, eq. (12.1),

ν′
L
=





νe
L

νµ
L

ντ
L



 ,
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a triplet of left-handed neutrino flavour eigenstates. A Yukawa mass term is defined by100,

LYM = −1

2
(ν′c
L
M ν′

L
+ ν′

L
M † ν′c

L
) (15.8)

whereM is a 3×3 complex matrix. One shows first that this matrix is symmetric,M =MT . Indeed,

from eq. (B.11) in the appendix, and using iγT2 = iγ2,

ν′c
L
M ν′

L
= ν′T

L
iγ2γ0M ν′

L

= − ν′T
L
MT γ0iγ2 ν

′

L
= ν′T

L
i γ2γ0M

T ν′
L

(15.9)

where the second line is obtained from the first by transposition with a change of sign due to the

anticommutation of fermions, which proves the symmetry property of the mass matrix. The complex

matrix M is diagonalised by the matrix S

M = ST m S, (15.10)

with m is diagonal with real eigenvalues. Plugging this expression in LYM , the mass term is written

LYM = −1

2
(ν′c
L
M ν′

L
+ ν′

L
M † ν′c

L
) = −1

2
(ν′T
L
iγ2γ0S

T m S ν′
L
+ ν′†

L
γ0 S

†m S∗iγ2ν
′∗
L
)

= −1

2
(νc
L
mν

L
+ ν

L
mνc

L
), (15.11)

where we have defined

ν
L
= S ν′

L
⇔ ν∗

L
= S∗ ν′∗

L
⇔ ν†

L
= ν′†

L
S†. (15.12)

The Yukawa mass term can then be simplified to

LYM = −1

2
νmν = −1

2

∑

i

miνiνi (15.13)

with ν = νL + νcL, a triplet of Majorana neutrinos diagonalising the mass term. This shows that one

could, in principle, give a mass to neutrinos solely from left-handed neutrinos.

To generate in the Standard Model a mass term by spontaneous symmetry breaking, coupling a left-

handed neutrino to its conjugate νcL and a SU(2) scalar doublet field Φ, we turn to sec. 8.3. Hovever

a possible candidate like ψeLΦ̃ νcL is not acceptable since is not a singlet under SU(2)L⊗U(1)Y : ψeLΦ̃

is indeed a singlet but νL is a SU(2)L doublet with a non-vanishing y quantum number. One could

introduce a more complicated stucture101,

LYM = c ψeLΦ̃ (Φ̃ψeL)
c, (15.14)

100Note the factor 1/2, compared to a Dirac mass term, because ν
′ and ν

′ contain the same degrees of freedom.
101S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566.
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which after symmetry breaking gives a mass to neutrinos of order mν ≃ c v2 ≃ c G−1
F . Since this

term has dimension 5, the coupling c is necessarily of the form 1/Λ, with Λ a large scale introduced

to keep the neutrinos very light. But this interaction is not renormalizable and it would require the

introduction of new particles to render the theory finite in analogy with what is done to go from

the Fermi model to the Standard Model. Therefore, it seems difficult to generate massive neutrinos

without introducing new degrees of freedom.

15.2 Neutrino masses and the see-saw mechanism

We restrict the discussion to a one generation model and postulate a very massive right-handed

neutrino singlet, NR, under the gauge group (sterile neutrino since non-interacting with gauge bosons).

The Yukawa lagrangian is assumed to have both a Dirac mass term (arising from the usual symmetry

breaking mechanism with a scalar field doublet) and a Majorana mass term, coupling the right-handed

neutrino to its charge conjugate, of the following form,

LY = −mDNR νL −
1

2
MR NR N

c
R + h.c.

= −1

2
(νcL NR)

(
0 mD
mD MR

)(
νL
N c
R

)

+ h.c., (15.15)

where we have used νcL N
c
R = NR νL to recover the first line from the matrix expression of the second

one. We assume mD ≪ MR, mD being of the order of the electroweak symmetry breaking scale

and MR much larger (of the order of a grand unification scale?). The symmetric mass matrix can

be diagonalised and, taking into account the hierarchy of the two mass scales, one finds eigenvalues

approximately equal to −m2
D/MR and MR. To make both eigenvalues positive we rather write

(
0 mD
mD MR

)

≈
(

i ρ
−iρ 1

)(
ρ2MR 0
0 MR

)(
i −iρ
ρ 1

)

(15.16)

with ρ = mD/MR ≪ 1, so that the eigenstates of the mass matrix are

ν1L = i(νL − ρN c
R)

N1L = ρνL +N c
R ≃ N c

R, (15.17)

and the Yukawa term can be written

LY = −1

2
(νc1L N1L)

(
ρ2MR 0
0 MR

)(
ν1L
N c
1L

)

+ h.c.

= − 1

2
ρ2MR ν1 ν

c
1 −

1

2
MR N1 N

c
1 , (15.18)
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after introducing the Majorana neutrinos

ν1 = ν1L + νc1L, N1 = N1L +N c
1L. (15.19)

To summarize, from a light left-handed ”Dirac” neutrino and a heavy right-handed ”Majorana” neu-

trino, the symmetric mass matrix of type eq. (15.15), can be diagonalised leading to two Majorana

neutrinos, a light one, ν1 with mass ρ2MR, and a heavy one with mass MR. The light left-handed neu-

trino ν1L has a small mixing component with the heavy neutrino which could in principle be produced

at the LHC, if its mass is not too high.

The procedure above can be generalised to the three generations of the Standard Model. One of the

simplest way (type I see-saw) is to introduce three right-handed heavy neutrinos, NRi , singlets under

the gauge group, similar to what is done for charged leptons, and add in the Yukawa Lagrangian,

besides the term coupling to the scalar doublet field Φ, a Majorana mass term for the NRi ’s:

LY = −1

2

∑

i=1,2,3

MRi N
c
Ri NRi −

∑

α=e,µ,τ
i=1,2,3

cαiψαLΦ̃NRi + h.c. . (15.20)

The second term cαi(νLΦ
0 − eLΦ−)NRi, after symmetry breaking, generates Dirac mass parameters

mDαi = cαiv/
√
2. The Yukawa term can be written in a matrix form identical to eq. (15.15) where

(νTL N cT
R ) = (νTLe ν

T
Lµ ν

T
Lτ N

cT
R1 N

cT
R2 N

cT
R3 ) (15.21)

is the transpose of a six-component spinor and the mass matrix

M =

(
0 mD
mT
D MR

)

(15.22)

is a 6 ⊗ 6 matrix contructed from the 3⊗ 3 matrix mD with elements mDαi and MR a 3⊗ 3 diagonal

matrix with elements MRi. This symmetric matrixM can be diagonalised yielding 3 light eigenvalues

of order

mν ≃ −mD M−1
R mT

D (15.23)

and 3 heavy ones. The associated eigenstates are Majorana neutrinos. Introducing these mass eigen-

states in the charged current interactions term will yield a PMNS mixing matrix exactly as before,

in the case of Dirac neutrinos. There is a difference however since it is not allowed to rotate away

the phases of the neutrino fields102: the phase of a Majorana neutrino is fixed by the condition

102J. Bernabeu, P. Pascual, Nucl. Phys. B228 (1983) 21; S.T. Petcov, Adv. High Energy Phys. 2013 (2013) 852987,
arXiv:1303.5819 [hep-ph] .
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νci = Cγ0ν∗i = νi. In the expression of the charged current lagrangian, eq. (12.8), only the phases

of the charged lepton fields can be changed, eαL → e−iφeα eαL , so that the PMNS matrix elements

(S†
ν)αj become e−iφeα (S†

ν)αj (see the discussion after eq. (11.11)). These three arbitrary phases are

used to absorb three phases of the PMNS matrix, which can be written in the form, see eq. (11.12),

PMNS =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23eiδ c12c23 − s12eiδs23 s23c13
s12s23 − c12c23eiδ −c12s23 − s12c23eiδ c23c13









1 0 0
0 eiα1 0
0 0 eiα2



 , (15.24)

with three angles and three phases: the CP phase δ and the 2 Majorana phases 0 < α1 < 2π and

0 < α2 < 2π. The pattern of oscillations of Majorana neutrinos is the same as that of Dirac neutrinos

since the combination which controls the change of flavour (see eq. (12.9)),

UαiU
∗
αjU

∗
βiUβj,

in eq. (12.17) is independent of the form of the PMNS matrix, eqs. (11.12) or (15.24), and it is not

possible from the study of oscillations to distinguish Majorana from Dirac neutrinos.

If one considers a global phase change on all left-handed fields

ν ′iL(x) = eiΛ νiL(x) ⇔ χ′
iL(x) = eiΛ χiL(x); l′(x) = eiΛ l(x), (15.25)

the gauge interaction part remains invariant but this is not the case for the Yukawa term in the

lagrangian since the right-handed fields are not independent and one has

ν′c
L
(x) = eiΛ νc

L
(x). (15.26)

Invariance under the global phase change eq. (15.25) is associated to lepton number conservation

L = Le + Lν + Lτ . In the presence of a Yukawa mass term, the invariance is lost and the lepton

number is not conserved: it is possible to have nuclear transitions with emission of two electrons

without neutrino

(A,Z)→ (A,Z + 2) + e− + e−, (15.27)

i.e. a neutrinoless double-beta decay {0νββ}. This is illustrated in fig. 27. In a first beta decay in a

nucleus, a νe is produced which turns into a νe via the Majorana Yukawa mass term eq. (15.8) followed

by the reaction νe+n→ e−+ p. The rate of transition is minute : proportional the G4
F m

2
ν the fourth

power of Fermi constant and the square of the neutrino mass ! Several experiments (CUORE103,

103CUORE Collaboration, K. Alfonso et al., Phys. Rev. Lett. 115 (2015) 102502.
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Figure 27: {0νββ}decay: neutrinoless double-beta decay.

NEMO104, KamLAND-Zen105, SNO+106, SuperNEMO107) have searched, are searching or will search

for this process which is essentially the unique signature of the Majorana nature of the neutrinos108.

104NEMO Collaboration, R. Arnold et al., Phys. Rev. D89 (2014) 111101.
105KamLAND-Zen Collaboration, A. Gando et al., Phys. Rev. Lett. 110 (2013) 062502.
106SNO+ Collaboration, S. Andringa, et al., Adv. High Energy Phys. 2016 (2016) 6194250, arXiv:1508.05759

[physics.ins-det].
107NEMO-3 Collaboration, R. Arnold et al., Phys. Rev. D92 (2015) 072011.
108For a review on neutrinoless double β decay, see Stefano Dell’Oro et al., Adv. High Energy Phys. 2016 (2016)

2162659, arXiv:1601.07512 [hep-ph].
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16 Conclusions

Putting all together, the lagrangian which contains the dynamics of particle physics, as described by

the Standard Model, is decomposed into (not including gauge fixing terms)

L = LQCD + LG + LF + LS + LY

where each piece has been previously defined. If one attempts to count the number of parameters we

arrive at:

− SU(3) (QCD) gauge invariance: 1 coupling gs or αs which is rather precisely determined by

an enormous amount of data in deep-inelastic scattering, proton-proton, proton-antiproton or more

generally hadron-hadron collisions, e+ + e− → jets as well as, at low energy, hadronic τ decays19 :

αs(M
2
Z) = 0.1181 ± 0.0011 in the MS renormalisation scheme with 5 active flavours.

− SU(2)L ⊗ U(1)Y gauge invariance: two couplings g, g′, and the weak mixing angle θ
W

: in fact

one coupling e, the charge of the proton/electron and the angle because of the relation g sin θ
W

=

g′ cos θ
W

= e. One has α = 1/(137.035999139 ± 0.000000031) and sin θ
W

= M
W
/M

Z
with M

W
=

80.385 ± 0.015 GeV, M
Z
= 91.1876 ± 0.0021 GeV.

− spontaneous symmetry breaking from LS: two parameters µ and h or rather the vacuum ex-

pectation value v and h determined, for example, from v =M
W
sin θ

W
/
√
πα and h = 0.5M2

H
/v2 with

M
H
= 125.09 ± 0.24 GeV109.

− Yukawa couplings in LY : nine couplings, i.e. one coupling per lepton and quark species and four

CKM parameters for the mixing between quark generations. The Yukawa couplings are determined

from the masses me = 0.510998946 MeV, mµ = 105.6583745 MeV, mτ = 1.7768 GeV, mu = 2.2 MeV,

m
d
= 4.7 MeV, ms = 96 MeV, mc = 1.27 GeV, m

b
= 4.18 GeV, mt = 173.2 GeV. Massive neutrinos

of Dirac type require seven new parameters.

There are thus 25 parameters assuming Dirac neutrinos (27 with Majorana neutrinos), most of them

related to the fermions, which is not a satisfactory situation for a minimal model! However the model

is strongly constrained since there are no less than 68 vertices of various types expressed in terms

of the above parameters. Any persistent deviation from the predicted values in the Standard Model

will indicate new physics. Checking experimentally the value of these couplings is one of the tasks of

particle physicists.

109Combined Measurement of the Higgs Boson Mass with the ATLAS and CMS Experiments, G. Aad, et al.,
arXiv:1503.07589.
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The large number of parameters has prompted an intensive continuing search for higher hidden

symmetries such as supersymmetry, for example, and Minimal Supersymmetric Standard Models

and Next-to-Minimal Supersymmetric Standard Models and · · · have been constructed. The very

unfortunate situation is that in such models the number of fields is more than doubled compared

to the Standard Model as no supersymmetric multiplets can be filled with only known particles.

Furthermore, while in principle supersymmetry breaking can in turn trigger electroweak symmetry

breaking, one does not know yet how supersymmetry is dynamically broken. Thus one is led to

describe it in a effective way which requires many more parameters than in the Standard Model. It

seems that, at present, the remedy is worse than the disease but there are still hopes ......
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Appendices

A Properties of γµ matrices

In Dirac representation γµ matrices are defined by:

γ0 =

(
112 0
0 −112

)

, γi =

(
0 τ i

−τ i 0

)

, (A.1)

where the τ i are the Pauli matrices:

τ1 =

(
0 1
1 0

)

, τ2 =

(
0 −i
i 0

)

, τ3 =

(
1 0
0 −1

)

, (A.2)

The Pauli matrices are hermitian and they satisfy:

[τi
2
,
τj
2

]

= i ǫijk
τk
2
, Tr(τiτj) = 2 δij (A.3)

The matrices γµ have the following properties:

γ0γµ†γ0 = γµ, γ0
2

= 114, γ
i2 = −114,

∑

µ

γµγ
µ = 4114, µ = 0, 1, 2, 3. (A.4)

They satify anticommutation relations:

{γµ, γν} = 2 gµν114. (A.5)

The matrix γ5 is defined by:

γ5 = γ5 = iγ0γ1γ2γ3 γ5 =

(
0 112
112 0

)

. (A.6)

It anticommutes with γµ matrices:

{γ5, γν} = 0, µ = 0, 1, 2, 3. (A.7)

One proves easily:

• γµγαγ
µ = −2 γα

• γµγαγβγ
µ = 4 gαβ 114 (A.8)

• γµγαγβγδγ
µ = −2 γδγβγα.
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For the evaluation of traces of products γαγβ... one has the following relations :

Tr(γαγβ) = 4 gαβ

Tr(γαγβγδγλ) = 4 [gαβ gδλ − gαδ gβλ + gαλ gβδ ]

Tr(γαγβ ...) = 0 for an odd number of matrices (A.9)

Tr(γ5γαγβ ...) = 0 for an odd number of γα matrices

Tr(γ5γαγβ) = 0

Tr(γ5γαγβγδγλ) = −4iǫαβδλ,

where ǫαβδλ is the totally antisymmetric tensor under permutation of its indices with ǫ0123 = +1. One

has ǫαβδλ = −ǫαβδλ and in particular ǫ0123 = −1. A useful relation is:

ǫµναβǫ
ρσαβ = −2(δρµδσν − δρνδσµ) (A.10)

There exists other representations due to Weyl and to Majorana which satisfy the relations eq. (A.5)

to eq. (A.9). In general, when doing calculations, the explicit form of γµ matrices is not necessary.
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B Charge conjugation C, space reflection P, time reversal T
B.1 Charge conjugation C

A fermion (electron) of charge e obeys the Dirac equation

((i∂µ − eAµ) γµ −m)ψ = 0. (B.1)

Looking for a plane wave solution of type eq. (2.6) we obtain

(6p− e6A−m)uα(p) = 0, for positive energy solutions,

(6p+ e6A+m)vα(p) = 0, for negative energy solutions,

which suggests to interpret the negative energy solution as a positive energy one with charge −e, i.e.
the antiparticle (positron). The wave function of the positron should thus satisfy the same equation

as the electron with an opposite charge

((i∂µ + eAµ) γ
µ −m)ψc = 0. (B.2)

The solution ψc can be constructed in the following way. From the first equation above one has

(−(i∂µ + eAµ) γ
µ∗ −m)ψ∗ = 0. (B.3)

We look for ψc under the form

ψc = Cγ0ψ∗, (B.4)

where C is a 4× 4 matrix. Then eq. (B.3) yields after multiplication on the left by Cγ0:

(Cγ0)(−(i∂µ + eAµ) γ
µ∗ −m) (Cγ0)−1ψc = 0, (B.5)

and, if one finds a matrix C such that:

(Cγ0) γµ∗ = −γµ (Cγ0), (B.6)

then we recover eq. (B.2). In our representation of γµ matrices, we have

γµ
∗

= γµ, µ = 0, 1, 3; γµ
∗

= −γµ, µ = 2, (B.7)

so that the choice of the real matrix

(Cγ0) = iγ2 ⇔ C = iγ2γ0 (B.8)
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satisfy the condition (B.6) which is equivalent to:

γ2γµγ2 = γ∗µ. (B.9)

Using the relations eqs. (A.4) and (A.5), it is easy to prove

C = −C−1 = −C† = −CT and Cγ5C−1 = γ5 ⇔ γ2γ5γ2 = γ5. (B.10)

Under charge conjugation, the wave function ψ which satisfies eq. (B.1) becomes

ψc = Cγ0ψ∗ = CψT = iγ2ψ∗ ⇔ ψc = iψTγ2γ0, (B.11)

solution of eq. (B.2).

Let us first discuss free massless chiral spinors, eqs. (3.28) and (3.30), important in the construction

of the Standard Model. The application of C parity yields:

(uL)
c(p) = Cγ0 u∗L(p) = iγ2 u

∗
L(p) =

√
ω iγ2

(
χ∗
L

−χ∗
L

)

= −
√
ω

(
χR
χR

)

= vL(p)

(uR)
c(p) = C γ0 u∗R(p) = iγ2 u

∗
R(p) =

√
ω iγ2

(
χ∗
R

χ∗
R

)

=
√
ω

(
−χL
χL

)

= vR(p), (B.12)

and thus, the C operator transforms the wave-function of a positive energy spinor (electron) into the

wave-function of a negative energy one (positron) of the same helicity (similar relations exist for (vL)
c

and (vR)
c). Recalling the definition of ψL(x), eq. (3.23),

ψL(x) =

∫
d3p

(2π)32ω

[

bL(p) uL(p) e
−ip.x + d†R(p) vR(p) e

ip.x
]

its C transformed is:

(ψL)
c(x) =

∫
d3p

(2π)32ω

[

dR(p) uR(p) e
−ip.x + b†L(p) vL(p) e

ip.x
]

, (B.13)

which destroys a right-handed antifermion with wave-function uR(p) and creates a left-handed fermion

with vL(p). Equivalently, in a compact form, if one writes ψL = (1− γ5)ψ/2, its charge conjugate is:

(ψL)
c = iγ2 ψ∗

L =
1 + γ5

2
iγ2ψ∗ =

1 + γ5

2
ψc = (ψc)R, (B.14)

a right-handed wave-function. Likewise the C conjugate of a right-handed wave-function is left-handed

(ψR)
c =

1− γ5
2

ψc = (ψc)L. (B.15)
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Going back to the general case, it is easy to show that under C parity the helicity projection operators

satisfy:

iγ2 Σ±∗(s) = iγ2
(1± γ5 6s∗)

2
=

(1± γ5 6s)
2

iγ2 = Σ±(s) iγ2,

and the energy projection operators satisfy:

iγ2 Λ
±∗(p) = iγ2

±6p∗ +m

2
=
∓6p+m

2
iγ2 = Λ∓(p) iγ2,

where one has used the relations eq. (B.7). Thus, a solution of the Dirac equation of positive (resp.

negative) energy and given helicity becomes a solution of negative (resp. positive) energy of the same

helicity:

iγ2 Σ
±∗(s) Λ±∗(p) ψ∗(p, x)) = Σ±(s) Λ∓(p) ψc(p, x), (B.16)

It is useful to list the transformation of fermion bilinears under C. They easily derived from eqs.(B.9)

to (B.11), remembering the − sign (due to Fermi statistics) when transposing the expressions to obtain

the right hand-side, and one finds:

ψc2(x)ψ
c
1(x) = ψ1(x)ψ2(x),

ψc2(x)γ
5ψc1(x) = ψ1(x)γ

5ψ2(x), (B.17)

ψc2(x)γ
νψc1(x) = −ψ1(x)γ

νψ2(x),

ψc2(x)γ
νγ5ψc1(x) = ψ1(x)γ

νγ5ψ2(x).

B.2 Space reflection P

The space reflection, or parity transformation is defined by :

x0 → x′0 = x0, x→ x′ = −x. (B.18)

The transformation is parameterised in the following way

x′ν = aνµx
µ with aνµ =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






. (B.19)

Knowing ψ(x0,x) satisfying the free Dirac equation, we look for the form of the solution obtained

under a space reflection. We write

ψ′(x0,x
′) = ψ′(x0,−x) = Pψ(x0,x), thus ψ(x0,x) = P−1ψ′(x0,−x) (B.20)

152



From the free Dirac equation

(i
∂

∂xµ
γµ −m)ψ(x0,x) = 0, (B.21)

we obtain, using

∂

∂xµ
=

∂

∂x′ν
∂x′ν

∂xµ
=

∂

∂x′ν
aνµ, (B.22)

(i
∂

∂xµ
γµ −m)P−1ψ′(x0,x

′) = (i
∂

∂x′ν
aνµγ

µ −m)P−1ψ′(x0,x
′) = 0, (B.23)

which leads to

(i
∂

∂x′ν
aνµ PγµP−1 −m)ψ′(x0,x

′) = 0. (B.24)

If we find a matrix P such that aνµ Pγµ = γνP, then ψ′(x0,x′) will be a solution. Such a matrix

should commute with γ0 and anticommute with ~γ. Obviously

P = eiφγ0 (B.25)

has such a property. Thus

ψ′(x0,x
′) = eiφγ0ψ(x0,x), ψ̄′(x0,x

′) = e−iφψ†(x0,x). (B.26)

Note that the parity operator reverses the fermion helicity. Thus a massless left-handed fermion

becomes right-handed:

PψL(x0,x) = γ0
1− γ5

2
ψ(x0,x)

=
1 + γ5

2
ψ′(x0,x

′) = ψ′
R(x0,x

′) (B.27)

(where for simplicity we ignore an irrelevant phase). In terms of Dirac spinors one has:

γ0 u(p) = u(−p), γ0 v(p) = −v(−p), (B.28)

as can be immediatly verified from eqs (3.12). It is easy to check the behavior of the fermion bilinears

under a parity transformation:

ψ′
2(x0,x

′)ψ′
1(x0,x

′) = ψ2(x0,x)ψ1(x0,x), a scalar

ψ′
2(x0,x

′)γ5ψ′
1(x0,x

′) = −ψ2(x0,x)γ
5ψ1(x0,x), a pseudoscalar (B.29)

ψ′
2(x0,x

′)γνψ′
1(x0,x

′) = aνµψ2(x0,x)γ
µψ1(x0,x), a vector

ψ′
2(x0,x

′)γνγ5ψ′
1(x0,x

′) = −aνµψ2(x0,x)γ
µγ5ψ1(x0,x), a pseudovector or axial vector
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B.3 Variance and invariance of the lagrangien under C and CP

From the above discussion, it is easy to obtain the transformation properties of the lagrangien. The

easiest case is that of QED:

LQED = ψ(x)(i6∂ − e6A(x)−m)ψ(x). (B.30)

Under P all vectors such as x′µ, ∂
′
µ, A

′
µ(x

′) transform as aνµxν , a
ν
µ∂ν , a

ν
µ Aν(x) and ψ̄

′(x0,x′)γµψ′(x0,x′)

→ aµν ψ̄(x0,x)γ
νψ(x0,x) so that

ψ′(x′)(i6∂ ′ − e6A′(x′)−m)ψ′(x′) (B.31)

reduces to the lagrangien above. The transformation is also very simple under C. The U(1) gauge

transformation, ψ′(x) → exp(−ieα(x))ψ(x), implies ψc′(x) → exp(ieα(x))ψc(x) and the U(1) gauge

invariance of LQED leads to Acµ(x) = −Aµ(x) (use eqs. (B.17) to prove the invariance). For the

derivative term it is a bit more tricky since

ψc(x) i6∂ ψc(x) = ψc(x) iγµ
−→
∂µψ

c(x) = ψT (x)γ0 iγ
µ∗ −→∂µψ∗(x)

= −ψ†(x)
←−
∂µ iγ

µ†γ0 ψ(x) = −ψ†(x)
←−
∂µ γ0iγ

µ ψ(x)

= ψ(x) iγµ
−→
∂µ ψ(x) = ψ(x) i6∂ ψ(x). (B.32)

One goes from the first to the second line by transposing the expression keeping in mind the - sign for

the anticommutation of the fermions and from the second line to the last one by a partial integration

neglecting, as usual, a total derivative. This proves the invariance of the QED lagrangian under C, P
and therefore CP transformations.

On the contrary a theory with an interaction term of the form ψ(x)γµ(1 − γ5)ψ(x) is not invariant

under C or P since this term becomes, up to an overall sign, ψ(x)γµ(1+ γ5)ψ(x) (use eqs. (B.17) and

(B.29)), and one can say that there is maximum violation of these symmetries. However it is invariant

under CP . The case of the Standard Model with three generations is a bit more subtle. Consider the

charged current piece eq. (11.9) written in the mass eigenstate basis. Denoting V the CKM matrix,

with Vij = vij ,V
†
ji = v∗ij , the charged current is written:

LF (charged current) =
e√

2 sin θ
W

[u
L
W ∗
µγ

µV d
L

+ d
L
V†Wµγ

µu
L
]

=
e√

2 sin θ
W

[viju
j
L
W ∗
µγ

µ dj
L
+ v∗ijd

j

L
Wµγ

µ ui
L
]

=
e

2
√
2 sin θ

W

[viju
i W ∗

µγ
µ (1− γ5) dj + v∗ijd

j
Wµγ

µ(1− γ5) ui], (B.33)
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where the index i, j run over the number of fermion generations. If ψ is in the fundamental represen-

tation of the unitary group G, with generators τa the generators operating on the ψc fields are τa∗

and the conjugate of the gauge boson is W c
µ = −W a

µτ
a∗ = −W ∗

µ , so that Wµ ↔ −W ∗
µ under C parity

(with the definition of Wµ given after eq. (5.43)). Under charge conjugation, LF becomes:

LCF (charged current) =
e

2
√
2 sin θ

W

[vijuc
i
W c∗
µ γ

µ (1− γ5) dcj + v∗ijd
cj W c

µγ
µ(1− γ5) uci]

=
e

2
√
2 sin θ

W

[vijd
j
Wµγ

µ (1 + γ5) u
i + v∗iju

i W ∗
µγ

µ∗(1 + γ5) d
j ], (B.34)

where we have used eqs. (B.17). If we do furthermore a P transformation on this expression we

obtain:

LCPF (charged current) =
e

2
√
2 sin θ

W

[vijd
j
Wµγ

µ (1− γ5) ui + v∗iju
i W ∗

µγ
µ∗(1− γ5) dj ], (B.35)

since, following eqs. (B.29), the term inWµγ
µ is invariant whileWµγ

µγ5 changes sign. This is identical

to eq. (B.33) except for the vij ↔ v∗ij factors interchanged between the two terms of the expression:

if the CKM matrix were real then the lagrangian would be invariant under CP , in other words the

phase of the CKM matrix is at the origin of CP violation in the Standard Model since all other terms

in the lagrangien are invariant under CP .

B.4 Time reflection T

The time-reflection transformation takes the coordinate x = (x0,x) to x′ = (−x0,x). This transfor-

mation can be written

x′ν = aνµx
µ with aνµ =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






. (B.36)

Denoting ψ′(x′) ≡ ψ′(−x0,x) the free time-reflected wave function, we attempt to construct it under

the form

ψ′(x′) = T ψ∗(x), ⇒ ψ∗(x) = T −1ψ′(x′), (B.37)

where T is a 4× 4 constant matrix and ψ(x) is the solution of the free Dirac equation with

(−i ∂

∂xµ
γµ∗ −m)ψ∗(x) = 0, ⇒ (−i ∂

∂x′ν
aνµγ

µ∗ −m)T −1ψ(x′) = 0. (B.38)

Multiplying to the left by T we obtain

(−i ∂

∂x′ν
aνµT γµ∗T −1 −m)ψ′(x′) = 0, (B.39)
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and ψ′(x′) will be a solution of the Dirac equation, i.e. will satisfy

(i
∂

∂x′ν
γν −m)ψ′(x′) = 0, (B.40)

if we find a matrix such that

aνµT γµ∗T −1 = −γν . (B.41)

Recalling that γµ∗ = γµ for µ = 0, 1, 3 and γ2∗ = −γ2, the above conditions reduce to T γi = γiT for

i = 0, 2 and T γj = −γjT , j = 1, 3. The matrix

T = iγ1γ3 (B.42)

satisfies the required conditions and we have thus

ψ′(−x0,x) = iγ1γ3ψ∗(x0,x) (B.43)

the solution for the free wave function evolving backward in time. For an interacting fermion in QED,

under time reversal the potential A′µ(x′) is related to Aµ(x) by A′0(x′) = A0(x), Ai(x′) = −Ai(x),
since the current reverses sign when the arrow of time is reversed and under this condition we can

show that QED is invariant under time reversal.

Combining the symmetries P and T one can construct the wave function of an electron evolving

backward in space-time,

ψPT (−x) = PT ψ(x) = γ0[iγ1γ3ψ∗(x)]

= γ5iγ2ψ∗(x)

= γ5ψ
c(x), (B.44)

where we introduced the wave-function of the positron via eq. (B.11), Thus the wave function of a

(right-handed) positron is that of a (left-handed) electron moving backward in space-time (up to an

irrelevant phase factor).
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C Feynman rules of the Glashow-Weinberg-Salam model

C.1 Propagators

Massless spin 1 boson (Feynman gauge)

�

k
− i gµ ν

k2 + i ǫ
(C.1)

Massive spin 1 boson

�

k
− i g

µν − kµkν/M2

k2 −M2 + i ǫ
(C.2)

Fermion

�

p
i

6p+m

p2 −m2 + i ǫ
(C.3)

Massive spin 0 boson

�

k

i

k2 −m2 + i ǫ
(C.4)

C.2 Vertices

Fermion-fermion-γ vertex

�

f

γ

f − iQe e γµ (C.5)

Fermion-fermion-W± vertex

�

f

W±

f − i e

2
√
2 sin θ

W

γµ (1− γ5) (C.6)
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Fermion-fermion-Z vertex

�

f

Z

f − i e

2 sin θ
W
cos θ

W

γµ
[(

If3 − 2Qf sin2 θ
W

)

− If3 γ5
]

(C.7)

Fermion-fermion-H vertex

�

f

H

f − i e

2 sin2 θ
W

mf

M
W

(C.8)

Z-Z-W+-W− vertex

	

Z(β)

Z(α)

W−(δ)

W+(γ)

i e2
cos2 θ

W

sin2 θ
W

[

gαδgβγ + gαγgβδ − 2 gαβgγδ
]

(C.9)

γ-γ-W+-W− vertex




γ(β)

γ(α)

W−(δ)

W+(γ)

i e2
[

gαδgβγ + gαγgβδ − 2 gαβgγδ
]

(C.10)
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Z-γ-W+-W− vertex

�

γ(β)

Z(α)

W−(δ)

W+(γ)

i e2
cos θ

W

sin θ
W

[

gαδgβγ + gαγgβδ − 2 gαβgγδ
]

(C.11)

W+-W−-W+-W− vertex

�

W−(β)

W+(α)

W−(δ)

W+(γ)

i
e2

sin2 θ
W

[

gαδgβγ + gαγgβδ − 2 gαβgγδ
]

(C.12)

H-H-H vertex




H

H

H − i 3
2

e

sin θ
W

M2
H

MW
(C.13)

H-H-H-H vertex

Æ

H

H

H

H

− i 3
4

e2

sin2 θ
W

M2
H

M2
W

(C.14)

H-W+-W− vertex

�

W±

H

W± i
e

sin θ
W

M
W
gαβ (C.15)
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H-H-W+-W− vertex

�

H

H

W+(α)

W−(β)

i
e2

2 sin2 θ
W

gαβ (C.16)

H-Z-Z vertex

�

Z

H

Z i
e

sin θ
W

cos θ
W

M
Z
gαβ (C.17)

H-H-Z-Z vertex

�

H

H

Z(α)

Z(β)

i
e2

2 sin2 θ
W

cos2 θ
W

gαβ (C.18)

Z-W+-W− vertex

�

W+(β)
k2

Z(α)
k1

W−(γ)
k3

i e
cos θ

W

sin θ
W

[

gαβ(k1 − k2)γ + gβγ(k2 − k3)α + gγα(k3 − k1)β
]

(C.19)
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γ-W+-W− vertex

�

W+(β)
k2

γ(α)
k1

W−(γ)
k3

i e
[

gαβ(k1 − k2)γ + gβγ(k2 − k3)α + gγα(k3 − k1)β
]

(C.20)
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